WorldWideScience

Sample records for metastasis suppressor gene

  1. MIM, a Potential Metastasis Suppressor Gene in Bladder Cancer

    Directory of Open Access Journals (Sweden)

    Young-Goo Lee

    2002-01-01

    Full Text Available Using a modified version of the mRNA differential display technique, five human bladder cancer cell lines from low grade to metastatic were analyzed to identify differences in gene expression. A 316-bp cDNA (C11300 was isolated that was not expressed in the metastatic cell line TccSuP. Sequence analysis revealed that this gene was identical to KIAA 0429, has a 5.3-kb transcript that mapped to 8824.1. The protein is predicted to be 356 amino acids in size and has an actin-binding WH2 domain. Northern blot revealed expression in multiple normal tissues, but none in a metastatic breast cancer cell line (SKBR3 or in metastatic prostatic cancer cell lines (LNCaP, PC3. We have named this gene Missing in Metastasis (MIM and our data suggest that it may be involved in cytoskeletal organization.

  2. SERPINB5 and AKAP12 -- Expression and promoter methylation of metastasis suppressor genes in pancreatic ductal adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Haier Joerg

    2010-10-01

    Full Text Available Abstract Background Early metastasis and infiltration are survival limiting characteristics of pancreatic ductal adenocarcinoma (PDAC. Thus, PDAC is likely to harbor alterations in metastasis suppressor genes that may provide novel diagnostic and therapeutic opportunities. This study investigates a panel of metastasis suppressor genes in correlation to PDAC phenotype and examines promoter methylation for regulatory influence on metastasis suppressor gene expression and for its potential as a diagnostic tool. Methods Metastatic and invasive potential of 16 PDAC cell lines were quantified in an orthotopic mouse model and mRNA expression of 11 metastasis suppressor genes determined by quantitative RT-PCR. Analysis for promoter methylation was performed using methylation specific PCR and bisulfite sequencing PCR. Protein expression was determined by Western blot. Results In general, higher metastasis suppressor gene mRNA expression was not consistent with less aggressive phenotypes of PDAC. Instead, mRNA overexpression of several metastasis suppressor genes was found in PDAC cell lines vs. normal pancreatic RNA. Of the investigated metastasis suppressor genes, only higher AKAP12 mRNA expression was correlated with decreased metastasis (P SERPINB5 mRNA expression was correlated with increased metastasis scores (P SERPINB5 methylation was associated with loss of mRNA and protein expression (P SERPINB5 methylation was also directly correlated to decreased metastasis scores (P Conclusions AKAP12 mRNA expression was correlated to attenuated invasive and metastatic potential and may be associated with less aggressive phenotypes of PDAC while no such evidence was obtained for the remaining metastasis suppressor genes. Increased SERPINB5 mRNA expression was correlated to increased metastasis and mRNA expression was regulated by methylation. Thus, SERPINB5 methylation was directly correlated to metastasis scores and may provide a diagnostic tool for PDAC.

  3. MMP-8, A Breast Cancer Bone Metastasis Suppressor Gene

    National Research Council Canada - National Science Library

    Selvamurugan, Nagarajan

    2006-01-01

    .... But the expression level of MMP-8 was not detected by Western blot analysis. The molecular mechanisms of how TGF-BetaI mediates stimulation of invasion and formation of bone metastasis have yet to be completely determined. ATF-3...

  4. MMP-8, A Breast Cancer Bone Metastasis Suppressor Gene

    Science.gov (United States)

    2006-08-01

    and RD mutations were generated using the Chameleon double- stranded site-directed mutagenesis kit (Strata- gene). The fragments were released by...receptor TβR-I, the type II receptor TβR- II, the regulatory Smads (Smad2 and Smad3), and Smad4 (8). Most of these components have mutations in several...human cancers. But, mutations in TGF-β receptors or Smads are rare in breast cancer (9, 10). Moreover, for breast cancer cells, TGF-β1 is a crucial

  5. ERα Mediates Estrogen-Induced Expression of the Breast Cancer Metastasis Suppressor Gene BRMS1

    Directory of Open Access Journals (Sweden)

    Hongtao Ma

    2016-01-01

    Full Text Available Recently, estrogen has been reported as putatively inhibiting cancer cell invasion and motility. This information is in direct contrast to the paradigm of estrogen as a tumor promoter. However, data suggests that the effects of estrogen are modulated by the receptor isoform with which it interacts. In order to gain a clearer understanding of the role of estrogen in potentially suppressing breast cancer metastasis, we investigated the regulation of estrogen and its receptor on the downstream target gene, breast cancer metastasis suppressor 1 (BRMS1 in MCF-7, SKBR3, TTU-1 and MDA-MB-231 breast cancer cells. Our results showed that estrogen increased the transcription and expression of BRMS1 in the ERα positive breast cancer cell line, MCF-7. Additionally, the ERα specific agonist PPT also induced the transcription and expression of BRMS1. However, the two remaining estrogen receptor (ER subtype agonists had no effect on BRMS1 expression. In order to further examine the influence of ERα on BRMS1 expression, ERα expression was knocked down using siRNA (siERα. Western blot analysis showed that siERα reduced estrogen-induced and PPT-induced BRMS1 expression. In summary, this study demonstrates estrogen, via its α receptor, positively regulates the expression of BRMS1, providing new insight into a potential inhibitory effect of estrogen on metastasis suppression.

  6. Polymorphisms rs12998 and rs5780218 in KiSS1 Suppressor Metastasis Gene in Mexican Patients with Breast Cancer

    Directory of Open Access Journals (Sweden)

    Edhit Guadalupe Cruz Quevedo

    2015-01-01

    Full Text Available Aims. KiSS1 is a metastasis suppressor gene associated with inhibition of cellular chemotaxis and invasion attenuating the metastasis in melanoma and breast cancer cell lines. Along the KiSS-1 gene at least 294 SNPs have been described; however the association of these polymorphisms as genetic markers for metastasis in breast cancer studies has not been investigated. Here we describe two simple PCR-RFLPs protocols to identify the rs5780218 (9DelT and the rs12998 (E20K KiSS1 polymorphisms and the allelic, genotypic, and haplotypic frequencies in Mexican general population (GP and patients with benign breast disease (BBD or breast cancer (BC. Results. The rs5780218 polymorphism was individually associated with breast cancer (P=0.0332 and the rs12998 polymorphism shows statistically significant differences when GP versus case (BC and BBD groups were compared (P<0.0001. The H1 Haplotype (G/- occurred more frequently in BC group (0.4256 whereas H2 haplotype (G/T was the most prevalent in BBD group (0.4674. Conclusions. Our data indicated that the rs5780218 polymorphism individually confers susceptibility for development of breast cancer in Mexican population and a possible role as a genetic marker in breast cancer metastasis for H1 haplotype (Wt/variant in KiSS1 gene must be analyzed in other populations.

  7. Identification of Prostate Cancer Metastasis-Suppressor Genes Using Genomic shRNA Libraries

    National Research Council Canada - National Science Library

    Gelman, Irwin H

    2008-01-01

    .... However, little is known regarding the genetics that control disease recurrence. Our proposed research was to screen for metastasis- inducing genes in LNCaP and LAPC-4 CaP cells using libraries expressing RNAi covering the entire human genome...

  8. Ontogeny of clock and KiSS-1 metastasis-suppressor (Kiss1) gene expression in the prepubertal mouse hypothalamus.

    Science.gov (United States)

    Yap, Cassandra C; Mark, Peter J; Waddell, Brendan J; Smith, Jeremy T

    2017-09-01

    Kisspeptin is crucial for the generation of the circadian-gated preovulatory gonadotrophin-releasing hormone (GnRH)-LH surge in female rodents, with expression in the anteroventral periventricular nucleus (AVPV) peaking in the late afternoon of pro-oestrus. Given kisspeptin expression is established before puberty, the aim of the present study was to investigate kisspeptin and clock gene rhythms during the neonatal period. Anterior and posterior hypothalami were collected from C57BL/6J mice on Postnatal Days (P) 5, 15 and 25, at six time points across 24h, for analysis of gene expression by reverse transcription-quantitative polymerase chain reaction. Expression of aryl hydrocarbon receptor nuclear translocator-like gene (Bmal1) and nuclear receptor subfamily 1, group D, member 2 (Rev-erbα) in the anterior hypothalamus (containing the suprachiasmatic nucleus) was not rhythmic at P5 or P15, but Bmal1 expression exhibited rhythmicity in P25 females, whereas Rev-erbα expression was rhythmic in P25 males. KiSS-1 metastasis-suppressor (Kiss1) expression did not exhibit time-of-day variation in the anterior (containing the AVPV) or posterior (containing the arcuate nucleus) hypothalami in female and male mice at P5, P15 or P25. The data indicate that the kisspeptin circadian peak in expression observed in the AVPV of pro-oestrous females does not manifest at P5, P15 or P25, likely due to inadequate oestrogenic stimuli, as well as incomplete development of clock gene rhythmicity before puberty.

  9. [Silencing of tumor metastasis suppressor gene 1 promotes invasion of prostate cancer cell in vitro and its molecular mechanisms].

    Science.gov (United States)

    Xu, Xiao-yan; You, Jiang-feng; Pei, Fei; Zhang, Bo

    2011-12-18

    , indicating that LASS2 is a novel tumor metastasis suppressor gene.

  10. The molecular effect of metastasis suppressors on Src signaling and tumorigenesis: new therapeutic targets

    Science.gov (United States)

    Liu, Wensheng; Kovacevic, Zaklina; Peng, Zhihai; Jin, Runsen; Wang, Puxiongzhi; Yue, Fei; Zheng, Minhua; Huang, Michael L-H.; Jansson, Patric J.; Richardson, Vera; Kalinowski, Danuta S.; Lane, Darius J.R.; Merlot, Angelica M.; Sahni, Sumit; Richardson, Des R.

    2015-01-01

    A major problem for cancer patients is the metastasis of cancer cells from the primary tumor. This involves: (1) migration through the basement membrane; (2) dissemination via the circulatory system; and (3) invasion into a secondary site. Metastasis suppressors, by definition, inhibit metastasis at any step of the metastatic cascade. Notably, Src is a non-receptor, cytoplasmic, tyrosine kinase, which becomes aberrantly activated in many cancer-types following stimulation of plasma membrane receptors (e.g., receptor tyrosine kinases and integrins). There is evidence of a prominent role of Src in tumor progression-related events such as the epithelial–mesenchymal transition (EMT) and the development of metastasis. However, the precise molecular interactions of Src with metastasis suppressors remain unclear. Herein, we review known metastasis suppressors and summarize recent advances in understanding the mechanisms of how these proteins inhibit metastasis through modulation of Src. Particular emphasis is bestowed on the potent metastasis suppressor, N-myc downstream regulated gene 1 (NDRG1) and its interactions with the Src signaling cascade. Recent studies demonstrated a novel mechanism through which NDRG1 plays a significant role in regulating cancer cell migration by inhibiting Src activity. Moreover, we discuss the rationale for targeting metastasis suppressor genes as a sound therapeutic modality, and we review several examples from the literature where such strategies show promise. Collectively, this review summarizes the essential interactions of metastasis suppressors with Src and their effects on progression of cancer metastasis. Moreover, interesting unresolved issues regarding these proteins as well as their potential as therapeutic targets are also discussed. PMID:26431493

  11. MiR-424 Promotes Non-Small Cell Lung Cancer Progression and Metastasis through Regulating the Tumor Suppressor Gene TNFAIP1

    Directory of Open Access Journals (Sweden)

    Ming Zhang

    2017-05-01

    Full Text Available Background/Aims: This study aimed to investigate the potential roles of miR-424 expression in non-small cell lung cancer (NSCLC metastasis and growth and its underlying mechanism. Methods: The expression of miR-424 in two NSCLC cell lines (A549 and H1975 was altered by transfection with miR-424 mimic and inhibitor. Effects of miR-424 overexpression and suppression on cells migration, invasion and colony formation were analyzed. Target genes for miR-424 were predicted using bioinformatics method and then verified using luciferase assay. Effects of miR-424 expression on cell migration, invasion and proliferation were reanalyzed on the condition of TNFAIP1 was silenced. Moreover, TNFAIP1 silencing and miR-424 modified A549 cells were subcutaneous injected into node BALB/c mice to confirm the regulation of miR-424 on TNFAIP1 in regulating tumor growth. Results: Compared with the control, miR-424 overexpression significantly increased the migrated and invaded cells, as well as the proliferated colonies. TNFAIP1 was a predicted target gene for miR-424, and was negatively regulated by miR-424. TNFAIP1 silence significantly increased the migrated and invaded cells compared to that in control, while these increases were abolished by miR-424 suppression. Animal experiment further evidenced miR-424 affected tumor growth by regulating TNFAIP1. Conclusions: These data demonstrate that miR-424 may be a contributor for NSCLC progression and metastasis through involving in cell migration, invasion and proliferation via inhibiting TNFAIP1. This study may provide theoretical basis for miR-424 in NSCLC target therapeutic treatment.

  12. Identification of a myeloid-derived suppressor cell cystatin-like protein that inhibits metastasis

    Science.gov (United States)

    Boutté, Angela M.; Friedman, David B.; Bogyo, Matthew; Min, Yongfen; Yang, Li; Lin, P. Charles

    2011-01-01

    Myeloid-derived suppressor cells (MDSCs) are significantly increased in cancer patients and tumor bearing-animals. MDSCs infiltrate into tumors and promote tumor invasion and metastasis. To identify the mediator responsible for the prometastatic property of MDSCs, we used proteomics. We found neutrophilic granule protein (NGP) was decreased >2-fold in MDSCs from metastatic 4T1 tumor-bearing mice compared to nonmetastatic 67NR controls. NGP mRNA levels were decreased in bone marrow and in tumor-infiltrating MDSCs by 45 and 66%, respectively, in 4T1 tumor-bearing mice compared to 67NR controls. Interestingly, 4T1-conditioned medium reduced myeloid cell NGP expression by ∼40%, suggesting that a secreted factor mediates gene reduction. Sequence analysis shows a putative cystatin domain in NGP, and biochemical analysis confirms NGP a novel cathepsin inhibitor. It inhibited cathepsin B activity by nearly 40% in vitro. NGP expression in 4T1 tumor cells suppressed cell invasion, delayed primary tumor growth, and greatly reduced lung metastasis in vivo. A 2.8-fold reduction of cathepsin activity was found in tumors expressing NGP compared to controls. NGP significantly reduced tumor angiogenesis to 12.6 from 19.6 and lymphangiogenesis to 4.6 from 9.1 vessels/field. Necrosis was detectable only in NGP-expressing tumors, and the number of apoptotic cells increased to 22.4 from 8.3 in controls. Taken together, this study identifies a negative regulator of tumor metastasis in MDSCs, NGP, which is down-regulated in metastatic conditions. The finding suggests that malignant tumors promote invasion/metastasis not only through up-regulation of proteases but also down-regulation of protease inhibitors.—Boutté, A. M., Friedman, D. B., Bogyo, M., Min, Y., Yang, L., Lin, P. C. Identification of a myeloid-derived suppressor cell cystatin-like protein that inhibits metastasis. PMID:21518852

  13. Identification of genes associated with melanoma metastasis

    Directory of Open Access Journals (Sweden)

    Tao Qiu

    2015-11-01

    Full Text Available The aims of the study were to identify the differentially expressed genes (DEGs between primary melanomas and metastasis melanomas (MMs, and to investigate the mechanisms of MMs. The microarray data GSE8401 including 31 primary melanomas and 52 MMs were downloaded from Gene Expression Omnibus. DEGs were identified using the Linear Models for Microarray Data package. The functional and pathway enrichment analyses were performed for DEGs. Identification of transcription factors, tumor-associated genes (TAGs, and tumor suppressor genes (TSGs were performed with the TRANSFAC, TAG, and TSGene databases, respectively. A protein–protein interaction network was constructed using Search Tool for the Retrieval of Interacting Genes. The modules construction and analysis was performed using Molecular Complex Detection and Gene Cluster with Literature Profiles, respectively. In total, 1004 upregulated and 1008 downregulated DEGs were identified. The upregulated DEGs, such as CDK1, BRCA1, MAD2L1, and PCNA, were significantly enriched in cell cycles, DNA replication, and mismatch repair. The downregulated DEGs, such as COLIAL, COL4A5, COL18A1, and LAMC2, were enriched in cell adhesion and extracellular matrix-receptor interaction. BRCA1 was identified as a transcription factor and TSG, and COL18A1 and LAMC2 were identified as a TSG and TAG, respectively. The upregulated DEGs had higher degrees in the protein–protein interaction network and module, such as PCNA, CDK1, and MAD2L1, and the heat map showed they were clustered in the functions of cell cycle and division. These results may demonstrate the potential roles of DEGs such as CDK1, BRCA1, COL18A1, and LAMC2 in the mechanism of MM.

  14. Breast cancer metastasis suppressor 1 (BRMS1) is stabilized by the Hsp90 chaperone #

    OpenAIRE

    Hurst, Douglas R.; Mehta, Alka; Moore, Blake P.; Phadke, Pushkar A.; Meehan, William J.; Accavitti, Mary Ann; Shevde, Lalita A.; Hopper, James E.; Xie, Yi; Welch, Danny R.; Samant, Rajeev S.

    2006-01-01

    Breast cancer metastasis suppressor 1 (BRMS1) is a member of the mSin3-HDAC transcription co-repressor complex. However, the proteins associated with BRMS1 have not been fully identified. Yeast two-hybrid screen, immuno-affinity chromatography, and co-immunoprecipitation experiments were performed to identify BRMS1 interacting proteins. In addition to known core mSin3 transcriptional complex components RBBP1 and mSDS3, BRMS1 interacted with other proteins including three chaperones: DNAJB6 (M...

  15. PTEN, a Tumor Suppressor Gene for Prostate Cancer

    National Research Council Canada - National Science Library

    Ittmann, Michael

    1999-01-01

    .... The PTEN gene is a tumor suppressor gene recently cloned from human chromosome 10q23.3 that encodes a lipid phosphatase which influences a variety of cellular processes that impact on the neoplastic phenotype...

  16. The milk protein α-casein functions as a tumor suppressor via activation of STAT1 signaling, effectively preventing breast cancer tumor growth and metastasis.

    Science.gov (United States)

    Bonuccelli, Gloria; Castello-Cros, Remedios; Capozza, Franco; Martinez-Outschoorn, Ubaldo E; Lin, Zhao; Tsirigos, Aristotelis; Xuanmao, Jiao; Whitaker-Menezes, Diana; Howell, Anthony; Lisanti, Michael P; Sotgia, Federica

    2012-11-01

    Here, we identified the milk protein α-casein as a novel suppressor of tumor growth and metastasis. Briefly, Met-1 mammary tumor cells expressing α-casein showed a ~5-fold reduction in tumor growth and a near 10-fold decrease in experimental metastasis. To identify the molecular mechanism(s), we performed genome-wide transcriptional profiling. Interestingly, our results show that α-casein upregulates gene transcripts associated with interferon/STAT1 signaling and downregulates genes associated with "stemness." These findings were validated by immunoblot and FACS analysis, which showed the upregulation and hyperactivation of STAT1 and a decrease in the number of CD44(+) "cancer stem cells." These gene signatures were also able to predict clinical outcome in human breast cancer patients. Thus, we conclude that a lactation-based therapeutic strategy using recombinant α-casein would provide a more natural and non-toxic approach to the development of novel anticancer therapies.

  17. Expression of metastasis suppressor BRMS1 in breast cancer cells results in a marked delay in cellular adhesion to matrix

    Science.gov (United States)

    Metastatic dissemination is a multi-step process that depends on cancer cells’ ability to respond to microenvironmental cues by adapting adhesion abilities and undergoing cytoskeletal rearrangement. Breast Cancer Metastasis Suppressor 1 (BRMS1) affects several steps of the metastatic cascade: it dec...

  18. Intellectual disability, oncogenes and tumour suppressor genes: the ...

    Indian Academy of Sciences (India)

    disability, the presence of CNV including gene expressed in the brain or with specific brain function is a strong argument. In contrast, CNV affecting only genes involved in oncogen- esis are mostly ignored. However, links between some onco- genes or tumour suppressor genes and intellectual disability deserve attention.

  19. Cisplatin Induces Up-Regulation of KAI1, a Metastasis Suppressor ...

    African Journals Online (AJOL)

    HP

    KAI1 is involved in cell migration, adhesion and synapse formation [7]. Many reports have documented that the KAI1 gene suppresses metastasis in many types of human cancers including breast, pancreatic, lung, bladder, hepatic, gastric, breast, colorectal, ovarian, esophageal, cervical and endometrial [8,9]. The aim of the ...

  20. Cisplatin Induces Up-Regulation of KAI1, a Metastasis Suppressor ...

    African Journals Online (AJOL)

    Purpose: To investigate the effect of cisplatin on cell toxicity and metastasis through modulation of KAI1 gene expression. Methods: MCF-7cells were incubated with different concentrations of cisplatin for 24 h. RNA was extracted by trizol and cDNA synthesized. KAI1 and TBP were chosen as target and internal control ...

  1. TFPI-2 is a putative tumor suppressor gene frequently inactivated by promoter hypermethylation in nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Wang, Shumin; Ma, Ning; Murata, Mariko; Huang, Guangwu; Zhang, Zhe; Xiao, Xue; Zhou, Xiaoying; Huang, Tingting; Du, Chunping; Yu, Nana; Mo, Yingxi; Lin, Longde; Zhang, Jinyan

    2010-01-01

    Epigenetic silencing of tumor suppressor genes play important roles in NPC tumorgenesis. Tissue factor pathway inhibitor-2 (TFPI-2), is a protease inhibitor. Recently, TFPI-2 was suggested to be a tumor suppressor gene involved in tumorigenesis and metastasis in some cancers. In this study, we investigated whether TFPI-2 was inactivated epigenetically in nasopharyngeal carcinoma (NPC). Transcriptional expression levels of TFPI-2 was evaluated by RT-PCR. Methylation status were investigated by methylation specific PCR and bisulfate genomic sequencing. The role of TFPI-2 as a tumor suppressor gene in NPC was addressed by re-introducing TFPI-2 expression into the NPC cell line CNE2. TFPI-2 mRNA transcription was inactivated in NPC cell lines. TFPI-2 was aberrantly methylated in 66.7% (4/6) NPC cell lines and 88.6% (62/70) of NPC primary tumors, but not in normal nasopharyngeal epithelia. TFPI-2 expression could be restored in NPC cells after demethylation treatment. Ectopic expression of TFPI-2 in NPC cells induced apoptosis and inhibited cell proliferation, colony formation and cell migration. Epigenetic inactivation of TFPI-2 by promoter hypermethylation is a frequent and tumor specific event in NPC. TFPI-2 might be considering as a putative tumor suppressor gene in NPC

  2. RET is a potential tumor suppressor gene in colorectal cancer

    Science.gov (United States)

    Luo, Yanxin; Tsuchiya, Karen D.; Park, Dong Il; Fausel, Rebecca; Kanngurn, Samornmas; Welcsh, Piri; Dzieciatkowski, Slavomir; Wang, Jianping; Grady, William M.

    2012-01-01

    Cancer arises as the consequence of mutations and epigenetic alterations that activate oncogenes and inactivate tumor suppressor genes. Through a genome-wide screen for methylated genes in colon neoplasms, we identified aberrantly methylated RET in colorectal cancer. RET, a transmembrane receptor tyrosine kinase and a receptor for the GDNF-family ligands, was one of the first oncogenes to be identified and has been shown to be an oncogene in thyroid cancer and pheochromocytoma. However, unexpectedly, we found RET is methylated in 27% of colon adenomas and in 63% of colorectal cancers, and now provide evidence that RET has tumor suppressor activity in colon cancer. The aberrant methylation of RET correlates with decreased RET expression, whereas the restoration of RET in colorectal cancer cell lines results in apoptosis. Furthermore, in support of a tumor suppressor function of RET, mutant RET has also been found in primary colorectal cancer. We now show that these mutations inactivate RET, which is consistent with RET being a tumor suppressor gene in the colon. These findings suggest that the aberrant methylation of RET and the mutational inactivation of RET promote colorectal cancer formation and that RET can serve as a tumor suppressor gene in the colon. Moreover, the increased frequency of methylated RET in colon cancers compared to adenomas suggests RET inactivation is involved in the progression of colon adenomas to cancer. PMID:22751117

  3. Tumour suppressor genes in sporadic epithelial ovarian cancer

    DEFF Research Database (Denmark)

    Liu, Ying; Ganesan, Trivadi S

    2002-01-01

    Ovarian cancer is the most frequent cause of death from gynaecological malignancies in the western world, and sporadic epithelial ovarian cancer is its most predominant form. The aetiology of sporadic ovarian cancer remains unknown. Genetic studies have enabled a better understanding...... of the evolution of tumour progression. A major focus of research has been to identify tumour suppressor genes implicated in sporadic ovarian cancer over the past decade. Several tumour suppressor genes have been identified by strategies such as positional cloning and differential expression display. Further...... research is warranted to understand fully their contribution to the pathogenesis of sporadic ovarian cancer....

  4. Functional Analysis of Chromosome 18 in Pancreatic Cancer: Strong Evidence for New Tumour Suppressor Genes

    Directory of Open Access Journals (Sweden)

    Liviu P. Lefter

    2004-04-01

    Conclusion: These data represent strong functional evidence that chromosome 18q encodes strong tumour and metastasis suppressor activity that is able to switch human pancreatic cancer cells to a dormant phenotype.

  5. Intellectual disability, oncogenes and tumour suppressor genes: the ...

    Indian Academy of Sciences (India)

    associated with Van-Hippel Lindau syndrome, an inherited neoplastic disorder with retinal and central nervous haeman- gioblastomas and high risk of renal cancers (Maher et al. Keywords. array-CGH; mental retardation; oncogenes; tumour suppressor genes; intellectual disability. Journal of Genetics, Vol. 91, No.

  6. Intellectual disability, oncogenes and tumour suppressor genes: the ...

    Indian Academy of Sciences (India)

    Keywords. array-CGH; mental retardation; oncogenes; tumour suppressor genes; intellectual disability. Author Affiliations. M. Bidart1 2 3 C. Coutton4 5 3. Plateforme Protéomique et Transcriptomique Clinique, Pole Recherche, CHU Grenoble, 38043 Grenoble, France; Equipe, Nanomédecine et Cerveau, Inserm U836, ...

  7. Hypomethylation of tumor suppressor genes in odontogenic myxoma

    OpenAIRE

    Moreira,Paula Rocha; Cardoso,Fabiano Pereira; Brito,João Artur Ricieri; Batista,Aline Carvalho; Gomes,Carolina Cavaliéri; Gomez,Ricardo Santiago

    2011-01-01

    Odontogenic myxoma (OM) is an ectomesenchymal benign odontogenic tumor characterized by spindle or stellate-shaped cells embedded in an abundant myxoid or mucoid extracellular matrix. DNA methylation is characterized by the addition of methyl groups in cytosines within CpG islands in the promoter gene. DNA methylation can decrease the expression of tumor suppressor genes and contribute to the development of neoplastic lesions. The aim of study was to evaluate the methylation pattern of the tu...

  8. Molecular biology III - Oncogenes and tumor suppressor genes

    International Nuclear Information System (INIS)

    Giaccia, Amato J.

    1996-01-01

    Purpose: The purpose of this course is to introduce to radiation oncologists the basic concepts of tumorigenesis, building on the information that will be presented in the first and second part of this series of lectures. Objective: Our objective is to increase the current understanding of radiation oncologists with the process of tumorigenesis, especially focusing on genes that are altered in many tumor types that are potential candidates for novel molecular strategies. As strategies to treat cancer of cancer are becoming more sophisticated, it will be important for both the practitioner and academician to develop a basic understanding of the function of cancer 'genes'. This will be the third in a series of refresher courses that are meant to address recent advances in Cancer Biology in a way that both clinicians without previous knowledge of molecular biology or experienced researchers will find interesting. The lecture will begin with a basic overview of tumorigenesis; methods of detecting chromosome/DNA alterations, approaches used to isolate oncogenes and tumor suppressor genes, and their role in cell killing by apoptosis. Special attention will be given to oncogenes and tumor suppressor genes that are modulated by ionizing radiation and the tumor microenvironment. We will relate the biology of oncogenes and tumor suppressor genes to basic aspects of radiation biology that would be important in clinical practice. Finally, we will review recent studies on the prognostic significance of p53 mutations and apoptosis in tumor specimens. The main point of this lecture is to relate both researcher and clinician what are the therapeutic ramifications of oncogene and tumor suppressor gene mutations found in human neoptasia

  9. FXR Controls the Tumor Suppressor NDRG2 and FXR Agonists Reduce Liver Tumor Growth and Metastasis in an Orthotopic Mouse Xenograft Model

    Science.gov (United States)

    Deuschle, Ulrich; Schüler, Julia; Schulz, Andreas; Schlüter, Thomas; Kinzel, Olaf; Abel, Ulrich; Kremoser, Claus

    2012-01-01

    The farnesoid X receptor (FXR) is expressed predominantly in tissues exposed to high levels of bile acids and controls bile acid and lipid homeostasis. FXR−/− mice develop hepatocellular carcinoma (HCC) and show an increased prevalence for intestinal malignancies, suggesting a role of FXR as a tumor suppressor in enterohepatic tissues. The N-myc downstream-regulated gene 2 (NDRG2) has been recognized as a tumor suppressor gene, which is downregulated in human hepatocellular carcinoma, colorectal carcinoma and many other malignancies. We show reduced NDRG2 mRNA in livers of FXR−/− mice compared to wild type mice and both, FXR and NDRG2 mRNAs, are reduced in human HCC compared to normal liver. Gene reporter assays and Chromatin Immunoprecipitation data support that FXR directly controls NDRG2 transcription via IR1-type element(s) identified in the first introns of the human, mouse and rat NDRG2 genes. NDRG2 mRNA was induced by non-steroidal FXR agonists in livers of mice and the magnitude of induction of NDRG2 mRNA in three different human hepatoma cell lines was increased when ectopically expressing human FXR. Growth and metastasis of SK-Hep-1 cells was strongly reduced by non-steroidal FXR agonists in an orthotopic liver xenograft tumor model. Ectopic expression of FXR in SK-Hep1 cells reduced tumor growth and metastasis potential of corresponding cells and increased the anti-tumor efficacy of FXR agonists, which may be partly mediated via increased NDRG2 expression. FXR agonists may show a potential in the prevention and/or treatment of human hepatocellular carcinoma, a devastating malignancy with increasing prevalence and limited therapeutic options. PMID:23056173

  10. FXR controls the tumor suppressor NDRG2 and FXR agonists reduce liver tumor growth and metastasis in an orthotopic mouse xenograft model.

    Directory of Open Access Journals (Sweden)

    Ulrich Deuschle

    Full Text Available The farnesoid X receptor (FXR is expressed predominantly in tissues exposed to high levels of bile acids and controls bile acid and lipid homeostasis. FXR(-/- mice develop hepatocellular carcinoma (HCC and show an increased prevalence for intestinal malignancies, suggesting a role of FXR as a tumor suppressor in enterohepatic tissues. The N-myc downstream-regulated gene 2 (NDRG2 has been recognized as a tumor suppressor gene, which is downregulated in human hepatocellular carcinoma, colorectal carcinoma and many other malignancies.We show reduced NDRG2 mRNA in livers of FXR(-/- mice compared to wild type mice and both, FXR and NDRG2 mRNAs, are reduced in human HCC compared to normal liver. Gene reporter assays and Chromatin Immunoprecipitation data support that FXR directly controls NDRG2 transcription via IR1-type element(s identified in the first introns of the human, mouse and rat NDRG2 genes. NDRG2 mRNA was induced by non-steroidal FXR agonists in livers of mice and the magnitude of induction of NDRG2 mRNA in three different human hepatoma cell lines was increased when ectopically expressing human FXR. Growth and metastasis of SK-Hep-1 cells was strongly reduced by non-steroidal FXR agonists in an orthotopic liver xenograft tumor model. Ectopic expression of FXR in SK-Hep1 cells reduced tumor growth and metastasis potential of corresponding cells and increased the anti-tumor efficacy of FXR agonists, which may be partly mediated via increased NDRG2 expression. FXR agonists may show a potential in the prevention and/or treatment of human hepatocellular carcinoma, a devastating malignancy with increasing prevalence and limited therapeutic options.

  11. Metastasis genetics, epigenetics, and the tumor microenvironment

    Science.gov (United States)

    KISS1 is a member of a family of genes known as metastasis suppressors, defined by their ability to block metastasis without blocking primary tumor development and growth. KISS1 re-expression in multiple metastatic cell lines of diverse cellular origin suppresses metastasis; yet, still allows comple...

  12. Molecular genetic analysis of tumor suppressor genes in ovarian cancer

    International Nuclear Information System (INIS)

    Lee, Je Ho; Park, Sang Yun

    1992-04-01

    To examine the loci of putative tumor suppressor genes in ovarian cancers, we performed the molecular genetic analysis with fresh human ovarian cancers and observed the following data. Frequent allelic losses were observed on chromosomes 4p(42%), 6p(50%), 7p(43%), 8q(31%), 12p(38%), 12q(33%), 16p(33%), 16q(37%), and 19p(34%) in addition to the previously reported 6q, 11p, and 17p in ovarian caroinomas. we have used an additional probe, TCP10 to narrow down the deleted region on chromosome 6q. TCP10 was reported to be mapped to 6q 25-27. Allelic loss was found to be 40% in epithelial ovarian caroinomas. This finding suggests that chromosome 6q 24-27 is one of putative region haboring the tumor suppressor gene of epithelial ovarian cancer (particularly serous type). To examine the association between FAL(Fractional Allelic Loss) and histopathological features, the FAL value on each phenotypically different tumor was calculated as the ratio of the number of allelic losses versus the number of cases informative in each chromosomal arm. The average FALs for each phenotypically different tumor were: serous cystoadenocarcinomas. FAL=0.31 : mucinous 0.12 : and clear cell carcinoma. FAL=0.20. (Author)

  13. p53 tumor suppressor gene: significance in neoplasia - a review

    International Nuclear Information System (INIS)

    Alam, J.M.

    2000-01-01

    p53 is a tumor suppressor gene located on chromosome 17p13.1. Its function includes cell cycle control and apoptosis. Loss of p53 function, either due to decreased level or genetic transformation, is associated with loss of cell cycle control, decrease, apoptosis and genomic modification, such mutation of p53 gene is now assessed and the indicator of neoplasia of cancer of several organs and cell types, p53 has demonstrated to have critical role in defining various progressive stages of neoplasia, therapeutic strategies and clinical application. The present review briefly describes function of p53 in addition to its diagnostic and prognostic significance in detecting several types of neoplasia. (author)

  14. Classical Oncogenes and Tumor Suppressor Genes: A Comparative Genomics Perspective

    Directory of Open Access Journals (Sweden)

    Oxana K. Pickeral

    2000-05-01

    Full Text Available We have curated a reference set of cancer-related genes and reanalyzed their sequences in the light of molecular information and resources that have become available since they were first cloned. Homology studies were carried out for human oncogenes and tumor suppressors, compared with the complete proteome of the nematode, Caenorhabditis elegans, and partial proteomes of mouse and rat and the fruit fly, Drosophila melanogaster. Our results demonstrate that simple, semi-automated bioinformatics approaches to identifying putative functionally equivalent gene products in different organisms may often be misleading. An electronic supplement to this article1 provides an integrated view of our comparative genomics analysis as well as mapping data, physical cDNA resources and links to published literature and reviews, thus creating a “window” into the genomes of humans and other organisms for cancer biology.

  15. RKIP Suppresses Breast Cancer Metastasis to the Bone by Regulating Stroma-Associated Genes

    International Nuclear Information System (INIS)

    Bevilacqua, E.; Frankenberger, C.A.; Rosner, M.R.

    2012-01-01

    In the past decade cancer research has recognized the importance of tumor stroma interactions for the progression of primary tumors to an aggressive and invasive phenotype and for colonization of new organs in the context of metastasis. The dialogue between tumor cells and the surrounding stroma is a complex and dynamic phenomenon, as many cell types and soluble factors are involved. While the function of many of the players involved in this cross talk have been studied, the regulatory mechanisms and signaling pathways that control their expression have not been investigated in depth. By using a novel, interdisciplinary approach applied to the mechanism of action of the metastasis suppressor, Raf kinase inhibitory protein (RKIP), we identified a signaling pathway that suppresses invasion and metastasis through regulation of stroma-associated genes. Conceptually, the approach we developed uses a master regulator and expression arrays from breast cancer patients to formulate hypotheses based on clinical data. Experimental validation is followed by further bioinformatics analysis to establish the clinical significance of discoveries. Using RKIP as an example we show here that this multi-step approach can be used to identify gene regulatory mechanisms that affect tumor-stroma interactions that in turn influence metastasis to the bone or other organs

  16. Evidence for protein 4.1B acting as a metastasis suppressor

    Czech Academy of Sciences Publication Activity Database

    Cavanna, T.; Pokorná, Eva; Veselý, Pavel; Gray, C.; Zicha, D.

    2007-01-01

    Roč. 120, č. 4 (2007), s. 606-616 ISSN 0021-9533 Institutional research plan: CEZ:AV0Z50520514 Keywords : 4.1B protein * metastasis * migration Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.383, year: 2007

  17. The metastasis suppressor KISS1 is an intrinsically disordered protein slightly more extended than a random coil.

    Science.gov (United States)

    Ibáñez de Opakua, Alain; Merino, Nekane; Villate, Maider; Cordeiro, Tiago N; Ormaza, Georgina; Sánchez-Carbayo, Marta; Diercks, Tammo; Bernadó, Pau; Blanco, Francisco J

    2017-01-01

    The metastasis suppressor KISS1 is reported to be involved in the progression of several solid neoplasias, making it a promising molecular target for controlling their metastasis. The KISS1 sequence contains an N-terminal secretion signal and several dibasic sequences that are proposed to be the proteolytic cleavage sites. We present the first structural characterization of KISS1 by circular dichroism, multi-angle light scattering, small angle X-Ray scattering and NMR spectroscopy. An analysis of the KISS1 backbone NMR chemical shifts does not reveal any preferential conformation and deviation from a random coil ensemble. The backbone 15N transverse relaxation times indicate a mildly reduced mobility for two regions that are rich in bulky residues. The small angle X-ray scattering curve of KISS1 is likewise consistent with a predominantly random coil ensemble, although an ensemble optimization analysis indicates some preference for more extended conformations possibly due to positive charge repulsion between the abundant basic residues. Our results support the hypothesis that KISS1 mostly samples a random coil conformational space, which is consistent with its high susceptibility to proteolysis and the generation of Kisspeptin fragments.

  18. An in vivo functional screen identifies ST6GalNAc2 sialyltransferase as a breast cancer metastasis suppressor.

    Science.gov (United States)

    Murugaesu, Nirupa; Iravani, Marjan; van Weverwijk, Antoinette; Ivetic, Aleksandar; Johnson, Damian A; Antonopoulos, Aristotelis; Fearns, Antony; Jamal-Hanjani, Mariam; Sims, David; Fenwick, Kerry; Mitsopoulos, Costas; Gao, Qiong; Orr, Nick; Zvelebil, Marketa; Haslam, Stuart M; Dell, Anne; Yarwood, Helen; Lord, Christopher J; Ashworth, Alan; Isacke, Clare M

    2014-03-01

    To interrogate the complex mechanisms involved in the later stages of cancer metastasis, we designed a functional in vivo RNA interference (RNAi) screen combined with next-generation sequencing. Using this approach, we identified the sialyltransferase ST6GalNAc2 as a novel breast cancer metastasis suppressor. Mechanistically, ST6GalNAc2 silencing alters the profile of O-glycans on the tumor cell surface, facilitating binding of the soluble lectin galectin-3. This then enhances tumor cell retention and emboli formation at metastatic sites leading to increased metastatic burden, events that can be completely blocked by galectin-3 inhibition. Critically, elevated ST6GALNAC2, but not galectin-3, expression in estrogen receptor-negative breast cancers significantly correlates with reduced frequency of metastatic events and improved survival. These data demonstrate that the prometastatic role of galectin-3 is regulated by its ability to bind to the tumor cell surface and highlight the potential of monitoring ST6GalNAc2 expression to stratify patients with breast cancer for treatment with galectin-3 inhibitors.

  19. Cellular senescence and tumor suppressor gene p16.

    Science.gov (United States)

    Rayess, Hani; Wang, Marilene B; Srivatsan, Eri S

    2012-04-15

    Cellular senescence is an irreversible arrest of cell growth. Biochemical and morphological changes occur during cellular senescence, including the formation of a unique cellular morphology such as flattened cytoplasm. Function of mitochondria, endoplasmic reticulum and lysosomes are affected resulting in the inhibition of lysosomal and proteosomal pathways. Cellular senescence can be triggered by a number of factors including, aging, DNA damage, oncogene activation and oxidative stress. While the molecular mechanism of senescence involves p16 and p53 tumor suppressor genes and telomere shortening, this review is focused on the mechanism of p16 control. The p16-mediated senescence acts through the retinoblastoma (Rb) pathway inhibiting the action of the cyclin dependant kinases leading to G1 cell cycle arrest. Rb is maintained in a hypophosphorylated state resulting in the inhibition of transcription factor E2F1. Regulation of p16 expression is complex and involves epigenetic control and multiple transcription factors. PRC1 (Pombe repressor complex (1) and PRC2 (Pombe repressor complex (2) proteins and histone deacetylases play an important role in the promoter hypermethylation for suppressing p16 expression. While transcription factors YY1 and Id1 suppress p16 expression, transcription factors CTCF, Sp1 and Ets family members activate p16 transcription. Senescence occurs with the inactivation of suppressor elements leading to the enhanced expression of p16. Copyright © 2011 UICC.

  20. Slit-Robo GTPase-Activating Protein 2 as a metastasis suppressor in osteosarcoma

    OpenAIRE

    Marko, Tracy A.; Shamsan, Ghaidan A.; Edwards, Elizabeth N.; Hazelton, Paige E.; Rathe, Susan K.; Cornax, Ingrid; Overn, Paula R.; Varshney, Jyotika; Diessner, Brandon J.; Moriarity, Branden S.; O?Sullivan, M. Gerard; Odde, David J.; Largaespada, David A.

    2016-01-01

    Osteosarcoma is the most common primary bone tumor, with metastatic disease responsible for most treatment failure and patient death. A forward genetic screen utilizing Sleeping Beauty mutagenesis in mice previously identified potential genetic drivers of osteosarcoma metastasis, including Slit-Robo GTPase-Activating Protein 2 (Srgap2). This study evaluates the potential role of SRGAP2 in metastases-associated properties of osteosarcoma cell lines through Srgap2 knockout via the CRISPR/Cas9 n...

  1. Methylation of Tumor Suppressor Genes in Autoimmune Pancreatitis.

    Science.gov (United States)

    Kinugawa, Yasuhiro; Uehara, Takeshi; Sano, Kenji; Matsuda, Kazuyuki; Maruyama, Yasuhiro; Kobayashi, Yukihiro; Nakajima, Tomoyuki; Hamano, Hideaki; Kawa, Shigeyuki; Higuchi, Kayoko; Hosaka, Noriko; Shiozawa, Satoshi; Ishigame, Hiroki; Ota, Hiroyoshi

    Autoimmune pancreatitis (AIP) is a representative IgG4-related and inflammatory disease of unknown etiology. To clarify mechanisms of carcinogenesis resulting from AIP, we focused on methylation abnormalities and KRAS mutations in AIP. Six tumor suppressor genes (NPTX2, Cyclin D2, FOXE1, TFPI2, ppENK, and p16) that exhibited hypermethylation in pancreatic carcinoma were selected for quantitative SYBR green methylation-specific polymerase chain reaction in 10 AIP specimens, 10 pancreatic adenocarcinoma cases without history of AIP containing carcinoma areas (CAs) and noncarcinoma areas (NCAs), and 11 normal pancreas (NP) samples. KRAS mutation in codons 12, 13, and 61 were also investigated using direct sequencing. Hypermethylation events (≥10%) were identified in NPTX2, Cyclin D2, FOXE1, TFPI2, ppENK, and p16 in 1, 2, 2, 0, 2, and 0 CA cases, respectively, but not in these 6 candidate genes in AIP, NCA, and NP. However, the TFPI2 methylation ratio was significantly higher in AIP than NCA and NP. Direct sequencing results for KRAS showed no single-point mutations in AIP. These are the first studies characterizing methylation abnormalities in AIP. AIP's inflammatory condition may be related to carcinogenesis. Further study will elucidate methylation abnormalities associated with carcinogenesis in AIP.

  2. Epigenetic silencing of tumor suppressor genes: Paradigms, puzzles, and potential.

    Science.gov (United States)

    Kazanets, Anna; Shorstova, Tatiana; Hilmi, Khalid; Marques, Maud; Witcher, Michael

    2016-04-01

    Cancer constitutes a set of diseases with heterogeneous molecular pathologies. However, there are a number of universal aberrations common to all cancers, one of these being the epigenetic silencing of tumor suppressor genes (TSGs). The silencing of TSGs is thought to be an early, driving event in the oncogenic process. With this in consideration, great efforts have been made to develop small molecules aimed at the restoration of TSGs in order to limit tumor cell proliferation and survival. However, the molecular forces that drive the broad epigenetic reprogramming and transcriptional repression of these genes remain ill-defined. Undoubtedly, understanding the molecular underpinnings of transcriptionally silenced TSGs will aid us in our ability to reactivate these key anti-cancer targets. Here, we describe what we consider to be the five most logical molecular mechanisms that may account for this widely observed phenomenon: 1) ablation of transcription factor binding, 2) overexpression of DNA methyltransferases, 3) disruption of CTCF binding, 4) elevation of EZH2 activity, 5) aberrant expression of long non-coding RNAs. The strengths and weaknesses of each proposed mechanism is highlighted, followed by an overview of clinical efforts to target these processes. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Expression of metastasis suppressor BRMS1 in breast cancer cells results in a marked delay in cellular adhesion to matrix.

    Science.gov (United States)

    Khotskaya, Yekaterina B; Beck, Benjamin H; Hurst, Douglas R; Han, Zhenbo; Xia, Weiya; Hung, Mien-Chie; Welch, Danny R

    2014-12-01

    Metastatic dissemination is a multi-step process that depends on cancer cells' ability to respond to microenvironmental cues by adapting adhesion abilities and undergoing cytoskeletal rearrangement. Breast Cancer Metastasis Suppressor 1 (BRMS1) affects several steps of the metastatic cascade: it decreases survival in circulation, increases susceptibility to anoikis, and reduces capacity to colonize secondary organs. In this report, BRMS1 expression is shown to not significantly alter expression levels of integrin monomers, while time-lapse and confocal microscopy revealed that BRMS1-expressing cells exhibited reduced activation of both β1 integrin and focal adhesion kinase, and decreased localization of these molecules to sites of focal adhesions. Short-term plating of BRMS1-expressing cells onto collagen or fibronectin markedly decreased cytoskeletal reorganization and formation of cellular adhesion projections. Under 3D culture conditions, BRMS1-expressing cells remained rounded and failed to reorganize their cytoskeleton and form invasive colonies. Taken together, BRMS1-expressing breast cancer cells are greatly attenuated in their ability to respond to microenvironment changes. © 2013 Wiley Periodicals, Inc. © 2013 Wiley Periodicals, Inc.

  4. Metastasis suppressor NM23-H1 promotes repair of UV-induced DNA damage and suppresses UV-induced melanomagenesis.

    Science.gov (United States)

    Jarrett, Stuart G; Novak, Marian; Dabernat, Sandrine; Daniel, Jean-Yves; Mellon, Isabel; Zhang, Qingbei; Harris, Nathan; Ciesielski, Michael J; Fenstermaker, Robert A; Kovacic, Diane; Slominski, Andrzej; Kaetzel, David M

    2012-01-01

    Reduced expression of the metastasis suppressor NM23-H1 is associated with aggressive forms of multiple cancers. Here, we establish that NM23-H1 (termed H1 isoform in human, M1 in mouse) and two of its attendant enzymatic activities, the 3'-5' exonuclease and nucleoside diphosphate kinase, are novel participants in the cellular response to UV radiation (UVR)-induced DNA damage. NM23-H1 deficiency compromised the kinetics of repair for total DNA polymerase-blocking lesions and nucleotide excision repair of (6-4) photoproducts in vitro. Kinase activity of NM23-H1 was critical for rapid repair of both polychromatic UVB/UVA-induced (290-400 nm) and UVC-induced (254 nm) DNA damage, whereas its 3'-5' exonuclease activity was dominant in the suppression of UVR-induced mutagenesis. Consistent with its role in DNA repair, NM23-H1 rapidly translocated to sites of UVR-induced (6-4) photoproduct DNA damage in the nucleus. In addition, transgenic mice hemizygous-null for nm23-m1 and nm23-m2 exhibited UVR-induced melanoma and follicular infundibular cyst formation, and tumor-associated melanocytes displayed invasion into adjacent dermis, consistent with loss of invasion-suppressing activity of NM23 in vivo. Taken together, our data show a critical role for NM23 isoforms in limiting mutagenesis and suppressing UVR-induced melanomagenesis. ©2011 AACR.

  5. The Function of PTEN Tumor Suppressor Gene in Prostate Cancer Development

    National Research Council Canada - National Science Library

    Wu, Hong

    2001-01-01

    .... The recently identified tumor suppressor gene PTEN is a promising candidate for being involved in prostate cancer since it is frequently deleted in prostate cancer, especially in advanced or metastatic forms...

  6. The Function of PTEN Tumor Suppressor Gene in Prostate Cancer Development

    National Research Council Canada - National Science Library

    Wu, Hong

    2002-01-01

    .... The recently identified tumor suppressor gene PTEN is a promising candidate for being involved in prostate cancer since it is frequently deleted in prostate cancer, especially in advanced or metastatic forms...

  7. Regulation of IAP (Inhibitor of Apoptosis) Gene Expression by the p53 Tumor Suppressor Protein

    National Research Council Canada - National Science Library

    Murphy, Maureen

    2003-01-01

    The goal of the work proposed in this application, which has just completed Year 1, was to analyze the ability of the p53 tumor suppressor protein to repress the anti-apoptotic genes survivin and cIAP-2...

  8. The potential for tumor suppressor gene therapy in head and neck cancer.

    Science.gov (United States)

    Birkeland, Andrew C; Ludwig, Megan L; Spector, Matthew E; Brenner, J Chad

    2016-01-01

    Head and neck squamous cell carcinoma remains a highly morbid and fatal disease. Importantly, genomic sequencing of head and neck cancers has identified frequent mutations in tumor suppressor genes. While targeted therapeutics increasingly are being investigated in head and neck cancer, the majority of these agents are against overactive/overexpressed oncogenes. Therapy to restore lost tumor suppressor gene function remains a key and under-addressed niche in trials for head and neck cancer. Recent advances in gene editing have captured the interest of both the scientific community and the public. As our technology for gene editing and gene expression modulation improves, addressing lost tumor suppressor gene function in head and neck cancers is becoming a reality. This review will summarize new techniques, challenges to implementation, future directions, and ethical ramifications of gene therapy in head and neck cancer.

  9. Wilms' tumours: about tumour suppressor genes, an oncogene and a chameleon gene.

    Science.gov (United States)

    Huff, Vicki

    2011-02-01

    Genes identified as being mutated in Wilms' tumour include TP53, a classic tumour suppressor gene (TSG); CTNNB1 (encoding β-catenin), a classic oncogene; WTX, which accumulating data indicate is a TSG; and WT1, which is inactivated in some Wilms' tumours, similar to a TSG. However, WT1 does not always conform to the TSG label, and some data indicate that WT1 enhances cell survival and proliferation, like an oncogene. Is WT1 a chameleon, functioning as either a TSG or an oncogene, depending on cellular context? Are these labels even appropriate for describing and understanding the function of WT1?

  10. Human umbilical cord matrix mesenchymal stem cells suppress the growth of breast cancer by expression of tumor suppressor genes.

    Directory of Open Access Journals (Sweden)

    Naomi Ohta

    Full Text Available Human and rat umbilical cord matrix mesenchymal stem cells (UCMSC possess the ability to control the growth of breast carcinoma cells. Comparative analyses of two types of UCMSC suggest that rat UCMSC-dependent growth regulation is significantly stronger than that of human UCMSC. Their different tumoricidal abilities were clarified by analyzing gene expression profiles in the two types of UCMSC. Microarray analysis revealed differential gene expression between untreated naïve UCMSC and those co-cultured with species-matched breast carcinoma cells. The analyses screened 17 differentially expressed genes that are commonly detected in both human and rat UCMSC. The comparison between the two sets of gene expression profiles identified two tumor suppressor genes, adipose-differentiation related protein (ADRP and follistatin (FST, that were specifically up-regulated in rat UCMSC, but down-regulated in human UCMSC when they were co-cultured with the corresponding species' breast carcinoma cells. Over-expression of FST, but not ADRP, in human UCMSC enhanced their ability to suppress the growth of MDA-231 cells. The growth of MDA-231 cells was also significantly lower when they were cultured in medium conditioned with FST, but not ADRP over-expressing human UCMSC. In the breast carcinoma lung metastasis model generated with MDA-231 cells, systemic treatment with FST-over-expressing human UCMSC significantly attenuated the tumor burden. These results suggest that FST may play an important role in exhibiting stronger tumoricidal ability in rat UCMSC than human UCMSC and also implies that human UCMSC can be transformed into stronger tumoricidal cells by enhancing tumor suppressor gene expression.

  11. Alterations in tumour suppressor gene p53 in human gliomas from ...

    Indian Academy of Sciences (India)

    Unknown

    Alterations in the tumour suppressor p53 gene are among the most common defects seen in a variety of human cancers. In order ... from Indian patients, we checked 44 untreated primary gliomas for mutations in exons 5–9 of the p53 gene by. PCR-SSCP ... function of p53 is critical to the efficiency of many cancer treatment ...

  12. Alterations in tumour suppressor gene p53 in human gliomas from ...

    Indian Academy of Sciences (India)

    Alterations in the tumour suppressor p53 gene are among the most common defects seen in a variety of human cancers. In order to study the significance of the p53 gene in the genesis and development of human glioma from Indian patients, we checked 44 untreated primary gliomas for mutations in exons 5–9 of the p53 ...

  13. V2 from a curtovirus is a suppressor of post-transcriptional gene silencing.

    Science.gov (United States)

    Luna, Ana P; Rodríguez-Negrete, Edgar A; Morilla, Gabriel; Wang, Liping; Lozano-Durán, Rosa; Castillo, Araceli G; Bejarano, Eduardo R

    2017-10-01

    The suppression of gene silencing is a key mechanism for the success of viral infection in plants. DNA viruses from the Geminiviridae family encode several proteins that suppress transcriptional and post-transcriptional gene silencing (TGS/PTGS). In Begomovirus, the most abundant genus of this family, three out of six genome-encoded proteins, namely C2, C4 and V2, have been shown to suppress PTGS, with V2 being the strongest PTGS suppressor in transient assays. Beet curly top virus (BCTV), the model species for the Curtovirus genus, is able to infect the widest range of plants among geminiviruses. In this genus, only one protein, C2/L2, has been described as inhibiting PTGS. We show here that, despite the lack of sequence homology with its begomoviral counterpart, BCTV V2 acts as a potent PTGS suppressor, possibly by impairing the RDR6 (RNA-dependent RNA polymerase 6)/suppressor of gene silencing 3 (SGS3) pathway.

  14. Molecular biology of breast cancer metastasis: Genetic regulation of human breast carcinoma metastasis

    International Nuclear Information System (INIS)

    Welch, Danny R; Steeg, Patricia S; Rinker-Schaeffer, Carrie W

    2000-01-01

    The present is an overview of recent data that describes the genetic underpinnings of the suppression of cancer metastasis. Despite the explosion of new information about the genetics of cancer, only six human genes have thus far been shown to suppress metastasis functionally. Not all have been shown to be functional in breast carcinoma. Several additional genes inhibit various steps of the metastatic cascade, but do not necessarily block metastasis when tested using in vivo assays. The implications of this are discussed. Two recently discovered metastasis suppressor genes block proliferation of tumor cells at a secondary site, offering a new target for therapeutic intervention

  15. ELF5 Drives Lung Metastasis in Luminal Breast Cancer through Recruitment of Gr1+ CD11b+ Myeloid-Derived Suppressor Cells.

    Directory of Open Access Journals (Sweden)

    David Gallego-Ortega

    2015-12-01

    Full Text Available During pregnancy, the ETS transcription factor ELF5 establishes the milk-secreting alveolar cell lineage by driving a cell fate decision of the mammary luminal progenitor cell. In breast cancer, ELF5 is a key transcriptional determinant of tumor subtype and has been implicated in the development of insensitivity to anti-estrogen therapy. In the mouse mammary tumor virus-Polyoma Middle T (MMTV-PyMT model of luminal breast cancer, induction of ELF5 levels increased leukocyte infiltration, angiogenesis, and blood vessel permeability in primary tumors and greatly increased the size and number of lung metastasis. Myeloid-derived suppressor cells, a group of immature neutrophils recently identified as mediators of vasculogenesis and metastasis, were recruited to the tumor in response to ELF5. Depletion of these cells using specific Ly6G antibodies prevented ELF5 from driving vasculogenesis and metastasis. Expression signatures in luminal A breast cancers indicated that increased myeloid cell invasion and inflammation were correlated with ELF5 expression, and increased ELF5 immunohistochemical staining predicted much shorter metastasis-free and overall survival of luminal A patients, defining a group who experienced unexpectedly early disease progression. Thus, in the MMTV-PyMT mouse mammary model, increased ELF5 levels drive metastasis by co-opting the innate immune system. As ELF5 has been previously implicated in the development of antiestrogen resistance, this finding implicates ELF5 as a defining factor in the acquisition of the key aspects of the lethal phenotype in luminal A breast cancer.

  16. Metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Weller, R.E.

    1991-10-01

    Distant metastasis of primary neoplasms is the main factor that limits the success of antineoplastic therapy. It can be regarded as an early or late event in the neoplastic process, and varies considerably with tumor type. The metastatic potential of a given tumor greatly influences prognosis. Tumor metastasis is not a single neoplastic event, rather, it involves several major steps: invasion of cells from the primary tumor into tissue, and penetration of blood and lymph vessels; release of tumor cell emboli into the circulation; arrest of the emboli in capillary beds of distant organs; invasion of the wall of the arresting vessel, infiltration into adjacent tissue, and multiplication; and growth of vascularized stroma into the new tumor as proliferating tumor cells invade the distant organ. Lodgement and invasion are complex events that are not fully defined. Arrest and lodgement appears to require a thromboembolic event in which the metastatic embolis (1 cell) contacts vascular endothelium and adheres to the wall with thrombis formation following aggregation of platelets and fibrin to the tumor cell(s). Invasion may involve: formation of collagenases by tumor cells; mechanical disruption; chemotactic factors. Metastatic patterns depend on the route of metastasis, tumor type, and target organ (favored soil). In general, carcinomas metastasize via lymphatics and sarcomas via hematogenous routes. Others, melanoma, mast cell tumors, etc., show mixed patterns. This knowledge is important when one is attempting to prognostically stage a tumor, especially when thoracic radiographs are negative. The question of enlarged regional lymph nodes will be discussed in lecture relative to specific tumor types. 4 refs., 1 tab.

  17. New cancer suppressor gene for colorectal adenocarcinoma: filamin A.

    Science.gov (United States)

    Tian, Zi-Qiang; Shi, Jian-Wei; Wang, Xiao-Ran; Li, Zhong; Wang, Gui-Ying

    2015-02-21

    To determine the expression and significance of filamin A (FLNa) in colorectal adenocarcinoma tissue. The expression of FLNa in 46 colorectal cancer tissues and normal tissues was detected by immunohistochemistry, reverse transcription polymerase chain reaction (RT-PCR) and Western blotting, and its relationship with clinical parameters and prognosis was analyzed. The positive expression of FLNa in cancer tissues was lower than that in normal mucosa, and the difference was statistically significant. The expression of FLNa correlated with liver metastasis, lymph node metastasis and rectal invasion depth, regardless of sex, age, tumor location, tumor size, gross shape and histological type of colorectal carcinoma. Multivariate analysis showed that FLNa was an independent risk factor for postoperative survival of patients with colorectal adenocarcinoma. Moreover, survival analysis showed that the expression level of FLNa was closely related with survival of patients with colorectal adenocarcinoma. The results of RT-PCR and Western blotting were consistent with those of immunohistochemistry. FLNa showed low expression in colorectal adenocarcinoma, high correlation with the incidence and development of colorectal cancer, and was considered an indicator of prognosis.

  18. Alterations in tumour suppressor gene p53 in human gliomas from ...

    Indian Academy of Sciences (India)

    Unknown

    [Phatak P, Selvi S K, Divya T, Hegde A S, Hegde S and Somasundaram K 2002 Alterations in tumour suppressor gene p53 in human gliomas from Indian patients; J. Biosci. 27 673–678]. 1. Introduction. Glioma, a neoplasm of neuroglial cells, is the most common type of brain tumour, constituting more than 50% of all.

  19. Haploinsufficiency of the genes encoding the tumor suppressor Pten predisposes zebrafish to hemangiosarcoma

    NARCIS (Netherlands)

    Choorapoikayil, S.; Kuiper, R.V.; de Bruin, A.; den Hertog, J.

    2012-01-01

    PTEN is an essential tumor suppressor that antagonizes Akt/PKB signaling. The zebrafish genome encodes two Pten genes, ptena and ptenb. Here, we report that zebrafish mutants that retain a single wild-type copy of ptena or ptenb (ptena(+/-)ptenb(-/-) or ptena(-/-)ptenb(+/-)) are viable and fertile.

  20. Analyses of tumor-suppressor genes in germline mouse models of cancer.

    Science.gov (United States)

    Wang, Jingqiang; Abate-Shen, Cory

    2014-08-01

    Tumor-suppressor genes are critical regulators of growth and functioning of cells, whose loss of function contributes to tumorigenesis. Accordingly, analyses of the consequences of their loss of function in genetically engineered mouse models have provided important insights into mechanisms of human cancer, as well as resources for preclinical analyses and biomarker discovery. Nowadays, most investigations of genetically engineered mouse models of tumor-suppressor function use conditional or inducible alleles, which enable analyses in specific cancer (tissue) types and overcome the consequences of embryonic lethality of germline loss of function of essential tumor-suppressor genes. However, historically, analyses of genetically engineered mouse models based on germline loss of function of tumor-suppressor genes were very important as these early studies established the principle that loss of function could be studied in mouse cancer models and also enabled analyses of these essential genes in an organismal context. Although the cancer phenotypes of these early germline models did not always recapitulate the expected phenotypes in human cancer, these models provided the essential foundation for the more sophisticated conditional and inducible models that are currently in use. Here, we describe these "first-generation" germline models of loss of function models, focusing on the important lessons learned from their analyses, which helped in the design and analyses of "next-generation" genetically engineered mouse models. © 2014 Cold Spring Harbor Laboratory Press.

  1. Modulation and Expression of Tumor Suppressor Genes by Environmental Agents

    National Research Council Canada - National Science Library

    Ostrander, Gary Kent

    1996-01-01

    ... in the retinoblastoma gene in retinoblastoma and hepatocarcinomas following induction with known environmental carcinogens. Studies to date suggest the retinoblastoma gene/protein may play a role in oncogenesis in the medaka.

  2. Generation of two modified mouse alleles of the Hic1 tumor suppressor gene

    Czech Academy of Sciences Publication Activity Database

    Pospíchalová, Vendula; Turečková, Jolana; Fafílek, Bohumil; Vojtěchová, Martina; Krausová, Michaela; Lukáš, Jan; Šloncová, Eva; Takacova, S.; Divoký, V.; Leprince, D.; Plachý, Jiří; Kořínek, Vladimír

    2011-01-01

    Roč. 49, č. 3 (2011), s. 142-151 ISSN 1526-954X R&D Projects: GA ČR(CZ) GA204/07/1567; GA ČR(CZ) GD204/09/H058 Institutional research plan: CEZ:AV0Z50520514 Keywords : Hypermethylated In Cancer 1 * Hic1 tumor suppressor * gene targeting Subject RIV: EB - Gene tics ; Molecular Biology Impact factor: 2.527, year: 2011

  3. FOXA2 functions as a suppressor of tumor metastasis by inhibition of epithelial-to-mesenchymal transition in human lung cancers.

    Science.gov (United States)

    Tang, Yunneng; Shu, Guangwen; Yuan, Xinwang; Jing, Naihe; Song, Jianguo

    2011-02-01

    The forkhead box transcription factor A2 (FOXA2) is an important regulator in animal development and body homeostasis. However, whether FOXA2 is involved in transforming growth factor β1 (TGF-β1)-mediated epithelial-to-mesenchymal transition (EMT) and tumor metastasis remains unknown. The present study showed that in human lung cancer cell lines, the abundance of FOXA2 positively correlates with epithelial phenotypes and negatively correlates with the mesenchymal phenotypes of cells, and TGF-β1 treatment decreased FOXA2 protein level. Consistently, knockdown of FOXA2 promoted EMT and invasion of lung cancer cells, whereas overexpression of FOXA2 reduced the invasion and suppressed TGF-β1-induced EMT. In addition, knockdown of FOXA2 induced slug expression, and ectopic expression of FOXA2 inhibited slug transcription. Furthermore, we identified that FOXA2 can bind to slug promoter through a conserved binding site, and that the DNA-binding region and transactivation region II of FOXA2 are required for repression of the slug promoter. These data demonstrate that FOXA2 functions as a suppressor of tumor metastasis by inhibition of EMT.

  4. Mutational hotspots in the TP53 gene and, possibly, other tumor suppressors evolve by positive selection

    Directory of Open Access Journals (Sweden)

    Koonin Eugene V

    2006-01-01

    Full Text Available Abstract Background The mutation spectra of the TP53 gene and other tumor suppressors contain multiple hotspots, i.e., sites of non-random, frequent mutation in tumors and/or the germline. The origin of the hotspots remains unclear, the general view being that they represent highly mutable nucleotide contexts which likely reflect effects of different endogenous and exogenous factors shaping the mutation process in specific tissues. The origin of hotspots is of major importance because it has been suggested that mutable contexts could be used to infer mechanisms of mutagenesis contributing to tumorigenesis. Results Here we apply three independent tests, accounting for non-uniform base compositions in synonymous and non-synonymous sites, to test whether the hotspots emerge via selection or due to mutational bias. All three tests consistently indicate that the hotspots in the TP53 gene evolve, primarily, via positive selection. The results were robust to the elimination of the highly mutable CpG dinucleotides. By contrast, only one, the least conservative test reveals the signature of positive selection in BRCA1, BRCA2, and p16. Elucidation of the origin of the hotspots in these genes requires more data on somatic mutations in tumors. Conclusion The results of this analysis seem to indicate that positive selection for gain-of-function in tumor suppressor genes is an important aspect of tumorigenesis, blurring the distinction between tumor suppressors and oncogenes. Reviewers This article was reviewed by Sandor Pongor, Christopher Lee and Mikhail Blagosklonny.

  5. The Ras effector RASSF2 is a novel tumor-suppressor gene in human colorectal cancer.

    Science.gov (United States)

    Akino, Kimishige; Toyota, Minoru; Suzuki, Hiromu; Mita, Hiroaki; Sasaki, Yasushi; Ohe-Toyota, Mutsumi; Issa, Jean-Pierre J; Hinoda, Yuji; Imai, Kohzoh; Tokino, Takashi

    2005-07-01

    Activation of Ras signaling is a hallmark of colorectal cancer (CRC), but the roles of negative regulators of Ras are not fully understood. Our aim was to address that question by surveying genetic and epigenetic alterations of Ras-Ras effector genes in CRC cells. The expression and methylation status of 6 RASSF family genes were examined using RT-PCR and bisulfite PCR in CRC cell lines and in primary CRCs and colorectal adenomas. Colony formation assays and flow cytometry were used to assess the tumor suppressor activities of RASSF1 and RASSF2. Immunofluorescence microscopy was used to determine the effect of altered RASSF2 expression on cell morphology. Mutations of K- ras , BRAF, and p53 were identified using single-strand conformation analysis and direct sequencing. Aberrant methylation and histone deacetylation of RASSF2 was associated with the gene's silencing in CRC. The activities of RASSF2, which were distinct from those of RASSF1, included induction of morphologic changes and apoptosis; moreover, its ability to prevent cell transformation suggests that RASSF2 acts as a tumor suppressor in CRC. Primary CRCs that showed K- ras /BRAF mutations also frequently showed RASSF2 methylation, and inactivation of RASSF2 enhanced K- ras -induced oncogenic transformation. RASSF2 methylation was also frequently identified in colorectal adenomas. RASSF2 is a novel tumor suppressor gene that regulates Ras signaling and plays a pivotal role in the early stages of colorectal tumorigenesis.

  6. Hypermethylation Of The Tumor Suppressor RASSF1A Gene In ...

    African Journals Online (AJOL)

    Breast cancer is the leading cancer among females. There is a critical need for improved molecular biomarkers that are diagnostic, prognostic and also capable of predicting the progression of benign high-risk lesions to invasive carcinoma. RAS association domain family protein 1A (RASSF1A) gene, is a biologically ...

  7. Role of natural antisense transcripts pertaining to tumor suppressor genes in human carcinomas

    International Nuclear Information System (INIS)

    Pelicci, G.; Pierotti, M.

    2009-01-01

    Overlapping transcripts in opposite orientations can potentially form perfect sense-antisense duplex RNA. Recently, several studies have revealed the extent of natural antisense transcripts (NATs) and their role in important biological phenomena also in higher organisms. In order to test the hypothesis that the function of NATs in man might represent an essential element in the regulation of gene expression, especially at transcriptional level, in this study we planned to look for, systematically examine, and characterize NATs belonging in the human genome to the tumour suppressor class of genes, so to identify physiological (and potentially pathological) modulators in this gene class

  8. Molecular studies on the function of tumor suppressor gene in gastrointestinal cancer

    International Nuclear Information System (INIS)

    Kim, You Cheoul

    1993-01-01

    Cancer of stomach, colon and liver are a group of the most common cancer in Korea. However, results with current therapeutic modalities are still unsatisfactory. The intensive efforts have been made to understand basic pathogenesis and to find better therapeutic tools for the treatment of this miserable disease. We studies the alteration of tumor suppressor gene in various Gastrointestinal cancer in Korea. Results showed that genetic alteration of Rb gene was in 83% of colorectal cancer. Our results suggest that genetic alteration of Rb gene is crucially involved in the tumorigenesis of colorectum in Korea. (Author)

  9. Generation of two modified mouse alleles of the Hic1 tumor suppressor gene

    Czech Academy of Sciences Publication Activity Database

    Pospíchalová, Vendula; Turečková, Jolana; Fafílek, Bohumil; Vojtěchová, Martina; Krausová, Michaela; Lukáš, Jan; Šloncová, Eva; Takacova, S.; Divoký, V.; Leprince, D.; Plachý, Jiří; Kořínek, Vladimír

    2011-01-01

    Roč. 49, č. 3 (2011), s. 142-151 ISSN 1526-954X R&D Projects: GA ČR(CZ) GA204/07/1567; GA ČR(CZ) GD204/09/H058 Institutional research plan: CEZ:AV0Z50520514 Keywords : Hypermethylated In Cancer 1 * Hic1 tumor suppressor * gene targeting Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.527, year: 2011

  10. The p53 tumour suppressor gene and the tobacco industry: research, debate, and conflict of interest

    OpenAIRE

    Bitton, A; Neuman, M D; Barnoya, J; Glantz, Stanton A. Ph.D.

    2005-01-01

    Mutations in the p53 tumour suppressor gene lead to uncontrolled cell division and are found in over 50% of all human tumours, including 60% of lung cancers. Research published in 1996 by Denissenko and colleagues demonstrated patterned in-vitro mutagenic effects on p53 of benzo[a]pyrene, a carcinogen present in tobacco smoke. We investigated the tobacco industry's response to p53 research linking smoking to cancer. We searched online tobacco document archives, including the Legacy Tobacco Do...

  11. Combining Oncolytic Virotherapy with p53 Tumor Suppressor Gene Therapy

    Directory of Open Access Journals (Sweden)

    Christian Bressy

    2017-06-01

    Full Text Available Oncolytic virus (OV therapy utilizes replication-competent viruses to kill cancer cells, leaving non-malignant cells unharmed. With the first U.S. Food and Drug Administration-approved OV, dozens of clinical trials ongoing, and an abundance of translational research in the field, OV therapy is poised to be one of the leading treatments for cancer. A number of recombinant OVs expressing a transgene for p53 (TP53 or another p53 family member (TP63 or TP73 were engineered with the goal of generating more potent OVs that function synergistically with host immunity and/or other therapies to reduce or eliminate tumor burden. Such transgenes have proven effective at improving OV therapies, and basic research has shown mechanisms of p53-mediated enhancement of OV therapy, provided optimized p53 transgenes, explored drug-OV combinational treatments, and challenged canonical roles for p53 in virus-host interactions and tumor suppression. This review summarizes studies combining p53 gene therapy with replication-competent OV therapy, reviews preclinical and clinical studies with replication-deficient gene therapy vectors expressing p53 transgene, examines how wild-type p53 and p53 modifications affect OV replication and anti-tumor effects of OV therapy, and explores future directions for rational design of OV therapy combined with p53 gene therapy.

  12. Rrp1b, a new candidate susceptibility gene for breast cancer progression and metastasis.

    Directory of Open Access Journals (Sweden)

    Nigel P S Crawford

    2007-11-01

    Full Text Available A novel candidate metastasis modifier, ribosomal RNA processing 1 homolog B (Rrp1b, was identified through two independent approaches. First, yeast two-hybrid, immunoprecipitation, and functional assays demonstrated a physical and functional interaction between Rrp1b and the previous identified metastasis modifier Sipa1. In parallel, using mouse and human metastasis gene expression data it was observed that extracellular matrix (ECM genes are common components of metastasis predictive signatures, suggesting that ECM genes are either important markers or causal factors in metastasis. To investigate the relationship between ECM genes and poor prognosis in breast cancer, expression quantitative trait locus analysis of polyoma middle-T transgene-induced mammary tumor was performed. ECM gene expression was found to be consistently associated with Rrp1b expression. In vitro expression of Rrp1b significantly altered ECM gene expression, tumor growth, and dissemination in metastasis assays. Furthermore, a gene signature induced by ectopic expression of Rrp1b in tumor cells predicted survival in a human breast cancer gene expression dataset. Finally, constitutional polymorphism within RRP1B was found to be significantly associated with tumor progression in two independent breast cancer cohorts. These data suggest that RRP1B may be a novel susceptibility gene for breast cancer progression and metastasis.

  13. The tumor suppressor Rb and its related Rbl2 genes are regulated by Utx histone demethylase

    Energy Technology Data Exchange (ETDEWEB)

    Terashima, Minoru; Ishimura, Akihiko; Yoshida, Masakazu [Division of Functional Genomics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Ishikawa (Japan); Suzuki, Yutaka; Sugano, Sumio [Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Chiba (Japan); Suzuki, Takeshi, E-mail: suzuki-t@staff.kanazawa-u.ac.jp [Division of Functional Genomics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Ishikawa (Japan)

    2010-08-20

    Research highlights: {yields} Utx increases expression of Rb and Rbl2 genes through its demethylase activity. {yields} Utx changes histone H3 methylation on the Rb and Rbl2 promoters. {yields} Utx induces decreased cell proliferation of mammalian primary cells. -- Abstract: Utx is a candidate tumor suppressor gene that encodes histone H3 lysine 27 (H3K27) demethylase. In this study, we found that ectopic expression of Utx enhanced the expression of retinoblastoma tumor suppressor gene Rb and its related gene Rbl2. This activation was dependent on the demethylase activity of Utx, and was suggested to contribute to the decreased cell proliferation induced by Utx. A chromatin immunoprecipitation assay showed that over-expressed Utx was associated with the promoter regions of Rb and Rbl2 resulting in the removal of repressive H3K27 tri-methylation and the increase in active H3K4 tri-methylation. Furthermore, siRNA-mediated knockdown of Utx revealed the recruitment of endogenous Utx protein on the promoters of Rb and Rbl2 genes. These results indicate that Rb and Rbl2 are downstream target genes of Utx and may play important roles in Utx-mediated cell growth control.

  14. Unexpected functional similarities between gatekeeper tumour suppressor genes and proto-oncogenes revealed by systems biology.

    Science.gov (United States)

    Zhao, Yongzhong; Epstein, Richard J

    2011-05-01

    Familial tumor suppressor genes comprise two subgroups: caretaker genes (CTs) that repair DNA, and gatekeeper genes (GKs) that trigger cell death. Since GKs may also induce cell cycle delay and thus enhance cell survival by facilitating DNA repair, we hypothesized that the prosurvival phenotype of GKs could be selected during cancer progression, and we used a multivariable systems biology approach to test this. We performed multidimensional data analysis, non-negative matrix factorization and logistic regression to compare the features of GKs with those of their putative antagonists, the proto-oncogenes (POs), as well as with control groups of CTs and functionally unrelated congenital heart disease genes (HDs). GKs and POs closely resemble each other, but not CTs or HDs, in terms of gene structure (Pexpression level and breadth (Pimplied suggest a common functional attribute that is strongly negatively selected-that is, a shared phenotype that enhances cell survival. The counterintuitive finding of similar evolutionary pressures affecting GKs and POs raises an intriguing possibility: namely, that cancer microevolution is accelerated by an epistatic cascade in which upstream suppressor gene defects subvert the normal bifunctionality of wild-type GKs by constitutively shifting the phenotype away from apoptosis towards survival. If correct, this interpretation would explain the hitherto unexplained phenomenon of frequent wild-type GK (for example, p53) overexpression in tumors.

  15. Warburg tumours and the mechanisms of mitochondrial tumour suppressor genes. Barking up the right tree?

    Science.gov (United States)

    Bayley, Jean-Pierre; Devilee, Peter

    2010-06-01

    The past decade has seen a revival of interest in the metabolic adaptations of tumours, named for their original discoverer, Otto Warburg. Warburg reported a high rate of glycolysis in tumours, and a concurrent defect in mitochondrial respiration. The rediscovery of Warburg's hypothesis coincided with the discovery of mitochondrial tumours suppressor genes that may conform to Warburg's hypothesis. Succinate dehydrogenase and fumarate hydratase are mitochondrial proteins of the TCA cycle and the respiratory chain and when mutated lead to tumours of the nervous system known as paragangliomas and pheochromocytomas, and in the case of fumarate hydratase, cutaneous and uterine leiomyomas and renal cell cancer. Recently a novel mitochondrial protein, SDHAF2 (SDH5), was also shown to be a paraganglioma-related tumour suppressor gene. Another mitochondrial and TCA cycle-related protein, isocitrate dehydrogenase 2 is, together with IDH1, frequently mutated in the brain tumour glioblastoma. There are currently many competing hypotheses on the role of these genes in tumourigenesis, but frequent themes are the stabilization of hypoxia inducible factor 1 and upregulation of genes involved in angiogenesis, glucose transport and glycolysis. Other postulated mechanisms include the inhibition of developmental apoptosis, altered gene expression due to histone deregulation and the acquisition of novel catalytic properties. Here we discuss these diverse hypotheses and highlight very recent findings on the possible effects of IDH gene mutations.

