WorldWideScience

Sample records for metapneumovirus-induced gene networks

  1. Identification of human metapneumovirus-induced gene networks in airway epithelial cells by microarray analysis

    International Nuclear Information System (INIS)

    Bao, X.; Sinha, M.; Liu, T.; Hong, C.; Luxon, B.A.; Garofalo, R.P.; Casola, A.

    2008-01-01

    Human metapneumovirus (hMPV) is a major cause of lower respiratory tract infections in infants, elderly and immunocompromised patients. Little is known about the response to hMPV infection of airway epithelial cells, which play a pivotal role in initiating and shaping innate and adaptive immune responses. In this study, we analyzed the transcriptional profiles of airway epithelial cells infected with hMPV using high-density oligonucleotide microarrays. Of the 47,400 transcripts and variants represented on the Affimetrix GeneChip Human Genome HG-U133 plus 2 array, 1601 genes were significantly altered following hMPV infection. Altered genes were then assigned to functional categories and mapped to signaling pathways. Many up-regulated genes are involved in the initiation of pro-inflammatory and antiviral immune responses, including chemokines, cytokines, type I interferon and interferon-inducible proteins. Other important functional classes up-regulated by hMPV infection include cellular signaling, gene transcription and apoptosis. Notably, genes associated with antioxidant and membrane transport activity, several metabolic pathways and cell proliferation were down-regulated in response to hMPV infection. Real-time PCR and Western blot assays were used to confirm the expression of genes related to several of these functional groups. The overall result of this study provides novel information on host gene expression upon infection with hMPV and also serves as a foundation for future investigations of genes and pathways involved in the pathogenesis of this important viral infection. Furthermore, it can facilitate a comparative analysis of other paramyxoviral infections to determine the transcriptional changes that are conserved versus the one that are specific to individual pathogens

  2. Introduction: Cancer Gene Networks.

    Science.gov (United States)

    Clarke, Robert

    2017-01-01

    Constructing, evaluating, and interpreting gene networks generally sits within the broader field of systems biology, which continues to emerge rapidly, particular with respect to its application to understanding the complexity of signaling in the context of cancer biology. For the purposes of this volume, we take a broad definition of systems biology. Considering an organism or disease within an organism as a system, systems biology is the study of the integrated and coordinated interactions of the network(s) of genes, their variants both natural and mutated (e.g., polymorphisms, rearrangements, alternate splicing, mutations), their proteins and isoforms, and the organic and inorganic molecules with which they interact, to execute the biochemical reactions (e.g., as enzymes, substrates, products) that reflect the function of that system. Central to systems biology, and perhaps the only approach that can effectively manage the complexity of such systems, is the building of quantitative multiscale predictive models. The predictions of the models can vary substantially depending on the nature of the model and its inputoutput relationships. For example, a model may predict the outcome of a specific molecular reaction(s), a cellular phenotype (e.g., alive, dead, growth arrest, proliferation, and motility), a change in the respective prevalence of cell or subpopulations, a patient or patient subgroup outcome(s). Such models necessarily require computers. Computational modeling can be thought of as using machine learning and related tools to integrate the very high dimensional data generated from modern, high throughput omics technologies including genomics (next generation sequencing), transcriptomics (gene expression microarrays; RNAseq), metabolomics and proteomics (ultra high performance liquid chromatography, mass spectrometry), and "subomic" technologies to study the kinome, methylome, and others. Mathematical modeling can be thought of as the use of ordinary

  3. Reverse engineering transcriptional gene networks.

    Science.gov (United States)

    Belcastro, Vincenzo; di Bernardo, Diego

    2014-01-01

    The aim of this chapter is a step-by-step guide on how to infer gene networks from gene expression profiles. The definition of a gene network is given in Subheading 1, where the different types of networks are discussed. The chapter then guides the readers through a data-gathering process in order to build a compendium of gene expression profiles from a public repository. Gene expression profiles are then discretized and a statistical relationship between genes, called mutual information (MI), is computed. Gene pairs with insignificant MI scores are then discarded by applying one of the described pruning steps. The retained relationships are then used to build up a Boolean adjacency matrix used as input for a clustering algorithm to divide the network into modules (or communities). The gene network can then be used as a hypothesis generator for discovering gene function and analyzing gene signatures. Some case studies are presented, and an online web-tool called Netview is described.

  4. Current approaches to gene regulatory network modelling

    Directory of Open Access Journals (Sweden)

    Brazma Alvis

    2007-09-01

    Full Text Available Abstract Many different approaches have been developed to model and simulate gene regulatory networks. We proposed the following categories for gene regulatory network models: network parts lists, network topology models, network control logic models, and dynamic models. Here we will describe some examples for each of these categories. We will study the topology of gene regulatory networks in yeast in more detail, comparing a direct network derived from transcription factor binding data and an indirect network derived from genome-wide expression data in mutants. Regarding the network dynamics we briefly describe discrete and continuous approaches to network modelling, then describe a hybrid model called Finite State Linear Model and demonstrate that some simple network dynamics can be simulated in this model.

  5. Harnessing gene expression networks to prioritize candidate epileptic encephalopathy genes.

    Science.gov (United States)

    Oliver, Karen L; Lukic, Vesna; Thorne, Natalie P; Berkovic, Samuel F; Scheffer, Ingrid E; Bahlo, Melanie

    2014-01-01

    We apply a novel gene expression network analysis to a cohort of 182 recently reported candidate Epileptic Encephalopathy genes to identify those most likely to be true Epileptic Encephalopathy genes. These candidate genes were identified as having single variants of likely pathogenic significance discovered in a large-scale massively parallel sequencing study. Candidate Epileptic Encephalopathy genes were prioritized according to their co-expression with 29 known Epileptic Encephalopathy genes. We utilized developing brain and adult brain gene expression data from the Allen Human Brain Atlas (AHBA) and compared this to data from Celsius: a large, heterogeneous gene expression data warehouse. We show replicable prioritization results using these three independent gene expression resources, two of which are brain-specific, with small sample size, and the third derived from a heterogeneous collection of tissues with large sample size. Of the nineteen genes that we predicted with the highest likelihood to be true Epileptic Encephalopathy genes, two (GNAO1 and GRIN2B) have recently been independently reported and confirmed. We compare our results to those produced by an established in silico prioritization approach called Endeavour, and finally present gene expression networks for the known and candidate Epileptic Encephalopathy genes. This highlights sub-networks of gene expression, particularly in the network derived from the adult AHBA gene expression dataset. These networks give clues to the likely biological interactions between Epileptic Encephalopathy genes, potentially highlighting underlying mechanisms and avenues for therapeutic targets.

  6. Evolution of evolvability in gene regulatory networks.

    Directory of Open Access Journals (Sweden)

    Anton Crombach

    Full Text Available Gene regulatory networks are perhaps the most important organizational level in the cell where signals from the cell state and the outside environment are integrated in terms of activation and inhibition of genes. For the last decade, the study of such networks has been fueled by large-scale experiments and renewed attention from the theoretical field. Different models have been proposed to, for instance, investigate expression dynamics, explain the network topology we observe in bacteria and yeast, and for the analysis of evolvability and robustness of such networks. Yet how these gene regulatory networks evolve and become evolvable remains an open question. An individual-oriented evolutionary model is used to shed light on this matter. Each individual has a genome from which its gene regulatory network is derived. Mutations, such as gene duplications and deletions, alter the genome, while the resulting network determines the gene expression pattern and hence fitness. With this protocol we let a population of individuals evolve under Darwinian selection in an environment that changes through time. Our work demonstrates that long-term evolution of complex gene regulatory networks in a changing environment can lead to a striking increase in the efficiency of generating beneficial mutations. We show that the population evolves towards genotype-phenotype mappings that allow for an orchestrated network-wide change in the gene expression pattern, requiring only a few specific gene indels. The genes involved are hubs of the networks, or directly influencing the hubs. Moreover, throughout the evolutionary trajectory the networks maintain their mutational robustness. In other words, evolution in an alternating environment leads to a network that is sensitive to a small class of beneficial mutations, while the majority of mutations remain neutral: an example of evolution of evolvability.

  7. Inferring gene networks from discrete expression data

    KAUST Repository

    Zhang, L.

    2013-07-18

    The modeling of gene networks from transcriptional expression data is an important tool in biomedical research to reveal signaling pathways and to identify treatment targets. Current gene network modeling is primarily based on the use of Gaussian graphical models applied to continuous data, which give a closedformmarginal likelihood. In this paper,we extend network modeling to discrete data, specifically data from serial analysis of gene expression, and RNA-sequencing experiments, both of which generate counts of mRNAtranscripts in cell samples.We propose a generalized linear model to fit the discrete gene expression data and assume that the log ratios of the mean expression levels follow a Gaussian distribution.We restrict the gene network structures to decomposable graphs and derive the graphs by selecting the covariance matrix of the Gaussian distribution with the hyper-inverse Wishart priors. Furthermore, we incorporate prior network models based on gene ontology information, which avails existing biological information on the genes of interest. We conduct simulation studies to examine the performance of our discrete graphical model and apply the method to two real datasets for gene network inference. © The Author 2013. Published by Oxford University Press. All rights reserved.

  8. Utilizing evolutionary information and gene expression data for estimating gene networks with bayesian network models.

    Science.gov (United States)

    Tamada, Yoshinori; Bannai, Hideo; Imoto, Seiya; Katayama, Toshiaki; Kanehisa, Minoru; Miyano, Satoru

    2005-12-01

    Since microarray gene expression data do not contain sufficient information for estimating accurate gene networks, other biological information has been considered to improve the estimated networks. Recent studies have revealed that highly conserved proteins that exhibit similar expression patterns in different organisms, have almost the same function in each organism. Such conserved proteins are also known to play similar roles in terms of the regulation of genes. Therefore, this evolutionary information can be used to refine regulatory relationships among genes, which are estimated from gene expression data. We propose a statistical method for estimating gene networks from gene expression data by utilizing evolutionarily conserved relationships between genes. Our method simultaneously estimates two gene networks of two distinct organisms, with a Bayesian network model utilizing the evolutionary information so that gene expression data of one organism helps to estimate the gene network of the other. We show the effectiveness of the method through the analysis on Saccharomyces cerevisiae and Homo sapiens cell cycle gene expression data. Our method was successful in estimating gene networks that capture many known relationships as well as several unknown relationships which are likely to be novel. Supplementary information is available at http://bonsai.ims.u-tokyo.ac.jp/~tamada/bayesnet/.

  9. Genes2FANs: connecting genes through functional association networks

    Science.gov (United States)

    2012-01-01

    Background Protein-protein, cell signaling, metabolic, and transcriptional interaction networks are useful for identifying connections between lists of experimentally identified genes/proteins. However, besides physical or co-expression interactions there are many ways in which pairs of genes, or their protein products, can be associated. By systematically incorporating knowledge on shared properties of genes from diverse sources to build functional association networks (FANs), researchers may be able to identify additional functional interactions between groups of genes that are not readily apparent. Results Genes2FANs is a web based tool and a database that utilizes 14 carefully constructed FANs and a large-scale protein-protein interaction (PPI) network to build subnetworks that connect lists of human and mouse genes. The FANs are created from mammalian gene set libraries where mouse genes are converted to their human orthologs. The tool takes as input a list of human or mouse Entrez gene symbols to produce a subnetwork and a ranked list of intermediate genes that are used to connect the query input list. In addition, users can enter any PubMed search term and then the system automatically converts the returned results to gene lists using GeneRIF. This gene list is then used as input to generate a subnetwork from the user’s PubMed query. As a case study, we applied Genes2FANs to connect disease genes from 90 well-studied disorders. We find an inverse correlation between the counts of links connecting disease genes through PPI and links connecting diseases genes through FANs, separating diseases into two categories. Conclusions Genes2FANs is a useful tool for interpreting the relationships between gene/protein lists in the context of their various functions and networks. Combining functional association interactions with physical PPIs can be useful for revealing new biology and help form hypotheses for further experimentation. Our finding that disease genes in

  10. Resistance Genes in Global Crop Breeding Networks.

    Science.gov (United States)

    Garrett, K A; Andersen, K F; Asche, F; Bowden, R L; Forbes, G A; Kulakow, P A; Zhou, B

    2017-10-01

    Resistance genes are a major tool for managing crop diseases. The networks of crop breeders who exchange resistance genes and deploy them in varieties help to determine the global landscape of resistance and epidemics, an important system for maintaining food security. These networks function as a complex adaptive system, with associated strengths and vulnerabilities, and implications for policies to support resistance gene deployment strategies. Extensions of epidemic network analysis can be used to evaluate the multilayer agricultural networks that support and influence crop breeding networks. Here, we evaluate the general structure of crop breeding networks for cassava, potato, rice, and wheat. All four are clustered due to phytosanitary and intellectual property regulations, and linked through CGIAR hubs. Cassava networks primarily include public breeding groups, whereas others are more mixed. These systems must adapt to global change in climate and land use, the emergence of new diseases, and disruptive breeding technologies. Research priorities to support policy include how best to maintain both diversity and redundancy in the roles played by individual crop breeding groups (public versus private and global versus local), and how best to manage connectivity to optimize resistance gene deployment while avoiding risks to the useful life of resistance genes. [Formula: see text] Copyright © 2017 The Author(s). This is an open access article distributed under the CC BY 4.0 International license .

  11. Evolving chromosomes and gene regulatory networks

    Indian Academy of Sciences (India)

    Aswin

    Gene expression level unilateral. Other genes epistatic. Collateral damage. Page 25. ok.. is there a phenotype? $ % #. Page 26. Can the regulatory network of. E. coli lacking the xenogene silencing system evolve towards greater fitness? Page 27. Many mutations emerge in a dynamic genome. Inactivation of the global ...

  12. Crowdsourcing the nodulation gene network discovery environment.

    Science.gov (United States)

    Li, Yupeng; Jackson, Scott A

    2016-05-26

    The Legumes (Fabaceae) are an economically and ecologically important group of plant species with the conspicuous capacity for symbiotic nitrogen fixation in root nodules, specialized plant organs containing symbiotic microbes. With the aim of understanding the underlying molecular mechanisms leading to nodulation, many efforts are underway to identify nodulation-related genes and determine how these genes interact with each other. In order to accurately and efficiently reconstruct nodulation gene network, a crowdsourcing platform, CrowdNodNet, was created. The platform implements the jQuery and vis.js JavaScript libraries, so that users are able to interactively visualize and edit the gene network, and easily access the information about the network, e.g. gene lists, gene interactions and gene functional annotations. In addition, all the gene information is written on MediaWiki pages, enabling users to edit and contribute to the network curation. Utilizing the continuously updated, collaboratively written, and community-reviewed Wikipedia model, the platform could, in a short time, become a comprehensive knowledge base of nodulation-related pathways. The platform could also be used for other biological processes, and thus has great potential for integrating and advancing our understanding of the functional genomics and systems biology of any process for any species. The platform is available at http://crowd.bioops.info/ , and the source code can be openly accessed at https://github.com/bioops/crowdnodnet under MIT License.

  13. Deconstructing the pluripotency gene regulatory network

    KAUST Repository

    Li, Mo

    2018-04-04

    Pluripotent stem cells can be isolated from embryos or derived by reprogramming. Pluripotency is stabilized by an interconnected network of pluripotency genes that cooperatively regulate gene expression. Here we describe the molecular principles of pluripotency gene function and highlight post-transcriptional controls, particularly those induced by RNA-binding proteins and alternative splicing, as an important regulatory layer of pluripotency. We also discuss heterogeneity in pluripotency regulation, alternative pluripotency states and future directions of pluripotent stem cell research.

  14. Network Completion for Static Gene Expression Data

    Directory of Open Access Journals (Sweden)

    Natsu Nakajima

    2014-01-01

    Full Text Available We tackle the problem of completing and inferring genetic networks under stationary conditions from static data, where network completion is to make the minimum amount of modifications to an initial network so that the completed network is most consistent with the expression data in which addition of edges and deletion of edges are basic modification operations. For this problem, we present a new method for network completion using dynamic programming and least-squares fitting. This method can find an optimal solution in polynomial time if the maximum indegree of the network is bounded by a constant. We evaluate the effectiveness of our method through computational experiments using synthetic data. Furthermore, we demonstrate that our proposed method can distinguish the differences between two types of genetic networks under stationary conditions from lung cancer and normal gene expression data.

  15. Mutated Genes in Schizophrenia Map to Brain Networks

    Science.gov (United States)

    ... Matters NIH Research Matters August 12, 2013 Mutated Genes in Schizophrenia Map to Brain Networks Schizophrenia networks ... have a high number of spontaneous mutations in genes that form a network in the front region ...

  16. Inferring gene regression networks with model trees

    Directory of Open Access Journals (Sweden)

    Aguilar-Ruiz Jesus S

    2010-10-01

    Full Text Available Abstract Background Novel strategies are required in order to handle the huge amount of data produced by microarray technologies. To infer gene regulatory networks, the first step is to find direct regulatory relationships between genes building the so-called gene co-expression networks. They are typically generated using correlation statistics as pairwise similarity measures. Correlation-based methods are very useful in order to determine whether two genes have a strong global similarity but do not detect local similarities. Results We propose model trees as a method to identify gene interaction networks. While correlation-based methods analyze each pair of genes, in our approach we generate a single regression tree for each gene from the remaining genes. Finally, a graph from all the relationships among output and input genes is built taking into account whether the pair of genes is statistically significant. For this reason we apply a statistical procedure to control the false discovery rate. The performance of our approach, named REGNET, is experimentally tested on two well-known data sets: Saccharomyces Cerevisiae and E.coli data set. First, the biological coherence of the results are tested. Second the E.coli transcriptional network (in the Regulon database is used as control to compare the results to that of a correlation-based method. This experiment shows that REGNET performs more accurately at detecting true gene associations than the Pearson and Spearman zeroth and first-order correlation-based methods. Conclusions REGNET generates gene association networks from gene expression data, and differs from correlation-based methods in that the relationship between one gene and others is calculated simultaneously. Model trees are very useful techniques to estimate the numerical values for the target genes by linear regression functions. They are very often more precise than linear regression models because they can add just different linear

  17. Fusion genes in leukemia: an emerging network.

    Science.gov (United States)

    Bohlander, S K

    2000-01-01

    The molecular analysis of recurring chromosome rearrangements, especially of translocations and inversions, has provided us with valuable insight into the pathogenesis of hematological malignancies. Many translocations result in the fusion of genes located at the translocation breakpoints. In recent years we have witnessed a rapid rise in the number of chromosome translocations in leukemias being characterized at the molecular level. However, the number of genes being newly identified as translocation fusion genes has not risen at the same pace. This is due to the fact that several genes are involved in more than one translocation forming fusion genes with a number of other partner genes. Not only does one find star-shaped topologies, with one gene forming fusions with several others (e.g. ETV6/PDGFRB, ETV6/JAK2, ETV6/ABL etc.), but also networks connecting several genes with more than one fusion partner (e.g. ETV6/RUNX1 (AML1), RUNX1/CBFA2T1 (ETO), ETV6/EVI1, RUNX1/EVI1, ETV6/ABL, BCR/ABL). The emergence of such networks with the "recycling" of genes in new fusion combinations suggests that there is a rather limited number of genes which can be altered to cause leukemia. Copyright 2001 S. Karger AG, Basel

  18. Identification of key player genes in gene regulatory networks.

    Science.gov (United States)

    Nazarieh, Maryam; Wiese, Andreas; Will, Thorsten; Hamed, Mohamed; Helms, Volkhard

    2016-09-06

    Identifying the gene regulatory networks governing the workings and identity of cells is one of the main challenges in understanding processes such as cellular differentiation, reprogramming or cancerogenesis. One particular challenge is to identify the main drivers and master regulatory genes that control such cell fate transitions. In this work, we reformulate this problem as the optimization problems of computing a Minimum Dominating Set and a Minimum Connected Dominating Set for directed graphs. Both MDS and MCDS are applied to the well-studied gene regulatory networks of the model organisms E. coli and S. cerevisiae and to a pluripotency network for mouse embryonic stem cells. The results show that MCDS can capture most of the known key player genes identified so far in the model organisms. Moreover, this method suggests an additional small set of transcription factors as novel key players for governing the cell-specific gene regulatory network which can also be investigated with regard to diseases. To this aim, we investigated the ability of MCDS to define key drivers in breast cancer. The method identified many known drug targets as members of the MDS and MCDS. This paper proposes a new method to identify key player genes in gene regulatory networks. The Java implementation of the heuristic algorithm explained in this paper is available as a Cytoscape plugin at http://apps.cytoscape.org/apps/mcds . The SageMath programs for solving integer linear programming formulations used in the paper are available at https://github.com/maryamNazarieh/KeyRegulatoryGenes and as supplementary material.

  19. Mutational robustness of gene regulatory networks.

    Directory of Open Access Journals (Sweden)

    Aalt D J van Dijk

    Full Text Available Mutational robustness of gene regulatory networks refers to their ability to generate constant biological output upon mutations that change network structure. Such networks contain regulatory interactions (transcription factor-target gene interactions but often also protein-protein interactions between transcription factors. Using computational modeling, we study factors that influence robustness and we infer several network properties governing it. These include the type of mutation, i.e. whether a regulatory interaction or a protein-protein interaction is mutated, and in the case of mutation of a regulatory interaction, the sign of the interaction (activating vs. repressive. In addition, we analyze the effect of combinations of mutations and we compare networks containing monomeric with those containing dimeric transcription factors. Our results are consistent with available data on biological networks, for example based on evolutionary conservation of network features. As a novel and remarkable property, we predict that networks are more robust against mutations in monomer than in dimer transcription factors, a prediction for which analysis of conservation of DNA binding residues in monomeric vs. dimeric transcription factors provides indirect evidence.

  20. Inferring Phylogenetic Networks from Gene Order Data

    Directory of Open Access Journals (Sweden)

    Alexey Anatolievich Morozov

    2013-01-01

    Full Text Available Existing algorithms allow us to infer phylogenetic networks from sequences (DNA, protein or binary, sets of trees, and distance matrices, but there are no methods to build them using the gene order data as an input. Here we describe several methods to build split networks from the gene order data, perform simulation studies, and use our methods for analyzing and interpreting different real gene order datasets. All proposed methods are based on intermediate data, which can be generated from genome structures under study and used as an input for network construction algorithms. Three intermediates are used: set of jackknife trees, distance matrix, and binary encoding. According to simulations and case studies, the best intermediates are jackknife trees and distance matrix (when used with Neighbor-Net algorithm. Binary encoding can also be useful, but only when the methods mentioned above cannot be used.

  1. Robustness Analysis of Gene Regulatory Networks

    Science.gov (United States)

    Kadelka, Claus T.

    Cells generally manage to maintain stable phenotypes in the face of widely varying environmental conditions. This fact is particularly surprising since the key step of gene expression is fundamentally a stochastic process. Many hypotheses have been suggested to explain this robustness. First, the special topology of gene regulatory networks (GRNs) seems to be an important factor as they possess feedforward loops and certain other topological features much more frequently than expected. Second, genes often regulate each other in a canalizing fashion: there exists a dominance order amidst the regulators of a gene, which in silico leads to very robust phenotypes. Lastly, an entirely novel gene regulatory mechanism, discovered and studied during the last two decades, which is believed to play an important role in cancer, is shedding some light on how canalization may in fact take place as part of a cell's gene regulatory program. Short segments of single-stranded RNA, so-called microRNAs, which are embedded in several different types of feedforward loops, help smooth out noise and generate canalizing effects in gene regulation by overriding the effect of certain genes on others. Boolean networks and their multi-state extensions have been successfully used to model GRNs for many years. In this dissertation, GRNs are represented in the time- and state-discrete framework of Stochastic Discrete Dynamical Systems (SDDS), which captures the cell-inherent stochasticity. Each gene has finitely many different concentration levels and its concentration at the next time step is determined by a gene-specific update rule that depends on the current concentration of the gene's regulators. The update rules in published gene regulatory networks are often nested canalizing functions. In Chapter 2, this class of functions is introduced, generalized and analyzed with respect to its potential to confer robustness. Chapter 3 describes a simulation study, which supports the hypothesis that

  2. Transcriptional delay stabilizes bistable gene networks.

    Science.gov (United States)

    Gupta, Chinmaya; López, José Manuel; Ott, William; Josić, Krešimir; Bennett, Matthew R

    2013-08-02

    Transcriptional delay can significantly impact the dynamics of gene networks. Here we examine how such delay affects bistable systems. We investigate several stochastic models of bistable gene networks and find that increasing delay dramatically increases the mean residence times near stable states. To explain this, we introduce a non-Markovian, analytically tractable reduced model. The model shows that stabilization is the consequence of an increased number of failed transitions between stable states. Each of the bistable systems that we simulate behaves in this manner.

  3. Network enrichment analysis: extension of gene-set enrichment analysis to gene networks

    Directory of Open Access Journals (Sweden)

    Alexeyenko Andrey

    2012-09-01

    Full Text Available Abstract Background Gene-set enrichment analyses (GEA or GSEA are commonly used for biological characterization of an experimental gene-set. This is done by finding known functional categories, such as pathways or Gene Ontology terms, that are over-represented in the experimental set; the assessment is based on an overlap statistic. Rich biological information in terms of gene interaction network is now widely available, but this topological information is not used by GEA, so there is a need for methods that exploit this type of information in high-throughput data analysis. Results We developed a method of network enrichment analysis (NEA that extends the overlap statistic in GEA to network links between genes in the experimental set and those in the functional categories. For the crucial step in statistical inference, we developed a fast network randomization algorithm in order to obtain the distribution of any network statistic under the null hypothesis of no association between an experimental gene-set and a functional category. We illustrate the NEA method using gene and protein expression data from a lung cancer study. Conclusions The results indicate that the NEA method is more powerful than the traditional GEA, primarily because the relationships between gene sets were more strongly captured by network connectivity rather than by simple overlaps.

  4. Interactive visualization of gene regulatory networks with associated gene expression time series data

    NARCIS (Netherlands)

    Westenberg, Michel A.; Hijum, Sacha A.F.T. van; Lulko, Andrzej T.; Kuipers, Oscar P.; Roerdink, Jos B.T.M.; Linsen, L; Hagen, H; Hamann, B

    2008-01-01

    We present GENeVis, an application to visualize gene expression time series data in a gene regulatory network context. This is a network of regulator proteins that regulate the expression of their respective target genes. The networks are represented as graphs, in which the nodes represent genes,

  5. Hybrid stochastic simplifications for multiscale gene networks

    Directory of Open Access Journals (Sweden)

    Debussche Arnaud

    2009-09-01

    Full Text Available Abstract Background Stochastic simulation of gene networks by Markov processes has important applications in molecular biology. The complexity of exact simulation algorithms scales with the number of discrete jumps to be performed. Approximate schemes reduce the computational time by reducing the number of simulated discrete events. Also, answering important questions about the relation between network topology and intrinsic noise generation and propagation should be based on general mathematical results. These general results are difficult to obtain for exact models. Results We propose a unified framework for hybrid simplifications of Markov models of multiscale stochastic gene networks dynamics. We discuss several possible hybrid simplifications, and provide algorithms to obtain them from pure jump processes. In hybrid simplifications, some components are discrete and evolve by jumps, while other components are continuous. Hybrid simplifications are obtained by partial Kramers-Moyal expansion 123 which is equivalent to the application of the central limit theorem to a sub-model. By averaging and variable aggregation we drastically reduce simulation time and eliminate non-critical reactions. Hybrid and averaged simplifications can be used for more effective simulation algorithms and for obtaining general design principles relating noise to topology and time scales. The simplified models reproduce with good accuracy the stochastic properties of the gene networks, including waiting times in intermittence phenomena, fluctuation amplitudes and stationary distributions. The methods are illustrated on several gene network examples. Conclusion Hybrid simplifications can be used for onion-like (multi-layered approaches to multi-scale biochemical systems, in which various descriptions are used at various scales. Sets of discrete and continuous variables are treated with different methods and are coupled together in a physically justified approach.

  6. FUMET: A fuzzy network module extraction technique for gene ...

    Indian Academy of Sciences (India)

    Supplementary figure 1. (A): Visualization of one of the network modules by GeneMania for dataset 4 (B): Visualization of one of the network modules by GeneMania for dataset 1 (C): Visualization of one of the network modules by GeneMania for dataset 3.

  7. Paper-based Synthetic Gene Networks

    Science.gov (United States)

    Pardee, Keith; Green, Alexander A.; Ferrante, Tom; Cameron, D. Ewen; DaleyKeyser, Ajay; Yin, Peng; Collins, James J.

    2014-01-01

    Synthetic gene networks have wide-ranging uses in reprogramming and rewiring organisms. To date, there has not been a way to harness the vast potential of these networks beyond the constraints of a laboratory or in vivo environment. Here, we present an in vitro paper-based platform that provides a new venue for synthetic biologists to operate, and a much-needed medium for the safe deployment of engineered gene circuits beyond the lab. Commercially available cell-free systems are freeze-dried onto paper, enabling the inexpensive, sterile and abiotic distribution of synthetic biology-based technologies for the clinic, global health, industry, research and education. For field use, we create circuits with colorimetric outputs for detection by eye, and fabricate a low-cost, electronic optical interface. We demonstrate this technology with small molecule and RNA actuation of genetic switches, rapid prototyping of complex gene circuits, and programmable in vitro diagnostics, including glucose sensors and strain-specific Ebola virus sensors. PMID:25417167

  8. Biomarker Gene Signature Discovery Integrating Network Knowledge

    Directory of Open Access Journals (Sweden)

    Holger Fröhlich

    2012-02-01

    Full Text Available Discovery of prognostic and diagnostic biomarker gene signatures for diseases, such as cancer, is seen as a major step towards a better personalized medicine. During the last decade various methods, mainly coming from the machine learning or statistical domain, have been proposed for that purpose. However, one important obstacle for making gene signatures a standard tool in clinical diagnosis is the typical low reproducibility of these signatures combined with the difficulty to achieve a clear biological interpretation. For that purpose in the last years there has been a growing interest in approaches that try to integrate information from molecular interaction networks. Here we review the current state of research in this field by giving an overview about so-far proposed approaches.

  9. Discovering implicit entity relation with the gene-citation-gene network.

    Directory of Open Access Journals (Sweden)

    Min Song

    Full Text Available In this paper, we apply the entitymetrics model to our constructed Gene-Citation-Gene (GCG network. Based on the premise there is a hidden, but plausible, relationship between an entity in one article and an entity in its citing article, we constructed a GCG network of gene pairs implicitly connected through citation. We compare the performance of this GCG network to a gene-gene (GG network constructed over the same corpus but which uses gene pairs explicitly connected through traditional co-occurrence. Using 331,411 MEDLINE abstracts collected from 18,323 seed articles and their references, we identify 25 gene pairs. A comparison of these pairs with interactions found in BioGRID reveal that 96% of the gene pairs in the GCG network have known interactions. We measure network performance using degree, weighted degree, closeness, betweenness centrality and PageRank. Combining all measures, we find the GCG network has more gene pairs, but a lower matching rate than the GG network. However, combining top ranked genes in both networks produces a matching rate of 35.53%. By visualizing both the GG and GCG networks, we find that cancer is the most dominant disease associated with the genes in both networks. Overall, the study indicates that the GCG network can be useful for detecting gene interaction in an implicit manner.

  10. A study of structural properties of gene network graphs for mathematical modeling of integrated mosaic gene networks.

    Science.gov (United States)

    Petrovskaya, Olga V; Petrovskiy, Evgeny D; Lavrik, Inna N; Ivanisenko, Vladimir A

    2017-04-01

    Gene network modeling is one of the widely used approaches in systems biology. It allows for the study of complex genetic systems function, including so-called mosaic gene networks, which consist of functionally interacting subnetworks. We conducted a study of a mosaic gene networks modeling method based on integration of models of gene subnetworks by linear control functionals. An automatic modeling of 10,000 synthetic mosaic gene regulatory networks was carried out using computer experiments on gene knockdowns/knockouts. Structural analysis of graphs of generated mosaic gene regulatory networks has revealed that the most important factor for building accurate integrated mathematical models, among those analyzed in the study, is data on expression of genes corresponding to the vertices with high properties of centrality.

  11. Gene coexpression network analysis as a source of functional annotation for rice genes.

    Directory of Open Access Journals (Sweden)

    Kevin L Childs

    Full Text Available With the existence of large publicly available plant gene expression data sets, many groups have undertaken data analyses to construct gene coexpression networks and functionally annotate genes. Often, a large compendium of unrelated or condition-independent expression data is used to construct gene networks. Condition-dependent expression experiments consisting of well-defined conditions/treatments have also been used to create coexpression networks to help examine particular biological processes. Gene networks derived from either condition-dependent or condition-independent data can be difficult to interpret if a large number of genes and connections are present. However, algorithms exist to identify modules of highly connected and biologically relevant genes within coexpression networks. In this study, we have used publicly available rice (Oryza sativa gene expression data to create gene coexpression networks using both condition-dependent and condition-independent data and have identified gene modules within these networks using the Weighted Gene Coexpression Network Analysis method. We compared the number of genes assigned to modules and the biological interpretability of gene coexpression modules to assess the utility of condition-dependent and condition-independent gene coexpression networks. For the purpose of providing functional annotation to rice genes, we found that gene modules identified by coexpression analysis of condition-dependent gene expression experiments to be more useful than gene modules identified by analysis of a condition-independent data set. We have incorporated our results into the MSU Rice Genome Annotation Project database as additional expression-based annotation for 13,537 genes, 2,980 of which lack a functional annotation description. These results provide two new types of functional annotation for our database. Genes in modules are now associated with groups of genes that constitute a collective functional

  12. Cancer classification based on gene expression using neural networks.

    Science.gov (United States)

    Hu, H P; Niu, Z J; Bai, Y P; Tan, X H

    2015-12-21

    Based on gene expression, we have classified 53 colon cancer patients with UICC II into two groups: relapse and no relapse. Samples were taken from each patient, and gene information was extracted. Of the 53 samples examined, 500 genes were considered proper through analyses by S-Kohonen, BP, and SVM neural networks. Classification accuracy obtained by S-Kohonen neural network reaches 91%, which was more accurate than classification by BP and SVM neural networks. The results show that S-Kohonen neural network is more plausible for classification and has a certain feasibility and validity as compared with BP and SVM neural networks.

  13. The inferred cardiogenic gene regulatory network in the mammalian heart.

    Science.gov (United States)

    Bazil, Jason N; Stamm, Karl D; Li, Xing; Thiagarajan, Raghuram; Nelson, Timothy J; Tomita-Mitchell, Aoy; Beard, Daniel A

    2014-01-01

    Cardiac development is a complex, multiscale process encompassing cell fate adoption, differentiation and morphogenesis. To elucidate pathways underlying this process, a recently developed algorithm to reverse engineer gene regulatory networks was applied to time-course microarray data obtained from the developing mouse heart. Approximately 200 genes of interest were input into the algorithm to generate putative network topologies that are capable of explaining the experimental data via model simulation. To cull specious network interactions, thousands of putative networks are merged and filtered to generate scale-free, hierarchical networks that are statistically significant and biologically relevant. The networks are validated with known gene interactions and used to predict regulatory pathways important for the developing mammalian heart. Area under the precision-recall curve and receiver operator characteristic curve are 9% and 58%, respectively. Of the top 10 ranked predicted interactions, 4 have already been validated. The algorithm is further tested using a network enriched with known interactions and another depleted of them. The inferred networks contained more interactions for the enriched network versus the depleted network. In all test cases, maximum performance of the algorithm was achieved when the purely data-driven method of network inference was combined with a data-independent, functional-based association method. Lastly, the network generated from the list of approximately 200 genes of interest was expanded using gene-profile uniqueness metrics to include approximately 900 additional known mouse genes and to form the most likely cardiogenic gene regulatory network. The resultant network supports known regulatory interactions and contains several novel cardiogenic regulatory interactions. The method outlined herein provides an informative approach to network inference and leads to clear testable hypotheses related to gene regulation.

  14. Gene regulatory networks governing lung specification.

    Science.gov (United States)

    Rankin, Scott A; Zorn, Aaron M

    2014-08-01

    The epithelial lining of the respiratory system originates from a small group of progenitor cells in the ventral foregut endoderm of the early embryo. Research in the last decade has revealed a number of paracrine signaling pathways that are critical for the development of these respiratory progenitors. In the post-genomic era the challenge now is to figure out at the genome wide level how these different signaling pathways and their downstream transcription factors interact in a complex "gene regulatory network" (GRN) to orchestrate early lung development. In this prospective, we review our growing understanding of the GRN governing lung specification. We discuss key gaps in our knowledge and describe emerging opportunities that will soon provide an unprecedented understanding of lung development and accelerate our ability to apply this knowledge to regenerative medicine. © 2014 Wiley Periodicals, Inc.

  15. Networks in biological systems: An investigation of the Gene Ontology as an evolving network

    International Nuclear Information System (INIS)

    Coronnello, C; Tumminello, M; Micciche, S; Mantegna, R.N.

    2009-01-01

    Many biological systems can be described as networks where different elements interact, in order to perform biological processes. We introduce a network associated with the Gene Ontology. Specifically, we construct a correlation-based network where the vertices are the terms of the Gene Ontology and the link between each two terms is weighted on the basis of the number of genes that they have in common. We analyze a filtered network obtained from the correlation-based network and we characterize its evolution over different releases of the Gene Ontology.

  16. Gene networks controlling Arabidopsis thaliana flower development.

    Science.gov (United States)

    Ó'Maoiléidigh, Diarmuid Seosamh; Graciet, Emmanuelle; Wellmer, Frank

    2014-01-01

    The formation of flowers is one of the main models for studying the regulatory mechanisms that underlie plant development and evolution. Over the past three decades, extensive genetic and molecular analyses have led to the identification of a large number of key floral regulators and to detailed insights into how they control flower morphogenesis. In recent years, genome-wide approaches have been applied to obtaining a global view of the gene regulatory networks underlying flower formation. Furthermore, mathematical models have been developed that can simulate certain aspects of this process and drive further experimentation. Here, we review some of the main findings made in the field of Arabidopsis thaliana flower development, with an emphasis on recent advances. In particular, we discuss the activities of the floral organ identity factors, which are pivotal for the specification of the different types of floral organs, and explore the experimental avenues that may elucidate the molecular mechanisms and gene expression programs through which these master regulators of flower development act. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  17. Analysis of regulatory networks constructed based on gene ...

    Indian Academy of Sciences (India)

    For pituitary adenoma-specific coexpressed genes, we integrated transcription factor (TF) and microRNA (miRNA) regulation to construct a complex regulatory network from the transcriptional and posttranscriptional perspectives. Network module analysis identified the synergistic regulation of genes by miRNAs and TFs in ...

  18. Predicting disease-related genes using integrated biomedical networks

    OpenAIRE

    Peng, Jiajie; Bai, Kun; Shang, Xuequn; Wang, Guohua; Xue, Hansheng; Jin, Shuilin; Cheng, Liang; Wang, Yadong; Chen, Jin

    2017-01-01

    Background Identifying the genes associated to human diseases is crucial for disease diagnosis and drug design. Computational approaches, esp. the network-based approaches, have been recently developed to identify disease-related genes effectively from the existing biomedical networks. Meanwhile, the advance in biotechnology enables researchers to produce multi-omics data, enriching our understanding on human diseases, and revealing the complex relationships between genes and diseases. Howeve...

  19. A Regulatory Network Analysis of Orphan Genes in Arabidopsis Thaliana

    Science.gov (United States)

    Singh, Pramesh; Chen, Tianlong; Arendsee, Zebulun; Wurtele, Eve S.; Bassler, Kevin E.

    Orphan genes, which are genes unique to each particular species, have recently drawn significant attention for their potential usefulness for organismal robustness. Their origin and regulatory interaction patterns remain largely undiscovered. Recently, methods that use the context likelihood of relatedness to infer a network followed by modularity maximizing community detection algorithms on the inferred network to find the functional structure of regulatory networks were shown to be effective. We apply improved versions of these methods to gene expression data from Arabidopsis thaliana, identify groups (clusters) of interacting genes with related patterns of expression and analyze the structure within those groups. Focusing on clusters that contain orphan genes, we compare the identified clusters to gene ontology (GO) terms, regulons, and pathway designations and analyze their hierarchical structure. We predict new regulatory interactions and unravel the structure of the regulatory interaction patterns of orphan genes. Work supported by the NSF through Grants DMR-1507371 and IOS-1546858.

  20. Semi-supervised prediction of gene regulatory networks using ...

    Indian Academy of Sciences (India)

    2015-09-28

    Sep 28, 2015 ... [Patel N and Wang JTL 2015 Semi-supervised prediction of gene regulatory networks using machine learning algorithms. J. Biosci. 40 731–740]. DOI 10.1007/s12038-015-9558-9. 1. Introduction. 1.1 Background. Using gene expression data to infer gene regulatory net- works (GRNs) is a key approach to ...

  1. The transfer and transformation of collective network information in gene-matched networks.

    Science.gov (United States)

    Kitsukawa, Takashi; Yagi, Takeshi

    2015-10-09

    Networks, such as the human society network, social and professional networks, and biological system networks, contain vast amounts of information. Information signals in networks are distributed over nodes and transmitted through intricately wired links, making the transfer and transformation of such information difficult to follow. Here we introduce a novel method for describing network information and its transfer using a model network, the Gene-matched network (GMN), in which nodes (neurons) possess attributes (genes). In the GMN, nodes are connected according to their expression of common genes. Because neurons have multiple genes, the GMN is cluster-rich. We show that, in the GMN, information transfer and transformation were controlled systematically, according to the activity level of the network. Furthermore, information transfer and transformation could be traced numerically with a vector using genes expressed in the activated neurons, the active-gene array, which was used to assess the relative activity among overlapping neuronal groups. Interestingly, this coding style closely resembles the cell-assembly neural coding theory. The method introduced here could be applied to many real-world networks, since many systems, including human society and various biological systems, can be represented as a network of this type.

  2. PoplarGene: poplar gene network and resource for mining functional information for genes from woody plants

    OpenAIRE

    Qi Liu; Changjun Ding; Yanguang Chu; Jiafei Chen; Weixi Zhang; Bingyu Zhang; Qinjun Huang; Xiaohua Su

    2016-01-01

    Poplar is not only an important resource for the production of paper, timber and other wood-based products, but it has also emerged as an ideal model system for studying woody plants. To better understand the biological processes underlying various traits in poplar, e.g., wood development, a comprehensive functional gene interaction network is highly needed. Here, we constructed a genome-wide functional gene network for poplar (covering ~70% of the 41,335 poplar genes) and created the network...

  3. A flood-based information flow analysis and network minimization method for gene regulatory networks.

    Science.gov (United States)

    Pavlogiannis, Andreas; Mozhayskiy, Vadim; Tagkopoulos, Ilias

    2013-04-24

    Biological networks tend to have high interconnectivity, complex topologies and multiple types of interactions. This renders difficult the identification of sub-networks that are involved in condition- specific responses. In addition, we generally lack scalable methods that can reveal the information flow in gene regulatory and biochemical pathways. Doing so will help us to identify key participants and paths under specific environmental and cellular context. This paper introduces the theory of network flooding, which aims to address the problem of network minimization and regulatory information flow in gene regulatory networks. Given a regulatory biological network, a set of source (input) nodes and optionally a set of sink (output) nodes, our task is to find (a) the minimal sub-network that encodes the regulatory program involving all input and output nodes and (b) the information flow from the source to the sink nodes of the network. Here, we describe a novel, scalable, network traversal algorithm and we assess its potential to achieve significant network size reduction in both synthetic and E. coli networks. Scalability and sensitivity analysis show that the proposed method scales well with the size of the network, and is robust to noise and missing data. The method of network flooding proves to be a useful, practical approach towards information flow analysis in gene regulatory networks. Further extension of the proposed theory has the potential to lead in a unifying framework for the simultaneous network minimization and information flow analysis across various "omics" levels.

  4. Reverse Engineering of Gene Regulatory Networks: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Hendrik Hache

    2009-01-01

    Full Text Available Reverse engineering of gene regulatory networks has been an intensively studied topic in bioinformatics since it constitutes an intermediate step from explorative to causative gene expression analysis. Many methods have been proposed through recent years leading to a wide range of mathematical approaches. In practice, different mathematical approaches will generate different resulting network structures, thus, it is very important for users to assess the performance of these algorithms. We have conducted a comparative study with six different reverse engineering methods, including relevance networks, neural networks, and Bayesian networks. Our approach consists of the generation of defined benchmark data, the analysis of these data with the different methods, and the assessment of algorithmic performances by statistical analyses. Performance was judged by network size and noise levels. The results of the comparative study highlight the neural network approach as best performing method among those under study.

  5. A network of genes, genetic disorders, and brain areas.

    Directory of Open Access Journals (Sweden)

    Satoru Hayasaka

    Full Text Available The network-based approach has been used to describe the relationship among genes and various phenotypes, producing a network describing complex biological relationships. Such networks can be constructed by aggregating previously reported associations in the literature from various databases. In this work, we applied the network-based approach to investigate how different brain areas are associated to genetic disorders and genes. In particular, a tripartite network with genes, genetic diseases, and brain areas was constructed based on the associations among them reported in the literature through text mining. In the resulting network, a disproportionately large number of gene-disease and disease-brain associations were attributed to a small subset of genes, diseases, and brain areas. Furthermore, a small number of brain areas were found to be associated with a large number of the same genes and diseases. These core brain regions encompassed the areas identified by the previous genome-wide association studies, and suggest potential areas of focus in the future imaging genetics research. The approach outlined in this work demonstrates the utility of the network-based approach in studying genetic effects on the brain.

  6. A network of genes, genetic disorders, and brain areas.

    Science.gov (United States)

    Hayasaka, Satoru; Hugenschmidt, Christina E; Laurienti, Paul J

    2011-01-01

    The network-based approach has been used to describe the relationship among genes and various phenotypes, producing a network describing complex biological relationships. Such networks can be constructed by aggregating previously reported associations in the literature from various databases. In this work, we applied the network-based approach to investigate how different brain areas are associated to genetic disorders and genes. In particular, a tripartite network with genes, genetic diseases, and brain areas was constructed based on the associations among them reported in the literature through text mining. In the resulting network, a disproportionately large number of gene-disease and disease-brain associations were attributed to a small subset of genes, diseases, and brain areas. Furthermore, a small number of brain areas were found to be associated with a large number of the same genes and diseases. These core brain regions encompassed the areas identified by the previous genome-wide association studies, and suggest potential areas of focus in the future imaging genetics research. The approach outlined in this work demonstrates the utility of the network-based approach in studying genetic effects on the brain.

  7. Motif Participation by Genes in E. coli Transcriptional Networks

    Directory of Open Access Journals (Sweden)

    Michael eMayo

    2012-09-01

    Full Text Available Motifs are patterns of recurring connections among the genes of genetic networks that occur more frequently than would be expected from randomized networks with the same degree sequence. Although the abundance of certain three-node motifs, such as the feed-forward loop, is positively correlated with a networks’ ability to tolerate moderate disruptions to gene expression, little is known regarding the connectivity of individual genes participating in multiple motifs. Using the transcriptional network of the bacterium Escherichia coli, we investigate this feature by reconstructing the distribution of genes participating in feed-forward loop motifs from its largest connected network component. We contrast these motif participation distributions with those obtained from model networks built using the preferential attachment mechanism employed by many biological and man-made networks. We report that, although some of these model networks support a motif participation distribution that appears qualitatively similar to that obtained from the bacterium Escherichia coli, the probability for a node to support a feed-forward loop motif may instead be strongly influenced by only a few master transcriptional regulators within the network. From these analyses we conclude that such master regulators may be a crucial ingredient to describe coupling among feed-forward loop motifs in transcriptional regulatory networks.

  8. Disease candidate gene identification and prioritization using protein interaction networks

    Directory of Open Access Journals (Sweden)

    Aronow Bruce J

    2009-02-01

    Full Text Available Abstract Background Although most of the current disease candidate gene identification and prioritization methods depend on functional annotations, the coverage of the gene functional annotations is a limiting factor. In the current study, we describe a candidate gene prioritization method that is entirely based on protein-protein interaction network (PPIN analyses. Results For the first time, extended versions of the PageRank and HITS algorithms, and the K-Step Markov method are applied to prioritize disease candidate genes in a training-test schema. Using a list of known disease-related genes from our earlier study as a training set ("seeds", and the rest of the known genes as a test list, we perform large-scale cross validation to rank the candidate genes and also evaluate and compare the performance of our approach. Under appropriate settings – for example, a back probability of 0.3 for PageRank with Priors and HITS with Priors, and step size 6 for K-Step Markov method – the three methods achieved a comparable AUC value, suggesting a similar performance. Conclusion Even though network-based methods are generally not as effective as integrated functional annotation-based methods for disease candidate gene prioritization, in a one-to-one comparison, PPIN-based candidate gene prioritization performs better than all other gene features or annotations. Additionally, we demonstrate that methods used for studying both social and Web networks can be successfully used for disease candidate gene prioritization.

  9. Gene Regulatory Network Reconstruction Using Conditional Mutual Information

    Directory of Open Access Journals (Sweden)

    Xiaodong Wang

    2008-06-01

    Full Text Available The inference of gene regulatory network from expression data is an important area of research that provides insight to the inner workings of a biological system. The relevance-network-based approaches provide a simple and easily-scalable solution to the understanding of interaction between genes. Up until now, most works based on relevance network focus on the discovery of direct regulation using correlation coefficient or mutual information. However, some of the more complicated interactions such as interactive regulation and coregulation are not easily detected. In this work, we propose a relevance network model for gene regulatory network inference which employs both mutual information and conditional mutual information to determine the interactions between genes. For this purpose, we propose a conditional mutual information estimator based on adaptive partitioning which allows us to condition on both discrete and continuous random variables. We provide experimental results that demonstrate that the proposed regulatory network inference algorithm can provide better performance when the target network contains coregulated and interactively regulated genes.

  10. Fused Regression for Multi-source Gene Regulatory Network Inference.

    Directory of Open Access Journals (Sweden)

    Kari Y Lam

    2016-12-01

    Full Text Available Understanding gene regulatory networks is critical to understanding cellular differentiation and response to external stimuli. Methods for global network inference have been developed and applied to a variety of species. Most approaches consider the problem of network inference independently in each species, despite evidence that gene regulation can be conserved even in distantly related species. Further, network inference is often confined to single data-types (single platforms and single cell types. We introduce a method for multi-source network inference that allows simultaneous estimation of gene regulatory networks in multiple species or biological processes through the introduction of priors based on known gene relationships such as orthology incorporated using fused regression. This approach improves network inference performance even when orthology mapping and conservation are incomplete. We refine this method by presenting an algorithm that extracts the true conserved subnetwork from a larger set of potentially conserved interactions and demonstrate the utility of our method in cross species network inference. Last, we demonstrate our method's utility in learning from data collected on different experimental platforms.

  11. A fuzzy network module extraction technique for gene expression data

    Indian Academy of Sciences (India)

    2014-05-01

    May 1, 2014 ... tion. Therefore, in this study, the structural properties of the co-expression network inferred from gene expression microarray data were compared with the topological prop- erties of the known, well-established network data of the same organism. We use a Web application called. topoGSA (Glaab et al.

  12. A comprehensive network and pathway analysis of human deafness genes.

    Science.gov (United States)

    Stamatiou, Georgios A; Stankovic, Konstantina M

    2013-07-01

    To perform comprehensive network and pathway analyses of the genes known to cause genetic hearing loss. In silico analysis of deafness genes using ingenuity pathway analysis (IPA). Genes relevant for hearing and deafness were identified through PubMed literature searches and the Hereditary Hearing Loss Homepage. The genes were assembled into 3 groups: 63 genes that cause nonsyndromic deafness, 107 genes that cause nonsyndromic or syndromic sensorineural deafness, and 112 genes associated with otic capsule development and malformations. Each group of genes was analyzed using IPA to discover the most interconnected, that is, "nodal" molecules, within the most statistically significant networks (p deafness (GPCR), or with predisposition to otosclerosis (TGFB1), but also novel genes that have not been described in the cochlea (HNF4A) and signaling kinases (ERK 1/2). A number of molecules that are likely to be key mediators of genetic hearing loss were identified through three different network and pathway analyses. The molecules included new candidate genes for deafness. Therapies targeting these molecules may be useful to treat deafness.

  13. Network Diffusion-Based Prioritization of Autism Risk Genes Identifies Significantly Connected Gene Modules

    Directory of Open Access Journals (Sweden)

    Ettore Mosca

    2017-09-01

    Full Text Available Autism spectrum disorder (ASD is marked by a strong genetic heterogeneity, which is underlined by the low overlap between ASD risk gene lists proposed in different studies. In this context, molecular networks can be used to analyze the results of several genome-wide studies in order to underline those network regions harboring genetic variations associated with ASD, the so-called “disease modules.” In this work, we used a recent network diffusion-based approach to jointly analyze multiple ASD risk gene lists. We defined genome-scale prioritizations of human genes in relation to ASD genes from multiple studies, found significantly connected gene modules associated with ASD and predicted genes functionally related to ASD risk genes. Most of them play a role in synapsis and neuronal development and function; many are related to syndromes that can be in comorbidity with ASD and the remaining are involved in epigenetics, cell cycle, cell adhesion and cancer.

  14. Semi-supervised prediction of gene regulatory networks using ...

    Indian Academy of Sciences (India)

    Use of computational methods to predict gene regulatory networks (GRNs) from gene expression data is a challenging task. Many studies have been conducted using unsupervised methods to fulfill the task; however, such methods usually yield low prediction accuracies due to the lack of training data. In this article, we ...

  15. Semi-supervised prediction of gene regulatory networks using ...

    Indian Academy of Sciences (India)

    2015-09-28

    Sep 28, 2015 ... Use of computational methods to predict gene regulatory networks (GRNs) from gene expression data is a challenging task. Many studies have been conducted using unsupervised methods to fulfill the task; however, such methods usually yield low prediction accuracies due to the lack of training data.

  16. Indeterminacy of reverse engineering of Gene Regulatory Networks: the curse of gene elasticity.

    Directory of Open Access Journals (Sweden)

    Arun Krishnan

    2007-06-01

    Full Text Available Gene Regulatory Networks (GRNs have become a major focus of interest in recent years. A number of reverse engineering approaches have been developed to help uncover the regulatory networks giving rise to the observed gene expression profiles. However, this is an overspecified problem due to the fact that more than one genotype (network wiring can give rise to the same phenotype. We refer to this phenomenon as "gene elasticity." In this work, we study the effect of this particular problem on the pure, data-driven inference of gene regulatory networks.We simulated a four-gene network in order to produce "data" (protein levels that we use in lieu of real experimental data. We then optimized the network connections between the four genes with a view to obtain the original network that gave rise to the data. We did this for two different cases: one in which only the network connections were optimized and the other in which both the network connections as well as the kinetic parameters (given as reaction probabilities in our case were estimated. We observed that multiple genotypes gave rise to very similar protein levels. Statistical experimentation indicates that it is impossible to differentiate between the different networks on the basis of both equilibrium as well as dynamic data.We show explicitly that reverse engineering of GRNs from pure expression data is an indeterminate problem. Our results suggest the unsuitability of an inferential, purely data-driven approach for the reverse engineering transcriptional networks in the case of gene regulatory networks displaying a certain level of complexity.

  17. A complex network analysis of hypertension-related genes

    Science.gov (United States)

    Wang, Huan; Xu, Chuan-Yun; Hu, Jing-Bo; Cao, Ke-Fei

    2014-01-01

    In this paper, a network of hypertension-related genes is constructed by analyzing the correlations of gene expression data among the Dahl salt-sensitive rat and two consomic rat strains. The numerical calculations show that this sparse and assortative network has small-world and scale-free properties. Further, 16 key hub genes (Col4a1, Lcn2, Cdk4, etc.) are determined by introducing an integrated centrality and have been confirmed by biological/medical research to play important roles in hypertension.

  18. SELANSI: a toolbox for simulation of stochastic gene regulatory networks.

    Science.gov (United States)

    Pájaro, Manuel; Otero-Muras, Irene; Vázquez, Carlos; Alonso, Antonio A

    2018-03-01

    Gene regulation is inherently stochastic. In many applications concerning Systems and Synthetic Biology such as the reverse engineering and the de novo design of genetic circuits, stochastic effects (yet potentially crucial) are often neglected due to the high computational cost of stochastic simulations. With advances in these fields there is an increasing need of tools providing accurate approximations of the stochastic dynamics of gene regulatory networks (GRNs) with reduced computational effort. This work presents SELANSI (SEmi-LAgrangian SImulation of GRNs), a software toolbox for the simulation of stochastic multidimensional gene regulatory networks. SELANSI exploits intrinsic structural properties of gene regulatory networks to accurately approximate the corresponding Chemical Master Equation with a partial integral differential equation that is solved by a semi-lagrangian method with high efficiency. Networks under consideration might involve multiple genes with self and cross regulations, in which genes can be regulated by different transcription factors. Moreover, the validity of the method is not restricted to a particular type of kinetics. The tool offers total flexibility regarding network topology, kinetics and parameterization, as well as simulation options. SELANSI runs under the MATLAB environment, and is available under GPLv3 license at https://sites.google.com/view/selansi. antonio@iim.csic.es. © The Author(s) 2017. Published by Oxford University Press.

  19. Unraveling condition specific gene transcriptional regulatory networks in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Kluger Yuval

    2006-03-01

    Full Text Available Abstract Background Gene expression and transcription factor (TF binding data have been used to reveal gene transcriptional regulatory networks. Existing knowledge of gene regulation can be presented using gene connectivity networks. However, these composite connectivity networks do not specify the range of biological conditions of the activity of each link in the network. Results We present a novel method that utilizes the expression and binding patterns of the neighboring nodes of each link in existing experimentally-based, literature-derived gene transcriptional regulatory networks and extend them in silico using TF-gene binding motifs and a compendium of large expression data from Saccharomyces cerevisiae. Using this method, we predict several hundreds of new transcriptional regulatory TF-gene links, along with experimental conditions in which known and predicted links become active. This approach unravels new links in the yeast gene transcriptional regulatory network by utilizing the known transcriptional regulatory interactions, and is particularly useful for breaking down the composite transcriptional regulatory network to condition specific networks. Conclusion Our methods can facilitate future binding experiments, as they can considerably help focus on the TFs that must be surveyed to understand gene regulation. (Supplemental material and the latest version of the MATLAB implementation of the United Signature Algorithm is available online at 1 or [see Additional files 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] Additional File 1 overview of supplemental data Click here for file Additional File 2 experimental conditions for each link in figure 5. These are the experimental conditions in which the links are likely to be active. Click here for file Additional File 3 experimental conditions for each link in figure 7. These are the experimental conditions in which the links are likely to be active. Click here for file Additional File 4 Alon

  20. Inferring the gene network underlying the branching of tomato inflorescence.

    Directory of Open Access Journals (Sweden)

    Laura Astola

    Full Text Available The architecture of tomato inflorescence strongly affects flower production and subsequent crop yield. To understand the genetic activities involved, insight into the underlying network of genes that initiate and control the sympodial growth in the tomato is essential. In this paper, we show how the structure of this network can be derived from available data of the expressions of the involved genes. Our approach starts from employing biological expert knowledge to select the most probable gene candidates behind branching behavior. To find how these genes interact, we develop a stepwise procedure for computational inference of the network structure. Our data consists of expression levels from primary shoot meristems, measured at different developmental stages on three different genotypes of tomato. With the network inferred by our algorithm, we can explain the dynamics corresponding to all three genotypes simultaneously, despite their apparent dissimilarities. We also correctly predict the chronological order of expression peaks for the main hubs in the network. Based on the inferred network, using optimal experimental design criteria, we are able to suggest an informative set of experiments for further investigation of the mechanisms underlying branching behavior.

  1. TimeXNet: identifying active gene sub-networks using time-course gene expression profiles.

    Science.gov (United States)

    Patil, Ashwini; Nakai, Kenta

    2014-01-01

    Time-course gene expression profiles are frequently used to provide insight into the changes in cellular state over time and to infer the molecular pathways involved. When combined with large-scale molecular interaction networks, such data can provide information about the dynamics of cellular response to stimulus. However, few tools are currently available to predict a single active gene sub-network from time-course gene expression profiles. We introduce a tool, TimeXNet, which identifies active gene sub-networks with temporal paths using time-course gene expression profiles in the context of a weighted gene regulatory and protein-protein interaction network. TimeXNet uses a specialized form of the network flow optimization approach to identify the most probable paths connecting the genes with significant changes in expression at consecutive time intervals. TimeXNet has been extensively evaluated for its ability to predict novel regulators and their associated pathways within active gene sub-networks in the mouse innate immune response and the yeast osmotic stress response. Compared to other similar methods, TimeXNet identified up to 50% more novel regulators from independent experimental datasets. It predicted paths within a greater number of known pathways with longer overlaps (up to 7 consecutive edges) within these pathways. TimeXNet was also shown to be robust in the presence of varying amounts of noise in the molecular interaction network. TimeXNet is a reliable tool that can be used to study cellular response to stimuli through the identification of time-dependent active gene sub-networks in diverse biological systems. It is significantly better than other similar tools. TimeXNet is implemented in Java as a stand-alone application and supported on Linux, MS Windows and Macintosh. The output of TimeXNet can be directly viewed in Cytoscape. TimeXNet is freely available for non-commercial users.

  2. Multiscale Embedded Gene Co-expression Network Analysis.

    Directory of Open Access Journals (Sweden)

    Won-Min Song

    2015-11-01

    Full Text Available Gene co-expression network analysis has been shown effective in identifying functional co-expressed gene modules associated with complex human diseases. However, existing techniques to construct co-expression networks require some critical prior information such as predefined number of clusters, numerical thresholds for defining co-expression/interaction, or do not naturally reproduce the hallmarks of complex systems such as the scale-free degree distribution of small-worldness. Previously, a graph filtering technique called Planar Maximally Filtered Graph (PMFG has been applied to many real-world data sets such as financial stock prices and gene expression to extract meaningful and relevant interactions. However, PMFG is not suitable for large-scale genomic data due to several drawbacks, such as the high computation complexity O(|V|3, the presence of false-positives due to the maximal planarity constraint, and the inadequacy of the clustering framework. Here, we developed a new co-expression network analysis framework called Multiscale Embedded Gene Co-expression Network Analysis (MEGENA by: i introducing quality control of co-expression similarities, ii parallelizing embedded network construction, and iii developing a novel clustering technique to identify multi-scale clustering structures in Planar Filtered Networks (PFNs. We applied MEGENA to a series of simulated data and the gene expression data in breast carcinoma and lung adenocarcinoma from The Cancer Genome Atlas (TCGA. MEGENA showed improved performance over well-established clustering methods and co-expression network construction approaches. MEGENA revealed not only meaningful multi-scale organizations of co-expressed gene clusters but also novel targets in breast carcinoma and lung adenocarcinoma.

  3. Multiscale Embedded Gene Co-expression Network Analysis.

    Science.gov (United States)

    Song, Won-Min; Zhang, Bin

    2015-11-01

    Gene co-expression network analysis has been shown effective in identifying functional co-expressed gene modules associated with complex human diseases. However, existing techniques to construct co-expression networks require some critical prior information such as predefined number of clusters, numerical thresholds for defining co-expression/interaction, or do not naturally reproduce the hallmarks of complex systems such as the scale-free degree distribution of small-worldness. Previously, a graph filtering technique called Planar Maximally Filtered Graph (PMFG) has been applied to many real-world data sets such as financial stock prices and gene expression to extract meaningful and relevant interactions. However, PMFG is not suitable for large-scale genomic data due to several drawbacks, such as the high computation complexity O(|V|3), the presence of false-positives due to the maximal planarity constraint, and the inadequacy of the clustering framework. Here, we developed a new co-expression network analysis framework called Multiscale Embedded Gene Co-expression Network Analysis (MEGENA) by: i) introducing quality control of co-expression similarities, ii) parallelizing embedded network construction, and iii) developing a novel clustering technique to identify multi-scale clustering structures in Planar Filtered Networks (PFNs). We applied MEGENA to a series of simulated data and the gene expression data in breast carcinoma and lung adenocarcinoma from The Cancer Genome Atlas (TCGA). MEGENA showed improved performance over well-established clustering methods and co-expression network construction approaches. MEGENA revealed not only meaningful multi-scale organizations of co-expressed gene clusters but also novel targets in breast carcinoma and lung adenocarcinoma.

  4. Combining many interaction networks to predict gene function and analyze gene lists.

    Science.gov (United States)

    Mostafavi, Sara; Morris, Quaid

    2012-05-01

    In this article, we review how interaction networks can be used alone or in combination in an automated fashion to provide insight into gene and protein function. We describe the concept of a "gene-recommender system" that can be applied to any large collection of interaction networks to make predictions about gene or protein function based on a query list of proteins that share a function of interest. We discuss these systems in general and focus on one specific system, GeneMANIA, that has unique features and uses different algorithms from the majority of other systems. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Singular Perturbation Analysis and Gene Regulatory Networks with Delay

    Science.gov (United States)

    Shlykova, Irina; Ponosov, Arcady

    2009-09-01

    There are different ways of how to model gene regulatory networks. Differential equations allow for a detailed description of the network's dynamics and provide an explicit model of the gene concentration changes over time. Production and relative degradation rate functions used in such models depend on the vector of steeply sloped threshold functions which characterize the activity of genes. The most popular example of the threshold functions comes from the Boolean network approach, where the threshold functions are given by step functions. The system of differential equations becomes then piecewise linear. The dynamics of this system can be described very easily between the thresholds, but not in the switching domains. For instance this approach fails to analyze stationary points of the system and to define continuous solutions in the switching domains. These problems were studied in [2], [3], but the proposed model did not take into account a time delay in cellular systems. However, analysis of real gene expression data shows a considerable number of time-delayed interactions suggesting that time delay is essential in gene regulation. Therefore, delays may have a great effect on the dynamics of the system presenting one of the critical factors that should be considered in reconstruction of gene regulatory networks. The goal of this work is to apply the singular perturbation analysis to certain systems with delay and to obtain an analog of Tikhonov's theorem, which provides sufficient conditions for constracting the limit system in the delay case.

