WorldWideScience

Sample records for metarhizium anisopliae metschnikoff

  1. Evaluation of cellulose substrates treated with Metarhizium anisopliae (Metschnikoff Sorokin as a biological control agent against the termite Microcerotermes diversus Silvestri (Isoptera: Termitidae

    Directory of Open Access Journals (Sweden)

    Behzad Habibpour

    2011-08-01

    Full Text Available This article is the first report on the promising effect of an entomopathogenic fungus, Metarhizium anisopliae (Metschnikoff Sorokin to control populations of Microcerotermes diversus Silvestri. Biological control is an alternative to the long-term usage of chemical pesticides. M. anisopliae, the causal agent of green muscardine disease of insects, is an important fungus in biological control of insect pests. Bait systems can eliminate entire colonies of subterranean termites. Baiting reduces adverse environmental impacts caused by organochlorine and organophosphate pesticides in the control of termites and creates sustainable protection of buildings against their invasion. Treated-sawdust bait was applied by two methods: a combination of treated sawdust and untreated filter paper, and b combination of treated sawdust and untreated sawdust. When combinations of treated sawdust and untreated sawdust were used, LC50 and LC90 were 8.4×106 and 3.9×107 (spore/ml, respectively. With the use of improved bait formula and more virulent strains, we hope to achieve better control of termite colonies and enable pathogens to become a useful element in the Integrated Pest Management system.

  2. Isolation and identification of Metarhizium anisopliae from Chilo ...

    African Journals Online (AJOL)

    agar culture media: potato dextrose agar medium (PDA), potato dextrose with 1% (w/v) peptone agar medium (PPDA), and oatmeal agar medium (OMA). 16 different isolates were identified as Metarhizium anisopliae (Metschnikoff) based on ...

  3. Desenvolvimento dos fungos Metarhizium anisopliae (Metschnikoff, 1879 Sorokin, 1883 E Beauveria bassiana (Balsamo Vuillemin, 1912 sobre Ctenocephalides felis felis (Bouché, 1835 Development of the fungi Metarhizium anisopliae (Metschnikoff, 1879 Sorokin, 1883 and Beauveria bassiana (Balsamo Vuillemin, 1912 on the Ctenophephalides felis felis (Bouché, 1835

    Directory of Open Access Journals (Sweden)

    Denise R. De Melo

    2007-09-01

    Full Text Available A pulga Ctenocephalides felis felis é um parasita causador dermatites alérgicas e também pode transmitir diversos agentes etiológicos aos animais domésticos e aos homens. O objetivo deste trabalho foi verificar o desenvolvimento do fungo sobre a cutícula da pulga, através da microscopia eletrônica de varredura. Os isolados fúngicos testados foram o Metarhizium anisopliae 959 e Beauveria bassiana 986, ambos na concentração 10(8 conídios/ml. Após a exposição dos isolados fúngicos no período de duas, 15, 26 e 96 horas , o material foi processado para a microscopia eletrônica de varredura. Com a obtenção das micrografias, pode-se observar que com 2 horas após exposição aos fungos, os conídios estavam aderidos por toda a cutícula, situando-se preferencialmente nas membranas intersegmentais do abdome. Com 15 horas observou-se a formação do tubo de germinação e a cabeça do apressório e após 26 horas foi possível observar as ramificações e o engrossamento das hifas sobre a cutícula das pulgas. Os resultados indicam que os fungos testados foram capazes de se desenvolver sobre a cutícula de C. f. felis.The flea Ctenocephalides felis felis is a parasite that causes allergic dermatitis and also may transmit etiologic agents to domestic animals and humans. This study investigated by scanning electron microscopy the development of entomopathogenic fungi on flea cuticle. Fleas were exposed to conidia (10(8 ml-1 of Metarhizium anisopliae (isolate 959 or Beauveria bassiana (isolate 986. Following standard protocols for electron microscopy, the specimens were prepared 2, 15, 26 and 96 h after infection. The micrography revealed that 2 h after fungus exposure, conidia attachments encompassed the entire flea cuticle, especially on abdominal intersegmental membranes. The emergence of germ tubes and appressoria formation occurred at 15 h, thickening and branching of hyphae on the flea cuticle was noted at 26 h. Therefore, both of

  4. Susceptibility of Agrilus planipennis (Coleoptera: Buprestidae) to Beauveria bassiana and Metarhizium anisopliae

    Science.gov (United States)

    Houping Lui; Leah S. Bauer

    2006-01-01

    The susceptibility of Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) to selected strains of the entomopathogenic fungi Beauveria bassiana (Balsamo) Vuillemin and Metarhizium anisopliae (Metschnikoff) Sorokin was evaluated through bioassays with direct immersion or foliar exposure under laboratory conditions. Results showed that A. planipennis adults were...

  5. Evaluación y validación de mezclas de Beauveria bassiana (Balsamo) Vuillemin y Metarhizium anisopliae (Metschnikoff) Sorokin para el control de la Broca del café en frutos infestados caídos al suelo

    OpenAIRE

    Jaramillo González , Jorge Luis

    2012-01-01

    Resumen: Beauveria bassiana y Metarhizium anisopliae son entomopatógenos usados como agentes de control biológico contra la broca del café (Hypothenemus hampei Ferrari). La exploración de la diversidad genética de las cepas ha demostrado que el uso de mezclas puede resultar en procesos de coinfección y sinergismo que incrementan la virulencia y mortalidad sobre los insectos. Esta investigación se desarrolló con el fin de evaluar y validar en campo el efecto de las mezclas de cepas de B. bass...

  6. Pathogenicity of Metarhizium anisopliae (Deuteromycetes) and permethrin to Ixodes scapularis (Acari: Ixodidae) nymphs

    Science.gov (United States)

    Hornbostel, V.L.; Zhioua, Elyes; Benjamin, Michael A.; Ginsberg, Howard S.; Ostfeld, Richard S.

    2005-01-01

    Effectiveness of the entomopathogenic fungus Metarhizium anisopliae, for controlling nymphal Ixodes scapularis, was tested in laboratory and field trials. In the laboratory, M. anisopliae (Metschnikoff) Sorokin strain ESC1 was moderately pathogenic, with an LC50 of 107 spores/ml and induced 70% mortality at 109 spores/ml. In a field study, however, 109 spores/ml M. anisopliae did not effectively control questing I. scapularis nymphs, and significant differences were not detected in pre- and post-treatment densities. For nymphs collected and returned to the laboratory for observation, mortality was low in treatment groups, ranging from 20 to 36%. To assess whether a chemical acaricide would synergistically enhance pathogenicity of the fungus, we challenged unfed nymphal I. scapularis with combinations of M. anisopliae and permethrin, a relatively safe pyrethroid acaricide, in two separate bioassays. Significant interactions between M. anisopliae and permethrin were not observed, supporting neither synergism nor antagonism.

  7. Differential pathogenicity of Metarhizium anisopliae and the control of the sugarcane root spittlebug Mahanarva fimbriolata

    Directory of Open Access Journals (Sweden)

    Patricia Vieira Tiago

    2011-06-01

    Full Text Available In order to assess the effectiveness of Metarhizium anisopliae var. anisopliae (Metschnikoff Sorokin isolates in controlling the sugarcane root spittlebug Mahanarva fimbriolata (Stal (Hemiptera: Cercopidae, nine isolates obtained from a single geographical region were studied. 'Confirmed cumulative' and 'corrected cumulative' spittlebug mortality rates were measured for each of the isolates. Based on the confirmed mortality curve, the isolates URM5946, URM5951 and URM6033 were considered to be potentially the most effective in a biological control program for M. fimbriolata.

  8. PROTEOMIC ANALYSIS OF ALLERGENS FROM METARHIZIUM ANISOPLIAE

    Science.gov (United States)

    IntroductionThe goal of this project is the identification and characterization of allergens from the fungus Metarhizium anisopliae, using mass spectrometry (MS). The US EPA, under the "Children at Risk" program, is currently addressing the problem of indoor fungal bioaer...

  9. The Effect of Water Content of Medium Containing Oryctes rhinoceros Larvae on Metarhizium anisopliae Pathogenicity

    Directory of Open Access Journals (Sweden)

    Dyah Rini Indriyanti

    2017-08-01

    Full Text Available The entomopathogenic fungus, Metarhizium anisopliae (Metschnikoff Sorokin (Ascomycota: Hypocrealeswould effectively infect the target host on the appropriate medium water content. The aim of this study was to analyze the influence of water content of medium on the effectiveness of M. anisopliae fungus infection on O. rhinoceros larvae in the laboratory. Fifty healthy third instar larvae of O. rhinoceros were  obtained from field. The M. anisopliae obtained from Estate Crop Protection Board in Salatiga. The conidia density and viability of M. anisopliae were examined before used. The medium for maintaining the larva was the sawdust that had been sterilized. A total of 50 plastic cups were prepared to place 50 larvae (1 larva/cup. Each cup was filled with 100 g medium  of sawdust plus 2 g of M. anisopliae which was then stirred until mixed, with different water content: P1 (20%, P2 (40%, P3 (60%, P4 (80% and P5 (98%. The result indicated that  the water content of the medium affected the effectiveness of M. anisopliae fungus infection on O. rhinoceros larvae. The water content influenced the duration of larval mortality at each treatment. An important finding in this study is that controlling O. rhineceros larvae  with M. anisopliae can be done by manipulating the water content of medium. The benefit of this study may be used for the recommendation of O. rhinoceros pest control using M. anisopliae  with an effective water media content.

  10. Effects of Fungicides on the Development of the Entomopathogenic Fungus Metarhizium anisopliae var. anisopliae Efecto de los Fungicidas sobre el Desarrollo del Hongo Entomopatógeno Metarhizium anisopliae var. anisopliae

    Directory of Open Access Journals (Sweden)

    Maribel Yáñez

    2010-09-01

    Full Text Available Metarhizium anisopliae (Metschnikoff Sorokin is an entomopathogenic fungus used for controlling different insect pests. It is most frequently applied to berry fruit crops, where fungicides are also used for disease control. Fungicides: azoxystrobin, benomyl, captan, chlorothalonil, fenhexamid, fludioxonil, iprodione, and metalaxyl in concentrations of 0.01, 0.1, 1.0, 10, and 100 mg L-1 were evaluated in this research study. Vegetative growth, conidia germination, and conidia germination tube length were measured on the Qu-M82, Qu-M151b, Qu-M253, Qu-M430, and Qu-M984 Metarhizium anisopliae var. anisopliae fungus strains. Those strains were selected because of their present use against different insect pest in bramble fruits. Vegetative growth was measured through the colony rate growth in agar media, and those reaching up to 50% of the check growth were considered compatible. Results indicate that the benomyl and fenhexamid fungicides were compatible with the five isolates whereas, azoxystrobin and fludioxonil were incompatible. Furthermore, benomyl and fludioxonil reduced conidia germination by 53 and 91%, and germination tube length by 18 and 37%, respectively.Metarhizium anisopliae (Metschnikoff Sorokin es un hongo entomopatógeno que se utiliza para el control de diferentes insectos, uno de sus usos más frecuentes es en frutales menores, donde también se utilizan fungicidas para el control de enfermedades. En este trabajo se evaluó el efecto de los fungicidas azoxystrobin, benomil, captan, chlorothalonil, fenhexamid, fludioxonil, iprodione y metalaxil, en concentraciones de 0,01; 0,1; 1; 10 y 100 mg L-1, sobre el crecimiento de la colonia, porcentaje de germinación de conidias y longitud de tubos germinativos de distintas cepas de M. anisopliae var. anisopliae. Las cepas utilizadas fueron Qu-M82, Qu-M151b, Qu-M253, Qu-M430 y Qu-M984, seleccionadas por su uso comercial para el control de diferentes insectos en frutales menores. El

  11. EFEITO FUNGITÓXICO DO ÓLEO DE NIM SOBRE Metarhizium anisopliae var. acridum e Metarhizium anisopliae var. anisopliae

    Directory of Open Access Journals (Sweden)

    Álison Bruno da Silva Santos

    2009-01-01

    Full Text Available Plague control is based almost exclusively on application of chemical substances, however these products are toxic to men and animals and cause odd effects on environment quality. In Plague Integrated Management (PIM, the use of selected insecticides and entomopathogenic fungi should be considered as one viable strategy for plague control in agriculture. This work aimed to evaluate, in laboratory, the compatibility of the entomopathogenic fungi Metarhizium anisopliae var. acridum and Metarhizium anisopliae var. anisopliae with the oil of Nim. The addition of the product was made to the potato-dextrose-agar medium still liquid (±45°C, in a way that the final concentration obeyed 50% of the producer's recommendation. After fungi inoculation, the dishes were incubated in a cimatized room at 28°C, photophase of 12 hours and relative humidity of 75±5% for 12 day period. The number of conidia per colonie was counted with a Neubauer chamber. Statistic delineament was entirely in random, with two treatments (PDA with insecticide, and a control group (PDA without insecticide, and 9 repetitions for each treatment. The results showed that the insecticide inhibited conidial production in Metarhizium anisopliae var. anisopliae strains when compared to the control group. The diameter of Metarhizium anisopliae var. acridum colonies suffered significative reduction in its size, compared to control. The tested insecticide, in the concentration and formulation used, presented compatibility with the tested strains.

  12. Isolation and identification of Metarhizium anisopliae from Chilo ...

    African Journals Online (AJOL)

    *

    2012-04-12

    Apr 12, 2012 ... 1Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences (Key Laboratory of ... Keywords: Metarhizium anisopliae, isolation, identification, Chilo venosatus, culture medium, biological control. .... with a Leica microscope and average values were compared for all.

  13. Adulticidal effect of fungal pathogen, Metarhizium anisopliae on ...

    African Journals Online (AJOL)

    The entomopathogenic fungus, Metarhizium anisopliae is being considered as a biocontrol agent for the adult mosquito of Anopheles stephensi (Malarial vector). In the present experiment was carried out in the laboratory of 30-50 male and female adult mosquitoes were exposed to M. anisopliae (exposed to 1 x 106 ...

  14. Pathogenicity of local Metarhizium anisopliae var. acridum strains ...

    African Journals Online (AJOL)

    Locusts and grasshoppers are the most important economical threat in the sahelian agricultural system. Principal control strategies of these pests are synthetic chemicals which are, however, harmful to the environment and human health. Metarhizium anisopliae based biopesticide Green Muscle IMI330189 has been ...

  15. Characterization of Metarhizium anisopliae using amplifed ...

    African Journals Online (AJOL)

    edoja

    Available online at http://www.academicjournals.org/AJB ... Molecular methods have revolutionized systematic entomology in the genus Metarhizium. ... Currently, there are three genera Metarhizium and nine varieties. This first genus is M.

  16. BEHAVIOR AND CYTOLOGICAL ASPECTS OF Metarhizium anisopliae and Metarhizium flavoviride AFTER PASSAGE IN Chrysomya albiceps

    Directory of Open Access Journals (Sweden)

    Francisco Marlon Carneiro Feijó

    2009-01-01

    Full Text Available Metarhizium anisopliae var. anisopliae and Metarhizium flavoviride var. flavoviride are entomopathogenic fungi with proved action against several species of insects. In this work, the behavior and cytology of the M. anisopliae var. anisopliae (PL43 and M. flavoviride var. flavoviride (CG291 were evaluated after the passage in eggs, larvae and adults Chrysomya albiceps, an important causer of secondary myiais. The experiment was carried out under an acclimatized environment's humidity and temperature of 60 ± 10% and 28 ± 1oC. The most expressive results of the biological parameters studied (percentage of germination, quantity of conidia, quantity and diameter of colonies were reached from re-isolated fungi of larvae. No significant differences were observed in the cytological aspects of the life cycle of the fungi post-passage in eggs, larvae and adults. These results suggest the possibility of the use of the fungi in the control of C. albiceps fly.

  17. Cecropins from Plutella xylostella and Their Interaction with Metarhizium anisopliae.

    Directory of Open Access Journals (Sweden)

    Lina Ouyang

    Full Text Available Cecropins are the most potent induced peptides to resist invading microorganisms. In the present study, two full length cDNA encoding cecropin2 (Px-cec2 and cecropin3 (Px-cec3 were obtained from P. xylostella by integrated analysis of genome and transcriptome data. qRT-PCR analysis revealed the high levels of transcripts of Px-cecs (Px-cec1, Px-cec2 and Px-cec3 in epidermis, fat body and hemocytes after 24, 30 and 36 h induction of Metarhizium anisopliae, respectively. Silencing of Spätzle and Dorsal separately caused the low expression of cecropins in the fat body, epidermis and hemocytes, and made the P.xylostella larvae more susceptible to M. anisopliae. Antimicrobial assays demonstrated that the purified recombinant cecropins, i.e., Px-cec1, Px-cec2 and Px-cec3, exerted a broad spectrum of antimicrobial activity against fungi, as well as Gram-positive and Gram-negative bacteria. Especially, Px-cecs showed higher activity against M. anisopliae than another selected fungi isolates. Scanning electron microscopy (SEM and transmission electron microscopy (TEM revealed that cecropins exerted the vital morphological alterations to the spores of M. anisopliae. Based on our results, cecropins played an imperative role in resisting infection of M. anisopliae, which will provide the foundation of biological control of insect pests by using cecorpins as a target in the future.

  18. METARHIZIUM ANISOPLIAE DAN ANDROGRAPHIS PANICULATA TERHADAP SERANGGA BUKAN HAMA SASARAN

    Directory of Open Access Journals (Sweden)

    Dini Yuliani

    2016-04-01

    Full Text Available The objective of this study was to determine the effect of Metarhizium anisopliae and Andrographis paniculata to the natural enemies of Nephotettix virescens and non-target insect pests. This research was conducted in tungro endemic areas in Subang District, West Java in the wet season 2013/2014. The method of research used a split plot design with four replications. The main plot was IR66, Inpari 9, and Ciherang varieties. Subplot was the application of M. anisopliae, A. paniculata, and control. Observations were carried out five times started at nursery (2 weeks after seedling, 14, 28, 42, and 56 days after planting using insect nets, double swing 10 times on each plot observations. The results show M. anisopliae and A. paniculata not adversely affect on non-target insect pests such as Chironomid and natural enemies of N. virescens namely Lycosa pseudoannulata, Cyrtorhinus lividipennis, Sepedon sp., damselfly, Tipulidae sp., Telenomus sp., dragonfly, and Tetrastichus sp.. Efficacy of M. anisopliae and A. paniculata as one of the control strategies that are environmentally friendly and proved not harmful to non-target insect pests.

  19. Infection of silkworm larvae by the entomopathogenic fungus Metarhizium anisopliae

    Directory of Open Access Journals (Sweden)

    Lucineia de Fátima Chasko Ribeiro

    Full Text Available ABSTRACT: The isolate E9 of Metarhizium anisopliae was used in commercial hybrids of Bombyx mori larvae to evaluate its biological effect. Symptomatological analyses showed typical signs of fungal infection. Histopathology revealed the presence of large numbers of hemocytes in the hemocoel, and on the sixth dpi the bodies of the insects appeared to be colonised by the fungus. The isolate E9 is pathogenic to larvae B. mori and; therefore, death of the insects was caused by the colonization of fungus in the epidermal and mesodermal tissues.

  20. Altered immunity in crowded locust reduced fungal (Metarhizium anisopliae pathogenesis.

    Directory of Open Access Journals (Sweden)

    Yundan Wang

    2013-01-01

    Full Text Available The stress of living conditions, similar to infections, alters animal immunity. High population density is empirically considered to induce prophylactic immunity to reduce the infection risk, which was challenged by a model of low connectivity between infectious and susceptible individuals in crowded animals. The migratory locust, which exhibits polyphenism through gregarious and solitary phases in response to population density and displays different resistance to fungal biopesticide (Metarhizium anisopliae, was used to observe the prophylactic immunity of crowded animals. We applied an RNA-sequencing assay to investigate differential expression in fat body samples of gregarious and solitary locusts before and after infection. Solitary locusts devoted at least twice the number of genes for combating M. anisopliae infection than gregarious locusts. The transcription of immune molecules such as pattern recognition proteins, protease inhibitors, and anti-oxidation proteins, was increased in prophylactic immunity of gregarious locusts. The differentially expressed transcripts reducing gregarious locust susceptibility to M. anisopliae were confirmed at the transcriptional and translational level. Further investigation revealed that locust GNBP3 was susceptible to proteolysis while GNBP1, induced by M. anisopliae infection, resisted proteolysis. Silencing of gnbp3 by RNAi significantly shortened the life span of gregarious locusts but not solitary locusts. By contrast, gnbp1 silencing did not affect the life span of both gregarious and solitary locusts after M. anisopliae infection. Thus, the GNBP3-dependent immune responses were involved in the phenotypic resistance of gregarious locusts to fungal infection, but were redundant in solitary locusts. Our results indicated that gregarious locusts prophylactically activated upstream modulators of immune cascades rather than downstream effectors, preferring to quarantine rather than eliminate pathogens to

  1. Development of Metarhizium anisopliae and Beauveria bassiana formulations for control of malaria mosquito larvae

    NARCIS (Netherlands)

    Bukhari, S.T.; Takken, W.; Koenraadt, C.J.M.

    2011-01-01

    Background The entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana have demonstrated effectiveness against anopheline larvae in the laboratory. However, utilising these fungi for the control of anopheline larvae under field conditions, relies on development of effective means of

  2. Differential allergy responses to Metarhizium anisopliae fungal component extracts in BALB/c mice

    Science.gov (United States)

    Intratracheal aspiration (IA) exposure to Metarhizium anisopliae crude antigen (MACA), which is composed of equal protein amounts of mycelium (MYC), conidia (CON) and inducible proteases/chitinases (IND) extracts/filtrates, has resulted in responses characteristic of human allerg...

  3. Pathogenicity of entomopathogenic fungus Metarhizium anisopliae (Deuteromycetes) to Ixodes scapularis (Acari: Ixodidae)

    Science.gov (United States)

    Zhioua, E.; Browning, M.; Johnson, P.W.; Ginsberg, H.S.; LeBrun, R.A.

    1997-01-01

    The entomopathogenic fungus Metarhizium anisopliae is highly pathogenic to the black-legged tick, Ixodes scapularis. Spore concentrations of 108/ml for engorged larvae and 107/ml for engorged females resulted in 100% tick mortality, 2 wk post-infection. The LC50 value for engorged larvae (concentration to kill 50% of ticks) was 107 spores/ml. Metarhizium anisopliae shows considerable potential as a microbial control agent for the management of Ixodes scapularis.

  4. Laboratory and field evaluation of Metarhizium anisopliae var. anisopliae for controlling subterranean termites

    International Nuclear Information System (INIS)

    Hussain, A.; Ahmed, S.; Shahid, M.

    2011-01-01

    The efficacy of the Metarhizium anisopliae strain ARSEF 6911 was determined in the laboratory and field against two sugarcane pests, Microtermes obesi Holmgren and Odontotermes obesus Rambur (Termitidae: Isoptera). The susceptibility of both termite species to different conidial suspensions (1 x 10 10 , 1 x 10 8 , 1 x 10 6 and 1 x 10 4 conidia/ml) was determined in laboratory. All conidial suspensions were able to induce mortality. Termite mortality caused by the fungal suspensions was dose dependent. There were no significant differences in the LT 50 values between species. Field evaluation of M. anisopliae alone or in combination with diesel oil and thyamethoxam was carried out in two growing seasons (autumn 2005 and spring 2006) at two sites located in Punjab, Pakistan. Dipping the sugarcane setts in these suspensions was tried to determine their effects on germination and percentage of bud damage to sugarcane setts. All treatments significantly reduced termite infestation compared to the untreated control. The combined treatment of M. anisopliae and diesel oil significantly reduced insect damage by attaining higher germination > 55% and lower bud damage < 5.50% at both sites in both seasons. The results suggest that the application of M. anisopliae and diesel oil in combination might be a useful treatment option for the management of termites in sugarcane. (author)

  5. Laboratory and field evaluation of Metarhizium anisopliae var. anisopliae for controlling subterranean termites

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, A. [South China Agricultural University, Guangzhou (China). College of Natural Resources and Environment; Ahmed, S. [South China Agricultural University, Guangzhou (China). Dept. of Agricultural Entomology; Shahid, M., E-mail: solvia_aah@yahoo.co [University of Agriculture, Faisalabad (Pakistan). Dept. of Chemistry and Biochemistry

    2011-03-15

    The efficacy of the Metarhizium anisopliae strain ARSEF 6911 was determined in the laboratory and field against two sugarcane pests, Microtermes obesi Holmgren and Odontotermes obesus Rambur (Termitidae: Isoptera). The susceptibility of both termite species to different conidial suspensions (1 x 10{sup 10}, 1 x 10{sup 8}, 1 x 10{sup 6} and 1 x 10{sup 4} conidia/ml) was determined in laboratory. All conidial suspensions were able to induce mortality. Termite mortality caused by the fungal suspensions was dose dependent. There were no significant differences in the LT{sub 50} values between species. Field evaluation of M. anisopliae alone or in combination with diesel oil and thyamethoxam was carried out in two growing seasons (autumn 2005 and spring 2006) at two sites located in Punjab, Pakistan. Dipping the sugarcane setts in these suspensions was tried to determine their effects on germination and percentage of bud damage to sugarcane setts. All treatments significantly reduced termite infestation compared to the untreated control. The combined treatment of M. anisopliae and diesel oil significantly reduced insect damage by attaining higher germination > 55% and lower bud damage < 5.50% at both sites in both seasons. The results suggest that the application of M. anisopliae and diesel oil in combination might be a useful treatment option for the management of termites in sugarcane. (author)

  6. Laboratory and field evaluation of Metarhizium anisopliae var. anisopliae for controlling subterranean termites

    OpenAIRE

    Hussain, A; Ahmed, S; Shahid, M

    2011-01-01

    The efficacy of the Metarhizium anisopliae strain ARSEF 6911 was determined in the laboratory and field against two sugarcane pests, Microtermes obesi Holmgren and Odontotermes obesus Rambur (Termitidae: Isoptera). The susceptibility of both termite species to different conidial suspensions (1 × 10(10), 1 × 10(8), 1 × 10(6) and 1 × 10(4) conidia/ml) was determined in laboratory. All conidial suspensions were able to induce mortality. Termite mortality caused by the fungal suspensions was dose...

  7. Cuticle Fatty Acid Composition and Differential Susceptibility of Three Species of Cockroaches to the Entomopathogenic Fungi Metarhizium anisopliae (Ascomycota, Hypocreales).

    Science.gov (United States)

    Gutierrez, Alejandra C; Gołębiowski, Marek; Pennisi, Mariana; Peterson, Graciela; García, Juan J; Manfrino, Romina G; López Lastra, Claudia C

    2015-04-01

    Differences in free fatty acids (FFAs) chemical composition of insects may be responsible for susceptibility or resistance to fungal infection. Determination of FFAs found in cuticular lipids can effectively contribute to the knowledge concerning insect defense mechanisms. In this study, we have evaluated the susceptibility of three species of cockroaches to the entomopathogenic fungi Metarhizium anisopliae (Metschnikoff) Sorokin by topical application. Mortality due to M. anisopliae was highly significant on adults and nymphs of Blattella germanica L. (Blattodea: Blattellidae). However, mortality was faster in adults than in nymphs. Adults of Blatta orientalis L. (Blattodea: Blattidae) were not susceptible to the fungus, and nymphs of Blaptica dubia Serville (Blattodea: Blaberidae) were more susceptible to the fungus than adults. The composition of cuticular FFAs in the three species of cockroaches was also studied. The analysis indicated that all of the fatty acids were mostly straight-chain, long-chain, saturated or unsaturated. Cuticular lipids of three species of cockroaches contained 19 FFAs, ranging from C14:0 to C24:0. The predominant fatty acids found in the three studied species of cockroaches were oleic, linoleic, palmitic, and stearic acid. Only in adults of Bl. orientalis, myristoleic acid, γ-linolenic acid, arachidic acid, dihomolinoleic acid, and behenic acid were identified. Lignoceric acid was detected only in nymphs of Bl. orientalis. Heneicosylic acid and docosahexaenoic acid were identified in adults of Ba. dubia. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Parameiosis in the entomopathogenic fungus Metarhizium anisopliae (METSH.) Sorokin

    International Nuclear Information System (INIS)

    Bagagli, E.; Valadares, M.C.C.; Azevedo, J.L.

    1991-01-01

    Variations in the parasexual cycle, especially in relation to diploid instability, have been described in several fungal species. The process has been designated parameiosis; it is characterized by the emergence, from heterokaryons, of haploid and diploid recombinants, as well as the typical diploids normally recovered in a parasexual cycle. In the present work the occurrence of a similar process in Metarhizium anisopliae has been investigated. Conidia from heterokaryons formed between well-marked mutant strains, when plated onto appropriate selective media, resulted in the recovery of at least three main groups of colonies. The first group consisted of very unstable diploids or hyperhaploids; these, on plating of their conidia, produced several types of recombinant haploids. The second group consisted of already stable haploid recombinants formed by the breakdown of diploid heterozygous nuclei before conidial formation; and a third group, heterokaryotic colonies, which segregate only parental types. Parameiosis has been found in several Deuteromycetes and may play an important role in increasing genetic variability in these fungi. (author)

  9. Susceptibility of Seven Termite Species (Isoptera) to the Entomopathogenic Fungus Metarhizium anisopliae

    OpenAIRE

    Chouvenc , Thomas; Su , Nan-Yao; Robert , Alain

    2009-01-01

    Seven termite species (Isoptera) from five families were tested for disease susceptibility against the entomopathogenic fungus Metarhizium anisopliae using a standard protocol: Mastotermes darwiniensis (Mastotermitidae), Hodotermopsis sjoestedti (Termopsidae), Hodotermes mossambicus (Hodotermitidae), Kalotermes flavicollis (Kalotermitidae), Reticulitermes flavipes and Prorhinotermes canalifrons (Rhinotermitidae), and Nasutitermes voeltzkowi (Termitidae). Our results showed a large diversity i...

  10. Infection of adult Aedes aegypti and Ae. albopictus mosquitoes with the entomopathogenic fungus Metarhizium anisopliae

    NARCIS (Netherlands)

    Scholte, E.J.; Takken, W.; Knols, B.G.J.

    2007-01-01

    This study describes a laboratory investigation on the use of the insect-pathogenic fungus Metarhizium anisopliae against adult Aedes aegypti and Ae. albopictus mosquitoes. At a dosage of 1.6 × 1010 conidia/m2, applied on material that served as a mosquito resting site, an average of 87.1 ± 2.65% of

  11. Survival of anopheline eggs and their susceptibility to infection with Metarhizium anisopliae and Beauveria bassiana under laboratory conditions

    NARCIS (Netherlands)

    Luz, C.; Mnyone, L.L.; Russell, T.L.

    2011-01-01

    The viability of Anopheles gambiae sensu stricto and Anopheles arabiensis (Diptera: Culicidae) eggs over time and the ovicidal activity of Beauveria bassiana (Ascomycota: Cordycipitaceae) and Metarhizium anisopliae (Ascomycota: Clavicipitaceae) were investigated. Eggs were incubated in soil or leaf

  12. Genome Sequencing and Comparative Transcriptomics of the Model Entomopathogenic Fungi Metarhizium anisopliae and M. acridum

    Science.gov (United States)

    Shang, Yanfang; Duan, Zhibing; Hu, Xiao; Xie, Xue-Qin; Zhou, Gang; Peng, Guoxiong; Luo, Zhibing; Huang, Wei; Wang, Bing; Fang, Weiguo; Wang, Sibao; Zhong, Yi; Ma, Li-Jun; St. Leger, Raymond J.; Zhao, Guo-Ping; Pei, Yan; Feng, Ming-Guang; Xia, Yuxian; Wang, Chengshu

    2011-01-01

    Metarhizium spp. are being used as environmentally friendly alternatives to chemical insecticides, as model systems for studying insect-fungus interactions, and as a resource of genes for biotechnology. We present a comparative analysis of the genome sequences of the broad-spectrum insect pathogen Metarhizium anisopliae and the acridid-specific M. acridum. Whole-genome analyses indicate that the genome structures of these two species are highly syntenic and suggest that the genus Metarhizium evolved from plant endophytes or pathogens. Both M. anisopliae and M. acridum have a strikingly larger proportion of genes encoding secreted proteins than other fungi, while ∼30% of these have no functionally characterized homologs, suggesting hitherto unsuspected interactions between fungal pathogens and insects. The analysis of transposase genes provided evidence of repeat-induced point mutations occurring in M. acridum but not in M. anisopliae. With the help of pathogen-host interaction gene database, ∼16% of Metarhizium genes were identified that are similar to experimentally verified genes involved in pathogenicity in other fungi, particularly plant pathogens. However, relative to M. acridum, M. anisopliae has evolved with many expanded gene families of proteases, chitinases, cytochrome P450s, polyketide synthases, and nonribosomal peptide synthetases for cuticle-degradation, detoxification, and toxin biosynthesis that may facilitate its ability to adapt to heterogenous environments. Transcriptional analysis of both fungi during early infection processes provided further insights into the genes and pathways involved in infectivity and specificity. Of particular note, M. acridum transcribed distinct G-protein coupled receptors on cuticles from locusts (the natural hosts) and cockroaches, whereas M. anisopliae transcribed the same receptor on both hosts. This study will facilitate the identification of virulence genes and the development of improved biocontrol strains

  13. Sporulation of Metarhizium anisopliae var. Acridum and Beauveria bassiana on Rhammatocerus schistocercoides under humid and dry conditions

    Directory of Open Access Journals (Sweden)

    Magalhães Bonifácio Peixoto

    2000-01-01

    Full Text Available The sporulation of the fungi Metarhizium anisopliae var. acridum and Beauveria bassiana in cadavers of the grasshopper Rhammatocerus schistocercoides was studied in dry and humid environments. Both fungi were equally virulent against R. schistocercoides. However, internally, M. anisopliae produced more conidia than B. bassiana at 53% and 75% relative humidity. Externally, there was no sporulation at 53% and 75% RH, and M. anisopliae produced more conidia than B. bassiana at 100% RH.

  14. PERSISTÊNCIA DE Metarhizium anisopliae spp NO SOLO SOB DIFERENTES CONDIÇÕES DE TEMPERATURA E UMIDADE

    OpenAIRE

    Diana Mendonça Silva Guerra; Ana Paula Duarte Pires; Elza Áurea de Luna Alves Lima

    2009-01-01

    The fungi entomopathogenic are actually objects of works according to their importance in the ecological system. This work analysed the persistence of Metarhizium anisopliae var. anisopliae and M. anisopliae var. acridum, under different conditions of temperature and humidity, in the period of September to December. After inoculation on soil the fungi were submitted to four different treatments: environment temperature and 25% of humidity; environment temperature and 75% of humidity; 28º C an...

  15. Biological insect control using Metarhizium anisopliae: morphological, molecular, and ecological aspects

    Directory of Open Access Journals (Sweden)

    Patricia Vieira Tiago

    2014-04-01

    Full Text Available Microbial control of insects is based on the rational use of pathogens to maintain environmentally balanced pest population levels, and Metarhizium anisopliae has been the most studied and most utilized fungal species for that purpose. The natural genetic variability of entomopathogenic fungi is considered one of the principal advantages of microbial insect control. The inter- and intraspecific variability and the genetic diversity and population structures of Metarhizium and other entomopathogenic fungi have been examined using ITS-RFLP, ISSR, and ISSP molecular markers. The persistence of M. anisopliae in the soil and its possible effects on the structures of resident microbial communities must be considered when selecting isolates for biological insect control.

  16. Use of Beauveria bassiana and Metarhizium anisopliae for fruit fly control: a novel approach

    Energy Technology Data Exchange (ETDEWEB)

    Toledo, Jorge; Liedo, Pablo, E-mail: jtoledo@ecosur.m [El Colegio de la Frontera Sur, Chiapas (Mexico). Dept. de Entomologia Tropical; Flores, Salvador; Montoya, Pablo [Secretaria de Agricultura, Ganaderia, Desarrollo Rural, Pesca y Alimentacion (SAGARPA), Chiapas (Mexico). Subdireccion de Desarrollo de Metodos; Campos, Sergio E.; Villasenor, Antonio [Secretaria de Agricultura, Ganaderia, Desarrollo Rural, Pesca y Alimentacion (SAGARPA), Chiapas (Mexico). Programa Moscamed. Direccion de Operaciones de Campo

    2006-07-01

    The potential of two species of entomopathogenic fungi, Beauveria bassiana (Bals.) and Metarhizium anisopliae (Met.) Sorokin, as practical fruit fly biocontrol agents is studied. These natural inhabitants of soil are found infecting a wide range of insect species that spend at least one stage of their life cycle in the soil. Sterile flies are used as vectors of the infection. A summary of results from different laboratory and field cage experiments is presented. (MAC)

  17. Use of Beauveria bassiana and Metarhizium anisopliae for fruit fly control: a novel approach

    International Nuclear Information System (INIS)

    Toledo, Jorge; Liedo, Pablo; Flores, Salvador; Montoya, Pablo; Campos, Sergio E.; Villasenor, Antonio

    2006-01-01

    The potential of two species of entomopathogenic fungi, Beauveria bassiana (Bals.) and Metarhizium anisopliae (Met.) Sorokin, as practical fruit fly biocontrol agents is studied. These natural inhabitants of soil are found infecting a wide range of insect species that spend at least one stage of their life cycle in the soil. Sterile flies are used as vectors of the infection. A summary of results from different laboratory and field cage experiments is presented. (MAC)

  18. effect of dry conidia formulations of metarhizium anisopliae

    African Journals Online (AJOL)

    Preferred Customer

    In preliminary studies,. S. zeamais adults sprayed with M. anisopliae ... Initial cultures were stored at 4°C and sub- culturing was made for ... Significant differences between treatment means were compared at .... conidia attachment. Journal of ...

  19. [Selectivity of Beauveria bassiana and Metarhizium anisopliae to Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae)].

    Science.gov (United States)

    Potrich, Michele; Alves, Luis F A; Haas, Jucelaine; Da Silva, Everton R L; Daros, Alaxsandra; Pietrowski, Vanda; Neves, Pedro M O J

    2009-01-01

    Trichogramma pretiosum Riley and the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae are efficient biological control agents and are thought to be used jointly. In here, we investigated if these entomopathogens could have any side-effects on T. pretiosum. Therefore, 1 x 8 cards containing sterilized eggs of Anagasta kuehniella (Zeller) that were sprayed with 0.2 ml of B. bassiana or M. anisopliae (1.0 x 10(9) conidia/ml) were offered to a T. pretiosum female for 24h (30 cards/fungus = 30 replicates). Afterwards, females were isolated in glass tubes. The control group was sprayed with sterile distillated water + Tween 80 (0.01%). In addition, 60 cards with sterilized eggs of A. kuehniella were submitted to parasitism by females of T. pretiosum for 24h. Of these cards, 30 were sprayed with B. bassiana or M. anisopliae and 30 with distillated water + Tween 80 (0.01%), and observed daily until parasitoid emergence. Metarhizium anisopliae decreased parasitoid emergence and caused confirmed mortality. Therefore, field and semi-field experiments should be conducted for a final assessment of the side-effects of these entomopathogens on Trichogramma as a ways to develop a control strategy in which both can be used.

  20. Efeito de Metarhizium anisopliae (Metsch. Sorok. e Beauveria bassiana (Bals. Vuill. sobre adultos de Oomyzus sokolowskii (Kurdjumov (Hymenoptera: Eulophidae = Effect of Metarhizium anisopliae (Metsch. Sorok. and Beauveria bassiana (Bals. Vuill. on adults of Oomyzus sokolowskii (Kurdjumov (Hymenoptera: Eulophidae

    Directory of Open Access Journals (Sweden)

    Hugo José Gonçalves dos Santos Júnior

    2006-04-01

    Full Text Available Avaliou-se a seletividade dos fungos Metarhizium anisopliae (Metsch. Sorok. e Beauveria bassiana (Bals. Vuill. sobre adultos do parasitóide Oomyzus sokolowskii (Kurdjumov. Foram utilizados os isolados Esalq 447 de B. bassiana e E9 de M. anisopliae, na concentração de 107 conídios mL-1. Os resultados mostraram que B. bassiana e M. anisopliae não reduziram a longevidade média do parasitóide. B. bassiana proporcionou porcentagem de mortalidade total de 26% e porcentagem de mortalidade confirmada de 21%, já M.anisopliae causou mortalidade total de 15% e confirmada de 9%, demonstrando que M. anisopliae foi menos agressivo. Portanto, em função dos resultados apresentados, a implementação no manejo integrado de P. xylostella com M. anisopliae, B. bassiana e O.sokolowskii pode ser uma excelente alternativa para otimizar o sistema produtivo das brássicas.The selectivity of the fungi Metarhizium anisopliae (Metsch. Sorok. and Beauveria bassiana (Bals. Vuill. to adults of the parasitoid Oomyzus sokolowskii (Kurdjumov was evaluated. The isolates E9 of M. anisopliae and Esalq 447 of B. bassiana were used at the concentration of 107 conidia mL-1. The results showed that B. bassiana and M. anisopliae reduced significantly the mean longevity of the adults about 6.7 and 4.7 days respectively. B. bassiana induced 26% and 21% of total and confirmed mortalities, respectively, while M. anisopliae caused 15% and 9% of total and confirmedmortalities, showing that the isolate of M. anisopliae was less aggressive. Therefore, in function of the presented results the combination of M. anisopliae, B. bassiana, and O. sokolowskii in the integrated management of P. xylostella may be an excellent alternative for optimizing the cabbage growing system.

  1. Evaluation of alternative rice planthopper control by the combined action of oil-formulated Metarhizium anisopliae and low-rate buprofezin.

    Science.gov (United States)

    Jin, Shao-Feng; Feng, Ming-Guang; Ying, Sheng-Hua; Mu, Wen-Jing; Chen, Jue-Qi

    2011-01-01

    High resistance of brown planthopper (BPH) Nilaparvata lugens Stål to common insecticides is a challenge for control of the pest. An alternative control strategy based on the combined application of fungal and chemical agents has been evaluated. Three gradient spore concentrations of oil-formulated Metarhizium anisopliae (Metschnikoff) Sorokin (Ma456) were sprayed onto third-instar nymphs in five bioassays comprising the low buprofezin rates of 0, 10, 20, 30 and 40 µg mL(-1) respectively. Fungal LC(50) after 1 week at 25 °C and 14:10 h light:dark photoperiod decreased from 386 conidia mm(-2) in the buprofezin-free bioassay to 40 at the highest chemical rate. Buprofezin (LC(50): 1647, 486 and 233 µg mL(-1) on days 2 to 4) had no significant effect on the fungal outgrowths of mycosis-killed cadavers at the low application rates. The fungal infection was found to cause 81% reduction in reproductive potential of BPH adults. In two 40 day field trials, significant planthopper (mainly BPH) control (54-60%) was achieved by biweekly sprays of two fungal candidates (Ma456 and Ma576) at 1.5 × 10(13) conidia ha(-1) and elevated to 80-83% by incorporating 30.8 g buprofezin ha(-1) into the fungal sprays. The combined application of the fungal and chemical agents is a promising alternative strategy for BPH control. Copyright © 2010 Society of Chemical Industry.

  2. Different strategies to kill the host presented by Metarhizium anisopliae and Beauveria bassiana.

    Science.gov (United States)

    Rustiguel, Cynthia Barbosa; Fernández-Bravo, María; Guimarães, Luis Henrique Souza; Quesada-Moraga, Enrique

    2018-03-01

    Studies conducted over the last decades have shown the potential of entomopathogenic fungi for the biocontrol of some insect pests. Entomopathogenic fungi infect their host through the cuticle, so they do not need to be ingested to be effective. These fungi also secrete secondary metabolites and proteins that are toxic to insect pests. In this context, we analyzed the pathogenicity of Metarhizium anisopliae (Metschn.) strains IBCB 384 and IBCB 425 and Beauveria bassiana (Bals.-Criv.) Vuill. strains E 1764 and E 3158 against Galleria mellonella (Linn.) larvae, during pre-invasion and post-invasion phases. The results showed M. anisopliae, especially strain IBCB 384, was most virulent in the pre-invasion phase against G. mellonella, whereas B. bassiana, especially strain E 1764, was most virulent in the post-invasion phase. During in vivo development and in the production of toxic serum, B. bassiana E 3158 was the most virulent. Different fungal growth (or toxin) strategies were observed for studied strains. Metarhizium anisopliae IBCB 425 prioritizes the growth strategy, whereas strain IBCB 384 and B. bassiana strains E 1764 and E 3158 have a toxic strategy. All strains have pathogenicity against G. mellonella, indicating their possible use for biocontrol.

  3. Pengujian Toksisitas Akut Oral Dan Dermal pada Biolarvasida Metarhizium anisopliae terhadap Tikus Putih Spraque Dawley

    Directory of Open Access Journals (Sweden)

    Deni Zulfiana

    2016-03-01

    Full Text Available Acute oral and dermal toxicity test against white rats was conducted to determine the toxicity and side effects of bio-larvacide (Metarhizium anisopliae crude extract on humans. In the oral test used a maximum dose 5000 mg/kg and dermal testing used a maximum dose of 2000 mg/kg. Dose treatment and control tested to 5 Spraque Dawley male rats. The results showed that oral treatment with a dose of 5000 mg/kg did not cause mortality and did not cause changes in anatomic pathology of viceral organs. In the dermal treatment with a dose of 2000 mg/kg did not cause mortality and did not cause changes in anatomic pathology of viceral organs. Based on these results LD50 acute oral M. anisopliae biolarvacide above 5000 mg/kg and the acute dermal is above 2000 mg/kg. It was therefore concluded that the formulation of Metarhizium anisopliae biolarvasida classified as not hazardous when used in accordance with the recommendation of the class I (WHO, 2003.

  4. Keragaman Genetik Metarhizium anisopliae dan Virulensinya pada Larva Kumbang Badak (Oryctes rhinoceros

    Directory of Open Access Journals (Sweden)

    Aisyah Surya Bintang

    2015-07-01

    Full Text Available Rhinoceros beetle (Oryctes rhinoceros is one of the important pests of coconut tree. One of eco-friendly control applied for this pest is by using entomopathogenic fungiMetarhizium anisopliae. There is not much information about the variability and virulence of M. anisopliae toward O. rhinoceros. M. anisopliae isolates obtained from Biological Control Laboratory, Faculty of Agriculture, Universitas Gadjah Mada were cultured on PDA medium.M. anisopliae isolates was isolated from O. rhinoceros larvae (MaOr, Lepidiota stigma larvae (MaLs, Brontispa longissima beetle (MaBl.O. rhinoceros beetles were obtained from Kulon Progo, DIY. This study used molecular test, and virulence test toward 3rd stadium of O. rhinoceros larvae by using dipping method. Molecular test by sequence and phylogenetic analysis, showed that MaOr was located at different group (out group with MaLs and MaBr. On the density 107 conidium/ml MaOr and MaLs were more virulent than MaBl towards 3rd stadium of O. rhinoceros larvae. INTISARI Kumbang badak (Oryctes rhinoceros merupakan salah satu hama penting pada tanaman kelapa. Salah satu upaya pengendalian yang ramah lingkungan adalah dengan menggunakan jamur entomopatogen, yakni Metarhizium anisopliae. Belum banyak diketahui mengenai keragaman dan juga virulensi dari M. anisopliae terhadap O. rhinoceros. Tujuan dari penelitian ini adalah untuk mengetahui keragaman genetik M. anisopliae dan virulensinya pada larva kumbang badak. Isolat yang digunakan berasal dari Laboratorium Pengendalian Hayati, Fakultas Pertanian, Universitas Gadjah Mada dalam bentuk kultur murni pada medium PDA. Isolat yang gunakan diisolasi dari larvaOryctes rhinoceros (MaOr, larva Lepidiota stigma (MaLs, dan kumbang Brontispa longissima (MaBl. Serangga yang diuji berasal dari daerah Kulon Progo, DIY. Pengujian secara molekuler dengan analisis sekuensing dan filogenetik, menunjukkan bahwa isolat MaOr terletak pada grup yang berbeda dengan MaLs dan Ma

  5. Laboratory evaluation of Beauveria bassiana and Metarhizium anisopliae in the control of Haemaphysalis qinghaiensis in China.

    Science.gov (United States)

    Ren, Qiaoyun; Chen, Ze; Luo, Jin; Liu, Guangyuan; Guan, Guiquan; Liu, Zhijie; Liu, Aihong; Li, Youquan; Niu, Qingli; Liu, Junlong; Yang, Jifei; Han, Xueqing; Yin, Hong; Luo, Jianxun

    2016-06-01

    Haemaphysalis qinghaiensis, a prevalent tick species in China, is an ectoparasite that preferentially infests small ruminants and can transmit Theileria sp. and Babesia sp. In this study, we evaluated the pathogenicity of individual and mixed infections of the fungi Beauveria bassiana and Metarhizium anisopliae to H. qinghaiensis nymphs. The estimated LC50 for ticks immersed in solutions of B. bassiana, M. anisopliae and a mixture thereof were: 5.88056 × 10(4), 2.65 × 10(4), and 2.85 × 10(4) conidia mL(-1) respectively, and the nymphal mortality ranged from 52 to 100 %. Thus, these results suggest a potential approach for the biocontrol of H. qinghaiensis.

  6. Efficacy of Metarhizium anisopliae isolate MAX-2 from Shangri-la, China under desiccation stress

    Science.gov (United States)

    2014-01-01

    Background Metarhizium anisopliae, a soil-borne entomopathogen found worldwide, is an interesting fungus for biological control. However, its efficacy in the fields is significantly affected by environmental conditions, particularly moisture. To overcome the weakness of Metarhizium and determine its isolates with antistress capacity, the efficacies of four M. anisopliae isolates, which were collected from arid regions of Yunnan Province in China during the dry season, were determined at different moisture levels, and the efficacy of the isolate MAX-2 from Shangri-la under desiccation stress was evaluated at low moisture level. Results M. anisopliae isolates MAX-2, MAC-6, MAL-1, and MAQ-28 showed gradient descent efficacies against sterile Tenebrio molitor larvae, and gradient descent capacities against desiccation with the decrease in moisture levels. The efficacy of MAX-2 showed no significant differences at 35% moisture level than those of the other isolates. However, significant differences were found at 8% to 30% moisture levels. The efficacies of all isolates decreased with the decrease in moisture levels. MAX-2 was relatively less affected by desiccation stress. Its efficacy was almost unaffected by the decrease at moisture levels > 25%, but slowly decreased at moisture levels molitor larvae under desiccation stress and in wet microhabitat. Local black patches were found on the cuticles of the insects, and the cadavers dried without fungal growth under desiccation stress. However, dark black internodes and fungal growth were found after death of the insects in the wet microhabitat. Conclusions MAX-2 showed significantly higher efficacy and superior antistress capacity than the other isolates under desiccation stress. The infection of sterile T. molitor larvae at low moisture level constituted a valid laboratory bioassay system in evaluating M. anisopliae efficacy under desiccation stress. PMID:24383424

  7. Efficacy of Metarhizium anisopliae isolate MAX-2 from Shangri-la, China under desiccation stress.

    Science.gov (United States)

    Chen, Zi-Hong; Xu, Ling; Yang, Feng-lian; Ji, Guang-Hai; Yang, Jing; Wang, Jian-Yun

    2014-01-03

    Metarhizium anisopliae, a soil-borne entomopathogen found worldwide, is an interesting fungus for biological control. However, its efficacy in the fields is significantly affected by environmental conditions, particularly moisture. To overcome the weakness of Metarhizium and determine its isolates with antistress capacity, the efficacies of four M. anisopliae isolates, which were collected from arid regions of Yunnan Province in China during the dry season, were determined at different moisture levels, and the efficacy of the isolate MAX-2 from Shangri-la under desiccation stress was evaluated at low moisture level. M. anisopliae isolates MAX-2, MAC-6, MAL-1, and MAQ-28 showed gradient descent efficacies against sterile Tenebrio molitor larvae, and gradient descent capacities against desiccation with the decrease in moisture levels. The efficacy of MAX-2 showed no significant differences at 35% moisture level than those of the other isolates. However, significant differences were found at 8% to 30% moisture levels. The efficacies of all isolates decreased with the decrease in moisture levels. MAX-2 was relatively less affected by desiccation stress. Its efficacy was almost unaffected by the decrease at moisture levels > 25%, but slowly decreased at moisture levels molitor larvae under desiccation stress and in wet microhabitat. Local black patches were found on the cuticles of the insects, and the cadavers dried without fungal growth under desiccation stress. However, dark black internodes and fungal growth were found after death of the insects in the wet microhabitat. MAX-2 showed significantly higher efficacy and superior antistress capacity than the other isolates under desiccation stress. The infection of sterile T. molitor larvae at low moisture level constituted a valid laboratory bioassay system in evaluating M. anisopliae efficacy under desiccation stress.

  8. Metarhizium anisopliae: influence of pH on enzyme activity and control of Rhipicephalus microplus ticks

    Directory of Open Access Journals (Sweden)

    Allan Felipe Marciano

    2015-12-01

    Full Text Available ABSTRACT. Marciano A.F., Coutinho-Rodrigues C.J.B., Perinotto W.M.S., Camargo M.G., Gôlo P.S., Sá F.A., Quinelato S., Freitas M.C., Angelo I.C., Nogueira M.R.S. & Bittencourt V.R.E.P. [Metarhizium anisopliae: influence of pH on enzyme activity and control of Rhipicephalus microplus ticks.] Metarhizium anisopliae: influência do pH na atividade enzimática e no controle de Rhipicephalus microplus. Revista Brasileira de Medicina Veterinária, 37(Supl.1:85-90, 2015. Departamento de Parasitologia Animal, Universidade Federal Rural do Rio de Janeiro, BR 465, Km 47, Seropédica, RJ 23897-970, Brasil. E-mail: vaniabit@ufrrj.br Rhipicephalus microplus ticks are one of the major agents causing substantial losses to livestock worldwide. In the search for alternative control strategies, both in vitro and in vivo use of the arthropodpathogenic fungus Metarhizium anisopliae has shown promising results against this ectoparasite. During host colonization, protease production by M. anisopliae is considered one important virulence factor once it is directly related to the active penetration process carried by the fungus on the full host cuticle. Nevertheless, limitations as environmental pH may modulate the proteases production and/or activity, as well as, the fungal virulence. The current study aimed evaluate the virulence and total protease activity of M. anisopliae CG 148 sensu lato (s.l.. Fungal aqueous suspensions or 5% mineral oil formulations were used in different pH ranges (5, 7, or 9. Suspensions and formulations were prepared using a pH meter and adjusted to 108 spores mL-1. In the bioassay, four groups were formed for each pH range: the aqueous fungal suspension, the oil-based fungal formulation and their respective controls (aqueous and oil-based, totaling 12 groups. Engorged females were immersed for 3 minutes and maintained under optimal conditions for evaluation of biological parameters. Total protease activity of the artificial medium (after

  9. Expressed sequence tag (EST) analysis of two subspecies of Metarhizium anisopliae reveals a plethora of secreted proteins with potential activity in insect hosts.

    Science.gov (United States)

    Freimoser, Florian M; Screen, Steven; Bagga, Savita; Hu, Gang; St Leger, Raymond J

    2003-01-01

    Expressed sequence tag (EST) libraries for Metarhizium anisopliae, the causative agent of green muscardine disease, were developed from the broad host-range pathogen Metarhizium anisopliae sf. anisopliae and the specific grasshopper pathogen, M. anisopliae sf. acridum. Approximately 1,700 5' end sequences from each subspecies were generated from cDNA libraries representing fungi grown under conditions that maximize secretion of cuticle-degrading enzymes. Both subspecies had ESTs for virtually all pathogenicity-related genes cloned to date from M. anisopliae, but many novel genes encoding potential virulence factors were also tagged. Enzymes with potential targets in the insect host included proteases, chitinases, phospholipases, lipases, esterases, phosphatases and enzymes producing toxic secondary metabolites. A diverse array of proteases composed 36 % of all M. anisopliae sf. anisopliae ESTs. Eighty percent of the ESTs that could be clustered into functional groups had significant matches (Ehistory of this clade.

  10. Host range findings on Beauveria bassiana and Metarhizium anisopliae (Ascomycota: Hypocreales in Argentina Espectro de hospedadores hallado en Beauveria bassiana y Metarhizium anisopliae (Ascomycota: Hypocreales en Argentina

    Directory of Open Access Journals (Sweden)

    A. V. Toledo

    2008-12-01

    Full Text Available The natural insect host range of the entomopathogenic fungi (EPF Beauveria bassiana (Bb and Metarhizium anisopliae (Ma was investigated in Argentina during the winter of 2003 through spring of 2004. Fungi- infected insect samples (153 were collected from cornfields and the surrounding uncultivated areas in different localities of Buenos Aires (7, Tucumán (2, and Corrientes (3 provinces. The rates of Bb-infected host range varied among the Coleoptera (37%, Hemiptera (27% and Dermaptera (1.3%. While the rates of Ma-infected host range varied between the Coleoptera (0.7% and Hemiptera (34%. The greater host range resulted with B. bassiana found from eight species of Coleoptera (four families, one species of Dermaptera and four species of Hemiptera (three families, than the host range of M. anisopliae found infecting one species of Coleoptera and three species of Hemiptera (two families. We obtained 75 pure fungal isolates (48 Bb-isolates and 27 to Ma-isolates, and 56 of them (33 Bb-isolates and 23 Ma-isolates were morphologically characterized.El espectro natural de hospedadores de los hongos entomopatógenos (HEP Beauveria bassiana (Bb y Metarhizium anisopliae (Ma fue investigado en Argentina desde el invierno de 2003 hasta la primavera de 2004. Las muestras de insectos con infecciones fúngicas (153 fueron recolectadas a partir de campos de maíz y las áreas no cultivadas circundantes a los mismos, en diferentes localidades de las provincias de Buenos Aires (7, Tucumán (2 y Corrientes (3. El espectro de hospedadores infectados con Bb varió entre los Coleoptera (37%, Hemiptera (27% y Dermaptera (1,3%. Mientras que el espectro de hospedadores infectados con Ma varió entre los Coleoptera (0,7% y los Hemiptera (34%. El mayor espectro lo presentó Bb, encontrado en ocho especies de Coleoptera (cuatro familias, una especie de Dermaptera y cuatro especies de Hemiptera (tres familias, mientras que Ma fue encontrado infectando una especie de

  11. Infection of the malaria mosquito Anopheles gambiae with the entomopathogenic fungus Metarhizium anisopliae reduces blood feeding and fecundity

    NARCIS (Netherlands)

    Scholte, E.J.; Knols, B.G.J.; Takken, W.

    2006-01-01

    The entomopathogenic fungus Metarhizium anisopliae is being considered as a biocontrol agent against adult African malaria vectors. In addition to causing significant mortality, this pathogen is known to cause reductions in feeding and fecundity in a range of insects. In the present study we

  12. Infection of two non-target grasshoppers by the biological control agent Metarhizium anisopliae var. acridum in the Sahel

    DEFF Research Database (Denmark)

    Fisker, E. N.; Eilenberg, J.; Langewald, J.

    2006-01-01

    Fungal isolates from grasshoppers of the family Acrididae are suspected to be less virulent to grasshoppers of the family Pyrgomorphidae. The biological control agent Metarhizium anisopliae var. acridum was isolated from an acridid and is thus hypothesized to be less virulent to pyrgomorphids. Th...

  13. Autodissemination of the entomopathogenic fungus Metarhizium anisopliae amongst adults of the malaria vector anopheles gambiae s.s.

    NARCIS (Netherlands)

    Scholte, E.J.; Knols, B.G.J.; Takken, W.

    2004-01-01

    Background - The entomopathogenic fungus Metarhizium anisopliae is being considered as a biocontrol agent for adult African malaria vectors. In the laboratory, work was carried out to assess whether horizontal transmission of the pathogen can take place during copulation, as this would enhance the

  14. Exposure of bed bugs to metarhizium anisopliae, and the effect of defensive secretions on fungal growth in vitro

    Science.gov (United States)

    Bed bugs Cimex lectularius were treated with conidia of the entomopathogenic fungus Metarhizium anisopliae by topical, spray, and contact exposure. One week post-exposure, inconsistent mortalities were observed, averaging 30% across all treatment groups and replicates. Microscopic examination of top...

  15. PENGARUH FORMULASI DAN LAMA PENYIMPANAN PADA VIABILITAS, BIOAKTIVITAS DAN PERSISTENSI CENDAWAN METARHIZIUM ANISOPLIAE TERHADAP CROCIDOLOMIA PAVONANA FABRICIUS

    Directory of Open Access Journals (Sweden)

    Nuraida .

    2016-09-01

    Full Text Available Effects of formulations and storage length on the viability, bioactivity and persistence of Metarhizium anisopliae against Crocidolomia pavonana Fabricius. Crocidolomia pavonana Fabricius (Lepidoptera: Pyralidae is important pest on vegetables form Brassicaceae family, that required to be control. Metarhizium anisopliae entomopathogenic fungus is one potensial of the biological agent that can be used to control C. pavonana. This study aimed to investigated the effect of storage duration on viability, bioactivity and persistence of M. anisopliae after formulated to control C. pavonana. Laboratory experiment was arranged in completely randomized design with the treatment was storage duration that included 2,4,6,8 and 10 weeks that replicated three trials. The variabels to be measured were viability and bioactivity at concentrations106, 107, and108. Field experiment used T Student test with treatment was duration of M. anisopliae formulation survive and its persistence on C. pavonana. Laboratory experiment results showed that the best storage duration of formulation on Metarhizium viability was pellet frmulation at 4th week 4 after storage. While the best bioactivity was pellet formulation with concentration 107 at 10 weeks after storage. Field experiment results showed that M. anisopliae formulation could be survived and its persistence to control pests C. pavonana until 4th day after application, either pellet or powder formulation.

  16. Controle de larvas de Boophilus microplus por Metarhizium anisopliae em pastagens infestadas artificialmente Control of Boophilus microplus larvae by Metarhizium anisopliae in artificially infested pastures

    Directory of Open Access Journals (Sweden)

    Lúcia Mara de Souza Basso

    2005-06-01

    Full Text Available O objetivo deste trabalho foi avaliar a eficiência do controle exercido por Metarhizium anisopliae na população de Boophilus microplus, em pastagens de Brachiaria brizantha, e do híbrido Tifton 85 (Cynodon spp., artificialmente infestadas com fêmeas ingurgitadas do carrapato. Trinta canteiros com 1 m² de área cada foram distribuídos aleatoriamente. Quinze foram pulverizados com esporos do fungo e quinze controles em cada forrageira, constituindo cinco repetições de cada tratamento, foram infestados com número e peso padronizados de fêmeas ingurgitadas do ácaro. Aplicou-se o fungo, na concentração de 1,8x10(8 conídios mL-1, em três situações: pulverização antes da infestação com o carrapato, após a infestação e posterioriormente à emergência das primeiras larvas nos capins. A ação do fungo foi avaliada no 35º, 38º, 41º, 48º, 55º e 61º dia pós-infestação, por meio da contagem de larvas recuperadas. Obteve-se controle de larvas do ácaro, que, nas avaliações realizadas entre o 35º e o 48º dia pós-infestação, variou entre 87% e 94%. As médias das contagens de estágios larvares do carrapato foram menores em todas as amostragens realizadas no capim-Tifton 85, indicando que houve efeito da pastagem na ação do fungo. A situação de aplicação influencia a atividade do fungo, com melhor resultado nas coletas realizadas entre o 41º e 55º dia após infestação em B. brizantha, e aplicação dos conídios logo após a emergência das primeiras larvas.The objective of this work was to evaluate the efficiency of Metarhizium anisopliae fungus against Boophilus microplus population in Brachiaria brizantha and Tifton 85 (Cynodon pastures, artificially infested with tick engorged females. Thirty plots of 1 m² each were randomly distributed in fifteen treated and fifteen control groups per type of grass, establishing five repetitions for each treatment. Pastures were infested with engorged tick females

  17. Diatomaceous earth and oil enhance effectiveness of Metarhizium anisopliae against Triatoma infestans.

    Science.gov (United States)

    Luz, Christian; Rodrigues, Juscelino; Rocha, Luiz F N

    2012-04-01

    Entomopathogenic fungi, especially Metarhizium anisopliae, have potential for integrated control of peridomestic triatomine bugs. However, the high susceptibility of these vectors to fungal infection at elevated ambient humidities decreases in the comparatively dry conditions that often prevail in their microhabitats. A formulation adapted to this target pest that induces high and quick mortality can help to overcome these drawbacks. In the present study diatomaceous earth, which is used against pests of stored grains or as an additive to mycoinsecticides, delayed but did not reduce in vitro germination of M. anisopliae s.l. IP 46 conidia after >24h agitation without affecting viability, and did not hamper the survival of Triatoma infestans nymphs exposed to treated surfaces. The settling behavior of nymphs on a treated surface in choice tests depended on the concentration of diatomaceous earth and ambient light level. Conidia formulated with diatomaceous earth and a vegetable oil synergized the insecticidal effect of the fungus in nymphs, and quickly killed all treated insects, even at 75% relative humidity (LT(90) 8.3 days) where unformulated conidia caused only 25% mortality after a 25 days exposure. The improved performance of a combined oil and desiccant dust formulation of this Metarhizium isolate raises the likelihood for its successful mycoinsecticidal use for triatomine control and, apparently, against other domestic insect pests. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Effectiveness of Metarhizium anisopliae and Entomopathogenic Nematodes to Control Oryctes rhinoceros Larvae in the Rainy Season.

    Science.gov (United States)

    Indriyanti, Dyah Rini; Widiyaningrum, Priyantini; Haryuni; Slamet, Muji; Maretta, Yoris Adi

    2017-01-01

    Metarhizium anisopliae (MET) and entomopathogenic nematodes (EPN) are microorganisms that attack the larvae of Oryctes rhinoceros. The effects of MET, EPN and the combination of both on the O. rhinoceros larvae were studied during the rainy season in Jepara Indonesia. This study aimed to determine the effectiveness of Metarhizium anisopliae and entomopathogenic nematodes to control Oryctes rhinoceros larvae in the rainy season. There were four level doses of MET, four level doses of EPN and four mixture of MET and EPN. The experiment used 72 containers that were placed in the garden with coconut palm shade. Five kilograms of organic soil that was mixed with biological control agents (MET, EPN and MET+EPN) and ten O. rhinoceros larvae 3rd instar were put in each other container. The data were analyzed by descriptive analysis. Every larvae mortality was observed once a week and observations are for 8 weeks. The result showed that the larval mortality due to MET treatment occurred on 2nd-7th week. Meanwhile, the larval mortality due to EPN treatment took place on 2nd-8th weeks and the larval mortality due to MET+EPN treatment occurred on 1st-5th weeks. The combination of MET and EPN was simultaneously effective to control O. rhinoceros larvae than separate use of MET or EPN. Result of this study showed that using two agents of biocontrol was more effective, so that it can be beneficial for controlling O. rhinoceros larvae in the field.

  19. Effect of gamma and ultraviolet radiations in isolates of Metarhizium anisopliae (METSCH) Sorokin, 1883 and its utilization aiming Diatraea saccharalis (FABRICIUS, 1794) control

    International Nuclear Information System (INIS)

    Almeida, L.C. de.

    1983-06-01

    The effects of gamma radiation and ultraviolet in isolated of the fungus Metarhizium anisopliae (Metsch) Sorokin, and the utilization of this pathogen for the Diatrae saccharalis (Fabr.) control are studied. (L.M.J.) [pt

  20. The Impact of Culture Age, Aeration, and Agitation on the Production of Microsclerotia of the Entomopathogenic Fungus Metarhizium anisopliae Using 100-Liter Fermentors

    Science.gov (United States)

    Microsclerotia are desiccation-tolerant, compact hyphal aggregates produced by numerous fungi as overwintering structures. We recently discovered that the entomopathogenic fungus Metarhizium anisopliae produced microsclerotia during liquid culture fermentation. When air-dried microsclerotial granu...

  1. Beauveria bassiana and Metarhizium anisopliae endophytically colonize cassava roots following soil drench inoculation

    Science.gov (United States)

    Greenfield, Melinda; Gómez-Jiménez, María I.; Ortiz, Viviana; Vega, Fernando E.; Kramer, Matthew; Parsa, Soroush

    2016-01-01

    We investigated the fungal entomopathogens Beauveria bassiana and Metarhizium anisopliae to determine if endophytic colonization could be achieved in cassava. An inoculation method based on drenching the soil around cassava stem cuttings using conidial suspensions resulted in endophytic colonization of cassava roots by both entomopathogens, though neither was found in the leaves or stems of the treated cassava plants. Both fungal entomopathogens were detected more often in the proximal end of the root than in the distal end. Colonization levels of B. bassiana were higher when plants were sampled at 7–9 days post-inoculation (84%) compared to 47–49 days post-inoculation (40%). In contrast, the colonization levels of M. anisopliae remained constant from 7–9 days post-inoculation (80%) to 47–49 days post-inoculation (80%), which suggests M. anisopliae is better able to persist in the soil, or as an endophyte in cassava roots over time. Differences in colonization success and plant growth were found among the fungal entomopathogen treatments. PMID:27103778

  2. Selection of Beauveria bassiana and Metarhizium anisopliae Isolates to Control Triatoma infestans

    Directory of Open Access Journals (Sweden)

    Luz Christian

    1998-01-01

    Full Text Available Twenty three isolates of Beauveria bassiana and 13 isolates of Metarhizium anisopliae were tested on third instar nymphs of Triatoma infestans, a serious vector of Chagas disease. Pathogenicity tests at saturated humidity showed that this insect is very susceptible to fungal infection. At lower relative humidity (50%, conditions expected in the vector microhabitat, virulence was significantly different among isolates. Cumulative mortality 15 days after treatment varied from 17.5 to 97.5%, and estimates of 50% survival time varied from 6 to 11 days. Maintaining lower relative humidity, four B. bassiana and two M. anisopliae isolates were selected for analysis of virulence at different conidial concentrations and temperatures. Lethal concentrations sufficient to kill 50% of insects (LC50 varied from 7.1x105 to 4.3x106 conidia/ml, for a B. bassiana isolate (CG 14 and a M. anisopliae isolate (CG 491 respectively. Most isolates, particularly B. bassiana isolates CG 24 and CG 306, proved to be more virulent at 25 and 30°C, compared to 15 and 20°C. The differential virulence at 50% humidity observed among some B. bassiana isolates was not correlated to phenetic groups in cluster analysis of RAPD markers. In fact, the B. bassiana isolates analyzed presented a high homogeneity (> 73% similarity.