  16. SFRP Tumour Suppressor Genes Are Potential Plasma-Based Epigenetic Biomarkers for Malignant Pleural Mesothelioma

    Directory of Open Access Journals (Sweden)

    Yuen Yee Cheng

    2017-01-01

    Full Text Available Malignant pleural mesothelioma (MPM is associated with asbestos exposure. Asbestos can induce chronic inflammation which in turn can lead to silencing of tumour suppressor genes. Wnt signaling pathway can be affected by chronic inflammation and is aberrantly activated in many cancers including colon and MPM. SFRP genes are antagonists of Wnt pathway, and SFRPs are potential tumour suppressors in colon, gastric, breast, ovarian, and lung cancers and mesothelioma. This study investigated the expression and DNA methylation of SFRP genes in MPM cells lines with and without demethylation treatment. Sixty-six patient FFPE samples were analysed and have showed methylation of SFRP2 (56% and SFRP5 (70% in MPM. SFRP2 and SFRP5 tumour-suppressive activity in eleven MPM lines was confirmed, and long-term asbestos exposure led to reduced expression of the SFRP1 and SFRP2 genes in the mesothelium (MeT-5A via epigenetic alterations. Finally, DNA methylation of SFRPs is detectable in MPM patient plasma samples, with methylated SFRP2 and SFRP5 showing a tendency towards greater abundance in patients. These data suggested that SFRP genes have tumour-suppresive activity in MPM and that methylated DNA from SFRP gene promoters has the potential to serve as a biomarker for MPM patient plasma.

  17. Expression of the p16{sup INK4a} tumor suppressor gene in rodent lung tumors

    Energy Technology Data Exchange (ETDEWEB)

    Swafford, D.S.; Tesfaigzi, J.; Belinsky, S.A.

    1995-12-01

    Aberrations on the short arm of chromosome 9 are among the earliest genetic changes in human cancer. p16{sup INK4a} is a candidate tumor suppressor gene that lies within human 9p21, a chromosome region associated with frequent loss of heterozygosity in human lung tumors. The p16{sup INK4a} protein functions as an inhibitor of cyclin D{sub 1}-dependent kinases that phosphorylate the retinoblastoma (Rb) tumor suppressor gene product enabling cell-cycle progression. Thus, overexpression of cyclin D{sub 1}, mutation of cyclin-dependent kinase genes, or loss of p16{sup INK4a} function, can all result in functional inactivation of Rb. Inactivation of Rb by mutation or deletion can result in an increase in p16{sup INK4a} transcription, suggesting that an increased p16{sup INK4a} expression in a tumor cell signals dysfunction of the pathway. The p16{sup (INK4a)} gene, unlike some tumor suppressor genes, is rarely inactivated by mutation. Instead, the expression of this gene is suppressed in some human cancers by hypermethylation of the CpG island within the first exon or by homozygous deletion: 686. Chromosome losses have been observed at 9p21 syntenic loci in tumors of the mouse and rat, two species often used as animal models for pulmonary carcinogenesis. Expression of p16{sup INK4a} is lost in some mouse tumor cell lines, often due to homozygous deletion. These observations indicate that p16{sup INK4a} dysfunction may play a role in the development of neoplasia in rodents as well as humans. The purpose of the current investigation was to define the extent to which p16{sup INK4a} dysfunction contributes to the development of rodent lung tumors and to determine the mechanism of inactivation of the gene. There is no evidence to suggest a loss of function of the p16{sup INK4a} tumor suppressor gene in these primary murine lung tumors by mutation, deletion, or methylation.

  18. Utility of P19 Gene-Silencing Suppressor for High Level Expression of Recombinant Human Therapeutic Proteins in Plant Cells

    Directory of Open Access Journals (Sweden)

    Maryam Zangi

    2016-07-01

    Full Text Available Background: The potential of plants, as a safe and eukaryotic system, is considered in the production of recombinant therapeutic human protein today; but the expression level of heterologous proteins is limited by the post-transcriptional gene silencing (PTGS response in this new technology. The use of viral suppressors of gene silencing can prevent PTGS and improve transient expression level of foreign proteins. In this study, we investigated the effect of p19 silencing suppressor on recombinant human nerve growth factor expression in Nicotiana benthamiana. Materials and Methods: The p19 coding region was inserted in the pCAMBIA using NcoI and BstEII recognition sites. Also, the cloned synthesized recombinant human NGF (rhNGF fragment was cloned directly into PVX vector by ClaI and SalI restriction enzymes. The co-agroinfiltration of rhNGF with p19 viral suppressor of gene silencing was evaluated by dot-blot and SDS-PAGE. The amount of expressed rhNGF protein was calculated by AlphaEaseFC software. Results: Co-agroinfiltration of hNGF with P19 suppressor showed about forty-fold increase (8% total soluble protein (TSP when compared to the absence of P19 suppressor (0.2%TSP. Conclusion: The results presented here confirmed that the use of P19 gene silencing suppressor derived from tomato bushy stunt virus (TBSV could efficiently increase the transient expression of recombinant proteins in Nicotiana benthamiana manifold.

  19. Remodeling epigenetic modifications at tumor suppressor gene promoters with bovine oocyte extract.

    Science.gov (United States)

    Wang, Zhenfei; Yue, Yongli; Han, Pengyong; Sa, Rula; Ren, Xiaolv; Wang, Jie; Bai, Haidong; Yu, Haiquan

    2013-09-01

    Epigenetic silencing of tumor suppressor genes by aberrant DNA methylation and histone modifications at their promoter regions plays an important role in the initiation and progression of cancer. The therapeutic effect of the widely used epigenetic drugs, including DNA methyltransferase inhibitors and histone deacetylase inhibitors, remains unsatisfactory. One important underlying factor in the ineffectiveness of these drugs is that their actions lack specificity. To investigate whether oocyte extract can be used for epigenetic re-programming of cancer cells, H460 human lung cancer cells were reversibly permeabilized and incubated with bovine oocyte extract. Bisulfite sequencing showed that bovine oocyte extract induced significant demethylation at hypermethylated promoter CpG islands of the tumor suppressor genes RUNX3 and CDH1; however, the DNA methylation levels of repetitive sequences were not affected. Chromatin immunoprecipitation showed that bovine oocyte extract significantly reduced transcriptionally repressive histone modifications and increased transcriptionally activating histone modifications at the promoter regions of RUNX3 and CDH1. Bovine oocyte extract reactivated the expression of RUNX3 and CDH1 at both the messenger RNA and the protein levels without up-regulating the transcription of pluripotency-associated genes. At the functional level, anchorage-independent proliferation, migration and invasion of H460 cells was strongly inhibited. These results demonstrate that bovine oocyte extract reactivates epigenetically silenced tumor suppressor genes by remodeling the epigenetic modifications at their promoter regions. Bovine oocyte extract may provide a useful tool for investigating epigenetic mechanisms in cancer and a valuable source for developing novel safe therapeutic approaches that target epigenetic alterations. Copyright © 2013 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  20. Splenectomy suppresses growth and metastasis of hepatocellular carcinoma through decreasing myeloid-derived suppressor cells in vivo.

    Science.gov (United States)

    Long, Xin; Wang, Jian; Zhao, Jian-Ping; Liang, Hui-Fang; Zhu, Peng; Cheng, Qi; Chen, Qian; Wu, Yan-Hui; Zhang, Zhan-Guo; Zhang, Bi-Xiang; Chen, Xiao-Ping

    2016-10-01

    The function of the spleen in tumor development has been investigated for years. The relationship of the spleen with hepatocellular carcinoma (HCC), a huge health burden worldwide, however, remains unknown. The present study aimed to examine the effect of splenectomy on the development of HCC and the possible mechanism. Mouse hepatic carcinoma lines H22 and Hepa1-6 as well as BALB/c and C57 mice were used to establish orthotopic and metastatic mouse models of liver cancer. Mice were divided into four groups, including control group, splenectomy control group (S group), tumor group (T group) and tumor plus splenectomy group (T+S group). Tumor growth, metastases and overall survival were assessed at determined time points. Meanwhile, myeloid-derived suppressor cells (MDSCs) were isolated from the peripheral blood (PB), the spleen and liver tumors, and then measured by flow cytometery. It was found that liver cancer led to splenomegaly, and increased the percentage of MDSCs in the PB and spleen in the mouse models. Splenectomy inhibited the growth and progression of liver cancer and prolonged the overall survival time of orthotopic and metastatic models, which was accompanied by decreased proportion of MDSCs in the PB and tumors of liver cancer-bearing mouse. It was suggested that splenectomy could be considered an adjuvant therapy to treat liver cancer.

  1. Tumor Suppressor Genes within Common Fragile Sites Are Active Players in the DNA Damage Response.

    Directory of Open Access Journals (Sweden)

    Idit Hazan

    2016-12-01

    Full Text Available The role of common fragile sites (CFSs in cancer remains controversial. Two main views dominate the discussion: one suggests that CFS loci are hotspots of genomic instability leading to inactivation of genes encoded within them, while the other view proposes that CFSs are functional units and that loss of the encoded genes confers selective pressure, leading to cancer development. The latter view is supported by emerging evidence showing that expression of a given CFS is associated with genome integrity and that inactivation of CFS-resident tumor suppressor genes leads to dysregulation of the DNA damage response (DDR and increased genomic instability. These two viewpoints of CFS function are not mutually exclusive but rather coexist; when breaks at CFSs are not repaired accurately, this can lead to deletions by which cells acquire growth advantage because of loss of tumor suppressor activities. Here, we review recent advances linking some CFS gene products with the DDR, genomic instability, and carcinogenesis and discuss how their inactivation might represent a selective advantage for cancer cells.

  2. A Shift from Nuclear to Cytoplasmic Breast Cancer Metastasis Suppressor 1 Expression Is Associated with Highly Proliferative Estrogen Receptor-Negative Breast Cancers

    Science.gov (United States)

    Frolova, Natalya; Edmonds, Mick D.; Bodenstine, Thomas M.; Seitz, Robert; Johnson, Martin R.; Feng, Rui; Welch, Danny R.; Frost, Andra R.

    2009-01-01

    Background/Aims To determine breast cancer metastasis suppressor 1 (BRMS1) expression in breast cancers and the efficacy of BRMS1 as a prognostic indicator, BRMS1 expression was assessed in two sets of breast cancer tissues. Methods Epithelial cells from 36 frozen samples of breast cancers and corresponding normal breast were collected by laser capture microdissection and assessed for BRMS1 by quantitative RT-PCR and immunohistochemistry. BRMS1 was also evaluated by immunohistochemistry in a tissue microarray of 209 breast cancers and correlated with indicators of prognosis [estrogen receptor (ER), progesterone receptor (PR), ErbB2, p53, p27Kip1, Bcl2 and Ki-67]. Results BRMS1 mRNA and protein were higher in 94 and 81%, respectively, of breast cancers than in corresponding normal epithelium. BRMS1 localization was predominantly nuclear, but 60–70% of cancers also exhibited cytoplasmic immunostaining. Breast cancers with lower nuclear than cytoplasmic BRMS1 (nuclear score – cytoplasmic score ≤0; 11% of cancers) had lower ER, lower PR and higher Ki-67 expression. There was also a trend toward poorer overall survival in this group of cancers, but this was only of borderline significance (p = 0.073). In Cox proportional hazards models, loss of nuclear BRMS1 was not a significant predictor of overall survival. Conclusions Loss of nuclear BRMS1 was associated with ER-negative cancers and a high rate of proliferation, but was not an independent indicator of prognosis. PMID:19609101

  3. Evolution of the HIV-1 nef gene in HLA-B*57 Positive Elite Suppressors

    Directory of Open Access Journals (Sweden)

    Siliciano Robert F

    2010-11-01

    Full Text Available Abstract Elite controllers or suppressors (ES are HIV-1 infected patients who maintain viral loads of gag and nef in HLA-B*57 positive ES. We previously showed evolution in the gag gene of ES which surprisingly was mostly due to synonymous mutations rather than non-synonymous mutation in targeted CTL epitopes. This finding could be the result of structural constraints on Gag, and we therefore examined the less conserved nef gene. We found slow evolution of nef in plasma virus in some ES. This evolution is mostly due to synonymous mutations and occurs at a rate similar to that seen in the gag gene in the same patients. The results provide further evidence of ongoing viral replication in ES and suggest that the nef and gag genes in these patients respond similarly to selective pressure from the host.

  4. Prediction of DNA methylation in the promoter of gene suppressor tumor.

    Science.gov (United States)

    Saif, Imane; Kasmi, Yassine; Allali, Karam; Ennaji, Moulay Mustapha

    2018-04-20

    The epigenetics methylation of cytosine is the most common epigenetic form in DNA sequences. It is highly concentrated in the promoter regions of the genes, leading to an inactivation of tumor suppressors regardless of their initial function. In this work, we aim to identify the highly methylated regions; the cytosine-phosphate-guanine (CpG) island located on the promoters and/or the first exon gene known for their key roles in the cell cycle, hence the need to study gene-gene interactions. The Frommer and hidden Markov model algorithms are used as computational methods to identify CpG islands with specificity and sensitivity up to 76% and 80%, respectively. The results obtained show, on the one hand, that the genes studied are suspected of developing hypermethylation in the promoter region of the gene involved in the case of a cancer. We then showed that the relative richness in CG results from a high level of methylation. On the other hand, we observe that the gene-gene interaction exhibits co-expression between the chosen genes. This let us to conclude that the hidden Markov model algorithm predicts more specific and valuable information about the hypermethylation in gene as a preventive and diagnostics tools for the personalized medicine; as that the tumor-suppresser-genes have relative co-expression and complementary relations which the hypermethylation affect in the samples studied in our work. Copyright © 2018. Published by Elsevier B.V.

  5. Analysis of the Mitogen-activated protein kinase kinase 4 (MAP2K4) tumor suppressor gene in ovarian cancer

    International Nuclear Information System (INIS)

    Davis, Sally J; Choong, David YH; Ramakrishna, Manasa; Ryland, Georgina L; Campbell, Ian G; Gorringe, Kylie L

    2011-01-01

    MAP2K4 is a putative tumor and metastasis suppressor gene frequently found to be deleted in various cancer types. We aimed to conduct a comprehensive analysis of this gene to assess its involvement in ovarian cancer. We screened for mutations in MAP2K4 using High Resolution Melt analysis of 149 primary ovarian tumors and methylation at the promoter using Methylation-Specific Single-Stranded Conformation Polymorphism analysis of 39 tumors. We also considered the clinical impact of changes in MAP2K4 using publicly available expression and copy number array data. Finally, we used siRNA to measure the effect of reducing MAP2K4 expression in cell lines. In addition to 4 previously detected homozygous deletions, we identified a homozygous 16 bp truncating deletion and a heterozygous 4 bp deletion, each in one ovarian tumor. No promoter methylation was detected. The frequency of MAP2K4 homozygous inactivation was 5.6% overall, and 9.8% in high-grade serous cases. Hemizygous deletion of MAP2K4 was observed in 38% of samples. There were significant correlations of copy number and expression in three microarray data sets. There was a significant correlation between MAP2K4 expression and overall survival in one expression array data set, but this was not confirmed in an independent set. Treatment of JAM and HOSE6.3 cell lines with MAP2K4 siRNA showed some reduction in proliferation. MAP2K4 is targeted by genetic inactivation in ovarian cancer and restricted to high grade serous and endometrioid carcinomas in our cohort

  6. Functional characterization of duplicated Suppressor of Overexpression of Constans 1-like genes in petunia.

    Directory of Open Access Journals (Sweden)

    Jill C Preston

    Full Text Available Flowering time is strictly controlled by a combination of internal and external signals that match seed set with favorable environmental conditions. In the model plant species Arabidopsis thaliana (Brassicaceae, many of the genes underlying development and evolution of flowering have been discovered. However, much remains unknown about how conserved the flowering gene networks are in plants with different growth habits, gene duplication histories, and distributions. Here we functionally characterize three homologs of the flowering gene Suppressor Of Overexpression of Constans 1 (SOC1 in the short-lived perennial Petunia hybrida (petunia, Solanaceae. Similar to A. thaliana soc1 mutants, co-silencing of duplicated petunia SOC1-like genes results in late flowering. This phenotype is most severe when all three SOC1-like genes are silenced. Furthermore, expression levels of the SOC1-like genes Unshaven (UNS and Floral Binding Protein 21 (FBP21, but not FBP28, are positively correlated with developmental age. In contrast to A. thaliana, petunia SOC1-like gene expression did not increase with longer photoperiods, and FBP28 transcripts were actually more abundant under short days. Despite evidence of functional redundancy, differential spatio-temporal expression data suggest that SOC1-like genes might fine-tune petunia flowering in response to photoperiod and developmental stage. This likely resulted from modification of SOC1-like gene regulatory elements following recent duplication, and is a possible mechanism to ensure flowering under both inductive and non-inductive photoperiods.

  7. Tumor suppressor gene E-cadherin and its role in normal and malignant cells

    Directory of Open Access Journals (Sweden)

    Pećina-Šlaus Nives

    2003-10-01

    Full Text Available Abstract E-cadherin tumor suppressor genes are particularly active area of research in development and tumorigenesis. The calcium-dependent interactions among E-cadherin molecules are critical for the formation and maintenance of adherent junctions in areas of epithelial cell-cell contact. Loss of E-cadherin-mediated-adhesion characterises the transition from benign lesions to invasive, metastatic cancer. Nevertheless, there is evidence that E-cadherins may also play a role in the wnt signal transduction pathway, together with other key molecules involved in it, such as beta-catenins and adenomatous poliposis coli gene products. The structure and function of E-cadherin, gene and protein, in normal as well as in tumor cells are reviewed in this paper.

  8. Overexpression of the p53 tumor suppressor gene product in primary lung adenocarcinomas is associated with cigarette smoking

    NARCIS (Netherlands)

    Westra, W. H.; Offerhaus, G. J.; Goodman, S. N.; Slebos, R. J.; Polak, M.; Baas, I. O.; Rodenhuis, S.; Hruban, R. H.

    1993-01-01

    Mutations in the p53 tumor suppressor gene are frequently observed in primary lung adenocarcinomas, suggesting that these mutations are critical events in the malignant transformation of airway cells. These mutations are often associated with stabilization of the p53 gene product, resulting in the

  9. Distinct and competitive regulatory patterns of tumor suppressor genes and oncogenes in ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Min Zhao

    Full Text Available So far, investigators have found numerous tumor suppressor genes (TSGs and oncogenes (OCGs that control cell proliferation and apoptosis during cancer development. Furthermore, TSGs and OCGs may act as modulators of transcription factors (TFs to influence gene regulation. A comprehensive investigation of TSGs, OCGs, TFs, and their joint target genes at the network level may provide a deeper understanding of the post-translational modulation of TSGs and OCGs to TF gene regulation.In this study, we developed a novel computational framework for identifying target genes of TSGs and OCGs using TFs as bridges through the integration of protein-protein interactions and gene expression data. We applied this pipeline to ovarian cancer and constructed a three-layer regulatory network. In the network, the top layer was comprised of modulators (TSGs and OCGs, the middle layer included TFs, and the bottom layer contained target genes. Based on regulatory relationships in the network, we compiled TSG and OCG profiles and performed clustering analyses. Interestingly, we found TSGs and OCGs formed two distinct branches. The genes in the TSG branch were significantly enriched in DNA damage and repair, regulating macromolecule metabolism, cell cycle and apoptosis, while the genes in the OCG branch were significantly enriched in the ErbB signaling pathway. Remarkably, their specific targets showed a reversed functional enrichment in terms of apoptosis and the ErbB signaling pathway: the target genes regulated by OCGs only were enriched in anti-apoptosis and the target genes regulated by TSGs only were enriched in the ErbB signaling pathway.This study provides the first comprehensive investigation of the interplay of TSGs and OCGs in a regulatory network modulated by TFs. Our application in ovarian cancer revealed distinct regulatory patterns of TSGs and OCGs, suggesting a competitive regulatory mechanism acting upon apoptosis and the ErbB signaling pathway through

  10. Generation and characterization of mice carrying a conditional allele of the Wwox tumor suppressor gene.

    Directory of Open Access Journals (Sweden)

    John H Ludes-Meyers

    2009-11-01

    Full Text Available WWOX, the gene that spans the second most common human chromosomal fragile site, FRA16D, is inactivated in multiple human cancers and behaves as a suppressor of tumor growth. Since we are interested in understanding WWOX function in both normal and cancer tissues we generated mice harboring a conditional Wwox allele by flanking Exon 1 of the Wwox gene with LoxP sites. Wwox knockout (KO mice were developed by breeding with transgenic mice carrying the Cre-recombinase gene under the control of the adenovirus EIIA promoter. We found that Wwox KO mice suffered from severe metabolic defect(s resulting in growth retardation and all mice died by 3 wk of age. All Wwox KO mice displayed significant hypocapnia suggesting a state of metabolic acidosis. This finding and the known high expression of Wwox in kidney tubules suggest a role for Wwox in acid/base balance. Importantly, Wwox KO mice displayed histopathological and hematological signs of impaired hematopoiesis, leukopenia, and splenic atrophy. Impaired hematopoiesis can also be a contributing factor to metabolic acidosis and death. Hypoglycemia and hypocalcemia was also observed affecting the KO mice. In addition, bone metabolic defects were evident in Wwox KO mice. Bones were smaller and thinner having reduced bone volume as a consequence of a defect in mineralization. No evidence of spontaneous neoplasia was observed in Wwox KO mice. We have generated a new mouse model to inactivate the Wwox tumor suppressor gene conditionally. This will greatly facilitate the functional analysis of Wwox in adult mice and will allow investigating neoplastic transformation in specific target tissues.

  11. Tumor-suppressor genes that escape from X-inactivation contribute to cancer sex bias.

    Science.gov (United States)

    Dunford, Andrew; Weinstock, David M; Savova, Virginia; Schumacher, Steven E; Cleary, John P; Yoda, Akinori; Sullivan, Timothy J; Hess, Julian M; Gimelbrant, Alexander A; Beroukhim, Rameen; Lawrence, Michael S; Getz, Gad; Lane, Andrew A

    2017-01-01

    There is a striking and unexplained male predominance across many cancer types. A subset of X-chromosome genes can escape X-inactivation, which would protect females from complete functional loss by a single mutation. To identify putative 'escape from X-inactivation tumor-suppressor' (EXITS) genes, we examined somatic alterations from >4,100 cancers across 21 tumor types for sex bias. Six of 783 non-pseudoautosomal region (PAR) X-chromosome genes (ATRX, CNKSR2, DDX3X, KDM5C, KDM6A, and MAGEC3) harbored loss-of-function mutations more frequently in males (based on a false discovery rate < 0.1), in comparison to zero of 18,055 autosomal and PAR genes (Fisher's exact P < 0.0001). Male-biased mutations in genes that escape X-inactivation were observed in combined analysis across many cancers and in several individual tumor types, suggesting a generalized phenomenon. We conclude that biallelic expression of EXITS genes in females explains a portion of the reduced cancer incidence in females as compared to males across a variety of tumor types.

  12. Genes that mediate breast cancer metastasis to the brain

    NARCIS (Netherlands)

    Bos, Paula D.; Zhang, Xiang H.-F.; Nadal, Cristina; Shu, Weiping; Gomis, Roger R.; Nguyen, Don X.; Minn, Andy J.; van de Vijver, Marc J.; Gerald, William L.; Foekens, John A.; Massagué, Joan

    2009-01-01

    The molecular basis for breast cancer metastasis to the brain is largely unknown(1,2). Brain relapse typically occurs years after the removal of a breast tumour(2-4), suggesting that disseminated cancer cells must acquire specialized functions to take over this organ. Here we show that breast cancer

  13. Characterization of the tumor suppressor gene WWOX in primary human oral squamous cell carcinomas

    Science.gov (United States)

    Pimenta, Flávio J.; Gomes, Dawidson A.; Perdigão, Paolla F.; Barbosa, Alvimar A.; Romano-Silva, Marco A.; Gomez, Marcus V.; Aldaz, C. Marcelo; De Marco, Luiz; Gomez, Ricardo S.

    2014-01-01

    Oral squamous cell carcinoma (OSCC) is the most common malignant neoplasm of the oral cavity, representing ~90% of all oral carcinomas and accounting for 3–5% of all malignancies. The WWOX gene (WW-domain containing oxidoreductase) is a candidate tumor suppressor gene located at 16q23.3–24.1, spanning the second most common fragile site, FRA16D. In this report, the role of the WWOX gene was investigated in 20 tumors and 10 normal oral mucosas, and we demonstrated an altered WWOX gene in 50% (10/20) of OSCCs. Using nested RT-PCR, mRNA transcription was altered in 35% of the tumors, with the complete absence of transcripts in 2 samples as well as absence of exons 6–8 (2 tumors), exon 7 (1 tumor), exon 7 and exon 6–8 (1 tumor) and partial loss of exons 8 and 9 (1 tumor). To determine if the aberrant transcripts were translated, Western blots were performed in all samples; however, only the normal protein was detected. By immunohistochemistry, a reduction in Wwox protein expression was observed, affecting 40% of the tumors when compared with normal mucosa. In addition, a novel somatic mutation (S329F) was found. The presence of alterations in mRNA transcription correlated with the reduced expression of Wwox protein in the tumors. These results show that the WWOX gene is frequently altered in OSCC and may contribute to the carcinogenesis processes in oral cancer. PMID:16152610

  14. ING Genes Work as Tumor Suppressor Genes in the Carcinogenesis of Head and Neck Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Xiaohan Li

    2011-01-01

    Full Text Available Head and neck squamous cell carcinoma (HNSCC is the sixth most common cancer in the world. The evolution and progression of HNSCC are considered to result from multiple stepwise alterations of cellular and molecular pathways in squamous epithelium. Recently, inhibitor of growth gene (ING family consisting of five genes, ING1 to ING5, was identified as a new tumor suppressor gene family that was implicated in the downregulation of cell cycle and chromatin remodeling. In contrast, it has been shown that ING1 and ING2 play an oncogenic role in some cancers, this situation being similar to TGF-β. In HNSCC, the ING family has been reported to be downregulated, and ING translocation from the nucleus to the cytoplasm may be a critical event for carcinogenesis. In this paper, we describe our recent results and briefly summarize current knowledge regarding the biologic functions of ING in HNSCC.

  15. MicroRNA-375 Functions as a Tumor-Suppressor Gene in Gastric Cancer by Targeting Recepteur d’Origine Nantais

    Directory of Open Access Journals (Sweden)

    Sen Lian

    2016-09-01

    Full Text Available Emerging evidence supports a fundamental role for microRNAs (miRNA in regulating cancer metastasis. Recently, microRNA-375 (miR-375 was reported to be downregulated in many types of cancers, including gastric cancer. Increase in the expression of Recepteur d’Origine Nantais (RON, a receptor tyrosine kinase, has been reported in tumors. However, the function of miR-375 and RON expression in gastric cancer metastasis has not been sufficiently studied. In silico analysis identified miR-375 binding sites in the 3′-untranslated regions (3′-UTR of the RON-encoding gene. Expression of miR-375 resulted in reduced activity of a luciferase reporter containing the 3′-UTR fragments of RON-encoding mRNA, confirming that miR-375 directly targets the 3′-UTR of RON mRNA. Moreover, we found that overexpression of miR-375 inhibited mRNA and protein expression of RON, which was accompanied by the suppression of cell proliferation, migration, and invasion in gastric cancer AGS and MKN-28 cells. Ectopic miR-375 expression also induced G1 cell cycle arrest through a decrease in the expression of cyclin D1, cyclin D3, and in the phosphorylation of retinoblastoma (Rb. Knockdown of RON by RNAi, similar to miR-375 overexpression, suppressed tumorigenic properties and induced G1 arrest through a decrease in the expression of cyclin D1, cyclin D3, and in the phosphorylation of Rb. Thus, our study provides evidence that miR-375 acts as a suppressor of metastasis in gastric cancer by targeting RON, and might represent a new potential therapeutic target for gastric cancer.

  16. Tumor suppressor gene-based nanotherapy: from test tube to the clinic.

    Science.gov (United States)

    Shanker, Manish; Jin, Jiankang; Branch, Cynthia D; Miyamoto, Shinya; Grimm, Elizabeth A; Roth, Jack A; Ramesh, Rajagopal

    2011-01-01

    Cancer is a major health problem in the world. Advances made in cancer therapy have improved the survival of patients in certain types of cancer. However, the overall five-year survival has not significantly improved in the majority of cancer types. Major challenges encountered in having effective cancer therapy are development of drug resistance by the tumor cells, nonspecific cytotoxicity, and inability to affect metastatic tumors by the chemodrugs. Overcoming these challenges requires development and testing of novel therapies. One attractive cancer therapeutic approach is cancer gene therapy. Several laboratories including the authors' laboratory have been investigating nonviral formulations for delivering therapeutic genes as a mode for effective cancer therapy. In this paper the authors will summarize their experience in the development and testing of a cationic lipid-based nanocarrier formulation and the results from their preclinical studies leading to a Phase I clinical trial for nonsmall cell lung cancer. Their nanocarrier formulation containing therapeutic genes such as tumor suppressor genes when administered intravenously effectively controls metastatic tumor growth. Additional Phase I clinical trials based on the results of their nanocarrier formulation have been initiated or proposed for treatment of cancer of the breast, ovary, pancreas, and metastatic melanoma, and will be discussed.

  17. Tumor Suppressor Gene-Based Nanotherapy: From Test Tube to the Clinic

    Directory of Open Access Journals (Sweden)

    Manish Shanker

    2011-01-01

    Full Text Available Cancer is a major health problem in the world. Advances made in cancer therapy have improved the survival of patients in certain types of cancer. However, the overall five-year survival has not significantly improved in the majority of cancer types. Major challenges encountered in having effective cancer therapy are development of drug resistance by the tumor cells, nonspecific cytotoxicity, and inability to affect metastatic tumors by the chemodrugs. Overcoming these challenges requires development and testing of novel therapies. One attractive cancer therapeutic approach is cancer gene therapy. Several laboratories including the authors' laboratory have been investigating nonviral formulations for delivering therapeutic genes as a mode for effective cancer therapy. In this paper the authors will summarize their experience in the development and testing of a cationic lipid-based nanocarrier formulation and the results from their preclinical studies leading to a Phase I clinical trial for nonsmall cell lung cancer. Their nanocarrier formulation containing therapeutic genes such as tumor suppressor genes when administered intravenously effectively controls metastatic tumor growth. Additional Phase I clinical trials based on the results of their nanocarrier formulation have been initiated or proposed for treatment of cancer of the breast, ovary, pancreas, and metastatic melanoma, and will be discussed.

  18. DLC1 tumor suppressor gene inhibits migration and invasion of multiple myeloma cells through RhoA GTPase pathway

    Czech Academy of Sciences Publication Activity Database

    Ullmannová-Benson, Veronika; Guan, M.; Zhou, X. G.; Tripathi, V.; Yang, V.; Zimonjic, D. B.; Popescu, C.

    2009-01-01

    Roč. 23, č. 2 (2009), s. 383-390 ISSN 0887-6924 Institutional research plan: CEZ:AV0Z50200510 Keywords : multiple myeloma * tumor suppressor gene * promoter methylation Subject RIV: EC - Immunology Impact factor: 8.296, year: 2009

  19. Mutation analysis of suppressor of cytokine signalling 3, a candidate gene in Type 1 diabetes and insulin sensitivity

    DEFF Research Database (Denmark)

    Gylvin, T; Nolsøe, R; Hansen, T

    2004-01-01

    Beta cell loss in Type 1 and Type 2 diabetes mellitus may result from apoptosis and necrosis induced by inflammatory mediators. The suppressor of cytokine signalling (SOCS)-3 is a natural inhibitor of cytokine signalling and also influences insulin signalling. SOCS3 could therefore be a candidate...... gene in the development of Type 1 and Type 2 diabetes mellitus....

  20. PCR-RFLP to Detect Codon 248 Mutation in Exon 7 of "p53" Tumor Suppressor Gene

    Science.gov (United States)

    Ouyang, Liming; Ge, Chongtao; Wu, Haizhen; Li, Suxia; Zhang, Huizhan

    2009-01-01

    Individual genome DNA was extracted fast from oral swab and followed up with PCR specific for codon 248 of "p53" tumor suppressor gene. "Msp"I restriction mapping showed the G-C mutation in codon 248, which closely relates to cancer susceptibility. Students learn the concepts, detection techniques, and research significance of point mutations or…

  1. SATB1 tethers multiple gene loci to reprogram expression profiledriving breast cancer metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Han, Hye-Jung; Kohwi, Yoshinori; Kohwi-Shigematsu, Terumi

    2006-07-13

    Global changes in gene expression occur during tumor progression, as indicated by expression profiling of metastatic tumors. How this occurs is poorly understood. SATB1 functions as a genome organizer by folding chromatin via tethering multiple genomic loci and recruiting chromatin remodeling enzymes to regulate chromatin structure and expression of a large number of genes. Here we show that SATB1 is expressed at high levels in aggressive breast cancer cells, and is undetectable in non-malignant breast epithelial cells. Importantly, RNAi-mediated removal of SATB1 from highly-aggressive MDA-MB-231 cells altered the expression levels of over 1200 genes, restored breast-like acinar polarity in three-dimensional cultures, and prevented the metastastic phenotype in vivo. Conversely, overexpression of SATB1 in the less-aggressive breast cancer cell line Hs578T altered the gene expression profile and increased metastasis dramatically in vivo. Thus, SATB1 is a global regulator of gene expression in breast cancer cells, directly regulating crucial metastasis-associated genes, including ERRB2 (HER2/NEU), TGF-{beta}1, matrix metalloproteinase 3, and metastasin. The identification of SATB1 as a protein that re-programs chromatin organization and transcription profiles to promote breast cancer metastasis suggests a new model for metastasis and may provide means of therapeutic intervention.

  2. Self-association of the WT1 tumor suppressor gene product

    Energy Technology Data Exchange (ETDEWEB)

    Bruening, W.; Nakagama, H.: Bardessy, N. [McGill Univ., Montreal (Canada)] [and others

    1994-09-01

    Wilms` tumor (WT), an embryonal malignancy of the kidney, occurs most frequently in children under the age of 5 years, affecting {approximately}1 in 10,000 individuals. The WT1 tumor suppressor gene, residing at 11p13, is structurally altered in {approximately}10-15% of WT cases. Individuals with germline mutations within the WT1 gene suffer from predisposition to WT and developmental defects of the urogenital system. Patients with heterozygous deletions of the WT1 gene, or mutations predicted to cause inactivation of one WT1 allele, suffer relatively mild genital system defects (notably hypospadias and cryptorchidism in males) and a predisposition to WT. These results suggest that developing genital system development is sensitive to the absolute concentrations of the WT1 gene products. Patients with missense mutations within the WT1 gene, however, can suffer from a much more severe disorder known as Denys-Drash syndrome (DDS). This syndrome is characterized by intersex disorders, renal nephropathy, and a predisposition to WTs. The increased severity of the developmental defects associated with DDS, compared to those individuals with mild genital system anomalies and WTs, suggests that mutations defined in patients with DDS behave in a dominant-negative fashion. We have identified a novel WT1 mutation in a patient with DDS. This mutation, predicted to produce a truncated WT1 polypeptide encompassing exons 1, 2, and 3, defines a domain capable of behaving as an antimorph. We have also demonstrated that WT1 can self-associate in vivo using yeast two-hybrid systems. Deletion analysis have mapped the interacting domains to the amino terminus of the WT1 polypeptide, within exons 1 and 2. These results provide a molecular mechanism to explain how WT1 mutations can function in a dominant-negative fashion to eliminate wild-type WT1 activity, leading to DDS.

  3. Tumor suppressor gene P53 in fish species as a target for genotoxic effects monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kusser, W.C.; Brand, D.; Glickman, B.W. [Univ. of Victoria, British Columbia (Canada); Cretney, W.

    1995-12-31

    Analysis of environmentally induced molecular changes in DNA from fish was initiated with a study of tumor suppressor gene p53. This gene was chosen because of the high number of documented mutations in p53 from humans and their relevance in tumorigenesis. Bottom-feeding flatfish (e.g. English sole, Pleuronectes vetulus) and members of the salmonid family (e.g. rainbow trout, Oncorhynchus mykiss and chinook salmon, O. tschaaytsha) were chosen, because they are widespread and of commercial and recreational importance. The studies include the use of histopathological, biochemical, and molecular genetic tools in aquatic systems. The authors are currently examining the deposition of DNA damage and mutation in the p53 gene in fish. Parallel histopathology of liver showed idiopathic liver lesions that were strongly dependent on location of capture (0.01 < p(X{sup 2} 0.05, 2 > 6.89) < 0.025) with a prevalence of 30% for fish collected from the vicinity of pulp mills. To assess DNA damage and mutation analysis, DNA was extracted from fish liver. Polymerase chain reaction (PCR) and DNA sequencing of the p53 gene was performed for rainbow trout, chinook and sockeye salmon, O. nerka. Southern blotting with a labeled p53 probe from rainbow trout was performed using genomic DNA from various teleost fish species. The presence of p53 could be shown in all fish species examined, including salmonids and sentinel species for environmental monitoring like English sole and white sucker (Catostomus commersom). To correlate histopathology with molecular analysis the authors initiated the determination of DNA damage, DNA adducts and mutations in the p53 gene (conserved exons 5 to 9).

  4. A study on tumor suppressor genes mutations associated with different pathological colorectal lesions

    International Nuclear Information System (INIS)

    Matar, S.N.A.

    2011-01-01

    Colorectal cancer (CRC) is the second leading cause of cancer-related death in the Western world. In Egypt; there is an increasing incidence of the disease, especially among patients ≤40 years age. While CRC have been reported in low incidence rate in developing countries, it is the third most common tumor in male and the fifth common tumor in females in Egypt. Early diagnosis and surgical interference guarantee long survival of most CRC patients. Early diagnosis is impeded by the disease onset at young age and imprecise symptoms at the initial stages of the disease. As in most solid tumors, the malignant transformation of colonic epithelial cells is to arise through a multistep process during which they acquire genetic changes involving the activation of proto-oncogenes and the loss of tumor suppressor genes. Recently, a candidate tumor suppressor gene, KLF6, which is mapped to chromosome 10p, was found to be frequently mutated in a number of cancers. There are some evidences suggesting that the disruption of the functional activity of KLF6 gene products may be one of the early events in tumor genesis of the colon. The main objective of the present study was to detect mutational changes of KLF6 tumor suppressor gene and to study the loss of heterozygosity (LOH) markers at chromosome 10p15 (KLF6 locus) in colorectal lesions and colorectal cancer in Egyptian patients. The patients included in this study were 83 presented with different indications for colonoscopic examination. Selecting patients with colorectal pre-cancerous lesions or colorectal cancer was done according to the results of tissue biopsy from lesion and adjacent normal. The patients were classified into three main groups; (G I) Cancerous group, (G II) polyps group including patients with adenomatous polyps (AP), familial adenomatous polyps (FAP) and hyperplastic polyps (HP) and (G III) Inflammatory Bowel Diseases (IBD) including patients with ulcerative colitis (UC) and Crohn's disease (CD

  5. gld-1, a tumor suppressor gene required for oocyte development in Caenorhabditis elegans

    Energy Technology Data Exchange (ETDEWEB)

    Francis, R.; Schedl, T. [Washington Univ. School of Medicine, St. Louis, MO (United States); Barton, M.K.; Kimble, J. [Univ. of Wisconsin, Madison, WI (United States)

    1995-02-01

    We have characterized 31 mutations in the gld-1 (defective in germline development) gene of Caenorhabditis elegans. In gld-1 (null) hermaphrodites, oogenesis is abolished and a germline tumor forms where oocyte development would normally occur. By contrast, gld-1 (null) males are unaffected. The hermaphrodite germline tumor appears to derive from germ cells that enter the meiotic pathway normally but then exit pachytene and return to the mitotic cycle. Certain gld-1 partial loss-of-function mutations also abolish oogenesis, but germ cells arrest in pachytene rather than returning to mitosis. Our results indicate that gld-1 is a tumor suppressor gene required for oocyte development. The tumorous phenotype suggests that gld-1(+) may function to negatively regulate proliferation during meiotic prophase and/or act to direct progression through meiotic prophase. We also show that gld-1(+) has an additional nonessential role in germline sex determination: promotion of hermaphrodite spermatogenesis. This function of gld-1 is inferred from a haplo-insufficient phenotype and from the properties of gain-of-function gld-1 mutations that cause alterations in the sexual identity of germ cells. 69 refs., 10 figs., 8 tabs.

  6. PU.1 is a major transcriptional activator of the tumour suppressor gene LIMD1.

    Science.gov (United States)

    Foxler, Daniel E; James, Victoria; Shelton, Samuel J; Vallim, Thomas Q de A; Shaw, Peter E; Sharp, Tyson V

    2011-04-06

    LIMD1 is a tumour suppressor gene (TSG) down regulated in ∼80% of lung cancers with loss also demonstrated in breast and head and neck squamous cell carcinomas. LIMD1 is also a candidate TSG in childhood acute lymphoblastic leukaemia. Mechanistically, LIMD1 interacts with pRB, repressing E2F-driven transcription as well as being a critical component of microRNA-mediated gene silencing. In this study we show a CpG island within the LIMD1 promoter contains a conserved binding motif for the transcription factor PU.1. Mutation of the PU.1 consensus reduced promoter driven transcription by 90%. ChIP and EMSA analysis demonstrated that PU.1 specifically binds to the LIMD1 promoter. siRNA depletion of PU.1 significantly reduced endogenous LIMD1 expression, demonstrating that PU.1 is a major transcriptional activator of LIMD1. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  7. Haploinsufficiency of the genes encoding the tumor suppressor Pten predisposes zebrafish to hemangiosarcoma

    Directory of Open Access Journals (Sweden)

    Suma Choorapoikayil

    2012-03-01

    PTEN is an essential tumor suppressor that antagonizes Akt/PKB signaling. The zebrafish genome encodes two Pten genes, ptena and ptenb. Here, we report that zebrafish mutants that retain a single wild-type copy of ptena or ptenb (ptena+/−ptenb−/− or ptena−/−ptenb+/− are viable and fertile. ptena+/−ptenb−/− fish develop tumors at a relatively high incidence (10.2% and most tumors developed close to the eye (26/30. Histopathologically, the tumor masses were associated with the retrobulbar vascular network and diagnosed as hemangiosarcomas. A single tumor was identified in 42 ptena−/−ptenb+/− fish and was also diagnosed as hemangiosarcoma. Immunohistochemistry indicated that the tumor cells in ptena+/−ptenb−/− and ptena−/−ptenb+/− fish proliferated rapidly and were of endothelial origin. Akt/PKB signaling was activated in the tumors, whereas Ptena was still detected in tumor tissue from ptena+/−ptenb−/− zebrafish. We conclude that haploinsufficiency of the genes encoding Pten predisposes to hemangiosarcoma in zebrafish.

  8. The PTEN tumor suppressor gene and its role in lymphoma pathogenesis

    Science.gov (United States)

    Wang, Xiaoxiao; Huang, Huiqiang; Young, Ken H.

    2015-01-01

    The phosphatase and tensin homolog gene PTEN is one of the most frequently mutated tumor suppressor genes in human cancer. Loss of PTEN function occurs in a variety of human cancers via its mutation, deletion, transcriptional silencing, or protein instability. PTEN deficiency in cancer has been associated with advanced disease, chemotherapy resistance, and poor survival. Impaired PTEN function, which antagonizes phosphoinositide 3-kinase (PI3K) signaling, causes the accumulation of phosphatidylinositol (3,4,5)-triphosphate and thereby the suppression of downstream components of the PI3K pathway, including the protein kinase B and mammalian target of rapamycin kinases. In addition to having lipid phosphorylation activity, PTEN has critical roles in the regulation of genomic instability, DNA repair, stem cell self-renewal, cellular senescence, and cell migration. Although PTEN deficiency in solid tumors has been studied extensively, rare studies have investigated PTEN alteration in lymphoid malignancies. However, genomic or epigenomic aberrations of PTEN and dysregulated signaling are likely critical in lymphoma pathogenesis and progression. This review provides updated summary on the role of PTEN deficiency in human cancers, specifically in lymphoid malignancies; the molecular mechanisms of PTEN regulation; and the distinct functions of nuclear PTEN. Therapeutic strategies for rescuing PTEN deficiency in human cancers are proposed. PMID:26655726

  9. Fish Suppressors of Cytokine Signaling (SOCS): Gene Discovery, Modulation of Expression and Function

    Science.gov (United States)

    Wang, Tiehui; Gorgoglione, Bartolomeo; Maehr, Tanja; Holland, Jason W.; Vecino, Jose L. González; Wadsworth, Simon; Secombes, Christopher J.

    2011-01-01

    The intracellular suppressors of cytokine signaling (SOCS) family members, including CISH and SOCS1 to 7 in mammals, are important regulators of cytokine signaling pathways. So far, the orthologues of all the eight mammalian SOCS members have been identified in fish, with several of them having multiple copies. Whilst fish CISH, SOCS3, and SOCS5 paralogues are possibly the result of the fish-specific whole genome duplication event, gene duplication or lineage-specific genome duplication may also contribute to some paralogues, as with the three trout SOCS2s and three zebrafish SOCS5s. Fish SOCS genes are broadly expressed and also show species-specific expression patterns. They can be upregulated by cytokines, such as IFN-γ, TNF-α, IL-1β, IL-6, and IL-21, by immune stimulants such as LPS, poly I:C, and PMA, as well as by viral, bacterial, and parasitic infections in member- and species-dependent manners. Initial functional studies demonstrate conserved mechanisms of fish SOCS action via JAK/STAT pathways. PMID:22203897

  10. Haploinsufficiency of the genes encoding the tumor suppressor Pten predisposes zebrafish to hemangiosarcoma.

    Science.gov (United States)

    Choorapoikayil, Suma; Kuiper, Raoul V; de Bruin, Alain; den Hertog, Jeroen

    2012-03-01

    PTEN is an essential tumor suppressor that antagonizes Akt/PKB signaling. The zebrafish genome encodes two Pten genes, ptena and ptenb. Here, we report that zebrafish mutants that retain a single wild-type copy of ptena or ptenb (ptena(+/-)ptenb(-/-) or ptena(-/-)ptenb(+/-)) are viable and fertile. ptena(+/-)ptenb(-/-) fish develop tumors at a relatively high incidence (10.2%) and most tumors developed close to the eye (26/30). Histopathologically, the tumor masses were associated with the retrobulbar vascular network and diagnosed as hemangiosarcomas. A single tumor was identified in 42 ptena(-/-)ptenb(+/-) fish and was also diagnosed as hemangiosarcoma. Immunohistochemistry indicated that the tumor cells in ptena(+/-)ptenb(-/-) and ptena(-/-)ptenb(+/-) fish proliferated rapidly and were of endothelial origin. Akt/PKB signaling was activated in the tumors, whereas Ptena was still detected in tumor tissue from ptena(+/-)ptenb(-/-) zebrafish. We conclude that haploinsufficiency of the genes encoding Pten predisposes to hemangiosarcoma in zebrafish.

  11. MYC is a metastasis gene for non-small-cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Ulf R Rapp

    Full Text Available BACKGROUND: Metastasis is a process by which cancer cells learn to form satellite tumors in distant organs and represents the principle cause of death of patients with solid tumors. NSCLC is the most lethal human cancer due to its high rate of metastasis. METHODOLOGY/PRINCIPAL FINDINGS: Lack of a suitable animal model has so far hampered analysis of metastatic progression. We have examined c-MYC for its ability to induce metastasis in a C-RAF-driven mouse model for non-small-cell lung cancer. c-MYC alone induced frank tumor growth only after long latency at which time secondary mutations in K-Ras or LKB1 were detected reminiscent of human NSCLC. Combination with C-RAF led to immediate acceleration of tumor growth, conversion to papillary epithelial cells and angiogenic switch induction. Moreover, addition of c-MYC was sufficient to induce macrometastasis in liver and lymph nodes with short latency associated with lineage switch events. Thus we have generated the first conditional model for metastasis of NSCLC and identified a gene, c-MYC that is able to orchestrate all steps of this process. CONCLUSIONS/SIGNIFICANCE: Potential markers for detection of metastasis were identified and validated for diagnosis of human biopsies. These markers may represent targets for future therapeutic intervention as they include genes such as Gata4 that are exclusively expressed during lung development.

  12. Analysis of loss of heterozygosity of the tumor suppressor genes p53 and BRCA1 in ovarial carcinomas

    OpenAIRE

    Luković Ljiljana; Popović Branka; Atanacković Jasmina; Novaković Ivana; Perović Milica; Petrović Bojana; Petković Spasoje

    2006-01-01

    Background/aim: Among the genes involved in ovarian carcinogenesis, there has been increased interest in tumor-suppressor genes p53 and BRCA1. Both of the genes make control of cell cycle, DNA repair and apoptosis. The p53 is a "genome guardian" inactivated in more than 50% of human cancers, while BRCA1 mutations are found mostly in breast and ovarian cancer. The aim of this investigation was to establish the frequency of loss of heterozygosity (LOH) in the regions of the genes p53 and BRCA1 ...

  13. Downregulation of HOPX controls metastatic behavior in sarcoma cells and identifies genes associated with metastasis

    Czech Academy of Sciences Publication Activity Database

    Kovářová, Denisa; Plachý, Jiří; Kosla, Jan; Trejbalová, Kateřina; Čermák, Vladimír; Hejnar, Jiří

    2013-01-01

    Roč. 11, č. 10 (2013), s. 1235-1247 ISSN 1541-7786 R&D Projects: GA MŠk(CZ) LC06061 Institutional support: RVO:68378050 Keywords : homeobox gene * metastasis * HOPX Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.502, year: 2013

  14. Hypermethylation of MGMT and DAPK gene promoters is associated with tumorigenesis and metastasis in oral squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Yong-Kie Wong

    2011-09-01

    Conclusions: Our study supports the hypothesis that hypermethylation of p16 gene promoters may indicate a high risk of oral cancer, and hypermethylation of the MGMT and DAPK genes may be a major indicator of early OSCC metastasis.

  15. Screening and identification of significant genes related to tumor metastasis and PSMA in prostate cancer using microarray analysis.

    Science.gov (United States)

    Xu, Lin; Wang, Zhu; Li, Xiao-Fei; He, Xia; Guan, Lin-Lin; Tuo, Jiu-Ling; Wang, Yang; Luo, Yanfen; Zhong, Hui-Ling; Qiu, Shao-Peng; Cao, Kai-Yuan

    2013-10-01

    Tumor metastasis is one of the causes for the high mortality rate of prostate cancer (PCa) patients, yet the molecular mechanisms of PCa metastasis are not fully understood. In our previous studies, we found that PSMA suppresses the metastasis of PCa, yet the underlying mechanism remains unknown. To identify the genes related to tumor metastasis possibly regulated by PSMA, we performed tumor metastasis PCR array assay to analyze the differentially expressed tumor metastasis-related genes. Eighty-four tumor metastasis related genes were screened in si-PSMA LNCap cells (PSMA silenced by siRNA)/LNCap cells and in PC-3/LNcap cells, respectively. Expression levels of possible related genes were verified by real-time PCR in 4 prostate cancer cell lines (LNCap, 22RV1, PC-3 and DU145) and in 85 clinical samples (12 normal, 26 benign prostatic hypertrophy and 47 prostate cancer tissues). The results showed that 10 genes (including CDH6 and CXCL12) were upregulated and 4 genes (CCL7, ITGB3, MDM2 and MMP2) were downregulated in the si-PSMA LNCap cells. There were 41 genes significantly upregulated and 15 genes downregulated in PC-3 cells when compared with LNCap cells. Eight common genes were found in both the si-PSMA and PSMA(-) groups. CDH6, MMP3, MTSS1 were further identified as PSMA-related genes in the prostate cancer cell lines and clinical samples, and their expression showed a negative correlation with the stage of prostate cancer (P<0.0001) and PSMA level (P<0.05) in clinical samples, indicating their possible involvement in PSMA-related PCa metastasis regulation. These findings may provide insights into the mechanism involved in the suppression of PCa metastasis by PSMA and its possible interacting proteins, and may provide clues for further exploration of the molecular mechanism of PCa metastasis.

  16. Comparison of gene sets for expression profiling: prediction of metastasis from low-malignant breast cancer

    DEFF Research Database (Denmark)

    Thomassen, Mads; Tan, Qihua; Eiriksdottir, Freyja

    2007-01-01

    PURPOSE: In the low-risk group of breast cancer patients, a subgroup experiences metastatic recurrence of the disease. The aim of this study was to examine the performance of gene sets, developed mainly from high-risk tumors, in a group of low-malignant tumors. EXPERIMENTAL DESIGN: Twenty...... sets, mainly developed in high-risk cancers, predict metastasis from low-malignant cancer.......-six tumors from low-risk patients and 34 low-malignant T2 tumors from patients with slightly higher risk have been examined by genome-wide gene expression analysis. Nine prognostic gene sets were tested in this data set. RESULTS: A 32-gene profile (HUMAC32) that accurately predicts metastasis has previously...

  17. Allelic variation and differential expression of the mSIN3A histone deacetylase complex gene Arid4b promote mammary tumor growth and metastasis.

    Directory of Open Access Journals (Sweden)

    Scott F Winter

    2012-05-01

    Full Text Available Accumulating evidence suggests that breast cancer metastatic progression is modified by germline polymorphism, although specific modifier genes have remained largely undefined. In the current study, we employ the MMTV-PyMT transgenic mouse model and the AKXD panel of recombinant inbred mice to identify AT-rich interactive domain 4B (Arid4b; NM_194262 as a breast cancer progression modifier gene. Ectopic expression of Arid4b promoted primary tumor growth in vivo as well as increased migration and invasion in vitro, and the phenotype was associated with polymorphisms identified between the AKR/J and DBA/2J alleles as predicted by our genetic analyses. Stable shRNA-mediated knockdown of Arid4b caused a significant reduction in pulmonary metastases, validating a role for Arid4b as a metastasis modifier gene. ARID4B physically interacts with the breast cancer metastasis suppressor BRMS1, and we detected differential binding of the Arid4b alleles to histone deacetylase complex members mSIN3A and mSDS3, suggesting that the mechanism of Arid4b action likely involves interactions with chromatin modifying complexes. Downregulation of the conserved Tpx2 gene network, which is comprised of many factors regulating cell cycle and mitotic spindle biology, was observed concomitant with loss of metastatic efficiency in Arid4b knockdown cells. Consistent with our genetic analysis and in vivo experiments in our mouse model system, ARID4B expression was also an independent predictor of distant metastasis-free survival in breast cancer patients with ER+ tumors. These studies support a causative role of ARID4B in metastatic progression of breast cancer.

  18. Inhibitory effect of gene combination in a mouse model of colon cancer with liver metastasis.

    Science.gov (United States)

    DU, Tong; Niu, Hongxin

    2014-09-01

    The aim of the present study was to establish an animal liver metastasis model with human colon cancer and investigate the inhibitory effect of the wild type (WT) p53 gene combined with thymidine kinase/ganciclovir (TK/GCV) and cytosine deaminase/5-fluorocytosine (CD/5-FC) systems on liver metastasis of colon cancer. A nude mouse liver metastasis model with human colon cancer was established via a spleen cultivation method. A total of 32 nude mice were randomly divided into four groups, each group with eight mice. Group 1 mice received splenic injections of SW480 cells (control group), while group 2 mice were injected with SW480/p53 cells in the spleen. Group 3 mice were administered splenic injections of SW480/TK-CD cells, and GCV and 5-FC were injected into the abdominal cavity. Finally, group 4 mice received splenic injections of SW480/p53 cells mixed in equal proportion with SW480/TK-CD cells, as well as GCV and 5-FC injections in the abdominal cavity. These cells described were constructed in our laboratory and other laboratories. The number of liver metastatic tumors, the liver metastasis rate, conventional pathology, electron microscopy and other indicators in the nude mice of each group were compared and observed. The nude mouse liver metastasis model with human colon cancer was successfully established; the liver metastasis rate of the control group was 100%. The results demonstrated that the rate of liver metastasis in the nude mice in each treatment group decreased, as well as the average number of liver metastatic tumors. Furthermore, the effect of the treatment group with genetic combination (group 4) was the most effective, demonstrating that WTp53 had a synergistic effect with TK/GCV and CD/5-FC. Therefore, the present study successfully established a mouse model of liver metastasis with colon cancer by injecting human colon cancer cells in the spleen. Combined gene therapy was shown to have a synergistic effect, which effectively inhibited the

  19. Are there tumor suppressor genes on chromosome 4p in sporadic colorectal carcinoma?

    Science.gov (United States)

    Zheng, Hai-Tao; Jiang, Li-Xin; Lv, Zhong-Chuan; Li, Da-Peng; Zhou, Chong-Zhi; Gao, Jian-Jun; He, Lin; Peng, Zhi-Hai

    2008-01-07

    To study the candidate tumor suppressor genes (TSG) on chromosome 4p by detecting the high frequency of loss of heterozygosity (LOH) in sporadic colorectal carcinoma in Chinese patients. Seven fluorescent labeled polymorphic microsatellite markers were analyzed in 83 cases of colorectal carcinoma and matched normal tissue DNA by PCR. PCR products were electrophoresed on an ABI 377 DNA sequencer. Genescan 3.7 and Genotype 3.7 software were used for LOH scanning and analysis. The same procedure was performed by the other six microsatellite markers spanning D4S3013 locus to make further detailed deletion mapping. Comparison between LOH frequency and clinicopathological factors was performed by c2 test. Data were collected from all informative loci. The average LOH frequency on 4p was 24.25%, and 42.3% and 35.62% on D4S405 and D4S3013 locus, respectively. Adjacent markers of D4S3013 displayed a low LOH frequency (4p15.2) and D4S405 (4p14) locus are detected. Candidate TSG, which is involved in carcinogenesis and progression of sporadic colorectal carcinoma on chromosome 4p, may be located between D4S3017 and D4S2933 (about 1.7 cm).

  20. Inactivation of tumor suppressor genes and cancer therapy: An evolutionary game theory approach.

    Science.gov (United States)

    Khadem, Heydar; Kebriaei, Hamed; Veisi, Zahra

    2017-06-01

    Inactivation of alleles in tumor suppressor genes (TSG) is one of the important issues resulting in evolution of cancerous cells. In this paper, the evolution of healthy, one and two missed allele cells is modeled using the concept of evolutionary game theory and replicator dynamics. The proposed model also takes into account the interaction rates of the cells as designing parameters of the system. Different combinations of the equilibrium points of the parameterized nonlinear system is studied and categorized into some cases. In each case, the interaction rates' values are suggested in a way that the equilibrium points of the replicator dynamics are located on an appropriate region of the state space. Based on the suggested interaction rates, it is proved that the system doesn't have any undesirable interior equilibrium point as well. Therefore, the system will converge to the desirable region, where there is a scanty level of cancerous cells. In addition, the proposed conditions for interaction rates guarantee that, when a trajectory of the system reaches the boundaries, then it will stay there forever which is a desirable property since the equilibrium points have been already located on the boundaries, appropriately. The simulation results show the effectiveness of the suggestions in the elimination of the cancerous cells in different scenarios. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Peripheral blood mammaglobin gene expression for diagnosis and prediction of metastasis in breast cancer patients.

    Science.gov (United States)

    Radwan, Wafaa M; Moussa, Heba S; Essa, Enas S; Kandil, Samia H; Kamel, Azza M

    2013-03-01

    To evaluate the value of peripheral blood mammaglobin (MG) gene expression for diagnosis and prediction of metastasis in breast cancer patients. MG expression was detected by nested reverse-transcription polymerase chain reaction in the peripheral blood of 46 females (32 breast cancer, 12 benign breast lesions, 2 no breast abnormalities). In total 28 breast cancer patients were followed up through a period of 34 months for the development of metastasis. MG expression was detected in 16/32 (50%) breast cancer patients but not in patients with benign lesions or healthy participants. Five patients had metastasis at diagnosis. During the 34 months of follow up, five more MG-positive patients showed metastatic lesions and none of the MG negative patients who were followed up developed metastasis. The study suggests blood MG expression is a specific molecular marker for detection of occult mammary carcinoma cells of patients with operable breast cancer. It might be of value as a predictor of subsequent metastasis. Large-scale studies and longer follow-up periods are needed. © 2012 Wiley Publishing Asia Pty Ltd.

  2. Is the gene encoding Chibby implicated as a tumour suppressor in colorectal cancer ?

    International Nuclear Information System (INIS)

    Gad, Sophie; Teboul, David; Lièvre, Astrid; Goasguen, Nicolas; Berger, Anne; Beaune, Philippe; Laurent-Puig, Pierre

    2004-01-01

    A novel member of the Wnt signalling pathway, Chibby, was recently identified. This protein inhibits Wnt/β-catenin mediated transcriptional activation by competing with Lef-1 (the transcription factor and target of β-catenin) to bind to β-catenin. This suggests that Chibby could be a tumour suppressor protein. The C22orf2 gene coding Chibby is located on chromosome 22, a region recurrently lost in colorectal cancer. Activation of the Wnt pathway is a major feature of colorectal cancer and occurs through inactivation of APC or activation of β-catenin. All of this led us to analyse the possible implication of Chibby in colorectal carcinogenesis. First, 36 tumour and matched normal colonic mucosa DNA were genotyped with five microsatellite markers located on chromosome 22 to search for loss of heterozygosity. Then, mutation screening of the C22orf2 coding sequence and splice sites was performed in the 36 tumour DNA. Finally, expression of Chibby was analysed by quantitative RT-PCR on 10 patients, 4 with loss of heterozygosity (LOH) on chromosome 22. Loss of heterozygosity involving the C22orf2 region was detected in 11 out of 36 patients (30%). Sequencing analysis revealed a known variant, rs3747174, in exon 5: T321C leading to a silent amino acid polymorphism A107A. Allelic frequencies were 0.69 and 0.31 for T and C variants respectively. No other mutation was detected. Among the 10 patients studied, expression analysis revealed that Chibby is overexpressed in 2 tumours and underexpressed in 1. No correlations were found with 22q LOH status. As no somatic mutation was detected in C22orf2 in 36 colorectal tumour DNA, our results do not support the implication of Chibby as a tumour suppressor in colorectal carcinogenesis. This was supported by the absence of underexpression of Chibby among the tumour samples with 22q LOH. The implication of other Wnt pathway members remains to be identified to explain the part of colorectal tumours without mutation in APC and β-catenin

  3. Tumor suppressors: enhancers or suppressors of regeneration?

    Science.gov (United States)

    Pomerantz, Jason H.; Blau, Helen M.

    2013-01-01

    Tumor suppressors are so named because cancers occur in their absence, but these genes also have important functions in development, metabolism and tissue homeostasis. Here, we discuss known and potential functions of tumor suppressor genes during tissue regeneration, focusing on the evolutionarily conserved tumor suppressors pRb1, p53, Pten and Hippo. We propose that their activity is essential for tissue regeneration. This is in contrast to suggestions that tumor suppression is a trade-off for regenerative capacity. We also hypothesize that certain aspects of tumor suppressor pathways inhibit regenerative processes in mammals, and that transient targeted modification of these pathways could be fruitfully exploited to enhance processes that are important to regenerative medicine. PMID:23715544

  4. Metformin inhibits epithelial–mesenchymal transition in prostate cancer cells: Involvement of the tumor suppressor miR30a and its target gene SOX4

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jing; Shen, Chengwu [Department of Pharmacy, Shandong Provincial Hospital, Shandong University, Jinan 250021 (China); Wang, Lin [Department of Pathology, School of Medicine, Shandong University, Jinan 250012 (China); Research Center for Medicinal Biotechnology, Shandong Academy of Medicinal Sciences, Jinan 250012 (China); Ma, Quanping [Department of Clinical Laboratory, The Fourth People’s Hospital of Jinan, Jinan 250031 (China); Xia, Pingtian; Qi, Mei; Yang, Muyi [Department of Pathology, School of Medicine, Shandong University, Jinan 250012 (China); Han, Bo, E-mail: boh@sdu.edu.cn [Department of Pathology, School of Medicine, Shandong University, Jinan 250012 (China); Department of Pathology, Qilu Hospital, Shandong University, Jinan 250012 (China)

    2014-09-26

    Highlights: • Metformin inhibits TGF-β-induced EMT in prostate cancer (PCa) cells. • Metformin upregulates tumor suppressor miR30a and downregulates SOX4 in PCa cells. • SOX4 is a target gene of miR30a. - Abstract: Tumor metastasis is the leading cause of mortality and morbidity of prostate cancer (PCa) patients. Epithelial–mesenchymal transition (EMT) plays a critical role in cancer progression and metastasis. Recent evidence suggested that diabetic patients treated with metformin have lower PCa risk and better prognosis. This study was aimed to investigate the effects of metformin on EMT in PCa cells and the possible microRNA (miRNA)-based mechanisms. MiRNAs have been shown to regulate various processes of cancer metastasis. We herein showed that metformin significantly inhibits proliferation of Vcap and PC-3 cells, induces G0/G1 cell cycle arrest and inhibits invasiveness and motility capacity of Vcap cells. Metformin could inhibit TGF-β-induced EMT in Vcap cells, as manifested by inhibition of the increase of N-cadherin (p = 0.013), Vimentin (p = 0.002) and the decrease of E-cadherin (p = 0.0023) and β-catenin (p = 0.034) at mRNA and protein levels. Notably, we demonstrated significant upregulation of miR30a levels by metformin (P < 0.05) and further experiments indicated that miR30a significantly inhibits proliferation and EMT process of Vcap cells. Interestingly, we identified that SOX4, a previously reported oncogenic transcriptional factor and modulator of EMT, is a direct target gene of miR30a. Finally, we screened the expression of miR30a and SOX4 in 84 PCa cases with radical prostatectomy. Of note, SOX4 overexpression is significantly associated with decreased levels of miR30a in PCa cases. In all, our study suggested that inhibition of EMT by metformin in PCa cells may involve upregulation of miR30a and downregulation of SOX4.

  5. HC-Pro silencing suppressor significantly alters the gene expression profile in tobacco leaves and flowers

    Directory of Open Access Journals (Sweden)

    Lehto Kirsi

    2011-04-01

    Full Text Available Abstract Background RNA silencing is used in plants as a major defence mechanism against invasive nucleic acids, such as viruses. Accordingly, plant viruses have evolved to produce counter defensive RNA-silencing suppressors (RSSs. These factors interfere in various ways with the RNA silencing machinery in cells, and thereby disturb the microRNA (miRNA mediated endogene regulation and induce developmental and morphological changes in plants. In this study we have explored these effects using previously characterized transgenic tobacco plants which constitutively express (under CaMV 35S promoter the helper component-proteinase (HC-Pro derived from a potyviral genome. The transcript levels of leaves and flowers of these plants were analysed using microarray techniques (Tobacco 4 × 44 k, Agilent. Results Over expression of HC-Pro RSS induced clear phenotypic changes both in growth rate and in leaf and flower morphology of the tobacco plants. The expression of 748 and 332 genes was significantly changed in the leaves and flowers, respectively, in the HC-Pro expressing transgenic plants. Interestingly, these transcriptome alterations in the HC-Pro expressing tobacco plants were similar as those previously detected in plants infected with ssRNA-viruses. Particularly, many defense-related and hormone-responsive genes (e.g. ethylene responsive transcription factor 1, ERF1 were differentially regulated in these plants. Also the expression of several stress-related genes, and genes related to cell wall modifications, protein processing, transcriptional regulation and photosynthesis were strongly altered. Moreover, genes regulating circadian cycle and flowering time were significantly altered, which may have induced a late flowering phenotype in HC-Pro expressing plants. The results also suggest that photosynthetic oxygen evolution, sugar metabolism and energy levels were significantly changed in these transgenic plants. Transcript levels of S

  6. 99: A Novel Myc-Interacting Protein with Features of a Breast Tumor Suppressor Gene Product

    National Research Council Canada - National Science Library

    Prendergast, George

    1997-01-01

    Bin1 is a novel tumor suppressor-like molecule we identified through its ability to interact with and inhibit the oncogenic activity of the Myc oncoprotein, which is widely deregulated in breast cancer...

  7. Dissecting epigenetic silencing complexity in the mouse lung cancer suppressor gene Cadm1.

    Directory of Open Access Journals (Sweden)

    Stella Marie Reamon-Buettner

    Full Text Available Disease-oriented functional analysis of epigenetic factors and their regulatory mechanisms in aberrant silencing is a prerequisite for better diagnostics and therapy. Yet, the precise mechanisms are still unclear and complex, involving the interplay of several effectors including nucleosome positioning, DNA methylation, histone variants and histone modifications. We investigated the epigenetic silencing complexity in the tumor suppressor gene Cadm1 in mouse lung cancer progenitor cell lines, exhibiting promoter hypermethylation associated with transcriptional repression, but mostly unresponsive to demethylating drug treatments. After predicting nucleosome positions and transcription factor binding sites along the Cadm1 promoter, we carried out single-molecule mapping with DNA methyltransferase M.SssI, which revealed in silent promoters high nucleosome occupancy and occlusion of transcription factor binding sites. Furthermore, M.SssI maps of promoters varied within and among the different lung cancer cell lines. Chromatin analysis with micrococcal nuclease also indicated variations in nucleosome positioning to have implications in the binding of transcription factors near nucleosome borders. Chromatin immunoprecipitation showed that histone variants (H2A.Z and H3.3, and opposing histone modification marks (H3K4me3 and H3K27me3 all colocalized in the same nucleosome positions that is reminiscent of epigenetic plasticity in embryonic stem cells. Altogether, epigenetic silencing complexity in the promoter region of Cadm1 is not only defined by DNA hypermethylation, but high nucleosome occupancy, altered nucleosome positioning, and 'bivalent' histone modifications, also likely contributed in the transcriptional repression of this gene in the lung cancer cells. Our results will help define therapeutic intervention strategies using epigenetic drugs in lung cancer.

  8. Role of tumor suppressor genes in the cancer-associated reprogramming of human induced pluripotent stem cells.

    Science.gov (United States)

    Lin, Ying-Chu; Murayama, Yoshinobu; Hashimoto, Koichiro; Nakamura, Yukio; Lin, Chang-Shin; Yokoyama, Kazunari K; Saito, Shigeo

    2014-01-01

    Because of their pluripotent characteristics, human induced pluripotent stem cells (iPSCs) possess great potential for therapeutic application and for the study of degenerative disorders. These cells are generated from normal somatic cells, multipotent stem cells, or cancer cells. They express embryonic stem cell markers, such as OCT4, SOX2, NANOG, SSEA-3, SSEA-4, and REX1, and can differentiate into all adult tissue types, both in vitro and in vivo. However, some of the pluripotency-promoting factors have been implicated in tumorigenesis. Here, we describe the merits of tumor suppresser genes as reprogramming factors for the generation of iPSCs without tumorigenic activity. The initial step of reprogramming is induction of the exogenous pluripotent factors to generate the oxidative stress that leads to senescence by DNA damage and metabolic stresses, thus inducing the expression of tumor suppressor genes such as p21CIP1 and p16INK4a through the activation of p53 to be the pre-induced pluripotent stem cells (pre-iPSCs). The later stage includes overcoming the barrier of reprogramming-induced senescence or cell-cycle arrest by shutting off the function of these tumor suppressor genes, followed by the induction of endogenous stemness genes for the full commitment of iPSCs (full-iPSCs). Thus, the reactive oxygen species (ROS) produced by oxidative stress might be critical for the induction of endogenous reprogramming-factor genes via epigenetic changes or antioxidant reactions. We also discuss the critical role of tumor suppressor genes in the evaluation of the tumorigenicity of human cancer cell-derived pluripotent stem cells, and describe how to overcome their tumorigenic properties for application in stem cell therapy in the field of regenerative medicine.

  9. The Tumor Suppressor Gene, RASSF1A, Is Essential for Protection against Inflammation -Induced Injury

    Science.gov (United States)

    Fiteih, Yahya; Law, Jennifer; Volodko, Natalia; Mohamed, Anwar; El-Kadi, Ayman O. S.; Liu, Lei; Odenbach, Jeff; Thiesen, Aducio; Onyskiw, Christina; Ghazaleh, Haya Abu; Park, Jikyoung; Lee, Sean Bong; Yu, Victor C.; Fernandez-Patron, Carlos; Alexander, R. Todd; Wine, Eytan; Baksh, Shairaz

    2013-01-01

    Ras association domain family protein 1A (RASSF1A) is a tumor suppressor gene silenced in cancer. Here we report that RASSF1A is a novel regulator of intestinal inflammation as Rassf1a+/−, Rassf1a−/− and an intestinal epithelial cell specific knockout mouse (Rassf1a IEC-KO) rapidly became sick following dextran sulphate sodium (DSS) administration, a chemical inducer of colitis. Rassf1a knockout mice displayed clinical symptoms of inflammatory bowel disease including: increased intestinal permeability, enhanced cytokine/chemokine production, elevated nuclear factor of kappa light polypeptide gene enhancer in B-cells (NFκB) activity, elevated colonic cell death and epithelial cell injury. Furthermore, epithelial restitution/repair was inhibited in DSS-treated Rassf1a−/− mice with reduction of several makers of proliferation including Yes associated protein (YAP)-driven proliferation. Surprisingly, tyrosine phosphorylation of YAP was detected which coincided with increased nuclear p73 association, Bax-driven epithelial cell death and p53 accumulation resulting in enhanced apoptosis and poor survival of DSS-treated Rassf1a knockout mice. We can inhibit these events and promote the survival of DSS-treated Rassf1a knockout mice with intraperitoneal injection of the c-Abl and c-Abl related protein tyrosine kinase inhibitor, imatinib/gleevec. However, p53 accumulation was not inhibited by imatinib/gleevec in the Rassf1a−/− background which revealed the importance of p53-dependent cell death during intestinal inflammation. These observations suggest that tyrosine phosphorylation of YAP (to drive p73 association and up-regulation of pro-apoptotic genes such as Bax) and accumulation of p53 are consequences of inflammation-induced injury in DSS-treated Rassf1a−/− mice. Mechanistically, we can detect robust associations of RASSF1A with membrane proximal Toll-like receptor (TLR) components to suggest that RASSF1A may function to interfere and restrict TLR

  10. Pathway analysis of gene signatures predicting metastasis of node-negative primary breast cancer

    International Nuclear Information System (INIS)

    Yu, Jack X; Sieuwerts, Anieta M; Zhang, Yi; Martens, John WM; Smid, Marcel; Klijn, Jan GM; Wang, Yixin; Foekens, John A

    2007-01-01

    Published prognostic gene signatures in breast cancer have few genes in common. Here we provide a rationale for this observation by studying the prognostic power and the underlying biological pathways of different gene signatures. Gene signatures to predict the development of metastases in estrogen receptor-positive and estrogen receptor-negative tumors were identified using 500 re-sampled training sets and mapping to Gene Ontology Biological Process to identify over-represented pathways. The Global Test program confirmed that gene expression profilings in the common pathways were associated with the metastasis of the patients. The apoptotic pathway and cell division, or cell growth regulation and G-protein coupled receptor signal transduction, were most significantly associated with the metastatic capability of estrogen receptor-positive or estrogen-negative tumors, respectively. A gene signature derived of the common pathways predicted metastasis in an independent cohort. Mapping of the pathways represented by different published prognostic signatures showed that they share 53% of the identified pathways. We show that divergent gene sets classifying patients for the same clinical endpoint represent similar biological processes and that pathway-derived signatures can be used to predict prognosis. Furthermore, our study reveals that the underlying biology related to aggressiveness of estrogen receptor subgroups of breast cancer is quite different

  11. Lack of mutations in the TP53 tumor suppressor gene exons 5 to 8 in Fanconi's anemia.

    Science.gov (United States)

    Jonveaux, P; Le Coniat, M; Grausz, D; Berger, R

    1991-01-01

    The TP53 gene is considered to be a negative regulator of cell growth whose inactivation is an important step in the development or progression of malignancies. Recently, germ line TP53 mutations have been detected in a familial cancer syndrome, the dominantly inherited Li-Fraumeni syndrome. Using single strand conformation polymorphism analysis of PCR products, we looked for TP53 mutations in DNA of patients with Fanconi anemia, an autosomal recessive disease characterized by increased predisposition to neoplasia. We did not find any TP53 mutation in 13 patients, suggesting that this tumor suppressor gene is not directly involved in the cancer susceptibility observed in Fanconi's anemia.

  12. Regulation of the insulin-like developmental pathway of Caenorhabditis elegans by a homolog of the PTEN tumor suppressor gene

    OpenAIRE

    Gil, Elad B.; Malone Link, Elizabeth; Liu, Leo X.; Johnson, Carl D.; Lees, Jacqueline A.

    1999-01-01

    The human PTEN tumor suppressor gene is mutated in a wide variety of sporadic tumors. To determine the function of PTEN in vivo we have studied a PTEN homolog in Caenorhabditis elegans. We have generated a strong loss-of-function allele of the PTEN homolog and shown that the deficient strain is unable to enter dauer diapause. An insulin-like phosphatidylinositol 3-OH kinase (PI3′K) signaling pathway regulates dauer-stage entry. Mutations in either the daf-2 insulin receptor-like (IRL) gene or...

  13. Tissue-Based Microarray Expression of Genes Predictive of Metastasis in Uveal Melanoma and Differentially Expressed in Metastatic Uveal Melanoma

    Directory of Open Access Journals (Sweden)

    Hakan Demirci

    2013-01-01

    Full Text Available Purpose: To screen the microarray expression of CDH1, ECM1, EIF1B, FXR1, HTR2B, ID2, LMCD1, LTA4H, MTUS1, RAB31, ROBO1, and SATB1 genes which are predictive of primary uveal melanoma metastasis, and NFKB2, PTPN18, MTSS1, GADD45B, SNCG, HHIP, IL12B, CDK4, RPLP0, RPS17, RPS12 genes that are differentially expressed in metastatic uveal melanoma in normal whole human blood and tissues prone to metastatic involvement by uveal melanoma. Methods: We screened the GeneNote and GNF BioGPS databases for microarray analysis of genes predictive of primary uveal melanoma metastasis and those differentially expressed in metastatic uveal melanoma in normal whole blood, liver, lung and skin. Results: Microarray analysis showed expression of all 22 genes in normal whole blood, liver, lung and skin, which are the most common sites of metastases. In the GNF BioGPS database, data for expression of the HHIP gene in normal whole blood and skin was not complete. Conclusions: Microarray analysis of genes predicting systemic metastasis of uveal melanoma and genes differentially expressed in metastatic uveal melanoma may not be used as a biomarker for metastasis in whole blood, liver, lung, and skin. Their expression in tissues prone to metastasis may suggest that they play a role in tropism of uveal melanoma metastasis to these tissues.

  14. Differential Gene Expression in Primary Breast Tumors Associated with Lymph Node Metastasis

    Directory of Open Access Journals (Sweden)

    Rachel E. Ellsworth

    2011-01-01

    Full Text Available Lymph node status remains one of the most useful prognostic indicators in breast cancer; however, current methods to assess nodal status disrupt the lymphatic system and may lead to secondary complications. Identification of molecular signatures discriminating lymph node-positive from lymph node-negative primary tumors would allow for stratification of patients requiring surgical assesment of lymph nodes. Primary breast tumors from women with negative (=41 and positive (=35 lymph node status matched for possible confounding factors were subjected to laser microdissection and gene expression data generated. Although ANOVA analysis (1.5 revealed 13 differentially expressed genes, hierarchical clustering classified 90% of node-negative but only 66% of node-positive tumors correctly. The inability to derive molecular profiles of metastasis in primary tumors may reflect tumor heterogeneity, paucity of cells within the primary tumor with metastatic potential, influence of the microenvironment, or inherited host susceptibility to metastasis.

  15. Differential Gene Expression in Primary Breast Tumors Associated with Lymph Node Metastasis

    Science.gov (United States)

    Ellsworth, Rachel E.; Field, Lori A.; Love, Brad; Kane, Jennifer L.; Hooke, Jeffrey A.; Shriver, Craig D.