  6. Learning gene regulatory networks from only positive and unlabeled data

    Directory of Open Access Journals (Sweden)

    Elkan Charles

    2010-05-01

    Full Text Available Abstract Background Recently, supervised learning methods have been exploited to reconstruct gene regulatory networks from gene expression data. The reconstruction of a network is modeled as a binary classification problem for each pair of genes. A statistical classifier is trained to recognize the relationships between the activation profiles of gene pairs. This approach has been proven to outperform previous unsupervised methods. However, the supervised approach raises open questions. In particular, although known regulatory connections can safely be assumed to be positive training examples, obtaining negative examples is not straightforward, because definite knowledge is typically not available that a given pair of genes do not interact. Results A recent advance in research on data mining is a method capable of learning a classifier from only positive and unlabeled examples, that does not need labeled negative examples. Applied to the reconstruction of gene regulatory networks, we show that this method significantly outperforms the current state of the art of machine learning methods. We assess the new method using both simulated and experimental data, and obtain major performance improvement. Conclusions Compared to unsupervised methods for gene network inference, supervised methods are potentially more accurate, but for training they need a complete set of known regulatory connections. A supervised method that can be trained using only positive and unlabeled data, as presented in this paper, is especially beneficial for the task of inferring gene regulatory networks, because only an incomplete set of known regulatory connections is available in public databases such as RegulonDB, TRRD, KEGG, Transfac, and IPA.

  7. Using GeneReg to construct time delay gene regulatory networks

    Directory of Open Access Journals (Sweden)

    Qian Ziliang

    2010-05-01

    Full Text Available Abstract Background Understanding gene expression and regulation is essential for understanding biological mechanisms. Because gene expression profiling has been widely used in basic biological research, especially in transcription regulation studies, we have developed GeneReg, an easy-to-use R package, to construct gene regulatory networks from time course gene expression profiling data; More importantly, this package can provide information about time delays between expression change in a regulator and that of its target genes. Findings The R package GeneReg is based on time delay linear regression, which can generate a model of the expression levels of regulators at a given time point against the expression levels of their target genes at a later time point. There are two parameters in the model, time delay and regulation coefficient. Time delay is the time lag during which expression change of the regulator is transmitted to change in target gene expression. Regulation coefficient expresses the regulation effect: a positive regulation coefficient indicates activation and negative indicates repression. GeneReg was implemented on a real Saccharomyces cerevisiae cell cycle dataset; more than thirty percent of the modeled regulations, based entirely on gene expression files, were found to be consistent with previous discoveries from known databases. Conclusions GeneReg is an easy-to-use, simple, fast R package for gene regulatory network construction from short time course gene expression data. It may be applied to study time-related biological processes such as cell cycle, cell differentiation, or causal inference.

  8. Novel candidate genes important for asthma and hypertension comorbidity revealed from associative gene networks.

    Science.gov (United States)

    Saik, Olga V; Demenkov, Pavel S; Ivanisenko, Timofey V; Bragina, Elena Yu; Freidin, Maxim B; Goncharova, Irina A; Dosenko, Victor E; Zolotareva, Olga I; Hofestaedt, Ralf; Lavrik, Inna N; Rogaev, Evgeny I; Ivanisenko, Vladimir A

    2018-02-13

    Hypertension and bronchial asthma are a major issue for people's health. As of 2014, approximately one billion adults, or ~ 22% of the world population, have had hypertension. As of 2011, 235-330 million people globally have been affected by asthma and approximately 250,000-345,000 people have died each year from the disease. The development of the effective treatment therapies against these diseases is complicated by their comorbidity features. This is often a major problem in diagnosis and their treatment. Hence, in this study the bioinformatical methodology for the analysis of the comorbidity of these two diseases have been developed. As such, the search for candidate genes related to the comorbid conditions of asthma and hypertension can help in elucidating the molecular mechanisms underlying the comorbid condition of these two diseases, and can also be useful for genotyping and identifying new drug targets. Using ANDSystem, the reconstruction and analysis of gene networks associated with asthma and hypertension was carried out. The gene network of asthma included 755 genes/proteins and 62,603 interactions, while the gene network of hypertension - 713 genes/proteins and 45,479 interactions. Two hundred and five genes/proteins and 9638 interactions were shared between asthma and hypertension. An approach for ranking genes implicated in the comorbid condition of two diseases was proposed. The approach is based on nine criteria for ranking genes by their importance, including standard methods of gene prioritization (Endeavor, ToppGene) as well as original criteria that take into account the characteristics of an associative gene network and the presence of known polymorphisms in the analysed genes. According to the proposed approach, the genes IL10, TLR4, and CAT had the highest priority in the development of comorbidity of these two diseases. Additionally, it was revealed that the list of top genes is enriched with apoptotic genes and genes involved in

  9. Relaxation rates of gene expression kinetics reveal the feedback signs of autoregulatory gene networks

    Science.gov (United States)

    Jia, Chen; Qian, Hong; Chen, Min; Zhang, Michael Q.

    2018-03-01

    The transient response to a stimulus and subsequent recovery to a steady state are the fundamental characteristics of a living organism. Here we study the relaxation kinetics of autoregulatory gene networks based on the chemical master equation model of single-cell stochastic gene expression with nonlinear feedback regulation. We report a novel relation between the rate of relaxation, characterized by the spectral gap of the Markov model, and the feedback sign of the underlying gene circuit. When a network has no feedback, the relaxation rate is exactly the decaying rate of the protein. We further show that positive feedback always slows down the relaxation kinetics while negative feedback always speeds it up. Numerical simulations demonstrate that this relation provides a possible method to infer the feedback topology of autoregulatory gene networks by using time-series data of gene expression.

  10. Transcriptional control in the segmentation gene network of Drosophila.

    Science.gov (United States)

    Schroeder, Mark D; Pearce, Michael; Fak, John; Fan, HongQing; Unnerstall, Ulrich; Emberly, Eldon; Rajewsky, Nikolaus; Siggia, Eric D; Gaul, Ulrike

    2004-09-01

    The segmentation gene network of Drosophila consists of maternal and zygotic factors that generate, by transcriptional (cross-) regulation, expression patterns of increasing complexity along the anterior-posterior axis of the embryo. Using known binding site information for maternal and zygotic gap transcription factors, the computer algorithm Ahab recovers known segmentation control elements (modules) with excellent success and predicts many novel modules within the network and genome-wide. We show that novel module predictions are highly enriched in the network and typically clustered proximal to the promoter, not only upstream, but also in intronic space and downstream. When placed upstream of a reporter gene, they consistently drive patterned blastoderm expression, in most cases faithfully producing one or more pattern elements of the endogenous gene. Moreover, we demonstrate for the entire set of known and newly validated modules that Ahab's prediction of binding sites correlates well with the expression patterns produced by the modules, revealing basic rules governing their composition. Specifically, we show that maternal factors consistently act as activators and that gap factors act as repressors, except for the bimodal factor Hunchback. Our data suggest a simple context-dependent rule for its switch from repressive to activating function. Overall, the composition of modules appears well fitted to the spatiotemporal distribution of their positive and negative input factors. Finally, by comparing Ahab predictions with different categories of transcription factor input, we confirm the global regulatory structure of the segmentation gene network, but find odd skipped behaving like a primary pair-rule gene. The study expands our knowledge of the segmentation gene network by increasing the number of experimentally tested modules by 50%. For the first time, the entire set of validated modules is analyzed for binding site composition under a uniform set of

  11. Transcriptional control in the segmentation gene network of Drosophila.

    Directory of Open Access Journals (Sweden)

    Mark D Schroeder

    2004-09-01

    Full Text Available The segmentation gene network of Drosophila consists of maternal and zygotic factors that generate, by transcriptional (cross- regulation, expression patterns of increasing complexity along the anterior-posterior axis of the embryo. Using known binding site information for maternal and zygotic gap transcription factors, the computer algorithm Ahab recovers known segmentation control elements (modules with excellent success and predicts many novel modules within the network and genome-wide. We show that novel module predictions are highly enriched in the network and typically clustered proximal to the promoter, not only upstream, but also in intronic space and downstream. When placed upstream of a reporter gene, they consistently drive patterned blastoderm expression, in most cases faithfully producing one or more pattern elements of the endogenous gene. Moreover, we demonstrate for the entire set of known and newly validated modules that Ahab's prediction of binding sites correlates well with the expression patterns produced by the modules, revealing basic rules governing their composition. Specifically, we show that maternal factors consistently act as activators and that gap factors act as repressors, except for the bimodal factor Hunchback. Our data suggest a simple context-dependent rule for its switch from repressive to activating function. Overall, the composition of modules appears well fitted to the spatiotemporal distribution of their positive and negative input factors. Finally, by comparing Ahab predictions with different categories of transcription factor input, we confirm the global regulatory structure of the segmentation gene network, but find odd skipped behaving like a primary pair-rule gene. The study expands our knowledge of the segmentation gene network by increasing the number of experimentally tested modules by 50%. For the first time, the entire set of validated modules is analyzed for binding site composition under a

  12. Functional analysis of prognostic gene expression network genes in metastatic breast cancer models.

    Directory of Open Access Journals (Sweden)

    Thomas R Geiger

    Full Text Available Identification of conserved co-expression networks is a useful tool for clustering groups of genes enriched for common molecular or cellular functions [1]. The relative importance of genes within networks can frequently be inferred by the degree of connectivity, with those displaying high connectivity being significantly more likely to be associated with specific molecular functions [2]. Previously we utilized cross-species network analysis to identify two network modules that were significantly associated with distant metastasis free survival in breast cancer. Here, we validate one of the highly connected genes as a metastasis associated gene. Tpx2, the most highly connected gene within a proliferation network specifically prognostic for estrogen receptor positive (ER+ breast cancers, enhances metastatic disease, but in a tumor autonomous, proliferation-independent manner. Histologic analysis suggests instead that variation of TPX2 levels within disseminated tumor cells may influence the transition between dormant to actively proliferating cells in the secondary site. These results support the co-expression network approach for identification of new metastasis-associated genes to provide new information regarding the etiology of breast cancer progression and metastatic disease.

  13. Learning Gene Regulatory Networks Computationally from Gene Expression Data Using Weighted Consensus

    KAUST Repository

    Fujii, Chisato

    2015-04-16

    Gene regulatory networks analyze the relationships between genes allowing us to un- derstand the gene regulatory interactions in systems biology. Gene expression data from the microarray experiments is used to obtain the gene regulatory networks. How- ever, the microarray data is discrete, noisy and non-linear which makes learning the networks a challenging problem and existing gene network inference methods do not give consistent results. Current state-of-the-art study uses the average-ranking-based consensus method to combine and average the ranked predictions from individual methods. However each individual method has an equal contribution to the consen- sus prediction. We have developed a linear programming-based consensus approach which uses learned weights from linear programming among individual methods such that the methods have di↵erent weights depending on their performance. Our result reveals that assigning di↵erent weights to individual methods rather than giving them equal weights improves the performance of the consensus. The linear programming- based consensus method is evaluated and it had the best performance on in silico and Saccharomyces cerevisiae networks, and the second best on the Escherichia coli network outperformed by Inferelator Pipeline method which gives inconsistent results across a wide range of microarray data sets.

  14. Gene networks and the neuroendocrine regulation of puberty.

    Science.gov (United States)

    Ojeda, Sergio R; Dubay, Christopher; Lomniczi, Alejandro; Kaidar, Gabi; Matagne, Valerie; Sandau, Ursula S; Dissen, Gregory A

    2010-08-05

    A sustained increase in pulsatile release of gonadotrophin releasing hormone (GnRH) from the hypothalamus is an essential, final event that defines the initiation of mammalian puberty. This increase depends on coordinated changes in transsynaptic and glial-neuronal communication, consisting of activating neuronal and glial excitatory inputs to the GnRH neuronal network and the loss of transsynaptic inhibitory tone. It is now clear that the prevalent excitatory systems stimulating GnRH secretion involve a neuronal component consisting of excitatory amino acids (glutamate) and at least one peptide (kisspeptin), and a glial component that uses growth factors and small molecules for cell-cell signaling. GABAergic and opiatergic neurons provide transsynaptic inhibitory control to the system, but GABA neurons also exert direct excitatory effects on GnRH neurons. The molecular mechanisms that provide encompassing coordination to this cellular network are not known, but they appear to involve a host of functionally related genes hierarchically arranged. We envision that, as observed in other gene networks, the highest level of control in this network is provided by transcriptional regulators that, by directing expression of key subordinate genes, impose an integrative level of coordination to the neuronal and glial subsets involved in initiating the pubertal process. The use of high-throughput and gene manipulation approaches coupled to systems biology strategies should provide not only the experimental bases supporting this concept, but also unveil the existence of crucial components of network control not yet identified. Copyright (c) 2009 Elsevier Ireland Ltd. All rights reserved.

  15. Informed walks: whispering hints to gene hunters inside networks' jungle.

    Science.gov (United States)

    Bourdakou, Marilena M; Spyrou, George M

    2017-10-11

    Systemic approaches offer a different point of view on the analysis of several types of molecular associations as well as on the identification of specific gene communities in several cancer types. However, due to lack of sufficient data needed to construct networks based on experimental evidence, statistical gene co-expression networks are widely used instead. Many efforts have been made to exploit the information hidden in these networks. However, these approaches still need to capitalize comprehensively the prior knowledge encrypted into molecular pathway associations and improve their efficiency regarding the discovery of both exclusive subnetworks as candidate biomarkers and conserved subnetworks that may uncover common origins of several cancer types. In this study we present the development of the Informed Walks model based on random walks that incorporate information from molecular pathways to mine candidate genes and gene-gene links. The proposed model has been applied to TCGA (The Cancer Genome Atlas) datasets from seven different cancer types, exploring the reconstructed co-expression networks of the whole set of genes and driving to highlighted sub-networks for each cancer type. In the sequel, we elucidated the impact of each subnetwork on the indication of underlying exclusive and common molecular mechanisms as well as on the short-listing of drugs that have the potential to suppress the corresponding cancer type through a drug-repurposing pipeline. We have developed a method of gene subnetwork highlighting based on prior knowledge, capable to give fruitful insights regarding the underlying molecular mechanisms and valuable input to drug-repurposing pipelines for a variety of cancer types.

  16. Listening to the noise: random fluctuations reveal gene network parameters

    Energy Technology Data Exchange (ETDEWEB)

    Munsky, Brian [Los Alamos National Laboratory; Khammash, Mustafa [UCSB

    2009-01-01

    The cellular environment is abuzz with noise. The origin of this noise is attributed to the inherent random motion of reacting molecules that take part in gene expression and post expression interactions. In this noisy environment, clonal populations of cells exhibit cell-to-cell variability that frequently manifests as significant phenotypic differences within the cellular population. The stochastic fluctuations in cellular constituents induced by noise can be measured and their statistics quantified. We show that these random fluctuations carry within them valuable information about the underlying genetic network. Far from being a nuisance, the ever-present cellular noise acts as a rich source of excitation that, when processed through a gene network, carries its distinctive fingerprint that encodes a wealth of information about that network. We demonstrate that in some cases the analysis of these random fluctuations enables the full identification of network parameters, including those that may otherwise be difficult to measure. This establishes a potentially powerful approach for the identification of gene networks and offers a new window into the workings of these networks.

  17. Network Analysis of Human Genes Influencing Susceptibility to Mycobacterial Infections

    Science.gov (United States)

    Lipner, Ettie M.; Garcia, Benjamin J.; Strong, Michael

    2016-01-01

    Tuberculosis and nontuberculous mycobacterial infections constitute a high burden of pulmonary disease in humans, resulting in over 1.5 million deaths per year. Building on the premise that genetic factors influence the instance, progression, and defense of infectious disease, we undertook a systems biology approach to investigate relationships among genetic factors that may play a role in increased susceptibility or control of mycobacterial infections. We combined literature and database mining with network analysis and pathway enrichment analysis to examine genes, pathways, and networks, involved in the human response to Mycobacterium tuberculosis and nontuberculous mycobacterial infections. This approach allowed us to examine functional relationships among reported genes, and to identify novel genes and enriched pathways that may play a role in mycobacterial susceptibility or control. Our findings suggest that the primary pathways and genes influencing mycobacterial infection control involve an interplay between innate and adaptive immune proteins and pathways. Signaling pathways involved in autoimmune disease were significantly enriched as revealed in our networks. Mycobacterial disease susceptibility networks were also examined within the context of gene-chemical relationships, in order to identify putative drugs and nutrients with potential beneficial immunomodulatory or anti-mycobacterial effects. PMID:26751573

  18. Identifying time-delayed gene regulatory networks via an evolvable hierarchical recurrent neural network.

    Science.gov (United States)

    Kordmahalleh, Mina Moradi; Sefidmazgi, Mohammad Gorji; Harrison, Scott H; Homaifar, Abdollah

    2017-01-01

    The modeling of genetic interactions within a cell is crucial for a basic understanding of physiology and for applied areas such as drug design. Interactions in gene regulatory networks (GRNs) include effects of transcription factors, repressors, small metabolites, and microRNA species. In addition, the effects of regulatory interactions are not always simultaneous, but can occur after a finite time delay, or as a combined outcome of simultaneous and time delayed interactions. Powerful biotechnologies have been rapidly and successfully measuring levels of genetic expression to illuminate different states of biological systems. This has led to an ensuing challenge to improve the identification of specific regulatory mechanisms through regulatory network reconstructions. Solutions to this challenge will ultimately help to spur forward efforts based on the usage of regulatory network reconstructions in systems biology applications. We have developed a hierarchical recurrent neural network (HRNN) that identifies time-delayed gene interactions using time-course data. A customized genetic algorithm (GA) was used to optimize hierarchical connectivity of regulatory genes and a target gene. The proposed design provides a non-fully connected network with the flexibility of using recurrent connections inside the network. These features and the non-linearity of the HRNN facilitate the process of identifying temporal patterns of a GRN. Our HRNN method was implemented with the Python language. It was first evaluated on simulated data representing linear and nonlinear time-delayed gene-gene interaction models across a range of network sizes and variances of noise. We then further demonstrated the capability of our method in reconstructing GRNs of the Saccharomyces cerevisiae synthetic network for in vivo benchmarking of reverse-engineering and modeling approaches (IRMA). We compared the performance of our method to TD-ARACNE, HCC-CLINDE, TSNI and ebdbNet across different network

  19. Finding gene regulatory network candidates using the gene expression knowledge base.

    Science.gov (United States)

    Venkatesan, Aravind; Tripathi, Sushil; Sanz de Galdeano, Alejandro; Blondé, Ward; Lægreid, Astrid; Mironov, Vladimir; Kuiper, Martin

    2014-12-10

    Network-based approaches for the analysis of large-scale genomics data have become well established. Biological networks provide a knowledge scaffold against which the patterns and dynamics of 'omics' data can be interpreted. The background information required for the construction of such networks is often dispersed across a multitude of knowledge bases in a variety of formats. The seamless integration of this information is one of the main challenges in bioinformatics. The Semantic Web offers powerful technologies for the assembly of integrated knowledge bases that are computationally comprehensible, thereby providing a potentially powerful resource for constructing biological networks and network-based analysis. We have developed the Gene eXpression Knowledge Base (GeXKB), a semantic web technology based resource that contains integrated knowledge about gene expression regulation. To affirm the utility of GeXKB we demonstrate how this resource can be exploited for the identification of candidate regulatory network proteins. We present four use cases that were designed from a biological perspective in order to find candidate members relevant for the gastrin hormone signaling network model. We show how a combination of specific query definitions and additional selection criteria derived from gene expression data and prior knowledge concerning candidate proteins can be used to retrieve a set of proteins that constitute valid candidates for regulatory network extensions. Semantic web technologies provide the means for processing and integrating various heterogeneous information sources. The GeXKB offers biologists such an integrated knowledge resource, allowing them to address complex biological questions pertaining to gene expression. This work illustrates how GeXKB can be used in combination with gene expression results and literature information to identify new potential candidates that may be considered for extending a gene regulatory network.

  20. Fan-out in gene regulatory networks

    Directory of Open Access Journals (Sweden)

    Sauro Herbert M

    2010-12-01

    Full Text Available Abstract Background In synthetic biology, gene regulatory circuits are often constructed by combining smaller circuit components. Connections between components are achieved by transcription factors acting on promoters. If the individual components behave as true modules and certain module interface conditions are satisfied, the function of the composite circuits can in principle be predicted. Results In this paper, we investigate one of the interface conditions: fan-out. We quantify the fan-out, a concept widely used in electrical engineering, to indicate the maximum number of the downstream inputs that an upstream output transcription factor can regulate. The fan-out is shown to be closely related to retroactivity studied by Del Vecchio, et al. An efficient operational method for measuring the fan-out is proposed and shown to be applied to various types of module interfaces. The fan-out is also shown to be enhanced by self-inhibitory regulation on the output. The potential role of an inhibitory regulation is discussed. Conclusions The proposed estimation method for fan-out not only provides an experimentally efficient way for quantifying the level of modularity in gene regulatory circuits but also helps characterize and design module interfaces, enabling the modular construction of gene circuits.

  1. Ground rules of the pluripotency gene regulatory network.

    KAUST Repository

    Li, Mo

    2017-01-03

    Pluripotency is a state that exists transiently in the early embryo and, remarkably, can be recapitulated in vitro by deriving embryonic stem cells or by reprogramming somatic cells to become induced pluripotent stem cells. The state of pluripotency, which is stabilized by an interconnected network of pluripotency-associated genes, integrates external signals and exerts control over the decision between self-renewal and differentiation at the transcriptional, post-transcriptional and epigenetic levels. Recent evidence of alternative pluripotency states indicates the regulatory flexibility of this network. Insights into the underlying principles of the pluripotency network may provide unprecedented opportunities for studying development and for regenerative medicine.

  2. Inferring Gene Regulatory Networks Using Conditional Regulation Pattern to Guide Candidate Genes.

    Directory of Open Access Journals (Sweden)

    Fei Xiao

    Full Text Available Combining path consistency (PC algorithms with conditional mutual information (CMI are widely used in reconstruction of gene regulatory networks. CMI has many advantages over Pearson correlation coefficient in measuring non-linear dependence to infer gene regulatory networks. It can also discriminate the direct regulations from indirect ones. However, it is still a challenge to select the conditional genes in an optimal way, which affects the performance and computation complexity of the PC algorithm. In this study, we develop a novel conditional mutual information-based algorithm, namely RPNI (Regulation Pattern based Network Inference, to infer gene regulatory networks. For conditional gene selection, we define the co-regulation pattern, indirect-regulation pattern and mixture-regulation pattern as three candidate patterns to guide the selection of candidate genes. To demonstrate the potential of our algorithm, we apply it to gene expression data from DREAM challenge. Experimental results show that RPNI outperforms existing conditional mutual information-based methods in both accuracy and time complexity for different sizes of gene samples. Furthermore, the robustness of our algorithm is demonstrated by noisy interference analysis using different types of noise.

  3. An algebra-based method for inferring gene regulatory networks.

    Science.gov (United States)

    Vera-Licona, Paola; Jarrah, Abdul; Garcia-Puente, Luis David; McGee, John; Laubenbacher, Reinhard

    2014-03-26

    The inference of gene regulatory networks (GRNs) from experimental observations is at the heart of systems biology. This includes the inference of both the network topology and its dynamics. While there are many algorithms available to infer the network topology from experimental data, less emphasis has been placed on methods that infer network dynamics. Furthermore, since the network inference problem is typically underdetermined, it is essential to have the option of incorporating into the inference process, prior knowledge about the network, along with an effective description of the search space of dynamic models. Finally, it is also important to have an understanding of how a given inference method is affected by experimental and other noise in the data used. This paper contains a novel inference algorithm using the algebraic framework of Boolean polynomial dynamical systems (BPDS), meeting all these requirements. The algorithm takes as input time series data, including those from network perturbations, such as knock-out mutant strains and RNAi experiments. It allows for the incorporation of prior biological knowledge while being robust to significant levels of noise in the data used for inference. It uses an evolutionary algorithm for local optimization with an encoding of the mathematical models as BPDS. The BPDS framework allows an effective representation of the search space for algebraic dynamic models that improves computational performance. The algorithm is validated with both simulated and experimental microarray expression profile data. Robustness to noise is tested using a published mathematical model of the segment polarity gene network in Drosophila melanogaster. Benchmarking of the algorithm is done by comparison with a spectrum of state-of-the-art network inference methods on data from the synthetic IRMA network to demonstrate that our method has good precision and recall for the network reconstruction task, while also predicting several of the

  4. Gene-network analysis identifies susceptibility genes related to glycobiology in autism.

    Directory of Open Access Journals (Sweden)

    Bert van der Zwaag

    Full Text Available The recent identification of copy-number variation in the human genome has opened up new avenues for the discovery of positional candidate genes underlying complex genetic disorders, especially in the field of psychiatric disease. One major challenge that remains is pinpointing the susceptibility genes in the multitude of disease-associated loci. This challenge may be tackled by reconstruction of functional gene-networks from the genes residing in these loci. We applied this approach to autism spectrum disorder (ASD, and identified the copy-number changes in the DNA of 105 ASD patients and 267 healthy individuals with Illumina Humanhap300 Beadchips. Subsequently, we used a human reconstructed gene-network, Prioritizer, to rank candidate genes in the segmental gains and losses in our autism cohort. This analysis highlighted several candidate genes already known to be mutated in cognitive and neuropsychiatric disorders, including RAI1, BRD1, and LARGE. In addition, the LARGE gene was part of a sub-network of seven genes functioning in glycobiology, present in seven copy-number changes specifically identified in autism patients with limited co-morbidity. Three of these seven copy-number changes were de novo in the patients. In autism patients with a complex phenotype and healthy controls no such sub-network was identified. An independent systematic analysis of 13 published autism susceptibility loci supports the involvement of genes related to glycobiology as we also identified the same or similar genes from those loci. Our findings suggest that the occurrence of genomic gains and losses of genes associated with glycobiology are important contributors to the development of ASD.

  5. The capacity for multistability in small gene regulatory networks

    Directory of Open Access Journals (Sweden)

    Grotewold Erich

    2009-09-01

    Full Text Available Abstract Background Recent years have seen a dramatic increase in the use of mathematical modeling to gain insight into gene regulatory network behavior across many different organisms. In particular, there has been considerable interest in using mathematical tools to understand how multistable regulatory networks may contribute to developmental processes such as cell fate determination. Indeed, such a network may subserve the formation of unicellular leaf hairs (trichomes in the model plant Arabidopsis thaliana. Results In order to investigate the capacity of small gene regulatory networks to generate multiple equilibria, we present a chemical reaction network (CRN-based modeling formalism and describe a number of methods for CRN analysis in a parameter-free context. These methods are compared and applied to a full set of one-component subnetworks, as well as a large random sample from 40,680 similarly constructed two-component subnetworks. We find that positive feedback and cooperativity mediated by transcription factor (TF dimerization is a requirement for one-component subnetwork bistability. For subnetworks with two components, the presence of these processes increases the probability that a randomly sampled subnetwork will exhibit multiple equilibria, although we find several examples of bistable two-component subnetworks that do not involve cooperative TF-promoter binding. In the specific case of epidermal differentiation in Arabidopsis, dimerization of the GL3-GL1 complex and cooperative sequential binding of GL3-GL1 to the CPC promoter are each independently sufficient for bistability. Conclusion Computational methods utilizing CRN-specific theorems to rule out bistability in small gene regulatory networks are far superior to techniques generally applicable to deterministic ODE systems. Using these methods to conduct an unbiased survey of parameter-free deterministic models of small networks, and the Arabidopsis epidermal cell

  6. Rodent Zic Genes in Neural Network Wiring.

    Science.gov (United States)

    Herrera, Eloísa

    2018-01-01

    The formation of the nervous system is a multistep process that yields a mature brain. Failure in any of the steps of this process may cause brain malfunction. In the early stages of embryonic development, neural progenitors quickly proliferate and then, at a specific moment, differentiate into neurons or glia. Once they become postmitotic neurons, they migrate to their final destinations and begin to extend their axons to connect with other neurons, sometimes located in quite distant regions, to establish different neural circuits. During the last decade, it has become evident that Zic genes, in addition to playing important roles in early development (e.g., gastrulation and neural tube closure), are involved in different processes of late brain development, such as neuronal migration, axon guidance, and refinement of axon terminals. ZIC proteins are therefore essential for the proper wiring and connectivity of the brain. In this chapter, we review our current knowledge of the role of Zic genes in the late stages of neural circuit formation.

  7. Schizophrenia gene networks and pathways and their applications for novel candidate gene selection.

    Directory of Open Access Journals (Sweden)

    Jingchun Sun

    2010-06-01

    Full Text Available Schizophrenia (SZ is a heritable, complex mental disorder. We have seen limited success in finding causal genes for schizophrenia from numerous conventional studies. Protein interaction network and pathway-based analysis may provide us an alternative and effective approach to investigating the molecular mechanisms of schizophrenia.We selected a list of schizophrenia candidate genes (SZGenes using a multi-dimensional evidence-based approach. The global network properties of proteins encoded by these SZGenes were explored in the context of the human protein interactome while local network properties were investigated by comparing SZ-specific and cancer-specific networks that were extracted from the human interactome. Relative to cancer genes, we observed that SZGenes tend to have an intermediate degree and an intermediate efficiency on a perturbation spreading throughout the human interactome. This suggested that schizophrenia might have different pathological mechanisms from cancer even though both are complex diseases. We conducted pathway analysis using Ingenuity System and constructed the first schizophrenia molecular network (SMN based on protein interaction networks, pathways and literature survey. We identified 24 pathways overrepresented in SZGenes and examined their interactions and crosstalk. We observed that these pathways were related to neurodevelopment, immune system, and retinoic X receptor (RXR. Our examination of SMN revealed that schizophrenia is a dynamic process caused by dysregulation of the multiple pathways. Finally, we applied the network/pathway approach to identify novel candidate genes, some of which could be verified by experiments.This study provides the first comprehensive review of the network and pathway characteristics of schizophrenia candidate genes. Our preliminary results suggest that this systems biology approach might prove promising for selection of candidate genes for complex diseases. Our findings have

  8. GeneNetwork: framework for web-based genetics

    NARCIS (Netherlands)

    Sloan, Zachary; Arends, Danny; Broman, Karl W.; Centeno, Arthur; Furlotte, Nicholas; Nijveen, H.; Yan, Lei; Zhou, Xiang; Williams, Robert W.; Prins, Pjotr

    2016-01-01

    GeneNetwork (GN) is a free and open source (FOSS) framework for web-based genetics that can be deployed anywhere. GN allows biologists to upload high-throughput experimental data, such as expression data from microarrays and RNA-seq, and also `classic' phenotypes, such as disease phenotypes. These

  9. FUMET: A fuzzy network module extraction technique for gene ...

    Indian Academy of Sciences (India)

    FUMET: A fuzzy network module extraction technique for gene expression data. PRIYAKSHI MAHANTA, HASIN AFZAL AHMED, DHRUBA KUMAR BHATTACHARYYA and ASHISH GHOSH http://www.ias.ac.in/jbiosci. J. Biosci. 39(3), June 2014, 351–364, © Indian Academy of Sciences. Supplementary material ...

  10. Learning gene regulatory networks from gene expression data using weighted consensus

    KAUST Repository

    Fujii, Chisato

    2016-08-25

    An accurate determination of the network structure of gene regulatory systems from high-throughput gene expression data is an essential yet challenging step in studying how the expression of endogenous genes is controlled through a complex interaction of gene products and DNA. While numerous methods have been proposed to infer the structure of gene regulatory networks, none of them seem to work consistently over different data sets with high accuracy. A recent study to compare gene network inference methods showed that an average-ranking-based consensus method consistently performs well under various settings. Here, we propose a linear programming-based consensus method for the inference of gene regulatory networks. Unlike the average-ranking-based one, which treats the contribution of each individual method equally, our new consensus method assigns a weight to each method based on its credibility. As a case study, we applied the proposed consensus method on synthetic and real microarray data sets, and compared its performance to that of the average-ranking-based consensus and individual inference methods. Our results show that our weighted consensus method achieves superior performance over the unweighted one, suggesting that assigning weights to different individual methods rather than giving them equal weights improves the accuracy. © 2016 Elsevier B.V.

  11. MyGeneFriends: A Social Network Linking Genes, Genetic Diseases, and Researchers.

    Science.gov (United States)

    Allot, Alexis; Chennen, Kirsley; Nevers, Yannis; Poidevin, Laetitia; Kress, Arnaud; Ripp, Raymond; Thompson, Julie Dawn; Poch, Olivier; Lecompte, Odile

    2017-06-16

    The constant and massive increase of biological data offers unprecedented opportunities to decipher the function and evolution of genes and their roles in human diseases. However, the multiplicity of sources and flow of data mean that efficient access to useful information and knowledge production has become a major challenge. This challenge can be addressed by taking inspiration from Web 2.0 and particularly social networks, which are at the forefront of big data exploration and human-data interaction. MyGeneFriends is a Web platform inspired by social networks, devoted to genetic disease analysis, and organized around three types of proactive agents: genes, humans, and genetic diseases. The aim of this study was to improve exploration and exploitation of biological, postgenomic era big data. MyGeneFriends leverages conventions popularized by top social networks (Facebook, LinkedIn, etc), such as networks of friends, profile pages, friendship recommendations, affinity scores, news feeds, content recommendation, and data visualization. MyGeneFriends provides simple and intuitive interactions with data through evaluation and visualization of connections (friendships) between genes, humans, and diseases. The platform suggests new friends and publications and allows agents to follow the activity of their friends. It dynamically personalizes information depending on the user's specific interests and provides an efficient way to share information with collaborators. Furthermore, the user's behavior itself generates new information that constitutes an added value integrated in the network, which can be used to discover new connections between biological agents. We have developed MyGeneFriends, a Web platform leveraging conventions from popular social networks to redefine the relationship between humans and biological big data and improve human processing of biomedical data. MyGeneFriends is available at lbgi.fr/mygenefriends. ©Alexis Allot, Kirsley Chennen, Yannis

  12. Robustness and Accuracy in Sea Urchin Developmental Gene Regulatory Networks.

    Science.gov (United States)

    Ben-Tabou de-Leon, Smadar

    2016-01-01

    Developmental gene regulatory networks robustly control the timely activation of regulatory and differentiation genes. The structure of these networks underlies their capacity to buffer intrinsic and extrinsic noise and maintain embryonic morphology. Here I illustrate how the use of specific architectures by the sea urchin developmental regulatory networks enables the robust control of cell fate decisions. The Wnt-βcatenin signaling pathway patterns the primary embryonic axis while the BMP signaling pathway patterns the secondary embryonic axis in the sea urchin embryo and across bilateria. Interestingly, in the sea urchin in both cases, the signaling pathway that defines the axis controls directly the expression of a set of downstream regulatory genes. I propose that this direct activation of a set of regulatory genes enables a uniform regulatory response and a clear cut cell fate decision in the endoderm and in the dorsal ectoderm. The specification of the mesodermal pigment cell lineage is activated by Delta signaling that initiates a triple positive feedback loop that locks down the pigment specification state. I propose that the use of compound positive feedback circuitry provides the endodermal cells enough time to turn off mesodermal genes and ensures correct mesoderm vs. endoderm fate decision. Thus, I argue that understanding the control properties of repeatedly used regulatory architectures illuminates their role in embryogenesis and provides possible explanations to their resistance to evolutionary change.

  13. Robustness and accuracy in sea urchin developmental gene regulatory networks

    Directory of Open Access Journals (Sweden)

    Smadar eBen-Tabou De-Leon

    2016-02-01

    Full Text Available Developmental gene regulatory networks robustly control the timely activation of regulatory and differentiation genes. The structure of these networks underlies their capacity to buffer intrinsic and extrinsic noise and maintain embryonic morphology. Here I illustrate how the use of specific architectures by the sea urchin developmental regulatory networks enables the robust control of cell fate decisions. The Wnt-βcatenin signaling pathway patterns the primary embryonic axis while the BMP signaling pathway patterns the secondary embryonic axis in the sea urchin embryo and across bilateria. Interestingly, in the sea urchin in both cases, the signaling pathway that defines the axis controls directly the expression of a set of downstream regulatory genes. I propose that this direct activation of a set of regulatory genes enables a uniform regulatory response and a clear cut cell fate decision in the endoderm and in the dorsal ectoderm. The specification of the mesodermal pigment cell lineage is activated by Delta signaling that initiates a triple positive feedback loop that locks down the pigment specification state. I propose that the use of compound positive feedback circuitry provides the endodermal cells enough time to turn off mesodermal genes and ensures correct mesoderm vs. endoderm fate decision. Thus, I argue that understanding the control properties of repeatedly used regulatory architectures illuminates their role in embryogenesis and provides possible explanations to their resistance to evolutionary change.

  14. Construction of coffee transcriptome networks based on gene annotation semantics

    Directory of Open Access Journals (Sweden)

    Castillo Luis F.

    2012-12-01

    Full Text Available Gene annotation is a process that encompasses multiple approaches on the analysis of nucleic acids or protein sequences in order to assign structural and functional characteristics to gene models. When thousands of gene models are being described in an organism genome, construction and visualization of gene networks impose novel challenges in the understanding of complex expression patterns and the generation of new knowledge in genomics research. In order to take advantage of accumulated text data after conventional gene sequence analysis, this work applied semantics in combination with visualization tools to build transcriptome networks from a set of coffee gene annotations. A set of selected coffee transcriptome sequences, chosen by the quality of the sequence comparison reported by Basic Local Alignment Search Tool (BLAST and Interproscan, were filtered out by coverage, identity, length of the query, and e-values. Meanwhile, term descriptors for molecular biology and biochemistry were obtained along the Wordnet dictionary in order to construct a Resource Description Framework (RDF using Ruby scripts and Methontology to find associations between concepts. Relationships between sequence annotations and semantic concepts were graphically represented through a total of 6845 oriented vectors, which were reduced to 745 non-redundant associations. A large gene network connecting transcripts by way of relational concepts was created where detailed connections remain to be validated for biological significance based on current biochemical and genetics frameworks. Besides reusing text information in the generation of gene connections and for data mining purposes, this tool development opens the possibility to visualize complex and abundant transcriptome data, and triggers the formulation of new hypotheses in metabolic pathways analysis.

  15. Inferring dynamic gene networks under varying conditions for transcriptomic network comparison.

    Science.gov (United States)

    Shimamura, Teppei; Imoto, Seiya; Yamaguchi, Rui; Nagasaki, Masao; Miyano, Satoru

    2010-04-15

    Elucidating the differences between cellular responses to various biological conditions or external stimuli is an important challenge in systems biology. Many approaches have been developed to reverse engineer a cellular system, called gene network, from time series microarray data in order to understand a transcriptomic response under a condition of interest. Comparative topological analysis has also been applied based on the gene networks inferred independently from each of the multiple time series datasets under varying conditions to find critical differences between these networks. However, these comparisons often lead to misleading results, because each network contains considerable noise due to the limited length of the time series. We propose an integrated approach for inferring multiple gene networks from time series expression data under varying conditions. To the best of our knowledge, our approach is the first reverse-engineering method that is intended for transcriptomic network comparison between varying conditions. Furthermore, we propose a state-of-the-art parameter estimation method, relevance-weighted recursive elastic net, for providing higher precision and recall than existing reverse-engineering methods. We analyze experimental data of MCF-7 human breast cancer cells stimulated by epidermal growth factor or heregulin with several doses and provide novel biological hypotheses through network comparison. The software NETCOMP is available at http://bonsai.ims.u-tokyo.ac.jp/ approximately shima/NETCOMP/.

  16. Characterization of Genes for Beef Marbling Based on Applying Gene Coexpression Network

    Directory of Open Access Journals (Sweden)

    Dajeong Lim

    2014-01-01

    Full Text Available Marbling is an important trait in characterization beef quality and a major factor for determining the price of beef in the Korean beef market. In particular, marbling is a complex trait and needs a system-level approach for identifying candidate genes related to the trait. To find the candidate gene associated with marbling, we used a weighted gene coexpression network analysis from the expression value of bovine genes. Hub genes were identified; they were topologically centered with large degree and BC values in the global network. We performed gene expression analysis to detect candidate genes in M. longissimus with divergent marbling phenotype (marbling scores 2 to 7 using qRT-PCR. The results demonstrate that transmembrane protein 60 (TMEM60 and dihydropyrimidine dehydrogenase (DPYD are associated with increasing marbling fat. We suggest that the network-based approach in livestock may be an important method for analyzing the complex effects of candidate genes associated with complex traits like marbling or tenderness.

  17. Automated Identification of Core Regulatory Genes in Human Gene Regulatory Networks.

    Directory of Open Access Journals (Sweden)

    Vipin Narang

    Full Text Available Human gene regulatory networks (GRN can be difficult to interpret due to a tangle of edges interconnecting thousands of genes. We constructed a general human GRN from extensive transcription factor and microRNA target data obtained from public databases. In a subnetwork of this GRN that is active during estrogen stimulation of MCF-7 breast cancer cells, we benchmarked automated algorithms for identifying core regulatory genes (transcription factors and microRNAs. Among these algorithms, we identified K-core decomposition, pagerank and betweenness centrality algorithms as the most effective for discovering core regulatory genes in the network evaluated based on previously known roles of these genes in MCF-7 biology as well as in their ability to explain the up or down expression status of up to 70% of the remaining genes. Finally, we validated the use of K-core algorithm for organizing the GRN in an easier to interpret layered hierarchy where more influential regulatory genes percolate towards the inner layers. The integrated human gene and miRNA network and software used in this study are provided as supplementary materials (S1 Data accompanying this manuscript.

  18. Developing integrated crop knowledge networks to advance candidate gene discovery.

    Science.gov (United States)

    Hassani-Pak, Keywan; Castellote, Martin; Esch, Maria; Hindle, Matthew; Lysenko, Artem; Taubert, Jan; Rawlings, Christopher

    2016-12-01

    The chances of raising crop productivity to enhance global food security would be greatly improved if we had a complete understanding of all the biological mechanisms that underpinned traits such as crop yield, disease resistance or nutrient and water use efficiency. With more crop genomes emerging all the time, we are nearer having the basic information, at the gene-level, to begin assembling crop gene catalogues and using data from other plant species to understand how the genes function and how their interactions govern crop development and physiology. Unfortunately, the task of creating such a complete knowledge base of gene functions, interaction networks and trait biology is technically challenging because the relevant data are dispersed in myriad databases in a variety of data formats with variable quality and coverage. In this paper we present a general approach for building genome-scale knowledge networks that provide a unified representation of heterogeneous but interconnected datasets to enable effective knowledge mining and gene discovery. We describe the datasets and outline the methods, workflows and tools that we have developed for creating and visualising these networks for the major crop species, wheat and barley. We present the global characteristics of such knowledge networks and with an example linking a seed size phenotype to a barley WRKY transcription factor orthologous to TTG2 from Arabidopsis, we illustrate the value of integrated data in biological knowledge discovery. The software we have developed (www.ondex.org) and the knowledge resources (http://knetminer.rothamsted.ac.uk) we have created are all open-source and provide a first step towards systematic and evidence-based gene discovery in order to facilitate crop improvement.

  19. A network approach to analyzing highly recombinant malaria parasite genes.

    Directory of Open Access Journals (Sweden)

    Daniel B Larremore

    Full Text Available The var genes of the human malaria parasite Plasmodium falciparum present a challenge to population geneticists due to their extreme diversity, which is generated by high rates of recombination. These genes encode a primary antigen protein called PfEMP1, which is expressed on the surface of infected red blood cells and elicits protective immune responses. Var gene sequences are characterized by pronounced mosaicism, precluding the use of traditional phylogenetic tools that require bifurcating tree-like evolutionary relationships. We present a new method that identifies highly variable regions (HVRs, and then maps each HVR to a complex network in which each sequence is a node and two nodes are linked if they share an exact match of significant length. Here, networks of var genes that recombine freely are expected to have a uniformly random structure, but constraints on recombination will produce network communities that we identify using a stochastic block model. We validate this method on synthetic data, showing that it correctly recovers populations of constrained recombination, before applying it to the Duffy Binding Like-α (DBLα domain of var genes. We find nine HVRs whose network communities map in distinctive ways to known DBLα classifications and clinical phenotypes. We show that the recombinational constraints of some HVRs are correlated, while others are independent. These findings suggest that this micromodular structuring facilitates independent evolutionary trajectories of neighboring mosaic regions, allowing the parasite to retain protein function while generating enormous sequence diversity. Our approach therefore offers a rigorous method for analyzing evolutionary constraints in var genes, and is also flexible enough to be easily applied more generally to any highly recombinant sequences.

  20. A Network Approach to Analyzing Highly Recombinant Malaria Parasite Genes

    Science.gov (United States)

    Larremore, Daniel B.; Clauset, Aaron; Buckee, Caroline O.

    2013-01-01

    The var genes of the human malaria parasite Plasmodium falciparum present a challenge to population geneticists due to their extreme diversity, which is generated by high rates of recombination. These genes encode a primary antigen protein called PfEMP1, which is expressed on the surface of infected red blood cells and elicits protective immune responses. Var gene sequences are characterized by pronounced mosaicism, precluding the use of traditional phylogenetic tools that require bifurcating tree-like evolutionary relationships. We present a new method that identifies highly variable regions (HVRs), and then maps each HVR to a complex network in which each sequence is a node and two nodes are linked if they share an exact match of significant length. Here, networks of var genes that recombine freely are expected to have a uniformly random structure, but constraints on recombination will produce network communities that we identify using a stochastic block model. We validate this method on synthetic data, showing that it correctly recovers populations of constrained recombination, before applying it to the Duffy Binding Like-α (DBLα) domain of var genes. We find nine HVRs whose network communities map in distinctive ways to known DBLα classifications and clinical phenotypes. We show that the recombinational constraints of some HVRs are correlated, while others are independent. These findings suggest that this micromodular structuring facilitates independent evolutionary trajectories of neighboring mosaic regions, allowing the parasite to retain protein function while generating enormous sequence diversity. Our approach therefore offers a rigorous method for analyzing evolutionary constraints in var genes, and is also flexible enough to be easily applied more generally to any highly recombinant sequences. PMID:24130474

  1. A gene regulatory network armature for T-lymphocyte specification

    Energy Technology Data Exchange (ETDEWEB)

    Fung, Elizabeth-sharon [Los Alamos National Laboratory

    2008-01-01

    Choice of a T-lymphoid fate by hematopoietic progenitor cells depends on sustained Notch-Delta signaling combined with tightly-regulated activities of multiple transcription factors. To dissect the regulatory network connections that mediate this process, we have used high-resolution analysis of regulatory gene expression trajectories from the beginning to the end of specification; tests of the short-term Notchdependence of these gene expression changes; and perturbation analyses of the effects of overexpression of two essential transcription factors, namely PU.l and GATA-3. Quantitative expression measurements of >50 transcription factor and marker genes have been used to derive the principal components of regulatory change through which T-cell precursors progress from primitive multipotency to T-lineage commitment. Distinct parts of the path reveal separate contributions of Notch signaling, GATA-3 activity, and downregulation of PU.l. Using BioTapestry, the results have been assembled into a draft gene regulatory network for the specification of T-cell precursors and the choice of T as opposed to myeloid dendritic or mast-cell fates. This network also accommodates effects of E proteins and mutual repression circuits of Gfil against Egr-2 and of TCF-l against PU.l as proposed elsewhere, but requires additional functions that remain unidentified. Distinctive features of this network structure include the intense dose-dependence of GATA-3 effects; the gene-specific modulation of PU.l activity based on Notch activity; the lack of direct opposition between PU.l and GATA-3; and the need for a distinct, late-acting repressive function or functions to extinguish stem and progenitor-derived regulatory gene expression.

  2. Gene-Expression Profiles in Generalized Aggressive Periodontitis: A Gene Network-Based Microarray Analysis.

    Science.gov (United States)

    Guzeldemir-Akcakanat, Esra; Sunnetci-Akkoyunlu, Deniz; Orucguney, Begum; Cine, Naci; Kan, Bahadır; Yılmaz, Elif Büsra; Gümüşlü, Esen; Savli, Hakan

    2016-01-01

    In this study, molecular biomarkers that play a role in the development of generalized aggressive periodontitis (GAgP) are investigated using gingival tissue samples through omics-based whole-genome transcriptomics while using healthy individuals as background controls. Gingival tissue biopsies from 23 patients with GAgP and 25 healthy individuals were analyzed using gene-expression microarrays with network and pathway analyses to identify gene-expression patterns. To substantiate the results of the microarray studies, real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was performed to assess the messenger RNA (mRNA) expression of MZB1 and DSC1. The microarrays and qRT-PCR resulted in similar gene-expression changes, confirming the reliability of the microarray results at the mRNA level. As a result of the gene-expression microarray studies, four significant gene networks were identified. The most upregulated genes were found as MZB1, TNFRSF17, PNOC, FCRL5, LAX1, BMS1P20, IGLL5, MMP7, SPAG4, and MEI1; the most downregulated genes were found as LOR, LAMB4, AADACL2, MAPT, ARG1, NPR3, AADAC, DSC1, LRRC4, and CHP2. Functions of the identified genes that were involved in gene networks were cellular development, cell growth and proliferation, cellular movement, cell-cell signaling and interaction, humoral immune response, protein synthesis, cell death and survival, cell population and organization, organismal injury and abnormalities, molecular transport, and small-molecule biochemistry. The data suggest new networks that have important functions as humoral immune response and organismal injury/abnormalities. Future analyses may facilitate proteomic profiling analyses to identify gene-expression patterns related to clinical outcome.

  3. Prioritization of Susceptibility Genes for Ectopic Pregnancy by Gene Network Analysis

    Science.gov (United States)

    Liu, Ji-Long; Zhao, Miao

    2016-01-01

    Ectopic pregnancy is a very dangerous complication of pregnancy, affecting 1%–2% of all reported pregnancies. Due to ethical constraints on human biopsies and the lack of suitable animal models, there has been little success in identifying functionally important genes in the pathogenesis of ectopic pregnancy. In the present study, we developed a random walk–based computational method named TM-rank to prioritize ectopic pregnancy–related genes based on text mining data and gene network information. Using a defined threshold value, we identified five top-ranked genes: VEGFA (vascular endothelial growth factor A), IL8 (interleukin 8), IL6 (interleukin 6), ESR1 (estrogen receptor 1) and EGFR (epidermal growth factor receptor). These genes are promising candidate genes that can serve as useful diagnostic biomarkers and therapeutic targets. Our approach represents a novel strategy for prioritizing disease susceptibility genes. PMID:26840308

  4. Toxic Diatom Aldehydes Affect Defence Gene Networks in Sea Urchins.

    Science.gov (United States)

    Varrella, Stefano; Romano, Giovanna; Costantini, Susan; Ruocco, Nadia; Ianora, Adrianna; Bentley, Matt G; Costantini, Maria

    2016-01-01

    Marine organisms possess a series of cellular strategies to counteract the negative effects of toxic compounds, including the massive reorganization of gene expression networks. Here we report the modulated dose-dependent response of activated genes by diatom polyunsaturated aldehydes (PUAs) in the sea urchin Paracentrotus lividus. PUAs are secondary metabolites deriving from the oxidation of fatty acids, inducing deleterious effects on the reproduction and development of planktonic and benthic organisms that feed on these unicellular algae and with anti-cancer activity. Our previous results showed that PUAs target several genes, implicated in different functional processes in this sea urchin. Using interactomic Ingenuity Pathway Analysis we now show that the genes targeted by PUAs are correlated with four HUB genes, NF-κB, p53, δ-2-catenin and HIF1A, which have not been previously reported for P. lividus. We propose a working model describing hypothetical pathways potentially involved in toxic aldehyde stress response in sea urchins. This represents the first report on gene networks affected by PUAs, opening new perspectives in understanding the cellular mechanisms underlying the response of benthic organisms to diatom exposure.

  5. Toxic Diatom Aldehydes Affect Defence Gene Networks in Sea Urchins.

    Directory of Open Access Journals (Sweden)

    Stefano Varrella

    Full Text Available Marine organisms possess a series of cellular strategies to counteract the negative effects of toxic compounds, including the massive reorganization of gene expression networks. Here we report the modulated dose-dependent response of activated genes by diatom polyunsaturated aldehydes (PUAs in the sea urchin Paracentrotus lividus. PUAs are secondary metabolites deriving from the oxidation of fatty acids, inducing deleterious effects on the reproduction and development of planktonic and benthic organisms that feed on these unicellular algae and with anti-cancer activity. Our previous results showed that PUAs target several genes, implicated in different functional processes in this sea urchin. Using interactomic Ingenuity Pathway Analysis we now show that the genes targeted by PUAs are correlated with four HUB genes, NF-κB, p53, δ-2-catenin and HIF1A, which have not been previously reported for P. lividus. We propose a working model describing hypothetical pathways potentially involved in toxic aldehyde stress response in sea urchins. This represents the first report on gene networks affected by PUAs, opening new perspectives in understanding the cellular mechanisms underlying the response of benthic organisms to diatom exposure.

  6. Gene regulation networks generate diverse pigmentation patterns in plants.

    Science.gov (United States)

    Albert, Nick W; Davies, Kevin M; Schwinn, Kathy E

    2014-01-01

    The diversity of pigmentation patterns observed in plants occurs due to the spatial distribution and accumulation of colored compounds, which may also be associated with structural changes to the tissue. Anthocyanins are flavonoids that provide red/purple/blue coloration to plants, often forming complex patterns such as spots, stripes, and vein-associated pigmentation, particularly in flowers. These patterns are determined by the activity of MYB-bHLH-WDR (MBW) transcription factor complexes, which activate the anthocyanin biosynthesis genes, resulting in anthocyanin pigment accumulation. Recently, we established that the MBW complex controlling anthocyanin synthesis acts within a gene regulation network that is conserved within at least the Eudicots. This network involves hierarchy, reinforcement, and feedback mechanisms that allow for stringent and responsive regulation of the anthocyanin biosynthesis genes. The gene network and mobile nature of the WDR and R3-MYB proteins provide exciting new opportunities to explore the basis of pigmentation patterning, and to investigate the evolutionary history of the MBW components in land plants.

  7. Transcriptome network analysis reveals potential candidate genes for ankylosing spondylitis.

    Science.gov (United States)

    Zhu, Z-Q; Tang, J-S; Cao, X-J

    2013-12-01

    Ankylosing spondylitis (AS) is a chronic, inflammatory arthritis and autoimmune disease. The main symptom of AS is inflammatory spinal pain; with time, some patients develop ankylosis and spinal immobility. We aim to find cure available for ankylosing spondylitis. We used the GSE11886 series to identify potential genes that related to AS to construct a regulation network. In the network, some of TFs and target genes have been proved related with AS in previous study, such as NFKB1, STAT1, STAT4, TNFSF10, IL2RA, and IL2RB. We also found some new TFs (Franscription Factors) and target genes response to AS, such as BXDC5, and EGFR. Further analysis indicated some significant pathways are associated with AS, including antigen processing and presentation and cytokine-cytokine receptor interaction, etc.; although not significant, there was evident that they play an important role in AS progression, such as apoptosis and systemic lupus erythematosus. Therefore, it is demonstrated that transcriptome network analysis is useful in identification of the candidate genes in AS.

  8. Genes responsive to elevated CO2 concentrations in triploid white poplar and integrated gene network analysis.

    Directory of Open Access Journals (Sweden)

    Juanjuan Liu

    Full Text Available BACKGROUND: The atmospheric CO2 concentration increases every year. While the effects of elevated CO2 on plant growth, physiology and metabolism have been studied, there is now a pressing need to understand the molecular mechanisms of how plants will respond to future increases in CO2 concentration using genomic techniques. PRINCIPAL FINDINGS: Gene expression in triploid white poplar ((Populus tomentosa ×P. bolleana ×P. tomentosa leaves was investigated using the Affymetrix poplar genome gene chip, after three months of growth in controlled environment chambers under three CO2 concentrations. Our physiological findings showed the growth, assessed as stem diameter, was significantly increased, and the net photosynthetic rate was decreased in elevated CO2 concentrations. The concentrations of four major endogenous hormones appeared to actively promote plant development. Leaf tissues under elevated CO2 concentrations had 5,127 genes with different expression patterns in comparison to leaves under the ambient CO2 concentration. Among these, 8 genes were finally selected for further investigation by using randomized variance model corrective ANOVA analysis, dynamic gene expression profiling, gene network construction, and quantitative real-time PCR validation. Among the 8 genes in the network, aldehyde dehydrogenase and pyruvate kinase were situated in the core and had interconnections with other genes. CONCLUSIONS: Under elevated CO2 concentrations, 8 significantly changed key genes involved in metabolism and responding to stimulus of external environment were identified. These genes play crucial roles in the signal transduction network and show strong correlations with elevated CO2 exposure. This study provides several target genes, further investigation of which could provide an initial step for better understanding the molecular mechanisms of plant acclimation and evolution in future rising CO2 concentrations.

  9. Listening to the Noise: Random Fluctuations Reveal Gene Network Parameters

    Science.gov (United States)

    Munsky, Brian; Trinh, Brooke; Khammash, Mustafa

    2010-03-01

    The cellular environment is abuzz with noise originating from the inherent random motion of reacting molecules in the living cell. In this noisy environment, clonal cell populations exhibit cell-to-cell variability that can manifest significant prototypical differences. Noise induced stochastic fluctuations in cellular constituents can be measured and their statistics quantified using flow cytometry, single molecule fluorescence in situ hybridization, time lapse fluorescence microscopy and other single cell and single molecule measurement techniques. We show that these random fluctuations carry within them valuable information about the underlying genetic network. Far from being a nuisance, the ever-present cellular noise acts as a rich source of excitation that, when processed through a gene network, carries its distinctive fingerprint that encodes a wealth of information about that network. We demonstrate that in some cases the analysis of these random fluctuations enables the full identification of network parameters, including those that may otherwise be difficult to measure. We use theoretical investigations to establish experimental guidelines for the identification of gene regulatory networks, and we apply these guideline to experimentally identify predictive models for different regulatory mechanisms in bacteria and yeast.

  10. Stochastic Boolean networks: An efficient approach to modeling gene regulatory networks

    Directory of Open Access Journals (Sweden)

    Liang Jinghang

    2012-08-01

    Full Text Available Abstract Background Various computational models have been of interest due to their use in the modelling of gene regulatory networks (GRNs. As a logical model, probabilistic Boolean networks (PBNs consider molecular and genetic noise, so the study of PBNs provides significant insights into the understanding of the dynamics of GRNs. This will ultimately lead to advances in developing therapeutic methods that intervene in the process of disease development and progression. The applications of PBNs, however, are hindered by the complexities involved in the computation of the state transition matrix and the steady-state distribution of a PBN. For a PBN with n genes and N Boolean networks, the complexity to compute the state transition matrix is O(nN22n or O(nN2n for a sparse matrix. Results This paper presents a novel implementation of PBNs based on the notions of stochastic logic and stochastic computation. This stochastic implementation of a PBN is referred to as a stochastic Boolean network (SBN. An SBN provides an accurate and efficient simulation of a PBN without and with random gene perturbation. The state transition matrix is computed in an SBN with a complexity of O(nL2n, where L is a factor related to the stochastic sequence length. Since the minimum sequence length required for obtaining an evaluation accuracy approximately increases in a polynomial order with the number of genes, n, and the number of Boolean networks, N, usually increases exponentially with n, L is typically smaller than N, especially in a network with a large number of genes. Hence, the computational efficiency of an SBN is primarily limited by the number of genes, but not directly by the total possible number of Boolean networks. Furthermore, a time-frame expanded SBN enables an efficient analysis of the steady-state distribution of a PBN. These findings are supported by the simulation results of a simplified p53 network, several randomly generated networks and a

  11. DriverFinder: A Gene Length-Based Network Method to Identify Cancer Driver Genes

    Directory of Open Access Journals (Sweden)

    Pi-Jing Wei

    2017-01-01

    Full Text Available Integration of multi-omics data of cancer can help people to explore cancers comprehensively. However, with a large volume of different omics and functional data being generated, there is a major challenge to distinguish functional driver genes from a sea of inconsequential passenger genes that accrue stochastically but do not contribute to cancer development. In this paper, we present a gene length-based network method, named DriverFinder, to identify driver genes by integrating somatic mutations, copy number variations, gene-gene interaction network, tumor expression, and normal expression data. To illustrate the performance of DriverFinder, it is applied to four cancer types from The Cancer Genome Atlas including breast cancer, head and neck squamous cell carcinoma, thyroid carcinoma, and kidney renal clear cell carcinoma. Compared with some conventional methods, the results demonstrate that the proposed method is effective. Moreover, it can decrease the influence of gene length in identifying driver genes and identify some rare mutated driver genes.

  12. Genome-wide identification of key modulators of gene-gene interaction networks in breast cancer.

    Science.gov (United States)

    Chiu, Yu-Chiao; Wang, Li-Ju; Hsiao, Tzu-Hung; Chuang, Eric Y; Chen, Yidong

    2017-10-03

    With the advances in high-throughput gene profiling technologies, a large volume of gene interaction maps has been constructed. A higher-level layer of gene-gene interaction, namely modulate gene interaction, is composed of gene pairs of which interaction strengths are modulated by (i.e., dependent on) the expression level of a key modulator gene. Systematic investigations into the modulation by estrogen receptor (ER), the best-known modulator gene, have revealed the functional and prognostic significance in breast cancer. However, a genome-wide identification of key modulator genes that may further unveil the landscape of modulated gene interaction is still lacking. We proposed a systematic workflow to screen for key modulators based on genome-wide gene expression profiles. We designed four modularity parameters to measure the ability of a putative modulator to perturb gene interaction networks. Applying the method to a dataset of 286 breast tumors, we comprehensively characterized the modularity parameters and identified a total of 973 key modulator genes. The modularity of these modulators was verified in three independent breast cancer datasets. ESR1, the encoding gene of ER, appeared in the list, and abundant novel modulators were illuminated. For instance, a prognostic predictor of breast cancer, SFRP1, was found the second modulator. Functional annotation analysis of the 973 modulators revealed involvements in ER-related cellular processes as well as immune- and tumor-associated functions. Here we present, as far as we know, the first comprehensive analysis of key modulator genes on a genome-wide scale. The validity of filtering parameters as well as the conservativity of modulators among cohorts were corroborated. Our data bring new insights into the modulated layer of gene-gene interaction and provide candidates for further biological investigations.

  13. Evolutionary signatures amongst disease genes permit novel methods for gene prioritization and construction of informative gene-based networks.

    Directory of Open Access Journals (Sweden)

    Nolan Priedigkeit

    2015-02-01

    Full Text Available Genes involved in the same function tend to have similar evolutionary histories, in that their rates of evolution covary over time. This coevolutionary signature, termed Evolutionary Rate Covariation (ERC, is calculated using only gene sequences from a set of closely related species and has demonstrated potential as a computational tool for inferring functional relationships between genes. To further define applications of ERC, we first established that roughly 55% of genetic diseases posses an ERC signature between their contributing genes. At a false discovery rate of 5% we report 40 such diseases including cancers, developmental disorders and mitochondrial diseases. Given these coevolutionary signatures between disease genes, we then assessed ERC's ability to prioritize known disease genes out of a list of unrelated candidates. We found that in the presence of an ERC signature, the true disease gene is effectively prioritized to the top 6% of candidates on average. We then apply this strategy to a melanoma-associated region on chromosome 1 and identify MCL1 as a potential causative gene. Furthermore, to gain global insight into disease mechanisms, we used ERC to predict molecular connections between 310 nominally distinct diseases. The resulting "disease map" network associates several diseases with related pathogenic mechanisms and unveils many novel relationships between clinically distinct diseases, such as between Hirschsprung's disease and melanoma. Taken together, these results demonstrate the utility of molecular evolution as a gene discovery platform and show that evolutionary signatures can be used to build informative gene-based networks.

  14. Portrait of Candida Species Biofilm Regulatory Network Genes.

    Science.gov (United States)

    Araújo, Daniela; Henriques, Mariana; Silva, Sónia

    2017-01-01

    Most cases of candidiasis have been attributed to Candida albicans, but Candida glabrata, Candida parapsilosis and Candida tropicalis, designated as non-C. albicans Candida (NCAC), have been identified as frequent human pathogens. Moreover, Candida biofilms are an escalating clinical problem associated with significant rates of mortality. Biofilms have distinct developmental phases, including adhesion/colonisation, maturation and dispersal, controlled by complex regulatory networks. This review discusses recent advances regarding Candida species biofilm regulatory network genes, which are key components for candidiasis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Network graph analysis of gene-gene interactions in genome-wide association study data.

    Science.gov (United States)

    Lee, Sungyoung; Kwon, Min-Seok; Park, Taesung

    2012-12-01

    Most common complex traits, such as obesity, hypertension, diabetes, and cancers, are known to be associated with multiple genes, environmental factors, and their epistasis. Recently, the development of advanced genotyping technologies has allowed us to perform genome-wide association studies (GWASs). For detecting the effects of multiple genes on complex traits, many approaches have been proposed for GWASs. Multifactor dimensionality reduction (MDR) is one of the powerful and efficient methods for detecting high-order gene-gene (GxG) interactions. However, the biological interpretation of GxG interactions identified by MDR analysis is not easy. In order to aid the interpretation of MDR results, we propose a network graph analysis to elucidate the meaning of identified GxG interactions. The proposed network graph analysis consists of three steps. The first step is for performing GxG interaction analysis using MDR analysis. The second step is to draw the network graph using the MDR result. The third step is to provide biological evidence of the identified GxG interaction using external biological databases. The proposed method was applied to Korean Association Resource (KARE) data, containing 8838 individuals with 327,632 single-nucleotide polymorphisms, in order to perform GxG interaction analysis of body mass index (BMI). Our network graph analysis successfully showed that many identified GxG interactions have known biological evidence related to BMI. We expect that our network graph analysis will be helpful to interpret the biological meaning of GxG interactions.