  3. Selectivity of Beauveria bassiana and Metarrhizium anisopliae to Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae); Seletividade de Beauveria bassiana e Metarhizium anisopliae a Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae)

    Energy Technology Data Exchange (ETDEWEB)

    Potrich, Michele; Silva, Everton L. da; Neves, Pedro M.O.J. [Universidade Estadual de Londrina (UEL), PR (Brazil). Centro de Ciencias Agrarias], e-mail: profmichele@gmail.com, e-mail: evertonloz@gmail.com, e-mail: pedroneves@uel.br; Alves, Luis F.A.; Daros, Alaxsandra [Universidade do Oeste do Parana (UNIOESTE), Cascavel, PR (Brazil). Centro de Ciencias Biologicas e da Saude. Lab. de Zoologia de Invertebrados], e-mail: lfaalves@unioeste.br; Haas, Jucelaine; Pietrowski, Vanda [Universidade do Oeste do Parana (UNIOESTE), Marechal Candido Rondon, PR (Brazil). Centro de Ciencias Agrarias], e-mail: jubarth@gmail.com, e-mail: vandapietrowski@gmail.com

    2009-07-01

    Trichogramma pretiosum Riley and the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae are efficient biological control agents and are thought to be used jointly. In here, we investigated if these entomopathogens could have any side-effects on T. pretiosum. Therefore, 1 x 8 cards containing sterilized eggs of Anagasta kuehniella (Zeller) that were sprayed with 0.2 ml of B. bassiana or M. anisopliae (1.0 X 10{sup 9} conidia/ml) were offered to a T. pretiosum female for 24h (30 cards/fungus = 30 replicates). Afterwards, females were isolated in glass tubes. The control group was sprayed with sterile distillated water + Tween 80 (0.01%). In addition, 60 cards with sterilized eggs of A. kuehniella were submitted to parasitism by females of T. pretiosum for 24h. Of these cards, 30 were sprayed with B. bassiana or M. anisopliae and 30 with distillated water + Tween 80 (0.01%), and observed daily until parasitoid emergence. Metarhizium anisopliae decreased parasitoid emergence and caused confirmed mortality. Therefore, field and semi-field experiments should be conducted for a final assessment of the side-effects of these entomopathogens on Trichogramma as a ways to develop a control strategy in which both can be used. (author)

  4. Impact of moisture on survival of Aedes aegypti eggs and ovicidal activity of Metarhizium anisopliae under laboratory conditions

    Directory of Open Access Journals (Sweden)

    C Luz

    2008-03-01

    Full Text Available The effect of relative humidity (43%, 75%, 86% and > 98% on Aedes aegypti eggs treated with Metarhizium anisopliae or water only was tested for up to a six months exposure at 25ºC. Survival of larvae inside eggs was clearly affected by the lowest humidity (43% tested, and eclosion diminished at all humidities after increasing periods of exposure. M. anisopliae showed to have a strong ovicidal activity only at humidity close to saturation. No difference of activity was found between conidia and hyphal bodies tested. This fungus affected larvae inside eggs and has potential as a control agent of this important vector in breeding sites with high moisture.

  5. Tekanan Metarhizium anisopliae dan Feromon terhadap Populasi dan Tingkat Kerusakan oleh Oryctes rhinoceros

    Directory of Open Access Journals (Sweden)

    Wtjaksono Witjaksono

    2015-12-01

    Full Text Available Oryctes rhinoceros is one of the most serious pests in coconut palm tree. Biological control for controlling the pest is done by applying fungal entomopathogen Metarhizium anisopliae on its breeding sites to infect the larvae. Recent development for controlling Oryctes beetle was including the use of pheromone trap baited with ethyl-4-methyl octanoic which attract both male and female of the Oryctes beetle. This research was aimed to determine the effect of combination of both entomopathogen and pheromone application on the population dynamics of rhinoceros beetle, and the intensity of leaf damage on coconut tree. For this purpose, a research was conducted in local farmer coconut tree in the Bojong Village, Panjatan District, Kulon Progo from June 2009−January 2010. Observation including leaf damage intensity before and after application, the number of adult beetle trapped by pheromone, and the number infected larvae in the breeding site. The result showed that there were significant differences among all treatments in term of intensity of leaf damage, the number of trapped adult beetle, and the number of larvae at the breeding site. Leaf damage on control, pheromone application, and combined treatment were: 4.73%; 1.08% and 0.65%. The number of trapped Rhinoceros beetle by ferotrap was 101; in combined treatment was 52. The number of M. anisopliae infected grub were 265 out of 281 total observed grub.   INTISARI Kerusakan tanaman kelapa akibat serangan Oryctes rhinoceros terjadi mulai pada tanaman muda. Mengingat besarnya kerugian yang ditimbulkan, maka perlu diupayakan cara pengendalian yang efisien, efektif dan aman bagi sumber daya alam dan lingkungan. Salah satu cara pengendalian secara hayati adalah dengan menggunakan cendawan patogenik Metarhizium anisopliae. Selain menggunakan cendawan, upaya terkini dalam mengendalikan kumbang badak adalah dengan menggunakan perangkap berferomon. Feromon dengan bahan aktif Etil-4-metil oktanoat dapat

  6. Use of Metarhizium anisopliae Chitinase Genes for Genotyping and Virulence Characterization

    Directory of Open Access Journals (Sweden)

    Saliou Niassy

    2013-01-01

    Full Text Available Virulence is the primary factor used for selection of entomopathogenic fungi (EPF for development as biopesticides. To understand the genetic mechanisms underlying differences in virulence of fungal isolates on various arthropod pests, we compared the chitinase genes, chi2 and chi4, of 8 isolates of Metarhizium anisopliae. The clustering of the isolates showed various groups depending on their virulence. However, the analysis of their chitinase DNA sequences chi2 and chi4 did not reveal major divergences. Although their protein translates have been implicated in fungal virulence, the predicted protein structure of chi2 was identical for all isolates. Despite the critical role of chitin digestion in fungal infection, we conclude that chi2 and chi4 genes cannot serve as molecular markers to characterize observed variations in virulence among M. anisopliae isolates as previously suggested. Nevertheless, processes controlling the efficient upregulation of chitinase expression might be responsible for different virulence characteristics. Further studies using comparative “in vitro” chitin digestion techniques would be more appropriate to compare the quality and the quantity of chitinase production between fungal isolates.

  7. Neem oil increases the efficiency of the entomopathogenic fungus Metarhizium anisopliae for the control of Aedes aegypti (Diptera: Culicidae) larvae

    OpenAIRE

    Gomes, Simone A.; Paula, Adriano R.; Ribeiro, Anderson; Moraes, Catia O. P.; Santos, Jonathan W. A. B.; Silva, Carlos P.; Samuels, Richard I.

    2015-01-01

    Background Entomopathogenic fungi are potential candidates for use in integrated vector management and many isolates are compatible with synthetic and natural insecticides. Neem oil was tested separately and in combination with the entomopathogenic fungus Metarhizium anisopliae against larvae of the dengue vector Aedes aegypti. Our aim was to increase the effectiveness of the fungus for the control of larval mosquito populations. Methods Commercially available neem oil was used at concentrati...

  8. Evaluation of Pathogenicity of the Fungi Metarhizium anisopliae and Beauveria bassiana in Hazelnut Weevil (Curculio nucum L., Coleoptera, Curculionidae) Larvae.

    Science.gov (United States)

    Cheng, Yunqing; Liu, Ting; Zhao, Yixin; Geng, Wanting; Chen, Longtao; Liu, Jianfeng

    2016-12-01

    The nut weevil ( Curculio nucum ) is one of the most important and widespread pests in hazelnut orchards. In order to screen entomopathogenic fungal strains with high virulence against C. nucum , the growth rate, sporulation, and cumulative mortality of different Metarhizium anisopliae and Beauveria bassiana strains were investigated, and the process by which M. anisopliae CoM 02 infects C. nucum larvae was observed using scanning electron microscopy. The results indicated that the growth rate and sporulation of different fungal strains significantly differed. Thirteen days after inoculation with M. anisopliae CoM 02, the cumulative mortality of C. nucum larvae reached 100 %, which was considerably higher than that of the other five strains. As the most virulent of the six test strains, the cadaver rate, LT 50 , and LT 90 of M. anisopliae CoM 02 were 93.4 %, 7.05 and 11.90 days, respectively. Analysis of the infection process by scanning electron microscopy showed that the spore attachment, hyphal germination, hyphal rapid growth, and sporulation of M. anisopliae CoM 02 occurred on the 3rd, 5th, 7th, and 11th day after inoculation, respectively, indicating that the infection cycle takes approximately 11 days. This finding suggests that the highly virulent M. anisopliae plays an important role in the biocontrol of C. nucum in China.

  9. POTENTIAL IMPACT OF METARHIZIUM ANISOPLIAE ON THE DIAMONDBACK MOTH (LEPIDOPTERA: PLUTELLIDAE AND ITS PARASITOID DIADEGMA SEMICLAUSUM (HYMENOPTERA: ICHNEUMONIDAE

    Directory of Open Access Journals (Sweden)

    Rosma Hasibuan, Nilly Christalia, F.X. Susilo1, and Nur Yasin .

    2011-11-01

    Full Text Available Potential Impact of Metarhizium anisopliae on the Diamondback Moth (Lepidoptera: Plutellidae and Its Parasitoid Diadegma semiclausum (Hymenoptera: Ichneumonidae.  Laboratory studies were conducted to evaluate the effect of the Metarhizium anisopliae against the diamondback moth, Plutella xylostella and its parasitoid, Diadegma  semiclausum. A completely randomized design consisted of 5 treatments (4 concentrations of conidial suspension: 5 x 104, 3.5 x 105, 2.5 x 106, 1.2 x 107 conidia/ml and control was used.  The results indicated that the mortality of P. xylostella larvae were significantly induced by the fungal treatments.  A significant reduction in pupation and adult emergence of P. xylostella was also detected in all treatments when compared with that in the control. The fungus might also result in a male-biased sex ratio of the surviving P. xylostella. When applied at a concentration of 1.2 x 107 conidia/ml, M.  anisopliae might significantly reduce the survival of the parasitoid, D. semiclausum. Thus, despite its potential as a biological control agent against P. xylostella, the entomomogenous fungus M. anisopliae was also detrimental to the larvae parasitoid D. semiclausum.

  10. PERSISTÊNCIA DE Metarhizium anisopliae spp NO SOLO SOB DIFERENTES CONDIÇÕES DE TEMPERATURA E UMIDADE

    Directory of Open Access Journals (Sweden)

    Diana Mendonça Silva Guerra

    2009-01-01

    Full Text Available The fungi entomopathogenic are actually objects of works according to their importance in the ecological system. This work analysed the persistence of Metarhizium anisopliae var. anisopliae and M. anisopliae var. acridum, under different conditions of temperature and humidity, in the period of September to December. After inoculation on soil the fungi were submitted to four different treatments: environment temperature and 25% of humidity; environment temperature and 75% of humidity; 28º C and 25% of humidity; 28º C and 75% of humidity, during 120 days. The results show that M. anisiopliac var. anisopliae presented the most recuperation in the treatment at 28º C and 75% of humidity (P > 0,05 in 30 days and maintained a positive conditions on soil for 120 days of experiment. The same did not happen to M. anisopliae var. acridum that, during the whole process of observation and controll the colonies recuperation avoiding its persistence on soil, during the 120 days of experiment.

  11. Production of Conidia by the Fungus Metarhizium anisopliae Using Solid-State Fermentation.

    Science.gov (United States)

    Loera-Corral, Octavio; Porcayo-Loza, Javier; Montesinos-Matias, Roberto; Favela-Torres, Ernesto

    2016-01-01

    This chapter describes the production of conidia by Metarhizium anisopliae using solid-state fermentation. Before production of conidia, procedures for strains conservation, reactivation, and propagation are essential in order to provide genetic stability of the strains. The strain is conserved in freeze-dried vials and then reactivated through insect inoculation. Rice is used as a substrate for the conidia production in two different bioreactors: plastic bags and tubular bioreactor. The CO2 production in the tubular bioreactors is measured with a respirometer; this system allows calculating indirect growth parameters as lag time (tlag) (25-35 h), maximum rate of CO2 production (rCO2 max) (0.5-0.7 mg/gdm h), specific rate of CO2 production (μ) (0.10-0.15 1/h), and final CO2 production (CO2) (100-120 mg/gdm). Conidial yield per gram of dry substrate (gdm) should be above 1 × 10(9) conidia/gdm after 10 days of incubation. Germination and viability of conidia obtained after 10 days of incubation should be above 80 % and 75 %, respectively. Bioassays using of Tenebrio molitor as a host insect should yield a final mortality above 80 %.

  12. Effect of two dosages of Metarhizium anisopliae var. acridum against Rhammatocerus schistocercoides Rehn

    Directory of Open Access Journals (Sweden)

    Faria Marcos Rodrigues de

    2002-01-01

    Full Text Available The fungus Metarhizium anisopliae var. acridum, strain CG 423, was tested under field conditions against the gregarious grasshopper Rhammatocerus schistocercoides (Rehn (Orthoptera: Acrididae. Conidia formulated in a racemic mixture of soybean oil and kerosene were sprayed under field conditions using an ultralow-volume hand-held atomizer Ulva Plus adjusted to deliver 2.9 L/ha. Bands composed of 2nd instar nymphs were treated with either 5.0x10(12 or 1.0x10(13 viable conidia/ha. The number of insects in each band was estimated at day one following spraying and by the end of the field trial (15 to 16 days post-treatment. Reductions in population size reached, in average, 65.8% and 80.4% for bands treated with the higher and lower dosage, respectively. For both dosages, total mortality rates of insects collected at two days post-application, and kept in cages for 14 days under lab conditions, showed no significant differences as compared to that obtained with insects collected immediately after spraying. Healthy insects were fed to native grasses sprayed on the field with 1.0x10(13 viable conidia/ha. Mortality levels of the nymphs fed on grasses collected two and four days post-application were not affected when compared to nymphs fed on grasses collected immediately following application.

  13. Enhancing Growth of Vigna radiata in the Presence of Pseudomonas aeruginosa Biopolymer and Metarhizium anisopliae Spores

    Directory of Open Access Journals (Sweden)

    Bhagwan N. Rekadwad

    2016-01-01

    Full Text Available Exopolysaccharide producing Pseudomonas aeruginosa NCIM 2945 (PANCL belonging to gamma-proteobacterium and entomopathogenic fungus Metarhizium anisopliae MCC 1129 (MAMCC belonging to Ascomycota were studied for their morphological features biochemical characteristics and plant growth promotion ability. Optimum growth of PANCL was recorded after 24 h at temperature 30°C and pH 7.0. Gram-negative PANCL appeared as white in color, one mm size, circular, opaque, and nonconsistent elevated colonies with entire margin. It has utilized dextrose, fructose, maltose, and sorbitol as carbon source and produced acid in the medium. PANCL was sensitive to Polymyxin B (300 µgm/disc followed by Neomycin (30 µgm/disc, Gentamycin (10 µgm/disc, and Chloramphenicol (30 µgm/disc. PANCL has secreted extracellular lipase, amylase, protease, and exopolysaccharides (EPS. Another fungal strain MAMCC sporulated after 168 h at temperature 30°C and pH 7.0. MAMCC has septate-white mycelium and bears dirty green colored spores. Growth of MAMCC was enhanced in the presence of Neem and Karela-Amla oil (0.1 mL each. Extracellular polysaccharide produced by PANCL and spores of MAMCC promoted growth of dicotyledon Vigna radiata (Mung individually as well as in consortium. Considerable increase in dry weight of Vigna radiata was recorded. Thus, reported PANCL and MAMCC strains have promoted growth Vigna radiata and may be a solution for sustainable agriculture.

  14. Hemocyte characterization of Nasutitermes coxipoensis (Holmgren) (Isoptera: Termitidae) workers and hemocyte evaluation after parasitism by Metarhizium anisopliae; Caracterizacao dos hemocitos de operarios de Nasutitermes coxipoensis (Holmgren) (Isoptera: Termitidae) e avaliacao hemocitaria apos parasitismo por Metarhizium anisopliae

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Franklin M.; Wanderley-Teixeira, Valeria; Albuquerque, Auristela C. [Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE (Brazil). Programa de Pos-Graduacao em Entomologia Agricola], e-mail: ukento@yahoo.com.br; Teixeira, Alvaro A.C. [Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE (Brazil). Dept. de Morfologia e Fisiologia Animal], e-mail: valeria@dmfa.ufrpe.br, e-mail: auritermes@yahoo.com.br; Alves, Luiz C. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Lab. de Imunopatologia Keizo Asami (LIKA); Lima, Elza A.L.A. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Micologia. Lab. de Controle Biologico

    2009-03-15

    We aimed to characterize the morphology and ultrastructure of hemocytes of Nasutitermes coxipoensis (Holmgren) workers and to quantify the cell types 24h, 48h and 72h after inoculation with Metarhizium anisopliae. Six hemocytes types were identified, plasmatocyte, granulocyte, spherulocyte, prohemocyte, adipohemocyte and eonocytoid Hemocytes did not present any morphological alteration at the several observation periods, but they did have a change in their abundance, as observed for spherulocytes, adipohemocytes and eonocytoids at all intervals, and for plasmatocytes and granulocytes at 48h after host inoculation. We argue on the possible reasons and implications of the observed changes. (author)

  15. In vivo interactions of entomopathogenic fungi, Beauveria spp. and Metarhizium anisopliae with selected opportunistic soil fungi of sugarcane ecosystem.

    Science.gov (United States)

    Geetha, N; Preseetha, M; Hari, K; Santhalakshmi, G; Bai, K Subadra

    2012-07-01

    In the present study, the interactions of entomopathogenic fungi viz., Beauveria bassiana, Beauveria brongniartii and Metarhizium anisopliae among themselves and three other opportunistic soil fungi from the sugarcane ecosystem namely, Fusarium saachari, Aspergillus sp. and Penecillium sp. were assayed in vivo against Galleria mellonella larvae. The tested fungi were co-applied on IV instar G. mellonella @ 1 x 10(7) ml(-1), in combinations of two, at the interval of 24 hrs either preceding or succeeding each otherto assess their efficacy and sporulation rates. Results showed that often mortality rates did not correspond to the spore harvest of the mortality agent and presence of other fungus may be antagonistic. The efficacy of B. bassiana (90%) and B. brongniartii (100%) was not enhanced further but was negatively affected in most combinations with other fungi. In case of M. anisopliae compatibility was higher, resulting in higher mortality by application of B. bassiana before (100%) or after (83.3%) M. anisopliae than when it was applied alone (70%). During sporulation, B. bassiana faced the most intense competition from M. anisopliae (2.75 x 10(6) larva(-1)) and enhancement due to F sacchari irrespective of sequence of application. In case of B. brongniartii, sporulation was lowest in the combination of B. brongniartiipreceding M. anisopliae (1.83 x10(6) larva(-1)) and B. brongniartii succeeding B. bassiana (1.58 x 10(6) larva(-1)). Of all fungi tested, except F sacchari (65.33 x 10(6) larva(-1)) all the other species affected sporulation of M. ansiopliae with the least in treatment of B. bassiana application following M. anisopliae. Similar kind of interaction was observed during sporulation of soil fungi when combined with entomopathogenic fungi, though individually they could not cause mortality of larvae.

  16. Effect of Biofertilizers and Neem Oil on the Entomopathogenic Fungi Beauveria bassiana (Bals. Vuill. and Metarhizium anisopliae (Metsch. Sorok

    Directory of Open Access Journals (Sweden)

    Hirose Edson

    2001-01-01

    Full Text Available The in vitro fungitoxic effect of three biofertilizers, E.M.-4, Multibion Ô and Supermagro used in organic agriculture and the neem oil (Azadirachta indica A. Juss on the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana was studied. These products were mixed in a medium where the two fungi were inoculated, and germination, vegetative growth and conidiogenesis were assessed. The biofertilizers Supermagro and E.M.- 4 showed to be less toxic for the two fungi whereas MultibionÔ caused major inhibition on M. anisopliae, with reductions in germination (-37.74%, colony diameter (-30.26% and conidiogenesis (-42.62%. Neem oil promoted a larger negative effect on B. bassiana, inhibiting germination (-45.27%, colony diameter (-36.62% and conidiogenesis (-84.93%.

  17. Pathogencity induced by the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae in Agrotis ipsilon (Hufn.

    Directory of Open Access Journals (Sweden)

    A. Gabarty

    2014-01-01

    Full Text Available Scanning electron microscopy (SEM allowed observing Beauveria bassiana and Metarhizium anisopliae adhesion and penetration structure on Agrotis ipsilon larvae. SEM of A. ipsilon larvae treated with the Lc50 of the fungus, B. bassiana revealed adhesion and penetration structures in the infected larvae. Growth of the fungus on the infected larvae and signs of hyphal penetration of insect cuticle as well as proliferation of the cuticle were also appearing. On the other hand, the fungus, M. anisopliae as declared by SEM showed a dense network together and cause the green spores on the insect cuticle. Also, SEM allowed observing the spores and hyphae of the fungus in the body cavity of infected larvae. Scanning electron microscopy is allowed tool to observe the mode of action of entomopathogenic fungi and to observe how they are able to colonize and infect the host.

  18. First report of Metarhizium anisopliae IP 46 pathogenicity in adult Anopheles gambiae s.s. and An. arabiensis (Diptera; Culicidae

    Directory of Open Access Journals (Sweden)

    Lyimo Issa N

    2009-12-01

    Full Text Available Abstract The entomopathogenic fungus Metarhizium anisopliae isolate IP 46, originating from a soil sample collected in 2001 in the Cerrado of Central Brazil, was tested for its ability to reduce the survival of adult male and female Anopheles gambiae s.s. and An. arabiensis mosquitoes. A 6-h exposure to the fungus coated on test paper at a concentration of 3.3 × 106 conidia cm-2 reduced the daily survival of both mosquito species (HR = 3.14, p An. gambiae s.s relative to An. arabiensis (HR = 1.38, p 95% of mosquito cadavers in the treatment groups. The results indicate that M. anisopliae IP 46 has the potential to be a bio-control agent for African malaria vector species, and is a suitable candidate for further research and development.

  19. Application of Bait Treated with the Entomopathogenic Fungus Metarhizium anisopliae (Metsch. Sorokin for the Control of Microcerotermes diversus Silv.

    Directory of Open Access Journals (Sweden)

    Amir Cheraghi

    2013-01-01

    Full Text Available Microcerotermes diversus Silvestri (Isoptera, Termitidae is considered to be the most destructive termite in Khuzestan province (Iran, and its control by conventional methods is often difficult. Biological control using entomopathogenic fungi could be an alternative management strategy. Performance of a bait matrix treated with the entomopathogenic fungus Metarhizium anisopliae (Metsch. Sorokin, Strain Saravan (DEMI 001, against M. diversus was evaluated in this paper. The highest rate of mortality occurred at concentrations of 3.7 × 107 and 3.5 × 108 (conidia per mL. There was no significant difference between treatments, in the rate of feeding on the bait. The fungal pathogen was not repellent to the target termite over the conidial concentrations used. The current results suggest potential of such bait system in controlling termite. However the effectiveness of M. anisopliae as a component of integrated pest management for M. diversus still needs to be proven under field conditions.

  20. [Potential of Metarhizium anisopliae and Beauveria bassiana isolates and neem oil to control the Aphid Lipaphis erysimi (Kalt.) (Hemiptera: Aphididae)].

    Science.gov (United States)

    de Araujo, José M; Marques, Edmilson J; de Oliveira, José V

    2009-01-01

    This work aimed to determine the efficiency of the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana to control the aphid Lipaphis erysimi (Kalt.) (Hemiptera: Aphididae) in kale Brassica oleracea var acephala D.C., as well as their compatibility with a neem oil formulation (Neemseto). Ten isolates of both fungi were tested and the most pathogenic ones were B. bassiana CG001 and M. anisopliae CG30 with 90% and 4.4 days, and 64% and 3.8 days of mortality and median lethal time, respectively. Bioassays with neem at concentrations of 0.5, 1.0 and 2.0% were done either by leaf discs dipping or spraying the aphids on the leaf discs. The neem spraying treatment at 2.0% provided 90% mortality. The use of B. bassiana isolate CG001 or M. anisopliae isolate CG30 with neem at 0.125, 0.25, and 0.5%, demonstrated that these isolates could have their spore viability or colony growth affected when exposed to neem concentrations higher than 0.25%. In absolute values, the isolates B. bassiana CG001 and M. anisopliae CG30 are the most virulent to L. erysimi, and could be utilized in the management of this pest.

  1. Prospects of using Metarhizium anisopliae to check the breeding of insect pest, Oryctes rhinoceros L. in coconut leaf vermicomposting sites.

    Science.gov (United States)

    Gopal, Murali; Gupta, Alka; Thomas, George V

    2006-10-01

    During vermicomposting of coconut leaves by the earthworm Eudrilus sp., Oryctes rhinoceros L. (rhinoceros beetle), an insect pest of palms, was found to breed in the decomposing organic material. Metarhizium anisopliae var. major was tried as a biocontrol agent for management of this pest. The effect of pathogen at spore loads of 10(3), 10(4) and 10(5) per 10 g of substrate was tested in laboratory on Eudrilus sp. kept with O. rhinoceros grubs and on Eudrilus sp. alone for the pathogenic capability of the fungus on the pest and its possible toxicity towards the vermin. The efficacy of the entomopathogen was also tested in the field in vermicomposting tanks. In laboratory bioassay, 100% mycosis of O. rhinoceros grubs could be obtained while the entomopathogen had no toxic effect on the earthworms. There was a positive change in the number and weight of the earthworms on treatment with M. anisopliae. In the field, application of M. anisopliae reduced O. rhinoceros grubs in the vermicomposting tanks upto an extent of 72%. In conclusion, M. anisopliae could effectively control O. rhinoceros in vermicomposting sites and was non-hazardous to the vermicomposting process as well as the Eudrilus sp.

  2. Patogenisitas Isolat Beauveria bassiana dan Metarhizium anisopliae asal Tanah Lebak dan Pasang Surut Sumatera Selatan untuk Agens Hayati Scirpophaga incertulas

    Directory of Open Access Journals (Sweden)

    Rosdah Thalib

    2014-08-01

    Full Text Available Pathogeicity of Beauveria bassiana and  Metarhizium anisopliae Isolates from Fresh Swamp and  Tidal Lowland, South Sumatra for Scirpophaga incertulas Biological Agents.  The objectives of the research weret o explore and to determine the pathogenicity of entomopathogenic  fungi againts the larvae of Scirpophaga incertulas, and to measure conidial viability and density of the fungi.  The method for fungi exploration used larvae of Tenebrio molitor baiting submerged in the soil.  The soil was taken from fresh swampand tidal lowland rice in South  Sumatra.  From the exploration study, we found two species of entomopathogenic fungi: Beauveria bassiana and Metarhizium anisopliae. Mortality of S. incertulas larvae that had been treated topically with fungal conidia (1x106 conidia ml-1 varied among the isolates. The highest mortality (98.33% caused by BPlus isolate of B. Bassiana and the lowest by MtmIn  isolate of M. anisopliae (57.50% and BTmTr  isolate of B. bassiana (57.50%.  The fungal colonies grew fast from the second day up to the fourth day after incubation but the growth became slow after the fifth day.  The highest conidial density was resulted by   BPcMs of B. bassiana isolate (63.33x106 conidia ml-1 but  this density was not significantly different from that of the BPlus  of B. bassiana isolate (63.11x106 conidia ml-1.  The lowest conidial density found in BTmTr of B. bassiana isolate (20.97x106 conidia ml-1 .   The isolate B. bassiana was more effective than M. anisopliae againt the larvae of S.incertulas.

  3. Hemocyte characterization of Nasutitermes coxipoensis (Holmgren) (Isoptera: Termitidae) workers and hemocyte evaluation after parasitism by Metarhizium anisopliae

    International Nuclear Information System (INIS)

    Cunha, Franklin M.; Wanderley-Teixeira, Valeria; Albuquerque, Auristela C.; Lima, Elza A.L.A.

    2009-01-01

    We aimed to characterize the morphology and ultrastructure of hemocytes of Nasutitermes coxipoensis (Holmgren) workers and to quantify the cell types 24h, 48h and 72h after inoculation with Metarhizium anisopliae. Six hemocytes types were identified, plasmatocyte, granulocyte, spherulocyte, prohemocyte, adipohemocyte and eonocytoid Hemocytes did not present any morphological alteration at the several observation periods, but they did have a change in their abundance, as observed for spherulocytes, adipohemocytes and eonocytoids at all intervals, and for plasmatocytes and granulocytes at 48h after host inoculation. We argue on the possible reasons and implications of the observed changes. (author)

  4. Differential expression of the pr1A gene in Metarhizium anisopliae and Metarhizium acridum across different culture conditions and during pathogenesis

    Directory of Open Access Journals (Sweden)

    Mariele Porto Carneiro Leão

    2015-03-01

    Full Text Available The entomopathogenic fungi of the genus Metarhizium have several subtilisin-like proteases that are involved in pathogenesis and these have been used to investigate genes that are differentially expressed in response to different growth conditions. The identification and characterization of these proteases can provide insight into how the fungus is capable of infecting a wide variety of insects and adapt to different substrates. In addition, the pr1A gene has been used for the genetic improvement of strains used in pest control. In this study we used quantitative RT-PCR to assess the relative expression levels of the pr1A gene in M. anisopliae and M. acridum during growth in different culture conditions and during infection of the sugar cane borer, Diatraea saccharalis Fabricius. We also carried out a pathogenicity test to assess the virulence of both species against D. saccharalis and correlated the results with the pattern of pr1A gene expression. This analysis revealed that, in both species, the pr1A gene was differentially expressed under the growth conditions studied and during the pathogenic process. M. anisopliae showed higher expression of pr1A in all conditions examined, when compared to M. acridum. Furthermore, M. anisopliae showed a greater potential to control D. saccharalis. Taken together, our results suggest that these species have developed different strategies to adapt to different growing conditions.

  5. EFEITO ANTAGÔNICO DE Trichoderma sp. NO DESENVOLVIMENTO DE Beauveria bassiana (Bals. Vuill. e Metarhizium anisopliae (Metsch. Sorok ANTAGONISTIC EFFECT OF Trichoderma sp. ON THE DEVELOPMENT OF Beauveria bassiana (Bals. Vuill. AND Metarhizium anisopliae (Metsch. SOROK

    Directory of Open Access Journals (Sweden)

    Alcides Moino Jr.

    1999-01-01

    Full Text Available Este trabalho teve por objetivo avaliar o efeito de Trichoderma sp. no desenvolvimento de Beauveria bassiana e Metarhizium anisopliae. Trichoderma sp., B. bassiana (isolado 634 e M. anisopliae (isolado E-9 foram inoculados em meio BDA, com intervalos de 0, 48, 120 e 168 horas entre a inoculação de Trichoderma sp. e dos entomopatógenos. Avaliou-se o crescimento radial das colônias nos períodos de 48 e 120 horas após a inoculação de Trichoderma sp., sendo que este afetou o desenvolvimento dos entomopatógenos quando inoculado simultaneamente ou após 48 horas. B. bassiana e M. anisopliae desenvolveram-se normalmente quando inoculados 168 horas antes de Trichoderma sp.. Também foi avaliado o efeito de um extrato de Trichoderma sp. sobre os entomopatógenos, com a adição de 0,1; 0,5; 1,0 e 5,0 ml de extrato/100,0 ml de meio, onde foram inoculados os entomopatógenos. Foram medidos os diâmetros de colônias e o número de conídios produzidos por B. bassiana e M. anisopliae na presença do extrato. A concentração de 5,0 ml de extrato/100,0 ml de meio alterou o crescimento e a conidiogênese de B. bassiana. O fungo M. anisopliae foi afetado a partir da adição de 1,0 ml de extrato/100,0 ml de meio.The objective of this work was to evaluate the effect of Trichoderma sp. on the development of Beauveria bassiana and Metarhizium anisopliae. The fungus Trichoderma sp. was inoculated on PDA culture medium, 0, 48, 120 and 168 hours after inoculation of the same plates with either B. bassiana (isolate 634 or M. anisopliae (isolate E-9. The radial growth of fungal colonies was measured 48 and 120 hours after Trichoderma sp. inoculation. Trichoderma sp. affected the development of both entomopathogenic fungi when inoculated simultaneously or 48 hours later. B. bassiana and M. anisopliae had normal development when inoculated 168 hours before Trichoderma sp. The effect of a toxic extract from Trichoderma sp. on the entomopathogenic fungi was also

  6. Inhibition of the entomopathogenic fungus Metarhizium anisopliae in vitro by the bed bug defensive secretions (E)-2-hexenal and (E)-2-octenal

    Science.gov (United States)

    The two major aldehydes (E)-2-hexenal and (E)-2-octenal emitted as defensive secretions by bed bugs Cimex lectularius L. (Hemiptera: Cimicidae), inhibit the in vitro growth of Metarhizium anisopliae (Metsch.) Sokorin (Hypocreales: Clavicipitaceae). These chemicals inhibit fungal growth by direct con...

  7. Survival and mutant production induced by mutagenic agents in Metarhizium anisopliae Sobrevivência e obtenção de mutantes induzidos por agentes mutagênicos em Metarhizium anisopliae

    Directory of Open Access Journals (Sweden)

    V. Kava - Cordeiro

    1995-12-01

    Full Text Available A wild strain of Metarhizium anisopliae, an entomopathogenic fungus, was submitted to three mutagenic agents: gamma radiation, ultraviolet light and nitrous acid. Survival curves were obtained and mutants were selected using different mutagenic doses which gave 1 to 5% survival. Morphological and auxotrophic mutants were isolated. Morphological mutants were grouped in a class with yellow conidia and other with pale vinaceous conidia as opposed to the green wild type conidia. Auxotrophic mutants had requirements for vitamin and aminoacid biosynthesis. More than 58% of the total auxotrophk mutants required proline/aipnine. Gamma radiation showed to be the most efficient mutagenic agent giving 0.2% of auxotrophk mutants followed by ultraviolet light (0.12% and nitrous acid (0.06%.The conidial colour and auxotrophk mutants isolated until now from M. anisopliae were reviewed.Uma linhagem selvagem do fungo entomopatogênico Metarhizium anisopliae foi submetida à ação de três agentes mutagênicos: radiação gama, luz ultravioleta e ácido nitroso. Curvas de sobrevivência foram obtidas para cada mutagênicos utilizado e mutantes foram selecionados a partir de doses dos mutagênicos que proporcionassem de 1 a 5% de sobrevivência. Mutantes morfológicos para a coloração de conídios e mutantes auxotróficos foram isolados. Mutantes para coloração de conidios foram agrupados em duas classes, uma com conídios amarelos e outra com conídios vinho pálido. Os mutantes auxotróficos obtidos foram deficientes para aminoácidos e vitaminas e mais de 58% deles eram auxotróficos para prolina/argmina. Radiação gama foi o mutagênico mais eficiente com uma porcentagem de obtenção de mulantes auxotróficos de aproximadamente 0,2%, seguido pela luz ultravioleta (0.12% e pelo ácido nitroso (0.06%.Os mulantes morfológicos e auxotróficos obtidos até o momento em Metarhizium anisopliae foram revistos.

  8. EFFICACY THE MIXTURE OF TWO STRAINS OF Metarhizium anisopliae (Deuteromycotina: Hyphomycetes TO CONTROL Rhipicephalus microplus ON NATURAL INFESTATION OF CATTLE

    Directory of Open Access Journals (Sweden)

    Roger Ivan Rodriguez-Vivas

    2014-08-01

    Full Text Available The objective of the present study was to evaluate the efficacy of Metarhizium anisopliae on the control of Rhipicephalus microplus in cattle infested naturally in the Mexican tropics. The study was carried out on a ranch in the Mexican tropics. Base on the number of adult and immature (larvae and nymphs R. microplus ticks 20 steers were assigned into two groups of 10 cattle. Animals in the treated group (average of 73.4 y 27.5 adult and immature ticks respectively were sprayed with a mixture of Ma14+Ma34 of M. anisopliae at a concentration of 1x108 conidios/ml. The other group remained as untreated control (average of 77.7 y 24.7 adult and immature ticks respectively and treated with water+Tween 80. Each group received 4 applications every 14 days. Adult and immature stages of ticks were recorded on days 0, 3, 5, 7 and 14 post-treatment. From the first application treatment to the end of the experiment, animals in the treated group had lower counts (P < 0.05 of adult (30.9-87% and immature (35.8-72% ticks. The results demonstrate the efficacy of repeated treatment with the strains Ma14+Ma34 of M. anisopliae can be used as an alternative to control natural infestation of R. microplus on cattle in the Mexican tropics.

  9. Secretome Analysis of Metarhizium anisopliae Under Submerged Conditions Using Bombyx mori Chrysalis to Induce Expression of Virulence-Related Proteins.

    Science.gov (United States)

    Rustiguel, Cynthia Barbosa; Rosa, José Cesar; Jorge, João Atílio; de Oliveira, Arthur Henrique Cavalcanti; Guimarães, Luis Henrique Souza

    2016-02-01

    The entomopathogenic fungus Metarhizium anisopliae is used to control insect pests. This species is specialized for the secretion of an enzymatic complex consisting of proteases, lipases, and chitinases related to pathogenicity and virulence. In this context, the secretomes of strains IBCB 167 and IBCB 384 of M. anisopliae var. anisopliae, grown under submerged fermentation in the presence of chrysalis as an inducer, were analyzed. Analysis of two-dimensional gels showed qualitative and quantitative differences between secreted proteins in both isolates. Around 102 protein spots were analyzed, and 76 % of the corresponding proteins identified by mass spectrometry were grouped into different classes (hydrolases, oxidases, reductases, isomerases, kinases, WSC domains, and hypothetical proteins). Thirty-three per cent of all the proteins analyzed were found to be common in both strains. Several virulence-related proteins were identified as proteases and mannosidases. Endo-N-acetyl-β-D-glucosaminidase expression was observed to be 10.14-fold higher for strain IBCB 384 than for strain IBCB 167, which may be an important contributor to the high virulence of IBCB 384 in Diatraea ssaccharalis. These results are important for elucidation of the host-pathogen relationship and the differences in virulence observed between the two strains.

  10. New biotypes of Metarhizium anisopliae var. anisopliae E9 strain with altered conidial germination, obtained by exposition to gamma radiation; Novos biotipos de Metarhizium anisopliae var. anisopliae (Metsch.) Sorokin com germinacao alterada de conidios, obtidos pela exposicao a radiacao gama

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, M.G.; Oliveira, N.T.; Luna Alves Lima, E.A. [Pernambuco Univ., Recife, PE (Brazil). Centro de Ciencias Biologicas. Dept. de Micologia

    1997-12-31

    Conidia produced by a wild strain (E9) of the entomopathogenic fungus M. anisopliae var anisopliae were exposed to gamma radiation in order to obtain new biotypes. At the 390 Gy dose there were obtained 48 colonies (MaE). On complete medium, 5 colonies (MaE 01, MaE 10, MaE 15, MaE 40) presented morphological changes in color while the colony MaE 24 lost its esporulation capacity. Twenty six colonies presented mycelial growth significantly different from the wild strain, after 12 days of incubation. Twelve colonies showed average of conidial germination different from the wild strain, after 12 days of incubation on liquid minimum medium at 25 deg C. The colony MaE started germination precociously after 5 hours of incubation. (author) 31 refs., 1 fig., 4 tabs.

  11. CONTROLE ASSOCIADO DE Cornitermes cumulans (KOLLAR, 1832 (ISOPTERA: TERMITIDAE COM Metarhizium anisopliae, Beauveria bassiana E IMIDACLOPRID ASSOCIATED CONTROL OF Cornitermes cumulans (KOLLAR, 1832 (ISOPTERA: TERMITIDAE WITH Metarhizium anisopliae, Beauveria bassiana AND IMIDACLOPRID

    Directory of Open Access Journals (Sweden)

    Pedro Janeiro Neves

    1999-01-01

    Full Text Available O objetivo desta pesquisa foi o de verificar em condições de campo a eficiência do controle associado de colônias de Cornitermes cumulans utilizando imidacloprid juntamente com fungos entomopatogênicos (Metarhizium anisopliae e Beauveria bassiana. Foram realizados experimentos de campo para determinar quais as concentrações mínimas de conídios e de imidacloprid que quando aplicadas em associação controlaram os ninhos de cupins, mas quando aplicadas em separado não foram eficientes. Isto ocorreu quando 500 mg de conídios do patógeno (M. anisopliae ou B. bassiana foram misturados a 1,9 mg do produto comercial Gaucho 70 PM (imidacloprid e 6 gramas do inerte calcene. Foi possível diminuir a concentração de conídios em até 4 vezes e a do inseticida imidacloprid em até 157 vezes em relação às concentrações usualmente recomendadas. Estas concentrações possibilitaram elevados níveis de controle dos ninhos grandes (>80%, com uma diminuição considerável no custo do controle. Além disso, é importante considerar os benefícios ecológicos advindos deste controle associado pela diminuição na quantidade de inseticida a ser utilizada. Deste modo, esta estratégia deve ser explorada como uma alternativa importante na eliminação das colônias grandes de C. cumulans.The objective of this study was to investigate, under field conditions, the control efficiency against nests of Cornitermes cumulans using imidacoprid associated with entomopathogenic fungi (Metarhizium anisopliae and Beauveria bassiana. Field experiments were conducted to determine the minimal conidia and imidacloprid concentration jointly applied, necessary to control termite nest, but when applied separately was not efficient. This occurred when 500 mg of conidia of the pathogen (M. anisopliae or B. bassiana were mixed with 1.9 mg of imidacloprid (Gaucho 70 PM and 6 g of the inert calcene. It was possible to reduce the conidial concentration 4 times and the

  12. New biotypes of Metarhizium anisopliae var. anisopliae E9 strain with altered conidial germination, obtained by exposition to gamma radiation

    International Nuclear Information System (INIS)

    Oliveira, M.G.; Oliveira, N.T.; Luna Alves Lima, E.A.

    1997-01-01

    Conidia produced by a wild strain (E9) of the entomopathogenic fungus M. anisopliae var anisopliae were exposed to gamma radiation in order to obtain new biotypes. At the 390 Gy dose there were obtained 48 colonies (MaE). On complete medium, 5 colonies (MaE 01, MaE 10, MaE 15, MaE 40) presented morphological changes in color while the colony MaE 24 lost its esporulation capacity. Twenty six colonies presented mycelial growth significantly different from the wild strain, after 12 days of incubation. Twelve colonies showed average of conidial germination different from the wild strain, after 12 days of incubation on liquid minimum medium at 25 deg C. The colony MaE started germination precociously after 5 hours of incubation. (author)

  13. Density, Viability Conidia And Symptoms of Metarhizium anisopliae infection on Oryctes rhinoceros larvae

    Science.gov (United States)

    Indriyanti, D. R.; Putri, R. I. P.; Widiyaningrum, P.; Herlina, L.

    2017-04-01

    M. anisopliae is parasitic fungus on insect pests; it is used as a biocontrol agent. M. anisopliae can be propagated on maize or rice substrate. M. anisopliae is currently sold in the form of kaolin powder formulations. Before it is used to check the density, viability and pathogenicity of M. anisopliae. However the problem is the kaolin powder very soft, so it difficult to distinguish between kaolin and conidia. This article gives information on how to calculate conidia density, viability and symptoms of M. anisopliae infection on Oryctes rhinoceros larvae. The study was conducted in the laboratory to determine the density and viability. The pathogenicity testing was done using pots. The Pot is containing soil substrate mixed with M. Anispoliae and ten tails O. Rhinoceros larvae per pot. The results showed that the density of M. anisopliae conidia was 1.81 x 108 conidia mL-1 and the viability was 94% within 24 hours. The larval mortality began to emerge in the 1st week, and all larvae died at the sixth week. The symptom of M. anisopliae infection on Oryctes rhinoceros larvae, there was a black spot on the larval integument. The larvae movements become slow and poor appetite; it will die within 3-7 days. The larvae die hard, and the white hyphae grow on the body surface that turns green.

  14. Bioassay assessment of metarhizium anisopliae (metchnikoff sorokin (deuteromycota: hyphomycetes against Oncometopia facialis (signoret (hemiptera: cicadellidae Avaliação do bioensaio de Metarhizium anisopliae (metchnikoff sorokin (deuteromycota: hyphomycetes contra Oncometopia facialis (signoret (hemiptera: cicadellidae

    Directory of Open Access Journals (Sweden)

    Wolney Dalla Pria Júnior

    2008-03-01

    Full Text Available Citrus Variegated Chlorosis (CVC is an economically important, destructive disease in Brazil and is caused by Xylella fastidiosa and transmitted by sharpshooter insects. In this study, the efficacy of the fungus Metarhizium anisopliae in controlling the sharpshooter Oncometopia facialis was studied by bioassay conditions. In the bioassay, insects were sprayed with a suspension containing 5 X 10(7 conidia mL-1. Adults captured in the field were treated in groups of 10 in a total of 11 replications per treatment. Significant differences between the natural mortality and the mortality of insects treated with the fungus were observed 6 days after inoculations (PA Clorose Variegada dos Citros (CVC é uma doença economicamente importante e destrutiva no Brasil e é causada pela bactéria Xylella fastidiosa e transmitida por insetos vetores tal como Oncometopia facialis. Nesse estudo, a eficácia do fungo Metarhizium anisopliae em controlar o inseto vetor O. facialis foi estudada em condições de bioensaio. Nesse bioensaio, insetos foram pulverizados com uma suspensão de 5 X 10(7 conídio mL-1. Insetos-adultos capturados no campo foram tratados em grupos de 10, em um total de 11 replicatas por tratamento. Diferenças significativas entre a mortalidade natural e a mortalidade dos insetos tratados com o fungo foram observadas em 6 dias após a inoculação (P<0.05. Estas diferenças significativas aumentaram antes do décimo dia após o tratamento. O fungo causou uma mortalidade de 87,1%, com uma LT50 variando entre 5 e 6 dias. A LC50 foi de 1,2 X 10(6 conídio mL-1, variando de 7,7 X 10(5 a 2 X 10(6 conídio mL-1. Estes resultados mostraram que o vetor O. facialis foi susceptível a ação entomopatogênica de M. anisopliae em condições controladas durante o bioensaio.

  15. Evaluating the virulence of Metarhizium anisopliae (Deuteromycotina: Hyphomycetes and Beauveria bassiana (Ascomycota: Hypocreales isolates to Arabian rhinoceros beetle, Oryctes agamemnon arabicus

    Directory of Open Access Journals (Sweden)

    M.W. Khudhair

    2015-12-01

    Full Text Available Virulence of entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana were tested against Arabian Rhinoceros Beetle, Oryctes agamemnon arabicus larvae. Four concentrations (1×105, 1×107, 1×109 and 1×1011 conidia/mL–1 of two locally isolated entomopathogenic fungi spore suspensions were used in this study via larval direct spraying. Results revealed that both isolates can cause high mortality rate reaching 100% after 29 days. However, Beauveria bassiana scored higher mortality rate in short time especially at the concentration of 1×1011 conidia/ mL–1 with lethal time (LT50 12.75 and LT90 20.00; while, Metarhizium anisopliae caused the higher percentage of malformed adults. Moreover, both isolates affected insect’s life cycle particularly in the pupal stage which was reduced remarkably by almost 50% in comparison with the control treatment.

  16. Allergic Responses Induced by a Fungal Biopesticide Metarhizium anisopliae and House Dust Mite Are Compared in a Mouse Model

    Directory of Open Access Journals (Sweden)

    Marsha D. W. Ward

    2011-01-01

    Full Text Available Biopesticides can be effective in controlling their target pest. However, research regarding allergenicity and asthma development is limited. We compared the ability of fungal biopesticide Metarhizium anisopliae (MACA and house dust mite (HDM extracts to induce allergic responses in BALB/c mice. The extracts were administered by intratracheal aspiration at doubling doses (2.5–80 g protein 4X over a four-week period. Three days after the last exposure, serum and bronchoalveolar lavage fluid (BALF were collected. The extracts' relative allergenicity was evaluated based on response robustness (lowest significant dose response compared to control (0 g. MACA induced a more robust serum total IgE response than HDM. However, in the antigen-specific IgE assay, a similar dose of both MACA and HDM was required to achieve the same response level. Our data suggest a threshold dose of MACA for allergy induction and that M. anisopliae may be similar to HDM in allergy induction potential.

  17. The effects of the fungus Metarhizium anisopliae var. acridum on different stages of Lutzomyia longipalpis (Diptera: Psychodidae).

    Science.gov (United States)

    Amóra, Sthenia Santos Albano; Bevilaqua, Claudia Maria Leal; Feijó, Francisco Marlon Carneiro; Pereira, Romeika Hermínia de Macedo Assunção; Alves, Nilza Dutra; Freire, Fúlvio Aurélio de Morais; Kamimura, Michel Toth; de Oliveira, Diana Magalhães; Luna-Alves Lima, Elza Aurea; Rocha, Marcos Fábio Gadelha

    2010-03-01

    The control of Visceral Leishmaniasis (VL) vector is often based on the application of chemical residual insecticide. However, this strategy has not been effective. The continuing search for an appropriate vector control may include the use of biological control. This study evaluates the effects of the fungus Metarhizium anisopliae var. acridum on Lutzomyia longipalpis. Five concentrations of the fungus were utilized, 1 x 10(4) to 1 x 10(8) conidia/ml, accompanied by controls. The unhatched eggs, larvae and dead adults previously exposed to fungi were sown to reisolate the fungi and analysis of parameters of growth. The fungus was subsequently identified by PCR and DNA sequencing. M. anisopliae var. acridum reduced egg hatching by 40%. The mortality of infected larvae was significant. The longevity of infected adults was lower than that of negative controls. The effects of fungal infection on the hatching of eggs laid by infected females were also significant. With respect to fungal growth parameters post-infection, only vegetative growth was not significantly higher than that of the fungi before infection. The revalidation of the identification of the reisolated fungus was confirmed post-passage only from adult insects. In terms of larvae mortality and the fecundity of infected females, the results were significant, proving that the main vector species of VL is susceptible to infection by this entomopathogenic fungus in the adult stage. Copyright 2009 Elsevier B.V. All rights reserved.

  18. Persistence of Brazilian isolates of the entomopathogenic fungi Metarhizium anisopliae and M. robertsii in strawberry crop soil after soil drench application

    DEFF Research Database (Denmark)

    Castro, Thiago; Mayerhofer, Johanna; Enkerli, Jürg

    2016-01-01

    Establishment, persistence and local dispersal of the entomopathogenic fungi Metarhizium anisopliae (ESALQ1037) and M. robertsii (ESALQ1426) (Ascomycota: Hypocreales) were investigated in the soil and rhizosphere following soil drench application in strawberries between 2012 and 2013 at a single...... sequence repeat analysis. Both applied fungal isolates were frequently recovered from bulk soil and rhizosphere samples of the treated plots, suggesting that they were able to establish and disperse within the soil. Persistence within the soil and strawberry rhizosphere for both fungal isolates...

  19. Human sera IgE reacts with a Metarhizium anisopliae fungal catalase

    Science.gov (United States)

    Background: Previous studies have demonstrated that Metarhzium anisopliae extract can induce immune responses in a mouse model that are characteristic of human allergic asthma. Objectives: The objective of this study was to identify and characterize the extract proteins t...

  20. Differential susceptibility of adults and nymphs of Blattella germanica (L.) (Blattodea: Blattellidae) to infection by Metarhizium anisopliae and assessment of delivery strategies

    International Nuclear Information System (INIS)

    Lopes, R.B.; Alves, S.B.

    2011-01-01

    Microbial insecticides for cockroach control, such as those containing entomopathogenic fungi, may be an alternative to reduce contamination by chemicals in housing and food storage environments. Virulence of isolate ESALQ1037 belonging to the Metarhizium anisopliae complex against nymphs and adults of Blattella germanica (L.), and its infectivity following exposure of insects to a contaminated surface or to M. anisopliae-bait were determined under laboratory conditions. Estimated LD50 15 d following topical inoculation was 2.69 x 105 conidia per adult, whereas for nymphs the maximum mortality was lower than 50%. Baits amended with M. anisopliae conidia had no repellent effect on targets; adult mortality was inferior to 25%, and nymphs were not susceptible. All conidia found in the digestive tract of M. anisopliae-bait fed cockroaches were unviable, and bait-treated insects that succumbed to fungal infection showed a typical mycelial growth on mouthparts and front legs, but not on the hind body parts. As opposed to baits, the use of a M. anisopliae powdery formulation for surface treatment was effective in attaining high mortality rates of B. germanica. Both nymphs and adults were infected when this delivery strategy was used, and mycelia growth occurred all over the body surface. Our results suggest that the development of powders or similar formulations of M. anisopliae to control B. germanica may provide faster and better results than some of the strategies based on baits currently available. (author)

  1. Differential susceptibility of adults and nymphs of Blattella germanica (L.) (Blattodea: Blattellidae) to infection by Metarhizium anisopliae and assessment of delivery strategies

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, R.B., E-mail: rblopes@cenargen.embrapa.b [EMBRAPA Recursos Geneticos e Biotecnologia, Brasilia, DF (Brazil); Alves, S.B. [Escola Superior de Agricultura Luiz de Queiroz (ESALQ/USP), Piracicaba, SP (Brazil). Dept. de Entomologia e Acarologia

    2011-05-15

    Microbial insecticides for cockroach control, such as those containing entomopathogenic fungi, may be an alternative to reduce contamination by chemicals in housing and food storage environments. Virulence of isolate ESALQ1037 belonging to the Metarhizium anisopliae complex against nymphs and adults of Blattella germanica (L.), and its infectivity following exposure of insects to a contaminated surface or to M. anisopliae-bait were determined under laboratory conditions. Estimated LD50 15 d following topical inoculation was 2.69 x 105 conidia per adult, whereas for nymphs the maximum mortality was lower than 50%. Baits amended with M. anisopliae conidia had no repellent effect on targets; adult mortality was inferior to 25%, and nymphs were not susceptible. All conidia found in the digestive tract of M. anisopliae-bait fed cockroaches were unviable, and bait-treated insects that succumbed to fungal infection showed a typical mycelial growth on mouthparts and front legs, but not on the hind body parts. As opposed to baits, the use of a M. anisopliae powdery formulation for surface treatment was effective in attaining high mortality rates of B. germanica. Both nymphs and adults were infected when this delivery strategy was used, and mycelia growth occurred all over the body surface. Our results suggest that the development of powders or similar formulations of M. anisopliae to control B. germanica may provide faster and better results than some of the strategies based on baits currently available. (author)

  2. Protease production during growth and autolysis of submerged Metarhizium anisopliae cultures Produção de protease durante o crescimento e análise de culturas submersas de Metarhizium anisopliae

    Directory of Open Access Journals (Sweden)

    Gilberto U.L. Braga

    1999-04-01

    Full Text Available The growth and autolysis of two strains of the entomopathogenic deuteromycete fungus Metarhizium anisopliae var. anisopliae were evaluated in medium containing casein or glucose as carbon source. Parameters such as economic coefficient and degree of autolysis were determined for each strain. Protease production was determined throughout the growth and autolysis phases of the cultures on medium under conditions of protease induction (in the presence of casein as sole source of carbon and nitrogen. The fungus was shown to utilize casein as a carbon/energy source in a more efficient manner than glucose. The autolysis shown by the strains was intense under both types of growth conditions, reaching up to 62.7% of the dry mass produced and started soon after the depletion of the exogenous carbon source. The relationship between the proteolytic activities of the two strains evaluated varied significantly (a maximum of 19.78 on the 5th day and a minimum of 2.03 on the 16th day of growth during the various growth and autolysis phases, clearly showing that the difference between the growth curves and the difference in the kinetics of enzyme production may decisively affect the process of strain selection for protease production.O crescimento e a autólise de duas linhagens do deuteromiceto entomopatogênico Metarhizium anisopliae var. anisopliae foram avaliados em meio contendo caseína ou glicose como fonte de carbono. Foram determinados parâmetros como o coeficiente econômico e o grau de autólise apresentado pelas linhagens. A produção de protease foi determinada durante todas as fases do crescimento e da autólise das culturas, em meio indutor da produção de proteases (meio contendo caseína como única fonte de carbono e de nitrogênio. Pôde-se verificar que o fungo foi capaz de utilizar a caseína como fonte de carbono/energia de maneira mais eficiente do que a glicose. A autólise apresentada pelas linhagens foi intensa em ambas as condi

  3. Evaluation of Strains of Metarhizium anisopliae and Beauveria bassiana against Spodoptera litura on the Basis of Their Virulence, Germination Rate, Conidia Production, Radial Growth and Enzyme Activity.

    Science.gov (United States)

    Petlamul, Wanida; Prasertsan, Poonsuk

    2012-06-01

    Ten strains of the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana were evaluated to find the most effective strain for optimization studies. The first criterion tested for strain selection was the mortality (> 50%) of Spodoptera litura larvae after inoculation of the fungus for 4 days. Results on several bioassays revealed that B. bassiana BNBCRC showed the most virulence on mortality S. litura larvae (80% mortality). B. bassiana BNBCRC also showed the highest germination rate (72.22%). However, its conidia yield (7.2 × 10(8) conidia/mL) was lower than those of B. bassiana B 14841 (8.3 × 10(8) conidia/mL) and M. anisopliae M6 (8.2 × 10(8) conidia/mL). The highest accumulative radial growth was obtained from the strain B14841 (37.10 mm/day) while the strain BNBCRC showed moderate radial growth (24.40 mm/day). M. anisopliae M6 possessed the highest protease activity (145.00 mU/mL) while M. anisopliae M8 possessed the highest chitinase activity (20.00 mU/mL) during 96~144 hr cultivation. Amongst these criteria, selection based on virulence and germination rate lead to the selection of B. bassiana BNBCRC. B. bassiana B14841 would be selected if based on growth rate while M. anisopliae M6 and M8 possessed the highest enzyme activities.

  4. Secondary metabolite gene clusters in the entomopathogen fungus Metarhizium anisopliae: genome identification and patterns of expression in a cuticle infection model

    Directory of Open Access Journals (Sweden)

    Nicolau Sbaraini

    2016-10-01

    Full Text Available Abstract Background The described species from the Metarhizium genus are cosmopolitan fungi that infect arthropod hosts. Interestingly, while some species infect a wide range of hosts (host-generalists, other species infect only a few arthropods (host-specialists. This singular evolutionary trait permits unique comparisons to determine how pathogens and virulence determinants emerge. Among the several virulence determinants that have been described, secondary metabolites (SMs are suggested to play essential roles during fungal infection. Despite progress in the study of pathogen-host relationships, the majority of genes related to SM production in Metarhizium spp. are uncharacterized, and little is known about their genomic organization, expression and regulation. To better understand how infection conditions may affect SM production in Metarhizium anisopliae, we have performed a deep survey and description of SM biosynthetic gene clusters (BGCs in M. anisopliae, analyzed RNA-seq data from fungi grown on cattle-tick cuticles, evaluated the differential expression of BGCs, and assessed conservation among the Metarhizium genus. Furthermore, our analysis extended to the construction of a phylogeny for the following three BGCs: a tropolone/citrinin-related compound (MaPKS1, a pseurotin-related compound (MaNRPS-PKS2, and a putative helvolic acid (MaTERP1. Results Among 73 BGCs identified in M. anisopliae, 20 % were up-regulated during initial tick cuticle infection and presumably possess virulence-related roles. These up-regulated BGCs include known clusters, such as destruxin, NG39x and ferricrocin, together with putative helvolic acid and, pseurotin and tropolone/citrinin-related compound clusters as well as uncharacterized clusters. Furthermore, several previously characterized and putative BGCs were silent or down-regulated in initial infection conditions, indicating minor participation over the course of infection. Interestingly, several up

  5. Anopheline and culicine mosquitoes are not repelled by surfaces treated with the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana

    Directory of Open Access Journals (Sweden)

    Mnyone Ladslaus L

    2010-08-01

    Full Text Available Abstract Background Entomopathogenic fungi, Metarhizium anisopliae and Beauveria bassiana, are promising bio-pesticides for application against adult malaria mosquito vectors. An understanding of the behavioural responses of mosquitoes towards these fungi is necessary to guide development of fungi beyond the 'proof of concept' stage and to design suitable intervention tools. Methods Here we tested whether oil-formulations of the two fungi could be detected and avoided by adult Anopheles gambiae s.s., Anopheles arabiensis and Culex quinquefasciatus. The bioassays used a glass chamber divided into three compartments (each 250 × 250 × 250 mm: release, middle and stimulus compartments. Netting with or without fungus was fitted in front of the stimulus compartment. Mosquitoes were released and the proportion that entered the stimulus compartment was determined and compared between treatments. Treatments were untreated netting (control 1, netting with mineral oil (control 2 and fungal conidia formulated in mineral oil evaluated at three different dosages (2 × 1010, 4 × 1010 and 8 × 1010 conidia m-2. Results Neither fungal strain was repellent as the mean proportion of mosquitoes collected in the stimulus compartment did not differ between experiments with surfaces treated with and without fungus regardless of the fungal isolate and mosquito species tested. Conclusion Our results indicate that mineral-oil formulations of M. anisopliae and B. bassiana were not repellent against the mosquito species tested. Therefore, both fungi are suitable candidates for the further development of tools that aim to control host-seeking or resting mosquitoes using entomopathogenic fungi.

  6. Vectorial capacity of Aedes aegypti for dengue virus type 2 is reduced with co-infection of Metarhizium anisopliae.

    Science.gov (United States)

    Garza-Hernández, Javier A; Rodríguez-Pérez, Mario A; Salazar, Ma Isabel; Russell, Tanya L; Adeleke, Monsuru A; de Luna-Santillana, Erik de J; Reyes-Villanueva, Filiberto

    2013-01-01

    Aedes aegypti, is the major dengue vector and a worldwide public health threat combated basically by chemical insecticides. In this study, the vectorial competence of Ae. aegypti co-infected with a mildly virulent Metarhizium anisopliae and fed with blood infected with the DENV-2 virus, was examined. The study encompassed three bioassays (B). In B1 the median lethal time (LT50) of Ae. aegypti exposed to M. anisopliae was determined in four treatments: co-infected (CI), single-fungus infection (SF), single-virus infection (SV) and control (C). In B2, the mortality and viral infection rate in midgut and in head were registered in fifty females of CI and in SV. In B3, the same treatments as in B1 but with females separated individually were tested to evaluate the effect on fecundity and gonotrophic cycle length. Survival in CI and SF females was 70% shorter than the one of those in SV and control. Overall viral infection rate in CI and SV were 76 and 84% but the mortality at day six post-infection was 78% (54% infected) and 6% respectively. Survivors with virus in head at day seven post-infection were 12 and 64% in both CI and SV mosquitoes. Fecundity and gonotrophic cycle length were reduced in 52 and 40% in CI compared to the ones in control. Fungus-induced mortality for the CI group was 78%. Of the survivors, 12% (6/50) could potentially transmit DENV-2, as opposed to 64% (32/50) of the SV group, meaning a 5-fold reduction in the number of infective mosquitoes. This is the first report on a fungus that reduces the vectorial capacity of Ae. aegypti infected with the DENV-2 virus.

  7. Susceptibility of adult female Aedes aegypti (Diptera: Culicidae to the entomopathogenic fungus Metarhizium anisopliae is modified following blood feeding

    Directory of Open Access Journals (Sweden)

    Samuels Richard I

    2011-05-01

    Full Text Available Abstract Background The mosquito Aedes aegypti, vector of dengue fever, is a target for control by entomopathogenic fungi. Recent studies by our group have shown the susceptibility of adult A. aegypti to fungal infection by Metarhizium anisopliae. This fungus is currently being tested under field conditions. However, it is unknown whether blood-fed A. aegypti females are equally susceptible to infection by entomopathogenic fungi as sucrose fed females. Insect populations will be composed of females in a range of nutritional states. The fungus should be equally efficient at reducing survival of insects that rest on fungus impregnated surfaces following a blood meal as those coming into contact with fungi before host feeding. This could be an important factor when considering the behavior of A. aegypti females that can blood feed on multiple hosts over a short time period. Methods Female A. aegypti of the Rockefeller strain and a wild strain were infected with two isolates of the entomopathogenic fungus M. anisopliae (LPP 133 and ESALQ 818 using an indirect contact bioassay at different times following blood feeding. Survival rates were monitored on a daily basis and one-way analysis of variance combined with Duncan's post-hoc test or Log-rank survival curve analysis were used for statistical comparisons of susceptibility to infection. Results Blood feeding rapidly reduced susceptibility to infection, determined by the difference in survival rates and survival curves, when females were exposed to either of the two M. anisopliae isolates. Following a time lag which probably coincided with digestion of the blood meal (96-120 h post-feeding, host susceptibility to infection returned to pre-blood fed (sucrose fed levels. Conclusions Reduced susceptibility of A. aegypti to fungi following a blood meal is of concern. Furthermore, engorged females seeking out intra-domicile resting places post-blood feeding, would be predicted to rest for prolonged

  8. Susceptibility of adult female Aedes aegypti (Diptera: Culicidae) to the entomopathogenic fungus Metarhizium anisopliae is modified following blood feeding.

    Science.gov (United States)

    Paula, Adriano R; Carolino, Aline T; Silva, Carlos P; Samuels, Richard I

    2011-05-26

    The mosquito Aedes aegypti, vector of dengue fever, is a target for control by entomopathogenic fungi. Recent studies by our group have shown the susceptibility of adult A. aegypti to fungal infection by Metarhizium anisopliae. This fungus is currently being tested under field conditions. However, it is unknown whether blood-fed A. aegypti females are equally susceptible to infection by entomopathogenic fungi as sucrose fed females. Insect populations will be composed of females in a range of nutritional states. The fungus should be equally efficient at reducing survival of insects that rest on fungus impregnated surfaces following a blood meal as those coming into contact with fungi before host feeding. This could be an important factor when considering the behavior of A. aegypti females that can blood feed on multiple hosts over a short time period. Female A. aegypti of the Rockefeller strain and a wild strain were infected with two isolates of the entomopathogenic fungus M. anisopliae (LPP 133 and ESALQ 818) using an indirect contact bioassay at different times following blood feeding. Survival rates were monitored on a daily basis and one-way analysis of variance combined with Duncan's post-hoc test or Log-rank survival curve analysis were used for statistical comparisons of susceptibility to infection. Blood feeding rapidly reduced susceptibility to infection, determined by the difference in survival rates and survival curves, when females were exposed to either of the two M. anisopliae isolates. Following a time lag which probably coincided with digestion of the blood meal (96-120 h post-feeding), host susceptibility to infection returned to pre-blood fed (sucrose fed) levels. Reduced susceptibility of A. aegypti to fungi following a blood meal is of concern. Furthermore, engorged females seeking out intra-domicile resting places post-blood feeding, would be predicted to rest for prolonged periods on fungus impregnated black cloths, thus optimizing infection

  9. External development of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae in the subterranean termite Heterotermes tenuis Desenvolvimento dos fungos entomopatogênicos Beauveria bassiana E Metarhizium anisopliae no cupim subterrâneo Heterotermes tenuis

    Directory of Open Access Journals (Sweden)

    Alcides Moino Jr.

    2002-06-01

    Full Text Available The subterranean termite Heterotermes tenuis is one of the main pests of sugarcane and eucalyptus in Brazil, and the use of entomopathogenic fungi, alone or associated to chemicals, is an efficient and environmentally favorable method for its control. Studies related to the fungal development on these insects are important due to the effect of insect behavior on entomopathogens. The objective of this work was to describe the external development of Beauveria bassiana and Metarhizium anisopliae on H. tenuis using Scanning Electron Microscopy (SEM, determining the duration of the different phases of fungal infection. Two fixation techniques for preparing SEM samples were also evaluated. Worker specimens of H. tenuis were inoculated with a 1 x 10(9 conidia mL-1 suspension of the fungi and maintained at 25±1ºC and 70±10% relative humidity. Insects were collected from 0 to 144 hours after inoculation and prepared on SEM stubs for each of the two fixation techniques. The results obtained with the two techniques were compared and duration of the different phases of the infection process were estimated from SEM observations and compared for three fungal isolates. B. bassiana and M. anisopliae have similar development cycles on the termite, but some important differences exist. The penetration, colonization and conidiogenesis phases are relatively faster for M. anisopliae than for B. bassiana, which results in a faster rate of insect mortality. The fixation technique with OsO4 vapor is suitable for preparation of insects to be used in SEM observation of the developmental stages of entomopathogenic fungi.O cupim subterrâneo Heterotermes tenuis , uma das principais pragas da cana-de-açúcar e eucalipto no Brasil, e o uso de fungos entomopatogênicos, isoladamente ou associados a produtos químicos, é um método eficiente e ambientalmente seguro para seu controle. Estudos relacionados ao desenvolvimento fúngico nestes insetos são importantes devido

  10. Performance of Metarhizium anisopliae-treated foam in combination with Phytoseiulus longipes Evans on Tetranychus evansi Baker & Pritchard (Acari: Tetranychidae).

    Science.gov (United States)

    Azandémè Hounmalon, Ginette Y; Maniania, Nguya K; Niassy, Saliou; Fellous, Simon; Kreiter, Serge; Delétré, Emilie; Fiaboe, Komi K; Martin, Thibaud

    2018-05-13

    Tetranychus evansi (Te) is an exotic pest of solanaceous crops in Africa. The predatory mite Phytoseiulus longipes (Pl) and the fungus Metarhizium anisopliae (Ma), are potential biocontrol agents of Te. The present study investigated efficacy of fungus-treated foam placed above or below the third Te-infested tomato leaf. The persistence of fungus-treated foam and the performance of Pl with or without fungus-treated foam were evaluated. The fungus-treated foam was effective when Te infestation was below the third tomato leaf as no damage was recorded on all upper tomato leaves up to 30 days post-treatment. However, in the control treatments, the infestation increased considerably from 9±0.3% to 100±0% at 15 days post-treatment. The reuse of the fungus-treated foam at 15, 30 and 45 days post-treatment resulted in 19±1.4%, 25±1.2% and 54±2.1% respective infestation by Te. The fungus-treated foam and Pl alone are efficient, but there is no benefit to combinting both against Te. The fungus-treated foam is an effective method to optimize the use of Ma in screenhouse conditions. These two control agents could be integrated in an IPM strategy for crops protection. However, these results need to be confirmed in large field trials. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  11. Ethanol production from chitosan by the nematophagous fungus Pochonia chlamydosporia and the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana.