    2011-01-01

    Lymph node status remains one of the most useful prognostic indicators in breast cancer; however, current methods to assess nodal status disrupt the lymphatic system and may lead to secondary complications. Identification of molecular signatures discriminating lymph node-positive from lymph node-negative primary tumors would allow for stratification of patients requiring surgical assesment of lymph nodes. Primary breast tumors from women with negative (n = 41) and positive (n = 35) lymph node status matched for possible confounding factors were subjected to laser microdissection and gene expression data generated. Although ANOVA analysis (P 1.5) revealed 13 differentially expressed genes, hierarchical clustering classified 90% of node-negative but only 66% of node-positive tumors correctly. The inability to derive molecular profiles of metastasis in primary tumors may reflect tumor heterogeneity, paucity of cells within the primary tumor with metastatic potential, influence of the microenvironment, or inherited host susceptibility to metastasis. PMID:22295210

  16. Cancer cell specific cytotoxic gene expression mediated by ARF tumor suppressor promoter constructs

    Energy Technology Data Exchange (ETDEWEB)

    Kurayoshi, Kenta [Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan); Ozono, Eiko [Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ (United Kingdom); Iwanaga, Ritsuko; Bradford, Andrew P. [Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045 (United States); Komori, Hideyuki [Center for Stem Cell Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109 (United States); Ohtani, Kiyoshi, E-mail: btm88939@kwansei.ac.jp [Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan)

    2014-07-18

    Highlights: • ARF promoter showed higher responsiveness to deregulated E2F activity than the E2F1 promoter. • ARF promoter showed higher cancer cell-specificity than E2F1 promoter to drive gene expression. • HSV-TK driven by ARF promoter showed higher cancer cell-specific cytotoxicity than that driven by E2F1 promoter. - Abstract: In current cancer treatment protocols, such as radiation and chemotherapy, side effects on normal cells are major obstacles to radical therapy. To avoid these side effects, a cancer cell-specific approach is needed. One way to specifically target cancer cells is to utilize a cancer specific promoter to express a cytotoxic gene (suicide gene therapy) or a viral gene required for viral replication (oncolytic virotherapy). For this purpose, the selected promoter should have minimal activity in normal cells to avoid side effects, and high activity in a wide variety of cancers to obtain optimal therapeutic efficacy. In contrast to the AFP, CEA and PSA promoters, which have high activity only in a limited spectrum of tumors, the E2F1 promoter exhibits high activity in wide variety of cancers. This is based on the mechanism of carcinogenesis. Defects in the RB pathway and activation of the transcription factor E2F, the main target of the RB pathway, are observed in almost all cancers. Consequently, the E2F1 promoter, which is mainly regulated by E2F, has high activity in wide variety of cancers. However, E2F is also activated by growth stimulation in normal growing cells, suggesting that the E2F1 promoter may also be highly active in normal growing cells. In contrast, we found that the tumor suppressor ARF promoter is activated by deregulated E2F activity, induced by forced inactivation of pRB, but does not respond to physiological E2F activity induced by growth stimulation. We also found that the deregulated E2F activity, which activates the ARF promoter, is detected only in cancer cell lines. These observations suggest that ARF promoter

  17. Molecular Analysis: Microsatellite Instability and Loss of Heterozygosity of Tumor Suppressor Gene in Hereditary Non-Polyposis Colorectal Cancer (HNPCC

    Directory of Open Access Journals (Sweden)

    Vesna Hadžiavdić

    2009-02-01

    Full Text Available HNPCC (Hereditary non-polyposis colorectal cancer development is caused by mutation of genes included in system of mismatch repair genes. The mutation exists at 60% of patients in hMSH2 gene, 30% in hMLH1 and 10% both in hPMS1and hPMS2 genes. RER+ exists in about 90% in hereditary non-polyposis colorectal cancer and about 15-28% in sporadic cancers.The purpose of the study was to determine highly sensitive microsatellite markers which can be fast and efficient way of microsatellite screening for detection of HNPCC patients. Moreover, we have analysed the loss of heterozygosity of tumour suppressor genes which could have the diagnostic value in detection of HPNCC patients.

  18. Genome-wide DNA methylation analysis identifies MEGF10 as a novel epigenetically repressed candidate tumor suppressor gene in neuroblastoma.

    Science.gov (United States)

    Charlet, Jessica; Tomari, Ayumi; Dallosso, Anthony R; Szemes, Marianna; Kaselova, Martina; Curry, Thomas J; Almutairi, Bader; Etchevers, Heather C; McConville, Carmel; Malik, Karim T A; Brown, Keith W

    2017-04-01

    Neuroblastoma is a childhood cancer in which many children still have poor outcomes, emphasising the need to better understand its pathogenesis. Despite recent genome-wide mutation analyses, many primary neuroblastomas do not contain recognizable driver mutations, implicating alternate molecular pathologies such as epigenetic alterations. To discover genes that become epigenetically deregulated during neuroblastoma tumorigenesis, we took the novel approach of comparing neuroblastomas to neural crest precursor cells, using genome-wide DNA methylation analysis. We identified 93 genes that were significantly differentially methylated of which 26 (28%) were hypermethylated and 67 (72%) were hypomethylated. Concentrating on hypermethylated genes to identify candidate tumor suppressor loci, we found the cell engulfment and adhesion factor gene MEGF10 to be epigenetically repressed by DNA hypermethylation or by H3K27/K9 methylation in neuroblastoma cell lines. MEGF10 showed significantly down-regulated expression in neuroblastoma tumor samples; furthermore patients with the lowest-expressing tumors had reduced relapse-free survival. Our functional studies showed that knock-down of MEGF10 expression in neuroblastoma cell lines promoted cell growth, consistent with MEGF10 acting as a clinically relevant, epigenetically deregulated neuroblastoma tumor suppressor gene. © 2016 The Authors. Molecular Carcinogenesis Published by Wiley Periodicals, Inc. © 2016 The Authors. Molecular Carcinogenesis Published by Wiley Periodicals, Inc.

  19. Genome‐wide DNA methylation analysis identifies MEGF10 as a novel epigenetically repressed candidate tumor suppressor gene in neuroblastoma

    Science.gov (United States)

    Charlet, Jessica; Tomari, Ayumi; Dallosso, Anthony R.; Szemes, Marianna; Kaselova, Martina; Curry, Thomas J.; Almutairi, Bader; Etchevers, Heather C.; McConville, Carmel; Malik, Karim T. A.

    2016-01-01

    Neuroblastoma is a childhood cancer in which many children still have poor outcomes, emphasising the need to better understand its pathogenesis. Despite recent genome‐wide mutation analyses, many primary neuroblastomas do not contain recognizable driver mutations, implicating alternate molecular pathologies such as epigenetic alterations. To discover genes that become epigenetically deregulated during neuroblastoma tumorigenesis, we took the novel approach of comparing neuroblastomas to neural crest precursor cells, using genome‐wide DNA methylation analysis. We identified 93 genes that were significantly differentially methylated of which 26 (28%) were hypermethylated and 67 (72%) were hypomethylated. Concentrating on hypermethylated genes to identify candidate tumor suppressor loci, we found the cell engulfment and adhesion factor gene MEGF10 to be epigenetically repressed by DNA hypermethylation or by H3K27/K9 methylation in neuroblastoma cell lines. MEGF10 showed significantly down‐regulated expression in neuroblastoma tumor samples; furthermore patients with the lowest‐expressing tumors had reduced relapse‐free survival. Our functional studies showed that knock‐down of MEGF10 expression in neuroblastoma cell lines promoted cell growth, consistent with MEGF10 acting as a clinically relevant, epigenetically deregulated neuroblastoma tumor suppressor gene. © 2016 The Authors. Molecular Carcinogenesis Published by Wiley Periodicals, Inc. PMID:27862318

  20. Inhibition of Embryonic Genes to Control Colorectal Cancer Metastasis

    Science.gov (United States)

    2012-09-01

    through pseudotyping. Curr Gene Ther. 5:387-98, 2005. 10. Wu AM, Chen W, Raubitschek A, Williams LE , Neumaier M, Fischer R, Hu SZ, Odom-Maryon T, Wong JY...30: 3833-3845. 15. Po A, Ferretti E, Miele E, Smaele ED, Paganelli A, Canettieri G et al. Hedgehog controls neural stem cells through p53...1 MIP101 shNP8-1 MIP101 NP8 Nanog 0 2 4 6 8 10 12 CX-1 CX shNg-1 CX-1 shNP8-1 CX-1 NP8 Nanog R el at iv e ex pr es si on le ve l t o

  1. Identification of downstream metastasis-associated target genes regulated by LSD1 in colon cancer cells.

    Science.gov (United States)

    Chen, Jiang; Ding, Jie; Wang, Ziwei; Zhu, Jian; Wang, Xuejian; Du, Jiyi

    2017-03-21

    This study aims to identify downstream target genes regulated by lysine-specific demethylase 1 (LSD1) in colon cancer cells and investigate the molecular mechanisms of LSD1 influencing invasion and metastasis of colon cancer. We obtained the expression changes of downstream target genes regulated by small-interfering RNA-LSD1 and LSD1-overexpression via gene expression profiling in two human colon cancer cell lines. An Affymetrix Human Transcriptome Array 2.0 was used to identify differentially expressed genes (DEGs). We screened out LSD1-target gene associated with proliferation, metastasis, and invasion from DEGs via Gene Ontology and Pathway Studio. Subsequently, four key genes (CABYR, FOXF2, TLE4, and CDH1) were computationally predicted as metastasis-related LSD1-target genes. ChIp-PCR was applied after RT-PCR and Western blot validations to detect the occupancy of LSD1-target gene promoter-bound LSD1. A total of 3633 DEGs were significantly upregulated, and 4642 DEGs were downregulated in LSD1-silenced SW620 cells. A total of 4047 DEGs and 4240 DEGs were upregulated and downregulated in LSD1-overexpressed HT-29 cells, respectively. RT-PCR and Western blot validated the microarray analysis results. ChIP assay results demonstrated that LSD1 might be negative regulators for target genes CABYR and CDH1. The expression level of LSD1 is negatively correlated with mono- and dimethylation of histone H3 lysine4(H3K4) at LSD1- target gene promoter region. No significant mono-methylation and dimethylation of H3 lysine9 methylation was detected at the promoter region of CABYR and CDH1. LSD1- depletion contributed to the upregulation of CABYR and CDH1 through enhancing the dimethylation of H3K4 at the LSD1-target genes promoter. LSD1- overexpression mediated the downregulation of CABYR and CDH1expression through decreasing the mono- and dimethylation of H3K4 at LSD1-target gene promoter in colon cancer cells. CABYR and CDH1 might be potential LSD1-target genes in colon

  2. Hypermethylation of the tumor suppressor gene PRDM1/Blimp-1 supports a pathogenetic role in EBV-positive Burkitt lymphoma

    International Nuclear Information System (INIS)

    Zhang, T; Ma, J; Nie, K; Yan, J; Liu, Y; Bacchi, C E; Queiroga, E M; Gualco, G; Sample, J T; Orazi, A; Knowles, D M; Tam, W

    2014-01-01

    PRDM1/Blimp-1 is a tumor suppressor gene in the activated B-cell subtype of diffuse large B-cell lymphomas. Its inactivation contributes to pathogenesis in this setting by impairing terminal B-cell differentiation induced by constitutive nuclear factor-κB activation. The role of PRDM1 in Burkitt lymphoma (BL) lymphomagenesis is not known. Here we identified hypermethylation of the promoter region and exon 1 of PRDM1 in all six Epstein–Barr virus (EBV)-positive BL cell lines and 12 of 23 (52%) primary EBV-positive BL or BL-related cases examined, but in none of the EBV-negative BL cell lines or primary tumors that we assessed, implying a tumor suppressor role for PRDM1 specifically in EBV-associated BL. A direct induction of PRDM1 hypermethylation by EBV is unlikely, as PRDM1 hypermethylation was not observed in EBV-immortalized B lymphoblastoid cell lines. Treatment of EBV-positive BL cells with 5′ azacytidine resulted in PRDM1 induction associated with PRDM1 demethylation, consistent with transcriptional silencing of PRDM1 as a result of DNA methylation. Overexpression of PRDM1 in EBV-positive BL cell lines resulted in cell cycle arrest. Our results expand the spectrum of lymphoid malignancies in which PRDM1 may have a tumor suppressor role and identify an epigenetic event that likely contributes to the pathogenesis of BL

  3. Hypermethylation of the tumor suppressor gene PRDM1/Blimp-1 supports a pathogenetic role in EBV-positive Burkitt lymphoma.

    Science.gov (United States)

    Zhang, T; Ma, J; Nie, K; Yan, J; Liu, Y; Bacchi, C E; Queiroga, E M; Gualco, G; Sample, J T; Orazi, A; Knowles, D M; Tam, W

    2014-11-07

    PRDM1/Blimp-1 is a tumor suppressor gene in the activated B-cell subtype of diffuse large B-cell lymphomas. Its inactivation contributes to pathogenesis in this setting by impairing terminal B-cell differentiation induced by constitutive nuclear factor-κB activation. The role of PRDM1 in Burkitt lymphoma (BL) lymphomagenesis is not known. Here we identified hypermethylation of the promoter region and exon 1 of PRDM1 in all six Epstein-Barr virus (EBV)-positive BL cell lines and 12 of 23 (52%) primary EBV-positive BL or BL-related cases examined, but in none of the EBV-negative BL cell lines or primary tumors that we assessed, implying a tumor suppressor role for PRDM1 specifically in EBV-associated BL. A direct induction of PRDM1 hypermethylation by EBV is unlikely, as PRDM1 hypermethylation was not observed in EBV-immortalized B lymphoblastoid cell lines. Treatment of EBV-positive BL cells with 5' azacytidine resulted in PRDM1 induction associated with PRDM1 demethylation, consistent with transcriptional silencing of PRDM1 as a result of DNA methylation. Overexpression of PRDM1 in EBV-positive BL cell lines resulted in cell cycle arrest. Our results expand the spectrum of lymphoid malignancies in which PRDM1 may have a tumor suppressor role and identify an epigenetic event that likely contributes to the pathogenesis of BL.

  4. Gene expression analysis of matched ovarian primary tumors and peritoneal metastasis

    Directory of Open Access Journals (Sweden)

    Malek Joel A

    2012-06-01

    Full Text Available Abstract Background Ovarian cancer is the most deadly gynecological cancer due to late diagnosis at advanced stage with major peritoneal involvement. To date most research has focused on primary tumor. However the prognosis is directly related to residual disease at the end of the treatment. Therefore it is mandatory to focus and study the biology of meatastatic disease that is most frequently localized to the peritoneal caivty in ovarian cancer. Methods We used high-density gene expression arrays to investigate gene expression changes between matched primary and metastatic (peritoneal lesions. Results Here we show that gene expression profiles in peritoneal metastasis are significantly different than their matched primary tumor and these changes are affected by underlying copy number variation differences among other causes. We show that differentially expressed genes are enriched in specific pathways including JAK/STAT pathway, cytokine signaling and other immune related pathways. We show that underlying copy number variations significantly affect gene expression. Indeed patients with important differences in copy number variation displayed greater gene expression differences between their primary and matched metastatic lesions. Conclusions Our analysis shows a very specific targeting at both the genomic and transcriptomic level to upregulate certain pathways in the peritoneal metastasis of ovarian cancer. Moreover, while primary tumors use certain pathways we identify distinct differences with metastatic lesions. The variation between primary and metastatic lesions should be considered in personalized treatment of ovarian cancer.

  5. Clinical Utility of promoter methylation of the tumor suppressor genes DKK3, and RASSF1A in breast cancer patients

    Directory of Open Access Journals (Sweden)

    Marwa H. Saied

    2018-04-01

    Full Text Available Background: DNA methylation is the commonest known epigenetic change that results in silencing of tumor suppressor genes. Promoter methylation of tumor suppressor genes has the potential for early detection of breast cancer. Aim: Aim is to examine the potential usefulness of blood based methylation specific polymerase chain reaction (MSP of methylated DKK3 and RASSF1A genes in early detection of breast cancer. Method: Methylation status of DKK3 and RASSF1 was investigated in forty breast cancer patients, twenty fibroadenoma patients and twenty healthy ladies as control group using MSP. Results: Methylation of DKK3 promoter was found in 22.5% of breast cancer patients, while DKK3 methylation was absent in both fibroadenoma patients and control group. Similarly, methylation of RASSF1 promoter was found in 17.5% of breast cancer patients and in none of fibroadenoma and control group. Conclusion: Promoter methylation of DKK3 and RASSF1 was found in breast cancer patients while absent in control group suggesting that tumorspecific methylation of the two genes (DKK3 and RASSF1A might be a valuable biomarker for the early detection of breast cancer. Keywords: DNA methylation, Breast cancer, DKK3, RASSF1

  6. Role of KCNMA1 gene in breast cancer invasion and metastasis to brain

    Directory of Open Access Journals (Sweden)

    Couraud Pierre-Olivier

    2009-07-01

    Full Text Available Abstract Background The prognosis for patients with breast tumor metastases to brain is extremely poor. Identification of prognostic molecular markers of the metastatic process is critical for designing therapeutic modalities for reducing the occurrence of metastasis. Although ubiquitously present in most human organs, large-conductance calcium- and voltage-activated potassium channel (BKCa channels are significantly upregulated in breast cancer cells. In this study we investigated the role of KCNMA1 gene that encodes for the pore-forming α-subunit of BKCa channels in breast cancer metastasis and invasion. Methods We performed Global exon array to study the expression of KCNMA1 in metastatic breast cancer to brain, compared its expression in primary breast cancer and breast cancers metastatic to other organs, and validated the findings by RT-PCR. Immunohistochemistry was performed to study the expression and localization of BKCa channel protein in primary and metastatic breast cancer tissues and breast cancer cell lines. We performed matrigel invasion, transendothelial migration and membrane potential assays in established lines of normal breast cells (MCF-10A, non-metastatic breast cancer (MCF-7, non-brain metastatic breast cancer cells (MDA-MB-231, and brain-specific metastatic breast cancer cells (MDA-MB-361 to study whether BKCa channel inhibition attenuates breast tumor invasion and metastasis using KCNMA1 knockdown with siRNA and biochemical inhibition with Iberiotoxin (IBTX. Results The Global exon array and RT-PCR showed higher KCNMA1 expression in metastatic breast cancer in brain compared to metastatic breast cancers in other organs. Our results clearly show that metastatic breast cancer cells exhibit increased BKCa channel activity, leading to greater invasiveness and transendothelial migration, both of which could be attenuated by blocking KCNMA1. Conclusion Determining the relative abundance of BKCa channel expression in breast

  7. Role of KCNMA1 gene in breast cancer invasion and metastasis to brain

    International Nuclear Information System (INIS)

    Khaitan, Divya; Sankpal, Umesh T; Weksler, Babette; Meister, Edward A; Romero, Ignacio A; Couraud, Pierre-Olivier; Ningaraj, Nagendra S

    2009-01-01

    The prognosis for patients with breast tumor metastases to brain is extremely poor. Identification of prognostic molecular markers of the metastatic process is critical for designing therapeutic modalities for reducing the occurrence of metastasis. Although ubiquitously present in most human organs, large-conductance calcium- and voltage-activated potassium channel (BK Ca ) channels are significantly upregulated in breast cancer cells. In this study we investigated the role of KCNMA1 gene that encodes for the pore-forming α-subunit of BK Ca channels in breast cancer metastasis and invasion. We performed Global exon array to study the expression of KCNMA1 in metastatic breast cancer to brain, compared its expression in primary breast cancer and breast cancers metastatic to other organs, and validated the findings by RT-PCR. Immunohistochemistry was performed to study the expression and localization of BK Ca channel protein in primary and metastatic breast cancer tissues and breast cancer cell lines. We performed matrigel invasion, transendothelial migration and membrane potential assays in established lines of normal breast cells (MCF-10A), non-metastatic breast cancer (MCF-7), non-brain metastatic breast cancer cells (MDA-MB-231), and brain-specific metastatic breast cancer cells (MDA-MB-361) to study whether BK Ca channel inhibition attenuates breast tumor invasion and metastasis using KCNMA1 knockdown with siRNA and biochemical inhibition with Iberiotoxin (IBTX). The Global exon array and RT-PCR showed higher KCNMA1 expression in metastatic breast cancer in brain compared to metastatic breast cancers in other organs. Our results clearly show that metastatic breast cancer cells exhibit increased BK Ca channel activity, leading to greater invasiveness and transendothelial migration, both of which could be attenuated by blocking KCNMA1. Determining the relative abundance of BK Ca channel expression in breast cancer metastatic to brain and the mechanism of its

  8. Correlations between EGFR gene polymorphisms and pleural metastasis of lung adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Guo HS

    2016-08-01

    Full Text Available Haisheng Guo,1,* Yunhui Xing,2,* Ailan Mu,1 Xia Li,3 Tingshan Li,4 Xia Bian,1 Chunmei Yang,1 Xiaolei Zhang,1 Yuefen Liu,1 Xunguo Wang1 1Department of Oncology, Dongying People’s Hospital, 2Department of Tuberculosis, Shengli Hospital of Shengli Oil Field, 3Department of Health, 4Personnel Department, Dongying People’s Hospital, Dongying, Shandong, People’s Republic of China *These authors contributed equally to this work Abstract: Proliferation, growth, and differentiation of cells are strictly controlled by the signal system of epidermal growth factor receptor (EGFR. If any link of the EGFR signals system is interfered with or damaged, the proliferation, growth, and differentiation of cells would become uncontrolled. EGFR is overexpressed in a variety of malignant tumors, such as non-small-cell lung cancer, colorectal cancer and breast cancer. Results of the study have proved that EGFR overexpression is closely associated with mutations and variants of the EGFR genes, whose mutations and variants are associated with occurrence, metastasis, and prognosis of different types of tumors, including lung cancer. This study is aimed at investigating whether the polymorphisms of CA simple sequence repeat in intron 1 (CA-SSR1, -216G/T, and R497K in the EGFR are able to induce EGFR activation and whether overexpression is associated with pleural metastasis of lung adenocarcinoma. A total of 432 lung adenocarcinoma patients with pleural metastasis (metastasis group and 424 patients with lung adenocarcinoma but without pleural metastasis (nonmetastasis group were enrolled in this study. For all patients, the CA-SSR1 genotypes were determined by capillary electrophoresis, polymerase chain reaction amplification, and direct DNA sequencing, and the R497K and -216G/T genotypes were determined by polymerase chain reaction amplification and direct DNA sequencing. EGFR expression was evaluated by immunohistochemical staining in primary tumor tissues

  9. Grape seed proanthocyanidins reactivate silenced tumor suppressor genes in human skin cancer cells by targeting epigenetic regulators

    Energy Technology Data Exchange (ETDEWEB)

    Vaid, Mudit; Prasad, Ram; Singh, Tripti; Jones, Virginia [Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Katiyar, Santosh K., E-mail: skatiyar@uab.edu [Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294 (United States); Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294 (United States)

    2012-08-15

    Grape seed proanthocyanidins (GSPs) have been shown to have anti-skin carcinogenic effects in in vitro and in vivo models. However, the precise epigenetic molecular mechanisms remain unexplored. This study was designed to investigate whether GSPs reactivate silenced tumor suppressor genes following epigenetic modifications in skin cancer cells. For this purpose, A431 and SCC13 human squamous cell carcinoma cell lines were used as in vitro models. The effects of GSPs on DNA methylation, histone modifications and tumor suppressor gene expressions were studied in these cell lines using enzyme activity assays, western blotting, dot-blot analysis and real-time polymerase chain reaction (RT-PCR). We found that treatment of A431 and SCC13 cells with GSPs decreased the levels of: (i) global DNA methylation, (ii) 5-methylcytosine, (iii) DNA methyltransferase (DNMT) activity and (iv) messenger RNA (mRNA) and protein levels of DNMT1, DNMT3a and DNMT3b in these cells. Similar effects were noted when these cancer cells were treated identically with 5-aza-2′-deoxycytidine, an inhibitor of DNA methylation. GSPs decreased histone deacetylase activity, increased levels of acetylated lysines 9 and 14 on histone H3 (H3-Lys 9 and 14) and acetylated lysines 5, 12 and 16 on histone H4, and reduced the levels of methylated H3-Lys 9. Further, GSP treatment resulted in re-expression of the mRNA and proteins of silenced tumor suppressor genes, RASSF1A, p16{sup INK4a} and Cip1/p21. Together, this study provides a new insight into the epigenetic mechanisms of GSPs and may have significant implications for epigenetic therapy in the treatment/prevention of skin cancers in humans. -- Highlights: ►Epigenetic modulations have been shown to have a role in cancer risk. ►Proanthocyanidins decrease the levels of DNA methylation and histone deacetylation. ►Proanthocyanidins inhibit histone deacetylase activity in skin cancer cells. ►Proanthocyanidins reactivate tumor suppressor genes in skin

  10. Grape seed proanthocyanidins reactivate silenced tumor suppressor genes in human skin cancer cells by targeting epigenetic regulators

    International Nuclear Information System (INIS)

    Vaid, Mudit; Prasad, Ram; Singh, Tripti; Jones, Virginia; Katiyar, Santosh K.

    2012-01-01

    Grape seed proanthocyanidins (GSPs) have been shown to have anti-skin carcinogenic effects in in vitro and in vivo models. However, the precise epigenetic molecular mechanisms remain unexplored. This study was designed to investigate whether GSPs reactivate silenced tumor suppressor genes following epigenetic modifications in skin cancer cells. For this purpose, A431 and SCC13 human squamous cell carcinoma cell lines were used as in vitro models. The effects of GSPs on DNA methylation, histone modifications and tumor suppressor gene expressions were studied in these cell lines using enzyme activity assays, western blotting, dot-blot analysis and real-time polymerase chain reaction (RT-PCR). We found that treatment of A431 and SCC13 cells with GSPs decreased the levels of: (i) global DNA methylation, (ii) 5-methylcytosine, (iii) DNA methyltransferase (DNMT) activity and (iv) messenger RNA (mRNA) and protein levels of DNMT1, DNMT3a and DNMT3b in these cells. Similar effects were noted when these cancer cells were treated identically with 5-aza-2′-deoxycytidine, an inhibitor of DNA methylation. GSPs decreased histone deacetylase activity, increased levels of acetylated lysines 9 and 14 on histone H3 (H3-Lys 9 and 14) and acetylated lysines 5, 12 and 16 on histone H4, and reduced the levels of methylated H3-Lys 9. Further, GSP treatment resulted in re-expression of the mRNA and proteins of silenced tumor suppressor genes, RASSF1A, p16 INK4a and Cip1/p21. Together, this study provides a new insight into the epigenetic mechanisms of GSPs and may have significant implications for epigenetic therapy in the treatment/prevention of skin cancers in humans. -- Highlights: ►Epigenetic modulations have been shown to have a role in cancer risk. ►Proanthocyanidins decrease the levels of DNA methylation and histone deacetylation. ►Proanthocyanidins inhibit histone deacetylase activity in skin cancer cells. ►Proanthocyanidins reactivate tumor suppressor genes in skin

  11. Phytochemical Compositions of Immature Wheat Bran, and Its Antioxidant Capacity, Cell Growth Inhibition, and Apoptosis Induction through Tumor Suppressor Gene

    Directory of Open Access Journals (Sweden)

    Mi Jeong Kim

    2016-09-01

    Full Text Available The purpose of this study was to investigate the phytochemical compositions and antioxidant capacity, cell growth inhibition, and apoptosis induction in extracts of immature wheat bran. Immature wheat bran (IWB was obtained from immature wheat harvested 10 days earlier than mature wheat. The phytochemical compositions of bran extract samples were analyzed by ultra-high performance liquid chromatography. The total ferulic acid (3.09 mg/g and p-coumaric acid (75 µg/g in IWB were significantly higher than in mature wheat bran (MWB, ferulic acid: 1.79 mg/g; p-coumaric acid: 55 µg/g. The oxygen radical absorbance capacity (ORAC: 327 µM Trolox equivalents (TE/g and cellular antioxidant activity (CAA: 4.59 µM Quercetin equivalents (QE/g of the IWB were higher than those of the MWB (ORAC: 281 µM TE/g; CAA: 0.63 µM QE/g. When assessing cell proliferation, the IWB extracts resulted in the lowest EC50 values against HT-29 (18.9 mg/mL, Caco-2 (7.74 mg/mL, and HeLa cells (8.17 mg/mL among bran extract samples. Additionally, the IWB extracts increased the gene expression of p53 and PTEN (tumor suppressor genes in HT-29 cells, indicating inhibited cell growth and induced apoptosis through tumor suppressor genes.

  12. Regulation of tumor progression and metastasis by bone marrow-derived microenvironments

    DEFF Research Database (Denmark)

    El Rayes, Tina; Gao, Dingcheng; Altorki, Nasser K.

    2017-01-01

    Activating mutations in driver oncogenes and loss-of-function mutations in tumor suppressor genes contribute to tumor progression and metastasis. Accordingly, therapies targeting key tumor cell-intrinsic signaling pathways are being used in clinical trials, and some have met FDA approval. However...

  13. FOXA2 functions as a suppressor of tumor metastasis by inhibition of epithelial-to-mesenchymal transition in human lung cancers

    OpenAIRE

    Tang, Yunneng; Shu, Guangwen; Yuan, Xinwang; Jing, Naihe; Song, Jianguo

    2010-01-01

    The forkhead box transcription factor A2 (FOXA2) is an important regulator in animal development and body homeostasis. However, whether FOXA2 is involved in transforming growth factor β1 (TGF-β1)-mediated epithelial-to-mesenchymal transition (EMT) and tumor metastasis remains unknown. The present study showed that in human lung cancer cell lines, the abundance of FOXA2 positively correlates with epithelial phenotypes and negatively correlates with the mesenchymal phenotypes of cells, and TGF-...

  14. Evidence of molecular alterations in the tumour suppressor gene WWOX in benign and malignant bone related lesions of the jaws.

    Science.gov (United States)

    Diniz, Marina Gonçalves; Borges, Erica Rievrs; Pimenta, Flavio Juliano; De Mesquita Netto, Ana Carolina; De Marco, Luiz; Gomez, Ricardo Santiago; Gomes, Carolina Cavaliéri

    2011-02-01

    WWOX is a tumour suppressor gene altered in various human neoplasms. Deletion of WWOX is associated with bone metabolic defects and development of osteosarcoma in mice. We hypothesized that alterations of this gene are associated with the development of benign and malignant mesenchymal bone related lesions of the jaws. We investigated WWOX mRNA by nested reverse transcription-PCR and direct sequencing and quantitative real-time PCR in two osteosarcoma, two fibrosarcoma, eight ossifying fibroma and two fibrous dysplasia fresh samples. Malignancy was associated with a decreased WWOX mRNA expression. Aberrant transcription pattern was found in five samples; however, the relative quantification (RQ) of the WWOX mRNA in such lesions was not different from those carrying only the wild-type. We provide new evidence of WWOX alterations in osteosarcomas and demonstrate for the first time alterations of this gene in fibrosarcomas as well as in ossifying fibromas of the jaws.

  15. The oncogenic transcription factor ERG represses the transcription of the tumour suppressor gene PTEN in prostate cancer cells.

    Science.gov (United States)

    Adamo, Patricia; Porazinski, Sean; Rajatileka, Shavanthi; Jumbe, Samantha; Hagen, Rachel; Cheung, Man-Kim; Wilson, Ian; Ladomery, Michael R

    2017-11-01

    The oncogene ETS-related gene (ERG) encodes a transcription factor with roles in the regulation of haematopoiesis, angiogenesis, vasculogenesis, inflammation, migration and invasion. The ERG oncogene is activated in >50% of prostate cancer cases, generally through a gene fusion with the androgen-responsive promoter of transmembrane protease serine 2. Phosphatase and tensin homologue ( PTEN ) is an important tumour suppressor gene that is often inactivated in cancer. ERG overexpression combined with PTEN inactivation or loss is often associated with aggressive prostate cancer. The present study aimed to determine whether or not ERG regulates PTEN transcription directly. ERG was demonstrated to bind to the PTEN promoter and repress its transcription. ERG overexpression reduced endogenous PTEN expression, whereas ERG knockdown increased PTEN expression. The ability of ERG to repress PTEN may contribute to a more cancer-permissive environment.

  16. KLF10, transforming growth factor-β-inducible early gene 1, acts as a tumor suppressor

    International Nuclear Information System (INIS)

    Song, Ki-Duk; Kim, Duk-Jung; Lee, Jong Eun; Yun, Cheol-Heui; Lee, Woon Kyu

    2012-01-01

    Highlights: ► KLF10 −/− mice exhibited accelerated papilloma development after DMBA/TPA treatment. ► KLF10 −/− keratinocytes showed increased proliferation and apoptosis. ► KLF10 −/− MEFs yielded more colonies than wild-type one with H-Ras transfection. ► KLF10 dose-dependently activated p21 WAF1/CIP1 transcription. ► KLF10 is a tumor suppressor and that it targets p21 WAF1/CIP1 transcription. -- Abstract: Krüppel-like factor 10 (KLF10) has been suggested to be a putative tumor suppressor. In the present study, we generated KLF10 deficient mice to explore this hypothesis in vivo. KLF10 deficient mice exhibited increased predisposition to skin tumorigenesis and markedly accelerated papilloma development after DMBA/TPA treatment. On the other hand, KLF10 deficient keratinocytes showed increased proliferation and apoptosis. In colony formation assays after oncogenic H-Ras transfection, KLF10 deficient mouse embryonic fibroblasts (MEFs) yielded more colonies than wild-type MEFs. Furthermore, KLF10 dose-dependently activated p21 WAF1/CIP1 transcription, which was independent of p53 and Sp1 binding sites in p21 WAF1/CIP1 promoter. This study demonstrates that KLF10 is a tumor suppressor and that it targets p21 WAF1/CIP1 transcription.

  17. The Role of Tumor Metastases Suppressor Gene, Drg-1, in Breast Cancer

    Science.gov (United States)

    2009-03-01

    antitumor activity that overcomes resistance to chemotherapeutics, Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 14901–14906. [270] G. Arpino, C. Gutierrez ...M.J. Merino , P.S. Steeg, Medroxyprogesterone acetate elevation of Nm23-H1 metastasis suppres- sor expression in hormone receptor-negative breast

  18. Retinoid-induced expression and activity of an immediate early tumor suppressor gene in vascular smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Jeffrey W Streb

    2011-04-01

    Full Text Available Retinoids are used clinically to treat a number of hyper-proliferative disorders and have been shown in experimental animals to attenuate vascular occlusive diseases, presumably through nuclear receptors bound to retinoic acid response elements (RARE located in target genes. Here, we show that natural or synthetic retinoids rapidly induce mRNA and protein expression of a specific isoform of A-Kinase Anchoring Protein 12 (AKAP12β in cultured smooth muscle cells (SMC as well as the intact vessel wall. Expression kinetics and actinomycin D studies indicate Akap12β is a retinoid-induced, immediate-early gene. Akap12β promoter analyses reveal a conserved RARE mildly induced with atRA in a region that exhibits hyper-acetylation. Immunofluorescence microscopy and protein kinase A (PKA regulatory subunit overlay assays in SMC suggest a physical association between AKAP12β and PKA following retinoid treatment. Consistent with its designation as a tumor suppressor, inducible expression of AKAP12β attenuates SMC growth in vitro. Further, immunohistochemistry studies establish marked decreases in AKAP12 expression in experimentally-injured vessels of mice as well as atheromatous lesions in humans. Collectively, these results demonstrate a novel role for retinoids in the induction of an AKAP tumor suppressor that blocks vascular SMC growth thus providing new molecular insight into how retiniods may exert their anti-proliferative effects in the injured vessel wall.

  19. Cholesterol and phytosterols differentially regulate the expression of caveolin 1 and a downstream prostate cell growth-suppressor gene

    Science.gov (United States)

    Ifere, Godwin O.; Equan, Anita; Gordon, Kereen; Nagappan, Peri; Igietseme, Joseph U.; Ananaba, Godwin A.

    2010-01-01

    Background The purpose of our study was to show the distinction between the apoptotic and anti-proliferative signaling of phytosterols and cholesterol enrichment in prostate cancer cell lines, mediated by the differential transcription of caveolin-1, and N-myc downstream regulated gene1 (NDRG1), a pro-apoptotic androgen-regulated tumor suppressor. Methods PC-3 and DU145 cells were treated with sterols (cholesterol and phytosterols) for 72 h, followed by trypan blue dye exclusion measurement of necrosis and cell growth measured with a Coulter counter. Sterol induction of cell growth-suppressor gene expression was evaluated by mRNA transcription using RT-PCR, while cell cycle analysis was performed by FACS analysis. Altered expression of Ndrg1 protein was confirmed by Western blot analysis. Apoptosis was evaluated by real time RT-PCR amplification of P53, Bcl-2 gene and its related pro- and anti-apoptotic family members. Results Physiological doses (16 µM) of cholesterol and phytosterols were not cytotoxic in these cells. Cholesterol enrichment promoted cell growth (Pphytosterols significantly induced growth-suppression (Pphytosterols decreased mitotic subpopulations. We demonstrated for the first time that cholesterols concertedly attenuated the expression of caveolin-1(cav-1) and NDRG1 genes in both prostate cancer cell lines. Phytosterols had the opposite effect by inducing overexpression of cav-1, a known mediator of androgen-dependent signals that presumably control cell growth or apoptosis. Conclusions Cholesterol and phytosterol treatment differentially regulated the growth of prostate cancer cells and the expression of p53 and cav-1, a gene that regulates androgen-regulated signals. These sterols also differentially regulated cell cycle arrest, downstream pro-apoptotic androgen-regulated tumor-suppressor, NDRG1 suggesting that cav-1 may mediate pro-apoptotic NDRG1 signals. Elucidation of the mechanism for sterol modulation of growth and apoptosis signaling

  20. Analysis of breast cancer metastasis candidate genes from next generation-sequencing via systematic functional genomics

    DEFF Research Database (Denmark)

    Blomstrøm, Monica Marie

    2016-01-01

    Metastatic breast cancer remains an incurable disease accounting for the vast majority of deaths from breast cancer. Understanding the molecular mechanisms for metastatic spread is important to improve diagnosis and for generating starting points for novel treatment strategies. Inhibition...... advantage of mutations is that they are most likely stable in the metastatic cancer cell population, whereas miRNA, mRNA and protein expression profiles may change substantially prior to, throughout, or after the complex metastatic process as well as between subpopulations such as cancer stem cells (CSCs......) and non-CSCs. The main goal of this project was to functionally characterize a set of candidate genes recovered from next-generation sequencing analysis for their role in breast cancer metastasis formation. The starting gene set comprised 104 gene variants; i.e. 57 wildtype and 47 mutated variants. During...

  1. Analysis of losses of heterozygosity of the candidate tumour suppressor gene DMBT1 in melanoma resection specimens

    DEFF Research Database (Denmark)

    Deichmann, M; Mollenhauer, J; Helmke, B

    2002-01-01

    Deleted in malignant brain tumours 1 (DMBT1), a candidate tumour suppressor gene located on chromosome 10q25.3-q26.1, has recently been identified and found to be deleted in several different types of human tumours. In melanomas, the chromosomal region 10q22-qter is commonly affected by losses......, hence we screened primary melanoma samples for losses of heterozygosity (LOH), and acquired melanocytic naevi and melanomas for transcription of DMBT1 and protein expression. Of 38 informative melanomas, 1 nodular melanoma and 2 subcutaneous metastases showed LOH of both microsatellites flanking...... the gene, suggesting loss of 1 DMBT1 allele. Three further melanomas showed LOH at 1 informative locus but were heterozygous for the second marker. Applying reverse-transcription polymerase chain reaction (RT-PCR), DMBT1 transcription was not found in melanomas. However, DMBT1 transcription was also absent...

  2. Effect of recombinant adenovirus encoding human p53 tumor suppressor gene combined with radiation therapy on human lymphoma cells lines

    International Nuclear Information System (INIS)

    Yu Zeyang; Fan Wo; Li Dongqing; Zhu Ran; Wan Jianmei; Wang Yongqing; Wu Jinchang

    2008-01-01

    This paper analyzes the inhibitory effect and radiation sensitization of recombinant adenovirus encoding human p53 tumor suppressor gene (rAd-p53) on human lymphoma cell lines. Human lymphoma cell lines were treated with rAd-p53, radiation therapy and combined treatment, respectively. The cell growth inhibition was assessed by MTF. The cell cycle and apoptosis were detected by flow cytometry, and the p53 protein expression was detected by Western blotting. The results showed that extrinsic p53 gene have expressed to some degree, but not at high level. The role of inhibition and radiation sensitivity of rAd-p53 was not significant to human lymphoma cell lines. (authors)

  3. Analysis of losses of heterozygosity of the candidate tumour suppressor gene DMBT1 in melanoma resection specimens

    DEFF Research Database (Denmark)

    Deichmann, M; Mollenhauer, J; Helmke, B

    2002-01-01

    , hence we screened primary melanoma samples for losses of heterozygosity (LOH), and acquired melanocytic naevi and melanomas for transcription of DMBT1 and protein expression. Of 38 informative melanomas, 1 nodular melanoma and 2 subcutaneous metastases showed LOH of both microsatellites flanking......Deleted in malignant brain tumours 1 (DMBT1), a candidate tumour suppressor gene located on chromosome 10q25.3-q26.1, has recently been identified and found to be deleted in several different types of human tumours. In melanomas, the chromosomal region 10q22-qter is commonly affected by losses...... the gene, suggesting loss of 1 DMBT1 allele. Three further melanomas showed LOH at 1 informative locus but were heterozygous for the second marker. Applying reverse-transcription polymerase chain reaction (RT-PCR), DMBT1 transcription was not found in melanomas. However, DMBT1 transcription was also absent...

  4. Dual-specificity tyrosine-regulated kinase 2 is a suppressor and potential prognostic marker for liver metastasis of colorectal cancer.

    Science.gov (United States)

    Ito, Daisuke; Yogosawa, Satomi; Mimoto, Rei; Hirooka, Shinichi; Horiuchi, Takashi; Eto, Ken; Yanaga, Katsuhiko; Yoshida, Kiyotsugu

    2017-08-01

    Colorectal cancer is a common cancer and a leading cause of cancer-related death worldwide. The liver is a dominant metastatic site for patients with colorectal cancer. Molecular mechanisms that allow colorectal cancer cells to form liver metastases are largely unknown. Activation of epithelial-mesenchymal transition is the key step for metastasis of cancer cells. We recently reported that dual-specificity tyrosine-regulated kinase 2 (DYRK2) controls epithelial-mesenchymal transition in breast cancer and ovarian serous adenocarcinoma. The aim of this study is to clarify whether DYRK2 regulates liver metastases of colorectal cancer. We show that the ability of cell invasion and migration was abrogated in DYRK2-overexpressing cells. In an in vivo xenograft model, liver metastatic lesions were markedly diminished by ectopic expression of DYRK2. Furthermore, we found that patients whose liver metastases expressed low DYRK2 levels had significantly worse overall and disease-free survival. Given the findings that DYRK2 regulates cancer cell metastasis, we concluded that the expression status of DYRK2 could be a predictive marker for liver metastases of colorectal cancer. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  5. Towards the Identification of New Genes Involved in ABA-Dependent Abiotic Stresses Using Arabidopsis Suppressor Mutants of abh1 Hypersensitivity to ABA during Seed Germination

    Directory of Open Access Journals (Sweden)

    Iwona Szarejko

    2013-06-01

    Full Text Available Abscisic acid plays a pivotal role in the abiotic stress response in plants. Although great progress has been achieved explaining the complexity of the stress and ABA signaling cascade, there are still many questions to answer. Mutants are a valuable tool in the identification of new genes or new alleles of already known genes and in elucidating their role in signaling pathways. We applied a suppressor mutation approach in order to find new components of ABA and abiotic stress signaling in Arabidopsis. Using the abh1 (ABA hypersensitive 1 insertional mutant as a parental line for EMS mutagenesis, we selected several mutants with suppressed hypersensitivity to ABA during seed germination. Here, we present the response to ABA and a wide range of abiotic stresses during the seed germination and young seedling development of two suppressor mutants—soa2 (suppressor of abh1 hypersensitivity to ABA 2 and soa3 (suppressor of abh1 hypersensitivity to ABA 3. Generally, both mutants displayed a suppression of the hypersensitivity of abh1 to ABA, NaCl and mannitol during germination. Both mutants showed a higher level of tolerance than Columbia-0 (Col-0—the parental line of abh1 in high concentrations of glucose. Additionally, soa2 exhibited better root growth than Col-0 in the presence of high ABA concentrations. soa2 and soa3 were drought tolerant and both had about 50% fewer stomata per mm2 than the wild-type but the same number as their parental line—abh1. Taking into account that suppressor mutants had the same genetic background as their parental line—abh1, it was necessary to backcross abh1 with Landsberg erecta four times for the map-based cloning approach. Mapping populations, derived from the cross of abh1 in the Landsberg erecta background with each suppressor mutant, were created. Map based cloning in order to identify the suppressor genes is in progress.

  6. A single mutation in the 15S rRNA gene confers nonsense suppressor activity and interacts with mRF1 the release factor in yeast mitochondria

    Directory of Open Access Journals (Sweden)

    Ali Gargouri

    2015-08-01

    Full Text Available We have determined the nucleotide sequence of the mim3-1 mitochondrial ribosomal suppressor, acting on ochre mitochondrial mutations and one frameshift mutation in Saccharomyces cerevisiae. The 15s rRNA suppressor gene contains a G633 to C transversion. Yeast mitochondrial G633 corresponds to G517 of the E.coli 15S rRNA, which is occupied by an invariant G in all known small rRNA sequences. Interestingly, this mutation has occurred at the same position as the known MSU1 mitochondrial suppressor which changes G633 to A. The suppressor mutation lies in a highly conserved region of the rRNA, known in E.coli as the 530-loop, interacting with the S4, S5 and S12 ribosomal proteins. We also show an interesting interaction between the mitochondrial mim3-1 and the nuclear nam3-1 suppressors, both of which have the same action spectrum on mitochondrial mutations: nam3-1 abolishes the suppressor effect when present with mim3-1 in the same haploid cell. We discuss these results in the light of the nature of Nam3, identified by [1] as the yeast mitochondrial translation release factor. A hypothetical mechanism of suppression by "ribosome shifting" is also discussed in view of the nature of mutations suppressed and not suppressed.

  7. Multi-gene epigenetic silencing of tumor suppressor genes in T-cell lymphoma cells; delayed expression of the p16 protein upon reversal of the silencing

    DEFF Research Database (Denmark)

    Nagasawa, T; Zhang, Q; Raghunath, P N

    2006-01-01

    )-expressing T-cell lymphomas. p16 gene was epigenetically silenced in all but one of the 10 malignant T-cell lines examined, p15 gene silenced in roughly half of the lines, and p14 was the least frequently affected. Extensive methylation of the p16 promoter was seen in six out of 10 cutaneous T-cell lymphoma...... promoter demethylation and required up to 3 weeks to occur, seemingly reflecting late activation of the p16 gene. These findings indicate that epigenetic silencing affects in T-cell malignancies, often simultaneously, several tumor suppressor genes that impact on key cell functions. The observed...... differential silencing of p16 and p14, and to a lesser degree p15 gene, indicates that the silencing is governed by precise, promoter region-specific mechanisms. The study provides also further rationale for treatment of at least some types of T-cell lymphomas with DNA methyltransferase inhibitors to target...

  8. Transcriptomic and CRISPR/Cas9 technologies reveal FOXA2 as a tumor suppressor gene in pancreatic cancer.

    Science.gov (United States)

    Vorvis, Christina; Hatziapostolou, Maria; Mahurkar-Joshi, Swapna; Koutsioumpa, Marina; Williams, Jennifer; Donahue, Timothy R; Poultsides, George A; Eibl, Guido; Iliopoulos, Dimitrios

    2016-06-01

    Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with low survival rates and limited therapeutic options. Thus elucidation of signaling pathways involved in PDAC pathogenesis is essential for identifying novel potential therapeutic gene targets. Here, we used a systems approach to elucidate those pathways by integrating gene and microRNA profiling analyses together with CRISPR/Cas9 technology to identify novel transcription factors involved in PDAC pathogenesis. FOXA2 transcription factor was found to be significantly downregulated in PDAC relative to control pancreatic tissues. Functional experiments revealed that FOXA2 has a tumor suppressor function through inhibition of pancreatic cancer cell growth, migration, invasion, and colony formation. In situ hybridization analysis revealed miR-199a to be significantly upregulated in pancreatic cancer. Bioinformatics and luciferase analyses showed that miR-199a negatively but directly regulates FOXA2 expression through binding in its 3'-untranslated region (UTR). Evaluation of the functional importance of miR-199a on pancreatic cancer revealed that miR-199a acts as an inhibitor of FOXA2 expression, inducing an increase in pancreatic cancer cell proliferation, migration, and invasion. Additionally, gene ontology and network analyses in PANC-1 cells treated with a small interfering RNA (siRNA) against FOXA2 revealed an enrichment for cell invasion mechanisms through PLAUR and ERK activation. FOXA2 deletion (FOXA2Δ) by using two CRISPR/Cas9 vectors in PANC-1 cells induced tumor growth in vivo resulting in upregulation of PLAUR and ERK pathways in FOXA2Δ xenograft tumors. We have identified FOXA2 as a novel tumor suppressor in pancreatic cancer and it is regulated directly by miR-199a, thereby enhancing our understanding of how microRNAs interplay with the transcription factors to affect pancreatic oncogenesis. Copyright © 2016 the American Physiological Society.

  9. Helicobacter pylori infection is associated with decreased expression of SLC5A8, a cancer suppressor gene, in young children

    Directory of Open Access Journals (Sweden)

    Andrea Orellana Manzano

    2016-10-01

    Full Text Available Background: Helicobacter pylori infects half of the world's population and causes gastric cancer in a subset of infected adults. Previous blood microarray findings showed that apparently healthy children, persistently infected with H. pylori have differential gene expression compared to age-matched, non-infected children. SLC5A8, a cancer suppressor gene with decreased expression among infected children, was chosen for further study based on bioinformatics analysis. Methods: A pilot study was conducted using specific qRT-PCR amplification of SLC5A8 in blood samples from H. pylori infected and non-infected children, followed by a larger, blinded, case-control study. We then analyzed gastric tissue from H. pylori infected and non-infected children undergoing endoscopy for clinical purposes. Results: Demographics, clinical findings and family history were similar between groups. SLC5A8 expression was decreased in infected versus non-infected children in blood, 0.12 (IQR: 0 – 0.89 versus 1.86 (IQR: 0 – 8.94, P=0.002, and in gastric tissue, 0.08 (IQR: 0.04 – 0.15 versus 1.88 (IQR: 0.55 – 2.56; P=0.001. Children who were both stool positive and seropositive for H. pylori had the lowest SLC5A8 expression levels.Conclusions: H. pylori infection is associated with suppression of SCL5A8, a cancer suppressor gene, in both blood and tissue samples from young children.

  10. Upregulation of metastasis-associated gene 2 promotes cell proliferation and invasion in nasopharyngeal carcinoma

    Directory of Open Access Journals (Sweden)

    Wu MH

    2016-03-01

    Full Text Available Minhua Wu,1,2,* Xiaoxia Ye,2,* Xubin Deng,3,* Yanxia Wu,4 Xiaofang Li,4 Lin Zhang11Department of Histology and Embryology, Southern Medical University, Guangzhou, 2Department of Histology and Embryology, Guangdong Medical University, Zhanjiang, 3Affiliated Cancer Hospital of Guangzhou Medical University, Cancer Center of Guangzhou Medical University, Guangzhou, 4Pathological Diagnosis and Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People’s Republic of China*These authors contributed equally to this workAims: Metastasis-associated gene 2 (MTA2 is reported to play an important role in tumor progression, but little is known about the role of MTA2 in nasopharyngeal carcinoma (NPC. The aim of the study was to explore the expression and function of MTA2 in NPC.Methods: Expression of MTA2 in NPC tissues and cell lines was detected by immunohistochemistry and Western blotting. Relationship between MTA2 expression and clinicopathological features was analyzed. Stable MTA2-overexpressing and MTA2-siliencing NPC cells were established by transfection with plasmids encoding MTA2 cDNA and lentivirus-mediated short hairpin RNA, respectively. Cell viability was determined by Cell Counting Kit-8 and colony formation assay. Cell migration ability was evaluated by wound healing and transwell invasion assay. The impact of MTA2 knockdown on growth and metastasis of CNE2 cells in vivo was determined by nude mouse xenograft models. Expression of several Akt pathway proteins was detected by Western blotting.Results: MTA2 was upregulated in NPC tissues and three NPC cell lines detected (CNE1, CNE2, and HNE1. MTA2 expression was related to clinical stage and lymph node metastasis of patients with NPC. MTA2 upregulation promoted proliferation and invasion of CNE1 cells, while MTA2 depletion had opposite effects on CNE2 cells. Moreover, MTA2 depletion suppressed growth and metastasis of CNE2 cells in vivo. MTA2 overexpression

  11. Screening and identification of lung cancer metastasis-related genes by suppression subtractive hybridization.

    Science.gov (United States)

    Liu, Jiewei; Zhong, Xiaorong; Li, Juan; Liu, Baoxing; Guo, Shanxian; Chen, Jun; Tan, Qingwei; Wang, Qin; Ma, Wei; Wu, Zhihao; Wang, Haisu; Hou, Mei; Zhang, Hong-Tao; Zhou, Qinghua

    2012-08-01

      Lung cancer metastasis is a complicated process in which multiple stages and multiple genes are involved. There is an urgent need to use new molecular biology techniques to get more systematic information and have a general idea of the molecular events that take place in lung cancer metastasis. The object of this study was to construct the subtracted cDNA libraries of different metastatic potential lung cancer cell lines, NL9980 and L9981, which were established and screened from human lung large cell carcinoma cell line, WCQH-9801.   The forward and reverse subtracted cDNA libraries were constructed in the large cell lung cancer cell lines NL9980 and L9981 with the same heredity background but different metastatic potential, by suppression subtractive hybridization (SSH). The positive clones were preliminarily screened by blue-white colony and precisely identified by PCR. The forward and reverse subtracted libraries were screened and identified by dot blot so as to obtain the clones corresponding to gene segments with differential expression. DNA sequencing was performed to analyze the sequences of differential expression segments, which were then searched and compared using the Basic Local Alignment Search Tool from The National Center for Biotechnology Information NCBI BLAST tools. Quantitative real-time reverse transcription polymerase chain reaction (RT-PCR) and western blotting were performed to confirm the differential expressed genes both on RNA and protein levels.   The forward and reverse subtracted cDNA libraries of the different large cell lung cancer cell lines with metastatic potential were successfully constructed. With blue-white colony and dot blot, 307 positive clones in the forward subtracted library and 78 positive clones in the reverse subtracted library were obtained. Fifty-five clones were successfully sequenced in the forward subtracted library while 31 clones were successfully sequenced in the reverse subtracted library. One new

  12. A precisely regulated gene expression cassette potently modulates metastasis and survival in multiple solid cancers.

    Directory of Open Access Journals (Sweden)

    Kun Yu

    2008-07-01

    Full Text Available Successful tumor development and progression involves the complex interplay of both pro- and anti-oncogenic signaling pathways. Genetic components balancing these opposing activities are likely to require tight regulation, because even subtle alterations in their expression may disrupt this balance with major consequences for various cancer-associated phenotypes. Here, we describe a cassette of cancer-specific genes exhibiting precise transcriptional control in solid tumors. Mining a database of tumor gene expression profiles from six different tissues, we identified 48 genes exhibiting highly restricted levels of gene expression variation in tumors (n = 270 compared to nonmalignant tissues (n = 71. Comprising genes linked to multiple cancer-related pathways, the restricted expression of this "Poised Gene Cassette" (PGC was robustly validated across 11 independent cohorts of approximately 1,300 samples from multiple cancer types. In three separate experimental models, subtle alterations in PGC expression were consistently associated with significant differences in metastatic and invasive potential. We functionally confirmed this association in siRNA knockdown experiments of five PGC genes (p53CSV, MAP3K11, MTCH2, CPSF6, and SKIP, which either directly enhanced the invasive capacities or inhibited the proliferation of AGS cancer cells. In primary tumors, similar subtle alterations in PGC expression were also repeatedly associated with clinical outcome in multiple cohorts. Taken collectively, these findings support the existence of a common set of precisely controlled genes in solid tumors. Since inducing small activity changes in these genes may prove sufficient to potently influence various tumor phenotypes such as metastasis, targeting such precisely regulated genes may represent a promising avenue for novel anti-cancer therapies.

  13. The transformation suppressor gene Reck is required for postaxial patterning in mouse forelimbs

    Directory of Open Access Journals (Sweden)

    Mako Yamamoto

    2012-03-01

    The membrane-anchored metalloproteinase-regulator RECK has been characterized as a tumor suppressor. Here we report that mice with reduced Reck-expression show limb abnormalities including right-dominant, forelimb-specific defects in postaxial skeletal elements. The forelimb buds of low-Reck mutants have an altered dorsal ectoderm with reduced Wnt7a and Igf2 expression, and hypotrophy in two signaling centers (i.e., ZPA and AER that are essential for limb outgrowth and patterning. Reck is abundantly expressed in the anterior mesenchyme in normal limb buds; mesenchyme-specific Reck inactivation recapitulates the low-Reck phenotype; and some teratogens downregulate Reck in mesenchymal cells. Our findings illustrate a role for Reck in the mesenchymal-epithelial interactions essential for mammalian development.

  14. Gene expression markers in circulating tumor cells may predict bone metastasis and response to hormonal treatment in breast cancer.

    Science.gov (United States)

    Wang, Haiying; Molina, Julian; Jiang, John; Ferber, Matthew; Pruthi, Sandhya; Jatkoe, Timothy; Derecho, Carlo; Rajpurohit, Yashoda; Zheng, Jian; Wang, Yixin

    2013-11-01

    Circulating tumor cells (CTCs) have recently attracted attention due to their potential as prognostic and predictive markers for the clinical management of metastatic breast cancer patients. The isolation of CTCs from patients may enable the molecular characterization of these cells, which may help establish a minimally invasive assay for the prediction of metastasis and further optimization of treatment. Molecular markers of proven clinical value may therefore be useful in predicting disease aggressiveness and response to treatment. In our earlier study, we identified a gene signature in breast cancer that appears to be significantly associated with bone metastasis. Among the genes that constitute this signature, trefoil factor 1 (TFF1) was identified as the most differentially expressed gene associated with bone metastasis. In this study, we investigated 25 candidate gene markers in the CTCs of metastatic breast cancer patients with different metastatic sites. The panel of the 25 markers was investigated in 80 baseline samples (first blood draw of CTCs) and 30 follow-up samples. In addition, 40 healthy blood donors (HBDs) were analyzed as controls. The assay was performed using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) with RNA extracted from CTCs captured by the CellSearch system. Our study indicated that 12 of the genes were uniquely expressed in CTCs and 10 were highly expressed in the CTCs obtained from patients compared to those obtained from HBDs. Among these genes, the expression of keratin 19 was highly correlated with the CTC count. The TFF1 expression in CTCs was a strong predictor of bone metastasis and the patients with a high expression of estrogen receptor β in CTCs exhibited a better response to hormonal treatment. Molecular characterization of these genes in CTCs may provide a better understanding of the mechanism underlying tumor metastasis and identify gene markers in CTCs for predicting disease progression and

  15. Regulation of the insulin-like developmental pathway of Caenorhabditis elegans by a homolog of the PTEN tumor suppressor gene.

    Science.gov (United States)

    Gil, E B; Malone Link, E; Liu, L X; Johnson, C D; Lees, J A

    1999-03-16

    The human PTEN tumor suppressor gene is mutated in a wide variety of sporadic tumors. To determine the function of PTEN in vivo we have studied a PTEN homolog in Caenorhabditis elegans. We have generated a strong loss-of-function allele of the PTEN homolog and shown that the deficient strain is unable to enter dauer diapause. An insulin-like phosphatidylinositol 3-OH kinase (PI3'K) signaling pathway regulates dauer-stage entry. Mutations in either the daf-2 insulin receptor-like (IRL) gene or the age-1 encoded PI3'K catalytic subunit homolog cause constitutive dauer formation and also affect the life span, brood size, and metabolism of nondauer animals. Strikingly, loss-of-function mutations in the age-1 PI3'K and daf-2 IRL genes are suppressed by loss-of-function mutations in the PTEN homolog. We establish that the PTEN homolog is encoded by daf-18, a previously uncloned gene that has been shown to interact genetically with the DAF-2 IRL AGE-1 PI3'K signaling pathway. This interaction provides clear genetic evidence that PTEN acts to antagonize PI3'K function in vivo. Given the conservation of the PI3'K signaling pathway between C. elegans and mammals, the analysis of daf-18 PTEN mutant nematodes should shed light on the role of human PTEN in the etiology of metabolic disease, aging, and cancer.

  16. Re-expression of methylation-induced tumor suppressor gene silencing is associated with the state of histone modification in gastric cancer cell lines

    OpenAIRE

    Meng, Chun-Feng; Zhu, Xin-Jiang; Peng, Guo; Dai, Dong-Qiu

    2007-01-01

    AIM: To identify the relationship between DNA hyper-methylation and histone modification at a hyperme-thylated, silenced tumor suppressor gene promoter in human gastric cancer cell lines and to elucidate whether alteration of DNA methylation could affect histone modification.

  17. Clinical and pathological associations with p53 tumour-suppressor gene mutations and expression of p21WAF1/Cip1 in colorectal carcinoma

    NARCIS (Netherlands)

    Slebos, R. J.; Baas, I. O.; Clement, M.; Polak, M.; Mulder, J. W.; van den Berg, F. M.; Hamilton, S. R.; Offerhaus, G. J.

    1996-01-01

    Inactivation of the p53 tumour-suppressor gene is common in a wide variety of human neoplasms. In the majority of cases, single point mutations in the protein-encoding sequence of p53 lead to positive immunohistochemistry (IHC) for the p53 protein, and are accompanied by loss of the wild-type

  18. The Circadian Rhythm Gene Arntl2 Is a Metastasis Susceptibility Gene for Estrogen Receptor-Negative Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Ngoc-Han Ha

    2016-09-01

    Full Text Available Breast cancer mortality is primarily due to metastasis rather than primary tumors, yet relatively little is understood regarding the etiology of metastatic breast cancer. Previously, using a mouse genetics approach, we demonstrated that inherited germline polymorphisms contribute to metastatic disease, and that these single nucleotide polymorphisms (SNPs could be used to predict outcome in breast cancer patients. In this study, a backcross between a highly metastatic (FVB/NJ and low metastatic (MOLF/EiJ mouse strain identified Arntl2, a gene encoding a circadian rhythm transcription factor, as a metastasis susceptibility gene associated with progression, specifically in estrogen receptor-negative breast cancer patients. Integrated whole genome sequence analysis with DNase hypersensitivity sites reveals SNPs in the predicted promoter of Arntl2. Using CRISPR/Cas9-mediated substitution of the MOLF promoter, we demonstrate that the SNPs regulate Arntl2 transcription and affect metastatic burden. Finally, analysis of SNPs associated with ARNTL2 expression in human breast cancer patients revealed reproducible associations of ARNTL2 expression quantitative trait loci (eQTL SNPs with disease-free survival, consistent with the mouse studies.

  19. Urtica dioica extract suppresses miR-21 and metastasis-related genes in breast cancer.

    Science.gov (United States)

    Mansoori, Behzad; Mohammadi, Ali; Hashemzadeh, Shahriar; Shirjang, Solmaz; Baradaran, Ali; Asadi, Milad; Doustvandi, Mohammad Amin; Baradaran, Behzad

    2017-09-01

    Breast cancer has a high prevalence among women worldwide. Tumor invasion and metastasis still remains an open issue that causes most of the therapeutic failures and remains the prime cause of patient mortality. Hence, there is an unmet need to develop the most effective therapeutic approach with the lowest side effects and highest cytotoxicity that will effectively arrest or eradicate metastasis. An MTT assay and scratch test were used to assess the cytotoxicity and migration effects of Urtica dioica on the breast cancer cells. The QRT-PCR was used to study the expression levels of miR-21, MMP1, MMP9, MMP13, CXCR4, vimentin, and E-cadherin. The results of gene expression in tumoral groups confirmed the overexpression of miR-21, MMP1, MMP9, MMP13, vimentin, and CXCR4, and the lower expression of E-cadherin compared to control groups (PUrtica dioica significantly inhibited breast cancer cell proliferation. Moreover, findings from the scratch assay exhibited the inhibitory effects of Urtica dioica on the migration of breast cancer cell lines. Urtica dioica extract could inhibit cancer cell migration by regulating miR-21, MMP1, MMP9, MMP13, vimentin, CXCR4, and E-Cadherin. Moreover, our findings demonstrated that the extract could decrease miR-21 expression, which substantially lessens the overexpressed MMP1, MMP9, MMP13, vimentin, and CXCR4 and increases E-cadherin in the tumoral group. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Epigenetic drugs can stimulate metastasis through enhanced expression of the pro-metastatic Ezrin gene.

    Directory of Open Access Journals (Sweden)

    Yanlin Yu

    2010-09-01

    Full Text Available Ezrin has been reported to be upregulated in many tumors and to participate in metastatic progression. No study has addressed epigenetic modification in the regulation of Ezrin gene expression, the importance of which is unknown. Here, we report that highly metastatic rhabdomyosarcoma (RMS cells with high levels of Ezrin have elevated acetyl-H3-K9 and tri-methyl-H3-K4 as well as reduced DNA methylation at the Ezrin gene promoter. Conversely, poorly metastatic RMS cells with low levels of Ezrin have reduced acetyl-H3-K9 and elevated methylation. Thus epigenetic covalent modifications to histones within nucleosomes of the Ezrin gene promoter are linked to Ezrin expression, which in fact can be regulated by epigenetic mechanisms. Notably, treatment with histone deacetylase (HDAC inhibitors or DNA demethylating agents could restore Ezrin expression and stimulate the metastatic potential of poorly metastatic RMS cells characterized by low Ezrin levels. However, the ability of epigenetic drugs to stimulate metastasis in RMS cells was inhibited by expression of an Ezrin-specific shRNA. Our data demonstrate the potential risk associated with clinical application of broadly acting covalent epigenetic modifiers, and highlight the value of combination therapies that include agents specifically targeting potent pro-metastatic genes.

  1. Hypothalamic gene transfer of BDNF inhibits breast cancer progression and metastasis in middle age obese mice.

    Science.gov (United States)

    Liu, Xianglan; McMurphy, Travis; Xiao, Run; Slater, Andrew; Huang, Wei; Cao, Lei

    2014-07-01

    Activation of the hypothalamus-adipocyte axis is associated with an antiobesity and anticancer phenotype in animal models of melanoma and colon cancer. Brain-derived neurotrophic factor (BDNF) is a key mediator in the hypothalamus leading to preferential sympathoneural activation of adipose tissue and the ensuing resistance to obesity and cancer. Here, we generated middle age obese mice by high fat diet feeding for a year and investigated the effects of hypothalamic gene transfer of BDNF on a hormone receptor-positive mammary tumor model. The recombinant adeno-associated viral vector-mediated overexpression of BDNF led to marked weight loss and decrease of adiposity without change of food intake. BDNF gene therapy improved glucose tolerance, alleviated steatosis, reduced leptin level, inhibited mouse breast cancer EO771 growth, and prevented the metastasis. The reduced tumor growth in BDNF-treated mice was associated with reduced angiogenesis, decreased proliferation, increased apoptosis, and reduced adipocyte recruitment and lipid accumulation. Moreover, BDNF gene therapy reduced inflammation markers in the hypothalamus, the mammary gland, the subcutaneous fat, and the mammary tumor. Our results suggest that manipulating a single gene in the brain may influence multiple mechanisms implicated in obesity-cancer association and provide a target for the prevention and treatment of both obesity and cancer.

  2. No evidence for promoter region methylation of the succinate dehydrogenase and fumarate hydratase tumour suppressor genes in breast cancer

    Directory of Open Access Journals (Sweden)

    Dobrovic Alexander

    2009-09-01

    Full Text Available Abstract Background Succinate dehydrogenase (SDH and fumarate hydratase (FH are tricarboxylic acid (TCA cycle enzymes that are also known to act as tumour suppressor genes. Increased succinate or fumarate levels as a consequence of SDH and FH deficiency inhibit hypoxia inducible factor-1α (HIF-1α prolyl hydroxylases leading to sustained HIF-1α expression in tumours. Since HIF-1α is frequently expressed in breast carcinomas, DNA methylation at the promoter regions of the SDHA, SDHB, SDHC and SDHD and FH genes was evaluated as a possible mechanism in silencing of SDH and FH expression in breast carcinomas. Findings No DNA methylation was identified in the promoter regions of the SDHA, SDHB, SDHC, SDHD and FH genes in 72 breast carcinomas and 10 breast cancer cell lines using methylation-sensitive high resolution melting which detects both homogeneous and heterogeneous methylation. Conclusion These results show that inactivation via DNA methylation of the promoter CpG islands of SDH and FH is unlikely to play a major role in sporadic breast carcinomas.

  3. Nuclear pore component Nup98 is a potential tumor suppressor and regulates posttranscriptional expression of select p53 target genes.

    Science.gov (United States)

    Singer, Stephan; Zhao, Ruiying; Barsotti, Anthony M; Ouwehand, Anette; Fazollahi, Mina; Coutavas, Elias; Breuhahn, Kai; Neumann, Olaf; Longerich, Thomas; Pusterla, Tobias; Powers, Maureen A; Giles, Keith M; Leedman, Peter J; Hess, Jochen; Grunwald, David; Bussemaker, Harmen J; Singer, Robert H; Schirmacher, Peter; Prives, Carol

    2012-12-14

    The p53 tumor suppressor utilizes multiple mechanisms to selectively regulate its myriad target genes, which in turn mediate diverse cellular processes. Here, using conventional and single-molecule mRNA analyses, we demonstrate that the nucleoporin Nup98 is required for full expression of p21, a key effector of the p53 pathway, but not several other p53 target genes. Nup98 regulates p21 mRNA levels by a posttranscriptional mechanism in which a complex containing Nup98 and the p21 mRNA 3'UTR protects p21 mRNA from degradation by the exosome. An in silico approach revealed another p53 target (14-3-3σ) to be similarly regulated by Nup98. The expression of Nup98 is reduced in murine and human hepatocellular carcinomas (HCCs) and correlates with p21 expression in HCC patients. Our study elucidates a previously unrecognized function of wild-type Nup98 in regulating select p53 target genes that is distinct from the well-characterized oncogenic properties of Nup98 fusion proteins. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. [Construction of Escherichia coli-Bifidobacterium longum shuttle vector and expression of tumor suppressor gene PTEN in B. longum].

    Science.gov (United States)

    Hou, Xin; Liu, Jun-E

    2006-06-01

    It was reported that Bifidobacterium longum accumulated specifically in hypoxic solid tumors, therefore could be used as a delivery system for cancer-specific gene therapy. Furthermore, construction of E.coli-B. longum shuttle vectors was proved by other research to be an efficient way for stable gene expression in B. longum. To obtain a shuttle vector and analyze the inhibition on mice solid tumors by genetically engineered B. longum, 48 primers with mutual overlaps were designed, assisted by software package Oligo 6.0. By PCR with the above primers, a linear plasmid was synthesized, which consists of pMB1 and HU gene promoter, both from B. longum. pMB-HU was constructed by cloning the synthesized linear plasmid into E.coli vector pMD 18-T, and was proved to be stably replicated in both E.coli DH5alpha and B. longum L17. By inserting PTEN cDNA into pMB-HU, expression vector pMB-HU-PTEN was obtained, in which PTEN gene was reported as a major tumor suppressor gene encoding a dual-specificity phosphatase. pMB-HU-PTEN was then transferred into B. longum L17 by electroporation. After transformation, an effective expression of PTEN in B. longum L17 was confirmed by Western blot, and significant inhibition on growth of mice solid tumors was also observed with the above genetically engineered B. longum. Those obtained results have laid foundation for tumor-targeting gene therapy with B. longum.

  5. Down-regulation of SFRP1 as a putative tumor suppressor gene can contribute to human hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Huang, Jian; Zhang, Yun-Li; Teng, Xiao-Mei; Lin, Yun; Zheng, Da-Li; Yang, Peng-Yuan; Han, Ze-Guang

    2007-01-01

    Hepatocellular carcinoma (HCC) is one of the most common cancers in the world. SFRP1 (the secreted frizzled-related protein 1), a putative tumor suppressor gene mapped onto chromosome 8p12-p11.1, the frequent loss of heterozygosity (LOH) region in human HCC, encodes a Wingless-type (Wnt) signaling antagonist and is frequently inactivated by promoter methylation in many human cancers. However, whether the down-regulation of SFRP1 can contribute to hepatocarcinogenesis still remains unclear. We investigated the expression of SFRP1 through real time RT-PCR and immunohistochemistry staining. The cell growth and colony formation were observed as the overexpression and knockdown of SFRP1. The DNA methylation status within SFRP1 promoter was analyzed through methylation-specific PCR or bisulphate-treated DNA sequencing assays. Loss of heterozygosity was here detected with microsatellite markers. SFRP1 was significantly down-regulated in 76.1% (35/46) HCC specimens at mRNA level and in 30% (30/100) HCCs indicated by immunohistochemistry staining, as compared to adjacent non-cancerous livers. The overexpression of SFRP1 can significantly inhibit the cell growth and colony formation of YY-8103, SMMC7721, and Hep3B cells. The RNA interference against the constitutional SFRP1 in the offspring SMMC7721 cells, which were stably transfected by ectopic SFRP1, can markedly promote cell growth of these cells. LOH of both microsatellite markers D8S532 and D8SAC016868 flanking the gene locus was found in 13% (6 of 46 HCCs) and 6.5% (3 of 46 HCCs) of the informative cases, respectively, where 5 of 8 HCC specimens with LOH showed the down-regulation of SFRP1. DNA hypermethylation within SFRP1 promoter was identified in two of three HCC specimens without SFRP1 expression. Moreover, the DNA methylation of SFRP1 promoter was significantly reduced, along with the re-expression of the gene, in those HCC cell lines, Bel7404, QGY7701, and MHCC-H, as treated by DAC. Our data suggested that the

  6. Evolution and origin of merlin, the product of the Neurofibromatosis type 2 (NF2 tumor-suppressor gene

    Directory of Open Access Journals (Sweden)

    Omelyanchuk Leonid V

    2005-12-01

    Full Text Available Abstract Background Merlin, the product of the Neurofibromatosis type 2 (NF2 tumor suppressor gene, belongs to the ezrin-radixin-moesin (ERM subgroup of the protein 4.1 superfamily, which links cell surface glycoproteins to the actin cytoskeleton. While merlin's functional activity has been examined in mammalian and Drosophila models, little is understood about its evolution, diversity, and overall distribution among different taxa. Results By combining bioinformatic and phylogenetic approaches, we demonstrate that merlin homologs are present across a wide range of metazoan lineages. While the phylogenetic tree shows a monophyletic origin of the ERM family, the origin of the merlin proteins is robustly separated from that of the ERM proteins. The derivation of merlin is thought to be in early metazoa. We have also observed the expansion of the ERM-like proteins within the vertebrate clade, which occurred after its separation from Urochordata (Ciona intestinalis. Amino acid sequence alignment reveals the absence of an actin-binding site in the C-terminal region of all merlin proteins from various species but the presence of a conserved internal binding site in the N-terminal domain of the merlin and ERM proteins. In addition, a more conserved pattern of amino acid residues is found in the region containing the so-called "Blue Box," although some amino acid substitutions in this region exist in the merlin sequences of worms, fish, and Ciona. Examination of sequence variability at functionally significant sites, including the serine-518 residue, the phosphorylation of which modulates merlin's intra-molecular association and function as a tumor suppressor, identifies several potentially important sites that are conserved among all merlin proteins but divergent in the ERM proteins. Secondary structure prediction reveals the presence of a conserved α-helical domain in the central to C-terminal region of the merlin proteins of various species. The

  7. Positive selection of deleterious alleles through interaction with a sex-ratio suppressor gene in African Buffalo: a plausible new mechanism for a high frequency anomaly.

    Science.gov (United States)

    van Hooft, Pim; Greyling, Ben J; Getz, Wayne M; van Helden, Paul D; Zwaan, Bas J; Bastos, Armanda D S

    2014-01-01

    Although generally rare, deleterious alleles can become common through genetic drift, hitchhiking or reductions in selective constraints. Here we present a possible new mechanism that explains the attainment of high frequencies of deleterious alleles in the African buffalo (Syncerus caffer) population of Kruger National Park, through positive selection of these alleles that is ultimately driven by a sex-ratio suppressor. We have previously shown that one in four Kruger buffalo has a Y-chromosome profile that, despite being associated with low body condition, appears to impart a relative reproductive advantage, and which is stably maintained through a sex-ratio suppressor. Apparently, this sex-ratio suppressor prevents fertility reduction that generally accompanies sex-ratio distortion. We hypothesize that this body-condition-associated reproductive advantage increases the fitness of alleles that negatively affect male body condition, causing genome-wide positive selection of these alleles. To investigate this we genotyped 459 buffalo using 17 autosomal microsatellites. By correlating heterozygosity with body condition (heterozygosity-fitness correlations), we found that most microsatellites were associated with one of two gene types: one with elevated frequencies of deleterious alleles that have a negative effect on body condition, irrespective of sex; the other with elevated frequencies of sexually antagonistic alleles that are negative for male body condition but positive for female body condition. Positive selection and a direct association with a Y-chromosomal sex-ratio suppressor are indicated, respectively, by allele clines and by relatively high numbers of homozygous deleterious alleles among sex-ratio suppressor carriers. This study, which employs novel statistical techniques to analyse heterozygosity-fitness correlations, is the first to demonstrate the abundance of sexually-antagonistic genes in a natural mammal population. It also has important

  8. Positive selection of deleterious alleles through interaction with a sex-ratio suppressor gene in African Buffalo: a plausible new mechanism for a high frequency anomaly.

    Directory of Open Access Journals (Sweden)

    Pim van Hooft

    Full Text Available Although generally rare, deleterious alleles can become common through genetic drift, hitchhiking or reductions in selective constraints. Here we present a possible new mechanism that explains the attainment of high frequencies of deleterious alleles in the African buffalo (Syncerus caffer population of Kruger National Park, through positive selection of these alleles that is ultimately driven by a sex-ratio suppressor. We have previously shown that one in four Kruger buffalo has a Y-chromosome profile that, despite being associated with low body condition, appears to impart a relative reproductive advantage, and which is stably maintained through a sex-ratio suppressor. Apparently, this sex-ratio suppressor prevents fertility reduction that generally accompanies sex-ratio distortion. We hypothesize that this body-condition-associated reproductive advantage increases the fitness of alleles that negatively affect male body condition, causing genome-wide positive selection of these alleles. To investigate this we genotyped 459 buffalo using 17 autosomal microsatellites. By correlating heterozygosity with body condition (heterozygosity-fitness correlations, we found that most microsatellites were associated with one of two gene types: one with elevated frequencies of deleterious alleles that have a negative effect on body condition, irrespective of sex; the other with elevated frequencies of sexually antagonistic alleles that are negative for male body condition but positive for female body condition. Positive selection and a direct association with a Y-chromosomal sex-ratio suppressor are indicated, respectively, by allele clines and by relatively high numbers of homozygous deleterious alleles among sex-ratio suppressor carriers. This study, which employs novel statistical techniques to analyse heterozygosity-fitness correlations, is the first to demonstrate the abundance of sexually-antagonistic genes in a natural mammal population. It also has

  9. Identification of genes highly downregulated in pancreatic cancer through a meta-analysis of microarray datasets: implications for discovery of novel tumor-suppressor genes and therapeutic targets.

    Science.gov (United States)

    Goonesekere, Nalin C W; Andersen, Wyatt; Smith, Alex; Wang, Xiaosheng

    2018-02-01

    The lack of specific symptoms at early tumor stages, together with a high biological aggressiveness of the tumor contribute to the high mortality rate for pancreatic cancer (PC), which has a 5-year survival rate of about 7%. Recent failures of targeted therapies inhibiting kinase activity in clinical trials have highlighted the need for new approaches towards combating this deadly disease. In this study, we have identified genes that are significantly downregulated in PC, through a meta-analysis of large number of microarray datasets. We have used qRT-PCR to confirm the downregulation of selected genes in a panel of PC cell lines. This study has yielded several novel candidate tumor-suppressor genes (TSGs) including GNMT, CEL, PLA2G1B and SERPINI2. We highlight the role of GNMT, a methyl transferase associated with the methylation potential of the cell, and CEL, a lipase, as potential therapeutic targets. We have uncovered genetic links to risk factors associated with PC such as smoking and obesity. Genes important for patient survival and prognosis are also discussed, and we confirm the dysregulation of metabolic pathways previously observed in PC. While many of the genes downregulated in our dataset are associated with protein products normally produced by the pancreas for excretion, we have uncovered some genes whose downregulation appear to play a more causal role in PC. These genes will assist in providing a better understanding of the disease etiology of PC, and in the search for new therapeutic targets and biomarkers.