  16. Structures and Boolean Dynamics in Gene Regulatory Networks

    Science.gov (United States)

    Szedlak, Anthony

    This dissertation discusses the topological and dynamical properties of GRNs in cancer, and is divided into four main chapters. First, the basic tools of modern complex network theory are introduced. These traditional tools as well as those developed by myself (set efficiency, interset efficiency, and nested communities) are crucial for understanding the intricate topological properties of GRNs, and later chapters recall these concepts. Second, the biology of gene regulation is discussed, and a method for disease-specific GRN reconstruction developed by our collaboration is presented. This complements the traditional exhaustive experimental approach of building GRNs edge-by-edge by quickly inferring the existence of as of yet undiscovered edges using correlations across sets of gene expression data. This method also provides insight into the distribution of common mutations across GRNs. Third, I demonstrate that the structures present in these reconstructed networks are strongly related to the evolutionary histories of their constituent genes. Investigation of how the forces of evolution shaped the topology of GRNs in multicellular organisms by growing outward from a core of ancient, conserved genes can shed light upon the ''reverse evolution'' of normal cells into unicellular-like cancer states. Next, I simulate the dynamics of the GRNs of cancer cells using the Hopfield model, an infinite range spin-glass model designed with the ability to encode Boolean data as attractor states. This attractor-driven approach facilitates the integration of gene expression data into predictive mathematical models. Perturbations representing therapeutic interventions are applied to sets of genes, and the resulting deviations from their attractor states are recorded, suggesting new potential drug targets for experimentation. Finally, I extend the Hopfield model to modular networks, cyclic attractors, and complex attractors, and apply these concepts to simulations of the cell cycle

  17. Reconstruction of Gene Networks of Iron Response in Shewanella oneidensis

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yunfeng [ORNL; Harris, Daniel P [ORNL; Luo, Feng [Clemson University; Joachimiak, Marcin [Clemson University; Wu, Liyou [University of Oklahoma; Dehal, Paramvir [Lawrence Berkeley National Laboratory (LBNL); Jacobsen, Janet [Lawrence Berkeley National Laboratory (LBNL); Yang, Zamin Koo [ORNL; Gao, Haichun [University of Oklahoma; Arkin, Adam [Lawrence Berkeley National Laboratory (LBNL); Palumbo, Anthony Vito [ORNL; Zhou, Jizhong [University of Oklahoma

    2009-01-01

    It is of great interest to study the iron response of the -proteobacterium Shewanella oneidensis since it possesses a high content of iron and is capable of utilizing iron for anaerobic respiration. We report here that the iron response in S. oneidensis is a rapid process. To gain more insights into the bacterial response to iron, temporal gene expression profiles were examined for iron depletion and repletion, resulting in identification of iron-responsive biological pathways in a gene co-expression network. Iron acquisition systems, including genes unique to S. oneidensis, were rapidly and strongly induced by iron depletion, and repressed by iron repletion. Some were required for iron depletion, as exemplified by the mutational analysis of the putative siderophore biosynthesis protein SO3032. Unexpectedly, a number of genes related to anaerobic energy metabolism were repressed by iron depletion and induced by repletion, which might be due to the iron storage potential of their protein products. Other iron-responsive biological pathways include protein degradation, aerobic energy metabolism and protein synthesis. Furthermore, sequence motifs enriched in gene clusters as well as their corresponding DNA-binding proteins (Fur, CRP and RpoH) were identified, resulting in a regulatory network of iron response in S. oneidensis. Together, this work provides an overview of iron response and reveals novel features in S. oneidensis, including Shewanella-specific iron acquisition systems, and suggests the intimate relationship between anaerobic energy metabolism and iron response.

  18. Comparison of evolutionary algorithms in gene regulatory network model inference.

    LENUS (Irish Health Repository)

    2010-01-01

    ABSTRACT: BACKGROUND: The evolution of high throughput technologies that measure gene expression levels has created a data base for inferring GRNs (a process also known as reverse engineering of GRNs). However, the nature of these data has made this process very difficult. At the moment, several methods of discovering qualitative causal relationships between genes with high accuracy from microarray data exist, but large scale quantitative analysis on real biological datasets cannot be performed, to date, as existing approaches are not suitable for real microarray data which are noisy and insufficient. RESULTS: This paper performs an analysis of several existing evolutionary algorithms for quantitative gene regulatory network modelling. The aim is to present the techniques used and offer a comprehensive comparison of approaches, under a common framework. Algorithms are applied to both synthetic and real gene expression data from DNA microarrays, and ability to reproduce biological behaviour, scalability and robustness to noise are assessed and compared. CONCLUSIONS: Presented is a comparison framework for assessment of evolutionary algorithms, used to infer gene regulatory networks. Promising methods are identified and a platform for development of appropriate model formalisms is established.

  19. Recurrent neural network based hybrid model for reconstructing gene regulatory network.

    Science.gov (United States)

    Raza, Khalid; Alam, Mansaf

    2016-10-01

    One of the exciting problems in systems biology research is to decipher how genome controls the development of complex biological system. The gene regulatory networks (GRNs) help in the identification of regulatory interactions between genes and offer fruitful information related to functional role of individual gene in a cellular system. Discovering GRNs lead to a wide range of applications, including identification of disease related pathways providing novel tentative drug targets, helps to predict disease response, and also assists in diagnosing various diseases including cancer. Reconstruction of GRNs from available biological data is still an open problem. This paper proposes a recurrent neural network (RNN) based model of GRN, hybridized with generalized extended Kalman filter for weight update in backpropagation through time training algorithm. The RNN is a complex neural network that gives a better settlement between biological closeness and mathematical flexibility to model GRN; and is also able to capture complex, non-linear and dynamic relationships among variables. Gene expression data are inherently noisy and Kalman filter performs well for estimation problem even in noisy data. Hence, we applied non-linear version of Kalman filter, known as generalized extended Kalman filter, for weight update during RNN training. The developed model has been tested on four benchmark networks such as DNA SOS repair network, IRMA network, and two synthetic networks from DREAM Challenge. We performed a comparison of our results with other state-of-the-art techniques which shows superiority of our proposed model. Further, 5% Gaussian noise has been induced in the dataset and result of the proposed model shows negligible effect of noise on results, demonstrating the noise tolerance capability of the model. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Prioritisation and network analysis of Crohn's disease susceptibility genes.

    Directory of Open Access Journals (Sweden)

    Daniele Muraro

    Full Text Available Recent Genome-Wide Association Studies (GWAS have revealed numerous Crohn's disease susceptibility genes and a key challenge now is in understanding how risk polymorphisms in associated genes might contribute to development of this disease. For a gene to contribute to disease phenotype, its risk variant will likely adversely communicate with a variety of other gene products to result in dysregulation of common signaling pathways. A vital challenge is to elucidate pathways of potentially greatest influence on pathological behaviour, in a manner recognizing how multiple relevant genes may yield integrative effect. In this work we apply mathematical analysis of networks involving the list of recently described Crohn's susceptibility genes, to prioritise pathways in relation to their potential development of this disease. Prioritisation was performed by applying a text mining and a diffusion based method (GRAIL, GPEC. Prospective biological significance of the resulting prioritised list of proteins is highlighted by changes in their gene expression levels in Crohn's patients intestinal tissue in comparison with healthy donors.

  1. Gene networks controlling the initiation of flower development.

    Science.gov (United States)

    Wellmer, Frank; Riechmann, José L

    2010-12-01

    The onset of flower formation is a key regulatory event during the life cycle of angiosperm plants, which marks the beginning of the reproductive phase of development. It has been shown that floral initiation is under tight genetic control, and deciphering the underlying molecular mechanisms has been a main area of interest in plant biology for the past two decades. Here, we provide an overview of the developmental and genetic processes that occur during floral initiation. We further review recent studies that have led to the genome-wide identification of target genes of key floral regulators and discuss how they have contributed to an in-depth understanding of the gene regulatory networks controlling early flower development. We focus especially on a master regulator of floral initiation in Arabidopsis thaliana APETALA1 (AP1), but also outline what is known about the AP1 network in other plant species and the evolutionary implications. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Gene Profiling of Aortic Valve Interstitial Cells under Elevated Pressure Conditions: Modulation of Inflammatory Gene Networks

    Directory of Open Access Journals (Sweden)

    James N. Warnock

    2011-01-01

    Full Text Available The study aimed to identify mechanosensitive pathways and gene networks that are stimulated by elevated cyclic pressure in aortic valve interstitial cells (VICs and lead to detrimental tissue remodeling and/or pathogenesis. Porcine aortic valve leaflets were exposed to cyclic pressures of 80 or 120 mmHg, corresponding to diastolic transvalvular pressure in normal and hypertensive conditions, respectively. Linear, two-cycle amplification of total RNA, followed by microarray was performed for transcriptome analysis (with qRT-PCR validation. A combination of systems biology modeling and pathway analysis identified novel genes and molecular mechanisms underlying the biological response of VICs to elevated pressure. 56 gene transcripts related to inflammatory response mechanisms were differentially expressed. TNF-α, IL-1α, and IL-1β were key cytokines identified from the gene network model. Also of interest was the discovery that pentraxin 3 (PTX3 was significantly upregulated under elevated pressure conditions (41-fold change. In conclusion, a gene network model showing differentially expressed inflammatory genes and their interactions in VICs exposed to elevated pressure has been developed. This system overview has detected key molecules that could be targeted for pharmacotherapy of aortic stenosis in hypertensive patients.

  3. Nearest Neighbor Networks: clustering expression data based on gene neighborhoods

    Directory of Open Access Journals (Sweden)

    Olszewski Kellen L

    2007-07-01

    Full Text Available Abstract Background The availability of microarrays measuring thousands of genes simultaneously across hundreds of biological conditions represents an opportunity to understand both individual biological pathways and the integrated workings of the cell. However, translating this amount of data into biological insight remains a daunting task. An important initial step in the analysis of microarray data is clustering of genes with similar behavior. A number of classical techniques are commonly used to perform this task, particularly hierarchical and K-means clustering, and many novel approaches have been suggested recently. While these approaches are useful, they are not without drawbacks; these methods can find clusters in purely random data, and even clusters enriched for biological functions can be skewed towards a small number of processes (e.g. ribosomes. Results We developed Nearest Neighbor Networks (NNN, a graph-based algorithm to generate clusters of genes with similar expression profiles. This method produces clusters based on overlapping cliques within an interaction network generated from mutual nearest neighborhoods. This focus on nearest neighbors rather than on absolute distance measures allows us to capture clusters with high connectivity even when they are spatially separated, and requiring mutual nearest neighbors allows genes with no sufficiently similar partners to remain unclustered. We compared the clusters generated by NNN with those generated by eight other clustering methods. NNN was particularly successful at generating functionally coherent clusters with high precision, and these clusters generally represented a much broader selection of biological processes than those recovered by other methods. Conclusion The Nearest Neighbor Networks algorithm is a valuable clustering method that effectively groups genes that are likely to be functionally related. It is particularly attractive due to its simplicity, its success in the

  4. Differentially expressed genes and gene networks involved in pig ovarian follicular atresia.

    Science.gov (United States)

    Terenina, Elena; Fabre, Stephane; Bonnet, Agnès; Monniaux, Danielle; Robert-Granié, Christèle; SanCristobal, Magali; Sarry, Julien; Vignoles, Florence; Gondret, Florence; Monget, Philippe; Tosser-Klopp, Gwenola

    2017-02-01

    Ovarian folliculogenesis corresponds to the development of follicles leading to either ovulation or degeneration, this latter process being called atresia. Even if atresia involves apoptosis, its mechanism is not well understood. The objective of this study was to analyze global gene expression in pig granulosa cells of ovarian follicles during atresia. The transcriptome analysis was performed on a 9,216 cDNA microarray to identify gene networks and candidate genes involved in pig ovarian follicular atresia. We found 1,684 significantly regulated genes to be differentially regulated between small healthy follicles and small atretic follicles. Among them, 287 genes had a fold-change higher than two between the two follicle groups. Eleven genes (DKK3, GADD45A, CAMTA2, CCDC80, DAPK2, ECSIT, MSMB, NUPR1, RUNX2, SAMD4A, and ZNF628) having a fold-change higher than five between groups could likely serve as markers of follicular atresia. Moreover, automatic confrontation of deregulated genes with literature data highlighted 93 genes as regulatory candidates of pig granulosa cell atresia. Among these genes known to be inhibitors of apoptosis, stimulators of apoptosis, or tumor suppressors INHBB, HNF4, CLU, different interleukins (IL5, IL24), TNF-associated receptor (TNFR1), and cytochrome-c oxidase (COX) were suggested as playing an important role in porcine atresia. The present study also enlists key upstream regulators in follicle atresia based on our results and on a literature review. The novel gene candidates and gene networks identified in the current study lead to a better understanding of the molecular regulation of ovarian follicular atresia. Copyright © 2017 the American Physiological Society.

  5. Identifying key genes in glaucoma based on a benchmarked dataset and the gene regulatory network.

    Science.gov (United States)

    Chen, Xi; Wang, Qiao-Ling; Zhang, Meng-Hui

    2017-10-01

    The current study aimed to identify key genes in glaucoma based on a benchmarked dataset and gene regulatory network (GRN). Local and global noise was added to the gene expression dataset to produce a benchmarked dataset. Differentially-expressed genes (DEGs) between patients with glaucoma and normal controls were identified utilizing the Linear Models for Microarray Data (Limma) package based on benchmarked dataset. A total of 5 GRN inference methods, including Zscore, GeneNet, context likelihood of relatedness (CLR) algorithm, Partial Correlation coefficient with Information Theory (PCIT) and GEne Network Inference with Ensemble of Trees (Genie3) were evaluated using receiver operating characteristic (ROC) and precision and recall (PR) curves. The interference method with the best performance was selected to construct the GRN. Subsequently, topological centrality (degree, closeness and betweenness) was conducted to identify key genes in the GRN of glaucoma. Finally, the key genes were validated by performing reverse transcription-quantitative polymerase chain reaction (RT-qPCR). A total of 176 DEGs were detected from the benchmarked dataset. The ROC and PR curves of the 5 methods were analyzed and it was determined that Genie3 had a clear advantage over the other methods; thus, Genie3 was used to construct the GRN. Following topological centrality analysis, 14 key genes for glaucoma were identified, including IL6 , EPHA2 and GSTT1 and 5 of these 14 key genes were validated by RT-qPCR. Therefore, the current study identified 14 key genes in glaucoma, which may be potential biomarkers to use in the diagnosis of glaucoma and aid in identifying the molecular mechanism of this disease.

  6. Inferring Drosophila gap gene regulatory network: Pattern analysis of simulated gene expression profiles and stability analysis

    NARCIS (Netherlands)

    Fomekong-Nanfack, Y.; Postma, M.; Kaandorp, J.A.

    2009-01-01

    Background: Inference of gene regulatory networks (GRNs) requires accurate data, a method to simulate the expression patterns and an efficient optimization algorithm to estimate the unknown parameters. Using this approach it is possible to obtain alternative circuits without making any a priori

  7. Transcriptional regulatory networks underlying gene expression changes in Huntington's disease.

    Science.gov (United States)

    Ament, Seth A; Pearl, Jocelynn R; Cantle, Jeffrey P; Bragg, Robert M; Skene, Peter J; Coffey, Sydney R; Bergey, Dani E; Wheeler, Vanessa C; MacDonald, Marcy E; Baliga, Nitin S; Rosinski, Jim; Hood, Leroy E; Carroll, Jeffrey B; Price, Nathan D

    2018-03-26

    Transcriptional changes occur presymptomatically and throughout Huntington's disease (HD), motivating the study of transcriptional regulatory networks (TRNs) in HD We reconstructed a genome-scale model for the target genes of 718 transcription factors (TFs) in the mouse striatum by integrating a model of genomic binding sites with transcriptome profiling of striatal tissue from HD mouse models. We identified 48 differentially expressed TF-target gene modules associated with age- and CAG repeat length-dependent gene expression changes in Htt CAG knock-in mouse striatum and replicated many of these associations in independent transcriptomic and proteomic datasets. Thirteen of 48 of these predicted TF-target gene modules were also differentially expressed in striatal tissue from human disease. We experimentally validated a specific model prediction that SMAD3 regulates HD-related gene expression changes using chromatin immunoprecipitation and deep sequencing (ChIP-seq) of mouse striatum. We found CAG repeat length-dependent changes in the genomic occupancy of SMAD3 and confirmed our model's prediction that many SMAD3 target genes are downregulated early in HD. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  8. Network Security via Biometric Recognition of Patterns of Gene Expression

    Science.gov (United States)

    Shaw, Harry C.

    2016-01-01

    Molecular biology provides the ability to implement forms of information and network security completely outside the bounds of legacy security protocols and algorithms. This paper addresses an approach which instantiates the power of gene expression for security. Molecular biology provides a rich source of gene expression and regulation mechanisms, which can be adopted to use in the information and electronic communication domains. Conventional security protocols are becoming increasingly vulnerable due to more intensive, highly capable attacks on the underlying mathematics of cryptography. Security protocols are being undermined by social engineering and substandard implementations by IT (Information Technology) organizations. Molecular biology can provide countermeasures to these weak points with the current security approaches. Future advances in instruments for analyzing assays will also enable this protocol to advance from one of cryptographic algorithms to an integrated system of cryptographic algorithms and real-time assays of gene expression products.

  9. Network Security via Biometric Recognition of Patterns of Gene Expression

    Science.gov (United States)

    Shaw, Harry C.

    2016-01-01

    Molecular biology provides the ability to implement forms of information and network security completely outside the bounds of legacy security protocols and algorithms. This paper addresses an approach which instantiates the power of gene expression for security. Molecular biology provides a rich source of gene expression and regulation mechanisms, which can be adopted to use in the information and electronic communication domains. Conventional security protocols are becoming increasingly vulnerable due to more intensive, highly capable attacks on the underlying mathematics of cryptography. Security protocols are being undermined by social engineering and substandard implementations by IT organizations. Molecular biology can provide countermeasures to these weak points with the current security approaches. Future advances in instruments for analyzing assays will also enable this protocol to advance from one of cryptographic algorithms to an integrated system of cryptographic algorithms and real-time expression and assay of gene expression products.

  10. Inferring a transcriptional regulatory network of the cytokinesis-related genes by network component analysis

    Directory of Open Access Journals (Sweden)

    Kao Cheng-Yan

    2009-11-01

    Full Text Available Abstract Background Network Component Analysis (NCA is a network structure-driven framework for deducing regulatory signal dynamics. In contrast to principal component analysis, which can be employed to select the high-variance genes, NCA makes use of the connectivity structure from transcriptional regulatory networks to infer dynamics of transcription factor activities. Using the budding yeast Saccharomyces cerevisiae as a model system, we aim to deduce regulatory actions of cytokinesis-related genes, using precise spatial proximity (midbody and/or temporal synchronicity (cytokinesis to avoid full-scale computation from genome-wide databases. Results NCA was applied to infer regulatory actions of transcription factor activity from microarray data and partial transcription factor-gene connectivity information for cytokinesis-related genes, which were a subset of genome-wide datasets. No literature has so far discussed the inferred results through NCA are independent of the scale of the gene expression dataset. To avoid full-scale computation from genome-wide databases, four cytokinesis-related gene cases were selected for NCA by running computational analysis over the transcription factor database to confirm the approach being scale-free. The inferred dynamics of transcription factor activity through NCA were independent of the scale of the data matrix selected from the four cytokinesis-related gene sets. Moreover, the inferred regulatory actions were nearly identical to published observations for the selected cytokinesis-related genes in the budding yeast; namely, Mcm1, Ndd1, and Fkh2, which form a transcription factor complex to control expression of the CLB2 cluster (i.e. BUD4, CHS2, IQG1, and CDC5. Conclusion In this study, using S. cerevisiae as a model system, NCA was successfully applied to infer similar regulatory actions of transcription factor activities from two various microarray databases and several partial transcription factor-gene

  11. Inferring a transcriptional regulatory network of the cytokinesis-related genes by network component analysis.

    Science.gov (United States)

    Chen, Shun-Fu; Juang, Yue-Li; Chou, Wei-Kang; Lai, Jin-Mei; Huang, Chi-Ying F; Kao, Cheng-Yan; Wang, Feng-Sheng

    2009-11-27

    Network Component Analysis (NCA) is a network structure-driven framework for deducing regulatory signal dynamics. In contrast to principal component analysis, which can be employed to select the high-variance genes, NCA makes use of the connectivity structure from transcriptional regulatory networks to infer dynamics of transcription factor activities. Using the budding yeast Saccharomyces cerevisiae as a model system, we aim to deduce regulatory actions of cytokinesis-related genes, using precise spatial proximity (midbody) and/or temporal synchronicity (cytokinesis) to avoid full-scale computation from genome-wide databases. NCA was applied to infer regulatory actions of transcription factor activity from microarray data and partial transcription factor-gene connectivity information for cytokinesis-related genes, which were a subset of genome-wide datasets. No literature has so far discussed the inferred results through NCA are independent of the scale of the gene expression dataset. To avoid full-scale computation from genome-wide databases, four cytokinesis-related gene cases were selected for NCA by running computational analysis over the transcription factor database to confirm the approach being scale-free. The inferred dynamics of transcription factor activity through NCA were independent of the scale of the data matrix selected from the four cytokinesis-related gene sets. Moreover, the inferred regulatory actions were nearly identical to published observations for the selected cytokinesis-related genes in the budding yeast; namely, Mcm1, Ndd1, and Fkh2, which form a transcription factor complex to control expression of the CLB2 cluster (i.e. BUD4, CHS2, IQG1, and CDC5). In this study, using S. cerevisiae as a model system, NCA was successfully applied to infer similar regulatory actions of transcription factor activities from two various microarray databases and several partial transcription factor-gene connectivity datasets for selected cytokinesis

  12. Recurrent neural network-based modeling of gene regulatory network using elephant swarm water search algorithm.

    Science.gov (United States)

    Mandal, Sudip; Saha, Goutam; Pal, Rajat Kumar

    2017-08-01

    Correct inference of genetic regulations inside a cell from the biological database like time series microarray data is one of the greatest challenges in post genomic era for biologists and researchers. Recurrent Neural Network (RNN) is one of the most popular and simple approach to model the dynamics as well as to infer correct dependencies among genes. Inspired by the behavior of social elephants, we propose a new metaheuristic namely Elephant Swarm Water Search Algorithm (ESWSA) to infer Gene Regulatory Network (GRN). This algorithm is mainly based on the water search strategy of intelligent and social elephants during drought, utilizing the different types of communication techniques. Initially, the algorithm is tested against benchmark small and medium scale artificial genetic networks without and with presence of different noise levels and the efficiency was observed in term of parametric error, minimum fitness value, execution time, accuracy of prediction of true regulation, etc. Next, the proposed algorithm is tested against the real time gene expression data of Escherichia Coli SOS Network and results were also compared with others state of the art optimization methods. The experimental results suggest that ESWSA is very efficient for GRN inference problem and performs better than other methods in many ways.

  13. A hybrid network-based method for the detection of disease-related genes

    Science.gov (United States)

    Cui, Ying; Cai, Meng; Dai, Yang; Stanley, H. Eugene

    2018-02-01

    Detecting disease-related genes is crucial in disease diagnosis and drug design. The accepted view is that neighbors of a disease-causing gene in a molecular network tend to cause the same or similar diseases, and network-based methods have been recently developed to identify novel hereditary disease-genes in available biomedical networks. Despite the steady increase in the discovery of disease-associated genes, there is still a large fraction of disease genes that remains under the tip of the iceberg. In this paper we exploit the topological properties of the protein-protein interaction (PPI) network to detect disease-related genes. We compute, analyze, and compare the topological properties of disease genes with non-disease genes in PPI networks. We also design an improved random forest classifier based on these network topological features, and a cross-validation test confirms that our method performs better than previous similar studies.

  14. Construction of Gene Regulatory Networks Using Recurrent Neural Networks and Swarm Intelligence.

    Science.gov (United States)

    Khan, Abhinandan; Mandal, Sudip; Pal, Rajat Kumar; Saha, Goutam

    2016-01-01

    We have proposed a methodology for the reverse engineering of biologically plausible gene regulatory networks from temporal genetic expression data. We have used established information and the fundamental mathematical theory for this purpose. We have employed the Recurrent Neural Network formalism to extract the underlying dynamics present in the time series expression data accurately. We have introduced a new hybrid swarm intelligence framework for the accurate training of the model parameters. The proposed methodology has been first applied to a small artificial network, and the results obtained suggest that it can produce the best results available in the contemporary literature, to the best of our knowledge. Subsequently, we have implemented our proposed framework on experimental (in vivo) datasets. Finally, we have investigated two medium sized genetic networks (in silico) extracted from GeneNetWeaver, to understand how the proposed algorithm scales up with network size. Additionally, we have implemented our proposed algorithm with half the number of time points. The results indicate that a reduction of 50% in the number of time points does not have an effect on the accuracy of the proposed methodology significantly, with a maximum of just over 15% deterioration in the worst case.

  15. RegnANN: Reverse Engineering Gene Networks using Artificial Neural Networks.

    Directory of Open Access Journals (Sweden)

    Marco Grimaldi

    Full Text Available RegnANN is a novel method for reverse engineering gene networks based on an ensemble of multilayer perceptrons. The algorithm builds a regressor for each gene in the network, estimating its neighborhood independently. The overall network is obtained by joining all the neighborhoods. RegnANN makes no assumptions about the nature of the relationships between the variables, potentially capturing high-order and non linear dependencies between expression patterns. The evaluation focuses on synthetic data mimicking plausible submodules of larger networks and on biological data consisting of submodules of Escherichia coli. We consider Barabasi and Erdös-Rényi topologies together with two methods for data generation. We verify the effect of factors such as network size and amount of data to the accuracy of the inference algorithm. The accuracy scores obtained with RegnANN is methodically compared with the performance of three reference algorithms: ARACNE, CLR and KELLER. Our evaluation indicates that RegnANN compares favorably with the inference methods tested. The robustness of RegnANN, its ability to discover second order correlations and the agreement between results obtained with this new methods on both synthetic and biological data are promising and they stimulate its application to a wider range of problems.

  16. Heart morphogenesis gene regulatory networks revealed by temporal expression analysis.

    Science.gov (United States)

    Hill, Jonathon T; Demarest, Bradley; Gorsi, Bushra; Smith, Megan; Yost, H Joseph

    2017-10-01

    During embryogenesis the heart forms as a linear tube that then undergoes multiple simultaneous morphogenetic events to obtain its mature shape. To understand the gene regulatory networks (GRNs) driving this phase of heart development, during which many congenital heart disease malformations likely arise, we conducted an RNA-seq timecourse in zebrafish from 30 hpf to 72 hpf and identified 5861 genes with altered expression. We clustered the genes by temporal expression pattern, identified transcription factor binding motifs enriched in each cluster, and generated a model GRN for the major gene batteries in heart morphogenesis. This approach predicted hundreds of regulatory interactions and found batteries enriched in specific cell and tissue types, indicating that the approach can be used to narrow the search for novel genetic markers and regulatory interactions. Subsequent analyses confirmed the GRN using two mutants, Tbx5 and nkx2-5 , and identified sets of duplicated zebrafish genes that do not show temporal subfunctionalization. This dataset provides an essential resource for future studies on the genetic/epigenetic pathways implicated in congenital heart defects and the mechanisms of cardiac transcriptional regulation. © 2017. Published by The Company of Biologists Ltd.

  17. Signal Network Analysis of Plant Genes Responding to Ionizing Radiation

    International Nuclear Information System (INIS)

    Kim, Dong Sub; Kim, Jinbaek; Kim, Sang Hoon

    2012-12-01

    In this project, we irradiated Arabidopsis plants with various doses of gamma-rays at the vegetative and reproductive stages to assess their radiation sensitivity. After the gene expression profiles and an analysis of the antioxidant response, we selected several Arabidopsis genes for uses of 'Radio marker genes (RMG)' and conducted over-expression and knock-down experiments to confirm the radio sensitivity. Based on these results, we applied two patents for the detection of two RMG (At3g28210 and At4g37990) and development of transgenic plants. Also, we developed a Genechip for use of high-throughput screening of Arabidopsis genes responding only to ionizing radiation and identified RMG to detect radiation leaks. Based on these results, we applied two patents associated with the use of Genechip for different types of radiation and different growth stages. Also, we conducted co-expression network study of specific expressed probes against gamma-ray stress and identified expressed patterns of duplicated genes formed by whole/500kb segmental genome duplication

  18. An extensive analysis of disease-gene associations using network integration and fast kernel-based gene prioritization methods.

    Science.gov (United States)

    Valentini, Giorgio; Paccanaro, Alberto; Caniza, Horacio; Romero, Alfonso E; Re, Matteo

    2014-06-01

    In the context of "network medicine", gene prioritization methods represent one of the main tools to discover candidate disease genes by exploiting the large amount of data covering different types of functional relationships between genes. Several works proposed to integrate multiple sources of data to improve disease gene prioritization, but to our knowledge no systematic studies focused on the quantitative evaluation of the impact of network integration on gene prioritization. In this paper, we aim at providing an extensive analysis of gene-disease associations not limited to genetic disorders, and a systematic comparison of different network integration methods for gene prioritization. We collected nine different functional networks representing different functional relationships between genes, and we combined them through both unweighted and weighted network integration methods. We then prioritized genes with respect to each of the considered 708 medical subject headings (MeSH) diseases by applying classical guilt-by-association, random walk and random walk with restart algorithms, and the recently proposed kernelized score functions. The results obtained with classical random walk algorithms and the best single network achieved an average area under the curve (AUC) across the 708 MeSH diseases of about 0.82, while kernelized score functions and network integration boosted the average AUC to about 0.89. Weighted integration, by exploiting the different "informativeness" embedded in different functional networks, outperforms unweighted integration at 0.01 significance level, according to the Wilcoxon signed rank sum test. For each MeSH disease we provide the top-ranked unannotated candidate genes, available for further bio-medical investigation. Network integration is necessary to boost the performances of gene prioritization methods. Moreover the methods based on kernelized score functions can further enhance disease gene ranking results, by adopting both

  19. Netter: re-ranking gene network inference predictions using structural network properties.

    Science.gov (United States)

    Ruyssinck, Joeri; Demeester, Piet; Dhaene, Tom; Saeys, Yvan

    2016-02-09

    Many algorithms have been developed to infer the topology of gene regulatory networks from gene expression data. These methods typically produce a ranking of links between genes with associated confidence scores, after which a certain threshold is chosen to produce the inferred topology. However, the structural properties of the predicted network do not resemble those typical for a gene regulatory network, as most algorithms only take into account connections found in the data and do not include known graph properties in their inference process. This lowers the prediction accuracy of these methods, limiting their usability in practice. We propose a post-processing algorithm which is applicable to any confidence ranking of regulatory interactions obtained from a network inference method which can use, inter alia, graphlets and several graph-invariant properties to re-rank the links into a more accurate prediction. To demonstrate the potential of our approach, we re-rank predictions of six different state-of-the-art algorithms using three simple network properties as optimization criteria and show that Netter can improve the predictions made on both artificially generated data as well as the DREAM4 and DREAM5 benchmarks. Additionally, the DREAM5 E.coli. community prediction inferred from real expression data is further improved. Furthermore, Netter compares favorably to other post-processing algorithms and is not restricted to correlation-like predictions. Lastly, we demonstrate that the performance increase is robust for a wide range of parameter settings. Netter is available at http://bioinformatics.intec.ugent.be. Network inference from high-throughput data is a long-standing challenge. In this work, we present Netter, which can further refine network predictions based on a set of user-defined graph properties. Netter is a flexible system which can be applied in unison with any method producing a ranking from omics data. It can be tailored to specific prior

  20. Data Integration for Microarrays: Enhanced Inference for Gene Regulatory Networks

    Directory of Open Access Journals (Sweden)

    Alina Sîrbu

    2015-05-01

    Full Text Available Microarray technologies have been the basis of numerous important findings regarding gene expression in the few last decades. Studies have generated large amounts of data describing various processes, which, due to the existence of public databases, are widely available for further analysis. Given their lower cost and higher maturity compared to newer sequencing technologies, these data continue to be produced, even though data quality has been the subject of some debate. However, given the large volume of data generated, integration can help overcome some issues related, e.g., to noise or reduced time resolution, while providing additional insight on features not directly addressed by sequencing methods. Here, we present an integration test case based on public Drosophila melanogaster datasets (gene expression, binding site affinities, known interactions. Using an evolutionary computation framework, we show how integration can enhance the ability to recover transcriptional gene regulatory networks from these data, as well as indicating which data types are more important for quantitative and qualitative network inference. Our results show a clear improvement in performance when multiple datasets are integrated, indicating that microarray data will remain a valuable and viable resource for some time to come.

  1. Complex Dynamic Behavior in Simple Gene Regulatory Networks

    Science.gov (United States)

    Santillán Zerón, Moisés

    2007-02-01

    Knowing the complete genome of a given species is just a piece of the puzzle. To fully unveil the systems behavior of an organism, an organ, or even a single cell, we need to understand the underlying gene regulatory dynamics. Given the complexity of the whole system, the ultimate goal is unattainable for the moment. But perhaps, by analyzing the most simple genetic systems, we may be able to develop the mathematical techniques and procedures required to tackle more complex genetic networks in the near future. In the present work, the techniques for developing mathematical models of simple bacterial gene networks, like the tryptophan and lactose operons are introduced. Despite all of the underlying assumptions, such models can provide valuable information regarding gene regulation dynamics. Here, we pay special attention to robustness as an emergent property. These notes are organized as follows. In the first section, the long historical relation between mathematics, physics, and biology is briefly reviewed. Recently, the multidisciplinary work in biology has received great attention in the form of systems biology. The main concepts of this novel science are discussed in the second section. A very slim introduction to the essential concepts of molecular biology is given in the third section. In the fourth section, a brief introduction to chemical kinetics is presented. Finally, in the fifth section, a mathematical model for the lactose operon is developed and analyzed..

  2. Reward Network Immediate Early Gene Expression in Mood Disorders

    Directory of Open Access Journals (Sweden)

    Alfred J. Robison

    2017-04-01

    Full Text Available Over the past three decades, it has become clear that aberrant function of the network of interconnected brain regions responsible for reward processing and motivated behavior underlies a variety of mood disorders, including depression and anxiety. It is also clear that stress-induced changes in reward network activity underlying both normal and pathological behavior also cause changes in gene expression. Here, we attempt to define the reward circuitry and explore the known and potential contributions of activity-dependent changes in gene expression within this circuitry to stress-induced changes in behavior related to mood disorders, and contrast some of these effects with those induced by exposure to drugs of abuse. We focus on a series of immediate early genes regulated by stress within this circuitry and their connections, both well-explored and relatively novel, to circuit function and subsequent reward-related behaviors. We conclude that IEGs play a crucial role in stress-dependent remodeling of reward circuitry, and that they may serve as inroads to the molecular, cellular, and circuit-level mechanisms of mood disorder etiology and treatment.

  3. Pluripotency gene network dynamics: System views from parametric analysis.

    Science.gov (United States)

    Akberdin, Ilya R; Omelyanchuk, Nadezda A; Fadeev, Stanislav I; Leskova, Natalya E; Oschepkova, Evgeniya A; Kazantsev, Fedor V; Matushkin, Yury G; Afonnikov, Dmitry A; Kolchanov, Nikolay A

    2018-01-01

    Multiple experimental data demonstrated that the core gene network orchestrating self-renewal and differentiation of mouse embryonic stem cells involves activity of Oct4, Sox2 and Nanog genes by means of a number of positive feedback loops among them. However, recent studies indicated that the architecture of the core gene network should also incorporate negative Nanog autoregulation and might not include positive feedbacks from Nanog to Oct4 and Sox2. Thorough parametric analysis of the mathematical model based on this revisited core regulatory circuit identified that there are substantial changes in model dynamics occurred depending on the strength of Oct4 and Sox2 activation and molecular complexity of Nanog autorepression. The analysis showed the existence of four dynamical domains with different numbers of stable and unstable steady states. We hypothesize that these domains can constitute the checkpoints in a developmental progression from naïve to primed pluripotency and vice versa. During this transition, parametric conditions exist, which generate an oscillatory behavior of the system explaining heterogeneity in expression of pluripotent and differentiation factors in serum ESC cultures. Eventually, simulations showed that addition of positive feedbacks from Nanog to Oct4 and Sox2 leads mainly to increase of the parametric space for the naïve ESC state, in which pluripotency factors are strongly expressed while differentiation ones are repressed.

  4. Using Morpholinos to Probe Gene Networks in Sea Urchin.

    Science.gov (United States)

    Materna, Stefan C

    2017-01-01

    The control processes that underlie the progression of development can be summarized in maps of gene regulatory networks (GRNs). A critical step in their assembly is the systematic perturbation of network candidates. In sea urchins the most important method for interfering with expression in a gene-specific way is application of morpholino antisense oligonucleotides (MOs). MOs act by binding to their sequence complement in transcripts resulting in a block in translation or a change in splicing and thus result in a loss of function. Despite the tremendous success of this technology, recent comparisons to mutants generated by genome editing have led to renewed criticism and challenged its reliability. As with all methods based on sequence recognition, MOs are prone to off-target binding that may result in phenotypes that are erroneously ascribed to the loss of the intended target. However, the slow progression of development in sea urchins has enabled extremely detailed studies of gene activity in the embryo. This wealth of knowledge paired with the simplicity of the sea urchin embryo enables careful analysis of MO phenotypes through a variety of methods that do not rely on terminal phenotypes. This article summarizes the use of MOs in probing GRNs and the steps that should be taken to assure their specificity.

  5. Network Graph Analysis of Gene-Gene Interactions in Genome-Wide Association Study Data

    Directory of Open Access Journals (Sweden)

    Sungyoung Lee

    2012-12-01

    Full Text Available Most common complex traits, such as obesity, hypertension, diabetes, and cancers, are known to be associated with multiple genes, environmental factors, and their epistasis. Recently, the development of advanced genotyping technologies has allowed us to perform genome-wide association studies (GWASs. For detecting the effects of multiple genes on complex traits, many approaches have been proposed for GWASs. Multifactor dimensionality reduction (MDR is one of the powerful and efficient methods for detecting high-order gene-gene (GxG interactions. However, the biological interpretation of GxG interactions identified by MDR analysis is not easy. In order to aid the interpretation of MDR results, we propose a network graph analysis to elucidate the meaning of identified GxG interactions. The proposed network graph analysis consists of three steps. The first step is for performing GxG interaction analysis using MDR analysis. The second step is to draw the network graph using the MDR result. The third step is to provide biological evidence of the identified GxG interaction using external biological databases. The proposed method was applied to Korean Association Resource (KARE data, containing 8838 individuals with 327,632 single-nucleotide polymorphisms, in order to perform GxG interaction analysis of body mass index (BMI. Our network graph analysis successfully showed that many identified GxG interactions have known biological evidence related to BMI. We expect that our network graph analysis will be helpful to interpret the biological meaning of GxG interactions.

  6. Comparative analysis of weighted gene co-expression networks in human and mouse.

    Science.gov (United States)

    Eidsaa, Marius; Stubbs, Lisa; Almaas, Eivind

    2017-01-01

    The application of complex network modeling to analyze large co-expression data sets has gained traction during the last decade. In particular, the use of the weighted gene co-expression network analysis framework has allowed an unbiased and systems-level investigation of genotype-phenotype relationships in a wide range of systems. Since mouse is an important model organism for biomedical research on human disease, it is of great interest to identify similarities and differences in the functional roles of human and mouse orthologous genes. Here, we develop a novel network comparison approach which we demonstrate by comparing two gene-expression data sets from a large number of human and mouse tissues. The method uses weighted topological overlap alongside the recently developed network-decomposition method of s-core analysis, which is suitable for making gene-centrality rankings for weighted networks. The aim is to identify globally central genes separately in the human and mouse networks. By comparing the ranked gene lists, we identify genes that display conserved or diverged centrality-characteristics across the networks. This framework only assumes a single threshold value that is chosen from a statistical analysis, and it may be applied to arbitrary network structures and edge-weight distributions, also outside the context of biology. When conducting the comparative network analysis, both within and across the two species, we find a clear pattern of enrichment of transcription factors, for the homeobox domain in particular, among the globally central genes. We also perform gene-ontology term enrichment analysis and look at disease-related genes for the separate networks as well as the network comparisons. We find that gene ontology terms related to regulation and development are generally enriched across the networks. In particular, the genes FOXE3, RHO, RUNX2, ALX3 and RARA, which are disease genes in either human or mouse, are on the top-10 list of globally

  7. Quantitative and logic modelling of gene and molecular networks

    Science.gov (United States)

    Le Novère, Nicolas

    2015-01-01

    Behaviours of complex biomolecular systems are often irreducible to the elementary properties of their individual components. Explanatory and predictive mathematical models are therefore useful for fully understanding and precisely engineering cellular functions. The development and analyses of these models require their adaptation to the problems that need to be solved and the type and amount of available genetic or molecular data. Quantitative and logic modelling are among the main methods currently used to model molecular and gene networks. Each approach comes with inherent advantages and weaknesses. Recent developments show that hybrid approaches will become essential for further progress in synthetic biology and in the development of virtual organisms. PMID:25645874

  8. Design of experiment for nonlinear dynamic gene regulatory network identification.

    Science.gov (United States)

    Lu, Tao

    2017-04-04

    The gene regulatory network (GRN) is critical for understanding the regulatory interaction between genes. Time-course microarray experiments provide ample information for constructing GRN. The designs for microarray experiments serve different purposes. However, the experiment design specifically for GRN identification is still sparse. In this article, we use a simulation-based approach to deal with design problems in the framework of nonparametric differential equations. We investigate a number of feasible designs. In particular, we evaluate whether earlier samplings can result in more useful information for GRN identification. We also evaluate the effectiveness of two strategies: more frequent samplings per replicate with fewer replicates versus fewer samplings per replicate with more replicates while keeping the total number of samplings constant. The results of our investigation provide quantitative guidance for designing and selecting microarray experiments for the purpose of GRN identification.

  9. GeneNetwork: A Toolbox for Systems Genetics.

    Science.gov (United States)

    Mulligan, Megan K; Mozhui, Khyobeni; Prins, Pjotr; Williams, Robert W

    2017-01-01

    The goal of systems genetics is to understand the impact of genetic variation across all levels of biological organization, from mRNAs, proteins, and metabolites, to higher-order physiological and behavioral traits. This approach requires the accumulation and integration of many types of data, and also requires the use of many types of statistical tools to extract relevant patterns of covariation and causal relations as a function of genetics, environment, stage, and treatment. In this protocol we explain how to use the GeneNetwork web service, a powerful and free online resource for systems genetics. We provide workflows and methods to navigate massive multiscalar data sets and we explain how to use an extensive systems genetics toolkit for analysis and synthesis. Finally, we provide two detailed case studies that take advantage of human and mouse cohorts to evaluate linkage between gene variants, addiction, and aging.

  10. Identification of fever and vaccine-associated gene interaction networks using ontology-based literature mining.

    Science.gov (United States)

    Hur, Junguk; Ozgür, Arzucan; Xiang, Zuoshuang; He, Yongqun

    2012-12-20

    Fever is one of the most common adverse events of vaccines. The detailed mechanisms of fever and vaccine-associated gene interaction networks are not fully understood. In the present study, we employed a genome-wide, Centrality and Ontology-based Network Discovery using Literature data (CONDL) approach to analyse the genes and gene interaction networks associated with fever or vaccine-related fever responses. Over 170,000 fever-related articles from PubMed abstracts and titles were retrieved and analysed at the sentence level using natural language processing techniques to identify genes and vaccines (including 186 Vaccine Ontology terms) as well as their interactions. This resulted in a generic fever network consisting of 403 genes and 577 gene interactions. A vaccine-specific fever sub-network consisting of 29 genes and 28 gene interactions was extracted from articles that are related to both fever and vaccines. In addition, gene-vaccine interactions were identified. Vaccines (including 4 specific vaccine names) were found to directly interact with 26 genes. Gene set enrichment analysis was performed using the genes in the generated interaction networks. Moreover, the genes in these networks were prioritized using network centrality metrics. Making scientific discoveries and generating new hypotheses were possible by using network centrality and gene set enrichment analyses. For example, our study found that the genes in the generic fever network were more enriched in cell death and responses to wounding, and the vaccine sub-network had more gene enrichment in leukocyte activation and phosphorylation regulation. The most central genes in the vaccine-specific fever network are predicted to be highly relevant to vaccine-induced fever, whereas genes that are central only in the generic fever network are likely to be highly relevant to generic fever responses. Interestingly, no Toll-like receptors (TLRs) were found in the gene-vaccine interaction network. Since

  11. A systematic molecular circuit design method for gene networks under biochemical time delays and molecular noises

    Directory of Open Access Journals (Sweden)

    Chang Yu-Te

    2008-11-01

    Full Text Available Abstract Background Gene networks in nanoscale are of nonlinear stochastic process. Time delays are common and substantial in these biochemical processes due to gene transcription, translation, posttranslation protein modification and diffusion. Molecular noises in gene networks come from intrinsic fluctuations, transmitted noise from upstream genes, and the global noise affecting all genes. Knowledge of molecular noise filtering and biochemical process delay compensation in gene networks is crucial to understand the signal processing in gene networks and the design of noise-tolerant and delay-robust gene circuits for synthetic biology. Results A nonlinear stochastic dynamic model with multiple time delays is proposed for describing a gene network under process delays, intrinsic molecular fluctuations, and extrinsic molecular noises. Then, the stochastic biochemical processing scheme of gene regulatory networks for attenuating these molecular noises and compensating process delays is investigated from the nonlinear signal processing perspective. In order to improve the robust stability for delay toleration and noise filtering, a robust gene circuit for nonlinear stochastic time-delay gene networks is engineered based on the nonlinear robust H∞ stochastic filtering scheme. Further, in order to avoid solving these complicated noise-tolerant and delay-robust design problems, based on Takagi-Sugeno (T-S fuzzy time-delay model and linear matrix inequalities (LMIs technique, a systematic gene circuit design method is proposed to simplify the design procedure. Conclusion The proposed gene circuit design method has much potential for application to systems biology, synthetic biology and drug design when a gene regulatory network has to be designed for improving its robust stability and filtering ability of disease-perturbed gene network or when a synthetic gene network needs to perform robustly under process delays and molecular noises.

  12. CRISPR loci reveal networks of gene exchange in archaea

    Directory of Open Access Journals (Sweden)

    Brodt Avital

    2011-12-01

    Full Text Available Abstract Background CRISPR (Clustered, Regularly, Interspaced, Short, Palindromic Repeats loci provide prokaryotes with an adaptive immunity against viruses and other mobile genetic elements. CRISPR arrays can be transcribed and processed into small crRNA molecules, which are then used by the cell to target the foreign nucleic acid. Since spacers are accumulated by active CRISPR/Cas systems, the sequences of these spacers provide a record of the past "infection history" of the organism. Results Here we analyzed all currently known spacers present in archaeal genomes and identified their source by DNA similarity. While nearly 50% of archaeal spacers matched mobile genetic elements, such as plasmids or viruses, several others matched chromosomal genes of other organisms, primarily other archaea. Thus, networks of gene exchange between archaeal species were revealed by the spacer analysis, including many cases of inter-genus and inter-species gene transfer events. Spacers that recognize viral sequences tend to be located further away from the leader sequence, implying that there exists a selective pressure for their retention. Conclusions CRISPR spacers provide direct evidence for extensive gene exchange in archaea, especially within genera, and support the current dogma where the primary role of the CRISPR/Cas system is anti-viral and anti-plasmid defense. Open peer review This article was reviewed by: Profs. W. Ford Doolittle, John van der Oost, Christa Schleper (nominated by board member Prof. J Peter Gogarten

  13. A genome-wide MeSH-based literature mining system predicts implicit gene-to-gene relationships and networks.

    Science.gov (United States)

    Xiang, Zuoshuang; Qin, Tingting; Qin, Zhaohui S; He, Yongqun

    2013-10-16

    The large amount of literature in the post-genomics era enables the study of gene interactions and networks using all available articles published for a specific organism. MeSH is a controlled vocabulary of medical and scientific terms that is used by biomedical scientists to manually index articles in the PubMed literature database. We hypothesized that genome-wide gene-MeSH term associations from the PubMed literature database could be used to predict implicit gene-to-gene relationships and networks. While the gene-MeSH associations have been used to detect gene-gene interactions in some studies, different methods have not been well compared, and such a strategy has not been evaluated for a genome-wide literature analysis. Genome-wide literature mining of gene-to-gene interactions allows ranking of the best gene interactions and investigation of comprehensive biological networks at a genome level. The genome-wide GenoMesh literature mining algorithm was developed by sequentially generating a gene-article matrix, a normalized gene-MeSH term matrix, and a gene-gene matrix. The gene-gene matrix relies on the calculation of pairwise gene dissimilarities based on gene-MeSH relationships. An optimized dissimilarity score was identified from six well-studied functions based on a receiver operating characteristic (ROC) analysis. Based on the studies with well-studied Escherichia coli and less-studied Brucella spp., GenoMesh was found to accurately identify gene functions using weighted MeSH terms, predict gene-gene interactions not reported in the literature, and cluster all the genes studied from an organism using the MeSH-based gene-gene matrix. A web-based GenoMesh literature mining program is also available at: http://genomesh.hegroup.org. GenoMesh also predicts gene interactions and networks among genes associated with specific MeSH terms or user-selected gene lists. The GenoMesh algorithm and web program provide the first genome-wide, MeSH-based literature mining

  14. A genome-wide MeSH-based literature mining system predicts implicit gene-to-gene relationships and networks

    Science.gov (United States)

    2013-01-01

    Background The large amount of literature in the post-genomics era enables the study of gene interactions and networks using all available articles published for a specific organism. MeSH is a controlled vocabulary of medical and scientific terms that is used by biomedical scientists to manually index articles in the PubMed literature database. We hypothesized that genome-wide gene-MeSH term associations from the PubMed literature database could be used to predict implicit gene-to-gene relationships and networks. While the gene-MeSH associations have been used to detect gene-gene interactions in some studies, different methods have not been well compared, and such a strategy has not been evaluated for a genome-wide literature analysis. Genome-wide literature mining of gene-to-gene interactions allows ranking of the best gene interactions and investigation of comprehensive biological networks at a genome level. Results The genome-wide GenoMesh literature mining algorithm was developed by sequentially generating a gene-article matrix, a normalized gene-MeSH term matrix, and a gene-gene matrix. The gene-gene matrix relies on the calculation of pairwise gene dissimilarities based on gene-MeSH relationships. An optimized dissimilarity score was identified from six well-studied functions based on a receiver operating characteristic (ROC) analysis. Based on the studies with well-studied Escherichia coli and less-studied Brucella spp., GenoMesh was found to accurately identify gene functions using weighted MeSH terms, predict gene-gene interactions not reported in the literature, and cluster all the genes studied from an organism using the MeSH-based gene-gene matrix. A web-based GenoMesh literature mining program is also available at: http://genomesh.hegroup.org. GenoMesh also predicts gene interactions and networks among genes associated with specific MeSH terms or user-selected gene lists. Conclusions The GenoMesh algorithm and web program provide the first genome

  15. Gene network analysis of Arabidopsis thaliana flower development through dynamic gene perturbations.

    Science.gov (United States)

    Ó'Maoiléidigh, Diarmuid S; Thomson, Bennett; Raganelli, Andrea; Wuest, Samuel E; Ryan, Patrick T; Kwaśniewska, Kamila; Carles, Cristel C; Graciet, Emmanuelle; Wellmer, Frank

    2015-07-01

    Understanding how flowers develop from undifferentiated stem cells has occupied developmental biologists for decades. Key to unraveling this process is a detailed knowledge of the global regulatory hierarchies that control developmental transitions, cell differentiation and organ growth. These hierarchies may be deduced from gene perturbation experiments, which determine the effects on gene expression after specific disruption of a regulatory gene. Here, we tested experimental strategies for gene perturbation experiments during Arabidopsis thaliana flower development. We used artificial miRNAs (amiRNAs) to disrupt the functions of key floral regulators, and expressed them under the control of various inducible promoter systems that are widely used in the plant research community. To be able to perform genome-wide experiments with stage-specific resolution using the various inducible promoter systems for gene perturbation experiments, we also generated a series of floral induction systems that allow collection of hundreds of synchronized floral buds from a single plant. Based on our results, we propose strategies for performing dynamic gene perturbation experiments in flowers, and outline how they may be combined with versions of the floral induction system to dissect the gene regulatory network underlying flower development. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  16. RNAi-Based Identification of Gene-Specific Nuclear Cofactor Networks Regulating Interleukin-1 Target Genes

    Directory of Open Access Journals (Sweden)

    Johanna Meier-Soelch

    2018-04-01

    Full Text Available The potent proinflammatory cytokine interleukin (IL-1 triggers gene expression through the NF-κB signaling pathway. Here, we investigated the cofactor requirements of strongly regulated IL-1 target genes whose expression is impaired in p65 NF-κB-deficient murine embryonic fibroblasts. By two independent small-hairpin (shRNA screens, we examined 170 genes annotated to encode nuclear cofactors for their role in Cxcl2 mRNA expression and identified 22 factors that modulated basal or IL-1-inducible Cxcl2 levels. The functions of 16 of these factors were validated for Cxcl2 and further analyzed for their role in regulation of 10 additional IL-1 target genes by RT-qPCR. These data reveal that each inducible gene has its own (quantitative requirement of cofactors to maintain basal levels and to respond to IL-1. Twelve factors (Epc1, H2afz, Kdm2b, Kdm6a, Mbd3, Mta2, Phf21a, Ruvbl1, Sin3b, Suv420h1, Taf1, and Ube3a have not been previously implicated in inflammatory cytokine functions. Bioinformatics analysis indicates that they are components of complex nuclear protein networks that regulate chromatin functions and gene transcription. Collectively, these data suggest that downstream from the essential NF-κB signal each cytokine-inducible target gene has further subtle requirements for individual sets of nuclear cofactors that shape its transcriptional activation profile.

  17. Ethylene-Related Gene Expression Networks in Wood Formation

    Directory of Open Access Journals (Sweden)

    Carolin Seyfferth

    2018-03-01

    Full Text Available Thickening of tree stems is the result of secondary growth, accomplished by the meristematic activity of the vascular cambium. Secondary growth of the stem entails developmental cascades resulting in the formation of secondary phloem outwards and secondary xylem (i.e., wood inwards of the stem. Signaling and transcriptional reprogramming by the phytohormone ethylene modifies cambial growth and cell differentiation, but the molecular link between ethylene and secondary growth remains unknown. We addressed this shortcoming by analyzing expression profiles and co-expression networks of ethylene pathway genes using the AspWood transcriptome database which covers all stages of secondary growth in aspen (Populus tremula stems. ACC synthase expression suggests that the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC is synthesized during xylem expansion and xylem cell maturation. Ethylene-mediated transcriptional reprogramming occurs during all stages of secondary growth, as deduced from AspWood expression profiles of ethylene-responsive genes. A network centrality analysis of the AspWood dataset identified EIN3D and 11 ERFs as hubs. No overlap was found between the co-expressed genes of the EIN3 and ERF hubs, suggesting target diversification and hence independent roles for these transcription factor families during normal wood formation. The EIN3D hub was part of a large co-expression gene module, which contained 16 transcription factors, among them several new candidates that have not been earlier connected to wood formation and a VND-INTERACTING 2 (VNI2 homolog. We experimentally demonstrated Populus EIN3D function in ethylene signaling in Arabidopsis thaliana. The ERF hubs ERF118 and ERF119 were connected on the basis of their expression pattern and gene co-expression module composition to xylem cell expansion and secondary cell wall formation, respectively. We hereby establish data resources for ethylene-responsive genes and

  18. Mechanistically Consistent Reduced Models of Synthetic Gene Networks

    Science.gov (United States)

    Mier-y-Terán-Romero, Luis; Silber, Mary; Hatzimanikatis, Vassily

    2013-01-01

    Designing genetic networks with desired functionalities requires an accurate mathematical framework that accounts for the essential mechanistic details of the system. Here, we formulate a time-delay model of protein translation and mRNA degradation by systematically reducing a detailed mechanistic model that explicitly accounts for the ribosomal dynamics and the cleaving of mRNA by endonucleases. We exploit various technical and conceptual advantages that our time-delay model offers over the mechanistic model to probe the behavior of a self-repressing gene over wide regions of parameter space. We show that a heuristic time-delay model of protein synthesis of a commonly used form yields a notably different prediction for the parameter region where sustained oscillations occur. This suggests that such heuristics can lead to erroneous results. The functional forms that arise from our systematic reduction can be used for every system that involves transcription and translation and they could replace the commonly used heuristic time-delay models for these processes. The results from our analysis have important implications for the design of synthetic gene networks and stress that such design must be guided by a combination of heuristic models and mechanistic models that include all relevant details of the process. PMID:23663853

  19. Gene network analysis in plant development by genomic technologies.

    Science.gov (United States)

    Wellmer, Frank; Riechmann, José Luis

    2005-01-01

    The analysis of the gene regulatory networks underlying development is of central importance for a better understanding of the mechanisms that control the formation of the different cell-types, tissues or organs of an organism. The recent invention of genomic technologies has opened the possibility of studying these networks at a global level. In this paper, we summarize some of the recent advances that have been made in the understanding of plant development by the application of genomic technologies. We focus on a few specific processes, namely flower and root development and the control of the cell cycle, but we also highlight landmark studies in other areas that opened new avenues of experimentation or analysis. We describe the methods and the strategies that are currently used for the analysis of plant development by genomic technologies, as well as some of the problems and limitations that hamper their application. Since many genomic technologies and concepts were first developed and tested in organisms other than plants, we make reference to work in non-plant species and compare the current state of network analysis in plants to that in other multicellular organisms.

  20. Discovery of core biotic stress responsive genes in Arabidopsis by weighted gene co-expression network analysis.

    Science.gov (United States)

    Amrine, Katherine C H; Blanco-Ulate, Barbara; Cantu, Dario

    2015-01-01

    Intricate signal networks and transcriptional regulators translate the recognition of pathogens into defense responses. In this study, we carried out a gene co-expression analysis of all currently publicly available microarray data, which were generated in experiments that studied the interaction of the model plant Arabidopsis thaliana with microbial pathogens. This work was conducted to identify (i) modules of functionally related co-expressed genes that are differentially expressed in response to multiple biotic stresses, and (ii) hub genes that may function as core regulators of disease responses. Using Weighted Gene Co-expression Network Analysis (WGCNA) we constructed an undirected network leveraging a rich curated expression dataset comprising 272 microarrays that involved microbial infections of Arabidopsis plants with a wide array of fungal and bacterial pathogens with biotrophic, hemibiotrophic, and necrotrophic lifestyles. WGCNA produced a network with scale-free and small-world properties composed of 205 distinct clusters of co-expressed genes. Modules of functionally related co-expressed genes that are differentially regulated in response to multiple pathogens were identified by integrating differential gene expression testing with functional enrichment analyses of gene ontology terms, known disease associated genes, transcriptional regulators, and cis-regulatory elements. The significance of functional enrichments was validated by comparisons with randomly generated networks. Network topology was then analyzed to identify intra- and inter-modular gene hubs. Based on high connectivity, and centrality in meta-modules that are clearly enriched in defense responses, we propose a list of 66 target genes for reverse genetic experiments to further dissect the Arabidopsis immune system. Our results show that statistical-based data trimming prior to network analysis allows the integration of expression datasets generated by different groups, under different

  1. Gene, protein and network of male sterility in rice

    Directory of Open Access Journals (Sweden)

    Wang eKun

    2013-04-01

    Full Text Available Rice is one of the most important model crop plants whose heterosis has been well exploited in commercial hybrid seed production via a variety of types of male sterile lines. Hybrid rice cultivation area is steadily expanding around the world, especially in Southern Asia. Characterization of genes and proteins related to male sterility aims to understand how and why the male sterility occurs, and which proteins are the key players for microspores abortion. Recently, a series of genes and proteins related to cytoplasmic male sterility, photoperiod sensitive male sterility, self-incompatibility and other types of microspores deterioration have been characterized through genetics or proteomics. Especially the latter, offers us a powerful and high throughput approach to discern the novel proteins involving in male-sterile pathways which may help us to breed artificial male-sterile system. This represents an alternative tool to meet the critical challenge of further development of hybrid rice. In this paper, we reviewed the recent developments in our understanding of male sterility in rice hybrid production across gene, protein and integrated network levels, and also, present a perspective on the engineering of male sterile lines for hybrid rice production.

  2. Network-based analysis reveals distinct association patterns in a semantic MEDLINE-based drug-disease-gene network.

    Science.gov (United States)

    Zhang, Yuji; Tao, Cui; Jiang, Guoqian; Nair, Asha A; Su, Jian; Chute, Christopher G; Liu, Hongfang

    2014-01-01

    A huge amount of associations among different biological entities (e.g., disease, drug, and gene) are scattered in millions of biomedical articles. Systematic analysis of such heterogeneous data can infer novel associations among different biological entities in the context of personalized medicine and translational research. Recently, network-based computational approaches have gained popularity in investigating such heterogeneous data, proposing novel therapeutic targets and deciphering disease mechanisms. However, little effort has been devoted to investigating associations among drugs, diseases, and genes in an integrative manner. We propose a novel network-based computational framework to identify statistically over-expressed subnetwork patterns, called network motifs, in an integrated disease-drug-gene network extracted from Semantic MEDLINE. The framework consists of two steps. The first step is to construct an association network by extracting pair-wise associations between diseases, drugs and genes in Semantic MEDLINE using a domain pattern driven strategy. A Resource Description Framework (RDF)-linked data approach is used to re-organize the data to increase the flexibility of data integration, the interoperability within domain ontologies, and the efficiency of data storage. Unique associations among drugs, diseases, and genes are extracted for downstream network-based analysis. The second step is to apply a network-based approach to mine the local network structure of this heterogeneous network. Significant network motifs are then identified as the backbone of the network. A simplified network based on those significant motifs is then constructed to facilitate discovery. We implemented our computational framework and identified five network motifs, each of which corresponds to specific biological meanings. Three case studies demonstrate that novel associations are derived from the network topology analysis of reconstructed networks of significant

  3. The impact of gene expression variation on the robustness and evolvability of a developmental gene regulatory network.

    Directory of Open Access Journals (Sweden)

    David A Garfield

    2013-10-01

    Full Text Available Regulatory interactions buffer development against genetic and environmental perturbations, but adaptation requires phenotypes to change. We investigated the relationship between robustness and evolvability within the gene regulatory network underlying development of the larval skeleton in the sea urchin Strongylocentrotus purpuratus. We find extensive variation in gene expression in this network throughout development in a natural population, some of which has a heritable genetic basis. Switch-like regulatory interactions predominate during early development, buffer expression variation, and may promote the accumulation of cryptic genetic variation affecting early stages. Regulatory interactions during later development are typically more sensitive (linear, allowing variation in expression to affect downstream target genes. Variation in skeletal morphology is associated primarily with expression variation of a few, primarily structural, genes at terminal positions within the network. These results indicate that the position and properties of gene interactions within a network can have important evolutionary consequences independent of their immediate regulatory role.

  4. Inferring Drosophila gap gene regulatory network: A parameter sensitivity and perturbation analysis

    NARCIS (Netherlands)

    Fomekong-Nanfack, Y.; Postma, M.; Kaandorp, J.A.

    2009-01-01

    Background: Inverse modelling of gene regulatory networks (GRNs) capable of simulating continuous spatio-temporal biological processes requires accurate data and a good description of the system. If quantitative relations between genes cannot be extracted from direct measurements, an efficient

  5. Diurnal Transcriptome and Gene Network Represented through Sparse Modeling in Brachypodium distachyon

    Directory of Open Access Journals (Sweden)

    Satoru Koda

    2017-11-01

    Full Text Available We report the comprehensive identification of periodic genes and their network inference, based on a gene co-expression analysis and an Auto-Regressive eXogenous (ARX model with a group smoothly clipped absolute deviation (SCAD method using a time-series transcriptome dataset in a model grass, Brachypodium distachyon. To reveal the diurnal changes in the transcriptome in B. distachyon, we performed RNA-seq analysis of its leaves sampled through a diurnal cycle of over 48 h at 4 h intervals using three biological replications, and identified 3,621 periodic genes through our wavelet analysis. The expression data are feasible to infer network sparsity based on ARX models. We found that genes involved in biological processes such as transcriptional regulation, protein degradation, and post-transcriptional modification and photosynthesis are significantly enriched in the periodic genes, suggesting that these processes might be regulated by circadian rhythm in B. distachyon. On the basis of the time-series expression patterns of the periodic genes, we constructed a chronological gene co-expression network and identified putative transcription factors encoding genes that might be involved in the time-specific regulatory transcriptional network. Moreover, we inferred a transcriptional network composed of the periodic genes in B. distachyon, aiming to identify genes associated with other genes through variable selection by grouping time points for each gene. Based on the ARX model with the group SCAD regularization using our time-series expression datasets of the periodic genes, we constructed gene networks and found that the networks represent typical scale-free structure. Our findings demonstrate that the diurnal changes in the transcriptome in B. distachyon leaves have a sparse network structure, demonstrating the spatiotemporal gene regulatory network over the cyclic phase transitions in B. distachyon diurnal growth.