    Science.gov (United States)

    Aranda-Martinez, Almudena; Naranjo Ortiz, Miguel Ángel; Abihssira García, Isabel Sofía; Zavala-Gonzalez, Ernesto A; Lopez-Llorca, Luis Vicente

    2017-11-01

    Chitin is the second most abundant biopolymer after cellulose and virtually unexplored as raw material for bioethanol production. In this paper, we investigate chitosan, the deacetylated form of chitin which is the main component of shellfish waste, as substrate for bioethanol production by fungi. Fungal parasites of invertebrates such as the nematophagous Pochonia chlamydosporia (Pc) or the entomopathogens Beauveria bassiana (Bb) and Metarhizium anisopliae (Ma) are biocontrol agents of plant parasitic nematodes (eg. Meloidogyne spp.) or insect pests such as the red palm weevil (Rhynchophorus ferrugineus). These fungi degrade chitin-rich barriers for host penetration. We have therefore tested the chitin/chitosanolytic capabilities of Pc, Bb and Ma for generating reducing sugars using chitosan as only nutrient. Among the microorganisms used in this study, Pc is the best chitosan degrader, even under anaerobic conditions. These fungi have alcohol dehydrogenase (ADH) and pyruvate decarboxylase (PDC) encoding genes in their genomes. We have therefore analyzed their ethanol production under anaerobic conditions using chitosan as raw material. P. chlamydosporia is the largest ethanol producer from chitosan. Our studies are a starting point to develop chitin-chitosan based biofuels. Copyright © 2017 Elsevier GmbH. All rights reserved.

  12. Susceptibilidade de larvas de Cerotoma arcuata Olivier (Coleoptera: Chrysomelidae a Beauveria bassiana (Bals. Vuillemin, Metarhizium anisopliae (Metsch. Sorokin e Bacillus thuringiensis Berliner Susceptibility of Cerotoma arcuata Olivier (Coleoptera: Chrysomelidae larvae to Beauveria bassiana (Bals. Vuillemin, Metarhizium anisopliae (Metsch. Sorokin and Bacillus thuringiensis Berliner

    Directory of Open Access Journals (Sweden)

    Maria Lucia França Teixeira

    2007-02-01

    Full Text Available Larvas de 2° instar de Cerotoma arcuata foram avaliadas em relação à susceptibilidade aos fungos entomopatogênicos Beauveria bassiana, Metarhizium anisopliae e a bactéria Bacillus thuringiensis com as toxinas Cry3. Os insetos adultos foram mantidos em gaiolas e alimentados com plântulas de feijão (Phaseolus vulgaris L. e as larvas em "gerbox" com cotilédones de plântulas de feijão recém-germinadas. Das oito estirpes de B. bassiana avaliadas, CG 156 e CG 213 causaram 100% de mortalidade das larvas, as duas estirpes de M. anisopliae CG 210 e CG 321 foram patogênicas, eliminando 80 e 100% das larvas de C. arcuata, e, das cinco estirpes de B. thuringiensis testadas, o isolado CG 940 causou 70% de mortalidade das larvas.Second instar larvae of Cerotoma arcuata were evaluated concerning the susceptibility to fungi Beauveria bassiana and Metarhizium anisopliae and Bacillus thuringiensis strains containing Cry3 toxin. Adults of C. arcuata were kept in large cages and fed on bean seedlings and the larvae were reared in ‘gearbox’ feeding on germinated Phaseolus bean cotyledons. Strains CG 156 and CG 213 of B. bassiana killed 100% of the insect larvae and strains CG 210 and CG 321 of M. anisopliae killed 80 and 100% of the insect larvae. Strain CG 940 of B. thuringiensis killed 70% of the insect larvae.

  13. Influence of entomopathogenic fungus, Metarhizium anisopliae, alone and in combination with diatomaceous earth and thiamethoxam on mortality, progeny production, mycosis, and sporulation of the stored grain insect pests.

    Science.gov (United States)

    Ashraf, Misbah; Farooq, Muhammad; Shakeel, Muhammad; Din, Naima; Hussain, Shahbaz; Saeed, Nadia; Shakeel, Qaiser; Rajput, Nasir Ahmed

    2017-12-01

    The stored grain insects cause great damage to grains under storage conditions. Synthetic insecticides and fumigants are considered as key measures to control these stored grain insect pests. However, the major issue with these chemicals is grain contamination with chemical residues and development of resistance by insect pests to these chemicals. Biological control is considered as a potential alternative to chemical control especially with the use of pathogens, alone or in combination with selective insecticides. The present study was conducted to evaluate the synergism of Metarhizium anisopliae with diatomaceous earth (DE) and thiamethoxam against four insect pests on the stored wheat grains. In the first bioassay, the M. anisopliae was applied at 1.4 × 10 4 and 1.4 × 10 6 conidia/ml alone and in integration with two concentrations (250 and 500 ppm) of tested DE. The tested fungus when combined with DE and thiamethoxam possessed synergistic impact as compared to their individual efficacy. Adult mortality increased with respect to increased exposure interval and doses. In the second bioassay, M. anisopliae was applied at 1.4 × 10 4 conidia/ml individually and in combination with three concentrations (0.50, 0.75, and 1.00 ppm) of thiamethoxam. Results concluded that M. anisopliae integrated with DE and thiamethoxam provides more effective control of stored grain insect pests.

  14. The effect of leaf biopesticide Mirabilis jalapa and fungi Metarhizium anisopliae to immune response and mortality of Spodoptera exigua instar IV

    Science.gov (United States)

    Suryani, A. Irma; Anggraeni, Tjandra

    2014-03-01

    Spodoptera exigua is one of insect causing damage in agriculture sector. This insect can be controlled by a natural biopesticide by combining two agents of biological control, biopesticides Mirabilis jalapa and entomopathogenic fungi Metarhizium anisopliae, considered to be virulent toward a wide range of insects. The objective of research was to determine the effect of biopesticides M. jalapa and fungi M. anisopliae against immune system and mortality of S. exigua. This research used a complete randomized block design with five concentrations Mirabilis jalapa and optimum dose of M. anisopliae. A high dose of M. jalapa (0.8% w/v) is the most effective one to decrease total haemocytes especially granulocyt and plasmatocyt (cellular immune) and decrease the concentration of lectin (humoral immune) from S. exigua (p < 0.05). The combination of M. jalapa (0, 8% w/v) and lethal dose of M. anisopliae 2.59 × 107 spore/ml were significant to increase mortality of S. exigua within 48 hours (p < 0.05).

  15. A Field Experiment to Assess the Rate of Infestation in Honey Bee Populations of Two Metarhizium Anisopliae Isolates on Varroa Destructor (Acari: Mesostigmata

    Directory of Open Access Journals (Sweden)

    Khodadad Pirali-kheirabadi

    2013-03-01

    Full Text Available Background: The protective effect of two isolates of an entomopathogenic fungus, Metarhizium anisopliae (DEMI 002 and Iran 437C on the adult stage of Varroa destructor was evaluated in comparison with fluvalinate strips in the field.Methods: A total of 12 honey bee colonies were provided from an apiculture farm. The selected hives were divided into 4 groups (3 hives per group. The first group was the control, treated with distilled water. The other two groups were exposed to different fungi (M. anisopliae isolates DEMI 002 and Iran 437C and the last group was treated with one strip of fluvalinate per colony. The number of fallen mites was counted using sticky traps during a 6-day period, six days before and after treatments. A fungal suspension at a concentration of 5× 106 conidia/mL was sprayed onto the frames and the number of fallen mites was counted.Results: Metarhizium anisopliae DEMI 002 and Iran 437C isolates were as effective (i.e., caused as much mite fall as the fluvalinate strip in controlling bee colonies than no treatment.Conclusion: Both M. anisopliae isolates are promising candidates as agents in the control of Varroa mites under field conditions. Isolate DEMI 002 can be considered as a possible non-chemical biocontrol agent for controlling bee infestation with V. destructor in the field. In order to substantiate this hypothesis, tests are currently being performed using larger colonies and larger doses than tested in the present study in our beekeeping.

  16. Eventos externos e internos da infecção de larvas e ninfas de Rhipicephalus sanguineus por Metarhizium anisopliae External and internal events of Rhipicephalus sanguineus larvae and nymphs infection by Metarhizium anisopliae

    Directory of Open Access Journals (Sweden)

    M.V. Garcia

    2008-08-01

    Full Text Available Examinaram-se a adesão, a germinação, a penetração e a colonização de larvas e ninfas de Rhipicephalus sanguineus por Metarhizium anisopliae, assim como as lesões infringidas pelo fungo nas respectivas fases do ciclo de vida do ácaro. Realizaram-se infecções experimentais em 11 grupos contendo 250 larvas e 11 grupos contendo 75 ninfas de R. sanguineus, por meio de banho, durante três minutos sob agitação manual, em suspensão contendo 10(8 conídios/ml do fungo. Nos grupos-controles, o banho foi realizado usando o veículo da suspensão. Larvas e ninfas foram processadas para um estudo histopatológico e de microscopia eletrônica de varredura nos seguintes tempos após a infecção: uma e 18 horas, e um, dois, três, quatro, cinco, seis, sete, nove e 11 dias. A germinação dos conídios ocorreu em até 18 horas pós-inoculação, e o fungo penetrou nas larvas e ninfas através do tegumento, dois e três dias após a infecção, respectivamente. Após penetração, o fungo invadiu o corpo das larvas e ninfas, promovendo uma colonização difusa, sem preferência aparente por tecidos específicos. Lesões significativas não foram observadas. A morte das larvas e ninfas ocorreu no terceiro e quarto dias pós-infecção, e a esporulação do patógeno sobre o cadáver foi iniciada no sexto dia pós-infecção.The adhesion, germination and colonization of Rhipicephalus sanguineus larvae and nymphs by Metarhizium anisopliae as well as the lesions caused by the fungus were studied. For this purpose, 11 groups of 250 larvae each and 11 groups of 75 nymphs each were bathed during 3 minutes under manual shaking in a 10(8 conidia/ml suspension. Corresponding control groups were bathed only in the suspension vehicle. Ticks were also submitted to both conventional microscopy and scanning eletronmicrocopy analyses at several post-infection periods (1 and 18 hours and 1, 2, 3, 4, 5, 6, 7, 9, and 11 days. Conidial germination occurred in less

  17. População de Metarhizium anisopliae em diferentes tipos e graus de compactação do solo Metarhizium anisopliae population in differents soil types and compactness degrees

    Directory of Open Access Journals (Sweden)

    Lourenço Maurício Lanza

    2004-12-01

    Full Text Available Este trabalho objetivou investigar a influência do tipo e compactação do solo na sobrevivência do fungo Metarhizium anisopliae. A sobrevivência do fungo foi determinada em quatro tipos de solos: Latossolo Vermelho textura argilosa, Latossolo Vermelho textura média, Argissolo Vermelho Amarelo textura arenosa média e Argissolo Vermelho Amarelo textura areno-argilosa, com maior teor de matéria orgânica. Para determinar o efeito da compactação na sobrevivência do fungo usaram-se os três primeiros tipos de solos nas densidades de 1,12, 1,32, 1,50g cm-3; 1,22, 1,44, 1,65g cm-3; 1,30, 1,50, 1,70g cm-3, respectivamente. Por meio da contagem de unidades formadoras de colônias (UFC em placas de Petri, fizeram-se avaliações da sobrevivência do fungo, após zero, 20, 40, 60, 80, 100 e 120 dias de incubação a 27 ± 1ºC. Houve influência significativa do tipo de solo e do grau de compactação na sobrevivência do fungo, obtendo-se maior quantidade de UFC no solo textura areno-argilosa. Entre os demais solos, a maior sobrevivência ocorreu no solo textura arenosa e a menor no solo textura argilosa. O efeito da compactação foi significativo para o tipo de solo, exceto no solo textura arenosa. Independentemente do tipo de solo, a maior sobrevivência foi observada nos valores médios de densidade. A compactação teve maior impacto no solo textura média, onde ocorreu queda mais acentuada na quantidade de UFC em todas as densidades.The aim of this work was to investigate the effect of different soil types and compactness on Metarhizium anisopliae survival. The fungus survivorship was determined in four soil types: Red Latosol with clay texture, Red Latosol with medium texture, Red Yellow Podzolic with medium sand texture and Red Yellow Podzolic with sand-clay texture, with higher amount of organic material. To determine the effect of compactness on fungus survival the first three soil types were used with the following densities

  18. Pyrethroid resistance in Anopheles gambiae leads to increased susceptibility to the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana

    Directory of Open Access Journals (Sweden)

    Knols Bart GJ

    2010-06-01

    Full Text Available Abstract Background Entomopathogenic fungi are being investigated as a new mosquito control tool because insecticide resistance is preventing successful mosquito control in many countries, and new methods are required that can target insecticide-resistant malaria vectors. Although laboratory studies have previously examined the effects of entomopathogenic fungi against adult mosquitoes, most application methods used cannot be readily deployed in the field. Because the fungi are biological organisms it is important to test potential field application methods that will not adversely affect them. The two objectives of this study were to investigate any differences in fungal susceptibility between an insecticide-resistant and insecticide-susceptible strain of Anopheles gambiae sensu stricto, and to test a potential field application method with respect to the viability and virulence of two fungal species Methods Pieces of white polyester netting were dipped in Metarhizium anisopliae ICIPE-30 or Beauveria bassiana IMI391510 mineral oil suspensions. These were kept at 27 ± 1°C, 80 ± 10% RH and the viability of the fungal conidia was recorded at different time points. Tube bioassays were used to infect insecticide-resistant (VKPER and insecticide-susceptible (SKK strains of An. gambiae s.s., and survival analysis was used to determine effects of mosquito strain, fungus species or time since fungal treatment of the net. Results The resistant VKPER strain was significantly more susceptible to fungal infection than the insecticide-susceptible SKK strain. Furthermore, B. bassiana was significantly more virulent than M. anisopliae for both mosquito strains, although this may be linked to the different viabilities of these fungal species. The viability of both fungal species decreased significantly one day after application onto polyester netting when compared to the viability of conidia remaining in suspension. Conclusions The insecticide

  19. Pyrethroid resistance in Anopheles gambiae leads to increased susceptibility to the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana

    Science.gov (United States)

    2010-01-01

    Background Entomopathogenic fungi are being investigated as a new mosquito control tool because insecticide resistance is preventing successful mosquito control in many countries, and new methods are required that can target insecticide-resistant malaria vectors. Although laboratory studies have previously examined the effects of entomopathogenic fungi against adult mosquitoes, most application methods used cannot be readily deployed in the field. Because the fungi are biological organisms it is important to test potential field application methods that will not adversely affect them. The two objectives of this study were to investigate any differences in fungal susceptibility between an insecticide-resistant and insecticide-susceptible strain of Anopheles gambiae sensu stricto, and to test a potential field application method with respect to the viability and virulence of two fungal species Methods Pieces of white polyester netting were dipped in Metarhizium anisopliae ICIPE-30 or Beauveria bassiana IMI391510 mineral oil suspensions. These were kept at 27 ± 1°C, 80 ± 10% RH and the viability of the fungal conidia was recorded at different time points. Tube bioassays were used to infect insecticide-resistant (VKPER) and insecticide-susceptible (SKK) strains of An. gambiae s.s., and survival analysis was used to determine effects of mosquito strain, fungus species or time since fungal treatment of the net. Results The resistant VKPER strain was significantly more susceptible to fungal infection than the insecticide-susceptible SKK strain. Furthermore, B. bassiana was significantly more virulent than M. anisopliae for both mosquito strains, although this may be linked to the different viabilities of these fungal species. The viability of both fungal species decreased significantly one day after application onto polyester netting when compared to the viability of conidia remaining in suspension. Conclusions The insecticide-resistant mosquito strain was susceptible

  20. Neem oil increases the efficiency of the entomopathogenic fungus Metarhizium anisopliae for the control of Aedes aegypti (Diptera: Culicidae) larvae.

    Science.gov (United States)

    Gomes, Simone A; Paula, Adriano R; Ribeiro, Anderson; Moraes, Catia O P; Santos, Jonathan W A B; Silva, Carlos P; Samuels, Richard I

    2015-12-30

    Entomopathogenic fungi are potential candidates for use in integrated vector management and many isolates are compatible with synthetic and natural insecticides. Neem oil was tested separately and in combination with the entomopathogenic fungus Metarhizium anisopliae against larvae of the dengue vector Aedes aegypti. Our aim was to increase the effectiveness of the fungus for the control of larval mosquito populations. Commercially available neem oil was used at concentrations ranging from 0.0001 to 1%. Larval survival rates were monitored over a 7 day period following exposure to neem. The virulence of the fungus M. anisopliae was confirmed using five conidial concentrations (1 × 10(5) to 1 × 10(9) conidia mL(-1)) and survival monitored over 7 days. Two concentrations of fungal conidia were then tested together with neem (0.001%). Survival curve comparisons were carried out using the Log-rank test and end-point survival rates were compared using one-way ANOVA. 1% neem was toxic to A. aegypti larvae reducing survival to 18% with S50 of 2 days. Neem had no effect on conidial germination or fungal vegetative growth in vitro. Larval survival rates were reduced to 24% (S50 = 3 days) when using 1 × 10(9) conidia mL(-1). Using 1 × 10(8) conidia mL(-1), 30% survival (S50 = 3 days) was observed. We tested a "sub-lethal" neem concentration (0.001%) together with these concentrations of conidia. For combinations of neem + fungus, the survival rates were significantly lower than the survival rates seen for fungus alone or for neem alone. Using a combination of 1 × 10(7) conidia mL(-1) + neem (0.001%), the survival rates were 36%, whereas exposure to the fungus alone resulted in 74% survival and exposure to neem alone resulted in 78% survival. When using 1 × 10(8) conidia mL(-1), the survival curves were modified, with a combination of the fungus + neem resulting in 12% survival, whilst the fungus alone at this concentration also

  1. Interactions between Entomopathogenic Fungus, Metarhizium Anisopliae and Sublethal Doses of Spinosad for Control of House Fly, Musca Domestica

    Directory of Open Access Journals (Sweden)

    M Sharififard

    2011-06-01

    Full Text Available Background: Metarhizium anisopliae strain IRAN 437C is one of the most virulent fungal isolates against house fly, Musca domestica. The objective of this study was to determine the interaction of this isolate with sublethal doses of spino­sad against housefly.Methods: In adult bioassay, conidia of entomopathogenic fungus were applied as inoculated bait at 105 and 107 spore per gram and spinosad at 0.5, 1 and 1.5 µg (A.I. per gram bait. In larval bioassay, conidia were applied as combina­tion of spore with larval bedding at 106 and 108 spore per gram and spinosad at sublethals of 0.002, 0.004 and 0.006 µg (AI per gram medium. Results: Adult mortality was 48% and 72% for fungus alone but ranged from 66–87% and 89–95% in combination treat­ments of 105 and 107 spore/g with sublethal doses of spinosad respectively. The interaction between 105 spore/g with sublethals exhibited synergistic effect, but in combination of 107 spore in spite of higher mortality, the interac­tion was additive. There was significant difference in LT50 among various treatments. LT50 values in all combination treat­ments were smaller than LT50 values in alone ones. Larval mortality was 36% and 69% for fungus alone but ranged from 58%–78% and 81%–100% in combination treatments of 106 and 108 spore/g medium with sublethals of spino­sad respectively. The interaction was synergistic in all combination treatments of larvae.Conclusion: The interaction between M. anispliae and spinosad indicated a synergetic effect that increased the house fly mortality as well as reduced the lethal time.

  2. Pathogenicity induced by the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae in Agrotisipsilon (Hufn.)

    International Nuclear Information System (INIS)

    Fouda, M.A.; Abas, A.A.; Ibrahium, A.A.; Salem, H.; Gabarty, A.

    2012-01-01

    Scanning electron microscopy (SEM) allowed to observe B. bassiana and M. anisopliae adhesion and penetration structure on A. ipsilon larvae treated with the Lc 50 of the fungus, B. bassiana revealed adhesion and penetration structures in the infected larvae. Growth of the fungus on the infected larvae and signs of hyphal penetration of insect cuticle as well as proliferation of the cuticle were also appeared. On the other hand, the fungus, M. anisopliaeas declared by SEM showed a dense network together and caused the green spores on the insect cuticle. Also, SEM allowed observing the spores and hyphae of the fungus in the body cavity of infected larvae. Scanning electron microscopy is convenient tools to observe the mode of action of entomopathogenic fungi and to observe how they are able to colonize and infect the host.

  3. Selection of Beauveria bassiana sensu lato and Metarhizium anisopliae sensu lato isolates as microbial control agents against the boll weevil (Anthonomus grandis) in Argentina.

    Science.gov (United States)

    Nussenbaum, A L; Lecuona, R E

    2012-05-01

    The boll weevil (Anthonomus grandis) is the main pest of cotton in the Americas. The aim of this work was to evaluate isolates of the entomopathogenic fungi Beauveria bassiana sensu lato and Metarhizium anisopliae sensu lato virulent against A. grandis. Screening was performed to evaluate the pathogenicity of 28 isolates of M. anisopliae s.l. and 66 isolates of B. bassiana s.l. against boll weevil adults. To select the isolates, LC(50) values of the most virulent isolates were calculated, and compatibility between the fungi and insecticides was studied. In addition, the effects of these isolates on the feeding behavior of the adults were evaluated. Isolates Ma 50 and Ma 20 were the most virulent against A. grandis and their LC(50) values were 1.13×10(7) and 1.20×10(7) conidia/ml, respectively. In addition, these isolates were compatible with pyrethroid insecticides, but none with endosulfan. On the other hand, infected females reduced the damage caused by feeding on the cotton squares and their weight gain. This shows that entomopathogenic fungi cause mortality in the insects, but also these fungi could influence the feeding behavior of the females. In summary, these results indicate the possibility of the use of M. anisopliae s.l. as a microbiological control agent against boll weevils. Also, this species could be included in an Integrated Pest Management program. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Evaluation of Metarhizium anisopliae var. anisopliae Qu-M845 Isolate to Control Varroa destructor (Acari: Varroidae in Laboratory and Field Trials Evaluación del Aislamiento Qu-M845 de Metarhizium anisopliae var. anisopliae para el Control de Varroa destructor (Acari: Varroidae en Ensayos de Laboratorio y Terreno

    Directory of Open Access Journals (Sweden)

    Marta Rodríguez

    2009-12-01

    Full Text Available The effectiveness of the Metarhizium anisopliae (Metschinkoff Qu-M845 isolate was evaluated in laboratory and field trials. It was previously selected for thermal resistance (at 30 and 35 ºC and pathogenicity on Varroa destructor (Anderson and Trueman. In the laboratory, the first evaluations were carried out by spraying and increasing the concentration from zero to 10(8 conidia mL-1 on varroa adults. Lethal concentrations required for 50 and 90% mite mortality (LC50 and LC90 were 3.8 x 10(5 and 8 x 10(7 conidia mL-1, respectively (χ2 = 2.03. In the autumn field trials, three application methods (doses of 5 x 10(10 conidia per hive were evaluated. The treatments were: a conidia stamped on filter paper, located on every second frame inside the hive; b dry conidia sprinkled on and between frames; and c dry conidia in a dispenser path at the entrance of the hive. Furthermore, untreated hives were included as controls. After 21 days of treatment, the dry conidia sprinkled on and between frames showed 67% less bees infested by the mite than the control (p La efectividad del aislamiento Qu-M845 de Metarhizium anisopliae (Metschinkoff, seleccionado previamente por su resistencia a temperaturas de 30 y 35 ºC, y patogenicidad sobre Varroa destructor Anderson y Trueman fue evaluada en laboratorio y en ensayos de terreno. Las primeras pruebas consistieron en pulverizar concentraciones crecientes de 0 a 10(8 conidias mL-1 sobre varroas adultas. La concentración letal para matar el 50 y 90% de la población (CL50 y CL90 fueron de 3,8 x 10(5 y 8 x 10(7 conidias mL-1, respectivamente (χ² = 2,03. En otoño se evaluaron en terreno tres métodos de aplicación de una dosis de 5 x 10(10 conidias por colmena. Los tratamientos fueron: a conidias estampadas en papel filtro ubicado cada dos panales móviles al interior de la colmena; b conidias espolvoreadas sobre y entre los panales; y c dispensador de conidias ubicado en la piquera de las colmenas. Además se

  5. Eficiência de Metarhizium anisopliae no controle do Percevejo-do-Colmo Tibraca limbativentris (Heteroptera: Pentatomidae em lavoura de arroz irrigado Efficiency of Metarhizium anisopliae on rice stem bug Tibraca limbativentris (Heteroptera: Pentatomidae control in flooded rice field

    Directory of Open Access Journals (Sweden)

    José Francisco da Silva Martins

    2004-12-01

    Full Text Available O percevejo-do-colmo, Tibraca limbativentris Stal, 1860 (Heteroptera: Pentatomidae, é altamente prejudicial à cultura do arroz no Brasil, principalmente em sistemas de cultivo irrigados por inundação. O efeito de duas formas de aplicação, conídios em suspensão e veiculados em grãos de arroz autoclavado, da cepa (CP 172 de Metarhizium anisopliae (Metsch. Sorok., no controle do percevejo, foi avaliado em três experimentos conduzidos em 1991, 1993 e 1994, em lavoura comercial de arroz irrigado. Em 1991, tanto a pulverização de conídios como a distribuição manual grãos de arroz cobertos com material fúngico em dosagem equivalente a 7,2 x 10(13 conídios.ha-1, sobre o solo e entre os colmos de arroz, onde os percevejos estavam alojados, reduziram significativamente a população natural do inseto com eficiência de controle de 52,6% e 61,8%, respectivamente. Ainda em 1991, estudo sobre o estabelecimento e persistência da cepa no solo do arrozal, com base na contagem de unidades formadoras de colônias (UFC, indicou que o fungo manteve-se viável na entressafra, até 216 dias após a aplicação, época da implantação de novos arrozais. O número de UFC foi maior nas parcelas tratadas com os grãos de arroz cobertos com material fúngico. O crescimento linear do número de UFC, no solo nas parcelas testemunhas, evidenciou disseminação do fungo para partes anteriormente não tratadas do arrozal. Resultados significativos de controle com a aplicação da suspensão de conídios e dos grãos de arroz com o fungo, na dose de 5 x 10(13 conídios.ha-1, também foram obtidos em 1993, com 51,8% e 48,2% de eficiência, respectivamente. Em 1994, a aplicaç��o da suspensão de 5 x 10(13 conídios.ha-1 resultou em 39,5% de controle do inseto. O índice de confirmação de infeção, contudo, foi baixo, nos dois anos, atingindo, no máximo, 20%, em 1993. O baixo número de insetos com micose, em comparação ao índice de mortalidade

  6. Colonização e lesão em fêmeas ingurgitadas do carrapato Rhipicephalus sanguineus causadas pelo fungo Metarhizium anisopliae Colonization and lesions on engorged female Rhipicephalus sanguineus, caused by Metarhizium anisopliae

    Directory of Open Access Journals (Sweden)

    Marcos Valerio Garcia

    2004-10-01

    Full Text Available O presente trabalho teve como objetivo verificar a forma de penetração do fungo Metarhizium anisopliae [METSCH. (SOROKIN, 1883] em carrapatos da espécie Rhipicephalus sanguineus (LATREILLE, 1806, assim como as lesões infringidas nos tecidos internos do ácaro. A forma de aderência e penetração do fungo foi estudada através da microscopia eletrônica de varredura e a ação do fungo nos tecidos internos avaliada em secções histológicas convencionais. Para observação destes eventos, realizaram-se infecções experimentais em 11 grupos de fêmeas ingurgitadas do carrapato R. sanguineus contendo 12 fêmeas ingurgitadas cada. Para tal, as fêmeas ingurgitadas foram banhadas durante 3 minutos, sob agitação manual, em suspensão com concentração 108 conídios/mL. No caso dos grupos controle o banho foi realizado apenas no veículo da suspensão. Os carrapatos foram processados para histopatologia e microscopia eletrônica em diversos tempos após a infecção, a saber: 1 e 18h, e um, dois, três, quatro, cinco, seis, sete, nove e onze dias. Observou-se que a maior parte dos conídios germinou em até 18h após a inoculação e que o fungo penetrou no ácaro através do tegumento 48h após a infecção. Após a penetração, o fungo invadiu o corpo do hospedeiro promovendo uma colonização difusa, sem preferência aparente por tecidos específicos. Dentre as lesões nos tecidos internos do ácaro, ressalta-se o rompimento da parede intestinal e vazamento do conteúdo para a hemocele. A morte do hospedeiro ocorreu entre 96 e 120h pós-infecção, e a esporulação do patógeno sobre o cadáver do ácaro iniciou-se em torno de 120 a 144h pós-infecção. Espera-se, com este trabalho, contribuir para o desenvolvimento e viabilização de técnicas de controle biológico dos carrapatos por fungos como alternativa ao uso de acaricidas.The objective of this work was to verify the penetration of the fungus Metarhizium anisopliae [METSCH

  7. Laboratory Trials of Metarhizium anisopliae var. acridum (Green Muscle® Against the Saxaul Locust, Dericorys albidula Serville (Orthoptera: Dericorythidae Ensayos de Laboratorio de Metarhizium anisopliae var. acridum (Green muscle® contra la Langosta de Saxaul, Dericorys albidula Serville (Orthoptera: Dericorythidae

    Directory of Open Access Journals (Sweden)

    Heydar Valizadeh

    2011-12-01

    Full Text Available The saxaul locust, Dericorys albidula Serville (Orthoptera: Dericorythidae is a major pest of saxaul plants in Qom province of Iran. During 2005-2006, different nymphal instars of bands of D. albidula were treated by aerial spraying of Metarhizium anisopliae var. acridum (Green Muscle®. The gasoline formulation of M. anisopliae var. acridum isolate IMI 330189 was applied in different conidial concentrations (10(6, 10(7, 10(8, 10(9, 10(10 and 10(13 spores mL-1 that were prepared in sterile distilled gasoline. Results showed that various concentrations significantly affected the 2nd, 3rd, 4th and 5th nymphal instars of D. albidula compared to control. In addition, there were no differences in the effects of the different concentrations in 2005, but the differences were significant in 2006. Concentration 10(10 killed 100% of tested insects 15 d after treatment. Comparing the results of the two years showed that the susceptibility of nymphs in the second year (2006 was higher than in the first year (2005. In conclusion, the results of this study indicated that the fungal insecticide M. anisopliae var. acridum, diluted in gasoline, was efficacious with the nymphal instars of locust D. albidula in 2005 and 2006.La langosta del saxaul, Dericorys albidula Serville (Orthoptera: Dericorythidae, es la principal plaga de plantas de saxaul de las provincias Qom, Irán. Durante 2005-2006, diferentes instars ninfales de D. albidula se asperjaron con Metarhizium anisopliae var. acridum (Green Muscle®. La formulación de gasolina de M. anisopliae var. acridum aislamiento IMI 330189 se aplicó en diferentes concentraciones conidiales (10(6, 10(7, 10(8, 10(9, 10(10 and 10(13 esporas mL-1 preparadas en gasolina destilada estéril. Los resultados demostraron que varias concentraciones afectaron significativamente los nstars ninfales de D. albidula comparado con el control. Además el efecto de concentraciones no fue diferente en 2005 pero sí significativamente en

  8. AVALIAÇÃO DA VIRULENCIA DE BLASTOSPOROS DE Metarhizium anisopliae NO CONTROLE DE LARVAS DE CAMPO DO MOSQUITO Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Aline Teixeira Carolino

    2016-11-01

    Full Text Available Atualmente no Brasil, o mosquito Aedes aegypti é transmissor das arboviroses dengue, chikungunya e Zika. Não existe tratamento específico para estas doenças. A redução da população do vetor ainda é o método mais eficaz para reduzir a taxa dessas arboviroses. O presente estudo comparou a virulência de conídios e blastosporos de Metarhizium anisopliae contra larvas do mosquito A. aegypti provenientes de coletas no campo. Blastosporos foram mais virulentos para larvas, sendo observada mortalidade total das larvas em apenas 48 horas. Larvas infectadas com conídios apresentaram 100% de mortalidade no quinto dia pós-infecção. O presente estudo mostra que blastosporos apresentam grande potencial para controle de larvas de A. aegypti no campo.

  9. Advances and Perspectives of the use of the entomopathogenic fungi beauveria bassiana and metarhizium anisopliae for the control of arthropod pests in poultry production

    Directory of Open Access Journals (Sweden)

    DGP Oliveira

    2014-03-01

    Full Text Available Global poultry production is plagued by a wide variety of arthropods. The problems associated with their chemical control have led to an increasing search for control alternatives, and entomopathogenic fungi seem to be a promising strategy. Despite the large number of insects and mites considered as important pests in animal production, studies on the use of entomopathogenic fungi for their control are still scarce compared with agricultural pests, particularly in Brazil. This article reviews some damages and control aspects of the main arthropod pests that affect Brazilian poultry production, including house flies, lesser mealworms, and feather mites, by the use of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae. Studies published in the last 20 years were reviewed, and the main problems and limitations of that pest-control strategy are discussed.

  10. Biolistic co-transformation of Metarhizium anisopliae var. acridum strain CG423 with green fluorescent protein and resistance to glufosinate ammonium.

    Science.gov (United States)

    Inglis, P W; Aragão, F J; Frazão, H; Magalhães, B P; Valadares-Inglis, M C

    2000-10-15

    Metarhizium anisopliae var. acridum (syn. M. flavoviride) is recognized as a highly specific and virulent mycopathogen of locusts and grasshoppers and is currently being developed as a biological control agent for this group of insects in Brazil. Intact conidia of M. anisopliae var. acridum strain CG423 were transformed using microparticle bombardment. Plasmids used were: (1) pBARKS1 carrying the bar gene of Streptomyces hygroscopicus fused to the Aspergillus nidulans trpC promoter, encoding resistance to glufosinate ammonium (or phosphinothricin) and modified by addition of the telomeric repeat (TTAGGG)(18) of Fusarium oxysporum and 2.pEGFP/gpd/tel carrying a red-shifted variant gene for Aequorea victoria green fluorescent protein (EGFP) which we have fused to the A. nidulans gpd promoter and trpC terminator. Highly fluorescent co-transformants were selected on solid minimal medium containing 100 microg ml(-1) glufosinate ammonium using an inverted microscope with 450-490 nm excitation/510 nm emission filter set. Southern blot analysis of co-transformants revealed varying multiple chromosomal integrations of both bar and egfp genes at both telomeric and non-telomeric loci. Transformants retained pathogenicity in bioassays against Rhammatocerus schistocercoides and showed unaltered lack of pathogenicity against larvae of the non-target insect Anticarsia gemmatalis. One co-transformant from four tested, however, showed a significant, but non-dose-dependent, elevation in virulence against Tenebrio molitor.

  11. Food consumption by Chilo partellus (Lepidoptera: Pyralidae) larvae infected with Beauveria bassiana and Metarhizium anisopliae and effects of feeding natural versus artificial diets on mortality and mycosis.

    Science.gov (United States)

    Tefera, Tadele; Pringle, K L

    2003-11-01

    Second and third instar Chilo partellus larvae were infected with Beauveria bassiana and Metarhizium anisopliae (both at 1x10(8)conidia/ml) and daily consumption of maize leaves was measured. Infection by the fungi was associated with reduced mean daily food consumption. Reduction in food consumption became evident 3-4 days after treatment with the fungi for second instar larvae and 4-5 days for third instar larvae. Four conidial concentrations, 1x10(5), 1x10(6), 1x10(7), and 1x10(8)conidia/ml, were tested against second instar larvae. Food consumption dropped by 70-85% when the second instar larvae were treated with the fungi at 1x10(8)conidia/ml. Reduction in food consumption by C. partellus larvae infected with B. bassiana and M. anisopliae may offset the slow speed of kill of the fungi. The effect of artificial versus natural diets on mortality and mycoses of second instar larvae treated with the fungi at 1x10(8)conidia/ml was determined. Larvae provided with artificial diet suffered little mortality and mycoses than larvae provided with maize leaves. The LT(50) was longer for larvae provided with artificial diet.

  12. [Interaction of Metarhizium anisopliae (Metsch.) Sorok., Beauveria bassiana (Bals.) Vuill. and the parasitoid Oomyzus sokolowskii (Kurdjumov) (Hymenoptera: Eulophidae) with larvae of diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae)].

    Science.gov (United States)

    dos Santos, Hugo J G; Marques, Edmilson J; Barros, Reginaldo; Gondim, Manoel G C

    2006-01-01

    Chemical insecticides are broadly applied to control diamondback moth, Plutella xylostella (L.). Diamondback moth is a major pest of cruciferous worldwide, and resistance of this pest to insecticide has been often reported. Thus, this research investigated the interactions among the fungi Metarhizium anisopliae (Metsch.) Sorok., Beauveria bassiana (Bals.) Vuill., and the larval-pupal parasitoid Oomyzus sokolowskii (Kurdjumov) before and after application of the fungi on DBM larvae offered to the parasitoid. The experiment was carried out at 26+/-l degreeC, 75+/- 5% RH and 12h photophase using a completely randomized design, with eight treatments with six replications each. The isolates E9 of M. anisopliae and ESALQ 447 of B. bassiana, were used at the concentration of 10(7) conidia ml(-1). The results showed that M. anisopliae and B. bassiana reduced the parasitism of P. xylostella by O. sokolowskii. Additive effects were found on the mortality of P. xylostella with the different combinations among the fungi and parasitoid, except for the treatment B. bassiana inoculated 24h before exposition of the larvae to O. sokolowskii. The isolates were more efficacious when applied after exposition of the larvae to the parasitoid. The efficiency of O. sokolowskii was negatively influenced by the presence of the fungi, mainly when the fungi were applied 24h before diamondback's larvae were exposed to the parasitoid. The association of the fungi with the parasitoid presents potential to be tested in field. The use of these natural enemies in the integrated management of P. xylostella may economically improve the cabbage productive system, especially for organic farming.

  13. Control de Rhipicephalus microplus (Acari: Ixodidae mediante el uso del hongo entomopatógeno Metarhizium anisopliae (Hypocreales: Clavicipitaceae. Revisión

    Directory of Open Access Journals (Sweden)

    Melina Maribel Ojeda-Chi

    2011-01-01

    Full Text Available Las infestaciones de la garrapata del ganado, Rhipicephalus microplus, producen el mayor problema global de ectoparásitos en ganado de regiones tropicales y subtropicales, provocan importantes pérdidas económicas en la producción de carne, leche y pieles, además incrementan los gastos derivados de los programas de control, y son capaces de transmitir Babesia bovis, B. bigemina y Anaplasma marginale. El control de R. microplus se basa principalmente en el uso de ixodicidas, sin embargo, su uso irracional ha propiciado la aparición de garrapatas resistentes a las principales familias de ixodicidas, siendo necesario desarrollar alternativas de control no químico. Una de estas alternativas es el uso de hongos entomopatógenos, entre los que se encuentra Metarhizium anisopliae (Hypocreales, Clavicipitaceae el cual ha demostrado ser eficiente, tanto en estudios in vitro como in vivo, para el control de las diferentes fases evolutivas de R. microplus, causa disminución en la tasa de oviposición, incrementa el período de incubación y de eclosión, además produce la muerte de larvas y garrapatas adultas con porcentajes de eficiencia de hasta el 100 %. Diferentes estudios demuestran que M. anisopliae representa una alternativa no química sustentable para el control de garrapatas. La presente revisión tiene como objetivo presentar información actualizada sobre el uso de diferentes cepas de M. anisopliae en el control de la garrapata R.microplus.

  14. Comparative genomics using microarrays reveals divergence and loss of virulence-associated genes in host-specific strains of the insect pathogen Metarhizium anisopliae.

    Science.gov (United States)

    Wang, Sibao; Leclerque, Andreas; Pava-Ripoll, Monica; Fang, Weiguo; St Leger, Raymond J

    2009-06-01

    Many strains of Metarhizium anisopliae have broad host ranges, but others are specialists and adapted to particular hosts. Patterns of gene duplication, divergence, and deletion in three generalist and three specialist strains were investigated by heterologous hybridization of genomic DNA to genes from the generalist strain Ma2575. As expected, major life processes are highly conserved, presumably due to purifying selection. However, up to 7% of Ma2575 genes were highly divergent or absent in specialist strains. Many of these sequences are conserved in other fungal species, suggesting that there has been rapid evolution and loss in specialist Metarhizium genomes. Some poorly hybridizing genes in specialists were functionally coordinated, indicative of reductive evolution. These included several involved in toxin biosynthesis and sugar metabolism in root exudates, suggesting that specialists are losing genes required to live in alternative hosts or as saprophytes. Several components of mobile genetic elements were also highly divergent or lost in specialists. Exceptionally, the genome of the specialist cricket pathogen Ma443 contained extra insertion elements that might play a role in generating evolutionary novelty. This study throws light on the abundance of orphans in genomes, as 15% of orphan sequences were found to be rapidly evolving in the Ma2575 lineage.

  15. Effect of natural pesticides and plant extracts on biological parameters of Metarhizium anisopliae (Metsch. SorokEfeito de defensivos agrícolas naturais e extratos vegetais sobre parâmetros biológicos de Metarhizium anisopliae (Metsch. Sorok

    Directory of Open Access Journals (Sweden)

    Luis Francisco Angeli Alves

    2013-09-01

    Full Text Available This study was carried out aiming to evaluate the effect and compatibility of vegetal and Pycnoporus sanguineus basidiocarps extracts and alternative products on biological parameters of Metarhizium anisopliae fungus. Extracts (solution in water 10% and natural products (AR = average field recommendation; 0.5 AR and 2.0 AR are applied on PDA culture media surface previously inoculated with fungi conidia. The effect of the treatment on conidia germination, vegetative growth and conidiogenesis was compared. Most alternative products were compatible to the fungus, and only Bordeaux mixture AR and 2.0 AR were moderately toxic to M. anisopliae. Although some significativally negative effect there were observed on conidial viability (reduction of 50 to 80% by alcoholic extracts, all extracts were compatible. This point to the necessity to be careful with application, avoiding mixtures or subsequent use of products less than 48 hours after fungi application. O objetivo deste trabalho foi avaliar a compatibilidade e os efeitos dos defensivos agrícolas naturais, extratos vegetais e basidiocarpos de Pycnoporus sanguineus, em diferentes concentrações, sobre o fungo entomopatogênico Metarhizium anisopliae. Os extratos e os basidiocarpos foram utilizados na concentração de 10%. Os defensivos agrícolas foram utilizados na concentração rotulada (CR, a metade (0,5CR e o dobro da mesma (2CR. Em todos os tratamentos foram realizadas pulverizações sobre o fungo inoculado previamente em meio de cultura (BDA. Foram avaliados germinação, Unidade Formadora de Colônia, crescimento vegetativo e produtividade dos conídios. Em relação aos defensivos agrícolas, somente o Calda Sulfocálcica na concentração recomendada e no dobro da mesma não se mostrou compatível, sendo considerada moderadamente tóxica para o fungo M. anisopliae. Apesar de os extratos terem apresentado efeito significativo principalmente sobre a viabilidade (redução de 50 a 80% por

  16. The combination of the entomopathogenic fungus Metarhizium anisopliae with the insecticide Imidacloprid increases virulence against the dengue vector Aedes aegypti (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Samuels Richard I

    2011-01-01

    Full Text Available Abstract Background Dengue fever transmitted by the mosquito Aedes aegypti, is one of the most rapidly spreading insect borne diseases, stimulating the search for alternatives to current control measures. The dengue vector A. aegypti has received less attention than anophelene species, although more than 2.5 billion people are at risk of infection worldwide. Entomopathogenic fungi are emerging as potential candidates for the control of mosquitoes. Here we continue our studies on the pathogenicity of the entomopathogenic fungus Metarhizium anisopliae against adult A. aegypti females. With the aim of further reducing mean survival times of A. aegypti exposed to fungus impregnated surfaces, a sub-lethal concentration of the neonicotinoid insecticide Imidacloprid (IMI was added to fungal suspensions. Results A sub-lethal concentration of IMI that did not significantly alter the daily survival rates or mean survival percentages of mosquitoes was identified to be 0.1 ppm. This sub-lethal concentration was combined with M. anisopliae conidia (1 × 109 conidia mL-1. Both the combined treatment and the conidia alone were able to reduce the survival of A. aegypti compared with untreated or IMI treated mosquitoes. Importantly, mosquito survival following exposure to the combined treatment for 6 and 12 hrs was significantly reduced when compared with mosquitoes exposed to conidia alone. Conclusions This is the first time that a combination of an insecticide and an entomopathogenic fungus has been tested against A. aegypti. Firstly, the study showed the potential of IMI as an alternative to the currently employed pyrethroid adulticides. Secondly, as an alternative to applications of high concentrations of chemical insecticides, we suggest that adult A. aegypti could be controlled by surface application of entomopathogenic fungi and that the efficiency of these fungi could be increased by combining the fungi with ultra-low concentrations of insecticides

  17. The combination of the entomopathogenic fungus Metarhizium anisopliae with the insecticide Imidacloprid increases virulence against the dengue vector Aedes aegypti (Diptera: Culicidae).

    Science.gov (United States)

    Paula, Adriano R; Carolino, Aline T; Paula, Cátia O; Samuels, Richard I

    2011-01-25

    Dengue fever transmitted by the mosquito Aedes aegypti, is one of the most rapidly spreading insect borne diseases, stimulating the search for alternatives to current control measures. The dengue vector A. aegypti has received less attention than anophelene species, although more than 2.5 billion people are at risk of infection worldwide. Entomopathogenic fungi are emerging as potential candidates for the control of mosquitoes. Here we continue our studies on the pathogenicity of the entomopathogenic fungus Metarhizium anisopliae against adult A. aegypti females. With the aim of further reducing mean survival times of A. aegypti exposed to fungus impregnated surfaces, a sub-lethal concentration of the neonicotinoid insecticide Imidacloprid (IMI) was added to fungal suspensions. A sub-lethal concentration of IMI that did not significantly alter the daily survival rates or mean survival percentages of mosquitoes was identified to be 0.1 ppm. This sub-lethal concentration was combined with M. anisopliae conidia (1 × 10(9) conidia mL(-1)). Both the combined treatment and the conidia alone were able to reduce the survival of A. aegypti compared with untreated or IMI treated mosquitoes. Importantly, mosquito survival following exposure to the combined treatment for 6 and 12 hrs was significantly reduced when compared with mosquitoes exposed to conidia alone. This is the first time that a combination of an insecticide and an entomopathogenic fungus has been tested against A. aegypti. Firstly, the study showed the potential of IMI as an alternative to the currently employed pyrethroid adulticides. Secondly, as an alternative to applications of high concentrations of chemical insecticides, we suggest that adult A. aegypti could be controlled by surface application of entomopathogenic fungi and that the efficiency of these fungi could be increased by combining the fungi with ultra-low concentrations of insecticides, resulting in higher mortality following relatively short

  18. Efeitos de Beauveria bassiana (Bals Vuill e Metarhizium anisopliae (Metsc Sorok sobre fêmeas ingurgitadas de Amblyomma cajennense (Fabricius, 1787 em condições de laboratório Effects of Beauveria bassiana (Bals Vuill and Metarhizium anisopliae (Metsc Sorok on engorged females of Amblyomma cajennense (Fabricius, 1787 in laboratory conditions

    Directory of Open Access Journals (Sweden)

    R.C.S. Reis

    2004-12-01

    Full Text Available The in vitro susceptibility of Amblyomma cajennense engorged females to some isolated of the fungus Beauveria bassiana and Metarhizium anisopliae was verified and lethal concentrations (LC 50 and LC 90 were calculated. The females were dived in conidia suspensions for five minutes, and kept in climatically controlled chambers BOD under 27° C and 80% relative humidity. Each bioassay had four treatments in concentrations of 10(5,10(6,10(7e10(8 conidia/ml. A control group was also used. The following characteristics were evaluated: weight and period of oviposition, indexes of reproductive and nutritional efficiency and percentage of microbiological control. A dose dependent negative effect was observed in ticks treated with the suspension. All isolates tested cause a negative effect on in vitro tests of engorged females of A. cajennense, suggesting its potential for microbiological control of tick's species.

  19. Monitoring persistence of the entomopathogenic fungus Metarhizium anisopliae under simulated field conditions with the aim of controlling adult Aedes aegypti (Diptera: Culicidae).

    Science.gov (United States)

    Carolino, Aline T; Paula, Adriano R; Silva, Carlos P; Butt, Tariq M; Samuels, Richard I

    2014-04-25

    Entomopathogenic fungi are potential candidates for use in integrated vector management, with recent emphasis aimed at developing adult mosquito control methods. Here we investigated the persistence of the fungus Metarhizium anisopliae when tested against female A. aegypti under field conditions. Black cotton cloths impregnated with M. anisopliae conidia, formulated in vegetable oil + isoparaffin, were maintained on a covered veranda for up to 30 days. At specific times, pieces of the cloths were removed, placed in Tween 80 and the resuspended conidia were sprayed directly onto mosquitoes. The persistence of conidia impregnated on black cloths using three different carriers was evaluated in test rooms. Fifty mosquitoes were released into each room and after a 5 day period, the surviving insects were captured. Another 50 insects were then released into each room. The capacity of the fungus at reducing mosquito survival was evaluated over a total of 35 days. Conidia extracted from cloths maintained on the veranda for 2 to 18 days remained virulent, with 28 to 60% mosquito survival observed. Mosquito survival following exposure to fungus impregnated cloths showed that fungus + Tween caused similar reductions to that of fungus + vegetable oil. Mosquitoes exposed to the formulation fungus + vegetable oil had survival rates of 36% over the first 5 days of the experiment. Following the release of the second cohort of mosquitoes (6-11days), survival increased to 50%. The survival of the 12-17 day cohort (78%) was statistically equal to that of the controls (84%). Formulation of the fungus in vegetable oil + isoparaffin increased the persistence of the fungus, with the 18-23 day cohort (64% survival) still showing statistical differences to that of the controls (87% survival). The potential of entomopathogenic fungi for the control of adult A. aegypti was confirmed under field conditions. Vegetable oil + isoparaffin formulations of M. anisopliae significantly increased the

  20. Efeito de Beauveria bassiana (Bals. Vuill. e Metarhizium anisopliae (Metsch. Sorok. sobre características biológicas de Diatraea saccharalis F. (Lepidoptera: Crambidae = Effect of Beauveria bassiana (Bals. Vuill. and Metarhizium anisopliae (Metsch. Sorok. on Biological Characteristics of Diatraea saccharalis F. (Lepidoptera: Crambidae

    Directory of Open Access Journals (Sweden)

    Marco Aurélio Paes de Oliveira

    2008-04-01

    Full Text Available A broca da cana-de-açúcar Diatraea saccharalis F. é considerada uma das principais pragas nas Américas. Entre os métodos de controle, o uso de fungos entomopatogênicos tem sido amplamente recomendado no manejo das pragas da cana-de-açúcar, incluindo outras lepidobrocas. Assim sendo, este estudo investigou os efeitos de diferentes concentrações de Beauveria bassiana (Bals. Vuill. e Metarhizium anisopliae (Metsch. Sorok. sobre parâmetros biológicos da broca da cana-de-açúcar. Larvas de terceiro instar de D. saccharalis foram tratadas com os fungos usando as concentrações de 103, 104 e 105 conídios mL-1. Larvas tratadas com 105 conídios mL-1 de B. bassiana tiveram menor sobrevivência (56,6%, comparadas com lagartas não-tratadas (90%. Adultos originados de larvas tratadas colocaram menor número de ovos, com menor viabilidade, e viveram menos, comparados com adultos originados de larvas não-tratadas. Larvas tratadas com M. anisopliae na concentração de 105 conídios mL-1 e adultos originados destas larvas também exibiram redução no desempenho, comparados aos insetos não-tratados. Os resultados indicam que B. bassiana e M. anisopliae, além de patogênicos àslarvas de D. saccharalis, também interferem negativamente na sua biologia, mostrando potencial de uso contra esta praga.The sugarcane borer Diatraea saccharalis F. is considered oneof the major sugarcane pests in the American continent. Among control methods, the use of entomopathogenic fungi has been broadly recommended to manage sugarcane pests, including other sugarcane borers. Therefore, this study investigated the effects of differentconcentrations of Beauveria bassiana (Bals. Vuill and Metarhizium anisopliae (Metch. Sorok on biological characteristics of the sugarcane borer. Third-instar larvae of D. saccharalis werefungi-treated using the concentrations of 103, 104 and 105 conidia mL-1. Larvae treated with 105 conidia mL-1 of B. bassiana showed lower survival

  1. Efeito de beauveria bassiana (bals. Vuillemin e Metarhizium anisopliae (metsch. sorokin nos parâmetros biológicos de trichogramma atopovirilia oatman & platner, 1983 (hymenoptera: trichogrammatidae Effect of Beauveria bassiana (Bals. Vuillemin and Metarhizium anisopliae (Metsch. Sorokin on the biological parameters of Trichogramma atopovirilia Oatman & Platner (Hymenoptera: Trichogrammatidae

    Directory of Open Access Journals (Sweden)

    Ricardo Antonio Polanczyk

    2010-12-01

    Full Text Available Dois experimentos foram realizados para avaliar o efeito de duas formulações comerciais à base de Beauveria bassiana (Bals. Vuillemin e Metarhizium anisopliae (Metsch., Sorokin sobre os parâmetros biológicos de Trichogramma atopovirilia Oatman & Platner, 1983. No primeiro experimento, cartelas com ovos de Spodoptera frugiperda, 1797 foram mergulhadas em suspensões preparadas com os produtos e, em seguida, colocadas à disposição dos parasitóides para oviposição, durante um período de 24 horas. No segundo, fêmeas do parasitóide foram alimentadas com uma solução mel e suspensão de conídios. Em ambos os experimentos as fêmeas mortas foram colocadas em uma câmara úmida para observar a esporulação dos fungos. Os tratamentos foram mantidos em câmara climatizada com temperatura de 25±1º C, umidade relativa de 70±10% e fotofase de 14 horas. Avaliou-se a longevidade e mortalidade dos adultos, índice de parasitismo, emergência do parasitóide, número de indivíduos por ovo e razão sexual dos descendentes. As formulações não interferiram nos parâmetros avaliados e não foi observada a esporulação do fungo no cadáver do parasitóide adulto. É possível inferir que T. atopovirilia e os fungos entomopatogênicos B. bassiana e M. anisopliae são compatíveis e podem ser empregados simultaneamente em programas de manejo integrado de S. frugiperda.Two bioassays were performed to evaluate the effect of two biopesticides based on Beauveria bassiana (Bals. Vuillemin and Metarhizium anisopliae (Metsch. Sorokin on the biological parameters of Trichogramma atopovirilia Oatman & Platner, 1983. In the first one, displays with S. frugiperda, 1797 eggs were dropped into the biopesticide suspension and offered to the parasitoid females for 24 hours. In the second one, parasitoid females were fed with a suspension containing honey and biopesticide suspension. In both cases, after the parasitoid death they were mantained into a humid

  2. Occurence of thrips on Niagara table grape and its control with the insecticides thiacloprid and methiocarb associated with Metarhizium anisopliae Ocorrência de tripes em uva Niagara e seu controle com os inseticidas thiacloprid e methiocarb associados com Metarhizium anisopliae

    Directory of Open Access Journals (Sweden)

    ROGÉRIO BIAGGIONI LOPES

    2002-04-01

    Full Text Available Thrips are reported as important pests on table grapes in United States and several countries of Europe. Damage caused by thrips, particulary Frankliniella occidentalis, was observed on niagara table grape crop in Limeira-SP, Brazil. During the blooming period, high thrips densities were observed feeding on pollen and small berries. The symptoms left were more visible after the development of the berries and were characterized by dark scars and suberized surface on berries, sometimes causing the berry to crack, and the seed to prolapse. The effect of insecticides thiacloprid or methiocarb, associated or not with the entomopathogenic fungus Metarhizium anisopliae were evaluated during the blooming period. For evaluation of thrips damage on fruits, the treatments were applied three additional times, 7, 14 and 21 days after the first application. The treatments were: a M. anisopliae (strain 1037 1x10(7 conidia/mL; b thiacloprid 20mL/100L; c-d methiocarb 100 and 150mL/100L; e methiocarb 100mL/100L + M. anisopliae 1x10(7 conidia/mL. Only methiocarb, associated or not with the fungus, was effective in reducing thrips infestation, and no phytotoxic damage was observed. The efficiency of methiocarb 150mL/100L and the insecticide associated with the fungus for the control of the thrips population was 84.2 and 95.5%, respectively. In both cases, there was a reduction of approximately 70% in the number of berries with scars symptoms. For control of thrips on table grapes, chemical insecticides associated or not with M. anisopliae should be applied during the blooming period of the crop.Os tripes são mencionados como importantes pragas da cultura da uva de mesa em diversos países da Europa e Estados Unidos. Em área de cultivo da uva Niagara localizada na região de Limeira-SP verificou-se a ocorrência de danos provocados por Frankliniella occidentalis. Essa praga foi observada, principalmente, durante a fase de florescimento, alimentando-se de pólen e

  3. Development of a user-friendly delivery method for the fungus Metarhizium anisopliae to control the ectoparasitic mite Varroa destructor in honey bee, Apis mellifera, colonies.

    Science.gov (United States)

    Kanga, Lambert H B; Adamczyk, John; Patt, Joseph; Gracia, Carlos; Cascino, John

    2010-12-01

    A user-friendly method to deliver Metarhizium spores to honey bee colonies for control of Varroa mites was developed and tested. Patty blend formulations protected the fungal spores at brood nest temperatures and served as an improved delivery system of the fungus to bee hives. Field trials conducted in 2006 in Texas using freshly harvested spores indicated that patty blend formulations of 10 g of conidia per hive (applied twice) significantly reduced the numbers of mites per adult bee, mites in sealed brood cells, and residual mites at the end of the 47-day experimental period. Colony development in terms of adult bee populations and brood production also improved. Field trials conducted in 2007 in Florida using less virulent spores produced mixed results. Patty blends of 10 g of conidia per hive (applied twice) were less successful in significantly reducing the number of mites per adult bee. However, hive survivorship and colony strength were improved, and the numbers of residual mites were significantly reduced at the end of the 42-day experimental period. The overall results from 2003 to 2008 field trials indicated that it was critical to have fungal spores with good germination, pathogenicity and virulence. We determined that fungal spores (1 × 10(10) viable spores per gram) with 98% germination and high pathogenicity (95% mite mortality at day 7) provided successful control of mite populations in established honey bee colonies at 10 g of conidia per hive (applied twice). Overall, microbial control of Varroa mite with M. anisopliae is feasible and could be a useful component of an integrated pest management program.

  4. Effect of Metarhizium anisopliae (Ascomycete), Cypermethrin, and D-Limonene, Alone and Combined, on Larval Mortality of Rhipicephalus sanguineus (Acari: Ixodidae).

    Science.gov (United States)

    Prado-Rebolledo, Omar Francisco; Molina-Ochoa, Jaime; Lezama-Gutiérrez, Roberto; García-Márquez, Luis Jorge; Minchaca-Llerenas, Yureida B; Morales-Barrera, Eduardo; Tellez, Guillermo; Hargis, Billy; Skoda, Steven R; Foster, John E

    2017-09-01

    The effect of the fungus Metarhizium anisopliae Ma14 strain, D-limonene, and cypermethrin, alone and combined, on the mortality of Rhipicephalus sanguineus Latreille larvae was evaluated. Eight separate groups with 25 tick larvae were inoculated with the fungus, cypermethrin, and D-limonene, and four groups were used as untreated controls. The groups were inoculated with serial dilutions of each treatment material: for example, conidial concentrations were 1 × 101, 1 × 102, 1 × 103, 1 × 104, 1 × 105, 1 × 106, 1 × 107, and 1 × 108. A complete randomized experimental design was used. Significant differences were obtained between fungal concentrations, with larval mortalities ranging from 29 to 100%; the D-limonene concentrations showed significant differences, with mortalities that ranged from 47.9 to 82.6%, and cypermethrin mortalities ranged from 69.9 to 89.9% when each was applied alone. In the combined application, the serial dilution of the Ma14 fungus plus cypermethrin at 0.1% concentration caused mortalities ranging from 92.9 to 100%; the mix of serially diluted Ma14 plus D-limonene at 0.1% caused mortalities from 10.3 to 100%; and the mix consisting of serially diluted D-limonene plus cypermethrin at 0.1% caused mortalities from 7.4 to 35.9%. Further laboratory and field research could show that these materials, alone and in combinations, are useful in future tick management and control programs. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Phylogenetic variation of the green muscadine fungus, Metarhizium anisopliae (Metchnikoff Sorokin, and its virulence to larvae of the sugarcane longhorn stem borer, Dorysthenes buqueti Guerin (Coleoptera: Cerambycidae

    Directory of Open Access Journals (Sweden)

    Nichanun Kernasa

    2016-11-01

    Full Text Available The sugarcane longhorn stem borer (SLSB, Dorysthenes buqueti Guerin (Coleoptera: Cerambycidae has recently become a serious insect pest of sugarcane in Thailand and effective biological control agent must be evaluated. The green muscadine fungus (GMF, Metarhizium anisopliae (Metchnikoff Sorokin is a species complex of entomopathogenic fungi, which includes many cryptic subspecies and species. It has been reported that GMF infects and kills the sugarcane longhorn stem borer (SLSB, D. buqueti Guerin, so that GMF is a possible biological control agent of SLSB. Molecular analyses were conducted to gain a better understanding of the taxonomic position of GMF Thai strains. Virulence bioassays were carried out on four isolates of GMF to 5th–9th instars of SLSB. This study revealed that an isolate from Khon Kaen (KK showed the highest virulence to 5th–9th instars of SLSB. In biological control, an aqueous suspension containing 1 × 108 conidia/mL of KK isolate was best from the viewpoint of a tradeoff between the economic cost/benefit of the mass production cost and the consequent mortality after application. Comparing suspensions containing 1 × 108 conidia/mL with those containing 1 × 1013 conidia/mL, 100,000 times as much quantity of suspension can be obtained from the same quantity of conidia, though the difference in the D. buqueti mortality was relatively small. Six isolates of GMF from SLSB in Thailand were likely a cryptic species, although further molecular analysis using factor 1-alpha sequences is needed.

  6. Réponse des stades larvaires de Helicoverpa armigera (Hübner (Lepidoptera : Noctuidae à l'application de champignons entomopathogènes Metarhizium anisopliae et Beauveria bassiana

    Directory of Open Access Journals (Sweden)

    Tamò, M.

    2012-01-01

    Full Text Available Response of the nymphs of Helicoverpa armigera (Hübner (Lepidoptera: Noctuidae to entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana. Two experiments on dose/mortality response between the instars of Helicoverpa armigera and two strains of entomopathogenic fungi, Metarhizium anisopliae (Met 31 and Beauveria bassiana (Bb 11 were carried out in laboratory conditions. In the first experiment, M. anisopliae Met 31 was tested on the third instar of H. armigera, while in the second experiment, both Met 31 and Bb 11 were tested on the fourth instar. In all the experiments, the following different doses of conidia per insect were used: 104, 105, 106, 107. The following parameters were measured: mortality and sporulation rates, the number of pupae formed and the number of adults that emerged. Abbott's formula was used to correct the treatment mortality rates. LD50 was determined using Cox-regression. For the third instar in experiment one, no significant difference was observed between high doses (106 and 107 conidia per insect. For instar L4, only the dose of 107 conidia per insect showed high mortality rates (74%. For the strain Bb 11, in spite of the variation observed between the mortality rates induced by high doses (106 and 107 conidia per insect, no significant difference was recorded at the 5% level. No mycosis was observed from cadavers resulting from lower doses when tested on L4. The control recorded the highest numbers of pupae and adults. These two parameters were related to the level of dosage: the higher the dose, the lower the numbers of pupae and adults that emerged. For all the strains of fungi used, whatever the larval stage of H. armigera, the dose/mortality response was significant.

  7. Control of Cosmopolites sordidus (Coleoptera:Curculionidae with entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae in banana cultivation

    Directory of Open Access Journals (Sweden)

    Francisco José Carvalho Moreira

    2017-07-01

    Full Text Available The continuous use of pesticides promotes rapid and effective reduction of pests, however, this practice entails the pests the possibility of developing resistance by subjecting the farmer to change product constantly increase the dose or even mix or use more toxic products. Being Cosmopolites sordidus one beetle nocturnal that affect the banana tree because their larvae open galleries in its rhizome and lower pseudostem, resulting in decline, overturning and death of the plant. In view of this and the population's awareness of this problem, the greater has been the participation of organic agriculture in food supply. In this context, this study aimed to evaluate the effect of two entomopathogenic fungi in control of C. sordidus in banana cultivation. The trial was held in lot E-104, the Irrigated Perimeter of Baixo Acaraú, in Marco, Ceará state. The statistical design was completely randomized, in factorial 2 x 5, two fungi (Beauveria bassiana and Metharizium anisopliae in five concentrations (0, 5, 10, 15 and 20 g L-1, 5 repetitions each. We evaluated the number of insects for bait in each evaluation and the total number of captured insects. It was found that the fungus B. bassiana was more effective in controlling C. sordidus. It was also observed that the higher concentrations of 10, 15 and 20 g L-1 were more effective. We conclude that the biological control with B. bassiana can be used, as is shown adapted to climatic conditions in the study area.

  8. The tick biocontrol agent Metarhizium brunneum (= M. anisopliae) (strain F52) does not reduce non-target arthropods.

    Science.gov (United States)

    Fischhoff, Ilya R; Keesing, Felicia; Ostfeld, Richard S

    2017-01-01

    Previous studies have found that Met52®, which contains the entomopathogenic fungus Metarhizium brunneum, is effective in reducing the abundance of Ixodes scapularis, the tick vector for the bacterium causing Lyme disease and for other tick-borne pathogens. Given widespread interest in effective, safe methods for controlling ticks, Met52 has the potential to be used at increasing scales. The non-target impacts of Met52, as applied for tick control, have not yet been assessed. A Before-After-Control-Impact experiment was conducted to assess the effects of Met52 on non-target arthropods in lawn and forest habitats typical of residential yards. Ground-dwelling arthropods were collected using bulk sampling of soil and litter, and pitfall sampling. Arthropods were sampled once before and twice after treatment of plots with either Met52 or water (control). Multivariate general linear models were used to jointly model the abundance of arthropod orders. For each sampling method and post-spray sampling occasion, Akaike Information Criterion values were used to compare the fits of two alternative models: one that included effects of period (before vs. after spray), habitat (lawn vs. forest), and treatment (Met52 vs. control), versus a nested null model that included effects of period, and habitat, but no treatment effect. The null model was consistently better supported by the data. Significant effects were found of period and habitat but not treatment. Retrospective power analysis indicated the study had 80% power to detect a 50% reduction in arthropod abundance, as measured by bulk samples taken before versus one week after treatment. The deployment of Met52 in suburban settings is unlikely to cause meaningful reductions in the abundance of non-target arthropods.

  9. The tick biocontrol agent Metarhizium brunneum (= M. anisopliae (strain F52 does not reduce non-target arthropods.

    Directory of Open Access Journals (Sweden)

    Ilya R Fischhoff

    Full Text Available Previous studies have found that Met52®, which contains the entomopathogenic fungus Metarhizium brunneum, is effective in reducing the abundance of Ixodes scapularis, the tick vector for the bacterium causing Lyme disease and for other tick-borne pathogens. Given widespread interest in effective, safe methods for controlling ticks, Met52 has the potential to be used at increasing scales. The non-target impacts of Met52, as applied for tick control, have not yet been assessed. A Before-After-Control-Impact experiment was conducted to assess the effects of Met52 on non-target arthropods in lawn and forest habitats typical of residential yards. Ground-dwelling arthropods were collected using bulk sampling of soil and litter, and pitfall sampling. Arthropods were sampled once before and twice after treatment of plots with either Met52 or water (control. Multivariate general linear models were used to jointly model the abundance of arthropod orders. For each sampling method and post-spray sampling occasion, Akaike Information Criterion values were used to compare the fits of two alternative models: one that included effects of period (before vs. after spray, habitat (lawn vs. forest, and treatment (Met52 vs. control, versus a nested null model that included effects of period, and habitat, but no treatment effect. The null model was consistently better supported by the data. Significant effects were found of period and habitat but not treatment. Retrospective power analysis indicated the study had 80% power to detect a 50% reduction in arthropod abundance, as measured by bulk samples taken before versus one week after treatment. The deployment of Met52 in suburban settings is unlikely to cause meaningful reductions in the abundance of non-target arthropods.