  10. Hypoxia Inducible Factor-independent functions for the von Hippel-Lindau tumor suppressor gene

    NARCIS (Netherlands)

    Lolkema, Martijn Paul Jung Kyu

    2006-01-01

    Inactivating mutations of the von Hippel-Lindau gene (VHL) on chromosome 3p have been associated with the autosomal dominant VHL disease, characterized by extensively vascularized tumors and cysts in different organs, as well as the majority of conventional kidney cancers. The VHL gene product

  11. Heterozygous mutations in the tumor suppressor gene PATCHED provoke basal cell carcinoma-like features in human organotypic skin cultures.

    Science.gov (United States)

    Brellier, F; Bergoglio, V; Valin, A; Barnay, S; Chevallier-Lagente, O; Vielh, P; Spatz, A; Gorry, P; Avril, M-F; Magnaldo, T

    2008-11-20

    Basal cell carcinoma of the skin is the most common type of cancer in humans. The majority of these tumors displays aberrant activation of the SONIC HEDGEHOG (SHH)/PATCHED pathway, triggered by mutations in the PATCHED tumor suppressor gene, which encodes a transmembrane receptor of SHH. In this study, we took advantage of the natural genotype (PATCHED(+/-)) of healthy keratinocytes expanded from patients with the nevoid basal cell carcinoma or Gorlin syndrome to mimic heterozygous somatic mutations thought to occur in the PATCHED gene early upon basal cell carcinoma development in the general population. PATCHED(+/-) epidermis developed on a dermal equivalent containing wild-type (WT) PATCHED(+/+) fibroblasts exhibited striking invasiveness and hyperproliferation, as well as marked differentiation impairment. Deciphering the phenotype of PATCHED(+/-) keratinocytes revealed slight increases of the transcriptional activators GLI1 and GLI2-the latter known to provoke basal cell carcinoma-like tumors when overexpressed in transgenic mice. PATCHED(+/-) keratinocytes also showed a substantial increase of the cell cycle regulator cyclin D1. These data show for the first time the physiological impact of constitutive heterozygous PATCHED mutations in primary human keratinocytes and strongly argue for a yet elusive mechanism of haploinsufficiency leading to cancer proneness.

  12. Heterozygous Germline Mutations in the CBL Tumor-Suppressor Gene Cause a Noonan Syndrome-like Phenotype

    Science.gov (United States)

    Martinelli, Simone; De Luca, Alessandro; Stellacci, Emilia; Rossi, Cesare; Checquolo, Saula; Lepri, Francesca; Caputo, Viviana; Silvano, Marianna; Buscherini, Francesco; Consoli, Federica; Ferrara, Grazia; Digilio, Maria C.; Cavaliere, Maria L.; van Hagen, Johanna M.; Zampino, Giuseppe; van der Burgt, Ineke; Ferrero, Giovanni B.; Mazzanti, Laura; Screpanti, Isabella; Yntema, Helger G.; Nillesen, Willy M.; Savarirayan, Ravi; Zenker, Martin; Dallapiccola, Bruno; Gelb, Bruce D.; Tartaglia, Marco

    2010-01-01

    RAS signaling plays a key role in controlling appropriate cell responses to extracellular stimuli and participates in early and late developmental processes. Although enhanced flow through this pathway has been established as a major contributor to oncogenesis, recent discoveries have revealed that aberrant RAS activation causes a group of clinically related developmental disorders characterized by facial dysmorphism, a wide spectrum of cardiac disease, reduced growth, variable cognitive deficits, ectodermal and musculoskeletal anomalies, and increased risk for certain malignancies. Here, we report that heterozygous germline mutations in CBL, a tumor-suppressor gene that is mutated in myeloid malignancies and encodes a multivalent adaptor protein with E3 ubiquitin ligase activity, can underlie a phenotype with clinical features fitting or partially overlapping Noonan syndrome (NS), the most common condition of this disease family. Independent CBL mutations were identified in two sporadic cases and two families from among 365 unrelated subjects who had NS or suggestive features and were negative for mutations in previously identified disease genes. Phenotypic heterogeneity and variable expressivity were documented. Mutations were missense changes altering evolutionarily conserved residues located in the RING finger domain or the linker connecting this domain to the N-terminal tyrosine kinase binding domain, a known mutational hot spot in myeloid malignancies. Mutations were shown to affect CBL-mediated receptor ubiquitylation and dysregulate signal flow through RAS. These findings document that germline mutations in CBL alter development to cause a clinically variable condition that resembles NS and that possibly predisposes to malignancies. PMID:20619386

  13. Role of Metastasis in Hypertabastic Survival Analysis of Breast Cancer: Interaction with Clinical and Gene Expression Variables

    Directory of Open Access Journals (Sweden)

    Mohammad A. Tabatabai Ph.D.

    2012-01-01

    Full Text Available This paper analyzes the survival of breast cancer patients, exploring the role of a metastasis variable in combination with clinical and gene expression variables. We use the hypertabastic model in a detailed analysis of 295 breast cancer patients from the Netherlands Cancer Institute given in. 1 In comparison to Cox regression the increase in accuracy is complemented by the ability to analyze the time course of the disease progression using the explicitly described hazard and survival curves. We also demonstrate the ability to compute deciles for survival and probability of survival to a given time. Our primary concern in this article is the introduction of a variable representing the existence of metastasis and the effects on the other clinical and gene expression variables. In addition to making a quantitative assessment of the impact of metastasis on the prospects for survival, we are able to look at its interactions with the other prognostic variables. The estrogen receptor status increase in importance, while the significance of the gene expression variables used in the combined model diminishes. When considering only the subgroup of patients who experienced metastasis, the covariates in the model are only the clinical variables for estrogen receptor status and tumor grade.

  14. Deficiency of Kruppel-like factor KLF4 in mammary tumor cells inhibits tumor growth and pulmonary metastasis and is accompanied by compromised recruitment of myeloid-derived suppressor cells

    Science.gov (United States)

    Yu, Fang; Shi, Ying; Wang, Junfeng; Li, Juan; Fan, Daping; Ai, Walden

    2013-01-01

    Increasing evidence indicates that myeloid-derived suppressor cells (MDSCs) negatively regulate immune responses during tumor progression, inflammation and infection. However, the underlying molecular mechanisms of their development and mobilization remain to be fully delineated. Kruppel-like factor KLF4 is a transcription factor that has an oncogenic function in breast cancer development, but its function in tumor microenvironment, a critical component for tumorigenesis, has not been examined. By using a spontaneously metastatic 4T1 breast cancer mouse model and an immunodeficient NOD/SCID mouse model, we demonstrated that KLF4 knockdown delayed tumor development and inhibited pulmonary metastasis, which was accompanied by decreased accumulation of MDSCs in bone marrow, spleens and primary tumors. Mechanistically, we found that KLF4 knockdown resulted in a significant decrease of circulating GM-CSF, an important cytokine for MDSC biology. Consistently, recombinant GM-CSF restored the frequency of MDSCs in purified bone marrow cells incubated with conditioned medium from KLF4 deficient cells. In addition, we identified CXCL5 as a critical mediator to enhance the expression and function of GM-CSF. Reduced CXCL5 expression by KLF4 knockdown in primary tumors and breast cancer cells was correlated with a decreased GM-CSF expression in our mouse models. Finally, we found that CXCL5/CXCR2 axis facilitated MDSC migration and that anti-GM-CSF antibodies neutralized CXCL5-induced accumulation of MDSCs. Taken together, our data suggest that KLF4 modulates maintenance of MDSCs in bone marrow by inducing GM-CSF production via CXCL5 and regulates recruitment of MDSCs into the primary tumors through the CXCL5/CXCR2 axis, both of which contribute to KLF4-mediated mammary tumor development. PMID:23737434

  15. Cytokines and tumor metastasis gene variants in oral cancer and precancer in Puerto Rico.

    Directory of Open Access Journals (Sweden)

    Esther Erdei

    Full Text Available A cross-sectional epidemiological study explored genetic susceptibility to oral precancer and cancer in Puerto Rico (PR.Three hundred three individuals with a benign oral condition, oral precancer (oral epithelial hyperplasia/hyperkeratosis, oral epithelial dysplasia, or oral squamous cell carcinoma (SCCA were identified via PR pathology laboratories. A standardized, structured questionnaire obtained information on epidemiological variables; buccal cells were collected for genetic analysis. Genotyping was performed using Taqman® assays. Allelic frequencies of single nucleotide polymorphisms (SNPs were evaluated in cytokine genes and genes influencing tumor metastasis. Risk estimates for a diagnosis of oral precancer or SCCA while having a variant allele were generated using logistic regression. Adjusted models controlled for age, gender, ancestry, education, smoking and alcohol consumption.Relative to persons with a benign oral lesion, individuals with homozygous recessive allelic variants of tumor necrosis factor (TNF-α -238 A/G SNP had a reduced odds of having an oral precancer (ORadjusted = 0.15; 95% CI 0.03-0.70. The transforming growth factor beta-1 (TGFβ-1 -509 C/T polymorphism was inversely associated with having an oral SCCA among persons homozygous for the recessive variant (ORcrude = 0.27; 95% CI 0.09-0.79. The matrix metalloproteinase gene (MMP-1 variant, rs5854, was associated with oral SCCA; participants with even one variant allele were more likely to have oral SCCA (ORadjusted = 2.62, 95% CI 1.05-6.53 compared to people with ancestral alleles.Our exploratory analyses suggest that genetic alterations in immune system genes and genes with metastatic potential are associated with oral precancer and SCCA risk in PR.

  16. Cytokines and tumor metastasis gene variants in oral cancer and precancer in Puerto Rico.

    Science.gov (United States)

    Erdei, Esther; Luo, Li; Sheng, Huiping; Maestas, Erika; White, Kirsten A M; Mackey, Amanda; Dong, Yan; Berwick, Marianne; Morse, Douglas E

    2013-01-01

    A cross-sectional epidemiological study explored genetic susceptibility to oral precancer and cancer in Puerto Rico (PR). Three hundred three individuals with a benign oral condition, oral precancer (oral epithelial hyperplasia/hyperkeratosis, oral epithelial dysplasia), or oral squamous cell carcinoma (SCCA) were identified via PR pathology laboratories. A standardized, structured questionnaire obtained information on epidemiological variables; buccal cells were collected for genetic analysis. Genotyping was performed using Taqman® assays. Allelic frequencies of single nucleotide polymorphisms (SNPs) were evaluated in cytokine genes and genes influencing tumor metastasis. Risk estimates for a diagnosis of oral precancer or SCCA while having a variant allele were generated using logistic regression. Adjusted models controlled for age, gender, ancestry, education, smoking and alcohol consumption. Relative to persons with a benign oral lesion, individuals with homozygous recessive allelic variants of tumor necrosis factor (TNF-α) -238 A/G SNP had a reduced odds of having an oral precancer (ORadjusted = 0.15; 95% CI 0.03-0.70). The transforming growth factor beta-1 (TGFβ-1 -509 C/T) polymorphism was inversely associated with having an oral SCCA among persons homozygous for the recessive variant (ORcrude = 0.27; 95% CI 0.09-0.79). The matrix metalloproteinase gene (MMP-1) variant, rs5854, was associated with oral SCCA; participants with even one variant allele were more likely to have oral SCCA (ORadjusted = 2.62, 95% CI 1.05-6.53) compared to people with ancestral alleles. Our exploratory analyses suggest that genetic alterations in immune system genes and genes with metastatic potential are associated with oral precancer and SCCA risk in PR.

  17. Oral cancer cells with different potential of lymphatic metastasis displayed distinct biologic behaviors and gene expression profiles.

    Science.gov (United States)

    Zhuang, Zhang; Jian, Pan; Longjiang, Li; Bo, Han; Wenlin, Xiao

    2010-02-01

    Oral squamous cell carcinoma (OSCC) often spreads from the primary tumor to regional lymph nodes in the early stage. Better understanding of the biology of lymphatic spread of oral cancer cells is important for improving the survival rate of cancer patients. We established the cell line LNMTca8113 by repeated injections in foot pads of nude mice, which had a much higher lymphatic metastasis rate than its parental cell line Tca8113. Then, we compared the biologic behaviors of cancer cells between them. Moreover, microarray-based expression profiles between them were also compared, and a panel of differential genes was validated using real-time-PCR. In contrast to Tca8113 cells, LNMTca8113 cells were more proliferative and resistant to apoptosis in the absence of serum, and had enhanced ability of inducing capillary-like structures. Moreover, microarray-based expression profiles between them identified 1341 genes involved in cell cycle, cell adhesion, lymphangiogenesis, regulation of apoptosis, and so on. Some genes dedicating to the metastatic potential, including JAM2, TNC, CTSC, LAMB1, VEGFC, HAPLN1, ACPP, GDF9 and FGF11, were upregulated in LNMTca8113 cells. These results suggested that LNMTca8113 and Tca8113 cells were proper models for lymphatic metastasis study because there were differences in biologic behaviors and metastasis-related genes between them. Additionally, the differentially expressed gene profiles in cancer progression may be helpful in exploring therapeutic targets and provide the foundation for further functional validation of these specific candidate genes for OSCC.

  18. Tumor suppressor genes that escape from X-inactivation contribute to cancer sex bias

    OpenAIRE

    Dunford, Andrew; Weinstock, David M.; Savova, Virginia; Schumacher, Steven E.; Cleary, John P.; Yoda, Akinori; Sullivan, Timothy J.; Hess, Julian M.; Gimelbrant, Alexander A.; Beroukhim, Rameen; Lawrence, Michael S.; Getz, Gad; Lane, Andrew A.

    2016-01-01

    There is a striking and unexplained male predominance across many cancer types. A subset of X chromosome (chrX) genes can escape X-inactivation, which would protect females from complete functional loss by a single mutation. To identify putative “Escape from X-Inactivation Tumor Suppressor” (EXITS) genes, we compared somatic alterations from >4100 cancers across 21 tumor types for sex bias. Six of 783 non-pseudoautosomal region (PAR) chrX genes (ATRX, CNKSR2, DDX3X, KDM5C, KDM6A, and MAGEC3) ...

  19. Analysis of loss of heterozygosity of the tumor suppressor genes p53 and BRCA1 in ovarial carcinomas

    Directory of Open Access Journals (Sweden)

    Luković Ljiljana

    2006-01-01

    Full Text Available Background/aim: Among the genes involved in ovarian carcinogenesis, there has been increased interest in tumor-suppressor genes p53 and BRCA1. Both of the genes make control of cell cycle, DNA repair and apoptosis. The p53 is a "genome guardian" inactivated in more than 50% of human cancers, while BRCA1 mutations are found mostly in breast and ovarian cancer. The aim of this investigation was to establish the frequency of loss of heterozygosity (LOH in the regions of the genes p53 and BRCA1 in ovarian carcinomas, and to analyze the association of LOH with the disease stage and prognosis. Methods. We analyzed 20 patients with a confirmed diagnosis of epithelilal ovarian carcinoma. DNA for molecular-genetic analysis was extracted from the tumor tissue and blood as normal tissue of each person. Microsatellite markers of the regions of genes p53 and BRCA1 were amplified by PCR method. The determination of allelic status of microsatellites and detection of LOH was performed after PAA gel electroforesis. Results. Both of the analyzed microsatellite markers were informative in 13/20 (65% cases. In the region of gene p53, LOH was established in 4/13 (30.7% tumors. One of them had histological gradus G1, one had gradus G2, and two of them had gradus G3, while all were with the International Federation of Gynecology and Obstetrics (FIGO IIIc stage. In the region of gene BRCA1, LOH was detected in 5/13 (38.5% tumors. Four of them had histological gradus G2, and one had gradus G3, while by the (FIGO classification one was with stage Ib, one was with stage IIIb, while the three were with stage IIIc. LOH in both of the analyzed regions was detected in one tumor (7.7%, with histological gradus G3 and the FIGO IIIc stage. Conclusion. The frequency of LOH in epthelial ovarian carcinomas was 30.7% and 38.5% for p53 and BRCA1 gene regions, respectively. Most of tumors with LOH had histological gradus G2 or G3, and the clinical FIGO stage IIIc, suggesting the

  20. [Analysis of loss of heterozygosity of the tumor suppressor genes p53 and BRCA1 in ovarial carcinomas].

    Science.gov (United States)

    Petrović, Bojana; Perović, Milica; Novaković, Ivana; Atanacković, Jasmina; Popović, Branka; Luković, Ljiljana; Petković, Spasoje

    2006-09-01

    Among the genes involved in ovarian carcinogenesis, there has been increased interest in tumor-suppressor genes p53 and BRCA1. Both of the genes make control of cell cycle, DNA repair and apoptosis. The p53 is a "genome guardian" inactivated in more than 50% of human cancers, while BRCA1 mutations are found mostly in breast and ovarian cancer. The aim of this investigation was to establish the frequency of loss of heterozygosity (LOH) in the regions of the genes p53 and BRCA1 in ovarian carcinomas, and to analyze the association of LOH with the disease stage and prognosis. We analyzed 20 patients with a confirmed diagnosis of epithelilal ovarian carcinoma. DNA for molecular-genetic analysis was extracted from the tumor tissue and blood as normal tissue of each person. Microsatellite markers of the regions of genes p53 and BRCA1 were amplified by PCR method. The determination of allelic status of microsatellites and detection of LOH was performed after PAA gel electroforesis. Both of the analyzed microsatellite markers were informative in 13/20 (65%) cases. In the region of gene p53, LOH was established in 4/13 (30.7%) tumors. One of them had histological gradus G1, one had gradus G2, and two of them had gradus G3, while all were with the International Federation of Gynecology and Obstetrics (FIGO) IIIc stage. In the region of gene BRCA1, LOH was detected in 5/13 (38.5%) tumors. Four of them had histological gradus G2, and one had gradus G3, while by the (FIGO) classification one was with stage Ib, one was with stage IIIb, while the three were with stage IlIc. LOH in both of the analyzed regions was detected in one tumor (7.70), with histological gradus G3 and the FIGO IIIc stage. The frequency of LOH in epthelial ovarian carcinomas was 30.7% and 38.5% for p53 and BRCA1 gene regions, respectively. Most of tumors with LOH had histological gradus G2 or G3, and the clinical FIGO stage IIIc, suggesting the association of this occurrence with a later phase of the disease.

  1. Protocadherin-10 acts as a tumor suppressor gene, and is frequently downregulated by promoter methylation in pancreatic cancer cells.

    Science.gov (United States)

    Qiu, Chan; Bu, Xiaona; Jiang, Zheng

    2016-07-01

    Protocadherin-10 (PCDH10), a member of non-clustered protocadherin family which plays important roles in calcium-dependent cell-cell signal transduction and adhesion. PCDH10 functions as a tumor suppressor gene and its expression is downregulated by promoter methylation in many malignances. In the present study, we explored PCDH10 expression and promoter methylation status, and its biological effects in pancreatic cancer cells, and furthermore, we explored the mechanism of PCDH10 preliminary in pancreatic cancer cells. the mRNA level of PCDH10 was detected by semi-quantitative reverse transcription PCR and promoter methylation status examined by methylation-specific PCR in the pancreatic cancer cells (Capan-1, Panc-1, AsPC-1 and BxPC-3) as well as the human normal pancreatic ductal epithelial cells HPDE6-C7 which was used as a control. The human pancreatic cells were transfected with plasmid pcDNA3.1-PCDH10 or pcDNA3.1 by lipofectamine 2000. The biological function of PCDH10 in pancreatic cancer cells was determined by CCK-8 assay, colony formation assay, flow cytometry, Transwell invasion assay and wound-healing assay. The levels of apoptosis related proteins were examined by western blotting. PCDH10 expression was obviously downregulated in the pancreatic cancer cells (Capan-1, Panc-1, BxPC-3) compared to the normal pancreatic ductal epithelial cells. PCDH10 promoter methylation was observed in the two pancreatic cancer cells Capan-1 and BxPC-3,and the expression of PCDH10 could be restored after treating with 5-aza-2'-deoxycytidine and trichostatin A in the two cell types. Overexpression of PCDH10 can inhibit the proliferation, migration, invasion ability of pancreatic cancer cells and induce apoptosis. Ectopic expression of PCDH10 could increase the levels of PARP, caspase-3, caspase-9 and decrease the level of bcl-2, AKT and p-AKT. PCDH10 acts as a tumor suppressor gene, and is frequently down-regulated by promoter methylation in pancreatic cancer cells. PCDH

  2. Tumor suppressor genes that escape from X-inactivation contribute to cancer sex bias

    Science.gov (United States)

    Dunford, Andrew; Weinstock, David M.; Savova, Virginia; Schumacher, Steven E.; Cleary, John P.; Yoda, Akinori; Sullivan, Timothy J.; Hess, Julian M.; Gimelbrant, Alexander A.; Beroukhim, Rameen; Lawrence, Michael S.; Getz, Gad; Lane, Andrew A.

    2016-01-01

    There is a striking and unexplained male predominance across many cancer types. A subset of X chromosome (chrX) genes can escape X-inactivation, which would protect females from complete functional loss by a single mutation. To identify putative “Escape from X-Inactivation Tumor Suppressor” (EXITS) genes, we compared somatic alterations from >4100 cancers across 21 tumor types for sex bias. Six of 783 non-pseudoautosomal region (PAR) chrX genes (ATRX, CNKSR2, DDX3X, KDM5C, KDM6A, and MAGEC3) more frequently harbored loss-of-function mutations in males (based on false discovery rate <0.1), compared to zero of 18,055 autosomal and PAR genes (P<0.0001). Male-biased mutations in genes that escape X-inactivation were observed in combined analysis across many cancers and in several individual tumor types, suggesting a generalized phenomenon. We conclude that biallelic expression of EXITS genes in females explains a portion of the reduced cancer incidence compared to males across a variety of tumor types. PMID:27869828

  3. Hypermethylation of the 16q23.1 Tumor Suppressor Gene ADAMTS18 in Clear Cell Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Ben Xu

    2015-01-01

    Full Text Available To identify tumor suppressor genes (TSGs silenced by hypermethylation and discover new epigenetic biomarkers for early cancer detection. ADAMTS18, located at 16q23.1, has been reported to be a critical TSG in multiple primary tumors; however, this has not yet been verified in clear cell renal cell carcinoma (ccRCC. We explored epigenetic alterations in this gene in ccRCC and analyzed possible clinicopathological associations. We examined ADAMTS18 gene expression and methylation by semi-quantitative reverse transcription PCR (RT-PCR and methylation-specific polymerase chain reaction (MSP in 5 ccRCC-derived cell lines before and after treatment with 5-aza-2'-deoxycytidine (5-AzaC. MSP was further performed for 101 ccRCC primary tumors and 20 adjacent normal tissues. Some cell lines and specimens were examined by subsequent bisulfite genomic sequencing (BGS and real-time PCR. Further, we analyzed the relationship between the ADAMTS18 gene methylation and clinicopathological features, including short-term disease-free survival (DFS, in patients with ccRCC. ADAMTS18 down-regulation and hypermethylation were detected in the ccRCC-derived cell lines using RT-PCR and MSP. Treatment with 5-AzaC reversed the hypermethylation of the ADAMTS18 gene and restored its expression. Hypermethylation was further detected in 44 of 101 (43.6% primary tumors and 3 of 20 (15.0% adjacent normal tissues. However, a significant difference between both groups was observed (p = 0.02. BGS analysis and real-time PCR were subsequently performed to confirm the results of RT-PCR and MSP. Furthermore, the methylation status of ADAMTS18 was not significantly associated with gender, age, location, tumor diameter, pathological stage, nuclear grade or short-term DFS in patients with ccRCC (p > 0.05. The ADAMTS18 gene is often down-regulated by hypermethylation in ccRCC-derived cell lines and primary tumors, indicating its critical role as a TSG in ccRCC. We conclude that ADAMTS18

  4. Aberrations of the p53 tumor suppressor gene in human epithelial ovarian carcinoma.

    Science.gov (United States)

    Kim, J W; Cho, Y H; Kwon, D J; Kim, T E; Park, T C; Lee, J M; Namkoong, S E

    1995-05-01

    Aberrations of the p53 gene in 26 surgical specimens of human epithelial ovarian carcinomas were examined by single-strand conformation polymorphism (SSCP) analysis of polymerase chain reaction (PCR) products. Seven (27%) of the tumors demonstrated a SSCP band shift in exons 4 to 9 of the gene, including 5 in the region encompassing exons 5 and 6, 1 in exon 7, and 1 in the region encompassing exons 8 and 9. Mutations were clustered in exon 5 in highly conserved regions of the p53 gene. All of the abnormal DNA fragments have been further characterized by direct DNA sequencing. These include five missense mutations (five transitions), a one-base-pair deletion introducing, by frameshift, a stop codon further downstream, and a two-base-pair insertion introducing a stop codon downstream by frameshift. Most mutations were base substitutions, and were clustered in exon 5 (71%), especially codons 175 and 179. The aberrations of the p53 gene were only found in tumors of FIGO stages III and IV. Histologic grading was also reviewed with respect to p53 aberrations. The aberrations were absent in well-differentiated carcinomas. The more undifferentiated the primary tumor, the more frequent p53 mutation (P p53 gene were common in epithelial ovarian cancers and p53 aberration may occur late during ovarian cancer evolution.

  5. PI3K/Akt/mTOR signaling & its regulator tumour suppressor genes PTEN & LKB1 in human uterine leiomyomas.

    Science.gov (United States)

    Makker, Annu; Goel, Madhu Mati; Mahdi, Abbas Ali; Bhatia, Vikram; Das, Vinita; Agarwal, Anjoo; Pandey, Amita

    2016-05-01

    Despite their high occurrence and associated significant level of morbidity manifesting as spectrum of clinical symptoms, the pathogenesis of uterine leiomyomas (ULs) remains unclear. We investigated expression profile of tumour suppressor genes PTEN (phosphatase and tensin homolog deleted on chromosome ten) and LKB1 (liver kinase B1), and key signaling components of P13K (phosphatidylinositol 3-kinase)/Akt (protein kinase B)/mTOR (mammalian target of rapamycin) pathway in leiomyomas and adjacent normal myometrium in women of reproductive age, to explore the possibility of targeting this pathway for future therapeutic implications. Real time PCR (qPCR) was used to quantify relative gene expression levels of PTEN, Akt1, Akt2, mTOR, LKB1 and VEGFA (vascular endothelial growth factor A) in leiomyoma as compared to adjacent normal myometrium. Immunohistochemistry was subsequently performed to analyze expression of PTEN, phospho-Akt, phospho-mTOR, phospho-S6, LKB1 and VEGFA in leiomyoma and adjacent normal myometrium. Significant upregulation of PTEN (2.52 fold; P=0.03) and LKB1 (3.93 fold; P0.01), and downregulation of VEGFA (2.95 fold; P=0.01) genes were observed in leiomyoma as compared to normal myometrium. Transcript levels of Akt1, Akt2 and mTOR did not vary significantly between leiomyoma and myometrium. An increased immunoexpression of PTEN (P=0.015) and LKB1 (PPTEN and LKB1 in concert with negative or low levels of activated Akt, mTOR and S6 indicates that PI3K/Akt/mTOR pathway may not play a significant role in pathogenesis of leiomyoma.

  6. The common mechanisms of transformation by the small DNA tumor viruses: The inactivation of tumor suppressor gene products: p53.

    Science.gov (United States)

    Levine, Arnold J

    2009-02-20

    The small DNA tumor viruses, Polyoma virus, Simian Vacuolating Virus 40, the Papilloma viruses and the human Adenoviruses, were first described during a period of intense virus discovery (1930-1960s) and shown to produce tumors in animals. In each of these cases the viral DNA was shown to persist (commonly integrated into a host chromosome) and only a selected portion of this DNA was expressed as m-RNA and proteins in these cancers. The viral encoded tumor antigens were identified and shown to be required to both establish the tumor and maintain the transformed cell phenotype. The functions of these viral tumor antigens were explored and shown to have common features and mechanisms even though they appear to have evolved from diverse genes. The SV40 large tumor antigen, the human Papilloma virus E7 protein and the Adenovirus E1A protein were shown to bind to and inactivate the functions of the Retinoblastoma proteins in transformed cells. This resulted in the activation of the E2F and DP transcription factors and the entry of cells into the S-phase of DNA synthesis which was required for viral DNA replication. These events triggered the activation of p53 which promotes apoptosis of these virus infected cells limiting virus replication and tumor formation. These viruses responded by evolving and producing the SV40 large tumor antigen, the human Papilloma virus E6 protein and the Adenovirus E1b-55Kd protein which binds to and inactivates the p53 functions in both the infected cells and transformed cells. Some of the human Papilloma viruses and one of the Polyoma viruses have been shown to cause selected cancers in humans. Both the p53 tumor suppressor gene, which was uncovered in the studies with these viruses, and the retinoblastoma protein, have been shown to play a central role in the origins of human cancers via both somatic and germ line mutations in those genes.

  7. The tumor suppressor gene hypermethylated in cancer 1 is transcriptionally regulated by E2F1

    DEFF Research Database (Denmark)

    Jenal, Mathias; Trinh, Emmanuelle; Britschgi, Christian

    2009-01-01

    The Hypermethylated in Cancer 1 (HIC1) gene encodes a zinc finger transcriptional repressor that cooperates with p53 to suppress cancer development. We and others recently showed that HIC1 is a transcriptional target of p53. To identify additional transcriptional regulators of HIC1, we screened...

  8. Transcriptional regulation of teleost aicda genes. Pt 1 suppressors of promiscuous promoters

    Science.gov (United States)

    In order to better understand antibody affinity maturation in fishes we sought to identify gene regulatory elements that could drive expression of activated B-cell specific fluorescent reporter transgenes in zebrafish. Specifically the promoter and several non-coding regions of the channel catfish (...

  9. miR-203 Acts as a Tumor Suppressor Gene in Osteosarcoma by Regulating RAB22A.

    Directory of Open Access Journals (Sweden)

    Dawei Yang

    Full Text Available microRNAs (miRNAs, small noncoding RNAs of 19-25 nt, play an important roles in the pathological processes of tumorigenesis. The object of this study was to study the expression and function of miR-203 and to found its target gene in osteosarcoma. In our study, we found the expression level of miR-203 was significantly downregulated in osteosarcoma cell lines and tissues. In addition, overexpression of miR-203 inhibited the osteosarcoma cell proliferation and migration and inhibited Mesenchymal-to-Epithelial reversion Transition (MErT. Moreover, we identified RAB22A as a direct target of miR-203 and RAB22A overexpression blocks the roles of miR-203 in osteosarcoma cell. Furthermore, we demonstrated that RAB22A expression was upregulated in human osteosarcoma cell lines and tissues. Take together, our results demonstrated that miR-203 act as a tumor suppressor miRNA through regulating RAB22A expression and suggested its involvement in osteosarcoma progression and carcinogenesis.

  10. The induction of a tumor suppressor gene (p53) expression by low-dose radiation and its biological meaning

    International Nuclear Information System (INIS)

    Ohnishi, Takeo

    1997-01-01

    I report the induced accumulation of wild-type p53 protein of a tumor suppressor gene within 12 h in various organs of rats exposed to X-ray irradiation at low doses (10-50 cGy). The levels of p53 in some organs of irradiated rats were increased about 2- to 3-fold in comparison with the basal p53 levels in non-irradiated rats. Differences in the levels of p53 induction after low-dose X-ray irradiation were observed among the small intestine, bone marrow, brain, liver, adrenal gland, spleen, hypophysis and skin. In contrast, there was no obvious accumulation of p53 protein in the testis and ovary. Thus, the induction of cellular p.53 accumulation by low-dose X-ray irradiation in rats seems to be organ-specific. I consider that cell type, and interactions with other signal transduction pathways of the hormone system, immune system and nervous system may contribute to the variable induction of p53 by low-dose X-ray irradiation. I discussed the induction of p53 by radiation and its biological meaning from an aspect of the defense system for radiation-induced cancer. (author)

  11. Tumor suppressor QM-like gene from disk abalone (Haliotis discus discus): molecular characterization and transcriptional analysis upon immune challenge.

    Science.gov (United States)

    Oh, Chulhong; De Zoysa, Mahanama; Nikapitiya, Chamilani; Whang, Ilson; Kim, Yu Cheol; Kang, Do-Hyung; Heo, Soo-jin; Choi, Young-Ung; Choi, Cheol Young; Lee, Jae-Seong; Lee, Jehee

    2010-09-01

    We describe molecular characterization and transcriptional analysis of the gene encoding tumor suppressor QM-like protein, AbQM, in the disk abalone Haliotis discus discus. The full-length cDNA (765-bp) of AbQM was found to consist of a 654-bp ORF coding for a 218 amino acid protein of a 25 kDa molecular mass with a 10.2 isoelectric point. Analysis of AbQM sequence revealed the presence of characteristic motifs, including the ribosomal protein L10 signature, SH3-binding motif and two antibiotic binding sites. Phylogenetic analysis confirmed that AbQM is closely related to other mollusk QM proteins, and altogether they form a mollusk QM protein sub-family which displays evolutionary conservation from yeast to human. Tissue-specific expression and transcriptional regulation of AbQM was analyzed by quantitative real-time PCR in response to bacterial (Vibrio alginolyticus and Vibrio parahemolyticus, Listeria monocytogenes) and viral (viral hemorrhagic septicemia virus, VHSV) challenge. AbQM transcripts were found to be expressed ubiquitously in all examined tissues in a constitutive manner, as similar expression levels were detected in hemocytes, mantle, digestive tract and muscle. Upon bacterial and VHSV challenge, AbQM showed significant up-regulation in gills, but not in hemocytes. Taken together, these findings suggest that AbQM in abalone-like mollusks can respond to and facilitate a defensive effect against pathogenic infection. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. The P0 gene of Sugarcane yellow leaf virus encodes an RNA silencing suppressor with unique activities

    International Nuclear Information System (INIS)

    Mangwende, Tichaona; Wang Mingli; Borth, Wayne; Hu, John; Moore, Paul H.; Mirkov, T. Erik; Albert, Henrik H.

    2009-01-01

    The Sugarcane yellow leaf virus (SCYLV) P0, a member of the highly heterologous proteins of poleroviruses, is a suppressor of posttranscriptional gene silencing (PTGS) and has additional activities not seen in other P0 proteins. The P0 protein in previously tested poleroviruses (Beet western yellows virus and Cucurbit aphid-borne yellows virus), suppresses local, but not systemic, PTGS induced by both sense GFP and inverted repeat GF using its F-box-like domain to mediate destabilization of the Argonaute1 protein. We now report that the SCYLV P0 protein not only suppressed local PTGS induced by sense GFP and inverted repeat GF in Nicotiana benthamiana, but also triggered a dosage dependent cell death phenotype in infiltrated leaves and suppressed systemic sense GFP-PTGS. Deletion of the first 15 N-terminal amino acid residues of SCYLV P0 abolished suppression of both local and systemic PTGS and the induction of cell death. In contrast, only systemic PTGS and cell death were lost when the 15 C-terminal amino acid residues were deleted. We conclude that the 15 C-terminal amino acid residue region of SCYLV P0 is necessary for suppressing systemic PTGS and inducing cell death, but is not required for suppression of local PTGS

  13. Alternative polyadenylation of tumor suppressor genes in small intestinal neuroendocrine tumors

    DEFF Research Database (Denmark)

    Rehfeld, Anders Aagaard; Plass, Mireya; Døssing, Kristina

    2014-01-01

    The tumorigenesis of small intestinal neuroendocrine tumors (SI-NETs) is poorly understood. Recent studies have associated alternative polyadenylation (APA) with proliferation, cell transformation, and cancer. Polyadenylation is the process in which the pre-messenger RNA is cleaved at a polyA site...... and a polyA tail is added. Genes with two or more polyA sites can undergo APA. This produces two or more distinct mRNA isoforms with different 3' untranslated regions. Additionally, APA can also produce mRNAs containing different 3'-terminal coding regions. Therefore, APA alters both the repertoire...... and the expression level of proteins. Here, we used high-throughput sequencing data to map polyA sites and characterize polyadenylation genome-wide in three SI-NETs and a reference sample. In the tumors, 16 genes showed significant changes of APA pattern, which lead to either the 3' truncation of mRNA coding regions...

  14. A targeted constitutive mutation in the APC tumor suppressor gene underlies mammary but not intestinal tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Claudia Gaspar

    2009-07-01

    Full Text Available Germline mutations in the adenomatous polyposis coli (APC gene are responsible for familial adenomatous polyposis (FAP, an autosomal dominant hereditary predisposition to the development of multiple colorectal adenomas and of a broad spectrum of extra-intestinal tumors. Moreover, somatic APC mutations play a rate-limiting and initiating role in the majority of sporadic colorectal cancers. Notwithstanding its multifunctional nature, the main tumor suppressing activity of the APC gene resides in its ability to regulate Wnt/beta-catenin signaling. Notably, genotype-phenotype correlations have been established at the APC gene between the length and stability of the truncated proteins encoded by different mutant alleles, the corresponding levels of Wnt/beta-catenin signaling activity they encode for, and the incidence and distribution of intestinal and extra-intestinal tumors. Here, we report a novel mouse model, Apc1572T, obtained by targeting a truncated mutation at codon 1572 in the endogenous Apc gene. This hypomorphic mutant allele results in intermediate levels of Wnt/beta-catenin signaling activation when compared with other Apc mutations associated with multifocal intestinal tumors. Notwithstanding the constitutive nature of the mutation, Apc(+/1572T mice have no predisposition to intestinal cancer but develop multifocal mammary adenocarcinomas and subsequent pulmonary metastases in both genders. The histology of the Apc1572T primary mammary tumours is highly heterogeneous with luminal, myoepithelial, and squamous lineages and is reminiscent of metaplastic carcinoma of the breast in humans. The striking phenotype of Apc(+/1572T mice suggests that specific dosages of Wnt/beta-catenin signaling activity differentially affect tissue homeostasis and initiate tumorigenesis in an organ-specific fashion.

  15. Prediction of functionally significant single nucleotide polymorphisms in PTEN tumor suppressor gene: An in silico approach.

    Science.gov (United States)

    Khan, Imran; Ansari, Irfan A; Singh, Pratichi; Dass J, Febin Prabhu

    2017-09-01

    The phosphatase and tensin homolog (PTEN) gene plays a crucial role in signal transduction by negatively regulating the PI3K signaling pathway. It is the most frequent mutated gene in many human-related cancers. Considering its critical role, a functional analysis of missense mutations of PTEN gene was undertaken in this study. Thirty five nonsynonymous single nucleotide polymorphisms (nsSNPs) within the coding region of the PTEN gene were selected for our in silico investigation, and five nsSNPs (G129E, C124R, D252G, H61D, and R130G) were found to be deleterious based on combinatorial predictions of different computational tools. Moreover, molecular dynamics (MD) simulation was performed to investigate the conformational variation between native and all the five mutant PTEN proteins having predicted deleterious nsSNPs. The results of MD simulation of all mutant models illustrated variation in structural attributes such as root-mean-square deviation, root-mean-square fluctuation, radius of gyration, and total energy; which depicts the structural stability of PTEN protein. Furthermore, mutant PTEN protein structures also showed a significant variation in the solvent accessible surface area and hydrogen bond frequencies from the native PTEN structure. In conclusion, results of this study have established the deleterious effect of the all the five predicted nsSNPs on the PTEN protein structure. Thus, results of the current study can pave a new platform to sort out nsSNPs that can be undertaken for the confirmation of their phenotype and their correlation with diseased status in case of control studies. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  16. The Role of Tumor Metastases Suppressor Gene, Drg-1, in Breast Cancer

    National Research Council Canada - National Science Library

    Watabe, Kounosuke

    2008-01-01

    .... This inhibition leads to down-regulation of the ATF3 gene and thus suppressing metastases. We also found that a combination of NDRGI, PTEN and ATF3 is a good prognostic marker for breast cancer patients. These results suggest that the Wnt and ATF3 pathways are a potential therapeutic target for patients with metastatic disease. We will focus our next year's effort on further clarification of the NDRG1 pathway.

  17. NKL homeobox gene MSX1 acts like a tumor suppressor in NK-cell leukemia.

    Science.gov (United States)

    Nagel, Stefan; Pommerenke, Claudia; Meyer, Corinna; Kaufmann, Maren; MacLeod, Roderick A F; Drexler, Hans G

    2017-09-15

    NKL homeobox gene MSX1 is physiologically expressed in lymphoid progenitors and subsequently downregulated in developing T- and B-cells. In contrast, elevated expression levels of MSX1 persist in mature natural killer (NK)-cells, indicating a functional role in this compartment. While T-cell acute lymphoblastic leukemia (T-ALL) subsets exhibit aberrant overexpression of MSX1, we show here that in malignant NK-cells the level of MSX1 transcripts is aberrantly downregulated. Chromosomal deletions at 4p16 hosting the MSX1 locus have been described in NK-cell leukemia patients. However, NK-cell lines analyzed here showed normal MSX1 gene configurations, indicating that this aberration might be uncommon. To identify alternative MSX1 regulatory mechanisms we compared expression profiling data of primary normal NK-cells and malignant NK-cell lines. This procedure revealed several deregulated genes including overexpressed IRF4, MIR155HG and MIR17HG and downregulated AUTS2, EP300, GATA3 and HHEX. As shown recently, chromatin-modulator AUTS2 is overexpressed in T-ALL subsets where it mediates aberrant transcriptional activation of MSX1. Here, our data demonstrate that in malignant NK-cell lines AUTS2 performed MSX1 activation as well, but in accordance with downregulated MSX1 transcription therein we detected reduced AUTS2 expression, a small genomic deletion at 7q11 removing exons 3 and 4, and truncating mutations in exon 1. Moreover, genomic profiling and chromosomal analyses of NK-cell lines demonstrated amplification of IRF4 at 6p25 and deletion of PRDM1 at 6q21, highlighting their potential oncogenic impact. Functional analyses performed via knockdown or forced expression of these genes revealed regulatory network disturbances effecting downregulation of MSX1 which may underlie malignant development in NK-cells.

  18. Relationship of ultrasonic shear wave velocity with oncogene and tumor suppressor gene expression in primary liver cancer lesions as well as angiogenesis factor contents

    Directory of Open Access Journals (Sweden)

    Xing Yin1

    2017-06-01

    Full Text Available Objective: To discuss the relationship of ultrasonic shear wave velocity (SWV with oncogene and tumor suppressor gene expression in primary liver cancer lesions as well as angiogenesis factor contents. Methods: 100 patients with primary liver cancer who underwent surgical treatment in our hospital between March 2014 and September 2016 were collected as observation group, and 50 healthy subjects who received physical examination in our hospital during the same period were collected as normal control group. The ultrasonic SWV levels of two groups of subjects were measured before the operation, and the observation groups were further divided into high SWV group and low SWV group, 50 cases in each group. Intraoperative tumor tissue samples were kept and fluorescence quantitative PCR was used to determine the mRNA expression of oncogenes and tumor suppressor genes. Enzymelinked immunosorbent assay was used to determine serum contents of angiogenesis factors in observation group before operation. Results: Hepatic ultrasonic SWV level in observation group was significantly higher than that in normal control group; proto-oncogene CK, Ki67, Gly-3, Survivin and Pokemon mRNA expression in tumor tissue of high SWV group were higher than those of low SWV group while tumor suppressor genes Tg737, p16, p27, PTEN and runx3 mRNA expression were lower than those of low SWV group; serum angiogenesis factors VEGF, MMP-9 and IGF-1R contents were higher than those in low SWV group. Conclusion: The hepatic ultrasonic SWV level increases in patients with primary liver cancer, and the SWV level is directly correlated with oncogene and tumor suppressor gene expression as well as angiogenesis factor contents.

  19. Thrombospondin-4 is a putative tumour-suppressor gene in colorectal cancer that exhibits age-related methylation

    International Nuclear Information System (INIS)

    Greco, Sonia A; Leggett, Barbara A; Whitehall, Vicki LJ; Chia, June; Inglis, Kelly J; Cozzi, Sarah-Jane; Ramsnes, Ingunn; Buttenshaw, Ronald L; Spring, Kevin J; Boyle, Glen M; Worthley, Daniel L

    2010-01-01

    colon. THBS4 shows increased methylation in colorectal cancer, but this is not strongly associated with altered gene expression, either because methylation has not always reached a critical level or because other factors influence THBS4 expression. THBS4 may act as a tumour suppressor gene, demonstrated by its suppression of tumour colony formation in vitro. THBS4 methylation is detectable in normal colonic mucosa and its level may be a biomarker for the occurrence of adenomas and carcinoma

  20. Inactivation of the FLCN tumor suppressor gene induces TFE3 transcriptional activity by increasing its nuclear localization.

    Directory of Open Access Journals (Sweden)

    Seung-Beom Hong

    2010-12-01

    Full Text Available Germline mutations in a tumor suppressor gene FLCN lead to development of fibrofolliculomas, lung cysts and renal cell carcinoma (RCC in Birt-Hogg-Dubé syndrome. TFE3 is a member of the MiTF/TFE transcription factor family and Xp11.2 translocations found in sporadic RCC involving TFE3 result in gene fusions and overexpression of chimeric fusion proteins that retain the C-terminal DNA binding domain of TFE3. We found that GPNMB expression, which is regulated by MiTF, was greatly elevated in renal cancer cells harboring either TFE3 translocations or FLCN inactivation. Since TFE3 is implicated in RCC, we hypothesized that elevated GPNMB expression was due to increased TFE3 activity resulting from the inactivation of FLCN.TFE3 knockdown reduced GPNMB expression in renal cancer cells harboring either TFE3 translocations or FLCN inactivation. Moreover, FLCN knockdown induced GPNMB expression in FLCN-restored renal cancer cells. Conversely, wildtype FLCN suppressed GPNMB expression in FLCN-null cells. FLCN inactivation was correlated with increased TFE3 transcriptional activity accompanied by its nuclear localization as revealed by elevated GPNMB mRNA and protein expression, and predominantly nuclear immunostaining of TFE3 in renal cancer cells, mouse embryo fibroblast cells, mouse kidneys and mouse and human renal tumors. Nuclear localization of TFE3 was associated with TFE3 post-translational modifications including decreased phosphorylation.Increased TFE3 activity is a downstream event induced by FLCN inactivation and is likely to be important for renal tumor development. This study provides an important novel mechanism for induction of TFE3 activity in addition to TFE3 overexpression resulting from Xp11.2 translocations, suggesting that TFE3 may be more broadly involved in tumorigenesis.

  1. Molecular characterization of two suppressor of cytokine signaling 1 genes (SOCS1a and SOCS1b in chickens

    Directory of Open Access Journals (Sweden)

    Xue XU,Jiannan ZHANG,Juan LI,Yajun WANG

    2015-03-01

    Full Text Available Suppressor of cytokine signaling 1 (SOCS1 protein can inhibit the signal transduction triggered by some cytokines or hormones and thus are important in many physiological/pathological processes, including innate and adaptive immunity, inflammation, and development in mammals. However, there is sparse information about their structure, tissue expression, in birds, where their biological functions remain unknown. In this study, we cloned and characterized two SOCS1 genes (named cSOCS1a and cSOCS1b from chickens. SOCS1a is predicted to encode a 207-amino acid protein, which shares high amino acid sequence identity (64%–67% with human and mouse SOCS1. Besides SOCS1a, a novel SOCS1b gene was also identified in chickens and other non-mammalian vertebrates including Xenopus tropicalis. Chicken SOCS1b is predicted to encode a 212-amino acid protein, which shares only 30%–32% amino acid sequence identity with human SOCS1 and cSOCS1a. RT-PCR assay revealed that both cSOCS1a and cSOCS1b are widely expressed in all chicken tissues. Using a luciferase reporter assay system, we further demonstrated that transient expression of cSOCS1a and cSOCS1b can significantly inhibit chicken growth hormone (GH- or prolactin (PRL-induced luciferase activities of Hep G2 cells expressing cGH receptor (or cPRL receptor, indicating that SOCS1a and SOCS1b proteins can negatively regulate GH/PRL signaling. Taken together, these data suggest that both cSOCS1a and cSOCS1b may function as negative regulators of cytokine/hormone actions, such as modulation of GH/PRL actions in chickens.

  2. miR-92a family and their target genes in tumorigenesis and metastasis

    International Nuclear Information System (INIS)

    Li, Molin; Guan, Xingfang; Sun, Yuqiang; Mi, Jun; Shu, Xiaohong; Liu, Fang; Li, Chuangang

    2014-01-01

    The miR-92a family, including miR-25, miR-92a-1, miR-92a-2 and miR-363, arises from three different paralog clusters miR-17-92, miR-106a-363, and miR-106b-25 that are highly conservative in the process of evolution, and it was thought as a group of microRNAs (miRNAs) correlated with endothelial cells. Aberrant expression of miR-92a family was detected in multiple cancers, and the disturbance of miR-92a family was related with tumorigenesis and tumor development. In this review, the progress on the relationship between miR-92a family and their target genes and malignant tumors will be summarized. - Highlights: • Aberrant expression of miR-92a, miR-25 and miR-363 can be observed in many kinds of malignant tumors. • The expression of miR-92a family is regulated by LOH, epigenetic alteration, transcriptional factors such as SP1, MYC, E2F, wild-type p53 etc. • Roles of miR-92a family in tumorigenesis and development: promoting cell proliferation, invasion and metastasis, inhibiting cell apoptosis

  3. miR-92a family and their target genes in tumorigenesis and metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Molin, E-mail: molin_li@hotmail.com [Department of Pathophysiology, Basic Medical Science of Dalian Medical University, Dalian 116044 (China); Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, Dalian 116044 (China); Guan, Xingfang; Sun, Yuqiang [Department of Pathophysiology, Basic Medical Science of Dalian Medical University, Dalian 116044 (China); Mi, Jun [Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, Dalian 116044 (China); Shu, Xiaohong [College of Pharmacy, Dalian Medical University Cancer Center, Dalian 116044 (China); Liu, Fang [Department of Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027 (China); Li, Chuangang, E-mail: li_chuangang@sina.com [Department of Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027 (China)

    2014-04-15

    The miR-92a family, including miR-25, miR-92a-1, miR-92a-2 and miR-363, arises from three different paralog clusters miR-17-92, miR-106a-363, and miR-106b-25 that are highly conservative in the process of evolution, and it was thought as a group of microRNAs (miRNAs) correlated with endothelial cells. Aberrant expression of miR-92a family was detected in multiple cancers, and the disturbance of miR-92a family was related with tumorigenesis and tumor development. In this review, the progress on the relationship between miR-92a family and their target genes and malignant tumors will be summarized. - Highlights: • Aberrant expression of miR-92a, miR-25 and miR-363 can be observed in many kinds of malignant tumors. • The expression of miR-92a family is regulated by LOH, epigenetic alteration, transcriptional factors such as SP1, MYC, E2F, wild-type p53 etc. • Roles of miR-92a family in tumorigenesis and development: promoting cell proliferation, invasion and metastasis, inhibiting cell apoptosis.

  4. Suicide Gene-Engineered Stromal Cells Reveal a Dynamic Regulation of Cancer Metastasis

    Science.gov (United States)

    Shen, Keyue; Luk, Samantha; Elman, Jessica; Murray, Ryan; Mukundan, Shilpaa; Parekkadan, Biju

    2016-02-01

    Cancer-associated fibroblasts (CAFs) are a major cancer-promoting component in the tumor microenvironment (TME). The dynamic role of human CAFs in cancer progression has been ill-defined because human CAFs lack a unique marker needed for a cell-specific, promoter-driven knockout model. Here, we developed an engineered human CAF cell line with an inducible suicide gene to enable selective in vivo elimination of human CAFs at different stages of xenograft tumor development, effectively circumventing the challenge of targeting a cell-specific marker. Suicide-engineered CAFs were highly sensitive to apoptosis induction in vitro and in vivo by the addition of a simple small molecule inducer. Selection of timepoints for targeted CAF apoptosis in vivo during the progression of a human breast cancer xenograft model was guided by a bi-phasic host cytokine response that peaked at early timepoints after tumor implantation. Remarkably, we observed that the selective apoptosis of CAFs at these early timepoints did not affect primary tumor growth, but instead increased the presence of tumor-associated macrophages and the metastatic spread of breast cancer cells to the lung and bone. The study revealed a dynamic relationship between CAFs and cancer metastasis that has counter-intuitive ramifications for CAF-targeted therapy.

  5. Differential expression of the klf6 tumor suppressor gene upon cell damaging treatments in cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Gehrau, Ricardo C.; D' Astolfo, Diego S.; Andreoli, Veronica [Centro de Investigaciones en Bioquimica Clinica e Inmunologia (CIBICI-CONICET), Departamento de Bioquimica Clinica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, 5000 Cordoba (Argentina); Bocco, Jose L., E-mail: jbocco@fcq.unc.edu.ar [Centro de Investigaciones en Bioquimica Clinica e Inmunologia (CIBICI-CONICET), Departamento de Bioquimica Clinica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, 5000 Cordoba (Argentina); Koritschoner, Nicolas P. [Centro de Investigaciones en Bioquimica Clinica e Inmunologia (CIBICI-CONICET), Departamento de Bioquimica Clinica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, 5000 Cordoba (Argentina)

    2011-02-10

    The mammalian Krueppel-like factor 6 (KLF6) is involved in critical roles such as growth-related signal transduction, cell proliferation and differentiation, development, apoptosis and angiogenesis. Also, KLF6 appears to be an emerging key factor during cancer development and progression. Its expression is thoroughly regulated by several cell-damaging stimuli. DNA damaging agents at lethal concentrations induce a p53-independent down-regulation of the klf6 gene. To investigate the impact of external stimuli on human klf6 gene expression, its mRNA level was analyzed using a cancer cell line profiling array system, consisting in an assortment of immobilized cDNAs from multiple cell lines treated with several cell-damaging agents at growth inhibitory concentrations (IC{sub 50}). Cell-damaging agents affected the klf6 expression in 62% of the cDNA samples, though the expression pattern was not dependent on the cell origin type. Interestingly, significant differences (p < 0.0001) in KLF6 mRNA levels were observed depending on the cellular p53 status upon cell damage. KLF6 expression was significantly increased in 63% of p53-deficient cells (122/195). Conversely, KLF6 mRNA level decreased nearly 4 fold in more than 70% of p53+/+ cells. In addition, klf6 gene promoter activity was down-regulated by DNA damaging agents in cells expressing the functional p53 protein whereas it was moderately increased in the absence of functional p53. Consistent results were obtained for the endogenous KLF6 protein level. Results indicate that human klf6 gene expression is responsive to external cell damage mediated by IC{sub 50} concentrations of physical and chemical stimuli in a p53-dependent manner. Most of these agents are frequently used in cancer therapy. Induction of klf6 expression in the absence of functional p53 directly correlates with cell death triggered by these compounds, whereas it is down-regulated in p53+/+ cells. Hence, klf6 expression level could represent a valuable

  6. Differential expression of the klf6 tumor suppressor gene upon cell damaging treatments in cancer cells

    International Nuclear Information System (INIS)

    Gehrau, Ricardo C.; D'Astolfo, Diego S.; Andreoli, Veronica; Bocco, Jose L.; Koritschoner, Nicolas P.

    2011-01-01

    The mammalian Krueppel-like factor 6 (KLF6) is involved in critical roles such as growth-related signal transduction, cell proliferation and differentiation, development, apoptosis and angiogenesis. Also, KLF6 appears to be an emerging key factor during cancer development and progression. Its expression is thoroughly regulated by several cell-damaging stimuli. DNA damaging agents at lethal concentrations induce a p53-independent down-regulation of the klf6 gene. To investigate the impact of external stimuli on human klf6 gene expression, its mRNA level was analyzed using a cancer cell line profiling array system, consisting in an assortment of immobilized cDNAs from multiple cell lines treated with several cell-damaging agents at growth inhibitory concentrations (IC 50 ). Cell-damaging agents affected the klf6 expression in 62% of the cDNA samples, though the expression pattern was not dependent on the cell origin type. Interestingly, significant differences (p 50 concentrations of physical and chemical stimuli in a p53-dependent manner. Most of these agents are frequently used in cancer therapy. Induction of klf6 expression in the absence of functional p53 directly correlates with cell death triggered by these compounds, whereas it is down-regulated in p53+/+ cells. Hence, klf6 expression level could represent a valuable marker for the efficiency of cell death upon cancer treatment.

  7. Genetic interactions between the Drosophila tumor suppressor gene ept and the stat92E transcription factor.

    Directory of Open Access Journals (Sweden)

    M Melissa Gilbert

    2009-09-01

    Full Text Available Tumor Susceptibility Gene-101 (TSG101 promotes the endocytic degradation of transmembrane proteins and is implicated as a mutational target in cancer, yet the effect of TSG101 loss on cell proliferation in vertebrates is uncertain. By contrast, Drosophila epithelial tissues lacking the TSG101 ortholog erupted (ept develop as enlarged undifferentiated tumors, indicating that the gene can have anti-growth properties in a simple metazoan. A full understanding of pathways deregulated by loss of Drosophila ept will aid in understanding potential links between mammalian TSG101 and growth control.We have taken a genetic approach to the identification of pathways required for excess growth of Drosophila eye-antennal imaginal discs lacking ept. We find that this phenotype is very sensitive to the genetic dose of stat92E, the transcriptional effector of the Jak-Stat signaling pathway, and that this pathway undergoes strong activation in ept mutant cells. Genetic evidence indicates that stat92E contributes to cell cycle deregulation and excess cell size phenotypes that are observed among ept mutant cells. In addition, autonomous Stat92E hyper-activation is associated with altered tissue architecture in ept tumors and an effect on expression of the apical polarity determinant crumbs.These findings identify ept as a cell-autonomous inhibitor of the Jak-Stat pathway and suggest that excess Jak-Stat signaling makes a significant contribution to proliferative and tissue architectural phenotypes that occur in ept mutant tissues.

  8. ETS transcription factors control transcription of EZH2 and epigenetic silencing of the tumor suppressor gene Nkx3.1 in prostate cancer.

    Directory of Open Access Journals (Sweden)

    Paolo Kunderfranco

    2010-05-01

    Full Text Available ETS transcription factors regulate important signaling pathways involved in cell differentiation and development in many tissues and have emerged as important players in prostate cancer. However, the biological impact of ETS factors in prostate tumorigenesis is still debated.We performed an analysis of the ETS gene family using microarray data and real-time PCR in normal and tumor tissues along with functional studies in normal and cancer cell lines to understand the impact in prostate tumorigenesis and identify key targets of these transcription factors. We found frequent dysregulation of ETS genes with oncogenic (i.e., ERG and ESE1 and tumor suppressor (i.e., ESE3 properties in prostate tumors compared to normal prostate. Tumor subgroups (i.e., ERG(high, ESE1(high, ESE3(low and NoETS tumors were identified on the basis of their ETS expression status and showed distinct transcriptional and biological features. ERG(high and ESE3(low tumors had the most robust gene signatures with both distinct and overlapping features. Integrating genomic data with functional studies in multiple cell lines, we demonstrated that ERG and ESE3 controlled in opposite direction transcription of the Polycomb Group protein EZH2, a key gene in development, differentiation, stem cell biology and tumorigenesis. We further demonstrated that the prostate-specific tumor suppressor gene Nkx3.1 was controlled by ERG and ESE3 both directly and through induction of EZH2.These findings provide new insights into the role of the ETS transcriptional network in prostate tumorigenesis and uncover previously unrecognized links between aberrant expression of ETS factors, deregulation of epigenetic effectors and silencing of tumor suppressor genes. The link between aberrant ETS activity and epigenetic gene silencing may be relevant for the clinical management of prostate cancer and design of new therapeutic strategies.

  9. MiR-200a Suppresses the Proliferation and Metastasis in Pancreatic Ductal Adenocarcinoma through Downregulation of DEK Gene

    Directory of Open Access Journals (Sweden)

    Xiaoyu Wu

    2016-02-01

    Full Text Available MiR-200a has been reported to be able to suppress the epithelial-mesenchymal transition process in pancreatic cancer stem cells, suggesting that miR-200a could suppress the metastasis of pancreatic ductal adenocarcinoma (PDAC. However, its role in proliferation and metastasis of PDAC and the underlying mechanism by which miR-200a works in PDAC have not been elucidated. In our study, we for the first time identified that DEK gene is a direct downstream target of miR-200a. It was found that overexpression of miR-200a decreased DEK expression, suppressing the proliferation, migration, and invasion of PDAC cells. Meanwhile, knockdown of miR-200a can increase DEK level, promoting the proliferation, migration, and invasion of PDAC cells. Our study demonstrated that miR-200a suppresses the metastasis in pancreatic PDAC through downregulation of DEK, suggesting that miR-200a may be used as a novel potential marker in prediction of metastasis of PDAC.

  10. Relevance of miR-21 in regulation of tumor suppressor gene PTEN in human cervical cancer cells

    International Nuclear Information System (INIS)

    Peralta-Zaragoza, Oscar; Deas, Jessica; Meneses-Acosta, Angélica; De la O-Gómez, Faustino; Fernández-Tilapa, Gloria; Gómez-Cerón, Claudia; Benítez-Boijseauneau, Odelia; Burguete-García, Ana; Torres-Poveda, Kirvis; Bermúdez-Morales, Victor Hugo; Madrid-Marina, Vicente; Rodríguez-Dorantes, Mauricio; Hidalgo-Miranda, Alfredo; Pérez-Plasencia, Carlos

    2016-01-01

    Expression of the microRNA miR-21 has been found to be altered in almost all types of cancers and it has been classified as an oncogenic microRNA or oncomir. Due to the critical functions of its target proteins in various signaling pathways, miR-21 is an attractive target for genetic and pharmacological modulation in various cancers. Cervical cancer is the second most common cause of death from cancer in women worldwide and persistent HPV infection is the main etiologic agent. This malignancy merits special attention for the development of new treatment strategies. In the present study we analyze the role of miR-21 in cervical cancer cells. To identify the downstream cellular target genes of upstream miR-21, we silenced endogenous miR-21 expression in a cervical intraepithelial neoplasia-derived cell lines using siRNAs. The effect of miR-21 on gene expression was assessed in cervical cancer cells transfected with the siRNA expression plasmid pSIMIR21. We identified the tumor suppressor gene PTEN as a target of miR-21 and determined the mechanism of its regulation throughout reporter construct plasmids. Using this model, we analyzed the expression of miR-21 and PTEN as well as functional effects such as autophagy and apoptosis induction. In SiHa cells, there was an inverse correlation between miR-21 expression and PTEN mRNA level as well as PTEN protein expression in cervical cancer cells. Transfection with the pSIMIR21 plasmid increased luciferase reporter activity in construct plasmids containing the PTEN-3′-UTR microRNA response elements MRE21-1 and MRE21-2. The role of miR-21 in cell proliferation was also analyzed in SiHa and HeLa cells transfected with the pSIMIR21 plasmid, and tumor cells exhibited markedly reduced cell proliferation along with autophagy and apoptosis induction. We conclude that miR-21 post-transcriptionally down-regulates the expression of PTEN to promote cell proliferation and cervical cancer cell survival. Therefore, it may be a

  11. Discovery of Metastatic Breast Cancer Suppressor Genes Using Functional Genome Analysis

    Science.gov (United States)

    2012-07-01

    al., 2008; Cheung,H.W., et al., 2011; Barbie ,D.A., et al., 2009]. To identify genes whose essentiality could be associated specifically with...Reference Barbie ,D.A., Tamayo,P., Boehm,J.S., Kim,S.Y., Moody,S.E., Dunn,I.F., Schinzel,A.C., Sandy,P., Meylan,E., Scholl,C., Frohling,S., Chan,E.M... Barbie ,D.A., Awad,T., Zhou,X., Nguyen,T., Piqani,B., Li,C., Golub,T.R., Meyerson,M., Hacohen,N., Hahn,W.C., Lander,E.S., Sabatini,D.M., and Root

  12. The effect of age at exposure on the inactivating mechanisms and relative contributions of key tumor suppressor genes in radiation-induced mouse T-cell lymphomas

    International Nuclear Information System (INIS)

    Sunaoshi, Masaaki; Amasaki, Yoshiko; Hirano-Sakairi, Shinobu; Blyth, Benjamin J.; Morioka, Takamitsu; Kaminishi, Mutsumi; Shang, Yi; Nishimura, Mayumi; Shimada, Yoshiya; Tachibana, Akira

    2015-01-01

    Highlights: • T-cell lymphoma incidence, latency and weight did not change with age at exposure. • Lymphomas had frequent loss of heterozygosity on chromosomes 4, 11 and 19. • These lesions targeted the Cdkn2a, Ikaros and Pten tumor suppressor genes. • Age at exposure may influence which tumor suppressor genes are lost in each tumor. • The mechanisms of tumor suppressor gene loss were different at each locus. - Abstract: Children are considered more sensitive to radiation-induced cancer than adults, yet any differences in genomic alterations associated with age-at-exposure and their underlying mechanisms remain unclear. We assessed genome-wide DNA copy number and mutation of key tumor suppressor genes in T-cell lymphomas arising after weekly irradiation of female B6C3F1 mice with 1.2 Gy X-rays for 4 consecutive weeks starting during infancy (1 week old), adolescence (4 weeks old) or as young adults (8 weeks old). Although T-cell lymphoma incidence was similar, loss of heterozygosity at Cdkn2a on chromosome 4 and at Ikaros on chromosome 11 was more frequent in the two older groups, while loss at the Pten locus on chromosome 19 was more frequent in the infant-irradiated group. Cdkn2a and Ikaros mutation/loss was a common feature of the young adult-irradiation group, with Ikaros frequently (50%) incurring multiple independent hits (including deletions and mutations) or suffering a single hit predicted to result in a dominant negative protein (such as those lacking exon 4, an isoform we have designated Ik12, which lacks two DNA binding zinc-finger domains). Conversely, Pten mutations were more frequent after early irradiation (60%) than after young adult-irradiation (30%). Homozygous Pten mutations occurred without DNA copy number change after irradiation starting in infancy, suggesting duplication of the mutated allele by chromosome mis-segregation or mitotic recombination. Our findings demonstrate that while deletions on chromosomes 4 and 11 affecting Cdkn2

  13. The effect of age at exposure on the inactivating mechanisms and relative contributions of key tumor suppressor genes in radiation-induced mouse T-cell lymphomas

    Energy Technology Data Exchange (ETDEWEB)

    Sunaoshi, Masaaki [Radiobiology for Children' s Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Department of Biological Sciences, College of Science, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512 (Japan); Amasaki, Yoshiko; Hirano-Sakairi, Shinobu; Blyth, Benjamin J. [Radiobiology for Children' s Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Morioka, Takamitsu [Radiobiology for Children' s Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Radiation Effect Accumulation and Prevention Project, Fukushima Project Headquarters, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Kaminishi, Mutsumi [Radiobiology for Children' s Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Shang, Yi [Radiation Effect Accumulation and Prevention Project, Fukushima Project Headquarters, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Nishimura, Mayumi; Shimada, Yoshiya [Radiobiology for Children' s Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Radiation Effect Accumulation and Prevention Project, Fukushima Project Headquarters, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Tachibana, Akira [Department of Biological Sciences, College of Science, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512 (Japan); and others

    2015-09-15

    Highlights: • T-cell lymphoma incidence, latency and weight did not change with age at exposure. • Lymphomas had frequent loss of heterozygosity on chromosomes 4, 11 and 19. • These lesions targeted the Cdkn2a, Ikaros and Pten tumor suppressor genes. • Age at exposure may influence which tumor suppressor genes are lost in each tumor. • The mechanisms of tumor suppressor gene loss were different at each locus. - Abstract: Children are considered more sensitive to radiation-induced cancer than adults, yet any differences in genomic alterations associated with age-at-exposure and their underlying mechanisms remain unclear. We assessed genome-wide DNA copy number and mutation of key tumor suppressor genes in T-cell lymphomas arising after weekly irradiation of female B6C3F1 mice with 1.2 Gy X-rays for 4 consecutive weeks starting during infancy (1 week old), adolescence (4 weeks old) or as young adults (8 weeks old). Although T-cell lymphoma incidence was similar, loss of heterozygosity at Cdkn2a on chromosome 4 and at Ikaros on chromosome 11 was more frequent in the two older groups, while loss at the Pten locus on chromosome 19 was more frequent in the infant-irradiated group. Cdkn2a and Ikaros mutation/loss was a common feature of the young adult-irradiation group, with Ikaros frequently (50%) incurring multiple independent hits (including deletions and mutations) or suffering a single hit predicted to result in a dominant negative protein (such as those lacking exon 4, an isoform we have designated Ik12, which lacks two DNA binding zinc-finger domains). Conversely, Pten mutations were more frequent after early irradiation (60%) than after young adult-irradiation (30%). Homozygous Pten mutations occurred without DNA copy number change after irradiation starting in infancy, suggesting duplication of the mutated allele by chromosome mis-segregation or mitotic recombination. Our findings demonstrate that while deletions on chromosomes 4 and 11 affecting Cdkn2

  14. P53 tumor suppressor gene and protein expression is altered in cell lines derived from spontaneous and alpha-radiation-induced canine lung tumors

    International Nuclear Information System (INIS)

    Tierney, L.A.; Johnson, N.F.; Lechner, J.F.

    1994-01-01

    Mutations in the p53 tumor suppressor gene are the most frequently occurring gene alterations in malignant human cancers, including lung cancer. In lung cancer, common point mutations within conserved exons of the p53 gene result in a stabilized form of mutant protein which is detectable in most cases by immunohistochemistry. In addition to point mutations, allelic loss, rearrangements, and deletions of the p53 gene have also been detected in both human and rodent tumors. It has been suggested that for at least some epithelial neoplasms, the loss of expression of wild-type p53 protein may be more important for malignant transformation than the acquisition of activating mutations. Mechanisms responsible for the loss of expression of wild-type protein include gene deletion or rearrangement, nonsense or stop mutations, mutations within introns or upstream regulatory regions of the gene, and accelerated rates of degradation of the protein by DNA viral oncoproteins

  15. Cystatin D is a candidate tumor suppressor gene induced by vitamin D in human colon cancer cells.

    Science.gov (United States)

    Alvarez-Díaz, Silvia; Valle, Noelia; García, José Miguel; Peña, Cristina; Freije, José M P; Quesada, Víctor; Astudillo, Aurora; Bonilla, Félix; López-Otín, Carlos; Muñoz, Alberto

    2009-08-01

    The active vitamin D metabolite 1alpha,25-dihydroxyvitamin D3 [1alpha,25(OH)2D3] has wide but not fully understood antitumor activity. A previous transcriptomic analysis of 1alpha,25(OH)2D3 action on human colon cancer cells revealed cystatin D (CST5), which encodes an inhibitor of several cysteine proteases of the cathepsin family, as a candidate target gene. Here we report that 1alpha,25(OH)2D3 induced vitamin D receptor (VDR) binding to, and activation of, the CST5 promoter and increased CST5 RNA and protein levels in human colon cancer cells. In cells lacking endogenous cystatin D, ectopic cystatin D expression inhibited both proliferation in vitro and xenograft tumor growth in vivo. Furthermore, cystatin D inhibited migration and anchorage-independent growth, antagonized the Wnt/beta-catenin signaling pathway, and repressed c-MYC expression. Cystatin D repressed expression of the epithelial-mesenchymal transition inducers SNAI1, SNAI2, ZEB1, and ZEB2 and, conversely, induced E-cadherin and other adhesion proteins. CST5 knockdown using shRNA abrogated the antiproliferative effect of 1alpha,25(OH)2D3, attenuated E-cadherin expression, and increased c-MYC expression. In human colorectal tumors, expression of cystatin D correlated with expression of VDR and E-cadherin, and loss of cystatin D correlated with poor tumor differentiation. Based on these data, we propose that CST5 has tumor suppressor activity that may contribute to the antitumoral action of 1alpha,25(OH)2D3 in colon cancer.

  16. Targeting activating mutations of EZH2 leads to potent cell growth inhibition in human melanoma by derepression of tumor suppressor genes

    OpenAIRE

    Tiffen, Jessamy C.; Gunatilake, Dilini; Gallagher, Stuart J.; Gowrishankar, Kavitha; Heinemann, Anja; Cullinane, Carleen; Dutton-Regester, Ken; Pupo, Gulietta M.; Strbenac, Dario; Yang, Jean Y.; Madore, Jason; Mann, Graham J.; Hayward, Nicholas K.; McArthur, Grant A.; Filipp, Fabian V.

    2015-01-01

    The epigenetic modifier EZH2 is part of the polycomb repressive complex that suppresses gene expression via histone methylation. Activating mutations in EZH2 are found in a subset of melanoma that contributes to disease progression by inactivating tumor suppressor genes. In this study we have targeted EZH2 with a specific inhibitor (GSK126) or depleted EZH2 protein by stable shRNA knockdown. We show that inhibition of EZH2 has potent effects on the growth of both wild-type and EZH2 mutant hum...

  17. Genetic modelling of PIM proteins in cancer: proviral tagging, cooperation with oncogenes, tumor suppressor genes and carcinogens.

    Directory of Open Access Journals (Sweden)

    Enara eAguirre

    2014-05-01

    Full Text Available The PIM proteins, which were initially discovered as proviral insertion sites in Moloney murine leukemia virus infection, are a family of highly homologous serine/threonine kinases that have been reported to be overexpressed in hematological malignancies and solid tumors. The PIM proteins have also been associated with metastasis and overall treatment responses and implicated in the regulation of apoptosis, metabolism, the cell cycle, and homing and migration, which makes these proteins interesting targets for anticancer drug discovery. The use of retroviral insertional mutagenesis and refined approaches such as complementation tagging has allowed the identification of myc, pim and a third group of genes (including bmi1 and gfi1 as complementing genes in lymphomagenesis. Moreover, mouse modeling of human cancer has provided an understanding of the molecular pathways that are involved in tumor initiation and progression at the physiological level. In particular, genetically modified mice have allowed researchers to further elucidate the role of each of the Pim isoforms in various tumor types. PIM kinases have been identified as weak oncogenes because experimental overexpression in lymphoid tissue, prostate and liver induces tumors at a relatively low incidence and with a long latency. However, very strong synergistic tumorigenicity between Pim1/2 and c-Myc and other oncogenes has been observed in lymphoid tissues. Mouse models have also been used to study whether the inhibition of specific PIM isoforms is required to prevent carcinogen-induced sarcomas, indicating that the absence of Pim2 and Pim3 greatly reduces sarcoma growth and bone invasion; the extent of this effect is similar to that observed in the absence of all 3 isoforms. This review will summarize some of the animal models that have been used to understand the isoform-specific contribution of PIM kinases to tumorigenesis.

  18. Hypoxic activation of the unfolded protein response (UPR) induces expression of the metastasis-associated gene LAMP3

    International Nuclear Information System (INIS)

    Mujcic, Hilda; Rzymski, Tomasz; Rouschop, Kasper M.A.; Koritzinsky, Marianne; Milani, Manuela; Harris, Adrian L.; Wouters, Bradly G.

    2009-01-01

    Background and purpose: Tumour hypoxia contributes to failure of cancer treatment through its ability to protect against therapy and adversely influence tumour biology. In particular, several studies suggest that hypoxia promotes metastasis. Hypoxia-induced cellular changes are mediated by oxygen-sensitive signaling pathways that activate downstream transcription factors. We have investigated the induction and transcriptional regulation of a novel metastasis-associated gene, LAMP3 during hypoxia. Materials and methods: Microarray, quantitative PCR, Western blot analysis and immunohistochemistry were used to investigate hypoxic regulation of LAMP3. The mechanism for LAMP3 induction was investigated using transient RNAi and stable shRNA targeting components of the hypoxic response. Endoplasmic reticulum stress inducing agents, including proteasome inhibitors were assessed for their ability to regulate LAMP3. Results: LAMP3 is strongly induced by hypoxia at both the mRNA and protein levels in a large panel of human tumour cell lines. Induction of LAMP3 occurs as a consequence of the activation of the PERK/eIF2α/ATF4 arm of the unfolded protein response (UPR) and is independent of HIF-1α. LAMP3 is expressed heterogeneously within the microenvironment of tumours, overexpressed in breast cancer, and increases in tumours treated with avastin. Conclusions: These data identify LAMP3 as a novel hypoxia-inducible gene regulated by the UPR. LAMP3 is a new candidate biomarker of UPR activation by hypoxia in tumours and is a potential mediator of hypoxia-induced metastasis.

  19. Gene Expression Profiles for Predicting Metastasis in Breast Cancer: A Cross-Study Comparison of Classification Methods

    Directory of Open Access Journals (Sweden)

    Mark Burton

    2012-01-01

    Full Text Available Machine learning has increasingly been used with microarray gene expression data and for the development of classifiers using a variety of methods. However, method comparisons in cross-study datasets are very scarce. This study compares the performance of seven classification methods and the effect of voting for predicting metastasis outcome in breast cancer patients, in three situations: within the same dataset or across datasets on similar or dissimilar microarray platforms. Combining classification results from seven classifiers into one voting decision performed significantly better during internal validation as well as external validation in similar microarray platforms than the underlying classification methods. When validating between different microarray platforms, random forest, another voting-based method, proved to be the best performing method. We conclude that voting based classifiers provided an advantage with respect to classifying metastasis outcome in breast cancer patients.

  20. Functional interactions between the erupted/tsg101 growth suppressor gene and the DaPKC and rbf1 genes in Drosophila imaginal disc tumors.

    Directory of Open Access Journals (Sweden)

    M Melissa Gilbert

    Full Text Available BACKGROUND: The Drosophila gene erupted (ept encodes the fly homolog of human Tumor Susceptibility Gene-101 (TSG101, which functions as part of the conserved ESCRT-1 complex to facilitate the movement of cargoes through the endolysosomal pathway. Loss of ept or other genes that encode components of the endocytic machinery (e.g. synatxin7/avalanche, rab5, and vps25 produces disorganized overgrowth of imaginal disc tissue. Excess cell division is postulated to be a primary cause of these 'neoplastic' phenotypes, but the autonomous effect of these mutations on cell cycle control has not been examined. PRINCIPAL FINDINGS: Here we show that disc cells lacking ept function display an altered cell cycle profile indicative of deregulated progression through the G1-to-S phase transition and express reduced levels of the tumor suppressor ortholog and G1/S inhibitor Rbf1. Genetic reductions of the Drosophila aPKC kinase (DaPKC, which has been shown to promote tumor growth in other fly tumor models, prevent both the ept neoplastic phenotype and the reduction in Rbf1 levels that otherwise occurs in clones of ept mutant cells; this effect is coincident with changes in localization of Notch and Crumbs, two proteins whose sorting is altered in ept mutant cells. The effect on Rbf1 can also be blocked by removal of the gamma-secretase component presenilin, suggesting that cleavage of a gamma-secretase target influences Rbf1 levels in ept mutant cells. Expression of exogenous rbf1 completely ablates ept mutant eye tissues but only mildly affects the development of discs composed of cells with wild type ept. CONCLUSIONS: Together, these data show that loss of ept alters nuclear cell cycle control in developing imaginal discs and identify the DaPKC, presenilin, and rbf1 genes as modifiers of molecular and cellular phenotypes that result from loss of ept.