  6. Diurnal Transcriptome and Gene Network Represented through Sparse Modeling inBrachypodium distachyon.

    Science.gov (United States)

    Koda, Satoru; Onda, Yoshihiko; Matsui, Hidetoshi; Takahagi, Kotaro; Yamaguchi-Uehara, Yukiko; Shimizu, Minami; Inoue, Komaki; Yoshida, Takuhiro; Sakurai, Tetsuya; Honda, Hiroshi; Eguchi, Shinto; Nishii, Ryuei; Mochida, Keiichi

    2017-01-01

    We report the comprehensive identification of periodic genes and their network inference, based on a gene co-expression analysis and an Auto-Regressive eXogenous (ARX) model with a group smoothly clipped absolute deviation (SCAD) method using a time-series transcriptome dataset in a model grass, Brachypodium distachyon . To reveal the diurnal changes in the transcriptome in B. distachyon , we performed RNA-seq analysis of its leaves sampled through a diurnal cycle of over 48 h at 4 h intervals using three biological replications, and identified 3,621 periodic genes through our wavelet analysis. The expression data are feasible to infer network sparsity based on ARX models. We found that genes involved in biological processes such as transcriptional regulation, protein degradation, and post-transcriptional modification and photosynthesis are significantly enriched in the periodic genes, suggesting that these processes might be regulated by circadian rhythm in B. distachyon . On the basis of the time-series expression patterns of the periodic genes, we constructed a chronological gene co-expression network and identified putative transcription factors encoding genes that might be involved in the time-specific regulatory transcriptional network. Moreover, we inferred a transcriptional network composed of the periodic genes in B. distachyon , aiming to identify genes associated with other genes through variable selection by grouping time points for each gene. Based on the ARX model with the group SCAD regularization using our time-series expression datasets of the periodic genes, we constructed gene networks and found that the networks represent typical scale-free structure. Our findings demonstrate that the diurnal changes in the transcriptome in B. distachyon leaves have a sparse network structure, demonstrating the spatiotemporal gene regulatory network over the cyclic phase transitions in B. distachyon diurnal growth.

  7. Literature-Based Discovery of IFN-γ and Vaccine-Mediated Gene Interaction Networks

    Directory of Open Access Journals (Sweden)

    Arzucan Özgür

    2010-01-01

    Full Text Available Interferon-gamma (IFN-γ regulates various immune responses that are often critical for vaccine-induced protection. In order to annotate the IFN-γ-related gene interaction network from a large amount of IFN-γ research reported in the literature, a literature-based discovery approach was applied with a combination of natural language processing (NLP and network centrality analysis. The interaction network of human IFN-γ (Gene symbol: IFNG and its vaccine-specific subnetwork were automatically extracted using abstracts from all articles in PubMed. Four network centrality metrics were further calculated to rank the genes in the constructed networks. The resulting generic IFNG network contains 1060 genes and 26313 interactions among these genes. The vaccine-specific subnetwork contains 102 genes and 154 interactions. Fifty six genes such as TNF, NFKB1, IL2, IL6, and MAPK8 were ranked among the top 25 by at least one of the centrality methods in one or both networks. Gene enrichment analysis indicated that these genes were classified in various immune mechanisms such as response to extracellular stimulus, lymphocyte activation, and regulation of apoptosis. Literature evidence was manually curated for the IFN-γ relatedness of 56 genes and vaccine development relatedness for 52 genes. This study also generated many new hypotheses worth further experimental studies.

  8. Inferring nonlinear gene regulatory networks from gene expression data based on distance correlation.

    Directory of Open Access Journals (Sweden)

    Xiaobo Guo

    Full Text Available Nonlinear dependence is general in regulation mechanism of gene regulatory networks (GRNs. It is vital to properly measure or test nonlinear dependence from real data for reconstructing GRNs and understanding the complex regulatory mechanisms within the cellular system. A recently developed measurement called the distance correlation (DC has been shown powerful and computationally effective in nonlinear dependence for many situations. In this work, we incorporate the DC into inferring GRNs from the gene expression data without any underling distribution assumptions. We propose three DC-based GRNs inference algorithms: CLR-DC, MRNET-DC and REL-DC, and then compare them with the mutual information (MI-based algorithms by analyzing two simulated data: benchmark GRNs from the DREAM challenge and GRNs generated by SynTReN network generator, and an experimentally determined SOS DNA repair network in Escherichia coli. According to both the receiver operator characteristic (ROC curve and the precision-recall (PR curve, our proposed algorithms significantly outperform the MI-based algorithms in GRNs inference.

  9. Using evolutionary conserved modules in gene networks as a strategy to leverage high throughput gene expression queries.

    Directory of Open Access Journals (Sweden)

    Jeanne M Serb

    Full Text Available BACKGROUND: Large-scale gene expression studies have not yielded the expected insight into genetic networks that control complex processes. These anticipated discoveries have been limited not by technology, but by a lack of effective strategies to investigate the data in a manageable and meaningful way. Previous work suggests that using a pre-determined seed-network of gene relationships to query large-scale expression datasets is an effective way to generate candidate genes for further study and network expansion or enrichment. Based on the evolutionary conservation of gene relationships, we test the hypothesis that a seed network derived from studies of retinal cell determination in the fly, Drosophila melanogaster, will be an effective way to identify novel candidate genes for their role in mouse retinal development. METHODOLOGY/PRINCIPAL FINDINGS: Our results demonstrate that a number of gene relationships regulating retinal cell differentiation in the fly are identifiable as pairwise correlations between genes from developing mouse retina. In addition, we demonstrate that our extracted seed-network of correlated mouse genes is an effective tool for querying datasets and provides a context to generate hypotheses. Our query identified 46 genes correlated with our extracted seed-network members. Approximately 54% of these candidates had been previously linked to the developing brain and 33% had been previously linked to the developing retina. Five of six candidate genes investigated further were validated by experiments examining spatial and temporal protein expression in the developing retina. CONCLUSIONS/SIGNIFICANCE: We present an effective strategy for pursuing a systems biology approach that utilizes an evolutionary comparative framework between two model organisms, fly and mouse. Future implementation of this strategy will be useful to determine the extent of network conservation, not just gene conservation, between species and will

  10. Reconstructing gene-regulatory networks from time series, knock-out data, and prior knowledge

    Directory of Open Access Journals (Sweden)

    Timmer Jens

    2007-02-01

    Full Text Available Abstract Background Cellular processes are controlled by gene-regulatory networks. Several computational methods are currently used to learn the structure of gene-regulatory networks from data. This study focusses on time series gene expression and gene knock-out data in order to identify the underlying network structure. We compare the performance of different network reconstruction methods using synthetic data generated from an ensemble of reference networks. Data requirements as well as optimal experiments for the reconstruction of gene-regulatory networks are investigated. Additionally, the impact of prior knowledge on network reconstruction as well as the effect of unobserved cellular processes is studied. Results We identify linear Gaussian dynamic Bayesian networks and variable selection based on F-statistics as suitable methods for the reconstruction of gene-regulatory networks from time series data. Commonly used discrete dynamic Bayesian networks perform inferior and this result can be attributed to the inevitable information loss by discretization of expression data. It is shown that short time series generated under transcription factor knock-out are optimal experiments in order to reveal the structure of gene regulatory networks. Relative to the level of observational noise, we give estimates for the required amount of gene expression data in order to accurately reconstruct gene-regulatory networks. The benefit of using of prior knowledge within a Bayesian learning framework is found to be limited to conditions of small gene expression data size. Unobserved processes, like protein-protein interactions, induce dependencies between gene expression levels similar to direct transcriptional regulation. We show that these dependencies cannot be distinguished from transcription factor mediated gene regulation on the basis of gene expression data alone. Conclusion Currently available data size and data quality make the reconstruction of

  11. Discovering disease-associated genes in weighted protein-protein interaction networks

    Science.gov (United States)

    Cui, Ying; Cai, Meng; Stanley, H. Eugene

    2018-04-01

    Although there have been many network-based attempts to discover disease-associated genes, most of them have not taken edge weight - which quantifies their relative strength - into consideration. We use connection weights in a protein-protein interaction (PPI) network to locate disease-related genes. We analyze the topological properties of both weighted and unweighted PPI networks and design an improved random forest classifier to distinguish disease genes from non-disease genes. We use a cross-validation test to confirm that weighted networks are better able to discover disease-associated genes than unweighted networks, which indicates that including link weight in the analysis of network properties provides a better model of complex genotype-phenotype associations.

  12. Analysis of deterministic cyclic gene regulatory network models with delays

    CERN Document Server

    Ahsen, Mehmet Eren; Niculescu, Silviu-Iulian

    2015-01-01

    This brief examines a deterministic, ODE-based model for gene regulatory networks (GRN) that incorporates nonlinearities and time-delayed feedback. An introductory chapter provides some insights into molecular biology and GRNs. The mathematical tools necessary for studying the GRN model are then reviewed, in particular Hill functions and Schwarzian derivatives. One chapter is devoted to the analysis of GRNs under negative feedback with time delays and a special case of a homogenous GRN is considered. Asymptotic stability analysis of GRNs under positive feedback is then considered in a separate chapter, in which conditions leading to bi-stability are derived. Graduate and advanced undergraduate students and researchers in control engineering, applied mathematics, systems biology and synthetic biology will find this brief to be a clear and concise introduction to the modeling and analysis of GRNs.

  13. Integration of steady-state and temporal gene expression data for the inference of gene regulatory networks.

    Science.gov (United States)

    Wang, Yi Kan; Hurley, Daniel G; Schnell, Santiago; Print, Cristin G; Crampin, Edmund J

    2013-01-01

    We develop a new regression algorithm, cMIKANA, for inference of gene regulatory networks from combinations of steady-state and time-series gene expression data. Using simulated gene expression datasets to assess the accuracy of reconstructing gene regulatory networks, we show that steady-state and time-series data sets can successfully be combined to identify gene regulatory interactions using the new algorithm. Inferring gene networks from combined data sets was found to be advantageous when using noisy measurements collected with either lower sampling rates or a limited number of experimental replicates. We illustrate our method by applying it to a microarray gene expression dataset from human umbilical vein endothelial cells (HUVECs) which combines time series data from treatment with growth factor TNF and steady state data from siRNA knockdown treatments. Our results suggest that the combination of steady-state and time-series datasets may provide better prediction of RNA-to-RNA interactions, and may also reveal biological features that cannot be identified from dynamic or steady state information alone. Finally, we consider the experimental design of genomics experiments for gene regulatory network inference and show that network inference can be improved by incorporating steady-state measurements with time-series data.

  14. Influence of the experimental design of gene expression studies on the inference of gene regulatory networks: environmental factors

    Directory of Open Access Journals (Sweden)

    Frank Emmert-Streib

    2013-02-01

    Full Text Available The inference of gene regulatory networks gained within recent years a considerable interest in the biology and biomedical community. The purpose of this paper is to investigate the influence that environmental conditions can exhibit on the inference performance of network inference algorithms. Specifically, we study five network inference methods, Aracne, BC3NET, CLR, C3NET and MRNET, and compare the results for three different conditions: (I observational gene expression data: normal environmental condition, (II interventional gene expression data: growth in rich media, (III interventional gene expression data: normal environmental condition interrupted by a positive spike-in stimulation. Overall, we find that different statistical inference methods lead to comparable, but condition-specific results. Further, our results suggest that non-steady-state data enhance the inferability of regulatory networks.

  15. Plato's cave algorithm: inferring functional signaling networks from early gene expression shadows.

    Directory of Open Access Journals (Sweden)

    Yishai Shimoni

    2010-06-01

    Full Text Available Improving the ability to reverse engineer biochemical networks is a major goal of systems biology. Lesions in signaling networks lead to alterations in gene expression, which in principle should allow network reconstruction. However, the information about the activity levels of signaling proteins conveyed in overall gene expression is limited by the complexity of gene expression dynamics and of regulatory network topology. Two observations provide the basis for overcoming this limitation: a. genes induced without de-novo protein synthesis (early genes show a linear accumulation of product in the first hour after the change in the cell's state; b. The signaling components in the network largely function in the linear range of their stimulus-response curves. Therefore, unlike most genes or most time points, expression profiles of early genes at an early time point provide direct biochemical assays that represent the activity levels of upstream signaling components. Such expression data provide the basis for an efficient algorithm (Plato's Cave algorithm; PLACA to reverse engineer functional signaling networks. Unlike conventional reverse engineering algorithms that use steady state values, PLACA uses stimulated early gene expression measurements associated with systematic perturbations of signaling components, without measuring the signaling components themselves. Besides the reverse engineered network, PLACA also identifies the genes detecting the functional interaction, thereby facilitating validation of the predicted functional network. Using simulated datasets, the algorithm is shown to be robust to experimental noise. Using experimental data obtained from gonadotropes, PLACA reverse engineered the interaction network of six perturbed signaling components. The network recapitulated many known interactions and identified novel functional interactions that were validated by further experiment. PLACA uses the results of experiments that are

  16. Plato's cave algorithm: inferring functional signaling networks from early gene expression shadows.

    Science.gov (United States)

    Shimoni, Yishai; Fink, Marc Y; Choi, Soon-gang; Sealfon, Stuart C

    2010-06-24

    Improving the ability to reverse engineer biochemical networks is a major goal of systems biology. Lesions in signaling networks lead to alterations in gene expression, which in principle should allow network reconstruction. However, the information about the activity levels of signaling proteins conveyed in overall gene expression is limited by the complexity of gene expression dynamics and of regulatory network topology. Two observations provide the basis for overcoming this limitation: a. genes induced without de-novo protein synthesis (early genes) show a linear accumulation of product in the first hour after the change in the cell's state; b. The signaling components in the network largely function in the linear range of their stimulus-response curves. Therefore, unlike most genes or most time points, expression profiles of early genes at an early time point provide direct biochemical assays that represent the activity levels of upstream signaling components. Such expression data provide the basis for an efficient algorithm (Plato's Cave algorithm; PLACA) to reverse engineer functional signaling networks. Unlike conventional reverse engineering algorithms that use steady state values, PLACA uses stimulated early gene expression measurements associated with systematic perturbations of signaling components, without measuring the signaling components themselves. Besides the reverse engineered network, PLACA also identifies the genes detecting the functional interaction, thereby facilitating validation of the predicted functional network. Using simulated datasets, the algorithm is shown to be robust to experimental noise. Using experimental data obtained from gonadotropes, PLACA reverse engineered the interaction network of six perturbed signaling components. The network recapitulated many known interactions and identified novel functional interactions that were validated by further experiment. PLACA uses the results of experiments that are feasible for any

  17. Neural network predicts sequence of TP53 gene based on DNA chip

    DEFF Research Database (Denmark)

    Spicker, J.S.; Wikman, F.; Lu, M.L.

    2002-01-01

    We have trained an artificial neural network to predict the sequence of the human TP53 tumor suppressor gene based on a p53 GeneChip. The trained neural network uses as input the fluorescence intensities of DNA hybridized to oligonucleotides on the surface of the chip and makes between zero...

  18. Deciphering the onychophoran 'segmentation gene cascade': Gene expression reveals limited involvement of pair rule gene orthologs in segmentation, but a highly conserved segment polarity gene network.

    Science.gov (United States)

    Janssen, Ralf; Budd, Graham E

    2013-10-01

    The hallmark of the arthropods is their segmented body, although origin of segmentation, however, is unresolved. In order to shed light on the origin of segmentation we investigated orthologs of pair rule genes (PRGs) and segment polarity genes (SPGs) in a member of the closest related sister-group to the arthropods, the onychophorans. Our gene expression data analysis suggests that most of the onychophoran PRGs do not play a role in segmentation. One possible exception is the even-skipped (eve) gene that is expressed in the posterior end of the onychophoran where new segments are likely patterned, and is also expressed in segmentation-gene typical transverse stripes in at least a number of newly formed segments. Other onychophoran PRGs such as runt (run), hairy/Hes (h/Hes) and odd-skipped (odd) do not appear to have a function in segmentation at all. Onychophoran PRGs that act low in the segmentation gene cascade in insects, however, are potentially involved in segment-patterning. Most obvious is that from the expression of the pairberry (pby) gene ortholog that is expressed in a typical SPG-pattern. Since this result suggested possible conservation of the SPG-network we further investigated SPGs (and associated factors) such as Notum in the onychophoran. We find that the expression patterns of SPGs in arthropods and the onychophoran are highly conserved, suggesting a conserved SPG-network in these two clades, and indeed also in an annelid. This may suggest that the common ancestor of lophotrochozoans and ecdysozoans was already segmented utilising the same SPG-network, or that the SPG-network was recruited independently in annelids and onychophorans/arthropods. © 2013 Elsevier Inc. All rights reserved.

  19. A Consensus Network of Gene Regulatory Factors in the Human Frontal Lobe

    Science.gov (United States)

    Berto, Stefano; Perdomo-Sabogal, Alvaro; Gerighausen, Daniel; Qin, Jing; Nowick, Katja

    2016-01-01

    Cognitive abilities, such as memory, learning, language, problem solving, and planning, involve the frontal lobe and other brain areas. Not much is known yet about the molecular basis of cognitive abilities, but it seems clear that cognitive abilities are determined by the interplay of many genes. One approach for analyzing the genetic networks involved in cognitive functions is to study the coexpression networks of genes with known importance for proper cognitive functions, such as genes that have been associated with cognitive disorders like intellectual disability (ID) or autism spectrum disorders (ASD). Because many of these genes are gene regulatory factors (GRFs) we aimed to provide insights into the gene regulatory networks active in the human frontal lobe. Using genome wide human frontal lobe expression data from 10 independent data sets, we first derived 10 individual coexpression networks for all GRFs including their potential target genes. We observed a high level of variability among these 10 independently derived networks, pointing out that relying on results from a single study can only provide limited biological insights. To instead focus on the most confident information from these 10 networks we developed a method for integrating such independently derived networks into a consensus network. This consensus network revealed robust GRF interactions that are conserved across the frontal lobes of different healthy human individuals. Within this network, we detected a strong central module that is enriched for 166 GRFs known to be involved in brain development and/or cognitive disorders. Interestingly, several hubs of the consensus network encode for GRFs that have not yet been associated with brain functions. Their central role in the network suggests them as excellent new candidates for playing an essential role in the regulatory network of the human frontal lobe, which should be investigated in future studies. PMID:27014338

  20. Global analysis of the human pathophenotypic similarity gene network merges disease module components.

    Science.gov (United States)

    Reyes-Palomares, Armando; Rodríguez-López, Rocío; Ranea, Juan A G; Sánchez-Jiménez, Francisca; Sánchez Jiménez, Francisca; Medina, Miguel Angel

    2013-01-01

    The molecular complexity of genetic diseases requires novel approaches to break it down into coherent biological modules. For this purpose, many disease network models have been created and analyzed. We highlight two of them, "the human diseases networks" (HDN) and "the orphan disease networks" (ODN). However, in these models, each single node represents one disease or an ambiguous group of diseases. In these cases, the notion of diseases as unique entities reduces the usefulness of network-based methods. We hypothesize that using the clinical features (pathophenotypes) to define pathophenotypic connections between disease-causing genes improve our understanding of the molecular events originated by genetic disturbances. For this, we have built a pathophenotypic similarity gene network (PSGN) and compared it with the unipartite projections (based on gene-to-gene edges) similar to those used in previous network models (HDN and ODN). Unlike these disease network models, the PSGN uses semantic similarities. This pathophenotypic similarity has been calculated by comparing pathophenotypic annotations of genes (human abnormalities of HPO terms) in the "Human Phenotype Ontology". The resulting network contains 1075 genes (nodes) and 26197 significant pathophenotypic similarities (edges). A global analysis of this network reveals: unnoticed pairs of genes showing significant pathophenotypic similarity, a biological meaningful re-arrangement of the pathological relationships between genes, correlations of biochemical interactions with higher similarity scores and functional biases in metabolic and essential genes toward the pathophenotypic specificity and the pleiotropy, respectively. Additionally, pathophenotypic similarities and metabolic interactions of genes associated with maple syrup urine disease (MSUD) have been used to merge into a coherent pathological module.Our results indicate that pathophenotypes contribute to identify underlying co-dependencies among disease

  1. Co-regulation of metabolic genes is better explained by flux coupling than by network distance.

    Directory of Open Access Journals (Sweden)

    Richard A Notebaart

    2008-01-01

    Full Text Available To what extent can modes of gene regulation be explained by systems-level properties of metabolic networks? Prior studies on co-regulation of metabolic genes have mainly focused on graph-theoretical features of metabolic networks and demonstrated a decreasing level of co-expression with increasing network distance, a naïve, but widely used, topological index. Others have suggested that static graph representations can poorly capture dynamic functional associations, e.g., in the form of dependence of metabolic fluxes across genes in the network. Here, we systematically tested the relative importance of metabolic flux coupling and network position on gene co-regulation, using a genome-scale metabolic model of Escherichia coli. After validating the computational method with empirical data on flux correlations, we confirm that genes coupled by their enzymatic fluxes not only show similar expression patterns, but also share transcriptional regulators and frequently reside in the same operon. In contrast, we demonstrate that network distance per se has relatively minor influence on gene co-regulation. Moreover, the type of flux coupling can explain refined properties of the regulatory network that are ignored by simple graph-theoretical indices. Our results underline the importance of studying functional states of cellular networks to define physiologically relevant associations between genes and should stimulate future developments of novel functional genomic tools.

  2. NDRC: A Disease-Causing Genes Prioritized Method Based on Network Diffusion and Rank Concordance.

    Science.gov (United States)

    Fang, Minghong; Hu, Xiaohua; Wang, Yan; Zhao, Junmin; Shen, Xianjun; He, Tingting

    2015-07-01

    Disease-causing genes prioritization is very important to understand disease mechanisms and biomedical applications, such as design of drugs. Previous studies have shown that promising candidate genes are mostly ranked according to their relatedness to known disease genes or closely related disease genes. Therefore, a dangling gene (isolated gene) with no edges in the network can not be effectively prioritized. These approaches tend to prioritize those genes that are highly connected in the PPI network while perform poorly when they are applied to loosely connected disease genes. To address these problems, we propose a new disease-causing genes prioritization method that based on network diffusion and rank concordance (NDRC). The method is evaluated by leave-one-out cross validation on 1931 diseases in which at least one gene is known to be involved, and it is able to rank the true causal gene first in 849 of all 2542 cases. The experimental results suggest that NDRC significantly outperforms other existing methods such as RWR, VAVIEN, DADA and PRINCE on identifying loosely connected disease genes and successfully put dangling genes as potential candidate disease genes. Furthermore, we apply NDRC method to study three representative diseases, Meckel syndrome 1, Protein C deficiency and Peroxisome biogenesis disorder 1A (Zellweger). Our study has also found that certain complex disease-causing genes can be divided into several modules that are closely associated with different disease phenotype.

  3. Context Specific and Differential Gene Co-expression Networks via Bayesian Biclustering.

    Directory of Open Access Journals (Sweden)

    Chuan Gao

    2016-07-01

    Full Text Available Identifying latent structure in high-dimensional genomic data is essential for exploring biological processes. Here, we consider recovering gene co-expression networks from gene expression data, where each network encodes relationships between genes that are co-regulated by shared biological mechanisms. To do this, we develop a Bayesian statistical model for biclustering to infer subsets of co-regulated genes that covary in all of the samples or in only a subset of the samples. Our biclustering method, BicMix, allows overcomplete representations of the data, computational tractability, and joint modeling of unknown confounders and biological signals. Compared with related biclustering methods, BicMix recovers latent structure with higher precision across diverse simulation scenarios as compared to state-of-the-art biclustering methods. Further, we develop a principled method to recover context specific gene co-expression networks from the estimated sparse biclustering matrices. We apply BicMix to breast cancer gene expression data and to gene expression data from a cardiovascular study cohort, and we recover gene co-expression networks that are differential across ER+ and ER- samples and across male and female samples. We apply BicMix to the Genotype-Tissue Expression (GTEx pilot data, and we find tissue specific gene networks. We validate these findings by using our tissue specific networks to identify trans-eQTLs specific to one of four primary tissues.

  4. Reconstructing Generalized Logical Networks of Transcriptional Regulation in Mouse Brain from Temporal Gene Expression Data

    Directory of Open Access Journals (Sweden)

    Lodowski Kerrie H

    2009-01-01

    Full Text Available Gene expression time course data can be used not only to detect differentially expressed genes but also to find temporal associations among genes. The problem of reconstructing generalized logical networks to account for temporal dependencies among genes and environmental stimuli from transcriptomic data is addressed. A network reconstruction algorithm was developed that uses statistical significance as a criterion for network selection to avoid false-positive interactions arising from pure chance. The multinomial hypothesis testing-based network reconstruction allows for explicit specification of the false-positive rate, unique from all extant network inference algorithms. The method is superior to dynamic Bayesian network modeling in a simulation study. Temporal gene expression data from the brains of alcohol-treated mice in an analysis of the molecular response to alcohol are used for modeling. Genes from major neuronal pathways are identified as putative components of the alcohol response mechanism. Nine of these genes have associations with alcohol reported in literature. Several other potentially relevant genes, compatible with independent results from literature mining, may play a role in the response to alcohol. Additional, previously unknown gene interactions were discovered that, subject to biological verification, may offer new clues in the search for the elusive molecular mechanisms of alcoholism.

  5. Reverse-engineering of gene networks for regulating early blood development from single-cell measurements.

    Science.gov (United States)

    Wei, Jiangyong; Hu, Xiaohua; Zou, Xiufen; Tian, Tianhai

    2017-12-28

    Recent advances in omics technologies have raised great opportunities to study large-scale regulatory networks inside the cell. In addition, single-cell experiments have measured the gene and protein activities in a large number of cells under the same experimental conditions. However, a significant challenge in computational biology and bioinformatics is how to derive quantitative information from the single-cell observations and how to develop sophisticated mathematical models to describe the dynamic properties of regulatory networks using the derived quantitative information. This work designs an integrated approach to reverse-engineer gene networks for regulating early blood development based on singel-cell experimental observations. The wanderlust algorithm is initially used to develop the pseudo-trajectory for the activities of a number of genes. Since the gene expression data in the developed pseudo-trajectory show large fluctuations, we then use Gaussian process regression methods to smooth the gene express data in order to obtain pseudo-trajectories with much less fluctuations. The proposed integrated framework consists of both bioinformatics algorithms to reconstruct the regulatory network and mathematical models using differential equations to describe the dynamics of gene expression. The developed approach is applied to study the network regulating early blood cell development. A graphic model is constructed for a regulatory network with forty genes and a dynamic model using differential equations is developed for a network of nine genes. Numerical results suggests that the proposed model is able to match experimental data very well. We also examine the networks with more regulatory relations and numerical results show that more regulations may exist. We test the possibility of auto-regulation but numerical simulations do not support the positive auto-regulation. In addition, robustness is used as an importantly additional criterion to select candidate

  6. Genetic dissection of acute ethanol responsive gene networks in prefrontal cortex: functional and mechanistic implications.

    Directory of Open Access Journals (Sweden)

    Aaron R Wolen

    Full Text Available Individual differences in initial sensitivity to ethanol are strongly related to the heritable risk of alcoholism in humans. To elucidate key molecular networks that modulate ethanol sensitivity we performed the first systems genetics analysis of ethanol-responsive gene expression in brain regions of the mesocorticolimbic reward circuit (prefrontal cortex, nucleus accumbens, and ventral midbrain across a highly diverse family of 27 isogenic mouse strains (BXD panel before and after treatment with ethanol.Acute ethanol altered the expression of ~2,750 genes in one or more regions and 400 transcripts were jointly modulated in all three. Ethanol-responsive gene networks were extracted with a powerful graph theoretical method that efficiently summarized ethanol's effects. These networks correlated with acute behavioral responses to ethanol and other drugs of abuse. As predicted, networks were heavily populated by genes controlling synaptic transmission and neuroplasticity. Several of the most densely interconnected network hubs, including Kcnma1 and Gsk3β, are known to influence behavioral or physiological responses to ethanol, validating our overall approach. Other major hub genes like Grm3, Pten and Nrg3 represent novel targets of ethanol effects. Networks were under strong genetic control by variants that we mapped to a small number of chromosomal loci. Using a novel combination of genetic, bioinformatic and network-based approaches, we identified high priority cis-regulatory candidate genes, including Scn1b, Gria1, Sncb and Nell2.The ethanol-responsive gene networks identified here represent a previously uncharacterized intermediate phenotype between DNA variation and ethanol sensitivity in mice. Networks involved in synaptic transmission were strongly regulated by ethanol and could contribute to behavioral plasticity seen with chronic ethanol. Our novel finding that hub genes and a small number of loci exert major influence over the ethanol

  7. Coordinations between gene modules control the operation of plant amino acid metabolic networks

    Directory of Open Access Journals (Sweden)

    Galili Gad

    2009-01-01

    Full Text Available Abstract Background Being sessile organisms, plants should adjust their metabolism to dynamic changes in their environment. Such adjustments need particular coordination in branched metabolic networks in which a given metabolite can be converted into multiple other metabolites via different enzymatic chains. In the present report, we developed a novel "Gene Coordination" bioinformatics approach and use it to elucidate adjustable transcriptional interactions of two branched amino acid metabolic networks in plants in response to environmental stresses, using publicly available microarray results. Results Using our "Gene Coordination" approach, we have identified in Arabidopsis plants two oppositely regulated groups of "highly coordinated" genes within the branched Asp-family network of Arabidopsis plants, which metabolizes the amino acids Lys, Met, Thr, Ile and Gly, as well as a single group of "highly coordinated" genes within the branched aromatic amino acid metabolic network, which metabolizes the amino acids Trp, Phe and Tyr. These genes possess highly coordinated adjustable negative and positive expression responses to various stress cues, which apparently regulate adjustable metabolic shifts between competing branches of these networks. We also provide evidence implying that these highly coordinated genes are central to impose intra- and inter-network interactions between the Asp-family and aromatic amino acid metabolic networks as well as differential system interactions with other growth promoting and stress-associated genome-wide genes. Conclusion Our novel Gene Coordination elucidates that branched amino acid metabolic networks in plants are regulated by specific groups of highly coordinated genes that possess adjustable intra-network, inter-network and genome-wide transcriptional interactions. We also hypothesize that such transcriptional interactions enable regulatory metabolic adjustments needed for adaptation to the stresses.

  8. Integrating quantitative knowledge into a qualitative gene regulatory network.

    Directory of Open Access Journals (Sweden)

    Jérémie Bourdon

    2011-09-01

    Full Text Available Despite recent improvements in molecular techniques, biological knowledge remains incomplete. Any theorizing about living systems is therefore necessarily based on the use of heterogeneous and partial information. Much current research has focused successfully on the qualitative behaviors of macromolecular networks. Nonetheless, it is not capable of taking into account available quantitative information such as time-series protein concentration variations. The present work proposes a probabilistic modeling framework that integrates both kinds of information. Average case analysis methods are used in combination with Markov chains to link qualitative information about transcriptional regulations to quantitative information about protein concentrations. The approach is illustrated by modeling the carbon starvation response in Escherichia coli. It accurately predicts the quantitative time-series evolution of several protein concentrations using only knowledge of discrete gene interactions and a small number of quantitative observations on a single protein concentration. From this, the modeling technique also derives a ranking of interactions with respect to their importance during the experiment considered. Such a classification is confirmed by the literature. Therefore, our method is principally novel in that it allows (i a hybrid model that integrates both qualitative discrete model and quantities to be built, even using a small amount of quantitative information, (ii new quantitative predictions to be derived, (iii the robustness and relevance of interactions with respect to phenotypic criteria to be precisely quantified, and (iv the key features of the model to be extracted that can be used as a guidance to design future experiments.

  9. Network Candidate Genes in Breeding for Drought Tolerant Crops

    Directory of Open Access Journals (Sweden)

    Christoph Tim Krannich

    2015-07-01

    Full Text Available Climate change leading to increased periods of low water availability as well as increasing demands for food in the coming years makes breeding for drought tolerant crops a high priority. Plants have developed diverse strategies and mechanisms to survive drought stress. However, most of these represent drought escape or avoidance strategies like early flowering or low stomatal conductance that are not applicable in breeding for crops with high yields under drought conditions. Even though a great deal of research is ongoing, especially in cereals, in this regard, not all mechanisms involved in drought tolerance are yet understood. The identification of candidate genes for drought tolerance that have a high potential to be used for breeding drought tolerant crops represents a challenge. Breeding for drought tolerant crops has to focus on acceptable yields under water-limited conditions and not on survival. However, as more and more knowledge about the complex networks and the cross talk during drought is available, more options are revealed. In addition, it has to be considered that conditioning a crop for drought tolerance might require the production of metabolites and might cost the plants energy and resources that cannot be used in terms of yield. Recent research indicates that yield penalty exists and efficient breeding for drought tolerant crops with acceptable yields under well-watered and drought conditions might require uncoupling yield penalty from drought tolerance.

  10. Identification of gene networks and pathways associated with Guillain-Barre syndrome.

    Directory of Open Access Journals (Sweden)

    Kuo-Hsuan Chang

    Full Text Available BACKGROUND: The underlying change of gene network expression of Guillain-Barré syndrome (GBS remains elusive. We sought to identify GBS-associated gene networks and signaling pathways by analyzing the transcriptional profile of leukocytes in the patients with GBS. METHODS AND FINDINGS: Quantitative global gene expression microarray analysis of peripheral blood leukocytes was performed on 7 patients with GBS and 7 healthy controls. Gene expression profiles were compared between patients and controls after standardization. The set of genes that significantly correlated with GBS was further analyzed by Ingenuity Pathways Analyses. 256 genes and 18 gene networks were significantly associated with GBS (fold change ≥2, P<0.05. FOS, PTGS2, HMGB2 and MMP9 are the top four of 246 significantly up-regulated genes. The most significant disease and altered biological function genes associated with GBS were those involved in inflammatory response, infectious disease, and respiratory disease. Cell death, cellular development and cellular movement were the top significant molecular and cellular functions involved in GBS. Hematological system development and function, immune cell trafficking and organismal survival were the most significant GBS-associated function in physiological development and system category. Several hub genes, such as MMP9, PTGS2 and CREB1 were identified in the associated gene networks. Canonical pathway analysis showed that GnRH, corticotrophin-releasing hormone and ERK/MAPK signaling were the most significant pathways in the up-regulated gene set in GBS. CONCLUSIONS: This study reveals the gene networks and canonical pathways associated with GBS. These data provide not only networks between the genes for understanding the pathogenic properties of GBS but also map significant pathways for the future development of novel therapeutic strategies.

  11. Ontology-based literature mining of E. coli vaccine-associated gene interaction networks.

    Science.gov (United States)

    Hur, Junguk; Özgür, Arzucan; He, Yongqun

    2017-03-14

    Pathogenic Escherichia coli infections cause various diseases in humans and many animal species. However, with extensive E. coli vaccine research, we are still unable to fully protect ourselves against E. coli infections. To more rational development of effective and safe E. coli vaccine, it is important to better understand E. coli vaccine-associated gene interaction networks. In this study, we first extended the Vaccine Ontology (VO) to semantically represent various E. coli vaccines and genes used in the vaccine development. We also normalized E. coli gene names compiled from the annotations of various E. coli strains using a pan-genome-based annotation strategy. The Interaction Network Ontology (INO) includes a hierarchy of various interaction-related keywords useful for literature mining. Using VO, INO, and normalized E. coli gene names, we applied an ontology-based SciMiner literature mining strategy to mine all PubMed abstracts and retrieve E. coli vaccine-associated E. coli gene interactions. Four centrality metrics (i.e., degree, eigenvector, closeness, and betweenness) were calculated for identifying highly ranked genes and interaction types. Using vaccine-related PubMed abstracts, our study identified 11,350 sentences that contain 88 unique INO interactions types and 1,781 unique E. coli genes. Each sentence contained at least one interaction type and two unique E. coli genes. An E. coli gene interaction network of genes and INO interaction types was created. From this big network, a sub-network consisting of 5 E. coli vaccine genes, including carA, carB, fimH, fepA, and vat, and 62 other E. coli genes, and 25 INO interaction types was identified. While many interaction types represent direct interactions between two indicated genes, our study has also shown that many of these retrieved interaction types are indirect in that the two genes participated in the specified interaction process in a required but indirect process. Our centrality analysis of

  12. Identification of Human Disease Genes from Interactome Network Using Graphlet Interaction

    Science.gov (United States)

    Yang, Lun; Wei, Dong-Qing; Qi, Ying-Xin; Jiang, Zong-Lai

    2014-01-01

    Identifying genes related to human diseases, such as cancer and cardiovascular disease, etc., is an important task in biomedical research because of its applications in disease diagnosis and treatment. Interactome networks, especially protein-protein interaction networks, had been used to disease genes identification based on the hypothesis that strong candidate genes tend to closely relate to each other in some kinds of measure on the network. We proposed a new measure to analyze the relationship between network nodes which was called graphlet interaction. The graphlet interaction contained 28 different isomers. The results showed that the numbers of the graphlet interaction isomers between disease genes in interactome networks were significantly larger than random picked genes, while graphlet signatures were not. Then, we designed a new type of score, based on the network properties, to identify disease genes using graphlet interaction. The genes with higher scores were more likely to be disease genes, and all candidate genes were ranked according to their scores. Then the approach was evaluated by leave-one-out cross-validation. The precision of the current approach achieved 90% at about 10% recall, which was apparently higher than the previous three predominant algorithms, random walk, Endeavour and neighborhood based method. Finally, the approach was applied to predict new disease genes related to 4 common diseases, most of which were identified by other independent experimental researches. In conclusion, we demonstrate that the graphlet interaction is an effective tool to analyze the network properties of disease genes, and the scores calculated by graphlet interaction is more precise in identifying disease genes. PMID:24465923

  13. Identification of human disease genes from interactome network using graphlet interaction.

    Directory of Open Access Journals (Sweden)

    Xiao-Dong Wang

    Full Text Available Identifying genes related to human diseases, such as cancer and cardiovascular disease, etc., is an important task in biomedical research because of its applications in disease diagnosis and treatment. Interactome networks, especially protein-protein interaction networks, had been used to disease genes identification based on the hypothesis that strong candidate genes tend to closely relate to each other in some kinds of measure on the network. We proposed a new measure to analyze the relationship between network nodes which was called graphlet interaction. The graphlet interaction contained 28 different isomers. The results showed that the numbers of the graphlet interaction isomers between disease genes in interactome networks were significantly larger than random picked genes, while graphlet signatures were not. Then, we designed a new type of score, based on the network properties, to identify disease genes using graphlet interaction. The genes with higher scores were more likely to be disease genes, and all candidate genes were ranked according to their scores. Then the approach was evaluated by leave-one-out cross-validation. The precision of the current approach achieved 90% at about 10% recall, which was apparently higher than the previous three predominant algorithms, random walk, Endeavour and neighborhood based method. Finally, the approach was applied to predict new disease genes related to 4 common diseases, most of which were identified by other independent experimental researches. In conclusion, we demonstrate that the graphlet interaction is an effective tool to analyze the network properties of disease genes, and the scores calculated by graphlet interaction is more precise in identifying disease genes.

  14. Molecular evolution constraints in the floral organ specification gene regulatory network module across 18 angiosperm genomes.

    Science.gov (United States)

    Davila-Velderrain, Jose; Servin-Marquez, Andres; Alvarez-Buylla, Elena R

    2014-03-01

    The gene regulatory network of floral organ cell fate specification of Arabidopsis thaliana is a robust developmental regulatory module. Although such finding was proposed to explain the overall conservation of floral organ types and organization among angiosperms, it has not been confirmed that the network components are conserved at the molecular level among flowering plants. Using the genomic data that have accumulated, we address the conservation of the genes involved in this network and the forces that have shaped its evolution during the divergence of angiosperms. We recovered the network gene homologs for 18 species of flowering plants spanning nine families. We found that all the genes are highly conserved with no evidence of positive selection. We studied the sequence conservation features of the genes in the context of their known biological function and the strength of the purifying selection acting upon them in relation to their placement within the network. Our results suggest an association between protein length and sequence conservation, evolutionary rates, and functional category. On the other hand, we found no significant correlation between the strength of purifying selection and gene placement. Our results confirm that the studied robust developmental regulatory module has been subjected to strong functional constraints. However, unlike previous studies, our results do not support the notion that network topology plays a major role in constraining evolutionary rates. We speculate that the dynamical functional role of genes within the network and not just its connectivity could play an important role in constraining evolution.

  15. Connectivity in gene coexpression networks negatively correlates with rates of molecular evolution in flowering plants.

    Science.gov (United States)

    Masalia, Rishi R; Bewick, Adam J; Burke, John M

    2017-01-01

    Gene coexpression networks are a useful tool for summarizing transcriptomic data and providing insight into patterns of gene regulation in a variety of species. Though there has been considerable interest in studying the evolution of network topology across species, less attention has been paid to the relationship between network position and patterns of molecular evolution. Here, we generated coexpression networks from publicly available expression data for seven flowering plant taxa (Arabidopsis thaliana, Glycine max, Oryza sativa, Populus spp., Solanum lycopersicum, Vitis spp., and Zea mays) to investigate the relationship between network position and rates of molecular evolution. We found a significant negative correlation between network connectivity and rates of molecular evolution, with more highly connected (i.e., "hub") genes having significantly lower nonsynonymous substitution rates and dN/dS ratios compared to less highly connected (i.e., "peripheral") genes across the taxa surveyed. These findings suggest that more centrally located hub genes are, on average, subject to higher levels of evolutionary constraint than are genes located on the periphery of gene coexpression networks. The consistency of this result across disparate taxa suggests that it holds for flowering plants in general, as opposed to being a species-specific phenomenon.

  16. A swarm intelligence framework for reconstructing gene networks: searching for biologically plausible architectures.

    Science.gov (United States)

    Kentzoglanakis, Kyriakos; Poole, Matthew

    2012-01-01

    In this paper, we investigate the problem of reverse engineering the topology of gene regulatory networks from temporal gene expression data. We adopt a computational intelligence approach comprising swarm intelligence techniques, namely particle swarm optimization (PSO) and ant colony optimization (ACO). In addition, the recurrent neural network (RNN) formalism is employed for modeling the dynamical behavior of gene regulatory systems. More specifically, ACO is used for searching the discrete space of network architectures and PSO for searching the corresponding continuous space of RNN model parameters. We propose a novel solution construction process in the context of ACO for generating biologically plausible candidate architectures. The objective is to concentrate the search effort into areas of the structure space that contain architectures which are feasible in terms of their topological resemblance to real-world networks. The proposed framework is initially applied to the reconstruction of a small artificial network that has previously been studied in the context of gene network reverse engineering. Subsequently, we consider an artificial data set with added noise for reconstructing a subnetwork of the genetic interaction network of S. cerevisiae (yeast). Finally, the framework is applied to a real-world data set for reverse engineering the SOS response system of the bacterium Escherichia coli. Results demonstrate the relative advantage of utilizing problem-specific knowledge regarding biologically plausible structural properties of gene networks over conducting a problem-agnostic search in the vast space of network architectures.

  17. Characterization of differentially expressed genes using high-dimensional co-expression networks

    DEFF Research Database (Denmark)

    Coelho Goncalves de Abreu, Gabriel; Labouriau, Rodrigo S.

    2010-01-01

    We present a technique to characterize differentially expressed genes in terms of their position in a high-dimensional co-expression network. The set-up of Gaussian graphical models is used to construct representations of the co-expression network in such a way that redundancy and the propagation...... that allow to make effective inference in problems with high degree of complexity (e.g. several thousands of genes) and small number of observations (e.g. 10-100) as typically occurs in high throughput gene expression studies. Taking advantage of the internal structure of decomposable graphical models, we...... construct a compact representation of the co-expression network that allows to identify the regions with high concentration of differentially expressed genes. It is argued that differentially expressed genes located in highly interconnected regions of the co-expression network are less informative than...

  18. A parallel implementation of the network identification by multiple regression (NIR) algorithm to reverse-engineer regulatory gene networks.

    Science.gov (United States)

    Gregoretti, Francesco; Belcastro, Vincenzo; di Bernardo, Diego; Oliva, Gennaro

    2010-04-21

    The reverse engineering of gene regulatory networks using gene expression profile data has become crucial to gain novel biological knowledge. Large amounts of data that need to be analyzed are currently being produced due to advances in microarray technologies. Using current reverse engineering algorithms to analyze large data sets can be very computational-intensive. These emerging computational requirements can be met using parallel computing techniques. It has been shown that the Network Identification by multiple Regression (NIR) algorithm performs better than the other ready-to-use reverse engineering software. However it cannot be used with large networks with thousands of nodes--as is the case in biological networks--due to the high time and space complexity. In this work we overcome this limitation by designing and developing a parallel version of the NIR algorithm. The new implementation of the algorithm reaches a very good accuracy even for large gene networks, improving our understanding of the gene regulatory networks that is crucial for a wide range of biomedical applications.

  19. NetVenn: an integrated network analysis web platform for gene lists.

    Science.gov (United States)

    Wang, Yi; Thilmony, Roger; Gu, Yong Q

    2014-07-01

    Many lists containing biological identifiers, such as gene lists, have been generated in various genomics projects. Identifying the overlap among gene lists can enable us to understand the similarities and differences between the data sets. Here, we present an interactome network-based web application platform named NetVenn for comparing and mining the relationships among gene lists. NetVenn contains interactome network data publically available for several species and supports a user upload of customized interactome network data. It has an efficient and interactive graphic tool that provides a Venn diagram view for comparing two to four lists in the context of an interactome network. NetVenn also provides a comprehensive annotation of genes in the gene lists by using enriched terms from multiple functional databases. In addition, it allows for mapping the gene expression data, providing information of transcription status of genes in the network. The power graph analysis tool is integrated in NetVenn for simplified visualization of gene relationships in the network. NetVenn is freely available at http://probes.pw.usda.gov/NetVenn or http://wheat.pw.usda.gov/NetVenn. Published by Oxford University Press Nucleic Acids Research 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  20. An approach for reduction of false predictions in reverse engineering of gene regulatory networks.

    Science.gov (United States)

    Khan, Abhinandan; Saha, Goutam; Pal, Rajat Kumar

    2018-05-14

    A gene regulatory network discloses the regulatory interactions amongst genes, at a particular condition of the human body. The accurate reconstruction of such networks from time-series genetic expression data using computational tools offers a stiff challenge for contemporary computer scientists. This is crucial to facilitate the understanding of the proper functioning of a living organism. Unfortunately, the computational methods produce many false predictions along with the correct predictions, which is unwanted. Investigations in the domain focus on the identification of as many correct regulations as possible in the reverse engineering of gene regulatory networks to make it more reliable and biologically relevant. One way to achieve this is to reduce the number of incorrect predictions in the reconstructed networks. In the present investigation, we have proposed a novel scheme to decrease the number of false predictions by suitably combining several metaheuristic techniques. We have implemented the same using a dataset ensemble approach (i.e. combining multiple datasets) also. We have employed the proposed methodology on real-world experimental datasets of the SOS DNA Repair network of Escherichia coli and the IMRA network of Saccharomyces cerevisiae. Subsequently, we have experimented upon somewhat larger, in silico networks, namely, DREAM3 and DREAM4 Challenge networks, and 15-gene and 20-gene networks extracted from the GeneNetWeaver database. To study the effect of multiple datasets on the quality of the inferred networks, we have used four datasets in each experiment. The obtained results are encouraging enough as the proposed methodology can reduce the number of false predictions significantly, without using any supplementary prior biological information for larger gene regulatory networks. It is also observed that if a small amount of prior biological information is incorporated here, the results improve further w.r.t. the prediction of true positives

  1. Exploring the behavior of small eukaryotic gene networks

    NARCIS (Netherlands)

    Bruggeman, F.J.; Oancea, I.; van Driel, R.

    2008-01-01

    Analysis of the genome organization of higher eukaryotes indicates that it contains many clusters of functionally related genes. In these clusters, the activity of a single gene is regulated hierarchically at a local gene-level and a global cluster-level. Whether a single gene can be activated by a

  2. Constructing gene regulatory networks for long term photosynthetic light acclimation in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Chen Bor-Sen

    2011-08-01

    Full Text Available Abstract Background Photosynthetic light acclimation is an important process that allows plants to optimize the efficiency of photosynthesis, which is the core technology for green energy. However, currently little is known about the molecular mechanisms behind the regulation of the photosynthetic light acclimation response. In this study, a systematic method is proposed to investigate this mechanism by constructing gene regulatory networks from microarray data of Arabidopsis thaliana. Methods The potential TF-gene regulatory pairs of photosynthetic light acclimation have been obtained by data mining of literature and databases. Following the identification of these potential TF-gene pairs, they have been refined using Pearson's correlation, allowing the construction of a rough gene regulatory network. This rough gene regulatory network is then pruned using time series microarray data of Arabidopsis thaliana via the maximum likelihood system identification method and Akaike's system order detection method to approach the real gene regulatory network of photosynthetic light acclimation. Results By comparing the gene regulatory networks under the PSI-to-PSII light shift and the PSII-to-PSI light shift, it is possible to identify important transcription factors for the different light shift conditions. Furthermore, the robustness of the gene network, in particular the hubs and weak linkage points, are also discussed under the different light conditions to gain further insight into the mechanisms of photosynthesis. Conclusions This study investigates the molecular mechanisms of photosynthetic light acclimation for Arabidopsis thaliana from the physiological level. This has been achieved through the construction of gene regulatory networks from the limited data sources and literature via an efficient computation method. If more experimental data for whole-genome ChIP-chip data and microarray data with multiple sampling points becomes available in the

  3. Digital Signal Processing and Control for the Study of Gene Networks

    Science.gov (United States)

    Shin, Yong-Jun

    2016-04-01

    Thanks to the digital revolution, digital signal processing and control has been widely used in many areas of science and engineering today. It provides practical and powerful tools to model, simulate, analyze, design, measure, and control complex and dynamic systems such as robots and aircrafts. Gene networks are also complex dynamic systems which can be studied via digital signal processing and control. Unlike conventional computational methods, this approach is capable of not only modeling but also controlling gene networks since the experimental environment is mostly digital today. The overall aim of this article is to introduce digital signal processing and control as a useful tool for the study of gene networks.

  4. Digital Signal Processing and Control for the Study of Gene Networks.

    Science.gov (United States)

    Shin, Yong-Jun

    2016-04-22

    Thanks to the digital revolution, digital signal processing and control has been widely used in many areas of science and engineering today. It provides practical and powerful tools to model, simulate, analyze, design, measure, and control complex and dynamic systems such as robots and aircrafts. Gene networks are also complex dynamic systems which can be studied via digital signal processing and control. Unlike conventional computational methods, this approach is capable of not only modeling but also controlling gene networks since the experimental environment is mostly digital today. The overall aim of this article is to introduce digital signal processing and control as a useful tool for the study of gene networks.

  5. On the Interplay between Entropy and Robustness of Gene Regulatory Networks

    Directory of Open Access Journals (Sweden)

    Bor-Sen Chen

    2010-05-01

    Full Text Available The interplay between entropy and robustness of gene network is a core mechanism of systems biology. The entropy is a measure of randomness or disorder of a physical system due to random parameter fluctuation and environmental noises in gene regulatory networks. The robustness of a gene regulatory network, which can be measured as the ability to tolerate the random parameter fluctuation and to attenuate the effect of environmental noise, will be discussed from the robust H∞ stabilization and filtering perspective. In this review, we will also discuss their balancing roles in evolution and potential applications in systems and synthetic biology.

  6. Cooperative adaptive responses in gene regulatory networks with many degrees of freedom.

    Science.gov (United States)

    Inoue, Masayo; Kaneko, Kunihiko

    2013-04-01

    Cells generally adapt to environmental changes by first exhibiting an immediate response and then gradually returning to their original state to achieve homeostasis. Although simple network motifs consisting of a few genes have been shown to exhibit such adaptive dynamics, they do not reflect the complexity of real cells, where the expression of a large number of genes activates or represses other genes, permitting adaptive behaviors. Here, we investigated the responses of gene regulatory networks containing many genes that have undergone numerical evolution to achieve high fitness due to the adaptive response of only a single target gene; this single target gene responds to changes in external inputs and later returns to basal levels. Despite setting a single target, most genes showed adaptive responses after evolution. Such adaptive dynamics were not due to common motifs within a few genes; even without such motifs, almost all genes showed adaptation, albeit sometimes partial adaptation, in the sense that expression levels did not always return to original levels. The genes split into two groups: genes in the first group exhibited an initial increase in expression and then returned to basal levels, while genes in the second group exhibited the opposite changes in expression. From this model, genes in the first group received positive input from other genes within the first group, but negative input from genes in the second group, and vice versa. Thus, the adaptation dynamics of genes from both groups were consolidated. This cooperative adaptive behavior was commonly observed if the number of genes involved was larger than the order of ten. These results have implications in the collective responses of gene expression networks in microarray measurements of yeast Saccharomyces cerevisiae and the significance to the biological homeostasis of systems with many components.

  7. Reconstructing Generalized Logical Networks of Transcriptional Regulation in Mouse Brain from Temporal Gene Expression Data

    Energy Technology Data Exchange (ETDEWEB)

    Song, Mingzhou (Joe) [New Mexico State University, Las Cruces; Lewis, Chris K. [New Mexico State University, Las Cruces; Lance, Eric [New Mexico State University, Las Cruces; Chesler, Elissa J [ORNL; Kirova, Roumyana [Bristol-Myers Squibb Pharmaceutical Research & Development, NJ; Langston, Michael A [University of Tennessee, Knoxville (UTK); Bergeson, Susan [Texas Tech University, Lubbock

    2009-01-01

    The problem of reconstructing generalized logical networks to account for temporal dependencies among genes and environmental stimuli from high-throughput transcriptomic data is addressed. A network reconstruction algorithm was developed that uses the statistical significance as a criterion for network selection to avoid false-positive interactions arising from pure chance. Using temporal gene expression data collected from the brains of alcohol-treated mice in an analysis of the molecular response to alcohol, this algorithm identified genes from a major neuronal pathway as putative components of the alcohol response mechanism. Three of these genes have known associations with alcohol in the literature. Several other potentially relevant genes, highlighted and agreeing with independent results from literature mining, may play a role in the response to alcohol. Additional, previously-unknown gene interactions were discovered that, subject to biological verification, may offer new clues in the search for the elusive molecular mechanisms of alcoholism.

  8. Annotating gene sets by mining large literature collections with protein networks.

    Science.gov (United States)

    Wang, Sheng; Ma, Jianzhu; Yu, Michael Ku; Zheng, Fan; Huang, Edward W; Han, Jiawei; Peng, Jian; Ideker, Trey

    2018-01-01

    Analysis of patient genomes and transcriptomes routinely recognizes new gene sets associated with human disease. Here we present an integrative natural language processing system which infers common functions for a gene set through automatic mining of the scientific literature with biological networks. This system links genes with associated literature phrases and combines these links with protein interactions in a single heterogeneous network. Multiscale functional annotations are inferred based on network distances between phrases and genes and then visualized as an ontology of biological concepts. To evaluate this system, we predict functions for gene sets representing known pathways and find that our approach achieves substantial improvement over the conventional text-mining baseline method. Moreover, our system discovers novel annotations for gene sets or pathways without previously known functions. Two case studies demonstrate how the system is used in discovery of new cancer-related pathways with ontological annotations.

  9. Pareto evolution of gene networks: an algorithm to optimize multiple fitness objectives

    International Nuclear Information System (INIS)

    Warmflash, Aryeh; Siggia, Eric D; Francois, Paul

    2012-01-01

    The computational evolution of gene networks functions like a forward genetic screen to generate, without preconceptions, all networks that can be assembled from a defined list of parts to implement a given function. Frequently networks are subject to multiple design criteria that cannot all be optimized simultaneously. To explore how these tradeoffs interact with evolution, we implement Pareto optimization in the context of gene network evolution. In response to a temporal pulse of a signal, we evolve networks whose output turns on slowly after the pulse begins, and shuts down rapidly when the pulse terminates. The best performing networks under our conditions do not fall into categories such as feed forward and negative feedback that also encode the input–output relation we used for selection. Pareto evolution can more efficiently search the space of networks than optimization based on a single ad hoc combination of the design criteria. (paper)

  10. Pareto evolution of gene networks: an algorithm to optimize multiple fitness objectives.

    Science.gov (United States)

    Warmflash, Aryeh; Francois, Paul; Siggia, Eric D

    2012-10-01

    The computational evolution of gene networks functions like a forward genetic screen to generate, without preconceptions, all networks that can be assembled from a defined list of parts to implement a given function. Frequently networks are subject to multiple design criteria that cannot all be optimized simultaneously. To explore how these tradeoffs interact with evolution, we implement Pareto optimization in the context of gene network evolution. In response to a temporal pulse of a signal, we evolve networks whose output turns on slowly after the pulse begins, and shuts down rapidly when the pulse terminates. The best performing networks under our conditions do not fall into categories such as feed forward and negative feedback that also encode the input-output relation we used for selection. Pareto evolution can more efficiently search the space of networks than optimization based on a single ad hoc combination of the design criteria.

  11. Human gene coexpression landscape: confident network derived from tissue transcriptomic profiles.

    Directory of Open Access Journals (Sweden)

    Carlos Prieto

    Full Text Available BACKGROUND: Analysis of gene expression data using genome-wide microarrays is a technique often used in genomic studies to find coexpression patterns and locate groups of co-transcribed genes. However, most studies done at global "omic" scale are not focused on human samples and when they correspond to human very often include heterogeneous datasets, mixing normal with disease-altered samples. Moreover, the technical noise present in genome-wide expression microarrays is another well reported problem that many times is not addressed with robust statistical methods, and the estimation of errors in the data is not provided. METHODOLOGY/PRINCIPAL FINDINGS: Human genome-wide expression data from a controlled set of normal-healthy tissues is used to build a confident human gene coexpression network avoiding both pathological and technical noise. To achieve this we describe a new method that combines several statistical and computational strategies: robust normalization and expression signal calculation; correlation coefficients obtained by parametric and non-parametric methods; random cross-validations; and estimation of the statistical accuracy and coverage of the data. All these methods provide a series of coexpression datasets where the level of error is measured and can be tuned. To define the errors, the rates of true positives are calculated by assignment to biological pathways. The results provide a confident human gene coexpression network that includes 3327 gene-nodes and 15841 coexpression-links and a comparative analysis shows good improvement over previously published datasets. Further functional analysis of a subset core network, validated by two independent methods, shows coherent biological modules that share common transcription factors. The network reveals a map of coexpression clusters organized in well defined functional constellations. Two major regions in this network correspond to genes involved in nuclear and mitochondrial

  12. GEM-TREND: a web tool for gene expression data mining toward relevant network discovery.

    Science.gov (United States)

    Feng, Chunlai; Araki, Michihiro; Kunimoto, Ryo; Tamon, Akiko; Makiguchi, Hiroki; Niijima, Satoshi; Tsujimoto, Gozoh; Okuno, Yasushi

    2009-09-03

    DNA microarray technology provides us with a first step toward the goal of uncovering gene functions on a genomic scale. In recent years, vast amounts of gene expression data have been collected, much of which are available in public databases, such as the Gene Expression Omnibus (GEO). To date, most researchers have been manually retrieving data from databases through web browsers using accession numbers (IDs) or keywords, but gene-expression patterns are not considered when retrieving such data. The Connectivity Map was recently introduced to compare gene expression data by introducing gene-expression signatures (represented by a set of genes with up- or down-regulated labels according to their biological states) and is available as a web tool for detecting similar gene-expression signatures from a limited data set (approximately 7,000 expression profiles representing 1,309 compounds). In order to support researchers to utilize the public gene expression data more effectively, we developed a web tool for finding similar gene expression data and generating its co-expression networks from a publicly available database. GEM-TREND, a web tool for searching gene expression data, allows users to search data from GEO using gene-expression signatures or gene expression ratio data as a query and retrieve gene expression data by comparing gene-expression pattern between the query and GEO gene expression data. The comparison methods are based on the nonparametric, rank-based pattern matching approach of Lamb et al. (Science 2006) with the additional calculation of statistical significance. The web tool was tested using gene expression ratio data randomly extracted from the GEO and with in-house microarray data, respectively. The results validated the ability of GEM-TREND to retrieve gene expression entries biologically related to a query from GEO. For further analysis, a network visualization interface is also provided, whereby genes and gene annotations are dynamically

  13. Designing a parallel evolutionary algorithm for inferring gene networks on the cloud computing environment.

    Science.gov (United States)

    Lee, Wei-Po; Hsiao, Yu-Ting; Hwang, Wei-Che

    2014-01-16

    To improve the tedious task of reconstructing gene networks through testing experimentally the possible interactions between genes, it becomes a trend to adopt the automated reverse engineering procedure instead. Some evolutionary algorithms have been suggested for deriving network parameters. However, to infer large networks by the evolutionary algorithm, it is necessary to address two important issues: premature convergence and high computational cost. To tackle the former problem and to enhance the performance of traditional evolutionary algorithms, it is advisable to use parallel model evolutionary algorithms. To overcome the latter and to speed up the computation, it is advocated to adopt the mechanism of cloud computing as a promising solution: most popular is the method of MapReduce programming model, a fault-tolerant framework to implement parallel algorithms for inferring large gene networks. This work presents a practical framework to infer large gene networks, by developing and parallelizing a hybrid GA-PSO optimization method. Our parallel method is extended to work with the Hadoop MapReduce programming model and is executed in different cloud computing environments. To evaluate the proposed approach, we use a well-known open-source software GeneNetWeaver to create several yeast S. cerevisiae sub-networks and use them to produce gene profiles. Experiments have been conducted and the results have been analyzed. They show that our parallel approach can be successfully used to infer networks with desired behaviors and the computation time can be largely reduced. Parallel population-based algorithms can effectively determine network parameters and they perform better than the widely-used sequential algorithms in gene network inference. These parallel algorithms can be distributed to the cloud computing environment to speed up the computation. By coupling the parallel model population-based optimization method and the parallel computational framework, high

  14. Designing a parallel evolutionary algorithm for inferring gene networks on the cloud computing environment

    Science.gov (United States)

    2014-01-01

    Background To improve the tedious task of reconstructing gene networks through testing experimentally the possible interactions between genes, it becomes a trend to adopt the automated reverse engineering procedure instead. Some evolutionary algorithms have been suggested for deriving network parameters. However, to infer large networks by the evolutionary algorithm, it is necessary to address two important issues: premature convergence and high computational cost. To tackle the former problem and to enhance the performance of traditional evolutionary algorithms, it is advisable to use parallel model evolutionary algorithms. To overcome the latter and to speed up the computation, it is advocated to adopt the mechanism of cloud computing as a promising solution: most popular is the method of MapReduce programming model, a fault-tolerant framework to implement parallel algorithms for inferring large gene networks. Results This work presents a practical framework to infer large gene networks, by developing and parallelizing a hybrid GA-PSO optimization method. Our parallel method is extended to work with the Hadoop MapReduce programming model and is executed in different cloud computing environments. To evaluate the proposed approach, we use a well-known open-source software GeneNetWeaver to create several yeast S. cerevisiae sub-networks and use them to produce gene profiles. Experiments have been conducted and the results have been analyzed. They show that our parallel approach can be successfully used to infer networks with desired behaviors and the computation time can be largely reduced. Conclusions Parallel population-based algorithms can effectively determine network parameters and they perform better than the widely-used sequential algorithms in gene network inference. These parallel algorithms can be distributed to the cloud computing environment to speed up the computation. By coupling the parallel model population-based optimization method and the parallel

  15. A provisional regulatory gene network for specification of endomesoderm in the sea urchin embryo

    Science.gov (United States)

    Davidson, Eric H.; Rast, Jonathan P.; Oliveri, Paola; Ransick, Andrew; Calestani, Cristina; Yuh, Chiou-Hwa; Minokawa, Takuya; Amore, Gabriele; Hinman, Veronica; Arenas-Mena, Cesar; hide

    2002-01-01

    We present the current form of a provisional DNA sequence-based regulatory gene network that explains in outline how endomesodermal specification in the sea urchin embryo is controlled. The model of the network is in a continuous process of revision and growth as new genes are added and new experimental results become available; see http://www.its.caltech.edu/mirsky/endomeso.htm (End-mes Gene Network Update) for the latest version. The network contains over 40 genes at present, many newly uncovered in the course of this work, and most encoding DNA-binding transcriptional regulatory factors. The architecture of the network was approached initially by construction of a logic model that integrated the extensive experimental evidence now available on endomesoderm specification. The internal linkages between genes in the network have been determined functionally, by measurement of the effects of regulatory perturbations on the expression of all relevant genes in the network. Five kinds of perturbation have been applied: (1) use of morpholino antisense oligonucleotides targeted to many of the key regulatory genes in the network; (2) transformation of other regulatory factors into dominant repressors by construction of Engrailed repressor domain fusions; (3) ectopic expression of given regulatory factors, from genetic expression constructs and from injected mRNAs; (4) blockade of the beta-catenin/Tcf pathway by introduction of mRNA encoding the intracellular domain of cadherin; and (5) blockade of the Notch signaling pathway by introduction of mRNA encoding the extracellular domain of the Notch receptor. The network model predicts the cis-regulatory inputs that link each gene into the network. Therefore, its architecture is testable by cis-regulatory analysis. Strongylocentrotus purpuratus and Lytechinus variegatus genomic BAC recombinants that include a large number of the genes in the network have been sequenced and annotated. Tests of the cis-regulatory predictions of

  16. Network statistics of genetically-driven gene co-expression modules in mouse crosses

    Directory of Open Access Journals (Sweden)

    Marie-Pier eScott-Boyer

    2013-12-01

    Full Text Available In biology, networks are used in different contexts as ways to represent relationships between entities, such as for instance interactions between genes, proteins or metabolites. Despite progress in the analysis of such networks and their potential to better understand the collective impact of genes on complex traits, one remaining challenge is to establish the biologic validity of gene co-expression networks and to determine what governs their organization. We used WGCNA to construct and analyze seven gene expression datasets from several tissues of mouse recombinant inbred strains (RIS. For six out of the 7 networks, we found that linkage to module QTLs (mQTLs could be established for 29.3% of gene co-expression modules detected in the several mouse RIS. For about 74.6% of such genetically-linked modules, the mQTL was on the same chromosome as the one contributing most genes to the module, with genes originating from that chromosome showing higher connectivity than other genes in the modules. Such modules (that we considered as genetically-driven had network statistic properties (density, centralization and heterogeneity that set them apart from other modules in the network. Altogether, a sizeable portion of gene co-expression modules detected in mouse RIS panels had genetic determinants as their main organizing principle. In addition to providing a biologic interpretation validation for these modules, these genetic determinants imparted on them particular properties that set them apart from other modules in the network, to the point that they can be predicted to a large extent on the basis of their network statistics.