  10. Metodologia para produção de Metarhizium anisopliae (METSCH. sorokin em cultivo submerso: esporulação da biomassa, efeito da concentração de açúcar e custo do inoculant Methodology for production of Metarhizium anisopliae (METSCH. sorokin in submerged cultivation: biomass sporulation, sugar concentration effect and inoculant cost

    Directory of Open Access Journals (Sweden)

    Sonia Regina de Mello Pereira

    1999-09-01

    Full Text Available Desenvolveram-se um método de cultivo e um meio de cultura para produção massal do fungo Metarhizium anisopliae (Metsch. Sorokin, 1883, com maior pureza e concentração de conídios. Este método envolveu o cultivo submerso da linhagem M-61 do entomopatógeno em meio líquido de arroz parboilizado, extrato de levedura, extrato do percevejo da soja (Nezara viridula (L., 1758 Hemiptera, Pentatomidae, sob seis diferentes níveis de concentração de açúcar (0, 2, 4, 6, 8, 10g l-1, além do meio convencional sólido de arroz em grão. As biomassas obtidas foram separadas através de tela de nylon (63 mesh e dispostas em estufa para a esporulação. Os efeitos dos tratamentos foram avaliados pelos parâmetros pesos fresco e seco do micélio, número de conídios por grama de substrato, viabilidade e patogenicidade dos conídios sobre o percevejo. Observou-se que 2.0g l-1 de açúcar em meio de cultura de extrato de N. viridula produziu o dobro do número de conídios por grama de substrato em relação à concentração de 10.0g l-1, a um custo 51 vezes inferior ao obtido no processo convencional de produção do fungo. A viabilidade não foi afetada nos diferentes meios utilizados. Não ocorreram diferenças significativas na patogenicidade em função dos meios de cultura e métodos de cultivo.A method of cultivation and a culture medium were developed aiming at the mass production of fungus Metarhizium anisopliae (Metsch. Sorokin, 1883, with great concentration and purity of conidia. This method involved the M-61 strain of entomopathogenic fungus in liquid medium of rice, yeast extract, soybean bug extract (Nezara viridula (L., 1758 Hemiptera, Pentatomidae, under six differents concentrations of sugar (0, 2, 4, 6, 8, 10g l-1, and the solid conventional medium of rice grains. The biomasses obtained were filtered and put in an incubator to promote sporulation. The treatments were evaluated through the parameters wet and dry-weight of micelium

  11. Pathogenicity of Metarrhizium anisopliae (Metsch.) Sorokin and Beauveria bassiana (Bals.) Vuillemin isolates to Scaptocoris carvalhoi Becker (Hemiptera, Cydnidae); Patogenicidade de isolados de Metarhizium anisopliae (Metsch.) Sorokin e de Beauveria bassiana (Bals.) Vuillemin a Scaptocoris carvalhoi Becker (Hemiptera, Cydnidae)

    Energy Technology Data Exchange (ETDEWEB)

    Xavier, Luciane Modenez Saldivar [Universidade Federal da Grande Dourados (UFGD), Dourados, MS (Brazil)], e-mail: luciane_modenez@ibest.com.br; Avila, Crebio Jose [EMBRAPA Agropecuaria Oeste, Dourados, MS (Brazil)], e-mail: crebio@cpao.embrapa.br

    2006-12-15

    Pathogenicity of the fungi Metarrhizium anisopliae (Metsch.) Sorokin and Beauveria bassiana (Bals.) Vuillemin to stink bug Scaptocoris carvalhoi Becker, 1967 was evaluated under laboratory and greenhouse conditions. Experiments were carried out at EMBRAPA Agropecuaria Oeste, Dourados, Mato Grosso do Sul State, Brazil, in 2003. Ten M. anisopliae and eleven B. bassiana isolates were evaluated in laboratory using a completely randomized experimental design with five replicates (10 adults and 5 nymphs/plot). The pathogenicity of M. anisopliae isolate (Ma69) was also separately evaluated against nymphs and adults in laboratory and greenhouse. The stink bug mortality levels were higher for M. anisopliae isolates (between 73.3% and 94.7% than for B. bassiana isolates (between 10.7% and 78.7%). In greenhouse, stink bug mortality due to the M. anisopliae isolate (Ma69) was 57.3%, and there was no difference of mortality for nymphs and adults of stink bug in laboratory. However, in greenhouse, mortality levels were significantly higher (p<0,05) for nymphs (38,4%) than for adults (16,2%). From these data, we conclude that M. anisopliae isolate Ma69 was efficient to control S. carvalhoi in laboratory and in greenhouse, thus being a promising choice for use as a microbial insecticide under field conditions. (author)

  12. Efeito de Beauveria bassiana (Bals. Vuill. e Metarhizium anisopliae (Metsch. Sorok. sobre características biológicas de Diatraea saccharalis F. (Lepidoptera: Crambidae - DOI: 10.4025/actascibiolsci.v30i2.3627 Effect of Beauveria bassiana (Bals. Vuill. and Metarhizium anisopliae (Metsch. Sorok. on Biological Characteristics of Diatraea saccharalis F. (Lepidoptera: Crambidae - DOI: 10.4025/actascibiolsci.v30i2.3627

    Directory of Open Access Journals (Sweden)

    Valéria Wanderley Teixeira

    2008-05-01

    Full Text Available A broca da cana-de-açúcar Diatraea saccharalis F. é considerada uma das principais pragas nas Américas. Entre os métodos de controle, o uso de fungos entomopatogênicos tem sido amplamente recomendado no manejo das pragas da cana-de-açúcar, incluindo outras lepidobrocas. Assim sendo, este estudo investigou os efeitos de diferentes concentrações de Beauveria bassiana (Bals. Vuill. e Metarhizium anisopliae (Metsch. Sorok. sobre parâmetros biológicos da broca da cana-de-açúcar. Larvas de terceiro instar de D. saccharalis foram tratadas com os fungos usando as concentrações de 103, 104 e 105 conídios mL-1. Larvas tratadas com 105 conídios mL-1 de B. bassiana tiveram menor sobrevivência (56,6%, comparadas com lagartas não-tratadas (90%. Adultos originados de larvas tratadas colocaram menor número de ovos, com menor viabilidade, e viveram menos, comparados com adultos originados de larvas não-tratadas. Larvas tratadas com M. anisopliae na concentração de 105 conídios mL-1 e adultos originados destas larvas também exibiram redução no desempenho, comparados aos insetos não-tratados. Os resultados indicam que B. bassiana e M. anisopliae, além de patogênicos às larvas de D. saccharalis, também interferem negativamente na sua biologia, mostrando potencial de uso contra esta praga.The sugarcane borer Diatraea saccharalis F. is considered one of the major sugarcane pests in the American continent. Among control methods, the use of entomopathogenic fungi has been broadly recommended to manage sugarcane pests, including other sugarcane borers. Therefore, this study investigated the effects of different concentrations of Beauveria bassiana (Bals. Vuill and Metarhizium anisopliae (Metch. Sorok on biological characteristics of the sugarcane borer. Third-instar larvae of D. saccharalis were fungi-treated using the concentrations of 103, 104 and 105 conidia mL-1. Larvae treated with 105 conidia mL-1 of B. bassiana showed lower

  13. Effects of the gamma and ultraviolet radiation in metarhizium anisopliae (METSCH) isolated SOROKIN, 1883 and its application to control the distracer saccharals (Fabricius, 1974)

    International Nuclear Information System (INIS)

    Almeida, L.C. de.

    1983-06-01

    The objective of this work was to study the effects of gamma and ultraviolet radiations in isolates of M. anisopliae and the utilization of this pathogen, aiming the polulation control of the sugarcane borer, D. saccharalis. To evaluate the application of M. anisopliae under field conditions, two experiments were carried out, the first consisting of a spore suspension application upon sugarcane borer egg masses, and the second consisting of a pulverization of spores upon egg masses previously placed on sugarcane leaves. The dosages utilized were of 100, 200 and 300 g of spores/ha. The results obtained in both trials indicated that the deposition of spores on D. saccharalis egg masses was difficulted by the sugarcane foliar mass. (author) [pt

  14. Análise de adesão do fungo entomopatogênico Metarhizium anisopliae para o controle de Alphitobius diaperinus (cascudinho em instalações avícolas

    Directory of Open Access Journals (Sweden)

    Juliano de Araújo Cassiano

    2008-10-01

    Full Text Available Este trabalho permitiu a construção de um modelo estatístico para a adesão de conídios do fungo Metarhizium anisopliae diante de diferentes níveis de concentração e tempo, além de avaliar seu potencial para o controle do cascudinho (Alphitobius diaperinus, importante praga da avicultura, causadora de danos às aves pelos ferimentos no trato digestivo e pela transmissão de várias doenças. O estudo da adesão sobre o tegumento é de grande importância, pois a adesão representa um evento complexo, sendo o primeiro do ciclo das relações patógeno-hospedeiro que ocorre após a deposição do fungo sobre o inseto e visa a preparação do local para a fase de penetração. Insetos adultos do cascudinho foram expostos a três concentrações do fungo: 1x10³, 1x10(6 e 1x10(9 conídios/mL, sendo 5, 10 e 15 minutos de exposição em cada concentração. Para verificar o potencial de controle de M. anisopliae, os insetos foram colocados para caminhar sobre uma massa de conídios crescida em meio BDA por 10 minutos, resultando num potencial de inóculo de 8,1x10(8 conídios/mL, a mortalidade foi avaliada durante 21 dias consecutivos, onde se verificou uma mortalidade de 74% em larvas após 48h, e 50% de mortalidade em adultos após 15 dias de exposição ao fungo. A análise de variância (ANOVA mostrou que existe influência e interação de ambos os efeitos: concentração e tempo.

  15. Pathogenecity of Beauveria bassiana and Metarhizium anisopliae ...

    African Journals Online (AJOL)

    two spotted spider mites, Tetranychus urticae, effect of temperature on virulence, as well as ... It has become a big challenge to maintain quality of products and compete in ... Data were collected on the number of hatched and un-hatched eggs.

  16. Pathogenecity of Beauveria bassiana and Metarhizium anisopliae ...

    African Journals Online (AJOL)

    emulsifiable formulation on two-spotted spider mite, T. urticae. Weibin and. Mingguang (2004) found that both B. bassiana and Paecilomyces fumosoroseus infections decreased the hatch rates of Tetranychus cinnanarinus eggs and the higher the conidial concentrations resulted in greater reduction in the hatch rates.

  17. Characterization of Metarhizium species and varieties based on molecular analysis, heat tolerance and cold activity

    Science.gov (United States)

    Fernandes, E.K.K.; Keyser, C.A.; Chong, J.P.; Rangel, D.E.N.; Miller, M.P.; Roberts, D.W.

    2010-01-01

    Aims: The genetic relationships and conidial tolerances to high and low temperatures were determined for isolates of several Metarhizium species and varieties. Methods and Results: Molecular-based techniques [AFLP and rDNA (ITS1, ITS2 and 5??8S) gene sequencing] were used to characterize morphologically identified Metarhizium spp. isolates from a wide range of sources. Conidial suspensions of isolates were exposed to wet heat (45 ?? 0??2??C) and plated on potato dextrose agar plus yeast extract (PDAY) medium. After 8-h exposure, the isolates divided clearly into two groups: (i) all isolates of Metarhizium anisopliae var. anisopliae (Ma-an) and Metarhizium from the flavoviride complex (Mf) had virtually zero conidial relative germination (RG), (ii) Metarhizium anisopliae var. acridum (Ma-ac) isolates demonstrated high heat tolerance (c. 70-100% RG). Conidial suspensions also were plated on PDAY and incubated at 5??C for 15 days, during which time RGs for Ma-an and Ma-ac isolates were virtually zero, whereas the two Mf were highly cold active (100% RG). Conclusions: Heat and cold exposures can be used as rapid tools to tentatively identify some important Metarhizium species and varieties. Significance and Impact of the Study: Identification of Metarhizium spp. currently relies primarily on DNA-based methods; we suggest a simple temperature-based screen to quickly obtain tentative identification of isolates as to species or species complexes. ?? 2009 The Society for Applied Microbiology.

  18. Potential of Metarrhizium anisopliae and Beauveria bassiana isolates and Neem oil to control the aphid Lipaphis erysimi (Kalt.) (Hemiptera: Aphididae); Potencial de isolados de Metarhizium anisopliae e Beauveria bassiana e do oleo de Nim no controle do pulgao Lipaphis erysimi (Kalt.) (Hemiptera: Aphididae)

    Energy Technology Data Exchange (ETDEWEB)

    Araujo Junior, Jose M. de; Marques, Edmilson J.; Oliveira, Jose V. de [Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE (Brazil). Dept. de Agronomia - Entomologia], e-mail: jma_junior@yahoo.com.br, e-mail: emar@depa.ufrpe.br, e-mail: vargasoliveira@uol.com.br

    2009-07-15

    This work aimed to determine the efficiency of the entomopathogenic fungi Metarrhizium anisopliae and Beauveria bassiana to control the aphid Lipaphis erysimi (Kalt.) (Hemiptera:Aphididae) in kale Brassica oleracea var acephala D.C., as well as their compatibility with a neem oil formulation (Neemseto{sup R}). Ten isolates of both fungi were tested and the most pathogenic ones were B. bassiana CG001 and M. anisopliae CG30 with 90% and 4.4 days, and 64% and 3.8 days of mortality and median lethal time, respectively. Bioassays with neem at concentrations of 0.5, 1.0 and 2.0% were done either by leaf discs dipping or spraying the aphids on the leaf discs. The neem spraying treatment at 2.0% provided 90% mortality. The use of B. bassiana isolate CG001 or M. anisopliae isolate CG30 with neem at 0.125, 0.25, and 0.5%, demonstrated that these isolates could have their spore viability or colony growth affected when exposed to neem concentrations higher than 0.25%. In absolute values, the isolates B. bassiana CG001 and M. anisopliae CG30 are the most virulent to L. erysimi, and could be utilized in the management of this pest. (author)

  19. Metachelins, mannosylated and N-oxidized coprogen-type siderophores from Metarhizium robertsii

    Science.gov (United States)

    Under iron-depleted culture conditions, the entomopathogenic fungus Metarhizium robertsii (Bischoff, Humber, and Rehner) (= M. anisopliae) produces a complex of extracellular siderophores including novel O-glycosylated and/or N-oxidized coprogen-type compounds as well as the known fungal siderophore...

  20. Selectivity of Beauveria bassiana and Metarrhizium anisopliae to Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae)

    International Nuclear Information System (INIS)

    Potrich, Michele; Silva, Everton L. da; Neves, Pedro M.O.J.; Alves, Luis F.A.; Daros, Alaxsandra; Haas, Jucelaine; Pietrowski, Vanda

    2009-01-01

    Trichogramma pretiosum Riley and the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae are efficient biological control agents and are thought to be used jointly. In here, we investigated if these entomopathogens could have any side-effects on T. pretiosum. Therefore, 1 x 8 cards containing sterilized eggs of Anagasta kuehniella (Zeller) that were sprayed with 0.2 ml of B. bassiana or M. anisopliae (1.0 X 10 9 conidia/ml) were offered to a T. pretiosum female for 24h (30 cards/fungus = 30 replicates). Afterwards, females were isolated in glass tubes. The control group was sprayed with sterile distillated water + Tween 80 (0.01%). In addition, 60 cards with sterilized eggs of A. kuehniella were submitted to parasitism by females of T. pretiosum for 24h. Of these cards, 30 were sprayed with B. bassiana or M. anisopliae and 30 with distillated water + Tween 80 (0.01%), and observed daily until parasitoid emergence. Metarhizium anisopliae decreased parasitoid emergence and caused confirmed mortality. Therefore, field and semi-field experiments should be conducted for a final assessment of the side-effects of these entomopathogens on Trichogramma as a ways to develop a control strategy in which both can be used. (author)

  1. Development of pilot-scale fermentation and stabilization processes for the production of microsclerotia of the entomopathogenic fungus Metarhizium brunneun strain F52

    Science.gov (United States)

    Using 100L stirred-tank bioreactors, we evaluated the effect of fermentation parameters and drying protocols on the production and stabilization of microsclerotia (MS) of the entomopathogenic fungus Metarhizium brunneum (formerly M. anisopliae F52). Results showed that stirred-tank bioreactors can ...

  2. Adulticidal effect of fungal pathogen, Metarhizium anisopliae on ...

    African Journals Online (AJOL)

    SERVER

    2008-03-18

    Mar 18, 2008 ... Page 1 ... forms conidiophores or analogous structure and sporu- lates. Alternatively, many species form some type of resting stages capable of forming or releasing a type of spore. ... Mosquitoes landing on the suspension to consume glucose would thus be exposed to conidia through tarsal contact or ...

  3. Efficacite du melange aqueux de metarhizium anisopliae var ...

    African Journals Online (AJOL)

    Le traitement le plus efficace en termes d'impact sur la densité de population du criquet était le mélange (P < 0,01). Notre étude indique que le mélange des deux insecticides permet une diminution importante des densités de population de sauteriaux et qu'il est possible d'utiliser des formulations aqueuses contenant des ...

  4. evaluation of indigenous fungal isolates and metarhizium anisopliae

    African Journals Online (AJOL)

    preferred customer

    native fungal isolates against the lesser wax moth and assessing non target effect of one isolate of. Beauveria ... worst of which is the foulbrood, an invasive ..... 1934 and at present about 700 species of fungi in .... Original from American Bee J.

  5. Imbibitional damage in conidia of the entomopathogenic fungi Beauveria bassiana, Metarhizium anisopliae, and Metarhizium acridum

    Science.gov (United States)

    When dried organisms are immersed in water, rapid imbibition may cause severe damage to plasma membranes; in unicellular organisms, such damage is usually lethal. This study investigated effects of pre-immersion moisture levels and immersion temperature on imbibitional damage in three insect pathoge...

  6. Biocontrol of the Brown-banded Cockroach, Supella longipalpa F. (Blattaria: Blattellidae, with Entomopathogenic Fungus, Metharhizium anisopliae

    Directory of Open Access Journals (Sweden)

    Mona Sharififard

    2016-01-01

    Full Text Available Background: Considering to the high distribution of cockroaches as urban pests, the efficacy of different formula­tions of Metarhizium anisopliae strain Iran 437C were assessed against the brown-banded cockroach, Supella longi­palpa F. under laboratory and field conditions.Methods: Metarhizium anisopliae isolates were screened with immersing adults of the brown-banded cockroachs in aqueous suspension of 108 conidia ml-1 followed by surface or bait treated with different doses of the most virulent isolate against the nymphs. Then formulations of conidia oil-in-water were examined versus cockroach nymphs us­ing different plant oils and paraffin. Then they were evaluated and compared with aqueous suspension and control group. On a large-scale, the sunflower oil-in-water formulation of conidia was sprayed at houses using a hand sprayer.Results: Metarhizium anisopliae IRAN 437C was the most virulent isolate against the brown-banded cockroach, causing 100% mortality in adults at seven days post-exposure. Inoculated bait with this isolate was not enough path­ogenic against the cockroach even at two weeks after treatment. Treated surface with conidia as aqueous suspension or oil-in- water formulation was more effective than the bait formulation against the cockroach caused 39.4–97.2% mortality compared with 2.5% mortality in control group after two days. Spraying the conidia formulated with sun­flower oil was an effective formulation causing 76.1% reduction in the cockroach density on the third day post treatment in the houses.Conclusion: The oil-in-water formulation of M. anisopliae IRAN 437C could be recommended as a promising al­ternative for cockroach control.  

  7. Multiplexed microsatellite markers for seven Metarhizium species

    Science.gov (United States)

    Cross-species transferability of 41 previously published simple sequence repeat (SSR) markers was assessed for 11 species of the entomopathogenic fungus Metarhizium. A collection of 65 Metarhizium isolates including all 54 used in a recent phylogenetic revision of the genus were characterized. Betwe...

  8. Growth and sporulation of Metarhizium flavoviride var. Flavoviride on culture media and lighting regimes Crescimento e esporulação de Metarhizium flavoviride var. Flavoviride em meios de cultura e regimes de luz

    Directory of Open Access Journals (Sweden)

    Sideney Becker Onofre

    2001-09-01

    Full Text Available Entomopathogenic fungi from the genus Metarhizium are largely used for the biological control of agricultural pests by conidia spreading on the field. Although conidia production is well studied in M. anisopliae, only few research studies were done in M. flavoviride. The present work was carried out alming to evaluate the Mycelial growth and sporulation of the entomopathogenic fungus Metarhizium flavoviride var. flavoviride growing at 27 ± 2°C on Potato-dextrose-agar (PDA, Czapek-agar (CZP and a complete agar medium (CM under three lighting regimes, (continuous illumination, light/dark cycle and an black light/dark cycle were investigated. A completely randomized 3 × 3 (culture media × lighting regime factorial design with four replicates was used. The best mycelial growth and sporulation occurred on the PDA and CM media under continuous illumination (P Fungos entomopatogênicos do genêro Metarhizium são empregados no controle biológico de pragas agrícolas por meio da dispersão de seus conídios no campo. Embora a produção de conídios em M. anisopliae esteja bem estudada, poucas pesquisas a respeito existem na espécie M. flavoviride. O presente trabalho foi realizado para avaliar o efeito de três meios de cultura, batata-dextrose-ágar (BDA, Czapek-ágar (CZP e meio completo (MC, e três regimes de luminosidade, claro contínuo, alternância com luz do dia/escuro e luz negra/escuro, sobre o crescimento miceliano e esporulação do fungo entomopatogênico Metarhizium flavoviride var. flavoviride. O experimento foi realizado em câmara de incubação à temperatura de 27 ± 2°C. Empregou-se um delineamento experimental inteiramente casualizado, em arranjo fatorial 3°C 3 (meios de cultura e regime de luminosidade com quatro repetições. As melhores condições para o crescimento miceliano e esporulação foram conseguidas tanto no meio de cultura BDA como no MC quando combinados com o regime claro contínuo (P <= 0,05.

  9. Synergistic effect of dual imidacloprid-Metarhizium anisopliae applications against Asian longhorned beetles (Anoplophora glabripennis)

    Science.gov (United States)

    Todd A. Ugine; Calum W. Russell; Ann E. Hajek

    2011-01-01

    Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae), a longhorned beetle species native to Asia, has been introduced into several North American and European cities. Currently, eradication and preventive measures are limited to identifying and destroying infested trees and protecting uninfested trees with trunk or soil-injections of the...

  10. 76 FR 26194 - Metarhizium anisopliae Strain F52; Exemption From the Requirement of a Tolerance

    Science.gov (United States)

    2011-05-06

    ... sensitization--guinea pig (Harmonized Guideline 870.2600; MRID No. 448447-15). An acceptable dermal... pesticide manufacturer. Potentially affected entities may include, but are not limited to: Crop production (NAICS code 111). Animal production (NAICS code 112). Food manufacturing (NAICS code 311). Pesticide...

  11. Behavioural effects of fungal infection by Metarhizium anisopliae in adult malaria mosquitoes

    NARCIS (Netherlands)

    Ondiaka, S.N.

    2012-01-01

    Malaria remains a major global health problem with the burden of disease greatest in Sub-Saharan Africa. The strategies for malaria control differ throughout the world according to levels of endemicity and the magnitude of disease but the focus remains either to control malaria parasites or

  12. PROTEOMIC ANALYSIS OF ALLERGENS FROM METARHIZIUM ANISOPLIEA

    Science.gov (United States)

    The goal of this project is the identification and characterization of allergens from the fungus M. Anisopliae, using mass spectrometry (MS). The US EPA, under the "Children at Risk" program, is currently addressing the problem of indoor fungal bioaerosol contamination. One of ...

  13. Efficacy Test of Mutant Metarrhizium anisopliae by Gamma Radiation to Control Rhinoceros Beetle (Oryctes rhinoceros)

    International Nuclear Information System (INIS)

    Jeerapong, Lawan; Piadang, Nattayana; Jantasang, Kittisak; Kamontip, Rukprasong

    2006-09-01

    Increasing the efficiency of Metarhizium anisopliae (Ma) DOAE variety to control rhinoceros beetle (Oryctes rhinoceros) by gamma radiation was found that among 20 varieties got from the fungus irradiated with 20 doses of gamma radiation, MAI-20 irradiated with 1.6, 8 and 10 kGy of gamma ray was the most suitable far control rhinoceros larvae as follow reason : the dominant characterize of MAI -20 is the spore with black color, It can grow wi trh the diameter of 1.8 centimeter on PDA agar within 10 days and full growth on surface of maize seed at 1.5 kilogram with in 15 days. The effectiveness of MAI-20 to control 3 in star larvae of rhinoceros beetle was 80 percent mortality within 10 days while the original variety (DOAE variety) with the dominant characterization of green color spore, 1 centimeter diameter growth on PDA agar within 10 days and full growth on surface of maize seed 1.5 kilogram within 15 days. This variety caused 60 percent mortality to 3 in star larvae of rhinoceros within 7 days. It could conclude that from laboratory experiment, MAI-20 is the most effective and suitable variety to control rhinoceros beetle even though the mortality time was longer than the original variety because the larvae of the insect does not caused the damage to coconut. The efficiency for controlling rhinoceros beetle at field trial by using irradiated MAI-20 comparing to the original variety and control (with out fungus) by adding each 1,2 kilogram of the MAI-20 and original variety growth on surface of maize seed on each manure pile size 1x1x0.5 meter. After 7 days of both varieties of Metarhizium application, the number of dead larvae caused by the fungus and the number of healthy larvae in each manure pile was collected and counted. It was found that after continuous survey 4 time (7 day per 1 time ) the percent mortality of rhinoceros larvae caused by the 2 fungus varieties were as follow : 1 kilogram of original varieties had an average of 55.5 percent larva

  14. Insertion of an esterase gene into a specific locust pathogen (Metarhizium acridum enables it to infect caterpillars.

    Directory of Open Access Journals (Sweden)

    Sibao Wang

    2011-06-01

    Full Text Available An enduring theme in pathogenic microbiology is poor understanding of the mechanisms of host specificity. Metarhizium is a cosmopolitan genus of invertebrate pathogens that contains generalist species with broad host ranges such as M. robertsii (formerly known as M. anisopliae var. anisopliae as well as specialists such as the acridid-specific grasshopper pathogen M. acridum. During growth on caterpillar (Manduca sexta cuticle, M. robertsii up-regulates a gene (Mest1 that is absent in M. acridum and most other fungi. Disrupting M. robertsii Mest1 reduced virulence and overexpression increased virulence to caterpillars (Galleria mellonella and M. sexta, while virulence to grasshoppers (Melanoplus femurrubrum was unaffected. When Mest1 was transferred to M. acridum under control of its native M. robertsii promoter, the transformants killed and colonized caterpillars in a similar fashion to M. robertsii. MEST1 localized exclusively to lipid droplets in M. robertsii conidia and infection structures was up-regulated during nutrient deprivation and had esterase activity against lipids with short chain fatty acids. The mobilization of stored lipids was delayed in the Mest1 disruptant mutant. Overall, our results suggest that expression of Mest1 allows rapid hydrolysis of stored lipids, and promotes germination and infection structure formation by M. robertsii during nutrient deprivation and invasion, while Mest1 expression in M. acridum broadens its host range by bypassing the regulatory signals found on natural hosts that trigger the mobilization of endogenous nutrient reserves. This study suggests that speciation in an insect pathogen could potentially be driven by host shifts resulting from changes in a single gene.

  15. Screening of Metarhizium and Beauveria spp. conidia with exposure to simulated sunlight and a range of temperatures

    International Nuclear Information System (INIS)

    Morley-Davies, J.; Moore, D.; Prior, C.

    1996-01-01

    Conidia of 14 isolates of the entomopathogenic fungi Beauveria bassiana, Metarhizium flavoviride and M. anisopliae were formulated by suspending in paraffinic oil or as dry powder. Non-indicating silica gel was added to both formulations which were stored at 13 °C for at least 2 wk before exposure to a range of temperatures: −10°, 10°, 20°, 30°, 40° and 50° to determine the effects of temperature of storage on viability. At 50° the isolate studied in most detail (M. flavoviride, IMI 330189) initially showed a gradual decline in viability with 73% germination for oil samples after 60 d from an initial level of 93%, whereas the dry samples typically showed higher germination rates (initially 96% germination, dropping to 80% after 60 d). Subsequently there was a rapid decline and both oil formulated and dry conidia had lost almost all viability by 90 d. Samples of IMI 330189 stored dry or in oil, at 40° and below showed > 79% germination after 90 d. M. flavoviride 191–660 exhibited the highest temperature tolerance with >40% germination of the dry stored conidia after 90 d at 50°. Some isolates of both B. bassiana and Metarhizium spp. showed markedly lower tolerance of high temperatures. Samples stored dry usually showed greater percentage germination than samples in oil for all isolates, at all temperatures. The isolates were also exposed to 4, 8, 16 and 24 h uv light from a sunlight simulator at 40°. Conidial viability decreased markedly in all isolates with increasing uv exposure. Germination ranged between 10 and 50% after 24 h exposure to uv, 191–660 retaining highest viability. (author)

  16. Molecular, morphological and pathogenic characterization of six strains of Metarhizium spp. (Deuteromycotina: Hyphomycetes for the control of Aegorhinus superciliosus (Coleoptera: Curculionidae

    Directory of Open Access Journals (Sweden)

    María Sepúlveda

    2016-03-01

    Full Text Available Aegorhinus superciliosus is an important pest on blueberry (Vaccinium corymbosum L. and other fruit trees. The use of entomopathogenic fungi as Metarhizium spp. has been evaluated for the control of this insect, but variability has been observed among different strains. The aim of this study was to characterize six promising strains of Metarhizium spp. for the control of A. superciliosus. The studied strains were QuM173c, Qu-M363, Qu-M171a, Qu-M156a, Qu-M421, and Qu-M430, all of which belonged to the Chilean Collection of Microbial Genetic Resources (ChCMGR of the Institute de Investigaciones Agropecuarias (INIA, Chile. Molecular characterization was made by sequencing the ITS region (Internal Transcribed Spacers, ITS-5.8S rDNA. The morphology of conidia was evaluated through scanning electron microscopy and radial colony growth was evaluated in potato dextrose agar (PDA, Sabouraud dextrose agar (SDA, agar enriched with larvae of Galleria mellonella (Lepidoptera: Pyralidae (GA, and agar enriched with adults of A. superciliosus (AA. Pathogenicity was studied based on mortality of adults of A. superciliosus inoculated with conidia. Sequencing of the ITS-5.8S rDNA region indicates that the strains belong to the clade of M. anisopliae var. anisopliae, except for Qu-M171a, which was identified as M. anisopliae var. lepidiotum. Conidia average length for the six strains was 5.09 pm and average conidia width was 1.92 pm. Radial colony growth differences were observed between strains (p < 0.01 and between different growth media (p < 0.01. The strains exhibited the highest colony growth in the GA medium, while in the AA medium they showed the lowest (p < 0.01. Pathogenicity tests show that Qu-M430 reached a 90% mortality rate (p < 0.01. Results show that there is variability between the studied strains, which is expressed in their morphology, molecular characteristics and pathogenicity towards A. superciliosus.

  17. Pyrethroid resistance in Anopheles gambiae leads to increased susceptibility to the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana

    NARCIS (Netherlands)

    Howard, A.F.V.; Koenraadt, C.J.M.; Farenhorst, M.; Knols, B.G.J.; Takken, W.

    2010-01-01

    Background: Entomopathogenic fungi are being investigated as a new mosquito control tool because insecticide resistance is preventing successful mosquito control in many countries, and new methods are required that can target insecticide-resistant malaria vectors. Although laboratory studies have

  18. Pyrethroid resistance in Anopheles gambiae leads to increased susceptibility to the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana

    NARCIS (Netherlands)

    Howard, Annabel F. V.; Koenraadt, Constantianus J. M.; Farenhorst, Marit; Knols, Bart G. J.; Takken, Willem

    2010-01-01

    Entomopathogenic fungi are being investigated as a new mosquito control tool because insecticide resistance is preventing successful mosquito control in many countries, and new methods are required that can target insecticide-resistant malaria vectors. Although laboratory studies have previously

  19. Infection of malaria (Anopheles gambiae s.s.) and filariasis (Culex quinquefasciatus) vectors with the entomopathogenic fungus Metarhizium anisopliae

    NARCIS (Netherlands)

    Scholte, E.J.; Njiru, B.N.; Smallegange, R.C.; Takken, W.; Knols, B.G.J.

    2003-01-01

    Background: Current intra-domiciliary vector control depends on the application of residual insecticides and/or repellents. Although biological control agents have been developed against aquatic mosquito stages, none are available for adults. Following successful use of an entomopathogenic fungus

  20. Allergic Responses Induced by a Fungal Biopesticide Metarhizium anisopliae and House Dust Mite are Compared in a Mouse Model

    Science.gov (United States)

    Biopesticides can be effective in controlling their target pest. However, research regarding mammalian health impacts of these agents has focused on toxicity and pathogenicity, with limited research regarding allergenicity and asthma development. We compared the ability of funga...

  1. Genetic variability in regenerated Metarhizium flavoviride protoplasts

    Directory of Open Access Journals (Sweden)

    Júlia Kuklinsky-Sobral

    2004-03-01

    Full Text Available Protoplast isolation and regeneration were evaluated in two wild-type and two colour mutant strains of Metarhizium flavoviride. Cultivation in liquid medium, followed by mycelium treatment with Novozym 234 in the presence of KCl 0.7M as osmotic stabilizer, produced 5.05 x 10(6 to 1.15 x 10(7x mL-1 protoplasts. The percentage of regeneration ranged from 6.65 to 27.92%. Following protoplast regeneration, one strain produced spontaneously stable morphological variant colonies. Although colonies with altered morphology have been reported in bacteria following protoplast regeneration, this is the first time that the same is described in a filamentous fungus. The original strain and one derived variant were tested for sensitivity to the fungicides benomyl and captan.A formação e regeneração de protoplastos foram avaliadas em duas linhagens selvagens e duas linhagens mutantes para coloração de conídios em Metarhizium flavoviride. O cultivo em meio líquido seguido do tratamento do micélio com Novozym 234 na presença de KCl 0,7 M como estabilizador osmótico, resultou na produção de 5,05´10(6 a 1,15´10(7 protoplastos´mL-1. A porcentagem de regeneração das diferentes linhagens variou de 6,65 a 27,92%. Após a regeneração, uma das linhagens selvagens produziu espontaneamente variantes estáveis, com morfologia alterada. Embora variantes morfológicos já tenham sido observados após regeneração de protoplastos em bactérias, esta parece ser a primeira vez que tal ocorrência é descrita em fungos filamentosos. Um desses variantes, além da linhagem selvagem da qual ele foi originado, foi testado para sensibilidade aos fungicidas benomil e captano.

  2. An extra-domiciliary method of delivering entomopathogenic fungus, Metharizium anisopliae IP 46 for controlling adult populations of the malaria vector, Anopheles arabiensis

    Directory of Open Access Journals (Sweden)

    Mnyone Ladslaus L

    2010-03-01

    Full Text Available Abstract Fungal biopesticides have the potential to significantly reduce densities of malaria vectors as well as associated malaria transmission. In previous field trials, entomopathogenic fungus was delivered from within human dwellings, where its efficacy was limited by low infection rates of target mosquitoes, high costs of spraying fungus inside houses, and potential public health concerns associated with introducing fungal conidia inside houses. Here we have demonstrated that Metarhizium anisopliae IP 46, delivered within an extra-domiciliary odor-baited station (OBS, can infect and slowly-kill a high proportion of the wild adult malaria vector, Anopheles arabiensis which entered and exited the OBS. This study, carried out in rural Tanzania, showed that by using a concentration of 3.9 × 1010 conidia/m2, more than 95% of mosquitoes that flew in and out of the OBS died within 14 days post-exposure. At least 86% infection of mosquito cadavers was recorded with a significant reduction in the probability of daily survival of exposed An. arabiensis in both treatments tested: low quantity of conidia (eave baffles plus one cotton panel; HR = 2.65, P P

  3. Metacridamides A and B from the biocontrol fungus metarhizium acridum

    Science.gov (United States)

    Metarhizium acridum, an entomopathogenic fungus, has been commercialized and used successfully for biocontrol of grasshopper pests in Africa and Australia. As part of an effort to catalog the secondary metabolites of this fungus we discovered that its conidia produce two novel 17-membered macrocycl...

  4. Pengendalian Diaphorina citri (Vektor Penyakit CVPD dengan Metarrhizium anisopliae

    Directory of Open Access Journals (Sweden)

    Kardi Raharjo

    2000-07-01

    and after insect infestation. The first phase of the research phase has been conducted in Temanggung, Completely Randomize Design (CRD factorial with three time replication. Factor I: sterile water without fructose, concentration 10^6 conidia/ml without fructose, concentration 10^8 conidia/ml without fructose, concentration 10^10 conidia/ml: without fructose, sterile water + fructose 5 mg/ml, concentration 10^6 conidia/ml without fructose 5 mg/ml, concentration 10^8 conidia/ml + fructose (fungi application before insect infestation and W1 (fungi application after insect infestation. Research phase II was carried out with the best treatment combination compare with control treatment in Temanggung and Bantul. The results of experiment showed that the initial die of D. citri caused by M. anisopliae infection are on 4-6 days after application. The application of M. anisopliae at concentration 10^10 conidia/ml without fructose, applied after insect infestation was most effective. The application after insect infestation was more effective compare with application before insect infestation especially on 4 days after application, but on 35th days after application there was no significant difference. Fructose has no effect to mortality of D. citri.

  5. Production of destruxins from metarhizium spp. fungi in artificial medium and in endophytically colonized cowpea plants

    Science.gov (United States)

    Destruxins (DTXs) are cyclic depsipeptides produced by many Metarhizium isolates that have long been assumed to contribute to virulence of these entomopathogenic fungi. We evaluated the virulence of 20 Metarhizium isolates against insect larvae and measured the concentration of DTXs A, B, and E prod...

  6. Entomopathogenic fungi Metarhizium spp. in the soil environment of an agroecosystem

    DEFF Research Database (Denmark)

    Steinwender, Bernhardt Michael

    Species of the entomopathogenic fungal genus Metarhizium are found worldwide predominantly in the soil environment where they infect a broad spectrum of insects, but also associate with plant roots. To increase performance of Metarhizium as biological control agents against pests, fundamental...... ecological knowledge of Metarhizium is necessary. The present PhD project contributed to this knowledge, particularly of Metarhizium spp. occurrence and abundance within a single Danish agroecosystem, with emphasis on the molecular diversity and ecological traits. Metarhizium was isolated from bulk soil...... several sympatric species and genotypes. The isolated species and their genotypes were evaluated for ecological traits including UVB tolerance, temperature dependent in vitro growth, virulence and conidia production on infected cadavers, and mycelial growth from insect cadavers into the surrounding soil...

  7. Occurrence of Entomopathogenic Fungi from Agricultural and Natural Ecosystems in Saltillo, México, and their Virulence Towards Thrips and Whiteflies

    Science.gov (United States)

    Sánchez-Peña, Sergio R.; Lara, Jorge San-Juan; Medina, Raúl F.

    2011-01-01

    Entomopathogenic fungi were collected from soil in four adjacent habitats (oak forest, agricultural soil, pine reforestation and chaparral habitat) in Saltillo, México using the insect bait method with Tenebrio molitor (L.) (Coleoptera: Tenebrionidae) larvae as bait. Overall, of the larvae exposed to soil, 171 (20%) hosted Beauveria bassiana (Balsamo) Vuillemin (Hypocreales: Cordycipitaceae), 25 (3%) hosted Metarhizium anisopliae (Metschnikoff) Sorokin (Hypocreales: Clavicipitaceae) and 1 (0.1%) hosted lsaria (=Paecilomyces) sp. (Hypocreales: Cordycipitaceae). B. bassiana was significantly more frequent on larvae exposed to oak forest soil. M. anisopliae was significantly more frequent on larvae exposed to agricultural soil. From the infected bait insects, 93 isolates of B. bassiana and 24 isolates of M. anisopliae were obtained. Strains were tested for their infectivity against Cuban laurel thrips, Gynaikothrips uzeli Zimmerman (Thysanoptera: Phlaeothripidae) and the greenhouse whitefly, Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae). B. bassiana isolates caused the highest mortality on thrips (some causing 88% mortality after 6 days); both fungal species caused similarly high mortality levels against whiteflies (75%) after 6 days. Large amounts of germplasm of entomopathogenic fungi, fundamentally B. bassiana and M. anisopliae, exist in the habitats sampled; pathogenicity varied among strains, and some strains possessed significant virulence. Soils in these habitats are reservoirs of diverse strains with potential for use in biocontrol. PMID:21521145

  8. Evaluation of Metarhizium brunneum F52 (Hypocreales: Clavicipitaceae) for control of Japanese beetle larvae in turfgrass

    Science.gov (United States)

    Experimental and commercial preparations of Metarhizium brunneum strain F52 were evaluated for control of Japanese beetle Popillia japonica Newman (Coleoptera: Scarbaeidae) larvae (white grubs) in the laboratory and under field conditions. Experimental preparations consisted of granule and liquid f...

  9. Multilocus sequence typing of Metarhizium anisopliae var acridum isolates as microbial agents for locust and grasshopper control. Genbank Accession numbers FJ787311 to FJ787325

    Science.gov (United States)

    A growing interest in the biological control of locusts and grasshoppers (Acrididae) has led to the development of biopesticides based on naturally occurring pathogens which offers an environmentally safe alternative to chemical pesticides. However, the fungal strains which are being sought for biop...

  10. Evaluating the virulence and longevity of non-woven fiber bands impregnated with Metarhizium anisopliae against the Asian longhorned beetle, Anoplophora glabripennis (Coleoptera: Cerambycidae)

    Science.gov (United States)

    Ryan P. Shanley; Melody Keena; Micheal M. Wheeler; Jarrod Leland; Ann E. Hajek

    2009-01-01

    Fiber bands impregnated with entomopathogenic fungi (=fungal bands) provide an effective method for controlling the invasive Asian longhorned beetle, Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae). In this study we investigated the effective longevity of fungal bands for use against A. glabripennis, using...

  11. Use of the entomopathogenic fungi Metarhizium anisopliae, Cordyceps bassiana and Isaria fumosorosea to control Diaphorina citri (Hemiptera: Psylidae) in Persian lime under field conditions

    Science.gov (United States)

    The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), is a destructive insect pest in the citriculture, because it is an efficient vector of the proteobacteria, ‘Candidatus Liberibacter asiaticus’ (Las), ‘Ca. L. Africanus’ (Laf), and ‘Ca. L. Americanus’ (Lam). These bacteria c...

  12. Differentiation of the entomopathogenic fungus Metarhizium flavoviride (Hyphomycetes

    Directory of Open Access Journals (Sweden)

    Xavier-Santos Solange

    1999-01-01

    Full Text Available The differentiation of a Brazilian isolate of Metarhizium flavoviride (CG 423, a promising candidate for the biocontrol of grasshoppers, was investigated. Conidia were spread onto solid medium (1% yeast extract, 2.8% agar, 96.2% distilled water, incubated at 28°C and observed during 26 h. Germination initiated as conidia size increased from 5.3 (±0.6 x 3.1 (±0.3 µm (0 h incubation to 8.1 (±0.2 x 6.1 (±0.2 µm (8 h incubation. Germ tubes started to appear after 10 h incubation showing a high degree of multipolarity. Twenty six hours after inoculation, hyphal differentiation and anastomosis among hyphae from adjacent conidia were recorded. Appressoria were formed only from conidia incubated in liquid medium containing minimum concentration of yeast extract (0.06%; w/v. Appressoria were firmly adhered to the bottom of plastic dishes.

  13. Pathogenicity of Metarrhizium anisopliae (Metsch.) Sorokin and Beauveria bassiana (Bals.) Vuillemin isolates to Scaptocoris carvalhoi Becker (Hemiptera, Cydnidae)

    International Nuclear Information System (INIS)

    Xavier, Luciane Modenez Saldivar; Avila, Crebio Jose

    2006-01-01

    Pathogenicity of the fungi Metarrhizium anisopliae (Metsch.) Sorokin and Beauveria bassiana (Bals.) Vuillemin to stink bug Scaptocoris carvalhoi Becker, 1967 was evaluated under laboratory and greenhouse conditions. Experiments were carried out at EMBRAPA Agropecuaria Oeste, Dourados, Mato Grosso do Sul State, Brazil, in 2003. Ten M. anisopliae and eleven B. bassiana isolates were evaluated in laboratory using a completely randomized experimental design with five replicates (10 adults and 5 nymphs/plot). The pathogenicity of M. anisopliae isolate (Ma69) was also separately evaluated against nymphs and adults in laboratory and greenhouse. The stink bug mortality levels were higher for M. anisopliae isolates (between 73.3% and 94.7% than for B. bassiana isolates (between 10.7% and 78.7%). In greenhouse, stink bug mortality due to the M. anisopliae isolate (Ma69) was 57.3%, and there was no difference of mortality for nymphs and adults of stink bug in laboratory. However, in greenhouse, mortality levels were significantly higher (p<0,05) for nymphs (38,4%) than for adults (16,2%). From these data, we conclude that M. anisopliae isolate Ma69 was efficient to control S. carvalhoi in laboratory and in greenhouse, thus being a promising choice for use as a microbial insecticide under field conditions. (author)

  14. Ovicidal activity of Metarhizium brunneum (Mb F52) on dengue fever vector, Aedes aegypti

    Science.gov (United States)

    The ovicidal activity of Metarhizium brunneum F52 (Mb F52) grown from granules was evaluated against Aedes aegypti eggs over time. Survival of larvae from treated eggs was significantly less when compared with untreated eggs at 7, 10 and 14 days post treatment. Only 27 % of treated eggs produced vi...

  15. Metacridamides A and B, bioactive macrocycles from conidia of the entomopathogenic fungus Metarhizium acridum

    Science.gov (United States)

    Metarhizium acridum, an entomopathogenic fungus, has been commercialized and used successfully for biocontrol of grasshopper pests in Africa and Australia. Its conidia produce two novel 17-membered macrocycles, metacridamides A (1) and B (2), which consist of a Phe unit condensed with a nonaketide....

  16. An in vivo transcriptome for entomopathogenic fungus Metarhizium robertsii ARSEF 2575

    Science.gov (United States)

    Molecular mechanisms underlying the pathogenic process of the insect pathogen Metarhizium robertsii ARSEF 2575 in its host are only partially understood. To probe the transcriptional responses of the fungus during the interaction with insects, we have developed a method to specifically recover patho...

  17. Microsclerotia of Metarhizium brunneum F52 applied in hydromulch for control of Asian longhorned beetles (Coleoptera: Cerambycidae)

    Science.gov (United States)

    The entomopathogenic fungus Metarhizium brunneum (Petch), strain F52 (Hypocreales: Clavicipitaceae) is able to produce environmentally persistent microsclerotia. Incorporating these desiccation-tolerant M. brunneum F52 microsclerotia (Mb MS) granules into hydromulch [a mixture of water + wheat straw...

  18. Screening for attractants compatible with entomopathogenic fungus ...

    African Journals Online (AJOL)

    RACHEL

    2016-04-27

    Apr 27, 2016 ... Several thrips attractants were screened for compatibility with Metarhizium anisopliae (Metchnikoff). Sorokin (Hypocreales: Clavicipitaceae) and a subset of these for attraction to Megalurothrips sjostedti. Trybom (Thysanoptera: Thripidae). Conidial germination and germ tube length of M. anisopliae were.

  19. Potential of Metarrhizium anisopliae and Beauveria bassiana isolates and Neem oil to control the aphid Lipaphis erysimi (Kalt.) (Hemiptera: Aphididae)

    International Nuclear Information System (INIS)

    Araujo Junior, Jose M. de; Marques, Edmilson J.; Oliveira, Jose V. de

    2009-01-01

    This work aimed to determine the efficiency of the entomopathogenic fungi Metarrhizium anisopliae and Beauveria bassiana to control the aphid Lipaphis erysimi (Kalt.) (Hemiptera:Aphididae) in kale Brassica oleracea var acephala D.C., as well as their compatibility with a neem oil formulation (Neemseto R ). Ten isolates of both fungi were tested and the most pathogenic ones were B. bassiana CG001 and M. anisopliae CG30 with 90% and 4.4 days, and 64% and 3.8 days of mortality and median lethal time, respectively. Bioassays with neem at concentrations of 0.5, 1.0 and 2.0% were done either by leaf discs dipping or spraying the aphids on the leaf discs. The neem spraying treatment at 2.0% provided 90% mortality. The use of B. bassiana isolate CG001 or M. anisopliae isolate CG30 with neem at 0.125, 0.25, and 0.5%, demonstrated that these isolates could have their spore viability or colony growth affected when exposed to neem concentrations higher than 0.25%. In absolute values, the isolates B. bassiana CG001 and M. anisopliae CG30 are the most virulent to L. erysimi, and could be utilized in the management of this pest. (author)

  20. Patogenisitas Beberapa Isolat Cendawan Entomopatogen Metarhizium spp. terhadap Telur Spodoptera litura Fabricius (Lepidoptera: Noctuidae

    Directory of Open Access Journals (Sweden)

    Trizelia Trizelia

    2015-09-01

    Full Text Available Metarhizium spp. is one of the entomopathogenic fungus that can be used to control Spodoptera litura. The purpose of this research was to study the pathogenicity of Metarhizium spp. to Spodoptera litura eggs. The isolates were collected from rhizosphere of different crops i.e., cabbage, onion, leek and chili. The results showed that there was effect of all isolates on egg mortality. Mortality of S. litura eggs depend on the fungal isolates, ranged between 19.79%-75.70%. First instar larvae was also died 3 days after eclosion. The maximum mortality of first instar larvae was 58.65%. At a concentration of 108 conidia/ml, isolate Mt-kb had the highest virulence which caused higher mortality of eggs and first instar larvae.

  1. Production of destruxins from Metarhizium spp. fungi in artificial medium and in endophytically colonized cowpea plants.

    Directory of Open Access Journals (Sweden)

    Patrícia S Golo

    Full Text Available Destruxins (DTXs are cyclic depsipeptides produced by many Metarhizium isolates that have long been assumed to contribute to virulence of these entomopathogenic fungi. We evaluated the virulence of 20 Metarhizium isolates against insect larvae and measured the concentration of DTXs A, B, and E produced by these same isolates in submerged (shaken cultures. Eight of the isolates (ARSEF 324, 724, 760, 1448, 1882, 1883, 3479, and 3918 did not produce DTXs A, B, or E during the five days of submerged culture. DTXs were first detected in culture medium at 2-3 days in submerged culture. Galleria mellonella and Tenebrio molitor showed considerable variation in their susceptibility to the Metarhizium isolates. The concentration of DTXs produced in vitro did not correlate with percent or speed of insect kill. We established endophytic associations of M. robertsii and M. acridum isolates in Vigna unguiculata (cowpeas and Cucumis sativus (cucumber plants. DTXs were detected in cowpeas colonized by M. robertsii ARSEF 2575 12 days after fungal inoculation, but DTXs were not detected in cucumber. This is the first instance of DTXs detected in plants endophytically colonized by M. robertsii. This finding has implications for new approaches to fungus-based biological control of pest arthropods.

  2. Dual effects of Metarhizium spp. and Clonostachys rosea against an insect and a seed-borne pathogen in wheat.

    Science.gov (United States)

    Keyser, Chad A; Jensen, Birgit; Meyling, Nicolai V

    2016-03-01

    Crops are often prone to both insect herbivory and disease, which necessitate multiple control measures. Ideally, an efficacious biological control agent must adequately control the target organism and not be inhibited by other biological control agents when applied simultaneously. Wheat seeds infected with the plant pathogen Fusarium culmorum were treated with Metarhizium brunneum or M. flavoviride and Clonostachys rosea individually and in combination, with the expectation to control both root-feeding insects and the pathogen. Emerging roots were evaluated for disease and then placed with Tenebrio molitor larvae, which were monitored for infection. Plant disease symptoms were nearly absent for seeds treated with C. rosea, both individually and in combination with Metarhizium spp. Furthermore, roots grown from seeds treated with Metarhizium spp. caused significant levels of fungal infection in larvae when used individually or combined with C. rosea. However, cotreated seeds showed reduced virulence towards T. molitor when compared with treatments using Metarhizium spp. only. This study clearly shows that seed treatments with both the entomopathogenic fungus M. brunneum and the mycoparasitic fungus C. rosea can protect plant roots from insects and disease. The dual-treatment approach to biological control presented here is consistent with the ideals of IPM strategies. © 2015 Society of Chemical Industry.

  3. Effect of fermentation media on the production, efficacy and storage stability of Metarhizium brunneum microsclerotia formulated as a prototype granule

    Science.gov (United States)

    New liquid fermentation techniques for the production of the bioinsecticidal fungus Metarhizium brunneum strain F-52 have resulted in the formation of microsclerotia (MS), a compact, melonized-hyphal structure capable of surviving desiccation and formulation as dry granules. When rehydrated, these M...

  4. Soil application of formulated Metarhizium brunneum F52 (Hypocreales: Clavicipitaceae) containing microsclerotia controls eggs of Aedes aegypti (Diptera: Culicidae)

    Science.gov (United States)

    We evaluated the potential of a granular formulation of Metarhizium brunneum F52 containing microsclerotia (MbMSc granules) for control of Aedes aegypti (L.) by targeting eggs. MbMSc granules produced infective conidia within 14 days after application to moist potting soil, producing 5.9 × 10**5, 2....

  5. Root isolations of Metarhizium spp. from crops reflect diversity in the soil and indicate no plant specificity

    DEFF Research Database (Denmark)

    Steinwender, Bernhardt M.; Enkerli, Jürg; Widmer, Franco

    2015-01-01

    elongation factor 1-alpha and characterized by simple sequence repeat (SSR) analysis of 14 different loci. Metarhizium brunneum was the most common species isolated from plant roots (84.1% of all isolates), while M. robertsii (11.1%) and M. majus (4.8%) comprised the remainder. The SSR analysis revealed...

  6. Dosage response mortality of Japanese beetle, masked chafer, and June beetle (Coleoptera: Scarabaeidae) adults when exposed to experimental and commercially available granules containing Metarhizium brunneum

    Science.gov (United States)

    Adult beetles of three different white grub species, Japanese beetle, Popillia japonica, June beetle, Phyllophaga spp., and masked chafer, Cyclocephala spp. were exposed to experimental and commercially available granules containing Metarhizium brunneum (Petch) strain F52, to determine susceptibilit...

  7. SELECCIÓN DE AISLAMIENTOS DE Beauveria bassiana (Bals.) Vuill. Y Metarhizium anisopliae Metsch. Sorokin (ASCOMYCOTA: HYPOCREALES) PATOGÉNICOS A GALLINA CIEGA Phyllophaga polyphylla (Bates) (COLEOPTERA: MELOLONTHIDAE) Y DISTRIBUCIÓN VERTICAL DE ESPORAS EN DIFERENTES TIPOS DE SUELO

    OpenAIRE

    CRUZ COTA, LIZETH RAMONA

    2012-01-01

    Los hongos entomopatógenos son una alternativa promisoria para el control de plagas agrícolas. En este estudio, se obtuvieron diversos aislamientos nativos de estos microorganismos provenientes de larvas de gallina ciega del género Phyllophaga sp., una de la plagas más importantes del cultivo de maíz en el estado de Guanajuato. En total se obtuvieron 16 aislamientos de hongos entomopatógenos, de los cuales ocho pertenecen a Beauveria bassiana (Bals.) Vuill. y el resto a Meta...

  8. Effect of Three Entomopathogenic Fungi on Three Species of Stingless Bees (Hymenoptera: Apidae) Under Laboratory Conditions.

    Science.gov (United States)

    Toledo-Hernández, R A; Ruíz-Toledo, J; Toledo, J; Sánchez, D

    2016-05-04

    Development of alternative strategies for pest control with reduced effect on beneficial organisms is a priority given the increasing global loss of biodiversity. Biological control with entomopathogenic fungi arises as a viable option to control insect pests. However, few studies have focused on the consequences of using these organisms on pollinators other than the honey bee (Apis mellifera L.) or bumble bees (Bombus spp). We evaluated the pathogenicity of commercial formulations of three widely used entomopathogenic fungi, Metarhizium anisopliae (Metschnikoff) Sorokin, Beauveria bassiana Vuillemin, and Isaria fumosorosea (Wize), to three species of stingless bees: Tetragonisca angustula Latreille, Scaptotrigona mexicana Guérin-Meneville, and Melipona beecheii Bennett. Bioassays consisted of exposing groups of bees to the recommended field concentration of each fungus using a microspray tower under laboratory conditions. Susceptibility to fungi varied greatly among species. Isaria fumosorosea (strain Ifu-lu 01) and the two formulations of B. bassiana (Bea-TNK and BotanicGard) caused entomopathogenic fungi on stingless bees, further field studies are required to support this finding. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Laboratory evaluation of temperature effects on the germination and growth of entomopathogenic fungi and on their pathogenicity to two aphid species.

    Science.gov (United States)

    Yeo, Helen; Pell, Judith K; Alderson, Peter G; Clark, Suzanne J; Pye, Barry J

    2003-02-01

    As part of an approach to select potential mycoinsecticides for aphid biocontrol, we investigated the effects of temperature on the growth, germination and pathogenicity of some hyphomycete fungi. Commercially available mycoinsecticides (based on Beauveria bassiana (Balsamo) Vuillemin and Verticillium lecanii (Zimmermann) Viegas) and other isolates of B bassiana, V lecanii, Metarhizium anisopliae (Metschnikoff) Sorokin and Paecilomyces fumosoroseus (Wize) Brown & Smith were evaluated. The rate of in vitro conidial germination of all isolates was slower at 10 and 15 degrees C than at 20 and 25 degrees C. Similarly, in vitro growth of most isolates was adversely affected at 10 and 15 degrees C. The greatest reduction at 10 degrees C in rates of conidial germination and colony growth, compared with other temperatures, was for M anisopliae isolates. Germination of V lecanii (isolate HRI 1.72) was fastest at 10 degrees C compared with the other fungi. It was also the most pathogenic of three isolates tested against Aphis fabae Scopoli and Myzus persicae Sulzer at 10, 18 and 23 degrees C. Generally, A fabae was more susceptible than M persicae to infection by the fungal isolates tested. A significant interaction between aphid species and temperature indicated that the pathogenic nature of an isolate was dependent not only on the target aphid species but also the temperature conditions of the bioassay. The series of studies, detailed above, allowed a temperature profile to be formed for the different isolates. Verticillium lecanii isolate HRI 1.72 (commercialised as Vertalec) was the most promising isolate selected from results of the series of experiments. Temperature profiles in conjunction with infectivity assays can be useful in selecting appropriate isolates for a particular thermal environment.

  10. MrSkn7 controls sporulation, cell wall integrity, autolysis, and virulence in Metarhizium robertsii.

    Science.gov (United States)

    Shang, Yanfang; Chen, Peilin; Chen, Yixiong; Lu, Yuzhen; Wang, Chengshu

    2015-04-01

    Two-component signaling pathways generally include sensor histidine kinases and response regulators. We identified an ortholog of the response regulator protein Skn7 in the insect-pathogenic fungus Metarhizium robertsii, which we named MrSkn7. Gene deletion assays and functional characterizations indicated that MrSkn7 functions as a transcription factor. The MrSkn7 null mutant of M. robertsii lost the ability to sporulate and had defects in cell wall biosynthesis but was not sensitive to oxidative and osmotic stresses compared to the wild type. However, the mutant was able to produce spores under salt stress. Insect bioassays using these spores showed that the virulence of the mutant was significantly impaired compared to that of the wild type due to the failures to form the infection structure appressorium and evade host immunity. In particular, deletion of MrSkn7 triggered cell autolysis with typical features such as cell vacuolization, downregulation of repressor genes, and upregulation of autolysis-related genes such as extracellular chitinases and proteases. Promoter binding assays confirmed that MrSkn7 could directly or indirectly control different putative target genes. Taken together, the results of this study help us understand the functional divergence of Skn7 orthologs as well as the mechanisms underlying the development and control of virulence in insect-pathogenic fungi. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Efficacy of the entomopathogenic fungus Metarhizium brunneum in controlling the tick Rhipicephalus annulatus under field conditions.

    Science.gov (United States)

    Samish, M; Rot, A; Ment, D; Barel, S; Glazer, I; Gindin, G

    2014-12-15

    High infectivity of entomopathogenic fungi to ticks under laboratory conditions has been demonstrated in many studies. However, the few reports on their use under field conditions demonstrate large variations in their success, often with no clear explanation. The present study evaluated the factors affecting the efficacy of the fungus Metarhizium brunneum against the tick Rhipicephalus (Boophilus) annulatus. It demonstrates how environmental conditions and ground cover affect the efficiency of the fungus under field conditions. During the summer, 93% of tick females exposed to fungus-contaminated ground died within 1 week, whereas during the winter, only 62.2% died within 6 weeks. Nevertheless, the hatchability of their eggs was only 6.1% during the summer and 0.0% during winter. Covering the ground with grass, leaves or gravel improved fungal performance. Aside from killing female ticks, the fungus had a substantial effect on tick fecundity. Fungal infection reduced the proportion of female ticks laying full-size egg masses by up to 91%, and reduced egg hatchability by up to 100%. To reduce the negative effect of outdoor factors on fungal activity, its conidia were mixed with different oils (olive, canola, mineral or paraffin at 10% v/v) and evaluated in both laboratory and field tests for efficacy. All tested oils without conidia sprayed on the sand did not influence tick survival or weight of the laid eggs but significantly reduced egghatchability. Conidia in water with canola or mineral oil spread on agarose and incubated for 18 h showed 57% and 0% germination, respectively. Comparing, under laboratory conditions, the effects of adding each of the four oils to conidia in water on ticks demonstrated no effect on female mortality or weight of the laid egg mass, but the percentage of hatched eggs was reduced. In outdoor trials, female ticks placed on the ground sprayed with conidia in water yielded an average of 175 larvae per female and there was no hatching of

  12. Dicer and Argonaute Genes Involved in RNA Interference in the Entomopathogenic Fungus Metarhizium robertsii.

    Science.gov (United States)

    Meng, Huimin; Wang, Zhangxun; Wang, Yulong; Zhu, Hong; Huang, Bo

    2017-04-01

    RNA interference (RNAi) is a gene-silencing mechanism that plays an important role in gene regulation in a number of eukaryotic organisms. Two core components, Dicer and Argonaute, are central in the RNAi machinery. However, the physiological roles of Dicer and Argonaute in the entomopathogenic fungus Metarhizium robertsii have remained unclear. Here, the roles of genes encoding Dicer ( M. robertsii dcl1 [ Mrdcl1 ] and Mrdcl2 ) and Argonaute ( Mrago1 and Mrago2 ) proteins in M. robertsii were investigated. The results showed that the Dicer-like protein MrDCL2 and Argonaute protein MrAGO1 are the major components of the RNAi process occurring in M. robertsii The Dicer and Argonaute genes were not involved in the regulation of growth and diverse abiotic stress response in M. robertsii under the tested conditions. Moreover, our results showed that the Dicer and Argonaute gene mutants demonstrated reduced abilities to produce conidia, compared to the wild type (WT) and the gene-rescued mutant. In particular, the conidial yields in the Δ dcl2 and Δ ago1 mutants were reduced by 55.8% and 59.3%, respectively, compared with those from the control strains. Subsequently, for the WT and Δ dcl2 mutant strains, digital gene expression (DGE) profiling analysis of the stage of mycelium growth and conidiogenesis revealed that modest changes occur in development or metabolism processes, which may explain the reduction in conidiation in the Δ dcl2 mutant. In addition, we further applied high-throughput sequencing technology to identify small RNAs (sRNAs) that are differentially expressed in the WT and the Δ dcl2 mutant and found that 4 known microRNA-like small RNAs (milRNAs) and 8 novel milRNAs were Mrdcl2 dependent in M. robertsii IMPORTANCE The identification and characterization of components in RNAi have contributed significantly to our understanding of the mechanism and functions of RNAi in eukaryotes. Here, we found that Dicer and Argonaute genes play an important role

  13. Metarhizium brunneum (Ascomycota; Hypocreales) Treatments Targeting Olive Fly in the Soil for Sustainable Crop Production.

    Science.gov (United States)

    Yousef, Meelad; Alba-Ramírez, Carmen; Garrido Jurado, Inmaculada; Mateu, Jordi; Raya Díaz, Silvia; Valverde-García, Pablo; Quesada-Moraga, Enrique

    2018-01-01

    Soil treatments with Metarhizium brunneum EAMa 01/58-Su strain conducted in both Northern and Southern Spain reduced the olive fly ( Bactrocera oleae ) population density emerging from the soil during spring up to 70% in treated plots compared with controls. A model to determine the influence of rainfall on the conidial wash into different soil types was developed, with most of the conidia retained at the first 5 cm, regardless of soil type, with relative percentages of conidia recovered ranging between 56 and 95%. Furthermore, the possible effect of UV-B exposure time on the pathogenicity of this strain against B. oleae adults coming from surviving preimaginals and carrying conidia from the soil at adult emergence was also evaluated. The UV-B irradiance has no significant effect on M. brunneum EAMa 01/58-Su pathogenicity with B. oleae adult mortalities of 93, 90, 79, and 77% after 0, 2, 4, and 6 of UV-B irradiance exposure, respectively. In a next step for the use of these M. brunneum EAMa 01/58-Sun soil treatments within a B. oleae IPM strategy, its possible effect of on the B. oleae cosmopolitan parasitoid Psyttalia concolor , its compatibility with the herbicide oxyfluorfen 24% commonly used in olive orchards and the possible presence of the fungus in the olive oil resulting from olives previously placed in contact with the fungus were investigated. Only the highest conidial concentration (1 × 10 8 conidia ml - ) caused significant P. concolor adult mortality (22%) with enduing mycosis in 13% of the cadavers. There were no fungal propagules in olive oil samples resulting from olives previously contaminated by EAMa 01/58-Su conidia. Finally, the strain was demonstrated to be compatible with herbicide since the soil application of the fungus reduced the B. oleae population density up to 50% even when it was mixed with the herbicide in the same tank. The fungal inoculum reached basal levels 4 months after treatments (1.6 × 10 3 conidia g soil -1 ). These results

  14. Metarhizium brunneum (Ascomycota; Hypocreales Treatments Targeting Olive Fly in the Soil for Sustainable Crop Production

    Directory of Open Access Journals (Sweden)

    Meelad Yousef

    2018-01-01

    Full Text Available Soil treatments with Metarhizium brunneum EAMa 01/58-Su strain conducted in both Northern and Southern Spain reduced the olive fly (Bactrocera oleae population density emerging from the soil during spring up to 70% in treated plots compared with controls. A model to determine the influence of rainfall on the conidial wash into different soil types was developed, with most of the conidia retained at the first 5 cm, regardless of soil type, with relative percentages of conidia recovered ranging between 56 and 95%. Furthermore, the possible effect of UV-B exposure time on the pathogenicity of this strain against B. oleae adults coming from surviving preimaginals and carrying conidia from the soil at adult emergence was also evaluated. The UV-B irradiance has no significant effect on M. brunneum EAMa 01/58-Su pathogenicity with B. oleae adult mortalities of 93, 90, 79, and 77% after 0, 2, 4, and 6 of UV-B irradiance exposure, respectively. In a next step for the use of these M. brunneum EAMa 01/58-Sun soil treatments within a B. oleae IPM strategy, its possible effect of on the B. oleae cosmopolitan parasitoid Psyttalia concolor, its compatibility with the herbicide oxyfluorfen 24% commonly used in olive orchards and the possible presence of the fungus in the olive oil resulting from olives previously placed in contact with the fungus were investigated. Only the highest conidial concentration (1 × 108 conidia ml− caused significant P. concolor adult mortality (22% with enduing mycosis in 13% of the cadavers. There were no fungal propagules in olive oil samples resulting from olives previously contaminated by EAMa 01/58-Su conidia. Finally, the strain was demonstrated to be compatible with herbicide since the soil application of the fungus reduced the B. oleae population density up to 50% even when it was mixed with the herbicide in the same tank. The fungal inoculum reached basal levels 4 months after treatments (1.6 × 103 conidia g soil−1

  15. DIFFERENTIAL ALLERGIC AND NEUROTROPHIN RESPONSES TO FUNGAL COMPONENT EXTRACTS IN BALB/C MICE

    Science.gov (United States)

    Metarhizium anisopliae mycelium (MYC), conidia (CON) and inducible protease (IND) extracts were combined to produce the antigen MACA to screen for allergenic potential. Involuntary aspiration (IA) exposure to MACA in BALB/c mice has caused immune, inflammatory and physiological ...

  16. Non-target effects of the entomopathogenic fungus Metarhizium brunneum (BIPESCO 5/F52) on predatory arthropods

    DEFF Research Database (Denmark)

    Campos de Azevedo, Ana Gorete

    females in the presence of M. brunneum revealed that gravid A. aphidimyza are able to perceive the risk posed by M. brunneum and react to that by choosing a pathogen-free site for offspring. In conclusion, non-target effects of M. brunneum on predatory arthropods may be expected. However, knowledge......The overall objective of this PhD thesis was to investigate the interactions that may occur when combining natural enemies of an herbivore. This was done by assessing the non-target effects of the generalist entomopathogenic fungus Metarhizium brunneum on four different predatory arthropods...... of the life cycles of the predatory arthropods and the optimal timing for releasing the natural enemies can reduce the risk of antagonistic interactions. Findings confirm that A. aphidimyza females are able to change their oviposition behavior in the presence of the entomopathogen. It furthermore confirms...

  17. Density-dependence and within-host competition in a semelparous parasite of leaf-cutting ants

    DEFF Research Database (Denmark)

    Hughes, William; Petersen, Klaus; Ugelvig, Line

    2004-01-01

    the effects of parasite density and heterogeneity on parasite virulence and fitness using four strains of the entomopathogenic fungus, Metarhizium anisopliae var. anisopliae, and its leaf-cutting ant host Acromyrmex echinatior as the model system.RESULTS:The relationship between parasite density and infection...

  18. Abundance, Genetic Diversity and Persistence of Metarhizium Spp. Fungi from Soil of Strawberry Crops and Their Potential as Biological Control Agents against the Two-Spotted Spider Mite Tetranychus urticae

    DEFF Research Database (Denmark)

    Castro, Thiago Rodriguesde

    The growing demand for strawberries has imposed challenges, especially regarding the control of pests. Many farmers report problems with reduced chemical control efficiency, probably due to selection of resistant populations of insects and mites. An alternative is the use of biological control...... agent were performed, but this bulk of knowledge is in remarkable contrast to the lack of research on the fundamental ecology of Metarhizium in agroecosystems. This thesis aimed to evaluate the establishment, persistence and dispersal of these entomopathogenic fungi in strawberry crop soil...... in Inconfidentes, Minas Gerais, Brazil; and to study the diversity and abundance of species of Metarhizium isolated from organic and conventional strawberry crop soils, and from the field margins in Brazil and Denmark. The effectiveness of new species of Metarhizium recently found in Brazil, was evaluated against...

  19. Genetically altering the expression of neutral trehalase gene affects conidiospore thermotolerance of the entomopathogenic fungus Metarhizium acridum

    Directory of Open Access Journals (Sweden)

    Peng Guoxiong

    2011-02-01

    Full Text Available Abstract Background The entomopathogenic fungus Metarhizium acridum has been used as an important biocontrol agent instead of insecticides for controlling crop pests throughout the world. However, its virulence varies with environmental factors, especially temperature. Neutral trehalase (Ntl hydrolyzes trehalose, which plays a role in environmental stress response in many organisms, including M. acridum. Demonstration of a relationship between Ntl and thermotolerance or virulence may offer a new strategy for enhancing conidiospore thermotolerance of entomopathogenic fungi through genetic engineering. Results We selected four Ntl over-expression and four Ntl RNA interference (RNAi transformations in which Ntl expression is different. Compared to the wild-type, Ntl mRNA expression was reduced to 35-66% in the RNAi mutants and increased by 2.5-3.5-fold in the over-expression mutants. The RNAi conidiospores exhibited less trehalase activity, accumulated more trehalose, and were much more tolerant of heat stress than the wild-type. The opposite effects were found in conidiospores of over-expression mutants compared to RNAi mutants. Furthermore, virulence was not altered in the two types of mutants compared to the wild type. Conclusions Ntl controlled trehalose accumulation in M. acridum by degrading trehalose, and thus affected conidiospore thermotolerance. These results offer a new strategy for enhancing conidiospore thermotolerance of entomopathogenic fungi without affecting virulence.