  1. The chromosome 3p21.3-encoded gene, LIMD1, is a critical tumor suppressor involved in human lung cancer development.

    Science.gov (United States)

    Sharp, Tyson V; Al-Attar, Ahmad; Foxler, Daniel E; Ding, Li; de A Vallim, Thomas Q; Zhang, Yining; Nijmeh, Hala S; Webb, Thomas M; Nicholson, Andrew G; Zhang, Qunyuan; Kraja, Aldi; Spendlove, Ian; Osborne, John; Mardis, Elaine; Longmore, Gregory D

    2008-12-16

    Loss of heterozygosity (LOH) and homozygous deletions at chromosome 3p21.3 are common in both small and nonsmall cell lung cancers, indicating the likely presence of tumor suppressor genes (TSGs). Although genetic and epigenetic changes within this region have been identified, the functional significance of these changes has not been explored. Concurrent protein expression and genetic analyses of human lung tumors coupled with functional studies have not been done. Here, we show that expression of the 3p21.3 gene, LIMD1, is frequently down-regulated in human lung tumors. Loss of LIMD1 expression occurs through a combination of gene deletion, LOH, and epigenetic silencing of transcription without evidence for coding region mutations. Experimentally, LIMD1 is a bona fide TSG. Limd1(-/-) mice are predisposed to chemical-induced lung adenocarcinoma and genetic inactivation of Limd1 in mice heterozygous for oncogenic K-Ras(G12D) markedly increased tumor initiation, promotion, and mortality. Thus, we conclude that LIMD1 is a validated chromosome 3p21.3 tumor-suppressor gene involved in human lung cancer development. LIMD1 is a LIM domain containing adapter protein that localizes to E-cadherin cell-cell adhesive junctions, yet also translocates to the nucleus where it has been shown to function as an RB corepressor. As such, LIMD1 has the potential to communicate cell extrinsic or environmental cues with nuclear responses.

  2. Sulforaphane Alone and in Combination with Clofarabine Epigenetically Regulates the Expression of DNA Methylation-Silenced Tumour Suppressor Genes in Human Breast Cancer Cells.

    Science.gov (United States)

    Lubecka-Pietruszewska, Katarzyna; Kaufman-Szymczyk, Agnieszka; Stefanska, Barbara; Cebula-Obrzut, Barbara; Smolewski, Piotr; Fabianowska-Majewska, Krystyna

    2015-01-01

    Sporadic breast cancer is frequently associated with aberrant DNA methylation patterns that are reversible and responsive to environmental factors, including diet. In the present study, we investigated the effects of sulforaphane (SFN), a phytochemical from cruciferous vegetables, on the methylation and expression of PTEN and RARbeta2 tumour suppressor genes as well as on the expression of regulators of DNA methylation reaction, DNMT1 , p53 , and p21 , in MCF-7 and MDA-MB-231 human breast cancer cells with different invasive potential. We also evaluate the role of SFN epigenetic effects in support of therapy with clofarabine (ClF) that was recently shown to modulate the epigenome as well. Promoter methylation and gene expression were estimated using methylation-sensitive restriction analysis and real-time PCR, respectively. In both MCF-7 and MDA-MB-231 cells, SFN at IC 50 (22 and 46 μ M , respectively) and a physiologically relevant 10 μ M concentration lead to hypomethylation of PTEN and RARbeta2 promoters with concomitant gene upregulation. The combination of SFN and ClF enhances these effects, resulting in an increase in cell growth arrest and apoptosis at a non-invasive breast cancer stage. Our findings provide evidence that SFN activates DNA methylation-silenced tumour suppressor genes in breast cancer cells and may contribute to SFN-mediated support of therapy with an anti-cancer drug, ClF, increasing its applications in solid tumours.

  3. The tumor suppressors p33ING1 and p33ING2 interact with alien in vivo and enhance alien-mediated gene silencing.

    Science.gov (United States)

    Fegers, Inga; Kob, Robert; Eckey, Maren; Schmidt, Oliver; Goeman, Frauke; Papaioannou, Maria; Escher, Niko; von Eggeling, Ferdinand; Melle, Christian; Baniahmad, Aria

    2007-11-01

    The tumor suppressor p33ING1 is involved in DNA repair and cell cycle regulation. Furthermore, p33ING1 is a transcriptional silencer that recognizes the histone mark for trimethylated lysine 4 at histone H3. Interestingly, expression of p33ING1 and p33ING2 is able to induce premature senescence in primary human fibroblasts. The corepressor Alien is involved in gene silencing mediated by selected members of nuclear hormone receptors. In addition, Alien acts as a corepressor for E2F1, a member of the E2F cell cycle regulatory family. Furthermore, recent findings suggest that Alien is complexed with transcription factors participating in DNA repair and chromatin. Here, using a proteomic approach by surface-enhanced laser desorption ionization and mass spectrometry (SELDI-MS) combined with immunological techniques, we show that Alien interacts in vivo with the tumor suppressor p33ING1 as well as with the related tumor suppressor candidate p33ING2. The interaction of Alien with p33ING1 and p33ING2 was confirmed in vitro with GST-pull-down, suggesting a direct binding of Alien to these factors. The binding domain was mapped to a central region of Alien. Functionally, the expression of p33ING1 or p33ING2 enhances the Alien-mediated silencing, suggesting that the interaction plays a role in transcriptional regulation. Thus, the findings suggest that the identified interaction between Alien and the tumor suppressors p33ING1 and p33ING2 reveals a novel cellular protein network.

  4. Allelic loss of the short arm of chromosome 4 in neuroblastoma suggests a novel tumour suppressor gene locus

    NARCIS (Netherlands)

    Caron, H.; van Sluis, P.; Buschman, R.; Pereira do Tanque, R.; Maes, P.; Beks, L.; de Kraker, J.; Voûte, P. A.; Vergnaud, G.; Westerveld, A.; Slater, R.; Versteeg, R.

    1996-01-01

    Neuroblastoma is a childhood neural crest tumour, genetically characterized by frequent deletions of the short arm of chromosome 1 and amplification of N-myc. Here we report the first evidence for a neuroblastoma tumour suppressor locus on 4pter. Cytogenetically we demonstrated rearrangements of 4p

  5. Moringa oleifera Gold Nanoparticles Modulate Oncogenes, Tumor Suppressor Genes, and Caspase-9 Splice Variants in A549 Cells.

    Science.gov (United States)

    Tiloke, Charlette; Phulukdaree, Alisa; Anand, Krishnan; Gengan, Robert M; Chuturgoon, Anil A

    2016-10-01

    Gold nanoparticles (AuNP's) facilitate cancer cell recognition and can be manufactured by green synthesis using nutrient rich medicinal plants such as Moringa oleifera (MO). Targeting dysregulated oncogenes and tumor suppressor genes is crucial for cancer therapeutics. We investigated the antiproliferative effects of AuNP synthesized from MO aqueous leaf extracts (MLAuNP ) in A549 lung and SNO oesophageal cancer cells. A one-pot green synthesis technique was used to synthesise MLAuNP . A549, SNO cancer cells and normal peripheral blood mononuclear cells (PBMCs) were exposed to MLAuNP and CAuNP to evaluate cytotoxicity (MTT assay); apoptosis was measured by phosphatidylserine (PS) externalization, mitochondrial depolarization (ΔΨm) (flow cytometry), caspase-3/7, -9 activity, and ATP levels (luminometry). The mRNA expression of c-myc, p53, Skp2, Fbw7α, and caspase-9 splice variants was determined using qPCR, while relative protein expression of c-myc, p53, SRp30a, Bax, Bcl-2, Smac/DIABLO, Hsp70, and PARP-1 were determined by Western blotting. MLAuNP and CAuNP were not cytotoxic to PBMCs, whilst its pro-apoptotic properties were confirmed in A549 and SNO cells. MLAuNP significantly increased caspase activity in SNO cells while MLAuNP significantly increased PS externalization, ΔΨm, caspase-9, caspase-3/7 activities, and decreased ATP levels in A549 cells. Also, p53 mRNA and protein levels, SRp30a (P = 0.428), Bax, Smac/DIABLO and PARP-1 24 kDa fragment levels were significantly increased. Conversely, MLAuNP significantly decreased Bcl-2, Hsp70, Skp2, Fbw7α, c-myc mRNA, and protein levels and activated alternate splicing with caspase-9a splice variant being significantly increased. MLAuNP possesses antiproliferative properties and induced apoptosis in A549 cells by activating alternate splicing of caspase-9. J. Cell. Biochem. 117: 2302-2314, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Overexpression of the metastasis-associated gene MTA3 correlates with tumor progression and poor prognosis in hepatocellular carcinoma.

    Science.gov (United States)

    Wang, Chuanxi; Li, Guanzhen; Li, Jiamei; Li, Jie; Li, Tao; Yu, Jinyu; Qin, Chengyong

    2017-08-01

    Hepatocellular carcinoma (HCC) is one of the most common and aggressive cancers in the world. However, there remains a lack of effective diagnostic and treatment markers. We aimed to explore metastasis-associated protein 3 (MTA3) expression and function in HCC and its relationship with clinicopathological factors. We investigated the expression pattern and clinicopathological significance of MTA3 in 90 patients with HCC via immunohistochemistry and explored MTA3 function via gene knockdown of MTA3. MTA3 was overexpressed in HCC cell nuclei and downregulated in HCC cell cytoplasm. The former finding correlated with metastasis (P = 0.010) and poor prognosis (P = 0.018). In addition, deleting MTA3 inhibited HCC cell growth, invasion, and metastasis in vitro, as shown in the colony formation, migration, and wound-healing assays. These results indicate that MTA3 is an oncogene of HCC, predicts poor prognosis of HCC, and may be a future marker of HCC treatment. © 2016 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  7. Taurine up-regulated gene 1 functions as a master regulator to coordinate glycolysis and metastasis in hepatocellular carcinoma.

    Science.gov (United States)

    Lin, Yang-Hsiang; Wu, Meng-Han; Huang, Ya-Hui; Yeh, Chau-Ting; Cheng, Mei-Ling; Chi, Hsiang-Cheng; Tsai, Chung-Ying; Chung, I-Hsiao; Chen, Ching-Ying; Lin, Kwang-Huei

    2018-01-01

    Cancer cells display altered glucose metabolism characterized by a preference for aerobic glycolysis. The aerobic glycolytic phenotype of hepatocellular carcinoma (HCC) is often correlated with tumor progression and poorer clinical outcomes. However, the issue of whether glycolytic metabolism influences metastasis in HCC remains unclear. In the current study, we showed that knockdown of taurine up-regulated gene 1 (TUG1) induces marked inhibition of cell migration, invasion, and glycolysis through suppression of microRNA (miR)-455-3p. MiR-455-3p, which is transcriptionally repressed by p21, directly targets the 3' untranslated region of adenosine monophosphate-activated protein kinase subunit beta 2 (AMPKβ2). The TUG1/miR-455-3p/AMPKβ2 axis regulates cell growth, metastasis, and glycolysis through regulation of hexokinase 2 (HK2). TUG1 is clearly associated with HK2 overexpression and unfavorable prognosis in HCC patients. Our data collectively highlight that novel regulatory associations among TUG1, miR-455-3p, AMPKβ2, and HK2 are an important determinant of glycolytic metabolism and metastasis in HCC cells and support the potential utility of targeting TUG1/HK2 as a therapeutic strategy for HCC. (Hepatology 2018;67:188-203). © 2017 by the American Association for the Study of Liver Diseases.

  8. Indications for a tumor suppressor gene at 22q11 involved in the pathogenesis of ependymal tumors and distinct from hSNF5/INI1.

    Science.gov (United States)

    Kraus, J A; de Millas, W; Sörensen, N; Herbold, C; Schichor, C; Tonn, J C; Wiestler, O D; von Deimling, A; Pietsch, T

    2001-07-01

    Ependymomas account for approximately 9% of all neuroepithelial tumors and represent the most frequent neuroepithelial tumors of the spinal cord. In adults, allelic loss of chromosome arm 22q occurs in up to 60% of the cases studied. Some of these tumors show an altered neurofibromatosis type 2 (NF2) gene; in others, NF2 appears to be unaffected, indicating the involvement of another tumor suppressor gene. Recently, the tumor suppressor gene hSNF5/INI1, located on 22q11.23, has been shown to contribute to the pathogenesis of renal and extrarenal rhabdoid tumors. In addition, this gene may be responsible for a new hereditary syndrome predisposing to a variety of tumors designated "rhabdoid predisposition syndrome." In the present study, we analyzed a series of 53 ependymal tumors of 48 patients [4 myxopapillary ependymomas (WHO grade I), 3 subependymomas (WHO grade I), 18 ependymomas (WHO grade II), 21 anaplastic ependymomas (WHO grade III) and 2 ependymoblastomas (WHO grade IV)] for mutations and homozygous deletions in the coding region of the hSNF5/INI1 gene and for allelic loss of its flanking chromosomal regions in 39 ependymal tumors of 35 patients. Allelic loss was detected in 11 of 35 informative primary ependymal tumors (31%) with a common region of overlap covered by the markers D22S257 and D22S310 on 22q11 including the marker D22S301. However, a detailed molecular analysis of 53 ependymal tumors for mutations and homozygous deletion of the hSNF5/INI1 gene revealed no alterations. We conclude that the hSNF5/INI1 gene is not involved in the pathogenesis of human ependymal tumors with allelic loss on chromosome arm 22q and an intact NF2 locus. In addition, our study localizes a putative ependymoma tumor suppressor gene(s) to a domain of chromosome arm 22q flanked by the microsatellite markers D22S257 and D22S310.

  9. Genetic and Epigenetic Tumor Suppressor Gene Silencing are Distinct Molecular Phenotypes Driven by Growth Promoting Mutations in Non small Cell Lung Cancer

    International Nuclear Information System (INIS)

    Marsit, C. J.; Kelsey, K. T.; Houseman, E. A.; Kelsey, K. T.; Houseman, E. A.; Nelson, H. H.

    2008-01-01

    Both genetic and epigenetic alterations characterize human non small cell lung cancer (NSCLC), but the biological processes that create or select these alterations remain incompletely investigated. Our hypothesis posits that a roughly reciprocal relationship between the propensity for promoter hyper methylation and a propensity for genetic deletion leads to distinct molecular phenotypes of lung cancer. To test this hypothesis, we examined promoter hyper methylation of 17 tumor suppressor genes, as a marker of epigenetic alteration propensity, and deletion events at the 3p21 region, as a marker of genetic alteration. To model the complex biology between these somatic alterations, we utilized an item response theory model. We demonstrated that tumors exhibiting LOH at greater than 30% of informative alleles in the 3p21 region have a significantly reduced propensity for hyper methylation. At the same time, tumors with activating KRAS mutations showed a significantly increased propensity for hyper methylation of the loci examined, a result similar to what has been observed in colon cancer. These data suggest that NSCLCs have distinct epigenetic or genetic alteration phenotypes acting upon tumor suppressor genes and that mutation of oncogenic growth promoting genes, such as KRAS, is associated with the epigenetic phenotype.

  10. Kras gene mutation and RASSF1A, FHIT and MGMT gene promoter hypermethylation: indicators of tumor staging and metastasis in adenocarcinomatous sporadic colorectal cancer in Indian population.

    Directory of Open Access Journals (Sweden)

    Rupal Sinha

    Full Text Available Colorectal cancer (CRC development involves underlying modifications at genetic/epigenetic level. This study evaluated the role of Kras gene mutation and RASSF1A, FHIT and MGMT gene promoter hypermethylation together/independently in sporadic CRC in Indian population and correlation with clinicopathological variables of the disease.One hundred and twenty four consecutive surgically resected tissues (62 tumor and equal number of normal adjacent controls of primary sporadic CRC were included and patient details including demographic characteristics, lifestyle/food or drinking habits, clinical and histopathological profiles were recorded. Polymerase chain reaction - Restriction fragment length polymorphism and direct sequencing for Kras gene mutation and Methylation Specific-PCR for RASSF1A, FHIT and MGMT genes was performed.Kras gene mutation at codon 12 & 13 and methylated RASSF1A, FHIT and MGMT gene was observed in 47%, 19%, 47%, 37% and 47% cases, respectively. Alcohol intake and smoking were significantly associated with presence of Kras mutation (codon 12 and MGMT methylation (p-value <0.049. Tumor stage and metastasis correlated with presence of mutant Kras codon 12 (p-values 0.018, 0.044 and methylated RASSF1A (p-values 0.034, 0.044, FHIT (p-values 0.001, 0.047 and MGMT (p-values 0.018, 0.044 genes. Combinatorial effect of gene mutation/methylation was also observed (p-value <0.025. Overall, tumor stage 3, moderately differentiated tumors, presence of lymphatic invasion and absence of metastasis was more frequently observed in tumors with mutated Kras and/or methylated RASSF1A, FHIT and MGMT genes.Synergistic interrelationship between these genes in sporadic CRC may be used as diagnostic/prognostic markers in assessing the overall pathological status of CRC.

  11. Correlation of transcription of MALAT-1, a novel noncoding RNA, with deregulated expression of tumor suppressor p53 in small DNA tumor virus models

    OpenAIRE

    Jeffers, Liesl K.; Duan, Kaiwen; Ellies, Lesley G.; Seaman, William T.; Burger-Calderon, Raquel A.; Diatchenko, Luda B.; Webster-Cyriaque, Jennifer

    2013-01-01

    Although metastasis-associated lung adenocarcinoma transcript (MALAT)-1 is known to be consistently upregulated in several epithelial malignancies, little is known about its function or regulation. We therefore examined the relationship between MALAT-1 expression and candidate modulators such as DNA tumor virus oncoproteins human papillomavirus (HPV)-16 E6 and E7, BK virus T antigen (BKVTAg), mouse polyoma virus middle T antigen (MPVmTAg) and tumor suppressor genes p53 and pRb. Using suppress...

  12. Primary microcephaly gene MCPH1 shows signatures of tumor suppressors and is regulated by miR-27a in oral squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Thejaswini Venkatesh

    Full Text Available Mutations in the MCPH1 (microcephalin 1 gene, located at chromosome 8p23.1, result in two autosomal recessive disorders: primary microcephaly and premature chromosome condensation syndrome. MCPH1 has also been shown to be downregulated in breast, prostate and ovarian cancers, and mutated in 1/10 breast and 5/41 endometrial tumors, suggesting that it could also function as a tumor suppressor (TS gene. To test the possibility of MCPH1 as a TS gene, we first performed LOH study in a panel of 81 matched normal oral tissues and oral squamous cell carcinoma (OSCC samples, and observed that 14/71 (19.72% informative samples showed LOH, a hallmark of TS genes. Three protein truncating mutations were identified in 1/15 OSCC samples and 2/5 cancer cell lines. MCPH1 was downregulated at both the transcript and protein levels in 21/41 (51.22% and 19/25 (76% OSCC samples respectively. A low level of MCPH1 promoter methylation was also observed in 4/40 (10% tumor samples. We further observed that overexpression of MCPH1 decreased cellular proliferation, anchorage-independent growth in soft agar, cell invasion and tumor size in nude mice, indicating its tumor suppressive function. Using bioinformatic approaches and luciferase assay, we showed that the 3'-UTR of MCPH1 harbors two non-overlapping functional seed regions for miR-27a which negatively regulated its level. The expression level of miR-27a negatively correlated with the MCPH1 protein level in OSCC. Our study indicates for the first time that, in addition to its role in brain development, MCPH1 also functions as a tumor suppressor gene and is regulated by miR-27a.

  13. Multi-platform whole-genome microarray analyses refine the epigenetic signature of breast cancer metastasis with gene expression and copy number.

    Directory of Open Access Journals (Sweden)

    Joseph Andrews

    Full Text Available BACKGROUND: We have previously identified genome-wide DNA methylation changes in a cell line model of breast cancer metastasis. These complex epigenetic changes that we observed, along with concurrent karyotype analyses, have led us to hypothesize that complex genomic alterations in cancer cells (deletions, translocations and ploidy are superimposed over promoter-specific methylation events that are responsible for gene-specific expression changes observed in breast cancer metastasis. METHODOLOGY/PRINCIPAL FINDINGS: We undertook simultaneous high-resolution, whole-genome analyses of MDA-MB-468GFP and MDA-MB-468GFP-LN human breast cancer cell lines (an isogenic, paired lymphatic metastasis cell line model using Affymetrix gene expression (U133, promoter (1.0R, and SNP/CNV (SNP 6.0 microarray platforms to correlate data from gene expression, epigenetic (DNA methylation, and combination copy number variant/single nucleotide polymorphism microarrays. Using Partek Software and Ingenuity Pathway Analysis we integrated datasets from these three platforms and detected multiple hypomethylation and hypermethylation events. Many of these epigenetic alterations correlated with gene expression changes. In addition, gene dosage events correlated with the karyotypic differences observed between the cell lines and were reflected in specific promoter methylation patterns. Gene subsets were identified that correlated hyper (and hypo methylation with the loss (or gain of gene expression and in parallel, with gene dosage losses and gains, respectively. Individual gene targets from these subsets were also validated for their methylation, expression and copy number status, and susceptible gene pathways were identified that may indicate how selective advantage drives the processes of tumourigenesis and metastasis. CONCLUSIONS/SIGNIFICANCE: Our approach allows more precisely profiling of functionally relevant epigenetic signatures that are associated with cancer

  14. Re-expression of methylation-induced tumor suppressor gene silencing is associated with the state of histone modification in gastric cancer cell lines.

    Science.gov (United States)

    Meng, Chun-Feng; Zhu, Xin-Jiang; Peng, Guo; Dai, Dong-Qiu

    2007-12-14

    To identify the relationship between DNA hyper-methylation and histone modification at a hyperme-thylated, silenced tumor suppressor gene promoter in human gastric cancer cell lines and to elucidate whether alteration of DNA methylation could affect histone modification. We used chromatin immunoprecipitation (ChIP) assay to assess the status of histone acetylation and methylation in promoter regions of the p16 and mutL homolog 1 (MLH1) genes in 2 gastric cancer cell lines, SGC-7901 and MGC-803. We used methylation-specific PCR (MSP) to evaluate the effect of 5-Aza-2'-deoxycytidine (5-Aza-dC), trichostatin A (TSA) or their combination treatment on DNA methylation status. We used RT-PCR to determine whether alterations of histone modification status after 5-Aza-dC and TSA treatment are reflected in gene expression. For the p16 and MLH1 genes in two cell lines, silenced loci associated with DNA hypermethylation were characterized by histone H3-K9 hypoacetylation and hypermethylation and histone H3-K4 hypomethylation. Treatment with TSA resulted in moderately increased histone H3-K9 acetylation at the silenced loci with no effect on histone H3-K9 methylation and minimal effects on gene expression. In contrast, treatment with 5-Aza-dC rapidly reduced histone H3-K9 methylation at the silenced loci and resulted in reactivation of the two genes. Combined treatment with 5-Aza-dC and TSA was synergistic in reactivating gene expression at the loci showing DNA hypermethylation. Similarly, histone H3-K4 methylation was not affected after TSA treatment, and increased moderately at the silenced loci after 5-Aza-dC treatment. Hypermethylation of DNA in promoter CpG islands is related to transcriptional silencing of tumor suppressor genes. Histone H3-K9 methylation in different regions of the promoters studied correlates with DNA methylation status of each gene in gastric cancer cells. However, histone H3-K9 acetylation and H3-K4 methylation inversely correlate with DNA methylation

  15. Sodium butyrate induces cell death by autophagy and reactivates a tumor suppressor gene DIRAS1 in renal cell carcinoma cell line UOK146.

    Science.gov (United States)

    Verma, Shiv Prakash; Agarwal, Ayushi; Das, Parimal

    2018-04-01

    Sodium butyrate (SB), a histone deacetylase inhibitor, is emerging as a potent anti-cancer drug for different types of cancers. In the present study, anti-cancer activity of SB in Xp11.2 (TFE3) translocated renal cell carcinoma cell line UOK146 was studied. Anti-proliferative effect of SB in renal cell carcinoma (RCC) cell line UOK146 was evaluated by MTT assay and morphological characteristics were observed by phase contrast microscopy which displayed the cell death after SB treatment. SB induces DNA fragmentation and change in nuclear morphology observed by increased sub-G1 region cell population and nuclear blebbings. Cell cycle arrest at G2/M phase was found after SB treatment. UOK146 cell line shows autophagy mode of cell death as displayed by acridine orange staining and flow cytometry analysis. LC3-II, a protein marker of autophagy, was also found to be upregulated after SB treatment. A tumor suppressor gene DIRAS1 was upregulated after SB treatment, displaying its anti-cancer potential at molecular level. These findings suggest that SB could serve as a novel regulator of tumor suppressors and lead to the discovery of novel therapeutics with better and enhanced anti-cancer activity.

  16. The expression of a tumor suppressor gene JDP2 and its prognostic value in hepatocellular carcinoma patients.

    Science.gov (United States)

    Chen, Yao-Li; Chan, Shih-Hsuan; Lin, Ping-Yi; Chu, Pei-Yi

    2017-05-01

    The c-Jun dimerization protein 2 (JDP2) belongs to the activator protein-1 (AP-1) family and functions as a repressor of the AP-1 complex by dimerizing with other c-Jun proteins. Thus, JDP2 plays an important role in the repression of AP-1-driven biological processes, such as differentiation and proliferation. Recent studies have suggested that JDP2 may function as a tumor suppressor through its suppressive action against the AP-1 complex, which is known to drive oncogenic signals in several human malignancies. In this study, we used immunohistochemistry to examine the JDP2 expression in 211 cases of hepatocellular carcinoma (HCC) and analyzed the potential link of JDP2 expression to the clinicopathological features of HCC patients. Clinical parameter analysis showed that high expression of JDP2 was significantly correlated with smaller tumor size (P=.002) and early stage HCC (P=.039). Moreover, Kaplan-Meier survival analysis showed that high expression of JDP2 was significantly associated with better survival in HCC patients (P=.006). Taken together, our results showed that JDP2 may serve as a tumor suppressor in HCC and could therefore serve as a good prognostic marker for patients with HCC. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Lysine demethylase KDM2A inhibits TET2 to promote DNA methylation and silencing of tumor suppressor genes in breast cancer.

    Science.gov (United States)

    Chen, J-Y; Luo, C-W; Lai, Y-S; Wu, C-C; Hung, W-C

    2017-08-07

    The coupling between DNA methylation and histone modification contributes to aberrant expression of oncogenes or tumor suppressor genes that leads to tumor development. Our previous study demonstrated that lysine demethylase 2A (KDM2A) functions as an oncogene in breast cancer by promoting cancer stemness and angiogenesis via activation of the Notch signaling. Here, we demonstrate that knockdown of KDM2A significantly increases the 5'-hydroxymethylcytosine (5'-hmc) level in genomic DNA and expression of tet-eleven translocation 2 (TET2) in various breast cancer cell lines. Conversely, ectopic expression of KDM2A inhibits TET2 expression in KDM2A-depleted cells suggesting TET2 is a transcriptional repression target of KDM2A. Our results show that KDM2A interacts with RelA to co-occupy at the TET2 gene promoter to repress transcription and depletion of RelA or KDM2A restores TET2 expression. Upregulation of TET2 in the KDM2A-depleted cells induces the re-activation of two TET downstream tumor suppressor genes, epithelial cell adhesion molecule (EpCAM) and E-cadherin, and inhibits migration and invasion. On the contrary, knockdown of TET2 in these cells decreases EpCAM and E-cadherin and increases cell invasiveness. More importantly, TET2 expression is negatively associated KDM2A in triple-negative breast tumor tissues, and its expression predicts a better survival. Taken together, we demonstrate for the first time that TET2 is a direct repression target of KDM2A and reveal a novel mechanism by which KDM2A promotes DNA methylation and breast cancer progression via the inhibition of a DNA demethylase.

  18. High-level HIV-1 Nef transient expression in Nicotiana benthamiana using the P19 gene silencing suppressor protein of Artichoke Mottled Crinckle Virus

    Directory of Open Access Journals (Sweden)

    Bianco Linda

    2009-11-01

    Full Text Available Abstract Background In recent years, different HIV antigens have been successfully expressed in plants by either stable transformation or transient expression systems. Among HIV proteins, Nef is considered a promising target for the formulation of a multi-component vaccine due to its implication in the first steps of viral infection. Attempts to express Nef as a single protein product (not fused to a stabilizing protein in transgenic plants resulted in disappointingly low yields (about 0.5% of total soluble protein. In this work we describe a transient expression system based on co-agroinfiltration of plant virus gene silencing suppressor proteins in Nicotiana benthamiana, followed by a two-step affinity purification protocol of plant-derived Nef. Results The effect of three gene silencing viral suppressor proteins (P25 of Potato Virus X, P19 of either Artichoke Mottled Crinckle virus and Tomato Bushy Stunt virus on Nef transient expression yield was evaluated. The P19 protein of Artichoke Mottled Crinckle virus (AMCV-P19 gave the highest expression yield in vacuum co-agroinfiltration experiments reaching 1.3% of total soluble protein, a level almost three times higher than that previously reported in stable transgenic plants. The high yield observed in the co-agroinfiltrated plants was correlated to a remarkable decrease of Nef-specific small interfering RNAs (siRNAs indicating an effective modulation of RNA silencing mechanisms by AMCV-P19. Interestingly, we also showed that expression levels in top leaves of vacuum co-agroinfiltrated plants were noticeably reduced compared to bottom leaves. Moreover, purification of Nef from agroinfiltrated tissue was achieved by a two-step immobilized metal ion affinity chromatography protocol with yields of 250 ng/g of fresh tissue. Conclusion We demonstrated that expression level of HIV-1 Nef in plant can be improved using a transient expression system enhanced by the AMCV-P19 gene silencing suppressor

  19. Cross-species comparison of biological themes and underlying genes on a global gene expression scale in a mouse model of colorectal liver metastasis and in clinical specimens

    Directory of Open Access Journals (Sweden)

    Schirmacher Peter

    2008-09-01

    Full Text Available Abstract Background Invasion-related genes over-expressed by tumor cells as well as by reacting host cells represent promising drug targets for anti-cancer therapy. Such candidate genes need to be validated in appropriate animal models. Results This study examined the suitability of a murine model (CT26/Balb/C of colorectal liver metastasis to represent clinical liver metastasis specimens using a global gene expression approach. Cross-species similarity was examined between pure liver, liver invasion, tumor invasion and pure tumor compartments through overlap of up-regulated genes and gene ontology (GO-based biological themes on the level of single GO-terms and of condensed GO-term families. Three out of four GO-term families were conserved in a compartment-specific way between the species: secondary metabolism (liver, invasion (invasion front, and immune response (invasion front and liver. Among the individual GO-terms over-represented in the invasion compartments in both species were "extracellular matrix", "cell motility", "cell adhesion" and "antigen presentation" indicating that typical invasion related processes are operating in both species. This was reflected on the single gene level as well, as cross-species overlap of potential target genes over-expressed in the combined invasion front compartments reached up to 36.5%. Generally, histopathology and gene expression correlated well as the highest single gene overlap was found to be 44% in syn-compartmental comparisons (liver versus liver whereas cross-compartmental overlaps were much lower (e.g. liver versus tumor: 9.7%. However, single gene overlap was surprisingly high in some cross-compartmental comparisons (e.g. human liver invasion compartment and murine tumor invasion compartment: 9.0% despite little histolopathologic similarity indicating that invasion relevant genes are not necessarily confined to histologically defined compartments. Conclusion In summary, cross

  20. The CREB Coactivator CRTC2 Is a Lymphoma Tumor Suppressor that Preserves Genome Integrity through Transcription of DNA Mismatch Repair Genes.

    Science.gov (United States)

    Fang, Minggang; Pak, Magnolia L; Chamberlain, Lynn; Xing, Wei; Yu, Hongbo; Green, Michael R

    2015-06-09

    The CREB-regulated transcription coactivator CRTC2 stimulates CREB target gene expression and has a well-established role in modulating glucose and lipid metabolism. Here, we find, unexpectedly, that loss of CRTC2, as well as CREB1 and its coactivator CREB-binding protein (CBP), results in a deficiency in DNA mismatch repair (MMR) and a resultant increased mutation frequency. We show that CRTC2, CREB1, and CBP are transcriptional activators of well-established MMR genes, including EXO1, MSH6, PMS1, and POLD2. Mining of expression profiling databases and analysis of patient samples reveal that CRTC2 and its target MMR genes are downregulated in specific T cell lymphoma subtypes, which are microsatellite unstable. The levels of acetylated histone H3 on the CRTC2 promoter are significantly reduced in lymphoma in comparison to normal tissue, explaining the decreased CRTC2 expression. Our results establish a role for CRTC2 as a lymphoma tumor suppressor gene that preserves genome integrity by stimulating transcription of MMR genes. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Physical mapping of chromosome 17p13.3 in the region of a putative tumor suppressor gene important in medulloblastoma

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, J.D.; Daneshvar, L.; Willert, J.R. [Univ. of California, San Franciso, CA (United States)] [and others

    1994-09-01

    Deletion mapping of a medulloblastoma tumor panel revealed loss of distal chromosome 17p13.3 sequences in tumors from 14 of 32 patients (44%). Of the 14 tumors showing loss of heterozygosity by restriction fragment length polymorphism analysis, 14 of 14 (100%) displayed loss of the telomeric marker p144-D6 (D17S34), while a probe for the ABR gene on 17p13.3 was lost in 7 of 8 (88%) informative cases. Using pulsed-field gel electrophoresis, we localized the polymorphic marker (VNTR-A) of the ABR gene locus to within 220 kb of the p144-D6 locus. A cosmid contig constructed in this region was used to demonstrate by fluorescence in situ hybridization that the ABR gene is oriented transcriptionally 5{prime} to 3{prime} toward the telomere. This report provides new physical mapping data for the ABR gene, which has not been previously shown to be deleted in medulloblastoma. These results provide further evidence for the existence of a second tumor suppressor gene distinct from p53 on distal chromosome 17p. 12 refs., 3 figs.

  2. Tumoral tissue specific promoter hypermethylation of distinct tumor suppressor genes in a case with non--small cell lung carcinoma: A case report

    Directory of Open Access Journals (Sweden)

    Arslan Sulhattin

    2008-01-01

    Full Text Available Objective: Non-small cell lung carcinoma is an aggressive phenomenon and the epigenetical alterations of some tumor supressor genes have been reported for the different tumor types. Case Presentation: It is presented a case report concerning a 43 years old male with NSCLC on the lower segment of the right lung. The patient underwent a diag-nostic excisional thin-needle biopsy and after the histological confirmation. We examined the promoter methylation status of some distinct tumor supressor genes in tumoral and blood tissues of the case after sodium bisulfite conversion and DNA amplification with methylation specific multiplex PCR technique. Both tissues were also searched for G to A transitions in codons 12 and 13 of the K-ras proto-oncogene. Results: Tumor specimen showed fully methyl pattern profiles for the SFRP2, p16, DAPK1 and partially hyper-methylated profile for the p53 and MGMT genes in this case with non-small lung carci-noma. Blood speicemen showed normal hypomethylated profiles for all studied TS genes. The K-ras proto-oncogene was in normal structure both in blood and tumoral spiecemens that examined. Conclusion: Results indicate that genes exhibit tumor suppressor activi-ties in blood, but exhibit epigenetic inactivation in carcinoma cell. These findings strongly support the hypothesis that epigenetic mechanisms may play an important role in the non-small cell lung carcinogenesis in human.

  3. MicroRNA-429 induces tumorigenesis of human non-small cell lung cancer cells and targets multiple tumor suppressor genes

    Energy Technology Data Exchange (ETDEWEB)

    Lang, Yaoguo; Xu, Shidong; Ma, Jianqun; Wu, Jun [Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, Heilongjiang 150081 (China); Jin, Shi; Cao, Shoubo [Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, Heilongjiang 150081 (China); Yu, Yan, E-mail: yuyan@hrbmu.edu.cn [Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, Heilongjiang 150081 (China)

    2014-07-18

    Highlights: • MiR-429 expression is upregulated in non-small cell lung cancer (NSCLC). • MiR-429 inhibits PTEN, RASSF8 and TIMP2 expression. • MiR-429 promotes metastasis and proliferation. • We report important regulatory mechanisms involved in NSCLC progression. • MiR-429 is a potential therapeutic target and diagnostic marker. - Abstract: Lung cancer is the major cause of cancer death globally. MicroRNAs are evolutionally conserved small noncoding RNAs that are critical for the regulation of gene expression. Aberrant expression of microRNA (miRNA) has been implicated in cancer initiation and progression. In this study, we demonstrated that the expression of miR-429 are often upregulated in non-small cell lung cancer (NSCLC) compared with normal lung tissues, and its expression level is also increased in NSCLC cell lines compared with normal lung cells. Overexpression of miR-429 in A549 NSCLC cells significantly promoted cell proliferation, migration and invasion, whereas inhibition of miR-429 inhibits these effects. Furthermore, we demonstrated that miR-429 down-regulates PTEN, RASSF8 and TIMP2 expression by directly targeting the 3′-untranslated region of these target genes. Taken together, our results suggest that miR-429 plays an important role in promoting the proliferation and metastasis of NSCLC cells and is a potential target for NSCLC therapy.

  4. Metastasis of transgenic breast cancer in plasminogen activator inhibitor-1 gene-deficient mice

    DEFF Research Database (Denmark)

    Almholt, Kasper; Nielsen, Boye Schnack; Frandsen, Thomas Leth

    2003-01-01

    of metastasizing breast cancer. In these tumors, the expression pattern of uPA and PAI-1 resembles that of human ductal breast cancer and plasminogen is required for efficient metastasis. In a cohort of 63 transgenic mice that were either PAI-1-deficient or wild-type sibling controls, primary tumor growth......, high levels of PAI-1 as well as uPA are equally associated with poor prognosis in cancer patients. PAI-1 is thought to play a vital role for the controlled extracellular proteolysis during tumor neovascularization. We have studied the effect of PAI-1 deficiency in a transgenic mouse model...... and vascular density were unaffected by PAI-1 status. PAI-1 deficiency also did not significantly affect the lung metastatic burden. These results agree with the virtual lack of spontaneous phenotype in PAI-1-deficient mice and humans and may reflect that the plasminogen activation reaction is not rate...

  5. From Breast to Bone: Tracking Gene Expression Changes Responsible for Breast Cancer Metastasis in a Humanized Mouse Model with Molecular Imaging

    Science.gov (United States)

    2015-11-01

    during metastasis (months 12-15). b. Validate expression profiling results using quantitative reverse transcription polymerase chain reaction (qRT...Troester MA, Herschkowitz JI, Oh DS, He X, Hoadley KA, Barbier CS, Perou CM. Gene expression patterns associated with p53 status in breast cancer. BMC

  6. Loss of function of the tuberous sclerosis 2 tumor suppressor gene results in embryonic lethality characterized by disrupted neuroepithelial growth and development

    Science.gov (United States)

    Rennebeck, Gabriela; Kleymenova, Elena V.; Anderson, Rebecca; Yeung, Raymond S.; Artzt, Karen; Walker, Cheryl L.

    1998-01-01

    Germline defects in the tuberous sclerosis 2 (TSC2) tumor suppressor gene predispose humans and rats to benign and malignant lesions in a variety of tissues. The brain is among the most profoundly affected organs in tuberous sclerosis (TSC) patients and is the site of development of the cortical tubers for which the hereditary syndrome is named. A spontaneous germline inactivation of the Tsc2 locus has been described in an animal model, the Eker rat. We report that the homozygous state of this mutation (Tsc2Ek/Ek) was lethal in mid-gestation (the equivalent of mouse E9.5–E13.5), when Tsc2 mRNA was highly expressed in embryonic neuroepithelium. During this period homozygous mutant Eker embryos lacking functional Tsc2 gene product, tuberin, displayed dysraphia and papillary overgrowth of the neuroepithelium, indicating that loss of tuberin disrupted the normal development of this tissue. Interestingly, there was significant intraspecies variability in the penetrance of cranial abnormalities in mutant embryos: the Long–Evans strain Tsc2Ek/Ek embryos displayed these defects whereas the Fisher 344 homozygous mutant embryos had normal-appearing neuroepithelium. Taken together, our data indicate that the Tsc2 gene participates in normal brain development and suggest the inactivation of this gene may have similar functional consequences in both mature and embryonic brain. PMID:9861021

  7. Alternative exon usage creates novel transcript variants of tumor suppressor SHREW-1 gene with differential tissue expression profile

    Directory of Open Access Journals (Sweden)

    Petra A. B. Klemmt

    2016-11-01

    Full Text Available Shrew-1, also called AJAP1, is a transmembrane protein associated with E-cadherin-mediated adherence junctions and a putative tumor suppressor. Apart from its interaction with β-catenin and involvement in E-cadherin internalization, little structure or function information exists. Here we explored shrew-1 expression during postnatal differentiation of mammary gland as a model system. Immunohistological analyses with antibodies against either the extracellular or the cytoplasmic domains of shrew-1 consistently revealed the expression of full-length shrew-1 in myoepithelial cells, but only part of it in luminal cells. While shrew-1 localization remained unaltered in myoepithelial cells, nuclear localization occurred in luminal cells during lactation. Based on these observations, we identified two unknown shrew-1 transcript variants encoding N-terminally truncated proteins. The smallest shrew-1 protein lacks the extracellular domain and is most likely the only variant present in luminal cells. RNA analyses of human tissues confirmed that the novel transcript variants of shrew-1 exist in vivo and exhibit a differential tissue expression profile. We conclude that our findings are essential for the understanding and interpretation of future functional and interactome analyses of shrew-1 variants.

  8. The essential Escherichia coli msgB gene, a multicopy suppressor of a temperature-sensitive allele of the heat shock gene grpE, is identical to dapE.

    OpenAIRE

    Wu, B; Georgopoulos, C; Ang, D

    1992-01-01

    The grpE gene product is one of three Escherichia coli heat shock proteins (DnaK, DnaJ, and GrpE) that are essential for both bacteriophage lambda DNA replication and bacterial growth at all temperatures. In an effort to determine the role of GrpE and to identify other factors that it may interact with, we isolated multicopy suppressors of the grpE280 point mutation, as judged by their ability to reverse the temperature-sensitive phenotype of grpE280. Here we report the characterization of on...

  9. Identification of metastasis driver genes by massive parallel sequencing of successive steps of breast cancer progression

    DEFF Research Database (Denmark)

    Krøigård, Anne Bruun; Larsen, Martin Jakob; Lænkholm, Anne-Vibeke

    2018-01-01

    concordance between different steps of malignant progression we performed exome sequencing and validation with targeted deep sequencing of successive steps of malignant progression from pre-invasive stages to asynchronous distant metastases in six breast cancer patients. Using the ratio of non...... notable are the DCC, ABCA13, TIAM2, CREBBP, BCL6B and ZNF185 genes, mainly mutated exclusively in metastases and highly likely driver genes of metastatic progression. We find different genes and pathways to be affected at different steps of malignant progression. The Adherens junction pathway is affected...... in four of the six studied patients and this pathway most likely plays a vital role in the metastatic process....

  10. Prediction of metastasis from low-malignant breast cancer by gene expression profiling

    DEFF Research Database (Denmark)

    Thomassen, Mads; Tan, Qihua; Eiriksdottir, Freyja

    2007-01-01

    demonstrated high cross-platform consistency of the classifiers. Higher performance of HUMAC32 was demonstrated among the low-malignant cancers compared with the 70-gene classifier. This suggests that although the metastatic potential to some extend is determined by the same genes in groups of tumors......Promising results for prediction of outcome in breast cancer have been obtained by genome wide gene expression profiling. Some studies have suggested that an extensive overtreatment of breast cancer patients might be reduced by risk assessment with gene expression profiling. A patient group hardly...... examined in these studies is the low-risk patients for whom outcome is very difficult to predict with currently used methods. These patients do not receive adjuvant treatment according to the guidelines of the Danish Breast Cancer Cooperative Group (DBCG). In this study, 26 tumors from low-risk patients...

  11. Functional Characterization of Two Novel Human Prostate Cancer Metastasis Related Genes

    National Research Council Canada - National Science Library

    Abdel-Mageed, Asim B

    2005-01-01

    ... (Invitrogen Carlsbad, CA, BD Bioscience (Clontech Inc), and Seegene, Rockville, MD). To optimize the PCR conditions for each kit, we had designed several sets of gene-specific primers (GSP;23-28 nt long) with 50-70...

  12. MTHFR variants reduce the risk of G:C->A:T transition mutations within the p53 tumor suppressor gene in colon tumors.

    Science.gov (United States)

    Ulrich, C M; Curtin, K; Samowitz, W; Bigler, J; Potter, J D; Caan, B; Slattery, M L

    2005-10-01

    5,10-Methylene-tetrahydrofolate reductase (MTHFR) is a key enzyme in folate-mediated 1-carbon metabolism. Reduced MTHFR activity has been associated with genomic DNA hypomethylation. Methylated cytosines at CpG sites are easily mutated and have been implicated in G:C-->A:T transitions in the p53 tumor suppressor gene. We investigated 2 polymorphisms in the MTHFR gene (C677T and A1298C) and their associations with colon tumor characteristics, including acquired mutations in Ki-ras and p53 genes and microsatellite instability (MSI). The study population comprised 1248 colon cancer cases and 1972 controls, who participated in a population-based case-control study and had been analyzed previously for MSI, acquired mutations in Ki-ras, p53, and germline MTHFR polymorphisms. Multivariable-adjusted odds ratios are presented. Overall, MTHFR genotypes were not associated with MSI status or the presence of any p53 or Ki-ras mutation. Individuals with homozygous variant MTHFR genotypes had a significantly reduced risk of G:C-->A:T transition mutations within the p53 gene, yet, as hypothesized, only at CpG-associated sites [677TT vs. 677CC (referent group) OR = 0.4 (95% CI: 0.1-0.8) for CpG-associated sites; OR = 1.5 (0.7-3.6) for non-CpG associated sites]. Genotypes conferring reduced MTHFR activity were associated with a decreased risk of acquired G:C-->A:T mutations within the p53 gene occurring at CpG sites. Consistent with evidence on the phenotypic effect of the MTHFR C677T variant, we hypothesize that this relation may be explained by modestly reduced genomic DNA methylation, resulting in a lower probability of spontaneous deamination of methylated cytosine to thymidine. These results suggest a novel mechanism by which MTHFR polymorphisms can affect the risk of colon cancer.

  13. Macrophages, Inflammation, and Tumor Suppressors: ARF, a New Player in the Game

    Directory of Open Access Journals (Sweden)

    Paqui G. Través

    2012-01-01

    Full Text Available The interaction between tumor progression and innate immune system has been well established in the last years. Indeed, several lines of clinical evidence indicate that immune cells such as tumor-associated macrophages (TAMs interact with tumor cells, favoring growth, angiogenesis, and metastasis of a variety of cancers. In most tumors, TAMs show properties of an alternative polarization phenotype (M2 characterized by the expression of a series of chemokines, cytokines, and proteases that promote immunosuppression, tumor proliferation, and spreading of the cancer cells. Tumor suppressor genes have been traditionally linked to the regulation of cancer progression; however, a growing body of evidence indicates that these genes also play essential roles in the regulation of innate immunity pathways through molecular mechanisms that are still poorly understood. In this paper, we provide an overview of the immunobiology of TAMs as well as what is known about tumor suppressors in the context of immune responses. Recent advances regarding the role of the tumor suppressor ARF as a regulator of inflammation and macrophage polarization are also reviewed.

  14. Kruppel-like factor 6 (KLF6) is a tumor-suppressor gene frequently inactivated in colorectal cancer.

    Science.gov (United States)

    Reeves, Helen L; Narla, Goutham; Ogunbiyi, Olagunju; Haq, Asif I; Katz, Amanda; Benzeno, Sharon; Hod, Eldad; Harpaz, Noam; Goldberg, Shlomit; Tal-Kremer, Sigal; Eng, Francis J; Arthur, Michael J P; Martignetti, John A; Friedman, Scott L

    2004-04-01

    Kruppel-like factor 6 (KLF6) is a ubiquitous zinc finger tumor suppressor that is often mutated in prostate cancer. Our aims were to establish the frequency of KLF6 inactivation in sporadic and inflammatory bowel disease (IBD)-associated colorectal cancers (CRC); to correlate these abnormalities with mutation and/or loss of TP53, APC, and K-RAS; and to characterize the behavior of mutant KLF6 in colon-derived cell lines. We analyzed DNA isolated from 50 microdissected CRC cases, including 35 sporadic and 15 IBD-associated tumors. Microsatellite analysis and direct sequencing were used to establish the incidence of microsatellite instability, KLF6 and TP53 allelic imbalance, and KLF6, K-RAS, TP53, and APC mutation. Loss of growth suppressive function of the CRC-derived KLF6 mutants was characterized by in vitro thymidine incorporation assays and Western blotting. KLF6 was inactivated by loss and/or mutation in most sporadic and IBD-related CRCs. The KLF6 locus was deleted in at least 55% of tumors, and mutations were identified in 44%. Rates of KLF6 loss and mutation were similar to those of TP53 and K-RAS in the same samples. KLF6 mutations were present in tumors with either microsatellite or chromosomal instability and were more common, particularly in the IBD-related cancers, in the presence of wild-type APC. Unlike wild-type KLF6, cancer-derived KLF6 mutants neither suppressed growth nor induced p21 following transfection into cultured cells. Deregulation of KLF6 by a combination of allelic imbalance and mutation may play a role in the development of CRC.

  15. Tsw gene-based resistance is triggered by a functional RNA silencing suppressor protein of the Tomato spotted wilt virus

    NARCIS (Netherlands)

    Ronde, de D.; Butterbach, P.B.E.; Lohuis, H.; Hedil, M.; Lent, van J.W.M.; Kormelink, R.J.M.

    2013-01-01

    As a result of contradictory reports, the avirulence (Avr) determinant that triggers Tsw gene-based resistance in Capsicum annuum against the Tomato spotted wilt virus (TSWV) is still unresolved. Here, the N and NSs genes of resistance-inducing (RI) and resistance-breaking (RB) isolates were cloned

  16. The role of UV induced lesions in skin carcinogenesis: an overview of oncogene and tumor suppressor gene modifications in xeroderma pigmentosum skin tumors.

    Science.gov (United States)

    Daya-Grosjean, Leela; Sarasin, Alain

    2005-04-01

    Xeroderma pigmentosum (XP), a rare hereditary syndrome, is characterized by a hypersensitivity to solar irradiation due to a defect in nucleotide excision repair resulting in a predisposition to squamous and basal cell carcinomas as well as malignant melanomas appearing at a very early age. The mutator phenotype of XP cells is evident by the higher levels of UV specific modifications found in key regulatory genes in XP skin tumors compared to those in the same tumor types from the normal population. Thus, XP provides a unique model for the study of unrepaired DNA lesions, mutations and skin carcinogenesis. The high level of ras oncogene activation, Ink4a-Arf and p53 tumor suppressor gene modifications as well as alterations of the different partners of the mitogenic sonic hedgehog signaling pathway (patched, smoothened and sonic hedgehog), characterized in XP skin tumors have clearly demonstrated the major role of the UV component of sunlight in the development of skin tumors. The majority of the mutations are C to T or tandem CC to TT UV signature transitions, occurring at bipyrimidine sequences, the specific targets of UV induced lesions. These characteristics are also found in the same genes modified in sporadic skin cancers but with lower frequencies confirming the validity of studying the XP model. The knowledge gained by studying XP tumors has given us a greater perception of the contribution of genetic predisposition to cancer as well as the consequences of the many alterations which modulate the activities of different genes affecting crucial pathways vital for maintaining cell homeostasis.

  17. p16 Tumor Suppressor Gene Methylation in Diffuse Large B Cell Lymphoma: A Study of 88 Cases at Two Hospitals in the East Coast of Malaysia

    Science.gov (United States)

    Mohd Ridah, Lailatul Jalilah; A Talib, Norlelawati; Muhammad, Naznin; Hussain, Faezahtul Arbaeyah; Zainuddin, Norafiza

    2017-10-26

    Introduction: p16 gene plays an important role in the normal cell cycle regulation. Methylation of p16 has been reported to be one of the epigenetic events contributing to the pathogenesis of diffuse large B-cell lymphoma (DLBCL) which occurring at varying frequency. DLBCL is an aggressive and high-grade malignancy which accounts for approximately 30% of all non-Hodgkin lymphoma cases. However, little is known regarding the epigenetic alterations of p16 gene in DLBCL cases in Malaysia. Therefore, the objective of this study was to examine the status of p16 methylation in DLBCL. Methods: A total of 88 formalin-fixed paraffin-embedded DLBCL tissues retrieved from two hospitals located in the east coast of Malaysia, namely Hospital Tengku Ampuan Afzan (HTAA) Pahang and Hospital Universiti Sains Malaysia (HUSM) Kelantan, were chosen for this study. DNA specimens were isolated and subsequently subjected to bisulfite treatment prior to methylation specific-PCR. Two pairs of primers were used to amplify methylated and unmethylated regions of p16 gene. The PCR products were then separated using agarose gel electrophoresis and visualised under UV illumination. SPSS version 12.0 was utilised to perform all statistical analysis. Result: p16 methylation was detected in 65 of 88 (74%) samples. There was a significant association between p16 methylation status and patients aged >50 years old (p=0.04). Conclusion: Our study demonstrated that methylation of p16 tumor suppressor gene in our DLBCL cases is common and significantly increased among patients aged 50 years and above. Aging is known to be an important risk factor in the development of cancers and we speculate that this might be due to the increased transformation of malignant cells in aging cell population. However, this has yet to be confirmed with further research and correlate the findings with clinicopathological parameters. Creative Commons Attribution License

  18. The role of UV induced lesions in skin carcinogenesis: an overview of oncogene and tumor suppressor gene modifications in xeroderma pigmentosum skin tumors

    International Nuclear Information System (INIS)

    Daya-Grosjean, Leela; Sarasin, Alain

    2005-01-01

    Xeroderma pigmentosum (XP), a rare hereditary syndrome, is characterized by a hypersensitivity to solar irradiation due to a defect in nucleotide excision repair resulting in a predisposition to squamous and basal cell carcinomas as well as malignant melanomas appearing at a very early age. The mutator phenotype of XP cells is evident by the higher levels of UV specific modifications found in key regulatory genes in XP skin tumors compared to those in the same tumor types from the normal population. Thus, XP provides a unique model for the study of unrepaired DNA lesions, mutations and skin carcinogenesis. The high level of ras oncogene activation, Ink4a-Arf and p53 tumor suppressor gene modifications as well as alterations of the different partners of the mitogenic sonic hedgehog signaling pathway (patched, smoothened and sonic hedgehog), characterized in XP skin tumors have clearly demonstrated the major role of the UV component of sunlight in the development of skin tumors. The majority of the mutations are C to T or tandem CC to TT UV signature transitions, occurring at bipyrimidine sequences, the specific targets of UV induced lesions. These characteristics are also found in the same genes modified in sporadic skin cancers but with lower frequencies confirming the validity of studying the XP model. The knowledge gained by studying XP tumors has given us a greater perception of the contribution of genetic predisposition to cancer as well as the consequences of the many alterations which modulate the activities of different genes affecting crucial pathways vital for maintaining cell homeostasis

  19. The role of UV induced lesions in skin carcinogenesis: an overview of oncogene and tumor suppressor gene modifications in xeroderma pigmentosum skin tumors

    Energy Technology Data Exchange (ETDEWEB)

    Daya-Grosjean, Leela [Laboratory of Genetic Instability and Cancer, UPR2169 CNRS, IFR 54, Institut Gustave Roussy, 39, rue Camille Desmoulins, 94805 Villejuif Cedex (France)]. E-mail: daya@igr.fr; Sarasin, Alain [Laboratory of Genetic Instability and Cancer, UPR2169 CNRS, IFR 54, Institut Gustave Roussy, 39, rue Camille Desmoulins, 94805 Villejuif Cedex (France)

    2005-04-01

    Xeroderma pigmentosum (XP), a rare hereditary syndrome, is characterized by a hypersensitivity to solar irradiation due to a defect in nucleotide excision repair resulting in a predisposition to squamous and basal cell carcinomas as well as malignant melanomas appearing at a very early age. The mutator phenotype of XP cells is evident by the higher levels of UV specific modifications found in key regulatory genes in XP skin tumors compared to those in the same tumor types from the normal population. Thus, XP provides a unique model for the study of unrepaired DNA lesions, mutations and skin carcinogenesis. The high level of ras oncogene activation, Ink4a-Arf and p53 tumor suppressor gene modifications as well as alterations of the different partners of the mitogenic sonic hedgehog signaling pathway (patched, smoothened and sonic hedgehog), characterized in XP skin tumors have clearly demonstrated the major role of the UV component of sunlight in the development of skin tumors. The majority of the mutations are C to T or tandem CC to TT UV signature transitions, occurring at bipyrimidine sequences, the specific targets of UV induced lesions. These characteristics are also found in the same genes modified in sporadic skin cancers but with lower frequencies confirming the validity of studying the XP model. The knowledge gained by studying XP tumors has given us a greater perception of the contribution of genetic predisposition to cancer as well as the consequences of the many alterations which modulate the activities of different genes affecting crucial pathways vital for maintaining cell homeostasis.

  20. Development and validation of a gene expression-based signature to predict distant metastasis in locoregionally advanced nasopharyngeal carcinoma: a retrospective, multicentre, cohort study.

    Science.gov (United States)

    Tang, Xin-Ran; Li, Ying-Qin; Liang, Shao-Bo; Jiang, Wei; Liu, Fang; Ge, Wen-Xiu; Tang, Ling-Long; Mao, Yan-Ping; He, Qing-Mei; Yang, Xiao-Jing; Zhang, Yuan; Wen, Xin; Zhang, Jian; Wang, Ya-Qin; Zhang, Pan-Pan; Sun, Ying; Yun, Jing-Ping; Zeng, Jing; Li, Li; Liu, Li-Zhi; Liu, Na; Ma, Jun

    2018-03-01

    Gene expression patterns can be used as prognostic biomarkers in various types of cancers. We aimed to identify a gene expression pattern for individual distant metastatic risk assessment in patients with locoregionally advanced nasopharyngeal carcinoma. In this multicentre, retrospective, cohort analysis, we included 937 patients with locoregionally advanced nasopharyngeal carcinoma from three Chinese hospitals: the Sun Yat-sen University Cancer Center (Guangzhou, China), the Affiliated Hospital of Guilin Medical University (Guilin, China), and the First People's Hospital of Foshan (Foshan, China). Using microarray analysis, we profiled mRNA gene expression between 24 paired locoregionally advanced nasopharyngeal carcinoma tumours from patients at Sun Yat-sen University Cancer Center with or without distant metastasis after radical treatment. Differentially expressed genes were examined using digital expression profiling in a training cohort (Guangzhou training cohort; n=410) to build a gene classifier using a penalised regression model. We validated the prognostic accuracy of this gene classifier in an internal validation cohort (Guangzhou internal validation cohort, n=204) and two external independent cohorts (Guilin cohort, n=165; Foshan cohort, n=158). The primary endpoint was distant metastasis-free survival. Secondary endpoints were disease-free survival and overall survival. We identified 137 differentially expressed genes between metastatic and non-metastatic locoregionally advanced nasopharyngeal carcinoma tissues. A distant metastasis gene signature for locoregionally advanced nasopharyngeal carcinoma (DMGN) that consisted of 13 genes was generated to classify patients into high-risk and low-risk groups in the training cohort. Patients with high-risk scores in the training cohort had shorter distant metastasis-free survival (hazard ratio [HR] 4·93, 95% CI 2·99-8·16; p<0·0001), disease-free survival (HR 3·51, 2·43-5·07; p<0·0001), and overall

  1. The von Hippel-Lindau tumor suppressor gene inhibits hepatocyte growth factor/scatter factor-induced invasion and branching morphogenesis in renal carcinoma cells.

    Science.gov (United States)

    Koochekpour, S; Jeffers, M; Wang, P H; Gong, C; Taylor, G A; Roessler, L M; Stearman, R; Vasselli, J R; Stetler-Stevenson, W G; Kaelin, W G; Linehan, W M; Klausner, R D; Gnarra, J R; Vande Woude, G F

    1999-09-01

    Loss of function in the von Hippel-Lindau (VHL) tumor suppressor gene occurs in familial and most sporadic renal cell carcinomas (RCCs). VHL has been linked to the regulation of cell cycle cessation (G(0)) and to control of expression of various mRNAs such as for vascular endothelial growth factor. RCC cells express the Met receptor tyrosine kinase, and Met mediates invasion and branching morphogenesis in many cell types in response to hepatocyte growth factor/scatter factor (HGF/SF). We examined the HGF/SF responsiveness of RCC cells containing endogenous mutated (mut) forms of the VHL protein (VHL-negative RCC) with that of isogenic cells expressing exogenous wild-type (wt) VHL (VHL-positive RCC). We found that VHL-negative 786-0 and UOK-101 RCC cells were highly invasive through growth factor-reduced (GFR) Matrigel-coated filters and exhibited an extensive branching morphogenesis phenotype in response to HGF/SF in the three-dimensional (3D) GFR Matrigel cultures. In contrast, the phenotypes of A498 VHL-negative RCC cells were weaker, and isogenic RCC cells ectopically expressing wt VHL did not respond at all. We found that all VHL-negative RCC cells expressed reduced levels of tissue inhibitor of metalloproteinase 2 (TIMP-2) relative to the wt VHL-positive cells, implicating VHL in the regulation of this molecule. However, consistent with the more invasive phenotype of the 786-0 and UOK-101 VHL-negative RCC cells, the levels of TIMP-1 and TIMP-2 were reduced and levels of the matrix metalloproteinases 2 and 9 were elevated compared to the noninvasive VHL-positive RCC cells. Moreover, recombinant TIMPs completely blocked HGF/SF-mediated branching morphogenesis, while neutralizing antibodies to the TIMPs stimulated HGF/SF-mediated invasion in vitro. Thus, the loss of the VHL tumor suppressor gene is central to changes that control tissue invasiveness, and a more invasive phenotype requires additional genetic changes seen in some but not all RCC lines. These

  2. Presymptomatic breast cancer in Egypt: role of BRCA1 and BRCA2 tumor suppressor genes mutations detection

    Directory of Open Access Journals (Sweden)

    Hashishe Mervat M

    2010-06-01

    Full Text Available Abstract Background Breast cancer is one of the most common diseases affecting women. Inherited susceptibility genes, BRCA1 and BRCA2, are considered in breast, ovarian and other common cancers etiology. BRCA1 and BRCA2 genes have been identified that confer a high degree of breast cancer risk. Objective Our study was performed to identify germline mutations in some exons of BRCA1 and BRCA2 genes for the early detection of presymptomatic breast cancer in females. Methods This study was applied on Egyptian healthy females who first degree relatives to those, with or without a family history, infected with breast cancer. Sixty breast cancer patients, derived from 60 families, were selected for molecular genetic testing of BRCA1 and BRCA2 genes. The study also included 120 healthy first degree female relatives of the patients, either sisters and/or daughters, for early detection of presymptomatic breast cancer mutation carriers. Genomic DNA was extracted from peripheral blood lymphocytes of all the studied subjects. Universal primers were used to amplify four regions of the BRCA1 gene (exons 2,8,13 and 22 and one region (exon 9 of BRCA2 gene using specific PCR. The polymerase chain reaction was carried out. Single strand conformation polymorphism assay and heteroduplex analysis were used to screen for mutations in the studied exons. In addition, DNA sequencing of the normal and mutated exons were performed. Results Mutations in both BRCA1 and BRCA2 genes were detected in 86.7% of the families. Current study indicates that 60% of these families were attributable to BRCA1 mutations, while 26.7% of them were attributable to BRCA2 mutations. Results showed that four mutations were detected in the BRCA1 gene, while one mutation was detected in the BRCA2 gene. Asymptomatic relatives, 80(67% out of total 120, were mutation carriers. Conclusions BRCA1 and BRCA2 genes mutations are responsible for a significant proportion of breast cancer. BRCA mutations

  3. Hypothalamic Gene Transfer of BDNF Inhibits Breast Cancer Progression and Metastasis in Middle Age Obese Mice

    OpenAIRE

    Liu, Xianglan; McMurphy, Travis; Xiao, Run; Slater, Andrew; Huang, Wei; Cao, Lei

    2014-01-01

    Activation of the hypothalamus-adipocyte axis is associated with an antiobesity and anticancer phenotype in animal models of melanoma and colon cancer. Brain-derived neurotrophic factor (BDNF) is a key mediator in the hypothalamus leading to preferential sympathoneural activation of adipose tissue and the ensuing resistance to obesity and cancer. Here, we generated middle age obese mice by high fat diet feeding for a year and investigated the effects of hypothalamic gene transfer of BDNF on a...

  4. Isolation of Genes Involved in Rac Induced Invasion and Metastasis of Breast Carcinoma Cells

    Science.gov (United States)

    2001-08-01

    as reporter genes is used for the LexA- based system.7 Media. YPD medium contains 10 g of yeast extract, 20 g of Bacto- Peptone (Difco, Detroit, MI...Tet-off system (containing the tetracycline- controlled activator, tTA receptor) is designed such that medium containing doxycycline activates the...tetracycline receptor which secondarily represses the Tet-dependent promotor. Conversely, depletion of doxycycline from the medium causes a conformational

  5. Physical mapping of a commonly deleted region, the site of a candidate tumor suppressor gene, at 12q22 in human male germ cell tumors

    Energy Technology Data Exchange (ETDEWEB)

    Murty, V.V.V.S.; Bosl, G.J.; Chaganti, R.S.K. [Memorial Sloan-Kettering Cancer Center, New York, NY (United States)] [and others

    1996-08-01

    A candidate tumor suppressor gene (TSG) site at 12q22 characterized by a high frequency of loss of heterozygosity (LOH) and a homozygous deletion has previously (LOH) and a homozygous deletion has previously been reported in human male germ cell tumors (GCTs). In a detailed deletion mapping analysis of 67 normal-tumor DNAs utilizing 20 polymorphic markers mapped to 12q22-q24, we identified the limits of the minimal region of deletion at 12q22 between D12S377 (priximal) and D12S296 (distal). We have constructed a YAC contig map of a 3-cM region of this band between the proximal marker D12S101 and the distal marker D12S346, which contained the minimal region of deletion in GCTs. The map is composed of 53 overlapping YACs and 3 cosmids onto which 25 polymorphic and nonpolymorphic sequence-tagged sites (STSs) were placed in a unique order. The size of the minimal region of deletion was approximately 2 Mb from overlapping, nonchimeric YACs that spanned the region. We also developed a radiation hybrid (RH) map of the region between D12S101 and D12S346 containing 17 loci. The consensus order developed by RH mapping is in good agreement with the YAC STS-content map order. The RH map estimated the distance between D12S101 and D12S346 to be 246 cR{sub 8000} and the minimal region of deletion to be 141 cR{sub 8000}. In addition, four genes that were previously mapped to 12q22 have been excluded as candidate genes. The leads gained from the deletion mapping and physical maps should expedite the isolation and characterization of the TSG at 12q22. 35 refs., 4 figs., 2 tabs.

  6. Suppression of Prostate Cancer Metastasis by DPYSL3-Targeted saRNA.

    Science.gov (United States)

    Li, Benyi; Li, Changlin

    2017-01-01

    Metastasis is the sole cause of cancer death and there is no curable means in clinic. Cellular protein CRMP4 (DPYSL3 gene) was previously defined as a metastasis suppressor in human prostate cancers since its expression is dramatically reduced in lymphatic metastatic diseases and DPYSL3 overexpression in prostate cancer cells significantly suppressed cancer cell migration and invasion. To develop a CRMP4-based antimetastasis therapeutic approach, the small activating RNA (saRNA) technique was utilized to enhance CRMP4 expression in prostate cancer cells. A total of 14 saRNAs were synthesized and screened in multiple prostate cancer cell lines. Two saRNAs targeting the isoform-2 promoter region were determined to have significant activating effect on DPYSL3 gene expression at the mRNA and protein levels. These saRNA also largely reduced prostate cancer cell migration and invasion in vitro and in vivo. Most significantly, PSMA aptamer-mediated prostate cancer cell homing of these saRNAs blocked distal metastasis in an orthotopic nude mouse model. In conclusion, our data demonstrated that saRNA-based DPYSL3 gene enhancement is capable of suppressing tumor metastasis in prostate cancer, which provides a potential therapeutic approach for cancer management.

  7. Sulforaphane Reverses the Expression of Various Tumor Suppressor Genes by Targeting DNMT3B and HDAC1 in Human Cervical Cancer Cells

    Directory of Open Access Journals (Sweden)

    Munawwar Ali Khan

    2015-01-01

    Full Text Available Sulforaphane (SFN may hinder carcinogenesis by altering epigenetic events in the cells; however, its molecular mechanisms are unclear. The present study investigates the role of SFN in modifying epigenetic events in human cervical cancer cells, HeLa. HeLa cells were treated with SFN (2.5 µM for a period of 0, 24, 48, and 72 hours for all experiments. After treatment, expressions of DNMT3B, HDAC1, RARβ, CDH1, DAPK1, and GSTP1 were studied using RT-PCR while promoter DNA methylation of tumor suppressor genes (TSGs was studied using MS-PCR. Inhibition assays of DNA methyl transferases (DNMTs and histone deacetylases (HDACs were performed at varying time points. Molecular modeling and docking studies were performed to explore the possible interaction of SFN with HDAC1 and DNMT3B. Time-dependent exposure to SFN decreases the expression of DNMT3B and HDAC1 and significantly reduces the enzymatic activity of DNMTs and HDACs. Molecular modeling data suggests that SFN may interact directly with DNMT3B and HDAC1 which may explain the inhibitory action of SFN. Interestingly, time-dependent reactivation of the studied TSGs via reversal of methylation in SFN treated cells correlates well with its impact on the epigenetic alterations accumulated during cancer development. Thus, SFN may have significant implications for epigenetic based therapy.

  8. Immunohistochemical observations on tumor suppressor gene p53 status in mouse fibrosarcoma following in-vivo photodynamic therapy: the role of xanthine oxidase activity

    Science.gov (United States)

    Ziolkowski, Piotr P.; Symonowicz, Krzysztof; Milnerowicz, Artur; Osiecka, Beata J.

    1997-12-01

    Tumor suppressor gene p53 expression in a mouse fibrosarcoma following in-vivo photodynamic therapy has been studied using the immunohistochemical method. Photodynamic treatment involved injections of the well known sensitizer -- hematoporphyrin derivative at the doses 1.25 and 2.5 mg/kg of body weight and irradiations at the doses 25 and 50 J/sq cm. Glass slide preparations from PDT-treated tumors were obtained at different time points (15, 60 minutes, 2 and 24 hours) after therapy, subsequently stained for wild type/mutant p53, and assessed for positive reaction. High PDT doses (HpD -- 2.5 mg/kg; light dose -- 50 J/sq cm) correlated with decreased expression of p53 in tumor cells. The other part of the study was directed to measure the xanthine oxidase (XO) activity in the tumor cells. PDT included injections of HpD and light exposure at the same doses as for p53 study. We observed a complete inhibition of the enzyme activity. The slight increase in XO activity was found following treatment with either light or HpD alone.

  9. Effect of recombinant adenovirus encoding human p53 tumor suppressor gene (rAd-p53) on the growth and radiotherapeutic sensitivity of human lymphoma cell lines

    International Nuclear Information System (INIS)

    Yu Zeyang; Fan Wo; Li Dongqing; Zhu Ran; Wang Yongqing; Wu Jinchang

    2008-01-01

    Objective: To explore the inhibitory effect and radiation sensitization of recombinant adenovirus encoding human p53 tumor suppressor gene (rAd-p53) on human lymphoma cell lines. Methods: Human lymphoma cell lines Raji and Daudi were treated with rAd-p53, radiation therapy and combined treatment, respectively. The cell growth inhibition was assessed by MTT. The p53 protein expression was detected by Western blotting, and p53 mRNA was detected by BT-PCB. Results: The MTT results showed that the inhibitory effect and radiosensitivity enhancement of rAd-p53 on human lymphoma cell lines were not obvious [Raji: (27.5±4.1)%; Daudi: (28.1±1.6)%]. The results of Western blotting and BT-PCB showed that extrinsic p53 protein and p53 mRNA were expressed to some degree, but not at high-level. In addition, the results didn't demonstrate obvious radiosensitivity enhancement. Conclusions: The role of inhibition and radiosensitivity enhancement of rAd-p53 was not significant on human lymphoma cell lines. (authors)

  10. Expression of the metastasis-associated mts1 gene during mouse development

    DEFF Research Database (Denmark)

    Klingelhöfer, Jörg; Ambartsumian, N S; Lukanidin, E M

    1997-01-01

    motility. In order to understand the function of this gene, we studied the expression of the mts1 mRNA and protein in vivo during mouse development. Both mRNA and protein were present in high concentrations from 12.5 to 18.5 days post coitum (dpc) in a variety of developing embryonic tissue of mesodermal...... differentiation and morphogenesis of mesenchymal tissues such as the mesenchyme surrounding the tips of digits, the mesenchyme underlying the epithelium of the bladder, and the mesenchyme between the primordia of the nasal capsule and the skin as well as in the developing dermal papilla of hair and tooth follicle....... In developing bone, Mts1 was expressed in invasive mesenchymal cells and in osteoclasts. The results presented here suggest that Mtsl plays an important role in mouse development during differentiation and function of macrophages and might be involved in different processes associated with mesenchymal...

  11. Suppressor of Overexpression of CO 1 Negatively Regulates Dark-Induced Leaf Degreening and Senescence by Directly Repressing Pheophytinase and Other Senescence-Associated Genes in Arabidopsis.

    Science.gov (United States)

    Chen, Junyi; Zhu, Xiaoyu; Ren, Jun; Qiu, Kai; Li, Zhongpeng; Xie, Zuokun; Gao, Jiong; Zhou, Xin; Kuai, Benke

    2017-03-01

    Although the biochemical pathway of chlorophyll (Chl) degradation has been largely elucidated, how Chl is rapidly yet coordinately degraded during leaf senescence remains elusive. Pheophytinase (PPH) is the enzyme for catalyzing the removal of the phytol group from pheophytin a , and PPH expression is significantly induced during leaf senescence. To elucidate the transcriptional regulation of PPH , we used a yeast ( Saccharomyces cerevisiae ) one-hybrid system to screen for its trans-regulators. SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1), a key flowering pathway integrator, was initially identified as one of the putative trans-regulators of PPH After dark treatment, leaves of an SOC1 knockdown mutant ( soc1-6 ) showed an accelerated yellowing phenotype, whereas those of SOC1 -overexpressing lines exhibited a partial stay-green phenotype. SOC1 and PPH expression showed a negative correlation during leaf senescence. Substantially, SOC1 protein could bind specifically to the CArG box of the PPH promoter in vitro and in vivo, and overexpression of SOC1 significantly inhibited the transcriptional activity of the PPH promoter in Arabidopsis ( Arabidopsis thaliana ) protoplasts. Importantly, soc1-6 pph-1 (a PPH knockout mutant) double mutant displayed a stay-green phenotype similar to that of pph-1 during dark treatment. These results demonstrated that SOC1 inhibits Chl degradation via negatively regulating PPH expression. In addition, measurement of the Chl content and the maximum photochemical efficiency of photosystem II of soc1-6 and SOC1-OE leaves after dark treatment suggested that SOC1 also negatively regulates the general senescence process. Seven SENESCENCE-ASSOCIATED GENES ( SAGs ) were thereafter identified as its potential target genes, and NONYELLOWING1 and SAG113 were experimentally confirmed. Together, we reveal that SOC1 represses dark-induced leaf Chl degradation and senescence in general in Arabidopsis. © 2017 American Society of Plant Biologists. All

  12. Molecular Cloning, Characterization, and Expression ofMiSOC1: A Homolog of the Flowering Gene SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 from Mango (Mangifera indicaL).

    Science.gov (United States)

    Wei, Junya; Liu, Debing; Liu, Guoyin; Tang, Jie; Chen, Yeyuan

    2016-01-01

    MADS-box transcription factor plays a crucial role in plant development, especially controlling the formation and development of floral organs. Mango ( Mangifera indica L) is an economically important fruit crop, but its molecular control of flowering is largely unknown. To better understand the molecular basis of flowering regulation in mango, we isolated and characterized the MiSOC1, a putative mango orthologs for the Arabidopsis SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1/AGAMOUS-LIKE 20 (SOC1/AGL20) with homology-based cloning and RACE. The full-length cDNA (GenBank accession No.: KP404094) is 945 bp in length including a 74 bp long 5' UTR and a 189 bp long 3' UTR and the open reading frame was 733 bps, encoding 223 amino acids with molecular weight 25.6 kD. Both sequence alignment and phylogenetic analysis all indicated that deduced protein contained a conservative MADS-box and semi-conservative K domain and belonged to the SOC1/TM3 subfamily of the MADS-box family. Quantitative real-time PCR was performed to investigate the expression profiles of MiSOC1 gene in different tissues/organs including root, stem, leaves, flower bud, and flower. The result indicated MiSOC1 was widely expressed at different levels in both vegetative and reproductive tissues/organs with the highest expression level in the stems' leaves and inflorescences, low expression in roots and flowers. The expression of MiSOC1 in different flower developmental stages was different while same tissue -specific pattern among different varieties. In addition, MiSOC1 gene expression was affect by ethephon while high concentration ethephon inhibit the expression of MiSOC1. Overexpression of MiSOC1 resulted in early flowering in Arabidopsis . In conclusion, these results suggest that MiSOC1 may act as induce flower function in mango.

  13. Folliculin, the product of the Birt-Hogg-Dube tumor suppressor gene, interacts with the adherens junction protein p0071 to regulate cell-cell adhesion.

    Directory of Open Access Journals (Sweden)

    Doug A Medvetz

    Full Text Available Birt-Hogg-Dube (BHD is a tumor suppressor gene syndrome associated with fibrofolliculomas, cystic lung disease, and chromophobe renal cell carcinoma. In seeking to elucidate the pathogenesis of BHD, we discovered a physical interaction between folliculin (FLCN, the protein product of the BHD gene, and p0071, an armadillo repeat containing protein that localizes to the cytoplasm and to adherens junctions. Adherens junctions are one of the three cell-cell junctions that are essential to the establishment and maintenance of the cellular architecture of all epithelial tissues. Surprisingly, we found that downregulation of FLCN leads to increased cell-cell adhesion in functional cell-based assays and disruption of cell polarity in a three-dimensional lumen-forming assay, both of which are phenocopied by downregulation of p0071. These data indicate that the FLCN-p0071 protein complex is a negative regulator of cell-cell adhesion. We also found that FLCN positively regulates RhoA activity and Rho-associated kinase activity, consistent with the only known function of p0071. Finally, to examine the role of Flcn loss on cell-cell adhesion in vivo, we utilized keratin-14 cre-recombinase (K14-cre to inactivate Flcn in the mouse epidermis. The K14-Cre-Bhd(flox/flox mice have striking delays in eyelid opening, wavy fur, hair loss, and epidermal hyperplasia with increased levels of mammalian target of rapamycin complex 1 (mTORC1 activity. These data support a model in which dysregulation of the FLCN-p0071 interaction leads to alterations in cell adhesion, cell polarity, and RhoA signaling, with broad implications for the role of cell-cell adhesion molecules in the pathogenesis of human disease, including emphysema and renal cell carcinoma.