  17. Evolutionary conservation and network structure characterize genes of phenotypic relevance for mitosis in human.

    Directory of Open Access Journals (Sweden)

    Marek Ostaszewski

    Full Text Available The impact of gene silencing on cellular phenotypes is difficult to establish due to the complexity of interactions in the associated biological processes and pathways. A recent genome-wide RNA knock-down study both identified and phenotypically characterized a set of important genes for the cell cycle in HeLa cells. Here, we combine a molecular interaction network analysis, based on physical and functional protein interactions, in conjunction with evolutionary information, to elucidate the common biological and topological properties of these key genes. Our results show that these genes tend to be conserved with their corresponding protein interactions across several species and are key constituents of the evolutionary conserved molecular interaction network. Moreover, a group of bistable network motifs is found to be conserved within this network, which are likely to influence the network stability and therefore the robustness of cellular functioning. They form a cluster, which displays functional homogeneity and is significantly enriched in genes phenotypically relevant for mitosis. Additional results reveal a relationship between specific cellular processes and the phenotypic outcomes induced by gene silencing. This study introduces new ideas regarding the relationship between genotype and phenotype in the context of the cell cycle. We show that the analysis of molecular interaction networks can result in the identification of genes relevant to cellular processes, which is a promising avenue for future research.

  18. Analysis of Gene Regulatory Networks of Maize in Response to Nitrogen.

    Science.gov (United States)

    Jiang, Lu; Ball, Graham; Hodgman, Charlie; Coules, Anne; Zhao, Han; Lu, Chungui

    2018-03-08

    Nitrogen (N) fertilizer has a major influence on the yield and quality. Understanding and optimising the response of crop plants to nitrogen fertilizer usage is of central importance in enhancing food security and agricultural sustainability. In this study, the analysis of gene regulatory networks reveals multiple genes and biological processes in response to N. Two microarray studies have been used to infer components of the nitrogen-response network. Since they used different array technologies, a map linking the two probe sets to the maize B73 reference genome has been generated to allow comparison. Putative Arabidopsis homologues of maize genes were used to query the Biological General Repository for Interaction Datasets (BioGRID) network, which yielded the potential involvement of three transcription factors (TFs) (GLK5, MADS64 and bZIP108) and a Calcium-dependent protein kinase. An Artificial Neural Network was used to identify influential genes and retrieved bZIP108 and WRKY36 as significant TFs in both microarray studies, along with genes for Asparagine Synthetase, a dual-specific protein kinase and a protein phosphatase. The output from one study also suggested roles for microRNA (miRNA) 399b and Nin-like Protein 15 (NLP15). Co-expression-network analysis of TFs with closely related profiles to known Nitrate-responsive genes identified GLK5, GLK8 and NLP15 as candidate regulators of genes repressed under low Nitrogen conditions, while bZIP108 might play a role in gene activation.

  19. Gene regulatory network reconstruction using Bayesian networks, the Dantzig Selector, the Lasso and their meta-analysis.

    Directory of Open Access Journals (Sweden)

    Matthieu Vignes

    Full Text Available Modern technologies and especially next generation sequencing facilities are giving a cheaper access to genotype and genomic data measured on the same sample at once. This creates an ideal situation for multifactorial experiments designed to infer gene regulatory networks. The fifth "Dialogue for Reverse Engineering Assessments and Methods" (DREAM5 challenges are aimed at assessing methods and associated algorithms devoted to the inference of biological networks. Challenge 3 on "Systems Genetics" proposed to infer causal gene regulatory networks from different genetical genomics data sets. We investigated a wide panel of methods ranging from Bayesian networks to penalised linear regressions to analyse such data, and proposed a simple yet very powerful meta-analysis, which combines these inference methods. We present results of the Challenge as well as more in-depth analysis of predicted networks in terms of structure and reliability. The developed meta-analysis was ranked first among the 16 teams participating in Challenge 3A. It paves the way for future extensions of our inference method and more accurate gene network estimates in the context of genetical genomics.

  20. MicroRNAs and gene regulatory networks: managing the impact of noise in biological systems.

    Science.gov (United States)

    Herranz, Héctor; Cohen, Stephen M

    2010-07-01

    Biological systems are continuously challenged by an environment that is variable. Yet, a key feature of developmental and physiological processes is their remarkable stability. This review considers how microRNAs contribute to gene regulatory networks that confer robustness.

  1. Transcriptomic network analysis of micronuclei-related genes: a case study

    DEFF Research Database (Denmark)

    van Leeuwen, D. M.; Pedersen, Marie; Knudsen, Lisbeth E.

    2011-01-01

    Mechanistically relevant information on responses of humans to xenobiotic exposure in relation to chemically induced biological effects, such as micronuclei (MN) formation can be obtained through large-scale transcriptomics studies. Network analysis may enhance the analysis and visualisation...... of such data. Therefore, this study aimed to develop a 'MN formation' network based on a priori knowledge, by using the pathway tool MetaCore. The gene network contained 27 genes and three gene complexes that are related to processes involved in MN formation, e.g. spindle assembly checkpoint, cell cycle...... checkpoint and aneuploidy. The MN-related gene network was tested against a transcriptomics case study associated with MN measurements. In this case study, transcriptomic data from children and adults differentially exposed to ambient air pollution in the Czech Republic were analysed and visualised...

  2. SiBIC: a web server for generating gene set networks based on biclusters obtained by maximal frequent itemset mining.

    Science.gov (United States)

    Takahashi, Kei-ichiro; Takigawa, Ichigaku; Mamitsuka, Hiroshi

    2013-01-01

    Detecting biclusters from expression data is useful, since biclusters are coexpressed genes under only part of all given experimental conditions. We present a software called SiBIC, which from a given expression dataset, first exhaustively enumerates biclusters, which are then merged into rather independent biclusters, which finally are used to generate gene set networks, in which a gene set assigned to one node has coexpressed genes. We evaluated each step of this procedure: 1) significance of the generated biclusters biologically and statistically, 2) biological quality of merged biclusters, and 3) biological significance of gene set networks. We emphasize that gene set networks, in which nodes are not genes but gene sets, can be more compact than usual gene networks, meaning that gene set networks are more comprehensible. SiBIC is available at http://utrecht.kuicr.kyoto-u.ac.jp:8080/miami/faces/index.jsp.

  3. Chronic obstructive pulmonary disease candidate gene prioritization based on metabolic networks and functional information.

    Directory of Open Access Journals (Sweden)

    Xinyan Wang

    Full Text Available Chronic obstructive pulmonary disease (COPD is a multi-factor disease, in which metabolic disturbances played important roles. In this paper, functional information was integrated into a COPD-related metabolic network to assess similarity between genes. Then a gene prioritization method was applied to the COPD-related metabolic network to prioritize COPD candidate genes. The gene prioritization method was superior to ToppGene and ToppNet in both literature validation and functional enrichment analysis. Top-ranked genes prioritized from the metabolic perspective with functional information could promote the better understanding about the molecular mechanism of this disease. Top 100 genes might be potential markers for diagnostic and effective therapies.

  4. Network-Guided Key Gene Discovery for a Given Cellular Process

    DEFF Research Database (Denmark)

    He, Feng Q; Ollert, Markus

    2018-01-01

    and the following-up network analysis, opens up new avenues to predict key genes driving a given biological process or cellular function. Here we review and compare the current approaches in predicting key genes, which have no chances to stand out by classic differential expression analysis, from gene......Identification of key genes for a given physiological or pathological process is an essential but still very challenging task for the entire biomedical research community. Statistics-based approaches, such as genome-wide association study (GWAS)- or quantitative trait locus (QTL)-related analysis...... have already made enormous contributions to identifying key genes associated with a given disease or phenotype, the success of which is however very much dependent on a huge number of samples. Recent advances in network biology, especially network inference directly from genome-scale data...

  5. Evolution of Cis-Regulatory Elements and Regulatory Networks in Duplicated Genes of Arabidopsis.

    Science.gov (United States)

    Arsovski, Andrej A; Pradinuk, Julian; Guo, Xu Qiu; Wang, Sishuo; Adams, Keith L

    2015-12-01

    Plant genomes contain large numbers of duplicated genes that contribute to the evolution of new functions. Following duplication, genes can exhibit divergence in their coding sequence and their expression patterns. Changes in the cis-regulatory element landscape can result in changes in gene expression patterns. High-throughput methods developed recently can identify potential cis-regulatory elements on a genome-wide scale. Here, we use a recent comprehensive data set of DNase I sequencing-identified cis-regulatory binding sites (footprints) at single-base-pair resolution to compare binding sites and network connectivity in duplicated gene pairs in Arabidopsis (Arabidopsis thaliana). We found that duplicated gene pairs vary greatly in their cis-regulatory element architecture, resulting in changes in regulatory network connectivity. Whole-genome duplicates (WGDs) have approximately twice as many footprints in their promoters left by potential regulatory proteins than do tandem duplicates (TDs). The WGDs have a greater average number of footprint differences between paralogs than TDs. The footprints, in turn, result in more regulatory network connections between WGDs and other genes, forming denser, more complex regulatory networks than shown by TDs. When comparing regulatory connections between duplicates, WGDs had more pairs in which the two genes are either partially or fully diverged in their network connections, but fewer genes with no network connections than the TDs. There is evidence of younger TDs and WGDs having fewer unique connections compared with older duplicates. This study provides insights into cis-regulatory element evolution and network divergence in duplicated genes. © 2015 American Society of Plant Biologists. All Rights Reserved.

  6. Experimentally based sea urchin gene regulatory network and the causal explanation of developmental phenomenology.

    Science.gov (United States)

    Ben-Tabou de-Leon, Smadar; Davidson, Eric H

    2009-01-01

    Gene regulatory networks for development underlie cell fate specification and differentiation. Network topology, logic and dynamics can be obtained by thorough experimental analysis. Our understanding of the gene regulatory network controlling endomesoderm specification in the sea urchin embryo has attained an advanced level such that it explains developmental phenomenology. Here we review how the network explains the mechanisms utilized in development to control the formation of dynamic expression patterns of transcription factors and signaling molecules. The network represents the genomic program controlling timely activation of specification and differentiation genes in the correct embryonic lineages. It can also be used to study evolution of body plans. We demonstrate how comparing the sea urchin gene regulatory network to that of the sea star and to that of later developmental stages in the sea urchin, reveals mechanisms underlying the origin of evolutionary novelty. The experimentally based gene regulatory network for endomesoderm specification in the sea urchin embryo provides unique insights into the system level properties of cell fate specification and its evolution.

  7. The gene regulatory network for breast cancer: Integrated regulatory landscape of cancer hallmarks

    Directory of Open Access Journals (Sweden)

    Frank eEmmert-Streib

    2014-02-01

    Full Text Available In this study, we infer the breast cancer gene regulatory network from gene expression data. This network is obtained from the application of the BC3Net inference algorithm to a large-scale gene expression data set consisting of $351$ patient samples. In order to elucidate the functional relevance of the inferred network, we are performing a Gene Ontology (GO analysis for its structural components. Our analysis reveals that most significant GO-terms we find for the breast cancer network represent functional modules of biological processes that are described by known cancer hallmarks, including translation, immune response, cell cycle, organelle fission, mitosis, cell adhesion, RNA processing, RNA splicing and response to wounding. Furthermore, by using a curated list of census cancer genes, we find an enrichment in these functional modules. Finally, we study cooperative effects of chromosomes based on information of interacting genes in the beast cancer network. We find that chromosome $21$ is most coactive with other chromosomes. To our knowledge this is the first study investigating the genome-scale breast cancer network.

  8. Long-term oil contamination alters the molecular ecological networks of soil microbial functional genes

    Directory of Open Access Journals (Sweden)

    Yuting eLiang

    2016-02-01

    Full Text Available With knowledge on microbial composition and diversity, investigation of within-community interactions is a further step to elucidate microbial ecological functions, such as the biodegradation of hazardous contaminants. In this work, microbial functional molecular ecological networks were studied in both contaminated and uncontaminated soils to determine the possible influences of oil contamination on microbial interactions and potential functions. Soil samples were obtained from an oil-exploring site located in South China, and the microbial functional genes were analyzed with GeoChip, a high-throughput functional microarray. By building random networks based on null model, we demonstrated that overall network structures and properties were significantly different between contaminated and uncontaminated soils (P < 0.001. Network connectivity, module numbers, and modularity were all reduced with contamination. Moreover, the topological roles of the genes (module hub and connectors were altered with oil contamination. Subnetworks of genes involved in alkane and polycyclic aromatic hydrocarbon degradation were also constructed. Negative co-occurrence patterns prevailed among functional genes, thereby indicating probable competition relationships. The potential keystone genes, defined as either hubs or genes with highest connectivities in the network, were further identified. The network constructed in this study predicted the potential effects of anthropogenic contamination on microbial community co-occurrence interactions.

  9. Medusa structure of the gene regulatory network: dominance of transcription factors in cancer subtype classification.

    Science.gov (United States)

    Guo, Yuchun; Feng, Ying; Trivedi, Niraj S; Huang, Sui

    2011-05-01

    Gene expression profiles consisting of ten thousands of transcripts are used for clustering of tissue, such as tumors, into subtypes, often without considering the underlying reason that the distinct patterns of expression arise because of constraints in the realization of gene expression profiles imposed by the gene regulatory network. The topology of this network has been suggested to consist of a regulatory core of genes represented most prominently by transcription factors (TFs) and microRNAs, that influence the expression of other genes, and of a periphery of 'enslaved' effector genes that are regulated but not regulating. This 'medusa' architecture implies that the core genes are much stronger determinants of the realized gene expression profiles. To test this hypothesis, we examined the clustering of gene expression profiles into known tumor types to quantitatively demonstrate that TFs, and even more pronounced, microRNAs, are much stronger discriminators of tumor type specific gene expression patterns than a same number of randomly selected or metabolic genes. These findings lend support to the hypothesis of a medusa architecture and of the canalizing nature of regulation by microRNAs. They also reveal the degree of freedom for the expression of peripheral genes that are less stringently associated with a tissue type specific global gene expression profile.

  10. iRegulon: from a gene list to a gene regulatory network using large motif and track collections.

    Directory of Open Access Journals (Sweden)

    Rekin's Janky

    2014-07-01

    Full Text Available Identifying master regulators of biological processes and mapping their downstream gene networks are key challenges in systems biology. We developed a computational method, called iRegulon, to reverse-engineer the transcriptional regulatory network underlying a co-expressed gene set using cis-regulatory sequence analysis. iRegulon implements a genome-wide ranking-and-recovery approach to detect enriched transcription factor motifs and their optimal sets of direct targets. We increase the accuracy of network inference by using very large motif collections of up to ten thousand position weight matrices collected from various species, and linking these to candidate human TFs via a motif2TF procedure. We validate iRegulon on gene sets derived from ENCODE ChIP-seq data with increasing levels of noise, and we compare iRegulon with existing motif discovery methods. Next, we use iRegulon on more challenging types of gene lists, including microRNA target sets, protein-protein interaction networks, and genetic perturbation data. In particular, we over-activate p53 in breast cancer cells, followed by RNA-seq and ChIP-seq, and could identify an extensive up-regulated network controlled directly by p53. Similarly we map a repressive network with no indication of direct p53 regulation but rather an indirect effect via E2F and NFY. Finally, we generalize our computational framework to include regulatory tracks such as ChIP-seq data and show how motif and track discovery can be combined to map functional regulatory interactions among co-expressed genes. iRegulon is available as a Cytoscape plugin from http://iregulon.aertslab.org.

  11. Preferential duplication of intermodular hub genes: an evolutionary signature in eukaryotes genome networks.

    Directory of Open Access Journals (Sweden)

    Ricardo M Ferreira

    Full Text Available Whole genome protein-protein association networks are not random and their topological properties stem from genome evolution mechanisms. In fact, more connected, but less clustered proteins are related to genes that, in general, present more paralogs as compared to other genes, indicating frequent previous gene duplication episodes. On the other hand, genes related to conserved biological functions present few or no paralogs and yield proteins that are highly connected and clustered. These general network characteristics must have an evolutionary explanation. Considering data from STRING database, we present here experimental evidence that, more than not being scale free, protein degree distributions of organisms present an increased probability for high degree nodes. Furthermore, based on this experimental evidence, we propose a simulation model for genome evolution, where genes in a network are either acquired de novo using a preferential attachment rule, or duplicated with a probability that linearly grows with gene degree and decreases with its clustering coefficient. For the first time a model yields results that simultaneously describe different topological distributions. Also, this model correctly predicts that, to produce protein-protein association networks with number of links and number of nodes in the observed range for Eukaryotes, it is necessary 90% of gene duplication and 10% of de novo gene acquisition. This scenario implies a universal mechanism for genome evolution.

  12. A fast and efficient gene-network reconstruction method from multiple over-expression experiments

    Directory of Open Access Journals (Sweden)

    Thurner Stefan

    2009-08-01

    Full Text Available Abstract Background Reverse engineering of gene regulatory networks presents one of the big challenges in systems biology. Gene regulatory networks are usually inferred from a set of single-gene over-expressions and/or knockout experiments. Functional relationships between genes are retrieved either from the steady state gene expressions or from respective time series. Results We present a novel algorithm for gene network reconstruction on the basis of steady-state gene-chip data from over-expression experiments. The algorithm is based on a straight forward solution of a linear gene-dynamics equation, where experimental data is fed in as a first predictor for the solution. We compare the algorithm's performance with the NIR algorithm, both on the well known E. coli experimental data and on in-silico experiments. Conclusion We show superiority of the proposed algorithm in the number of correctly reconstructed links and discuss computational time and robustness. The proposed algorithm is not limited by combinatorial explosion problems and can be used in principle for large networks.

  13. Integrative mining of traditional Chinese medicine literature and MEDLINE for functional gene networks.

    Science.gov (United States)

    Zhou, Xuezhong; Liu, Baoyan; Wu, Zhaohui; Feng, Yi

    2007-10-01

    The amount of biomedical data in different disciplines is growing at an exponential rate. Integrating these significant knowledge sources to generate novel hypotheses for systems biology research is difficult. Traditional Chinese medicine (TCM) is a completely different discipline, and is a complementary knowledge system to modern biomedical science. This paper uses a significant TCM bibliographic literature database in China, together with MEDLINE, to help discover novel gene functional knowledge. We present an integrative mining approach to uncover the functional gene relationships from MEDLINE and TCM bibliographic literature. This paper introduces TCM literature (about 50,000 records) as one knowledge source for constructing literature-based gene networks. We use the TCM diagnosis, TCM syndrome, to automatically congregate the related genes. The syndrome-gene relationships are discovered based on the syndrome-disease relationships extracted from TCM literature and the disease-gene relationships in MEDLINE. Based on the bubble-bootstrapping and relation weight computing methods, we have developed a prototype system called MeDisco/3S, which has name entity and relation extraction, and online analytical processing (OLAP) capabilities, to perform the integrative mining process. We have got about 200,000 syndrome-gene relations, which could help generate syndrome-based gene networks, and help analyze the functional knowledge of genes from syndrome perspective. We take the gene network of Kidney-Yang Deficiency syndrome (KYD syndrome) and the functional analysis of some genes, such as CRH (corticotropin releasing hormone), PTH (parathyroid hormone), PRL (prolactin), BRCA1 (breast cancer 1, early onset) and BRCA2 (breast cancer 2, early onset), to demonstrate the preliminary results. The underlying hypothesis is that the related genes of the same syndrome will have some biological functional relationships, and will constitute a functional network. This paper presents

  14. CoryneRegNet 4.0 – A reference database for corynebacterial gene regulatory networks

    Directory of Open Access Journals (Sweden)

    Baumbach Jan

    2007-11-01

    Full Text Available Abstract Background Detailed information on DNA-binding transcription factors (the key players in the regulation of gene expression and on transcriptional regulatory interactions of microorganisms deduced from literature-derived knowledge, computer predictions and global DNA microarray hybridization experiments, has opened the way for the genome-wide analysis of transcriptional regulatory networks. The large-scale reconstruction of these networks allows the in silico analysis of cell behavior in response to changing environmental conditions. We previously published CoryneRegNet, an ontology-based data warehouse of corynebacterial transcription factors and regulatory networks. Initially, it was designed to provide methods for the analysis and visualization of the gene regulatory network of Corynebacterium glutamicum. Results Now we introduce CoryneRegNet release 4.0, which integrates data on the gene regulatory networks of 4 corynebacteria, 2 mycobacteria and the model organism Escherichia coli K12. As the previous versions, CoryneRegNet provides a web-based user interface to access the database content, to allow various queries, and to support the reconstruction, analysis and visualization of regulatory networks at different hierarchical levels. In this article, we present the further improved database content of CoryneRegNet along with novel analysis features. The network visualization feature GraphVis now allows the inter-species comparisons of reconstructed gene regulatory networks and the projection of gene expression levels onto that networks. Therefore, we added stimulon data directly into the database, but also provide Web Service access to the DNA microarray analysis platform EMMA. Additionally, CoryneRegNet now provides a SOAP based Web Service server, which can easily be consumed by other bioinformatics software systems. Stimulons (imported from the database, or uploaded by the user can be analyzed in the context of known

  15. An integer optimization algorithm for robust identification of non-linear gene regulatory networks

    Directory of Open Access Journals (Sweden)

    Chemmangattuvalappil Nishanth

    2012-09-01

    Full Text Available Abstract Background Reverse engineering gene networks and identifying regulatory interactions are integral to understanding cellular decision making processes. Advancement in high throughput experimental techniques has initiated innovative data driven analysis of gene regulatory networks. However, inherent noise associated with biological systems requires numerous experimental replicates for reliable conclusions. Furthermore, evidence of robust algorithms directly exploiting basic biological traits are few. Such algorithms are expected to be efficient in their performance and robust in their prediction. Results We have developed a network identification algorithm to accurately infer both the topology and strength of regulatory interactions from time series gene expression data in the presence of significant experimental noise and non-linear behavior. In this novel formulism, we have addressed data variability in biological systems by integrating network identification with the bootstrap resampling technique, hence predicting robust interactions from limited experimental replicates subjected to noise. Furthermore, we have incorporated non-linearity in gene dynamics using the S-system formulation. The basic network identification formulation exploits the trait of sparsity of biological interactions. Towards that, the identification algorithm is formulated as an integer-programming problem by introducing binary variables for each network component. The objective function is targeted to minimize the network connections subjected to the constraint of maximal agreement between the experimental and predicted gene dynamics. The developed algorithm is validated using both in silico and experimental data-sets. These studies show that the algorithm can accurately predict the topology and connection strength of the in silico networks, as quantified by high precision and recall, and small discrepancy between the actual and predicted kinetic parameters

  16. Evaluation of gene association methods for coexpression network construction and biological knowledge discovery.

    Directory of Open Access Journals (Sweden)

    Sapna Kumari

    Full Text Available BACKGROUND: Constructing coexpression networks and performing network analysis using large-scale gene expression data sets is an effective way to uncover new biological knowledge; however, the methods used for gene association in constructing these coexpression networks have not been thoroughly evaluated. Since different methods lead to structurally different coexpression networks and provide different information, selecting the optimal gene association method is critical. METHODS AND RESULTS: In this study, we compared eight gene association methods - Spearman rank correlation, Weighted Rank Correlation, Kendall, Hoeffding's D measure, Theil-Sen, Rank Theil-Sen, Distance Covariance, and Pearson - and focused on their true knowledge discovery rates in associating pathway genes and construction coordination networks of regulatory genes. We also examined the behaviors of different methods to microarray data with different properties, and whether the biological processes affect the efficiency of different methods. CONCLUSIONS: We found that the Spearman, Hoeffding and Kendall methods are effective in identifying coexpressed pathway genes, whereas the Theil-sen, Rank Theil-Sen, Spearman, and Weighted Rank methods perform well in identifying coordinated transcription factors that control the same biological processes and traits. Surprisingly, the widely used Pearson method is generally less efficient, and so is the Distance Covariance method that can find gene pairs of multiple relationships. Some analyses we did clearly show Pearson and Distance Covariance methods have distinct behaviors as compared to all other six methods. The efficiencies of different methods vary with the data properties to some degree and are largely contingent upon the biological processes, which necessitates the pre-analysis to identify the best performing method for gene association and coexpression network construction.

  17. Gene regulatory network inference and validation using relative change ratio analysis and time-delayed dynamic Bayesian network.

    Science.gov (United States)

    Li, Peng; Gong, Ping; Li, Haoni; Perkins, Edward J; Wang, Nan; Zhang, Chaoyang

    2014-12-01

    The Dialogue for Reverse Engineering Assessments and Methods (DREAM) project was initiated in 2006 as a community-wide effort for the development of network inference challenges for rigorous assessment of reverse engineering methods for biological networks. We participated in the in silico network inference challenge of DREAM3 in 2008. Here we report the details of our approach and its performance on the synthetic challenge datasets. In our methodology, we first developed a model called relative change ratio (RCR), which took advantage of the heterozygous knockdown data and null-mutant knockout data provided by the challenge, in order to identify the potential regulators for the genes. With this information, a time-delayed dynamic Bayesian network (TDBN) approach was then used to infer gene regulatory networks from time series trajectory datasets. Our approach considerably reduced the searching space of TDBN; hence, it gained a much higher efficiency and accuracy. The networks predicted using our approach were evaluated comparatively along with 29 other submissions by two metrics (area under the ROC curve and area under the precision-recall curve). The overall performance of our approach ranked the second among all participating teams.

  18. Dual gene activation and knockout screen reveals directional dependencies in genetic networks. | Office of Cancer Genomics

    Science.gov (United States)

    Understanding the direction of information flow is essential for characterizing how genetic networks affect phenotypes. However, methods to find genetic interactions largely fail to reveal directional dependencies. We combine two orthogonal Cas9 proteins from Streptococcus pyogenes and Staphylococcus aureus to carry out a dual screen in which one gene is activated while a second gene is deleted in the same cell. We analyze the quantitative effects of activation and knockout to calculate genetic interaction and directionality scores for each gene pair.

  19. A reconstruction problem for a class of phylogenetic networks with lateral gene transfers.

    Science.gov (United States)

    Cardona, Gabriel; Pons, Joan Carles; Rosselló, Francesc

    2015-01-01

    Lateral, or Horizontal, Gene Transfers are a type of asymmetric evolutionary events where genetic material is transferred from one species to another. In this paper we consider LGT networks, a general model of phylogenetic networks with lateral gene transfers which consist, roughly, of a principal rooted tree with its leaves labelled on a set of taxa, and a set of extra secondary arcs between nodes in this tree representing lateral gene transfers. An LGT network gives rise in a natural way to a principal phylogenetic subtree and a set of secondary phylogenetic subtrees, which, roughly, represent, respectively, the main line of evolution of most genes and the secondary lines of evolution through lateral gene transfers. We introduce a set of simple conditions on an LGT network that guarantee that its principal and secondary phylogenetic subtrees are pairwise different and that these subtrees determine, up to isomorphism, the LGT network. We then give an algorithm that, given a set of pairwise different phylogenetic trees [Formula: see text] on the same set of taxa, outputs, when it exists, the LGT network that satisfies these conditions and such that its principal phylogenetic tree is [Formula: see text] and its secondary phylogenetic trees are [Formula: see text].

  20. Dynamic network reconstruction from gene expression data applied to immune response during bacterial infection.

    Science.gov (United States)

    Guthke, Reinhard; Möller, Ulrich; Hoffmann, Martin; Thies, Frank; Töpfer, Susanne

    2005-04-15

    The immune response to bacterial infection represents a complex network of dynamic gene and protein interactions. We present an optimized reverse engineering strategy aimed at a reconstruction of this kind of interaction networks. The proposed approach is based on both microarray data and available biological knowledge. The main kinetics of the immune response were identified by fuzzy clustering of gene expression profiles (time series). The number of clusters was optimized using various evaluation criteria. For each cluster a representative gene with a high fuzzy-membership was chosen in accordance with available physiological knowledge. Then hypothetical network structures were identified by seeking systems of ordinary differential equations, whose simulated kinetics could fit the gene expression profiles of the cluster-representative genes. For the construction of hypothetical network structures singular value decomposition (SVD) based methods and a newly introduced heuristic Network Generation Method here were compared. It turned out that the proposed novel method could find sparser networks and gave better fits to the experimental data. Reinhard.Guthke@hki-jena.de.

  1. The Integrative Method Based on the Module-Network for Identifying Driver Genes in Cancer Subtypes

    Directory of Open Access Journals (Sweden)

    Xinguo Lu

    2018-01-01

    Full Text Available With advances in next-generation sequencing(NGS technologies, a large number of multiple types of high-throughput genomics data are available. A great challenge in exploring cancer progression is to identify the driver genes from the variant genes by analyzing and integrating multi-types genomics data. Breast cancer is known as a heterogeneous disease. The identification of subtype-specific driver genes is critical to guide the diagnosis, assessment of prognosis and treatment of breast cancer. We developed an integrated frame based on gene expression profiles and copy number variation (CNV data to identify breast cancer subtype-specific driver genes. In this frame, we employed statistical machine-learning method to select gene subsets and utilized an module-network analysis method to identify potential candidate driver genes. The final subtype-specific driver genes were acquired by paired-wise comparison in subtypes. To validate specificity of the driver genes, the gene expression data of these genes were applied to classify the patient samples with 10-fold cross validation and the enrichment analysis were also conducted on the identified driver genes. The experimental results show that the proposed integrative method can identify the potential driver genes and the classifier with these genes acquired better performance than with genes identified by other methods.

  2. Disease-aging network reveals significant roles of aging genes in connecting genetic diseases.

    Science.gov (United States)

    Wang, Jiguang; Zhang, Shihua; Wang, Yong; Chen, Luonan; Zhang, Xiang-Sun

    2009-09-01

    One of the challenging problems in biology and medicine is exploring the underlying mechanisms of genetic diseases. Recent studies suggest that the relationship between genetic diseases and the aging process is important in understanding the molecular mechanisms of complex diseases. Although some intricate associations have been investigated for a long time, the studies are still in their early stages. In this paper, we construct a human disease-aging network to study the relationship among aging genes and genetic disease genes. Specifically, we integrate human protein-protein interactions (PPIs), disease-gene associations, aging-gene associations, and physiological system-based genetic disease classification information in a single graph-theoretic framework and find that (1) human disease genes are much closer to aging genes than expected by chance; and (2) diseases can be categorized into two types according to their relationships with aging. Type I diseases have their genes significantly close to aging genes, while type II diseases do not. Furthermore, we examine the topological characters of the disease-aging network from a systems perspective. Theoretical results reveal that the genes of type I diseases are in a central position of a PPI network while type II are not; (3) more importantly, we define an asymmetric closeness based on the PPI network to describe relationships between diseases, and find that aging genes make a significant contribution to associations among diseases, especially among type I diseases. In conclusion, the network-based study provides not only evidence for the intricate relationship between the aging process and genetic diseases, but also biological implications for prying into the nature of human diseases.

  3. Network-Based Method for Identifying Co- Regeneration Genes in Bone, Dentin, Nerve and Vessel Tissues.

    Science.gov (United States)

    Chen, Lei; Pan, Hongying; Zhang, Yu-Hang; Feng, Kaiyan; Kong, XiangYin; Huang, Tao; Cai, Yu-Dong

    2017-10-02

    Bone and dental diseases are serious public health problems. Most current clinical treatments for these diseases can produce side effects. Regeneration is a promising therapy for bone and dental diseases, yielding natural tissue recovery with few side effects. Because soft tissues inside the bone and dentin are densely populated with nerves and vessels, the study of bone and dentin regeneration should also consider the co-regeneration of nerves and vessels. In this study, a network-based method to identify co-regeneration genes for bone, dentin, nerve and vessel was constructed based on an extensive network of protein-protein interactions. Three procedures were applied in the network-based method. The first procedure, searching, sought the shortest paths connecting regeneration genes of one tissue type with regeneration genes of other tissues, thereby extracting possible co-regeneration genes. The second procedure, testing, employed a permutation test to evaluate whether possible genes were false discoveries; these genes were excluded by the testing procedure. The last procedure, screening, employed two rules, the betweenness ratio rule and interaction score rule, to select the most essential genes. A total of seventeen genes were inferred by the method, which were deemed to contribute to co-regeneration of at least two tissues. All these seventeen genes were extensively discussed to validate the utility of the method.

  4. Detecting Functional Structures in E. coli Gene Networks from Expression Data

    Science.gov (United States)

    Chen, Tianlong; Opitz, Madeleine; Bassler, Kevin E.

    The rapidly growing amount of available gene expression data for many organisms makes the development of robust systematic methods for determining the structure and function of regulatory networks from that data an important goal. Recently, methods that use the context likelihood of relatedness to infer a network and then use modularity maximizing community detection algorithms on the inferred network to find the functional structure were shown to be effective. Improvements of these methods will be presented and applied to systematically study Escherichia coli expression data. First robust functionally related communities of genes are identified and then the structure of the more closely related genes within those communities are determined. Results will be compared with gene ontology terms and the RegulonDB database. Predictions of a number of significant new regulatory relations are found. Work supported by the NSF through Grants DMR-1507371 and IOS-1546858.

  5. Inferring gene and protein interactions using PubMed citations and consensus Bayesian networks

    Science.gov (United States)

    Dalman, Mark; Haddad, Joseph; Duan, Zhong-Hui

    2017-01-01

    The PubMed database offers an extensive set of publication data that can be useful, yet inherently complex to use without automated computational techniques. Data repositories such as the Genomic Data Commons (GDC) and the Gene Expression Omnibus (GEO) offer experimental data storage and retrieval as well as curated gene expression profiles. Genetic interaction databases, including Reactome and Ingenuity Pathway Analysis, offer pathway and experiment data analysis using data curated from these publications and data repositories. We have created a method to generate and analyze consensus networks, inferring potential gene interactions, using large numbers of Bayesian networks generated by data mining publications in the PubMed database. Through the concept of network resolution, these consensus networks can be tailored to represent possible genetic interactions. We designed a set of experiments to confirm that our method is stable across variation in both sample and topological input sizes. Using gene product interactions from the KEGG pathway database and data mining PubMed publication abstracts, we verify that regardless of the network resolution or the inferred consensus network, our method is capable of inferring meaningful gene interactions through consensus Bayesian network generation with multiple, randomized topological orderings. Our method can not only confirm the existence of currently accepted interactions, but has the potential to hypothesize new ones as well. We show our method confirms the existence of known gene interactions such as JAK-STAT-PI3K-AKT-mTOR, infers novel gene interactions such as RAS- Bcl-2 and RAS-AKT, and found significant pathway-pathway interactions between the JAK-STAT signaling and Cardiac Muscle Contraction KEGG pathways. PMID:29049295

  6. FocusHeuristics - expression-data-driven network optimization and disease gene prediction.

    Science.gov (United States)

    Ernst, Mathias; Du, Yang; Warsow, Gregor; Hamed, Mohamed; Endlich, Nicole; Endlich, Karlhans; Murua Escobar, Hugo; Sklarz, Lisa-Madeleine; Sender, Sina; Junghanß, Christian; Möller, Steffen; Fuellen, Georg; Struckmann, Stephan

    2017-02-16

    To identify genes contributing to disease phenotypes remains a challenge for bioinformatics. Static knowledge on biological networks is often combined with the dynamics observed in gene expression levels over disease development, to find markers for diagnostics and therapy, and also putative disease-modulatory drug targets and drugs. The basis of current methods ranges from a focus on expression-levels (Limma) to concentrating on network characteristics (PageRank, HITS/Authority Score), and both (DeMAND, Local Radiality). We present an integrative approach (the FocusHeuristics) that is thoroughly evaluated based on public expression data and molecular disease characteristics provided by DisGeNet. The FocusHeuristics combines three scores, i.e. the log fold change and another two, based on the sum and difference of log fold changes of genes/proteins linked in a network. A gene is kept when one of the scores to which it contributes is above a threshold. Our FocusHeuristics is both, a predictor for gene-disease-association and a bioinformatics method to reduce biological networks to their disease-relevant parts, by highlighting the dynamics observed in expression data. The FocusHeuristics is slightly, but significantly better than other methods by its more successful identification of disease-associated genes measured by AUC, and it delivers mechanistic explanations for its choice of genes.

  7. Development and application of an interaction network ontology for literature mining of vaccine-associated gene-gene interactions.

    Science.gov (United States)

    Hur, Junguk; Özgür, Arzucan; Xiang, Zuoshuang; He, Yongqun

    2015-01-01

    Literature mining of gene-gene interactions has been enhanced by ontology-based name classifications. However, in biomedical literature mining, interaction keywords have not been carefully studied and used beyond a collection of keywords. In this study, we report the development of a new Interaction Network Ontology (INO) that classifies >800 interaction keywords and incorporates interaction terms from the PSI Molecular Interactions (PSI-MI) and Gene Ontology (GO). Using INO-based literature mining results, a modified Fisher's exact test was established to analyze significantly over- and under-represented enriched gene-gene interaction types within a specific area. Such a strategy was applied to study the vaccine-mediated gene-gene interactions using all PubMed abstracts. The Vaccine Ontology (VO) and INO were used to support the retrieval of vaccine terms and interaction keywords from the literature. INO is aligned with the Basic Formal Ontology (BFO) and imports terms from 10 other existing ontologies. Current INO includes 540 terms. In terms of interaction-related terms, INO imports and aligns PSI-MI and GO interaction terms and includes over 100 newly generated ontology terms with 'INO_' prefix. A new annotation property, 'has literature mining keywords', was generated to allow the listing of different keywords mapping to the interaction types in INO. Using all PubMed documents published as of 12/31/2013, approximately 266,000 vaccine-associated documents were identified, and a total of 6,116 gene-pairs were associated with at least one INO term. Out of 78 INO interaction terms associated with at least five gene-pairs of the vaccine-associated sub-network, 14 terms were significantly over-represented (i.e., more frequently used) and 17 under-represented based on our modified Fisher's exact test. These over-represented and under-represented terms share some common top-level terms but are distinct at the bottom levels of the INO hierarchy. The analysis of these

  8. [Gene networks that regulate secondary metabolism in actinomycetes: pleiotropic regulators].

    Science.gov (United States)

    Rabyk, M V; Ostash, B O; Fedorenko, V O

    2014-01-01

    Current advances in the research and practical applications of pleiotropic regulatory genes for antibiotic production in actinomycetes are reviewed. The basic regulatory mechanisms found in these bacteria are outlined. Examples described in the review show the importance of the manipulation of regulatory systems that affect the synthesis of antibiotics for the metabolic engineering of the actinomycetes. Also, the study of these genes is the basis for the development of genetic engineering approaches towards the induction of "cryptic" part of the actinomycetes secondary metabolome, which capacity for production of biologically active compounds is much bigger than the diversity of antibiotics underpinned by traditional microbiological screening. Besides the practical problems, the study of regulatory genes for antibiotic biosynthesis will provide insights into the process of evolution of complex regulatory systems that coordinate the expression of gene operons, clusters and regulons, involved in the control of secondary metabolism and morphogenesis of actinomycetes.

  9. Investigating meta-approaches for reconstructing gene networks in a mammalian cellular context.

    Directory of Open Access Journals (Sweden)

    Azree Nazri

    Full Text Available The output of state-of-the-art reverse-engineering methods for biological networks is often based on the fitting of a mathematical model to the data. Typically, different datasets do not give single consistent network predictions but rather an ensemble of inconsistent networks inferred under the same reverse-engineering method that are only consistent with the specific experimentally measured data. Here, we focus on an alternative approach for combining the information contained within such an ensemble of inconsistent gene networks called meta-analysis, to make more accurate predictions and to estimate the reliability of these predictions. We review two existing meta-analysis approaches; the Fisher transformation combined coefficient test (FTCCT and Fisher's inverse combined probability test (FICPT; and compare their performance with five well-known methods, ARACNe, Context Likelihood or Relatedness network (CLR, Maximum Relevance Minimum Redundancy (MRNET, Relevance Network (RN and Bayesian Network (BN. We conducted in-depth numerical ensemble simulations and demonstrated for biological expression data that the meta-analysis approaches consistently outperformed the best gene regulatory network inference (GRNI methods in the literature. Furthermore, the meta-analysis approaches have a low computational complexity. We conclude that the meta-analysis approaches are a powerful tool for integrating different datasets to give more accurate and reliable predictions for biological networks.

  10. Estimating immunoregulatory gene networks in human herpesvirus type 6-infected T cells

    International Nuclear Information System (INIS)

    Takaku, Tomoiku; Ohyashiki, Junko H.; Zhang, Yu; Ohyashiki, Kazuma

    2005-01-01

    The immune response to viral infection involves complex network of dynamic gene and protein interactions. We present here the dynamic gene network of the host immune response during human herpesvirus type 6 (HHV-6) infection in an adult T-cell leukemia cell line. Using a pathway-focused oligonucleotide DNA microarray, we found a possible association between chemokine genes regulating Th1/Th2 balance and genes regulating T-cell proliferation during HHV-6B infection. Gene network analysis using an integrated comprehensive workbench, VoyaGene, revealed that a gene encoding a TEC-family kinase, ITK, might be a putative modulator in the host immune response against HHV-6B infection. We conclude that Th2-dominated inflammatory reaction in host cells may play an important role in HHV-6B-infected T cells, thereby suggesting the possibility that ITK might be a therapeutic target in diseases related to dysregulation of Th1/Th2 balance. This study describes a novel approach to find genes related with the complex host-virus interaction using microarray data employing the Bayesian statistical framework

  11. Directed partial correlation: inferring large-scale gene regulatory network through induced topology disruptions.

    Directory of Open Access Journals (Sweden)

    Yinyin Yuan

    Full Text Available Inferring regulatory relationships among many genes based on their temporal variation in transcript abundance has been a popular research topic. Due to the nature of microarray experiments, classical tools for time series analysis lose power since the number of variables far exceeds the number of the samples. In this paper, we describe some of the existing multivariate inference techniques that are applicable to hundreds of variables and show the potential challenges for small-sample, large-scale data. We propose a directed partial correlation (DPC method as an efficient and effective solution to regulatory network inference using these data. Specifically for genomic data, the proposed method is designed to deal with large-scale datasets. It combines the efficiency of partial correlation for setting up network topology by testing conditional independence, and the concept of Granger causality to assess topology change with induced interruptions. The idea is that when a transcription factor is induced artificially within a gene network, the disruption of the network by the induction signifies a genes role in transcriptional regulation. The benchmarking results using GeneNetWeaver, the simulator for the DREAM challenges, provide strong evidence of the outstanding performance of the proposed DPC method. When applied to real biological data, the inferred starch metabolism network in Arabidopsis reveals many biologically meaningful network modules worthy of further investigation. These results collectively suggest DPC is a versatile tool for genomics research. The R package DPC is available for download (http://code.google.com/p/dpcnet/.

  12. BTNET : boosted tree based gene regulatory network inference algorithm using time-course measurement data.

    Science.gov (United States)

    Park, Sungjoon; Kim, Jung Min; Shin, Wonho; Han, Sung Won; Jeon, Minji; Jang, Hyun Jin; Jang, Ik-Soon; Kang, Jaewoo

    2018-03-19

    Identifying gene regulatory networks is an important task for understanding biological systems. Time-course measurement data became a valuable resource for inferring gene regulatory networks. Various methods have been presented for reconstructing the networks from time-course measurement data. However, existing methods have been validated on only a limited number of benchmark datasets, and rarely verified on real biological systems. We first integrated benchmark time-course gene expression datasets from previous studies and reassessed the baseline methods. We observed that GENIE3-time, a tree-based ensemble method, achieved the best performance among the baselines. In this study, we introduce BTNET, a boosted tree based gene regulatory network inference algorithm which improves the state-of-the-art. We quantitatively validated BTNET on the integrated benchmark dataset. The AUROC and AUPR scores of BTNET were higher than those of the baselines. We also qualitatively validated the results of BTNET through an experiment on neuroblastoma cells treated with an antidepressant. The inferred regulatory network from BTNET showed that brachyury, a transcription factor, was regulated by fluoxetine, an antidepressant, which was verified by the expression of its downstream genes. We present BTENT that infers a GRN from time-course measurement data using boosting algorithms. Our model achieved the highest AUROC and AUPR scores on the integrated benchmark dataset. We further validated BTNET qualitatively through a wet-lab experiment and showed that BTNET can produce biologically meaningful results.

  13. Stochastic gene expression in single cells: exploring the importance of noise in genetic networks

    Science.gov (United States)

    van Oudenaarden, Alexander

    2003-03-01

    Cells are intrinsically noisy biochemical reactors. This leads to random cell to cell variation (noise) in gene expression levels. First, I will address the source of this noise at the level of transcription and translation of a single gene. Our experimental results demonstrate that the intrinsic noise of a single gene is predominantly controlled at the translational level, and that increased translational efficiency leads to increased noise strength. This observation is consistent with a theoretical model in which proteins are randomly produced in sharp bursts followed by periods of slow decay. Second, I will explore the importance of genetic noise for a naturally occuring network: the lac operon. The classic lactose utilization network of E. coli has been under investigation for several decades and, in its simplest form the network may be modeled as a single positive feedback module. However, this simplicity is deceptive, as even this basic network is capable of complex metabolic behavior, including adaptation, amplification, and graded-to-binary response conversion. I will present single cell measurements on the expression of key genes in lactose uptake network and explore the importance of genetic noise on the regulation of these genes.

  14. A systems approach identifies networks and genes linking sleep and stress: implications for neuropsychiatric disorders.

    Science.gov (United States)

    Jiang, Peng; Scarpa, Joseph R; Fitzpatrick, Karrie; Losic, Bojan; Gao, Vance D; Hao, Ke; Summa, Keith C; Yang, He S; Zhang, Bin; Allada, Ravi; Vitaterna, Martha H; Turek, Fred W; Kasarskis, Andrew

    2015-05-05

    Sleep dysfunction and stress susceptibility are comorbid complex traits that often precede and predispose patients to a variety of neuropsychiatric diseases. Here, we demonstrate multilevel organizations of genetic landscape, candidate genes, and molecular networks associated with 328 stress and sleep traits in a chronically stressed population of 338 (C57BL/6J × A/J) F2 mice. We constructed striatal gene co-expression networks, revealing functionally and cell-type-specific gene co-regulations important for stress and sleep. Using a composite ranking system, we identified network modules most relevant for 15 independent phenotypic categories, highlighting a mitochondria/synaptic module that links sleep and stress. The key network regulators of this module are overrepresented with genes implicated in neuropsychiatric diseases. Our work suggests that the interplay among sleep, stress, and neuropathology emerges from genetic influences on gene expression and their collective organization through complex molecular networks, providing a framework for interrogating the mechanisms underlying sleep, stress susceptibility, and related neuropsychiatric disorders. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Intervention in gene regulatory networks via a stationary mean-first-passage-time control policy.

    Science.gov (United States)

    Vahedi, Golnaz; Faryabi, Babak; Chamberland, Jean-Francois; Datta, Aniruddha; Dougherty, Edward R

    2008-10-01

    A prime objective of modeling genetic regulatory networks is the identification of potential targets for therapeutic intervention. To date, optimal stochastic intervention has been studied in the context of probabilistic Boolean networks, with the control policy based on the transition probability matrix of the associated Markov chain and dynamic programming used to find optimal control policies. Dynamical programming algorithms are problematic owing to their high computational complexity. Two additional computationally burdensome issues that arise are the potential for controlling the network and identifying the best gene for intervention. This paper proposes an algorithm based on mean first-passage time that assigns a stationary control policy for each gene candidate. It serves as an approximation to an optimal control policy and, owing to its reduced computational complexity, can be used to predict the best control gene. Once the best control gene is identified, one can derive an optimal policy or simply utilize the approximate policy for this gene when the network size precludes a direct application of dynamic programming algorithms. A salient point is that the proposed algorithm can be model-free. It can be directly designed from time-course data without having to infer the transition probability matrix of the network.

  16. Gene promoter evolution targets the center of the human protein interaction network.

    Directory of Open Access Journals (Sweden)

    Jordi Planas

    Full Text Available Assessing the contribution of promoters and coding sequences to gene evolution is an important step toward discovering the major genetic determinants of human evolution. Many specific examples have revealed the evolutionary importance of cis-regulatory regions. However, the relative contribution of regulatory and coding regions to the evolutionary process and whether systemic factors differentially influence their evolution remains unclear. To address these questions, we carried out an analysis at the genome scale to identify signatures of positive selection in human proximal promoters. Next, we examined whether genes with positively selected promoters (Prom+ genes show systemic differences with respect to a set of genes with positively selected protein-coding regions (Cod+ genes. We found that the number of genes in each set was not significantly different (8.1% and 8.5%, respectively. Furthermore, a functional analysis showed that, in both cases, positive selection affects almost all biological processes and only a few genes of each group are located in enriched categories, indicating that promoters and coding regions are not evolutionarily specialized with respect to gene function. On the other hand, we show that the topology of the human protein network has a different influence on the molecular evolution of proximal promoters and coding regions. Notably, Prom+ genes have an unexpectedly high centrality when compared with a reference distribution (P=0.008, for Eigenvalue centrality. Moreover, the frequency of Prom+ genes increases from the periphery to the center of the protein network (P=0.02, for the logistic regression coefficient. This means that gene centrality does not constrain the evolution of proximal promoters, unlike the case with coding regions, and further indicates that the evolution of proximal promoters is more efficient in the center of the protein network than in the periphery. These results show that proximal promoters

  17. Highly sensitive inference of time-delayed gene regulation by network deconvolution.

    Science.gov (United States)

    Chen, Haifen; Mundra, Piyushkumar A; Zhao, Li Na; Lin, Feng; Zheng, Jie

    2014-01-01

    Gene regulatory network (GRN) is a fundamental topic in systems biology. The dynamics of GRN can shed light on the cellular processes, which facilitates the understanding of the mechanisms of diseases when the processes are dysregulated. Accurate reconstruction of GRN could also provide guidelines for experimental biologists. Therefore, inferring gene regulatory networks from high-throughput gene expression data is a central problem in systems biology. However, due to the inherent complexity of gene regulation, noise in measuring the data and the short length of time-series data, it is very challenging to reconstruct accurate GRNs. On the other hand, a better understanding into gene regulation could help to improve the performance of GRN inference. Time delay is one of the most important characteristics of gene regulation. By incorporating the information of time delays, we can achieve more accurate inference of GRN. In this paper, we propose a method to infer time-delayed gene regulation based on cross-correlation and network deconvolution (ND). First, we employ cross-correlation to obtain the probable time delays for the interactions between each target gene and its potential regulators. Then based on the inferred delays, the technique of ND is applied to identify direct interactions between the target gene and its regulators. Experiments on real-life gene expression datasets show that our method achieves overall better performance than existing methods for inferring time-delayed GRNs. By taking into account the time delays among gene interactions, our method is able to infer GRN more accurately. The effectiveness of our method has been shown by the experiments on three real-life gene expression datasets of yeast. Compared with other existing methods which were designed for learning time-delayed GRN, our method has significantly higher sensitivity without much reduction of specificity.

  18. GeneMANIA: Fast gene network construction and function prediction for Cytoscape [v1; ref status: indexed, http://f1000r.es/3rv

    Directory of Open Access Journals (Sweden)

    Jason Montojo

    2014-07-01

    Full Text Available The GeneMANIA Cytoscape app enables users to construct a composite gene-gene functional interaction network from a gene list. The resulting network includes the genes most related to the original list, and functional annotations from Gene Ontology. The edges are annotated with details about the publication or data source the interactions were derived from. The app leverages GeneMANIA’s database of 1800+ networks, containing over 500 million interactions spanning 8 organisms: A. thaliana, C. elegans, D. melanogaster, D. rerio, H. sapiens, M. musculus, R. norvegicus, and S. cerevisiae. Users may also import their own organisms, networks, and expression profiles. The app is compatible with Cytoscape versions 2 and 3.

  19. A scalable algorithm for structure identification of complex gene regulatory network from temporal expression data.

    Science.gov (United States)

    Gui, Shupeng; Rice, Andrew P; Chen, Rui; Wu, Liang; Liu, Ji; Miao, Hongyu

    2017-01-31

    Gene regulatory interactions are of fundamental importance to various biological functions and processes. However, only a few previous computational studies have claimed success in revealing genome-wide regulatory landscapes from temporal gene expression data, especially for complex eukaryotes like human. Moreover, recent work suggests that these methods still suffer from the curse of dimensionality if a network size increases to 100 or higher. Here we present a novel scalable algorithm for identifying genome-wide gene regulatory network (GRN) structures, and we have verified the algorithm performances by extensive simulation studies based on the DREAM challenge benchmark data. The highlight of our method is that its superior performance does not degenerate even for a network size on the order of 10 4 , and is thus readily applicable to large-scale complex networks. Such a breakthrough is achieved by considering both prior biological knowledge and multiple topological properties (i.e., sparsity and hub gene structure) of complex networks in the regularized formulation. We also validate and illustrate the application of our algorithm in practice using the time-course gene expression data from a study on human respiratory epithelial cells in response to influenza A virus (IAV) infection, as well as the CHIP-seq data from ENCODE on transcription factor (TF) and target gene interactions. An interesting finding, owing to the proposed algorithm, is that the biggest hub structures (e.g., top ten) in the GRN all center at some transcription factors in the context of epithelial cell infection by IAV. The proposed algorithm is the first scalable method for large complex network structure identification. The GRN structure identified by our algorithm could reveal possible biological links and help researchers to choose which gene functions to investigate in a biological event. The algorithm described in this article is implemented in MATLAB Ⓡ , and the source code is freely

  20. Quantitative utilization of prior biological knowledge in the Bayesian network modeling of gene expression data

    Directory of Open Access Journals (Sweden)

    Gao Shouguo

    2011-08-01

    Full Text Available Abstract Background Bayesian Network (BN is a powerful approach to reconstructing genetic regulatory networks from gene expression data. However, expression data by itself suffers from high noise and lack of power. Incorporating prior biological knowledge can improve the performance. As each type of prior knowledge on its own may be incomplete or limited by quality issues, integrating multiple sources of prior knowledge to utilize their consensus is desirable. Results We introduce a new method to incorporate the quantitative information from multiple sources of prior knowledge. It first uses the Naïve Bayesian classifier to assess the likelihood of functional linkage between gene pairs based on prior knowledge. In this study we included cocitation in PubMed and schematic similarity in Gene Ontology annotation. A candidate network edge reservoir is then created in which the copy number of each edge is proportional to the estimated likelihood of linkage between the two corresponding genes. In network simulation the Markov Chain Monte Carlo sampling algorithm is adopted, and samples from this reservoir at each iteration to generate new candidate networks. We evaluated the new algorithm using both simulated and real gene expression data including that from a yeast cell cycle and a mouse pancreas development/growth study. Incorporating prior knowledge led to a ~2 fold increase in the number of known transcription regulations recovered, without significant change in false positive rate. In contrast, without the prior knowledge BN modeling is not always better than a random selection, demonstrating the necessity in network modeling to supplement the gene expression data with additional information. Conclusion our new development provides a statistical means to utilize the quantitative information in prior biological knowledge in the BN modeling of gene expression data, which significantly improves the performance.

  1. Inferring Regulatory Networks by Combining Perturbation Screens and Steady State Gene Expression Profiles

    Science.gov (United States)

    Michailidis, George

    2014-01-01

    Reconstructing transcriptional regulatory networks is an important task in functional genomics. Data obtained from experiments that perturb genes by knockouts or RNA interference contain useful information for addressing this reconstruction problem. However, such data can be limited in size and/or are expensive to acquire. On the other hand, observational data of the organism in steady state (e.g., wild-type) are more readily available, but their informational content is inadequate for the task at hand. We develop a computational approach to appropriately utilize both data sources for estimating a regulatory network. The proposed approach is based on a three-step algorithm to estimate the underlying directed but cyclic network, that uses as input both perturbation screens and steady state gene expression data. In the first step, the algorithm determines causal orderings of the genes that are consistent with the perturbation data, by combining an exhaustive search method with a fast heuristic that in turn couples a Monte Carlo technique with a fast search algorithm. In the second step, for each obtained causal ordering, a regulatory network is estimated using a penalized likelihood based method, while in the third step a consensus network is constructed from the highest scored ones. Extensive computational experiments show that the algorithm performs well in reconstructing the underlying network and clearly outperforms competing approaches that rely only on a single data source. Further, it is established that the algorithm produces a consistent estimate of the regulatory network. PMID:24586224

  2. Intervention in gene regulatory networks via greedy control policies based on long-run behavior

    Directory of Open Access Journals (Sweden)

    Ghaffari Noushin

    2009-06-01

    Full Text Available Abstract Background A salient purpose for studying gene regulatory networks is to derive intervention strategies, the goals being to identify potential drug targets and design gene-based therapeutic intervention. Optimal stochastic control based on the transition probability matrix of the underlying Markov chain has been studied extensively for probabilistic Boolean networks. Optimization is based on minimization of a cost function and a key goal of control is to reduce the steady-state probability mass of undesirable network states. Owing to computational complexity, it is difficult to apply optimal control for large networks. Results In this paper, we propose three new greedy stationary control policies by directly investigating the effects on the network long-run behavior. Similar to the recently proposed mean-first-passage-time (MFPT control policy, these policies do not depend on minimization of a cost function and avoid the computational burden of dynamic programming. They can be used to design stationary control policies that avoid the need for a user-defined cost function because they are based directly on long-run network behavior; they can be used as an alternative to dynamic programming algorithms when the latter are computationally prohibitive; and they can be used to predict the best control gene with reduced computational complexity, even when one is employing dynamic programming to derive the final control policy. We compare the performance of these three greedy control policies and the MFPT policy using randomly generated probabilistic Boolean networks and give a preliminary example for intervening in a mammalian cell cycle network. Conclusion The newly proposed control policies have better performance in general than the MFPT policy and, as indicated by the results on the mammalian cell cycle network, they can potentially serve as future gene therapeutic intervention strategies.

  3. Modification of gene duplicability during the evolution of protein interaction network.

    Directory of Open Access Journals (Sweden)

    Matteo D'Antonio

    2011-04-01

    Full Text Available Duplications of genes encoding highly connected and essential proteins are selected against in several species but not in human, where duplicated genes encode highly connected proteins. To understand when and how gene duplicability changed in evolution, we compare gene and network properties in four species (Escherichia coli, yeast, fly, and human that are representative of the increase in evolutionary complexity, defined as progressive growth in the number of genes, cells, and cell types. We find that the origin and conservation of a gene significantly correlates with the properties of the encoded protein in the protein-protein interaction network. All four species preserve a core of singleton and central hubs that originated early in evolution, are highly conserved, and accomplish basic biological functions. Another group of hubs appeared in metazoans and duplicated in vertebrates, mostly through vertebrate-specific whole genome duplication. Such recent and duplicated hubs are frequently targets of microRNAs and show tissue-selective expression, suggesting that these are alternative mechanisms to control their dosage. Our study shows how networks modified during evolution and contributes to explaining the occurrence of somatic genetic diseases, such as cancer, in terms of network perturbations.

  4. Gene expression based leukemia sub-classification using committee neural networks.

    Science.gov (United States)

    Sewak, Mihir S; Reddy, Narender P; Duan, Zhong-Hui

    2009-09-03

    Analysis of gene expression data provides an objective and efficient technique for sub-classification of leukemia. The purpose of the present study was to design a committee neural networks based classification systems to subcategorize leukemia gene expression data. In the study, a binary classification system was considered to differentiate acute lymphoblastic leukemia from acute myeloid leukemia. A ternary classification system which classifies leukemia expression data into three subclasses including B-cell acute lymphoblastic leukemia, T-cell acute lymphoblastic leukemia and acute myeloid leukemia was also developed. In each classification system gene expression profiles of leukemia patients were first subjected to a sequence of simple preprocessing steps. This resulted in filtering out approximately 95 percent of the non-informative genes. The remaining 5 percent of the informative genes were used to train a set of artificial neural networks with different parameters and architectures. The networks that gave the best results during initial testing were recruited into a committee. The committee decision was by majority voting. The committee neural network system was later evaluated using data not used in training. The binary classification system classified microarray gene expression profiles into two categories with 100 percent accuracy and the ternary system correctly predicted the three subclasses of leukemia in over 97 percent of the cases.

  5. Gene Systems Network Inferred from Expression Profiles in Hepatocellular Carcinogenesis by Graphical Gaussian Model

    Directory of Open Access Journals (Sweden)

    Saito Shigeru

    2007-01-01

    Full Text Available Hepatocellular carcinoma (HCC in a liver with advanced-stage chronic hepatitis C (CHC is induced by hepatitis C virus, which chronically infects about 170 million people worldwide. To elucidate the associations between gene groups in hepatocellular carcinogenesis, we analyzed the profiles of the genes characteristically expressed in the CHC and HCC cell stages by a statistical method for inferring the network between gene systems based on the graphical Gaussian model. A systematic evaluation of the inferred network in terms of the biological knowledge revealed that the inferred network was strongly involved in the known gene-gene interactions with high significance , and that the clusters characterized by different cancer-related responses were associated with those of the gene groups related to metabolic pathways and morphological events. Although some relationships in the network remain to be interpreted, the analyses revealed a snapshot of the orchestrated expression of cancer-related groups and some pathways related with metabolisms and morphological events in hepatocellular carcinogenesis, and thus provide possible clues on the disease mechanism and insights that address the gap between molecular and clinical assessments.

  6. Gene Expression Based Leukemia Sub‑Classification Using Committee Neural Networks

    Directory of Open Access Journals (Sweden)

    Mihir S. Sewak

    2009-09-01

    Full Text Available Analysis of gene expression data provides an objective and efficient technique for sub‑classification of leukemia. The purpose of the present study was to design a committee neural networks based classification systems to subcategorize leukemia gene expression data. In the study, a binary classification system was considered to differentiate acute lymphoblastic leukemia from acute myeloid leukemia. A ternary classification system which classifies leukemia expression data into three subclasses including B‑cell acute lymphoblastic leukemia, T‑cell acute lymphoblastic leukemia and acute myeloid leukemia was also developed. In each classification system gene expression profiles of leukemia patients were first subjected to a sequence of simple preprocessing steps. This resulted in filtering out approximately 95 percent of the non‑informative genes. The remaining 5 percent of the informative genes were used to train a set of artificial neural networks with different parameters and architectures. The networks that gave the best results during initial testing were recruited into a committee. The committee decision was by majority voting. The committee neural network system was later evaluated using data not used in training. The binary classification system classified microarray gene expression profiles into two categories with 100 percent accuracy and the ternary system correctly predicted the three subclasses of leukemia in over 97 percent of the cases.

  7. Integration of biological networks and gene expression data using Cytoscape

    DEFF Research Database (Denmark)

    Cline, M.S.; Smoot, M.; Cerami, E.

    2007-01-01

    Cytoscape is a free software package for visualizing, modeling and analyzing molecular and genetic interaction networks. This protocol explains how to use Cytoscape to analyze the results of mRNA expression profiling, and other functional genomics and proteomics experiments, in the context of an ...

  8. A fuzzy network module extraction technique for gene expression data

    Indian Academy of Sciences (India)

    2014-05-01

    May 1, 2014 ... organization. 1.25e−9. Regulation of neurological system process. 1.76e−9. Protein tyrosine kinase activity. 8.22e−9. Protein autophosphorylation. 2.78e−8. Table 9. Q-value of one of the network modules of Dataset 1. Module. GO annotation. Q-value. Module 1. Anatomical structure formation involved.

  9. FastGCN: a GPU accelerated tool for fast gene co-expression networks.

    Science.gov (United States)

    Liang, Meimei; Zhang, Futao; Jin, Gulei; Zhu, Jun

    2015-01-01

    Gene co-expression networks comprise one type of valuable biological networks. Many methods and tools have been published to construct gene co-expression networks; however, most of these tools and methods are inconvenient and time consuming for large datasets. We have developed a user-friendly, accelerated and optimized tool for constructing gene co-expression networks that can fully harness the parallel nature of GPU (Graphic Processing Unit) architectures. Genetic entropies were exploited to filter out genes with no or small expression changes in the raw data preprocessing step. Pearson correlation coefficients were then calculated. After that, we normalized these coefficients and employed the False Discovery Rate to control the multiple tests. At last, modules identification was conducted to construct the co-expression networks. All of these calculations were implemented on a GPU. We also compressed the coefficient matrix to save space. We compared the performance of the GPU implementation with those of multi-core CPU implementations with 16 CPU threads, single-thread C/C++ implementation and single-thread R implementation. Our results show that GPU implementation largely outperforms single-thread C/C++ implementation and single-thread R implementation, and GPU implementation outperforms multi-core CPU implementation when the number of genes increases. With the test dataset containing 16,000 genes and 590 individuals, we can achieve greater than 63 times the speed using a GPU implementation compared with a single-thread R implementation when 50 percent of genes were filtered out and about 80 times the speed when no genes were filtered out.