  20. The MrCYP52 cytochrome P450 monoxygenase gene of Metarhizium robertsii is important for utilizing insect epicuticular hydrocarbons.

    Directory of Open Access Journals (Sweden)

    Liangcai Lin

    Full Text Available Fungal pathogens of plants and insects infect their hosts by direct penetration of the cuticle. Plant and insect cuticles are covered by a hydrocarbon-rich waxy outer layer that represents the first barrier against infection. However, the fungal genes that underlie insect waxy layer degradation have received little attention. Here we characterize the single cytochrome P450 monoxygenase family 52 (MrCYP52 gene of the insect pathogen Metarhizium robertsii, and demonstrate that it encodes an enzyme required for efficient utilization of host hydrocarbons. Expressing a green florescent protein gene under control of the MrCYP52 promoter confirmed that MrCYP52 is up regulated on insect cuticle as well as by artificial media containing decane (C10, extracted cuticle hydrocarbons, and to a lesser extent long chain alkanes. Disrupting MrCYP52 resulted in reduced growth on epicuticular hydrocarbons and delayed developmental processes on insect cuticle, including germination and production of appressoria (infection structures. Extraction of alkanes from cuticle prevented induction of MrCYP52 and reduced growth. Insect bioassays against caterpillars (Galleria mellonella confirmed that disruption of MrCYP52 significantly reduces virulence. However, MrCYP52 was dispensable for normal germination and appressorial formation in vitro when the fungus was supplied with nitrogenous nutrients. We conclude therefore that MrCYP52 mediates degradation of epicuticular hydrocarbons and these are an important nutrient source, but not a source of chemical signals that trigger infection processes.

  1. Assessing effects of the entomopathogenic fungus Metarhizium brunneum on soil microbial communities in Agriotes spp. biological pest control.

    Science.gov (United States)

    Mayerhofer, Johanna; Eckard, Sonja; Hartmann, Martin; Grabenweger, Giselher; Widmer, Franco; Leuchtmann, Adrian; Enkerli, Jürg

    2017-10-01

    The release of large quantities of microorganisms to soil for purposes such as pest control or plant growth promotion may affect the indigenous soil microbial communities. In our study, we investigated potential effects of Metarhizium brunneum ART2825 on soil fungi and prokaryota in bulk soil using high-throughput sequencing of ribosomal markers. Different formulations of this strain, and combinations of the fungus with garlic as efficacy-enhancing agent, were tested over 4 months in a pot and a field experiment carried out for biological control of Agriotes spp. in potatoes. A biocontrol effect was observed only in the pot experiment, i.e. the application of FCBK resulted in 77% efficacy. Colony counts combined with genotyping and marker sequence abundance confirmed the successful establishment of the applied strain. Only the formulated applied strain caused small shifts in fungal communities in the pot experiment. Treatment effects were in the same range as the effects caused by barley kernels, the carrier of the FCBK formulation and temporal effects. Garlic treatments and time affected prokaryotic communities. In the field experiment, only spatial differences affected fungal and prokaryotic communities. Our findings suggest that M. brunneum may not adversely affect soil microbial communities. © FEMS 2017.

  2. Immune-physiological aspects of synergy between avermectins and the entomopathogenic fungus Metarhizium robertsii in Colorado potato beetle larvae.

    Science.gov (United States)

    Tomilova, Oksana G; Kryukov, Vadim Yu; Duisembekov, Bahytzhan A; Yaroslavtseva, Olga N; Tyurin, Maksim V; Kryukova, Natalia A; Skorokhod, Valery; Dubovskiy, Ivan M; Glupov, Viktor V

    2016-10-01

    The interaction between the entomopathogenic fungus Metarhizium robertsii and natural avermectin metabolites of the actinomycete Streptomyces avermitilis were investigated on Colorado potato beetle larvae. A synergy in the mortality of larvae was detected after simultaneous treatment with half-lethal doses of avermectins (commercial name actarophit) 0.005% and fungus (5×10 5 conidia/ml). The treatment with avermectins led to rapid fungal colonization of the hemolymph. The defense strategies of insects infected by fungus and treated with avermectins and untreated insects were compared to investigate the mechanisms of this synergy. We have shown an increase in hemocytes, especially immunocompetent cells - plasmatocytes and granular cells in the initial stages of mycosis (third day post inoculation). In contrast, avermectins suppressed cellular immunity in hemolymph. Specifically, avermectins dramatically decreased the count of granular cells in larvae infected and uninfected with fungus. Apoptosis inducement and hemocyte necrosis under the influence of avermectins has been shown in vitro as one of the possible reasons for hemocyte mortality. In addition, avermectins enhanced the activity of phenoloxidases in integuments and hemolymph and increased the activity of glutathione-S-transferases activity in the fat body and hemolymph of infected and uninfected larvae, thereby intensifying the development of fungal infection by M. robertsii in Colorado potato beetle larvae. The combination of fungal infection and avermectins constitutes a new perspective for developing multicomponent bioinsecticides. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Characterization of Metarhizium viride Mycosis in Veiled Chameleons (Chamaeleo calyptratus), Panther Chameleons (Furcifer pardalis), and Inland Bearded Dragons (Pogona vitticeps).

    Science.gov (United States)

    Schmidt, Volker; Klasen, Linus; Schneider, Juliane; Hübel, Jens; Pees, Michael

    2017-03-01

    Metarhizium viride has been associated with fatal systemic mycoses in chameleons, but subsequent data on mycoses caused by this fungus in reptiles are lacking. The aim of this investigation was therefore to obtain information on the presence of M. viride in reptiles kept as pets in captivity and its association with clinical signs and pathological findings as well as improvement of diagnostic procedures. Beside 18S ribosomal DNA (rDNA) (small subunit [SSU]) and internal transcribed spacer region 1 (ITS-1), a fragment of the large subunit (LSU) of 28S rDNA, including domain 1 (D1) and D2, was sequenced for the identification of the fungus and phylogenetic analysis. Cultural isolation and histopathological examinations as well as the pattern of antifungal drug resistance, determined by using agar diffusion testing, were additionally used for comparison of the isolates. In total, 20 isolates from eight inland bearded dragons ( Pogona vitticeps ), six veiled chameleons ( Chamaeleo calyptratus ), and six panther chameleons ( Furcifer pardalis ) were examined. Most of the lizards suffered from fungal glossitis, stomatitis, and pharyngitis or died due to visceral mycosis. Treatment with different antifungal drugs according to resistance patterns in all three different lizard species was unsuccessful. Sequence analysis resulted in four different genotypes of M. viride based on differences in the LSU fragment, whereas the SSU and ITS-1 were identical in all isolates. Sequence analysis of the SSU fragment revealed the first presentation of a valid large fragment of the SSU of M. viride According to statistical analysis, genotypes did not correlate with differences in pathogenicity, antifungal susceptibility, or species specificity. Copyright © 2017 American Society for Microbiology.

  4. DNA methyltransferases contribute to the fungal development, stress tolerance and virulence of the entomopathogenic fungus Metarhizium robertsii.

    Science.gov (United States)

    Wang, Yulong; Wang, Tiantian; Qiao, Lintao; Zhu, Jianyu; Fan, Jinrui; Zhang, Tingting; Wang, Zhang-Xun; Li, Wanzhen; Chen, Anhui; Huang, Bo

    2017-05-01

    DNA methylation is an important epigenetic mark in mammals, plants, and fungi and depends on multiple genetic pathways involving de novo and maintenance DNA methyltransferases (DNMTases). Metarhizium robertsii, a model system for investigating insect-fungus interactions, has been used as an environmentally friendly alternative to chemical insecticides. However, little is known concerning the molecular basis for DNA methylation. Here, we report on the roles of two DNMTases (MrRID and MrDIM-2) by characterizing ΔMrRID, ΔMrDIM-2, and ΔRID/ΔDIM-2 mutants. The results showed that approximately 71, 10, and 8% of m C sites remained in the ΔMrRID, ΔMrDIM-2, and ΔRID/ΔDIM-2 strains, respectively, compared with the wild-type (WT) strain. Further analysis showed that MrRID regulates the specificity of DNA methylation and MrDIM-2 is responsible for most DNA methylation, implying an interaction or cooperation between MrRID and MrDIM-2 for DNA methylation. Moreover, the ΔMrDIM-2 and ΔRID/ΔDIM-2 strains showed more defects in radial growth and conidial production compared to the WT. Under ultraviolet (UV) irradiation or heat stress, an obvious reduction in spore viability was observed for all the mutant strains compared to the WT. The spore median lethal times (LT 50 s) for the ΔMrDIM-2 and ΔRID/ΔDIM-2 strains in the greater wax moth, Galleria mellonella, were decreased by 47.7 and 65.9%, respectively, which showed that MrDIM-2 is required for full fungal virulence. Our data advances the understanding of the function of DNMTase in entomopathogenic fungi, which should contribute to future epigenetic investigations in fungi.

  5. Transcriptional analysis of the conidiation pattern shift of the entomopathogenic fungus Metarhizium acridum in response to different nutrients.

    Science.gov (United States)

    Wang, Zhenglong; Jin, Kai; Xia, Yuxian

    2016-08-09

    Most fungi, including entomopathogenic fungi, have two different conidiation patterns, normal and microcycle conidiation, under different culture conditions, eg, in media containing different nutrients. However, the mechanisms underlying the conidiation pattern shift are poorly understood. In this study, Metarhizium acridum undergoing microcycle conidiation on sucrose yeast extract agar (SYA) medium shifted to normal conidiation when the medium was supplemented with sucrose, nitrate, or phosphate. By linking changes in nutrients with the conidiation pattern shift and transcriptional changes, we obtained conidiation pattern shift libraries by Solexa/Illumina deep-sequencing technology. A comparative analysis demonstrated that the expression of 137 genes was up-regulated during the shift to normal conidiation, while the expression of 436 genes was up-regulated at the microcycle conidiation stage. A comparison of subtractive libraries revealed that 83, 216, and 168 genes were related to sucrose-induced, nitrate-induced, and phosphate-induced conidiation pattern shifts, respectively. The expression of 217 genes whose expression was specific to microcycle conidiation was further analyzed by the gene expression profiling via multigene concatemers method using mRNA isolated from M. acridum grown on SYA and the four normal conidiation media. The expression of 142 genes was confirmed to be up-regulated on standard SYA medium. Of these 142 genes, 101 encode hypothetical proteins or proteins of unknown function, and only 41 genes encode proteins with putative functions. Of these 41 genes, 18 are related to cell growth, 10 are related to cell proliferation, three are related to the cell cycle, three are related to cell differentiation, two are related to cell wall synthesis, two are related to cell division, and seven have other functions. These results indicate that the conidiation pattern shift in M. acridum mainly results from changes in cell growth and proliferation. The

  6. Interactions among the Predatory Midge Aphidoletes aphidimyza (Diptera: Cecidomyiidae, the Fungal Pathogen Metarhizium brunneum (Ascomycota: Hypocreales, and Maize-Infesting Aphids in Greenhouse Mesocosms

    Directory of Open Access Journals (Sweden)

    Ana Gorete Campos de Azevedo

    2017-04-01

    Full Text Available The generalist entomopathogenic fungus, Metarhizium brunneum, has proved to have great potential as a versatile biological pest control agent. The gall midge Aphidoletes aphidimyza is a specialist predator that occurs naturally in Europe and has been successfully used for aphid suppression. However, the interaction between these two biological control organisms and how it may affect the biological control of aphids awaits further investigation. As part of the EU-supported project INBIOSOIL, this study was conducted in greenhouse conditions to assess the possible effects of combining both biological control agents. In a randomized complete block design, sweet corn (Zea mays var. saccharata plants were grown in large pots filled with natural soil or natural soil inoculated with M. brunneum. At the third leaf stage, before being individually caged, plants were infested with Rhopalosiphum padi and A. aphidimyza pupae were introduced in the soil. Aphidoletes aphidimyza midge emergence, number of living midges and number of aphids were recorded daily. The presence of conidia in the soil and on leaves was assessed during the experiment. At the conclusion of the experiment, the number of live aphids and their developmental stage, consumed aphids, and A. aphidimyza eggs was assessed under stereomicroscope. This study’s findings showed that the presence of M. brunneum did not affect A. aphidimyza midge emergence. However, longevity was significantly affected. As the study progressed, significantly fewer predatory midges were found in cages treated with M. brunneum compared to untreated cages. Furthermore, by the end of the study, the number of predatory midges found in the Metarhizium-treated cages was four times lower than in the untreated cages. Both daily and final count of aphids were significantly affected by treatment. Aphidoletes aphidimyza applied alone suppressed the aphid population more effectively than M. brunneum applied alone. Additionally

  7. Potential of Tenebrio molitor (Coleoptera: Tenebrionidae) as a bioassay probe for Metarhizium brunneum (Hypocreales: Clavicipitaceae) activity against Ixodes scapularis (Acari: Ixodidae).

    Science.gov (United States)

    Bharadwaj, Anuja; Stafford, Kirby C

    2011-12-01

    The yellow mealworm, Tenebrio molitor L., has been used to indicate qualitatively the presence of entomopathogenic fungi in the soil or as a model for evaluating stress and other factors on fungal activity. Although this beetle appears highly susceptible to many of these fungi, little quantitative information is available on the sensitivity of T. molitor to a specific fungus and, therefore, fungal presence or as an indicator for pathogenicity to other species. The purpose of this study was to establish the suitability of T. molitor larvae as a bioassay probe for Metarhizium brunneum for comparison against the blacklegged tick, Ixodes scapularis. Nine concentrations of M. brunneum strain F52 ranging from 1.0 x 10(1) to 8.4 x 10(8) conidial/ml were simultaneously tested against T. molitor larvae and I. scapularis adults. Larvae of yellow mealworm were less sensitive to M. brunneum than I. scapularis adults (LC50's 4.4 x 10(7) and 1.7 x 10(5) conidia/ml, respectively, 4-wk post-treatment). The greater sensitivity of I. scapularis to the fungus suggests that the detection of fungal mycosis in mealworms would indicate sufficient inoculum to be pathogenic to I. scapularis and make this insect a suitable probe for evaluation of the presence and activity of M. brunneum against the blacklegged tick in field applications.

  8. MaHog1, a Hog1-type mitogen-activated protein kinase gene, contributes to stress tolerance and virulence of the entomopathogenic fungus Metarhizium acridum.

    Science.gov (United States)

    Jin, Kai; Ming, Yue; Xia, Yu Xian

    2012-12-01

    Fungal biocontrol agents have great potential in integrated pest management. However, poor efficacy and sensitivity to various adverse factors have hampered their wide application. In eukaryotic cells, Hog1 kinase plays a critical role in stress responses. In this study, MaHog1 (GenBank accession no. EFY85878), encoding a member of the Hog1/Sty1/p38 mitogen-activated protein kinase family in Metarhizium (Me.) acridum, was identified. Targeted gene disruption was used to analyse the role of MaHog1 in virulence and tolerance of adverse factors. Mutants with MaHog1 depletion showed increased sensitivity to high osmotic stress, high temperature and oxidative stress, and exhibited remarkable resistance to cell wall-disturbing agents. These results suggest that Hog1 kinase has a conserved function in regulating multistress responses among fungi, and that MaHog1 might influence cell wall biogenesis in Me. acridum. Bioassays conducted with topical inoculation and intrahaemocoel injection revealed that MaHog1 is required for both penetration and postpenetration development of Me. acridum. MaHog1 disruption resulted in a significant reduction in virulence, likely due to the combination of a decrease in conidial germination, a reduction in appressorium formation and a decline in growth rate in insect haemolymph, which might be caused by impairing fungal tolerance of various stresses during infection.

  9. Differential DNA methylation may contribute to temporal and spatial regulation of gene expression and the development of mycelia and conidia in entomopathogenic fungus Metarhizium robertsii.

    Science.gov (United States)

    Li, Wanzhen; Wang, Yulong; Zhu, Jianyu; Wang, Zhangxun; Tang, Guiliang; Huang, Bo

    2017-03-01

    Conidia and mycelia are two important developmental stages in the asexual life cycle of entomopathogenic fungus Metarhizium. Despite the crucial role that DNA methylation plays in many biological processes, its role in regulation of gene expression and development in fungi is not yet fully understood. We performed genome-wide analysis of DNA methylation patterns of an M. robertsii strain with single base pair resolution. Specifically, we examined for changes in methylation patterns between the conidia and mycelia stages. The results showed that approximately 0.38 % of cytosines are methylated in conidia, which is lower than the DNA methylation level (0.42 %) in mycelia. We found that DNA methylation undergoes genome-wide reprogramming during fungal development in M. robertsii. 132 differentially methylated regions (DMRs), which were mostly distributed in gene regions, were identified. KEGG analysis revealed that the DMR-associated genes belong to metabolic pathways. Intriguingly, in contrast to most other eukaryotes, promoter activities in M. robertsii seemed differentially modulated by DNA methylation levels. We found that transcription tended to be enhanced in genes with moderate promoter methylation, while gene expression was decreased in genes with high or low promoter methylation. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  10. Baeuveria bassiana (BalsVuill and Metarhizium anisioplae (Metsch. Sorokin in the pupas control of Prodiplosis longifila Gagné on asparagus crop

    Directory of Open Access Journals (Sweden)

    Carolina Cedano

    2012-03-01

    Full Text Available The objective of the present work was to evaluate the effect of the entomopathogen fungi Baeuveria bassiana and Metarhizium anisioplae of the Prodiplosis longifila pupas, in order to reduce the adult population of this insect. The treatments consisted on the application of two different propagel concentrations (mycel and conidia of each entomopathogen. One of these concentration was 1x106 propagels/ml (obtained from the total amount of conidia collected of 25 kg of rice colonized by the entomopathogen; and the other one, was 1x107 propagels/ml (obtained from the total amount of conidia collected of 40 kg of rice colonized by the entomopathogen. As a check a non application treatment was considered. The applications were trough the irrigation system and started 15 days after the end of harvest and were repeated each five days during a month, coincident with the period of most falls of pupas of the soil. As a result Baeuveria bassiana at 1x107 propagels/ml shown 53.4 % of the total pupas colonized by the entomopathogen, which allows indicating B. bassiana as a promissory biocontrol of this specie

  11. Baeuveria bassiana (BalsVuill y Metarhizium anisioplae (Metsch. Sorokin para el control de pupas de Prodiplosis longifila Gagné en el cultivo de esparrago

    Directory of Open Access Journals (Sweden)

    Carolina Cedano

    2012-01-01

    Full Text Available El objetivo del presente trabajo fue evaluar el efecto de los hongos entomopatógenos Baeuveria bassiana y Metarhizium anisioplae sobre la s pupas de Prodiplosis longifila para reducir la población de adultos de este insecto. Los tratamientos consistieron en la aplicación de dos concentraciones diferentes de propágulos (micelio y conidias de cada entomopatógeno, una fue de 1x10 6 propágulos /mililitro (provenientes de 25 kilos de arroz colonizado por el entomopatógeno y la otra de 1x10 7 propágulos /mililitro (provenientes de 40 kilos de arroz colonizado por el entomopatógeno más un testigo sin aplicación. La aplicación se realizó a través del sistema de riego y se inició 15 días después del desaporque (término de cosecha, repitiéndose cada 5 días durante un mes coincidiendo con la etapa de mayor caída de pupas al suelo. El tratamiento de Baeuveria bassiana a la concentración de 1 x10 7 propágulos /mililitro presentó el 5 3 . 4 % de las pupas en el suelo con micelio del hongo. Estos resultados permiten indicar a B. bassiana como un biocontrolador promisorio de esta plaga.

  12. Preliminary survey for entomopathogenic fungi associated with Ixodes scapularis>/i> (Acari: Ixodidae) in southern New York and New England, USA

    Science.gov (United States)

    Zhioua, Elyes; Ginsberg, Howard S.; Humber, Richard A.; LeBrun, Roger A.

    1999-01-01

    Free-living larval, nymphal, and adult Ixodes scapularis Say were collected from scattered locales in southern New England and New York to determine infection rates with entomopathogenic fungi. Infection rates of larvae, nymphs, males, and females were 0% (571), 0% (272), 0% (57), and 4.3% (47), respectively. Two entomopathogenic fungi were isolated from field-collected I. scapularis females from Fire Island, NY. Isolates were identified as Verticillium lecanii (Zimmermann) Viegas and Verticillium sp. (a member of the Verticillium lecanii species complex).Ixodes scapularis Say is the principal vector of Borrelia burgdorferi Johnson, Schmid, Hyde, Steigerwalt & Brenner (Burgdorfer et al. 1982, Johnson et al. 1984), the etiologic agent of Lyme disease in the northeastern and upper-midwestern United States. Control of I. scapularis is based on chemical treatment (Mather et al. 1987b; Schulze et al. 1987, 1991), environmental management (Wilson et al. 1988, Schulze et al. 1995), and habitat modification (Wilson 1986). These methods have shown variable success, and some potentially have negative environmental effects (Wilson and Deblinger 1993, Ginsberg 1994).Studies concerning natural predators, parasitoids, and pathogens of I. scapularis are rare. The use of ground-dwelling birds as tick predators has had only limited success (Duffy et al. 1992). Nymphal I. scapularis are often infected with the parasitic wasp Ixodiphagus hookeri (Howard) (Mather et al. 1987a, Hu et al. 1993, Stafford et al. 1996, Hu and Hyland 1997), but this wasp does not effectively control I. scapularis populations (Stafford et al. 1996). The entomopathogenic nematodes Steinernema carpocapsae (Weiser) and S. glaseri (Steiner) are pathogenic only to engorged female I. scapularis, and thus have limited applicability (Zhioua et al. 1995). In contrast, the entomogenous fungus Metarhizium anisopliae (Metschnikoff) Sorokin is highly pathogenic to all stages of I. scapularis, unfed as well as engorged

  13. The Ste12-like transcription factor MaSte12 is involved in pathogenicity by regulating the appressorium formation in the entomopathogenic fungus, Metarhizium acridum.

    Science.gov (United States)

    Wei, Qinglv; Du, Yanru; Jin, Kai; Xia, Yuxian

    2017-12-01

    Homeodomain transcription factor Ste12 is a key target activated by the pathogenic mitogen-activated-protein kinase pathway, and the activated Ste12p protein regulates downstream gene expression levels to modulate phenotypes. However, the functions of Ste12-like genes in entomopathogenic fungi remain poorly understood and little is known about the downstream genes regulated by Ste12. In this study, we characterized the functions of a Ste12 orthologue in Metarhizium acridum, MaSte12, and identified its downstream target genes. The deletion mutant (ΔMaSte12) is defective in conidial germination but not in hyphal growth, conidiation, or stress tolerance. Bioassays showed that ΔMaSte12 had a dramatically decreased virulence in topical inoculations, but no significant difference was found in intrahemolymph injections when the penetration process was bypassed. The mature appressorium formation rate of ΔMaSte12 was less than 10% on locust wings, with the majority hyphae forming appressorium-like, curved but no swollen structures. Digital gene expression profiling revealed that some genes involved in cell wall synthesis and remodeling, appressorium development, and insect cuticle penetration were downregulated in ΔMaSte12. Thus, MaSte12 has critical roles in the pathogenicity of the entomopathogenic fungus M. acridum, and our study provides some explanations for the impairment of fungal virulence in ΔMaSte12. In addition, virulence is very important for fungal biocontrol agents to control insect pests effectively. This study demonstrated that MaSte12 is involved in fungal virulence but not conidial yield or fungal stress tolerance in M. acridum. Thus, MaSte12 and its downstream genes may be candidates for enhancing fungal virulence to improve mycoinsecticides.

  14. Borisade et al (10)

    African Journals Online (AJOL)

    DELL

    Entomopathogenic fungi, Metarhizium anisopliae and Isaria farinosa are biocontrol agents (BCA) widely reported for the management of insect pests, and they are potential components of Integrated Pest Management (IPM) systems. Compatibility of their infective conidia with low rates of four agrochemicals; Champ-DP ...

  15. Author Details

    African Journals Online (AJOL)

    Borisade, OA. Vol 23, No 2 (2015) - Articles Rearing tomato whitefly and field evaluation of modified and unmodified conidia of Beauveria bassiana, Isaria farinosa, Metarhizium anisopliae and low rates of Chlorpyrifos under tropical conditions. Abstract PDF. ISSN: 2072-6589. AJOL African Journals Online. HOW TO USE ...

  16. CATALASE FROM A FUNGAL MICROBIAL PESTICIDE INDUCES A UNIQUE IGE RESPONSE.

    Science.gov (United States)

    BALB/c mice exposed by involuntary aspiration to Metarhizium anisopliae extract (MACA), a microbial pesticide, have shown responses characteristic of human allergic lung disease/asthma. IgE-binding proteins have been identified in MACA by Western blot analysis, 2-dimensio...

  17. Virulence of entomopathogenic hypocrealean fungi infecting Anoplophora glabripennis

    Science.gov (United States)

    Thomas Dubois; Jennifer Lund; Leah S. Bauer; Ann E. Hajek

    2008-01-01

    Twenty isolates of four species of entomopathogenic hypocrealean fungi (Beauveria bassiana, Beauveria brongniartii, Isaria farinosa, and Metarhizium anisopliae) were found to be pathogenic to adults of the Asian longhorned beetle, Anoplophora glabripennis. Survival times for 50% of the beetles tested (ST

  18. Toxicity of the insect growth regulator lufenuron on the ...

    African Journals Online (AJOL)

    Metarhizium anisopliae has been considered a promising alternative with low environmental impacts for the biological control of a variety of insect-pests. Another alternative is the use of biological pesticides such as insect growth regulators, including lufenuron. An assessment of the potential impact of fungicides on M.

  19. Occurrence of entomopathogenic fungi in arable soil

    Directory of Open Access Journals (Sweden)

    Ryszard Miętkiewski

    2014-08-01

    Full Text Available Samples of soil were taken from arable field and from balk. Larvae of Galleria mellonella and Ephestia kühniella were used as an "insect bait" for isolation of entomopathogenic fungi from soil. Metarhizium anisopliae and Paecilomyces fumosoroseus were isolated from both kind of soil. but Beauveria bassiana was present only in soil taken from balk.

  20. Effects of single and combined applications of entomopathogenic fungi and nematodes against Rhynchophorus ferrugineus (Olivier)

    Science.gov (United States)

    This study was carried out to investigate the insecticidal properties of Beauveria bassiana and Metarhizium anisopliae, and Heterorhabditis bacteriophora Poinar for their virulence against 2nd, 4th and 6th instar larvae of Rhynchophorus ferrugineus (Olivier). Both fungi were either applied alone or ...

  1. Effects of fungal infection on feeding and survival of Anopheles gambiae (Diptera: Culicidae) on plant sugars

    NARCIS (Netherlands)

    Ondiaka, S.N.; Masinde, E.W.; Koenraadt, C.J.M.; Takken, W.; Mukabana, W.R.

    2015-01-01

    Background The entomopathogenic fungus Metarhizium anisopliae shows great promise for the control of adult malaria vectors. A promising strategy for infection of mosquitoes is supplying the fungus at plant feeding sites. Methods We evaluated the survival of fungus-exposed Anopheles gambiae

  2. Dicty_cDB: Contig-U12243-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available Brassica oleracea, *** SEQUENCING... 188 1e-52 AB241241_1( AB241241 |pid:none) Symbiotic... protist of Reticuliterme... 198 2e-52 AB241242_1( AB241242 |pid:none) Symbiotic protist of Reticuli...3575 |pid:none) Metarhizium anisopliae RAB/GTPase ... 182 1e-49 AB241243_1( AB241243 |pid:none) Symbiotic pr

  3. Responsiveness of entomopathogenic fungi to menadione-induced oxidative stress.

    Science.gov (United States)

    Azevedo, Rosana F F; Souza, Roberta K F; Braga, Gilberto U L; Rangel, Drauzio E N

    2014-12-01

    Entomopathogenic fungi are predisposed to ROS induced by heat and UV-A radiation when outside the insect host. When inside the host, they are subject to phagocytic cells that generate ROS to eliminate invading pathogens. The oxidative stress tolerance of the entomopathogenic fungi Aschersonia aleyrodis (ARSEF 430 and 10276), Aschersonia placenta (ARSEF 7637), Beauveria bassiana (ARSEF 252), Isaria fumosorosea (ARSEF 3889), Lecanicillium aphanocladii (ARSEF 6433), Metarhizium acridum (ARSEF 324), Metarhizium anisopliae (ARSEF 5749), Metarhizium brunneum (ARSEF 1187 and ARSEF 5626), Metarhizium robertsii (ARSEF 2575), Tolypocladium cylindrosporum (ARSEF 3392), Tolypocladium inflatum (ARSEF 4877), and Simplicillium lanosoniveum (ARSEF 6430 and ARSEF 6651) was studied based on conidial germination on a medium supplemented with menadione. Conidial germination was evaluated 24 h after inoculation on potato dextrose agar (PDA) (control) or PDA supplemented with menadione. The two Aschersonia species (ARSEF 430, 7637, and 10276) were the most susceptible fungi, followed by the two Tolypocladium species (ARSEF 3392 and 4877) and the M. acridum (ARSEF 324). Metarhizium brunneum (ARSEF 5626) and M. anisopliae (ARSEF 5749) were the most tolerant isolates with MIC 0.28 mM. All fungal isolates, except ARSEF 5626 and ARSEF 5749, were not able to germinate at 0.20 mM. Copyright © 2014 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  4. An ENA ATPase, MaENA1, of Metarhizium acridum influences the Na(+)-, thermo- and UV-tolerances of conidia and is involved in multiple mechanisms of stress tolerance.

    Science.gov (United States)

    Ma, Qinsi; Jin, Kai; Peng, Guoxiong; Xia, Yuxian

    2015-10-01

    In fungi, ENA ATPases play key roles in osmotic and alkaline pH tolerance, although their functions in thermo- and UV-tolerances have not been explored. Entomopathogenic fungi are naturally widespread and have considerable potential in pest control. An ENA ATPase gene, MaENA1, from the entomopathogenic fungus Metarhizium acridum was functionally analyzed by deletion. MaENA1-disruption strain (ΔMaENA1) was less tolerant to NaCl, heat, and UV radiation than a wild-type strain (WT). Digital Gene Expression profiling of conidial RNAs resulted in 281 differentially expressed genes (DEGs) between the WT and ΔMaENA1 strains. Eighty-five DEGs, 56 of which were down-regulated in the ΔMaENA1 strain, were shown to be associated with heat/UV tolerance, including six cytochrome P450 superfamily genes, 35 oxidoreductase genes, 24 ion-binding genes, seven DNA repair genes, and five other genes. In addition, eight genes were components of stress responsive pathways, including the Ras-cAMP PKA pathway, the RIM101 pathway, the Ca(2+)/calmodulin pathway, the TOR pathway, and the HOG/Spc1/Sty1/JNK pathway. These results demonstrated that MaENA1 influences fungal tolerances to Na(+), heat, and UV radiation in M. acridum, and is involved in multiple mechanisms of stress tolerance. Therefore, MaENA1 is required for the adaptation and survival of entomopathogenic fungi in stressful conditions in the environment and in their hosts. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Influence of pesticides used potatoes control on the growth of entomopathogenic fungi isolated from potatoes fields

    Directory of Open Access Journals (Sweden)

    Ryszard Miętkiewicz

    2013-12-01

    Full Text Available The growth of Metarhizium anisopliae, M.flavoviridae and Paecilomyces fumosoroseus was estimated on Sabouraud's medium to which insecticides and herbicides were added in three doses: A - 10 times higher from recommended field dose, B - as recommended field dose, C - 10 timer lower than recommended. Fungicides were used in B and C doses as well as in dose D - 100 times lower than recomended one. The fungi were obtained from soil under potatoes using Galleria mellonella as bait insect. Chlorothalonil and copper oxychloride were chosen from fungicides, linuron, MCPA, fluazifop-P-butyl and dikwat - from herbicides and deltamethrin, teflubenzuron and fozalon from insecticides. The growth of both species of Metarhizium was stronger inhibited than of Paecilomyces fumosoroseus by fungicides however colonies of Metarhizium always overpassed 50% controls colonies apart from M. flavoviridae on medium with copper oxychloride at concentration B. Herbicide linuron was more toxic to fungi than fungicides. M. anisopliae and M. fluvoviridae did not grow on medium containing dose A and dose B this herbicide but the colonies of P. fumosoroseus at dose B did not overpass 20% of controlled ones. MCPA and fluazifop-P-butyl inhibited fungal colonies in approximated way. On the medium with these herbicides in concentration A fungal colonies were strongly inhibited and the growth of fungi on medium with MCPA at this concentration appeared not before 5 days after inoculation. Dikwat in dose A strongly inhibited the growth of M. anisopliae but in remaining combinations growth of fungal colonies was similar to controlled ones. Fozalon, among insecticides, inhibited the growth of inwestigated fungi strongest. On the medium containing this insecticide in dose A all fungi did not grow, and in dose B colonies of both species of Metarhizium did not overpass 40% of controlled ones. Deltamethrin in dose A and B inhibited the growth of M. anisopliae and M. flavoviridae, but

  6. Association between entomopathogenic nematodes and fungi for control of Rhipicephalus microplus (Acari: Ixodidae).

    Science.gov (United States)

    Monteiro, Caio Márcio Oliveira; Araújo, Laryssa Xavier; Matos, Renata Silva; da Silva Golo, Patrícia; Angelo, Isabele Costa; de Souza Perinotto, Wendell Marcelo; Coelho Rodrigues, Camila Aparecida; Furlong, John; Bittencourt, Vânia Rita Elias Pinheiro; Prata, Márcia Cristina Azevedo

    2013-10-01

    The aim of the study was to assess the effect of the association of entomopathogenic nematodes and fungi on Rhipicephalus microplus. The nematodes used were Heterorhabditis bacteriophora HP88 and Heterorhabditis indica LPP1 and the fungi were Metarhizium anisopliae IBCB 116 and Beauveria bassiana ESALQ 986. In the groups treated with the fungi, the females were immersed for 3 min in a conidial suspension, while in the groups treated with the nematodes, the ticks were exposed to infective juveniles. To evaluate the interaction between entomopathogens, the females were first immersed in a conidial suspension and then exposed to the nematodes. The egg mass weight and hatching percentage values of the groups treated with M. anisopliae IBCB 116 and B. bassiana ESALQ 986 in the two experiments were statistically similar (p > 0.05) to the values of the control group. In the groups treated only with nematodes, there was a significant reduction (p fungus M. anisopliae IBCB 116.

  7. Comparative genome analysis of entomopathogenic fungi reveals a complex set of secreted proteins.

    Science.gov (United States)

    Staats, Charley Christian; Junges, Angela; Guedes, Rafael Lucas Muniz; Thompson, Claudia Elizabeth; de Morais, Guilherme Loss; Boldo, Juliano Tomazzoni; de Almeida, Luiz Gonzaga Paula; Andreis, Fábio Carrer; Gerber, Alexandra Lehmkuhl; Sbaraini, Nicolau; da Paixão, Rana Louise de Andrade; Broetto, Leonardo; Landell, Melissa; Santi, Lucélia; Beys-da-Silva, Walter Orlando; Silveira, Carolina Pereira; Serrano, Thaiane Rispoli; de Oliveira, Eder Silva; Kmetzsch, Lívia; Vainstein, Marilene Henning; de Vasconcelos, Ana Tereza Ribeiro; Schrank, Augusto

    2014-09-29

    Metarhizium anisopliae is an entomopathogenic fungus used in the biological control of some agricultural insect pests, and efforts are underway to use this fungus in the control of insect-borne human diseases. A large repertoire of proteins must be secreted by M. anisopliae to cope with the various available nutrients as this fungus switches through different lifestyles, i.e., from a saprophytic, to an infectious, to a plant endophytic stage. To further evaluate the predicted secretome of M. anisopliae, we employed genomic and transcriptomic analyses, coupled with phylogenomic analysis, focusing on the identification and characterization of secreted proteins. We determined the M. anisopliae E6 genome sequence and compared this sequence to other entomopathogenic fungi genomes. A robust pipeline was generated to evaluate the predicted secretomes of M. anisopliae and 15 other filamentous fungi, leading to the identification of a core of secreted proteins. Transcriptomic analysis using the tick Rhipicephalus microplus cuticle as an infection model during two periods of infection (48 and 144 h) allowed the identification of several differentially expressed genes. This analysis concluded that a large proportion of the predicted secretome coding genes contained altered transcript levels in the conditions analyzed in this study. In addition, some specific secreted proteins from Metarhizium have an evolutionary history similar to orthologs found in Beauveria/Cordyceps. This similarity suggests that a set of secreted proteins has evolved to participate in entomopathogenicity. The data presented represents an important step to the characterization of the role of secreted proteins in the virulence and pathogenicity of M. anisopliae.

  8. Selection of Entomopathogenic Fungi to Control Varroa destructor (Acari: Varroidae Selección de Hongos Entomopatógenos para el Control de Varroa destructor (Acari: Varroidae

    Directory of Open Access Journals (Sweden)

    Marta Rodríguez

    2009-12-01

    Full Text Available The aim of this work was select entomopathogenic fungi tolerant to temperatures inside the brood area of honey bees (Apis mellifera for to control Varroa destructor. For this purpose, 50 Beauveria bassiana (Balsamo Vuillemin and 48 Metarhizium anisopliae (Metschn. Sorokin isolates were evaluated at 30 and 35 ºC. For each isolate, colony discs of 5 mm with mycelium were placed in the center of a Petri dish with Sabouraud dextrose agar (SDA medium. The dishes were incubated at 30 and 35 °C, without light. Radial growth of each colony was measured daily. All the B. bassiana and M. anisopliae isolates presented a lineal growth rate at a temperature of 30 ºC. However, at 35 ºC, most of the isolates did not grow, except three B. bassiana and 14 M. anisopliae isolates (P El objetivo de este trabajo fue seleccionar hongos entomopatógenos tolerantes a las temperaturas del nido de cría de las abejas (Apis mellifera, para ser utilizados en el control de Varroa destructor. Se evaluaron 50 aislamientos de Beauveria bassiana (Balsamo Vuillemin y 48 de Metarhizium anisopliae (Metschn. Sorokin a temperaturas de 30 y 35 ºC. Discos de agar de 5 mm de diámetro con micelio de colonias de cada aislamiento, se depositaron en el centro de placas Petri con medio agar Sabouraud dextrosa (ASD. Las placas fueron incubadas a 30 y 35 °C y oscuridad y diariamente se midió el radio de cada colonia. Todos los aislamientos de B. bassiana y M. anisopliae var. anisopliae presentaron una tendencia lineal a través del tiempo a temperaturas de incubación de 30 °C. A 35 °C la mayoría de los aislamientos no crecieron, excepto tres aislamientos de B. bassiana y 14 de M. anisopliae (p < 0,001. Estos aislamientos fueron seleccionados para realizar pruebas de patogenicidad sobre V. destructor, aplicando una suspensión de 10(7 conidias mL-1. El aislamiento más efectivo fue Qu-M845 de M. anisopliae (p = 0,0033, produjo una mortalidad de 85%. La capacidad patogénica de este

  9. The effect of entomopathogenic fungal culture filtrate on the immune response of the greater wax moth, Galleria mellonella.

    Science.gov (United States)

    Mc Namara, Louise; Carolan, James C; Griffin, Christine T; Fitzpatrick, David; Kavanagh, Kevin

    2017-07-01

    Galleria mellonella is a well-established model species regularly employed in the study of the insect immune response at cellular and humoral levels to investigate fungal pathogenesis and biocontrol agents. A cellular and proteomic analysis of the effect of culture filtrate of three entomopathogenic fungi (EPF) species on the immune system of G. mellonella was performed. Treatment with Beauveria caledonica and Metarhizium anisopliae 96h culture filtrate facilitated a significantly increased yeast cell density in larvae (3-fold and 3.8-fold, respectively). Larvae co-injected with either M. anisopliae or B. caledonica culture filtrate and Candida albicans showed significantly increased mortality. The same was not seen for larvae injected with Beauveria bassiana filtrate. Together these results suggest that B. caledonica and M. anisopliae filtrate are modulating the insect immune system allowing a subsequent pathogen to proliferate. B. caledonica and M. anisopliae culture filtrates impact upon the larval prophenoloxidase (ProPO) cascade (e.g. ProPO activating factor 3 and proPO activating enzyme 3 were increased in abundance relative to controls), while B. bassiana treated larvae displayed higher abundances of alpha-esterase when compared to control larvae (2.4-fold greater) and larvae treated with M. anisopliae and B. caledonica. Treatment with EPF culture filtrate had a significant effect on antimicrobial peptide abundances particularly in M. anisopliae treated larvae where cecropin-D precursor, hemolin and gloverin were differentially abundant in comparison to controls. Differences in proteomic profiles for different treatments may reflect or even partially explain the differences in their immunomodulatory potential. Screening EPF for their ability to modulate the insect immune response represents a means of assessing EPF for use as biocontrol agents, particularly if the goal is to use them in combination with other control agents. Additionally EPF represent a

  10. Factors affecting fungus-induced larval mortality in Anopheles gambiae and Anopheles stephensi

    Directory of Open Access Journals (Sweden)

    Takken Willem

    2010-01-01

    Full Text Available Abstract Background Entomopathogenic fungi have shown great potential for the control of adult malaria vectors. However, their ability to control aquatic stages of anopheline vectors remains largely unexplored. Therefore, how larval characteristics (Anopheles species, age and larval density, fungus (species and concentration and environmental effects (exposure duration and food availability influence larval mortality caused by fungus, was studied. Methods Laboratory bioassays were performed on the larval stages of Anopheles gambiae and Anopheles stephensi with spores of two fungus species, Metarhizium anisopliae and Beauveria bassiana. For various larval and fungal characteristics and environmental effects the time to death was determined and survival curves established. These curves were compared by Kaplan Meier and Cox regression analyses. Results Beauveria bassiana and Metarhizium anisopliae caused high mortality of An. gambiae and An. stephensi larvae. However, Beauveria bassiana was less effective (Hazard ratio (HR Metarhizium anisopliae. Anopheles stephensi and An. gambiae were equally susceptible to each fungus. Older larvae were less likely to die than young larvae (HR Conclusions This study shows that both fungus species have potential to kill mosquitoes in the larval stage, and that mortality rate depends on fungus species itself, larval stage targeted, larval density and amount of nutrients available to the larvae. Increasing the concentration of fungal spores or reducing the exposure time to spores did not show a proportional increase and decrease in mortality rate, respectively, because the spores clumped together. As a result spores did not provide uniform coverage over space and time. It is, therefore, necessary to develop a formulation that allows the spores to spread over the water surface. Apart from formulation appropriate delivery methods are also necessary to avoid exposing non-target organisms to fungus.

  11. Unveiling the oxidative metabolism of Rhipicephalus microplus (Acari: Ixodidae) experimentally exposed to entomopathogenic fungi.

    Science.gov (United States)

    Tunholi-Alves, Vinícius Menezes; Tunholi Alves, Victor Menezes; da Silva, Jairo Pinheiro; Nora Castro, Rosane; Salgueiro, Fernanda Barbosa; Perinotto, Wendell Marcelo de Souza; Gôlo, Patrícia Silva; Camargo, Mariana Guedes; Angelo, Isabele da Costa; Bittencourt, Vânia Rita Elias Pinheiro

    2016-10-01

    Rhipicephalus microplus is an important tick in tropical regions due to the high economic losses caused by its parasitism. Metarhizium anisopliae and Beauveria bassiana are well-known entomopathogenic fungi that can afflict R. microplus ticks. The development of new targets and strategies to control this parasite can be driven by studies of this tick's physiology. Recently, it was reported that when exposed to adverse physiological conditions, ticks can activate fermentative pathways, indicating transition from aerobic to anaerobic metabolism. Nevertheless, the precise mechanism by which entomopathogenic fungi influence R. microplus metabolism has not been clarified, limiting understanding of the tick-fungus association. Thus, the present study aimed to evaluate the effect of infection of ticks by M. anisopliae and B. bassiana on the amount of selected carboxylic acids present in the hemolymph, enabling increased understanding of changes previously reported. The results showed preservation in the concentrations of oxalic, lactic, and pyruvic acids in the hemolymph 24 and 48 h after dropping from cattle; while there were variations in the concentration of these carboxylic acids after infection of female ticks to M. anisopliae and B. bassiana. Significant increases were observed in the concentration of oxalic and lactic acids and significant reduction of pyruvic acid for both observation times (24 and 48 h) after infection by entomopathogenic fungi. These results indicate that B. bassiana and M. anisopliae infection alters the basal metabolism of R. microplus females, resulting in the activation of fermentative pathways.

  12. Integrated pest management and entomopathogenic fungal biotechnology in the Latin Americas: II key research and development prerequisites

    International Nuclear Information System (INIS)

    Khachatourians, George G; Valencia, Edison

    1999-01-01

    In the first part of this review article (Valencia and Khachatourians, 1998) we presented the special opportunity that entomopathogenic fungi (EPF) offer for integrated pest management (IPM) in the Latin Americas. As expected, along with the opportunities, there are challenges for the use of EPF. First that there are only two fungi, Beauveria bassiana and Metarhizium anisopliae, for which some prerequisite knowledge of basic and applied mycology for industrial research and development (R and D) are in place. Because of precedent setting leadership in the development of certain EPF, e.g., B. bassiana in IPM, Latin America stands to contribute to and gain from future

  13. Control de Dysmicoccus brevipes (Hemiptera: Pseudococcidae), en el fruto de piña, San Carlos, Costa Rica

    OpenAIRE

    Alexandra Miranda Vindas; Helga Blanco Metzler

    2013-01-01

    Se evaluaron 6 productos para el control de Dysmicoccus brevipes en piña (Ananas comosus). El ensayo de laboratorio se realizó en el Laboratorio de Biocontroladores de la empresa BioEco Natural S.A., ubicada en Aguas Zarcas, San Carlos, mientras que los ensayos de campo se realizaron en una plantación comercial de piña, en Venecia de San Carlos. En el laboratorio se evaluó Beauveria bassiana (4,0 x 1010 esporas.g-1); Metarhizium anisopliae (1,0 x 1010 esporas.g-1); una mezcla de ambos hongos ...

  14. Entomopathogenic fungi in predatory beetles (Col: Carabidae and Staphylinidae) from agricultural fields

    DEFF Research Database (Denmark)

    Steenberg, T; Langer, V; Esbjerg, P

    1995-01-01

    beetles were low (Carabidae: max. 7.6%, Staphylinidae: max. 7.0%). in comparison, prevalence of entomopathogenic fungi in carabid larvae was high (19-50%). At one study site an epizootic of Beauveria bassiana was observed, infecting 67% of staphylinid Anotylus rugosus and 37% of the staphylinid Gyrohypnus...... angustatus. Beauveria bassiana was the predominant fungus isolated from ground beetles and rove beetles from all studied sites. Other fungal species included the hyphomycetes Metarhizium anisopliae, Paecilomyces farinosus and Verticillium lecanii as well as Zoophthora radicans and Zoophthora philonthi...... (Zygomycetes: Entomophthorales). Two individuals of Anotylus rugosus were found to have a dual infection of Zoophthora philonthi and Beauveria bassiana...

  15. The Xenon Test Chamber Q-SUN® for testing realistic tolerances of fungi exposed to simulated full spectrum solar radiation.

    Science.gov (United States)

    Dias, Luciana P; Araújo, Claudinéia A S; Pupin, Breno; Ferreira, Paulo C; Braga, Gilberto Ú L; Rangel, Drauzio E N

    2018-06-01

    The low survival of insect-pathogenic fungi when used for insect control in agriculture is mainly due to the deleterious effects of ultraviolet radiation and heat from solar irradiation. In this study, conidia of 15 species of entomopathogenic fungi were exposed to simulated full-spectrum solar radiation emitted by a Xenon Test Chamber Q-SUN XE-3-HC 340S (Q-LAB ® Corporation, Westlake, OH, USA), which very closely simulates full-spectrum solar radiation. A dendrogram obtained from cluster analyses, based on lethal time 50 % and 90 % calculated by Probit analyses, separated the fungi into three clusters: cluster 3 contains species with highest tolerance to simulated full-spectrum solar radiation, included Metarhizium acridum, Cladosporium herbarum, and Trichothecium roseum with LT 50  > 200 min irradiation. Cluster 2 contains eight species with moderate UV tolerance: Aschersonia aleyrodis, Isaria fumosorosea, Mariannaea pruinosa, Metarhizium anisopliae, Metarhizium brunneum, Metarhizium robertsii, Simplicillium lanosoniveum, and Torrubiella homopterorum with LT 50 between 120 and 150 min irradiation. The four species in cluster 1 had the lowest UV tolerance: Lecanicillium aphanocladii, Beauveria bassiana, Tolypocladium cylindrosporum, and Tolypocladium inflatum with LT 50  solar radiation before. We conclude that the equipment provided an excellent tool for testing realistic tolerances of fungi to full-spectrum solar radiation of microbial agents for insect biological control in agriculture. Copyright © 2018 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  16. evaluation of native fungal isolates of metrahizium anisopliae var

    African Journals Online (AJOL)

    preferred customer

    damage to honey bees (Desalegn Begna, 2001;. Desalegn Begna and Amsalu Bezabeh, 2001). Damage to honey bees is the result of the direct impacts of GWM larvae and the indirect effects inflicted by adult wax moths. The damage by larvae is manifested in such a way that they eat and destroy beeswax combs, form ...

  17. Density-dependence and within-host competition in a semelparous parasite of leaf-cutting ants

    Directory of Open Access Journals (Sweden)

    Thomsen Lene

    2004-11-01

    Full Text Available Abstract Background Parasite heterogeneity and within-host competition are thought to be important factors influencing the dynamics of host-parasite relationships. Yet, while there have been many theoretical investigations of how these factors may act, empirical data is more limited. We investigated the effects of parasite density and heterogeneity on parasite virulence and fitness using four strains of the entomopathogenic fungus, Metarhizium anisopliae var. anisopliae, and its leaf-cutting ant host Acromyrmex echinatior as the model system. Results The relationship between parasite density and infection was sigmoidal, with there being an invasion threshold for an infection to occur (an Allee effect. Although spore production was positively density-dependent, parasite fitness decreased with increasing parasite density, indicating within-host scramble competition. The dynamics differed little between the four strains tested. In mixed infections of three strains the infection-growth dynamics were unaffected by parasite heterogeneity. Conclusions The strength of within-host competition makes dispersal the best strategy for the parasite. Parasite heterogeneity may not have effected virulence or the infection dynamics either because the most virulent strain outcompeted the others, or because the interaction involved scramble competition that was impervious to parasite heterogeneity. The dynamics observed may be common for virulent parasites, such as Metarhizium, that produce aggregated transmission stages. Such parasites make useful models for investigating infection dynamics and the impact of parasite competition.

  18. BIOLOGIA E CONTROLE DE Pycnoscelus Surinamensis L. POR EXTRATOS VEGETAIS E FUNGOS ENTOMOPATÓGÊNICOS COMERCIAIS

    Directory of Open Access Journals (Sweden)

    BRUNO MARCUS FREIRE VIEIRA LIMA

    2012-01-01

    Full Text Available This paper aims to investigate the susceptibility of Coackroach Suriname (Pycnoscelus surinamensis to entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana, and vegetable products. The first phase of the research aimed to study the biological cycle of the insect. The second step was using bioassays in the laboratory using eight commercial products at different doses and each with three replicates being made three applications at weekly intervals. 10 cockroaches were placed in each container and kept in this chamber at 25 °C and U.R. of 70%. The treatments were: Beauveria bassiana (Bals. Vuill (Boveril® B102, B. bassiana (Bovenat®, Metarhizium anisopliae (Metsch. Sorok (Metarril® M102; M. anisopliae (Metanat®, all doses of 1, 2, 3 and 5 kg ha-1; azadirachtin (Natuneem®, neem oil + pepper extract (Nim-I-Go®, neem + timbó + citronella + fedegoso + geranium + organic acids (Compostonat®, rotenone (Rotenat®, all at concentrations of 0.5, 1.0, 2.0, 3.0 and 5.0%, and control (distilled water. The Compostonat® at a dose of 5% was 100% effective in controlling the 1st application and also excelled on the lowest dose applied, reaching 83.33% efficiency in the 3rd application at a dose of 0.5%. We observed five instars: the first lasts an average of 18 days, the second 22, third 36, fourth and fifth in 45 days 63 days on average. Reproduce between 45 and 60 days after adult average of 25 nymphs per ootheca and average adult length of 24 mm.

  19. Mortality and repellent effects of microbial pathogens on Coptotermes formosanus (Isoptera: Rhinotermitidae

    Directory of Open Access Journals (Sweden)

    Wright Maureen S

    2012-12-01

    Full Text Available Abstract Background Two entomopathogenic fungi, Isaria fumosorosea and Metarhizium anisopliae, and one bacterium, Bacillus thuringiensis, were tested for their ability to cause mortality of Formosan subterranean termites (FST, Coptotermes formosanus (Shiraki, after liquid exposure, and for their lack of propensity to repel FST. Results The fungus Isaria fumosorosea at 108 spores/ml caused 72.5% mortality on day 7, significantly higher than the control and 106 spores/ml treatment. On day 14, the 106 and 108 concentrations caused 38.8% and 92.5% mortality, respectively, significantly higher than the control. On day 21, 82.5% and 100% of the termites were killed by the 106 and 108 treatments, respectively. I. fumosorosea did not repel termites at 106 nor 108 spores/g in sand, soil or sawdust. The fungus Metarhizium anisopliae at 108 spores/ml caused 57.5% mortality on day 7, 77.5% mortality on day 14 and 100% mortality on day 21. Conclusions On all three days the rate of mortality was significantly higher than that of the control and 106 spores/ml treatment with I. fumosorosea. Neither I. fumosorosea nor M. anisopliae caused repellency of FST in sand, soil or sawdust. The bacterium Bacillus thuringiensis did not cause significant mortality on days 7, 14 or 21. When termites were exposed to cells of B. thuringiensis in sawdust and when termites were exposed to a mixture of spores and cells in sand, a significantly higher number remained in the control tubes. Repellency was not seen with B. thuringiensis spores alone, nor with the above treatments in the other substrates.

  20. Evaluation of Two Entomopathogenic Fungi for Control of Culex quinquefasciatus (Diptera: Culicidae) in Underground Storm Drains in the Coachella Valley, California, United States.

    Science.gov (United States)

    Popko, David A; Henke, Jennifer A; Mullens, Bradley A; Walton, William E

    2017-12-22

    Commercially available formulations of two entomopathogenic fungi, Beauveria bassiana (Bals.-Criv.) Vuill. (Hypocreales: Clavicipitaceae) and Metarhizium anisopliae (Metchnikoff) Sorokin (Hypocreales: Clavicipitaceae), were assessed for control of Culex quinquefasciatus Say (Diptera: Culicidae) in underground storm drain systems (USDS) in the Coachella Valley of southern California. Each of three treatments, the two fungi or a water control, was applied to 1 m2 of vertical wall at eight USDS sites in spring and autumn of 2015. Fungal infectivity and lethality were assessed at 1 d and 1, 2, and 4 wk post-application. Overnight bioassays using adult lab-reared female mosquitoes were carried out on the treated USDS wall areas and then mosquitoes were held in the laboratory for up to 21 d to allow fungal infections to be expressed. Postmortem fungal sporulation was assessed up to 2 wk at 100% humidity. Mosquito-fungal interactions also were assessed in bioassays of the three treatments on filter paper exposed to USDS conditions during autumn. Metarhizium anisopliae killed mosquitoes faster than B. bassiana; nevertheless, both freshly applied formulations caused greater than 80% mortality. Fungal persistence declined significantly after 1 wk under USDS conditions, but some infectivity persisted for more than 4 wk. Beauveria bassiana was more effective against Cx. qinquefasciatus in the spring, while M. anisopliae was more effective in the cooler conditions during autumn. USDS environmental conditions (e.g., temperature, relative humidity, standing water) influenced fungal-related mortality and infection of Cx. quinquefasciatus. The utility of these fungal formulations for mosquito abatement in the Coachella Valley and implications for fungal control agents in USDS environments are discussed. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. The spectrum and occurrence of entomopathogenic fungi in soils from apple orchards

    Directory of Open Access Journals (Sweden)

    Barbara Marjańska-Cichoń

    2012-12-01

    Full Text Available The spectrum and occurrence of entomopathogenic fungi in orchard soil and arable soil were evaluated using an "insect bait method". Soil samples taken in autumn and spring from sward, herbicides fallow and arable soil were baited with Galleria mellonella larvae. Entomopathogenic fungi Beauveria bassiana (Bals. Vuill., Metarhizium anisopliae (Metsch. Sorok. and Paecilomyces fumosoroseus (Wize Brown et Smith were isolated from three species of orchards soil and adjacent arable soil. Infection levels of G. mellonella larvae were depended from species of soil . M. anisoopliae caused most frequent infections of bait insects in light loamy sand and P. fumosoroseus in alluvial silt and coarse sand. B. bassiana was dominated in alluvial silt. It was established that M. anisopliae and B. bassiana infected more larvae in autumn than in spring. In case of P. fumosoroseus an opposite tendency was observed. Generaly in arable soil and sward number of infected larvae was higher than other stands. In case of light loamy sand more infections of G. mellonella larvae were found in samples from herbicides fallow. Irrespective of soil type B. bassiana was the dominated species isolated from herbicides fallow, M. anisopliae from sward and P. fumosoroseus - from arable soil.

  2. Fungal biological control agents for integrated management of Culicoides spp. (Diptera: Ceratopogonidae of livestock

    Directory of Open Access Journals (Sweden)

    B. W. Narladkar

    2015-02-01

    Full Text Available Aim: Entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana had wide host range against insects and hence these are being exploited as fungal bio-pesticide on a large scale. Both fungi are proved pesticides against many crop pests and farmers are well acquainted with their use on the field. Thus, research was aimed to explore the potency of these fungal spores against larval and adult Culicoides midges, a pest of livestock. Materials and Methods: In-vitro testing of both fungal biological control agents was undertaken in Petri dishes against field collected Culicoides larvae, while in plastic beakers against field collected blood-engorged female Culicoides midges. In-vivo testing was undertaken by spraying requisite concentration of fungal spores on the drainage channel against larvae and resting sites of adult Culicoides midges in the cattle shed. Lethal concentration 50 (LC50 values and regression equations were drawn by following probit analysis using SPSS statistical computerized program. Results: The results of this study revealed LC50 values of 2692 mg and 3837 mg (108 cfu/g for B. bassiana and M. anisopliae, respectively, against Culicoides spp. larvae. Death of Culicoides larvae due to B. bassiana showed greenish coloration in the middle of the body with head and tail showed intense blackish changes, while infection of M. anisopliae resulted in death of Culicoides larvae with greenish and blackish coloration of body along with total destruction, followed by desquamation of intestinal channel. The death of adult Culicoides midges were caused by both the fungi and after death growth of fungus were very well observed on the dead cadavers proving the efficacy of the fungus. Conclusion: Preliminary trials with both funguses (M. anisopliae, B. bassiana showed encouraging results against larvae and adults of Culicoides spp. Hence, it was ascertained that, these two fungal molecules can form a part of biological control and

  3. Development of tissue singular complex marking process on outer layer of insect skin and it's application to virulence evaluation of insect pathogens

    International Nuclear Information System (INIS)

    Ihara, F.; Toyama, M.; Sato, T.; Umemiya, Y.

    2004-01-01

    A relation between virulence of insect pathogenic filament germ, Metarhizium anisopliae, on bug and the germ enzyme productivity was investigated by API-ZYM process, in which several kinds of enzyme, such as alkaline phosphatase, esterase, lipase, galactosidase, glucosidase, and so on, were used. Epidermal protein on the bug was marked with L -35 S cysteine. The relations between eleven kinds of the enzyme activity pattern and the virulence of insect pathogen germ on bug, however were not cleared. An enzyme, which was produced at the outside of germ cell by the insect pathogen germ, reacted on the marked epidermis. The relations between resolution process and virulence of the enzyme, however were not cleared yet. (M. Suetake)

  4. OCCURRENCE OF ENTOMOPATHOGENIC FUNGI IN SOILS FROM FESTUCA PRATENSIS HUDS. CROP

    Directory of Open Access Journals (Sweden)

    Roman Kolczarek

    2014-04-01

    Full Text Available Entomopathogenic fungi are the largest group of microorganisms existing in the soil environment. Occurrence and pathogenicity of entomopathogenic fungi in soil is dependent on many factors affecting the soil environment. The aim of this study was to compare the species composition and the intensity of the occurrence of entomopathogenic fungi in soils from monoculture crops of Festuca pratensis Huds. The study material consisted of soil samples taken from the experiment conducted in two experimental stations of the Research Centre for Cultivars Study. The insecticides fungi were isolated from soil using a method of the selective substrate. Three species of entomopathogenic fungi Beauveria bassiana, Isaria fumosorosea and Metarhizium anisopliae were isolated from the study soils using the selective medium.

  5. Kajian Beberapa Jamur Entomopatogenik pada Ulat Daun Kubis Hijau, Plutella xylostella

    Directory of Open Access Journals (Sweden)

    Tri Harjaka

    2002-12-01

    Full Text Available The use of entomopathogenic fungi for controlling Diamond Back Moth (DBM, Plutella xylostella L. still limited. Even though there are some entomopathogenic fungi could infect DBM. The aim of this research is to know the kind of entomopatogenic fungi on DBM to be used as biological control agent. Some isolates of  fungi were collected  from DBM infected by  the fungi  on field  in Central Java and  Yogyakarta. Fungi infecting DBM was  isolated, and cultured on Potato Dextrose Agar (PDA. Purification, identification and  infection tests were done to know  the potency of each fungal isolates. The results showed thatfive species of fungi infecting DBM, are Beauveria bassiana, Metarhizium anisopliae, Paecilomyces sp. Entomophthora sp.and Hirsutella sp.

  6. Selectivity of pesticides used in rice crop on Telenomus podisi and Trichogramma pretiosum

    Directory of Open Access Journals (Sweden)

    Juliano de Bastos Pazini

    2016-09-01

    Full Text Available Telenomus and Trichogramma species stand out as agents for the biological control in rice crops, and the main strategy for preserving them is the use of selective pesticides. This study aimed at evaluating the toxicity of pesticides used in irrigated rice crop on Telenomus podisi Ashmead (Hymenoptera: Platygastridae and Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae. Adults of these parasitoids were exposed to dry residues of pesticides, in a completely randomized experiment, with 25 treatments (24 pesticides + control and four replications. The insecticides clorantraniliprole, flubendiamide and diflubenzuron and the biological insecticides based on Beauveria bassiana and Metarhizium anisopliae were harmless to T. podisi and T. pretiosum. The harmless herbicides were: 2.4-D amine, profoxydim, quinclorac, ethoxysulfuron and saflufenacil. The fungicide epoxiconazole + kresoxim-methyl was also harmless to these two biological control agents. Therefore, these pesticides are indicated for the integrated pest management, in flooded rice areas.

  7. Biology and management of palm dynastid beetles: recent advances.

    Science.gov (United States)

    Bedford, Geoffrey O

    2013-01-01

    Coconut, oil, and date palms are important crops in the tropics and are attacked by dynastids that cause loss of production or death of hosts. Knowledge of their breeding sites has been extended since a previous review in 1980. The fungus Metarhizium anisopliae has potential as a biopesticide against immature stages in friable breeding sites. The molecular biology and ultrastructure of Oryctes rhinoceros Nudivirus (OrNV), disseminated by adults, have been studied, and this pathogen can reduce O. rhinoceros populations and damage when introduced into new locations, especially where damage had been high. New PCR techniques may enable reliable quantification of dosages ingested and hence virulence of different isolates. Male-produced aggregation pheromones have been identified in several species, for which they may have management potential, having been used commercially for trapping O. rhinoceros in oil palm plantations in Southeast Asia, and tested against O. monoceros in Africa.

  8. Entomopathogenic Fungus as a Biological Control for an Important Vector of Livestock Disease: The Culicoides Biting Midge

    Science.gov (United States)

    Ansari, Minshad Ali; Pope, Edward C.; Carpenter, Simon; Scholte, Ernst-Jan; Butt, Tariq M.

    2011-01-01

    Background The recent outbreak of bluetongue virus in northern Europe has led to an urgent need to identify control measures for the Culicoides (Diptera: Ceratopogonidae) biting midges that transmit it. Following successful use of the entomopathogenic fungus Metarhizium anisopliae against larval stages of biting midge Culicoides nubeculosus Meigen, we investigated the efficacy of this strain and other fungi (Beauveria bassiana, Isaria fumosorosea and Lecanicillium longisporum) as biocontrol agents against adult C. nubeculosus in laboratory and greenhouse studies. Methodology/Findings Exposure of midges to ‘dry’ conidia of all fungal isolates caused significant reductions in survival compared to untreated controls. Metarhizium anisopliae strain V275 was the most virulent, causing a significantly decrease in midge survival compared to all other fungal strains tested. The LT50 value for strain V275 was 1.42 days compared to 2.21–3.22 days for the other isolates. The virulence of this strain was then further evaluated by exposing C. nubeculosus to varying doses (108–1011 conidia m−2) using different substrates (horse manure, damp peat, leaf litter) as a resting site. All exposed adults were found to be infected with the strain V275 four days after exposure. A further study exposed C. nubeculosus adults to ‘dry’ conidia and ‘wet’ conidia (conidia suspended in 0.03% aq. Tween 80) of strain V275 applied to damp peat and leaf litter in cages within a greenhouse. ‘Dry’ conidia were more effective than ‘wet’ conidia, causing 100% mortality after 5 days. Conclusion/Significance This is the first study to demonstrate that entomopathogenic fungi are potential biocontrol agents against adult Culicoides, through the application of ‘dry’ conidia on surfaces (e.g., manure, leaf litter, livestock) where the midges tend to rest. Subsequent conidial transmission between males and females may cause an increased level of fungi-induced mortality in midges

  9. Entomopathogenic fungi isolates to control the borer of yerba mate (Hedypathes betulinus Kluger (Coleoptera; CerambycidaeIsolados de fungos entomopatogênicos visando ao controle da broca da erva-mate (Hedypathes betulinus Kluger (Coleoptera; Cerambycidae

    Directory of Open Access Journals (Sweden)

    André Luis Pereira Fanti

    2013-09-01

    Full Text Available Yerba mate is an important crop of southern Brazil, Argentina and Paraguay, with socio-economic and environmental importance. Due the lack of native herbals, yerba mate has become a monoculture, and as a consequence, insects have become pests, and the borer, Hedypathes betulinus, one of the most important. In order to improve biological control in the crop, this work aims to select in laboratory the most virulent, of 32 isolates of the entomopathogenic fungi Beauveria bassiana (Bals. Vuill. and 18 isolates of Metarhizium anisopliae (Metsch. Sorok. Initially, isolates virolence was evaluated by immersing the adults borers in a fungal suspension, containing 1×108 conidia mL-1, and after, those caused highest confirmed mortality were selected for the second step, wherein it was evaluated the virulence, vegetative growth and conidia production in culture medium, rice and borer bodies. Three isolates of B. bassiana (UNIOESTE 4, UNIOESTE 52 and UNIOESTE 64 and one of M. anisopliae (IBCB 352 reached confirmed mortality equal or superior to 90%, these isolates were selected for the second step, together with the standard isolated GC 716 (B. bassiana. The isolated IBCB 352 of M. anisopliae, despite being the only of this species to be selected for the second step, promoted the high confirmed mortality and conidiogenesis in adults borer, indicating a high inoculums production i, being nominated for field evaluations. A erva-mate é uma cultura importante da região sul do Brasil, Argentina e Paraguai, tendo grande importância sócio-econômica e ambiental. Com a escassez de ervais nativos, a cultura da erva-mate passou a ser cultivada em sistema de monocultivo e como consequência, alguns insetos tornaram-se pragas, sendo a broca, Hedypathes betulinus, muito importante. A fim de incrementar o controle biológico na cultura, o objetivo deste trabalho foi selecionar em laboratório os isolados mais virulentos de 32 isolados do fungo entomopatog

  10. Tools for delivering entomopathogenic fungi to malaria mosquitoes: effects of delivery surfaces on fungal efficacy and persistence

    Directory of Open Access Journals (Sweden)

    Mnyone Ladslaus L

    2010-08-01

    Full Text Available Abstract Background Entomopathogenic fungi infection on malaria vectors increases daily mortality rates and thus represents a control measure that could be used in integrated programmes alongside insecticide-treated bed nets (ITNs and indoor residual spraying (IRS. Before entomopathogenic fungi can be integrated into control programmes, an effective delivery system must be developed. Methods The efficacy of Metarhizium anisopliae ICIPE-30 and Beauveria bassiana I93-825 (IMI 391510 (2 × 1010 conidia m-2 applied on mud panels (simulating walls of traditional Tanzanian houses, black cotton cloth and polyester netting was evaluated against adult Anopheles gambiae sensu stricto. Mosquitoes were exposed to the treated surfaces 2, 14 and 28 d after conidia were applied. Survival of mosquitoes was monitored daily. Results All fungal treatments caused a significantly increased mortality in the exposed mosquitoes, descending with time since fungal application. Mosquitoes exposed to M. anisopliae conidia on mud panels had a greater daily risk of dying compared to those exposed to conidia on either netting or cotton cloth (p B. bassiana conidia on mud panels or cotton cloth had similar daily risk of death (p = 0.14, and a higher risk than those exposed to treated polyester netting (p Conclusion Both fungal isolates reduced mosquito survival on immediate exposure and up to 28 d after application. Conidia were more effective when applied on mud panels and cotton cloth compared with polyester netting. Cotton cloth and mud, therefore, represent potential substrates for delivering fungi to mosquitoes in the field.