  14. Frequent loss of heterozygosity and altered expression of the candidate tumor suppressor gene 'FAT' in human astrocytic tumors

    International Nuclear Information System (INIS)

    Chosdol, Kunzang; Misra, Anjan; Puri, Sachin; Srivastava, Tapasya; Chattopadhyay, Parthaprasad; Sarkar, Chitra; Mahapatra, Ashok K; Sinha, Subrata

    2009-01-01

    We had earlier used the comparison of RAPD (Random Amplification of Polymorphic DNA) DNA fingerprinting profiles of tumor and corresponding normal DNA to identify genetic alterations in primary human glial tumors. This has the advantage that DNA fingerprinting identifies the genetic alterations in a manner not biased for locus. In this study we used RAPD-PCR to identify novel genomic alterations in the astrocytic tumors of WHO grade II (Low Grade Diffuse Astrocytoma) and WHO Grade IV (Glioblastoma Multiforme). Loss of heterozygosity (LOH) of the altered region was studied by microsatellite and Single Nucleotide Polymorphism (SNP) markers. Expression study of the gene identified at the altered locus was done by semi-quantitative reverse-transcriptase-PCR (RT-PCR). Bands consistently altered in the RAPD profile of tumor DNA in a significant proportion of tumors were identified. One such 500 bp band, that was absent in the RAPD profile of 33% (4/12) of the grade II astrocytic tumors, was selected for further study. Its sequence corresponded with a region of FAT, a putative tumor suppressor gene initially identified in Drosophila. Fifty percent of a set of 40 tumors, both grade II and IV, were shown to have Loss of Heterozygosity (LOH) at this locus by microsatellite (intragenic) and by SNP markers. Semi-quantitative RT-PCR showed low FAT mRNA levels in a major subset of tumors. These results point to a role of the FAT in astrocytic tumorigenesis and demonstrate the use of RAPD analysis in identifying specific alterations in astrocytic tumors

  15. Molecular Cloning, Characterization, and Expression of MiSOC1: A Homolog of the Flowering Gene SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 from Mango (Mangifera indica L)

    Science.gov (United States)

    Wei, Junya; Liu, Debing; Liu, Guoyin; Tang, Jie; Chen, Yeyuan

    2016-01-01

    MADS-box transcription factor plays a crucial role in plant development, especially controlling the formation and development of floral organs. Mango (Mangifera indica L) is an economically important fruit crop, but its molecular control of flowering is largely unknown. To better understand the molecular basis of flowering regulation in mango, we isolated and characterized the MiSOC1, a putative mango orthologs for the Arabidopsis SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1/AGAMOUS-LIKE 20 (SOC1/AGL20) with homology-based cloning and RACE. The full-length cDNA (GenBank accession No.: KP404094) is 945 bp in length including a 74 bp long 5′ UTR and a 189 bp long 3′ UTR and the open reading frame was 733 bps, encoding 223 amino acids with molecular weight 25.6 kD. Both sequence alignment and phylogenetic analysis all indicated that deduced protein contained a conservative MADS-box and semi-conservative K domain and belonged to the SOC1/TM3 subfamily of the MADS-box family. Quantitative real-time PCR was performed to investigate the expression profiles of MiSOC1 gene in different tissues/organs including root, stem, leaves, flower bud, and flower. The result indicated MiSOC1 was widely expressed at different levels in both vegetative and reproductive tissues/organs with the highest expression level in the stems’ leaves and inflorescences, low expression in roots and flowers. The expression of MiSOC1 in different flower developmental stages was different while same tissue –specific pattern among different varieties. In addition, MiSOC1 gene expression was affect by ethephon while high concentration ethephon inhibit the expression of MiSOC1. Overexpression of MiSOC1 resulted in early flowering in Arabidopsis. In conclusion, these results suggest that MiSOC1 may act as induce flower function in mango. PMID:27965680

  16. The interaction between endogenous 30S ribosomal subunit protein S11 and Cucumber mosaic virus LS2b protein affects viral replication, infection and gene silencing suppressor activity.

    Directory of Open Access Journals (Sweden)

    Ruilin Wang

    Full Text Available Cucumber mosaic virus (CMV is a model virus for plant-virus protein interaction and mechanism research because of its wide distribution, high-level of replication and simple genome structure. The 2b protein is a multifunctional protein encoded by CMV that suppresses RNA silencing-based antiviral defense and contributes to CMV virulence in host plants. In this report, 12 host proteins were identified as CMV LS2b binding partners using the yeast two-hybrid screen system from the Arabidopsis thaliana cDNA library. Among the host proteins, 30S ribosomal subunit protein S11 (RPS11 was selected for further studies. The interaction between LS2b and full-length RPS11 was confirmed using the yeast two-hybrid system. Bimolecular fluorescence complementation (BIFC assays observed by confocal laser microscopy and Glutathione S-transferase (GST pull-down assays were used to verify the interaction between endogenous NbRPS11 and viral CMVLS2b both in vivo and in vitro. TRV-based gene silencing vector was used to knockdown NbRPS11 transcription, and immunoblot analysis revealed a decline in infectious viral RNA replication and a decrease in CMV infection in RPS11 down-regulated Nicotiana benthamiana plants. Thus, the knockdown of RPS11 likely inhibited CMV replication and accumulation. The gene silencing suppressor activity of CMV2b protein was reduced by the RPS11 knockdown. This study demonstrated that the function of viral LS2b protein was remarkably affected by the interaction with host RPS11 protein.

  17. RPS6KA2, a putative tumour suppressor gene at 6q27 in sporadic epithelial ovarian cancer

    DEFF Research Database (Denmark)

    Bignone, P A; Lee, K Y; Liu, Y

    2007-01-01

    -activated protein kinase pathway. It is expressed in normal ovarian epithelium, whereas reduced or absent in tumours or cell lines. We show that RPS6KA2 is monoallelically expressed in the ovary suggesting that loss of a single expressed allele is sufficient to cause complete loss of expression in cancer cells....... Further, we have identified two new isoforms of RPS6KA2 with an alternative start codon. Homozygous deletions were identified within the RPS6KA2 gene in two cell lines. Re-expression of RPS6KA2 in ovarian cancer cell lines suppressed colony formation. In UCI101 cells, the expression of RPS6KA2 reduced...

  18. Detection of cellular heterogeneity by DNA ploidy, 17 chromosome, and p53 gene in primary carcinoma and metastasis in a case of ovarian cancer.

    Science.gov (United States)

    Calugi, A; Eleuteri, P; Cavallo, D; Naso, G; Albonici, L; Lombardi, M P; Manzari, V; Romanini, C; DeVita, R

    1996-01-01

    An unusual case of a patient with ovarian carcinoma carrying the p53 point mutation in both metastases (omentum and lymph node), but not in the primary tumor, is described. The presence of a p53 single mutation (G:A) at the second base of codon 248 was examined by polymerase chain reaction-amplification refractory mutation system (PCR-ARMS) analysis. This case was examined also by fluorescent in situ hybrization (FISH) analysis and flow cytometry (FCM) to obtain further information at the single cell level and to detect heterogeneity within a population of cells. FCM analysis evidenced the same multiple aneuploid cell subpopulations in primary and in metastatic samples showing the presence of a cellular heterogeneity. FISH analysis showed a disomic condition for the 17 chromosome in the primary and in one metastasis, while in the other metastasis a monosomic together with a disomic subpopulation was revealed. Our results confirm the independent clonal evolution of the metastasis. The late mutation event observed only in metastatic specimens suggests the hypothesis that in the primary tumor the wild-type gene either does not perform its control role for unknown genetic structural events or the p53 gene in this case does not play a critical role in carcinogenesis.

  19. Von Hippel-Lindau tumor suppressor gene loss in renal cell carcinoma promotes oncogenic epidermal growth factor receptor signaling via Akt-1 and MEK-1.

    Science.gov (United States)

    Lee, S Justin; Lattouf, Jean-Baptiste; Xanthopoulos, Julie; Linehan, W Marston; Bottaro, Donald P; Vasselli, James R

    2008-10-01

    Clear-cell renal cell carcinoma (RCC) is the most prevalent form of kidney cancer and is frequently associated with loss of von Hippel-Lindau (VHL) gene function, resulting in the aberrant transcriptional activation of genes that contribute to tumor growth and metastasis, including transforming growth factor-alpha (TGF-alpha), a ligand of the epidermal growth factor receptor (EGFR) tyrosine kinase. To determine the functional impact of EGFR activation on RCC, we suppressed critical components of this pathway: EGFR, Akt-1, and MEK-1. Stable transfection of RCC cells with plasmids bearing shRNA directed against each of these genes was used to individually suppress their expression. Transfectants were characterized for growth and invasiveness in vitro and tumorigenesis in vivo. RCC cell transfectants displayed significantly reduced growth rate and matrix invasion in vitro and RCC tumor xenograft growth rate in vivo. Analysis of tumor cells that emerged after extended periods in each model showed that significant EGFR suppression was sustained, whereas Akt-1 and MEK-1 knock-down cells had escaped shRNA suppression. EGFR, Akt-1, and MEK-1 are individually critical for RCC cell invasiveness in vitro and tumorigenicity in vivo, and even partial suppression of each can have a significant impact on tumor progression. The emergence of transfectants that had escaped Akt-1 and MEK-1 suppression during tumorigenicity experiments suggests that these effectors may each be more critical than EGFR for RCC tumorigenesis, consistent with results from clinical trials of EGFR inhibitors for RCC, where durable clinical responses have not been seen.

  20. Von Hippel-Lindau Tumor Suppressor Gene Loss in Renal Cell Carcinoma Promotes Oncogenic Epidermal Growth Factor Receptor Signaling via Akt-1 and MEK1

    Science.gov (United States)

    Lee, S. Justin; Lattouf, Jean-Baptiste; Xanthopoulos, Julie; Linehan, W. Marston; Bottaro, Donald P.; Vasselli, James R.

    2008-01-01

    Objectives Clear-cell renal cell carcinoma (RCC) is the most prevalent form of kidney cancer and is frequently associated with loss of von Hippel-Lindau (VHL) gene function, resulting in the aberrant transcriptional activation of genes that contribute to tumor growth and metastasis, including transforming growth factor-α (TGF-α), a ligand of the epidermal growth factor receptor (EGFR) tyrosine kinase. To determine the functional impact of EGFR activation on RCC, we suppressed critical components of this pathway: EGFR, Akt-1, and MEK-1. Methods Stable transfection of RCC cells with plasmids bearing shRNA directed against each of these genes was used to individually suppress their expression. Transfectants were characterized for growth and invasiveness in vitro and tumorigenesis in vivo. Results RCC cell transfectants displayed significantly reduced growth rate and matrix invasion in vitro and RCC tumor xenograft growth rate in vivo. Analysis of tumor cells that emerged after extended periods in each model showed that significant EGFR suppression was sustained, whereas Akt-1 and MEK-1 knockdown cells had escaped shRNA suppression. Conclusions EGFR, Akt-1, and MEK-1 are individually critical for RCC cell invasiveness in vitro and tumorigenicity in vivo, and even partial suppression of each can have a significant impact on tumor progression. The emergence of transfectants that had escaped Akt-1 and MEK-1 suppression during tumorigenicity experiments suggests that these effectors may each be more critical than EGFR for RCC tumorigenesis, consistent with results from clinical trials of EGFR inhibitors for RCC, where durable clinical responses have not been seen. PMID:18243508

  1. Proto-oncogene FBI-1 (Pokemon/ZBTB7A) Represses Transcription of the Tumor Suppressor Rb Gene via Binding Competition with Sp1 and Recruitment of Co-repressors*S⃞

    Science.gov (United States)

    Jeon, Bu-Nam; Yoo, Jung-Yoon; Choi, Won-Il; Lee, Choong-Eun; Yoon, Ho-Geun; Hur, Man-Wook

    2008-01-01

    FBI-1 (also called Pokemon/ZBTB7A) is a BTB/POZ-domain Krüppel-like zinc-finger transcription factor. Recently, FBI-1 was characterized as a proto-oncogenic protein, which represses tumor suppressor ARF gene transcription. The expression of FBI-1 is increased in many cancer tissues. We found that FBI-1 potently represses transcription of the Rb gene, a tumor suppressor gene important in cell cycle arrest. FBI-1 binds to four GC-rich promoter elements (FREs) located at bp –308 to –188 of the Rb promoter region. The Rb promoter also contains two Sp1 binding sites: GC-box 1 (bp –65 to –56) and GC-box 2 (bp –18 to –9), the latter of which is also bound by FBI-1. We found that FRE3 (bp –244 to –236) is also a Sp1 binding element. FBI-1 represses transcription of the Rb gene not only by binding to the FREs, but also by competing with Sp1 at the GC-box 2 and the FRE3. By binding to the FREs and/or the GC-box, FBI-1 represses transcription of the Rb gene through its POZ-domain, which recruits a co-repressor-histone deacetylase complex and deacetylates histones H3 and H4 at the Rb gene promoter. FBI-1 inhibits C2C12 myoblast cell differentiation by repressing Rb gene expression. PMID:18801742

  2. Tumor suppressor NDRG2 inhibits glycolysis and glutaminolysis in colorectal cancer cells by repressing c-Myc expression.

    Science.gov (United States)

    Xu, Xinyuan; Li, Jianying; Sun, Xiang; Guo, Yan; Chu, Dake; Wei, Li; Li, Xia; Yang, Guodong; Liu, Xinping; Yao, Libo; Zhang, Jian; Shen, Lan

    2015-09-22

    Cancer cells use glucose and glutamine as the major sources of energy and precursor intermediates, and enhanced glycolysis and glutamimolysis are the major hallmarks of metabolic reprogramming in cancer. Oncogene activation and tumor suppressor gene inactivation alter multiple intracellular signaling pathways that affect glycolysis and glutaminolysis. N-Myc downstream regulated gene 2 (NDRG2) is a tumor suppressor gene inhibiting cancer growth, metastasis and invasion. However, the role and molecular mechanism of NDRG2 in cancer metabolism remains unclear. In this study, we discovered the role of the tumor suppressor gene NDRG2 in aerobic glycolysis and glutaminolysis of cancer cells. NDRG2 inhibited glucose consumption and lactate production, glutamine consumption and glutamate production in colorectal cancer cells. Analysis of glucose transporters and the catalytic enzymes involved in glycolysis revealed that glucose transporter 1 (GLUT1), hexokinase 2 (HK2), pyruvate kinase M2 isoform (PKM2) and lactate dehydrogenase A (LDHA) was significantly suppressed by NDRG2. Analysis of glutamine transporter and the catalytic enzymes involved in glutaminolysis revealed that glutamine transporter ASC amino-acid transporter 2 (ASCT2) and glutaminase 1 (GLS1) was also significantly suppressed by NDRG2. Transcription factor c-Myc mediated inhibition of glycolysis and glutaminolysis by NDRG2. More importantly, NDRG2 inhibited the expression of c-Myc by suppressing the expression of β-catenin, which can transcriptionally activate C-MYC gene in nucleus. In addition, the growth and proliferation of colorectal cancer cells were suppressed significantly by NDRG2 through inhibition of glycolysis and glutaminolysis. Taken together, these findings indicate that NDRG2 functions as an essential regulator in glycolysis and glutaminolysis via repression of c-Myc, and acts as a suppressor of carcinogenesis through coordinately targeting glucose and glutamine transporter, multiple catalytic

  3. MiR-218 Mediates tumorigenesis and metastasis: Perspectives and implications

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Ying-fei [Institute Guangzhou of Advanced Technology, Chinese Academy of Sciences, Guangzhou (China); Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong (China); Zhang, Li [School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong (China); Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong (China); Waye, Mary Miu Yee [School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong (China); Fu, Wei-ming, E-mail: wm.fu@giat.ac.cn [Institute Guangzhou of Advanced Technology, Chinese Academy of Sciences, Guangzhou (China); School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong (China); Zhang, Jin-fang, E-mail: zhangjf06@cuhk.edu.hk [Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong (China); School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong (China); Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen (China)

    2015-05-15

    MicroRNAs (miRNAs) are a class of small non-coding RNAs that negatively regulate gene expression at the post-transcriptional level. As a highly conserved miRNA across a variety of species, microRNA-218 (miR-218) was found to play pivotal roles in tumorigenesis and progression. A group of evidence has demonstrated that miR-218 acts as a tumor suppressor by targeting many oncogenes related to proliferation, apoptosis and invasion. In this review, we provide a complex overview of miR-218, including its regulatory mechanisms, known functions in cancer and future challenges as a potential therapeutic target in human cancers. - Highlights: • miR-218 is frequently down regulated in multiple cancers. • miR-218 plays pivotal roles in carcinogenesis. • miR-218 mediates proliferation, apoptosis, metastasis, invasion, etc. • miR-218 mediates tumorigenesis and metastasis via multiple pathways.

  4. Genetic variability and evolutionary implications of RNA silencing suppressor genes in RNA1 of sweet potato chlorotic stunt virus isolates infecting sweetpotato and related wild species.

    Directory of Open Access Journals (Sweden)

    Arthur K Tugume

    Full Text Available BACKGROUND: The bipartite single-stranded RNA genome of Sweet potato chlorotic stunt virus (SPCSV, genus Crinivirus; Closteroviridae encodes a Class 1 RNase III (RNase3, a putative hydrophobic protein (p7 and a 22-kDa protein (p22 from genes located in RNA1. RNase3 and p22 suppress RNA silencing, the basal antiviral defence mechanism in plants. RNase3 is sufficient to render sweetpotato (Ipomoea batatas virus-susceptible and predisposes it to development of severe diseases following infection with unrelated virus. The incidence, strains and gene content of SPCSV infecting wild plant species have not been studied. METHODOLOGY/PRINCIPAL FINDINGS: Thirty SPCSV isolates were characterized from 10 wild Ipomoea species, Hewittia sublobata or Lepistemon owariensis (family Convolvulaceae in Uganda and compared with 34 local SPCSV isolates infecting sweetpotatoes. All isolates belonged to the East African (EA strain of SPCSV and contained RNase3 and p7, but p22 was not detected in six isolates. The three genes showed only limited genetic variability and the proteins were under purifying selection. SPCSV isolates lacking p22 synergized with Sweet potato feathery mottle virus (SPFMV, genus potyvirus; Potyviridae and caused severe symptoms in co-infected sweetpotato plants. One SPCSV isolate enhanced accumulation of SPFMV, but no severe symptoms developed. A new whitefly-transmitted virus (KML33b encoding an RNase3 homolog (<56% identity to SPCSV RNase3 able to suppresses sense-mediated RNA silencing was detected in I. sinensis. CONCLUSIONS/SIGNIFICANCE: SPCSV isolates infecting wild species and sweetpotato in Uganda were genetically undifferentiated, suggesting inter-species transmission of SPCSV. Most isolates in Uganda contained p22, unlike SPCSV isolates characterized from other countries and continents. Enhanced accumulation of SPFMV and increased disease severity were found to be uncoupled phenotypic outcomes of RNase3-mediated viral synergism in

  5. Molecular cloning, phylogenetic analysis, and expression patterns of LATERAL SUPPRESSOR-LIKE and REGULATOR OF AXILLARY MERISTEM FORMATION-LIKE genes in sunflower (Helianthus annuus L.).

    Science.gov (United States)

    Fambrini, Marco; Salvini, Mariangela; Pugliesi, Claudio

    2017-03-01

    The wild sunflower (Helianthus annuus) plants develop a highly branched form with numerous small flowering heads. The origin of a no branched sunflower, producing a single large head, has been a key event in the domestication process of this species. The interaction between hormonal factors and several genes organizes the initiation and outgrowth of axillary meristems (AMs). From sunflower, we have isolated two genes putatively involved in this process, LATERAL SUPPRESSOR (LS)-LIKE (Ha-LSL) and REGULATOR OF AXILLARY MERISTEM FORMATION (ROX)-LIKE (Ha-ROXL), encoding for a GRAS and a bHLH transcription factor (TF), respectively. Typical amino acid residues and phylogenetic analyses suggest that Ha-LSL and Ha-ROXL are the orthologs of the branching regulator LS and ROX/LAX1, involved in the growth habit of both dicot and monocot species. qRT-PCR analyses revealed a high accumulation of Ha-LSL transcripts in roots, vegetative shoots, and inflorescence shoots. By contrast, in internodal stems and young leaves, a lower amount of Ha-LSL transcripts was observed. A comparison of transcription patterns between Ha-LSL and Ha-ROXL revealed some analogies but also remarkable differences; in fact, the gene Ha-ROXL displayed a low expression level in all organs analyzed. In situ hybridization (ISH) analysis showed that Ha-ROXL transcription was strongly restricted to a small domain within the boundary zone separating the shoot apical meristem (SAM) and the leaf primordia and in restricted regions of the inflorescence meristem, beforehand the separation of floral bracts from disc flower primordia. These results suggested that Ha-ROXL may be involved to establish a cell niche for the initiation of AMs as well as flower primordia. The accumulation of Ha-LSL transcripts was not restricted to the boundary zones in vegetative and inflorescence shoots, but the mRNA activity was expanded in other cellular domains of primary shoot apical meristem as well as AMs. In addition, Ha

  6. Radiation of different human melanoma cell lines increased expression of RHOB. Level of this tumor suppressor gene in different cell lines

    International Nuclear Information System (INIS)

    Notcovich, C.; Molinari, B.; Duran, H.; Delgado González, D.; Sánchez Crespo, R.

    2013-01-01

    Previous results of our group show that a correlation exists between intrinsic radiosensitivity of human melanoma cells and cell death by apoptosis. RhoB is a small GTPase that regulates cytoskeletal organization. Besides, is related to the process of apoptosis in cells exposed to DNA damage as radiation. Also, RhoB levels decrease in a wide variety of tumors with the tumor stage, being considered a tumor suppressor gene due to its antiproliferative and proapoptotic effect. The aim of this study was to analyze the expression of RhoB in different human melanoma cell lines in relation to melanocytes, and evaluate the effect of gamma radiation on the expression of RhoB. We used the A375, SB2 and Meljcell lines, and the derived from melanocytes Pig1. It was found for all three tumor lines RhoB expression levels significantly lower than those of Pig1 (p <0.05), as assessed by semiquantitative RT-PCR . When tumor cells were irradiated to a dose of 2Gyinduction was observed at 3 hours RhoB irradiation. RhoB expression increased in all lines relative to non-irradiated control, showing a greater induction ( p< 0.05) for the more radiosensitive line SB2, consistent with apoptosis in response to radiation. The results allow for the first time in melanoma demonstrate that RhoB, as well as in other tumor types, has a lower expression in tumor cells than their normal counterparts. Moreover, induction in the expression of RhoB in irradiated cells may be associated with the process of radiation-induced apoptosis. The modulation of RhoB could be a new tool to sensitize radioresistant melanoma. (author)

  7. A fine balance: epigenetic control of cellular quiescence by the tumor suppressor PRDM2/RIZ at a bivalent domain in the cyclin a gene.

    Science.gov (United States)

    Cheedipudi, Sirisha; Puri, Deepika; Saleh, Amena; Gala, Hardik P; Rumman, Mohammed; Pillai, Malini S; Sreenivas, Prethish; Arora, Reety; Sellathurai, Jeeva; Schrøder, Henrik Daa; Mishra, Rakesh K; Dhawan, Jyotsna

    2015-07-27

    Adult stem cell quiescence is critical to ensure regeneration while minimizing tumorigenesis. Epigenetic regulation contributes to cell cycle control and differentiation, but few regulators of the chromatin state in quiescent cells are known. Here we report that the tumor suppressor PRDM2/RIZ, an H3K9 methyltransferase, is enriched in quiescent muscle stem cells in vivo and controls reversible quiescence in cultured myoblasts. We find that PRDM2 associates with >4400 promoters in G0 myoblasts, 55% of which are also marked with H3K9me2 and enriched for myogenic, cell cycle and developmental regulators. Knockdown of PRDM2 alters histone methylation at key promoters such as Myogenin and CyclinA2 (CCNA2), and subverts the quiescence program via global de-repression of myogenesis, and hyper-repression of the cell cycle. Further, PRDM2 acts upstream of the repressive PRC2 complex in G0. We identify a novel G0-specific bivalent chromatin domain in the CCNA2 locus. PRDM2 protein interacts with the PRC2 protein EZH2 and regulates its association with the bivalent domain in the CCNA2 gene. Our results suggest that induction of PRDM2 in G0 ensures that two antagonistic programs-myogenesis and the cell cycle-while stalled, are poised for reactivation. Together, these results indicate that epigenetic regulation by PRDM2 preserves key functions of the quiescent state, with implications for stem cell self-renewal. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Allospecific CD8 T suppressor cells induced by multiple MLC stimulation or priming in the presence of ILT3.Fc have similar gene expression profiles.

    Science.gov (United States)

    Chen, Ling; Xu, Zheng; Chang, Chris; Ho, Sophey; Liu, Zhuoru; Vlad, George; Cortesini, Raffaello; Clynes, Raphael A; Luo, Yun; Suciu-Foca, Nicole

    2014-02-01

    Alloantigen specific CD8 T suppressor cells can be generated in vitro either by multiple stimulations of CD3 T cells with allogeneic APC or by single stimulation in primary MLC containing recombinant ILT3.Fc protein. The aim of the present study was to determine whether multiple MLC stimulation induced in CD8(+) CD28(-) T suppressor cells molecular changes that are similar to those observed in CD8 T suppressor cells from primary MLC containing ILT3.Fc protein. Our study demonstrates that the characteristic signatures of CD8 T suppressor cells, generated by either of these methods are the same consisting of up-regulation of the BCL6 transcriptional repressor and down-regulation of inflammatory microRNAs, miR-21, miR-30b, miR-146a, and miR-155 expression. In conclusion microRNAs which are increased under inflammatory conditions in activated CD4 and CD8 T cells with helper or cytotoxic function show low levels of expression in CD8 T cells which have acquired antigen-specific suppressor activity. Copyright © 2014. Published by Elsevier Inc.

  9. NM23 deficiency promotes metastasis in a UV radiation-induced mouse model of human melanoma.

    Science.gov (United States)

    Jarrett, Stuart G; Novak, Marian; Harris, Nathan; Merlino, Glenn; Slominski, Andrezj; Kaetzel, David M

    2013-01-01

    Cutaneous malignant melanoma is the most lethal form of skin cancer, with 5-year survival rates of melanoma are not well understood, in part due to a paucity of animal models that accurately recapitulate the disease in its advanced forms. We have employed a transgenic mouse strain harboring a tandem deletion of the nm23-m1 and nm23-m2 genes to assess the combined contribution of these genes to suppression of melanoma metastasis. Crossing of the nm23-h1/nm23-h2 knockout in hemizygous-null form ([m1m2](+/-)) to a transgenic mouse strain (hepatocyte growth factor/scatter factor-overexpressing, or HGF(+) strain) vulnerable to poorly-metastatic, UVR-induced melanomas resulted in UVR-induced melanomas with high metastatic potential. Metastasis to draining lymph nodes was seen in almost all cases of back skin melanomas, while aggressive metastasis to lung, thoracic cavity, liver and bone also occurred. Interestingly, no differences were observed in the invasive characteristics of primary melanomas of HGF(+) and HGF(+) × [m1m2](+/-) strains, with both exhibiting invasion into the dermis and subcutis, indicating factors other than simple invasive activity were responsible for metastasis of HGF(+) × [m1m2](+/-) melanomas. Stable cell lines were established from the primary and metastatic melanoma lesions from these mice, with HGF(+) × [m1m2](+/-) lines exhibiting increased single cell migration and genomic instability. These studies demonstrate for the first time in vivo a potent metastasis suppressor activity of NM23 in UVR-induced melanoma, and have provided new tools for identifying molecular mechanisms that underlie melanoma metastasis.

  10. The tumor suppressor gene TRC8/RNF139 is disrupted by a constitutional balanced translocation t(8;22(q24.13;q11.21 in a young girl with dysgerminoma

    Directory of Open Access Journals (Sweden)

    Fiorio Patrizia

    2009-07-01

    Full Text Available Abstract Background RNF139/TRC8 is a potential tumor suppressor gene with similarity to PTCH, a tumor suppressor implicated in basal cell carcinomas and glioblastomas. TRC8 has the potential to act in a novel regulatory relationship linking the cholesterol/lipid biosynthetic pathway with cellular growth control and has been identified in families with hereditary renal (RCC and thyroid cancers. Haploinsufficiency of TRC8 may facilitate development of clear cell-RCC in association with VHL mutations, and may increase risk for other tumor types. We report a paternally inherited balanced translocation t(8;22 in a proposita with dysgerminoma. Methods The translocation was characterized by FISH and the breakpoints cloned, sequenced, and compared. DNA isolated from normal and tumor cells was checked for abnormalities by array-CGH. Expression of genes TRC8 and TSN was tested both on dysgerminoma and in the proposita and her father. Results The breakpoints of the translocation are located within the LCR-B low copy repeat on chromosome 22q11.21, containing the palindromic AT-rich repeat (PATRR involved in recurrent and non-recurrent translocations, and in an AT-rich sequence inside intron 1 of the TRC8 tumor-suppressor gene at 8q24.13. TRC8 was strongly underexpressed in the dysgerminoma. Translin is underexpressed in the dysgerminoma compared to normal ovary. TRC8 is a target of Translin (TSN, a posttranscriptional regulator of genes transcribed by the transcription factor CREM-tau in postmeiotic male germ cells. Conclusion A role for TRC8 in dysgerminoma may relate to its interaction with Translin. We propose a model in which one copy of TRC8 is disrupted by a palindrome-mediated translocation followed by complete loss of expression through suppression, possibly mediated by miRNA.

  11. Analysis of the tumour suppressor genes, FHIT and WT-1, and the tumour rejection genes, BAGE, GAGE-1/2, HAGE, MAGE-1, and MAGE-3, in benign and malignant neoplasms of the salivary glands.

    Science.gov (United States)

    Nagel, H; Laskawi, R; Eiffert, H; Schlott, T

    2003-08-01

    Molecular genetic changes involved in tumorigenesis and malignant transformation of human tumours are novel targets of cancer diagnosis and treatment. This study aimed to analyse the expression of putative tumour suppressor genes, FHIT and WT-1, and tumour rejection genes, BAGE, GAGE-1/2, MAGE-1, MAGE-3, and HAGE (which are reported to be important in human cancers), in salivary gland neoplasms. Gene expression was analysed by reverse transcription polymerase chain reaction (RT-PCR) in normal salivary gland tissue and 44 benign and malignant salivary gland tumours. Aberrant FHIT transcripts were found in one of 38 normal salivary glands, three of 28 adenomas, and two of 16 carcinomas. WT-1 mRNA was detectable in two adenomas and five carcinomas. Immunoblotting showed that WT-1 mRNA expression was associated with raised WT-1 protein concentrations. RT-PCR for detection of BAGE, GAGE, and MAGE gene expression was positive in two adenomas and nine carcinomas, but negative in normal salivary gland tissue. HAGE mRNA was found in two normal salivary glands, 11 benign, and eight malignant tumours. FHIT mRNA splicing does not appear to be involved in the genesis of salivary gland neoplasms. The upregulation of WT-1 mRNA in tumours of epithelial/myoepithelial phenotype may imply a potential role of WT-1 in the genesis and/or cellular differentiation of these salivary gland tumours. The tumour rejection genes were more frequently, but not exclusively, expressed in malignant salivary gland tumours than in benign neoplasms, although none was suitable as a diagnostic marker of malignancy in salivary gland neoplasms.

  12. The essential Escherichia coli msgB gene, a multicopy suppressor of a temperature-sensitive allele of the heat shock gene grpE, is identical to dapE.

    Science.gov (United States)

    Wu, B; Georgopoulos, C; Ang, D

    1992-08-01

    The grpE gene product is one of three Escherichia coli heat shock proteins (DnaK, DnaJ, and GrpE) that are essential for both bacteriophage lambda DNA replication and bacterial growth at all temperatures. In an effort to determine the role of GrpE and to identify other factors that it may interact with, we isolated multicopy suppressors of the grpE280 point mutation, as judged by their ability to reverse the temperature-sensitive phenotype of grpE280. Here we report the characterization of one of them, designated msgB. The msgB gene maps at approximately 53 min on the E. coli chromosome. The minimal gene possesses an open reading frame that encodes a protein with a predicted size of 41,269 M(r). This open reading frame was confirmed the correct one by direct amino-terminal sequence analysis of the overproduced msgB gene product. Genetic experiments demonstrated that msgB is essential for E. coli growth in the temperature range of 22 to 37 degrees C. Through a sequence homology search, MsgB was shown to be identical to N-succinyl-L-diaminopimelic acid desuccinylase (the dapE gene product), which participates in the diaminopimelic acid-lysine pathway involved in cell wall biosynthesis. Consistent with this finding, the msgB null allele mutant is viable only when the growth medium is supplemented with diaminopimelic acid. These results suggest that GrpE may have a previously unsuspected function(s) in cell wall biosynthesis in E. coli.

  13. DC-SCRIPT is a novel regulator of the tumor suppressor gene CDKN2B and induces cell cycle arrest in ERα-positive breast cancer cells

    NARCIS (Netherlands)

    M. Ansems (Marleen); J.N. Søndergaard (Jonas Nørskov); A.M. Sieuwerts (Anieta); M.W.G. Looman (Maaike W. G.); M. Smid (Marcel); A.M.A. de Graaf (Annemarie M. A.); V. de Weerd (Vanja); M. Zuidscherwoude (Malou); J.A. Foekens (John); J.W.M. Martens (John); G.J. Adema (Gosse J.)

    2015-01-01

    textabstractBreast cancer is one of the most common causes of cancer-related deaths in women. The estrogen receptor (ERα) is well known for having growth promoting effects in breast cancer. Recently, we have identified DC-SCRIPT (ZNF366) as a co-suppressor of ERα and as a strong and independent

  14. DC-SCRIPT is a novel regulator of the tumor suppressor gene CDKN2B and induces cell cycle arrest in ERalpha-positive breast cancer cells

    NARCIS (Netherlands)

    Ansems, M.; Sondergaard, J.N.; Sieuwerts, A.M.; Looman, M.W.G.; Smid, M.; Graaf, A.M.A. de; Weerd, V. de; Zuidscherwoude, M.; Foekens, J.A.; Martens, J.W.; Adema, G.J.

    2015-01-01

    Breast cancer is one of the most common causes of cancer-related deaths in women. The estrogen receptor (ERalpha) is well known for having growth promoting effects in breast cancer. Recently, we have identified DC-SCRIPT (ZNF366) as a co-suppressor of ERalpha and as a strong and independent

  15. Tumor-suppressor activity of RRIG1 in breast cancer

    International Nuclear Information System (INIS)

    Zhang, Guihong; Brewster, Abenaa; Guan, Baoxiang; Fan, Zhen; Brown, Powel H; Xu, Xiao-Chun

    2011-01-01

    Retinoid receptor-induced gene-1 (RRIG1) is a novel gene that has been lost in several types of human cancers. The aim of this study was to determine whether RRIG1 plays a role in breast cancer, such as in the suppression of breast cancer cell growth and invasion. Immunohistochemistry was used to detect RRIG1 expression in breast tissue specimens. Gene transfection was used to restore or knock down RRIG1 expression in breast cancer cell lines for analysis of cell viability, colony formation, and migration/invasion potential. Reverse-transcription polymerase chain reaction and western blot assays were used to detect the changes in gene expression. The RhoA activation assay was used to assess RRIG1-induced inhibition of RhoA activity. The immunohistochemical data showed that RRIG1 expression was reduced in breast cancer tissues compared with normal and atypical hyperplastic breast tissues. RRIG1 expression was inversely correlated with lymph node metastasis of breast cancer but was not associated with the status of hormone receptors, such as estrogen receptor, progesterone receptor, or HER2. Furthermore, restoration of RRIG1 expression inhibited proliferation, colony formation, migration, and invasion of breast cancer cells. Expression of RRIG1 also reduced phosphorylated Erk1/2 and Akt levels; c-Jun, MMP9, and Akt expressions; and RhoA activity. In contrast, knockdown of RRIG1 expression promoted breast cancer cell proliferation, colony formation, migration, and invasion potential. The data from the current study indicated that RRIG1 expression was reduced or lost in breast cancer and that restoration of RRIG1 expression suppressed breast cancer cell growth and invasion capacity. Future studies will determine the underlying molecular mechanisms and define RRIG1 as a tumor-suppressor gene in breast cancer

  16. TAp63 suppress metastasis via miR-133b in colon cancer cells.

    Science.gov (United States)

    Lin, C W; Li, X R; Zhang, Y; Hu, G; Guo, Y H; Zhou, J Y; Du, J; Lv, L; Gao, K; Zhang, Y; Deng, H

    2014-04-29

    TAp63 is a tumour-suppressor protein that is often underexpressed in various types of cancer. It has been shown to activate gene transcription depending on the transcription domain and to be closely related with metastasis. In this study, we demonstrate that TAp63 suppresses metastasis in colon cancer cells through microRNA-133b. We evaluated the correlation of TAp63 and miR-133b with HT-29 and SW-620 cells and investigated the roles of TAp63 in the expression of RhoA, E-cadherin and vimentin. We further investigated the roles of TAp63-mediated invasion and migration of colon cancer cells. TAp63 expression is downregulated in colon cancer, and microRNA-133b is a transcriptional target of TAp63. Furthermore, microRNA-133b is essential for the inhibitory effects of TAp63 on RhoA, E-cadherin and vimentin. Moreover, TAp63 inhibits cell migration and invasion through microRNA-133b. Correspondingly, the inhibitory effect of TAp63 on RhoA, E-cadherin, vimentin, migration and invasion can be blocked by the microRNA-133b inhibitor. TAp63 and microRNA-133b were able to suppress the metastasis of colon cancer. Both TAp63 and microRNA-133b may be potential biomarkers for diagnosis in colon cancer metastasis and may provide unique therapeutic targets for this common malignancy.

  17. A 5'-regulatory region and two coding region polymorphisms modulate promoter activity and gene expression of the growth suppressor gene ZBED6 in cattle.

    Directory of Open Access Journals (Sweden)

    Yong-Zhen Huang

    Full Text Available Zinc finger, BED-type containing 6 (ZBED6 is an important transcription factor in placental mammals, affecting development, cell proliferation and growth. Polymorphisms in its promoter and coding regions are likely to impact ZBED6 transcription and growth traits. In this study, rapid amplification of 5' cDNA ends (5'-RACE analysis revealed two transcription start sites (TSS for the bovine ZBED6 starting within exon 1 of the ZC3H11A gene (TSS-1 and upstream of the translation start codon of the ZBED6 gene (TSS-2. There was one SNP in the promoter and two missense mutations in the coding region of the bovine ZBED6 by sequencing of the pooled DNA samples (Pool-Seq, n = 100. The promoter and coding region are the key regions for gene function; polymorphisms in these regions can alter gene expression. Quantitative real-time PCR (qPCR analysis showed that ZBED6 has a broad tissue distribution in cattle and is highly expressed in skeletal muscle. Eleven promoter-detection vectors were constructed, which enabled the cloning of putative promoter sequences and analysis of ZBED6 transcriptional activity by luciferase reporter gene assays. The core region of the basal promoter of bovine ZBED6 is located within region -866 to -556. The activity of WT-826G-pGL3 in driving reporter gene transcription is significantly higher than that of the M-826A-pGL3 construct (P < 0.01. Analysis of gene expression patterns in homozygous full-sibling Chinese Qinchuan cattle showed that the mutant-type Hap-AGG exhibited a lower mRNA level than the wild-type Hap-GCA (P < 0.05 in longissimus dorsi muscle (LDM. Moreover, ZBED6 mRNA expression was low in C2C12 cells overexpressing the mutant-type ZBED6 (pcDNA3.1(+-Hap-GG (P < 0.01. Our results suggest that the polymorphisms in the promoter and coding regions may modulate the promoter activity and gene expression of bovine ZBED6 in the skeletal muscles of these cattle breeds.

  18. P53 and Rb tumor suppressor gene alterations in gastric cancer Alterações dos genes supressores tumorais p53 e Rb no câncer gástrico

    Directory of Open Access Journals (Sweden)

    Rejane Mattar

    2004-01-01

    Full Text Available Inactivation of tumor suppressor genes has been frequently observed in gastric carcinogenesis. Our purpose was to study the involvement of p53, APC, DCC, and Rb genes in gastric carcinoma. METHOD: Loss of heterozygosity of the p53, APC, DCC and Rb genes was studied in 22 gastric cancer tissues using polymerase chain reaction; single-strand conformation polymorphism of the p53 gene exons 5-6 and exons 7-8 was studied using 35S-dATP, and p53 expression was detected using a histological immunoperoxidase method with an anti-p53 clone. RESULTS AND DISCUSSION: No loss of heterozygosity was observed in any of these tumor suppressor genes; homozygous deletion was detected in the Rb gene in 23% (3/13 of the cases of intestinal-type gastric carcinoma. Eighteen (81.8% cases showed band mobility shifts in exons 5-6 and/or 7-8 of the p53 gene. The presence of the p53 protein was positive in gastric cancer cells in 14 cases (63.6%. Normal gastric mucosa showed negative staining for p53; thus, the immunoreactivity was likely to represent mutant forms. The correlation of band mobility shift and the immunoreactivity to anti-p53 was not significant (P = .90. There was no correlation of gene alterations with the disease severity. CONCLUSIONS: The inactivation of Rb and p53 genes is involved in gastric carcinogenesis in our environment. Loss of the Rb gene observed only in the intestinal-type gastric cancer should be further evaluated in association with Helicobacter pylori infection. The p53 gene was affected in both intestinal and diffuse histological types of gastric cancer.A inativação de genes supressores tumorais tem sido freqüentemente observada na carcinogênese gástrica. O nosso objetivo foi estudar o envolvimento dos genes p53, APC, DCC e Rb no câncer gástrico. MÉTODO: Vinte e dois casos de câncer gástrico foram estudados por PCR-LOH (reação de polimerase em cadeia- perda de alelo heterozigoto dos genes p53, APC, DCC e Rb; e por PCR-SSCP (rea

  19. Bridging cancer biology with the clinic: relative expression of a GRHL2-mediated gene-set pair predicts breast cancer metastasis.

    Directory of Open Access Journals (Sweden)

    Xinan Yang

    Full Text Available Identification and characterization of crucial gene target(s that will allow focused therapeutics development remains a challenge. We have interrogated the putative therapeutic targets associated with the transcription factor Grainy head-like 2 (GRHL2, a critical epithelial regulatory factor. We demonstrate the possibility to define the molecular functions of critical genes in terms of their personalized expression profiles, allowing appropriate functional conclusions to be derived. A novel methodology, relative expression analysis with gene-set pairs (RXA-GSP, is designed to explore the potential clinical utility of cancer-biology discovery. Observing that Grhl2-overexpression leads to increased metastatic potential in vitro, we established a model assuming Grhl2-induced or -inhibited genes confer poor or favorable prognosis respectively for cancer metastasis. Training on public gene expression profiles of 995 breast cancer patients, this method prioritized one gene-set pair (GRHL2, CDH2, FN1, CITED2, MKI67 versus CTNNB1 and CTNNA3 from all 2717 possible gene-set pairs (GSPs. The identified GSP significantly dichotomized 295 independent patients for metastasis-free survival (log-rank tested p = 0.002; severe empirical p = 0.035. It also showed evidence of clinical prognostication in another independent 388 patients collected from three studies (log-rank tested p = 3.3e-6. This GSP is independent of most traditional prognostic indicators, and is only significantly associated with the histological grade of breast cancer (p = 0.0017, a GRHL2-associated clinical character (p = 6.8e-6, Spearman correlation, suggesting that this GSP is reflective of GRHL2-mediated events. Furthermore, a literature review indicates the therapeutic potential of the identified genes. This research demonstrates a novel strategy to integrate both biological experiments and clinical gene expression profiles for extracting and elucidating the genomic

  20. Construction of a multiplex promoter reporter platform to monitor Staphylococcus aureus virulence gene expression and the identification of usnic acid as a potent suppressor of psm gene expression

    Directory of Open Access Journals (Sweden)

    Peng GAO

    2016-08-01

    Full Text Available As antibiotic resistance becomes phenomenal, alternative therapeutic strategies for bacterial infections such as anti-virulence treatments have been advocated. We have constructed a total of 20 gfp-luxABCDE dual-reporter plasmids with selected promoters from S. aureus virulence-associated genes. The plasmids were introduced into various S. aureus strains to establish a gfp-lux based multiplex promoter reporter platform for monitoring S. aureus virulence gene expressions in real time to identify factors or compounds that may perturb virulence of S. aureus. The gene expression profiles monitored by luminescence correlated well with qRT-PCR results and extrinsic factors including carbon dioxide and some antibiotics were shown to suppress or induce the expression of virulence factors in this platform. Using this platform, sub-inhibitory ampicillin was shown to be a potent inducer for the expression of many virulence factors in S. aureus. Bacterial adherence and invasion assays using mammalian cells were employed to measure S. aureus virulence induced by ampicillin. The platform was used for screening of natural extracts that perturb the virulence of S. aureus and usnic acid was identified to be a potent repressor for the expression of psm.

  1. A mutation screening of oncogenes, tumor suppressor gene TP53 and nuclear encoded mitochondrial complex I genes in oncocytic thyroid tumors.

    Science.gov (United States)

    Evangelisti, Cecilia; de Biase, Dario; Kurelac, Ivana; Ceccarelli, Claudio; Prokisch, Holger; Meitinger, Thomas; Caria, Paola; Vanni, Roberta; Romeo, Giovanni; Tallini, Giovanni; Gasparre, Giuseppe; Bonora, Elena

    2015-03-21

    Thyroid neoplasias with oncocytic features represent a specific phenotype in non-medullary thyroid cancer, reflecting the unique biological phenomenon of mitochondrial hyperplasia in the cytoplasm. Oncocytic thyroid cells are characterized by a prominent eosinophilia (or oxyphilia) caused by mitochondrial abundance. Although disruptive mutations in the mitochondrial DNA (mtDNA) are the most significant hallmark of such tumors, oncocytomas may be envisioned as heterogeneous neoplasms, characterized by multiple nuclear and mitochondrial gene lesions. We investigated the nuclear mutational profile of oncocytic tumors to pinpoint the mutations that may trigger the early oncogenic hit. Total DNA was extracted from paraffin-embedded tissues from 45 biopsies of oncocytic tumors. High-resolution melting was used for mutation screening of mitochondrial complex I subunits genes. Specific nuclear rearrangements were investigated by RT-PCR (RET/PTC) or on isolated nuclei by interphase FISH (PAX8/PPARγ). Recurrent point mutations were analyzed by direct sequencing. In our oncocytic tumor samples, we identified rare TP53 mutations. The series of analyzed cases did not include poorly- or undifferentiated thyroid carcinomas, and none of the TP53 mutated cases had significant mitotic activity or high-grade features. Thus, the presence of disruptive TP53 mutations was completely unexpected. In addition, novel mutations in nuclear-encoded complex I genes were identified. These findings suggest that nuclear genetic lesions altering the bioenergetics competence of thyroid cells may give rise to an aberrant mitochondria-centered compensatory mechanism and ultimately to the oncocytic phenotype.

  2. Functional heterogeneity within the CD44 high human breast cancer stem cell-like compartment reveals a gene signature predictive of distant metastasis

    DEFF Research Database (Denmark)

    Leth-Larsen, Rikke; Terp, Mikkel Green; Christensen, Anne G

    2012-01-01

    The CD44(hi) compartment in human breast cancer is enriched in tumor-initiating cells; however the functional heterogeneity within this subpopulation remains poorly defined. We used a triple-negative breast cancer cell line with a known bi-lineage phenotype to isolate and clone CD44(hi) single...... features such as tumor-initiating capacity in vivo, mammosphere formation and resistance to standard chemotherapy. This complements previous findings using oncogene-transformed normal mammary cells showing that only cell clones with a mesenchymal phenotype exhibit cancer stem cell features. Further, we...... performed comparative quantitative proteomic and gene array analyses of these cells and identified potential novel markers of breast cancer cells with tumor-initiating features, such as LSR, RAB25, S100A14 and MUC1, as well as a novel 31-gene signature capable of predicting distant metastasis in cohorts...

  3. Gene expression profiling of fixed tissues identified hypoxia-inducible factor-1α, VEGF, and matrix metalloproteinase-2 as biomarkers of lymph node metastasis in hepatocellular carcinoma.

    Science.gov (United States)

    Xiang, Zuo-Lin; Zeng, Zhao-Chong; Fan, Jia; Tang, Zhao-You; Zeng, Hai-Ying; Gao, Dong-Mei

    2011-08-15

    Hepatocellular carcinoma (HCC) most often develops in patients infected with hepatitis B or hepatitis C virus. Differential gene expression profiling is useful for investigating genes associated with lymph node metastasis (LNM). We screened genes to identify potential biomarkers for LNM in HCC. RNA was extracted from formalin-fixed specimens of paired intratumoral and peritumoral tissues of patients with lymph node-positive (n = 36) or negative (n = 36) HCC. A cDNA-mediated annealing, selection, extension, and ligation assay was done with an array of 502 known cancer-related genes to identify differentially expressed genes in 20 pairs of patients with or without LNM. Candidate biomarkers were evaluated by using immunohistochemistry and tissue microarrays in an independent cohort of 309 HCC patients who had undergone hepatectomy. Of the 309 patients, 235 (76.1%) patients were infected with hepatitis B. Compared with lymph node-negative patients, lymph node-positive patients had 17 overexpressed genes and 19 underexpressed genes in intratumoral tissues, and 25 overexpressed genes and 22 underexpressed genes in peritumoral tissues. Hypoxia-inducible factor (HIF)-1α, VEGF, and matrix metalloproteinase (MMP)-2 were selected for analysis in the cohort of 309 HCC patients. We found that intratumoral protein levels of HIF-1α, VEGF, and MMP-2 were independent risk factors for developing LNM. We identified 83 cancer genes that were differentially expressed in lymph node-positive and lymph node-negative HCC. Our findings show that the combination of intratumoral HIF-1α, VEGF, and MMP-2 may be useful as a molecular prediction model for LNM. ©2011 AACR.

  4. A fine balance: epigenetic control of cellular quiescence by the tumor suppressor PRDM2/RIZ at a bivalent domain in the cyclin a gene

    OpenAIRE

    Cheedipudi, Sirisha; Puri, Deepika; Saleh, Amena; Gala, Hardik P.; Rumman, Mohammed; Pillai, Malini S.; Sreenivas, Prethish; Arora, Reety; Sellathurai, Jeeva; Schr?der, Henrik Daa; Mishra, Rakesh K.; Dhawan, Jyotsna

    2015-01-01

    Adult stem cell quiescence is critical to ensure regeneration while minimizing tumorigenesis. Epigenetic regulation contributes to cell cycle control and differentiation, but few regulators of the chromatin state in quiescent cells are known. Here we report that the tumor suppressor PRDM2/RIZ, an H3K9 methyltransferase, is enriched in quiescent muscle stem cells in vivo and controls reversible quiescence in cultured myoblasts. We find that PRDM2 associates with >4400 promoters in G0 myobla...

  5. miR-7 and miR-218 epigenetically control tumor suppressor genes RASSF1A and Claudin-6 by targeting HoxB3 in breast cancer

    International Nuclear Information System (INIS)

    Li, Qiaoyan; Zhu, Fufan; Chen, Puxiang

    2012-01-01

    Highlights: ► Both miR-7 and miR-218 down-regulates HoxB3 expression by targeting the 3′-UTR of HoxB3 mRNA. ► A reverse correlation between the levels of endogenous miR-7, miR218 and HoxB3 expression. ► Epigenetic changes involve in the reactivation of HoxB3. ► Both miRNAs inhibits the cell cycle and clone formation of breast cancer cells. -- Abstract: Many microRNAs have been implicated as key regulators of cellular growth and differentiation and have been found to dysregulate proliferation in human tumors, including breast cancer. Cancer-linked microRNAs also alter the epigenetic landscape by way of DNA methylation and post-translational modifications of histones. Aberrations in Hox gene expression are important for oncogene or tumor suppressor during abnormal development and malignancy. Although recent studies suggest that HoxB3 is critical in breast cancer, the putative role(s) of microRNAs impinging on HoxB3 is not yet fully understood. In this study, we found that the expression levels of miR-7 and miR-218 were strongly and reversely associated with HoxB3 expression. Stable overexpression of miR-7 and miR-218 was accompanied by reactivation of tumor suppressor genes including RASSF1A and Claudin-6 by means of epigenetic switches in DNA methylation and histone modification, giving rise to inhibition of the cell cycle and clone formation of breast cancer cells. The current study provides a novel link between overexpression of collinear Hox genes and multiple microRNAs in human breast malignancy.

  6. Suppressors (scsl-scs7) of CSG2, a Gene Required by Saccharomyces cerevisiae for Growth in Media Containing 10 mMCa(2+), Identify Genes Required for Sphingolipid Biosynthesis

    Science.gov (United States)

    1994-07-01

    grew comparably to wild type on YPD medium but failed to grow on the same medium containing 50 mM eal+ [Beeler et al., 1994]. The null allele was...8217 exchanger. The decrease of Ca" in medium can be measured spectrophotometrically. The wild type and suppressor strains were grown in YPD + 100 mM Ca" (pH...4.7), but the csg2i1 strain was grown in YPD (pH 4.7) medium . All suppressors (except scs]·]) showed vacuolar Ca"· uptake comparable to that

  7. NDRG2 is a candidate tumor-suppressor for oral squamous-cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Furuta, Hiroshi; Kondo, Yuudai [Division of Oral and Maxillofacial Surgery, Medicine of Sensory and Motor Organs, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki-gun, Miyazaki 889-1692 (Japan); Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki-gun, Miyazaki 889-1692 (Japan); Nakahata, Shingo; Hamasaki, Makoto [Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki-gun, Miyazaki 889-1692 (Japan); Sakoda, Sumio [Division of Oral and Maxillofacial Surgery, Medicine of Sensory and Motor Organs, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki-gun, Miyazaki 889-1692 (Japan); Morishita, Kazuhiro, E-mail: kmorishi@med.miyazaki-u.ac.jp [Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki-gun, Miyazaki 889-1692 (Japan)

    2010-01-22

    Oral cancer is one of the most common cancers worldwide, and squamous-cell carcinoma (OSCC) is the most common phenotype of oral cancer. Although patients with OSCC have poor survival rates and a high incidence of metastasis, the molecular mechanisms of OSCC development have not yet been elucidated. This study investigated whether N-myc downstream-regulated gene 2 (NDRG2) contributes to the carcinogenesis of OSCC, as NDRG2 is reported to be a candidate tumor-suppressor gene in a wide variety of cancers. The down-regulation of NDRG2 mRNA, which was dependent on promoter methylation, was seen in the majority of OSCC cases and in several cases of precancerous leukoplakia with dysplasia. Induction of NDRG2 expression in an HSC-3/OSCC cell line significantly inhibited cell proliferation and decreased colony formation ability on soft agar. The majority of OSCC cell lines showed an activation of PI3K/Akt signaling, and enforced expression of NDRG2 in HSC-3 cells decreased the level of phosphorylated Akt at Serine 473 (p-Akt). Immunohistochemical p-Akt staining was detected in 56.5% of the OSCC tumors, and 80.4% of the tumors were negative for NDRG2 staining. Moreover, positive p-Akt staining was inversely correlated with decreased NDRG2 expression in OSCC tumors with moderate to poor differentiation (p < 0.005). Therefore, NDRG2 is a candidate tumor-suppressor gene for OSCC development and probably contributes to the tumorigenesis of OSCC partly via the modulation of Akt signaling.

  8. Gap Junctional Intercellular Communication and Breast Cancer Metastasis to Bone

    National Research Council Canada - National Science Library

    Donahue, Henry

    2001-01-01

    .... We found that: 1) expressing the metastasis suppressing gene BRMS1 in diverse cancer cell lines, including breast and melanoma, restores homotypic gap junctional intercellular communication (GJIC); 2...

  9. High E6 Gene Expression Predicts for Distant Metastasis and Poor Survival in Patients With HPV-Positive Oropharyngeal Squamous Cell Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Khwaja, Shariq S.; Baker, Callie; Haynes, Wesley; Spencer, Christopher R.; Gay, Hiram; Thorstad, Wade [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri (United States); Adkins, Douglas R. [Division of Medical Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri (United States); Nussenbaum, Brian [Department of Otolaryngology – Head and Neck Surgery, Washington University School of Medicine, St. Louis, Missouri (United States); Chernock, Rebecca D. [Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri (United States); Lewis, James S. [Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee (United States); Wang, Xiaowei, E-mail: xwang@radonc.wustl.edu [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri (United States)

    2016-07-15

    Purpose: Patients with human papillomavirus (HPV)–positive oropharyngeal squamous cell carcinoma (OPSCC) have a favorable prognosis. As a result, de-escalation clinical trials are under way. However, approximately 10% of patients will experience distant recurrence even with standard-of-care treatment. Here, we sought to identify novel biomarkers to better risk-stratify HPV-positive patients with OPSCC. Methods and Materials: Gene expression profiling by RNA sequencing (RNA-seq) and quantitative polymerase chain reaction was performed on HPV-positive OPSCC primary tumor specimens from patients with and without distant metastasis (DM). Results: RNA-seq analysis of 39 HPV-positive OPSCC specimens revealed that patients with DM had 2-fold higher E6 gene expression levels than did patients without DM (P=.029). This observation was confirmed in a validation cohort comprising 93 patients with HPV-positive OPSCC. The mean normalized E6 expression level in the 17 recurring primary specimens was 13 ± 2 compared with 8 ± 1 in the remaining 76 nonrecurring primaries (P=.001). Receiver operating characteristic analysis established an E6 expression level of 7.3 as a cutoff for worse recurrence-free survival (RFS). Patients from this cohort with high E6 gene expression (E6-high) (n=51, 55%) had more cancer-related deaths (23% vs 2%, P<.001) and DM (26% vs 5%, P<.001) than did patients with low E6 gene expression (E6-low) (n=42, 45%). Kaplan-Meier survival analysis revealed that E6-high had worse RFS (95% vs 69%, P=.004) and cancer-specific survival (97% vs 79%, P=.007). E6-high maintained statistical significance in multivariate regression models balancing surgery, chemotherapy, nodal stage, and smoking status. Gene set enrichment analysis demonstrated that tumors with high E6 expression were associated with P53, epidermal growth factor receptor, activating transcription factor-2, and transforming growth factor-β signaling pathways. Conclusion: High E6 gene expression

  10. Tumor suppressors status in cancer cell line Encyclopedia.

    Science.gov (United States)

    Sonkin, Dmitriy; Hassan, Mehedi; Murphy, Denis J; Tatarinova, Tatiana V

    2013-08-01

    Tumor suppressors play a major role in the etiology of human cancer, and typically achieve a tumor-promoting effect upon complete functional inactivation. Bi-allelic inactivation of tumor suppressors may occur through genetic mechanisms (such as loss of function mutation, copy number (CN) loss, or loss of heterozygosity (LOH)), epigenetic mechanisms (such as promoter methylation or histone modification), or a combination of the two. We report systematically derived status of 69 known or putative tumor suppressors, across 799 samples of the Cancer Cell Line Encyclopedia. In order to generate such resource we constructed a novel comprehensive computational framework for the assessment of tumor suppressor functional "status". This approach utilizes several orthogonal genomic data types, including mutation data, copy number, LOH and expression. Through correlation with additional data types (compound sensitivity and gene set activity) we show that this integrative method provides a more accurate assessment of tumor suppressor status than can be inferred by expression, copy number, or mutation alone. This approach has the potential for a more realistic assessment of tumor suppressor genes for both basic and translational oncology research. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  11. Efficient inhibition of murine breast cancer growth and metastasis by gene transferred mouse survivin Thr34→Ala mutant

    Directory of Open Access Journals (Sweden)

    Chen li-Juan

    2008-09-01

    Full Text Available Abstract Background Metastasis in breast cancer is a vital concern in treatment because most women with primary breast cancer have micrometastases to distant sites at diagnosis. As a member of the inhibitor of apoptosis protein (IAP family, survivin has been proposed as an attractive target for new anticancer interventions. In this study, we investigated the role of the plasmid encoding the phosphorylation-defective mouse survivin threonine 34→alanine mutant (Msurvivin T34A plasmid in suppressing both murine primary breast carcinomas and pulmonary metastases. Methods In vitro study, induction of apoptosis by Msurvivin T34A plasmid complexed with cationic liposome (DOTAP/Chol was examined by PI staining fluorescence microscopy and flow cytometric analysis. The anti-tumor and anti-metastases activity of Msurvivin T34A plasmid complexed with cationic liposome (DOTAP/Chol was evaluated in female BALB/c mice bearing 4T1 s.c. tumors. Mice were treated twice weekly with i.v. administration of Msurvivin T34A plasmid complexed with cationic liposome (DOTAP/Chol, PORF-9 null plasmid complexed with cationic liposome (DOTAP/Chol, 0.9% NaCl solution for 4 weeks. Tumor volume was observed. After sacrificed, tumor net weight was measured and Lung metastatic nodules of each group were counted. Assessment of apoptotic cells by TUNEL assay was conducted in tumor tissue. Microvessel density within tumor tissue was determined by CD31 immunohistochemistry. Alginate-encapsulated tumor cells test was conducted to evaluate the effect on angiogenesis. By experiment of cytotoxicity T lymphocytes, we test whether Msurvivin T34A plasmid complexed with cationic liposome (DOTAP/Chol can induce specific cell immune response. Results Administration of Msurvivin T34A plasmid complexed with cationic liposome (DOTAP/Chol resulted in significant inhibition in the growth and metastases of 4T1 tumor model. These anti-tumor and anti-metastases responses were associated with

  12. [Agrobacterium-mediated sunflower transformation (Helianthus annuus L.) in vitro and in Planta using strain of LBA4404 harboring binary vector pBi2E with dsRNA-suppressor proline dehydrogenase gene].

    Science.gov (United States)

    Tishchenko, E N; Komisarenko, A G; Mikhal'skaia, S I; Sergeeva, L E; Adamenko, N I; Morgun, B V; Kochetov, A V

    2014-01-01

    To estimate the efficiency of proline dehydrogenase gene suppression towards increasing of sunflower (Helianthus annuus L.) tolerance level to water deficit and salinity, we employed strain LBA4404 harboring pBi2E with double-stranded RNA-suppressor, which were prepared on basis arabidopsis ProDH1 gene. The techniques of Agrobacterium-mediated transformation in vitro and in planta during fertilization sunflower have been proposed. There was shown the genotype-depended integration of T-DNA in sunflower genome. PCR-analysis showed that ProDH1 presents in genome of inbred lines transformed in planta, as well as in T1- and T2-generations. In trans-genic regenerants the essential accumulation of free L-proline during early stages of in vitro cultivation under normal conditions was shown. There was established the essential accumulation of free proline in transgenic regenerants during cultivation under lethal stress pressure (0.4 M mannitol and 2.0% sea water salts) and its decline upon the recovery period. These data are declared about effectiveness of suppression of sunflower ProDH and gene participation in processes connected with osmotolerance.

  13. Candidate Tumor-Suppressor Gene DLEC1 Is Frequently Downregulated by Promoter Hypermethylation and Histone Hypoacetylation in Human Epithelial Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Joseph Kwong

    2006-04-01

    Full Text Available Suppression of ovarian tumor growth by chromosome 3p was demonstrated in a previous study. Deleted in Lung and Esophageal Cancer 1 (DLEC1 on 3p22.3 is a candidate tumor suppressor in lung, esophageal, and renal cancers. The potential involvement of DLEC1 in epithelial ovarian cancer remains unknown. In the present study, DLEC1 downregulation was found in ovarian cancer cell lines and primary ovarian tumors. Focus-expressed DLEC1 in two ovarian cancer cell lines resulted in 41% to 52% inhibition of colony formation. No chromosomal loss of chromosome 3p22.3 in any ovarian cancer cell line or tissue was found. Promoter hypermethylation of DLEC1 was detected in ovarian cancer cell lines with reduced DLEC1 transcripts, whereas methylation was not detected in normal ovarian epithelium and DLEC1-expressing ovarian cancer cell lines. Treatment with demethylating agent enhanced DLEC1 expression in 90% (9 of 10 of ovarian cancer cell lines. DLEC1 promoter methylation was examined in 13 high-grade ovarian tumor tissues with DLEC1 downregulation, in which 54% of the tumors showed DLEC1 methylation. In addition, 80% of ovarian cancer cell lines significantly upregulated DLEC1 transcripts after histone deacetylase inhibitor treatment. Therefore, our results suggested that DLEC1 suppressed the growth of ovarian cancer cells and that its downregulation was closely associated with promoter hypermethylation and histone hypoacetylation.

  14. Suppressor of cytokine signaling (SOCS genes are silenced by DNA hypermethylation and histone deacetylation and regulate response to radiotherapy in cervical cancer cells.

    Directory of Open Access Journals (Sweden)

    Moon-Hong Kim

    Full Text Available Suppressor of cytokine signaling (SOCS family is an important negative regulator of cytokine signaling and deregulation of SOCS has been involved in many types of cancer. All cervical cancer cell lines tested showed lower expression of SOCS1, SOCS3, and SOCS5 than normal tissue or cell lines. The immunohistochemistry result for SOCS proteins in human cervical tissue also confirmed that normal tissue expressed higher level of SOCS proteins than neighboring tumor. Similar to the regulation of SOCS in other types of cancer, DNA methylation contributed to SOCS1 downregulation in CaSki, ME-180, and HeLa cells. However, the expression of SOCS3 or SOCS5 was not recovered by the inhibition of DNA methylation. Histone deacetylation may be another regulatory mechanism involved in SOCS1 and SOCS3 expression, however, SOCS5 expression was neither affected by DNA methylation nor histone deacetylation. Ectopic expression of SOCS1 or SOCS3 conferred radioresistance to HeLa cells, which implied SOCS signaling regulates the response to radiation in cervical cancer. In this study, we have shown that SOCS expression repressed by, in part, epigenetically and altered SOCS1 and SOCS3 expression could contribute to the radiosensitive phenotype in cervical cancer.

  15. The nuclear transport receptor Importin-11 is a tumor suppressor that maintains PTEN protein.

    Science.gov (United States)

    Chen, Muhan; Nowak, Dawid G; Narula, Navneet; Robinson, Brian; Watrud, Kaitlin; Ambrico, Alexandra; Herzka, Tali M; Zeeman, Martha E; Minderer, Matthias; Zheng, Wu; Ebbesen, Saya H; Plafker, Kendra S; Stahlhut, Carlos; Wang, Victoria M Y; Wills, Lorna; Nasar, Abu; Castillo-Martin, Mireia; Cordon-Cardo, Carlos; Wilkinson, John E; Powers, Scott; Sordella, Raffaella; Altorki, Nasser K; Mittal, Vivek; Stiles, Brendon M; Plafker, Scott M; Trotman, Lloyd C

    2017-03-06

    Phosphatase and tensin homologue (PTEN) protein levels are critical for tumor suppression. However, the search for a recurrent cancer-associated gene alteration that causes PTEN degradation has remained futile. In this study, we show that Importin-11 (Ipo11) is a transport receptor for PTEN that is required to physically separate PTEN from elements of the PTEN degradation machinery. Mechanistically, we find that the E2 ubiquitin-conjugating enzyme and IPO11 cargo, UBE2E1, is a limiting factor for PTEN degradation. Using in vitro and in vivo gene-targeting methods, we show that Ipo11 loss results in degradation of Pten, lung adenocarcinoma, and neoplasia in mouse prostate with aberrantly high levels of Ube2e1 in the cytoplasm. These findings explain the correlation between loss of IPO11 and PTEN protein in human lung tumors. Furthermore, we find that IPO11 status predicts disease recurrence and progression to metastasis in patients choosing radical prostatectomy. Thus, our data introduce the IPO11 gene as a tumor-suppressor locus, which is of special importance in cancers that still retain at least one intact PTEN allele. © 2017 Chen et al.

  16. Decoding Melanoma Metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Damsky, William E. Jr. [Department of Dermatology, Yale School of Medicine, New Haven, Connecticut (United States); Department of Pathology, University of Vermont College of Medicine, Burlington, Vermont (United States); Rosenbaum, Lara E.; Bosenberg, Marcus, E-mail: Marcus.Bosenberg@yale.edu [Department of Dermatology, Yale School of Medicine, New Haven, Connecticut (United States)

    2010-12-30

    Metastasis accounts for the vast majority of morbidity and mortality associated with melanoma. Evidence suggests melanoma has a predilection for metastasis to particular organs. Experimental analyses have begun to shed light on the mechanisms regulating melanoma metastasis and organ specificity, but these analyses are complicated by observations of metastatic dormancy and dissemination of melanocytes that are not yet fully malignant. Additionally, tumor extrinsic factors in the microenvironment, both at the site of the primary tumor and the site of metastasis, play important roles in mediating the metastatic process. As metastasis research moves forward, paradigms explaining melanoma metastasis as a step-wise process must also reflect the temporal complexity and heterogeneity in progression of this disease. Genetic drivers of melanoma as well as extrinsic regulators of disease spread, particularly those that mediate metastasis to specific organs, must also be incorporated into newer models of melanoma metastasis.

  17. DCB - Tumor Metastasis Research

    Science.gov (United States)

    Tumor metastasis research examines the mechanisms that allow cancer cells to leave the primary tumor and spread to another part of the body. Learn about recent tumor metastasis research studies supported by the Division of Cancer Biology.

  18. Close correlation between restriction fragment length polymorphism of the L-MYC gene and metastasis of human lung cancer to the lymph nodes and other organs

    International Nuclear Information System (INIS)

    Kawashima, Kazuko; Shikama, Hiroshi; Imoto, Kazuhiko; Izawa, Mitsuo; Nishimura, Susumu; Naruke, Tsuguo; Okabayashi, Kenzo

    1988-01-01

    Restriction length fragment polymorphism of the L-MYC gene was examined in DNAs from lung cancer tissues and normal tissues of 51 Japanese patients with lung cancer. In individual patients, no difference was seen between the restriction length fragments of the two alleles of L-MYC [6-kilobase (kb)] and 10-kb fragments in EcoRI digests in lung cancer tissues and normal tissues. But a striking correlation was found between the restriction length fragment polymorphism pattern of L-MYC and the extent of metastasis, particularly to the lymph nodes at the time of surgery: Patients with only the L band (10 kb) had few lymph node metastatic lesions, whereas patients with either the S band (6 kb) or the S and L bands almost always had lymph node metastatic lesion. A similar correlation was found between the presence of the S band and metastases to other organs. This correlation was particularly marked in cases of adenocarcinoma. These results indicate a clear genetic influence on metastases and a consequent poor prognosis for certain patients of lung cancer; L-MYC restriction length fragment polymorphism is thus shown to be a useful marker for predicting the metastatic potential of human lung cancer

  19. The in vitro and in vivo effects of re-expressing methylated von Hippel-Lindau tumor suppressor gene in clear cell renal carcinoma with 5-aza-2'-deoxycytidine.

    Science.gov (United States)

    Alleman, Wade G; Tabios, Ray L; Chandramouli, Gadisetti V R; Aprelikova, Olga N; Torres-Cabala, Carlos; Mendoza, Arnulfo; Rogers, Craig; Rodgers, Craig; Sopko, Nikolai A; Linehan, W Marston; Vasselli, James R

    2004-10-15

    Clear cell renal carcinoma (ccRCC) is strongly associated with loss of the von Hippel-Lindau (VHL) tumor suppressor gene. The VHL gene is functionally lost through hypermethylation in up to 19% of sporadic ccRCC cases. We theorized that re-expressing VHL silenced by methylation in ccRCC cells, using a hypo-methylating agent, may be an approach to treatment in patients with this type of cancer. We test the ability of two hypo-methylating agents to re-express VHL in cell culture and in mice bearing human ccRCC and evaluate the effects of re-expressed VHL in these models. Real-time reverse transcription-PCR was used to evaluate the ability of zebularine and 5-aza-2'-deoxycytidine (5-aza-dCyd) to re-express VHL in four ccRCC cell lines with documented VHL gene silencing through hypermethylation. We evaluated if the VHL re-expressed after hypo-methylating agent treatment could recreate similar phenotypic changes in ccRCC cells observed when the VHL gene is re-expressed via transfection in cell culture and in a xenograft mouse model. Finally we evaluate global gene expression changes occurring in our cells, using microarray analysis. 5-Aza-dCyd was able to re-express VHL in our cell lines both in culture and in xenografted murine tumors. Well described phenotypic changes of VHL expression including decreased invasiveness into Matrigel, and decreased vascular endothelial growth factor and glucose transporter-1 expression were observed in the treated lines. VHL methylated ccRCC xenografted tumors were significantly reduced in size in mice treated with 5-aza-dCyd. Mice bearing nonmethylated but VHL-mutated tumors showed no tumor shrinkage with 5-aza-dCyd treatment. Hypo-methylating agents may be useful in the treatment of patients having ccRCC tumors consisting of cells with methylated VHL.

  20. The von Hippel-Lindau (VHL) tumor-suppressor gene is down-regulated by selenium deficiency in Caco-2 cells and rat colon mucosa

    Science.gov (United States)

    To test the hypothesis that selenium affects DNA methylation and hence gene regulation we employed a methylation array (Panomics) in the human colonic epithelial Caco-2 cell model. The array profiles DNA methylation from promoter regions of 82 human genes. After conditioning cells to repeatedly redu...

  1. Adaptive Evolution Coupled with Retrotransposon Exaptation Allowed for the Generation of a Human-Protein-Specific Coding Gene That Promotes Cancer Cell Proliferation and Metastasis in Both Haematological Malignancies and Solid Tumours: The Extraordinary Case of MYEOV Gene

    Directory of Open Access Journals (Sweden)

    Spyros I. Papamichos

    2015-01-01

    Full Text Available The incidence of cancer in human is high as compared to chimpanzee. However previous analysis has documented that numerous human cancer-related genes are highly conserved in chimpanzee. Till date whether human genome includes species-specific cancer-related genes that could potentially contribute to a higher cancer susceptibility remains obscure. This study focuses on MYEOV, an oncogene encoding for two protein isoforms, reported as causally involved in promoting cancer cell proliferation and metastasis in both haematological malignancies and solid tumours. First we document, via stringent in silico analysis, that MYEOV arose de novo in Catarrhini. We show that MYEOV short-isoform start codon was evolutionarily acquired after Catarrhini/Platyrrhini divergence. Throughout the course of Catarrhini evolution MYEOV acquired a gradually elongated translatable open reading frame (ORF, a gradually shortened translation-regulatory upstream ORF, and alternatively spliced mRNA variants. A point mutation introduced in human allowed for the acquisition of MYEOV long-isoform start codon. Second, we demonstrate the precious impact of exonized transposable elements on the creation of MYEOV gene structure. Third, we highlight that the initial part of MYEOV long-isoform coding DNA sequence was under positive selection pressure during Catarrhini evolution. MYEOV represents a Primate Orphan Gene that acquired, via ORF expansion, a human-protein-specific coding potential.

  2. TEP1, the yeast homolog of the human tumor suppressor gene PTEN/MMAC1/TEP1, is linked to the phosphatidylinositol pathway and plays a role in the developmental process of sporulation.

    Science.gov (United States)

    Heymont, J; Berenfeld, L; Collins, J; Kaganovich, A; Maynes, B; Moulin, A; Ratskovskaya, I; Poon, P P; Johnston, G C; Kamenetsky, M; DeSilva, J; Sun, H; Petsko, G A; Engebrecht, J

    2000-11-07

    PTEN/MMAC1/TEP1 (PTEN, phosphatase deleted on chromosome ten; MMAC1, mutated in multiple advanced cancers; TEP1, tensin-like phosphatase) is a major human tumor suppressor gene whose suppressive activity operates on the phosphatidylinositol pathway. A single homologue of this gene, TEP1 (YNL128w), exists in the budding yeast Saccharomyces cerevisiae. Yeast strains deleted for TEP1 exhibit essentially no phenotype in haploids; however, diploids exhibit resistance to the phosphatidylinositol-3-phosphate kinase inhibitor wortmannin and to lithium ions. Although rates of cancer increase with age, neither tep1 haploids nor diploids have altered life spans. TEP1 RNA is present throughout the cell cycle, and levels are dramatically up-regulated during meiotic development. Although homozygous tep1 mutants initiate the meiotic program and form spores with wild-type kinetics, analysis of the spores produced in tep1 mutants indicates a specific defect in the trafficking or deposition of dityrosine, a major component of yeast spore walls, to the surface. Introduction of a common PTEN mutation found in human tumors into the analogous position in Tep1p produces a nonfunctional protein based on in vivo activity. These studies implicate Tep1p in a specific developmental trafficking or deposition event and suggest that Tep1p, like its mammalian counterpart, impinges on the phosphatidylinositol pathway.

  3. Role of Peroxisome Proliferator-Activated Receptor β/δ and B-Cell Lymphoma-6 in Regulation of Genes Involved in Metastasis and Migration in Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Jeffrey D. Coleman

    2013-01-01

    Full Text Available PPARβ/δ is a ligand-activated transcription factor that regulates various cellular functions via induction of target genes directly or in concert with its associated transcriptional repressor, BCL-6. Matrix remodeling proteinases are frequently over-expressed in pancreatic cancer and are involved with metastasis. The present study tested the hypothesis that PPARβ/δ is expressed in human pancreatic cancer cells and that its activation could regulate MMP-9, decreasing cancer cells ability to transverse the basement membrane. In human pancreatic cancer tissue there was significantly higher expression of MMP-9 and PPARβ/δ, and lower levels of BCL-6 mRNA. PPARβ/δ activation reduced the TNFα-induced expression of various genes implicated in metastasis and reduced the invasion through a basement membrane in cell culture models. Through the use of short hairpin RNA inhibitors of PPARβ/δ, BCL-6, and MMP-9, it was evident that PPARβ/δ was responsible for the ligand-dependent effects whereas BCL-6 dissociation upon GW501516 treatment was ultimately responsible for decreasing MMP-9 expression and hence invasion activity. These results suggest that PPARβ/δ plays a role in regulating pancreatic cancer cell invasion through regulation of genes via ligand-dependent release of BCL-6 and that activation of the receptor may provide an alternative therapeutic method for controlling migration and metastasis.

  4. A transgenic mouse model for early prostate metastasis to lymph nodes.

    Science.gov (United States)

    Ko, Hyun-Kyung; Akakura, Shin; Peresie, Jennifer; Goodrich, David W; Foster, Barbara A; Gelman, Irwin H

    2014-02-01

    The emergence of recurrent, metastatic prostate cancer following the failure of androgen-deprivation therapy represents the lethal phenotype of this disease. However, little is known regarding the genes and pathways that regulate this metastatic process, and moreover, it is unclear whether metastasis is an early or late event. The individual genetic loss of the metastasis suppressor, SSeCKS/Gravin/AKAP12 or Rb, genes that are downregulated or deleted in human prostate cancer, results in prostatic hyperplasia. Here, we show that the combined loss of Akap12 and Rb results in prostatic intraepithelial neoplasia (PIN) that fails to progress to malignancy after 18 months. Strikingly, 83% of mice with PIN lesions exhibited metastases to draining lymph nodes, marked by relatively differentiated tumor cells expressing markers of basal (p63, cytokeratin 14) and luminal (cytokeratin 8 and androgen receptor) epithelial cells, although none expressed the basal marker, cytokeratin 5. The finding that PIN lesions contain increased numbers of p63/AR-positive, cytokeratin 5-negative basal cells compared with WT or Akap12-/- prostate lobes suggests that these transitional cells may be the source of the lymph node metastases. Taken together, these data suggest that in the context of Rb loss, Akap12 suppresses the oncogenic proliferation and early metastatic spread of basal-luminal prostate tumor cells.

  5. Tumor suppressor molecules and methods of use

    Science.gov (United States)

    Welch, Peter J.; Barber, Jack R.

    2004-09-07

    The invention provides substantially pure tumor suppressor nucleic acid molecules and tumor suppressor polypeptides. The invention also provides hairpin ribozymes and antibodies selective for these tumor suppressor molecules. Also provided are methods of detecting a neoplastic cell in a sample using detectable agents specific for the tumor suppressor nucleic acids and polypeptides.

  6. Tumor suppressor gene mutation in a patient with a history of hyperparathyroidism-jaw tumor syndrome and healed generalized osteitis fibrosa cystica: a case report and genetic pathophysiology review.

    Science.gov (United States)

    Parfitt, Joshua; Harris, Malcolm; Wright, John M; Kalamchi, Sabah

    2015-01-01

    Hyperparathyroidism-jaw tumor (HPT-JT) was first observed by Jackson in 1958 in a family who exhibited hyperparathyroidism and recurrent pancreatitis. The author noticed the presence of jaw tumors in the affected family and reported them as fibrous dysplasia. However, it was not until 1990 that a familial variety of hyperparathyroidism with fibro-osseous jaw tumors was recognized as HPT-JT syndrome and reported as a clinically and genetically distinct syndrome. Hyperparathyroidism generally arises from glandular hyperplasia or parathyroid adenomas, with only about 1% of cases resulting from parathyroid carcinoma. However, parathyroid carcinoma develops in about 15% of HPT-JT patients. The true incidence of HPT-JT is unknown, although the prevalence of about 100 published cases suggests its rarity. Twenty percent of HPT-JT cases have renal hamartomas or tumors, and female patients with HPT-JT have been reported to have carcinoma of the uterus. This syndrome appears to arise from a variety of mutations that deactivate the tumor suppressor gene CDC73 (also known as HRPT2) and its production of the tumor suppressor protein parafibromin. Functional parafibromin has 531 amino acids, and mutations result in a short nonfunctional protein. CDC73 disorders exhibit dominant germline gene behavior, with varying degrees of penetration. In most cases an affected person has 1 parent with the condition, which raises the need for family investigation and genetic counseling. We report a case of HPT-JT syndrome in a male patient who presented to the local community hospital 6 years previously with a history of back pain. Investigations showed elevated serum parathyroid hormone and calcium levels, and a technetium 99m sestamibi parathyroid scan showed increased activity at the site of the lower left gland that proved to be a substernal parathyroid carcinoma. The patient's parathyroid hormone level dropped from 126 to 97 pg/mL at 5 minutes and was 65 pg/mL at 10 minutes after excision

  7. Identification of Novel Tumor Suppressor Genes in Human Breast Cancer Using Nonsense-Mediated mRNA Decay Inhibition (NMDI)-Microarray Analysis

    National Research Council Canada - National Science Library

    Johnstone, Cameron N

    2007-01-01

    This project sought to identify genes that harbor nonsense mutations in breast cancer cell lines that are commonly used as in vitro models in the study of breast cancer biology, with the ultimate aim...