  10. Analysis of Gene Regulatory Networks of Maize in Response to Nitrogen

    Directory of Open Access Journals (Sweden)

    Lu Jiang

    2018-03-01

    Full Text Available Nitrogen (N fertilizer has a major influence on the yield and quality. Understanding and optimising the response of crop plants to nitrogen fertilizer usage is of central importance in enhancing food security and agricultural sustainability. In this study, the analysis of gene regulatory networks reveals multiple genes and biological processes in response to N. Two microarray studies have been used to infer components of the nitrogen-response network. Since they used different array technologies, a map linking the two probe sets to the maize B73 reference genome has been generated to allow comparison. Putative Arabidopsis homologues of maize genes were used to query the Biological General Repository for Interaction Datasets (BioGRID network, which yielded the potential involvement of three transcription factors (TFs (GLK5, MADS64 and bZIP108 and a Calcium-dependent protein kinase. An Artificial Neural Network was used to identify influential genes and retrieved bZIP108 and WRKY36 as significant TFs in both microarray studies, along with genes for Asparagine Synthetase, a dual-specific protein kinase and a protein phosphatase. The output from one study also suggested roles for microRNA (miRNA 399b and Nin-like Protein 15 (NLP15. Co-expression-network analysis of TFs with closely related profiles to known Nitrate-responsive genes identified GLK5, GLK8 and NLP15 as candidate regulators of genes repressed under low Nitrogen conditions, while bZIP108 might play a role in gene activation.

  11. FastGCN: a GPU accelerated tool for fast gene co-expression networks.

    Directory of Open Access Journals (Sweden)

    Meimei Liang

    Full Text Available Gene co-expression networks comprise one type of valuable biological networks. Many methods and tools have been published to construct gene co-expression networks; however, most of these tools and methods are inconvenient and time consuming for large datasets. We have developed a user-friendly, accelerated and optimized tool for constructing gene co-expression networks that can fully harness the parallel nature of GPU (Graphic Processing Unit architectures. Genetic entropies were exploited to filter out genes with no or small expression changes in the raw data preprocessing step. Pearson correlation coefficients were then calculated. After that, we normalized these coefficients and employed the False Discovery Rate to control the multiple tests. At last, modules identification was conducted to construct the co-expression networks. All of these calculations were implemented on a GPU. We also compressed the coefficient matrix to save space. We compared the performance of the GPU implementation with those of multi-core CPU implementations with 16 CPU threads, single-thread C/C++ implementation and single-thread R implementation. Our results show that GPU implementation largely outperforms single-thread C/C++ implementation and single-thread R implementation, and GPU implementation outperforms multi-core CPU implementation when the number of genes increases. With the test dataset containing 16,000 genes and 590 individuals, we can achieve greater than 63 times the speed using a GPU implementation compared with a single-thread R implementation when 50 percent of genes were filtered out and about 80 times the speed when no genes were filtered out.

  12. A CoD-based stationary control policy for intervening in large gene regulatory networks.

    Science.gov (United States)

    Ghaffari, Noushin; Ivanov, Ivan; Qian, Xiaoning; Dougherty, Edward R

    2011-10-18

    One of the most important goals of the mathematical modeling of gene regulatory networks is to alter their behavior toward desirable phenotypes. Therapeutic techniques are derived for intervention in terms of stationary control policies. In large networks, it becomes computationally burdensome to derive an optimal control policy. To overcome this problem, greedy intervention approaches based on the concept of the Mean First Passage Time or the steady-state probability mass of the network states were previously proposed. Another possible approach is to use reduction mappings to compress the network and develop control policies on its reduced version. However, such mappings lead to loss of information and require an induction step when designing the control policy for the original network. In this paper, we propose a novel solution, CoD-CP, for designing intervention policies for large Boolean networks. The new method utilizes the Coefficient of Determination (CoD) and the Steady-State Distribution (SSD) of the model. The main advantage of CoD-CP in comparison with the previously proposed methods is that it does not require any compression of the original model, and thus can be directly designed on large networks. The simulation studies on small synthetic networks shows that CoD-CP performs comparable to previously proposed greedy policies that were induced from the compressed versions of the networks. Furthermore, on a large 17-gene gastrointestinal cancer network, CoD-CP outperforms other two available greedy techniques, which is precisely the kind of case for which CoD-CP has been developed. Finally, our experiments show that CoD-CP is robust with respect to the attractor structure of the model. The newly proposed CoD-CP provides an attractive alternative for intervening large networks where other available greedy methods require size reduction on the network and an extra induction step before designing a control policy.

  13. Plant gravitropic signal transduction: A network analysis leads to gene discovery

    Science.gov (United States)

    Wyatt, Sarah

    Gravity plays a fundamental role in plant growth and development. Although a significant body of research has helped define the events of gravity perception, the role of the plant growth regulator auxin, and the mechanisms resulting in the gravity response, the events of signal transduction, those that link the biophysical action of perception to a biochemical signal that results in auxin redistribution, those that regulate the gravitropic effects on plant growth, remain, for the most part, a “black box.” Using a cold affect, dubbed the gravity persistent signal (GPS) response, we developed a mutant screen to specifically identify components of the signal transduction pathway. Cloning of the GPS genes have identified new proteins involved in gravitropic signaling. We have further exploited the GPS response using a multi-faceted approach including gene expression microarrays, proteomics analysis, and bioinformatics analysis and continued mutant analysis to identified additional genes, physiological and biochemical processes. Gene expression data provided the foundation of a regulatory network for gravitropic signaling. Based on these gene expression data and related data sets/information from the literature/repositories, we constructed a gravitropic signaling network for Arabidopsis inflorescence stems. To generate the network, both a dynamic Bayesian network approach and a time-lagged correlation coefficient approach were used. The dynamic Bayesian network added existing information of protein-protein interaction while the time-lagged correlation coefficient allowed incorporation of temporal regulation and thus could incorporate the time-course metric from the data set. Thus the methods complemented each other and provided us with a more comprehensive evaluation of connections. Each method generated a list of possible interactions associated with a statistical significance value. The two networks were then overlaid to generate a more rigorous, intersected

  14. Bayesian Orthogonal Least Squares (BOLS algorithm for reverse engineering of gene regulatory networks

    Directory of Open Access Journals (Sweden)

    Kim Chang

    2007-07-01

    Full Text Available Abstract Background A reverse engineering of gene regulatory network with large number of genes and limited number of experimental data points is a computationally challenging task. In particular, reverse engineering using linear systems is an underdetermined and ill conditioned problem, i.e. the amount of microarray data is limited and the solution is very sensitive to noise in the data. Therefore, the reverse engineering of gene regulatory networks with large number of genes and limited number of data points requires rigorous optimization algorithm. Results This study presents a novel algorithm for reverse engineering with linear systems. The proposed algorithm is a combination of the orthogonal least squares, second order derivative for network pruning, and Bayesian model comparison. In this study, the entire network is decomposed into a set of small networks that are defined as unit networks. The algorithm provides each unit network with P(D|Hi, which is used as confidence level. The unit network with higher P(D|Hi has a higher confidence such that the unit network is correctly elucidated. Thus, the proposed algorithm is able to locate true positive interactions using P(D|Hi, which is a unique property of the proposed algorithm. The algorithm is evaluated with synthetic and Saccharomyces cerevisiae expression data using the dynamic Bayesian network. With synthetic data, it is shown that the performance of the algorithm depends on the number of genes, noise level, and the number of data points. With Yeast expression data, it is shown that there is remarkable number of known physical or genetic events among all interactions elucidated by the proposed algorithm. The performance of the algorithm is compared with Sparse Bayesian Learning algorithm using both synthetic and Saccharomyces cerevisiae expression data sets. The comparison experiments show that the algorithm produces sparser solutions with less false positives than Sparse Bayesian

  15. Significant impact of miRNA-target gene networks on genetics of human complex traits.

    Science.gov (United States)

    Okada, Yukinori; Muramatsu, Tomoki; Suita, Naomasa; Kanai, Masahiro; Kawakami, Eiryo; Iotchkova, Valentina; Soranzo, Nicole; Inazawa, Johji; Tanaka, Toshihiro

    2016-03-01

    The impact of microRNA (miRNA) on the genetics of human complex traits, especially in the context of miRNA-target gene networks, has not been fully assessed. Here, we developed a novel analytical method, MIGWAS, to comprehensively evaluate enrichment of genome-wide association study (GWAS) signals in miRNA-target gene networks. We applied the method to the GWAS results of the 18 human complex traits from >1.75 million subjects, and identified significant enrichment in rheumatoid arthritis (RA), kidney function, and adult height (P impact of miRNA-target gene networks on the genetics of human complex traits, and provided resources which should contribute to drug discovery and nucleic acid medicine.

  16. Identifying noncoding risk variants using disease-relevant gene regulatory networks.

    Science.gov (United States)

    Gao, Long; Uzun, Yasin; Gao, Peng; He, Bing; Ma, Xiaoke; Wang, Jiahui; Han, Shizhong; Tan, Kai

    2018-02-16

    Identifying noncoding risk variants remains a challenging task. Because noncoding variants exert their effects in the context of a gene regulatory network (GRN), we hypothesize that explicit use of disease-relevant GRNs can significantly improve the inference accuracy of noncoding risk variants. We describe Annotation of Regulatory Variants using Integrated Networks (ARVIN), a general computational framework for predicting causal noncoding variants. It employs a set of novel regulatory network-based features, combined with sequence-based features to infer noncoding risk variants. Using known causal variants in gene promoters and enhancers in a number of diseases, we show ARVIN outperforms state-of-the-art methods that use sequence-based features alone. Additional experimental validation using reporter assay further demonstrates the accuracy of ARVIN. Application of ARVIN to seven autoimmune diseases provides a holistic view of the gene subnetwork perturbed by the combinatorial action of the entire set of risk noncoding mutations.

  17. A highly redundant gene network controls assembly of the outer spore wall in S. cerevisiae.

    Directory of Open Access Journals (Sweden)

    Coney Pei-Chen Lin

    Full Text Available The spore wall of Saccharomyces cerevisiae is a multilaminar extracellular structure that is formed de novo in the course of sporulation. The outer layers of the spore wall provide spores with resistance to a wide variety of environmental stresses. The major components of the outer spore wall are the polysaccharide chitosan and a polymer formed from the di-amino acid dityrosine. Though the synthesis and export pathways for dityrosine have been described, genes directly involved in dityrosine polymerization and incorporation into the spore wall have not been identified. A synthetic gene array approach to identify new genes involved in outer spore wall synthesis revealed an interconnected network influencing dityrosine assembly. This network is highly redundant both for genes of different activities that compensate for the loss of each other and for related genes of overlapping activity. Several of the genes in this network have paralogs in the yeast genome and deletion of entire paralog sets is sufficient to severely reduce dityrosine fluorescence. Solid-state NMR analysis of partially purified outer spore walls identifies a novel component in spore walls from wild type that is absent in some of the paralog set mutants. Localization of gene products identified in the screen reveals an unexpected role for lipid droplets in outer spore wall formation.

  18. Gene Network Exploration of Crosstalk between Apoptosis and Autophagy in Chronic Myelogenous Leukemia

    Directory of Open Access Journals (Sweden)

    Fengfeng Wang

    2015-01-01

    Full Text Available Background. Gene expression levels change to adapt the stress, such as starvation, toxin, and radiation. The changes are signals transmitted through molecular interactions, eventually leading to two cellular fates, apoptosis and autophagy. Due to genetic variations, the signals may not be effectively transmitted to modulate apoptotic and autophagic responses. Such aberrant modulation may lead to carcinogenesis and drug resistance. The balance between apoptosis and autophagy becomes very crucial in coping with the stress. Though there have been evidences illustrating the apoptosis-autophagy interplay, the underlying mechanism and the participation of the regulators including transcription factors (TFs and microRNAs (miRNAs remain unclear. Results. Gene network is a graphical illustration for exploring the functional linkages and the potential coordinate regulations of genes. Microarray dataset for the study of chronic myeloid leukemia was obtained from Gene Expression Omnibus. The expression profiles of those genes related to apoptosis and autophagy, including MCL1, BCL2, ATG, beclin-1, BAX, BAK, E2F, cMYC, PI3K, AKT, BAD, and LC3, were extracted from the dataset to construct the gene networks. Conclusion. The network analysis of these genes explored the underlying mechanisms and the roles of TFs and miRNAs for the crosstalk between apoptosis and autophagy.

  19. Distilling a Visual Network of Retinitis Pigmentosa Gene-Protein Interactions to Uncover New Disease Candidates.

    Directory of Open Access Journals (Sweden)

    Daniel Boloc

    Full Text Available Retinitis pigmentosa (RP is a highly heterogeneous genetic visual disorder with more than 70 known causative genes, some of them shared with other non-syndromic retinal dystrophies (e.g. Leber congenital amaurosis, LCA. The identification of RP genes has increased steadily during the last decade, and the 30% of the cases that still remain unassigned will soon decrease after the advent of exome/genome sequencing. A considerable amount of genetic and functional data on single RD genes and mutations has been gathered, but a comprehensive view of the RP genes and their interacting partners is still very fragmentary. This is the main gap that needs to be filled in order to understand how mutations relate to progressive blinding disorders and devise effective therapies.We have built an RP-specific network (RPGeNet by merging data from different sources: high-throughput data from BioGRID and STRING databases, manually curated data for interactions retrieved from iHOP, as well as interactions filtered out by syntactical parsing from up-to-date abstracts and full-text papers related to the RP research field. The paths emerging when known RP genes were used as baits over the whole interactome have been analysed, and the minimal number of connections among the RP genes and their close neighbors were distilled in order to simplify the search space.In contrast to the analysis of single isolated genes, finding the networks linking disease genes renders powerful etiopathological insights. We here provide an interactive interface, RPGeNet, for the molecular biologist to explore the network centered on the non-syndromic and syndromic RP and LCA causative genes. By integrating tissue-specific expression levels and phenotypic data on top of that network, a more comprehensive biological view will highlight key molecular players of retinal degeneration and unveil new RP disease candidates.

  20. Transcriptional profiles of supragranular-enriched genes associate with corticocortical network architecture in the human brain.

    Science.gov (United States)

    Krienen, Fenna M; Yeo, B T Thomas; Ge, Tian; Buckner, Randy L; Sherwood, Chet C

    2016-01-26

    The human brain is patterned with disproportionately large, distributed cerebral networks that connect multiple association zones in the frontal, temporal, and parietal lobes. The expansion of the cortical surface, along with the emergence of long-range connectivity networks, may be reflected in changes to the underlying molecular architecture. Using the Allen Institute's human brain transcriptional atlas, we demonstrate that genes particularly enriched in supragranular layers of the human cerebral cortex relative to mouse distinguish major cortical classes. The topography of transcriptional expression reflects large-scale brain network organization consistent with estimates from functional connectivity MRI and anatomical tracing in nonhuman primates. Microarray expression data for genes preferentially expressed in human upper layers (II/III), but enriched only in lower layers (V/VI) of mouse, were cross-correlated to identify molecular profiles across the cerebral cortex of postmortem human brains (n = 6). Unimodal sensory and motor zones have similar molecular profiles, despite being distributed across the cortical mantle. Sensory/motor profiles were anticorrelated with paralimbic and certain distributed association network profiles. Tests of alternative gene sets did not consistently distinguish sensory and motor regions from paralimbic and association regions: (i) genes enriched in supragranular layers in both humans and mice, (ii) genes cortically enriched in humans relative to nonhuman primates, (iii) genes related to connectivity in rodents, (iv) genes associated with human and mouse connectivity, and (v) 1,454 gene sets curated from known gene ontologies. Molecular innovations of upper cortical layers may be an important component in the evolution of long-range corticocortical projections.

  1. Prediction and validation of gene-disease associations using methods inspired by social network analyses.

    Directory of Open Access Journals (Sweden)

    U Martin Singh-Blom

    Full Text Available Correctly identifying associations of genes with diseases has long been a goal in biology. With the emergence of large-scale gene-phenotype association datasets in biology, we can leverage statistical and machine learning methods to help us achieve this goal. In this paper, we present two methods for predicting gene-disease associations based on functional gene associations and gene-phenotype associations in model organisms. The first method, the Katz measure, is motivated from its success in social network link prediction, and is very closely related to some of the recent methods proposed for gene-disease association inference. The second method, called Catapult (Combining dATa Across species using Positive-Unlabeled Learning Techniques, is a supervised machine learning method that uses a biased support vector machine where the features are derived from walks in a heterogeneous gene-trait network. We study the performance of the proposed methods and related state-of-the-art methods using two different evaluation strategies, on two distinct data sets, namely OMIM phenotypes and drug-target interactions. Finally, by measuring the performance of the methods using two different evaluation strategies, we show that even though both methods perform very well, the Katz measure is better at identifying associations between traits and poorly studied genes, whereas Catapult is better suited to correctly identifying gene-trait associations overall [corrected].

  2. Chronic ethanol exposure produces time- and brain region-dependent changes in gene coexpression networks.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Osterndorff-Kahanek

    Full Text Available Repeated ethanol exposure and withdrawal in mice increases voluntary drinking and represents an animal model of physical dependence. We examined time- and brain region-dependent changes in gene coexpression networks in amygdala (AMY, nucleus accumbens (NAC, prefrontal cortex (PFC, and liver after four weekly cycles of chronic intermittent ethanol (CIE vapor exposure in C57BL/6J mice. Microarrays were used to compare gene expression profiles at 0-, 8-, and 120-hours following the last ethanol exposure. Each brain region exhibited a large number of differentially expressed genes (2,000-3,000 at the 0- and 8-hour time points, but fewer changes were detected at the 120-hour time point (400-600. Within each region, there was little gene overlap across time (~20%. All brain regions were significantly enriched with differentially expressed immune-related genes at the 8-hour time point. Weighted gene correlation network analysis identified modules that were highly enriched with differentially expressed genes at the 0- and 8-hour time points with virtually no enrichment at 120 hours. Modules enriched for both ethanol-responsive and cell-specific genes were identified in each brain region. These results indicate that chronic alcohol exposure causes global 'rewiring' of coexpression systems involving glial and immune signaling as well as neuronal genes.

  3. Identifying the Gene Signatures from Gene-Pathway Bipartite Network Guarantees the Robust Model Performance on Predicting the Cancer Prognosis

    Directory of Open Access Journals (Sweden)

    Li He

    2014-01-01

    Full Text Available For the purpose of improving the prediction of cancer prognosis in the clinical researches, various algorithms have been developed to construct the predictive models with the gene signatures detected by DNA microarrays. Due to the heterogeneity of the clinical samples, the list of differentially expressed genes (DEGs generated by the statistical methods or the machine learning algorithms often involves a number of false positive genes, which are not associated with the phenotypic differences between the compared clinical conditions, and subsequently impacts the reliability of the predictive models. In this study, we proposed a strategy, which combined the statistical algorithm with the gene-pathway bipartite networks, to generate the reliable lists of cancer-related DEGs and constructed the models by using support vector machine for predicting the prognosis of three types of cancers, namely, breast cancer, acute myeloma leukemia, and glioblastoma. Our results demonstrated that, combined with the gene-pathway bipartite networks, our proposed strategy can efficiently generate the reliable cancer-related DEG lists for constructing the predictive models. In addition, the model performance in the swap analysis was similar to that in the original analysis, indicating the robustness of the models in predicting the cancer outcomes.

  4. Developmental evolution in social insects: regulatory networks from genes to societies.

    Science.gov (United States)

    Linksvayer, Timothy A; Fewell, Jennifer H; Gadau, Jürgen; Laubichler, Manfred D

    2012-05-01

    The evolution and development of complex phenotypes in social insect colonies, such as queen-worker dimorphism or division of labor, can, in our opinion, only be fully understood within an expanded mechanistic framework of Developmental Evolution. Conversely, social insects offer a fertile research area in which fundamental questions of Developmental Evolution can be addressed empirically. We review the concept of gene regulatory networks (GRNs) that aims to fully describe the battery of interacting genomic modules that are differentially expressed during the development of individual organisms. We discuss how distinct types of network models have been used to study different levels of biological organization in social insects, from GRNs to social networks. We propose that these hierarchical networks spanning different organizational levels from genes to societies should be integrated and incorporated into full GRN models to elucidate the evolutionary and developmental mechanisms underlying social insect phenotypes. Finally, we discuss prospects and approaches to achieve such an integration. © 2012 WILEY PERIODICALS, INC.

  5. Protecting posted genes: social networking and the limits of GINA.

    Science.gov (United States)

    Soo-Jin Lee, Sandra; Borgelt, Emily

    2014-01-01

    The combination of decreased genotyping costs and prolific social media use is fueling a personal genetic testing industry in which consumers purchase and interact with genetic risk information online. Consumers and their genetic risk profiles are protected in some respects by the 2008 federal Genetic Information Nondiscrimination Act (GINA), which forbids the discriminatory use of genetic information by employers and health insurers; however, practical and technical limitations undermine its enforceability, given the everyday practices of online social networking and its impact on the workplace. In the Web 2.0 era, employers in most states can legally search about job candidates and employees online, probing social networking sites for personal information that might bear on hiring and employment decisions. We examine GINA's protections for online sharing of genetic information as well as its limitations, and propose policy recommendations to address current gaps that leave employees' genetic information vulnerable in a Web-based world.

  6. Gene Networks and the Neuroendocrine Regulation of Puberty

    OpenAIRE

    Ojeda, Sergio R.; Dubay, Christopher; Lomniczi, Alejandro; Kaidar, Gabi; Matagne, Valerie; Sandau, Ursula S.; Dissen, Gregory A.

    2009-01-01

    A sustained increase in pulsatile release of gonadotrophin releasing hormone (GnRH) from the hypothalamus is an essential, final event that defines the initiation of mammalian puberty. This increase depends on coordinated changes in transsynaptic and glial-neuronal communication, consisting of activating neuronal and glial excitatory inputs to the GnRH neuronal network and the loss of transsynaptic inhibitory tone. It is now clear that the prevalent excitatory systems stimulating GnRH secreti...

  7. Epigenetic Modulation of Brain Gene Networks for Cocaine and Alcohol Abuse

    Directory of Open Access Journals (Sweden)

    Sean P Farris

    2015-05-01

    Full Text Available Cocaine and alcohol are two substances of abuse that prominently affect the central nervous system (CNS. Repeated exposure to cocaine and alcohol leads to longstanding changes in gene expression, and subsequent functional CNS plasticity, throughout multiple brain regions. Epigenetic modifications of histones are one proposed mechanism guiding these enduring changes to the transcriptome. Characterizing the large number of available biological relationships as network models can reveal unexpected biochemical relationships. Clustering analysis of variation from whole-genome sequencing of gene expression (RNA-Seq and histone H3 lysine 4 trimethylation (H3K4me3 events (ChIP-Seq revealed the underlying structure of the transcriptional and epigenomic landscape within hippocampal postmortem brain tissue of drug abusers and control cases. Distinct sets of interrelated networks for cocaine and alcohol abuse were determined for each abusive substance. The network approach identified subsets of functionally related genes that are regulated in agreement with H3K4me3 changes, suggesting cause and effect relationships between this epigenetic mark and gene expression. Gene expression networks consisted of recognized substrates for addiction, such as the dopamine- and cAMP-regulated neuronal phosphoprotein PPP1R1B / DARPP-32 and the vesicular glutamate transporter SLC17A7 / VGLUT1 as well as potentially novel molecular targets for substance abuse. Through a systems biology based approach our results illustrate the utility of integrating epigenetic and transcript expression to establish relevant biological networks in the human brain for addiction. Future work with laboratory models may clarify the functional relevance of these gene networks for cocaine and alcohol, and provide a framework for the development of medications for the treatment of addiction.

  8. Predicting Genes Involved in Human Cancer Using Network Contextual Information

    Directory of Open Access Journals (Sweden)

    Rahmani Hossein

    2012-03-01

    Full Text Available Protein-Protein Interaction (PPI networks have been widely used for the task of predicting proteins involved in cancer. Previous research has shown that functional information about the protein for which a prediction is made, proximity to specific other proteins in the PPI network, as well as local network structure are informative features in this respect. In this work, we introduce two new types of input features, reflecting additional information: (1 Functional Context: the functions of proteins interacting with the target protein (rather than the protein itself; and (2 Structural Context: the relative position of the target protein with respect to specific other proteins selected according to a novel ANOVA (analysis of variance based measure. We also introduce a selection strategy to pinpoint the most informative features. Results show that the proposed feature types and feature selection strategy yield informative features. A standard machine learning method (Naive Bayes that uses the features proposed here outperforms the current state-of-the-art methods by more than 5% with respect to F-measure. In addition, manual inspection confirms the biological relevance of the top-ranked features.

  9. Structure and evolution of protein interaction networks: a statistical model for link dynamics and gene duplications

    Directory of Open Access Journals (Sweden)

    Wagner Andreas

    2004-11-01

    Full Text Available Abstract Background The structure of molecular networks derives from dynamical processes on evolutionary time scales. For protein interaction networks, global statistical features of their structure can now be inferred consistently from several large-throughput datasets. Understanding the underlying evolutionary dynamics is crucial for discerning random parts of the network from biologically important properties shaped by natural selection. Results We present a detailed statistical analysis of the protein interactions in Saccharomyces cerevisiae based on several large-throughput datasets. Protein pairs resulting from gene duplications are used as tracers into the evolutionary past of the network. From this analysis, we infer rate estimates for two key evolutionary processes shaping the network: (i gene duplications and (ii gain and loss of interactions through mutations in existing proteins, which are referred to as link dynamics. Importantly, the link dynamics is asymmetric, i.e., the evolutionary steps are mutations in just one of the binding parters. The link turnover is shown to be much faster than gene duplications. Both processes are assembled into an empirically grounded, quantitative model for the evolution of protein interaction networks. Conclusions According to this model, the link dynamics is the dominant evolutionary force shaping the statistical structure of the network, while the slower gene duplication dynamics mainly affects its size. Specifically, the model predicts (i a broad distribution of the connectivities (i.e., the number of binding partners of a protein and (ii correlations between the connectivities of interacting proteins, a specific consequence of the asymmetry of the link dynamics. Both features have been observed in the protein interaction network of S. cerevisiae.

  10. Module Anchored Network Inference: A Sequential Module-Based Approach to Novel Gene Network Construction from Genomic Expression Data on Human Disease Mechanism

    Directory of Open Access Journals (Sweden)

    Annamalai Muthiah

    2017-01-01

    Full Text Available Different computational approaches have been examined and compared for inferring network relationships from time-series genomic data on human disease mechanisms under the recent Dialogue on Reverse Engineering Assessment and Methods (DREAM challenge. Many of these approaches infer all possible relationships among all candidate genes, often resulting in extremely crowded candidate network relationships with many more False Positives than True Positives. To overcome this limitation, we introduce a novel approach, Module Anchored Network Inference (MANI, that constructs networks by analyzing sequentially small adjacent building blocks (modules. Using MANI, we inferred a 7-gene adipogenesis network based on time-series gene expression data during adipocyte differentiation. MANI was also applied to infer two 10-gene networks based on time-course perturbation datasets from DREAM3 and DREAM4 challenges. MANI well inferred and distinguished serial, parallel, and time-dependent gene interactions and network cascades in these applications showing a superior performance to other in silico network inference techniques for discovering and reconstructing gene network relationships.

  11. Multivariate Entropy Characterizes the Gene Expression and Protein-Protein Networks in Four Types of Cancer

    Directory of Open Access Journals (Sweden)

    Angel Juarez-Flores

    2018-02-01

    Full Text Available There is an important urgency to detect cancer at early stages to treat it, to improve the patients’ lifespans, and even to cure it. In this work, we determined the entropic contributions of genes in cancer networks. We detected sudden changes in entropy values in melanoma, hepatocellular carcinoma, pancreatic cancer, and squamous lung cell carcinoma associated to transitions from healthy controls to cancer. We also identified the most relevant genes involved in carcinogenic process of the four types of cancer with the help of entropic changes in local networks. Their corresponding proteins could be used as potential targets for treatments and as biomarkers of cancer.

  12. Fractal gene regulatory networks for robust locomotion control of modular robots

    DEFF Research Database (Denmark)

    Zahadat, Payam; Christensen, David Johan; Schultz, Ulrik Pagh

    2010-01-01

    Designing controllers for modular robots is difficult due to the distributed and dynamic nature of the robots. In this paper fractal gene regulatory networks are evolved to control modular robots in a distributed way. Experiments with different morphologies of modular robot are performed and the ......Designing controllers for modular robots is difficult due to the distributed and dynamic nature of the robots. In this paper fractal gene regulatory networks are evolved to control modular robots in a distributed way. Experiments with different morphologies of modular robot are performed...

  13. Sensor-coupled fractal gene regulatory networks for locomotion control of a modular snake robot

    DEFF Research Database (Denmark)

    Zahadat, Payam; Christensen, David Johan; Katebi, Serajeddin

    2013-01-01

    In this paper we study fractal gene regulatory network (FGRN) controllers based on sensory information. The FGRN controllers are evolved to control a snake robot consisting of seven simulated ATRON modules. Each module contains three tilt sensors which represent the direction of gravity in the co......In this paper we study fractal gene regulatory network (FGRN) controllers based on sensory information. The FGRN controllers are evolved to control a snake robot consisting of seven simulated ATRON modules. Each module contains three tilt sensors which represent the direction of gravity...

  14. MS/MS networking guided analysis of molecule and gene cluster families

    Science.gov (United States)

    Nguyen, Don Duy; Wu, Cheng-Hsuan; Moree, Wilna J.; Lamsa, Anne; Medema, Marnix H.; Zhao, Xiling; Gavilan, Ronnie G.; Aparicio, Marystella; Atencio, Librada; Jackson, Chanaye; Ballesteros, Javier; Sanchez, Joel; Watrous, Jeramie D.; Phelan, Vanessa V.; van de Wiel, Corine; Kersten, Roland D.; Mehnaz, Samina; De Mot, René; Shank, Elizabeth A.; Charusanti, Pep; Nagarajan, Harish; Duggan, Brendan M.; Moore, Bradley S.; Bandeira, Nuno; Palsson, Bernhard Ø.; Pogliano, Kit; Gutiérrez, Marcelino; Dorrestein, Pieter C.

    2013-01-01

    The ability to correlate the production of specialized metabolites to the genetic capacity of the organism that produces such molecules has become an invaluable tool in aiding the discovery of biotechnologically applicable molecules. Here, we accomplish this task by matching molecular families with gene cluster families, making these correlations to 60 microbes at one time instead of connecting one molecule to one organism at a time, such as how it is traditionally done. We can correlate these families through the use of nanospray desorption electrospray ionization MS/MS, an ambient pressure MS technique, in conjunction with MS/MS networking and peptidogenomics. We matched the molecular families of peptide natural products produced by 42 bacilli and 18 pseudomonads through the generation of amino acid sequence tags from MS/MS data of specific clusters found in the MS/MS network. These sequence tags were then linked to biosynthetic gene clusters in publicly accessible genomes, providing us with the ability to link particular molecules with the genes that produced them. As an example of its use, this approach was applied to two unsequenced Pseudoalteromonas species, leading to the discovery of the gene cluster for a molecular family, the bromoalterochromides, in the previously sequenced strain P. piscicida JCM 20779T. The approach itself is not limited to 60 related strains, because spectral networking can be readily adopted to look at molecular family–gene cluster families of hundreds or more diverse organisms in one single MS/MS network. PMID:23798442

  15. A network-based gene expression signature informs prognosis and treatment for colorectal cancer patients.

    Directory of Open Access Journals (Sweden)

    Mingguang Shi

    Full Text Available Several studies have reported gene expression signatures that predict recurrence risk in stage II and III colorectal cancer (CRC patients with minimal gene membership overlap and undefined biological relevance. The goal of this study was to investigate biological themes underlying these signatures, to infer genes of potential mechanistic importance to the CRC recurrence phenotype and to test whether accurate prognostic models can be developed using mechanistically important genes.We investigated eight published CRC gene expression signatures and found no functional convergence in Gene Ontology enrichment analysis. Using a random walk-based approach, we integrated these signatures and publicly available somatic mutation data on a protein-protein interaction network and inferred 487 genes that were plausible candidate molecular underpinnings for the CRC recurrence phenotype. We named the list of 487 genes a NEM signature because it integrated information from Network, Expression, and Mutation. The signature showed significant enrichment in four biological processes closely related to cancer pathophysiology and provided good coverage of known oncogenes, tumor suppressors, and CRC-related signaling pathways. A NEM signature-based Survival Support Vector Machine prognostic model was trained using a microarray gene expression dataset and tested on an independent dataset. The model-based scores showed a 75.7% concordance with the real survival data and separated patients into two groups with significantly different relapse-free survival (p = 0.002. Similar results were obtained with reversed training and testing datasets (p = 0.007. Furthermore, adjuvant chemotherapy was significantly associated with prolonged survival of the high-risk patients (p = 0.006, but not beneficial to the low-risk patients (p = 0.491.The NEM signature not only reflects CRC biology but also informs patient prognosis and treatment response. Thus, the network

  16. Design of Knowledge Bases for Plant Gene Regulatory Networks.

    Science.gov (United States)

    Mukundi, Eric; Gomez-Cano, Fabio; Ouma, Wilberforce Zachary; Grotewold, Erich

    2017-01-01

    Developing a knowledge base that contains all the information necessary for the researcher studying gene regulation in a particular organism can be accomplished in four stages. This begins with defining the data scope. We describe here the necessary information and resources, and outline the methods for obtaining data. The second stage consists of designing the schema, which involves defining the entire arrangement of the database in a systematic plan. The third stage is the implementation, defined by actualization of the database by using software according to a predefined schema. The final stage is development, where the database is made available to users in a web-accessible system. The result is a knowledgebase that integrates all the information pertaining to gene regulation, and which is easily expandable and transferable.

  17. Conservation and diversification of an ancestral chordate gene regulatory network for dorsoventral patterning.

    Directory of Open Access Journals (Sweden)

    Iryna Kozmikova

    Full Text Available Formation of a dorsoventral axis is a key event in the early development of most animal embryos. It is well established that bone morphogenetic proteins (Bmps and Wnts are key mediators of dorsoventral patterning in vertebrates. In the cephalochordate amphioxus, genes encoding Bmps and transcription factors downstream of Bmp signaling such as Vent are expressed in patterns reminiscent of those of their vertebrate orthologues. However, the key question is whether the conservation of expression patterns of network constituents implies conservation of functional network interactions, and if so, how an increased functional complexity can evolve. Using heterologous systems, namely by reporter gene assays in mammalian cell lines and by transgenesis in medaka fish, we have compared the gene regulatory network implicated in dorsoventral patterning of the basal chordate amphioxus and vertebrates. We found that Bmp but not canonical Wnt signaling regulates promoters of genes encoding homeodomain proteins AmphiVent1 and AmphiVent2. Furthermore, AmphiVent1 and AmphiVent2 promoters appear to be correctly regulated in the context of a vertebrate embryo. Finally, we show that AmphiVent1 is able to directly repress promoters of AmphiGoosecoid and AmphiChordin genes. Repression of genes encoding dorsal-specific signaling molecule Chordin and transcription factor Goosecoid by Xenopus and zebrafish Vent genes represents a key regulatory interaction during vertebrate axis formation. Our data indicate high evolutionary conservation of a core Bmp-triggered gene regulatory network for dorsoventral patterning in chordates and suggest that co-option of the canonical Wnt signaling pathway for dorsoventral patterning in vertebrates represents one of the innovations through which an increased morphological complexity of vertebrate embryo is achieved.

  18. Integration of Genome Scale Metabolic Networks and Gene Regulation of Metabolic Enzymes With Physiologically Based Pharmacokinetics

    Science.gov (United States)

    Maldonado, Elaina M.; Leoncikas, Vytautas; Fisher, Ciarán P.; Moore, J. Bernadette; Plant, Nick J.

    2017-01-01

    The scope of physiologically based pharmacokinetic (PBPK) modeling can be expanded by assimilation of the mechanistic models of intracellular processes from systems biology field. The genome scale metabolic networks (GSMNs) represent a whole set of metabolic enzymes expressed in human tissues. Dynamic models of the gene regulation of key drug metabolism enzymes are available. Here, we introduce GSMNs and review ongoing work on integration of PBPK, GSMNs, and metabolic gene regulation. We demonstrate example models. PMID:28782239

  19. Snapshot of iron response in Shewanella oneidensis by gene network reconstruction

    Directory of Open Access Journals (Sweden)

    Jacobsen Janet

    2009-03-01

    Full Text Available Abstract Background Iron homeostasis of Shewanella oneidensis, a γ-proteobacterium possessing high iron content, is regulated by a global transcription factor Fur. However, knowledge is incomplete about other biological pathways that respond to changes in iron concentration, as well as details of the responses. In this work, we integrate physiological, transcriptomics and genetic approaches to delineate the iron response of S. oneidensis. Results We show that the iron response in S. oneidensis is a rapid process. Temporal gene expression profiles were examined for iron depletion and repletion, and a gene co-expression network was reconstructed. Modules of iron acquisition systems, anaerobic energy metabolism and protein degradation were the most noteworthy in the gene network. Bioinformatics analyses suggested that genes in each of the modules might be regulated by DNA-binding proteins Fur, CRP and RpoH, respectively. Closer inspection of these modules revealed a transcriptional regulator (SO2426 involved in iron acquisition and ten transcriptional factors involved in anaerobic energy metabolism. Selected genes in the network were analyzed by genetic studies. Disruption of genes encoding a putative alcaligin biosynthesis protein (SO3032 and a gene previously implicated in protein degradation (SO2017 led to severe growth deficiency under iron depletion conditions. Disruption of a novel transcriptional factor (SO1415 caused deficiency in both anaerobic iron reduction and growth with thiosulfate or TMAO as an electronic acceptor, suggesting that SO1415 is required for specific branches of anaerobic energy metabolism pathways. Conclusion Using a reconstructed gene network, we identified major biological pathways that were differentially expressed during iron depletion and repletion. Genetic studies not only demonstrated the importance of iron acquisition and protein degradation for iron depletion, but also characterized a novel transcriptional

  20. Modularity of gene-regulatory networks revealed in sea-star development.

    Science.gov (United States)

    McDougall, Carmel; Degnan, Bernard M

    2011-01-31

    Evidence that conserved developmental gene-regulatory networks can change as a unit during deutersostome evolution emerges from a study published in BMC Biology. This shows that genes consistently expressed in anterior brain patterning in hemichordates and chordates are expressed in a similar spatial pattern in another deuterostome, an asteroid echinoderm (sea star), but in a completely different developmental context (the animal-vegetal axis). This observation has implications for hypotheses on the type of development present in the deuterostome common ancestor.

  1. Elucidating gene function and function evolution through comparison of co-expression networks in plants

    Directory of Open Access Journals (Sweden)

    Marek eMutwil

    2014-08-01

    Full Text Available The analysis of gene expression data has shown that transcriptionally coordinated (co-expressed genes are often functionally related, enabling scientists to use expression data in gene function prediction. This Focused Review discusses our original paper (Large-scale co-expression approach to dissect secondary cell wall formation across plant species, Frontiers in Plant Science 2:23. In this paper we applied cross-species analysis to co-expression networks of genes involved in cellulose biosynthesis. We show that the co-expression networks from different species are highly similar, indicating that whole biological pathways are conserved across species. This finding has two important implications. First, the analysis can transfer gene function annotation from well-studied plants, such as Arabidopsis, to other, uncharacterized plant species. As the analysis finds genes that have similar sequence and similar expression pattern across different organisms, functionally equivalent genes can be identified. Second, since co-expression analyses are often noisy, a comparative analysis should have higher performance, as parts of co-expression networks that are conserved are more likely to be functionally relevant. In this Focused Review, we outline the comparative analysis done in the original paper and comment on the recent advances and approaches that allow comparative analyses of co-function networks. We hypothesize that, in comparison to simple co-expression analysis, comparative analysis would yield more accurate gene function predictions. Finally, by combining comparative analysis with genomic information of green plants, we propose a possible composition of cellulose biosynthesis machinery during earlier stages of plant evolution.

  2. Snapshot of iron response in Shewanella oneidensis by gene network reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yunfeng; Harris, Daniel P.; Luo, Feng; Xiong, Wenlu; Joachimiak, Marcin; Wu, Liyou; Dehal, Paramvir; Jacobsen, Janet; Yang, Zamin; Palumbo, Anthony V.; Arkin, Adam P.; Zhou, Jizhong

    2008-10-09

    Background: Iron homeostasis of Shewanella oneidensis, a gamma-proteobacterium possessing high iron content, is regulated by a global transcription factor Fur. However, knowledge is incomplete about other biological pathways that respond to changes in iron concentration, as well as details of the responses. In this work, we integrate physiological, transcriptomics and genetic approaches to delineate the iron response of S. oneidensis. Results: We show that the iron response in S. oneidensis is a rapid process. Temporal gene expression profiles were examined for iron depletion and repletion, and a gene co-expression network was reconstructed. Modules of iron acquisition systems, anaerobic energy metabolism and protein degradation were the most noteworthy in the gene network. Bioinformatics analyses suggested that genes in each of the modules might be regulated by DNA-binding proteins Fur, CRP and RpoH, respectively. Closer inspection of these modules revealed a transcriptional regulator (SO2426) involved in iron acquisition and ten transcriptional factors involved in anaerobic energy metabolism. Selected genes in the network were analyzed by genetic studies. Disruption of genes encoding a putative alcaligin biosynthesis protein (SO3032) and a gene previously implicated in protein degradation (SO2017) led to severe growth deficiency under iron depletion conditions. Disruption of a novel transcriptional factor (SO1415) caused deficiency in both anaerobic iron reduction and growth with thiosulfate or TMAO as an electronic acceptor, suggesting that SO1415 is required for specific branches of anaerobic energy metabolism pathways. Conclusions: Using a reconstructed gene network, we identified major biological pathways that were differentially expressed during iron depletion and repletion. Genetic studies not only demonstrated the importance of iron acquisition and protein degradation for iron depletion, but also characterized a novel transcriptional factor (SO1415) with a

  3. Gene Expression Based Leukemia Sub-Classification Using Committee Neural Networks

    OpenAIRE

    Sewak, Mihir S.; Reddy, Narender P.; Duan, Zhong-Hui

    2009-01-01

    Analysis of gene expression data provides an objective and efficient technique for sub‑classification of leukemia. The purpose of the present study was to design a committee neural networks based classification systems to subcategorize leukemia gene expression data. In the study, a binary classification system was considered to differentiate acute lymphoblastic leukemia from acute myeloid leukemia. A ternary classification system which classifies leukemia expression data into three subclasses...

  4. Inference of Gene Regulatory Networks Using Bayesian Nonparametric Regression and Topology Information

    OpenAIRE

    Fan, Yue; Wang, Xiao; Peng, Qinke

    2017-01-01

    Gene regulatory networks (GRNs) play an important role in cellular systems and are important for understanding biological processes. Many algorithms have been developed to infer the GRNs. However, most algorithms only pay attention to the gene expression data but do not consider the topology information in their inference process, while incorporating this information can partially compensate for the lack of reliable expression data. Here we develop a Bayesian group lasso with spike and slab p...

  5. Gene identification for risk of relapse in stage I lung adenocarcinoma patients: a combined methodology of gene expression profiling and computational gene network analysis.

    Science.gov (United States)

    Ludovini, Vienna; Bianconi, Fortunato; Siggillino, Annamaria; Piobbico, Danilo; Vannucci, Jacopo; Metro, Giulio; Chiari, Rita; Bellezza, Guido; Puma, Francesco; Della Fazia, Maria Agnese; Servillo, Giuseppe; Crinò, Lucio

    2016-05-24

    Risk assessment and treatment choice remains a challenge in early non-small-cell lung cancer (NSCLC). The aim of this study was to identify novel genes involved in the risk of early relapse (ER) compared to no relapse (NR) in resected lung adenocarcinoma (AD) patients using a combination of high throughput technology and computational analysis. We identified 18 patients (n.13 NR and n.5 ER) with stage I AD. Frozen samples of patients in ER, NR and corresponding normal lung (NL) were subjected to Microarray technology and quantitative-PCR (Q-PCR). A gene network computational analysis was performed to select predictive genes. An independent set of 79 ADs stage I samples was used to validate selected genes by Q-PCR.From microarray analysis we selected 50 genes, using the fold change ratio of ER versus NR. They were validated both in pool and individually in patient samples (ER and NR) by Q-PCR. Fourteen increased and 25 decreased genes showed a concordance between two methods. They were used to perform a computational gene network analysis that identified 4 increased (HOXA10, CLCA2, AKR1B10, FABP3) and 6 decreased (SCGB1A1, PGC, TFF1, PSCA, SPRR1B and PRSS1) genes. Moreover, in an independent dataset of ADs samples, we showed that both high FABP3 expression and low SCGB1A1 expression was associated with a worse disease-free survival (DFS).Our results indicate that it is possible to define, through gene expression and computational analysis, a characteristic gene profiling of patients with an increased risk of relapse that may become a tool for patient selection for adjuvant therapy.

  6. Transcriptional Regulatory Network Analysis of MYB Transcription Factor Family Genes in Rice.

    Science.gov (United States)

    Smita, Shuchi; Katiyar, Amit; Chinnusamy, Viswanathan; Pandey, Dev M; Bansal, Kailash C

    2015-01-01

    MYB transcription factor (TF) is one of the largest TF families and regulates defense responses to various stresses, hormone signaling as well as many metabolic and developmental processes in plants. Understanding these regulatory hierarchies of gene expression networks in response to developmental and environmental cues is a major challenge due to the complex interactions between the genetic elements. Correlation analyses are useful to unravel co-regulated gene pairs governing biological process as well as identification of new candidate hub genes in response to these complex processes. High throughput expression profiling data are highly useful for construction of co-expression networks. In the present study, we utilized transcriptome data for comprehensive regulatory network studies of MYB TFs by "top-down" and "guide-gene" approaches. More than 50% of OsMYBs were strongly correlated under 50 experimental conditions with 51 hub genes via "top-down" approach. Further, clusters were identified using Markov Clustering (MCL). To maximize the clustering performance, parameter evaluation of the MCL inflation score (I) was performed in terms of enriched GO categories by measuring F-score. Comparison of co-expressed cluster and clads analyzed from phylogenetic analysis signifies their evolutionarily conserved co-regulatory role. We utilized compendium of known interaction and biological role with Gene Ontology enrichment analysis to hypothesize function of coexpressed OsMYBs. In the other part, the transcriptional regulatory network analysis by "guide-gene" approach revealed 40 putative targets of 26 OsMYB TF hubs with high correlation value utilizing 815 microarray data. The putative targets with MYB-binding cis-elements enrichment in their promoter region, functional co-occurrence as well as nuclear localization supports our finding. Specially, enrichment of MYB binding regions involved in drought-inducibility implying their regulatory role in drought response in rice

  7. Transcriptional Regulatory Network Analysis of MYB Transcription Factor Family Genes in Rice

    Directory of Open Access Journals (Sweden)

    Shuchi eSmita

    2015-12-01

    Full Text Available MYB transcription factor (TF is one of the largest TF families and regulates defense responses to various stresses, hormone signaling as well as many metabolic and developmental processes in plants. Understanding these regulatory hierarchies of gene expression networks in response to developmental and environmental cues is a major challenge due to the complex interactions between the genetic elements. Correlation analyses are useful to unravel co-regulated gene pairs governing biological process as well as identification of new candidate hub genes in response to these complex processes. High throughput expression profiling data are highly useful for construction of co-expression networks. In the present study, we utilized transcriptome data for comprehensive regulatory network studies of MYB TFs by top down and guide gene approaches. More than 50% of OsMYBs were strongly correlated under fifty experimental conditions with 51 hub genes via top down approach. Further, clusters were identified using Markov Clustering (MCL. To maximize the clustering performance, parameter evaluation of the MCL inflation score (I was performed in terms of enriched GO categories by measuring F-score. Comparison of co-expressed cluster and clads analyzed from phylogenetic analysis signifies their evolutionarily conserved co-regulatory role. We utilized compendium of known interaction and biological role with Gene Ontology enrichment analysis to hypothesize function of coexpressed OsMYBs. In the other part, the transcriptional regulatory network analysis by guide gene approach revealed 40 putative targets of 26 OsMYB TF hubs with high correlation value utilizing 815 microarray data. The putative targets with MYB-binding cis-elements enrichment in their promoter region, functional co-occurrence as well as nuclear localization supports our finding. Specially, enrichment of MYB binding regions involved in drought-inducibility implying their regulatory role in drought

  8. Critical genes of hepatocellular carcinoma revealed by network and module analysis of RNA-seq data.

    Science.gov (United States)

    Yang, M-R; Zhang, Y; Wu, X-X; Chen, W

    2016-10-01

    RNA-seq data of hepatocellular carcinoma (HCC) was analyzed to identify critical genes related to the pathogenesis and prognosis. Three RNA-seq datasets of HCC (GSE69164, GSE63863 and GSE55758) were downloaded from Gene Expression Omnibus (GEO), while another dataset including 54 HCC cases with survival time was obtained from The Cancer Genome Atlas (TCGA). Differentially expressed genes (DEGs) were identified by significant analysis of microarrays (SAM) method using package samr of R. As followed, we constructed a protein-protein interaction (PPI) network based on the information in Human Protein Reference Database (HPRD). Modules in the PPI network were identified with MCODE method using plugin clusterViz of CytoScape. Gene Ontology (GO) enrichment analysis and pathway enrichment analysis were performed with DAVID. The difference in survival curves was analyzed with Kaplan-Meier (K-M) method using package survival. A total of 2572 DEGs were identified in the 3 datasets from GEO (GSE69164, GSE63863 and GSE55758). The PPI network was constructed including 660 nodes and 1008 edges, and 4 modules were disclosed in the network. Module A (containing 244 DEGs) was found to related to HCC closely, which genes were involved in transcription factor binding, protein metabolism as well as regulation of apoptosis. Nine hub genes were identified in the module A, including PRKCA, YWHAZ, KRT18, NDRG1, HSPA1A, HSP90AA1, HSF1, IKGKB and UBE21. The network provides the protein-protein interaction of these critical genes, which were implicated in the pathogenesis of HCC. Survival analysis showed that there is a significant difference between two groups classified by the genes in module A. Further Univariate Cox regression analysis showed that 72 genes were associated with survival time significantly, such as NPM1, PRKDC, SPARC, HMGA1, COL1A1 and COL1A2. Nine critical genes related to the pathogenesis and 72 potential prognostic markers were revealed in HCC by the network and module

  9. CSI: a nonparametric Bayesian approach to network inference from multiple perturbed time series gene expression data.

    Science.gov (United States)

    Penfold, Christopher A; Shifaz, Ahmed; Brown, Paul E; Nicholson, Ann; Wild, David L

    2015-06-01

    Here we introduce the causal structure identification (CSI) package, a Gaussian process based approach to inferring gene regulatory networks (GRNs) from multiple time series data. The standard CSI approach infers a single GRN via joint learning from multiple time series datasets; the hierarchical approach (HCSI) infers a separate GRN for each dataset, albeit with the networks constrained to favor similar structures, allowing for the identification of context specific networks. The software is implemented in MATLAB and includes a graphical user interface (GUI) for user friendly inference. Finally the GUI can be connected to high performance computer clusters to facilitate analysis of large genomic datasets.

  10. Functional network analysis of genes differentially expressed during xylogenesis in soc1ful woody Arabidopsis plants.

    Science.gov (United States)

    Davin, Nicolas; Edger, Patrick P; Hefer, Charles A; Mizrachi, Eshchar; Schuetz, Mathias; Smets, Erik; Myburg, Alexander A; Douglas, Carl J; Schranz, Michael E; Lens, Frederic

    2016-06-01

    Many plant genes are known to be involved in the development of cambium and wood, but how the expression and functional interaction of these genes determine the unique biology of wood remains largely unknown. We used the soc1ful loss of function mutant - the woodiest genotype known in the otherwise herbaceous model plant Arabidopsis - to investigate the expression and interactions of genes involved in secondary growth (wood formation). Detailed anatomical observations of the stem in combination with mRNA sequencing were used to assess transcriptome remodeling during xylogenesis in wild-type and woody soc1ful plants. To interpret the transcriptome changes, we constructed functional gene association networks of differentially expressed genes using the STRING database. This analysis revealed functionally enriched gene association hubs that are differentially expressed in herbaceous and woody tissues. In particular, we observed the differential expression of genes related to mechanical stress and jasmonate biosynthesis/signaling during wood formation in soc1ful plants that may be an effect of greater tension within woody tissues. Our results suggest that habit shifts from herbaceous to woody life forms observed in many angiosperm lineages could have evolved convergently by genetic changes that modulate the gene expression and interaction network, and thereby redeploy the conserved wood developmental program. © 2016 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.

  11. Reverse Engineering Sparse Gene Regulatory Networks Using Cubature Kalman Filter and Compressed Sensing

    Directory of Open Access Journals (Sweden)

    Amina Noor

    2013-01-01

    Full Text Available This paper proposes a novel algorithm for inferring gene regulatory networks which makes use of cubature Kalman filter (CKF and Kalman filter (KF techniques in conjunction with compressed sensing methods. The gene network is described using a state-space model. A nonlinear model for the evolution of gene expression is considered, while the gene expression data is assumed to follow a linear Gaussian model. The hidden states are estimated using CKF. The system parameters are modeled as a Gauss-Markov process and are estimated using compressed sensing-based KF. These parameters provide insight into the regulatory relations among the genes. The Cramér-Rao lower bound of the parameter estimates is calculated for the system model and used as a benchmark to assess the estimation accuracy. The proposed algorithm is evaluated rigorously using synthetic data in different scenarios which include different number of genes and varying number of sample points. In addition, the algorithm is tested on the DREAM4 in silico data sets as well as the in vivo data sets from IRMA network. The proposed algorithm shows superior performance in terms of accuracy, robustness, and scalability.

  12. A pathway-based network analysis of hypertension-related genes

    Science.gov (United States)

    Wang, Huan; Hu, Jing-Bo; Xu, Chuan-Yun; Zhang, De-Hai; Yan, Qian; Xu, Ming; Cao, Ke-Fei; Zhang, Xu-Sheng

    2016-02-01

    Complex network approach has become an effective way to describe interrelationships among large amounts of biological data, which is especially useful in finding core functions and global behavior of biological systems. Hypertension is a complex disease caused by many reasons including genetic, physiological, psychological and even social factors. In this paper, based on the information of biological pathways, we construct a network model of hypertension-related genes of the salt-sensitive rat to explore the interrelationship between genes. Statistical and topological characteristics show that the network has the small-world but not scale-free property, and exhibits a modular structure, revealing compact and complex connections among these genes. By the threshold of integrated centrality larger than 0.71, seven key hub genes are found: Jun, Rps6kb1, Cycs, Creb312, Cdk4, Actg1 and RT1-Da. These genes should play an important role in hypertension, suggesting that the treatment of hypertension should focus on the combination of drugs on multiple genes.

  13. Genome-Scale Networks Link Neurodegenerative Disease Genes to α-Synuclein through Specific Molecular Pathways.

    Science.gov (United States)

    Khurana, Vikram; Peng, Jian; Chung, Chee Yeun; Auluck, Pavan K; Fanning, Saranna; Tardiff, Daniel F; Bartels, Theresa; Koeva, Martina; Eichhorn, Stephen W; Benyamini, Hadar; Lou, Yali; Nutter-Upham, Andy; Baru, Valeriya; Freyzon, Yelena; Tuncbag, Nurcan; Costanzo, Michael; San Luis, Bryan-Joseph; Schöndorf, David C; Barrasa, M Inmaculada; Ehsani, Sepehr; Sanjana, Neville; Zhong, Quan; Gasser, Thomas; Bartel, David P; Vidal, Marc; Deleidi, Michela; Boone, Charles; Fraenkel, Ernest; Berger, Bonnie; Lindquist, Susan

    2017-02-22

    Numerous genes and molecular pathways are implicated in neurodegenerative proteinopathies, but their inter-relationships are poorly understood. We systematically mapped molecular pathways underlying the toxicity of alpha-synuclein (α-syn), a protein central to Parkinson's disease. Genome-wide screens in yeast identified 332 genes that impact α-syn toxicity. To "humanize" this molecular network, we developed a computational method, TransposeNet. This integrates a Steiner prize-collecting approach with homology assignment through sequence, structure, and interaction topology. TransposeNet linked α-syn to multiple parkinsonism genes and druggable targets through perturbed protein trafficking and ER quality control as well as mRNA metabolism and translation. A calcium signaling hub linked these processes to perturbed mitochondrial quality control and function, metal ion transport, transcriptional regulation, and signal transduction. Parkinsonism gene interaction profiles spatially opposed in the network (ATP13A2/PARK9 and VPS35/PARK17) were highly distinct, and network relationships for specific genes (LRRK2/PARK8, ATXN2, and EIF4G1/PARK18) were confirmed in patient induced pluripotent stem cell (iPSC)-derived neurons. This cross-species platform connected diverse neurodegenerative genes to proteinopathy through specific mechanisms and may facilitate patient stratification for targeted therapy. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Gene regulatory network reconstruction by Bayesian integration of prior knowledge and/or different experimental conditions.

    Science.gov (United States)

    Werhli, Adriano V; Husmeier, Dirk

    2008-06-01

    There have been various attempts to improve the reconstruction of gene regulatory networks from microarray data by the systematic integration of biological prior knowledge. Our approach is based on pioneering work by Imoto et al. where the prior knowledge is expressed in terms of energy functions, from which a prior distribution over network structures is obtained in the form of a Gibbs distribution. The hyperparameters of this distribution represent the weights associated with the prior knowledge relative to the data. We have derived and tested a Markov chain Monte Carlo (MCMC) scheme for sampling networks and hyperparameters simultaneously from the posterior distribution, thereby automatically learning how to trade off information from the prior knowledge and the data. We have extended this approach to a Bayesian coupling scheme for learning gene regulatory networks from a combination of related data sets, which were obtained under different experimental conditions and are therefore potentially associated with different active subpathways. The proposed coupling scheme is a compromise between (1) learning networks from the different subsets separately, whereby no information between the different experiments is shared; and (2) learning networks from a monolithic fusion of the individual data sets, which does not provide any mechanism for uncovering differences between the network structures associated with the different experimental conditions. We have assessed the viability of all proposed methods on data related to the Raf signaling pathway, generated both synthetically and in cytometry experiments.

  15. Structural influence of gene networks on their inference: analysis of C3NET

    Directory of Open Access Journals (Sweden)

    Emmert-Streib Frank

    2011-06-01

    Full Text Available Abstract Background The availability of large-scale high-throughput data possesses considerable challenges toward their functional analysis. For this reason gene network inference methods gained considerable interest. However, our current knowledge, especially about the influence of the structure of a gene network on its inference, is limited. Results In this paper we present a comprehensive investigation of the structural influence of gene networks on the inferential characteristics of C3NET - a recently introduced gene network inference algorithm. We employ local as well as global performance metrics in combination with an ensemble approach. The results from our numerical study for various biological and synthetic network structures and simulation conditions, also comparing C3NET with other inference algorithms, lead a multitude of theoretical and practical insights into the working behavior of C3NET. In addition, in order to facilitate the practical usage of C3NET we provide an user-friendly R package, called c3net, and describe its functionality. It is available from https://r-forge.r-project.org/projects/c3net and from the CRAN package repository. Conclusions The availability of gene network inference algorithms with known inferential properties opens a new era of large-scale screening experiments that could be equally beneficial for basic biological and biomedical research with auspicious prospects. The availability of our easy to use software package c3net may contribute to the popularization of such methods. Reviewers This article was reviewed by Lev Klebanov, Joel Bader and Yuriy Gusev.

  16. Evaluation of artificial time series microarray data for dynamic gene regulatory network inference.

    Science.gov (United States)

    Xenitidis, P; Seimenis, I; Kakolyris, S; Adamopoulos, A

    2017-08-07

    High-throughput technology like microarrays is widely used in the inference of gene regulatory networks (GRNs). We focused on time series data since we are interested in the dynamics of GRNs and the identification of dynamic networks. We evaluated the amount of information that exists in artificial time series microarray data and the ability of an inference process to produce accurate models based on them. We used dynamic artificial gene regulatory networks in order to create artificial microarray data. Key features that characterize microarray data such as the time separation of directly triggered genes, the percentage of directly triggered genes and the triggering function type were altered in order to reveal the limits that are imposed by the nature of microarray data on the inference process. We examined the effect of various factors on the inference performance such as the network size, the presence of noise in microarray data, and the network sparseness. We used a system theory approach and examined the relationship between the pole placement of the inferred system and the inference performance. We examined the relationship between the inference performance in the time domain and the true system parameter identification. Simulation results indicated that time separation and the percentage of directly triggered genes are crucial factors. Also, network sparseness, the triggering function type and noise in input data affect the inference performance. When two factors were simultaneously varied, it was found that variation of one parameter significantly affects the dynamic response of the other. Crucial factors were also examined using a real GRN and acquired results confirmed simulation findings with artificial data. Different initial conditions were also used as an alternative triggering approach. Relevant results confirmed that the number of datasets constitutes the most significant parameter with regard to the inference performance. Copyright © 2017 Elsevier

  17. Characterization of TATA-containing genes and TATA-less genes in S. cerevisiae by network topologies and biological properties.

    Science.gov (United States)

    Yang, Lei; Wang, Jizhe; Lv, Yingli; Hao, Dapeng; Zuo, Yongchun; Li, Xiang; Jiang, Wei

    2014-12-01

    The TATA box is the core sequence of the promoter and the binding site of many transcription factors. Based on the presence or absence of TATA box, genes can be defined as TATA-containing or TATA-less genes. Many important stress-response functions and highly variable expression patterns are found to be correlated with the TATA box. However, until now, the relationships and differences between TATA-containing and TATA-less genes remain unclear. In this study, based on the transcriptional profiling of the Saccharomyces cerevisiae genome, the perturbation sensitivity (PS) network is constructed. The topological and biological properties are used to investigate differences between TATA-containing and TATA-less genes. Significant differences are found in all topological properties and most of the biological properties. Notably, the TF number, determined mathematically by the number of transcription factors regulating a gene, demonstrates the highest discrimination between TATA-containing and TATA-less genes when all properties are estimated by the F-score. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. A computational method based on the integration of heterogeneous networks for predicting disease-gene associations.

    Directory of Open Access Journals (Sweden)

    Xingli Guo

    Full Text Available The identification of disease-causing genes is a fundamental challenge in human health and of great importance in improving medical care, and provides a better understanding of gene functions. Recent computational approaches based on the interactions among human proteins and disease similarities have shown their power in tackling the issue. In this paper, a novel systematic and global method that integrates two heterogeneous networks for prioritizing candidate disease-causing genes is provided, based on the observation that genes causing the same or similar diseases tend to lie close to one another in a network of protein-protein interactions. In this method, the association score function between a query disease and a candidate gene is defined as the weighted sum of all the association scores between similar diseases and neighbouring genes. Moreover, the topological correlation of these two heterogeneous networks can be incorporated into the definition of the score function, and finally an iterative algorithm is designed for this issue. This method was tested with 10-fold cross-validation on all 1,126 diseases that have at least a known causal gene, and it ranked the correct gene as one of the top ten in 622 of all the 1,428 cases, significantly outperforming a state-of-the-art method called PRINCE. The results brought about by this method were applied to study three multi-factorial disorders: breast cancer, Alzheimer disease and diabetes mellitus type 2, and some suggestions of novel causal genes and candidate disease-causing subnetworks were provided for further investigation.

  19. Harnessing diversity towards the reconstructing of large scale gene regulatory networks.

    Directory of Open Access Journals (Sweden)

    Takeshi Hase

    Full Text Available Elucidating gene regulatory network (GRN from large scale experimental data remains a central challenge in systems biology. Recently, numerous techniques, particularly consensus driven approaches combining different algorithms, have become a potentially promising strategy to infer accurate GRNs. Here, we develop a novel consensus inference algorithm, TopkNet that can integrate multiple algorithms to infer GRNs. Comprehensive performance benchmarking on a cloud computing framework demonstrated that (i a simple strategy to combine many algorithms does not always lead to performance improvement compared to the cost of consensus and (ii TopkNet integrating only high-performance algorithms provide significant performance improvement compared to the best individual algorithms and community prediction. These results suggest that a priori determination of high-performance algorithms is a key to reconstruct an unknown regulatory network. Similarity among gene-expression datasets can be useful to determine potential optimal algorithms for reconstruction of unknown regulatory networks, i.e., if expression-data associated with known regulatory network is similar to that with unknown regulatory network, optimal algorithms determined for the known regulatory network can be repurposed to infer the unknown regulatory network. Based on this observation, we developed a quantitative measure of similarity among gene-expression datasets and demonstrated that, if similarity between the two expression datasets is high, TopkNet integrating algorithms that are optimal for known dataset perform well on the unknown dataset. The consensus framework, TopkNet, together with the similarity measure proposed in this study provides a powerful strategy towards harnessing the wisdom of the crowds in reconstruction of unknown regulatory networks.

  20. Non-essential genes form the hubs of genome scale protein function and environmental gene expression networks in Salmonella enterica serovar Typhimurium

    DEFF Research Database (Denmark)

    Rosenkrantz, Jesper T.; Aarts, Henk; Abee, Tjakko

    2013-01-01

    Background: Salmonella Typhimurium is an important pathogen of human and animals. It shows a broad growth range and survives in harsh conditions. The aim of this study was to analyze transcriptional responses to a number of growth and stress conditions as well as the relationship of metabolic...... genes under a number of growth and stress conditions were used to construct a bipartite network connecting culture conditions and significantly regulated genes (transcriptional network). Also, a genome scale network was constructed for strain LT2. The latter connected genes with metabolic pathways...... pathways and/or cell functions at the genome-scale-level by network analysis, and further to explore whether highly connected genes ( hubs) in these networks were essential for growth, stress adaptation and virulence. Results: De novo generated as well as published transcriptional data for 425 selected...

  1. Contribution of Network Connectivity in Determining the Relationship between Gene Expression and Metabolite Concentration Changes

    DEFF Research Database (Denmark)

    Zelezniak, Aleksej; Sheridan, Steven; Patil, Kiran Raosaheb

    2014-01-01

    biological perturbations, namely gene knockout, nutrient shock and nutrient change. While the kinetic constraints applied at the level of individual reactions were found to be poor descriptors of the mRNA-metabolite relationship, their use in the context of the network enabled us to correlate changes...