  11. Uji Efikasi Bioinsektisida Jamur Entomopatogen Berformulasi Cair terhadap Plutella xylostella (L. Di Laboratorium

    Directory of Open Access Journals (Sweden)

    Haperidah Nunilahwati

    2014-03-01

    Full Text Available Efficacy test of liquid bio-insecticide of entomopathogenic fungi in control against Plutella xylostella in the laboratory.  The insect pest P. xylostella could reduce crop production of Brassicaceae. The aim of research was to test the efficacy liquid bio insecticide with active ingredient of Beauveria bassiana and Metarhizium anisopliae fungi to control P. xylostella. Bio-insecticide was applied by spraying  on mustard leaves infested with 50 individuals of third instar larvae of P. xylostella and a density of 1x106 conidia ml-1. Larval mortality was observed every 2 hours and LT50 of larvae was calculated. The study showed that the highest percentage of mortality found in Mt ES and Mt ES (cf isolates was 99.6%, the lowest mortality at Mt NES isolate was 96.80%. LT50 and LT95 values   Bb ES were the lowest i.e. 2.04 days and 2.95 days. The highest LT50 and LT95 of Mt NES isolate were 2.24 days and 3.32 days. The liquid bio-insecticide of entomopathogenic fungus B. bassiana and M. anisopliae were effective to control the larvae of P. xylostella.

  12. Viability, purity, and genetic stability of entomopathogenic fungi species using different preservation methods.

    Science.gov (United States)

    Ayala-Zermeño, Miguel A; Gallou, Adrien; Berlanga-Padilla, Angélica M; Andrade-Michel, Gilda Y; Rodríguez-Rodríguez, José C; Arredondo-Bernal, Hugo C; Montesinos-Matías, Roberto

    2017-11-01

    Preservation methods for entomopathogenic fungi (EPF) require effective protocols to ensure uniform processes and to avoid alterations during storage. The aim of this study was to preserve Beauveria bassiana, Metarhizium acridum, M. anisopliae, M. rileyi, Isaria javanica, Hirsutella thompsonii, H. citriformis and Lecanicillium lecanii in mineral oil (MO), sterile water (SW), silica gel (SG), lyophilisation (L), ultracold-freezing at -70 °C, and cryopreservation at -196 °C. The viability and purity of the fungi were then verified: phenotypic characteristics were evaluated qualitatively at 6, 12 and 24 m. Genetic stability was tested by amplified fragment length polymorphisms (AFLP) analysis at 24 m. Of the eight species of EPF, three remained viable in SW, five in MO and L, six at -70 °C, seven in SG, and eight at -196 °C. No significant changes were observed in AFLP patterns at 24 m of storage. The most effective preservation methods for EPF were SG, L, -70 and -196 °C. Beauveria bassiana, M. acridum, M. anisopliae, M. rileyi and I. javanica remained stable with all methods, while the remaining species were less compatible. The optimisation of preservation methods for EPF facilitates the development of reliable protocols to ensure their inherent characteristics in culture collections. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  13. Development of a population-based threshold model of conidial germination for analysing the effects of physiological manipulation on the stress tolerance and infectivity of insect pathogenic fungi.

    Science.gov (United States)

    Andersen, M; Magan, N; Mead, A; Chandler, D

    2006-09-01

    Entomopathogenic fungi are being used as biocontrol agents of insect pests, but their efficacy can be poor in environments where water availability is reduced. In this study, the potential to improve biocontrol by physiologically manipulating fungal inoculum was investigated. Cultures of Beauveria bassiana, Lecanicillium muscarium, Lecanicillium longisporum, Metarhizium anisopliae and Paecilomyces fumosoroseus were manipulated by growing them under conditions of water stress, which produced conidia with increased concentrations of erythritol. The time-course of germination of conidia at different water activities (water activity, aw) was described using a generalized linear model, and in most cases reducing the water activity of the germination medium delayed the onset of germination without affecting the distribution of germination times. The germination of M. anisopliae, L. muscarium, L. longisporum and P. fumosoroseus was accelerated over a range of aw levels as a result of physiological manipulation. However, the relationship between the effect of physiological manipulation on germination and the osmolyte content of conidia varied according to fungal species. There was a linear relationship between germination rate, expressed as the reciprocal of germination time, and aw of the germination medium, but there was no significant effect of fungal species or physiological manipulation on the aw threshold for germination. In bioassays with M. anisopliae, physiologically manipulated conidia germinated more rapidly on the surface of an insect host, the melon cotton aphid Aphis gossypii, and fungal virulence was increased even when relative humidity was reduced after an initial high period. It is concluded that physiological manipulation may lead to improvements in biocontrol in the field, but choice of fungal species/isolate will be critical. In addition, the population-based threshold model used in this study, which considered germination in terms of physiological

  14. Susceptibility of Diaphorina citri (Hemiptera: Liviidae) and Its Parasitoid Tamarixia radiata (Hymenoptera: Eulophidae) to Entomopathogenic Fungi under Laboratory Conditions.

    Science.gov (United States)

    Ibarra-Cortés, K H; Guzmán-Franco, A W; González-Hernández, H; Ortega-Arenas, L D; Villanueva-Jiménez, J A; Robles-Bermúdez, A

    2018-02-01

    Diaphorina citri (Kuwayama) is a global pest of citrus that transmits the bacteria associated with the disease, Huanglongbing. Entomopathogenic fungi and the parasitoid Tamarixia radiata (Waterston) are important biological control agents of this pest and likely to interact in D. citri populations. As a basis for interaction studies, we determined the susceptibility of nymphs and adults of D. citri and adults of the parasitoid T. radiata to six fungal isolates from the species Beauveria bassiana s.l. (Bals.-Criv.) Vuill. (isolates B1 and B3), Metarhizium anisopliae s.s. (Metsch.) (Ma129 and Ma65) and Isaria fumosorosea Wize (I2 and Pae). We conducted experiments evaluating infection levels in all three insect groups following inoculation with a series of conidial concentrations (1 × 10 4 -1 × 10 8 conidia mL -1 ). Results showed that D. citri nymphs and T. radiata were more susceptible to fungal isolates than D. citri adults. Overall, B. bassiana and M. anisopliae isolates caused the greatest infection compared with I. fumosorosea isolates in all three groups of insects. Isolates B1 (B. bassiana) and Ma129 (M. anisopliae) infected a greater proportion of adults and nymphs of D. citri, respectively. Both isolates of B. bassiana caused greater infection in T. radiata compared with isolates of the other fungal species. We propose that isolates B1 and Ma129 are the strongest candidates for control of D. citri. Our results represent the first report of entomopathogenic fungi infecting T. radiata, and the basis for future studies to design a biological control programme that uses both agents more efficiently against D. citri populations.

  15. A Strong Immune Response in Young Adult Honeybees Masks Their Increased Susceptibility to Infection Compared to Older Bees

    Science.gov (United States)

    Bull, James C.; Ryabov, Eugene V.; Prince, Gill; Mead, Andrew; Zhang, Cunjin; Baxter, Laura A.; Pell, Judith K.; Osborne, Juliet L.; Chandler, Dave

    2012-01-01

    Honeybees, Apis mellifera, show age-related division of labor in which young adults perform maintenance (“housekeeping”) tasks inside the colony before switching to outside foraging at approximately 23 days old. Disease resistance is an important feature of honeybee biology, but little is known about the interaction of pathogens and age-related division of labor. We tested a hypothesis that older forager bees and younger “house” bees differ in susceptibility to infection. We coupled an infection bioassay with a functional analysis of gene expression in individual bees using a whole genome microarray. Forager bees treated with the entomopathogenic fungus Metarhizium anisopliae s.l. survived for significantly longer than house bees. This was concomitant with substantial differences in gene expression including genes associated with immune function. In house bees, infection was associated with differential expression of 35 candidate immune genes contrasted with differential expression of only two candidate immune genes in forager bees. For control bees (i.e. not treated with M. anisopliae) the development from the house to the forager stage was associated with differential expression of 49 candidate immune genes, including up-regulation of the antimicrobial peptide gene abaecin, plus major components of the Toll pathway, serine proteases, and serpins. We infer that reduced pathogen susceptibility in forager bees was associated with age-related activation of specific immune system pathways. Our findings contrast with the view that the immunocompetence in social insects declines with the onset of foraging as a result of a trade-off in the allocation of resources for foraging. The up-regulation of immune-related genes in young adult bees in response to M. anisopliae infection was an indicator of disease susceptibility; this also challenges previous research in social insects, in which an elevated immune status has been used as a marker of increased disease

  16. Selection of entomopathogenic fungi against the red spider mite Tetranychus kanzawai (Kishida (Tetranychidae: Acarina

    Directory of Open Access Journals (Sweden)

    Yayan Sanjaya

    2013-12-01

    Full Text Available The pathogenicity of three entomopathogenic fungal species to Tetranychus kanzawai was investigated. Seven isolates of Metarhizium anisopliae, six isolates of Beauveria bassiana, and an isolate of Paecilomyces lilacinus from the Philippines and Indonesia were evaluated. The following studies were undertaken: (1 screening of M. anisoplae, B. bassiana and P. lilicanus pathogenic to T. kanzawai, and (2 bioefficacy studies of the selected entomopathogenic fungi under greenhouse conditions. Conidia of each isolate were mass-produced on potato dextrose agar (PDA at 26+-1 oC and a 12-hour photophase for a maximum of 21 days. Preliminary screening for the most pathogenic isolate within the same species was determined using suspension with 104 to 108 conidia ml-1. At 4 days after treatment (DAT, the pathogenicity within M. anisopliae isolates in decreasing order was Ma5>Ma6>Ma4>Ma2>Ma1>Ma3>Ma7 while for B. bassiana, was Bb6>Bb5>Bb4>Bb3>Bb1>Bb2. The top three most pathogenic isolates within the two species were subjected to further studies to determine the most virulent isolate against T. kanzawai. At 5 DAT, the LC50 values of M. anisopliae isolates ranged from 5.0 x102 to 1.4x103 while for B. bassiana ranged from 1.2 x 103 to 2.4x 103 conidia ml-1. Based on LC50, the virulence of the fungal isolates within the species in decreasing order was Ma6>Ma5>Ma4 and Bb6>Bb5>Bb4. However, the LC50 values are not significantly different from each other. Green house trials showed that the epizootic of entomopathogenic fungus can regulate the population of mites. The fungal isolates used in the study, although not originally isolated from mites were virulent to T. kanzawai, indicating their wide host range.

  17. Compatibility of chemical insecticides and entomopathogenic fungi for control of soybean defoliating pest, Rachiplusia nu.

    Science.gov (United States)

    Pelizza, Sebastian A; Schalamuk, Santiago; Simón, María R; Stenglein, Sebastian A; Pacheco-Marino, Suani G; Scorsetti, Ana C

    Rachiplusia nu (Guenée) (Lepidoptera: Noctuidae) is one of the major lepidopteran pests defoliating soybeans (Glycine max Merrill) in Argentina. The combined use of chemical insecticides and entomopathogenic fungi is a promising pest-control option to minimize adverse chemical effects. In this work, we evaluated the interactions between five insecticides-two being considered biorational-and five fungal entomopathogenic strains under laboratory conditions in order to determine the possible usefulness of combinations of these agents against R. nu. The insecticides were tested for compatibility at four doses by in vitro bioassay and for the lethality of R. nu by inoculations at three doses. Fungal strains were applied at 1×10 8 , 1×10 6 , and 1×10 4 conidia/ml. The combinations of those insecticides with Beauveria bassiana (LPSc 1067, LPSc 1082, LPSc 1098), Metarhizium anisopliae (LPSc 907), and Metarhizium robertsii (LPSc 963) caused higher R. nu-larval mortalities than any of the individual agents alone. We observed significant differences in the in vitro conidial viability, vegetative growth, and conidia production of the five strains of entomopathogenic fungi exposed to different doses of the chemical insecticides. The combination gamma-cyhalothrin-LPSc-1067 caused the highest percent mortality of R. nu larvae, with synergism occurring between the two agents at 50% and 25% of the maximum field doses. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. Recherches sur la maladie, due al Metarrhizium anisopliae chez le criquet pelerin

    NARCIS (Netherlands)

    Veen, K.H.

    1968-01-01

    Introduction
    The data from the literature concerning insect killing Deuteromycetes are discussed. Stress is laid on many fundamental problems and on gaps in the scientific observations.

    Nomenclature
    It appears from a bibliographic survey that Metarrhizium

  19. Exploring the Caste-Specific Multi-Layer Defense Mechanism of Formosan Subterranean Termites, Coptotermes formosanus Shiraki

    Directory of Open Access Journals (Sweden)

    Abid Hussain

    2017-12-01

    Full Text Available The survival and foraging of Coptotermes formosanus Shiraki in a microbe-rich environment reflect the adaptation of an extraordinary, sophisticated defense mechanism by the nest-mates. We aimed to explore the host pathogen interaction by studying caste-specific volatile chemistry and genes encoding the antioxidant defense of winged imagoes, nymphs, soldiers and workers of Formosan subterranean termites. Qualitative analyses of C. formosanus Shiraki performed by HS-SPME/GC-MS showed considerable variations in the chemical composition of volatile organic compounds (VOCs and their proportions among all the castes. Winged imagoes produced the most important compounds such as naphthalene and n-hexanoic acid. The antifungal activity of these compounds along with nonanal, n-pentadecane, n-tetradecane, n-heptadecane and methyl octanoate against the conidial suspensions of Metarhizium anisopliae and Beauveria bassiana isolates enable us to suggest that the failure of natural fungal infection in the nest is due to the antiseptic environment of the nest, which is mainly controlled by the VOCs of nest-mates. In addition, conidial germination of M. anisopliae and B. bassiana isolates evaluated on the cuticle of each caste showed significant variations among isolates and different castes. Our results showed that the conidia of M. anisopliae 02049 exhibited the highest germination on the cuticle of all the inoculated castes. Moreover, we recorded the lowest germination of the conidia of B. bassiana 200436. Caste-specific germination variations enabled us to report for the first time that the cuticle of winged imagoes was found to be the most resistant cuticle. The analysis of the transcriptome of C. formosanus Shiraki revealed the identification of 17 genes directly involved in antioxidant defense. Expression patterns of the identified antioxidant genes by quantitative real-time PCR (qPCR revealed the significantly highest upregulation of CAT, GST, PRXSL, Cu

  20. A bioencapsulation and drying method increases shelf life and efficacy of Metarhizium brunneum conidia.

    Science.gov (United States)

    Przyklenk, Michael; Vemmer, Marina; Hanitzsch, Miriam; Patel, Anant

    2017-08-01

    This study reports the development of encapsulated and dried entomopathogenic fungus Metarhiuzm brunneum with reduced conidia content, increased conidiation, a high drying survival and enhanced shelf life. Dried beads prepared with the fillers corn starch, potato starch, carboxymethylcellulose or autoclaved baker's yeast, showed enhanced survival with increasing filler content. The maximum survival of 82% was found for beads with 20% corn starch at shelf life compared to non-formulated conidia. This "microfermenter" will pave the way for encapsulated fungi to be used as cost-effective biocontrol agents.

  1. The entomopathogenic fungus Metarhizium robertsii communicates with the insect host Galleria mellonella during infection.

    Science.gov (United States)

    Mukherjee, Krishnendu; Vilcinskas, Andreas

    2018-01-01

    Parasitic fungi are the only pathogens that can infect insect hosts directly through their proteinaceous exoskeleton. Penetration of the cuticle requires the release of fungal enzymes, including proteinases, which act as virulence factors. Insects can sense fungal infections and activate innate immune responses, including the synthesis of antifungal peptides and proteinase inhibitors that neutralize the incoming proteinases. This well-studied host response is epigenetically regulated by histone acetylation/deacetylation. Here we show that entomopathogenic fungi can in turn sense the presence of insect-derived antifungal peptides and proteinase inhibitors, and respond by inducing the synthesis of chymotrypsin-like proteinases and metalloproteinases that degrade the host-derived defense molecules. The rapidity of this response is dependent on the virulence of the fungal strain. We confirmed the specificity of the pathogen response to host-derived defense molecules by LC/MS and RT-PCR analysis, and correlated this process with the epigenetic regulation of histone acetylation/deacetylation. This cascade of responses reveals that the coevolution of pathogens and hosts can involve a complex series of attacks and counterattacks based on communication between the invading fungal pathogen and its insect host. The resolution of this process determines whether or not pathogenesis is successful.

  2. Evaluación biológica del manejo de picudos y nematodos fitopatógenos en plátano (Musa AAB Biological evaluation of the management of borers and phytopathogenic nematodes of plantain (Musa AAB

    Directory of Open Access Journals (Sweden)

    Carolina González Cardona

    2009-10-01

    Full Text Available El trabajo se desarrolló en la granja Montelindo, municipio de Palestina (Caldas a 5° 05' N y 75° 40' O, a 1010 m.s.n.m., 23.5 °C, precipitación anual de 2100 mm y humedad relativa de 76%, con el fin de generar información sobre el manejo de picudos y nematodos fitoparásitos del plátano. Se usó un diseño en bloques completos al azar con cuatro tratamientos por bloque, tres repeticiones y 24 plantas por repetición. Para el manejo de los picudos se hicieron aplicaciones de Carbofurán, Beauveria bassiana y Metarhizium anisopliae en trampas tipo columna. Para el control de nematodos se hicieron aplicaciones en el suelo de Carbofurán y dos cepas comerciales de Paecilomyces lilacinus. Se evaluaron el número de adultos de picudos en trampas, la infección de estos por los hongos empleados y la población de nematodos en suelo y raíces. Se encontró que las trampas tratadas con Carbofurán fueron significativamente más efectivas para la captura de insectos. En laboratorio se estableció que M. anisopliae tuvo una mejor capacidad para infectar adultos del insecto en el campo. La población de nematodos fue menor en suelo y raíces de las plantas tratadas con Carbofurán. Paecilomyces lilacinus no fue efectivo para reducir las poblaciones de nematodos. Los géneros de nematodos predominantes fueron Radopholus, Pratylenchus, Meloidogyne y Helicotylenchus.This work was carried out at the ‘Montelindo’ farm, municipality of Palestina (Department of Caldas, Colombia, located at 5° 05' N and 75° 40' W, at 1010 m.a.s.l., 23.5 °C, with 2100 mm of annual rainfall, and relative humidity of 76%, in order to generate information on the management of borers and parasitic nematodes of the plantain. A completely randomised block experimental design was used, with four treatments per block, three replicates and 24 plants per replicate. For the management of borers, applications of Carbofuran, Beauveria bassiana and Metarhizium anisopliae were made

  3. Selección de Cepas de Hongos Entomopatógenos para el Manejo de Anastrepha obliqua (Macquart, 1835 (Diptera: Tephritidae en Colombia Selection of Strains of Entomopathogenic Fungi for Management of Anastrepha obliqua (Macquart, 1835 (Diptera: Tephritidae in Colombia

    Directory of Open Access Journals (Sweden)

    Armando Osorio-Fajardo

    2011-12-01

    Full Text Available Se evaluaron 15 cepas de los hongos entomopatógenos Beauveria bassiana y Metarhizium anisopliae sobre adultos de un día de edad de la mosca de la fruta Anastrepha obliqua. El trabajo se realizó con el fin de seleccionar las cepas más virulentas al insecto y estudiar el efecto sobre los adultos jóvenes cuando el hongo era aplicado antes de la emergencia. Mediante un screening con una concentración de 1x10(7 conidias/mL se seleccionaron las tres cepas más virulentas, siendo dos de ellas de Beauveria y una de Metarhizium, las cuales causaron mortalidades del 77%, 71% y 66%. Valores de CL50 de 2,38x10(6, 1,81x10(6 y 9,94x10(6 conidias/mL, respectivamente, fueron determinados para cada una de estas cepas y un TL50 respectivo de 48,12; 56 y 42,75 horas. No se encontraron diferencias significativas en la mortalidad entre hembras y machos. La aspersión de la CL90 de las cepas seleccionadas sobre el medio de pupación de la mosca de la fruta produjo 34-48% de mortalidad durante las 120 horas de evaluación. Los hongos entomopatógenos pueden ser utilizados fácilmente para el control biológico de A. obliqua aplicándolos de manera dirigida a los adultos jóvenes bajo la copa de los árboles, en programas de manejo integrado de plagas.Fifteen strains from entomopathogenic Beauveria bassiana and Metarhizium anisopliae fungi were evaluated on one day-old adults of Anastrepha obliqua fruit fly. Tested were carried out for selecting the most virulent strains and the effectiveness of their use on young adult when the entomopathogen were applied before emergence were studied too. A screening with a 1x10(7 conidia/mL concentration was used for selecting the three most pathogenic isolates, two from Beauveria and one from Metarhizium, having 77, 71 and 66% mortality. The LC50 for these isolates were 2.38x10(6, 1.81x10(6 and 9.94x10(6 conidia/mL, respectively, and a respective LT50 were 48.12, 56 and 42.75 hours. No significant differences were found

  4. Control biológico en el cultivo del arroz en Cuba. (Resultados 1970 – 2005.

    Directory of Open Access Journals (Sweden)

    Rafael Meneses

    2007-12-01

    Full Text Available El cultivo del arroz en Cuba está afectado por diversas plagas, fundamentalmente: Tagosodes orizicolus, Lissorhoptrus brevirostris, Oebalus insularis y Spodoptera frugiperda. A partir de 1970 se iniciaron los estudios sobre los principales controles biológicos de estas plagas. Para T. orizicolus se ha determinado que Paranagrus perforator y Tytthus parviceps son los principales enemigos naturales de esta plaga. El porcentaje de huevos de T. orizicolus parasitados por P. perforator ha llegado al 50.7% en la etapa de germinación a ahijamiento activo de la planta de arroz. Además, a esta plaga se le ha detectado control por los parasitoides Elenchus sp. y Gonatopus sp. L. brevirostris ha sido manejado en los arrozales con los hongos Metarhizium anisopliae y Beauveria bassiana, obteniendo muy buenos resultados, tanto en el control como en las afectaciones ocasionadas por este insecto. La aplicación de M. anisopliae cepa Niña Bonita resulta satisfactorio para el control de O. insularis. Se ha determinado diversos depredadores, parasitoides y hongos que en determinadas épocas del año ejercer buen control de S. frugiperda, destacándose dentro de ellos: Coleomegilla cubensis, Chelonus texanus y Telenomus spp. C. texanus ha presentado un nivel de parasitismo superior al 80.0 % y Telenomus sp. de 93 %, en condiciones de producción arrocera. Con la presencia de arañas en los arrozales se logra disminuir considerablemente las poblaciones de insectos plagas.

  5. Evaluación biológica del manejo de picudos y nematodos fitopatógenos en plátano (Musa AAB

    Directory of Open Access Journals (Sweden)

    Aristizábal Loaiza Manuel

    2009-12-01

    Full Text Available El trabajo se desarrolló en la granja Montelindo, municipio de Palestina (Caldas a 5° 05' N y 75° 40' O, a 1010 m.s.n.m., 23.5 °C, precipitación anual de 2100 mm y humedad relativa de 76%, con el fin de generar información sobre el manejo de picudos y nematodos fitoparásitos del plátano. Se usó un diseño en bloques completos al azar con cuatro tratamientos por bloque, tres repeticiones y 24 plantas por repetición. Para el manejo de los picudos se hicieron aplicaciones de Carbofurán, Beauveria bassiana y Metarhizium anisopliae en trampas tipo columna. Para el control de nematodos se hicieron aplicaciones en el suelo de Carbofurán y dos cepas comerciales de Paecilomyces lilacinus. Se evaluaron el número de adultos de picudos en trampas, la infección de estos por los hongos empleados y la población de nematodos en suelo y raíces. Se encontró que las trampas tratadas con Carbofurán fueron significativamente más efectivas para la captura de insectos. En laboratorio se estableció que M. anisopliae tuvo una mejor capacidad para infectar adultos del insecto en el campo. La población de nematodos fue menor en suelo y raíces de las plantas tratadas con Carbofurán. Paecilomyces lilacinus no fue efectivo para reducir las poblaciones de nematodos. Los géneros de nematodos predominantes fueron Radopholus, Pratylenchus, Meloidogyne y Helicotylenchus.

  6. Crescimento, esporulação e viabilidade de fungos entomopatogênicos em meios contendo diferentes concentrações do óleo de nim (Azadirachta indica

    Directory of Open Access Journals (Sweden)

    Marques Renata Paro

    2004-01-01

    Full Text Available A associação de extratos de origem vegetal com fungos entomopatogênicos pode aumentar a eficiência do controle biológico de pragas, reduzir custos e impactos ambientais. No presente trabalho, avaliou-se, através da concentração inibitória mínima, o efeito do óleo de nim (NIM-I-GO sobre o crescimento, esporulação e viabilidade de Metarhizium anisopliae, Beauveria bassiana e Paecilomyces farinosus. Utilizou-se o meio BDA, contendo diferentes concentrações de óleo de nim (C1: 5% de óleo de nim, e sucessivamente concentrações iguais a fraction one-half da concentração anterior, até C11: 0,0048% de óleo de nim. O óleo de nim reduziu o crescimento de colônias de B. bassiana e P. farinosus, que não diferiram significativamente do controle apenas na concentração C11, mas para M. anisopliae o mesmo efeito foi observado com 0,039% de óleo de nim (C8. A esporulação também foi significativamente reduzida pelo óleo de nim, exceto na concentração C11 para B. bassiana; contudo, não se verificou efeito do óleo na viabilidade de esporos dos fungos.

  7. Evaluación biológica del manejo de picudos y nematodos fitopatógenos en plátano (Musa AAB

    Directory of Open Access Journals (Sweden)

    Carolina González Cardona

    2009-10-01

    Full Text Available El trabajo se desarrolló en la granja Montelindo, municipio de Palestina (Caldas a 5° 05' N y 75° 40' O, a 1010 m.s.n.m., 23.5 °C, precipitación anual de 2100 mm y humedad relativa de 76%, con el fin de generar información sobre el manejo de picudos y nematodos fitoparásitos del plátano. Se usó un diseño en bloques completos al azar con cuatro tratamientos por bloque, tres repeticiones y 24 plantas por repetición. Para el manejo de los picudos se hicieron aplicaciones de Carbofurán, Beauveria bassiana y Metarhizium anisopliae en trampas tipo columna. Para el control de nematodos se hicieron aplicaciones en el suelo de Carbofurán y dos cepas comerciales de Paecilomyces lilacinus. Se evaluaron el número de adultos de picudos en trampas, la infección de estos por los hongos empleados y la población de nematodos en suelo y raíces. Se encontró que las trampas tratadas con Carbofurán fueron significativamente más efectivas para la captura de insectos. En laboratorio se estableció que M. anisopliae tuvo una mejor capacidad para infectar adultos del insecto en el campo. La población de nematodos fue menor en suelo y raíces de las plantas tratadas con Carbofurán. Paecilomyces lilacinus no fue efectivo para reducir las poblaciones de nematodos. Los géneros de nematodos predominantes fueron Radopholus, Pratylenchus, Meloidogyne y Helicotylenchus.

  8. EFFECTS OF THE APPLICATION OF A MINERAL-AND-ORGANIC FERTILISER PRODUCED FROM BROWN COAL ON THE OCCURRENCE AND INFECTIOUS POTENTIAL OF ENTOMOPATHOGENIC FUNGI IN SOIL

    Directory of Open Access Journals (Sweden)

    Anna Majchrowska-Safaryan

    2017-05-01

    Full Text Available This study compared the species composition and rate of entomopathogenic fungi occurrence in cultivable soil following the application of a mineral-and-organic fertiliser produced from brown coal. The material for testing consisted of soil samples collected in the second year of the experiment on two dates in 2015 (spring and autumn. The experiment was carried out on the following plots: control plot (no fertilisation; a plot fertilised with mineral fertilisers NPK presowing + N60 for top dressing; a plot fertilised with NPK presowing + manure; a plot fertilised with a fertiliser produced from brown coal at a dose of 1 t/ha NPK presowing + N20 for top dressing; and a plot fertilised with a fertiliser produced from brown coal at a dose of 5 t/ha NPK presowing + N40 for top dressing. Entomopathogenic fungi were isolated from soil of particular fertilisation experiment plots using insect traps (Galleria mellonella larvae as well as a selective medium. Three species of entomopathogenic fungi, i.e. Beauveria bassiana, Metarhizium anisopliae s.l. and Isaria fumosorosea, were isolated using two methods, from the soil samples collected from particular fertilisation experiment plots on two dates, i.e. spring and autumn. Fungus M. anisopliae s.l. proved to be the predominant species in the tested soil samples. The addition of the mineral-and-organic fertiliser, produced based on brown coal, to the soil at both applied doses contributed to an increase in the number of infectious units (CFUs of entomopathogenic fungi formed in relation to the control plot.

  9. Infection of the malaria mosquito, Anopheles gambiae, with two species of entomopathogenic fungi: effects of concentration, co-formulation, exposure time and persistence

    Directory of Open Access Journals (Sweden)

    Lwetoijera Dickson W

    2009-12-01

    Full Text Available Abstract Background Entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana isolates have been shown to infect and reduce the survival of mosquito vectors. Methods Here four different bioassays were conducted to study the effect of conidia concentration, co-formulation, exposure time and persistence of the isolates M. anisopliae ICIPE-30 and B. bassiana I93-925 on infection and survival rates of female Anopheles gambiae sensu stricto. Test concentrations and exposure times ranged between 1 × 107 - 4 × 1010 conidia m-2 and 15 min - 6 h. In co-formulations, 2 × 1010 conidia m-2 of both fungus isolates were mixed at ratios of 4:1, 2:1, 1:1,1:0, 0:1, 1:2 and 1:4. To determine persistence, mosquitoes were exposed to surfaces treated 1, 14 or 28 d previously, with conidia concentrations of 2 × 109, 2 × 1010 or 4 × 1010. Results Mosquito survival varied with conidia concentration; 2 × 1010 conidia m-2 was the concentration above which no further reductions in survival were detectable for both isolates of fungus. The survival of mosquitoes exposed to single and co-formulated treatments was similar and no synergistic or additive effects were observed. Mosquitoes were infected within 30 min and longer exposure times did not result in a more rapid killing effect. Fifteen min exposure still achieved considerable mortality rates (100% mortality by 14 d of mosquitoes, but at lower speed than with 30 min exposure (100% mortality by 9 d. Conidia remained infective up to 28 d post-application but higher concentrations did not increase persistence. Conclusion Both fungus isolates are effective and persistent at low concentrations and short exposure times.

  10. Study of entomophatogenic fungus to control vector insect of citrus tristeza virus on citrus

    Directory of Open Access Journals (Sweden)

    Dwiastuti M.E.

    2017-08-01

    Full Text Available Citrus Tristeza Virus (CTV disease is a silent killer, which threatens to decrease productivity, quality and even death of citrus plants and the erosion of genetic resources. Spreading in the field very quickly by the intermediate insect vector pest, aphid (Toxoptera citricida, T. Aurantii and A. Gosypii. The microbes studied for potential biopesticide candidates are: Beauveria bassiana and Hirsutella citriformis, and Metarhizium anisopliae (Metch Sorokin previously reported to control Diaphorina citri pests resulting effectiveness of > 25% and was able to suppress yield loss up to 10%. The objectives of the study examined the effectiveness of entomopathogen in controlling the pest of CTV vector, Toxoptera citricida, in the laboratory and screen house, to findout the physiological, biochemical and molecular physiology of entomopathogen. The results showed that the best entomopathogen suspension concentration was B.bassiana 106 followed by H. citriformis 106 and M. anisopliae 106. Entomopatogen B. bassiana and H. citriformis effectively controled the CTV vector pest in the laboratory. In the semi-field experiments at the screen house, the most effective result was H.citriformis 106 and the combination of H.citriformis 106 + B.bassiana 106, killing up to 50% and 100% on day 7th H.citriformis had the most physiological character, was able to develop optimally at a temperature of 20-400C and humidity between 60-80%. The biochemical character of the entomopathogenic fungus B.bassiana contained cellulase enzyme and phosphate solvent and IAA hormone, at most compared to the others. H.citriformis had not been found to contain enzymes and hormones. The molecular biochemical characterization of entomopathogenic fungi using FS1 and NS2 primers more clearly distinguished isolates and entomopathogenic species.

  11. Pressão de aplicação com pulverizador de barra e eficiência de bioinseticidas fúngicos comerciais Application pressure in boom sprayer and efficiency of commercial fungal bioinsecticides

    Directory of Open Access Journals (Sweden)

    Cesar de Oliveira Guimarães

    2004-12-01

    Full Text Available Bioinseticidas fúngicos são aplicados com pulverizadores convencionais e algumas características destes equipamentos podem não ser adequadas e afetar a eficiência dos bioinseticidas. O objetivo deste trabalho foi verificar se pressões usuais, em aplicações com o pulverizador de barra, podem afetar a ação inseticida de conídios de Beauveria bassiana e Metarhizium anisopliae, componentes de produtos comerciais brasileiros. Para isso, suspensões aquosas de três bioinseticidas foram submetidas à passagem pelo equipamento em três pressões (20, 40 e 60 lbf pol-2 e avaliadas quanto ao rompimento, à viabilidade e à virulência dos conídios. Avaliou-se a viabilidade em lâminas de microscopia cobertas com meio de cultura, após incubação a 26±0,5ºC e fotoperíodo de 12 horas. A concentração foi determinada por meio de contagens em câmara de Neubauer e a virulência foi avaliada para lagartas de Diatraea saccharalis. Não foram encontradas, nos três produtos, influências significativas em nenhum dos parâmetros. Nas pressões avaliadas, a aplicação com o pulverizador de barra não reduz a viabilidade e nem a virulência dos conídios dos bioinseticidas testados, tampouco provoca destruição dos conídios.Fungal biopesticides are applied with conventional sprayers and this equipment may be inappropriate, and therefore affect field control efficacy of biopesticides. The objective of this research was to find out if the usual pressures used in the boom sprayers can affect the conidia pesticide activity of the Brazilian commercial entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae. Water fungi suspensions were passed through the equipment under three pressures (20, 40 and 60 psi and evaluated for viability, virulence and conidia disruption. The viability was evaluated in slides covered by culture media after incubation at 26±0.5ºC and 12 hours photophase. The concentration was determined through Neubauer

  12. Volatile organic compounds emitted by filamentous fungi isolated from flooded homes after Hurricane Sandy show toxicity in a Drosophila bioassay.

    Science.gov (United States)

    Zhao, G; Yin, G; Inamdar, A A; Luo, J; Zhang, N; Yang, I; Buckley, B; Bennett, J W

    2017-05-01

    Superstorm Sandy provided an opportunity to study filamentous fungi (molds) associated with winter storm damage. We collected 36 morphologically distinct fungal isolates from flooded buildings. By combining traditional morphological and cultural characters with an analysis of ITS sequences (the fungal DNA barcode), we identified 24 fungal species that belong to eight genera: Penicillium (11 species), Fusarium (four species), Aspergillus (three species), Trichoderma (two species), and one species each of Metarhizium, Mucor, Pestalotiopsis, and Umbelopsis. Then, we used a Drosophila larval assay to assess possible toxicity of volatile organic compounds (VOCs) emitted by these molds. When cultured in a shared atmosphere with growing cultures of molds isolated after Hurricane Sandy, larval toxicity ranged from 15 to 80%. VOCs from Aspergillus niger 129B were the most toxic yielding 80% mortality to Drosophila after 12 days. The VOCs from Trichoderma longibrachiatum 117, Mucor racemosus 138a, and Metarhizium anisopliae 124 were relatively non-toxigenic. A preliminary analysis of VOCs was conducted using solid-phase microextraction-gas chromatography-mass spectrometry from two of the most toxic, two of the least toxic, and two species of intermediate toxicity. The more toxic molds produced higher concentrations of 1-octen-3-ol, 3-octanone, 3-octanol, 2-octen-1-ol, and 2-nonanone; while the less toxic molds produced more 3-methyl-1-butanol and 2-methyl-1-propanol, or an overall lower amount of volatiles. Our data support the hypothesis that at certain concentrations, some VOCs emitted by indoor molds are toxigenic. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Screening of Fungi for Biological Control of a Triatomine Vector of Chagas Disease: Temperature and Trypanosome Infection as Factors.

    Directory of Open Access Journals (Sweden)

    Aline R M Garcia

    2016-11-01

    Full Text Available Entomopathogenic fungi have been investigated as an alternative tool for controlling various insects, including triatomine vectors of the protozoan Trypanosoma cruzi, the etiological agent of Chagas disease. Here we tested the pathogenicity and virulence of ten isolates of the fungi Metarhizium spp. and Beauveria bassiana against Rhodnius prolixus and found all of the isolates to be virulent. We used two isolates (URPE-11 Metarhizium anisopliae and ENT-1 Beauveria bassiana for further screening based on their prolific sporulation in vitro (an important property of fungal biopesticides. We characterized their virulences in a dose-response experiment and then examined virulence across a range of temperatures (21, 23, 27 and 30°C. We found isolate ENT-1 to maintain higher levels of virulence over these temperatures than URPE-11. We therefore used B. bassiana ENT-1 in the final experiment in which we examined the survival of insects parasitized with T. cruzi and then infected with this fungus (once again over a range of temperatures. Contrary to our expectations, the survival of insects challenged with the pathogenic fungus was greater when they had previously been infected with the parasite T. cruzi than when they had not (independent of temperature. We discuss these results in terms of aspects of the biologies of the three organisms. In practical terms, we concluded that, while we have fungal isolates of potential interest for development as biopesticides against R. prolixus, we have identified what could be a critical problem for this biological tool: the parasite T. cruzi appears to confer a measure of resistance to the insect against the potential biopesticide agent so use of this fungus as a biopesticide could lead to selection for vector competence.

  14. Entomopathogens Isolated from Invasive Ants and Tests of Their Pathogenicity

    Directory of Open Access Journals (Sweden)

    Maria Fernanda Miori de Zarzuela

    2012-01-01

    Full Text Available Some ant species cause severe ecological and health impact in urban areas. Many attempts have been tested to control such species, although they do not always succeed. Biological control is an alternative to chemical control and has gained great prominence in research, and fungi and nematodes are among the successful organisms controlling insects. This study aimed to clarify some questions regarding the biological control of ants. Invasive ant species in Brazil had their nests evaluated for the presence of entomopathogens. Isolated entomopathogens were later applied in colonies of Monomorium floricola under laboratory conditions to evaluate their effectiveness and the behavior of the ant colonies after treatment. The entomopathogenic nematodes Heterorhabditis sp. and Steinernema sp. and the fungi Beauveria bassiana, Metarhizium anisopliae, and Paecilomyces sp. were isolated from the invasive ant nests. M. floricola colonies treated with Steinernema sp. and Heterorhabditis sp. showed a higher mortality of workers than control. The fungus Beauveria bassiana caused higher mortality of M. floricola workers. However, no colony reduction or elimination was observed in any treatment. The defensive behaviors of ants, such as grooming behavior and colony budding, must be considered when using fungi and nematodes for biological control of ants.

  15. Microbial control of phytophagous invertebrate pests in South Africa: Current status and future prospects.

    Science.gov (United States)

    Hatting, Justin L; Moore, Sean D; Malan, Antoinette P

    2018-02-07

    Invertebrate pests pose a significant threat to food security on the African continent. In response, South Africa has become one of the largest importers of chemical pesticides in sub-Saharan Africa, with several hundred active ingredients registered. To address the over-reliance on such chemicals, the South African Department of Agriculture, Forestry and Fisheries (DAFF) has eliminated or restricted several pesticides since the late 1970s. The recent launch of the South African National Bio-Economy Strategy and establishment of the South African Bioproducts Organisation (SABO), together with new guidelines for registration of biopesticides in 2015, also support this endeavour. Concurrently, entomopathogen-related research and bioproduct development has increased over the past decade. Currently, 31 products (seven manufactured locally) are registered under the Fertilizers, Farm Feeds, Agricultural Remedies and Stock Remedies Act 36 of 1947. Commercially important microbes include Beauveria bassiana (Cordycipitaceae), Metarhizium anisopliae (Clavicipitaceae), Cydia pomonella granulovirus, Cryptophlebia leucotreta granulovirus, Helicoverpa armigera nucleopolyhedrovirus (Baculoviridae) and Bacillus thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai (Bacillaceae). Both parasitic and entomopathogenic nematodes (EPNs) show potential for development as bioinsecticides with one commercial EPN product, based on Heterorhabditis bacteriophora (Heterorhabditidae), registered under the Act. Rapid scientific progression, supported by a favourable legislative environment, should facilitate further advances in microbial control of phytophagous invertebrate pests in South Africa. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Effectiveness of Selected Entomopathogenic Fungi in Packed Rice Grain at Room Temperature Against Corcyra Cephalonica Stainton

    Directory of Open Access Journals (Sweden)

    Hendrawan Samodra

    2017-11-01

    Full Text Available Eight isolates of entomopathogenic fungi were evaluated as dried conidia against the rice moth,  Corcyra cephalonica. In bioassays two isolates of Beauveria bassiana (BbGc and BbPs and one isolate of Metarhizium anisopliae (MaPs consistently gave high mortality to C. cephalonica larvae. Formulations in either kaolin, talc or tapioca flour (20 % w/w a.i. thoroughly mixed with long grain rice in plastic cups (8 cm diameter by 5 cm gave complete larval mortality by the 12th day of treatment. However, in general those formulated in kaolin and talc were more efficacious and faster to kill compared to those formulated in tapioca flour or the unformulated control. Even at the lowest rate of 0.05 g BbGc in kaolin provided 100% mortality 7 days after introduction compared with other dust formulations. Isolate BbGc in kaolin and talc administered at 0.4 g a.i. in 200 g rice packed in plastic kept at room temperature provided protection against the rice moth up to 4 months of storage. Larval mortality in excess of 90% was obtained 15 days after introduction. Formulations of MaPs was effective only within the first month of storage beyond which infectivity rapidly declined.

  17. New insights into the amphibious life of Biomphalaria glabrata and susceptibility of its egg masses to fungal infection.

    Science.gov (United States)

    Duarte, Glennyha F; Rodrigues, Juscelino; Fernandes, Éverton K K; Humber, Richard A; Luz, Christian

    2015-02-01

    The air-breathing snail Biomphalaria glabrata proliferates in stagnant freshwater, and nothing is known about the survival of eggs in intermittently (rather than perpetually) wet habitats. In the present study their egg masses matured, and juveniles subsequently eclosed and were mobile in a stable water film of transitory habitats simulated by two different simple test devices described here. The viability of eggs maintained in an unstable film however, was diminished. The maturation of egg masses in a water film or in water was significantly prevented by the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae. The efficiency depended on the fungal propagule and test environment. Hyphal bodies were more effective against egg masses than conidia. This appears to be a first report of activity of either entomopathogen against a mollusc. Both devices offer accurate and reproducible conditions to test both biological questions and the effects of substances or pathogens against B. glabrata egg masses in water films. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Biological control of ticks

    Science.gov (United States)

    Samish, M.; Ginsberg, H.; Glazer, I.; Bowman, A.S.; Nuttall, P.

    2004-01-01

    Ticks have numerous natural enemies, but only a few species have been evaluated as tick biocontrol agents (BCAs). Some laboratory results suggest that several bacteria are pathogenic to ticks, but their mode of action and their potential value as biocontrol agents remain to be determined. The most promising entomopathogenic fungi appear to be Metarhizium anisopliae and Beauveria bassiana, strains of which are already commercially available for the control of some pests. Development of effective formulations is critical for tick management. Entomopathogenic nematodes that are pathogenic to ticks can potentially control ticks, but improved formulations and selection of novel nematode strains are needed. Parasitoid wasps of the genus Ixodiphagus do not typically control ticks under natural conditions, but inundative releases show potential value. Most predators of ticks are generalists, with a limited potential for tick management (one possible exception is oxpeckers in Africa). Biological control is likely to play a substantial role in future IPM programmes for ticks because of the diversity of taxa that show high potential as tick BCAs. Considerable research is required to select appropriate strains, develop them as BCAs, establish their effectiveness, and devise production strategies to bring them to practical use.

  19. ACTIVITY OF SOME BRAZILIAN ISOLATES OF ENTOMOPATHOGENIC FUNGI AGAINST THE POULTRY RED MITE DERMANYSSUS GALLINAE DE GEER (ACARI: DERMANYSSIDAE

    Directory of Open Access Journals (Sweden)

    CR Kasburg

    Full Text Available ABSTRACT Poultry red mite Dermanyssus gallinae is a cosmopolitan and hematophagous species commonly found in layer houses around the world. Poultry mite infestations may cause anemia, stress, low body weight and egg production, and mortality. Mite control is typically based on chemical products, but they are not effective and leave residues in eggs; therefore, alternative control methods, such as entomopathogenic fungi, need to researched. This study aimed at evaluating, in the laboratory, the activity of Brazilian isolates of entomopathogenic fungi against D. gallinae. The mites were collected from a commercial layer house and were sprayed with conidial suspensions (1 × 108 conidia/mL of five isolates of Beauveria bassiana and Metarhizium anisopliae. All tested isolates were pathogenic for the red mite, with confirmed mortality ranging from 22.9 to 52.4%. This demonstrate the potential of the tested entomopathogenic fungi isolates for mite control, and reinforces the need for further studies with other isolates, application strategies, and with fungal formulations.

  20. Pathogenicity evaluation of native isolates of entomopathogenic fungí against andean weevil, Premnotrypes vorax (Hustache

    Directory of Open Access Journals (Sweden)

    Giselle Rivera

    2001-07-01

    Full Text Available The main goal of this study was pathogenicity evaluation of Beauveria bassiana and Metarhizium anisopliae native isolates, obtained from natural habitats and stocked potato, against potato andean weevil, Premnotrypes vorax (Hustache (COLEOPTERA: Curculionidae, and important potato insect pest in Colombia and other Andean countries. Patogenicity was determined by laboratory bioassays, using either reared insects or field captured insects. Insect rearing data are presented. Pathogenicity evaluation was express as mortality against time, estimating LT50 and LT90 for all the fungal isolates, and mortality against spore concentration, estimating CL50 for two selected isolates. In all cases, total mortality percentils were above 45%. Differences between reared and field captured insects were evident. According to obtained data one of the fungal isolates: B. bassiana 9770, obtained from R vorax larva (TL50: 4.7 days - 9.8 days; TL90: 14.1 days - 20.8 days; CL50:7.03 x 104spores/ml appears as a promisory fungal isolate for further studies. Out of this study, differences in the andean weevil, P. vorax, adult mortality, with regard to entomopathogenic fungal isolate and insect origin were manifest.

  1. Potential for entomopathogenic fungi to control Triatoma dimidiata (Hemiptera: Reduviidae, a vector of Chagas disease in Mexico

    Directory of Open Access Journals (Sweden)

    María Guadalupe Vázquez-Martínez

    2014-12-01

    Full Text Available Introduction The use of entomopathogenic fungi to control disease vectors has become relevant because traditional chemical control methods have caused damage to the environment and led to the development of resistance among vectors. Thus, this study assessed the pathogenicity of entomopathogenic fungi in Triatoma dimidiata. Methods Preparations of 108 conidia/ml of Gliocladium virens, Talaromyces flavus, Beauveria bassiana and Metarhizium anisopliae were applied topically on T. dimidiata nymphs and adults. Controls were treated with the 0.0001% Tween-80 vehicle. Mortality was evaluated and recorded daily for 30 days. The concentration required to kill 50% of T. dimidiata (LC50 was then calculated for the most pathogenic isolate. Results Pathogenicity in adults was similar among B. bassiana, G. virens and T. flavus (p>0.05 and differed from that in triatomine nymphs (p=0.009. The most entomopathogenic strains in adult triatomines were B. bassiana and G. virens, which both caused 100% mortality. In nymphs, the most entomopathogenic strain was B. bassiana, followed by G. virens. The native strain with the highest pathogenicity was G. virens, for which the LC50 for T. dimidiata nymphs was 1.98 x108 conidia/ml at 13 days after inoculation. Conclusions Beauveria bassiana and G. virens showed entomopathogenic potential in T. dimidiata nymphs and adults. However, the native G. virens strain presents a higher probability of success in the field, and G. virens should thus be considered a potential candidate for the biological control of triatomine Chagas disease vectors.

  2. Fungal Endophytes: Beyond Herbivore Management

    Directory of Open Access Journals (Sweden)

    Bamisope S. Bamisile

    2018-03-01

    Full Text Available The incorporation of entomopathogenic fungi as biocontrol agents into Integrated Pest Management (IPM programs without doubt, has been highly effective. The ability of these fungal pathogens such as Beauveria bassiana and Metarhizium anisopliae to exist as endophytes in plants and protect their colonized host plants against the primary herbivore pests has widely been reported. Aside this sole role of pest management that has been traditionally ascribed to fungal endophytes, recent findings provided evidence of other possible functions as plant yield promoter, soil nutrient distributor, abiotic stress and drought tolerance enhancer in plants. However, reports on these additional important effects of fungal endophytes on the colonized plants remain scanty. In this review, we discussed the various beneficial effects of endophytic fungi on the host plants and their primary herbivore pests; as well as some negative effects that are relatively unknown. We also highlighted the prospects of our findings in further increasing the acceptance of fungal endophytes as an integral part of pest management programs for optimized crop production.

  3. [Species diversity and temporal niche of entomopathogenic fungi in the extensively managed tea plantation soil].

    Science.gov (United States)

    Guo, Xian-Jian; Shen, Wan-Fang; Liu, Yu-Jun; Chen, Ming-Jun

    2014-11-01

    The species diversity and temporal niche of entomopathogenic fungi community in the rhizosphere soil collected from the extensively managed Huangshan fuzz tip tea plantation were investigated. A total of 140 soil samples were collected at the location of Tangkou Town, Huangshan of Anhui Province during August, 2012 to June, 2013, and totally 1041 fungal isolates were obtained on selective medium with soil dilution plating. The results showed that the entomopathogenic fungi community in the tea plantation soil was diverse with 13 species in 6 genera. Purpureocillium lilacinum (309 strains), Beauveria bassiana (255 strains), and Metarhizium anisopliae (101 strains) were the dominant species accounting for 29.7%, 24.5% and 9.7% of the relative frequency, respectively. P. lilacinum had the widest temporal niche breadth among these dominant entomopathogenic fungi from the tea plantation soil, while B. bassiana had the narrowest. Among the entomopathogenic fungi, B. bassiana and B. brongniartii had the biggest temporal niche overlap of 1.965, while Isaria javanicus and B. bassiana had the smallest of 0.374.

  4. SELECCIÓN DE AISLADOS DE HONGOS ENTOMOPATÓGENOS PARA EL CONTROL DE Rhipicephalus microplus (Acari: Ixodidae

    Directory of Open Access Journals (Sweden)

    Ana Martha Cruz-Avalos

    2015-08-01

    Full Text Available El objetivo del presente estudio fue evaluar la susceptibilidad in vitro de larvas no alimentadas de Rhipicephalus microplus a diferentes aislados de hongos entomopatógenos nativos de suelo de unidades ganaderas y conocer las características de crecimiento y potencial de inóculo de los aislados que mostraran ser más patógenos. Se evaluó la patogenicidad y virulencia de aislados de Metarhizium anisopliae sensu lato (Ma, Beauveria bassiana (Bb e, Isaria fumorosea (Ifr, en larvas de R. microplus de 7 días de edad, expuestas mediante inmersión en una solución acuosa a la concentración 1x108 conidios/ml. Los aislados Ma135 y Ma133, presentaron alta patogenicidad con 100 y 94% de mortalidad, con valores CL50 de 5.2x104 y 2.5x104 conidios/ml, respectivamente. En estos aislados, la producción de esporas fue de 1.0x10¹º conidios/ml, y el crecimiento radial de micelio fue de 3.07 y 3.60 mm/día, respectivamente. Estos resultados demuestran que los aislados Ma135 y Ma133, pueden ser considerados potenciales agentes de control biológico en larvas de R. microplus. Â

  5. Identification of immunity-related genes in Plutella xylostella in response to fungal peptide destruxin A: RNA-Seq and DGE analysis.

    Science.gov (United States)

    Shakeel, Muhammad; Xu, Xiaoxia; Xu, Jin; Zhu, Xun; Li, Shuzhong; Zhou, Xianqiang; Yu, Jialin; Xu, Xiaojing; Hu, Qiongbo; Yu, Xiaoqiang; Jin, Fengliang

    2017-09-08

    Plutella xylostella has become the major lepidopteran pest of Brassica owing to its strong ability of resistance development to a wide range of insecticides. Destruxin A, a mycotoxin of entomopathogenic fungus, Metarhizium anisopliae, has broad-spectrum insecticidal effects. However, the interaction mechanism of destruxin A with the immune system of P. xylostella at genomic level is still not well understood. Here, we identified 129 immunity-related genes, including pattern recognition receptors, signal modulators, few members of main immune pathways (Toll, Imd, and JAK/STAT), and immune effectors in P. xylostella in response to destruxin A at three different time courses (2 h, 4 h, and 6 h). It is worthy to mention that the immunity-related differentially expressed genes (DEGs) analysis exhibited 30, 78, and 72 up-regulated and 17, 13, and 6 down-regulated genes in P. xylostella after destruxin A injection at 2 h, 4 h, and 6 h, respectively, compared to control. Interestingly, our results revealed that the expression of antimicrobial peptides that play a vital role in insect immune system was up-regulated after the injection of destruxin A. Our findings provide a detailed information on immunity-related DEGs and reveal the potential of P. xylostella to limit the infection of fungal peptide destruxin A by increasing the activity of antimicrobial peptides.

  6. Mechanisms relevant to the enhanced virulence of a dihydroxynaphthalene-melanin metabolically engineered entomopathogen.

    Directory of Open Access Journals (Sweden)

    Min-Nan Tseng

    Full Text Available The entomopathogenic fungus Metarhizium anisopliae MA05-169 is a transformant strain that has been metabolically engineered to express dihydroxynaphthalene-melanin biosynthesis genes. In contrast to the wild type strain, the transformant displays a greater resistance to environmental stress and a higher virulence toward target insect host. However, the underlying mechanisms for these characteristics remain unclear; hence experiments were initiated to explore the possible mechanism(s through physiological and molecular approaches. Although both transformant and wild type strains could infect and share the same insect host range, the former germinated faster and produced more appressoria than the latter, both in vivo and in vitro. The transformant showed a significantly shorter median lethal time (LT50 when infecting the diamondback moth (Plutella xylostella and the striped flea beetle (Phyllotreta striolata, than the wild type. Additionally, the transformant was more tolerant to reactive oxygen species (ROS, produced 40-fold more orthosporin and notably overexpressed the transcripts of the pathogenicity-relevant hydrolytic enzymes (chitinase, protease, and phospholipase genes in vivo. In contrast, appressorium turgor pressure and destruxin A content were slightly decreased compared to the wild type. The transformant's high anti-stress tolerance, its high virulence against five important insect pests (cowpea aphid Aphis craccivora, diamondback moth Pl. xylostella, striped flea beetle Ph. striolata, and silverleaf whitefly Bemisia argentifolii and its capacity to colonize the root system are key properties for its potential bio-control field application.

  7. Compatibility and survivorship of four beneficial microorganism used in boils in agriculture

    Directory of Open Access Journals (Sweden)

    Villacís-Aldaz Luis

    2016-05-01

    Full Text Available Compatibility and survival of a mixture of beneficial microorganisms in a biol used in agriculture were evaluated in order to generate new sustainable production technologies. The study was carried out in an agro ecological farm of the Provincial Government of Tungurahua. Survival and compatibility of Trichoderma harzianum, Metarhizium anisopliae, Beauveria bassiana and Paecilomyces lilacinus in a homemade boil were evaluated. Treatments consisted in adding 0 mL (T0, 50 mL (T1, 100 mL (T2 or 150 mL (T3 of a microorganism combination in 20 L biol. At day 30, higher population of Metarrhizium, Trichoderma and Beauveria was observed in T3 (9.1x105 UPC/mL biol at pH 3.80. At day 60, higher population was verified in T2 (2,1x106 UPC/mL at pH 4.95. Genera Paecilomyces and Beauveria were not observed growing together, suggesting a possible incompatibility between them.

  8. Original Article. An evaluation of some eco-friendly biopesticides against Bemisia tabaci on two greenhouse tomato varieties in Egypt

    Directory of Open Access Journals (Sweden)

    Abdel-Razek Atef S.

    2016-08-01

    Full Text Available This study has two main approaches. First, it exploits the susceptibility of tomato cultivars as a prophylactic measure to detect auto resistance characters of the tested tomato varieties against Bemisia tabaci (Gennadius (Homoptera: Aleyrodidae. Secondly, it evaluates the efficacy of different bio-rational insecticides against B. tabaci under greenhouse conditions. The results exhibited a special significance in B. tabaci infestation suitability between the two tomato varieties with a high infestation significance found in the Shifa F1 hybrid tomato variety compared to the Savera F1 hybrid tomato variety in the first plantation period. Subsequently, in the second plantation period, there was a significant difference between the two tomato varieties. Bemisia tabaci showed a preference for the Shifa F1 hybrid over the Savera F1 hybrid tomato variety. These differences occurred during the 1st, 2nd, 4th, 6th, 7th, 8th, and 10th weeks. In the experimental trial for the efficacy of eco-friendly biorational insecticides, spinosad, azadirachtin, Beauveria bassiana and Metarhizium anisopliae, there were significant differences between the treated and untreated plants during the two plantation periods. A high efficacy of spinosad on the B. tabaci population was found. Bemisia tabaci infestation under all the applications was reduced from 50 to 94.61% for the two plantation periods. This obvious decrease in B. tabaci population increase attention to benefits of the different bio-rational insecticides.

  9. Further Screening of Entomopathogenic Fungi and Nematodes as Control Agents for Drosophila suzukii

    Directory of Open Access Journals (Sweden)

    Andrew G. S. Cuthbertson

    2016-06-01

    Full Text Available Drosophila suzukii populations remain low in the UK. To date, there have been no reports of widespread damage. Previous research demonstrated that various species of entomopathogenic fungi and nematodes could potentially suppress D. suzukii population development under laboratory trials. However, none of the given species was concluded to be specifically efficient in suppressing D. suzukii. Therefore, there is a need to screen further species to determine their efficacy. The following entomopathogenic agents were evaluated for their potential to act as control agents for D. suzukii: Metarhizium anisopliae; Isaria fumosorosea; a non-commercial coded fungal product (Coded B; Steinernema feltiae, S. carpocapsae, S. kraussei and Heterorhabditis bacteriophora. The fungi were screened for efficacy against the fly on fruit while the nematodes were evaluated for the potential to be applied as soil drenches targeting larvae and pupal life-stages. All three fungi species screened reduced D. suzukii populations developing from infested berries. Isaria fumosorosea significantly (p < 0.001 reduced population development of D. suzukii from infested berries. All nematodes significantly reduced adult emergence from pupal cases compared to the water control. Larvae proved more susceptible to nematode infection. Heterorhabditis bacteriophora proved the best from the four nematodes investigated; readily emerging from punctured larvae and causing 95% mortality. The potential of the entomopathogens to suppress D. suzukii populations is discussed.

  10. Further Screening of Entomopathogenic Fungi and Nematodes as Control Agents for Drosophila suzukii.

    Science.gov (United States)

    Cuthbertson, Andrew G S; Audsley, Neil

    2016-06-09

    Drosophila suzukii populations remain low in the UK. To date, there have been no reports of widespread damage. Previous research demonstrated that various species of entomopathogenic fungi and nematodes could potentially suppress D. suzukii population development under laboratory trials. However, none of the given species was concluded to be specifically efficient in suppressing D. suzukii. Therefore, there is a need to screen further species to determine their efficacy. The following entomopathogenic agents were evaluated for their potential to act as control agents for D. suzukii: Metarhizium anisopliae; Isaria fumosorosea; a non-commercial coded fungal product (Coded B); Steinernema feltiae, S. carpocapsae, S. kraussei and Heterorhabditis bacteriophora. The fungi were screened for efficacy against the fly on fruit while the nematodes were evaluated for the potential to be applied as soil drenches targeting larvae and pupal life-stages. All three fungi species screened reduced D. suzukii populations developing from infested berries. Isaria fumosorosea significantly (p nematodes significantly reduced adult emergence from pupal cases compared to the water control. Larvae proved more susceptible to nematode infection. Heterorhabditis bacteriophora proved the best from the four nematodes investigated; readily emerging from punctured larvae and causing 95% mortality. The potential of the entomopathogens to suppress D. suzukii populations is discussed.

  11. Occurrence of pathogenic fungi to Amblyomma cajennense in a rural area of Central Brazil and their activities against vectors of Rocky Mountain spotted fever.

    Science.gov (United States)

    D'Alessandro, Walmirton B; Humber, Richard A; Luz, Christian

    2012-08-13

    Two isolates of Beauveria bassiana and one of Purpureocillium lilacinum (=Paecilomyces lilacinus) were found infecting Amblyomma cajennense engorged females collected on horses (0.15% infection rate from a total of 1982 specimens) and another two isolates of P. lilacinum and one Metarhizium anisopliae detected in soils (2.1% from 144 samples) collected in typical pasture habitats of this tick in Central Brazil from October 2009 to March 2011. Fungi were isolated from soils with Rhipicephalus sanguineus as surrogate baits. No fungi were found in ticks or soils during the driest months (May to August). Testing pathogenicity of fungi all R. sanguineus females were killed regardless of the isolate and fungi sporulated abundantly on the cadavers. A. cajennense was less susceptible to infection with P. lilacinum within 20 days than R. sanguineus. All three fungal species probably act as natural antagonists of A. cajennense particularly in the rainy season and have interest for integrate control of vectors of Rocky Mountain spotted fever. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. The expression and impact of antifungal grooming in ants.

    Science.gov (United States)

    Reber, A; Purcell, J; Buechel, S D; Buri, P; Chapuisat, M

    2011-05-01

    Parasites can cause extensive damage to animal societies in which many related individuals frequently interact. In response, social animals have evolved diverse individual and collective defences. Here, we measured the expression and efficiency of self-grooming and allo-grooming when workers of the ant Formica selysi were contaminated with spores of the fungal entomopathogen Metarhizium anisopliae. The amount of self-grooming increased in the presence of fungal spores, which shows that the ants are able to detect the risk of infection. In contrast, the amount of allo-grooming did not depend on fungal contamination. Workers groomed all nestmate workers that were re-introduced into their groups. The amount of allo-grooming towards noncontaminated individuals was higher when the group had been previously exposed to the pathogen. Allo-grooming decreased the number of fungal spores on the surface of contaminated workers, but did not prevent infection in the conditions tested (high dose of spores and late allo-grooming). The rate of disease transmission to groomers and other nestmates was extremely low. The systematic allo-grooming of all individuals returning to the colony, be they contaminated or not, is probably a simple but robust prophylactic defence preventing the spread of fungal diseases in insect societies. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  13. Inducible immune proteins in the dampwood termite Zootermopsis angusticollis

    Science.gov (United States)

    Rosengaus, Rebeca B.; Cornelisse, Tara; Guschanski, Katerina; Traniello, James F. A.

    2007-01-01

    Dampwood termites, Zootermopsis angusticollis (Isoptera: Termopsidae), mount an immune response to resist microbial infection. Here we report on results of a novel analysis that allowed us to electrophoretically assess changes in hemolymph proteins in the same individual before and after exposure to a pathogen. We demonstrate that contact with a sublethal concentration of the entomopathogenic fungus Metarhizium anisopliae (Deuteromycotina:Hypomycetes) induces the production of protective proteins in nymphs, pseudergates (false workers), and soldiers. Termites exposed to an immunizing dosage of fungal conidia consistently showed an enhancement of constitutive proteins (62-85 kDa) in the hemolymph as well as an induction of novel proteins (28-48 kDa) relative to preimmunization levels. No significant differences in protein banding patterns relative to baseline levels in control and naïve termites were observed. Incubating excised and eluted induced proteins produced by immunized pseudergates or immunized soldiers with conidia significantly reduced the germination of the fungus. The fungistatic effect of eluted proteins differed significantly among five colonies examined. Our results show that the upregulation of protective proteins in the hemolymph underscores the in vivo immune response we previously recorded in Z. angusticollis.

  14. Nest sanitation through defecation: antifungal properties of wood cockroach feces

    Science.gov (United States)

    Rosengaus, Rebeca B.; Mead, Kerry; Du Comb, William S.; Benson, Ryan W.; Godoy, Veronica G.

    2013-11-01

    The wood cockroach Cryptocercus punctulatus nests as family units inside decayed wood, a substrate known for its high microbial load. We tested the hypothesis that defecation within their nests, a common occurrence in this species, reduces the probability of fungal development. Conidia of the entomopathogenic fungus, Metarhizium anisopliae, were incubated with crushed feces and subsequently plated on potato dextrose agar. Relative to controls, the viability of fungal conidia was significantly reduced following incubation with feces and was negatively correlated with incubation time. Although the cockroach's hindgut contained abundant β-1,3-glucanase activity, its feces had no detectable enzymatic function. Hence, these enzymes are unlikely the source of the fungistasis. Instead, the antifungal compound(s) of the feces involved heat-sensitive factor(s) of potential microbial origin. When feces were boiled or when they were subjected to ultraviolet radiation and subsequently incubated with conidia, viability was "rescued" and germination rates were similar to those of controls. Filtration experiments indicate that the fungistatic activity of feces results from chemical interference. Because Cryptocercidae cockroaches have been considered appropriate models to make inferences about the factors fostering the evolution of termite sociality, we suggest that nesting in microbe-rich environments likely selected for the coupling of intranest defecation and feces fungistasis in the common ancestor of wood cockroaches and termites. This might in turn have served as a preadaptation that prevented mycosis as these phylogenetically related taxa diverged and evolved respectively into subsocial and eusocial organizations.

  15. Disease and colony foundation in the dampwood termite Zootermopsis angusticollis: The survival advantage of nestmate pairs

    Science.gov (United States)

    Calleri, Daniel V.; Rosengaus, Rebeca B.; Traniello, James F. A.

    2005-06-01

    To determine the impact of inbreeding and outbreeding on disease resistance and survival during colony foundation, nestmate (NM) and non-nestmate (NON) primary reproductives of the dampwood termite Zootermopsis angusticollis were exposed to a single or double dose of conidia of the entomopathogenic fungus Metarhizium anisopliae. Male and female primary reproductive pairs originating from the same parent colony had higher survivorship than NON pairs in control and conidia-exposure treatments. The survival advantage of NM primary reproductives increased with the intensity of pathogen challenge and was significantly greater in the single- and double-dose treatments than in the controls. Although NM pairs had significantly lower mortality than NON pairs, the survivorship of colonies stabilized as they matured and inbred and outbred colonies did not differ in offspring production. These results demonstrate that colony foundation by NON male and female reproductives may have a disease-related survival cost during this critical phase of their life cycle. There may also be a cost associated with lower offspring heterozygosity, but in the first generation this does not appear to significantly impact colony growth.

  16. Entomopathogenic Fungi as Dual Control Agents against Both the Pest Myzus persicae and Phytopathogen Botrytis cinerea.

    Science.gov (United States)

    Yun, Hwi-Geon; Kim, Dong-Jun; Gwak, Won-Seok; Shin, Tae-Young; Woo, Soo-Dong

    2017-09-01

    The green peach aphid ( Myzus persicae ), a plant pest, and gray mold disease, caused by Botrytis cinerea , affect vegetables and fruit crops all over the world. To control this aphid and mold, farmers typically rely on the use of chemical insecticides or fungicides. However, intensive use of these chemicals over many years has led to the development of resistance. To overcome this problem, there is a need to develop alternative control methods to suppress populations of this plant pest and pathogen. Recently, potential roles have been demonstrated for entomopathogenic fungi in endophytism, phytopathogen antagonism, plant growth promotion, and rhizosphere colonization. Here, the antifungal activities of selected fungi with high virulence against green peach aphids were tested to explore their potential for the dual control of B. cinerea and M. persicae . Antifungal activities against B. cinerea were evaluated by dual culture assays using both aerial conidia and cultural filtrates of entomopathogenic fungi. Two fungal isolates, Beauveria bassiana SD15 and Metarhizium anisopliae SD3, were identified as having both virulence against aphids and antifungal activity. The virulence of these isolates against aphids was further tested using cultural filtrates, blastospores, and aerial conidia. The most virulence was observed in the simultaneous treatment with blastospores and cultural filtrate. These results suggest that the two fungal isolates selected in this study could be used effectively for the dual control of green peach aphids and gray mold for crop protection.

  17. Acorn consumption improves the immune response of the dung beetle Thorectes lusitanicus.

    Directory of Open Access Journals (Sweden)

    José R Verdú

    Full Text Available Thorectes lusitanicus, a typically coprophagous species is also actively attracted to oak acorns, consuming, burying them, and conferring ecophysiological and reproductive advantages to both the beetle and the tree. In this study, we explored the possible relation between diet shift and the health status of T. lusitanicus using a generalist entomopathogenic fungus (Metarhizium anisopliae as a natural pathogen. To measure the health condition and immune response of beetles, we analysed the protein content in the haemolymph, prophenoloxidase (proPO content, phenoloxidase (PO activity and mortality of beetles with diets based on either acorns or cow dung. Protein content, proPO levels and PO levels in the haemolymph of T. lusitanicus were found to be dependent on the type of diet. Furthermore, the beetles fed with acorns developed a more effective proPO-PO system than the beetles fed with cow dung. Furthermore, a significant decrease in mortality was observed when infected individuals were submitted to an acorn-based diet. In addition to enhancing an understanding of the relevance of dietary change to the evolutionary biology of dung beetles, these results provide a more general understanding of the ecophysiological implications of differential dietary selection in the context of fitness.

  18. Fungal dimorphism in the entomopathogenic fungus Metarhizium rileyi: detection of an in vivo quorum-sensing system

    Science.gov (United States)

    This investigation documents the expression of the in vivo dimorphic program exhibited by insect mycopathogen M. rileyi replicating. This insect mycopathogen represents the key mortality factor regulating various caterpillar populations in various legumes, including subtropical and tropical soybeans...

  19. Hydrophobin genes of the entomopathogenic fungus, Metarhizium brunneum, are differentially expressed and corresponding mutants are decreased in virulence

    Science.gov (United States)

    Hydrophobins are small, cysteine-rich, secreted proteins, ubiquitously produced by filamentous fungi that are speculated to function in fungal growth, cell surface properties, and development, although this has been rigorously tested for only a few species. Herein, we report identification of three ...