  8. Genomic loss of tumor suppressor miRNA-204 promotes cancer cell migration and invasion by activating AKT/mTOR/Rac1 signaling and actin reorganization.

    Directory of Open Access Journals (Sweden)

    J Saadi Imam

    Full Text Available Increasing evidence suggests that chromosomal regions containing microRNAs are functionally important in cancers. Here, we show that genomic loci encoding miR-204 are frequently lost in multiple cancers, including ovarian cancers, pediatric renal tumors, and breast cancers. MiR-204 shows drastically reduced expression in several cancers and acts as a potent tumor suppressor, inhibiting tumor metastasis in vivo when systemically delivered. We demonstrated that miR-204 exerts its function by targeting genes involved in tumorigenesis including brain-derived neurotrophic factor (BDNF, a neurotrophin family member which is known to promote tumor angiogenesis and invasiveness. Analysis of primary tumors shows that increased expression of BDNF or its receptor tropomyosin-related kinase B (TrkB parallel a markedly reduced expression of miR-204. Our results reveal that loss of miR-204 results in BDNF overexpression and subsequent activation of the small GTPase Rac1 and actin reorganization through the AKT/mTOR signaling pathway leading to cancer cell migration and invasion. These results suggest that microdeletion of genomic loci containing miR-204 is directly linked with the deregulation of key oncogenic pathways that provide crucial stimulus for tumor growth and metastasis. Our findings provide a strong rationale for manipulating miR-204 levels therapeutically to suppress tumor metastasis.

  9. Engineered reversal of drug resistance in cancer cells--metastases suppressor factors as change agents.

    Science.gov (United States)

    Yadav, Vinod Kumar; Kumar, Akinchan; Mann, Anita; Aggarwal, Suruchi; Kumar, Maneesh; Roy, Sumitabho Deb; Pore, Subrata Kumar; Banerjee, Rajkumar; Mahesh Kumar, Jerald; Thakur, Ram Krishna; Chowdhury, Shantanu

    2014-01-01

    Building molecular correlates of drug resistance in cancer and exploiting them for therapeutic intervention remains a pressing clinical need. To identify factors that impact drug resistance herein we built a model that couples inherent cell-based response toward drugs with transcriptomes of resistant/sensitive cells. To test this model, we focused on a group of genes called metastasis suppressor genes (MSGs) that influence aggressiveness and metastatic potential of cancers. Interestingly, modeling of 84 000 drug response transcriptome combinations predicted multiple MSGs to be associated with resistance of different cell types and drugs. As a case study, on inducing MSG levels in a drug resistant breast cancer line resistance to anticancer drugs caerulomycin, camptothecin and topotecan decreased by more than 50-60%, in both culture conditions and also in tumors generated in mice, in contrast to control un-induced cells. To our knowledge, this is the first demonstration of engineered reversal of drug resistance in cancer cells based on a model that exploits inherent cellular response profiles.

  10. Deletion lengthening at chromosomes 6q and 16q targets multiple tumor suppressor genes and is associated with an increasingly poor prognosis in prostate cancer

    DEFF Research Database (Denmark)

    Kluth, Martina; Jung, Simon; Habib, Omar

    2017-01-01

    317 patients for 6q and 16q deletion length heterogeneity and found that the deletion expanded within 50-60% of 6q and 16q deleted cancers. Taken together, these data suggest continuous "deletion lengthening" as a key mechanism for prostate cancer progression leading to parallel down regulation......Prostate cancer is characterized by recurrent deletions that can considerably vary in size. We hypothesized that large deletions develop from small deletions and that this "deletion lengthening" might have a "per se" carcinogenic role through a combinatorial effect of multiple down regulated genes.......In vitroknockdown of 37 genes located inside the 6q12-q22 deletion region identified 4 genes with additive tumor suppressive effects, further supporting a role of the deletion size for cancer aggressiveness. Employing fluorescencein-situhybridization analysis on prostate cancer tissue microarrays, we determined...

  11. Abnormal P-53 suppressor gene expression predicts for a poorer outcome in patients with locally advanced adenocarcinoma of the prostate treated by external beam radiation therapy with or without pre-radiation androgen ablation: results based on RTOG study 86-10

    International Nuclear Information System (INIS)

    Lawton, Colleen A.; Grignon, David; Caplan, Richard; Sarkar, Fazlul; Forman, Jeffrey; Mesic, John; Fu, Karen K.; Abrams, Ross

    1995-01-01

    Purpose/Objective: The purpose of this study is to establish the effect of the abnormal expression of the P-53 suppressor gene on the results of locally advanced adenocarcinoma of the prostate treated with radiation therapy with or without pre-radiation therapy androgen ablation. Materials and Methods: Patients evaluated were part of a RTOG phase III multi-institutional trial. This trial assessed the value of pre-radiation therapy androgen ablation on patients with locally advanced disease (bulky stage B and stage C). Of the 471 patients registered, pre-treatment pathological material was available for 129 patients. P-53 status was determined immunohistochemically utilizing a commercially available antibody (D07). Clinical endpoints evaluated were overall survival and development of metastases. Results: Twenty-three of the 129 patients had abnormal expression of the P-53 suppressor gene. Presence of this abnormal expression significantly correlated with lower overall survival (p=0.03) and the development of distant metastases (p=0.03). Abnormal expression of the P-53 gene was an independent prognostic indicator when evaluated against clinical stage and Gleason score. Conclusion: This data from patients entered on a phase III multi-institutional, randomized clinical trial shows that abnormal P-53 suppressor gene expression as determined immunohistochemically is an independent predictor of poorer survival and the development of distant metastases in patients with locally advanced adenocarcinoma of the prostate treated with radiation therapy with or without pre-radiation therapy androgen ablation

  12. DNA repair and damage pathway related cancer suppressor genes in low-dose-rate irradiated AKR/J an IR mice

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Hyun Soon; Bong, Jin Jong; Kang, Yumi; Choi, Moo Hyun; Lee, Hae Un; Yoo, Jae Young; Choi, Seung Jin; Kim, Hee Sun [Radiation Health Research Institute, Korea Hydro and Nuclear Power Co., Ltd, Gyeongju (Korea, Republic of); Lee, Kyung Mi [Global Research Lab, BAERI Institute, Dept. of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul (Korea, Republic of)

    2012-11-15

    It has been reported that low-dose-rate radiation stimulates the immune response, prolongs life span and inhibits carcinogenesis. The high dose-rate radiation influences the expression of DNA repair and damage-related genes. In contrast, DNA repair and damage signaling triggered by low-dose-rate irradiation remain unclear. In the present study, we investigated the differential expression of DNA repair and damage pathway related genes in the thymus of AKR/J and ICR mice after 100th day low-dose-rate irradiation. Our findings demonstrated that low-dose-rate γ -radiation suppressed tumorigenesis.

  13. MicroRNAs-from metastasis prediction to metastasis prevention?

    Science.gov (United States)

    Abba, Mohammed; Patil, Nitin; Leupold, Jörg Hendrik; Allgayer, Heike

    2016-03-01

    Recently, we suggested the microRNA (miR) landscape defining metastasis. The first miR-driven network orchestrating invasion, intravasation, and metastasis was confirmed independently across several malignancies, suggesting a rather general principle for metastasis regulation. We hope that our data will stimulate the field in terms of further hypothesis generation, metastasis prediction, and metastasis prevention.

  14. Tumor suppressor gene p16/INK4A/CDKN2A-dependent regulation into and out of the cell cycle in a spontaneous canine model of breast cancer.

    Science.gov (United States)

    Agarwal, Payal; Sandey, Maninder; DeInnocentes, Patricia; Bird, R Curtis

    2013-06-01

    p16/INK4A/CDKN2A is an important tumor suppressor gene that arrests cell cycle in G1 phase inhibiting binding of CDK4/6 with cyclin D1, leaving the Rb tumor suppressor protein unphosphorylated and E2F bound and inactive. We hypothesized that p16 has a role in exit from cell cycle that becomes defective in cancer cells. Well characterized p16-defective canine mammary cancer cell lines (CMT28, CMT27, and CMT12), derived stably p16-transfected CMT cell clones (CMT27A, CMT27H, CMT28A, and CMT28F), and normal canine fibroblasts (NCF), were used to investigate expression of p16 after serum starvation into quiescence followed by re-feeding to induce cell cycle re-entry. The parental CMT cell lines used lack p16 expression either at the mRNA or protein expression levels, while p27 and other p16-associated proteins, including CDK4, CDK6, cyclin D1, and Rb, were expressed. We have successfully demonstrated cell cycle arrest and relatively synchronous cell cycle re-entry in parental CMT12, CMT28 and NCF cells as well as p16 transfected CMT27A, CMT27H, CMT28A, and CMT28F cells and confirmed this by (3)H-thymidine incorporation and flow cytometric analysis of cell cycle phase distribution. p16-transfected CMT27A and CMT27H cells exited cell cycle post-serum-starvation in contrast to parental CMT27 cells. NCF, CMT27A, and CMT28F cells expressed upregulated levels of p27 and p16 mRNA, post-serum starvation, as cells exited cell cycle and entered quiescence. Because quiescence and differentiation are associated with increased levels of p27, our data demonstrating that p16 was upregulated along with p27 during quiescence, suggests a potential role for p16 in maintaining these non-proliferative states. Copyright © 2012 Wiley Periodicals, Inc.

  15. Suppressors of DnaAATP imposed overinitiation in Escherichia coli

    DEFF Research Database (Denmark)

    Charbon, Godefroid; Riber, Leise; Cohen, Malene

    2011-01-01

    Chromosome replication in Escherichia coli is limited by the supply of DnaA associated with ATP. Cells deficient in RIDA (Regulatory Inactivation of DnaA) due to a deletion of the hda gene accumulate suppressor mutations (hsm) to counteract the overinitiation caused by an elevated DnaAATP level...

  16. Genomic Analyses Reveal Global Functional Alterations That Promote Tumor Growth and Novel Tumor Suppressor Genes in Natural Killer-Cell Malignancies

    DEFF Research Database (Denmark)

    Kucuk, Can; Iqbal, Javeed; J. deLeeuw, Ronald

    in the gene expression profile, we performed GEP and array-CGH studies on seven clinically well defined cases and eight well characterized cell lines derived from NKL patients. Methods: Array-CGH was performed on a tiling BAC array and GEP on an Affymetrix 133 plus2 array.The two data sets were correlated...... to identify functional alterations associated with the genetic abnormalities.Candidate genes on del 6q21 were identified and further studied for mutations and promoter methylation. Results: Our aCGH study identified frequent recurrent gains (> 25 %) in 1q, 2p, 7q, 13q, 17q and 20pter-qter. Regions of loss...

  17. Differential Splicing of Oncogenes and Tumor Suppressor Genes in African- and Caucasian-American Populations: Contributing Factor in Prostate Cancer Disparities

    Science.gov (United States)

    2015-10-01

    Sciences, Washington, District of Columbia. 3Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, NIH, Bethesda...5Department of Surgery ,Center for Prostate Disease Research, Uniformed Services University of the Health Sciences, Bethesda, Maryland. 6Department of...each biopsy core was purified using the RNeasy Micro Kit (Qiagen) and interrogated with the Affymetrix Human Exon 1.0 ST GeneChip. For miRNA

  18. Helicobacter pylori infection and family history of gastric cancer decrease expression of FHIT tumor suppressor gene in gastric mucosa of dyspeptic patients.

    Science.gov (United States)

    Stec-Michalska, Krystyna; Peczek, Lukasz; Michalski, Blazej; Wisniewska-Jarosinska, Maria; Krakowiak, Agnieszka; Nawrot, Barbara

    2009-10-01

    The expression of a fragile histidine triad (FHIT) protein is lost in stomach tumors. The study aimed at determining whether FHIT expression is affected by Helicobacter pylori infection, strain virulence (vacA and cagA genes) and histopathological changes in the gastric mucosa of patients with functional dyspepsia having first-degree relatives with gastric cancer. Eighty-eight never-smoking patients with functional dyspepsia were selected for the study, and 48 of them had first-degree relatives with gastric cancer. Bacterial DNA amplification was used to identify H. pylori colonization. The level of FHIT gene expression was determined by qRT-PCR (mRNA) and Western blot (FHIT protein) analyses. For patients having first-degree relatives with gastric cancer FHIT expression was lower (mRNA by ca. 40-45% and protein by 30%) compared with the control patients (p pylori infection decreased the FHIT mRNA level by 10-35% and the protein level by 10-20%. Bacterial strain vacA(+)cagA(+) lowered FHIT mRNA by ca. 30-35% in the antrum samples of both groups and in corpus samples of patients with first-degree relatives with gastric cancer (p pylori-negative patients with intestinal metaplasia, compared with those with non-atrophic gastritis. The decreased FHIT gene expression associated with hereditary factors and with H. pylori infection, especially with vacA(+)cagA(+)-positive strains, may be related to gastric carcinoma development.

  19. Using yeast to determine the functional consequences of mutations in the human p53 tumor suppressor gene: An introductory course-based undergraduate research experience in molecular and cell biology.

    Science.gov (United States)

    Hekmat-Scafe, Daria S; Brownell, Sara E; Seawell, Patricia Chandler; Malladi, Shyamala; Imam, Jamie F Conklin; Singla, Veena; Bradon, Nicole; Cyert, Martha S; Stearns, Tim

    2017-03-04

    The opportunity to engage in scientific research is an important, but often neglected, component of undergraduate training in biology. We describe the curriculum for an innovative, course-based undergraduate research experience (CURE) appropriate for a large, introductory cell and molecular biology laboratory class that leverages students' high level of interest in cancer. The course is highly collaborative and emphasizes the analysis and interpretation of original scientific data. During the course, students work in teams to characterize a collection of mutations in the human p53 tumor suppressor gene via expression and analysis in yeast. Initially, student pairs use both qualitative and quantitative assays to assess the ability of their p53 mutant to activate expression of reporter genes, and they localize their mutation within the p53 structure. Through facilitated discussion, students suggest possible molecular explanations for the transactivation defects displayed by their p53 mutants and propose experiments to test these hypotheses that they execute during the second part of the course. They use a western blot to determine whether mutant p53 levels are reduced, a DNA-binding assay to test whether recognition of any of three p53 target sequences is compromised, and fluorescence microscopy to assay nuclear localization. Students studying the same p53 mutant periodically convene to discuss and interpret their combined data. The course culminates in a poster session during which students present their findings to peers, instructors, and the greater biosciences community. Based on our experience, we provide recommendations for the development of similar large introductory lab courses. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(2):161-178, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  20. Analysis of aberrant methylation on promoter sequences of tumor suppressor genes and total DNA in sputum samples: a promising tool for early detection of COPD and lung cancer in smokers

    Directory of Open Access Journals (Sweden)

    Guzmán Leda

    2012-07-01

    Full Text Available Abstract Background Chronic obstructive pulmonary disease (COPD is a disorder associated to cigarette smoke and lung cancer (LC. Since epigenetic changes in oncogenes and tumor suppressor genes (TSGs are clearly important in the development of LC. In this study, we hypothesize that tobacco smokers are susceptible for methylation in the promoter region of TSGs in airway epithelial cells when compared with non-smoker subjects. The purpose of this study was to investigate the usefulness of detection of genes promoter methylation in sputum specimens, as a complementary tool to identify LC biomarkers among smokers with early COPD. Methods We determined the amount of DNA in induced sputum from patients with COPD (n = 23, LC (n = 26, as well as in healthy subjects (CTR (n = 33, using a commercial kit for DNA purification, followed by absorbance measurement at 260 nm. The frequency of CDKN2A, CDH1 and MGMT promoter methylation in the same groups was determined by methylation-specific polymerase chain reaction (MSP. The Fisher’s exact test was employed to compare frequency of results between different groups. Results DNA concentration was 7.4 and 5.8 times higher in LC and COPD compared to the (CTR (p  Conclusions We provide evidence that aberrant methylation of TSGs in samples of induced sputum is a useful tool for early diagnostic of lung diseases (LC and COPD in smoker subjects. Virtual slides The abstract MUST finish with the following text: Virtual Slides The virtual slide(s for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1127865005664160

  1. Extravirgin olive oil up-regulates CB₁ tumor suppressor gene in human colon cancer cells and in rat colon via epigenetic mechanisms.

    Science.gov (United States)

    Di Francesco, Andrea; Falconi, Anastasia; Di Germanio, Clara; Micioni Di Bonaventura, Maria Vittoria; Costa, Antonio; Caramuta, Stefano; Del Carlo, Michele; Compagnone, Dario; Dainese, Enrico; Cifani, Carlo; Maccarrone, Mauro; D'Addario, Claudio

    2015-03-01

    Extravirgin olive oil (EVOO) represents the typical lipid source of the Mediterranean diet, an eating habit pattern that has been associated with a significant reduction of cancer risk. Diet is the more studied environmental factor in epigenetics, and many evidences suggest dysregulation of epigenetic pathways in cancer. The aim of our study was to investigate the effects of EVOO and its phenolic compounds on endocannabinoid system (ECS) gene expression via epigenetic regulation in both human colon cancer cells (Caco-2) and rats exposed to short- and long-term dietary EVOO. We observed a selective and transient up-regulation of CNR1 gene - encoding for type 1 cannabinoid receptor (CB₁) - that was evoked by exposure of Caco-2 cells to EVOO (100 ppm), its phenolic extracts (OPE, 50 μM) or authentic hydroxytyrosol (HT, 50 μM) for 24 h. None of the other major elements of the ECS (i.e., CB₂; GPR55 and TRPV1 receptors; and NAPE-PLD, DAGL, FAAH and MAGL enzymes) was affected at any time point. The stimulatory effect of OPE and HT on CB₁ expression was inversely correlated to DNA methylation at CNR1 promoter and was associated with reduced proliferation of Caco-2 cells. Interestingly, CNR1 gene was less expressed in Caco-2 cells when compared to normal colon mucosa cells, and again this effect was associated with higher level of DNA methylation at CNR1. Moreover, in agreement with the in vitro studies, we also observed a remarkable (~4-fold) and selective increase in CB₁ expression in the colon of rats receiving dietary EVOO supplementation for 10 days. Consistently, CpG methylation of rat Cnr1 promoter, miR23a and miR-301a, previously shown to be involved in the pathogenesis of colorectal cancer and predicted to target CB₁ mRNA, was reduced after EVOO administration down to ~50% of controls. Taken together, our findings demonstrating CB₁ gene expression modulation by EVOO or its phenolic compounds via epigenetic mechanism, both in vitro and in vivo, may

  2. The Tumor Suppressor Protein TEP1/PTEN/MMAC1 and Human Breast Cancer

    National Research Council Canada - National Science Library

    Sun, Hong

    2002-01-01

    PTEN is an important tumor suppressor. Both inherited mutations and somatic mutations in the PTEN gene have been frequently found in a variety of human cancers, including the breast cancer, PTEN protein has been shown to possess...

  3. Structure of the Tetrameric p53 Tumor Suppressor Bound to DNA

    National Research Council Canada - National Science Library

    Marmorstein, Ronen

    2002-01-01

    The p53 tumor suppressor binds DNA as a tetramer to regulate the transcription of genes involved in cell cycle arrest and apoptosis, and alterations in the DNA-binding core domain of p53 are the most...

  4. FOXP3 as X-linked Tumor Suppressor

    OpenAIRE

    Wang, Lizhong; Liu, Runhua; Ribick, Mark; Zheng, Pan; Liu, Yang

    2010-01-01

    The FOXP3 gene was initially identified because its mutation caused lethal autoimmune diseases in mouse and human. Mice with heterozygous mutation of Foxp3 succumb to mammary tumor spontaneously, while those with prostate-specific deletion develop prostate intraepithelial neoplasia. Somatic mutations, deletion and epigenetic inactivation of FOXP3 are widespread among human breast and prostate cancers. Unlike autosomal tumor suppressor genes that were usually inactivated by mutations in both a...

  5. Evaluate the Mechanism of Enhanced Metastasis Induced by Arthritis

    Science.gov (United States)

    2012-09-01

    Genes that mediate breast ca ncer metastasis to lung . Nature 2005, 436(7050):518-524. 6. Das Roy L, Pathangey L, Tinder T, Schettini J, Gruber H...7. Das Roy L, Ghosh S, Pathangey LB, Tinder TL, Gruber HE, Mukherjee P: Collagen induced arthritis increases s econdary metastasis in MMTV-PyV

  6. TRIM26 functions as a novel tumor suppressor of hepatocellular carcinoma and its downregulation contributes to worse prognosis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi, E-mail: wangyichenben@163.com [Department of General Surgery, The Affiliated Baoan Hospital of Southern Medical University, Shenzhen, Guangdong, 518101 (China); He, Du, E-mail: hdu1234@163.com [Department of Oncology, The Central Hospital of Enshi Autonomous of Prefecture, Enshi Clinical College of Wuhan University, Enshi, Hubei, 445000 (China); Yang, Liang, E-mail: yliang0689@163.com [Department of Oncology, Qianjiang Central Hospital, Qianjiang, Hubei, 433100 (China); Wen, Bo, E-mail: tjwb001@126.com [Department of Urology, The Affiliated Baoan Hospital of Southern Medical University, Shenzhen, Guangdong, 518101 (China); Dai, Jinfen, E-mail: brilliant_510@126.com [Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060 (China); Zhang, Qian, E-mail: anny9655@126.com [Department of Immunology, School of Basic Medicine, Wuhan University, Wuhan, Hubei, 430071 (China); Kang, Jian, E-mail: 984190619@qq.com [Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060 (China); He, Weiyang, E-mail: 996114664@qq.com [Department of Immunology, School of Basic Medicine, Wuhan University, Wuhan, Hubei, 430071 (China); Ding, Qianshan, E-mail: iamdqs@163.com [Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060 (China); He, De, E-mail: 18938027146@126.com [Department of General Surgery, The Affiliated Baoan Hospital of Southern Medical University, Shenzhen, Guangdong, 518101 (China)

    2015-07-31

    Hepatocellular carcinoma (HCC) is the one of the most common malignancies worldwide and its prognosis is extremely poor. Tripartite motif (TRIM) proteins play crucial roles in cancer cell biology but the function of tripartite motif 26 (TRIM26) has not been investigated. We demonstrated that low expression level of TRIM26 in tumor samples was significantly correlated with worse prognosis in HCC patients. We also demonstrated its expression level was associated with several clinicopathologic features such as AFP level and T stage of HCC patients. Furthermore, we validated that TRIM26 was significantly downregulated in HCC tissue compared with normal liver tissue. To further clarify the functional role of TRIM26 in HCC, We confirmed that TRIM26 silencing can promote cancer cell proliferation, colony forming, migration and invasion in vitro with HCC cell lines HepG2 and Bel-7402. Then we utilized bioinformatic tool to predict gene influenced by TRIM26, showing TRIM26 could modulate gene sets about cancer cell metabolism. In conclusion, we proved that TRIM26 is a novel tumor suppressor modulating multiple metabolism-related pathways in HCC. To our best knowledge, this is the first study to investigate the function of TRIM26 in cancer biology. Our findings provide useful insight into the mechanism of HCC origin and progression. Moreover, TRIM26 may represent a novel therapeutic target for HCC. - Highlights: • TRIM26 is down-regulated in liver cancer samples and functions as a novel tumor suppressor. • Down-regulation of TRIM26 is associated with worse prognosis of hepatocellular carcinoma (HCC). • Knockdown of TRIM26 promotes the proliferation and metastasis of HCC cells. • TRIM26 may function in abnormal metabolic progress of HCC.

  7. Relation between the changes of oncogene versus tumor suppressor gene interaction and the transition of cancer risk from female dominance through no sex discrimination to male dominance, as investigated by the reciprocal regression analysis of 5 human neoplasias.

    Science.gov (United States)

    Kodama, M; Murakami, M; Kodama, T

    1998-01-01

    We have been investigating the mathematical nature of intercancer linkage that underlies the mutual regulation of cancer risks between any 2 tumors in their variations in time and space. Applications of both sequential regression test and topological manipulation of age-adjusted incidence rate (AAIR) data set enabled us to prepare the oncogene (Onc) activation profile and the tumor suppressor gene (TSG) inactivation profile for each tumor. The purpose of this study was to investigate the relation between the changes of 2 cancer gene profiles and the sex discrimination of cancer risk in 7 human neoplasias. Results obtained are as follows: i) The sex discrimination of cancer risk could better be defined by the use of log-transformed AAIR data rather than of untransformed AAIR data. ii) The sex discrimination of cancer risk, as calculated with the AAIR data of 47 population units of the world, is as follows: a) breast cancer (Br), M:F=1:120.2; b) thyroid cancer (Thy), M:F=1:2. 64; c) colon cancer (Co), M:F=1.18:1; d) liver cancer (Li), M:F=2. 63:1; e) lung cancer (Lu), M:F=3.66:1; f) esophageal cancer (Eso), M:F=3.68:1; g) laryngeal cancer (Lar), M:F=7.26:1. iii) Female-dominant cancers were associated with inversion (Br) or defectiveness (Thy) of male oncogene profile, whereas male-dominant cancers were associated with inversion (Lar) or defectiveness (Li, Lu and Eso) of female Onc profiles. Sex-indifferent cancer, Co, was distinguished from other tumors by the emergence of defectiveness in the TSG profiles of both sexes. TSG defectiveness was also detectable in female (Br, Thy) and bisexual (Lu) tumors. iv) The Onc vs TSG interaction, as assessed in terms of r value of the reciprocal regression analysis, was increasing in its positivity rate from the top of the female-dominant family (Br) through the sex-indifferent tumor (Co) to the bottom of the male-dominant family (Lar). In conclusion, the emergence of sex discrimination of cancer risk was positively correlated

  8. Molecular cytogenetic characterization of canine histiocytic sarcoma: A spontaneous model for human histiocytic cancer identifies deletion of tumor suppressor genes and highlights influence of genetic background on tumor behavior

    Directory of Open Access Journals (Sweden)

    Abadie Jerome

    2011-05-01

    Full Text Available Abstract Background Histiocytic malignancies in both humans and dogs are rare and poorly understood. While canine histiocytic sarcoma (HS is uncommon in the general domestic dog population, there is a strikingly high incidence in a subset of breeds, suggesting heritable predisposition. Molecular cytogenetic profiling of canine HS in these breeds would serve to reveal recurrent DNA copy number aberrations (CNAs that are breed and/or tumor associated, as well as defining those shared with human HS. This process would identify evolutionarily conserved cytogenetic changes to highlight regions of particular importance to HS biology. Methods Using genome wide array comparative genomic hybridization we assessed CNAs in 104 spontaneously occurring HS from two breeds of dog exhibiting a particularly elevated incidence of this tumor, the Bernese Mountain Dog and Flat-Coated Retriever. Recurrent CNAs were evaluated further by multicolor fluorescence in situ hybridization and loss of heterozygosity analyses. Statistical analyses were performed to identify CNAs associated with tumor location and breed. Results Almost all recurrent CNAs identified in this study were shared between the two breeds, suggesting that they are associated more with the cancer phenotype than with breed. A subset of recurrent genomic imbalances suggested involvement of known cancer associated genes in HS pathogenesis, including deletions of the tumor suppressor genes CDKN2A/B, RB1 and PTEN. A small number of aberrations were unique to each breed, implying that they may contribute to the major differences in tumor location evident in these two breeds. The most highly recurrent canine CNAs revealed in this study are evolutionarily conserved with those reported in human histiocytic proliferations, suggesting that human and dog HS share a conserved pathogenesis. Conclusions The breed associated clinical features and DNA copy number aberrations exhibited by canine HS offer a valuable model

  9. Single nucleotide variants in metastasis-related genes are associated with breast cancer risk, by lymph node involvement and estrogen receptor status, in women with European and African ancestry.

    Science.gov (United States)

    Roberts, Michelle R; Sucheston-Campbell, Lara E; Zirpoli, Gary R; Higgins, Michael; Freudenheim, Jo L; Bandera, Elisa V; Ambrosone, Christine B; Yao, Song

    2017-03-01

    Single nucleotide polymorphisms (SNPs) in pathways influencing lymph node (LN) metastasis and estrogen receptor (ER) status in breast cancer may partially explain inter-patient variability in prognosis. We examined 154 SNPs in 12 metastasis-related genes for associations with breast cancer risk, stratified by LN and ER status, in European-American (EA) and African-American (AA) women. Two-thousand six hundred and seventy-one women enrolled in the Women's Circle of Health Study were genotyped. Pathway analyses were conducted using the adaptive rank truncated product (ARTP) method, with p ARTP  ≤ 0.10 as significant. Multi-allelic risk scores were created for the ARTP-significant gene(s). Single-SNP and risk score associations were modeled using logistic regression, with false discovery rate (FDR) P-value adjustment. Although single-SNP associations were not significant at p FDR  women, significant ARTP gene-level associations included CDH1 with LN+ (p ARTP  = 0.10; multi-allelic OR = 1.13, 95%CI 1.07-1.19, p FDR  = 0.0003) and SIPA1 with ER- breast cancer (p ARTP  = 0.10; multi-allelic OR = 1.16, 95%CI 1.02-1.31, p FDR  = 0.03). In EA women, MTA2 was associated with overall breast cancer risk (p ARTP  = 0.004), regardless of ER status, and with LN- disease (p ARTP  = 0.01). Also significant were SATB1 in ER- (p ARTP  = 0.03; multi-allelic OR = 1.12, 95%CI 1.05-1.20, p FDR  = 0.003) and KISS1 in LN- (p ARTP  = 0.10; multi-allelic OR = 1.18, 95%CI 1.08-1.29, p FDR  = 0.002) analyses. Among LN+ cases, significant ARTP associations were observed for SNAI1, CD82, NME1, and CTNNB1 (multi-allelic OR = 1.09, 95%CI 1.04-1.14, p FDR  = 0.001). Our findings suggest that variants in several metastasis genes may affect breast cancer risk by LN or ER status, although verification in larger studies is required. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Targeted p53 activation by saRNA suppresses human bladder cancer cells growth and metastasis.

    Science.gov (United States)

    Wang, Chenghe; Ge, Qiangqiang; Zhang, Qingsong; Chen, Zhong; Hu, Jia; Li, Fan; Ye, Zhangqun

    2016-03-25

    Previous study showed that dsP53-285 has the capacity to induce tumor suppressor gene p53 expression by targeting promoter in non-human primates' cells. And it is well known that TP53 gene is frequently mutant or inactivated in human bladder cancer. Hereby, whether this small RNA can activate the expression of wild-type p53 and inhibit human bladder cancer cells remains to be elucidated. Oligonucleotide and lentivirus were used to overexpress dsP53-285 and dsControl. Real-time PCR and western blot were used to detect genes' mRNA and protein expression, respectively. Cell proliferation assay, colony formation, flow cytometry, transwell assay and wound healing assay were performed to determine the effects on bladder cancer cells proliferation and migration/invasion in vitro. Animal models were carried out to analyze the effects on cells growth and metastasis in vivo. Transfection of dsP53-285 into human bladder cancer cell lines T24 and EJ readily activate wild-type p53 expression by targeting promoter. Moreover, dsP53-285 exhibited robust capacity to inhibit cells proliferation and colony formation, induce cells G0/G1 arrest, suppress migration and invasion. Besides, the Cyclin-CDK genes (Cyclin D1 and CDK4/6) were down-regulated and the EMT-associated genes (E-cadherin, β-catenin, ZEB1 and Vimentin) were also expressed inversely after dsP53-285 treatment. In addition, dsP53-285 could also significantly suppress the growth of bladder cancer xenografts and metastasis in nude mice. Most importantly, the anti-tumor effects mediated by dsP53-285 were mainly achieved by manipulating wild-type p53 expression. Our findings indicate that the dsP53-285 can upregulate wild-type p53 expression in human bladder cancer cells through RNA activation, and suppresses cells proliferation and metastasis in vitro and in vivo.

  11. Intellectual disability, oncogenes and tumour suppressor genes

    Indian Academy of Sciences (India)

    M. Bidart1 2 3 C. Coutton4 5 3. Plateforme Protéomique et Transcriptomique Clinique, Pole Recherche, CHU Grenoble, 38043 Grenoble, France; Equipe, Nanomédecine et Cerveau, Inserm U836, Grenoble Institut Neurosciences, 38000 Grenoble, France; Université Joseph Fourier, 38000 Grenoble, France; Département ...

  12. Myeloid derived suppressor cells as therapeutic target in hematological malignancies

    Directory of Open Access Journals (Sweden)

    Kim eDe Veirman

    2014-12-01

    Full Text Available Myeloid derived suppressor cells (MDSC are a heterogeneous population of immature myeloid cells that accumulate during pathological conditions such as cancer and are associated with a poor clinical outcome. MDSC expansion hampers the host anti-tumor immune response by inhibition of T cell proliferation, cytokine secretion and recruitment of regulatory T cells. In addition, MDSC exert non-immunological functions including the promotion of angiogenesis, tumor invasion and metastasis. Recent years, MDSC are considered as a potential target in solid tumors and hematological malignancies to enhance the effects of currently used immune modulating agents. This review focuses on the characteristics, distribution, functions, cell-cell interactions and targeting of MDSC in hematological malignancies including multiple myeloma, lymphoma and leukemia.

  13. miR-33a is a tumor suppressor microRNA that is decreased in prostate cancer.

    Science.gov (United States)

    Karatas, Omer Faruk; Wang, Jianghua; Shao, Longjiang; Ozen, Mustafa; Zhang, Yiqun; Creighton, Chad J; Ittmann, Michael

    2017-09-01

    Prostate cancer is one of the most frequently diagnosed neoplasms among men worldwide. MicroRNAs (miRNAs) are involved in numerous important cellular processes including proliferation, differentiation and apoptosis. They have been found to be aberrantly expressed in many types of human cancers. They can act as either tumor suppressors or oncogenes, and changes in their levels are associated with tumor initiation, progression and metastasis. miR-33a is an intronic miRNA embedded within SREBF2 that has been reported to have tumor suppressive properties in some cancers but has not been examined in prostate cancer. SREBF2 increases cholesterol and lipid levels both directly and via miR-33a action. The levels of SREBF2 and miR-33a are correlated in normal tissues by co-transcription from the same gene locus. Paradoxically, SREBF2 has been reported to be increased in prostate cancer, which would be predicted to increase miR-33a levels potentially leading to tumor suppression. We show here that miR-33a has tumor suppressive activities and is decreased in prostate cancer. The decreased miR-33a increases mRNA for the PIM1 oncogene and multiple genes in the lipid β-oxidation pathway. Levels of miR-33a are not correlated with SREBF2 levels, implying posttranscriptional regulation of its expression in prostate cancer.

  14. Bone metastasis risk factors in breast cancer

    Science.gov (United States)

    Pulido, Catarina; Vendrell, Inês; Ferreira, Arlindo R; Casimiro, Sandra; Mansinho, André; Alho, Irina; Costa, Luís

    2017-01-01

    Bone is the single most frequent site for bone metastasis in breast cancer patients. Patients with bone-only metastasis have a fairly good prognosis when compared with patients with visceral disease. Nevertheless, cancer-induced bone disease carries an important risk of developing skeletal related events that impact quality of life (QoL). It is therefore particularly important to stratify patients according to their risk of developing bone metastasis. In this context, several risk factors have been studied, including demographic, clinicopathological, genetic, and metabolic factors. Most of them show conflicting or non-definitive associations and are not validated for clinical use. Nonetheless, tumour intrinsic subtype is widely accepted as a major risk factor for bone metastasis development and luminal breast cancer carries an increased risk for bone disease. Other factors such as gene signatures, expression of specific cytokines (such as bone sialoprotein and bone morphogenetic protein 7) or components of the extracellular matrix (like bone crosslinked C-telopeptide) might also influence the development of bone metastasis. Knowledge of risk factors related with bone disease is of paramount importance as it might be a prediction tool for triggering the use of targeted agents and allow for better patient selection for future clinical trials. PMID:28194227

  15. Noise suppressor for turbo fan jet engines

    Science.gov (United States)

    Cheng, D. Y. (Inventor)

    1983-01-01

    A noise suppressor is disclosed for installation on the discharge or aft end of a turbo fan engine. Within the suppressor are fixed annular airfoils which are positioned to reduce the relative velocity between the high temperature fast moving jet exhaust and the low temperature slow moving air surrounding it. Within the suppressor nacelle is an exhaust jet nozzle which constrains the shape of the jet exhaust to a substantially uniform elongate shape irrespective of the power setting of the engine. Fixed ring airfoils within the suppressor nacelle therefore have the same salutary effects irrespective of the power setting at which the engine is operated.

  16. Suppressors made from intermetallic materials

    Science.gov (United States)

    Klett, James W; Muth, Thomas R; Cler, Dan L

    2014-11-04

    Disclosed are several examples of apparatuses for suppressing the blast and flash produced as a projectile is expelled by gases from a firearm. In some examples, gases are diverted away from the central chamber to an expansion chamber by baffles. The gases are absorbed by the expansion chamber and desorbed slowly, thus decreasing pressure and increasing residence time of the gases. In other examples, the gases impinge against a plurality of rods before expanding through passages between the rods to decrease the pressure and increase the residence time of the gases. These and other exemplary suppressors are made from an intermetallic material composition for enhanced strength and oxidation resistance at high operational temperatures.

  17. SIRT7 antagonizes TGF-β signaling and inhibits breast cancer metastasis.

    Science.gov (United States)

    Tang, Xiaolong; Shi, Lei; Xie, Ni; Liu, Zuojun; Qian, Minxian; Meng, Fanbiao; Xu, Qingyang; Zhou, Mingyan; Cao, Xinyue; Zhu, Wei-Guo; Liu, Baohua

    2017-08-22

    Distant metastasis is the main cause of breast cancer-related death; however, effective therapeutic strategies targeting metastasis are still scarce. This is largely attributable to the spatiotemporal intratumor heterogeneity during metastasis. Here we show that protein deacetylase SIRT7 is significantly downregulated in breast cancer lung metastases in human and mice, and predicts metastasis-free survival. SIRT7 deficiency promotes breast cancer cell metastasis, while temporal expression of Sirt7 inhibits metastasis in polyomavirus middle T antigen breast cancer model. Mechanistically, SIRT7 deacetylates and promotes SMAD4 degradation mediated by β-TrCP1, and SIRT7 deficiency activates transforming growth factor-β signaling and enhances epithelial-to-mesenchymal transition. Significantly, resveratrol activates SIRT7 deacetylase activity, inhibits breast cancer lung metastases, and increases survival. Our data highlight SIRT7 as a modulator of transforming growth factor-β signaling and suppressor of breast cancer metastasis, meanwhile providing an effective anti-metastatic therapeutic strategy.Metastatic disease is the major reason for breast cancer-related deaths; therefore, a better understanding of this process and its players is needed. Here the authors report the role of SIRT7 in inhibiting SMAD4-mediated breast cancer metastasis providing a possible therapeutic avenue.

  18. Breast cancer lung metastasis: molecular biology and therapeutic implications.

    Science.gov (United States)

    Jin, Liting; Han, Bingchen; Siegel, Emily; Cui, Yukun; Giuliano, Armando; Cui, Xiaojiang

    2018-03-26

    Distant metastasis accounts for the vast majority of deaths in patients with cancer. Breast cancer exhibits a distinct metastatic pattern commonly involving bone, liver, lung, and brain. Breast cancer can be divided into different subtypes based on gene expression profiles, and different breast cancer subtypes show preference to distinct organ sites of metastasis. Luminal breast tumors tend to metastasize to bone while basal-like breast cancer (BLBC) displays a lung tropism of metastasis. However, the mechanisms underlying this organ-specific pattern of metastasis still remain to be elucidated. In this review, we will summarize the recent advances regarding the molecular signaling pathways as well as the therapeutic strategies for treating breast cancer lung metastasis.

  19. Genomic Alteration During Metastasis of Lung Adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Qiang Tan

    2016-02-01

    Full Text Available Background/Aims: Recurrent gene mutation has been identified by the analysis of exonic DNA from lung adenocarcinoma, but its progression has not been extensively profiled. The investigation of the mutational landscape of tumors provides new insights into cancer genome evolution and further discovers the interplay of somatic mutation, adaptation of clones to their environment and natural selection. Cancer development involves cycles of genomic damage, epigenetic deregulation, and increased cellular proliferation that eventually culminate in the carcinoma phenotype. Methods: Comparative whole exome sequencing of both primary and metastatic tumor tissues from four patients of stage IV lung adenocarcinoma patients with chest wall metastasis was performed. Both primary and metastatic tumors were diagnosed through biopsy followed by surgical resection. All tumor specimens were cut into several pieces to assess potential heterogenic clones within the tumor tissue. Adjacent normal lung tissue was also obtained to provide germline mutation background. Results: By modeling and analyzing progression of the cancer metastasis based on non-synonymous variants, we defined the extent of heterogeneity of cancer genomes and identified similar cancer evolution pattern in the four patients: metastasis was an early event occurring right after the primary cancer formation and evolution in the metastatic tumor was continuously and simultaneously in progression with that in the primary tumor. By characterizing the clonal hierarchy of genetic lesions, we further charted a pathway of oncogenic events along which genes may drive lung adenocarcinoma metastasis, such as TAS2R31 and UMODL1, involving in G-protein coupled receptor protein signaling pathway. Conclusion: The candidate genes identified in this study may become targets for the treatment of lung adenocarcinoma metastasis.

  20. MIIP remodels Rac1-mediated cytoskeleton structure in suppression of endometrial cancer metastasis

    Directory of Open Access Journals (Sweden)

    Yingmei Wang

    2016-10-01

    suppressor gene for endometrial carcinoma. MIIP attenuates Rac1 signaling through a protein interaction network, and loss of this regulator may contribute to EC metastasis.

  1. MIIP remodels Rac1-mediated cytoskeleton structure in suppression of endometrial cancer metastasis.

    Science.gov (United States)

    Wang, Yingmei; Hu, Limei; Ji, Ping; Teng, Fei; Tian, Wenyan; Liu, Yuexin; Cogdell, David; Liu, Jinsong; Sood, Anil K; Broaddus, Russell; Xue, Fengxia; Zhang, Wei

    2016-10-19

    Endometrial carcinoma (EC) is one of the most common malignancies of the female reproductive system. Migration and invasion inhibitory protein (MIIP) gene was recently discovered candidate tumor suppress gene which located at chromosome 1p36.22. 1p36 deletion was found in many types of tumor including EC. In the present study, we will determine the role and mechanism of MIIP in EC metastasis. Immunohistochemistry was used to measure MIIP expression in normal and EC tissue. Both gain-of-function (infection) and loss-of-function (siRNA) assays were used to alter MIIP expression levels. The effect of MIIP on cell migration and invasion was measured by transwell assay. F-actin immunofluorescence staining was used to observe the cell morphology. The activation of GTP-loaded Rac1 was evaluated by Rac activity assay kit. Immunoprecipitation/WB was used to measure the interaction between MIIP and PAK1. We demonstrate that MIIP expression was significantly decreased in EC patients comparing to the normal ones, and decreased MIIP expression in EC tissues is associated with deep myometrial invasion, advanced stage, and the presence of lymph node metastasis. Using both gain-of-function (infection) and loss-of-function (siRNA) assays, we show that MIIP markedly blocked EC cell migration, whereas loss of MIIP led to increase in EC cell migration. We demonstrate that elevated expression of MIIP resulted in cytoskeleton reorganization with decreased formation of lamellipodia. We also provide evidence that MIIP is a key molecule in directing Rac1 signaling cascades in EC. Ectopically expressed MIIP consistently competed with Rac1-GTP for binding with the PAK1 p21-binding domain. Our data show that MIIP and PAK1 bind each other and that a C-terminal polyproline domain of MIIP is required for PAK1 binding. Deletion of the PAK1-binding domain of MIIP reduced cell migration-inhibiting activity. MIIP may function as a tumor suppressor gene for endometrial carcinoma. MIIP attenuates Rac1

  2. Lung Metastasis Mimicking Fingertip Infection

    Science.gov (United States)

    Soylemez, Salih; Demiroglu, Murat; Yayla, Mehmet Ali; Ozkan, Korhan; Alpan, Bugra; Ozger, Harzem

    2015-01-01

    Metastasis fingers (acral metastasis) are finding a poor prognosis. Past medical history should be questioned and metastasis from primary tumor should be kept in mind in patients with pain, swelling, and hyperemia in fingers. Successful surgical treatment on acral metastasis does not extend the life expectancy; however, it reduces the patient's pain during his terminal period, saves the functions of the limb, and increases life comfort. PMID:26236517

  3. Lung Metastasis Mimicking Fingertip Infection

    Directory of Open Access Journals (Sweden)

    Salih Soylemez

    2015-01-01

    Full Text Available Metastasis fingers (acral metastasis are finding a poor prognosis. Past medical history should be questioned and metastasis from primary tumor should be kept in mind in patients with pain, swelling, and hyperemia in fingers. Successful surgical treatment on acral metastasis does not extend the life expectancy; however, it reduces the patient’s pain during his terminal period, saves the functions of the limb, and increases life comfort.

  4. In vivo and in situ modulation of the expression of genes involved in metastasis and angiogenesis in a patient treated with topical imiquimod for melanoma skin metastases.

    Science.gov (United States)

    Hesling, C; D'Incan, M; Mansard, S; Franck, F; Corbin-Duval, A; Chèvenet, C; Déchelotte, P; Madelmont, J-C; Veyre, A; Souteyrand, P; Bignon, Y-J

    2004-04-01

    There is a growing body of evidence to support the efficacy of topical imiquimod in the treatment of primary skin carcinomas. Conflicting data exist concerning the use of imiquimod for the treatment of skin melanoma metastases. To date, only the impact of imiquimod on cytokines involved in immunological processes has been studied extensively. We report a woman successfully treated with imiquimod (once daily for 8 weeks) for skin melanoma metastases in whom we investigated the expression of molecules involved in metastasis and angiogenesis. Before and after treatment, a skin lesion was biopsied and the expression of the following molecules was investigated using real-time reverse transcription-polymerase chain reaction: matrix metalloproteinase (MMP)-1, 2 and 9 and their inhibitors KiSS-1 and tissue inhibitor of metalloproteinase (TIMP)-1, vascular endothelial growth factor (VEGF), fibroblast growth factor-2, and angiogenesis inhibitors (thrombospondin-1 and 2). Interferon (IFN)-alpha was also investigated as an in vivo marker of imiquimod activity. IFN-alpha was upregulated by the treatment. Under imiquimod, the following molecules were upregulated: TIMP-1, KiSS-1 and MMP-1. MMP-2 expression was not modified. MMP-9 expression was dramatically decreased. The expression of angiogenesis inhibitors was slightly increased but VEGF expression remained at a basal level. These results suggest that imiquimod could downregulate metastasis invasion and angiogenesis. However, these data were obtained at a transcriptional level and from a single case, and further investigations should include migration assays and additional cases in order to confirm that imiquimod may be safely used for treatment of melanoma metastases.

  5. Vaginal metastasis of pancreatic cancer.

    Science.gov (United States)

    Benhayoune, Khadija; El Fatemi, Hinde; El Ghaouti, Meryem; Bannani, Abdelaziz; Melhouf, Abdelilah; Harmouch, Taoufik

    2015-01-01

    Vaginal metastasis from pancreatic cancer is an extreme case and often indicates a poor prognosis. We present a case of pancreatic carcinoma with metastasis to the vagina that was discovered by vaginal bleeding. To our knowledge, this is the third case in the world of a primary pancreatic adenocarcinoma discovered of symptoms from a vaginal metastasis.

  6. Tumor suppressor function of Syk in human MCF10A in vitro and normal mouse mammary epithelium in vivo.

    Science.gov (United States)

    Sung, You Me; Xu, Xuehua; Sun, Junfeng; Mueller, Duane; Sentissi, Kinza; Johnson, Peter; Urbach, Elana; Seillier-Moiseiwitsch, Françoise; Johnson, Michael D; Mueller, Susette C

    2009-10-15

    The normal function of Syk in epithelium of the developing or adult breast is not known, however, Syk suppresses tumor growth, invasion, and metastasis in breast cancer cells. Here, we demonstrate that in the mouse mammary gland, loss of one Syk allele profoundly increases proliferation and ductal branching and invasion of epithelial cells through the mammary fat pad during puberty. Mammary carcinomas develop by one year. Syk also suppresses proliferation and invasion in vitro. siRNA or shRNA knockdown of Syk in MCF10A breast epithelial cells dramatically increased proliferation, anchorage independent growth, cellular motility, and invasion, with formation of functional, extracellular matrix-degrading invadopodia. Morphological and gene microarray analysis following Syk knockdown revealed a loss of luminal and differentiated epithelial features with epithelial to mesenchymal transition and a gain in invadopodial cell surface markers CD44, CD49F, and MMP14. These results support the role of Syk in limiting proliferation and invasion of epithelial cells during normal morphogenesis, and emphasize the critical role of Syk as a tumor suppressor for breast cancer. The question of breast cancer risk following systemic anti-Syk therapy is raised since only partial loss of Syk was sufficient to induce mammary carcinomas.

  7. Tumor suppressor function of Syk in human MCF10A in vitro and normal mouse mammary epithelium in vivo.

    Directory of Open Access Journals (Sweden)

    You Me Sung

    2009-10-01

    Full Text Available The normal function of Syk in epithelium of the developing or adult breast is not known, however, Syk suppresses tumor growth, invasion, and metastasis in breast cancer cells. Here, we demonstrate that in the mouse mammary gland, loss of one Syk allele profoundly increases proliferation and ductal branching and invasion of epithelial cells through the mammary fat pad during puberty. Mammary carcinomas develop by one year. Syk also suppresses proliferation and invasion in vitro. siRNA or shRNA knockdown of Syk in MCF10A breast epithelial cells dramatically increased proliferation, anchorage independent growth, cellular motility, and invasion, with formation of functional, extracellular matrix-degrading invadopodia. Morphological and gene microarray analysis following Syk knockdown revealed a loss of luminal and differentiated epithelial features with epithelial to mesenchymal transition and a gain in invadopodial cell surface markers CD44, CD49F, and MMP14. These results support the role of Syk in limiting proliferation and invasion of epithelial cells during normal morphogenesis, and emphasize the critical role of Syk as a tumor suppressor for breast cancer. The question of breast cancer risk following systemic anti-Syk therapy is raised since only partial loss of Syk was sufficient to induce mammary carcinomas.

  8. Let-7b-mediated suppression of basigin expression and metastasis in mouse melanoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Tzu-Yen [Department of Animal Science, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan (China); Chang, Chia-Che [Institute of Biomedical Sciences, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan (China); Graduate Institute of Basic Medical Science, China Medical University, 91 Hsueh Shih Road, Taichung 40402, Taiwan (China); Lin, Chun-Ting [Department of Animal Science, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan (China); Lai, Cong-Hao [Institute of Biomedical Sciences, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan (China); Department of Life Sciences, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan (China); Peng, Shao-Yu; Ko, Yi-Ju [Department of Animal Science, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan (China); Tang, Pin-Chi, E-mail: pctang@dragon.nchu.edu.tw [Department of Animal Science, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan (China)

    2011-02-15

    Basigin (Bsg), also called extracellular matrix metalloproteinase inducer (EMMPRIN), is highly expressed on the surface of tumor cells and stimulates adjacent fibroblasts or tumor cells to produce matrix metalloproteinases (mmps). It has been shown that Bsg plays an important role in growth, development, cell differentiation, and tumor progression. MicroRNAs (miRNAs) are a class of short endogenous non-protein coding RNAs of 20-25 nucleotides (nt) that function as post-transcriptional regulators of gene expression by base-pairing to their target mRNAs and thereby mediate cleavage of target mRNAs or translational repression. In this study, let-7b, one of the let-7 family members, was investigated for its effect on the growth and invasiveness of the mouse melanoma cell line B16-F10. We have shown that let-7b can suppress the expression of Bsg in B16-F10 cells and also provided evidence that this suppression could result in the indirect suppression of mmp-9. The ability of B16-F10 cells transfected with let-7b to invade or migrate was significantly reduced. In addition, let-7b transfected B16-F10 cells displayed an inhibition of both cellular proliferation and colony formation. Furthermore, it was shown that the overexpression of let-7b in B16-F10 cells could reduce lung metastasis. Taken together, the present study identifies let-7b as a tumor suppressor that represses cancer cell proliferation and migration as well as tumor metastasis in mouse melanoma cells.

  9. Gene Expression Meta-Analysis identifies Cytokine Pathways and 5q Aberrations involved in Metastasis of ERBB2 Amplified and Basal Breast Cancer

    DEFF Research Database (Denmark)

    Thomassen, Mads; Tan, Qihua; Burton, Mark

    2013-01-01

    mechanisms, aside from the subtypes, were identified in a training set of 1,239 tumors and confirmed by survival analysis in two independent validation datasets from the same type of platform and consisting of very comparable node-negative patients that did not receive adjuvant medical therapy. The results...... show that high expression of 5q14 genes and low levels of TNFR2 pathway genes were associated with poor survival in basal-like cancers. Furthermore, low expression of 5q33 genes and interleukin-12 pathway genes were associated with poor outcome exclusively in ERBB2-like tumors. Conclusion...

  10. Single nucleotide polymorphism rs13042395 in the SLC52A3 gene as a biomarker for regional lymph node metastasis and relapse-free survival of esophageal squamous cell carcinoma patients

    International Nuclear Information System (INIS)

    Tan, Hua-Zhen; Wu, Zhi-Yong; Wu, Jian-Yi; Long, Lin; Jiao, Ji-Wei; Peng, Yu-Hui; Xu, Yi-Wei; Li, Shan-Shan; Wang, Wei; Zhang, Jian-Jun; Li, En-Min; Xu, Li-Yan

    2016-01-01

    SLC52A3 was recently identified as a susceptibility gene for esophageal squamous cell carcinoma (ESCC). However, associations between the single nucleotide polymorphisms (SNPs) rs13042395 (C > T) and rs3746803 (G > A) in SLC52A3 and risk, tumor characteristics and survival of ESCC patients remain inconclusive and of unknown prognostic significance. Analyses of the association between SNPs in SLC52A3 and ESCC risk were performed on 479 ESCC cases, together with 479 controls, in a case-control study. Blood samples for cases and controls were collected and genotyped by real-time polymerase chain reaction (PCR) using TaqMan assays. Among the 479 ESCC cases, 343 cases with complete clinical data were used to investigate the association between SNPs and ESCC clinical characteristics; 288 cases with complete clinical data and 5-year follow-up data were used to analyze the association between SNPs and prognosis. Dual luciferase reporter assays and electrophoretic mobility shift assays (EMSAs) were used to investigate the biological function of rs13042395. No association was found between SLC52A3 rs3746803 and susceptibility, tumor characteristics or survival of ESCC patients. For rs13042395, TT genotype carriers were likely to have reduced lymph node metastasis (odds ratio (OR) = 0.55, 95 % confidence interval (CI), 0.31–0.98) and longer relapse-free survival time (P = 0.03) . Also, both rs13042395 (hazard ratio (HR) = 0.62, 95 % CI, 0.38–0.99) and regional lymph node metastasis (HR = 2.06, 95 % CI, 1.36–3.13 for N1 vs. N0; HR = 2.88, 95 % CI, 1.70–4.86 for N2 vs. N0; HR = 2.08, 95 % CI, 1.01–4.30 for N3 vs. N0) were independent factors affecting relapse-free survival for ESCC patients who underwent surgery. Dual luciferase reporter assays and EMSAs suggested that the CC genotype of rs13042395 enhanced SLC52A3 expression, probably via binding with specific transcription factors. The rs13042395 polymorphism in SLC52A3 is associated with regional lymph node

  11. KF-1 ubiquitin ligase: anxiety suppressor model.

    Science.gov (United States)

    Hashimoto-Gotoh, Tamotsu; Iwabe, Naoyuki; Tsujimura, Atsushi; Nakagawa, Masanori; Marunaka, Yoshinori

    2011-06-01

    Anxiety disorders are the most popular psychiatric disease in any human societies irrespective of nation, culture, religion, economics or politics. Anxiety expression mediated by the amygdala may be suppressed by signals transmitted from the prefrontal cortex and hippocampus. KF-1 is an endoplasmic reticulum (ER)-based E3-ubiquitin (Ub) ligase with a RING-H2 finger motif at the C-terminus. The kf-1 gene expression is up-regulated in the frontal cortex and hippocampus in rats after anti-depressant treatments. The kf-1 null mice show no apparent abnormalities, but exhibit selectively pronounced anxiety-like behaviors or increased timidity-like responses. The kf-1 orthologous genes had been generated after the Poriferan emergence, and are found widely in all animals except insects, arachnids and threadworms such as Drosophila, Ixodes and Caenorhabditis, respectively. This suggests that the kf-1 gene may be relevant to some biological functions characteristic to animals. Based on these observations, the Anxiety Suppressor Model has been proposed, which assumes that KF-1 Ub ligase may suppress the amygdala-mediated anxiety by degrading some anxiety promoting protein(s), such as a neurotransmitter receptor, through the ER-associated degradation pathway in the frontal cortex and hippocampus. According to this model, the emotional sensitivity to environmental stresses may be regulated by the cellular protein level of KF-1 relative to that of the putative anxiety promoter. The kf-1 null mice should be useful in elucidating the molecular mechanisms of the anxiety regulation and for screening novel anxiolytic compounds, which may block the putative anxiety promoter.

  12. Whole genome in vivo RNAi screening identifies the leukemia inhibitory factor receptor as a novel breast tumor suppressor.

    Science.gov (United States)

    Iorns, Elizabeth; Ward, Toby M; Dean, Sonja; Jegg, Anna; Thomas, Dafydd; Murugaesu, Nirupa; Sims, David; Mitsopoulos, Costas; Fenwick, Kerry; Kozarewa, Iwanka; Naceur-Lombarelli, Cristina; Zvelebil, Marketa; Isacke, Clare M; Lord, Christopher J; Ashworth, Alan; Hnatyszyn, H James; Pegram, Mark; Lippman, Marc

    2012-08-01

    Cancer is caused by mutations in oncogenes and tumor suppressor genes, resulting in the deregulation of processes fundamental to the normal behavior of cells. The identification and characterization of oncogenes and tumor suppressors has led to new treatment strategies that have significantly improved cancer outcome. The advent of next generation sequencing has allowed the elucidation of the fine structure of cancer genomes, however, the identification of pathogenic changes is complicated by the inherent genomic instability of cancer cells. Therefore, functional approaches for the identification of novel genes involved in the initiation and development of tumors are critical. Here we report the first whole human genome in vivo RNA interference screen to identify functionally important tumor suppressor genes. Using our novel approach, we identify previously validated tumor suppressor genes including TP53 and MNT, as well as several novel candidate tumor suppressor genes including leukemia inhibitory factor receptor (LIFR). We show that LIFR is a key novel tumor suppressor, whose deregulation may drive the transformation of a significant proportion of human breast cancers. These results demonstrate the power of genome wide in vivo RNAi screens as a method for identifying novel genes regulating tumorigenesis.

  13. In Vitro Treatment of Melanoma Brain Metastasis by Simultaneously Targeting the MAPK and PI3K Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Inderjit Daphu

    2014-05-01

    Full Text Available Malignant melanoma is the most lethal form of skin cancer, with a high propensity to metastasize to the brain. More than 60% of melanomas have the BRAFV600E mutation, which activates the mitogen-activated protein kinase (MAPK pathway [1]. In addition, increased PI3K (phosphoinositide 3-kinase pathway activity has been demonstrated, through the loss of activity of the tumor suppressor gene, PTEN [2]. Here, we treated two melanoma brain metastasis cell lines, H1_DL2, harboring a BRAFV600E mutation and PTEN loss, and H3, harboring WT (wild-type BRAF and PTEN loss, with the MAPK (BRAF inhibitor vemurafenib and the PI3K pathway associated mTOR inhibitor temsirolimus. Combined use of the drugs inhibited tumor cell growth and proliferation in vitro in H1_DL2 cells, compared to single drug treatment. Treatment was less effective in the H3 cells. Furthermore, a strong inhibitory effect on the viability of H1_DL2 cells, when grown as 3D multicellular spheroids, was seen. The treatment inhibited the expression of pERK1/2 and reduced the expression of pAKT and p-mTOR in H1_DL2 cells, confirming that the MAPK and PI3K pathways were inhibited after drug treatment. Microarray experiments followed by principal component analysis (PCA mapping showed distinct gene clustering after treatment, and cell cycle checkpoint regulators were affected. Global gene analysis indicated that functions related to cell survival and invasion were influenced by combined treatment. In conclusion, we demonstrate for the first time that combined therapy with vemurafenib and temsirolimus is effective on melanoma brain metastasis cells in vitro. The presented results highlight the potential of combined treatment to overcome treatment resistance that may develop after vemurafenib treatment of melanomas.

  14. Comparative genomic mapping of the bovine Fragile Histidine Triad (FHIT tumour suppressor gene: characterization of a 2 Mb BAC contig covering the locus, complete annotation of the gene, analysis of cDNA and of physiological expression profiles

    Directory of Open Access Journals (Sweden)

    Boussaha Mekki

    2006-05-01

    Full Text Available Abstract Background The Fragile Histidine Triad gene (FHIT is an oncosuppressor implicated in many human cancers, including vesical tumors. FHIT is frequently hit by deletions caused by fragility at FRA3B, the most active of human common fragile sites, where FHIT lays. Vesical tumors affect also cattle, including animals grazing in the wild on bracken fern; compounds released by the fern are known to induce chromosome fragility and may trigger cancer with the interplay of latent Papilloma virus. Results The bovine FHIT was characterized by assembling a contig of 78 BACs. Sequence tags were designed on human exons and introns and used directly to select bovine BACs, or compared with sequence data in the bovine genome database or in the trace archive of the bovine genome sequencing project, and adapted before use. FHIT is split in ten exons like in man, with exons 5 to 9 coding for a 149 amino acids protein. VISTA global alignments between bovine genomic contigs retrieved from the bovine genome database and the human FHIT region were performed. Conservation was extremely high over a 2 Mb region spanning the whole FHIT locus, including the size of introns. Thus, the bovine FHIT covers about 1.6 Mb compared to 1.5 Mb in man. Expression was analyzed by RT-PCR and Northern blot, and was found to be ubiquitous. Four cDNA isoforms were isolated and sequenced, that originate from an alternative usage of three variants of exon 4, revealing a size very close to the major human FHIT cDNAs. Conclusion A comparative genomic approach allowed to assemble a contig of 78 BACs and to completely annotate a 1.6 Mb region spanning the bovine FHIT gene. The findings confirmed the very high level of conservation between human and bovine genomes and the importance of comparative mapping to speed the annotation process of the recently sequenced bovine genome. The detailed knowledge of the genomic FHIT region will allow to study the role of FHIT in bovine cancerogenesis

  15. Brain metastasis from colorectal cancer

    International Nuclear Information System (INIS)

    Bamba, Yoshiko; Itabashi, Michio; Hirosawa, Tomoichiro; Ogawa, Shinpei; Noguchi, Eiichiro; Takemoto, Kaori; Shirotani, Noriyasu; Kameoka, Shingo

    2007-01-01

    The present study was performed to clarify the clinical characteristics of brain metastasis from colorectal cancer. Five patients with brain metastasis from colorectal cancer treated at our institute between 2001 and 2005 were included in the study. Clinical findings and survival time were determined and an appropriate system for follow-up in such cases was considered. Brain metastasis was found after surgery for colorectal cancer in 4 cases. In addition, colorectal cancer was found after diagnosis of brain metastasis in 1 case. At the time of diagnosis of brain metastasis, all patients had lung metastasis and 3 had liver metastasis. The mean periods between surgery for colorectal cancer and lung and brain metastases were 19.5 and 38.2 months, respectively. In all cases, brain metastasis was diagnosed by imaging after the appearance of neurological symptoms. Brain metastases were multiple in 1 case and focal in 4 cases. We performed gamma knife radiation therapy, and the symptoms disappeared or decreased in all cases. Mean survival time after brain metastasis was 3.0 months. Prognosis after brain metastasis is poor, but gamma knife radiation therapy contributed to patients' quality of life. (author)

  16. Transforming growth factor-β suppresses metastasis in a subset of human colon carcinoma cells

    International Nuclear Information System (INIS)

    Simms, Neka A K; Rajput, Ashwani; Sharratt, Elizabeth A; Ongchin, Melanie; Teggart, Carol A; Wang, Jing; Brattain, Michael G

    2012-01-01

    TGFβ signaling has typically been associated with suppression of tumor initiation while the role it plays in metastasis is generally associated with progression of malignancy. However, we present evidence here for an anti-metastatic role of TGFβ signaling. To test the importance of TGFβ signaling to cell survival and metastasis we compared human colon carcinoma cell lines that are either non-tumorigenic with TGFβ response (FET), or tumorigenic with TGFβ response (FETα) or tumorigenic with abrogated TGFβ response via introduction of dominant negative TGFβRII (FETα/DN) and their ability to metastasize. Metastatic competency was assessed by orthotopic transplantation. Metastatic colony formation was assessed histologically and by imaging. Abrogation of TGFβ signaling through introduction of a dominant negative TGFβ receptor II (TGFβRII) in non-metastatic FETα human colon cancer cells permits metastasis to distal organs, but importantly does not reduce invasive behavior at the primary site. Loss of TGFβ signaling in FETα-DN cells generated enhanced cell survival capabilities in response to cellular stress in vitro. We show that enhanced cellular survival is associated with increased AKT phosphorylation and cytoplasmic expression of inhibitor of apoptosis (IAP) family members (survivin and XIAP) that elicit a cytoprotective effect through inhibition of caspases in response to stress. To confirm that TGFβ signaling is a metastasis suppressor, we rescued TGFβ signaling in CBS metastatic colon cancer cells that had lost TGFβ receptor expression due to epigenetic repression. Restoration of TGFβ signaling resulted in the inhibition of metastatic colony formation in distal organs by these cells. These results indicate that TGFβ signaling has an important role in the suppression of metastatic potential in tumors that have already progressed to the stage of an invasive carcinoma. The observations presented here indicate a metastasis suppressor role for TGF

  17. A Panel of Cancer Testis Antigens and Clinical Risk Factors to Predict Metastasis in Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Ramyar Molania

    2014-01-01

    Full Text Available Colorectal cancer (CRC is the third common carcinoma with a high rate of mortality worldwide and several studies have investigated some molecular and clinicopathological markers for diagnosis and prognosis of its malignant phenotypes. The aim of this study is to evaluate expression frequency of PAGE4, SCP-1, and SPANXA/D cancer testis antigen (CTA genes as well as some clinical risk markers to predict liver metastasis of colorectal cancer patients. The expression frequency of PAGE4, SCP-1, and SPANXA/D cancer/testis antigen (CTA genes was obtained using reverse transcription polymerase chain reaction (RT-PCR assay in 90 colorectal tumor samples including both negative and positive liver metastasis tumors. Statistical analysis was performed to assess the association of three studied genes and clinical risk factors with CRC liver metastasis. The frequency of PAGE4 and SCP-1 genes expression was significantly higher in the primary tumours with liver metastasis when statistically compared with primary tumors with no liver metastasis (P<0.05. Among all clinical risk factors studied, the lymph node metastasis and the depth of invasion were statistically correlated with liver metastasis of CRC patients. In addition, using multiple logistic regression, we constructed a model based on PAGE4 and lymph node metastasis to predict liver metastasis of CRC.

  18. Long Noncoding RNA Taurine-Upregulated Gene1 (TUG1) Promotes Tumor Growth and Metastasis Through TUG1/Mir-129-5p/Astrocyte-Elevated Gene-1 (AEG-1) Axis in Malignant Melanoma.

    Science.gov (United States)

    Long, Jianwen; Menggen, Qiqige; Wuren, Qimige; Shi, Quan; Pi, Xianming

    2018-03-15

    BACKGROUND Malignant melanoma is a class of malignant tumors derived from melanocytes. lncRNAs have been considered as pro-/anti-tumor factors in progression of cancers. The function of lncRNA TUG1 on growth of melanoma was investigated in this study. MATERIAL AND METHODS The TUG1 and miR-129-5p expression were examined via qRT-PCR. The protein expression was investigated by Western blotting assay. Luciferase reporter assay was used to assess if lncRNA TUG1 can bind to miR-129-5p and if miR-129-5p can target AEG1 mRNA. CCK-8 and apoptosis assay were used to detect cell growth and apoptosis. The metastasis of melanoma cells was detected by wound-healing and Transwell assays. The effects of TUG1 on growth of melanoma in vivo and cell chemoresistance were investigated via xenograft animal experiment and CCK-8 assay. RESULTS The expression of TUG1 and AEG1 was elevated and the miR-129-5p level was decreased in melanoma specimens and cell lines. Downregulation of either TUG1 or AEG1 suppressed cell growth and metastasis. miR-129-5p can bind directly to AEG1 and TUG1 can directly sponge miR-129-5p. Inhibition of TUG1 expression suppressed the expression of Bcl-2, MMP-9, and cyclin D1, and raised the level of cleaved caspase3 by modulating AEG1 level in melanoma cells. Inhibition of TUG1 reduced the growth of tumors in vivo and improved the chemosensitivity of A375 cells to cisplatin and 5-FU. CONCLUSIONS Reduction of TUG1 level suppressed cell growth and metastasis by regulating AEG1 expression mediated by targeting miR-129-5p. Suppression of lnc TUG1 may be a promising therapeutic strategy in the treatment of malignant melanoma.

  19. Remodeling of the methylation landscape in breast cancer metastasis.

    Directory of Open Access Journals (Sweden)

    Marsha Reyngold

    Full Text Available The development of breast cancer metastasis is accompanied by dynamic transcriptome changes and dramatic alterations in nuclear and chromatin structure. The basis of these changes is incompletely understood. The DNA methylome of primary breast cancers contribute to transcriptomic heterogeneity and different metastatic behavior. Therefore we sought to characterize methylome remodeling during regional metastasis. We profiled the DNA methylome and transcriptome of 44 matched primary breast tumors and regional metastases. Striking subtype-specific patterns of metastasis-associated methylome remodeling were observed, which reflected the molecular heterogeneity of breast cancers. These divergent changes occurred primarily in CpG island (CGI-poor areas. Regions of methylome reorganization shared by the subtypes were also observed, and we were able to identify a metastasis-specific methylation signature that was present across the breast cancer subclasses. These alterations also occurred outside of CGIs and promoters, including sequences flanking CGIs and intergenic sequences. Integrated analysis of methylation and gene expression identified genes whose expression correlated with metastasis-specific methylation. Together, these findings significantly enhance our understanding of the epigenetic reorganization that occurs during regional breast cancer metastasis across the major breast cancer subtypes and reveal the nature of methylome remodeling during this process.

  20. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth

    Science.gov (United States)

    Yao, Jun; Lowery, Frank J.; Zhang, Qingling; Huang, Wen-Chien; Li, Ping; Li, Min; Wang, Xiao; Zhang, Chenyu; Wang, Hai; Ellis, Kenneth; Cheerathodi, Mujeeburahiman; McCarty, Joseph H.; Palmieri, Diane; Saunus, Jodi; Lakhani, Sunil; Huang, Suyun; Sahin, Aysegul A.; Aldape, Kenneth D.; Steeg, Patricia S.; Yu, Dihua

    2016-01-01

    Summary Development of life-threatening cancer metastases at distant organs requires disseminated tumor cells’ adaptation to and co-evolution with the drastically different microenvironments of metastatic sites1. Cancer cells of common origin manifest distinct gene expression patterns after metastasizing to different organs2. Clearly, the dynamic interplay between metastatic tumor cells and extrinsic signals at individual metastatic organ sites critically impacts the subsequent metastatic outgrowth3,4. Yet, it is unclear when and how disseminated tumor cells acquire the essential traits from the microenvironment of metastatic organs that prime their subsequent outgrowth. Here we show that primary tumor cells with normal expression of PTEN, an important tumor suppressor, lose PTEN expression after dissemination to the brain, but not to other organs. PTEN level in PTEN-loss brain metastatic tumor cells is restored after leaving brain microenvironment. This brain microenvironment-dependent, reversible PTEN mRNA and protein down-regulation is epigenetically regulated by microRNAs (miRNAs) from astrocytes. Mechanistically, astrocyte-derived exosomes mediate an intercellular transfer of PTEN-targeting miRNAs to metastatic tumor cells, while astrocyte-specific depletion of PTEN-targeting miRNAs or blockade of astrocyte exosome secretion rescues the PTEN loss and suppresses brain metastasis in vivo. Furthermore, this adaptive PTEN loss in brain metastatic tumor cells leads to an increased secretion of cytokine chemokine (C-C motif) ligand 2 (CCL2), which recruits Iba1+ myeloid cells that reciprocally enhance outgrowth of brain metastatic tumor cells via enhanced proliferation and reduced apoptosis. Our findings demonstrate a remarkable plasticity of PTEN expression in metastatic tumor cells in response to different organ microenvironments, underpinning an essential role of co-evolution between the metastatic cells and their microenvironment during the adaptive metastatic

  1. Reduced rates of gene loss, gene silencing, and gene mutation in Dnmt1-deficient embryonic stem cells

    NARCIS (Netherlands)

    Chan, M.F.; van Amerongen, R.; Nijjar, T.; Cuppen, E.; Jones, P.A.; Laird, P.W.

    2001-01-01

    Tumor suppressor gene inactivation is a crucial event in oncogenesis. Gene inactivation mechanisms include events resulting in loss of heterozygosity (LOH), gene mutation, and transcriptional silencing. The contribution of each of these different pathways varies among tumor suppressor genes and by

  2. Targeting cytokine signaling checkpoint CIS activates NK cells to protect from tumor initiation and metastasis

    Science.gov (United States)

    Putz, Eva M.; Guillerey, Camille; Kos, Kevin; Stannard, Kimberley; Miles, Kim; Delconte, Rebecca B.; Nicholson, Sandra E.; Huntington, Nicholas D.; Smyth, Mark J.

    2017-01-01

    ABSTRACT The cytokine-induced SH2-containing protein CIS belongs to the suppressor of cytokine signaling (SOCS) protein family. Here, we show the critical role of CIS in suppressing natural killer (NK) cell control of tumor initiation and metastasis. Cish-deficient mice were highly resistant to methylcholanthrene-induced sarcoma formation and protected from lung metastasis of B16F10 melanoma and RM-1 prostate carcinoma cells. In contrast, the growth of primary subcutaneous tumors, including those expressing the foreign antigen OVA, was unchanged in Cish-deficient mice. The combination of Cish deficiency and relevant targeted and immuno-therapies such as combined BRAF and MEK inhibitors, immune checkpoint blockade antibodies, IL-2 and type I interferon revealed further improved control of metastasis. The data clearly indicate that targeting CIS promotes NK cell antitumor functions and CIS holds great promise as a novel target in NK cell immunotherapy. PMID:28344878

  3. Regulator of Calcineurin 1 Gene Isoform 4, Down-regulated in Hepatocellular Carcinoma, Prevents Proliferation, Migration, and Invasive Activity of Cancer Cells and Metastasis of Orthotopic Tumors by Inhibiting Nuclear Translocation of NFAT1.

    Science.gov (United States)

    Jin, Haojie; Wang, Cun; Jin, Guangzhi; Ruan, Haoyu; Gu, Dishui; Wei, Lin; Wang, Hui; Wang, Ning; Arunachalam, Einthavy; Zhang, Yurong; Deng, Xuan; Yang, Chen; Xiong, Yi; Feng, Hugang; Yao, Ming; Fang, Jingyuan; Gu, Jianren; Cong, Wenming; Qin, Wenxin

    2017-09-01

    Individuals with Down syndrome have a low risk for many solid tumors, prompting the search for tumor suppressor genes on human chromosome 21 (HSA21). We aimed to identify and explore potential mechanisms of tumor suppressors on HSA21 in hepatocellular carcinoma (HCC). We compared expression of HSA21 genes in 14 pairs of primary HCC and adjacent noncancer liver tissues using the Affymetrix HG-U133 Plus 2.0 array (Affymetrix, Santa Clara, CA). HCC tissues and adjacent normal liver tissues were collected from 108 patients at a hospital in China for real-time polymerase chain reaction and immunohistochemical analyses; expression levels of regulator of calcineurin 1 (RCAN1) isoform 4 (RCAN1.4) were associated with clinical features. We overexpressed RCAN1.4 from lentiviral vectors in MHCC97H and HCCLM3 cells and knocked expression down using small interfering RNAs in SMMC7721 and Huh7 cells. Cells were analyzed in proliferation, migration, and invasion assays. HCC cells that overexpressed RCAN1.4 or with RCAN1.4 knockdown were injected into livers or tail veins of nude mice; tumor growth and numbers of lung metastases were quantified. We performed bisulfite pyrosequencing and methylation-specific polymerase chain reaction analyses to analyze CpG island methylation. We measured phosphatase activity of calcineurin in HCC cells. RCAN1.4 mRNA and protein levels were significantly decreased in primary HCC compared with adjacent noncancer liver tissues. Reduced levels of RCAN1.4 mRNA were significantly associated with advanced tumor stages, poor differentiation, larger tumor size, and vascular invasion. Kaplan-Meier survival analysis showed that patients with HCCs with lower levels of RCAN1.4 mRNA had shorter time of overall survival and time to recurrence than patients whose tumors had high levels of RCAN1.4 mRNA. In HCC cell lines, expression of RCAN1.4 significantly reduced proliferation, migration, and invasive activity. HCC cells that overexpressed RCAN1.4 formed smaller

  4. Vulvar Metastasis from Bladder Cancer

    Directory of Open Access Journals (Sweden)

    Fouad Aoun

    2015-01-01

    Full Text Available Vulvar metastasis of urothelial carcinoma of the bladder is a very rare entity; few cases are reported in the English literature. In this paper, we describe the clinical and pathological characteristics, evolution, and treatment of a patient with vulvar metastasis of urothelial carcinoma of the bladder followed by a brief review of the reported cases in the literature.

  5. Effect of fenhexamid and cyprodinil on the expression of cell cycle- and metastasis-related genes via an estrogen receptor-dependent pathway in cellular and xenografted ovarian cancer models

    International Nuclear Information System (INIS)

    Go, Ryeo-Eun; Kim, Cho-Won; Choi, Kyung-Chul

    2015-01-01

    ABSTRACT: Fenhexamid and cyprodinil are antifungal agents (pesticides) used for agriculture, and are present at measurable amounts in fruits and vegetables. In the current study, the effects of fenhexamid and cyprodinil on cancer cell proliferation and metastasis were examined. Additionally, the protein expression levels of cyclin D1 and cyclin E as well as cathepsin D were analyzed in BG-1 ovarian cancer cells that express estrogen receptors (ERs). The cells were cultured with 0.1% dimethyl sulfoxide (DMSO; control), 17β-estradiol (E2; 10 −9 M), and fenhexamid or cyprodinil (10 –5 –10 −7 M). Results of a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that fenhexamid and cyprodinil increased BG-1 cell proliferation about 1.5 to 2 times similar to E2 (5 times) compared to the control. When the cells were co-treated with ICI 182,780 (10 −8 M), an ER antagonist, the proliferation of pesticide-treated BG-1 cells was decreased to the level of the control. A wound healing assay revealed that the pesticides reduced the disrupted area in the BG-1 cell monolayer similar to E2. Protein levels of cyclin D1 and E as well as cathepsin D were increased by fenhexamid and cyprodinil. This effect was reversed by co-treatment with ICI 182,780. In a xenograft mouse model with transplanted BG-1 cells, cyprodinil significantly increased tumor mass formation about 2 times as did E2 (6 times) compared to the vehicle (0.1% DMSO) over an 80-day period. In contrast, fenhexamid did not promote ovarian tumor formation in this mouse model. Cyprodinil also induced cell proliferation along with the expression of proliferating cell nuclear antigen (PCNA) and cathepsin D in tumor tissues similar to E2. Taken together, these results imply that fenhexamid and cyprodinil may have disruptive effects on ER-expressing cancer by altering the cell cycle- and metastasis-related gene expression via an ER-dependent pathway. - Highlights: • Fenhexamid and

  6. Hypoxia and metastasis in an orthotopic cervix cancer xenograft model

    International Nuclear Information System (INIS)

    Chaudary, Naz; Mujcic, Hilda; Wouters, Bradly G.; Hill, Richard P.