  2. Fractal gene regulatory networks for robust locomotion control of modular robots

    DEFF Research Database (Denmark)

    Zahadat, Payam; Christensen, David Johan; Schultz, Ulrik Pagh

    2010-01-01

    Designing controllers for modular robots is difficult due to the distributed and dynamic nature of the robots. In this paper fractal gene regulatory networks are evolved to control modular robots in a distributed way. Experiments with different morphologies of modular robot are performed and the ...

  3. Combining sequence and Gene Ontology for protein module detection in the Weighted Network.

    Science.gov (United States)

    Yu, Yang; Liu, Jie; Feng, Nuan; Song, Bo; Zheng, Zeyu

    2017-01-07

    Studies of protein modules in a Protein-Protein Interaction (PPI) network contribute greatly to the understanding of biological mechanisms. With the development of computing science, computational approaches have played an important role in locating protein modules. In this paper, a new approach combining Gene Ontology and amino acid background frequency is introduced to detect the protein modules in the weighted PPI networks. The proposed approach mainly consists of three parts: the feature extraction, the weighted graph construction and the protein complex detection. Firstly, the topology-sequence information is utilized to present the feature of protein complex. Secondly, six types of the weighed graph are constructed by combining PPI network and Gene Ontology information. Lastly, protein complex algorithm is applied to the weighted graph, which locates the clusters based on three conditions, including density, network diameter and the included angle cosine. Experiments have been conducted on two protein complex benchmark sets for yeast and the results show that the approach is more effective compared to five typical algorithms with the performance of f-measure and precision. The combination of protein interaction network with sequence and gene ontology data is helpful to improve the performance and provide a optional method for protein module detection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Network-based integration of GWAS and gene expression identifies a HOX-centric network associated with serous ovarian cancer risk

    Science.gov (United States)

    Kar, Siddhartha P.; Tyrer, Jonathan P.; Li, Qiyuan; Lawrenson, Kate; Aben, Katja K.H.; Anton-Culver, Hoda; Antonenkova, Natalia; Chenevix-Trench, Georgia; Baker, Helen; Bandera, Elisa V.; Bean, Yukie T.; Beckmann, Matthias W.; Berchuck, Andrew; Bisogna, Maria; Bjørge, Line; Bogdanova, Natalia; Brinton, Louise; Brooks-Wilson, Angela; Butzow, Ralf; Campbell, Ian; Carty, Karen; Chang-Claude, Jenny; Chen, Yian Ann; Chen, Zhihua; Cook, Linda S.; Cramer, Daniel; Cunningham, Julie M.; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; Dennis, Joe; Dicks, Ed; Doherty, Jennifer A.; Dörk, Thilo; du Bois, Andreas; Dürst, Matthias; Eccles, Diana; Easton, Douglas F.; Edwards, Robert P.; Ekici, Arif B.; Fasching, Peter A.; Fridley, Brooke L.; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G.; Glasspool, Rosalind; Goode, Ellen L.; Goodman, Marc T.; Grownwald, Jacek; Harrington, Patricia; Harter, Philipp; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A.T.; Hillemanns, Peter; Hogdall, Estrid; Hogdall, Claus K.; Hosono, Satoyo; Iversen, Edwin S.; Jakubowska, Anna; Paul, James; Jensen, Allan; Ji, Bu-Tian; Karlan, Beth Y; Kjaer, Susanne K.; Kelemen, Linda E.; Kellar, Melissa; Kelley, Joseph; Kiemeney, Lambertus A.; Krakstad, Camilla; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D.; Lee, Alice W.; Lele, Shashi; Leminen, Arto; Lester, Jenny; Levine, Douglas A.; Liang, Dong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R.; McNeish, Iain A.; Menon, Usha; Modugno, Francesmary; Moysich, Kirsten B.; Narod, Steven A.; Nedergaard, Lotte; Ness, Roberta B.; Nevanlinna, Heli; Odunsi, Kunle; Olson, Sara H.; Orlow, Irene; Orsulic, Sandra; Weber, Rachel Palmieri; Pearce, Celeste Leigh; Pejovic, Tanja; Pelttari, Liisa M.; Permuth-Wey, Jennifer; Phelan, Catherine M.; Pike, Malcolm C.; Poole, Elizabeth M.; Ramus, Susan J.; Risch, Harvey A.; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H.; Rudolph, Anja; Runnebaum, Ingo B.; Rzepecka, Iwona K.; Salvesen, Helga B.; Schildkraut, Joellen M.; Schwaab, Ira; Shu, Xiao-Ou; Shvetsov, Yurii B; Siddiqui, Nadeem; Sieh, Weiva; Song, Honglin; Southey, Melissa C.; Sucheston-Campbell, Lara E.; Tangen, Ingvild L.; Teo, Soo-Hwang; Terry, Kathryn L.; Thompson, Pamela J; Timorek, Agnieszka; Tsai, Ya-Yu; Tworoger, Shelley S.; van Altena, Anne M.; Van Nieuwenhuysen, Els; Vergote, Ignace; Vierkant, Robert A.; Wang-Gohrke, Shan; Walsh, Christine; Wentzensen, Nicolas; Whittemore, Alice S.; Wicklund, Kristine G.; Wilkens, Lynne R.; Woo, Yin-Ling; Wu, Xifeng; Wu, Anna; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Sellers, Thomas A.; Monteiro, Alvaro N. A.; Freedman, Matthew L.; Gayther, Simon A.; Pharoah, Paul D. P.

    2015-01-01

    Background Genome-wide association studies (GWAS) have so far reported 12 loci associated with serous epithelial ovarian cancer (EOC) risk. We hypothesized that some of these loci function through nearby transcription factor (TF) genes and that putative target genes of these TFs as identified by co-expression may also be enriched for additional EOC risk associations. Methods We selected TF genes within 1 Mb of the top signal at the 12 genome-wide significant risk loci. Mutual information, a form of correlation, was used to build networks of genes strongly co-expressed with each selected TF gene in the unified microarray data set of 489 serous EOC tumors from The Cancer Genome Atlas. Genes represented in this data set were subsequently ranked using a gene-level test based on results for germline SNPs from a serous EOC GWAS meta-analysis (2,196 cases/4,396 controls). Results Gene set enrichment analysis identified six networks centered on TF genes (HOXB2, HOXB5, HOXB6, HOXB7 at 17q21.32 and HOXD1, HOXD3 at 2q31) that were significantly enriched for genes from the risk-associated end of the ranked list (P<0.05 and FDR<0.05). These results were replicated (P<0.05) using an independent association study (7,035 cases/21,693 controls). Genes underlying enrichment in the six networks were pooled into a combined network. Conclusion We identified a HOX-centric network associated with serous EOC risk containing several genes with known or emerging roles in serous EOC development. Impact Network analysis integrating large, context-specific data sets has the potential to offer mechanistic insights into cancer susceptibility and prioritize genes for experimental characterization. PMID:26209509

  5. Identification of Plagl1/Zac1 binding sites and target genes establishes its role in the regulation of extracellular matrix genes and the imprinted gene network.

    Science.gov (United States)

    Varrault, Annie; Dantec, Christelle; Le Digarcher, Anne; Chotard, Laëtitia; Bilanges, Benoit; Parrinello, Hugues; Dubois, Emeric; Rialle, Stéphanie; Severac, Dany; Bouschet, Tristan; Journot, Laurent

    2017-10-13

    PLAGL1/ZAC1 undergoes parental genomic imprinting, is paternally expressed, and is a member of the imprinted gene network (IGN). It encodes a zinc finger transcription factor with anti-proliferative activity and is a candidate tumor suppressor gene on 6q24 whose expression is frequently lost in various neoplasms. Conversely, gain of PLAGL1 function is responsible for transient neonatal diabetes mellitus, a rare genetic disease that results from defective pancreas development. In the present work, we showed that Plagl1 up-regulation was not associated with DNA damage-induced cell cycle arrest. It was rather associated with physiological cell cycle exit that occurred with contact inhibition, growth factor withdrawal, or cell differentiation. To gain insights into Plagl1 mechanism of action, we identified Plagl1 target genes by combining chromatin immunoprecipitation and genome-wide transcriptomics in transfected cell lines. Plagl1-elicited gene regulation correlated with multiple binding to the proximal promoter region through a GC-rich motif. Plagl1 target genes included numerous genes involved in signaling, cell adhesion, and extracellular matrix composition, including collagens. Plagl1 targets also included 22% of the 409 genes that make up the IGN. Altogether, this work identified Plagl1 as a transcription factor that coordinated the regulation of a subset of IGN genes and controlled extracellular matrix composition. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Integrative gene network construction to analyze cancer recurrence using semi-supervised learning.

    Science.gov (United States)

    Park, Chihyun; Ahn, Jaegyoon; Kim, Hyunjin; Park, Sanghyun

    2014-01-01

    The prognosis of cancer recurrence is an important research area in bioinformatics and is challenging due to the small sample sizes compared to the vast number of genes. There have been several attempts to predict cancer recurrence. Most studies employed a supervised approach, which uses only a few labeled samples. Semi-supervised learning can be a great alternative to solve this problem. There have been few attempts based on manifold assumptions to reveal the detailed roles of identified cancer genes in recurrence. In order to predict cancer recurrence, we proposed a novel semi-supervised learning algorithm based on a graph regularization approach. We transformed the gene expression data into a graph structure for semi-supervised learning and integrated protein interaction data with the gene expression data to select functionally-related gene pairs. Then, we predicted the recurrence of cancer by applying a regularization approach to the constructed graph containing both labeled and unlabeled nodes. The average improvement rate of accuracy for three different cancer datasets was 24.9% compared to existing supervised and semi-supervised methods. We performed functional enrichment on the gene networks used for learning. We identified that those gene networks are significantly associated with cancer-recurrence-related biological functions. Our algorithm was developed with standard C++ and is available in Linux and MS Windows formats in the STL library. The executable program is freely available at: http://embio.yonsei.ac.kr/~Park/ssl.php.

  7. Integrative gene network construction to analyze cancer recurrence using semi-supervised learning.

    Directory of Open Access Journals (Sweden)

    Chihyun Park

    Full Text Available BACKGROUND: The prognosis of cancer recurrence is an important research area in bioinformatics and is challenging due to the small sample sizes compared to the vast number of genes. There have been several attempts to predict cancer recurrence. Most studies employed a supervised approach, which uses only a few labeled samples. Semi-supervised learning can be a great alternative to solve this problem. There have been few attempts based on manifold assumptions to reveal the detailed roles of identified cancer genes in recurrence. RESULTS: In order to predict cancer recurrence, we proposed a novel semi-supervised learning algorithm based on a graph regularization approach. We transformed the gene expression data into a graph structure for semi-supervised learning and integrated protein interaction data with the gene expression data to select functionally-related gene pairs. Then, we predicted the recurrence of cancer by applying a regularization approach to the constructed graph containing both labeled and unlabeled nodes. CONCLUSIONS: The average improvement rate of accuracy for three different cancer datasets was 24.9% compared to existing supervised and semi-supervised methods. We performed functional enrichment on the gene networks used for learning. We identified that those gene networks are significantly associated with cancer-recurrence-related biological functions. Our algorithm was developed with standard C++ and is available in Linux and MS Windows formats in the STL library. The executable program is freely available at: http://embio.yonsei.ac.kr/~Park/ssl.php.

  8. Identifying genes and gene networks involved in chromium metabolism and detoxification in Crambe abyssinica

    Energy Technology Data Exchange (ETDEWEB)

    Zulfiqar, Asma, E-mail: asmazulfiqar08@yahoo.com [Department of Plant, Soil, and Insect Sciences, 270 Stockbridge Road, University of Massachusetts Amherst, MA 01003 (United States); Paulose, Bibin, E-mail: bpaulose@psis.umass.edu [Department of Plant, Soil, and Insect Sciences, 270 Stockbridge Road, University of Massachusetts Amherst, MA 01003 (United States); Chhikara, Sudesh, E-mail: sudesh@psis.umass.edu [Department of Plant, Soil, and Insect Sciences, 270 Stockbridge Road, University of Massachusetts Amherst, MA 01003 (United States); Dhankher, Om Parkash, E-mail: parkash@psis.umass.edu [Department of Plant, Soil, and Insect Sciences, 270 Stockbridge Road, University of Massachusetts Amherst, MA 01003 (United States)

    2011-10-15

    Chromium pollution is a serious environmental problem with few cost-effective remediation strategies available. Crambe abyssinica (a member of Brassicaseae), a non-food, fast growing high biomass crop, is an ideal candidate for phytoremediation of heavy metals contaminated soils. The present study used a PCR-Select Suppression Subtraction Hybridization approach in C. abyssinica to isolate differentially expressed genes in response to Cr exposure. A total of 72 differentially expressed subtracted cDNAs were sequenced and found to represent 43 genes. The subtracted cDNAs suggest that Cr stress significantly affects pathways related to stress/defense, ion transporters, sulfur assimilation, cell signaling, protein degradation, photosynthesis and cell metabolism. The regulation of these genes in response to Cr exposure was further confirmed by semi-quantitative RT-PCR. Characterization of these differentially expressed genes may enable the engineering of non-food, high-biomass plants, including C. abyssinica, for phytoremediation of Cr-contaminated soils and sediments. - Highlights: > Molecular mechanism of Cr uptake and detoxification in plants is not well known. > We identified differentially regulated genes upon Cr exposure in Crambe abyssinica. > 72 Cr-induced subtracted cDNAs were sequenced and found to represent 43 genes. > Pathways linked to stress, ion transport, and sulfur assimilation were affected. > This is the first Cr transcriptome study in a crop with phytoremediation potential. - This study describes the identification and isolation of differentially expressed genes involved in chromium metabolism and detoxification in a non-food industrial oil crop Crambe abyssinica.

  9. Insights gained from the reverse engineering of gene networks in keloid fibroblasts

    Directory of Open Access Journals (Sweden)

    Phan Toan

    2011-05-01

    Full Text Available Abstract Background Keloids are protrusive claw-like scars that have a propensity to recur even after surgery, and its molecular etiology remains elusive. The goal of reverse engineering is to infer gene networks from observational data, thus providing insight into the inner workings of a cell. However, most attempts at modeling biological networks have been done using simulated data. This study aims to highlight some of the issues involved in working with experimental data, and at the same time gain some insights into the transcriptional regulatory mechanism present in keloid fibroblasts. Methods Microarray data from our previous study was combined with microarray data obtained from the literature as well as new microarray data generated by our group. For the physical approach, we used the fREDUCE algorithm for correlating expression values to binding motifs. For the influence approach, we compared the Bayesian algorithm BANJO with the information theoretic method ARACNE in terms of performance in recovering known influence networks obtained from the KEGG database. In addition, we also compared the performance of different normalization methods as well as different types of gene networks. Results Using the physical approach, we found consensus sequences that were active in the keloid condition, as well as some sequences that were responsive to steroids, a commonly used treatment for keloids. From the influence approach, we found that BANJO was better at recovering the gene networks compared to ARACNE and that transcriptional networks were better suited for network recovery compared to cytokine-receptor interaction networks and intracellular signaling networks. We also found that the NFKB transcriptional network that was inferred from normal fibroblast data was more accurate compared to that inferred from keloid data, suggesting a more robust network in the keloid condition. Conclusions Consensus sequences that were found from this study are

  10. The role of miRNAs in regulating gene expression networks.

    Science.gov (United States)

    Gurtan, Allan M; Sharp, Phillip A

    2013-10-09

    MicroRNAs (miRNAs) are key regulators of gene expression. They are conserved across species, expressed across cell types, and active against a large proportion of the transcriptome. The sequence-complementary mechanism of miRNA activity exploits combinatorial diversity, a property conducive to network-wide regulation of gene expression, and functional evidence supporting this hypothesized systems-level role has steadily begun to accumulate. The emerging models are exciting and will yield deep insight into the regulatory architecture of biology. However, because of the technical challenges facing the network-based study of miRNAs, many gaps remain. Here, we review mammalian miRNAs by describing recent advances in understanding their molecular activity and network-wide function. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Improving functional modules discovery by enriching interaction networks with gene profiles

    KAUST Repository

    Salem, Saeed

    2013-05-01

    Recent advances in proteomic and transcriptomic technologies resulted in the accumulation of vast amount of high-throughput data that span multiple biological processes and characteristics in different organisms. Much of the data come in the form of interaction networks and mRNA expression arrays. An important task in systems biology is functional modules discovery where the goal is to uncover well-connected sub-networks (modules). These discovered modules help to unravel the underlying mechanisms of the observed biological processes. While most of the existing module discovery methods use only the interaction data, in this work we propose, CLARM, which discovers biological modules by incorporating gene profiles data with protein-protein interaction networks. We demonstrate the effectiveness of CLARM on Yeast and Human interaction datasets, and gene expression and molecular function profiles. Experiments on these real datasets show that the CLARM approach is competitive to well established functional module discovery methods.

  12. Information theory in systems biology. Part I: Gene regulatory and metabolic networks.

    Science.gov (United States)

    Mousavian, Zaynab; Kavousi, Kaveh; Masoudi-Nejad, Ali

    2016-03-01

    "A Mathematical Theory of Communication", was published in 1948 by Claude Shannon to establish a framework that is now known as information theory. In recent decades, information theory has gained much attention in the area of systems biology. The aim of this paper is to provide a systematic review of those contributions that have applied information theory in inferring or understanding of biological systems. Based on the type of system components and the interactions between them, we classify the biological systems into 4 main classes: gene regulatory, metabolic, protein-protein interaction and signaling networks. In the first part of this review, we attempt to introduce most of the existing studies on two types of biological networks, including gene regulatory and metabolic networks, which are founded on the concepts of information theory. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. A novel mutual information-based Boolean network inference method from time-series gene expression data.

    Directory of Open Access Journals (Sweden)

    Shohag Barman

    Full Text Available Inferring a gene regulatory network from time-series gene expression data in systems biology is a challenging problem. Many methods have been suggested, most of which have a scalability limitation due to the combinatorial cost of searching a regulatory set of genes. In addition, they have focused on the accurate inference of a network structure only. Therefore, there is a pressing need to develop a network inference method to search regulatory genes efficiently and to predict the network dynamics accurately.In this study, we employed a Boolean network model with a restricted update rule scheme to capture coarse-grained dynamics, and propose a novel mutual information-based Boolean network inference (MIBNI method. Given time-series gene expression data as an input, the method first identifies a set of initial regulatory genes using mutual information-based feature selection, and then improves the dynamics prediction accuracy by iteratively swapping a pair of genes between sets of the selected regulatory genes and the other genes. Through extensive simulations with artificial datasets, MIBNI showed consistently better performance than six well-known existing methods, REVEAL, Best-Fit, RelNet, CST, CLR, and BIBN in terms of both structural and dynamics prediction accuracy. We further tested the proposed method with two real gene expression datasets for an Escherichia coli gene regulatory network and a fission yeast cell cycle network, and also observed better results using MIBNI compared to the six other methods.Taken together, MIBNI is a promising tool for predicting both the structure and the dynamics of a gene regulatory network.

  14. Predicting Essential Genes and Proteins Based on Machine Learning and Network Topological Features: A Comprehensive Review

    Science.gov (United States)

    Zhang, Xue; Acencio, Marcio Luis; Lemke, Ney

    2016-01-01

    Essential proteins/genes are indispensable to the survival or reproduction of an organism, and the deletion of such essential proteins will result in lethality or infertility. The identification of essential genes is very important not only for understanding the minimal requirements for survival of an organism, but also for finding human disease genes and new drug targets. Experimental methods for identifying essential genes are costly, time-consuming, and laborious. With the accumulation of sequenced genomes data and high-throughput experimental data, many computational methods for identifying essential proteins are proposed, which are useful complements to experimental methods. In this review, we show the state-of-the-art methods for identifying essential genes and proteins based on machine learning and network topological features, point out the progress and limitations of current methods, and discuss the challenges and directions for further research. PMID:27014079

  15. Cancer Transcriptome Dataset Analysis: Comparing Methods of Pathway and Gene Regulatory Network-Based Cluster Identification.

    Science.gov (United States)

    Nam, Seungyoon

    2017-04-01

    Cancer transcriptome analysis is one of the leading areas of Big Data science, biomarker, and pharmaceutical discovery, not to forget personalized medicine. Yet, cancer transcriptomics and postgenomic medicine require innovation in bioinformatics as well as comparison of the performance of available algorithms. In this data analytics context, the value of network generation and algorithms has been widely underscored for addressing the salient questions in cancer pathogenesis. Analysis of cancer trancriptome often results in complicated networks where identification of network modularity remains critical, for example, in delineating the "druggable" molecular targets. Network clustering is useful, but depends on the network topology in and of itself. Notably, the performance of different network-generating tools for network cluster (NC) identification has been little investigated to date. Hence, using gastric cancer (GC) transcriptomic datasets, we compared two algorithms for generating pathway versus gene regulatory network-based NCs, showing that the pathway-based approach better agrees with a reference set of cancer-functional contexts. Finally, by applying pathway-based NC identification to GC transcriptome datasets, we describe cancer NCs that associate with candidate therapeutic targets and biomarkers in GC. These observations collectively inform future research on cancer transcriptomics, drug discovery, and rational development of new analysis tools for optimal harnessing of omics data.

  16. A contribution to the study of plant development evolution based on gene co-expression networks

    Directory of Open Access Journals (Sweden)

    Francisco J. Romero-Campero

    2013-08-01

    Full Text Available Phototrophic eukaryotes are among the most successful organisms on Earth due to their unparalleled efficiency at capturing light energy and fixing carbon dioxide to produce organic molecules. A conserved and efficient network of light-dependent regulatory modules could be at the bases of this success. This regulatory system conferred early advantages to phototrophic eukaryotes that allowed for specialization, complex developmental processes and modern plant characteristics. We have studied light-dependent gene regulatory modules from algae to plants employing integrative-omics approaches based on gene co-expression networks. Our study reveals some remarkably conserved ways in which eukaryotic phototrophs deal with day length and light signaling. Here we describe how a family of Arabidopsis transcription factors involved in photoperiod response has evolved from a single algal gene according to the innovation, amplification and divergence theory of gene evolution by duplication. These modifications of the gene co-expression networks from the ancient unicellular green algae Chlamydomonas reinhardtii to the modern brassica Arabidopsis thaliana may hint on the evolution and specialization of plants and other organisms.

  17. Bayesian GWAS and network analysis revealed new candidate genes for number of teats in pigs.

    Science.gov (United States)

    Verardo, L L; Silva, F F; Varona, L; Resende, M D V; Bastiaansen, J W M; Lopes, P S; Guimarães, S E F

    2015-02-01

    The genetic improvement of reproductive traits such as the number of teats is essential to the success of the pig industry. As opposite to most SNP association studies that consider continuous phenotypes under Gaussian assumptions, this trait is characterized as a discrete variable, which could potentially follow other distributions, such as the Poisson. Therefore, in order to access the complexity of a counting random regression considering all SNPs simultaneously as covariate under a GWAS modeling, the Bayesian inference tools become necessary. Currently, another point that deserves to be highlighted in GWAS is the genetic dissection of complex phenotypes through candidate genes network derived from significant SNPs. We present a full Bayesian treatment of SNP association analysis for number of teats assuming alternatively Gaussian and Poisson distributions for this trait. Under this framework, significant SNP effects were identified by hypothesis tests using 95% highest posterior density intervals. These SNPs were used to construct associated candidate genes network aiming to explain the genetic mechanism behind this reproductive trait. The Bayesian model comparisons based on deviance posterior distribution indicated the superiority of Gaussian model. In general, our results suggest the presence of 19 significant SNPs, which mapped 13 genes. Besides, we predicted gene interactions through networks that are consistent with the mammals known breast biology (e.g., development of prolactin receptor signaling, and cell proliferation), captured known regulation binding sites, and provided candidate genes for that trait (e.g., TINAGL1 and ICK).

  18. Network-based association of hypoxia-responsive genes with cardiovascular diseases

    International Nuclear Information System (INIS)

    Wang, Rui-Sheng; Oldham, William M; Loscalzo, Joseph

    2014-01-01

    Molecular oxygen is indispensable for cellular viability and function. Hypoxia is a stress condition in which oxygen demand exceeds supply. Low cellular oxygen content induces a number of molecular changes to activate regulatory pathways responsible for increasing the oxygen supply and optimizing cellular metabolism under limited oxygen conditions. Hypoxia plays critical roles in the pathobiology of many diseases, such as cancer, heart failure, myocardial ischemia, stroke, and chronic lung diseases. Although the complicated associations between hypoxia and cardiovascular (and cerebrovascular) diseases (CVD) have been recognized for some time, there are few studies that investigate their biological link from a systems biology perspective. In this study, we integrate hypoxia genes, CVD genes, and the human protein interactome in order to explore the relationship between hypoxia and cardiovascular diseases at a systems level. We show that hypoxia genes are much closer to CVD genes in the human protein interactome than that expected by chance. We also find that hypoxia genes play significant bridging roles in connecting different cardiovascular diseases. We construct a hypoxia-CVD bipartite network and find several interesting hypoxia-CVD modules with significant gene ontology similarity. Finally, we show that hypoxia genes tend to have more CVD interactors in the human interactome than in random networks of matching topology. Based on these observations, we can predict novel genes that may be associated with CVD. This network-based association study gives us a broad view of the relationships between hypoxia and cardiovascular diseases and provides new insights into the role of hypoxia in cardiovascular biology. (paper)

  19. Gene Network for Identifying the Entropy Changes of Different Modules in Pediatric Sepsis

    Directory of Open Access Journals (Sweden)

    Jing Yang

    2016-12-01

    Full Text Available Background/Aims: Pediatric sepsis is a disease that threatens life of children. The incidence of pediatric sepsis is higher in developing countries due to various reasons, such as insufficient immunization and nutrition, water and air pollution, etc. Exploring the potential genes via different methods is of significance for the prevention and treatment of pediatric sepsis. This study aimed to identify potential genes associated with pediatric sepsis utilizing analysis of gene network and entropy. Methods: The mRNA expression in the blood samples collected from 20 septic children and 30 healthy controls was quantified by using Affymetrix HG-U133A microarray. Two condition-specific protein-protein interaction networks (PINs, one for the healthy control and the other one for the children with sepsis, were deduced by combining the fundamental human PINs with gene expression profiles in the two phenotypes. Subsequently, distinct modules from the two conditional networks were extracted by adopting a maximal clique-merging approach. Delta entropy (ΔS was calculated between sepsis and control modules. Results: Then, key genes displaying changes in gene composition were identified by matching the control and sepsis modules. Two objective modules were obtained, in which ribosomal protein RPL4 and RPL9 as well as TOP2A were probably considered as the key genes differentiating sepsis from healthy controls. Conclusion: According to previous reports and this work, TOP2A is the potential gene therapy target for pediatric sepsis. The relationship between pediatric sepsis and RPL4 and RPL9 needs further investigation.

  20. Resolving candidate genes of mouse skeletal muscle QTL via RNA-Seq and expression network analyses

    Directory of Open Access Journals (Sweden)

    Lionikas Arimantas

    2012-11-01

    Full Text Available Abstract Background We have recently identified a number of Quantitative Trait Loci (QTL contributing to the 2-fold muscle weight difference between the LG/J and SM/J mouse strains and refined their confidence intervals. To facilitate nomination of the candidate genes responsible for these differences we examined the transcriptome of the tibialis anterior (TA muscle of each strain by RNA-Seq. Results 13,726 genes were expressed in mouse skeletal muscle. Intersection of a set of 1061 differentially expressed transcripts with a mouse muscle Bayesian Network identified a coherent set of differentially expressed genes that we term the LG/J and SM/J Regulatory Network (LSRN. The integration of the QTL, transcriptome and the network analyses identified eight key drivers of the LSRN (Kdr, Plbd1, Mgp, Fah, Prss23, 2310014F06Rik, Grtp1, Stk10 residing within five QTL regions, which were either polymorphic or differentially expressed between the two strains and are strong candidates for quantitative trait genes (QTGs underlying muscle mass. The insight gained from network analysis including the ability to make testable predictions is illustrated by annotating the LSRN with knowledge-based signatures and showing that the SM/J state of the network corresponds to a more oxidative state. We validated this prediction by NADH tetrazolium reductase staining in the TA muscle revealing higher oxidative potential of the SM/J compared to the LG/J strain (p Conclusion Thus, integration of fine resolution QTL mapping, RNA-Seq transcriptome information and mouse muscle Bayesian Network analysis provides a novel and unbiased strategy for nomination of muscle QTGs.

  1. Network Analysis Reveals Putative Genes Affecting Meat Quality in Angus Cattle

    Directory of Open Access Journals (Sweden)

    Raluca G. Mateescu

    2017-11-01

    Full Text Available Improvements in eating satisfaction will benefit consumers and should increase beef demand which is of interest to the beef industry. Tenderness, juiciness, and flavor are major determinants of the palatability of beef and are often used to reflect eating satisfaction. Carcass qualities are used as indicator traits for meat quality, with higher quality grade carcasses expected to relate to more tender and palatable meat. However, meat quality is a complex concept determined by many component traits making interpretation of genome-wide association studies (GWAS on any one component challenging to interpret. Recent approaches combining traditional GWAS with gene network interactions theory could be more efficient in dissecting the genetic architecture of complex traits. Phenotypic measures of 23 traits reflecting carcass characteristics, components of meat quality, along with mineral and peptide concentrations were used along with Illumina 54k bovine SNP genotypes to derive an annotated gene network associated with meat quality in 2,110 Angus beef cattle. The efficient mixed model association (EMMAX approach in combination with a genomic relationship matrix was used to directly estimate the associations between 54k SNP genotypes and each of the 23 component traits. Genomic correlated regions were identified by partial correlations which were further used along with an information theory algorithm to derive gene network clusters. Correlated SNP across 23 component traits were subjected to network scoring and visualization software to identify significant SNP. Significant pathways implicated in the meat quality complex through GO term enrichment analysis included angiogenesis, inflammation, transmembrane transporter activity, and receptor activity. These results suggest that network analysis using partial correlations and annotation of significant SNP can reveal the genetic architecture of complex traits and provide novel information regarding

  2. Effects of Gene Dose, Chromatin, and Network Topology on Expression in Drosophila melanogaster.

    Science.gov (United States)

    Lee, Hangnoh; Cho, Dong-Yeon; Whitworth, Cale; Eisman, Robert; Phelps, Melissa; Roote, John; Kaufman, Thomas; Cook, Kevin; Russell, Steven; Przytycka, Teresa; Oliver, Brian

    2016-09-01

    Deletions, commonly referred to as deficiencies by Drosophila geneticists, are valuable tools for mapping genes and for genetic pathway discovery via dose-dependent suppressor and enhancer screens. More recently, it has become clear that deviations from normal gene dosage are associated with multiple disorders in a range of species including humans. While we are beginning to understand some of the transcriptional effects brought about by gene dosage changes and the chromosome rearrangement breakpoints associated with them, much of this work relies on isolated examples. We have systematically examined deficiencies of the left arm of chromosome 2 and characterize gene-by-gene dosage responses that vary from collapsed expression through modest partial dosage compensation to full or even over compensation. We found negligible long-range effects of creating novel chromosome domains at deletion breakpoints, suggesting that cases of gene regulation due to altered nuclear architecture are rare. These rare cases include trans de-repression when deficiencies delete chromatin characterized as repressive in other studies. Generally, effects of breakpoints on expression are promoter proximal (~100bp) or in the gene body. Effects of deficiencies genome-wide are in genes with regulatory relationships to genes within the deleted segments, highlighting the subtle expression network defects in these sensitized genetic backgrounds.

  3. Effects of Gene Dose, Chromatin, and Network Topology on Expression in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Hangnoh Lee

    2016-09-01

    Full Text Available Deletions, commonly referred to as deficiencies by Drosophila geneticists, are valuable tools for mapping genes and for genetic pathway discovery via dose-dependent suppressor and enhancer screens. More recently, it has become clear that deviations from normal gene dosage are associated with multiple disorders in a range of species including humans. While we are beginning to understand some of the transcriptional effects brought about by gene dosage changes and the chromosome rearrangement breakpoints associated with them, much of this work relies on isolated examples. We have systematically examined deficiencies of the left arm of chromosome 2 and characterize gene-by-gene dosage responses that vary from collapsed expression through modest partial dosage compensation to full or even over compensation. We found negligible long-range effects of creating novel chromosome domains at deletion breakpoints, suggesting that cases of gene regulation due to altered nuclear architecture are rare. These rare cases include trans de-repression when deficiencies delete chromatin characterized as repressive in other studies. Generally, effects of breakpoints on expression are promoter proximal (~100bp or in the gene body. Effects of deficiencies genome-wide are in genes with regulatory relationships to genes within the deleted segments, highlighting the subtle expression network defects in these sensitized genetic backgrounds.

  4. Power of grammatical evolution neural networks to detect gene-gene interactions in the presence of error

    Directory of Open Access Journals (Sweden)

    Davis Anna C

    2008-08-01

    Full Text Available Abstract Background With the advent of increasingly efficient means to obtain genetic information, a great insurgence of data has resulted, leading to the need for methods for analyzing this data beyond that of traditional parametric statistical approaches. Recently we introduced Grammatical Evolution Neural Network (GENN, a machine-learning approach to detect gene-gene or gene-environment interactions, also known as epistasis, in high dimensional genetic epidemiological data. GENN has been shown to be highly successful in a range of simulated data, but the impact of error common to real data is unknown. In the current study, we examine the power of GENN to detect interesting interactions in the presence of noise due to genotyping error, missing data, phenocopy, and genetic heterogeneity. Additionally, we compare the performance of GENN to that of another computational method – Multifactor Dimensionality Reduction (MDR. Findings GENN is extremely robust to missing data and genotyping error. Phenocopy in a dataset reduces the power of both GENN and MDR. GENN is reasonably robust to genetic heterogeneity and find that in some cases GENN has substantially higher power than MDR to detect functional loci in the presence of genetic heterogeneity. Conclusion GENN is a promising method to detect gene-gene interaction, even in the presence of common types of error found in real data.

  5. Power of grammatical evolution neural networks to detect gene-gene interactions in the presence of error.

    Science.gov (United States)

    Motsinger-Reif, Alison A; Fanelli, Theresa J; Davis, Anna C; Ritchie, Marylyn D

    2008-08-13

    With the advent of increasingly efficient means to obtain genetic information, a great insurgence of data has resulted, leading to the need for methods for analyzing this data beyond that of traditional parametric statistical approaches. Recently we introduced Grammatical Evolution Neural Network (GENN), a machine-learning approach to detect gene-gene or gene-environment interactions, also known as epistasis, in high dimensional genetic epidemiological data. GENN has been shown to be highly successful in a range of simulated data, but the impact of error common to real data is unknown. In the current study, we examine the power of GENN to detect interesting interactions in the presence of noise due to genotyping error, missing data, phenocopy, and genetic heterogeneity. Additionally, we compare the performance of GENN to that of another computational method - Multifactor Dimensionality Reduction (MDR). GENN is extremely robust to missing data and genotyping error. Phenocopy in a dataset reduces the power of both GENN and MDR. GENN is reasonably robust to genetic heterogeneity and find that in some cases GENN has substantially higher power than MDR to detect functional loci in the presence of genetic heterogeneity. GENN is a promising method to detect gene-gene interaction, even in the presence of common types of error found in real data.

  6. Gene-disease network analysis reveals functional modules in mendelian, complex and environmental diseases.

    Science.gov (United States)

    Bauer-Mehren, Anna; Bundschus, Markus; Rautschka, Michael; Mayer, Miguel A; Sanz, Ferran; Furlong, Laura I

    2011-01-01

    Scientists have been trying to understand the molecular mechanisms of diseases to design preventive and therapeutic strategies for a long time. For some diseases, it has become evident that it is not enough to obtain a catalogue of the disease-related genes but to uncover how disruptions of molecular networks in the cell give rise to disease phenotypes. Moreover, with the unprecedented wealth of information available, even obtaining such catalogue is extremely difficult. We developed a comprehensive gene-disease association database by integrating associations from several sources that cover different biomedical aspects of diseases. In particular, we focus on the current knowledge of human genetic diseases including mendelian, complex and environmental diseases. To assess the concept of modularity of human diseases, we performed a systematic study of the emergent properties of human gene-disease networks by means of network topology and functional annotation analysis. The results indicate a highly shared genetic origin of human diseases and show that for most diseases, including mendelian, complex and environmental diseases, functional modules exist. Moreover, a core set of biological pathways is found to be associated with most human diseases. We obtained similar results when studying clusters of diseases, suggesting that related diseases might arise due to dysfunction of common biological processes in the cell. For the first time, we include mendelian, complex and environmental diseases in an integrated gene-disease association database and show that the concept of modularity applies for all of them. We furthermore provide a functional analysis of disease-related modules providing important new biological insights, which might not be discovered when considering each of the gene-disease association repositories independently. Hence, we present a suitable framework for the study of how genetic and environmental factors, such as drugs, contribute to diseases. The

  7. Characterize the relationship between essential and TATA-containing genes for S. cerevisiae by network topologies in the perturbation sensitivity network.

    Science.gov (United States)

    Yang, Lei; Wang, Shiyuan; Zhou, Meng; Chen, Xiaowen; Zuo, Yongchun; Lv, Yingli

    2016-10-01

    Essential genes are those that are indispensable for the survival and propagation of an organism. TATA-containing genes are associated with responses to various stresses and are highly regulated. Although both essential genes and TATA genes are very important in the function of biological systems, their relationship remains unclear because they have typically been researched independently. In this study, to investigate the relationship between essential genes and TATA genes, S. cerevisiae genes were classified as: essential TATA-containing, non-essential TATA-containing, essential non-TATA, and non-essential non-TATA genes. Network-based methods were applied to analyze these four gene categories in the S. cerevisiae perturbation sensitivity (PS) network, which was created from the transcriptional profiling of hundreds of different gene disruptions. All of the topological properties were found to be statistically discriminative among the four gene categories, and the non-essential TATA-containing genes had the most important roles in the yeast PS network. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. A complex network approach reveals a pivotal substructure of genes linked to schizophrenia.

    Directory of Open Access Journals (Sweden)

    Alfonso Monaco

    Full Text Available Research on brain disorders with a strong genetic component and complex heritability, such as schizophrenia, has led to the development of brain transcriptomics. This field seeks to gain a deeper understanding of gene expression, a key factor in exploring further research issues. Our study focused on how genes are associated amongst each other. In this perspective, we have developed a novel data-driven strategy for characterizing genetic modules, i.e., clusters of strongly interacting genes. The aim was to uncover a pivotal community of genes linked to a target gene for schizophrenia. Our approach combined network topological properties with information theory to highlight the presence of a pivotal community, for a specific gene, and to simultaneously assess the information content of partitions with the Shannon's entropy based on betweenness. We analyzed the publicly available BrainCloud dataset containing post-mortem gene expression data and focused on the Dopamine D2 receptor, encoded by the DRD2 gene. We used four different community detection algorithms to evaluate the consistence of our approach. A pivotal DRD2 community emerged for all the procedures applied, with a considerable reduction in size, compared to the initial network. The stability of the results was confirmed by a Dice index ≥80% within a range of tested parameters. The detected community was also the most informative, as it represented an optimization of the Shannon entropy. Lastly, we verified the strength of connection of the DRD2 community, which was stronger than any other randomly selected community and even more so than the Weighted Gene Co-expression Network Analysis module, commonly considered the standard approach for such studies. This finding substantiates the conclusion that the detected community represents a more connected and informative cluster of genes for the DRD2 community, and therefore better elucidates the behavior of this module of strongly related

  9. Dynamic and modular gene regulatory networks drive the development of gametogenesis.

    Science.gov (United States)

    Che, Dongxue; Wang, Yang; Bai, Weiyang; Li, Leijie; Liu, Guiyou; Zhang, Liangcai; Zuo, Yongchun; Tao, Shiheng; Hua, Jinlian; Liao, Mingzhi

    2017-07-01

    Gametogenesis is a complex process, which includes mitosis and meiosis and results in the production of ovum and sperm. The development of gametogenesis is dynamic and needs many different genes to work synergistically, but it is lack of global perspective research about this process. In this study, we detected the dynamic process of gametogenesis from the perspective of systems biology based on protein-protein interaction networks (PPINs) and functional analysis. Results showed that gametogenesis genes have strong synergistic effects in PPINs within and between different phases during the development. Addition to the synergistic effects on molecular networks, gametogenesis genes showed functional consistency within and between different phases, which provides the further evidence about the dynamic process during the development of gametogenesis. At last, we detected and provided the core molecular modules of different phases about gametogenesis. The gametogenesis genes and related modules can be obtained from our Web site Gametogenesis Molecule Online (GMO, http://gametsonline.nwsuaflmz.com/index.php), which is freely accessible. GMO may be helpful for the reference and application of these genes and modules in the future identification of key genes about gametogenesis. Summary, this work provided a computational perspective and frame to the analysis of the gametogenesis dynamics and modularity in both human and mouse. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. From manual curation to visualization of gene families and networks across Solanaceae plant species.

    Science.gov (United States)

    Pujar, Anuradha; Menda, Naama; Bombarely, Aureliano; Edwards, Jeremy D; Strickler, Susan R; Mueller, Lukas A

    2013-01-01

    High-quality manual annotation methods and practices need to be scaled to the increased rate of genomic data production. Curation based on gene families and gene networks is one approach that can significantly increase both curation efficiency and quality. The Sol Genomics Network (SGN; http://solgenomics.net) is a comparative genomics platform, with genetic, genomic and phenotypic information of the Solanaceae family and its closely related species that incorporates a community-based gene and phenotype curation system. In this article, we describe a manual curation system for gene families aimed at facilitating curation, querying and visualization of gene interaction patterns underlying complex biological processes, including an interface for efficiently capturing information from experiments with large data sets reported in the literature. Well-annotated multigene families are useful for further exploration of genome organization and gene evolution across species. As an example, we illustrate the system with the multigene transcription factor families, WRKY and Small Auxin Up-regulated RNA (SAUR), which both play important roles in responding to abiotic stresses in plants. Database URL: http://solgenomics.net/

  11. Using single-index ODEs to study dynamic gene regulatory network

    Science.gov (United States)

    Zhang, Qi; Yu, Yao; Zhang, Jun

    2018-01-01

    With the development of biotechnology, high-throughput studies on protein-protein, protein-gene, and gene-gene interactions become possible and attract remarkable attention. To explore the interactions in dynamic gene regulatory networks, we propose a single-index ordinary differential equation (ODE) model and develop a variable selection procedure. We employ the smoothly clipped absolute deviation penalty (SCAD) penalized function for variable selection. We analyze a yeast cell cycle gene expression data set to illustrate the usefulness of the single-index ODE model. In real data analysis, we group genes into functional modules using the smoothing spline clustering approach. We estimate state functions and their first derivatives for functional modules using penalized spline-based nonparametric mixed-effects models and the spline method. We substitute the estimates into the single-index ODE models, and then use the penalized profile least-squares procedure to identify network structures among the models. The results indicate that our model fits the data better than linear ODE models and our variable selection procedure identifies the interactions that may be missed by linear ODE models but confirmed in biological studies. In addition, Monte Carlo simulation studies are used to evaluate and compare the methods. PMID:29474376

  12. Networks of neurons, networks of genes: An integrated view of memory consolidation

    Czech Academy of Sciences Publication Activity Database

    Miyashita, T.; Kubík, Štěpán; Lewandowski, G.; Guzowski, J. F.

    2008-01-01

    Roč. 89, č. 3 (2008), s. 269-284 ISSN 1074-7427 Institutional research plan: CEZ:AV0Z50110509 Keywords : hippocampus * immediate-early genes * arc Subject RIV: FH - Neurology Impact factor: 3.757, year: 2008

  13. A computational framework for gene regulatory network inference that combines multiple methods and datasets.

    Science.gov (United States)

    Gupta, Rita; Stincone, Anna; Antczak, Philipp; Durant, Sarah; Bicknell, Roy; Bikfalvi, Andreas; Falciani, Francesco

    2011-04-13

    Reverse engineering in systems biology entails inference of gene regulatory networks from observational data. This data typically include gene expression measurements of wild type and mutant cells in response to a given stimulus. It has been shown that when more than one type of experiment is used in the network inference process the accuracy is higher. Therefore the development of generally applicable and effective methodologies that embed multiple sources of information in a single computational framework is a worthwhile objective. This paper presents a new method for network inference, which uses multi-objective optimisation (MOO) to integrate multiple inference methods and experiments. We illustrate the potential of the methodology by combining ODE and correlation-based network inference procedures as well as time course and gene inactivation experiments. Here we show that our methodology is effective for a wide spectrum of data sets and method integration strategies. The approach we present in this paper is flexible and can be used in any scenario that benefits from integration of multiple sources of information and modelling procedures in the inference process. Moreover, the application of this method to two case studies representative of bacteria and vertebrate systems has shown potential in identifying key regulators of important biological processes.

  14. Localizing potentially active post-transcriptional regulations in the Ewing's sarcoma gene regulatory network

    Directory of Open Access Journals (Sweden)

    Delyon Bernard

    2010-11-01

    Full Text Available Abstract Background A wide range of techniques is now available for analyzing regulatory networks. Nonetheless, most of these techniques fail to interpret large-scale transcriptional data at the post-translational level. Results We address the question of using large-scale transcriptomic observation of a system perturbation to analyze a regulatory network which contained several types of interactions - transcriptional and post-translational. Our method consisted of post-processing the outputs of an open-source tool named BioQuali - an automatic constraint-based analysis mimicking biologist's local reasoning on a large scale. The post-processing relied on differences in the behavior of the transcriptional and post-translational levels in the network. As a case study, we analyzed a network representation of the genes and proteins controlled by an oncogene in the context of Ewing's sarcoma. The analysis allowed us to pinpoint active interactions specific to this cancer. We also identified the parts of the network which were incomplete and should be submitted for further investigation. Conclusions The proposed approach is effective for the qualitative analysis of cancer networks. It allows the integrative use of experimental data of various types in order to identify the specific information that should be considered a priority in the initial - and possibly very large - experimental dataset. Iteratively, new dataset can be introduced into the analysis to improve the network representation and make it more specific.

  15. Inference of gene regulatory networks from time series by Tsallis entropy

    Directory of Open Access Journals (Sweden)

    de Oliveira Evaldo A

    2011-05-01

    Full Text Available Abstract Background The inference of gene regulatory networks (GRNs from large-scale expression profiles is one of the most challenging problems of Systems Biology nowadays. Many techniques and models have been proposed for this task. However, it is not generally possible to recover the original topology with great accuracy, mainly due to the short time series data in face of the high complexity of the networks and the intrinsic noise of the expression measurements. In order to improve the accuracy of GRNs inference methods based on entropy (mutual information, a new criterion function is here proposed. Results In this paper we introduce the use of generalized entropy proposed by Tsallis, for the inference of GRNs from time series expression profiles. The inference process is based on a feature selection approach and the conditional entropy is applied as criterion function. In order to assess the proposed methodology, the algorithm is applied to recover the network topology from temporal expressions generated by an artificial gene network (AGN model as well as from the DREAM challenge. The adopted AGN is based on theoretical models of complex networks and its gene transference function is obtained from random drawing on the set of possible Boolean functions, thus creating its dynamics. On the other hand, DREAM time series data presents variation of network size and its topologies are based on real networks. The dynamics are generated by continuous differential equations with noise and perturbation. By adopting both data sources, it is possible to estimate the average quality of the inference with respect to different network topologies, transfer functions and network sizes. Conclusions A remarkable improvement of accuracy was observed in the experimental results by reducing the number of false connections in the inferred topology by the non-Shannon entropy. The obtained best free parameter of the Tsallis entropy was on average in the range 2.5

  16. A combination of gene expression ranking and co-expression network analysis increases discovery rate in large-scale mutant screens for novel Arabidopsis thaliana abiotic stress genes.

    Science.gov (United States)

    Ransbotyn, Vanessa; Yeger-Lotem, Esti; Basha, Omer; Acuna, Tania; Verduyn, Christoph; Gordon, Michal; Chalifa-Caspi, Vered; Hannah, Matthew A; Barak, Simon

    2015-05-01

    As challenges to food security increase, the demand for lead genes for improving crop production is growing. However, genetic screens of plant mutants typically yield very low frequencies of desired phenotypes. Here, we present a powerful computational approach for selecting candidate genes for screening insertion mutants. We combined ranking of Arabidopsis thaliana regulatory genes according to their expression in response to multiple abiotic stresses (Multiple Stress [MST] score), with stress-responsive RNA co-expression network analysis to select candidate multiple stress regulatory (MSTR) genes. Screening of 62 T-DNA insertion mutants defective in candidate MSTR genes, for abiotic stress germination phenotypes yielded a remarkable hit rate of up to 62%; this gene discovery rate is 48-fold greater than that of other large-scale insertional mutant screens. Moreover, the MST score of these genes could be used to prioritize them for screening. To evaluate the contribution of the co-expression analysis, we screened 64 additional mutant lines of MST-scored genes that did not appear in the RNA co-expression network. The screening of these MST-scored genes yielded a gene discovery rate of 36%, which is much higher than that of classic mutant screens but not as high as when picking candidate genes from the co-expression network. The MSTR co-expression network that we created, AraSTressRegNet is publicly available at http://netbio.bgu.ac.il/arnet. This systems biology-based screening approach combining gene ranking and network analysis could be generally applicable to enhancing identification of genes regulating additional processes in plants and other organisms provided that suitable transcriptome data are available. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  17. Molecular Principles of Gene Fusion Mediated Rewiring of Protein Interaction Networks in Cancer.

    Science.gov (United States)

    Latysheva, Natasha S; Oates, Matt E; Maddox, Louis; Flock, Tilman; Gough, Julian; Buljan, Marija; Weatheritt, Robert J; Babu, M Madan

    2016-08-18

    Gene fusions are common cancer-causing mutations, but the molecular principles by which fusion protein products affect interaction networks and cause disease are not well understood. Here, we perform an integrative analysis of the structural, interactomic, and regulatory properties of thousands of putative fusion proteins. We demonstrate that genes that form fusions (i.e., parent genes) tend to be highly connected hub genes, whose protein products are enriched in structured and disordered interaction-mediating features. Fusion often results in the loss of these parental features and the depletion of regulatory sites such as post-translational modifications. Fusion products disproportionately connect proteins that did not previously interact in the protein interaction network. In this manner, fusion products can escape cellular regulation and constitutively rewire protein interaction networks. We suggest that the deregulation of central, interaction-prone proteins may represent a widespread mechanism by which fusion proteins alter the topology of cellular signaling pathways and promote cancer. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Transcription-factor-dependent enhancer transcription defines a gene regulatory network for cardiac rhythm.

    Science.gov (United States)

    Yang, Xinan H; Nadadur, Rangarajan D; Hilvering, Catharina Re; Bianchi, Valerio; Werner, Michael; Mazurek, Stefan R; Gadek, Margaret; Shen, Kaitlyn M; Goldman, Joseph Aaron; Tyan, Leonid; Bekeny, Jenna; Hall, Johnathon M; Lee, Nutishia; Perez-Cervantes, Carlos; Burnicka-Turek, Ozanna; Poss, Kenneth D; Weber, Christopher R; de Laat, Wouter; Ruthenburg, Alexander J; Moskowitz, Ivan P

    2017-12-27

    The noncoding genome is pervasively transcribed. Noncoding RNAs (ncRNAs) generated from enhancers have been proposed as a general facet of enhancer function and some have been shown to be required for enhancer activity. Here we examine the transcription-factor-(TF)-dependence of ncRNA expression to define enhancers and enhancer-associated ncRNAs that are involved in a TF-dependent regulatory network. TBX5, a cardiac TF, regulates a network of cardiac channel genes to maintain cardiac rhythm. We deep sequenced wildtype and Tbx5 -mutant mouse atria, identifying ~2600 novel Tbx5 -dependent ncRNAs. Tbx5-dependent ncRNAs were enriched for tissue-specific marks of active enhancers genome-wide. Tbx5-dependent ncRNAs emanated from regions that are enriched for TBX5-binding and that demonstrated Tbx5-dependent enhancer activity. Tbx5 -dependent ncRNA transcription provided a quantitative metric of Tbx5 -dependent enhancer activity, correlating with target gene expression. We identified RACER , a novel Tbx5 -dependent long noncoding RNA (lncRNA) required for the expression of the calcium-handling gene Ryr2 . We illustrate that TF-dependent enhancer transcription can illuminate components of TF-dependent gene regulatory networks.

  19. Alcohol-induced histone acetylation reveals a gene network involved in alcohol tolerance.

    Directory of Open Access Journals (Sweden)

    Alfredo Ghezzi

    Full Text Available Sustained or repeated exposure to sedating drugs, such as alcohol, triggers homeostatic adaptations in the brain that lead to the development of drug tolerance and dependence. These adaptations involve long-term changes in the transcription of drug-responsive genes as well as an epigenetic restructuring of chromosomal regions that is thought to signal and maintain the altered transcriptional state. Alcohol-induced epigenetic changes have been shown to be important in the long-term adaptation that leads to alcohol tolerance and dependence endophenotypes. A major constraint impeding progress is that alcohol produces a surfeit of changes in gene expression, most of which may not make any meaningful contribution to the ethanol response under study. Here we used a novel genomic epigenetic approach to find genes relevant for functional alcohol tolerance by exploiting the commonalities of two chemically distinct alcohols. In Drosophila melanogaster, ethanol and benzyl alcohol induce mutual cross-tolerance, indicating that they share a common mechanism for producing tolerance. We surveyed the genome-wide changes in histone acetylation that occur in response to these drugs. Each drug induces modifications in a large number of genes. The genes that respond similarly to either treatment, however, represent a subgroup enriched for genes important for the common tolerance response. Genes were functionally tested for behavioral tolerance to the sedative effects of ethanol and benzyl alcohol using mutant and inducible RNAi stocks. We identified a network of genes that are essential for the development of tolerance to sedation by alcohol.

  20. Functional Ecological Gene Networks to Reveal the Changes Among Microbial Interactions Under Elevated Carbon Dioxide Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Ye; Zhou, Jizhong; Luo, Feng; He, Zhili; Tu, Qichao; Zhi, Xiaoyang

    2010-05-17

    Biodiversity and its responses to environmental changes is a central issue in ecology, and for society. Almost all microbial biodiversity researches focus on species richness and abundance but ignore the interactions among different microbial species/populations. However, determining the interactions and their relationships to environmental changes in microbial communities is a grand challenge, primarily due to the lack of information on the network structure among different microbial species/populations. Here, a novel random matrix theory (RMT)-based conceptual framework for identifying functional ecological gene networks (fEGNs) is developed with the high throughput functional gene array hybridization data from the grassland microbial communities in a long-term FACE (Free Air CO2 Enrichment) experiment. Both fEGNs under elevated CO2 (eCO2) and ambient CO2 (aCO2) possessed general characteristics of many complex systems such as scale-free, small-world, modular and hierarchical. However, the topological structure of the fEGNs is distinctly different between eCO2 and aCO2, suggesting that eCO2 dramatically altered the interactions among different microbial functional groups/populations. In addition, the changes in network structure were significantly correlated with soil carbon and nitrogen dynamics, and plant productivity, indicating the potential importance of network interactions in ecosystem functioning. Elucidating network interactions in microbial communities and their responses to environmental changes are fundamentally important for research in microbial ecology, systems microbiology, and global change.

  1. Effects of threshold on the topology of gene co-expression networks.

    Science.gov (United States)

    Couto, Cynthia Martins Villar; Comin, César Henrique; Costa, Luciano da Fontoura

    2017-09-26

    Several developments regarding the analysis of gene co-expression profiles using complex network theory have been reported recently. Such approaches usually start with the construction of an unweighted gene co-expression network, therefore requiring the selection of a suitable threshold defining which pairs of vertices will be connected. We aimed at addressing such an important problem by suggesting and comparing five different approaches for threshold selection. Each of the methods considers a respective biologically-motivated criterion for electing a potentially suitable threshold. A set of 21 microarray experiments from different biological groups was used to investigate the effect of applying the five proposed criteria to several biological situations. For each experiment, we used the Pearson correlation coefficient to measure the relationship between each gene pair, and the resulting weight matrices were thresholded considering several values, generating respective adjacency matrices (co-expression networks). Each of the five proposed criteria was then applied in order to select the respective threshold value. The effects of these thresholding approaches on the topology of the resulting networks were compared by using several measurements, and we verified that, depending on the database, the impact on the topological properties can be large. However, a group of databases was verified to be similarly affected by most of the considered criteria. Based on such results, it can be suggested that when the generated networks present similar measurements, the thresholding method can be chosen with greater freedom. If the generated networks are markedly different, the thresholding method that better suits the interests of each specific research study represents a reasonable choice.

  2. Improving the measurement of semantic similarity by combining gene ontology and co-functional network: a random walk based approach.

    Science.gov (United States)

    Peng, Jiajie; Zhang, Xuanshuo; Hui, Weiwei; Lu, Junya; Li, Qianqian; Liu, Shuhui; Shang, Xuequn

    2018-03-19

    Gene Ontology (GO) is one of the most popular bioinformatics resources. In the past decade, Gene Ontology-based gene semantic similarity has been effectively used to model gene-to-gene interactions in multiple research areas. However, most existing semantic similarity approaches rely only on GO annotations and structure, or incorporate only local interactions in the co-functional network. This may lead to inaccurate GO-based similarity resulting from the incomplete GO topology structure and gene annotations. We present NETSIM2, a new network-based method that allows researchers to measure GO-based gene functional similarities by considering the global structure of the co-functional network with a random walk with restart (RWR)-based method, and by selecting the significant term pairs to decrease the noise information. Based on the EC number (Enzyme Commission)-based groups of yeast and Arabidopsis, evaluation test shows that NETSIM2 can enhance the accuracy of Gene Ontology-based gene functional similarity. Using NETSIM2 as an example, we found that the accuracy of semantic similarities can be significantly improved after effectively incorporating the global gene-to-gene interactions in the co-functional network, especially on the species that gene annotations in GO are far from complete.

  3. DNA-Binding Kinetics Determines the Mechanism of Noise-Induced Switching in Gene Networks.

    Science.gov (United States)

    Tse, Margaret J; Chu, Brian K; Roy, Mahua; Read, Elizabeth L

    2015-10-20

    Gene regulatory networks are multistable dynamical systems in which attractor states represent cell phenotypes. Spontaneous, noise-induced transitions between these states are thought to underlie critical cellular processes, including cell developmental fate decisions, phenotypic plasticity in fluctuating environments, and carcinogenesis. As such, there is increasing interest in the development of theoretical and computational approaches that can shed light on the dynamics of these stochastic state transitions in multistable gene networks. We applied a numerical rare-event sampling algorithm to study transition paths of spontaneous noise-induced switching for a ubiquitous gene regulatory network motif, the bistable toggle switch, in which two mutually repressive genes compete for dominant expression. We find that the method can efficiently uncover detailed switching mechanisms that involve fluctuations both in occupancies of DNA regulatory sites and copy numbers of protein products. In addition, we show that the rate parameters governing binding and unbinding of regulatory proteins to DNA strongly influence the switching mechanism. In a regime of slow DNA-binding/unbinding kinetics, spontaneous switching occurs relatively frequently and is driven primarily by fluctuations in DNA-site occupancies. In contrast, in a regime of fast DNA-binding/unbinding kinetics, switching occurs rarely and is driven by fluctuations in levels of expressed protein. Our results demonstrate how spontaneous cell phenotype transitions involve collective behavior of both regulatory proteins and DNA. Computational approaches capable of simulating dynamics over many system variables are thus well suited to exploring dynamic mechanisms in gene networks. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. Non-essential genes form the hubs of genome scale protein function and environmental gene expression networks in Salmonella enterica serovar Typhimurium.

    Science.gov (United States)

    Rosenkrantz, Jesper T; Aarts, Henk; Abee, Tjakko; Rolfe, Matthew D; Knudsen, Gitte M; Nielsen, Maj-Britt; Thomsen, Line E; Zwietering, Marcel H; Olsen, John E; Pin, Carmen

    2013-12-17

    Salmonella Typhimurium is an important pathogen of human and animals. It shows a broad growth range and survives in harsh conditions. The aim of this study was to analyze transcriptional responses to a number of growth and stress conditions as well as the relationship of metabolic pathways and/or cell functions at the genome-scale-level by network analysis, and further to explore whether highly connected genes (hubs) in these networks were essential for growth, stress adaptation and virulence. De novo generated as well as published transcriptional data for 425 selected genes under a number of growth and stress conditions were used to construct a bipartite network connecting culture conditions and significantly regulated genes (transcriptional network). Also, a genome scale network was constructed for strain LT2. The latter connected genes with metabolic pathways and cellular functions. Both networks were shown to belong to the family of scale-free networks characterized by the presence of highly connected nodes or hubs which are genes whose transcription is regulated when responding to many of the assayed culture conditions or genes encoding products involved in a high number of metabolic pathways and cell functions.The five genes with most connections in the transcriptional network (wraB, ygaU, uspA, cbpA and osmC) and in the genome scale network (ychN, siiF (STM4262), yajD, ybeB and dcoC) were selected for mutations, however mutagenesis of ygaU and ybeB proved unsuccessful. No difference between mutants and the wild type strain was observed during growth at unfavorable temperatures, pH values, NaCl concentrations and in the presence of H2O2. Eight mutants were evaluated for virulence in C57/BL6 mice and none differed from the wild type strain. Notably, however, deviations of phenotypes with respect to the wild type were observed when combinations of these genes were deleted. Network analysis revealed the presence of hubs in both transcriptional and functional

  5. Hippocampal gene network analysis in an experimental model of posttraumatic epilepsy.

    Science.gov (United States)

    Ueda, Yuto; Kitamoto, Aya; Willmore, L J; Kojima, Toshio

    2011-07-01

    In the present study, we performed comprehensive gene expression and gene network analyses using a DNA microarray to elucidate the molecular events responsible for the pathology of posttraumatic epilepsy at the partial seizure stage. We used an experimental posttraumatic epilepsy model of amygdalar focal FeCl(3)-injected rats and compared gene expression profiles in the hippocampus at the partial seizure stage (less than stage 3 on Racine's convulsion scale) and that of sham-operated animals. At the partial seizure stage, upregulation of phospholipase A2 (PLA2) and lipid metabolism were observed, which have been reported to be caused by brain injury and seizures in previous studies. Furthermore, significant upregulation of genes related to inflammation and the immune system was observed. These molecular changes in PLA2 and lipid metabolism may be related to seizure propagation.

  6. State of the Art of Fuzzy Methods for Gene Regulatory Networks Inference

    Directory of Open Access Journals (Sweden)

    Tuqyah Abdullah Al Qazlan

    2015-01-01

    Full Text Available To address one of the most challenging issues at the cellular level, this paper surveys the fuzzy methods used in gene regulatory networks (GRNs inference. GRNs represent causal relationships between genes that have a direct influence, trough protein production, on the life and the development of living organisms and provide a useful contribution to the understanding of the cellular functions as well as the mechanisms of diseases. Fuzzy systems are based on handling imprecise knowledge, such as biological information. They provide viable computational tools for inferring GRNs from gene expression data, thus contributing to the discovery of gene interactions responsible for specific diseases and/or ad hoc correcting therapies. Increasing computational power and high throughput technologies have provided powerful means to manage these challenging digital ecosystems at different levels from cell to society globally. The main aim of this paper is to report, present, and discuss the main contributions of this multidisciplinary field in a coherent and structured framework.

  7. State of the Art of Fuzzy Methods for Gene Regulatory Networks Inference

    Science.gov (United States)

    Al Qazlan, Tuqyah Abdullah; Kara-Mohamed, Chafia

    2015-01-01

    To address one of the most challenging issues at the cellular level, this paper surveys the fuzzy methods used in gene regulatory networks (GRNs) inference. GRNs represent causal relationships between genes that have a direct influence, trough protein production, on the life and the development of living organisms and provide a useful contribution to the understanding of the cellular functions as well as the mechanisms of diseases. Fuzzy systems are based on handling imprecise knowledge, such as biological information. They provide viable computational tools for inferring GRNs from gene expression data, thus contributing to the discovery of gene interactions responsible for specific diseases and/or ad hoc correcting therapies. Increasing computational power and high throughput technologies have provided powerful means to manage these challenging digital ecosystems at different levels from cell to society globally. The main aim of this paper is to report, present, and discuss the main contributions of this multidisciplinary field in a coherent and structured framework. PMID:25879048

  8. An empirical comparison of popular structure learning algorithms with a view to gene network inference

    Czech Academy of Sciences Publication Activity Database

    Djordjilović, V.; Chiogna, M.; Vomlel, Jiří

    2017-01-01

    Roč. 88, č. 1 (2017), s. 602-613 ISSN 0888-613X R&D Projects: GA ČR(CZ) GA16-12010S Institutional support: RVO:67985556 Keywords : Bayesian networks * Structure learning * Reverse engineering * Gene networks Subject RIV: JD - Computer Applications, Robotics OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 2.845, year: 2016 http://library.utia.cas.cz/separaty/2017/MTR/vomlel-0477168.pdf

  9. Deep convolutional neural networks for annotating gene expression patterns in the mouse brain.

    Science.gov (United States)

    Zeng, Tao; Li, Rongjian; Mukkamala, Ravi; Ye, Jieping; Ji, Shuiwang

    2015-05-07

    Profiling gene expression in brain structures at various spatial and temporal scales is essential to understanding how genes regulate the development of brain structures. The Allen Developing Mouse Brain Atlas provides high-resolution 3-D in situ hybridization (ISH) gene expression patterns in multiple developing stages of the mouse brain. Currently, the ISH images are annotated with anatomical terms manually. In this paper, we propose a computational approach to annotate gene expression pattern images in the mouse brain at various structural levels over the course of development. We applied deep convolutional neural network that was trained on a large set of natural images to extract features from the ISH images of developing mouse brain. As a baseline representation, we applied invariant image feature descriptors to capture local statistics from ISH images and used the bag-of-words approach to build image-level representations. Both types of features from multiple ISH image sections of the entire brain were then combined to build 3-D, brain-wide gene expression representations. We employed regularized learning methods for discriminating gene expression patterns in different brain structures. Results show that our approach of using convolutional model as feature extractors achieved superior performance in annotating gene expression patterns at multiple levels of brain structures throughout four developing ages. Overall, we achieved average AUC of 0.894 ± 0.014, as compared with 0.820 ± 0.046 yielded by the bag-of-words approach. Deep convolutional neural network model trained on natural image sets and applied to gene expression pattern annotation tasks yielded superior performance, demonstrating its transfer learning property is applicable to such biological image sets.