  20. Sensibilidade de fungos entomopatogênicos a agroquímicos usados no manejo da cana-de-açúcar

    Directory of Open Access Journals (Sweden)

    Aline Aparecida Alves Botelho

    2011-01-01

    Full Text Available Os agroquímicos empregados no manejo da cana-de-açúcar podem afetar a ação de fungos entomopatogênicos usados no controle biológico de pragas da cultura. Este trabalho teve por objetivo investigar se os inseticidas, herbicidas e maturadores utilizados no manejo da cana-de-açúcar têm efeito tóxico sobre os fungos Beauveria bassiana e Metarhizium anisopliae. Foram utilizados os inseticidas thiametoxan, aldicarbe e fipronil, os herbicidas imazapir, diuron, metribuzin, hexazinone+diuron, clomazone+ametrina, 2,4 diclorofenoxiacético e glifosato, e os maturadores etil-trinexapac, sulfometurom-metílico e glifosato também. Os fungos foram cultivados em meio de cultura batata-dextrose-ágar contendo os agroquímicos. Avaliou-se o crescimento micelial, a produção e viabilidade dos conídios, e fez-se a avaliação da toxicidade dos agroquímicos. O inseticida à base de thiametoxan foi considerado compatível, pois não afetou o crescimento micelial, a produção e a viabilidade dos conídios dos dois fungos. O inseticida formulado com fipronil se mostrou parcialmente tóxico para os fungos, sendo considerado moderadamente compatível, enquanto o aldicarbe foi considerado tóxico. Os herbicidas avaliados afetaram o crescimento micelial, a produção e a viabilidade dos conídios dos entomopatógenos e foram classificados como tóxicos, mas aqueles formulados com imazapir, glifosato e metribuzim foram considerados compatíveis. Entre os agroquímicos usados como maturadores apenas o glifosato foi classificado como compatível. Os agroquímicos usados no manejo da cana-de-açúcar, e que foram testados neste estudo, têm majoritariamente efeito tóxico sobre B. bassiana e M. anisopliae podendo comprometer sua ação como bioagentes de controle de pragas da cultura.

  1. Control de Dysmicoccus brevipes (Hemiptera: Pseudococcidae, en el fruto de piña, San Carlos, Costa Rica

    Directory of Open Access Journals (Sweden)

    Alexandra Miranda Vindas

    2013-01-01

    Full Text Available Se evaluaron 6 productos para el control de Dysmicoccus brevipes en piña (Ananas comosus. El ensayo de laboratorio se realizó en el Laboratorio de Biocontroladores de la empresa BioEco Natural S.A., ubicada en Aguas Zarcas, San Carlos, mientras que los ensayos de campo se realizaron en una plantación comercial de piña, en Venecia de San Carlos. En el laboratorio se evaluó Beauveria bassiana (4,0 x 1010 esporas.g-1; Metarhizium anisopliae (1,0 x 1010 esporas.g-1; una mezcla de ambos hongos (0,5 g + 0,5 g.l-1 de agua destilada, de 4,0 x 1010 esporas.g-1 + 1,0 x 1010 esporas.g-1; un jabón líquido de sales potásicas, “Goyca”® (7 ml.l-1; el extracto botánico(Biorep® (mezcla de chile picante, ajo, cebolla, mostaza y gavilana (7 ml.l-1; y agua destilada como testigo. Los resultados más promisorios fueron con el extracto botánico y el jabón líqui do, los que causaron una mortalidad más rápida. Los tratamientos evaluados en la plantacióncomercial de piña, var. MD-2, fueron los mis mos, a excepción del testigo en donde se utilizó los productos utilizados de forma comercial en la finca: Diazinon® 60 EC (diazinon (0,5 ml.l-1 y Sevin® 80 WP (carbaril (1 kg.ha-1. El extrac to botánico resultó en la menor incidencia de cochinillas (X=6,4, < al testigo (X=10,8, < el Goyca® (X=13,7, < M. anisopliae (X=44,4, < B. bassiana (X=45,1, y

  2. Effect of entomopathogens on Africanized Apis mellifera L. (Hymenoptera: Apidae

    Directory of Open Access Journals (Sweden)

    Michele Potrich

    2018-01-01

    Full Text Available This study aimed to evaluate the effect of commercially used entomopathogens on Africanized Apis mellifera L. (Hymenoptera: Apidae. Four bioassays were performed: 1 pulverized entomopathogens on A. mellifera; 2 entomopathogens sprayed on a smooth surface; 3 entomopathogens sprayed on soy leaves; and 4 entomopathogens mixed with candy paste (sugar syrup. Five treatments were prepared: sterile distilled water (control, distilled water sterilized with Tween® 80 (0.01%, and the commercial entomopathogens Metarhizium anisopliae E9 (1.0 × 109 conidia mL−1, Beauveria bassiana PL63 (1.0 × 108 conidia mL−1 and Bacillus thuringiensis var. kurstaki HD-1 (3.0 × 108 spores mL−1. Each treatment consisted of five repetitions, with 20 workers per repetition, which were stored in a plastic box and, later, in a biological oxygen demand (B.O.D. incubator (27 ± 2 °C, RH of 60% ± 10%, 12-h photophase. The mortality of the workers was evaluated from 1 h to 240 h, and the data were analyzed using Bayesian inference. The workers killed by the ingestion of candy paste contaminated with the pathogens (products were randomly separated and selected for the removal of the midgut. Each midgut was fixed in Bouin's solution and prepared for histology. B. bassiana was verified to reduce the survival of A. mellifera workers in all bioassays. Moreover, M. anisopliae reduced the survival of A. mellifera workers directly sprayed, on a smooth surface and mixed with candy. B. thuringiensis reduced A. mellifera survival on a smooth surface and mixed with candy paste. However, its effects were lower than that observed by B. bassiana. The treatments with the biological products did not induce morphometric alterations in the midgut of A. mellifera. Keywords: Bayesian statistics, Entomopathogenic fungi, Entomopathogenic bacteria, Honeybee, Selectivity

  3. Evaluating the lethal and pre-lethal effects of a range of fungi against adult Anopheles stephensi mosquitoes

    Directory of Open Access Journals (Sweden)

    Blanford Simon

    2012-11-01

    Full Text Available Abstract Background Insecticide resistance is seriously undermining efforts to eliminate malaria. In response, research on alternatives to the use of chemical insecticides against adult mosquito vectors has been increasing. Fungal entomopathogens formulated as biopesticides have received much attention and have shown considerable potential. This research has necessarily focused on relatively few fungal isolates in order to ‘prove concept’. Further, most attention has been paid to examining fungal virulence (lethality and not the other properties of fungal infection that might also contribute to reducing transmission potential. Here, a range of fungal isolates were screened to examine variation in virulence and how this relates to additional pre-lethal reductions in feeding propensity. Methods The Asian malaria vector, Anopheles stephensi was exposed to 17 different isolates of entomopathogenic fungi belonging to species of Beauveria bassiana, Metarhizium anisopliae, Metarhizium acridum and Isaria farinosus. Each isolate was applied to a test substrate at a standard dose rate of 1×109 spores ml-1 and the mosquitoes exposed for six hours. Subsequently the insects were removed to mesh cages where survival was monitored over the next 14 days. During this incubation period the mosquitoes’ propensity to feed was assayed for each isolate by offering a feeding stimulant at the side of the cage and recording the number probing. Results and conclusions Fungal isolates showed a range of virulence to A. stephensi with some causing >80% mortality within 7 days, while others caused little increase in mortality relative to controls over the study period. Similarly, some isolates had a large impact on feeding propensity, causing >50% pre-lethal reductions in feeding rate, whereas other isolates had very little impact. There was clear correlation between fungal virulence and feeding reduction with virulence explaining nearly 70% of the variation in

  4. Social transfer of pathogenic fungus promotes active immunisation in ant colonies.

    Directory of Open Access Journals (Sweden)

    Matthias Konrad

    Full Text Available Due to the omnipresent risk of epidemics, insect societies have evolved sophisticated disease defences at the individual and colony level. An intriguing yet little understood phenomenon is that social contact to pathogen-exposed individuals reduces susceptibility of previously naive nestmates to this pathogen. We tested whether such social immunisation in Lasius ants against the entomopathogenic fungus Metarhizium anisopliae is based on active upregulation of the immune system of nestmates following contact to an infectious individual or passive protection via transfer of immune effectors among group members--that is, active versus passive immunisation. We found no evidence for involvement of passive immunisation via transfer of antimicrobials among colony members. Instead, intensive allogrooming behaviour between naive and pathogen-exposed ants before fungal conidia firmly attached to their cuticle suggested passage of the pathogen from the exposed individuals to their nestmates. By tracing fluorescence-labelled conidia we indeed detected frequent pathogen transfer to the nestmates, where they caused low-level infections as revealed by growth of small numbers of fungal colony forming units from their dissected body content. These infections rarely led to death, but instead promoted an enhanced ability to inhibit fungal growth and an active upregulation of immune genes involved in antifungal defences (defensin and prophenoloxidase, PPO. Contrarily, there was no upregulation of the gene cathepsin L, which is associated with antibacterial and antiviral defences, and we found no increased antibacterial activity of nestmates of fungus-exposed ants. This indicates that social immunisation after fungal exposure is specific, similar to recent findings for individual-level immune priming in invertebrates. Epidemiological modeling further suggests that active social immunisation is adaptive, as it leads to faster elimination of the disease and lower

  5. Biomarkers of acute respiratory allergen exposure: Screening for sensitization potential

    International Nuclear Information System (INIS)

    Pucheu-Haston, Cherie M.; Copeland, Lisa B.; Vallanat, Beena; Boykin, Elizabeth; Ward, Marsha D.W.

    2010-01-01

    Effective hazard screening will require the development of high-throughput or in vitro assays for the identification of potential sensitizers. The goal of this preliminary study was to identify potential biomarkers that differentiate the response to allergens vs non-allergens following an acute exposure in naive individuals. Female BALB/c mice received a single intratracheal aspiration exposure to Metarhizium anisopliae crude antigen (MACA) or bovine serum albumin (BSA) in Hank's Balanced Salt Solution (HBSS) or HBSS alone. Mice were terminated after 1, 3, 6, 12, 18 and 24 h. Bronchoalveolar lavage fluid (BALF) was evaluated to determine total and differential cellularity, total protein concentration and LDH activity. RNA was isolated from lung tissue for microarray analysis and qRT-PCR. MACA administration induced a rapid increase in BALF neutrophils, lymphocytes, eosinophils and total protein compared to BSA or HBSS. Microarray analysis demonstrated differential expression of genes involved in cytokine production, signaling, inflammatory cell recruitment, adhesion and activation in 3 and 12 h MACA-treated samples compared to BSA or HBSS. Further analyses allowed identification of ∼ 100 candidate biomarker genes. Eleven genes were selected for further assessment by qRT-PCR. Of these, 6 demonstrated persistently increased expression (Ccl17, Ccl22, Ccl7, Cxcl10, Cxcl2, Saa1), while C3ar1 increased from 6-24 h. In conclusion, a single respiratory exposure of mice to an allergenic mold extract induces an inflammatory response which is distinct in phenotype and gene transcription from the response to a control protein. Further validation of these biomarkers with additional allergens and irritants is needed. These biomarkers may facilitate improvements in screening methods.

  6. Gene expression profile of Bombyx mori hemocyte under the stress of destruxin A.

    Directory of Open Access Journals (Sweden)

    Liang Gong

    Full Text Available Destruxin A (DA is a cyclo-peptidic mycotoxin from the entomopathogenic fungus Metarhizium anisopliae. To uncover potential genes associated with its molecular mechanisms, a digital gene expression (DGE profiling analysis was used to compare differentially expressed genes in the hemocytes of silkworm larvae treated with DA. Ten DGE libraries were constructed, sequenced, and assembled, and the unigenes with least 2.0-fold difference were further analyzed. The numbers of up-regulated genes were 10, 20, 18, 74 and 8, as well as the numbers of down-regulated genes were 0, 1, 8, 13 and 3 at 1, 4, 8, 12 and 24 h post treatment, respectively. Totally, the expression of 132 genes were significantly changed, among them, 1, 3 and 12 genes were continually up-regulated at 4, 3 and 2 different time points, respectively, while 1 gene was either up or down-regulated continually at 2 different time points. Furthermore, 68 genes were assigned to one or multiple gene ontology (GO terms and 89 genes were assigned to specific Kyoto Encyclopedia of Genes and Genomes (KEGG Orthology. In-depth analysis identified that these genes putatively involved in insecticide resistance, cell apoptosis, and innate immune defense. Finally, twenty differentially expressed genes were randomly chosen and validated by quantitative real-time PCR (qRT-PCR. Our studies provide insights into the toxic effect of this microbial insecticide on silkworm's hemocytes, and are helpful to better understanding of the molecular mechanisms of DA as a biological insecticide.

  7. Microbial Pest Control Agents: Are they a Specific And Safe Tool for Insect Pest Management?

    Science.gov (United States)

    Deshayes, Caroline; Siegwart, Myriam; Pauron, David; Froger, Josy-Anne; Lapied, Bruno; Apaire-Marchais, Véronique

    2017-01-01

    Microorganisms (viruses, bacteria and fungi) or their bioactive agents can be used as active substances and therefore are referred as Microbial Pest Control Agents (MPCA). They are used as alternative strategies to chemical insecticides to counteract the development of resistances and to reduce adverse effects on both environment and human health. These natural entomopathogenic agents, which have specific modes of action, are generally considered safer as compared to conventional chemical insecticides. Baculoviruses are the only viruses being used as the safest biological control agents. They infect insects and have narrow host ranges. Bacillus thuringiensis (Bt) is the most widely and successfully used bioinsecticide in the integrated pest management programs in the world. Bt mainly produces crystal delta-endotoxins and secreted toxins. However, the Bt toxins are not stable for a very long time and are highly sensitive to solar UV. So genetically modified plants that express toxins have been developed and represent a large part of the phytosanitary biological products. Finally, entomopathogenic fungi and particularly, Beauveria bassiana and Metarhizium anisopliae, are also used for their insecticidal properties. Most studies on various aspects of the safety of MPCA to human, non-target organisms and environment have only reported acute but not chronic toxicity. This paper reviews the modes of action of MPCA, their toxicological risks to human health and ecotoxicological profiles together with their environmental persistence. This review is part of the special issue "Insecticide Mode of Action: From Insect to Mammalian Toxicity". Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Two efficient methods for isolation of high-quality genomic DNA from entomopathogenic fungi.

    Science.gov (United States)

    Serna-Domínguez, María G; Andrade-Michel, Gilda Y; Arredondo-Bernal, Hugo C; Gallou, Adrien

    2018-03-27

    Conventional and commercial methods for isolation of nucleic acids are available for fungal samples including entomopathogenic fungi (EPF). However, there is not a unique optimal method for all organisms. The cell wall structure and the wide range of secondary metabolites of EPF can broadly interfere with the efficiency of the DNA extraction protocol. This study compares three commercial protocols: DNeasy® Plant Mini Kit (Qiagen), Wizard® Genomic DNA Purification Kit (Promega), and Axygen™ Multisource Genomic DNA Miniprep Kit (Axygen) and three conventional methods based on different buffers: SDS, CTAB/PVPP, and CTAB/β-mercaptoethanol versus three cell lysis procedures: liquid nitrogen homogenization and two bead-beating materials (i.e., tungsten-carbide and stainless-steel) for four representative species of EPF (i.e., Beauveria bassiana, Hirsutella citriformis, Isaria javanica, and Metarhizium anisopliae). Liquid nitrogen homogenization combined with DNeasy® Plant Mini Kit (i.e., QN) or SDS buffer (i.e., SN) significantly improved the yield with a good purity (~1.8) and high integrity (>20,000 bp) of genomic DNA in contrast with other methods, also, these results were better when compared with the two bead-beating materials. The purified DNA was evaluated by PCR-based techniques: amplification of translation elongation factor 1-α (TEF) and two highly sensitive molecular markers (i.e., ISSR and AFLP) with reliable and reproducible results. Despite a variation in yield, purity, and integrity of extracted DNA across the four species of EPF with the different DNA extraction methods, the SN and QN protocols maintained a high-quality of DNA which is required for downstream molecular applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. The genetic basis for variation in resistance to infection in the Drosophila melanogaster genetic reference panel.

    Directory of Open Access Journals (Sweden)

    Jonathan B Wang

    2017-03-01

    Full Text Available Individuals vary extensively in the way they respond to disease but the genetic basis of this variation is not fully understood. We found substantial individual variation in resistance and tolerance to the fungal pathogen Metarhizium anisopliae Ma549 using the Drosophila melanogaster Genetic Reference Panel (DGRP. In addition, we found that host defense to Ma549 was correlated with defense to the bacterium Pseudomonas aeruginosa Pa14, and several previously published DGRP phenotypes including oxidative stress sensitivity, starvation stress resistance, hemolymph glucose levels, and sleep indices. We identified polymorphisms associated with differences between lines in both their mean survival times and microenvironmental plasticity, suggesting that lines differ in their ability to adapt to variable pathogen exposures. The majority of polymorphisms increasing resistance to Ma549 were sex biased, located in non-coding regions, had moderately large effect and were rare, suggesting that there is a general cost to defense. Nevertheless, host defense was not negatively correlated with overall longevity and fecundity. In contrast to Ma549, minor alleles were concentrated in the most Pa14-susceptible as well as the most Pa14-resistant lines. A pathway based analysis revealed a network of Pa14 and Ma549-resistance genes that are functionally connected through processes that encompass phagocytosis and engulfment, cell mobility, intermediary metabolism, protein phosphorylation, axon guidance, response to DNA damage, and drug metabolism. Functional testing with insertional mutagenesis lines indicates that 12/13 candidate genes tested influence susceptibility to Ma549. Many candidate genes have homologs identified in studies of human disease, suggesting that genes affecting variation in susceptibility are conserved across species.

  10. Genome-Wide Identification of Destruxin A-Responsive Immunity-Related MicroRNAs in Diamondback Moth, Plutella xylostella.

    Science.gov (United States)

    Shakeel, Muhammad; Xu, Xiaoxia; Xu, Jin; Li, Shuzhong; Yu, Jialin; Zhou, Xianqiang; Xu, Xiaojing; Hu, Qiongbo; Yu, Xiaoqiang; Jin, Fengliang

    2018-01-01

    Plutella xylostella , a global key pest, is one of the major lepidopteran pests of cruciferous vegetables owing to its strong ability of resistance development to a wide range of insecticides. Destruxin A, a mycotoxin of the entomopathogenic fungus, Metarhizium anisopliae , has broad-spectrum insecticidal effects and has been used as an alternative control strategy to reduce harmful effects of insecticides. However, microRNA (miRNA)-regulated reactions against destruxin A have not been elucidated yet. Therefore, here, to identify immunity-related miRNAs, we constructed four small RNA libraries from destruxin A-injected larvae of P. xylostella at three different time courses (2, 4, and 6 h) with a control, and sequenced by Illumina. Our results showed that totally 187 known and 44 novel miRNAs were identified in four libraries by bioinformatic analysis. Interestingly, among differentially expressed known miRNAs, some conserved miRNAs, such as miR-263, miR-279, miR-306, miR-2a, and miR-308, predicted to be involved in regulating immunity-related genes, were also identified. Worthy to mention, miR-306 and miR-279 were also listed as common abundantly expressed miRNA in all treatments. The Kyoto Encyclopedia of Genes and Genomes pathway analysis also indicated that differentially expressed miRNAs were involved in several immunity-related signaling pathways, including toll signaling pathway, IMD signaling pathway, JAK-STAT signaling pathway, and cell adhesion molecules signaling pathway. To the best of our knowledge, this is the first comprehensive report of destruxin A-responsive immunity-related miRNAs in P. xylostella . Our findings will improve in understanding the role of destruxin A-responsive miRNAs in the host immune system and would be useful to develop biological control strategies for controlling P. xylostella .

  11. Genome-Wide Identification of Destruxin A-Responsive Immunity-Related MicroRNAs in Diamondback Moth, Plutella xylostella

    Directory of Open Access Journals (Sweden)

    Muhammad Shakeel

    2018-02-01

    Full Text Available Plutella xylostella, a global key pest, is one of the major lepidopteran pests of cruciferous vegetables owing to its strong ability of resistance development to a wide range of insecticides. Destruxin A, a mycotoxin of the entomopathogenic fungus, Metarhizium anisopliae, has broad-spectrum insecticidal effects and has been used as an alternative control strategy to reduce harmful effects of insecticides. However, microRNA (miRNA-regulated reactions against destruxin A have not been elucidated yet. Therefore, here, to identify immunity-related miRNAs, we constructed four small RNA libraries from destruxin A-injected larvae of P. xylostella at three different time courses (2, 4, and 6 h with a control, and sequenced by Illumina. Our results showed that totally 187 known and 44 novel miRNAs were identified in four libraries by bioinformatic analysis. Interestingly, among differentially expressed known miRNAs, some conserved miRNAs, such as miR-263, miR-279, miR-306, miR-2a, and miR-308, predicted to be involved in regulating immunity-related genes, were also identified. Worthy to mention, miR-306 and miR-279 were also listed as common abundantly expressed miRNA in all treatments. The Kyoto Encyclopedia of Genes and Genomes pathway analysis also indicated that differentially expressed miRNAs were involved in several immunity-related signaling pathways, including toll signaling pathway, IMD signaling pathway, JAK–STAT signaling pathway, and cell adhesion molecules signaling pathway. To the best of our knowledge, this is the first comprehensive report of destruxin A-responsive immunity-related miRNAs in P. xylostella. Our findings will improve in understanding the role of destruxin A-responsive miRNAs in the host immune system and would be useful to develop biological control strategies for controlling P. xylostella.

  12. Transcript and Protein Profiling Analysis of the Destruxin A-Induced Response in Larvae of Plutella xylostella

    Science.gov (United States)

    Dong, Xiaolin; Fan, Jiqiao; Qiu, Baoli; Ren, Shunxiang

    2013-01-01

    Background Destruxins (dtxs) are the mycotoxin produced by certain entomopathogenic fungi, such as Metarhizium anisopliae, Aschersonia sp, Alternaria brassicae and Ophiosphaerella herpotrichae. It can affect a wide variety of biological processes in insects, including innate immune, Ca2+ channel in cells, and apoptosis in a dose-dependent manner. Dtxs have been used as biological control agent for a long time, however, their molecular mechanism of action is still unknown. Principal Findings In this study, both digital gene expression (DGE) and two-dimensional electrophoresis (2-DE) approaches were adopted to examine the effects of dtx A on Plutella xyllostella (L.) larvae. By using DGE and 2-DE analyses, 1584 genes and 42 protein points were identified as being up- or down regulated at least 2-fold in response to dtx A. Firstly, injection of dtx A to larvae accelerated the increase of peptidoglycan recognition protein (PGRP), which could activate the Toll signal pathway inducing production of antibacterial substances such as cecropin and gloverin. Dtx A also stimulated prophenoloxidase (proPO) system which plays an important role in innate immunity and leads to melanization of external organisms. Secondly, dtx A suppressed the expression of genes related to the Toll pathway, and induced expression of serine proteinase inhibitors (serpins), especially the serpin 2 that blocked process of the proPO system. Finally, other physiological process like xenobiotics detoxification, apoptosis, calcium signaling pathway and insect hormone biosynthesis, were also mediated in response to dtx A toxicity. Conclusions Transcript and protein profiling analyses will provide an insight into the potential molecular mechanism of action in P. xylostella larvae in response to dtx A. PMID:23585848

  13. Direct and Indirect Effects of Pesticides on the Insidious Flower Bug (Hemiptera: Anthocoridae) Under Laboratory Conditions.

    Science.gov (United States)

    Herrick, Nathan J; Cloyd, Raymond A

    2017-06-01

    Greenhouse producers are interested in integrating natural enemies along with pesticides to suppress western flower thrips, Frankliniella occidentalis (Pergande), populations. The insidious flower bug, Orius insidiosus (Say), is a commercially available natural enemy of western flower thrips. We conducted a series of laboratory experiments to determine the direct and indirect effects of 28 pesticides (insecticides, miticides, and fungicides), 4 pesticide mixtures, and 4 surfactants (36 total treatments plus a water control) on the adult O. insidiosus survival and predation on western flower thrips adults under laboratory conditions. The number of live and dead O. insidiosus adults was recorded after 24, 48, 72, and 96 h. The results of the study indicate that the fungicides (aluminum tris, azoxystrobin, fenhexamid, and kresoxim-methyl), insect growth regulators (azadirachtin, buprofezin, kinoprene, and pyriproxyfen), botanicals (Capsicum oleoresin extract, garlic oil, soybean oil; and rosemary, rosemary oil, peppermint oil, and cottonseed oil), and entomopathogenic fungi (Beauveria bassiana and Metarhizium anisopliae) were minimally directly harmful to adult O. insidiosus, with 80% to 100% adult survival. However, abamectin, spinosad, pyridalyl, chlorfenapyr, tau-fluvalinate, imidacloprid, dinotefuran, acetamiprid, and thiamethoxam directly affected O. insidiosus survival after 96 h (0-60% adult survival). The pesticide mixtures of abamectin + spinosad and chlorfenapyr + dinotefuran reduced adult survival (20% and 0%, respectively, after 48 h). Furthermore, the surfactants were not directly harmful to O. insidiosus adults. All western flower thrips adults were killed by the surviving adult O. insidiosus after 48 h, indicating no indirect effects of the pesticides on predation. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Lab-on-a-chip and SDS-PAGE analysis of hemolymph protein profile from Rhipicephalus microplus (Acari: Ixodidae) infected with entomopathogenic nematode and fungus.

    Science.gov (United States)

    Golo, Patrícia Silva; Dos Santos, Alessa Siqueira de Oliveira; Monteiro, Caio Marcio Oliveira; Perinotto, Wendell Marcelo de Souza; Quinelato, Simone; Camargo, Mariana Guedes; de Sá, Fillipe Araujo; Angelo, Isabele da Costa; Martins, Marta Fonseca; Prata, Marcia Cristina de Azevedo; Bittencourt, Vânia Rita Elias Pinheiro

    2016-09-01

    In the present study, lab-on-a-chip electrophoresis (LoaC) was suggested as an alternative method to the conventional polyacrylamide gel electrophoresis under denaturing conditions (SDS-PAGE) to analyze raw cell-free tick hemolymph. Rhipicephalus microplus females were exposed to the entomopathogenic fungus Metarhizium anisopliae senso latu IBCB 116 strain and/or to the entomopathogenic nematode Heterorhabditis indica LPP1 strain. Hemolymph from not exposed or exposed ticks was collected 16 and 24 h after exposure and analyze by SDS-PAGE or LoaC. SDS-PAGE yielded 15 bands and LoaC electrophoresis 17 bands. Despite the differences in the number of bands, when the hemolymph protein profiles of exposed or unexposed ticks were compared in the same method, no suppressing or additional bands were detected among the treatments regardless the method (i.e., SDS-PAGE or chip electrophoresis using the Protein 230 Kit®). The potential of LoaC electrophoresis to detect protein bands from tick hemolymph was considered more efficient in comparison to the detection obtained using the traditional SDS-PAGE method, especially when it comes to protein subunits heavier than 100 KDa. LoaC electrophoresis provided a very good reproducibility, and is much faster than the conventional SDS-PAGE method, which requires several hours for one analysis. Despite both methods can be used to analyze tick hemolymph composition, LoaC was considered more suitable for cell-free hemolymph protein separation and detection. LoaC hemolymph band percent data reported changes in key proteins (i.e., HeLp and vitellogenin) exceptionally important for tick embryogenesis. This study reported, for the first time, tick hemolymph protein profile using LoaC.

  15. Ants detect but do not discriminate diseased workers within their nest

    Science.gov (United States)

    Leclerc, Jean-Baptiste; Detrain, Claire

    2016-08-01

    Social insects have evolved an array of individual and social behaviours that limit pathogen entrance and spread within the colony. The detection of ectoparasites or of fungal spores on a nestmate body triggers their removal by allogrooming and appears as a primary component of social prophylaxis. However, in the case of fungal infection, one may wonder whether ant workers are able to detect, discriminate and keep at bay diseased nestmates that have no spores over their cuticle but which constitute a latent sanitary risk due to post-mortem corpse sporulation. Here, we investigate the ability of Myrmica rubra workers to detect and discriminate a healthy from a diseased nestmate infected by the entomopathogen Metarhizium anisopliae. During dyadic encounters in a neutral location, workers were more aggressive towards isolated sick nestmates on the 3rd post-infection day. However, no such detection or discrimination of fungus-infected nestmates occurred in a social context inside the nest or at the nest entrance. Gatekeepers never actively rejected incoming diseased nestmates that rather spontaneously isolated themselves outside the nest. Our study reveals that ant workers may detect health-dependent cues and that their `acceptance level' of sick nestmates is tunable depending on the social context. This raises questions about possible trade-offs between a social closure to pathogens and risks of erroneous rejection of healthy nestmates. Social isolation of moribund ants also appears as a widespread prophylactic strategy of social insects allowing them to reduce exposure to pathogens and to spare costs associated with the management of infected individuals.

  16. Exploiting the behaviour of wild malaria vectors to achieve high infection with fungal biocontrol agents

    Science.gov (United States)

    2012-01-01

    Background Control of mosquitoes that transmit malaria has been the mainstay in the fight against the disease, but alternative methods are required in view of emerging insecticide resistance. Entomopathogenic fungi are candidate alternatives, but to date, few trials have translated the use of these agents to field-based evaluations of their actual impact on mosquito survival and malaria risk. Mineral oil-formulations of the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana were applied using five different techniques that each exploited the behaviour of malaria mosquitoes when entering, host-seeking or resting in experimental huts in a malaria endemic area of rural Tanzania. Results Survival of mosquitoes was reduced by 39-57% relative to controls after forcing upward house-entry of mosquitoes through fungus treated baffles attached to the eaves or after application of fungus-treated surfaces around an occupied bed net (bed net strip design). Moreover, 68 to 76% of the treatment mosquitoes showed fungal growth and thus had sufficient contact with fungus treated surfaces. A population dynamic model of malaria-mosquito interactions shows that these infection rates reduce malaria transmission by 75-80% due to the effect of fungal infection on adult mortality alone. The model also demonstrated that even if a high proportion of the mosquitoes exhibits outdoor biting behaviour, malaria transmission was still significantly reduced. Conclusions Entomopathogenic fungi strongly affect mosquito survival and have a high predicted impact on malaria transmission. These entomopathogens represent a viable alternative for malaria control, especially if they are used as part of an integrated vector management strategy. PMID:22449130

  17. Inoculation of sphagnum-based soil substrate with entomopathogenic fungus Isaria fumosorosea (Hypocreales: Cordycipitaceae)

    Science.gov (United States)

    Zemek, Rostislav; Konopická, Jana; Bohatá, Andrea

    2018-04-01

    Convenient ecological alternative to broad-spectrum chemical pesticides is the utilization of natural enemies, like predators, parasitoids and microorganisms. A substantial number of microbial biopesticides based on entomopathogenic fungi have been developed worldwide since 1960s. Beauveria bassiana (Balsamo-Crivelli) Vuillemin, Metarhizium anisopliae (Metchnikoff) Sorokin, Isaria fumosorosea (Wize), and B. brongniartii (Saccardo) Petch are the most common species used in commercially produced mycopesticides. Besides direct biological pest control, these fungi could be also used in preventive application programs, particularly in ornamental or nursery plants to provide better control against pests. The aim of the present study was to investigate potential of pre-colonization of sphagnum-based soil substrate with I. fumosorosea strain CCM 8367 which was found earlier to be highly virulent against several pest species. We developed simple laboratory apparatus for application of fungal spore suspension into the substrate. Suspension was prepared from blastospores obtained by submerged cultivation on potato dextrose broth (PDB) medium using an orbital shaker. Inoculated substrate was placed into plastic bags and stored at constant temperature for six months. Every month, samples were analyzed for concentration of colony forming units (CFU) by elution and selective medium technique. The results showed that at 20°C the fungus successfully colonized the soil substrate and persisted there although the mean concentration slightly decreased from 5.89×104 to 2.76×104 CFU per milliliter of substrate during the experiment. Temperature 30°C had negative effect on survival of the fungus and is not recommended for long-term storage of pre-inoculated substrate. We can conclude that I. fumosorosea-colonized substrate can be convenient for preventive and permanent protection of various plants against soil-dwelling pests.

  18. An extra-domiciliary method of delivering entomopathogenic fungus, Metharizium anisopliae IP 46 for controlling adult populations of the malaria vector, Anopheles arabiensis

    NARCIS (Netherlands)

    Lwetoijera, D.W.; Sumaye, R.D.; Madumla, E.P.; Kavishe, D.R.; Mnyone, L.L.; Russell, T.L.; Okumu, F.O.

    2010-01-01

    Fungal biopesticides have the potential to significantly reduce densities of malaria vectors as well as associated malaria transmission. In previous field trials, entomopathogenic fungus was delivered from within human dwellings, where its efficacy was limited by low infection rates of target

  19. Mortality and reduced brood production in walnut twig beetles, Pityophthorus juglandis (Coleoptera: Curculionidae), following exposure to commercial strains of entomopathogenic fungi Beauveria bassiana and Metarhizium brunneum

    Science.gov (United States)

    Louela A. Castrillo; Albert E. Mayfield; Michael H. Griggs; Robert Camp; Bryan Mudder; Adam Taylor; John D. Vandenberg

    2017-01-01

    Thousand cankers disease (TCD), caused by the walnut twig beetle (WTB), Pityophthorus juglandis, and its associated fungal symbiont, Geosmithia morbida, is a disease of economic and ecological concern on eastern black...

  20. Interactions among the predatory midge Aphidoletes aphidimyza (Diptera: Cecidomyiidae), the fungal pathogen Metarhizium brunneum (Ascomycota: Hypocreales), and maize-infesting aphids in greenhouse mesocosms

    DEFF Research Database (Denmark)

    Campos de Azevedo, Ana Gorete; Steinwender, Bernhardt Michael; Eilenberg, Jørgen

    2017-01-01

    , the interaction between these two biological control organisms and how it may affect the biological control of aphids awaits further investigation. As part of the EU-supported project INBIOSOIL, this study was conducted in greenhouse conditions to assess the possible effects of combining both biological control...... by treatment. Aphidoletes aphidimyza applied alone suppressed the aphid population more effectively than M. brunneum applied alone. Additionally, the aphid population was most suppressed when both agents were combined, though the suppression was less than additive....

  1. Actividad biológica de hongos entomopatógenos sobre Premnotrypes vorax Hustache (Coleoptera: Curculionidae

    Directory of Open Access Journals (Sweden)

    Jorge Enrique Villamil

    2016-06-01

    Full Text Available El gusano blanco (Premnotrypes vorax Hustache ocasiona pérdidas considerables en el cultivo de la papa, las cuales pueden llegar hasta el 100% dependiendo del nivel de infestación y manejo del cultivo. El objetivo del presente estudio fue determinar el efecto individual y combinado de dos aislamientos autóctonos de Beauveria spp. en comparación con dos bioplaguicidas a base de Metarhizium anisopliae y Beauveria brongniartii, sobre P. vorax en condiciones de campo. Se empleó el Diseño Completamente al Azar, con ocho tratamientos y cuatro repeticiones Se hicieron inoculaciónes mediante aspersión dirigida a la base de la planta, utilizando una concentración 5x108 conidias.g-1. Se evaluó porcentaje de daño, porcentaje de control y rendimiento al momento de cosecha (t ha-1. Los resultados indicaron que las cepas comerciales en combinación Metaril® W.P + B. brongniartii® W.P (T6 y el aislamiento autóctono de Beauveria sp. Bv01 (T1, presentaron los menores porcentajes de daño (3,1±0,06 y 3,5±0,2%, los mayores porcentajes de control (77±0,46 y 76,7±1,78%, y la mejor producción (19±0,40t ha-1 y 18±0,25t ha-1 con diferencias significativas (Duncan p≤0,05 respecto a los demás tratamientos y el control regional. Se destacó el T6, ya que mostró el mejor potencial biológico por su rendimiento en cosecha, representando una alternativa promisoria para el control de P. vorax al ser incorporado dentro de un esquema de manejo integrado de la plaga en la región.

  2. Preclinical evaluation of destruxin B as a novel Wnt signaling target suppressing proliferation and metastasis of colorectal cancer using non-invasive bioluminescence imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Chi-Tai [Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan (China); Center of Excellence for Cancer Research, Taipei Medical University, Taipei, Taiwan (China); Department of Surgery, Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan (China); Rao, Yerra Koteswara [Institute of Biochemical Sciences and Technology, Chaoyang University of Technology, Taichung, Taiwan (China); Ye, Min [Department of Natural Medicine, School of Pharmaceutical Sciences, Peking University, Beijing (China); Wu, Wen-Shi [Department of Horticulture and Biotechnology, Chinese Culture University, Taipei, Taiwan (China); Chang, Tung-Chen [Department of Surgery, Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan (China); Wang, Liang-Shun [Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan (China); Division of Thoracic Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan (China); Wu, Chih-Hsiung [Center of Excellence for Cancer Research, Taipei Medical University, Taipei, Taiwan (China); Department of Surgery, Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan (China); Wu, Alexander T.H., E-mail: chaw1211@tmu.edu.tw [Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan (China); Department of Radiation Oncology, Taipei Medical University Hospital, Taipei, Taiwan (China); Tzeng, Yew-Min, E-mail: ymtzeng@cyut.edu.tw [Institute of Biochemical Sciences and Technology, Chaoyang University of Technology, Taichung, Taiwan (China)

    2012-05-15

    In continuation to our studies toward the identification of direct anti-cancer targets, here we showed that destruxin B (DB) from Metarhizium anisopliae suppressed the proliferation and induced cell cycle arrest in human colorectal cancer (CRC) HT29, SW480 and HCT116 cells. Additionally, DB induced apoptosis in HT29 cells by decreased expression level of anti-apoptotic proteins Bcl-2 and Bcl-xL while increased pro-apoptotic Bax. On the other hand, DB attenuated Wnt-signaling by downregulation of β-catenin, Tcf4 and β-catenin/Tcf4 transcriptional activity, concomitantly with decreased expression of β-catenin target genes cyclin D1, c-myc and survivin. Furthermore, DB affected the migratory and invasive ability of HT29 cells through suppressed MMPs-2 and -9 enzymatic activities. We also found that DB targeted the MAPK and/or PI3K/Akt pathway by reduced expression of Akt, IKK-α, JNK, NF-κB, c-Jun and c-Fos while increased that of IκBα. Finally, we demonstrated that DB inhibited tumorigenesis in HT29 xenograft mice using non-invasive bioluminescence technique. Consistently, tumor samples from DB-treated mice demonstrated suppressed expression of β-catenin, cyclin D1, survivin, and endothelial marker CD31 while increased caspase-3 expression. Collectively, our data supports DB as an inhibitor of Wnt/β-catenin/Tcf signaling pathway that may be beneficial in the CRC management. Highlights: ► Destruxin B (DB) inhibited colorectal cancer cells growth and induced apoptosis. ► MAPK and/or PI3K/Akt cascade cooperates in DB induced apoptosis. ► DB affected the migratory and invasive ability of HT29 cells through MMP-9. ► DB attenuated Wnt-signaling components β-catenin, Tcf4. ► DB attenuated cyclin D1, c-myc, survivin and tumorigenesis in HT29 xenograft mice.

  3. Insecticide Rotation Programs with Entomopathogenic Organisms for Suppression of Western Flower Thrips (Thysanoptera: Thripidae) Adult Populations under Greenhouse Conditions.

    Science.gov (United States)

    Kivett, Jessica M; Cloyd, Raymond A; Bello, Nora M

    2015-08-01

    Western flower thrips, Frankliniella occidentalis (Pergande), is one of the most destructive insect pests of greenhouse production systems with the ability to develop resistance to a wide variety of insecticides. A common resistance management strategy is rotating insecticides with different modes of action. By incorporating entomopathogenic organisms (fungi and bacteria), which have discrete modes of action compared to standard insecticides, greenhouse producers may preserve the effectiveness of insecticides used for suppression of western flower thrips populations. The objective of this study was to determine how different rotation programs that include entomopathogenic organisms (Beauveria bassiana, Isaria fumosoroseus, Metarhizium anisopliae, and Chromobacterium subtsugae) and commonly used standard insecticides (spinosad, chlorfenapyr, abamectin, and pyridalyl) may impact the population dynamics of western flower thrips adult populations by means of suppression. Eight-week rotation programs were applied to chrysanthemum, Dendranthema x morifolium plants and weekly counts of western flower thrips adults captured on yellow sticky cards were recorded as a means to evaluate the impact of the rotation programs. A final quality assessment of damage caused by western flower thrips feeding on foliage and flowers was also recorded. Furthermore, a cost comparison of each rotation program was conducted. Overall, insecticide rotation programs that incorporated entomopathogenic organisms were not significantly different than the standard insecticide rotation programs without entomopathogenic organisms in suppressing western flower thrips adult populations. However, there were no significant differences among any of the rotation programs compared to the water control. Moreover, there was no differential effect of the rotation programs on foliage and flower quality. Cost savings of up to 34% (in US dollars) are possible when including entomopathogenic organisms in the

  4. The entomopathogenic fungus Beauveria bassiana reduces instantaneous blood feeding in wild multi-insecticide-resistant Culex quinquefasciatus mosquitoes in Benin, West Africa

    Directory of Open Access Journals (Sweden)

    Howard Annabel FV

    2010-09-01

    Full Text Available Abstract Background Mosquito-borne diseases are still a major health risk in many developing countries, and the emergence of multi-insecticide-resistant mosquitoes is threatening the future of vector control. Therefore, new tools that can manage resistant mosquitoes are required. Laboratory studies show that entomopathogenic fungi can kill insecticide-resistant malaria vectors but this needs to be verified in the field. Methods The present study investigated whether these fungi will be effective at infecting, killing and/or modifying the behaviour of wild multi-insecticide-resistant West African mosquitoes. The entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana were separately applied to white polyester window netting and used in combination with either a permethrin-treated or untreated bednet in an experimental hut trial. Untreated nets were used because we wanted to test the effect of fungus alone and in combination with an insecticide to examine any potential additive or synergistic effects. Results In total, 1125 female mosquitoes were collected during the hut trial, mainly Culex quinquefasciatus Say. Unfortunately, not enough wild Anopheles gambiae Giles were collected to allow the effect the fungi may have on this malaria vector to be analysed. None of the treatment combinations caused significantly increased mortality of Cx. quinquefasciatus when compared to the control hut. The only significant behaviour modification found was a reduction in blood feeding by Cx. quinquefasciatus, caused by the permethrin and B. bassiana treatments, although no additive effect was seen in the B. bassiana and permethrin combination treatment. Beauveria bassiana did not repel blood foraging mosquitoes either in the laboratory or field. Conclusions This is the first time that an entomopathogenic fungus has been shown to reduce blood feeding of wild mosquitoes. This behaviour modification indicates that B. bassiana could potentially be a new

  5. Belowground ecology of scarabs feeding on grass roots: current knowledge and future directions for management in Australasia

    Directory of Open Access Journals (Sweden)

    Adam eFrew

    2016-03-01

    Full Text Available Many scarab beetles spend the majority of their lives belowground as larvae, feeding on grass roots. Many of these larvae are significant pests, causing damage to crops and grasslands. Damage by larvae of the greyback cane beetle (Dermolepida albohirtum, for example, can cause financial losses of up to AU$40 million annually to the Australian sugarcane industry. We review the ecology of some scarab larvae in Australasia, focusing on three subfamilies; Dynastinae, Rutelinae and Melolonthinae, containing key pest species. Although considerable research on the control of some scarab pests has been carried out in Australasia, for some species, the basic biology and ecology remains largely unexplored. We synthesize what is known about these scarab larvae and outline key knowledge gaps to highlights future research directions with a view to improve pest management. We do this by presenting an overview of the scarab larval host plants and feeding behavior; the impacts of abiotic (temperature, moisture and fertilization and biotic (pathogens, natural enemies and microbial symbionts factors on scarab larvae and conclude with how abiotic and biotic factors can be applied in agriculture for improved pest management, suggesting future research directions.Several host plant microbial symbionts, such as arbuscular mycorrhizal fungi and endophytes, can improve plant tolerance to scarabs and reduce larval performance, which have shown promise for use in pest management. In addition to this, several microbial scarab pathogens have been isolated for commercial use in pest management with particularly promising results. The entomopathogenic fungus Metarhizium anisopliae caused a 50% reduction in cane beetle larvae while natural enemies such as entomopathogenic nematodes have also shown potential as a biocontrol. Continued research should focus on filling the gaps in the knowledge of the basic ecology and feeding behavior of scarab larval species within Australasia

  6. Combined effect of gamma radiation and some fungal control agents on the greasy cut- worm

    International Nuclear Information System (INIS)

    Abd EL- Wahed, A. G.

    2011-01-01

    attention by scientists for their potential for biological control of pests. Some insect pathogenic fungi have restricted host ranges while other fungal species have a wide host range for example, Beauveria bassiana ,Metarhizium anisopliae and Paecilomyces fumosoroseus Many researchers have focused on the selection of virulent strains for target pests and their development as biological control agents.

  7. Field efficacy of Heterorhabditis bacteriophora (Nematoda: Heterorhabditidae), Metarhizium brunneum (Hypocreales: Clavicipitaceae), and chemical insecticide combinations for Diabrotica virgifera virgifera larval management

    DEFF Research Database (Denmark)

    Rauch, Hannes; Steinwender, Bernhardt Michael; Mayerhofer, Johanna

    2017-01-01

    A two-year field study using a blend of entomopathogens in conjunction with chemical insecticides was carried out to determine to which extent they affect western corn rootworm (WCR), Diabrotica virgifera virgifera, survival, maize root damages, and grain yield and to assess the potential for sid...... is considerably higher than the stipulated economic threshold under favourable growing conditions, but a systematic crop rotation is recommended as an integral part of the WCR management both as a prophylaxis and as a background for the best treatment....

  8. ESTUDO DA TOXICIDADE DO MEDICAMENTO PERINDOPRIL ...

    African Journals Online (AJOL)

    Usuario

    2013-08-28

    Aug 28, 2013 ... is accomplished by anti-hypertensive drugs, among them, ... of perindopril on the conidia germination speed of the model fungus M. anisopliae, for detecting a possible ..... negative for tests with following parameters: bacterial.

  9. SINET: Ethiopian Journal of Science - Vol 30, No 1 (2007)

    African Journals Online (AJOL)

    ... L. in Afromontane rainforests of Ethiopia: distribution, ecology and conservation ... performance of Metarhizium anisoliae var. acridum (Green Muscle) against ... sucrose and trigolline contents among Ethiopian Arabica coffee accessories ...

  10. Composition of entomopathogenic fungus and method of production and application for insect control

    Science.gov (United States)

    Microsclerotia of entomopathogenic fungi including Metarhizium and Lecanicillium species are produced using various production methods such as liquid culture fermentation. These microsclerotia can be dried with various agronomic carriers to produce viable, microsclerotia-containing compositions with...

  11. Swainsonine biosynthesis genes in diverse symbiotic and pathogenic fungi

    Science.gov (United States)

    Swainsonine, a cytotoxic fungal alkaloid and a potential cancer therapy drug, is produced by the insect pathogen and plant symbiont, Metarhizium robertsii, the clover pathogen Slafractonia leguminicola, locoweed symbionts belonging to Alternaria sect. Undifilum, and a recently discovered morning glo...

  12. Elevational distribution and morphological attributes of the entomopathogenic fungi from forests of the Qinling Mountains in China.

    Science.gov (United States)

    Masoudi, Abolfazl; Koprowski, John Lad; Bhattarai, Upendra Raj; Wang, Dun

    2018-02-01

    Entomopathogenic fungi are considered to be a safe microbiological pesticide alternative to chemical control. Efforts are underway to understand precisely their taxonomy and natural distribution through mycological and biodiversity studies based on molecular markers. Here, we present descriptions of the diversity of the entomopathogenic fungi in the genera Metarhizium and Beauveria found along the elevational gradients of the Qinling subtropical and temperate forests of Shaanxi province in China, using morphological aspects and molecular markers. Molecular characterization using the Mz_IGS3 intergenic region revealed that Metarhizium isolates phylogenetically clustered in the PARB clade with four different distinguishable species, but the 5'-TEF gene allowed only ambiguous delimitation of Metarhizium species. Beauveria isolates were characterized by sequence analyses of the translation elongation factor 1-α and the Bloc region. The richness of Metarhizium species decreased with increasing elevation, with Metarhizium robertsii s.l. being the most abundant species along the elevational gradient. Our bioassay suggests that certain species of Metarhizium are significantly pathogenic to the insect model Tenebrio molitor at both the adult and larvae stages and could potentially serve as a control of insect pests of forests.

  13. Enacting cultural boundaries in French and German diphtheria serum research.

    Science.gov (United States)

    Klöppel, Ulrike

    2008-06-01

    The experimental development of a therapeutic serum against diphtheria between 1891 and 1894 was characterized by a scientific competition that pitted Emil Behring from the Institute for Infectious Diseases in Berlin against Emile Roux and Elie Metschnikoff from the Pasteur Institute in Paris. In general, their competition can be regarded as an extension of the fundamental differences that separated the research schools of Robert Koch and Louis Pasteur. However, to characterize the competition for a diphtheria-serum as "national rivalry" fails to account adequately for the mutual adoption of experimental practices by the Berlin and Parisian protagonists, whose contributions to the development of a therapeutic serum were intertwined in complex ways. Nor can it be characterized as "cooperation," given their fierce public disputes over scientific concepts and the fact that these disputes also shaped the peculiarities of the experimental procedures in Berlin and Paris. A close analysis reveals a complex picture of the dynamic interaction between the conceptual and experimental activities of Behring, Roux, and Metschnikoff- interaction that defined as well as bridged the "French" and "Prussian" experimental systems of diphtheria-serum research.

  14. Factibilidad del empleo de hongos entomopatógenos en el control de Musca domestica l. en paisajes antropizados del Noroeste de Michoacán, México.

    OpenAIRE

    García Munguía, Carlos Alberto

    2016-01-01

    El objetivo de la presente investigación fue seleccionar aislamientos de los hongos M. anisopliae y B. bassiana capaces de colonizar y controlar adultos y larvas de Musca domestica e identificar las condiciones ambientales de temperatura y humedad relativa favorables para su empleo. B. bassiana y M. anisopliae fueron transmitidos sexualmente en M. domestica usando 1, 5 y 10 machos vírgenes de 3 dias de edad, expuestos a 6 x 108 conidias mL- 1 de hongos los cuales fueron confinados con 30 hemb...

  15. Protecting Plants against Pests and Pathogens with Entomopathogenic Fungi

    DEFF Research Database (Denmark)

    Keyser, Chad Alton

    This thesis investigates the natural occurrence of the fungal genus Metarhizium in association with crop-roots in Denmark, and advances the current understanding of how these fungi interact with other root-associating organisms when applied as a biological control agent. Insect-pest management...... protection. The fungal genus Metarhizium is one of the most intensely researched groups of entomopathogenic fungi and several isolates have been successfully employed as biopesticides for crop protection; however, inconsistent field reliability has limited wider implementation. Research emphasizing...... of the mycoparasitic fungus Clonostachys roseas to control Fusarium culmorum disease in wheat; and a significant level of insect mortality was observed in insects feeding on roots from inoculated seed – even when Metarhizium was applied jointly with C. rosea. Furthermore, M. flavoviride, a less frequently studied...

  16. Differential endophytic colonization of sorghum plant by eight ...

    African Journals Online (AJOL)

    Virulence of the conidia before and after endophytic growth phases were assessed using Galleria mellonella larvae mortality bioassay in-vitro. All the strains of the fungi colonised the sorghum plant. The strains of I. farinosa and B. bassiana were detected in the roots, the stem and the leaves while M. anisopliae was ...

  17. SINET: Ethiopian Journal of Science - Vol 33, No 2 (2010)

    African Journals Online (AJOL)

    ... Native Fungal Isolates of Metrahizium anisopliae Var. Acridum and Beauveria bassiana against the Greater Wax Moth, Galleria mellonella (L) (Pyralidae: Lepidoptera) in Ethiopia · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. H. Namusana, E Seyoum, 117-124 ...

  18. Regulación de la expresión de los genes correspondientes al ...

    African Journals Online (AJOL)

    sepsacdf

    2013-03-06

    Mar 6, 2013 ... The entomopathogenic fungi are subject to regulation system known as signal transduction that regulates the ..... by Aspergillus and Trichoderma spp. additionally, the M. anisopliae pr1A ... coat around the hyphal bodies that eliminate cell surface ... peptides with antibiotic, antifungal and insecticidal activity.

  19. Interacting Temperature and Water Activity Modulate Production of ...

    African Journals Online (AJOL)

    Online2PDF.com

    described as a virulence factor ((Kao et al.,. 2015) and .... HPLC profile showing signals of cyclic peptide products of crude extract from M. anisopliae at 0.96 aw). Peak h eigh ts (m. AU). Retention time .... climate change scenario, where higher.

  20. Ação de fungos entomopatogênicos em larvas e adultos da mosca do figo Zaprionus indianus (Diptera: Drosophilidae Action of entomopathogenic fungi on the larvae and adults of the fig fly Zaprionus indianus (Diptera: Drosophilidae

    Directory of Open Access Journals (Sweden)

    Virgínia Michelle Svedese

    2012-11-01

    Full Text Available A mosca do figo, Zaprionus indianus, vem se disseminando no Brasil e causou nos últimos anos perdas de até 50% na produção de figos. Uma alternativa viável de controle desta mosca pode ser a utilização de fungos entomopatogênicos. Este trabalho foi conduzido em laboratório (27±1°C, UR 70±10% e fotoperíodo de 12h para avaliar a suscetibilidade dos estágios de larva e adulto de Z. indianus a cinco concentrações (10(8 a 10(4 conídios mL-1 de B. bassiana (URM2915; ESALQ447 e M. anisopliae (URM3349; URM4403. Não houve mortalidade larval e o período de pré-pupa não sofreu alteração em relação ao grupo controle, já o estágio de pupa foi aumentado em até três dias quando se utilizou B. bassiana. A emergência de adultos diminuiu em relação ao grupo controle: 10,6% quando as larvas foram tratadas com a maior concentração de B. bassiana URM2916 e 2,0% com M. anisopliae URM4403. No bioensaio com adultos, a mortalidade máxima atingiu 98,7% com B. bassiana e 100,0% com M. anisopliae. Os menores valores da CL50 foram de 1,09x10(5 conídios mL-1 para B. bassiana URM2916 e de 1,94x10(4 conídios mL-1 para M. anisopliae URM4403. O tempo letal médio (TL50 variou de 4,5 a 6,12 dias. Os resultados demonstraram que ambos os fungos são eficientes e mostram ser promissores agentes biocontroladores da mosca do figo, com destaque para M. anisopliae URM4403.The "fig fly", Zaprionus indianus, has spread by in Brazil and in recent years and has caused losses of up to 50% in the production of figs. A viable alternative to control this fly may be the use of entomopathogenic fungi such. The present study was developed in laboratory (27±1°C, RH 70±10% and 12h photoperiod, to assess the susceptibility of larval and adult stages of Z. indianus to five concentrations (10(8 to 10(4 conidia mL-1 of B. bassiana (URM2915; ESALQ447 and M. anisopliae (URM3349; URM4403. There was no larval mortality and the pre-pupal period did not change compared

  1. Metacridamide B methanol-d4 monosolvate

    Science.gov (United States)

    The title compound was extracted from conidia of the fungus Metarhizium acridum. Crystals were obtained as a methanol-d4 solvate. The tail part of the 4-methylhexan-2-yl group exhibits disorder over two positions, with an occupancy ratio of 0.682 (9):0.318 (9). The crystal structure confirms the abs...

  2. Entomopathogenic fungi in population of Zonocerus variegatus (l) in ...

    African Journals Online (AJOL)

    Field survey of population of Zonocerus variegatus revealed a high fungal incidence of 76% when Sporulation tests were carried out on grasshoppers cadaver. Eight fungi with differing incidence rates were isolated. These are Fusarium sp. (8%); Beauveria bassiana (18%); Metarhizium sp. (20%); Aspergillus flavus (10%); ...

  3. Habitat selection of a parasitoid mediated by volatiles informing on host and intraguild predator densities

    DEFF Research Database (Denmark)

    Cotes, Belén; Rännbäck, Linda Marie; Björkman, Maria

    2015-01-01

    both a parasitoid and its host, parasitoids may reduce the risk of intraguild predation (IGP) by avoiding such patches. In this study, we examined whether the presence of the entomopathogenic fungi Metarhizium brunneum and Beauveria bassiana in soil habitats of a root herbivore, Delia radicum, affects...

  4. Patterns of host adaptation in fly infecting Entomophthora species

    DEFF Research Database (Denmark)

    de Fine Licht, Henrik Hjarvard; Jensen, Annette Bruun; Eilenberg, Jørgen

    Insect pathogenic fungi (IPF) differ widely in their capability to infect different hosts. Some are generalists and will, given a sufficient number of infectious spores are present, infect almost any species of insect (e.g. Hypocrealean Metarhizium and Beauveria). Members of a different main IPF ...

  5. Entomopathogenic fungi as biological control agents of diamondback moth (Lepidoptera: Plutellidae)and compatibility with chemical insecticides

    Science.gov (United States)

    The objectives were to evaluate the efficiency of entomopathogenic fungi against Plutella xylostella (L.) and the compatibility of the most virulent isolates with some of the insecticides registered for use on cabbage crops. Pathogenicity tests used isolates of Beauveria bassiana, Metarhizium rileyi...

  6. Examination of the immune responses of males and workers of the leaf-cutting ant Acromyrmex echinatior and the effect of infection

    DEFF Research Database (Denmark)

    Baer, Boris; Krug, A.; Boomsma, Jacobus Jan

    2005-01-01

    -cutting ant workers being more variable in age or more genetically diverse within colonies. When exposed to the entomopathogenic fungus Metarhizium, workers expressed a substantially reduced immune response 96 h after infection, suggesting that the immune system was either depleted by having to respond...

  7. Effects of entomopathogenic fungus species, and impact of fertilizers, on biological control of pecan weevil (Coleoptera: Curculionidae)

    Science.gov (United States)

    The pecan weevil, Curculio caryae (Horn), is a key pest of pecan. Prior research indicated potential to use Hypocreales fungi for suppression of C. caryae. In this study, we first compared the efficacy of two fungal spp. Beauveria bassiana (GHA strain) and Metarhizium brunneum (F52) in ability to ...

  8. Ubiquity of insect-derived nitrogen transfer to plants by endophytic insect-pathogenic fungi: an additional branch of the soil nitrogen cycle.

    Science.gov (United States)

    Behie, Scott W; Bidochka, Michael J

    2014-03-01

    The study of symbiotic nitrogen transfer in soil has largely focused on nitrogen-fixing bacteria. Vascular plants can lose a substantial amount of their nitrogen through insect herbivory. Previously, we showed that plants were able to reacquire nitrogen from insects through a partnership with the endophytic, insect-pathogenic fungus Metarhizium robertsii. That is, the endophytic capability and insect pathogenicity of M. robertsii are coupled so that the fungus acts as a conduit to provide insect-derived nitrogen to plant hosts. Here, we assess the ubiquity of this nitrogen transfer in five Metarhizium species representing those with broad (M. robertsii, M. brunneum, and M. guizhouense) and narrower insect host ranges (M. acridum and M. flavoviride), as well as the insect-pathogenic fungi Beauveria bassiana and Lecanicillium lecanii. Insects were injected with (15)N-labeled nitrogen, and we tracked the incorporation of (15)N into two dicots, haricot bean (Phaseolus vulgaris) and soybean (Glycine max), and two monocots, switchgrass (Panicum virgatum) and wheat (Triticum aestivum), in the presence of these fungi in soil microcosms. All Metarhizium species and B. bassiana but not L. lecanii showed the capacity to transfer nitrogen to plants, although to various degrees. Endophytic association by these fungi increased overall plant productivity. We also showed that in the field, where microbial competition is potentially high, M. robertsii was able to transfer insect-derived nitrogen to plants. Metarhizium spp. and B. bassiana have a worldwide distribution with high soil abundance and may play an important role in the ecological cycling of insect nitrogen back to plant communities.

  9. Phenotypic and molecular characterization of the causal agent of chafer beetle mortality in the wheat fields of the Kurdistan province, Iran

    Directory of Open Access Journals (Sweden)

    Karimi Keivan

    2015-07-01

    Full Text Available We report the first case of chafer beetle [Anisoplia austriaca (Herbst 1783] mortality caused by Actinomucor elegans var. elegans in wheat fields of the Kurdistan province, Iran. For three years, dead larvae of Anisoplia austriaca were collected from wheat fields of the Kurdistan province. Similar isolates of a fast-growing fungus were recovered from all samples. The fungal isolates were identified as A. elegans var. elegans based on morphological and cultural characteristics. The identity of the species was further confirmed using sequence data of the ITS (Internal Transcribed Spacer region of ribosomal DNA. Koch’s postulates were fulfilled by the inoculation of the larvae of A. austriaca and Galleria mellonella (Linnaeus, 1758 (as the model insect using the spore suspension of A. elegans var. elegans. The viability of sporangiospores was evaluated using a spore dilution technique on germination medium. The results on the pathogenicity (100% mortality in A. austriaca larvae and viability tests (germination: 95.45% demonstrated that A. elegans var. elegans can be considered as a potential biocontrol agent against the chafer beetle. Field experiments are still required to evaluate the capacity of A. elegans as a biological control agent.

  10. TUNGRO DISEASE CONTROL THROUGH THE ELIMINATION VECTOR ROLE OF GREEN LEAF HOPPER WITH ENVIRONMENT FRIENDLY CONTROL

    Directory of Open Access Journals (Sweden)

    Dini Yuliani

    2017-12-01

    Full Text Available Green leafhopper (GLHplays an important role in tungro disease epidemics. Reduce the activity of GLHsuckasvectorsof tungro virus was effective to limit transmission of the virus. Integrated control of tungro disease may involve multiple components at once including using sambilata with entomopathogenicfungus Metarhiziumanisopliae. This research was conducted to determine the effect of sambilata and M.anisopliaein controlling the GLH as tungro virus vectors. The experiment was conducted in tungro endemic areas in Tanjungsiang,Subang District at dry season 2013 and wet season 2013/2014. Experiments using split plot design with four replications. The main plot was consists of GLH resistant varieties(IR66, tungro resistant varieties (Inpari 9, and check varieties(Ciherang. The subplots were M.anisopliae applications, sambilata, and control. Application was done on rice plant age 14, 28 and 42 days after planting (DAP.The results showed that the intensity of tungro on Ciherang showed the highest intensity compared toIR66 and Inpari9. Effect of entomopathogenic fungus M.anisopliae application to tungro disease showed a lower intensity compared with sambilata extracts and control. The intensity of tungro disease in farmers’ fields as a comparison of experiment was high enough on average between 1 until 69%. In general, the density of GLH population began to increase on the observation of 14 to 28 DAP. GLH population density was highest at 28 DAP. However, the population density of GLH decreased at 42 until 56 DAP.

  11. SEBARAN DAN EFIKASI BERBAGAI GENUS CENDAWAN ENTOMOPATOGEN TERHADAP Riptortus linearis PADA KEDELAI DI LAMPUNG DAN SUMATRA SELATAN

    Directory of Open Access Journals (Sweden)

    Yusmani Prayogo .

    2012-02-01

    Full Text Available Distribution and efficacy on various entomopathogenic fungi at Lampung and South Sumatra as a biological control agent against Riptortus linearis. This study was conducted from June to September 2005.  The fungi were isolated from insect cadavers, insect bait, and soil sample from the soybean land. Each fungal sample was identified  base on their morphology using determination keys.  The fungal isolates were inoculated to the pod sucking bug Riptortus linearis.  The results showed that there were six genera of entomopathogenic fungi that can be isolated, i.e.  Fusarium sp., Penicillium sp., Metarhizium sp., Verticillium sp., Paecilomyces sp., and  Beauveria sp.  The fungus-induced  mortality of R. linearis varied between 5 - 30%.  Paecilomyces sp. isolated from Lebak Batang Baru induced 25%; Beauveria sp. isolated from Pulung Kencana 25%; Verticillium sp. isolated from Kaliungu 20%. Metarhizium sp. isolated from Terbanggi Subing 20% and Verticillium sp. isolated from Lebak batang Baru 20% mortality. It was suggested that these fungi have potential as biological control agents  for the pod sucking bug in dry acid land.

  12. Anti-pathogen protection versus survival costs mediated by an ectosymbiont in an ant host.

    Science.gov (United States)

    Konrad, Matthias; Grasse, Anna V; Tragust, Simon; Cremer, Sylvia

    2015-01-22

    The fitness effects of symbionts on their hosts can be context-dependent, with usually benign symbionts causing detrimental effects when their hosts are stressed, or typically parasitic symbionts providing protection towards their hosts (e.g. against pathogen infection). Here, we studied the novel association between the invasive garden ant Lasius neglectus and its fungal ectosymbiont Laboulbenia formicarum for potential costs and benefits. We tested ants with different Laboulbenia levels for their survival and immunity under resource limitation and exposure to the obligate killing entomopathogen Metarhizium brunneum. While survival of L. neglectus workers under starvation was significantly decreased with increasing Laboulbenia levels, host survival under Metarhizium exposure increased with higher levels of the ectosymbiont, suggesting a symbiont-mediated anti-pathogen protection, which seems to be driven mechanistically by both improved sanitary behaviours and an upregulated immune system. Ants with high Laboulbenia levels showed significantly longer self-grooming and elevated expression of immune genes relevant for wound repair and antifungal responses (β-1,3-glucan binding protein, Prophenoloxidase), compared with ants carrying low Laboulbenia levels. This suggests that the ectosymbiont Laboulbenia formicarum weakens its ant host by either direct resource exploitation or the costs of an upregulated behavioural and immunological response, which, however, provides a prophylactic protection upon later exposure to pathogens. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  13. Anti-pathogen protection versus survival costs mediated by an ectosymbiont in an ant host

    Science.gov (United States)

    Konrad, Matthias; Grasse, Anna V.; Tragust, Simon; Cremer, Sylvia

    2015-01-01

    The fitness effects of symbionts on their hosts can be context-dependent, with usually benign symbionts causing detrimental effects when their hosts are stressed, or typically parasitic symbionts providing protection towards their hosts (e.g. against pathogen infection). Here, we studied the novel association between the invasive garden ant Lasius neglectus and its fungal ectosymbiont Laboulbenia formicarum for potential costs and benefits. We tested ants with different Laboulbenia levels for their survival and immunity under resource limitation and exposure to the obligate killing entomopathogen Metarhizium brunneum. While survival of L. neglectus workers under starvation was significantly decreased with increasing Laboulbenia levels, host survival under Metarhizium exposure increased with higher levels of the ectosymbiont, suggesting a symbiont-mediated anti-pathogen protection, which seems to be driven mechanistically by both improved sanitary behaviours and an upregulated immune system. Ants with high Laboulbenia levels showed significantly longer self-grooming and elevated expression of immune genes relevant for wound repair and antifungal responses (β-1,3-glucan binding protein, Prophenoloxidase), compared with ants carrying low Laboulbenia levels. This suggests that the ectosymbiont Laboulbenia formicarum weakens its ant host by either direct resource exploitation or the costs of an upregulated behavioural and immunological response, which, however, provides a prophylactic protection upon later exposure to pathogens. PMID:25473011

  14. Metabolomics reveals the heterogeneous secretome of two entomopathogenic fungi to ex vivo cultured insect tissues.

    Directory of Open Access Journals (Sweden)

    Charissa de Bekker

    Full Text Available Fungal entomopathogens rely on cellular heterogeneity during the different stages of insect host infection. Their pathogenicity is exhibited through the secretion of secondary metabolites, which implies that the infection life history of this group of environmentally important fungi can be revealed using metabolomics. Here metabolomic analysis in combination with ex vivo insect tissue culturing shows that two generalist isolates of the genus Metarhizium and Beauveria, commonly used as biological pesticides, employ significantly different arrays of secondary metabolites during infectious and saprophytic growth. It also reveals that both fungi exhibit tissue specific strategies by a distinguishable metabolite secretion on the insect tissues tested in this study. In addition to showing the important heterogeneous nature of these two entomopathogens, this study also resulted in the discovery of several novel destruxins and beauverolides that have not been described before, most likely because previous surveys did not use insect tissues as a culturing system. While Beauveria secreted these cyclic depsipeptides when encountering live insect tissues, Metarhizium employed them primarily on dead tissue. This implies that, while these fungi employ comparable strategies when it comes to entomopathogenesis, there are most certainly significant differences at the molecular level that deserve to be studied.

  15. Improving the delivery and efficiency of fungus-impregnated cloths for control of adult Aedes aegypti using a synthetic attractive lure.

    Science.gov (United States)

    Paula, Adriano R; Silva, Leila E I; Ribeiro, Anderson; Butt, Tariq M; Silva, Carlos P; Samuels, Richard I

    2018-05-04

    Entomopathogenic fungi are highly promising agents for controlling Aedes aegypti mosquitoes. Deploying fungus-impregnated black cloths in PET traps efficiently reduced Ae. aegypti female survival rates under intra-domicile conditions. With the aim of further increasing the effectiveness of the traps, the addition of attractive lures to fungus-impregnated traps was evaluated. Black cloths were suspended inside 2 l plastic bottles called "PET traps". These traps were placed in rooms simulating human residences. The first experiments evaluated the attraction of mosquitoes to PET traps with black cloths covered in adhesive film with and without synthetic lures (AtrAedes™). Traps were left in the test rooms for either 24 or 48 h. The attractiveness of the lures over time was also evaluated. The efficiency of PET traps with fungus-impregnated black cloths associated with lures was compared to that of traps without lures. The highest percentage of captured mosquitoes (31 and 66%) were observed in PET traps with black cloths covered in adhesive film + attractive lure maintained in test rooms for 24 h and 48 h, respectively. Black cloths covered in adhesive film captured 17 or 36% of the mosquitoes at 24 h and 48 h, respectively. The attractiveness of the lures fell gradually over time, capturing 37% after 5 days on the bench and 22% of the mosquitoes after 30 days exposure to ambient conditions. Associating attractive synthetic lures with black cloths impregnated with M. anisopliae placed in test rooms for 120 h reduced mean survival to 32%, whilst black cloths impregnated with M. anisopliae without lures resulted in a 48% survival rate. Using Beauveria bassiana in the traps resulted in a 52% reduction in mosquito survival, whilst combining Beauveria and AtrAedes resulted in a 36% survival rate. PET traps impregnated with fungus + AtrAedes resulted in similar reductions in survival when left in the rooms for 24, 48, 72 or 120 h. AtrAedes increased attractiveness of PET

  16. Bazı Biyolojik Preparatların Sitophilus granarius (Coleoptera: Curculionidae Erginlerine Etkileri

    Directory of Open Access Journals (Sweden)

    Tuğba AYYILDIZ

    2017-09-01

    Full Text Available Bu çalışmada, Entomopatojen funguslardan Biocatch, Nibortem (Verticillium lecani, BMAUM-M3-003 (Metharizum anisopliae ile okaliptus ve zencefil bitkilerinden elde edilen uçucu yağların ve bir bitkisel ekstrakt preparatı olan Nibedicine EC (Azadiractin’in buğdaylarda oldukça önemli zarara neden olan Sitophilus granarius (Coleoptera: Curculionidae erginlerine karşı laboratuar koşullarında etkinlikleri denenmiştir. 10x10x8 cm boyutlarında ağızları tül ile yapıştırılmış olan plastik kaplarda ve 25±1 °C sıcaklık, %60±5 nem oranlarında ve 16:8 saat ışıklandırma süresine ayarlı iklim odasında yetiştirilen S. granarius erginleri üzerine Biocatch, Nibortem (Verticillium lecanii entomopatojen funguslardan 1x109  cfu/mL, BMAUM-M3-003 (Metharizum anisopliae 1x108  cfu/mL dozunda, Nibedicine EC (Azadirachtin 3000 ppm dozunda, uçucu yağlar ise %1 (1 l/100 l dozunda uygulanmıştır. Çalışma sonucunda elde edilen verilere göre BMAUM-M3-003 kodlu entomopatojen fungus (M. anisopliae, S. granarius’u zamana bağlı olarak en fazla etkileyen etmen olmuştur. Yapılan değerlendirmeler sonucunda kullanılan preparatların 21 gün sonunda etkileri incelendiğinde, zencefilin %89.47, diğerlerinin ise %100 ölüm oranına sahip olduğu saptanmıştır.