    2013-01-01

    Background: Hypoxia can promote tumor metastasis by mechanisms that are believed to result from changes in gene expression. The current study examined the role of putative metastatic genes regulated by cyclic hypoxia in relation to metastasis formation in orthotopic models of cervix cancer. Methods: Orthotopic tumors derived from ME180 human cervix cancer cells or from early generation human cervix cancer xenografts were exposed to cyclic hypoxic conditions during growth in vivo and tumor growth and lymphnode metastases were monitored. Expression of the chemokine receptor CXCR4 and various genes in the Hedgehog (Hh) pathway were inhibited using genetic (inducible shRNA vs CXCR4) small molecule (AMD3100) or antibody (5E1) treatment (CXCR4 and Hh genes, respectively) during tumor growth. Results: As reported previously, exposure of tumor bearing mice to cyclic hypoxia caused a reduction of tumor growth but a large increase in metastasis. Inhibition of CXCR4 or Hh gene activity during tumor growth further reduced primary tumor size and reduced lymphatic metastasis to levels below those seen in control mice exposed to normoxic conditions. Conclusion: Blocking CXCR4 or Hh gene expression are potential therapeutic pathways for improving cervix cancer treatment

  7. Meeting report: Metastasis Research Society-Chinese Tumor Metastasis Society joint conference on metastasis.

    Science.gov (United States)

    Bankaitis, Katherine; Borriello, Lucia; Cox, Thomas; Lynch, Conor; Zijlstra, Andries; Fingleton, Barbara; Gužvić, Miodrag; Anderson, Robin; Neman, Josh

    2017-04-01

    During September 16th-20th 2016, metastasis experts from around the world convened for the 16th Biennial Congress of the Metastasis Research Society and 12th National Congress of the Chinese Tumor Metastasis Society in Chengdu, China to share most current data covering basic, translational, and clinical metastasis research. Presentations of the more than 40 invited speakers of the main congress and presentations from the associated Young Investigator Satellite Meeting are summarized in this report by session topic. The congress program also included three concurrent short talk sessions, an advocacy forum with Chinese and American metastatic patient advocates, a 'Meet the Professors Roundtable' session for young investigators, and a 'Meet the Editors' session with editors from Cancer Cell and Nature Cell Biology. The goal of integrating expertise and exchanging the latest findings, ideas, and practices in cancer metastasis research was achieved magnificently, thanks to the excellent contributions of many leaders in the field.

  8. Ampullary carcinoma with cutaneous metastasis

    Directory of Open Access Journals (Sweden)

    I-Ting Liu

    2016-06-01

    Full Text Available Carcinoma of the ampulla of Vater is a rare gastrointestinal tumor. Additionally, cutaneous metastasis from such an internal malignancy is also uncommon. We reported the case of a 55-year-old man afflicted with ampullary carcinoma with cutaneous metastasis. The patient did not undergo the standard Whipple procedure but received chemotherapy due to apparent left neck lymph node metastasis noted by initial PET/CT imaging. The skin metastasis presented as a left neck infiltrating purpuric lesion, which was confirmed by skin biopsy approximately one year after the patient's disease was first diagnosed. Thereafter, the patient received further chemotherapy pursuant to his course of medical management. Skin metastasis usually represents a poor patient prognosis. In these cases, treatment of cutaneous metastasis typically includes systemic chemotherapy and local management such as radiation therapy or tumor excision. And when choosing a chemotherapy regimen for the ampullary cancer, the histological subtypes (intestinal or pancreatobiliary should be comprehensively considered. In our review of the literature, the intestinal type seems to have less distant lymph node metastasis, advanced local invasion, as well as recurrence than pancreatobiliary type of ampullary cancer.

  9. THE MOLECULAR BASIS OF SUPPRESSION IN AN OCHRE SUPPRESSOR STRAIN POSSESSING ALTERED RIBOSOMES*

    Science.gov (United States)

    Gartner, T. Kent; Orias, Eduardo; Lannan, James E.; Beeson, James; Reid, Parlane J.

    1969-01-01

    Escherichia coli K12 2320(λ)-15B has a mutation that results in ochre suppressor activity.1 This mutation concomitantly causes a decreased growth rate in rich medium, an increased sensitivity to streptomycin,1 and the production of some altered 30S ribosomes which are differentially sensitive to RNase.2 The results presented below demonstrate that the molecules which cause suppression are tRNA. These observations justify the conclusions that the suppressor mutation did not occur in a structural gene for a ribosomal component, and that the decreased growth rate in rich medium, the increased sensitivity to streptomycin, and the production of altered 30S ribosomes are probably all secondary consequences of the suppressor mutation. PMID:4895220

  10. The human ARF tumor suppressor senses blastema activity and suppresses epimorphic tissue regeneration

    Science.gov (United States)

    Hesse, Robert G; Kouklis, Gayle K; Ahituv, Nadav; Pomerantz, Jason H

    2015-01-01

    The control of proliferation and differentiation by tumor suppressor genes suggests that evolution of divergent tumor suppressor repertoires could influence species’ regenerative capacity. To directly test that premise, we humanized the zebrafish p53 pathway by introducing regulatory and coding sequences of the human tumor suppressor ARF into the zebrafish genome. ARF was dormant during development, in uninjured adult fins, and during wound healing, but was highly expressed in the blastema during epimorphic fin regeneration after amputation. Regenerative, but not developmental signals resulted in binding of zebrafish E2f to the human ARF promoter and activated conserved ARF-dependent Tp53 functions. The context-dependent activation of ARF did not affect growth and development but inhibited regeneration, an unexpected distinct tumor suppressor response to regenerative versus developmental environments. The antagonistic pleiotropic characteristics of ARF as both tumor and regeneration suppressor imply that inducing epimorphic regeneration clinically would require modulation of ARF –p53 axis activation. DOI: http://dx.doi.org/10.7554/eLife.07702.001 PMID:26575287

  11. The Role of MicroRNAs in Breast Cancer Migration, Invasion and Metastasis

    Directory of Open Access Journals (Sweden)

    Joy Tang

    2012-10-01

    Full Text Available MicroRNAs (miRNAs are a major class of small, noncoding RNA molecules that regulate gene expression by targeting mRNAs to trigger either translational repression or mRNA degradation. They have recently been more widely investigated due to their potential role as targets for cancer therapy. Many miRNAs have been implicated in several human cancers, including breast cancer. miRNAs are known to regulate cell cycle and development, and thus may serve as useful targets for exploration in anticancer therapeutics. The link between altered miRNA signatures and breast cancer development and metastasis can be observed either through the loss of tumor suppressor miRNAs, such as let-7s, miR-30a/31/34a/125s/200s/203/205/206/342 or the overexpression of oncogenic miRNAs, such as miR-10b/21/135a/155/221/222/224/373/520c in breast cancer cells. Some of these miRNAs have also been validated in tumor specimens of breast cancer patients, underscoring their potential roles in diagnostics, as well as targets for novel therapeutics for breast cancer. In this review article, we will provide an overview and update of our current understanding of the mode of action of several of these well characterized miRNAs in breast cancer models. Therefore, better understanding of the gene networks orchestrated by these miRNAs may help exploit the full potential of miRNAs in regards to cancer diagnosis, treatment, and therapeutics.

  12. Nasopharyngeal carcinoma with pericardial metastasis

    Directory of Open Access Journals (Sweden)

    Shang-Wen Chen

    2011-07-01

    Full Text Available Nasopharyngeal carcinoma (NPC is prevalent in Taiwan and is characterized by a high frequency of nodal metastasis. The most common organs with distal metastases are the bones, lungs, and liver, with extremely rare cases to the pericardium. Herein, we report a rare case with NPC who presented with dyspnea and orthopnea. Serial studies, including pericardial biopsy, revealed NPC with pericardial metastasis and pericardial effusion. The tumor cells of both the original and metastatic tumors were positive for Epstein–Barr virus by in situ hybridization. This is the first histologically confirmed case of NPC with pericardial metastasis.

  13. Identification of Putative Metastasis Suppressor MicroRNA in Human Breast Cancer

    Science.gov (United States)

    2009-11-01

    Villanueva, A., Ropero, S., Sánchez-Céspedes, M., Blanco , D., Montuenga, L.M., Rossi, S., Nicoloso, M.S., Faller, W.J., et al. (2008). A microRNA...Lujambio A, Calin GA, Villanueva A, Ropero S, Sánchez-Céspedes M, Blanco D, et al. A microRNA DNA methylation signature for human cancer metas- tasis...with properties of stem cells. Cell 2008; 133:704-15. 42. Shimono Y, Zabala M, Cho RW, Lobo N, Dalerba P, Qian D, et al. Downregulation of miRNA-200c

  14. The KISS1 metastasis suppressor appears to reverse the ‘Warburg Effect’

    Science.gov (United States)

    In 1924, Otto Warburg described the preference of cancer cells for glycolytic metabolism, even under normoxic conditions and that these metabolic changes directly correlate with malignant potential of several cancers. Although its purpose remains unclear, the “Warburg Effect” is thought to confer pr...

  15. Angiogenesis Regulates Prostate Cancer Metastasis

    National Research Council Canada - National Science Library

    Pettaway, Curtis

    1999-01-01

    .... We are evaluating the relationship of the expression of the angiogenesis factors bFGF, VEGF, and IL-8 with prostate cancer growth and metastasis, using our orthotopic model of metastatic prostate cancer in nude mice...

  16. Tumor suppressor identified as inhibitor of inflammation

    Science.gov (United States)

    Scientists at NCI have found that a protein, FBXW7, which acts as a tumor suppressor, is also important for the reduction in strength of inflammatory pathways. It has long been recognized that a complex interaction exists between cancer causing mechanisms

  17. RNAi suppressors encoded by pathogenic human viruses

    NARCIS (Netherlands)

    de Vries, Walter; Berkhout, Ben

    2008-01-01

    RNA silencing or RNAi interference (RNAi) serves as an innate antiviral mechanism in plants, fungi and animals. Human viruses, like plant viruses, encode suppressor proteins or RNAs that block or modulate the RNAi pathway. This review summarizes the mechanisms by which pathogenic human viruses

  18. Identification of a Novel TGFβ/PKA Signaling Transduceome in Mediating Control of Cell Survival and Metastasis in Colon Cancer

    Science.gov (United States)

    Rajput, Ashwani; Teggart, Carol A.; Brattain, Lisa E.; Weber, Hannah R.; Chowdhury, Aparajita; Brattain, Michael G.

    2011-01-01

    Background Understanding drivers for metastasis in human cancer is important for potential development of therapies to treat metastases. The role of loss of TGFβ tumor suppressor activities in the metastatic process is essentially unknown. Methodology/Principal Findings Utilizing in vitro and in vivo techniques, we have shown that loss of TGFβ tumor suppressor signaling is necessary to allow the last step of the metastatic process - colonization of the metastatic site. This work demonstrates for the first time that TGFβ receptor reconstitution leads to decreased metastatic colonization. Moreover, we have identified a novel TGFβ/PKA tumor suppressor pathway that acts directly on a known cell survival mechanism that responds to stress with the survivin/XIAP dependent inhibition of caspases that effect apoptosis. The linkage between the TGFβ/PKA transduceome signaling and control of metastasis through induction of cell death was shown by TGFβ receptor restoration with reactivation of the TGFβ/PKA pathway in receptor deficient metastatic colon cancer cells leading to control of aberrant cell survival. Conclusion/Significance This work impacts our understanding of the possible mechanisms that are critical to the growth and maintenance of metastases as well as understanding of a novel TGFβ function as a metastatic suppressor. These results raise the possibility that regeneration of attenuated TGFβ signaling would be an effective target in the treatment of metastasis. Our work indicates the clinical potential for developing anti-metastasis therapy based on inhibition of this very important aberrant cell survival mechanism by the multifaceted TGFβ/PKA transduceome induced pathway. Development of effective treatments for metastatic disease is a pressing need since metastases are the major cause of death in solid tumors. PMID:21559296

  19. Specificity of a Rust Resistance Suppressor on 7DL in the Spring Wheat Cultivar Canthatch.

    Science.gov (United States)

    Talajoor, Mina; Jin, Yue; Wan, Anmin; Chen, Xianming; Bhavani, Sridhar; Tabe, Linda; Lagudah, Evans; Huang, Li

    2015-04-01

    The spring wheat 'Canthatch' has been shown to suppress stem rust resistance genes in the background due to the presence of a suppressor gene located on the long arm of chromosome 7D. However, it is unclear whether the suppressor also suppresses resistance genes against leaf rust and stripe rust. In this study, we investigated the specificity of the resistance suppression. To determine whether the suppression is genome origin specific, chromosome location specific, or rust species or race specific, we introduced 11 known rust resistance genes into the Canthatch background, including resistance to leaf, stripe, or stem rusts, originating from A, B, or D genomes and located on different chromosome homologous groups. F1 plants of each cross were tested with the corresponding rust race, and the infection types were scored and compared with the parents. Our results show that the Canthatch 7DL suppressor only suppressed stem rust resistance genes derived from either the A or B genome, and the pattern of the suppression is gene specific and independent of chromosomal location.

  20. A dynamic study of correlation between the MR diffusion weighted imaging findings and the expression of proliferation-related and metastasis-related genes in rabbit models of liver VX2 tumor before and after chemoembolization

    International Nuclear Information System (INIS)

    Yuan Youhong; Liu Jianbin; Xiao Enhua; He Zhong; Ma Cong; Xiang Jun; Jin Ke; Chen Wenjian; Xiao Jiehua

    2007-01-01

    Objective: To investigate the correlation between the apparent diffusion coefficient (ADC) values and the expression of proliferating cell nuclear antigen (PCNA), Bax, non-metastasis 23(nm23) and E-cadherin (E-cad) genes in rabbit models of liver VX 2 tumor before and after chemoembolization. Methods: Forty rabbit models of liver VX 2 tumor were divided into four groups with 10 rabbits in each group. The first group was the control group which didn't undergo chemoembolization. The second, third and fourth groups underwent chemoembolization, and diffusion weighted imaging (DWI) was performed at 16 h, 32 h and 48 h after chemoembolization respectively. The pathological and immunohistological examinations were carried out right after DWI. The sampling areas included the normal liver parenchyma around the tumor, the outer- layer area, the peripheral area, and the central area. The expression indices of PCNA, Bax, nm23, E-cad in all the samples were recorded and their correlation with corresponding ADC value were analyzed. Results: (1) PCNA expression indices in the outer layer area, the peripheral area and central area of VX 2 tumors(65.1%, 74.7%, and 59.0% respectively) were higher than that in the area of normal parenchyma around tumor (8.3%) (X 2 =19.08, P 2 tumors (nm 23: 1.7%, 0.4% , and 6.2% respectively; Bax: 2. 0%, 1.2% , and 2. 2% respectively; E-cad:6.2%, 2.0%, and 1.6% respectively) were lower than that in the area of normal parenchyma around tumor (nm23 16.5%; Bax 40.0%; E-cad 78.0%. χ 2 =12.86, 20.17, and 22.20 respectively; P 2 tumor periphery were 83.0%, 92.6% and 85.7% in 16 h group, 32 h group and 48 h group respectively after chemoembolization and those of nm23 expression indices were 2.3%, 7.4%, 4.2% and those of Bax expression index were 0.8%, 0.5%, 0.9% and those of E-cad expression indices were 2.8%, 1.0%, 1.1%. The PCNA and nm23 expression in the area of VX 2 tumor periphery increased at the beginning and then decreased (χ 2 =14.37, 8.94; P 2

  1. ARS2 is a general suppressor of pervasive transcription.

    Science.gov (United States)

    Iasillo, Claudia; Schmid, Manfred; Yahia, Yousra; Maqbool, Muhammad A; Descostes, Nicolas; Karadoulama, Evdoxia; Bertrand, Edouard; Andrau, Jean-Christophe; Jensen, Torben Heick

    2017-09-29

    Termination of transcription is important for establishing gene punctuation marks. It is also critical for suppressing many of the pervasive transcription events occurring throughout eukaryotic genomes and coupling their RNA products to efficient decay. In human cells, the ARS2 protein has been implicated in such function as its depletion causes transcriptional read-through of selected gene terminators and because it physically interacts with the ribonucleolytic nuclear RNA exosome. Here, we study the role of ARS2 on transcription and RNA metabolism genome wide. We show that ARS2 depletion negatively impacts levels of promoter-proximal RNA polymerase II at protein-coding (pc) genes. Moreover, our results reveal a general role of ARS2 in transcription termination-coupled RNA turnover at short transcription units like snRNA-, replication-dependent histone-, promoter upstream transcript- and enhancer RNA-loci. Depletion of the ARS2 interaction partner ZC3H18 mimics the ARS2 depletion, although to a milder extent, whereas depletion of the exosome core subunit RRP40 only impacts RNA abundance post-transcriptionally. Interestingly, ARS2 is also involved in transcription termination events within first introns of pc genes. Our work therefore establishes ARS2 as a general suppressor of pervasive transcription with the potential to regulate pc gene expression. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Regulatory miRNAs in Colorectal Carcinogenesis and Metastasis.

    Science.gov (United States)

    Guo, Yongchen; Bao, Yonghua; Yang, Wancai

    2017-04-22

    Colorectal cancer is one of the most common malignancies and is the second-leading cause of cancer-related death world-wide, which is linked to genetic mutations, epigenetic alterations, and oncogenic signaling activation. MicroRNAs, one of the categories of epigenetics, have been demonstrated significant roles in carcinogenesis and progression through regulating of oncogenic signaling pathways, stem cells, epithelial-mesenchymal transition, and metastasis. This review summarizes the roles of microRNAs in the regulating of Wnt, Ras, TGF-β, and inflammatory signaling pathways, stemness, and epithelial-mesenchymal transition, for carcinogenesis and metastasis in colorectal cancer. Improving our understanding of the mechanisms of regulatory interactions of microRNAs with signaling pathways in colorectal cancer formation and progression will aid in determining the genes responsible for colorectal cancer initiation, progression, metastasis, and recurrence and, finally, in developing personalized approaches for cancer prevention and therapy.

  3. Anti-proliferative and pro-apoptotic activity of whole extract and isolated indicaxanthin from Opuntia ficus-indica associated with re-activation of the onco-suppressor p16{sup INK4a} gene in human colorectal carcinoma (Caco-2) cells

    Energy Technology Data Exchange (ETDEWEB)

    Naselli, Flores; Tesoriere, Luisa; Caradonna, Fabio; Bellavia, Daniele; Attanzio, Alessandro; Gentile, Carla; Livrea, Maria A., E-mail: maria.livrea@unipa.it

    2014-07-18

    Highlights: • Cactus pear fruit extract and indicaxanthin cause apoptosis of colon cancer cells. • Indicaxanthin does not cause ROS formation, but affects epigenoma in Caco-2 cells. • Indicaxanthin reverses methylation of oncosuppressor p16{sup INK4a} gene in Caco-2 cells. • Indicaxanthin reactivates retinoblastoma in Caco-2 cells. • Bioavailable indicaxanthin may have chemopreventive activity in colon cancer. - Abstract: Phytochemicals may exert chemo-preventive effects on cells of the gastro-intestinal tract by modulating epigenome-regulated gene expression. The effect of the aqueous extract from the edible fruit of Opuntia ficus-indica (OFI extract), and of its betalain pigment indicaxanthin (Ind), on proliferation of human colon cancer Caco-2 cells has been investigated. Whole extract and Ind caused a dose-dependent apoptosis of proliferating cells at nutritionally relevant amounts, with IC{sub 50} 400 ± 25 mg fresh pulp equivalents/mL, and 115 ± 15 μM (n = 9), respectively, without toxicity for post-confluent differentiated cells. Ind accounted for ∼80% of the effect of the whole extract. Ind did not cause oxidative stress in proliferating Caco-2 cells. Epigenomic activity of Ind was evident as de-methylation of the tumor suppressor p16{sup INK4a} gene promoter, reactivation of the silenced mRNA expression and accumulation of p16{sup INK4a}, a major controller of cell cycle. As a consequence, decrease of hyper-phosphorylated, in favor of the hypo-phosphorylated retinoblastoma was observed, with unaltered level of the cycline-dependent kinase CDK4. Cell cycle showed arrest in the G2/M-phase. Dietary cactus pear fruit and Ind may have chemo-preventive potential in intestinal cells.

  4. Complex Behavior of ALDH1A1 and IGFBP1 in Liver Metastasis from a Colorectal Cancer.

    Directory of Open Access Journals (Sweden)

    Jin Cheon Kim

    Full Text Available Using our data set (GSE50760 previously established by RNA sequencing, the present study aimed to identify upregulated genes associated with colorectal cancer (CRC liver metastasis (CLM and verify their biological behavior. The potential roles of candidate genes in tumors were assessed using cell proliferation and invasion assays. Tissue samples were collected from 18 CRC patients with synchronous CLM and two CRC cell lines (SW480 and SW620 were used for transfection and cloning. The roles of the genes identified in CLM were verified using immunohistochemistry in 48 nude mice after intrasplenic transplantation of CRC cells. mRNA and protein expression was determined by quantitative real-time reverse transcription polymerase chain reaction and western blot, respectively. Nine genes were initially selected according to the relevance of their molecular function and biological process and, finally, ALDH1A1 and IGFBP1 were chosen based on differential mRNA expression and a positive correlation with protein expression. The overexpression of ALDH1A1 and IGFBP1 significantly and time-dependently decreased cell proliferation (p ≤ 0.001-0.003 and suppressed invasiveness by ≥3-fold over control cells (p < 0.001 in the SW480 cell line, whereas they had a slight effect on reducing SW620 cell proliferation. The protein expression levels of E-cadherin, N-cadherin, claudin-1, and vimentin were significantly higher in CLM than in primary tumor tissues (p < 0.05. However, the cadherin switch, namely, N-cadherin overexpression with reduced E-cadherin expression, was not observed in CLM tissues and transfected CRC cells. Irrespective of reduced proliferation and invasion found on in vitro cell assays, persistent overexpression of β-catenin, vimentin, and ZO-1 in IGFBP1-overexpressing SW480 cells possibly contributed to CLM development in mice implanted with IGFBP1-overexpressing SW480 cells (CLM occurrences: SW480/IGFBP1-transfected mice vs. SW480/vector- and

  5. Unraveling the role of FOXQ1 in colorectal cancer metastasis.

    Science.gov (United States)

    Abba, Mohammed; Patil, Nitin; Rasheed, Kabeer; Nelson, Laura D; Mudduluru, Giridhar; Leupold, Jörg Hendrik; Allgayer, Heike

    2013-09-01

    Malignant cell transformation, invasion, and metastasis are dependent on the coordinated rewiring of gene expression. A major component in the scaffold of these reprogramming events is one in which epithelial cells lose intercellular connections and polarity to adopt a more motile mesenchymal phenotype, which is largely supported by a robust transcriptional machinery consisting mostly of developmental transcription factors. This study demonstrates that the winged helix transcription factor, FOXQ1, contributes to this rewiring process, in part by directly modulating the transcription of TWIST1, itself a key mediator of metastasis that transcriptionally regulates the expression of important molecules involved in epithelial-to-mesenchymal transition. Forced expression and RNA-mediated silencing of FOXQ1 led to enhanced and suppressed mRNA and protein levels of TWIST1, respectively. Mechanistically, FOXQ1 enhanced the reporter activity of TWIST1 and directly interacted with its promoter. Furthermore, enhanced expression of FOXQ1 resulted in increased migration and invasion in colorectal cancer cell lines, whereas knockdown studies showed the opposite effect. Moreover, using the in vivo chicken chorioallantoic membrane metastasis assay model, FOXQ1 significantly enhanced distant metastasis with minimal effects on tumor growth. These findings reveal FOXQ1 as a modulator of TWIST1-mediated metastatic phenotypes and support its potential as a biomarker of metastasis. ©2013 AACR.

  6. Reactive Astrocytes in Brain Metastasis

    Directory of Open Access Journals (Sweden)

    David Wasilewski

    2017-12-01

    Full Text Available Brain metastasis, the secondary growth of malignant cells within the central nervous system (CNS, exceeds the incidence of primary brain tumors (i.e., gliomas by tenfold and are seemingly on the rise owing to the emergence of novel targeted therapies that are more effective in controlling extracranial disease relatively to intracranial lesions. Despite the fact that metastasis to the brain poses a unmet clinical problem, with afflicted patients carrying significant morbidity and a fatal prognosis, our knowledge as to how metastatic cells manage to adapt to the tissue environment of the CNS remains limited. Answering this question could pave the way for novel and more specific therapeutic modalities in brain metastasis by targeting the specific makeup of the brain metastatic niche. In regard to this, astrocytes have emerged as the major host cell type that cancer cells encounter and interact with during brain metastasis formation. Similarly to other CNS disorders, astrocytes become reactive and respond to the presence of cancer cells by changing their phenotype and significantly influencing the outcome of disseminated cancer cells within the CNS. Here, we summarize the current knowledge on the contribution of reactive astrocytes in brain metastasis by focusing on the signaling pathways and types of interactions that play a crucial part in the communication with cancer cells and how these could be translated into innovative therapies.

  7. AIF inhibits tumor metastasis by protecting PTEN from oxidation

    Science.gov (United States)

    Shen, Shao-Ming; Guo, Meng; Xiong, Zhong; Yu, Yun; Zhao, Xu-Yun; Zhang, Fei-Fei; Chen, Guo-Qiang

    2015-01-01

    Apoptosis-inducing factor (AIF) exerts dual roles on cell death and survival, but its substrates as a putative oxidoreductase and roles in tumorigenesis remain elusive. Here, we report that AIF physically interacts with and inhibits the oxidation of phosphatase and tensin homolog on chromosome ten (PTEN), a tumor suppressor susceptible for oxidation-mediated inactivation. More intriguingly, we also identify PTEN as a mitochondrial protein and the ectopic expression of mitochondrial targeting sequence-carrying PTEN almost completely inhibits Akt phosphorylation in PTEN-deficient cells. AIF knockdown causes oxidation-mediated inactivation of the lipid phosphatase activity of PTEN, with ensuing activation of Akt kinase, phosphorylation of the Akt substrate GSK-3β, and activation of β-catenin signaling in cancer cells. Through its effect on β-catenin signaling, AIF inhibits epithelial–mesenchymal transition (EMT) and metastasis of cancer cells in vitro and in orthotopically implanted xenografts. Accordingly, the expression of AIF is correlated with the survival of human patients with cancers of multiple origins. These results identify PTEN as the substrate of AIF oxidoreductase and reveal a novel function for AIF in controlling tumor metastasis. PMID:26415504

  8. Latexin exhibits tumor-suppressor potential in pancreatic ductal adenocarcinoma

    Science.gov (United States)

    XUE, ZHANXIONG; ZHOU, YUHUI; WANG, CHENG; ZHENG, JIHANG; ZHANG, PU; ZHOU, LINGLING; WU, LIANG; SHAN, YUNFENG; YE, MENGSI; HE, YUN; CAI, ZHENZHAI

    2016-01-01

    Recent studies suggest that latexin (Lxn) expression is involved in stem cell regulation and that it plays significant roles in tumor cell migration and invasion. The clinicopathological significance of Lxn expression and its possible correlation with CD133 expression in pancreatic ductal adenocarcinoma (PDAC) is currently unknown. In the present study, immunohistochemical analysis was performed to determine Lxn and CD133 expression in 43 PDAC patient samples and in 32 corresponding adjacent non-cancerous samples. The results were analyzed and compared with patient age, gender, tumor site and size, histological grade, clinical stage and overall mean survival time. Lxn expression was clearly decreased in the PDAC tissues compared with that in the adjacent non-cancerous tissues, while CD133 expression was increased. Low Lxn expression in the PDAC tissues was significantly correlated with tumor size (P=0.002), histological grade (P=0.000), metastasis (P=0.007) and clinical stage (P=0.018), but not with age (P=0.451), gender (P=0.395) or tumor site (P=0.697). Kaplan-Meier survival analysis revealed that low Lxn expression was significantly correlated with reduced overall survival time (P=0.000). Furthermore, Lxn expression was found to be inversely correlated with CD133 expression (r=−0.485, P=0.001). Furthermore, CD133-positive MIA PaCa-2 pancreatic tumor cells were sorted by magnetic-activated cell sorting (MACS), and those that overexpressed Lxn exhibited a significantly higher rate of apoptosis and lower proliferative activity. Our findings suggest that Lxn may function as a tumor suppressor that targets CD133-positive pancreatic cancer cells. PMID:26530530

  9. A Novel Cryptic Three-Way Translocation t(2;9;18(p23.2;p21.3;q21.33 with Deletion of Tumor Suppressor Genes in 9p21.3 and 13q14 in a T-Cell Acute Lymphoblastic Leukemia

    Directory of Open Access Journals (Sweden)

    Moneeb A. K. Othman

    2014-01-01

    Full Text Available Acute leukemia often presents with pure chromosomal resolution; thus, aberrations may not be detected by banding cytogenetics. Here, a case of 26-year-old male diagnosed with T-cell acute lymphoblastic leukemia (T-ALL and a normal karyotype after standard GTG-banding was studied retrospectively in detail by molecular cytogenetic and molecular approaches. Besides fluorescence in situ hybridization (FISH, multiplex ligation-dependent probe amplification (MLPA and high resolution array-comparative genomic hybridization (aCGH were applied. Thus, cryptic chromosomal aberrations not observed before were detected: three chromosomes were involved in a cytogenetically balanced occurring translocation t(2;9;18(p23.2;p21.3;q21.33. Besides a translocation t(10;14(q24;q11 was identified, an aberration known to be common in T-ALL. Due to the three-way translocation deletion of tumor suppressor genes CDKN2A/INK4A/p16, CDKN2B/INK4B/p15, and MTAP/ARF/p14 in 9p21.3 took place. Additionally RB1 in 13q14 was deleted. This patient, considered to have a normal karyotype after low resolution banding cytogenetics, was treated according to general protocol of anticancer therapy (ALL-BFM 95.

  10. Nodal metastasis in thyroid cancer

    International Nuclear Information System (INIS)

    Samuel, A.M.

    1999-01-01

    The biological behavior and hence the prognosis of thyroid cancer (TC) depends among other factors on the extent of spread of the disease outside the thyroid bed. This effect is controversial, especially for nodal metastasis of well differentiated thyroid carcinoma (WDC). Nodal metastasis at the time of initial diagnosis behaves differently depending on the histology, age of the patient, presence of extrathyroidal extension, and the sex of the individual. The type of the surgery, administration of 131 I and thyroxin suppression also to some extent influence the rate of recurrence and mortality. Experience has shown that it is not as innocuous as a small intrathyroidal tumor without any invasion outside the thyroid bed and due consideration should be accorded to the management strategies for handling patients with nodal metastasis

  11. LncRNA-NEF antagonized epithelial to mesenchymal transition and cancer metastasis via cis-regulating FOXA2 and inactivating Wnt/β-catenin signaling.

    Science.gov (United States)

    Liang, Wei-Cheng; Ren, Jia-Lin; Wong, Cheuk-Wa; Chan, Sun-On; Waye, Mary Miu-Yee; Fu, Wei-Ming; Zhang, Jin-Fang

    2018-03-01

    Emerging evidence indicates that the long noncoding RNAs extensively participate in cancer progression. Nevertheless, the molecular pathogenesis of how these lncRNAs regulate tumorigenesis has not been fully elucidated especially in hepatocellular carcinoma (HCC). Here, we sought to define the role of a novel lncRNA named lncRNA-NEF in modulating epithelial to mesenchymal transition (EMT) in HCC. It was found that the lncRNA-NEF was transcriptionally activated by EMT suppressor FOXA2 and frequently downregulated in HCC cell lines as well as clinical specimens. Although enhanced expression of lncRNA-NEF did not affect tumor cell growth, ectopic expression of lncRNA-NEF significantly suppressed EMT program and cell migration. Animal studies validated that lncRNA-NEF alleviated in vivo tumor metastasis and protected mice from tumor-induced mortality. Interestingly, we verified that lncRNA-NEF acted as a novel activator of its neighbor gene FOXA2, which formed a positive feedback loop. Subsequent studies revealed that lncRNA-NEF physically interacted with β-catenin to increase the binding of GSK3β with β-catenin and therefore promoted the inhibitory phosphorylation of β-catenin, leading to the suppression on Wnt/β-catenin signaling and activation of FOXA2 expression. Hence, our findings illustrated a novel feedback loop including FOXA2 and its neighboring gene lncRNA-NEF, which might provide mechanistic insights into the metastatic progress of HCC.

  12. Angiotensin II facilitates breast cancer cell migration and metastasis.

    Directory of Open Access Journals (Sweden)

    Sylvie Rodrigues-Ferreira

    Full Text Available Breast cancer metastasis is a leading cause of death by malignancy in women worldwide. Efforts are being made to further characterize the rate-limiting steps of cancer metastasis, i.e. extravasation of circulating tumor cells and colonization of secondary organs. In this study, we investigated whether angiotensin II, a major vasoactive peptide both produced locally and released in the bloodstream, may trigger activating signals that contribute to cancer cell extravasation and metastasis. We used an experimental in vivo model of cancer metastasis in which bioluminescent breast tumor cells (D3H2LN were injected intra-cardiacally into nude mice in order to recapitulate the late and essential steps of metastatic dissemination. Real-time intravital imaging studies revealed that angiotensin II accelerates the formation of metastatic foci at secondary sites. Pre-treatment of cancer cells with the peptide increases the number of mice with metastases, as well as the number and size of metastases per mouse. In vitro, angiotensin II contributes to each sequential step of cancer metastasis by promoting cancer cell adhesion to endothelial cells, trans-endothelial migration and tumor cell migration across extracellular matrix. At the molecular level, a total of 102 genes differentially expressed following angiotensin II pre-treatment were identified by comparative DNA microarray. Angiotensin II regulates two groups of connected genes related to its precursor angiotensinogen. Among those, up-regulated MMP2/MMP9 and ICAM1 stand at the crossroad of a network of genes involved in cell adhesion, migration and invasion. Our data suggest that targeting angiotensin II production or action may represent a valuable therapeutic option to prevent metastatic progression of invasive breast tumors.

  13. MicroRNA-34a is a potent tumor suppressor molecule in vivo in neuroblastoma.

    LENUS (Irish Health Repository)

    Tivnan, Amanda

    2011-01-01

    Neuroblastoma is a paediatric cancer which originates from precursor cells of the sympathetic nervous system and accounts for 15% of childhood cancer mortalities. With regards to the role of miRNAs in neuroblastoma, miR-34a, mapping to a chromosome 1p36 region that is commonly deleted, has been found to act as a tumor suppressor through targeting of numerous genes associated with cell proliferation and apoptosis.

  14. Gut metastasis from breast carcinoma

    International Nuclear Information System (INIS)

    Al-Qahtani, Mohammad S.

    2007-01-01

    Breast cancer is the second most common malignancy in women. Common sites of metastases include the liver, lung, bone and the brain. Metastases to the gastrointestinal tract are with patients presenting with small-bowel perforation, intestinal obstruction and gastrointestinal bleeding. Here we report a case of Saudi female presenting with invasive lobular carcinoma and i leo-junction metastasis. (author)

  15. Nitric oxide in cancer metastasis.

    Science.gov (United States)

    Cheng, Huiwen; Wang, Lei; Mollica, Molly; Re, Anthony T; Wu, Shiyong; Zuo, Li

    2014-10-10

    Cancer metastasis is the spread and growth of tumor cells from the original neoplasm to further organs. This review analyzes the role of nitric oxide (NO), a signaling molecule, in the regulation of cancer formation, progression, and metastasis. The action of NO on cancer relies on multiple factors including cell type, metastasis stage, and organs involved. Various chemotherapy drugs cause cells to release NO, which in turn induces cytotoxic death of breast, liver, and skin tumors. However, NO has also been clinically connected to a poor cancer prognosis because of its role in angiogenesis and intravasation. This supports the claim that NO can be characterized as both pro-metastatic and anti-metastatic, depending on specific factors. The inhibition of cell proliferation and anti-apoptosis pathways by NO donors has been proposed as a novel therapy to various cancers. Studies suggest that NO-releasing non-steroidal anti-inflammatory drugs act on cancer cells in several ways that may make them ideal for cancer therapy. This review summarizes the biological significance of NO in each step of cancer metastasis, its controversial effects for cancer progression, and its therapeutic potential. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Maxillofacial metastasis from breast cancer

    Science.gov (United States)

    Namad, Tariq; Benbrahim, Zineb; Najib, Rajae; Mohammed, Afif; Baggar, Soufiane; Bouyahia, Nezar; Arifi, Samia; Mellas, Nawfel

    2014-01-01

    Metastatic tumors to paranasal sinuses are exclusively rare. In this paper, we report acase of breast carcinoma metastasizing to the right maxilla. The metastasis occurred 5 years after radical mastectomy and presented as a primary sinonasalmass. The diagnosis was confirmed with histopathologic andimmunohistochemical examination however the patient died before starting any specific treatment because of tumor bleeding. PMID:25767674

  17. Pulmonary Metastasis from Pseudomyxoma Peritonei

    Directory of Open Access Journals (Sweden)

    Toshiyuki Kitai

    2012-01-01

    Full Text Available Pseudomyxoma peritonei (PMP is a rare clinical condition, where copious mucinous ascites accumulate in the peritoneal cavity due to dissemination of mucin-producing tumor. Because of this disseminating, yet nonmetastasizing, behavior, PMP attracts much interest from surgical oncologists in that aggressive locoregional therapy can give the opportunity of long survival and even cure. Although extra-abdominal metastasis is exceptionally rare, the lung is the most likely site in such a case. In this paper, the clinical findings and treatment of eleven cases with pulmonary metastasis from PMP were reviewed, including ten cases in the literature and one case which we experienced. The clinical features of PMP cases with pulmonary metastasis were similar to cases without pulmonary metastasis. The histological type was low-grade mucinous neoplasm in most cases. Pulmonary lesions were resected in seven cases in which abdominal lesions were controlled by cytoreductive surgery and hyperthermic intraperitoneal chemotherapy or another therapeutic modality. Disease-free state was maintained in five cases at the end of the follow-up period. However, it should be noted that rapid progression after resection was seen in two cases, suggesting that biological features may have changed by surgical intervention.

  18. MYCN and HDAC5 transcriptionally repress CD9 to trigger invasion and metastasis in neuroblastoma

    Science.gov (United States)

    Fabian, Johannes; Opitz, Desirée; Althoff, Kristina; Lodrini, Marco; Hero, Barbara; Volland, Ruth; Beckers, Anneleen; de Preter, Katleen; Decock, Anneleen; Patil, Nitin; Abba, Mohammed; Kopp-Schneider, Annette; Astrahantseff, Kathy; Wünschel, Jasmin; Pfeil, Sebastian; Ercu, Maria; Künkele, Annette; Hu, Jamie; Thole, Theresa; Schweizer, Leonille; Mechtersheimer, Gunhild; Carter, Daniel; Cheung, Belamy B.; Popanda, Odilia; von Deimling, Andreas; Koster, Jan; Versteeg, Rogier; Schwab, Manfred; Marshall, Glenn M.; Speleman, Frank; Erb, Ulrike; Zoeller, Margot; Allgayer, Heike; Simon, Thorsten; Fischer, Matthias; Kulozik, Andreas E.; Eggert, Angelika; Witt, Olaf; Schulte, Johannes H.; Deubzer, Hedwig E.

    2016-01-01

    The systemic and resistant nature of metastatic neuroblastoma renders it largely incurable with current multimodal treatment. Clinical progression stems mainly from the increasing burden of metastatic colonization. Therapeutically inhibiting the migration-invasion-metastasis cascade would be of great benefit, but the mechanisms driving this cycle are as yet poorly understood. In-depth transcriptome analyses and ChIP-qPCR identified the cell surface glycoprotein, CD9, as a major downstream player and direct target of the recently described GRHL1 tumor suppressor. CD9 is known to block or facilitate cancer cell motility and metastasis dependent upon entity. High-level CD9 expression in primary neuroblastomas correlated with patient survival and established markers for favorable disease. Low-level CD9 expression was an independent risk factor for adverse outcome. MYCN and HDAC5 colocalized to the CD9 promoter and repressed transcription. CD9 expression diminished with progressive tumor development in the TH-MYCN transgenic mouse model for neuroblastoma, and CD9 expression in neuroblastic tumors was far below that in ganglia from wildtype mice. Primary neuroblastomas lacking MYCN amplifications displayed differential CD9 promoter methylation in methyl-CpG-binding domain sequencing analyses, and high-level methylation was associated with advanced stage disease, supporting epigenetic regulation. Inducing CD9 expression in a SH-EP cell model inhibited migration and invasion in Boyden chamber assays. Enforced CD9 expression in neuroblastoma cells transplanted onto chicken chorioallantoic membranes strongly reduced metastasis to embryonic bone marrow. Combined treatment of neuroblastoma cells with HDAC/DNA methyltransferase inhibitors synergistically induced CD9 expression despite hypoxic, metabolic or cytotoxic stress. Our results show CD9 is a critical and indirectly druggable suppressor of the invasion-metastasis cycle in neuroblastoma. PMID:27572323

  19. The Regulation of Tumor Suppressor p63 by the Ubiquitin-Proteasome System

    Directory of Open Access Journals (Sweden)

    Stephen R. Armstrong

    2016-12-01

    Full Text Available The protein p63 has been identified as a homolog of the tumor suppressor protein p53 and is capable of inducing apoptosis, cell cycle arrest, or senescence. p63 has at least six isoforms, which can be divided into two major groups: the TAp63 variants that contain the N-terminal transactivation domain and the ΔNp63 variants that lack the N-terminal transactivation domain. The TAp63 variants are generally considered to be tumor suppressors involved in activating apoptosis and suppressing metastasis. ΔNp63 variants cannot induce apoptosis but can act as dominant negative inhibitors to block the function of TAp53, TAp73, and TAp63. p63 is rarely mutated in human tumors and is predominately regulated at the post-translational level by phosphorylation and ubiquitination. This review focuses primarily on regulation of p63 by the ubiquitin E-3 ligase family of enzymes via ubiquitination and proteasome-mediated degradation, and introduces a new key regulator of the p63 protein.

  20. CMTM5 exhibits tumor suppressor activity through promoter methylation in oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Zhang, Heyu; Nan, Xu; Li, Xuefen; Chen, Yan; Zhang, Jianyun; Sun, Lisha; Han, Wenlin; Li, Tiejun

    2014-01-01

    Highlights: • Down-regulation of CMTM5 expression in OSCC tissues was found. • The promoter methylation status of CMTM5 was measured. • CMTM5-v1 inhibited cell proliferation and migration and induced apoptosis. • CMTM5 might act as a putative tumor suppressor gene in OSCC. - Abstract: Oral squamous cell carcinoma (OSCC) is one of the most common types of malignancies in the head and neck region. CKLF-like MARVEL transmembrane domain-containing member 5 (CMTM5) has been recently implicated as a tumor suppressor gene in several cancer types. Herein, we examined the expression and function of CMTM5 in oral squamous cell carcinoma. CMTM5 was down-regulated in oral squamous cell lines and tumor samples from patients with promoter methylation. Treatment with the demethylating agent 5-aza-2′-deoxycytidine restored CMTM5 expression. In the OSCC cell lines CAL27 and GNM, the ectopic expression of CMTM5-v1 strongly inhibited cell proliferation and migration and induced apoptosis. In addition, CMTM5-v1 inhibited tumor formation in vivo. Therefore, CMTM5 might act as a putative tumor suppressor gene through promoter methylation in oral squamous cell carcinoma

  1. CMTM5 exhibits tumor suppressor activity through promoter methylation in oral squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Heyu [Central Laboratory, Peking University School of Stomatology, Beijing (China); Nan, Xu [Center for Human Disease Genomics, Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University, Beijing (China); Li, Xuefen [Central Laboratory, Peking University School of Stomatology, Beijing (China); Chen, Yan; Zhang, Jianyun [Department of Oral Pathology, Peking University School of Stomatology, Beijing (China); Sun, Lisha [Central Laboratory, Peking University School of Stomatology, Beijing (China); Han, Wenlin [Center for Human Disease Genomics, Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University, Beijing (China); Li, Tiejun, E-mail: litiejun22@vip.sina.com [Department of Oral Pathology, Peking University School of Stomatology, Beijing (China)

    2014-05-02

    Highlights: • Down-regulation of CMTM5 expression in OSCC tissues was found. • The promoter methylation status of CMTM5 was measured. • CMTM5-v1 inhibited cell proliferation and migration and induced apoptosis. • CMTM5 might act as a putative tumor suppressor gene in OSCC. - Abstract: Oral squamous cell carcinoma (OSCC) is one of the most common types of malignancies in the head and neck region. CKLF-like MARVEL transmembrane domain-containing member 5 (CMTM5) has been recently implicated as a tumor suppressor gene in several cancer types. Herein, we examined the expression and function of CMTM5 in oral squamous cell carcinoma. CMTM5 was down-regulated in oral squamous cell lines and tumor samples from patients with promoter methylation. Treatment with the demethylating agent 5-aza-2′-deoxycytidine restored CMTM5 expression. In the OSCC cell lines CAL27 and GNM, the ectopic expression of CMTM5-v1 strongly inhibited cell proliferation and migration and induced apoptosis. In addition, CMTM5-v1 inhibited tumor formation in vivo. Therefore, CMTM5 might act as a putative tumor suppressor gene through promoter methylation in oral squamous cell carcinoma.

  2. ADAM15 expression is downregulated in melanoma metastasis compared to primary melanoma

    International Nuclear Information System (INIS)

    Ungerer, Christopher; Doberstein, Kai; Buerger, Claudia; Hardt, Katja; Boehncke, Wolf-Henning; Boehm, Beate; Pfeilschifter, Josef; Dummer, Reinhard; Mihic-Probst, Daniela; Gutwein, Paul

    2010-01-01

    Research highlights: → Strong ADAM15 expression is found in normal melanocytes. → ADAM15 expression is significantly downregulated in patients with melanoma metastasis. → TGF-β can downregulate ADAM15 expression in melanoma cells. → Overexpression of ADAM15 in melanoma cells inhibits migration, proliferation and invasion of melanoma cells. → Conclusion: ADAM15 represents an tumor suppressor protein in melanoma. -- Abstract: In a mouse melanoma metastasis model it has been recently shown that ADAM15 overexpression in melanoma cells significantly reduced the number of metastatic nodules on the lung. Unfortunately, the expression of ADAM15 in human melanoma tissue has not been determined so far. In our study, we characterized the expression of ADAM15 in tissue micro-arrays of patients with primary melanoma with melanoma metastasis. ADAM15 was expressed in melanocytes and endothelial cells of benign nevi and melanoma tissue. Importantly, ADAM15 was significantly downregulated in melanoma metastasis compared to primary melanoma. We further demonstrate that IFN-γ and TGF-β downregulate ADAM15 protein levels in melanoma cells. To investigate the role of ADAM15 in melanoma progression, we overexpressed ADAM15 in melanoma cells. Importantly, overexpression of ADAM15 in melanoma cells reduced the migration, invasion and the anchorage dependent and independent cell growth of melanoma cells. In summary, the downregulation of ADAM15 plays an important role in melanoma progression and ADAM15 act as a tumorsuppressor in melanoma.

  3. ADAM15 expression is downregulated in melanoma metastasis compared to primary melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Ungerer, Christopher; Doberstein, Kai [Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe University Frankfurt, Frankfurt am Main (Germany); Buerger, Claudia; Hardt, Katja; Boehncke, Wolf-Henning [Department of Dermatology, Clinic of the Goethe-University, Theodor-Stern-Kai, Frankfurt (Germany); Boehm, Beate [Division of Rheumatology, Goethe University, Frankfurt am Main (Germany); Pfeilschifter, Josef [Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe University Frankfurt, Frankfurt am Main (Germany); Dummer, Reinhard [Department of Pathology, Institute of Surgical Pathology, University Hospital, Zurich (Switzerland); Mihic-Probst, Daniela [Department of Dermatology, University Hospital Zurich (Switzerland); Gutwein, Paul, E-mail: p.gutwein@med.uni-frankfurt.de [Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe University Frankfurt, Frankfurt am Main (Germany)

    2010-10-22

    Research highlights: {yields} Strong ADAM15 expression is found in normal melanocytes. {yields} ADAM15 expression is significantly downregulated in patients with melanoma metastasis. {yields} TGF-{beta} can downregulate ADAM15 expression in melanoma cells. {yields} Overexpression of ADAM15 in melanoma cells inhibits migration, proliferation and invasion of melanoma cells. {yields} Conclusion: ADAM15 represents an tumor suppressor protein in melanoma. -- Abstract: In a mouse melanoma metastasis model it has been recently shown that ADAM15 overexpression in melanoma cells significantly reduced the number of metastatic nodules on the lung. Unfortunately, the expression of ADAM15 in human melanoma tissue has not been determined so far. In our study, we characterized the expression of ADAM15 in tissue micro-arrays of patients with primary melanoma with melanoma metastasis. ADAM15 was expressed in melanocytes and endothelial cells of benign nevi and melanoma tissue. Importantly, ADAM15 was significantly downregulated in melanoma metastasis compared to primary melanoma. We further demonstrate that IFN-{gamma} and TGF-{beta} downregulate ADAM15 protein levels in melanoma cells. To investigate the role of ADAM15 in melanoma progression, we overexpressed ADAM15 in melanoma cells. Importantly, overexpression of ADAM15 in melanoma cells reduced the migration, invasion and the anchorage dependent and independent cell growth of melanoma cells. In summary, the downregulation of ADAM15 plays an important role in melanoma progression and ADAM15 act as a tumorsuppressor in melanoma.

  4. M402, a novel heparan sulfate mimetic, targets multiple pathways implicated in tumor progression and metastasis.

    Directory of Open Access Journals (Sweden)

    He Zhou

    Full Text Available Heparan sulfate proteoglycans (HSPGs play a key role in shaping the tumor microenvironment by presenting growth factors, cytokines, and other soluble factors that are critical for host cell recruitment and activation, as well as promoting tumor progression, metastasis, and survival. M402 is a rationally engineered, non-cytotoxic heparan sulfate (HS mimetic, designed to inhibit multiple factors implicated in tumor-host cell interactions, including VEGF, FGF2, SDF-1α, P-selectin, and heparanase. A single s.c. dose of M402 effectively inhibited seeding of B16F10 murine melanoma cells to the lung in an experimental metastasis model. Fluorescent-labeled M402 demonstrated selective accumulation in the primary tumor. Immunohistological analyses of the primary tumor revealed a decrease in microvessel density in M402 treated animals, suggesting anti-angiogenesis to be one of the mechanisms involved in-vivo. M402 treatment also normalized circulating levels of myeloid derived suppressor cells in tumor bearing mice. Chronic administration of M402, alone or in combination with cisplatin or docetaxel, inhibited spontaneous metastasis and prolonged survival in an orthotopic 4T1 murine mammary carcinoma model. These data demonstrate that modulating HSPG biology represents a novel approach to target multiple factors involved in tumor progression and metastasis.

  5. Systematic analysis of molecular mechanisms for HCC metastasis via text mining approach.

    Science.gov (United States)

    Zhen, Cheng; Zhu, Caizhong; Chen, Haoyang; Xiong, Yiru; Tan, Junyuan; Chen, Dong; Li, Jin

    2017-02-21

    To systematically explore the molecular mechanism for hepatocellular carcinoma (HCC) metastasis and identify regulatory genes with text mining methods. Genes with highest frequencies and significant pathways related to HCC metastasis were listed. A handful of proteins such as EGFR, MDM2, TP53 and APP, were identified as hub nodes in PPI (protein-protein interaction) network. Compared with unique genes for HBV-HCCs, genes particular to HCV-HCCs were less, but may participate in more extensive signaling processes. VEGFA, PI3KCA, MAPK1, MMP9 and other genes may play important roles in multiple phenotypes of metastasis. Genes in abstracts of HCC-metastasis literatures were identified. Word frequency analysis, KEGG pathway and PPI network analysis were performed. Then co-occurrence analysis between genes and metastasis-related phenotypes were carried out. Text mining is effective for revealing potential regulators or pathways, but the purpose of it should be specific, and the combination of various methods will be more useful.

  6. Catalytic activity of matrix metalloproteinase-19 is essential for tumor suppressor and anti-angiogenic activities in nasopharyngeal carcinoma

    Czech Academy of Sciences Publication Activity Database

    Chan, K.C.; Ko, J.M.; Lung, H.L.; Sedláček, Radislav; Zhang, Z.F.; Luo, D.Z.; Feng, Z.B.; Chen, S.; Chen, H.; Chan, K.W.; Tsao, S.W.; Chua, D.T.; Zabarovsky, E.R.; Stanbridge, E.J.; Lung, M.L.

    2011-01-01

    Roč. 129, č. 8 (2011), s. 1826-1837 ISSN 0020-7136 Grant - others:Research Grants Council of the Hong Kong Special Administrative Region(CN) HKU661708M Institutional research plan: CEZ:AV0Z50520514 Keywords : MMP19 * nasopharyngeal carcinoma * tumor suppressor gene * angiogenesis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.444, year: 2011

  7. LARG at chromosome 11q23 has functional characteristics of a tumor suppressor in human breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ong, Danny C.T.; Rudduck, Christina; Chin, Koei; Kuo, Wen-Lin; Lie, Daniel K.H.; Chua, Constance L.M.; Wong, Chow Yin; Hong, Ga Sze; Gray, Joe; Lee, Ann S.G.

    2008-05-06

    Deletion of 11q23-q24 is frequent in a diverse variety of malignancies, including breast and colorectal carcinoma, implicating the presence of a tumor suppressor gene at that chromosomal region. We show here that LARG, from 11q23, has functional characteristics of a tumor suppressor. We examined a 6-Mb region on 11q23 by high-resolution deletion mapping, utilizing both loss of heterozygosity (LOH) analysis and microarray comparative genomic hybridization (CGH). LARG (also called ARHGEF12), identified from the analyzed region, was underexpressed in 34% of primary breast carcinomas and 80% of breast cancer cell lines including the MCF-7 line. Multiplex ligation-dependent probe amplification on 30 primary breast cancers and six breast cancer cell lines showed that LARG had the highest frequency of deletion compared to the BCSC-1 and TSLC1 genes, two known candidate tumor suppressor genes from 11q. In vitro analysis of breast cancer cell lines that underexpress LARG showed that LARG could be reactivated by trichostatin A, a histone deacetylase inhibitor, but not by 5-Aza-2{prime}-deoxycytidine, a demethylating agent. Bisulfite sequencing and quantitative high-throughput analysis of DNA methylation confirmed the lack of CpG island methylation in LARG in breast cancer. Restoration of LARG expression in MCF-7 cells by stable transfection resulted in reduced proliferation and colony formation, suggesting that LARG has functional characteristics of a tumor suppressor gene.

  8. The von Hippel-Lindau tumor suppressor regulates programmed cell death 5-mediated degradation of Mdm2

    NARCIS (Netherlands)

    Essers, P B; Klasson, T D; Pereboom, T C; Mans, D A; Nicastro, M; Boldt, K; Giles, R H; MacInnes, A W

    2015-01-01

    Functional loss of the von Hippel-Lindau (VHL) tumor suppressor protein (pVHL), which is part of an E3-ubiquitin ligase complex, initiates most inherited and sporadic clear-cell renal cell carcinomas (ccRCC). Genetic inactivation of the TP53 gene in ccRCC is rare, suggesting that an alternate

  9. Amplification of Mdmx (or Mdm4) directly contributes to tumor formation by inhibiting p53 tumor suppressor activity

    DEFF Research Database (Denmark)

    Danovi, Davide; Meulmeester, Erik; Pasini, Diego

    2004-01-01

    Human tumors are believed to harbor a disabled p53 tumor suppressor pathway, either through direct mutation of the p53 gene or through aberrant expression of proteins acting in the p53 pathway, such as p14(ARF) or Mdm2. A role for Mdmx (or Mdm4) as a key negative regulator of p53 function in vivo...

  10. Loss of heterozygosity in Wilms' tumors, studied for six putative tumor suppressor regions, is limited to chromosome 11

    NARCIS (Netherlands)

    Mannens, M.; Devilee, P.; Bliek, J.; Mandjes, I.; de Kraker, J.; Heyting, C.; Slater, R. M.; Westerveld, A.

    1990-01-01

    Studies on the loss of heterozygosity (LOH) in human malignancies have shown that a number of different chromosomal regions associated with putative tumor suppressor genes may be involved in any one given tumor. We have carried out a similar study on Wilms' tumor using a range of DNA markers for a

  11. Downregulation of tumor suppressor QKI in gastric cancer and its implication in cancer prognosis

    International Nuclear Information System (INIS)

    Bian, Yongqian; Wang, Li; Lu, Huanyu; Yang, Guodong; Zhang, Zhang; Fu, Haiyan; Lu, Xiaozhao; Wei, Mengying; Sun, Jianyong; Zhao, Qingchuan; Dong, Guanglong; Lu, Zifan

    2012-01-01

    Highlights: ► QKI expression is decreased in gastric cancer samples. ► Promoter hyper methylation contributes to the downregulation of QKI. ► QKI inhibits the growth of gastric cancer cells. ► Decreased QKI expression predicts poor survival. -- Abstract: Gastric cancer (GC) is the fourth most common cancer and second leading cause of cancer-related death worldwide. RNA-binding protein Quaking (QKI) is a newly identified tumor suppressor in multiple cancers, while its role in GC is largely unknown. Our study here aimed to clarify the relationship between QKI expression with the clinicopathologic characteristics and the prognosis of GC. In the 222 GC patients’ specimens, QKI expression was found to be significantly decreased in most of the GC tissues, which was largely due to promoter hypermethylation. QKI overexpression reduced the proliferation ability of GC cell line in vitro study. In addition, the reduced QKI expression correlated well with poor differentiation status, depth of invasion, gastric lymph node metastasis, distant metastasis, advanced TNM stage, and poor survival. Multivariate analysis showed QKI expression was an independent prognostic factor for patient survival.

  12. A novel oncolytic adenovirus targeting Wnt signaling effectively inhibits cancer-stem like cell growth via metastasis, apoptosis and autophagy in HCC models.

    Science.gov (United States)

    Zhang, Jian; Lai, Weijie; Li, Qiang; Yu, Yang; Jin, Jin; Guo, Wan; Zhou, Xiumei; Liu, Xinyuan; Wang, Yigang

    2017-09-16

    Cancer stem cells (CSCs), which are highly differentiated and self-renewing, play an important role in the occurrence, therapeutic resistant and metastasis of hepatacellular carcinoma (HCC). Oncolytic adenoviruses have targeted killing effect on tumor cells, and are invoked as candidate drugs for cancer treatment. We designed a dual-regulated oncolytic adenovirus Ad.wnt-E1A(△24bp)-TSLC1 that targets Wnt and Rb signaling pathways respectively, and carries the tumor suppressor gene, TSLC1. Previous studies have demonstrated that oncolytic adenovirus mediated TSLC1can target liver cancer and exhibit significant cytotoxicity. However, whether Ad.wnt-E1A(△24bp)-TSLC1 can effectively eliminate liver CSCs remains to be explored. We first used the spheroid culture to enrich the liver CSCs-like cells, and detected the self-renewal capacity, differentiation, drug resistance and tumorigenicity. The results showed that Ad-wnt-E1A(△24bp)-TSLC1 could effectively lead to autophagic death. In addition, recombinant adenovirus effectively induced the apoptosis, inhibit metastasis of hepatic CSCs-like cells in vivo. Further animal experiments indicated that Ad-wnt-E1A(△24bp)-TSLC1could effectively inhibit the growth of transplanted tumor of hepatic CSCs and prolong the survival time of mice. Therefore, the novel oncolytic adenovirus Ad.wnt-E1A(△24bp)-TSLC1 has potential application as a therapeutic target for HCC stem cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Monocytes Differentiate to Immune Suppressive Precursors of Metastasis-Associated Macrophages in Mouse Models of Metastatic Breast Cancer

    Directory of Open Access Journals (Sweden)

    Takanori Kitamura

    2018-01-01

    Full Text Available Metastasis-associated macrophages (MAMs play pivotal roles in breast cancer metastasis by promoting extravasation and survival of metastasizing cancer cells. In a metastatic breast cancer mouse model, we previously reported that circulating classical monocytes (C-MOs preferentially migrated into the tumor-challenged lung where they differentiated into MAMs. However, the fate and characteristics of C-MOs in the metastatic site has not been defined. In this study, we identified that adoptively transferred C-MOs (F4/80lowCD11b+Ly6C+ differentiated into a distinct myeloid cell population that is characterized as F4/80highCD11bhighLy6Chigh and gives rise to MAMs (F4/80lowCD11bhighLy6Clow within 18 h after migration into the metastatic lung. In mouse models of breast cancer, the CD11bhighLy6Chigh MAM precursor cells (MAMPCs were commonly found in the metastatic lung, and their accumulation was increased during metastatic tumor growth. The morphology and gene expression profile of MAMPCs were distinct from C-MOs and had greater similarity to MAMs. For example MAMPCs expressed mature macrophage markers such as CD14, CD36, CD64, and CD206 at comparable levels with MAMs, suggesting that MAMPCs have committed to a macrophage lineage in the tumor microenvironment. MAMPCs also expressed higher levels of Arg1, Hmox1, and Stab1 than C-MOs to a comparable level to MAMs. Expression of these MAM-associated genes in MAMPCs was reduced by genetic deletion of colony-stimulating factor 1 receptor (CSF1R. On the other hand, transient CSF1R blockade did not reduce the number of MAMPCs in the metastatic site, suggesting that CSF1 signaling is active in MAMPCs but is not required for their accumulation. Functionally MAMPCs suppressed the cytotoxicity of activated CD8+ T cells in vitro in part through superoxide production. Overall, our results indicate that immediately following migration into the metastatic tumors C-MOs differentiate into immunosuppressive cells that

  14. Microvascular Channel Device to Study Aggressiveness in Prostate Cancer Metastasis

    Science.gov (United States)

    2014-08-01

    contributes to PCa’s distant metastasis, which is mediated via an E- selectin ligand, ESL -1. Consequently, the interaction of E-selectin/ ESL -1 transduces...cancer cell, E-selectin, ESL -1. OVERALL PROJECT SUMMARY A. Major goals of the project: 3 Task 1: Correlation of cancers’ aggressiveness with...Determination of the aggressive/metastatic related gene I. 1. ESL -1 expression is high in rolling cells and tissue When PCa cells come in contact with

  15. Association of Differentiation-Related Gene-1 (DRG1) with Breast Cancer Survival and in Vitro Impact of DRG1 Suppression

    Energy Technology Data Exchange (ETDEWEB)

    Baig, Ruqia Mehmood [Metastasis and Angiogenesis Research Group, Institute of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN (United Kingdom); Cancer Genetics Lab, COMSATS Institute of Information Technology, Islamabad 44000 (Pakistan); Sanders, Andrew J. [Metastasis and Angiogenesis Research Group, Institute of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN (United Kingdom); Kayani, Mahmood Akhtar [Cancer Genetics Lab, COMSATS Institute of Information Technology, Islamabad 44000 (Pakistan); Jiang, Wen G., E-mail: jiangw@cf.ac.uk [Metastasis and Angiogenesis Research Group, Institute of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN (United Kingdom)

    2012-07-10

    Differentiation-related gene-1, DRG1, is a metastasis suppressor gene whose expression has been shown to be dysregulated in a number of malignancies. The current study examines the expression of DRG1 in a clinical breast cohort and its association with a number of clinical pathological factors using quantitative polymerase chain reaction. Additionally, DRG1 expression is targeted in vitro using ribozyme transgene technology to explore the function of DRG1 in two human breast cancer cell lines. Low levels of DRG1 were found in patients who developed metastasis (p = 0.036) and who died of breast cancer (p = 0.0048) compared to disease free patients. Knockdown of DRG1 also resulted in significantly increased invasion and motility, but decreased matrix-adhesion in MCF7 cells. Knockdown of DRG1 seemed to have minimal impact on the cellular functions of the MDA-MB-231 breast cancer cell line causing no significant differences in cell growth, invasion, motility or matrix-adhesion. Thus, DRG1 appears to be linked to development of metastasis and death in patients who died as a result of breast cancer and may be useful as a prognostic factor as its knockdown appears to be linked with increased invasion and motility and decreased adhesion in MCF7 breast cancer cells.

  16. Association of Differentiation-Related Gene-1 (DRG1) with Breast Cancer Survival and in Vitro Impact of DRG1 Suppression

    International Nuclear Information System (INIS)

    Baig, Ruqia Mehmood; Sanders, Andrew J.; Kayani, Mahmood Akhtar; Jiang, Wen G.

    2012-01-01

    Differentiation-related gene-1, DRG1, is a metastasis suppressor gene whose expression has been shown to be dysregulated in a number of malignancies. The current study examines the expression of DRG1 in a clinical breast cohort and its association with a number of clinical pathological factors using quantitative polymerase chain reaction. Additionally, DRG1 expression is targeted in vitro using ribozyme transgene technology to explore the function of DRG1 in two human breast cancer cell lines. Low levels of DRG1 were found in patients who developed metastasis (p = 0.036) and who died of breast cancer (p = 0.0048) compared to disease free patients. Knockdown of DRG1 also resulted in significantly increased invasion and motility, but decreased matrix-adhesion in MCF7 cells. Knockdown of DRG1 seemed to have minimal impact on the cellular functions of the MDA-MB-231 breast cancer cell line causing no significant differences in cell growth, invasion, motility or matrix-adhesion. Thus, DRG1 appears to be linked to development of metastasis and death in patients who died as a result of breast cancer and may be useful as a prognostic factor as its knockdown appears to be linked with increased invasion and motility and decreased adhesion in MCF7 breast cancer cells

  17. Beta1 integrin promotes but is not essential for metastasis of ras-myc transformed fibroblasts

    DEFF Research Database (Denmark)

    Brakebusch, C; Wennerberg, K; Krell, H W

    1999-01-01

    To investigate the role of beta1 integrin during tumor metastasis, we established a ras-myc transformed fibroblastoid cell line with a disrupted beta1 integrin gene on both alleles (GERM 11). Stable transfection of this cell line with an expression vector encoding beta1A integrin resulted in beta1A......, and collagen type I. Beta1 integrin, therefore, increases but is not essential for metastasis of ras-myc transformed fibroblasts....

  18. Vasculogenic mimicry and tumor metastasis.

    Science.gov (United States)

    Zhang, Jingxin; Qiao, Lili; Liang, Ning; Xie, Jian; Luo, Hui; Deng, Guodong; Zhang, Jiandong

    2016-01-01

    Vasculogenic mimicry (VM), a microvascular channel made up of nonendothelial cells, has been accepted as a new model of neovascularization in aggressive tumors, owning to the specific capacity of malignant cells to form vessel-like networks which provide sufficient blood supply for tumor growth. Multiple molecular mechanisms, especially vascular endothelial (VE)-cadherin, erythropoietin-producing hepatocellular receptor A2 (EphA2), phosphatidyl inositol 3-kinase (PI3K), matrix metalloproteinases (MMPs), vascular endothelial growth factor receptor (VEGFR1), and hypoxia inducible factor (HIF)-1a, have been reported to participate in VM formation which is associated with tumor migration and invasion. In addition, hypoxia, cancer stem cells (CSCs) and epithelial-mesenehymal transition (EMT) are regarded as significant factors in VM formation and tumor metastasis. Due to the important effects of VM on tumor progression, a review was carried out in the present study, to synthetically analyze the relationship between VM and tumor metastasis.

  19. Pericytes limit tumor cell metastasis

    DEFF Research Database (Denmark)

    Xian, Xiaojie; Håkansson, Joakim; Ståhlberg, Anders

    2006-01-01

    Previously we observed that neural cell adhesion molecule (NCAM) deficiency in beta tumor cells facilitates metastasis into distant organs and local lymph nodes. Here, we show that NCAM-deficient beta cell tumors grew leaky blood vessels with perturbed pericyte-endothelial cell-cell interactions...... and deficient perivascular deposition of ECM components. Conversely, tumor cell expression of NCAM in a fibrosarcoma model (T241) improved pericyte recruitment and increased perivascular deposition of ECM molecules. Together, these findings suggest that NCAM may limit tumor cell metastasis by stabilizing...... the microvessel wall. To directly address whether pericyte dysfunction increases the metastatic potential of solid tumors, we studied beta cell tumorigenesis in primary pericyte-deficient Pdgfb(ret/ret) mice. This resulted in beta tumor cell metastases in distant organs and local lymph nodes, demonstrating a role...

  20. [The number of myeloid-derived suppressor cells in the peripheral blood and tumor tissues in patients with gastric cancer and its clinical significance].

    Science.gov (United States)

    Xia, Rui; Wang, Feng; Gao, Tengfei; Wen, Wen; Lu, Binfeng; Zhu, Yibei; Zhang, Xueguang

    2014-07-01

    To investigate the number of myeloid-derived suppressor cells (MDSCs) in peripheral blood, tumor tissue and para-tumor normal tissues in patients with gastric cancer in an attempt to explore the relationship between MDSCs expression and clinicopathologic characteristics. Peripheral blood was collected from 62 gastric cancer patients and 20 healthy volunteers (HC group). Gastric cancer tissues and adjacent normal tissues were obtained from 12 of the 62 gastric cancer patients. HLA-DR⁻ CD33⁺ CD11b⁺ MDSCs were analyzed by flow cytometry. Student's t-test, One-way ANOVA and Mann-Whitney U test were used to explore the correlation between MDSCs expression in peripheral blood and the depth of tumor invasion, degree of differentiation, TNM stage and lymph node metastasis. Compare with the HC group, the number of MDSCs in peripheral blood of newly-diagnosed gastric cancer patients was higher (Pblood of gastric cancer patients was significantly associated with the depth of invasion, degree of differentiation, TNM stage and lymph node metastasis (Ptissues was obviously higher than that of the adjacent tissues in the same patient. The number of MDSCs in peripheral blood from recurrent/metastasis group was obviously higher than that from non-recurrent/metastasis group (Pblood was higher in patients with gastric cancer. MDSCs expression in peripheral blood of gastric cancer patients was closely associated with tumor malignant degree and tumor recurrence/metastasis.

  1. Raman spectroscopy of bone metastasis

    Science.gov (United States)

    Esmonde-White, Karen A.; Sottnik, Joseph; Morris, Michael; Keller, Evan

    2012-02-01

    Raman spectroscopy of bone has been used to characterize chemical changes occurring in diseases such as osteoporosis, osteoarthritis and osteomyelitis. Metastasis of cancer into bone causes changes to bone quality that are similar to those observed in osteoporosis, such as decreased bone strength, but with an accelerated timeframe. In particular, osteolytic (bone degrading) lesions in bone metastasis have a marked effect on patient quality of life because of increased risk of fractures, pain, and hypercalcemia. We use Raman spectroscopy to examine bone from two different mouse models of osteolytic bone metastasis. Raman spectroscopy measures physicochemical information which cannot be obtained through standard biochemical and histological measurements. This study was reviewed and approved by the University of Michigan University Committee on the Care and Use of Animals. Two mouse models of prostate cancer bone metastasis, RM1 (n=3) and PC3-luc (n=4) were examined. Tibiae were injected with RM1 or PC3-luc cancer cells, while the contralateral tibiae received a placebo injection for use as controls. After 2 weeks of incubation, the mice were sacrificed and the tibiae were examined by Raman microspectroscopy (λ=785 nm). Spectroscopic markers corresponding to mineral stoichiometry, bone mineralization, and mineral crystallinity were compared in spectra from the cancerous and control tibiae. X-ray imaging of the tibia confirmed extensive osteolysis in the RM1 mice, with tumor invasion into adjoining soft tissue and moderate osteolysis in the PC3-luc mice. Raman spectroscopic markers indicate that osteolytic lesions are less mineralized than normal bone tissue, with an altered mineral stoichiometry and crystallinity.

  2. Endocannabinoids as Guardians of Metastasis.

    Science.gov (United States)

    Tegeder, Irmgard

    2016-02-10

    Endocannabinoids including anandamide and 2-arachidonoylglycerol are involved in cancer pathophysiology in several ways, including tumor growth and progression, peritumoral inflammation, nausea and cancer pain. Recently we showed that the endocannabinoid profiles are deranged during cancer to an extent that this manifests in alterations of plasma endocannabinoids in cancer patients, which was mimicked by similar changes in rodent models of local and metastatic cancer. The present topical review summarizes the complexity of endocannabinoid signaling in the context of tumor growth and metastasis.

  3. Canine Mammary Carcinomas: A Comparative Analysis of Altered Gene Expression

    Directory of Open Access Journals (Sweden)

    Farruk M. Lutful Kabir

    2015-12-01

    Full Text Available Breast cancer represents the second most frequent neoplasm in humans and sexually intact female dogs after lung and skin cancers, respectively. Many similar features in human and dog cancers including, spontaneous development, clinical presentation, tumor heterogeneity, disease progression and response to conventional therapies have supported development of this comparative model as an alternative to mice. The highly conserved similarities between canine and human genomes are also key to this comparative analysis, especially when compared to the murine genome. Studies with canine mammary tumor (CMT models have shown a strong genetic correlation with their human counterparts, particularly in terms of altered expression profiles of cell cycle regulatory genes, tumor suppressor and oncogenes and also a large group of non-coding RNAs or microRNAs (miRNAs. Because CMTs are considered predictive intermediate models for human breast cancer, similarities in genetic alterations and cancer predisposition between humans and dogs have raised further interest. Many cancer-associated genetic defects critical to mammary tumor development and oncogenic determinants of metastasis have been reported and appear to be similar in both species. Comparative analysis of deregulated gene sets or cancer signaling pathways has shown that a significant proportion of orthologous genes are comparably up- or down-regulated in both human and dog breast tumors. Particularly, a group of cell cycle regulators called cyclin-dependent kinase inhibitors (CKIs acting as potent tumor suppressors are frequently defective in CMTs. Interestingly, comparative analysis of coding sequences has also shown that these genes are highly conserved in mammals in terms of their evolutionary divergence from a common ancestor. Moreover, co-deletion and/or homozygous loss of the INK4A/ARF/INK4B (CDKN2A/B locus, encoding three members of the CKI tumor suppressor gene families (p16/INK4A, p14ARF and p15

  4. An attempt at a molecular prediction of metastasis in patients with primary cutaneous melanoma.

    Science.gov (United States)

    Gschaider, Melanie; Neumann, Friederike; Peters, Bettina; Lenz, Florian; Cibena, Michael; Goiser, Malgorzata; Wolf, Ingrid; Wenzel, Jörg; Mauch, Cornelia; Schreiner, Wolfgang; Wagner, Stephan N

    2012-01-01

    Current prognostic clinical and morphological parameters are insufficient to accurately predict metastasis in individual melanoma patients. Several studies have described gene expression signatures to predict survival or metastasis of primary melanoma patients, however the reproducibility among these studies is disappointingly low. We followed extended REMARK/Gould Rothberg criteria to identify gene sets predictive for metastasis in patients with primary cutaneous melanoma. For class comparison, gene expression data from 116 patients with clinical stage I/II (no metastasis) and 72 with III/IV primary melanoma (with metastasis) at time of first diagnosis were used. Significance analysis of microarrays identified the top 50 differentially expressed genes. In an independent data set from a second cohort of 28 primary melanoma patients, these genes were analyzed by multivariate Cox regression analysis and leave-one-out cross validation for association with development of metastatic disease. In a multivariate Cox regression analysis, expression of the genes Ena/vasodilator-stimulated phosphoprotein-like (EVL) and CD24 antigen gave the best predictive value (p = 0.001; p = 0.017, respectively). A multivariate Cox proportional hazards model revealed these genes as a potential independent predictor, which may possibly add (both p = 0.01) to the predictive value of the most important morphological indicator, Breslow depth. Combination of molecular with morphological information may potentially enable an improved prediction of metastasis in primary melanoma patients. A strength of the gene expression set is the small number of genes, which should allow easy reevaluation in independent data sets and adequately designed clinical trials.

  5. An attempt at a molecular prediction of metastasis in patients with primary cutaneous melanoma.

    Directory of Open Access Journals (Sweden)

    Melanie Gschaider

    Full Text Available BACKGROUND: Current prognostic clinical and morphological parameters are insufficient to accurately predict metastasis in individual melanoma patients. Several studies have described gene expression signatures to predict survival or metastasis of primary melanoma patients, however the reproducibility among these studies is disappointingly low. METHODOLOGY/PRINCIPAL FINDINGS: We followed extended REMARK/Gould Rothberg criteria to identify gene sets predictive for metastasis in patients with primary cutaneous melanoma. For class comparison, gene expression data from 116 patients with clinical stage I/II (no metastasis and 72 with III/IV primary melanoma (with metastasis at time of first diagnosis were used. Significance analysis of microarrays identified the top 50 differentially expressed genes. In an independent data set from a second cohort of 28 primary melanoma patients, these genes were analyzed by multivariate Cox regression analysis and leave-one-out cross validation for association with development of metastatic disease. In a multivariate Cox regression analysis, expression of the genes Ena/vasodilator-stimulated phosphoprotein-like (EVL and CD24 antigen gave the best predictive value (p = 0.001; p = 0.017, respectively. A multivariate Cox proportional hazards model revealed these genes as a potential independent predictor, which may possibly add (both p = 0.01 to the predictive value of the most important morphological indicator, Breslow depth. CONCLUSION/SIGNIFICANCE: Combination of molecular with morphological information may potentially enable an improved prediction of metastasis in primary melanoma patients. A strength of the gene expression set is the small number of genes, which should allow easy reevaluation in independent data sets and adequately designed clinical trials.

  6. RASSF10 is epigenetically silenced and functions as a tumor suppressor in gastric cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Ziran [Department of General Surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai (China); Chen, Xia [Urology Department, Minhang District Central Hospital, Shanghai (China); Chen, Ji; Wang, Weimin [Department of General Surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai (China); Xu, Xudong [Urology Department, Minhang District Central Hospital, Shanghai (China); Cai, Qingping, E-mail: qingping_caicz@163.com [Department of General Surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai (China)

    2013-03-22

    Highlights: ► Epigenetic silencing of RASSF10 gene expression in GC cells. ► RASSF10 overexpression inhibits cell growth in vitro and in vivo. ► RASSF10 induces apoptosis in GC cells. ► RASSF10 inhibits Wnt/β-catenin signaling pathway. -- Abstract: Ras association domain family (RASSF) proteins are encoded by several tumor suppressor genes that are frequently silenced in human cancers. In this study, we investigated RASSF10 as a target of epigenetic inactivation and examined its functions as a tumor suppressor in gastric cancer. RASSF10 was silenced in six out of eight gastric cancer cell lines. Loss or downregulation of RASSF10 expression was associated with promoter hypermethylation, and could be restored by a demethylating agent. Overexpression of RASSF10 in gastric cancer cell lines (JRST, BGC823) suppressed cell growth and colony formation, and induced apoptosis, whereas RASSF10 depletion promoted cell growth. In xenograft animal experiments, RASSF10 overexpression effectively repressed tumor growth. Mechanistic investigations revealed that RASSF10 inhibited tumor