  17. Destructive disinfection of infected brood prevents systemic disease spread in ant colonies.

    Science.gov (United States)

    Pull, Christopher D; Ugelvig, Line V; Wiesenhofer, Florian; Grasse, Anna V; Tragust, Simon; Schmitt, Thomas; Brown, Mark Jf; Cremer, Sylvia

    2018-01-09

    In social groups, infections have the potential to spread rapidly and cause disease outbreaks. Here, we show that in a social insect, the ant Lasius neglectus , the negative consequences of fungal infections ( Metarhizium brunneum ) can be mitigated by employing an efficient multicomponent behaviour, termed destructive disinfection, which prevents further spread of the disease through the colony. Ants specifically target infected pupae during the pathogen's non-contagious incubation period, utilising chemical 'sickness cues' emitted by pupae. They then remove the pupal cocoon, perforate its cuticle and administer antimicrobial poison, which enters the body and prevents pathogen replication from the inside out. Like the immune system of a metazoan body that specifically targets and eliminates infected cells, ants destroy infected brood to stop the pathogen completing its lifecycle, thus protecting the rest of the colony. Hence, in an analogous fashion, the same principles of disease defence apply at different levels of biological organisation.

  18. Genome Studies on Nematophagous and Entomogenous Fungi in China

    Science.gov (United States)

    Zhang, Weiwei; Cheng, Xiaoli; Liu, Xingzhong; Xiang, Meichun

    2016-01-01

    The nematophagous and entomogenous fungi are natural enemies of nematodes and insects and have been utilized by humans to control agricultural and forestry pests. Some of these fungi have been or are being developed as biological control agents in China and worldwide. Several important nematophagous and entomogenous fungi, including nematode-trapping fungi (Arthrobotrys oligospora and Drechslerella stenobrocha), nematode endoparasite (Hirsutella minnesotensis), insect pathogens (Beauveria bassiana and Metarhizium spp.) and Chinese medicinal fungi (Ophiocordyceps sinensis and Cordyceps militaris), have been genome sequenced and extensively analyzed in China. The biology, evolution, and pharmaceutical application of these fungi and their interacting with host nematodes and insects revealed by genomes, comparing genomes coupled with transcriptomes are summarized and reviewed in this paper. PMID:29376926

  19. Survival of chicken ascarid eggs exposed to different soil types and fungi

    DEFF Research Database (Denmark)

    Thapa, Sundar; Mejer, Helena; Thamsborg, Stig Milan

    2017-01-01

    The eggs of intestinal ascarid parasites (Ascaridia galli and Heterakis spp.) of chickens can survive long-term in soil and this makes contaminated yards and pastures infective to chickens for years. The fungi Pochonia chlamydosporia Biotype 10 and Metarhizium brunneum KVL04-57 can kill ascarid...... eggs in agar assays but their efficacy against these eggs in soil is unknown. We therefore initially tested the ovicidal effect of the two fungi in laboratory soil assays. Unembryonated eggs were added to sterilised and non-sterilised soil with or without fungi, and egg recovery was examined before...... and after incubation (22 °C, 30 days). Egg recovery was substantially reduced by P. chlamydosporia and M. brunneum in sterilised soil. However, in non-sterilised soil only M. brunneum slightly reduced egg counts. Notably, egg recovery was reduced markedly in non-sterilised soil though no fungi were applied...

  20. Sick ants become unsociable

    DEFF Research Database (Denmark)

    Bos, Nicky Peter Maria; Lefevre, T.; Jensen, A.B.

    2012-01-01

    Parasites represent a severe threat to social insects, which form high-density colonies of related individuals, and selection should favour host traits that reduce infection risk. Here, using a carpenter ant (Camponotus aethiops) and a generalist insect pathogenic fungus (Metarhizium brunneum), we...... show that infected ants radically change their behaviour over time to reduce the risk of colony infection. Infected individuals (i) performed less social interactions than their uninfected counterparts, (ii) did not interact with brood anymore and (iii) spent most of their time outside the nest from...... day 3 post-infection until death. Furthermore, infected ants displayed an increased aggressiveness towards non-nestmates. Finally, infected ants did not alter their cuticular chemical profile, suggesting that infected individuals do not signal their physiological status to nestmates. Our results...

  1. Functional role of phenylacetic acid from metapleural gland secretions in controlling fungal pathogens in evolutionarily derived leaf-cutting ants

    DEFF Research Database (Denmark)

    Fernández-Marín, Hermógenes; Nash, David Richard; Higginbotham, Sarah

    2015-01-01

    Fungus-farming ant colonies vary four to five orders of magnitude in size. They employ compounds from actinomycete bacteria and exocrine glands as antimicrobial agents. Atta colonies have millions of ants and are particularly relevant for understanding hygienic strategies as they have abandoned...... their ancestors’ prime dependence on antibiotic-based biological control in favour of using metapleural gland (MG) chemical secretions. Atta MGs are unique in synthesizing large quantities of phenylacetic acid (PAA), a known but little investigated antimicrobial agent.We showthat particularly the smallestworkers...... derived leaf-cutting ants are less sensitive to PAA than strains from phylogenetically more basal fungus-farming ants, consistent with the dynamics of an evolutionary arms race between virulence and control for Escovopsis, but not Metarhizium. Atta ants form larger colonies with more extreme caste...

  2. Soil application of Beauveria bassiana GHA against apple sawfly, Hoplocampa testudinea (Hymenoptera: Tenthredinidae)

    DEFF Research Database (Denmark)

    Świergiel, Weronika; Meyling, Nicolai Vitt; Porcel, Mario

    2016-01-01

    Low impact alternatives to synthetic insecticides for the control of apple sawfly (Hoplocampa testudinea Klug) are scarce encumbering pest management in organic apple orchards. We investigated the soil persistence and field efficacy of the entomopathogenic fungus Beauveria bassiana (Balsamo......) Vuillemin (BotaniGard) against apple sawfly under common organic orchard practices. We also assessed the efficacy of B. bassiana GHA and Metarhizium brunneum Petch (indigenous strain) against sawfly in the laboratory. Larvae treated with either fungus in the laboratory died faster than control larvae...... and displayed 49.4%-68.4% mycosis. In the field, B. bassiana density remained high in the week after application, during larval descent to the soil. Fungal density decreased to 25% at 49 d after application and to 0.4% after 55 weeks. Molecular markers revealed that the majority of fungal isolates recovered...

  3. New alternatives in the control of plagues and projections of the ICA in the handling of the residuals in agricultural products; Agriculturas alternativas: Enfasis en aportes de gente de campo del sector suroccidental de Colombia

    Energy Technology Data Exchange (ETDEWEB)

    Clavijo Navarro, P E

    1995-07-01

    The strategies are described indicated by the ICA for the control of plagues and of toxic residuals of agro-chemicals in the agricultural products, with emphasis in the implementation of mechanisms like the integrated control of plagues. It stands out the paper of the bio-insecticides as alternative to the agro-chemicals use and enter these stable products they are mentioned with the help of Bacillus thuringiensis, Beauveria bassiana, Nomuraea rileyi, Metarhizium anisoplidae and Verticilium lecanni. Some implications of the presence of toxic residuals are mentioned in Colombian export fruits and the measures that have been adopted to avoid them, as well as some mechanisms adopted in the international environment with the same end. The effective legislation is indicated as for prohibition and restriction of plaguicides use.

  4. New alternatives in the control of plagues and projections of the ICA in the handling of the residuals in agricultural products

    International Nuclear Information System (INIS)

    Clavijo Navarro, P.E.

    1995-01-01

    The strategies are described indicated by the ICA for the control of plagues and of toxic residuals of agro-chemicals in the agricultural products, with emphasis in the implementation of mechanisms like the integrated control of plagues. It stands out the paper of the bio-insecticides as alternative to the agro-chemicals use and enter these stable products they are mentioned with the help of Bacillus thuringiensis, Beauveria bassiana, Nomuraea rileyi, Metarhizium anisoplidae and Verticilium lecanni. Some implications of the presence of toxic residuals are mentioned in Colombian export fruits and the measures that have been adopted to avoid them, as well as some mechanisms adopted in the international environment with the same end. The effective legislation is indicated as for prohibition and restriction of plaguicides use

  5. Extracción y purificación del adn de moniliophthora roreri hongo que ataca el cacao, en norte de santander

    Directory of Open Access Journals (Sweden)

    Liliana Yanet Suárez Contreras

    2005-07-01

    Full Text Available This research has as objetive to define the methodology of extraction and purification for Moniliophthora roreri and to apply it to 56 isolations of Moniliophthora roreri obtained from Cúcuta, Agua Clara, Sardinata, El Tarra, Tibú, Bucaracica, Teorama and Zulia in Norte de Santander (Colombia. The extraction of DNA was carried out by the protocol proposed by Miranda and Sandoval in 2000, with some proposed modifications by Rocha. To its purification was utilized Chloroform Phenol. Once, it was standarized by the protocol of extraction. It tested with other mushrooms:Metarhizium sp, Botritys cincrea, Fusarium culmorum, Phytophthora cinnamomi. This work intends to continue with the research in the area of Molecular Biology of Moniliophthora roreri and other phytopathogens of economic importance for the region, it promotes the research in micology.

  6. Muscling out malaria

    DEFF Research Database (Denmark)

    Hughes, David Peter; Boomsma, Jacobus Jan

    2006-01-01

    ) [2] highlighted the back-to-back articles in Science 3 and 4 that demonstrated the potential biocontrol of malaria by targeting mosquitoes with entomopathogenic fungi (Metarhizium and Beauveria spp.). The wide impact of the original articles and the need to find alternatives to pesticidal control...... where malaria is endemic, humanity cannot afford shortcuts, because any failures owing to poor management or premature implementation will reduce local governmental support rather than enhance it (Andrew Read, pers. commun.). Therefore, if we are to ‘muscle out malaria', well...... of key importance, and the new focus on fungal biocontrol of malaria should therefore act as a catalyst for further research on the basic biology of fungal pathogens. Understanding morphological, biochemical or immune system-based resistance to insect pathogenic fungi will be easier if we know...

  7. Ant colonies prefer infected over uninfected nest sites

    DEFF Research Database (Denmark)

    Pontieri, Luigi; Vojvodic, Svjetlana; Graham, Riley

    2014-01-01

    with sporulating mycelium of the entomopathogenic fungus Metarhizium brunneum (infected nests), nests containing nestmates killed by freezing (uninfected nests), and empty nests. In contrast to the expectation pharaoh ant colonies preferentially (84%) moved into the infected nest when presented with the choice...... the high risk of epidemics in group-living animals. Choosing nest sites free of pathogens is hypothesized to be highly efficient in invasive ants as each of their introduced populations is often an open network of nests exchanging individuals (unicolonial) with frequent relocation into new nest sites...... and low genetic diversity, likely making these species particularly vulnerable to parasites and diseases. We investigated the nest site preference of the invasive pharaoh ant, Monomorium pharaonis, through binary choice tests between three nest types: nests containing dead nestmates overgrown...

  8. Abordagem proteômica para estudos de fotobiologia e fotoinativação de fungos

    OpenAIRE

    Guilherme Thomaz Pereira Brancini

    2015-01-01

    A proteômica é uma técnica muito importante e amplamente utilizada na elucidação de diversos mecanismos biológicos. Essa técnica pode ser usada, por exemplo, na avaliação da resposta celular a estímulos ou na determinação de modificações proteicas resultantes de um tratamento. Neste trabalho, a abordagem proteômica foi utilizada em dois sistemas diferentes: (1) na elucidação da resposta à luz no fungo Metarhizium acridum e (2) na determinação dos danos proteicos causados pelo tratamento fotod...

  9. Swainsonine Biosynthesis Genes in Diverse Symbiotic and Pathogenic Fungi

    Directory of Open Access Journals (Sweden)

    Daniel Cook

    2017-06-01

    Full Text Available Swainsonine—a cytotoxic fungal alkaloid and a potential cancer therapy drug—is produced by the insect pathogen and plant symbiont Metarhizium robertsii, the clover pathogen Slafractonia leguminicola, locoweed symbionts belonging to Alternaria sect. Undifilum, and a recently discovered morning glory symbiont belonging to order Chaetothyriales. Genome sequence analyses revealed that these fungi share orthologous gene clusters, designated “SWN,” which included a multifunctional swnK gene comprising predicted adenylylation and acyltransferase domains with their associated thiolation domains, a β-ketoacyl synthase domain, and two reductase domains. The role of swnK was demonstrated by inactivating it in M. robertsii through homologous gene replacement to give a ∆swnK mutant that produced no detectable swainsonine, then complementing the mutant with the wild-type gene to restore swainsonine biosynthesis. Other SWN cluster genes were predicted to encode two putative hydroxylases and two reductases, as expected to complete biosynthesis of swainsonine from the predicted SwnK product. SWN gene clusters were identified in six out of seven sequenced genomes of Metarhzium species, and in all 15 sequenced genomes of Arthrodermataceae, a family of fungi that cause athlete’s foot and ringworm diseases in humans and other mammals. Representative isolates of all of these species were cultured, and all Metarhizium spp. with SWN clusters, as well as all but one of the Arthrodermataceae, produced swainsonine. These results suggest a new biosynthetic hypothesis for this alkaloid, extending the known taxonomic breadth of swainsonine producers to at least four orders of Ascomycota, and suggest that swainsonine has roles in mutualistic symbioses and diseases of plants and animals.

  10. Efficacy and environmental persistence of nootkatone for the control of the blacklegged tick (Acari: Ixodidae) in residential landscapes.

    Science.gov (United States)

    Bharadwaj, Anuja; Stafford, Kirby C; Behle, Robert W

    2012-09-01

    The ability of the plant-derived compound nootkatone to control nymphs of the blacklegged tick, Ixodes scapularis Say, was evaluated at lawn perimeter plots at homes in Lyme disease endemic areas of Connecticut. Three formulations of nootkatone ranging from 0.05 to 0.84% (0.06 - 1.03 g AI/m2) were applied by a hydraulic sprayer from 2008 to 2010. In 2008, the 0.84% emulsifiable nootkatone formulation provided 100% control of I. scapularis through week 1, but declined to 49 and 0% by 2 and 3 wk posttreatment, respectively. A combination of 0.05% nootkatone and entomopathogenic fungus, Metarhizium brunneum Petch F52, resulted in 50% control for the first week posttreatment and no control in subsequent weeks. The 0.84% emulsifiable nootkatone formulation was phytotoxic, although no damage was observed with the 0.05% formulation with Metarhizium. Residual analysis of nootkatone collected on filter paper disks showed that > or = 95% of the emulsified nootkatone for both formulations was lost within 7 d after application. A lignin-encapsulated nootkatone formulation (0.56 and 0.46% in 2009 and 2010, respectively) provided 100% control of I. scapularis for 8 wk in 2009 and, in 2010, 67% control at approximately 1 wk posttreatment with respect to the pretreatment counts, although there was no difference in tick abundance posttreatment. A 0.60% Maillard-reaction encapsulated nootkatone formulation in 2010 provided a similar level of control (62%). Nootkatone in the lignin and Maillard formulations were more persistent than the emulsifiable formulation. Little or no phytotoxicity was observed with the encapsulated formulations. Encapsulating nootkatone reduced phytotoxicity and appeared to reduce environmental loss. While nootkatone can provide effective tick control, further work is needed to refine formulations to address phytotoxicity, yet provide sufficient material to control ticks.

  11. Entomopathogens Associated to Citrus and Their Pathogenicity on Compsus viridivittatus Guérin-Méneville (Coleoptera: Curculionidae: Entiminae

    Directory of Open Access Journals (Sweden)

    Paola Andrea Zuluaga Cárdenas

    2015-07-01

    Full Text Available C. viridivittatus, citrus weevil distributed throughoutthe coffee maker and Andean region of Colombia. Thelarvae feed on roots and adults on leaves and flowers. On three citrus farms of the Valley were isolate and evaluated fungi and entompathogenic nematodes M. anisopliaeand B. bassiana and Steinernema sp. and Heterorabditis sp. on larvae of C. viridivittatus 26, 36, 48 and 53 days of age. In 120 from 132 soil samples were found 21 fungi and none nematodes. Commercial B. bassiana B9 and B10 caused 100 % adult mortality in a time of 4.3 and 4 days. M. anisopliae M6 y M7 caused 94 % and 97 % of mortality to the 4.3 and 5 days. Steinernema sp. UNS09 caused 65 % of mortality on larvae of 48 and 53 days of age, seven days later. No were differences between UNS09 Steinernema and Heterorhabditis UNH16. Steinernema sp. UNS09 caused 85.7 % of mortality on 53 days larvae and 81.9 % and 81.1 % to larvae of 36 and 26 days. Heterorhabditis sp. UNH16 killed larvae of 36, 26 and 56 days was 79 %, 81 % and 75.4 % seven days later. In conclusion, fungi and nematodes can be an alternative to management of C. viridivittatus larvae.

  12. Molecular signatures of nicotinoid-pathogen synergy in the termite gut.

    Directory of Open Access Journals (Sweden)

    Ruchira Sen

    Full Text Available Previous studies in lower termites revealed unexpected synergies between nicotinoid insecticides and fungal entomopathogens. The present study investigated molecular mechanisms of nicotinoid-pathogen synergy in the lower termite Reticulitermes flavipes, using the nicotinoid, imidacloprid, in combination with fungal and bacterial entomopathogens. Particular focus was placed on metatranscriptome composition and microbial dynamics in the symbiont-rich termite gut, which houses diverse mixes of protists and bacteria. cDNA microarrays containing a mix of host and protist symbiont oligonucleotides were used to simultaneously assess termite and protist gene expression. Five treatments were compared that included single challenges with sublethal doses of fungi (Metharizium anisopliae, bacteria (Serratia marcescens or imidacloprid, and dual challenges with fungi + imidacloprid or bacteria + imidacloprid. Our findings point towards protist dysbiosis and compromised social behavior, rather than suppression of stereotypical immune defense mechanisms, as the dominant factors underlying nicotinoid-pathogen synergy in termites. Also, greater impacts observed for the fungal pathogen than for the bacterial pathogen suggest that the rich bacterial symbiont community in the R. flavipes gut (>5000 species-level phylotypes exists in an ecological balance that effectively excludes exogenous bacterial pathogens. These findings significantly advance our understanding of antimicrobial defenses in this important eusocial insect group, as well as provide novel insights into how nicotinoids can exert deleterious effects on social insect colonies.

  13. Multi-locus sequence typing provides epidemiological insights for diseased sharks infected with fungi belonging to the Fusarium solani species complex.

    Science.gov (United States)

    Desoubeaux, Guillaume; Debourgogne, Anne; Wiederhold, Nathan P; Zaffino, Marie; Sutton, Deanna; Burns, Rachel E; Frasca, Salvatore; Hyatt, Michael W; Cray, Carolyn

    2018-07-01

    Fusarium spp. are saprobic moulds that are responsible for severe opportunistic infections in humans and animals. However, we need epidemiological tools to reliably trace the circulation of such fungal strains within medical or veterinary facilities, to recognize environmental contaminations that might lead to infection and to improve our understanding of factors responsible for the onset of outbreaks. In this study, we used molecular genotyping to investigate clustered cases of Fusarium solani species complex (FSSC) infection that occurred in eight Sphyrnidae sharks under managed care at a public aquarium. Genetic relationships between fungal strains were determined by multi-locus sequence typing (MLST) analysis based on DNA sequencing at five loci, followed by comparison with sequences of 50 epidemiologically unrelated FSSC strains. Our genotyping approach revealed that F. keratoplasticum and F. solani haplotype 9x were most commonly isolated. In one case, the infection proved to be with another Hypocrealian rare opportunistic pathogen Metarhizium robertsii. Twice, sharks proved to be infected with FSSC strains with the same MLST sequence type, supporting the hypothesis the hypothesis that common environmental populations of fungi existed for these sharks and would suggest the longtime persistence of the two clonal strains within the environment, perhaps in holding pools and life support systems of the aquarium. This study highlights how molecular tools like MLST can be used to investigate outbreaks of microbiological disease. This work reinforces the need for regular controls of water quality to reduce microbiological contamination due to waterborne microorganisms.

  14. Co-founding ant queens prevent disease by performing prophylactic undertaking behaviour.

    Science.gov (United States)

    Pull, Christopher D; Cremer, Sylvia

    2017-10-13

    Social insects form densely crowded societies in environments with high pathogen loads, but have evolved collective defences that mitigate the impact of disease. However, colony-founding queens lack this protection and suffer high rates of mortality. The impact of pathogens may be exacerbated in species where queens found colonies together, as healthy individuals may contract pathogens from infectious co-founders. Therefore, we tested whether ant queens avoid founding colonies with pathogen-exposed conspecifics and how they might limit disease transmission from infectious individuals. Using Lasius niger queens and a naturally infecting fungal pathogen Metarhizium brunneum, we observed that queens were equally likely to found colonies with another pathogen-exposed or sham-treated queen. However, when one queen died, the surviving individual performed biting, burial and removal of the corpse. These undertaking behaviours were performed prophylactically, i.e. targeted equally towards non-infected and infected corpses, as well as carried out before infected corpses became infectious. Biting and burial reduced the risk of the queens contracting and dying from disease from an infectious corpse of a dead co-foundress. We show that co-founding ant queens express undertaking behaviours that, in mature colonies, are performed exclusively by workers. Such infection avoidance behaviours act before the queens can contract the disease and will therefore improve the overall chance of colony founding success in ant queens.

  15. Increased Male-Male Mounting Behaviour in Desert Locusts during Infection with an Entomopathogenic Fungus.

    Science.gov (United States)

    Clancy, Lisa M; Cooper, Amy L; Griffith, Gareth W; Santer, Roger D

    2017-07-18

    Same-sex sexual behaviour occurs across diverse animal taxa, but adaptive explanations can be difficult to determine. Here we investigate male-male mounting (MMM) behaviour in female-deprived desert locust males infected with the entomopathogenic fungus Metarhizium acridum. Over a four-week period, infected locusts performed more MMM behaviours than healthy controls. Among infected locusts, the probability of MMM, and the duration of time spent MMM, significantly increased with the mounting locust's proximity to death. In experimental trials, infected locusts were also significantly more likely than controls to attempt to mount healthy males. Therefore, we demonstrate that MMM is more frequent among infected than healthy male locusts, and propose that this may be explained by terminal reproductive effort and a lowered mate acceptance threshold in infected males. However, during experimental trials mounting attempts were more likely to be successful if the mounted locusts were experimentally manipulated to have a reduced capacity to escape. Thus, reduced escape capability resulting from infection may also contribute to the higher frequency of MMM among infected male locusts. Our data demonstrate that pathogen infection can affect same-sex sexual behaviour, and suggest that the impact of such behaviours on host and pathogen fitness will be a novel focus for future research.

  16. Advances in Genomics of Entomopathogenic Fungi.

    Science.gov (United States)

    Wang, J B; St Leger, R J; Wang, C

    2016-01-01

    Fungi are the commonest pathogens of insects and crucial regulators of insect populations. The rapid advance of genome technologies has revolutionized our understanding of entomopathogenic fungi with multiple Metarhizium spp. sequenced, as well as Beauveria bassiana, Cordyceps militaris, and Ophiocordyceps sinensis among others. Phylogenomic analysis suggests that the ancestors of many of these fungi were plant endophytes or pathogens, with entomopathogenicity being an acquired characteristic. These fungi now occupy a wide range of habitats and hosts, and their genomes have provided a wealth of information on the evolution of virulence-related characteristics, as well as the protein families and genomic structure associated with ecological and econutritional heterogeneity, genome evolution, and host range diversification. In particular, their evolutionary transition from plant pathogens or endophytes to insect pathogens provides a novel perspective on how new functional mechanisms important for host switching and virulence are acquired. Importantly, genomic resources have helped make entomopathogenic fungi ideal model systems for answering basic questions in parasitology, entomology, and speciation. At the same time, identifying the selective forces that act upon entomopathogen fitness traits could underpin both the development of new mycoinsecticides and further our understanding of the natural roles of these fungi in nature. These roles frequently include mutualistic relationships with plants. Genomics has also facilitated the rapid identification of genes encoding biologically useful molecules, with implications for the development of pharmaceuticals and the use of these fungi as bioreactors. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Fungi with multifunctional lifestyles: endophytic insect pathogenic fungi.

    Science.gov (United States)

    Barelli, Larissa; Moonjely, Soumya; Behie, Scott W; Bidochka, Michael J

    2016-04-01

    This review examines the symbiotic, evolutionary, proteomic and genetic basis for a group of fungi that occupy a specialized niche as insect pathogens as well as endophytes. We focus primarily on species in the genera Metarhizium and Beauveria, traditionally recognized as insect pathogenic fungi but are also found as plant symbionts. Phylogenetic evidence suggests that these fungi are more closely related to grass endophytes and diverged from that lineage ca. 100 MYA. We explore how the dual life cycles of these fungi as insect pathogens and endophytes are coupled. We discuss the evolution of insect pathogenesis while maintaining an endophytic lifestyle and provide examples of genes that may be involved in the transition toward insect pathogenicity. That is, some genes for insect pathogenesis may have been co-opted from genes involved in endophytic colonization. Other genes may be multifunctional and serve in both lifestyle capacities. We suggest that their evolution as insect pathogens allowed them to effectively barter a specialized nitrogen source (i.e. insects) with host plants for photosynthate. These ubiquitous fungi may play an important role as plant growth promoters and have a potential reservoir of secondary metabolites.

  18. A 4'-phosphopantetheinyl transferase mediates non-ribosomal peptide synthetase activation in Aspergillus fumigatus.

    Science.gov (United States)

    Neville, Claire; Murphy, Alan; Kavanagh, Kevin; Doyle, Sean

    2005-04-01

    Aspergillus fumigatus is a significant human pathogen. Non-ribosomal peptide (NRP) synthesis is thought to be responsible for a significant proportion of toxin and siderophore production in the organism. Furthermore, it has been shown that 4'-phosphopantetheinylation is required for the activation of key enzymes involved in non-ribosomal peptide synthesis in other species. Here we report the cloning, recombinant expression and functional characterisation of a 4'-phosphopantetheinyl transferase from A. fumigatus and the identification of an atypical NRP synthetase (Afpes1), spanning 14.3 kb. Phylogenetic analysis has shown that the NRP synthetase exhibits greatest identity to NRP synthetases from Metarhizium anisolpiae (PesA) and Alternaria brassicae (AbrePsy1). Northern hybridisation and RT-PCR analysis have confirmed that both genes are expressed in A. fumigatus. A 120 kDa fragment of the A. fumigatus NRP synthetase, containing a putative thiolation domain, was cloned and expressed in the baculovirus expression system. Detection of a 4'-phosphopantetheinylated peptide (SFSAMK) from this protein, by MALDI-TOF mass spectrometric analysis after coincubation of the 4'-phosphopantetheinyl transferase with the recombinant NRP synthetase fragment and acetyl CoA, confirms that it is competent to play a role in NRP synthetase activation in A. fumigatus. The 4'-phosphopantetheinyl transferase also activates, by 4'-phosphopantetheinylation, recombinant alpha-aminoadipate reductase (Lys2p) from Candida albicans, a key enzyme involved in lysine biosynthesis.

  19. Soil application of Beauveria bassiana GHA against apple sawfly, Hoplocampa testudinea (Hymenoptera: Tenthredinidae): Field mortality and fungal persistence.

    Science.gov (United States)

    Świergiel, Weronika; Meyling, Nicolai V; Porcel, Mario; Rämert, Birgitta

    2016-12-01

    Low impact alternatives to synthetic insecticides for the control of apple sawfly (Hoplocampa testudinea Klug) are scarce encumbering pest management in organic apple orchards. We investigated the soil persistence and field efficacy of the entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin (BotaniGard) against apple sawfly under common organic orchard practices. We also assessed the efficacy of B. bassiana GHA and Metarhizium brunneum Petch (indigenous strain) against sawfly in the laboratory. Larvae treated with either fungus in the laboratory died faster than control larvae and displayed 49.4%-68.4% mycosis. In the field, B. bassiana density remained high in the week after application, during larval descent to the soil. Fungal density decreased to 25% at 49 d after application and to 0.4% after 55 weeks. Molecular markers revealed that the majority of fungal isolates recovered comprised the applied B. bassiana strain GHA. Larvae pupating in soil cages in the orchard for 49 d displayed 17% mycosis. The high efficacy under laboratory conditions was not seen in the field. B. bassiana application resulted in densities above the upper natural background level during the growing season, but reversion to background levels occurred within a year. It remains to be investigated whether this has a detrimental effect on nontarget organisms. Additional work is needed to bridge the knowledge gap between laboratory and field efficacy in orchards. © 2015 The Authors. Insect Science published by Wiley Publishing Asia Pty Ltd on behalf of Institute of Zoology, Chinese Academy of Sciences.

  20. Starvation and Imidacloprid Exposure Influence Immune Response by Anoplophora glabripennis (Coleoptera: Cerambycidae) to a Fungal Pathogen.

    Science.gov (United States)

    Fisher, Joanna J; Castrillo, Louela A; Donzelli, Bruno G G; Hajek, Ann E

    2017-08-01

    In several insect systems, fungal entomopathogens synergize with neonicotinoid insecticides which results in accelerated host death. Using the Asian longhorned beetle, Anoplophora glabripennis (Motschulsky), an invasive woodborer inadvertently introduced into North America and Europe, we investigated potential mechanisms in the synergy between the entomopathogenic fungus Metarhizium brunneum Petch and the insecticide imidacloprid. A potential mechanism underlying this synergy could be imidacloprid's ability to prevent feeding shortly after administration. We investigated whether starvation would have an impact similar to imidacloprid exposure on the mortality of fungal-inoculated beetles. Using real-time PCR to quantify fungal load in inoculated beetles, we determined how starvation and pesticide exposure impacted beetles' ability to tolerate or resist a fungal infection. The effect of starvation and pesticide exposure on the encapsulation and melanization immune responses of the beetles was also quantified. Starvation had a similar impact on the survival of M. brunneum-inoculated beetles compared to imidacloprid exposure. The synergy, however, was not completely due to starvation, as imidacloprid reduced the beetles' melanotic encapsulation response and capsule area, while starvation did not significantly reduce these immune responses. Our results suggest that there are multiple interacting mechanisms involved in the synergy between M. brunneum and imidacloprid. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. RNA-sequencing analysis of fungi-induced transcripts from the bamboo wireworm Melanotus cribricollis (Coleoptera: Elateridae larvae.

    Directory of Open Access Journals (Sweden)

    Bi-Huan Ye

    Full Text Available Larvae of Melanotus cribricollis, feed on bamboo shoots and roots, causing serious damage to bamboo in Southern China. However, there is currently no effective control measure to limit the population of this underground pest. Previously, a new entomopathogenic fungal strain isolated from M. cribricollis larvae cadavers named Metarhizium pingshaense WP08 showed high pathogenic efficacy indoors, indicated that the fungus could be used as a bio-control measure. So far, the genetic backgrounds of both M. cribricollis and M. pingshaense WP08 were blank. Here, we analyzed the whole transcriptome of M. cribricollis larvae, infected with M. pingshaense WP08 or not, using high-throughput next generation sequencing technology. In addition, the transcriptome sequencing of M. pingshaense WP08 was also performed for data separation of those two non-model species. The reliability of the RNA-Seq data was also validated through qRT-PCR experiment. The de novo assembly, functional annotation, sequence comparison of four insect species, and analysis of DEGs, enriched pathways, GO terms and immune related candidate genes were operated. The results indicated that, multiple defense mechanisms of M. cribricollis larvae are initiated to protect against the more serious negative effects caused by fungal infection. To our knowledge, this was the first report of transcriptome analysis of Melanotus spp. infected with a fungus, and it could provide insights to further explore insect-fungi interaction mechanisms.

  2. Direct plantlet inoculation with soil or insect-associated fungi may control cabbage root fly maggots.

    Science.gov (United States)

    Razinger, Jaka; Lutz, Matthias; Schroers, Hans-Josef; Palmisano, Marilena; Wohler, Christian; Urek, Gregor; Grunder, Jürg

    2014-07-01

    A potential Delia radicum biological control strategy involving cauliflower plantlet inoculation with various fungi was investigated in a series of laboratory and glasshouse experiments. In addition to entomopathogenic fungi, fungi with a high rhizosphere competence and fungi with the ability to survive as saprotrophs in soil were tested. The following fungal species were evaluated in the experiments: Trichoderma atroviride, T. koningiopsis, T. gamsii, Beauveria bassiana, Metharhizium anisopliae, M. brunneum and Clonostachys solani. A commercial carbosulfan-based insecticide was used as a positive control. Additionally, two commercial products, one based on B. bassiana (Naturalis) and one on Bacillus thuringiensis (Delfin) were used as reference biocontrol agents. The aims were (i) to assess the pathogenicity of the selected fungal isolates to Delia radicum, (ii) to evaluate the fungal isolates' rhizosphere competence, with the emphasis on the persistence of the original inoculum on the growing roots, (iii) to assess possible endophytic plant tissue colonization, and (iv) to evaluate potential plant growth stimulating effects of the added inoculi. Significant pathogenicity of tested fungi against Delia radicum was confirmed in in vitro and glasshouse experiments. All tested fungi persisted on cauliflower rhizoplane. More importantly, the added fungi were found on thoroughly washed roots outside the original point of inoculation. This provided us with evidence that our tested fungi could be transferred via or grow with the elongating roots. In addition to colonizing the rhizoplane, some fungi were found inside the plant root or stem tissue, thus exhibiting endophytic characteristics. The importance of fungal ecology as a criterion in appropriate biological control agent selection is discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Insect symbiosis: derivation of yeast-like endosymbionts within an entomopathogenic filamentous lineage.

    Science.gov (United States)

    Suh, S O; Noda, H; Blackwell, M

    2001-06-01

    Yeast-like endosymbionts (YLSs) of insects often are restricted to specific hosts and are essential to the host's survival. For example, in planthoppers (Homoptera: Delphacidae), endosymbionts function in sterol utilization and nitrogen recycling for the hosts. Our study, designed to investigate evolutionary changes in the YLS lineage involved in the planthopper association, strongly suggests an origin of the YLSs from within the filamentous ascomycetes (Euascomycetes), not the true yeasts (Saccharomycetes), as their morphology might indicate. During divergence of the planthopper YLSs, dramatic changes would have occurred in the insect-fungus interaction and the fungal morphology that have previously been undescribed in filamentous ascomycetes. Phylogenetic trees were based on individual and combined data sets of 2.6 kb of the nuclear small- and large-subunit ribosomal RNA genes for YLSs from three rice planthoppers (Laodelphax striatellus, Nilaparvata lugens, and Sogatella furcifera) compared with 56 other fungi. Parsimony analysis placed the planthopper YLSs within Cordyceps (Euascomycetes: Hypocreales: Clavicipitaceae), a genus of filamentous insects and a few fungal pathogenic ascomycetes. Another YLS species restricted to the aphid Hamiltonaphis styraci (Homoptera: Aphididae) was a sister taxon to the planthopper YLSS: Filamentous insect pathogens (Metarhizium and Beauveria) specific to the same species of insect hosts as the YLSs also formed lineages within the Clavicipitaceae, but these were distinct from the clade comprising YLS species. Trees constrained to include the YLSs in families of the Hypocreales other than the Clavicipitaceae were rejected by the Kishino-Hasegawa test. In addition, the results of this study support a hypothesis of two independent origins of insect-associated YLSs from among filamentous ascomycetes: the planthopper YLSs in the Clavicipitaceae and the YLSs associated with anobiid beetles (Symbiotaphrina species). Several lineages of

  4. Multifaceted defense against antagonistic microbes in developing offspring of the parasitoid wasp Ampulex compressa (Hymenoptera, Ampulicidae.

    Directory of Open Access Journals (Sweden)

    Katharina Weiss

    Full Text Available Effective antimicrobial strategies are essential adaptations of insects to protect themselves, their offspring, and their foods from microbial pathogens and decomposers. Larvae of the emerald cockroach wasp, Ampulex compressa, sanitize their cockroach hosts, Periplaneta americana, with a cocktail of nine antimicrobials comprising mainly (R-(--mellein and micromolide. The blend of these antimicrobials has broad-spectrum antimicrobial activity. Here we explore the spatio-temporal pattern of deployment of antimicrobials during the development from egg to adult as well as their physico-chemical properties to assess how these aspects may contribute to the success of the antimicrobial strategy. Using gas chromatography/mass spectrometry (GC/MS we show that larvae start sanitizing their food as soon as they have entered their host to feed on its tissue. Subsequently, they impregnate the cockroach carcass with antimicrobials to create a hygienic substrate for cocoon spinning inside the host. Finally, the antimicrobials are incorporated into the cocoon. The antimicrobial profiles on cockroach and wasp cocoon differed markedly. While micromolide persisted on the cockroaches until emergence of the wasps, solid-phase microextraction sampling and GC/MS analysis revealed that (R-(--mellein vaporized from the cockroaches and accumulated in the enclosed nest. In microbial challenge assays (R-(--mellein in the headspace of parasitized cockroaches inhibited growth of entomopathogenic and opportunistic microbes (Serratia marcescens, Aspergillus sydowii, Metarhizium brunneum. We conclude that, in addition to food sanitation, A. compressa larvae enclose themselves in two defensive walls by impregnating the cocoon and the cockroach cuticle with antimicrobials. On top of that, they use vaporous (R-(--mellein to sanitize the nest by fumigation. This multifaceted antimicrobial defense strategy involving the spatially and temporally coordinated deployment of several

  5. Toxicity of natural insecticides on the larvae of wheat head armyworm, Dargida diffusa (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Reddy, Gadi V P; Antwi, Frank B

    2016-03-01

    The wheat head armyworm, Dargida (previously Faronta) diffusa (Walker) (Lepidoptera: Noctuidae), is widely distributed in North American grasslands and is most common on the Great Plains, where it is often a serious pest of corn and cereal crops. Six commercially available botanical or microbial insecticides used against D. diffusa were tested in the laboratory: Entrust(®) WP (spinosad 80%), Mycotrol(®) ESO (Beauveria bassiana GHA), Aza-Direct(®) (azadirachtin), Met52(®) EC (Metarhizium brunneum F52), Xpectro(®) OD (Beauveria bassiana GHA+pyrethrins), and Xpulse(®) OD (Beauveria bassiana GHA+azadirachtin). Concentrations of 0.1, 0.5, 1.0 and 2.0 fold the lowest labelled rates of formulated products were tested for all products, while for Entrust WP additional concentrations of 0.001 and 0.01 fold the label rates were also assessed. Survival rates were determined from larval mortality at 1-9 days post treatment application. We found that among the tested chemicals, Entrust(®) (spinosad) was the most effective, causing 83-100% mortality (0-17% survival rate) at day 3 across all concentrations. The others, in order of efficacy from most to least, were Xpectro(®) (B. bassiana GHA+pyrethrins), Xpulse(®)OD (B. bassiana GHA+azadirachtin), Aza-Direct(®) (azadirachtin), Met52(®) EC (M. brunneum F52), and Mycotrol(®) ESO (B. bassiana GHA). These products and entomopathogenic fungi caused 70-100% mortality (0-30% survivability) from days 7 to 9. The tested products and entomopathogenic fungi can be used in management of D. diffusa. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Age, pathogen exposure, but not maternal care shape offspring immunity in an insect with facultative family life.

    Science.gov (United States)

    Vogelweith, Fanny; Körner, Maximilian; Foitzik, Susanne; Meunier, Joël

    2017-03-07

    To optimize their resistance against pathogen infection, individuals are expected to find the right balance between investing into the immune system and other life history traits. In vertebrates, several factors were shown to critically affect the direction of this balance, such as the developmental stage of an individual, its current risk of infection and/or its access to external help such as parental care. However, the independent and/or interactive effects of these factors on immunity remain poorly studied in insects. Here, we manipulated maternal presence and pathogen exposure in families of the European earwig Forficula auricularia to measure whether and how the survival rate and investment into two key immune parameters changed during offspring development. The pathogen was the entomopathogenic fungus Metarhizium brunneum and the immune parameters were hemocyte concentration and phenol/pro-phenoloxidase enzyme activity (total-PO). Our results surprisingly showed that maternal presence had no effect on offspring immunity, but reduced offspring survival. Pathogen exposure also lowered the survival of offspring during their early development. The concentration of hemocytes and the total-PO activity increased during development, to be eventually higher in adult females compared to adult males. Finally, pathogen exposure overall increased the concentration of hemocytes-but not the total-PO activity-in adults, while it had no effect on these measures in offspring. Our results show that, independent of their infection risk and developmental stage, maternal presence does not shape immune defense in young earwigs. This reveals that pathogen pressure is not a universal evolutionary driver of the emergence and maintenance of post-hatching maternal care in insects.

  7. Effects of entomopathogenic fungus species, and impact of fertilizers, on biological control of pecan weevil (Coleoptera: Curculionidae).

    Science.gov (United States)

    Shapiro-Ilan, David I; Gardner, Wayne A; Wells, Lenny; Cottrell, Ted E; Behle, Robert W; Wood, Bruce W

    2013-04-01

    The pecan weevil, Curculio caryae (Horn), is a key pest of pecan, Carya illinoinensis (Wangenh.) K. Koch. Prior research indicated the potential for use of Hypocreales fungi to suppress C. caryae. We compared the efficacy of two fungal spp., Beauveria bassiana (GHA strain) and Metarhizium brunneum (F52), in their ability to cause C. caryae mortality. The fungus, B. bassiana, was applied to trunks of pecan trees (a method previously shown to be effective in C. caryae suppression) and efficacy was compared with M. brunneum applied to the ground or to the trunk with or without SoyScreen Oil as an ultraviolet protecting agent. Results indicated B. bassiana to be superior to M. brunneum regardless of application method; consequently, the potential for applying B. bassiana to control C. caryae was explored further. Specifically, the impact of different fertilizer regimes (as used by pecan growers) on the persistence of B. bassiana (GHA) in soil was determined. B. bassiana was applied to soil in a pecan orchard after one of several fertilizer treatments--i.e., ammonium nitrate, crimson clover, poultry litter, clover plus poultry litter, and a no-fertilizer control. B. bassiana persistence up to 49 d in 2009 and 2010 was assessed by plating soil onto selective media and determining the number of colony forming units, and by baiting soil with a susceptible host, Galleria mellonella (L.). Fertilizer treatments did not impact B. bassiana persistence. We conclude that standard fertilizers for nitrogen management, when applied according to recommended practices, are unlikely to negatively impact survival of B. bassiana in pecan orchards when the fungus is applied for C. caryae suppression during weevil emergence. Additional research on interactions between entomopathogenic fungi and fertilizer amendments (or other tree nutrition or soil management practices) is merited.

  8. Evaluation of toxicity of biorational insecticides against larvae of the alfalfa weevil

    Directory of Open Access Journals (Sweden)

    Gadi V.P. Reddy

    Full Text Available The alfalfa weevil, Hypera postica (Coleoptera: Curculionidae, is a major pest of alfalfa Medicago sativa L. (Fabaceae. While H. postica usually causes the most damage before the first cutting, in summer of 2015 damaging levels of the pest persisted in Montana well after the first harvest of alfalfa. Although conventional insecticides can control H. postica, these chemicals have adverse effects on non-target organisms including pollinators and natural enemy insects. In this context, use of biorational insecticides would be the best alternative options, as they are known to pose less risk to non-target organisms. We therefore examined the six commercially available biorational insecticides against H. postica under laboratory condition: Mycotrol® ESO (Beauveria bassiana GHA, Aza-Direct® (Azadirachtin, Met52® EC (Metarhizium brunneum F52, Xpectro OD® (B. bassiana GHA + pyrethrins, Xpulse OD® (B. bassiana GHA + Azadirachtin and Entrust WP® (spinosad 80%. Concentrations of 0.1, 0.5, 1.0, and 2.0 times the lowest labelled rates were tested for all products. However, in the case of Entrust WP, additional concentrations of 0.001 and 0.01 times the lowest label rate were also assessed. Mortality rates were determined at 1–9 days post treatment. Based on lethal concentrations and relative potencies, this study clearly showed that Entrust was the most effective, causing 100% mortality within 3 days after treatment among all the tested materials. With regard to other biorational, Xpectro was the second most effective insecticide followed by Xpulse, Aza-Direct, Met52, and Mycotrol. Our results strongly suggested that these biorational insecticides could potentially be applied for H. postica control. Keywords: Low risk insecticides, Insect pathogenic fungi, Efficacy, Lethal concentration, Mortality rate

  9. Mortality risk from entomopathogenic fungi affects oviposition behavior in the parasitoid wasp Trybliographa rapae.

    Science.gov (United States)

    Rännbäck, Linda-Marie; Cotes, Belen; Anderson, Peter; Rämert, Birgitta; Meyling, Nicolai V

    2015-01-01

    Biological control of pests in agroecosystems could be enhanced by combining multiple natural enemies. However, this approach might also compromise the control efficacy through intraguild predation (IGP) among the natural enemies. Parasitoids may be able to avoid the risk of unidirectional IGP posed by entomopathogenic fungi through selective oviposition behavior during host foraging. Trybliographa rapae is a larval parasitoid of the cabbage root fly, Delia radicum. Here we evaluated the susceptibility of D. radicum and T. rapae to two species of generalist entomopathogenic fungi, Metarhizium brunneum isolate KVL 04-57 and Beauveria bassiana isolate KVL 03-90. Furthermore, T. rapae oviposition behavior was assessed in the presence of these entomopathogenic fungi either as infected hosts or as infective propagules in the environment. Both fungi were pathogenic to D. radicum larvae and T. rapae adults, but with variable virulence. When host patches were inoculated with M. brunneum conidia in a no-choice situation, more eggs were laid by T. rapae in hosts of those patches compared to control and B. bassiana treated patches. Females that later succumbed to mycosis from either fungus laid significantly more eggs than non-mycosed females, indicating that resources were allocated to increased oviposition due to perceived decreased life expectancy. When presented with a choice between healthy and fungal infected hosts, T. rapae females laid more eggs in healthy larvae than in M. brunneum infected larvae. This was less pronounced for B. bassiana. Based on our results we propose that T. rapae can perceive and react towards IGP risk posed by M. brunneum but not B. bassiana to the foraging female herself and her offspring. Thus, M. brunneum has the potential to be used for biological control against D. radicum with a limited risk to T. rapae populations. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Tolerating an infection: an indirect benefit of co-founding queen associations in the ant Lasius niger

    Science.gov (United States)

    Pull, Christopher D.; Hughes, William O. H.; Brown, Mark J. F.

    2013-12-01

    Pathogens exert a strong selection pressure on organisms to evolve effective immune defences. In addition to individual immunity, social organisms can act cooperatively to produce collective defences. In many ant species, queens have the option to found a colony alone or in groups with other, often unrelated, conspecifics. These associations are transient, usually lasting only as long as each queen benefits from the presence of others. In fact, once the first workers emerge, queens fight to the death for dominance. One potential advantage of co-founding may be that queens benefit from collective disease defences, such as mutual grooming, that act against common soil pathogens. We test this hypothesis by exposing single and co-founding queens to a fungal parasite, in order to assess whether queens in co-founding associations have improved survival. Surprisingly, co-foundresses exposed to the entomopathogenic fungus Metarhizium did not engage in cooperative disease defences, and consequently, we find no direct benefit of multiple queens on survival. However, an indirect benefit was observed, with parasite-exposed queens producing more brood when they co-founded, than when they were alone. We suggest this is due to a trade-off between reproduction and immunity. Additionally, we report an extraordinary ability of the queens to tolerate an infection for long periods after parasite exposure. Our study suggests that there are no social immunity benefits for co-founding ant queens, but that in parasite-rich environments, the presence of additional queens may nevertheless improve the chances of colony founding success.

  11. Evidence of Molecular Adaptation to Extreme Environments and Applicability to Space Environments

    Directory of Open Access Journals (Sweden)

    Filipović, M. D.

    2008-06-01

    Full Text Available This is initial investigation of gene signatures responsible for adapting microscopic life to the extreme Earth environments. We present preliminary results on identification of the clusters of orthologous groups (COGs common to several hyperthermophiles and exclusion of those common to a mesophile (non-hyperthermophile: {it Escherichia coli (E. coli K12}, will yield a group of proteins possibly involved in adaptation to life under extreme temperatures. Comparative genome analyses represent a powerful tool in discovery of novel genes responsible for adaptation to specific extreme environments. Methanogens stand out as the only group of organisms that have species capable of growth at 0D C ({it Metarhizium frigidum (M.~frigidum} and {it Methanococcoides burtonii (M.~burtonii} and 110D C ({it Methanopyrus kandleri (M.~kandleri}. Although not all the components of heat adaptation can be attributed to novel genes, the {it chaperones} known as heat shock proteins stabilize the enzymes under elevated temperature. However, highly conserved {it chaperons} found in bacteria and eukaryots are not present in hyperthermophilic Archea, rather, they have a unique {it chaperone TF55}. Our aim was to use software which we specifically developed for extremophile genome comparative analyses in order to search for additional novel genes involved in hyperthermophile adaptation. The followinghyperthermophile genomes incorporated in this software were used forthese studies: {it Methanocaldococcus jannaschii (M.~jannaschii, M.~kandleri, Archaeoglobus fulgidus (A.~fulgidus} and threespecies of {it Pyrococcus}. Common genes were annotated and groupedaccording to their roles in cellular processes where such informationwas available and proteins not previously implicated in theheat-adaptation of hyperthermophiles were identified. Additionalexperimental data are needed in order to learn more about theseproteins. To address non-gene based components of thermaladaptation

  12. Evidence of molecular adaptation to extreme environments and applicability to space environments

    Directory of Open Access Journals (Sweden)

    Filipović M.

    2008-01-01

    Full Text Available This is initial investigation of gene signatures responsible for adapting microscopic life to the extreme Earth environments. We present preliminary results on identification of the clusters of orthologous groups (COGs common to several hyperthermophiles and exclusion of those common to a mesophile (non-hyperthermophile: Escherichia coli (E. coli K12, will yield a group of proteins possibly involved in adaptation to life under extreme temperatures. Comparative genome analyses represent a powerful tool in discovery of novel genes responsible for adaptation to specific extreme environments. Methanogens stand out as the only group of organisms that have species capable of growth at 0ºC (Metarhizium frigidum (M. frigidum and Methanococcoides burtonii (M. burtonii and 110ºC (Methanopyrus kandleri (M. kandleri. Although not all the components of heat adaptation can be attributed to novel genes, the chaperones known as heat shock proteins stabilize the enzymes under elevated temperature. However, highly conserved chaperons found in bacteria and eukaryots are not present in hyperthermophilic Archea, rather, they have a unique chaperone TF55. Our aim was to use software which we specifically developed for extremophile genome comparative analyses in order to search for additional novel genes involved in hyperthermophile adaptation. The following hyperthermophile genomes incorporated in this software were used for these studies: Methanocaldococcus jannaschii (M. jannaschii, M. kandleri, Archaeoglobus fulgidus (A. fulgidus and three species of Pyrococcus. Common genes were annotated and grouped according to their roles in cellular processes where such information was available and proteins not previously implicated in the heat-adaptation of hyperthermophiles were identified. Additional experimental data are needed in order to learn more about these proteins. To address non-gene based components of thermal adaptation, all sequenced extremophiles were

  13. Comparison of cauliflower-insect-fungus interactions and pesticides for cabbage root fly control.

    Science.gov (United States)

    Razinger, Jaka; Žerjav, Metka; Zemljič-Urbančič, Meta; Modic, Špela; Lutz, Matthias; Schroers, Hans-Josef; Grunder, Jürg; Fellous, Simon; Urek, Gregor

    2017-12-01

    Cabbage root fly (Delia radicum L.) control represents a major challenge in brassica production, therefore different management strategies for its control were tested in conventionally managed open field cauliflower production. Strategies included treatments with low-risk methods such as nitrogen lime, the insecticide spinosad and the Beauveria bassiana ATCC 74040-based biopesticide Naturalis. Their effects were compared with treatments based on nonformulated fungal species Metarhizium brunneum, B. bassiana, Clonostachys solani, Trichoderma atroviride, T. koningiopsis, and T. gamsii and commercial insecticides λ-cyhalothrin and thiamethoxam. Spinosad and thiamethoxam were pipetted to individual plants before transplanting; λ-cyhalothrin was sprayed after transplanting; nitrogen lime was applied at first hoeing. Nonformulated fungi were delivered onto cauliflower plantlets' roots as a single pretransplantation inoculation. The cabbage root fly population dynamics exhibited a strong spatiotemporal variation. The lowest number of cabbage root fly pupae recovered from cauliflower roots in the field experiments was recorded in plants treated with spinosad (significant reduction), followed by Naturalis and one of the tested M. brunneum strains (nonsignificant reduction). Significantly more pupae were counted in the nitrogen lime treatment. The field experiments showed that a single drench of cauliflower plantlets with spinosad offered consistent and enduring cabbage root fly control. Naturalis and nonformulated fungal isolates did not decrease cabbage root fly pressure significantly, apparently due to lack of statistical power. The implications of the substantial intra- and inter-annual pest pressure variation and the benefits of using single plant treatments are discussed, and recommendations for improvement of rhizosphere-competence utilizing biological control strategies provided. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  14. The GPI-anchored protein Ecm33 is vital for conidiation, cell wall integrity, and multi-stress tolerance of two filamentous entomopathogens but not for virulence.

    Science.gov (United States)

    Chen, Ying; Zhu, Jing; Ying, Sheng-Hua; Feng, Ming-Guang

    2014-06-01

    Ecm33 is one of several glycosylphosphatidylinositol (GPI)-anchored proteins. This protein is known to be involved in fungal cell wall integrity, but its contribution to multi-stress tolerance is largely unknown. Here we characterized the functions of two Ecm33 orthologues, i.e., Bbecm33 in Beauveria bassiana and Mrecm33 in Metarhizium robertsii. Bbecm33 and Mrecm33 were both confirmed as GPI-anchored cell wall proteins in immunogold localization. Single-gene disruptions of Bbecm33 and Mrecm33 caused slight growth defects, but conidial yield decreased much more in ΔBbecm33 (76 %) than in ΔMrecm33 (42 %), accompanied with significant reductions of intracellular mannitol and trehalose contents in both mutants and weakened cell walls in ΔBbecm33 only. Consequently, ΔBbecm33 was far more sensitive to the cell wall-perturbating agents Congo red and sodium dodecyl sulfate (SDS) than ΔMrecm33, which showed null response to SDS. Both deletion mutants became significantly more sensitive to two oxidants (menadione and H2O2), two fungicides (carbendazim and ethirimol), osmotic salt NaCl, and Ca(2+) during growth despite some degrees of differences in their sensitivities to the chemical stressors. Strikingly, conidial UV-B resistance decreased by 55 % in ΔBbecm33 but was unaffected in ΔMrecm33, unlike a similar decrease (25-28 %) of conidial thermotolerance in both. All the changes were restored to wild-type levels by gene complementation through ectopic gene integration in each fungus. However, neither ΔBbecm33 nor ΔMrecm33 showed a significant change in virulence to a susceptible insect host. Our results indicate that Bbecm33 and Mrecm33 contribute differentially to the conidiation and multi-stress tolerance of B. bassiana and M. robertsii.

  15. Entomopathogenic fungi: Are polisporic isolates more pathogenic than monosporic strains?

    Directory of Open Access Journals (Sweden)

    Juan A. AGUILERA SAMMARITANO

    2017-01-01

    Full Text Available Actualmente existen varias cepas de hongos entomopatógenos utilizadas para la fabricación de bio-insecticidas comerciales. Sin embargo, la selección de éstas sigue algunas pautas como la obtención y evaluación de cepas monospóricas (cultivo en masa de microorganismos que provienen de una sola espora Las principales razones para el uso de cultivos monospóricos en lugar de cultivos polispóricos son: la virulencia atenuada y los posibles “contaminantes” de la misma especie. En este estudio, diferentes aislamientos polispóricos y sus combinaciones monospóricas se pusieron a prueba para evaluar su eficacia respecto a larvas de Tenebrio molitor (L. como insecto modelo. Los aislamientos polispóricos de hongos entomopatógenos fueron obtenidos de muestras de suelo de regiones agrícolas áridas. Se seleccionaron cuatro aislamientos polispóricos de Metarhizium sp. (Metschn. (CEP413, CEP589, CEP590 y CEP591 para los bioensayos. Se realizaron pruebas de patogenicidad para evaluar la mortalidad en tres tratamientos, Polispórico completo (FP, Polispórico parcial (PP y Monospórico puro (PM. La mortalidad acumulada se midió al día 4 después de la infección. El porcentaje de esporulación se evaluó al día 6 después de la infección. La mayor mortalidad se encontró en el tratamiento PF (94%, la menor mortalidad en el día 4 se encontró en PM-CEP413 (32%. Al día 6 el porcentaje de esporulación fue mayor en FP (94% y fue diferente del resto de tratamientos. Elucidar diferentes combinaciones polispóricas y monospóricas para aumentar la eficacia de las aplicaciones es crucial para ayudar a expandir el uso de bio-insecticidas basados ​​en hongos entomopatógenos.

  16. Investigating the potential of an autodissemination system for managing populations of vine weevil, Otiorhynchus sulcatus (Coleoptera: Curculionidae) with entomopathogenic fungi.

    Science.gov (United States)

    Pope, Tom W; Hough, Gemma; Arbona, Charlotte; Roberts, Harriet; Bennison, Jude; Buxton, John; Prince, Gill; Chandler, Dave

    2018-05-01

    Vine weevil, also known as black vine weevil, (Otiorhynchus sulcatus) is an economically important pest affecting soft fruit and nursery stock in temperate regions. We used laboratory and polytunnel experiments to investigate a novel control system based on autodissemination of spores of an entomopathogenic fungus to populations of adult vine weevils. The fungus was applied as a conidial powder, used on its own or formulated with talc, to a simple plastic refuge for vine weevils. The potential for adult weevils to disseminate the fungus was investigated first in polytunnel experiments using fluorescent powders applied to the refuge in lieu of fungal conidia. In this system, 88% of adult weevils came in contact with the powder within 48 h. When the powder was applied to five adult weevils that were then placed within a population of 35 potential recipients, it was transmitted on average to 75% of the recipient population within 7 days. Three isolates of entomopathogenic fungi (Beauveria bassiana isolate codes 433.99 and 1749.11 and Metarhizium brunneum isolate code 275.86), selected from a laboratory virulence screen. These three isolates were then investigated for efficacy when applied as conidial powders in artificial refuges placed among populations of adult weevils held in experimental boxes in the laboratory at 20 °C. Under this regime, the fungal isolates caused 70-90% mortality of adult weevils over 28 days. A final polytunnel experiment tested the efficacy of conidial powders of M. brunneum 275.86 placed in artificial refuges to increase vine weevil mortality. Overall weevil mortality was relatively low (26-41%) but was significantly higher in cages in which the conidial powders were placed in refuge traps than in cages with control traps. The lower weevil mortality recorded in the polytunnel experiment compared to the laboratory test was most likely a consequence of the greater amounts of inoculum required to kill adult weevils when conditions

  17. Entomopathogenic fungi-based mechanisms for improved Fe nutrition in sorghum plants grown on calcareous substrates.

    Directory of Open Access Journals (Sweden)

    Silvia Raya-Díaz

    Full Text Available Although entomopathogenic fungi (EPF are best known for their ability to protect crops against insect pests, they may have other beneficial effects on their host plants. These effects, which include promoting plant growth and conferring resistance against abiotic stresses, have been examined in recent years to acquire a better understanding of them. The primary purposes of the present study were (i to ascertain in vitro whether three different strains of EPF (viz., Metarhizium, Beauveria and Isaria would increase the Fe bioavailability in calcareous or non-calcareous media containing various Fe sources (ferrihydrite, hematite and goethite and (ii to assess the influence of the EPF inoculation method (seed dressing, soil treatment or leaf spraying on the extent of the endophytic colonization of sorghum and the improvement in the Fe nutrition of pot-grown sorghum plants on an artificial calcareous substrate. All the EPFs studied were found to increase the Fe availability during the in vitro assay. The most efficient EPF was M. brunneum EAMa 01/58-Su, which lowered the pH of the calcareous medium, suggesting that it used a different strategy (organic acid release than the other two fungi that raised the pH of the non-calcareous medium. The three methods used to inoculate sorghum plants with B. bassiana and M. brunneum in the pot experiment led to differences in re-isolation from plant tissues and in the plant height. These three inoculation methods increased the leaf chlorophyll content of young leaves when the Fe deficiency symptoms were most apparent in the control plants (without fungal inoculation as well as the Fe content of the above-ground biomass in the plants at the end of the experiment. The total root lengths and fine roots were also increased in response to fungal applications with the three inoculation methods. However, the soil treatment was the most efficient method; thus, its effect on the leaf chlorophyll content was the most

  18. Spore Acquisition and Survival of Ambrosia Beetles Associated with the Laurel Wilt Pathogen in Avocados after Exposure to Entomopathogenic Fungi

    Directory of Open Access Journals (Sweden)

    Pasco B. Avery

    2018-04-01

    Full Text Available Laurel wilt is a disease threatening the avocado industry in Florida. The causative agent of the disease is a fungus vectored by ambrosia beetles that bore into the trees. Until recently, management strategies for the vectors of the laurel wilt fungus relied solely on chemical control and sanitation practices. Beneficial entomopathogenic fungi (EPF are the most common and prevalent natural enemies of pathogen vectors. Laboratory experiments demonstrated that commercial strains of EPF can increase the mortality of the primary vector, Xyleborus glabratus, and potential alternative vectors, Xylosandrus crassiusculus, Xyleborus volvulus and Xyleborus bispinatus (Coleoptera: Curculionidae: Scolytinae. Our study provides baseline data for three formulated commercially-available entomopathogenic fungi used as potential biocontrol agents against X. crassiusculus, X. volvulus and X. bispinatus. The specific objectives were to determine: (1 the mean number of viable spores acquired per beetle species adult after being exposed to formulated fungal products containing different strains of EPF (Isaria fumosorosea, Metarhizium brunneum and Beauveria bassiana; and (2 the median and mean survival times using paper disk bioassays. Prior to being used in experiments, all fungal suspensions were adjusted to 2.4 × 106 viable spores/mL. The number of spores acquired by X. crassiusculus was significantly higher after exposure to B. bassiana, compared to the other fungal treatments. For X. volvulus, the numbers of spores acquired per beetle were significantly different amongst the different fungal treatments, and the sequence of spore acquisition rates on X. volvulus from highest to lowest was I. fumosorosea > M. brunneum > B. bassiana. After X. bispinatus beetles were exposed to the different suspensions, the rates of acquisition of spores per beetle amongst the different fungal treatments were similar. Survival estimates (data pooled across two tests indicated an

  19. Spore Acquisition and Survival of Ambrosia Beetles Associated with the Laurel Wilt Pathogen in Avocados after Exposure to Entomopathogenic Fungi.

    Science.gov (United States)

    Avery, Pasco B; Bojorque, Verónica; Gámez, Cecilia; Duncan, Rita E; Carrillo, Daniel; Cave, Ronald D

    2018-04-25

    Laurel wilt is a disease threatening the avocado industry in Florida. The causative agent of the disease is a fungus vectored by ambrosia beetles that bore into the trees. Until recently, management strategies for the vectors of the laurel wilt fungus relied solely on chemical control and sanitation practices. Beneficial entomopathogenic fungi (EPF) are the most common and prevalent natural enemies of pathogen vectors. Laboratory experiments demonstrated that commercial strains of EPF can increase the mortality of the primary vector, Xyleborus glabratus , and potential alternative vectors, Xylosandrus crassiusculus , Xyleborus volvulus and Xyleborus bispinatus (Coleoptera: Curculionidae: Scolytinae). Our study provides baseline data for three formulated commercially-available entomopathogenic fungi used as potential biocontrol agents against X. crassiusculus , X. volvulus and X. bispinatus. The specific objectives were to determine: (1) the mean number of viable spores acquired per beetle species adult after being exposed to formulated fungal products containing different strains of EPF ( Isaria fumosorosea , Metarhizium brunneum and Beauveria bassiana ); and (2) the median and mean survival times using paper disk bioassays. Prior to being used in experiments, all fungal suspensions were adjusted to 2.4 × 10⁶ viable spores/mL. The number of spores acquired by X. crassiusculus was significantly higher after exposure to B. bassiana , compared to the other fungal treatments. For X. volvulus , the numbers of spores acquired per beetle were significantly different amongst the different fungal treatments, and the sequence of spore acquisition rates on X. volvulus from highest to lowest was I. fumosorosea > M. brunneum > B. bassiana . After X. bispinatus beetles were exposed to the different suspensions, the rates of acquisition of spores per beetle amongst the different fungal treatments were similar. Survival estimates (data pooled across two tests) indicated an

  20. AISLAMIENTO Y CONTROL MICROBIOLÓGICO DE Leuconostoc mesenteroides, EN UN INGENIO PARA OPTIMIZAR EL RENDIMIENTO DE AZÚCAR Y ETANOL ISOLAMENTO E Leuconostoc Mesenteroides CONTROLE MICROBIOLÓGICO EM UM TALENTO PARA OTIMIZAR O DESEMPENHO DE AÇÚCAR E ETANOL ISOLATION AND MICROBIOLOGICAL CONTROL OF Leuconostoc mesenteroides, IN TO SUGAR REFINERY TO OPTIMIZE THE PERFORMANCE OF SUGAR AND ETHANOL

    Directory of Open Access Journals (Sweden)

    RAÚL A CUERVO MULET

    2010-12-01

    Full Text Available La caña de azúcar (Saccharum officinarum L es exprimida para obtener su jugo que después de ser purificado y neutralizado, deja cristalizar el azúcar. Considerando la importancia que representa la caña de azúcar para la industria azucarera, se hace necesario incrementar el contenido de sacarosa libre de dextrana (destrucción de sacarosa causada por la acción de microorganismos acompañantes de la caña, siendo uno de los más importantes Leuconostoc mesenteroides. En este trabajo de investigación se determinó la inhibición de la bacteria ácido-láctica L mesenteroides aislada en un ingenio azucarero del Valle del Cauca mediante la utilización de microorganismos antagonistas. Para esto, se realizaron aislamientos y cultivos de L. mesenteroides provenientes del jugo de la caña y se realizaron las diferentes pruebas bioquímicas y microbiológicas en el laboratorio para el aislamiento y la identificación de las cepas tanto de Leuconostoc mesenteroides, como las cepas bacterianas antagonistas a ella. Se comprobó que las cepas de los hongos Metharhizium anisopliae y Trichoderma sp, fueron las más eficientes en el control de crecimiento de L mesenteroides, mostrando significativamente un mayor porcentaje de inhibición en comparación de los hongos filamentosos Colletotrichum sp, Thichoderma viridae, Rhizoctonia sp y las bacterias Bacillus subtilis y Serratia marcenses y las levaduras Rhodothorula Rubra y Kloeckera japónica, no presentaron inhibición del crecimiento de Lmesenteroides. Además, se identificó a los hongos Aspergillus sp, Botrytis sp y Streptomyces sp como antagonistas naturales y habituales presentes en el jugo de caña de los Ingenios.Cana (Saccharum officinarum L é comprimida para que seu suco depois de ser purificada e neutralizado, permitiu a cristalizar o açúcar. Considerando a importancia de representar a cana para a indústria de açúcar é necessária para melhorar o conteúdo de sacarose, dextrana livre

  1. Environmentally-safe pest control using novel bioelectrostatic techniques: Initial results and prospects for area-wide usage

    International Nuclear Information System (INIS)

    Howse, P.E.; Underwood, K.L.

    2000-01-01

    active materials. Long-lasting charge retention is perhaps the most important factor. Pesticide Slow-acting approved insecticides in a dry powder formulation can be applied to an insect long enough for it to be killed. The knock-down time can be varied between one and three days for certain synthetic insecticides, or over four days for biological insecticides, during which time the insect behaves normally. Spores of the entomopathogenic fungus Metarhizium can be used as biological insecticides, for example. Dry spores of the fungus can be formulated with suitable electrostatically chargeable particles. Particle Transfer There is a high rate of loss of particles during the first 48 hours, particularly from hairs and other projections of the insect (after which the loss is very low). This means that particles are readily transferred to females in mating attempts. A Selective Attractant Pheromones or parapheromone attractants for males are available for almost all of the major insect pest species. Control by trapping males alone, however, is generally not a viable method because over 90% must be trapped to ensure that sufficient eggs in the next generation are infertile. A Dissemination Station Bait stations have been developed which retain formulated powders, minimising their loss by wind and facilitating transfer to insects (Patent applied for). This method mimics a natural epidemic infective process (such as a sexually-transmitted disease), with the following advantages: insecticides do not come into contact with the crop or soil, extremely small amounts of insecticide are used, the method targets the pest species only, and others (beneficial insects etc.) are unaffected materials are all low-cost, unskilled labour is required only for placing devices around the crop, does not preclude the use of other methods that might be used in integrated pest management, the way is open to using a range of pesticides to which insects have not previously been exposed and to which