  10. The probability of a gene tree topology within a phylogenetic network with applications to hybridization detection.

    Directory of Open Access Journals (Sweden)

    Yun Yu

    Full Text Available Gene tree topologies have proven a powerful data source for various tasks, including species tree inference and species delimitation. Consequently, methods for computing probabilities of gene trees within species trees have been developed and widely used in probabilistic inference frameworks. All these methods assume an underlying multispecies coalescent model. However, when reticulate evolutionary events such as hybridization occur, these methods are inadequate, as they do not account for such events. Methods that account for both hybridization and deep coalescence in computing the probability of a gene tree topology currently exist for very limited cases. However, no such methods exist for general cases, owing primarily to the fact that it is currently unknown how to compute the probability of a gene tree topology within the branches of a phylogenetic network. Here we present a novel method for computing the probability of gene tree topologies on phylogenetic networks and demonstrate its application to the inference of hybridization in the presence of incomplete lineage sorting. We reanalyze a Saccharomyces species data set for which multiple analyses had converged on a species tree candidate. Using our method, though, we show that an evolutionary hypothesis involving hybridization in this group has better support than one of strict divergence. A similar reanalysis on a group of three Drosophila species shows that the data is consistent with hybridization. Further, using extensive simulation studies, we demonstrate the power of gene tree topologies at obtaining accurate estimates of branch lengths and hybridization probabilities of a given phylogenetic network. Finally, we discuss identifiability issues with detecting hybridization, particularly in cases that involve extinction or incomplete sampling of taxa.

  11. An additional k-means clustering step improves the biological features of WGCNA gene co-expression networks.

    Science.gov (United States)

    Botía, Juan A; Vandrovcova, Jana; Forabosco, Paola; Guelfi, Sebastian; D'Sa, Karishma; Hardy, John; Lewis, Cathryn M; Ryten, Mina; Weale, Michael E

    2017-04-12

    Weighted Gene Co-expression Network Analysis (WGCNA) is a widely used R software package for the generation of gene co-expression networks (GCN). WGCNA generates both a GCN and a derived partitioning of clusters of genes (modules). We propose k-means clustering as an additional processing step to conventional WGCNA, which we have implemented in the R package km2gcn (k-means to gene co-expression network, https://github.com/juanbot/km2gcn ). We assessed our method on networks created from UKBEC data (10 different human brain tissues), on networks created from GTEx data (42 human tissues, including 13 brain tissues), and on simulated networks derived from GTEx data. We observed substantially improved module properties, including: (1) few or zero misplaced genes; (2) increased counts of replicable clusters in alternate tissues (x3.1 on average); (3) improved enrichment of Gene Ontology terms (seen in 48/52 GCNs) (4) improved cell type enrichment signals (seen in 21/23 brain GCNs); and (5) more accurate partitions in simulated data according to a range of similarity indices. The results obtained from our investigations indicate that our k-means method, applied as an adjunct to standard WGCNA, results in better network partitions. These improved partitions enable more fruitful downstream analyses, as gene modules are more biologically meaningful.

  12. Transcriptional regulatory network refinement and quantification through kinetic modeling, gene expression microarray data and information theory

    Science.gov (United States)

    Sayyed-Ahmad, Abdallah; Tuncay, Kagan; Ortoleva, Peter J

    2007-01-01

    Background Gene expression microarray and other multiplex data hold promise for addressing the challenges of cellular complexity, refined diagnoses and the discovery of well-targeted treatments. A new approach to the construction and quantification of transcriptional regulatory networks (TRNs) is presented that integrates gene expression microarray data and cell modeling through information theory. Given a partial TRN and time series data, a probability density is constructed that is a functional of the time course of transcription factor (TF) thermodynamic activities at the site of gene control, and is a function of mRNA degradation and transcription rate coefficients, and equilibrium constants for TF/gene binding. Results Our approach yields more physicochemical information that compliments the results of network structure delineation methods, and thereby can serve as an element of a comprehensive TRN discovery/quantification system. The most probable TF time courses and values of the aforementioned parameters are obtained by maximizing the probability obtained through entropy maximization. Observed time delays between mRNA expression and activity are accounted for implicitly since the time course of the activity of a TF is coupled by probability functional maximization, and is not assumed to be proportional to expression level of the mRNA type that translates into the TF. This allows one to investigate post-translational and TF activation mechanisms of gene regulation. Accuracy and robustness of the method are evaluated. A kinetic formulation is used to facilitate the analysis of phenomena with a strongly dynamical character while a physically-motivated regularization of the TF time course is found to overcome difficulties due to omnipresent noise and data sparsity that plague other methods of gene expression data analysis. An application to Escherichia coli is presented. Conclusion Multiplex time series data can be used for the construction of the network of

  13. A core filamentation response network in Candida albicans is restricted to eight genes.

    Directory of Open Access Journals (Sweden)

    Ronny Martin

    Full Text Available Although morphological plasticity is a central virulence trait of Candida albicans, the number of filament-associated genes and the interplay of mechanisms regulating their expression remain unknown. By correlation-based network modeling of the transcriptional response to different defined external stimuli for morphogenesis we identified a set of eight genes with highly correlated expression patterns, forming a core filamentation response. This group of genes included ALS3, ECE1, HGT2, HWP1, IHD1 and RBT1 which are known or supposed to encode for cell- wall associated proteins as well as the Rac1 guanine nucleotide exchange factor encoding gene DCK1 and the unknown function open reading frame orf19.2457. The validity of network modeling was confirmed using a dataset of advanced complexity that describes the transcriptional response of C. albicans during epithelial invasion as well as comparing our results with other previously published transcriptome studies. Although the set of core filamentation response genes was quite small, several transcriptional regulators are involved in the control of their expression, depending on the environmental condition.

  14. SiGN-SSM: open source parallel software for estimating gene networks with state space models.

    Science.gov (United States)

    Tamada, Yoshinori; Yamaguchi, Rui; Imoto, Seiya; Hirose, Osamu; Yoshida, Ryo; Nagasaki, Masao; Miyano, Satoru

    2011-04-15

    SiGN-SSM is an open-source gene network estimation software able to run in parallel on PCs and massively parallel supercomputers. The software estimates a state space model (SSM), that is a statistical dynamic model suitable for analyzing short time and/or replicated time series gene expression profiles. SiGN-SSM implements a novel parameter constraint effective to stabilize the estimated models. Also, by using a supercomputer, it is able to determine the gene network structure by a statistical permutation test in a practical time. SiGN-SSM is applicable not only to analyzing temporal regulatory dependencies between genes, but also to extracting the differentially regulated genes from time series expression profiles. SiGN-SSM is distributed under GNU Affero General Public Licence (GNU AGPL) version 3 and can be downloaded at http://sign.hgc.jp/signssm/. The pre-compiled binaries for some architectures are available in addition to the source code. The pre-installed binaries are also available on the Human Genome Center supercomputer system. The online manual and the supplementary information of SiGN-SSM is available on our web site. tamada@ims.u-tokyo.ac.jp.

  15. Modeling and analyzing gene co-expression in hepatocellular carcinoma using actor-semiotic networks and centrality signatures.

    Science.gov (United States)

    Fung, David C Y

    2008-01-01

    Primary hepatocellular carcinoma (HCC) is currently the fifth most common malignancy and the third most common cause of cancer mortality worldwide. Because of its high prevalence in developing nations, there have been numerous efforts made in the molecular characterization of primary HCC. However, a better understanding into the pathology of HCC required software-assisted network modeling and analysis. In this paper, the author presented his first attempt in exploring the biological implication of gene co-expression in HCC using actor-semiotic network modeling and analysis. The network was first constructed by integrating inter-actor relationships, e.g. gene co-expression, microRNA-to-gene, and protein interactions, with semiotic relationships, e.g. gene-to-Gene Ontology Process. Topological features that are highly discriminative of the HCC phenotype were identified by visual inspection. Finally, the author devised a graph signature-based analysis method to supplement the network exploration.

  16. Metagenomic and network analysis reveal wide distribution and co-occurrence of environmental antibiotic resistance genes

    OpenAIRE

    Li, Bing; Yang, Ying; Ma, Liping; Ju, Feng; Guo, Feng; Tiedje, James M; Zhang, Tong

    2015-01-01

    A metagenomic approach and network analysis was used to investigate the wide-spectrum profiles of antibiotic resistance genes (ARGs) and their co-occurrence patterns in 50 samples from 10 typical environments. In total, 260 ARG subtypes belonging to 18 ARG types were detected with an abundance range of 5.4 × 10−6–2.2 × 10−1 copy of ARG per copy of 16S-rRNA gene. The trend of the total ARG abundances in environments matched well with the levels of anthropogenic impacts on these environments. F...

  17. Modularity of gene-regulatory networks revealed in sea-star development

    Directory of Open Access Journals (Sweden)

    Degnan Bernard M

    2011-01-01

    Full Text Available Abstract Evidence that conserved developmental gene-regulatory networks can change as a unit during deutersostome evolution emerges from a study published in BMC Biology. This shows that genes consistently expressed in anterior brain patterning in hemichordates and chordates are expressed in a similar spatial pattern in another deuterostome, an asteroid echinoderm (sea star, but in a completely different developmental context (the animal-vegetal axis. This observation has implications for hypotheses on the type of development present in the deuterostome common ancestor. See research article: http://www.biomedcentral.com/1741-7007/8/143/abstract

  18. Q&A: How do gene regulatory networks control environmental responses in plants?

    Science.gov (United States)

    Sun, Ying; Dinneny, José R

    2018-04-11

    A gene regulatory network (GRN) describes the hierarchical relationship between transcription factors, associated proteins, and their target genes. Studying GRNs allows us to understand how a plant's genotype and environment are integrated to regulate downstream physiological responses. Current efforts in plants have focused on defining the GRNs that regulate functions such as development and stress response and have been performed primarily in genetically tractable model plant species such as Arabidopsis thaliana. Future studies will likely focus on how GRNs function in non-model plants and change over evolutionary time to allow for adaptation to extreme environments. This broader understanding will inform efforts to engineer GRNs to create tailored crop traits.

  19. A biological network-based regularized artificial neural network model for robust phenotype prediction from gene expression data.

    Science.gov (United States)

    Kang, Tianyu; Ding, Wei; Zhang, Luoyan; Ziemek, Daniel; Zarringhalam, Kourosh

    2017-12-19

    Stratification of patient subpopulations that respond favorably to treatment or experience and adverse reaction is an essential step toward development of new personalized therapies and diagnostics. It is currently feasible to generate omic-scale biological measurements for all patients in a study, providing an opportunity for machine learning models to identify molecular markers for disease diagnosis and progression. However, the high variability of genetic background in human populations hampers the reproducibility of omic-scale markers. In this paper, we develop a biological network-based regularized artificial neural network model for prediction of phenotype from transcriptomic measurements in clinical trials. To improve model sparsity and the overall reproducibility of the model, we incorporate regularization for simultaneous shrinkage of gene sets based on active upstream regulatory mechanisms into the model. We benchmark our method against various regression, support vector machines and artificial neural network models and demonstrate the ability of our method in predicting the clinical outcomes using clinical trial data on acute rejection in kidney transplantation and response to Infliximab in ulcerative colitis. We show that integration of prior biological knowledge into the classification as developed in this paper, significantly improves the robustness and generalizability of predictions to independent datasets. We provide a Java code of our algorithm along with a parsed version of the STRING DB database. In summary, we present a method for prediction of clinical phenotypes using baseline genome-wide expression data that makes use of prior biological knowledge on gene-regulatory interactions in order to increase robustness and reproducibility of omic-scale markers. The integrated group-wise regularization methods increases the interpretability of biological signatures and gives stable performance estimates across independent test sets.

  20. A network analysis of the human T-cell activation gene network identifies JAGGED1 as a therapeutic target for autoimmune diseases.

    Directory of Open Access Journals (Sweden)

    Ricardo Palacios

    2007-11-01

    Full Text Available Understanding complex diseases will benefit the recognition of the properties of the gene networks that control biological functions. Here, we set out to model the gene network that controls T-cell activation in humans, which is critical for the development of autoimmune diseases such as Multiple Sclerosis (MS. The network was established on the basis of the quantitative expression from 104 individuals of 20 genes of the immune system, as well as on biological information from the Ingenuity database and Bayesian inference. Of the 31 links (gene interactions identified in the network, 18 were identified in the Ingenuity database and 13 were new and we validated 7 of 8 interactions experimentally. In the MS patients network, we found an increase in the weight of gene interactions related to Th1 function and a decrease in those related to Treg and Th2 function. Indeed, we found that IFN-ss therapy induces changes in gene interactions related to T cell proliferation and adhesion, although these gene interactions were not restored to levels similar to controls. Finally, we identify JAG1 as a new therapeutic target whose differential behaviour in the MS network was not modified by immunomodulatory therapy. In vitro treatment with a Jagged1 agonist peptide modulated the T-cell activation network in PBMCs from patients with MS. Moreover, treatment of mice with experimental autoimmune encephalomyelitis with the Jagged1 agonist ameliorated the disease course, and modulated Th2, Th1 and Treg function. This study illustrates how network analysis can predict therapeutic targets for immune intervention and identified the immunomodulatory properties of Jagged1 making it a new therapeutic target for MS and other autoimmune diseases.

  1. A relative variation-based method to unraveling gene regulatory networks.

    Directory of Open Access Journals (Sweden)

    Yali Wang

    Full Text Available Gene regulatory network (GRN reconstruction is essential in understanding the functioning and pathology of a biological system. Extensive models and algorithms have been developed to unravel a GRN. The DREAM project aims to clarify both advantages and disadvantages of these methods from an application viewpoint. An interesting yet surprising observation is that compared with complicated methods like those based on nonlinear differential equations, etc., methods based on a simple statistics, such as the so-called Z-score, usually perform better. A fundamental problem with the Z-score, however, is that direct and indirect regulations can not be easily distinguished. To overcome this drawback, a relative expression level variation (RELV based GRN inference algorithm is suggested in this paper, which consists of three major steps. Firstly, on the basis of wild type and single gene knockout/knockdown experimental data, the magnitude of RELV of a gene is estimated. Secondly, probability for the existence of a direct regulation from a perturbed gene to a measured gene is estimated, which is further utilized to estimate whether a gene can be regulated by other genes. Finally, the normalized RELVs are modified to make genes with an estimated zero in-degree have smaller RELVs in magnitude than the other genes, which is used afterwards in queuing possibilities of the existence of direct regulations among genes and therefore leads to an estimate on the GRN topology. This method can in principle avoid the so-called cascade errors under certain situations. Computational results with the Size 100 sub-challenges of DREAM3 and DREAM4 show that, compared with the Z-score based method, prediction performances can be substantially improved, especially the AUPR specification. Moreover, it can even outperform the best team of both DREAM3 and DREAM4. Furthermore, the high precision of the obtained most reliable predictions shows that the suggested algorithm may be

  2. Epigenetic Modulation of Brain Gene Networks for Cocaine and Alcohol Abuse

    OpenAIRE

    Sean P Farris; Robert Adron Harris; Igor ePonomarev

    2015-01-01

    Cocaine and alcohol are two substances of abuse that prominently affect the central nervous system (CNS). Repeated exposure to cocaine and alcohol leads to longstanding changes in gene expression, and subsequent functional CNS plasticity, throughout multiple brain regions. Epigenetic modifications of histones are one proposed mechanism guiding these enduring changes to the transcriptome. Characterizing the large number of available biological relationships as network models can reveal unexpec...

  3. Analysis of the robustness of network-based disease-gene prioritization methods reveals redundancy in the human interactome and functional diversity of disease-genes.

    Directory of Open Access Journals (Sweden)

    Emre Guney

    Full Text Available Complex biological systems usually pose a trade-off between robustness and fragility where a small number of perturbations can substantially disrupt the system. Although biological systems are robust against changes in many external and internal conditions, even a single mutation can perturb the system substantially, giving rise to a pathophenotype. Recent advances in identifying and analyzing the sequential variations beneath human disorders help to comprehend a systemic view of the mechanisms underlying various disease phenotypes. Network-based disease-gene prioritization methods rank the relevance of genes in a disease under the hypothesis that genes whose proteins interact with each other tend to exhibit similar phenotypes. In this study, we have tested the robustness of several network-based disease-gene prioritization methods with respect to the perturbations of the system using various disease phenotypes from the Online Mendelian Inheritance in Man database. These perturbations have been introduced either in the protein-protein interaction network or in the set of known disease-gene associations. As the network-based disease-gene prioritization methods are based on the connectivity between known disease-gene associations, we have further used these methods to categorize the pathophenotypes with respect to the recoverability of hidden disease-genes. Our results have suggested that, in general, disease-genes are connected through multiple paths in the human interactome. Moreover, even when these paths are disturbed, network-based prioritization can reveal hidden disease-gene associations in some pathophenotypes such as breast cancer, cardiomyopathy, diabetes, leukemia, parkinson disease and obesity to a greater extend compared to the rest of the pathophenotypes tested in this study. Gene Ontology (GO analysis highlighted the role of functional diversity for such diseases.

  4. An ancient gene network is co-opted for teeth on old and new jaws.

    Directory of Open Access Journals (Sweden)

    Gareth J Fraser

    2009-02-01

    Full Text Available Vertebrate dentitions originated in the posterior pharynx of jawless fishes more than half a billion years ago. As gnathostomes (jawed vertebrates evolved, teeth developed on oral jaws and helped to establish the dominance of this lineage on land and in the sea. The advent of oral jaws was facilitated, in part, by absence of hox gene expression in the first, most anterior, pharyngeal arch. Much later in evolutionary time, teleost fishes evolved a novel toothed jaw in the pharynx, the location of the first vertebrate teeth. To examine the evolutionary modularity of dentitions, we asked whether oral and pharyngeal teeth develop using common or independent gene regulatory pathways. First, we showed that tooth number is correlated on oral and pharyngeal jaws across species of cichlid fishes from Lake Malawi (East Africa, suggestive of common regulatory mechanisms for tooth initiation. Surprisingly, we found that cichlid pharyngeal dentitions develop in a region of dense hox gene expression. Thus, regulation of tooth number is conserved, despite distinct developmental environments of oral and pharyngeal jaws; pharyngeal jaws occupy hox-positive, endodermal sites, and oral jaws develop in hox-negative regions with ectodermal cell contributions. Next, we studied the expression of a dental gene network for tooth initiation, most genes of which are similarly deployed across the two disparate jaw sites. This collection of genes includes members of the ectodysplasin pathway, eda and edar, expressed identically during the patterning of oral and pharyngeal teeth. Taken together, these data suggest that pharyngeal teeth of jawless vertebrates utilized an ancient gene network before the origin of oral jaws, oral teeth, and ectodermal appendages. The first vertebrate dentition likely appeared in a hox-positive, endodermal environment and expressed a genetic program including ectodysplasin pathway genes. This ancient regulatory circuit was co-opted and modified

  5. Large-scale gene expression study in the ophiuroid Amphiura filiformis provides insights into evolution of gene regulatory networks

    Directory of Open Access Journals (Sweden)

    David Viktor Dylus

    2016-01-01

    Full Text Available Abstract Background The evolutionary mechanisms involved in shaping complex gene regulatory networks (GRN that encode for morphologically similar structures in distantly related animals remain elusive. In this context, echinoderm larval skeletons found in brittle stars and sea urchins provide an ideal system. Here, we characterize for the first time the development of the larval skeleton in the ophiuroid Amphiura filiformis and compare it systematically with its counterpart in sea urchin. Results We show that ophiuroids and euechinoids, that split at least 480 Million years ago (Mya, have remarkable similarities in tempo and mode of skeletal development. Despite morphological and ontological similarities, our high-resolution study of the dynamics of genetic regulatory states in A. filiformis highlights numerous differences in the architecture of their underlying GRNs. Importantly, the A.filiformis pplx, the closest gene to the sea urchin double negative gate (DNG repressor pmar1, fails to drive the skeletogenic program in sea urchin, showing important evolutionary differences in protein function. hesC, the second repressor of the DNG, is co-expressed with most of the genes that are repressed in sea urchin, indicating the absence of direct repression of tbr, ets1/2, and delta in A. filiformis. Furthermore, the absence of expression in later stages of brittle star skeleton development of key regulatory genes, such as foxb and dri, shows significantly different regulatory states. Conclusion Our data fill up an important gap in the picture of larval mesoderm in echinoderms and allows us to explore the evolutionary implications relative to the recently established phylogeny of echinoderm classes. In light of recent studies on other echinoderms, our data highlight a high evolutionary plasticity of the same nodes throughout evolution of echinoderm skeletogenesis. Finally, gene duplication, protein function diversification, and cis-regulatory element

  6. Multi-target trapping in constrained environments using gene regulatory network-based pattern formation

    Directory of Open Access Journals (Sweden)

    Xingguang Peng

    2016-10-01

    Full Text Available Inspired by the morphogenesis of biological organisms, gene regulatory network-based methods have been used in complex pattern formation of swarm robotic systems. In this article, obstacle information was embedded into the gene regulatory network model to make the robots trap targets with an expected pattern while avoiding obstacles in a distributed manner. Based on the modified gene regulatory network model, an implicit function method was adopted to represent the expected pattern which is easily adjusted by adding extra feature points. Considering environmental constraints (e.g. tunnels or gaps in which robots must adjust their pattern to conduct trapping task, a pattern adaptation strategy was proposed for the pattern modeler to adaptively adjust the expected pattern. Also to trap multiple targets, a splitting pattern adaptation strategy was proposed for diffusively moving targets so that the robots can trap each target separately with split sub-patterns. The proposed model and strategies were verified through a set of simulation with complex environmental constraints and non-consensus movements of targets.

  7. Dynamic changes in protein functional linkage networks revealed by integration with gene expression data.

    Directory of Open Access Journals (Sweden)

    Shubhada R Hegde

    2008-11-01

    Full Text Available Response of cells to changing environmental conditions is governed by the dynamics of intricate biomolecular interactions. It may be reasonable to assume, proteins being the dominant macromolecules that carry out routine cellular functions, that understanding the dynamics of protein:protein interactions might yield useful insights into the cellular responses. The large-scale protein interaction data sets are, however, unable to capture the changes in the profile of protein:protein interactions. In order to understand how these interactions change dynamically, we have constructed conditional protein linkages for Escherichia coli by integrating functional linkages and gene expression information. As a case study, we have chosen to analyze UV exposure in wild-type and SOS deficient E. coli at 20 minutes post irradiation. The conditional networks exhibit similar topological properties. Although the global topological properties of the networks are similar, many subtle local changes are observed, which are suggestive of the cellular response to the perturbations. Some such changes correspond to differences in the path lengths among the nodes of carbohydrate metabolism correlating with its loss in efficiency in the UV treated cells. Similarly, expression of hubs under unique conditions reflects the importance of these genes. Various centrality measures applied to the networks indicate increased importance for replication, repair, and other stress proteins for the cells under UV treatment, as anticipated. We thus propose a novel approach for studying an organism at the systems level by integrating genome-wide functional linkages and the gene expression data.

  8. Systems Nutrigenomics Reveals Brain Gene Networks Linking Metabolic and Brain Disorders

    Directory of Open Access Journals (Sweden)

    Qingying Meng

    2016-05-01

    Full Text Available Nutrition plays a significant role in the increasing prevalence of metabolic and brain disorders. Here we employ systems nutrigenomics to scrutinize the genomic bases of nutrient–host interaction underlying disease predisposition or therapeutic potential. We conducted transcriptome and epigenome sequencing of hypothalamus (metabolic control and hippocampus (cognitive processing from a rodent model of fructose consumption, and identified significant reprogramming of DNA methylation, transcript abundance, alternative splicing, and gene networks governing cell metabolism, cell communication, inflammation, and neuronal signaling. These signals converged with genetic causal risks of metabolic, neurological, and psychiatric disorders revealed in humans. Gene network modeling uncovered the extracellular matrix genes Bgn and Fmod as main orchestrators of the effects of fructose, as validated using two knockout mouse models. We further demonstrate that an omega-3 fatty acid, DHA, reverses the genomic and network perturbations elicited by fructose, providing molecular support for nutritional interventions to counteract diet-induced metabolic and brain disorders. Our integrative approach complementing rodent and human studies supports the applicability of nutrigenomics principles to predict disease susceptibility and to guide personalized medicine.

  9. A Bayesian Framework That Integrates Heterogeneous Data for Inferring Gene Regulatory Networks

    Energy Technology Data Exchange (ETDEWEB)

    Santra, Tapesh, E-mail: tapesh.santra@ucd.ie [Systems Biology Ireland, University College Dublin, Dublin (Ireland)

    2014-05-20

    Reconstruction of gene regulatory networks (GRNs) from experimental data is a fundamental challenge in systems biology. A number of computational approaches have been developed to infer GRNs from mRNA expression profiles. However, expression profiles alone are proving to be insufficient for inferring GRN topologies with reasonable accuracy. Recently, it has been shown that integration of external data sources (such as gene and protein sequence information, gene ontology data, protein–protein interactions) with mRNA expression profiles may increase the reliability of the inference process. Here, I propose a new approach that incorporates transcription factor binding sites (TFBS) and physical protein interactions (PPI) among transcription factors (TFs) in a Bayesian variable selection (BVS) algorithm which can infer GRNs from mRNA expression profiles subjected to genetic perturbations. Using real experimental data, I show that the integration of TFBS and PPI data with mRNA expression profiles leads to significantly more accurate networks than those inferred from expression profiles alone. Additionally, the performance of the proposed algorithm is compared with a series of least absolute shrinkage and selection operator (LASSO) regression-based network inference methods that can also incorporate prior knowledge in the inference framework. The results of this comparison suggest that BVS can outperform LASSO regression-based method in some circumstances.

  10. A Bayesian Framework that integrates heterogeneous data for inferring gene regulatory networks

    Directory of Open Access Journals (Sweden)

    Tapesh eSantra

    2014-05-01

    Full Text Available Reconstruction of gene regulatory networks (GRNs from experimental data is a fundamental challenge in systems biology. A number of computational approaches have been developed to infer GRNs from mRNA expression profiles. However, expression profiles alone are proving to be insufficient for inferring GRN topologies with reasonable accuracy. Recently, it has been shown that integration of external data sources (such as gene and protein sequence information, gene ontology data, protein protein interactions with mRNA expression profiles may increase the reliability of the inference process. Here, I propose a new approach that incorporates transcription factor binding sites (TFBS and physical protein interactions (PPI among transcription factors (TFs in a Bayesian Variable Selection (BVS algorithm which can infer GRNs from mRNA expression profiles subjected to genetic perturbations. Using real experimental data, I show that the integration of TFBS and PPI data with mRNA expression profiles leads to significantly more accurate networks than those inferred from expression profiles alone. Additionally, the performance of the proposed algorithm is compared with a series of LASSO regression based network inference methods that can also incorporate prior knowledge in the inference framework. The results of this comparison suggest that BVS can outperform LASSO regression based method in some circumstances.

  11. Systems Nutrigenomics Reveals Brain Gene Networks Linking Metabolic and Brain Disorders.

    Science.gov (United States)

    Meng, Qingying; Ying, Zhe; Noble, Emily; Zhao, Yuqi; Agrawal, Rahul; Mikhail, Andrew; Zhuang, Yumei; Tyagi, Ethika; Zhang, Qing; Lee, Jae-Hyung; Morselli, Marco; Orozco, Luz; Guo, Weilong; Kilts, Tina M; Zhu, Jun; Zhang, Bin; Pellegrini, Matteo; Xiao, Xinshu; Young, Marian F; Gomez-Pinilla, Fernando; Yang, Xia

    2016-05-01

    Nutrition plays a significant role in the increasing prevalence of metabolic and brain disorders. Here we employ systems nutrigenomics to scrutinize the genomic bases of nutrient-host interaction underlying disease predisposition or therapeutic potential. We conducted transcriptome and epigenome sequencing of hypothalamus (metabolic control) and hippocampus (cognitive processing) from a rodent model of fructose consumption, and identified significant reprogramming of DNA methylation, transcript abundance, alternative splicing, and gene networks governing cell metabolism, cell communication, inflammation, and neuronal signaling. These signals converged with genetic causal risks of metabolic, neurological, and psychiatric disorders revealed in humans. Gene network modeling uncovered the extracellular matrix genes Bgn and Fmod as main orchestrators of the effects of fructose, as validated using two knockout mouse models. We further demonstrate that an omega-3 fatty acid, DHA, reverses the genomic and network perturbations elicited by fructose, providing molecular support for nutritional interventions to counteract diet-induced metabolic and brain disorders. Our integrative approach complementing rodent and human studies supports the applicability of nutrigenomics principles to predict disease susceptibility and to guide personalized medicine. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Integrative Analysis of Gene Networks and Their Application to Lung Adenocarcinoma Studies

    Directory of Open Access Journals (Sweden)

    Sangin Lee

    2017-02-01

    Full Text Available The construction of gene regulatory networks (GRNs is an essential component of biomedical research to determine disease mechanisms and identify treatment targets. Gaussian graphical models (GGMs have been widely used for constructing GRNs by inferring conditional dependence among a set of gene expressions. In practice, GRNs obtained by the analysis of a single data set may not be reliable due to sample limitations. Therefore, it is important to integrate multiple data sets from comparable studies to improve the construction of a GRN. In this article, we introduce an equivalent measure of partial correlation coefficients in GGMs and then extend the method to construct a GRN by combining the equivalent measures from different sources. Furthermore, we develop a method for multiple data sets with a natural missing mechanism to accommodate the differences among different platforms in multiple sources of data. Simulation results show that this integrative analysis outperforms the standard methods and can detect hub genes in the true network. The proposed integrative method was applied to 12 lung adenocarcinoma data sets collected from different studies. The constructed network is consistent with the current biological knowledge and reveals new insights about lung adenocarcinoma.

  13. Transcriptional profiling uncovers a network of cholesterol-responsive atherosclerosis target genes.

    Directory of Open Access Journals (Sweden)

    Josefin Skogsberg

    2008-03-01

    Full Text Available Despite the well-documented effects of plasma lipid lowering regimes halting atherosclerosis lesion development and reducing morbidity and mortality of coronary artery disease and stroke, the transcriptional response in the atherosclerotic lesion mediating these beneficial effects has not yet been carefully investigated. We performed transcriptional profiling at 10-week intervals in atherosclerosis-prone mice with human-like hypercholesterolemia and a genetic switch to lower plasma lipoproteins (Ldlr(-/-Apo(100/100Mttp(flox/flox Mx1-Cre. Atherosclerotic lesions progressed slowly at first, then expanded rapidly, and plateaued after advanced lesions formed. Analysis of lesion expression profiles indicated that accumulation of lipid-poor macrophages reached a point that led to the rapid expansion phase with accelerated foam-cell formation and inflammation, an interpretation supported by lesion histology. Genetic lowering of plasma cholesterol (e.g., lipoproteins at this point all together prevented the formation of advanced plaques and parallel transcriptional profiling of the atherosclerotic arterial wall identified 37 cholesterol-responsive genes mediating this effect. Validation by siRNA-inhibition in macrophages incubated with acetylated-LDL revealed a network of eight cholesterol-responsive atherosclerosis genes regulating cholesterol-ester accumulation. Taken together, we have identified a network of atherosclerosis genes that in response to plasma cholesterol-lowering prevents the formation of advanced plaques. This network should be of interest for the development of novel atherosclerosis therapies.

  14. A Systems’ Biology Approach to Study MicroRNA-Mediated Gene Regulatory Networks

    Directory of Open Access Journals (Sweden)

    Xin Lai

    2013-01-01

    Full Text Available MicroRNAs (miRNAs are potent effectors in gene regulatory networks where aberrant miRNA expression can contribute to human diseases such as cancer. For a better understanding of the regulatory role of miRNAs in coordinating gene expression, we here present a systems biology approach combining data-driven modeling and model-driven experiments. Such an approach is characterized by an iterative process, including biological data acquisition and integration, network construction, mathematical modeling and experimental validation. To demonstrate the application of this approach, we adopt it to investigate mechanisms of collective repression on p21 by multiple miRNAs. We first construct a p21 regulatory network based on data from the literature and further expand it using algorithms that predict molecular interactions. Based on the network structure, a detailed mechanistic model is established and its parameter values are determined using data. Finally, the calibrated model is used to study the effect of different miRNA expression profiles and cooperative target regulation on p21 expression levels in different biological contexts.

  15. Regulatory gene network from a genome-wide association study for sow lifetime productivity traits.

    Science.gov (United States)

    Kang, J-H; Lee, E-A; Hong, K-C; Kim, J-M

    2018-03-23

    Among swine reproductive traits, sow lifetime productivity (SLP) is considered a profitable trait in commercial pig farming. Notably, longevity and efficiency in SLP can be adopted as the key phenotype representing SLP. In this study, we conducted a co-association network analysis using results from a genome-wide association study for SLP-related traits. A total of 656 purebred Landrace female pigs were genotyped using a 60K SNP array. Significantly associated SNPs identified from the GWAS were annotated for the specific genes. Then, we constructed an association weight matrix to build a network based on the co-associations between the genes and 10 SLP traits. The entire network consisted of 495 nodes and 37 755 significant edges. We identified three key regulatory transcription factors: STAT2 (signal transducer and activator of transcription 2), MYF6 (myogenic factor 6) and TFCP2L1 (transcription factor CP2 like 1). The network revealed that the STAT2 and MYF6 regulatory modules cooperate with each other and specifically influence the longevity and efficiency of sows, whereas the TFCP2L1 family specifically affects the improvement of litter size. © 2018 Stichting International Foundation for Animal Genetics.

  16. Metagenomic and network analysis reveal wide distribution and co-occurrence of environmental antibiotic resistance genes.

    Science.gov (United States)

    Li, Bing; Yang, Ying; Ma, Liping; Ju, Feng; Guo, Feng; Tiedje, James M; Zhang, Tong

    2015-11-01

    A metagenomic approach and network analysis was used to investigate the wide-spectrum profiles of antibiotic resistance genes (ARGs) and their co-occurrence patterns in 50 samples from 10 typical environments. In total, 260 ARG subtypes belonging to 18 ARG types were detected with an abundance range of 5.4 × 10(-6)-2.2 × 10(-1) copy of ARG per copy of 16S-rRNA gene. The trend of the total ARG abundances in environments matched well with the levels of anthropogenic impacts on these environments. From the less impacted environments to the seriously impacted environments, the total ARG abundances increased up to three orders of magnitude, that is, from 3.2 × 10(-3) to 3.1 × 10(0) copy of ARG per copy of 16S-rRNA gene. The abundant ARGs were associated with aminoglycoside, bacitracin, β-lactam, chloramphenicol, macrolide-lincosamide-streptogramin, quinolone, sulphonamide and tetracycline, in agreement with the antibiotics extensively used in human medicine or veterinary medicine/promoters. The widespread occurrences and abundance variation trend of vancomycin resistance genes in different environments might imply the spread of vancomycin resistance genes because of the selective pressure resulting from vancomycin use. The simultaneous enrichment of 12 ARG types in adult chicken faeces suggests the coselection of multiple ARGs in this production system. Non-metric multidimensional scaling analysis revealed that samples belonging to the same environment generally possessed similar ARG compositions. Based on the co-occurrence pattern revealed by network analysis, tetM and aminoglycoside resistance protein, the hubs of the ARG network, are proposed to be indicators to quantitatively estimate the abundance of 23 other co-occurring ARG subtypes by power functions.

  17. Differences in human cortical gene expression match the temporal properties of large-scale functional networks.

    Directory of Open Access Journals (Sweden)

    Claudia Cioli

    Full Text Available We explore the relationships between the cortex functional organization and genetic expression (as provided by the Allen Human Brain Atlas. Previous work suggests that functional cortical networks (resting state and task based are organized as two large networks (differentiated by their preferred information processing mode shaped like two rings. The first ring--Visual-Sensorimotor-Auditory (VSA--comprises visual, auditory, somatosensory, and motor cortices that process real time world interactions. The second ring--Parieto-Temporo-Frontal (PTF--comprises parietal, temporal, and frontal regions with networks dedicated to cognitive functions, emotions, biological needs, and internally driven rhythms. We found--with correspondence analysis--that the patterns of expression of the 938 genes most differentially expressed across the cortex organized the cortex into two sets of regions that match the two rings. We confirmed this result using discriminant correspondence analysis by showing that the genetic profiles of cortical regions can reliably predict to what ring these regions belong. We found that several of the proteins--coded by genes that most differentiate the rings--were involved in neuronal information processing such as ionic channels and neurotransmitter release. The systematic study of families of genes revealed specific proteins within families preferentially expressed in each ring. The results showed strong congruence between the preferential expression of subsets of genes, temporal properties of the proteins they code, and the preferred processing modes of the rings. Ionic channels and release-related proteins more expressed in the VSA ring favor temporal precision of fast evoked neural transmission (Sodium channels SCNA1, SCNB1 potassium channel KCNA1, calcium channel CACNA2D2, Synaptotagmin SYT2, Complexin CPLX1, Synaptobrevin VAMP1. Conversely, genes expressed in the PTF ring favor slower, sustained, or rhythmic activation (Sodium

  18. Network analysis reveals a causal role of mitochondrial gene activity in atherosclerotic lesion formation.

    Science.gov (United States)

    Vilne, Baiba; Skogsberg, Josefin; Foroughi Asl, Hassan; Talukdar, Husain Ahammad; Kessler, Thorsten; Björkegren, Johan L M; Schunkert, Heribert

    2017-12-01

    Mitochondrial damage and augmented production of reactive oxygen species (ROS) may represent an intermediate step by which hypercholesterolemia exacerbates atherosclerotic lesion formation. To test this hypothesis, in mice with severe but genetically reversible hypercholesterolemia (i.e. the so called Reversa mouse model), we performed time-resolved analyses of mitochondrial transcriptome in the aortic arch employing a systems-level network approach. During hypercholesterolemia, we observed a massive down-regulation (>28%) of mitochondrial genes, specifically at the time of rapid atherosclerotic lesion expansion and foam cell formation, i.e. between 30 and 40 weeks of age. Both phenomena - down-regulation of mitochondrial genes and lesion expansion - were largely reversible by genetically lowering plasma cholesterol (by >80%, from 427 to 54 ± 31 mg/L) at 30 weeks. Co-expression network analysis revealed that both mitochondrial signature genes were highly connected in two modules, negatively correlating with lesion size and supported as causal for coronary artery disease (CAD) in humans, as expression-associated single nucleotide polymorphisms (eSNPs) representing their genes overlapped markedly with established disease risk loci. Within these modules, we identified the transcription factor estrogen related receptor (ERR)-α and its co-factors PGC1-α and -β, i.e. two members of the peroxisome proliferator-activated receptor γ co-activator 1 family of transcription regulators, as key regulatory genes. Together, these factors are known as major orchestrators of mitochondrial biogenesis and antioxidant responses. Using a network approach, we demonstrate how hypercholesterolemia could hamper mitochondrial activity during atherosclerosis progression and pinpoint potential therapeutic targets to counteract these processes. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Molecular Network Analysis Suggests Aberrant CREB-Mediated Gene Regulation in the Alzheimer Disease Hippocampus

    Directory of Open Access Journals (Sweden)

    Jun-ichi Satoh

    2009-01-01

    Full Text Available The pathogenesis of Alzheimer disease (AD involves the complex interaction between genetic and environmental factors affecting multiple cellular pathways. Recent advances in systems biology provide a system-level understanding of AD by elucidating the genome-wide molecular interactions. By using KeyMolnet, a bioinformatics tool for analyzing molecular interactions on the curated knowledgebase, we characterized molecular network of 2,883 all stages of AD-related genes (ADGs and 559 incipient AD-related genes (IADGs identified by global gene expression profiling of the hippocampal CA1 region of AD brains in terms of significant clinical and pathological correlations (Blalock et al., Proc Natl Acad Sci USA 101: 2173-2178, 2004. By the common upstream search, KeyMolnet identified cAMP-response element-binding protein (CREB as the principal transcription factor exhibiting the most significant relevance to molecular networks of both ADGs and IADGs. The CREB-regulated transcriptional network included upregulated and downregulated sets of ADGs and IADGs, suggesting an involvement of generalized deregulation of the CREB signaling pathway in the pathophysiology of AD, beginning at the early stage of the disease. To verify the in silico observations in vivo, we conducted immunohistochemical studies of 11 AD and 13 age-matched control brains by using anti-phoshorylated CREB (pCREB antibody. An abnormal accumulation of pCREB imunoreactivity was identified in granules of granulovacuolar degeneration (GVD in the hippocampal neurons of AD brains. These observations suggest that aberrant CREB-mediated gene regulation serves as a molecular biomarker of AD-related pathological processes, and support the hypothesis that sequestration of pCREB in GVD granules is in part responsible for deregulation of CREB-mediated gene expression in AD hippocampus.

  20. Identification of Linkages between EDCs in Personal Care Products and Breast Cancer through Data Integration Combined with Gene Network Analysis.

    Science.gov (United States)

    Jeong, Hyeri; Kim, Jongwoon; Kim, Youngjun

    2017-09-30

    Approximately 1000 chemicals have been reported to possibly have endocrine disrupting effects, some of which are used in consumer products, such as personal care products (PCPs) and cosmetics. We conducted data integration combined with gene network analysis to: (i) identify causal molecular mechanisms between endocrine disrupting chemicals (EDCs) used in PCPs and breast cancer; and (ii) screen candidate EDCs associated with breast cancer. Among EDCs used in PCPs, four EDCs having correlation with breast cancer were selected, and we curated 27 common interacting genes between those EDCs and breast cancer to perform the gene network analysis. Based on the gene network analysis, ESR1, TP53, NCOA1, AKT1, and BCL6 were found to be key genes to demonstrate the molecular mechanisms of EDCs in the development of breast cancer. Using GeneMANIA, we additionally predicted 20 genes which could interact with the 27 common genes. In total, 47 genes combining the common and predicted genes were functionally grouped with the gene ontology and KEGG pathway terms. With those genes, we finally screened candidate EDCs for their potential to increase breast cancer risk. This study highlights that our approach can provide insights to understand mechanisms of breast cancer and identify potential EDCs which are in association with breast cancer.

  1. Comprehensive gene expression profiling reveals synergistic functional networks in cerebral vessels after hypertension or hypercholesterolemia.

    Directory of Open Access Journals (Sweden)

    Wei-Yi Ong

    Full Text Available Atherosclerotic stenosis of cerebral arteries or intracranial large artery disease (ICLAD is a major cause of stroke especially in Asians, Hispanics and Africans, but relatively little is known about gene expression changes in vessels at risk. This study compares comprehensive gene expression profiles in the middle cerebral artery (MCA of New Zealand White rabbits exposed to two stroke risk factors i.e. hypertension and/or hypercholesterolemia, by the 2-Kidney-1-Clip method, or dietary supplementation with cholesterol. Microarray and Ingenuity Pathway Analyses of the MCA of the hypertensive rabbits showed up-regulated genes in networks containing the node molecules: UBC (ubiquitin, P38 MAPK, ERK, NFkB, SERPINB2, MMP1 and APP (amyloid precursor protein; and down-regulated genes related to MAPK, ERK 1/2, Akt, 26 s proteasome, histone H3 and UBC. The MCA of hypercholesterolemic rabbits showed differentially expressed genes that are surprisingly, linked to almost the same node molecules as the hypertensive rabbits, despite a relatively low percentage of 'common genes' (21 and 7% between the two conditions. Up-regulated common genes were related to: UBC, SERPINB2, TNF, HNF4A (hepatocyte nuclear factor 4A and APP, and down-regulated genes, related to UBC. Increased HNF4A message and protein were verified in the aorta. Together, these findings reveal similar nodal molecules and gene pathways in cerebral vessels affected by hypertension or hypercholesterolemia, which could be a basis for synergistic action of risk factors in the pathogenesis of ICLAD.

  2. DAF-12 Regulates a Connected Network of Genes to Ensure Robust Developmental Decisions

    Science.gov (United States)

    Stuckenholz, Carsten; Labhart, Paul; Alexiadis, Vassili; Martin, René; Knölker, Hans-Joachim; Fisher, Alfred L.

    2011-01-01

    The nuclear receptor DAF-12 has roles in normal development, the decision to pursue dauer development in unfavorable conditions, and the modulation of adult aging. Despite the biologic importance of DAF-12, target genes for this receptor are largely unknown. To identify DAF-12 targets, we performed chromatin immunoprecipitation followed by hybridization to whole-genome tiling arrays. We identified 1,175 genomic regions to be bound in vivo by DAF-12, and these regions are enriched in known DAF-12 binding motifs and act as DAF-12 response elements in transfected cells and in transgenic worms. The DAF-12 target genes near these binding sites include an extensive network of interconnected heterochronic and microRNA genes. We also identify the genes encoding components of the miRISC, which is required for the control of target genes by microRNA, as a target of DAF-12 regulation. During reproductive development, many of these target genes are misregulated in daf-12(0) mutants, but this only infrequently results in developmental phenotypes. In contrast, we and others have found that null daf-12 mutations enhance the phenotypes of many miRISC and heterochronic target genes. We also find that environmental fluctuations significantly strengthen the weak heterochronic phenotypes of null daf-12 alleles. During diapause, DAF-12 represses the expression of many heterochronic and miRISC target genes, and prior work has demonstrated that dauer formation can suppress the heterochronic phenotypes of many of these target genes in post-dauer development. Together these data are consistent with daf-12 acting to ensure developmental robustness by committing the animal to adult or dauer developmental programs despite variable internal or external conditions. PMID:21814518

  3. Pitx2 modulates a Tbx5-dependent gene regulatory network to maintain atrial rhythm.

    Science.gov (United States)

    Nadadur, Rangarajan D; Broman, Michael T; Boukens, Bastiaan; Mazurek, Stefan R; Yang, Xinan; van den Boogaard, Malou; Bekeny, Jenna; Gadek, Margaret; Ward, Tarsha; Zhang, Min; Qiao, Yun; Martin, James F; Seidman, Christine E; Seidman, Jon; Christoffels, Vincent; Efimov, Igor R; McNally, Elizabeth M; Weber, Christopher R; Moskowitz, Ivan P

    2016-08-31

    Cardiac rhythm is extremely robust, generating 2 billion contraction cycles during the average human life span. Transcriptional control of cardiac rhythm is poorly understood. We found that removal of the transcription factor gene Tbx5 from the adult mouse caused primary spontaneous and sustained atrial fibrillation (AF). Atrial cardiomyocytes from the Tbx5-mutant mice exhibited action potential abnormalities, including spontaneous depolarizations, which were rescued by chelating free calcium. We identified a multitiered transcriptional network that linked seven previously defined AF risk loci: TBX5 directly activated PITX2, and TBX5 and PITX2 antagonistically regulated membrane effector genes Scn5a, Gja1, Ryr2, Dsp, and Atp2a2 In addition, reduced Tbx5 dose by adult-specific haploinsufficiency caused decreased target gene expression, myocardial automaticity, and AF inducibility, which were all rescued by Pitx2 haploinsufficiency in mice. These results defined a transcriptional architecture for atrial rhythm control organized as an incoherent feed-forward loop, driven by TBX5 and modulated by PITX2. TBX5/PITX2 interplay provides tight control of atrial rhythm effector gene expression, and perturbation of the co-regulated network caused AF susceptibility. This work provides a model for the molecular mechanisms underpinning the genetic implication of multiple AF genome-wide association studies loci and will contribute to future efforts to stratify patients for AF risk by genotype. Copyright © 2016, American Association for the Advancement of Science.

  4. Construction and comparison of gene co-expression networks shows complex plant immune responses

    Directory of Open Access Journals (Sweden)

    Luis Guillermo Leal

    2014-10-01

    Full Text Available Gene co-expression networks (GCNs are graphic representations that depict the coordinated transcription of genes in response to certain stimuli. GCNs provide functional annotations of genes whose function is unknown and are further used in studies of translational functional genomics among species. In this work, a methodology for the reconstruction and comparison of GCNs is presented. This approach was applied using gene expression data that were obtained from immunity experiments in Arabidopsis thaliana, rice, soybean, tomato and cassava. After the evaluation of diverse similarity metrics for the GCN reconstruction, we recommended the mutual information coefficient measurement and a clustering coefficient-based method for similarity threshold selection. To compare GCNs, we proposed a multivariate approach based on the Principal Component Analysis (PCA. Branches of plant immunity that were exemplified by each experiment were analyzed in conjunction with the PCA results, suggesting both the robustness and the dynamic nature of the cellular responses. The dynamic of molecular plant responses produced networks with different characteristics that are differentiable using our methodology. The comparison of GCNs from plant pathosystems, showed that in response to similar pathogens plants could activate conserved signaling pathways. The results confirmed that the closeness of GCNs projected on the principal component space is an indicative of similarity among GCNs. This also can be used to understand global patterns of events triggered during plant immune responses.

  5. Networks of neuronal genes affected by common and rare variants in autism spectrum disorders.

    Directory of Open Access Journals (Sweden)

    Eyal Ben-David

    Full Text Available Autism spectrum disorders (ASD are neurodevelopmental disorders with phenotypic and genetic heterogeneity. Recent studies have reported rare and de novo mutations in ASD, but the allelic architecture of ASD remains unclear. To assess the role of common and rare variations in ASD, we constructed a gene co-expression network based on a widespread survey of gene expression in the human brain. We identified modules associated with specific cell types and processes. By integrating known rare mutations and the results of an ASD genome-wide association study (GWAS, we identified two neuronal modules that are perturbed by both rare and common variations. These modules contain highly connected genes that are involved in synaptic and neuronal plasticity and that are expressed in areas associated with learning and memory and sensory perception. The enrichment of common risk variants was replicated in two additional samples which include both simplex and multiplex families. An analysis of the combined contribution of common variants in the neuronal modules revealed a polygenic component to the risk of ASD. The results of this study point toward contribution of minor and major perturbations in the two sub-networks of neuronal genes to ASD risk.

  6. Lineage-specific transcription factors and the evolution of gene regulatory networks.

    Science.gov (United States)

    Nowick, Katja; Stubbs, Lisa

    2010-01-01

    Nature is replete with examples of diverse cell types, tissues and body plans, forming very different creatures from genomes with similar gene complements. However, while the genes and the structures of proteins they encode can be highly conserved, the production of those proteins in specific cell types and at specific developmental time points might differ considerably between species. A full understanding of the factors that orchestrate gene expression will be essential to fully understand evolutionary variety. Transcription factor (TF) proteins, which form gene regulatory networks (GRNs) to act in cooperative or competitive partnerships to regulate gene expression, are key components of these unique regulatory programs. Although many TFs are conserved in structure and function, certain classes of TFs display extensive levels of species diversity. In this review, we highlight families of TFs that have expanded through gene duplication events to create species-unique repertoires in different evolutionary lineages. We discuss how the hierarchical structures of GRNs allow for flexible small to large-scale phenotypic changes. We survey evidence that explains how newly evolved TFs may be integrated into an existing GRN and how molecular changes in TFs might impact the GRNs. Finally, we review examples of traits that evolved due to lineage-specific TFs and species differences in GRNs.

  7. Insights into TREM2 biology by network analysis of human brain gene expression data.

    Science.gov (United States)

    Forabosco, Paola; Ramasamy, Adaikalavan; Trabzuni, Daniah; Walker, Robert; Smith, Colin; Bras, Jose; Levine, Adam P; Hardy, John; Pocock, Jennifer M; Guerreiro, Rita; Weale, Michael E; Ryten, Mina

    2013-12-01

    Rare variants in TREM2 cause susceptibility to late-onset Alzheimer's disease. Here we use microarray-based expression data generated from 101 neuropathologically normal individuals and covering 10 brain regions, including the hippocampus, to understand TREM2 biology in human brain. Using network analysis, we detect a highly preserved TREM2-containing module in human brain, show that it relates to microglia, and demonstrate that TREM2 is a hub gene in 5 brain regions, including the hippocampus, suggesting that it can drive module function. Using enrichment analysis we show significant overrepresentation of genes implicated in the adaptive and innate immune system. Inspection of genes with the highest connectivity to TREM2 suggests that it plays a key role in mediating changes in the microglial cytoskeleton necessary not only for phagocytosis, but also migration. Most importantly, we show that the TREM2-containing module is significantly enriched for genes genetically implicated in Alzheimer's disease, multiple sclerosis, and motor neuron disease, implying that these diseases share common pathways centered on microglia and that among the genes identified are possible new disease-relevant genes. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Inference of Gene Regulatory Networks Using Bayesian Nonparametric Regression and Topology Information

    Science.gov (United States)

    2017-01-01

    Gene regulatory networks (GRNs) play an important role in cellular systems and are important for understanding biological processes. Many algorithms have been developed to infer the GRNs. However, most algorithms only pay attention to the gene expression data but do not consider the topology information in their inference process, while incorporating this information can partially compensate for the lack of reliable expression data. Here we develop a Bayesian group lasso with spike and slab priors to perform gene selection and estimation for nonparametric models. B-spline basis functions are used to capture the nonlinear relationships flexibly and penalties are used to avoid overfitting. Further, we incorporate the topology information into the Bayesian method as a prior. We present the application of our method on DREAM3 and DREAM4 datasets and two real biological datasets. The results show that our method performs better than existing methods and the topology information prior can improve the result. PMID:28133490

  9. Inference of Gene Regulatory Networks Using Bayesian Nonparametric Regression and Topology Information

    Directory of Open Access Journals (Sweden)

    Yue Fan

    2017-01-01

    Full Text Available Gene regulatory networks (GRNs play an important role in cellular systems and are important for understanding biological processes. Many algorithms have been developed to infer the GRNs. However, most algorithms only pay attention to the gene expression data but do not consider the topology information in their inference process, while incorporating this information can partially compensate for the lack of reliable expression data. Here we develop a Bayesian group lasso with spike and slab priors to perform gene selection and estimation for nonparametric models. B-spline basis functions are used to capture the nonlinear relationships flexibly and penalties are used to avoid overfitting. Further, we incorporate the topology information into the Bayesian method as a prior. We present the application of our method on DREAM3 and DREAM4 datasets and two real biological datasets. The results show that our method performs better than existing methods and the topology information prior can improve the result.

  10. The biocontrol agent Pseudomonas chlororaphis PA23 primes Brassica napus defenses through distinct gene networks.

    Science.gov (United States)

    Duke, Kelly A; Becker, Michael G; Girard, Ian J; Millar, Jenna L; Dilantha Fernando, W G; Belmonte, Mark F; de Kievit, Teresa R

    2017-06-19

    The biological control agent Pseudomonas chlororaphis PA23 is capable of protecting Brassica napus (canola) from the necrotrophic fungus Sclerotinia sclerotiorum via direct antagonism. While we have elucidated bacterial genes and gene products responsible biocontrol, little is known about how the host plant responds to bacterial priming on the leaf surface, including global changes in gene activity in the presence and absence of S. sclerotiorum. Application of PA23 to the aerial surfaces of canola plants reduced the number of S. sclerotiorum lesion-forming petals by 91.1%. RNA sequencing of the host pathogen interface showed that pretreatment with PA23 reduced the number of genes upregulated in response to S. sclerotiorum by 16-fold. By itself, PA23 activated unique defense networks indicative of defense priming. Genes encoding MAMP-triggered immunity receptors detecting flagellin and peptidoglycan were downregulated in PA23 only-treated plants, consistent with post-stimulus desensitization. Downstream, we observed reactive oxygen species (ROS) production involving low levels of H 2 O 2 and overexpression of genes associated with glycerol-3-phosphate (G3P)-mediated systemic acquired resistance (SAR). Leaf chloroplasts exhibited increased thylakoid membrane structures and chlorophyll content, while lipid metabolic processes were upregulated. In addition to directly antagonizing S. sclerotiorum, PA23 primes the plant defense response through induction of unique local and systemic defense networks. This study provides novel insight into the effects of biocontrol agents applied to the plant phyllosphere. Understanding these interactions will aid in the development of biocontrol systems as an alternative to chemical pesticides for protection of important crop systems.

  11. Gene-Disease Network Analysis Reveals Functional Modules in Mendelian, Complex and Environmental Diseases

    Science.gov (United States)

    Bauer-Mehren, Anna; Bundschus, Markus; Rautschka, Michael; Mayer, Miguel A.; Sanz, Ferran; Furlong, Laura I.

    2011-01-01

    Background Scientists have been trying to understand the molecular mechanisms of diseases to design preventive and therapeutic strategies for a long time. For some diseases, it has become evident that it is not enough to obtain a catalogue of the disease-related genes but to uncover how disruptions of molecular networks in the cell give rise to disease phenotypes. Moreover, with the unprecedented wealth of information available, even obtaining such catalogue is extremely difficult. Principal Findings We developed a comprehensive gene-disease association database by integrating associations from several sources that cover different biomedical aspects of diseases. In particular, we focus on the current knowledge of human genetic diseases including mendelian, complex and environmental diseases. To assess the concept of modularity of human diseases, we performed a systematic study of the emergent properties of human gene-disease networks by means of network topology and functional annotation analysis. The results indicate a highly shared genetic origin of human diseases and show that for most diseases, including mendelian, complex and environmental diseases, functional modules exist. Moreover, a core set of biological pathways is found to be associated with most human diseases. We obtained similar results when studying clusters of diseases, suggesting that related diseases might arise due to dysfunction of common biological processes in the cell. Conclusions For the first time, we include mendelian, complex and environmental diseases in an integrated gene-disease association database and show that the concept of modularity applies for all of them. We furthermore provide a functional analysis of disease-related modules providing important new biological insights, which might not be discovered when considering each of the gene-disease association repositories independently. Hence, we present a suitable framework for the study of how genetic and environmental factors

  12. Gene-disease network analysis reveals functional modules in mendelian, complex and environmental diseases.

    Directory of Open Access Journals (Sweden)

    Anna Bauer-Mehren

    Full Text Available BACKGROUND: Scientists have been trying to understand the molecular mechanisms of diseases to design preventive and therapeutic strategies for a long time. For some diseases, it has become evident that it is not enough to obtain a catalogue of the disease-related genes but to uncover how disruptions of molecular networks in the cell give rise to disease phenotypes. Moreover, with the unprecedented wealth of information available, even obtaining such catalogue is extremely difficult. PRINCIPAL FINDINGS: We developed a comprehensive gene-disease association database by integrating associations from several sources that cover different biomedical aspects of diseases. In particular, we focus on the current knowledge of human genetic diseases including mendelian, complex and environmental diseases. To assess the concept of modularity of human diseases, we performed a systematic study of the emergent properties of human gene-disease networks by means of network topology and functional annotation analysis. The results indicate a highly shared genetic origin of human diseases and show that for most diseases, including mendelian, complex and environmental diseases, functional modules exist. Moreover, a core set of biological pathways is found to be associated with most human diseases. We obtained similar results when studying clusters of diseases, suggesting that related diseases might arise due to dysfunction of common biological processes in the cell. CONCLUSIONS: For the first time, we include mendelian, complex and environmental diseases in an integrated gene-disease association database and show that the concept of modularity applies for all of them. We furthermore provide a functional analysis of disease-related modules providing important new biological insights, which might not be discovered when considering each of the gene-disease association repositories independently. Hence, we present a suitable framework for the study of how genetic and

  13. Antagonistic Coevolution Drives Whack-a-Mole Sensitivity in Gene Regulatory Networks.

    Directory of Open Access Journals (Sweden)

    Jeewoen Shin

    2015-10-01

    Full Text Available Robustness, defined as tolerance to perturbations such as mutations and environmental fluctuations, is pervasive in biological systems. However, robustness often coexists with its counterpart, evolvability--the ability of perturbations to generate new phenotypes. Previous models of gene regulatory network evolution have shown that robustness evolves under stabilizing selection, but it is unclear how robustness and evolvability will emerge in common coevolutionary scenarios. We consider a two-species model of coevolution involving one host and one parasite population. By using two interacting species, key model parameters that determine the fitness landscapes become emergent properties of the model, avoiding the need to impose these parameters externally. In our study, parasites are modeled on species such as cuckoos where mimicry of the host phenotype confers high fitness to the parasite but lower fitness to the host. Here, frequent phenotype changes are favored as each population continually adapts to the other population. Sensitivity evolves at the network level such that point mutations can induce large phenotype changes. Crucially, the sensitive points of the network are broadly distributed throughout the network and continually relocate. Each time sensitive points in the network are mutated, new ones appear to take their place. We have therefore named this phenomenon "whack-a-mole" sensitivity, after a popular fun park game. We predict that this type of sensitivity will evolve under conditions of strong directional selection, an observation that helps interpret existing experimental evidence, for example, during the emergence of bacterial antibiotic resistance.

  14. A systems biology approach to construct the gene regulatory network of systemic inflammation via microarray and databases mining

    Directory of Open Access Journals (Sweden)

    Lan Chung-Yu

    2008-09-01

    Full Text Available Abstract Background Inflammation is a hallmark of many human diseases. Elucidating the mechanisms underlying systemic inflammation has long been an important topic in basic and clinical research. When primary pathogenetic events remains unclear due to its immense complexity, construction and analysis of the gene regulatory network of inflammation at times becomes the best way to understand the detrimental effects of disease. However, it is difficult to recognize and evaluate relevant biological processes from the huge quantities of experimental data. It is hence appealing to find an algorithm which can generate a gene regulatory network of systemic inflammation from high-throughput genomic studies of human diseases. Such network will be essential for us to extract valuable information from the complex and chaotic network under diseased conditions. Results In this study, we construct a gene regulatory network of inflammation using data extracted from the Ensembl and JASPAR databases. We also integrate and apply a number of systematic algorithms like cross correlation threshold, maximum likelihood estimation method and Akaike Information Criterion (AIC on time-lapsed microarray data to refine the genome-wide transcriptional regulatory network in response to bacterial endotoxins in the context of dynamic activated genes, which are regulated by transcription factors (TFs such as NF-κB. This systematic approach is used to investigate the stochastic interaction represented by the dynamic leukocyte gene expression profiles of human subject exposed to an inflammatory stimulus (bacterial endotoxin. Based on the kinetic parameters of the dynamic gene regulatory network, we identify important properties (such as susceptibility to infection of the immune system, which may be useful for translational research. Finally, robustness of the inflammatory gene network is also inferred by analyzing the hubs and "weak ties" structures of the gene network

  15. Gene and metabolite regulatory network analysis of early developing fruit tissues highlights new candidate genes for the control of tomato fruit composition and development.

    Science.gov (United States)

    Mounet, Fabien; Moing, Annick; Garcia, Virginie; Petit, Johann; Maucourt, Michael; Deborde, Catherine; Bernillon, Stéphane; Le Gall, Gwénaëlle; Colquhoun, Ian; Defernez, Marianne; Giraudel, Jean-Luc; Rolin, Dominique; Rothan, Christophe; Lemaire-Chamley, Martine

    2009-03-01

    Variations in early fruit development and composition may have major impacts on the taste and the overall quality of ripe tomato (Solanum lycopersicum) fruit. To get insights into the networks involved in these coordinated processes and to identify key regulatory genes, we explored the transcriptional and metabolic changes in expanding tomato fruit tissues using multivariate analysis and gene-metabolite correlation networks. To this end, we demonstrated and took advantage of the existence of clear structural and compositional differences between expanding mesocarp and locular tissue during fruit development (12-35 d postanthesis). Transcriptome and metabolome analyses were carried out with tomato microarrays and analytical methods including proton nuclear magnetic resonance and liquid chromatography-mass spectrometry, respectively. Pairwise comparisons of metabolite contents and gene expression profiles detected up to 37 direct gene-metabolite correlations involving regulatory genes (e.g. the correlations between glutamine, bZIP, and MYB transcription factors). Correlation network analyses revealed the existence of major hub genes correlated with 10 or more regulatory transcripts and embedded in a large regulatory network. This approach proved to be a valuable strategy for identifying specific subsets of genes implicated in key processes of fruit development and metabolism, which are therefore potential targets for genetic improvement of tomato fruit quality.

  16. Relevance of different prior knowledge sources for inferring gene interaction networks.

    Science.gov (United States)

    Olsen, Catharina; Bontempi, Gianluca; Emmert-Streib, Frank; Quackenbush, John; Haibe-Kains, Benjamin

    2014-01-01

    When inferring networks from high-throughput genomic data, one of the main challenges is the subsequent validation of these networks. In the best case scenario, the true network is partially known from previous research results published in structured databases or research articles. Traditionally, inferred networks are validated against these known interactions. Whenever the recovery rate is gauged to be high enough, subsequent high scoring but unknown inferred interactions are deemed good candidates for further experimental validation. Therefore such validation framework strongly depends on the quantity and quality of published interactions and presents serious pitfalls: (1) availability of these known interactions for the studied problem might be sparse; (2) quantitatively comparing different inference algorithms is not trivial; and (3) the use of these known interactions for validation prevents their integration in the inference procedure. The latter is particularly relevant as it has recently been showed that integration of priors during network inference significantly improves the quality of inferred networks. To overcome these problems when validating inferred networks, we recently proposed a data-driven validation framework based on single gene knock-down experiments. Using this framework, we were able to demonstrate the benefits of integrating prior knowledge and expression data. In this paper we used this framework to assess the quality of different sources of prior knowledge on their own and in combination with different genomic data sets in colorectal cancer. We observed that most prior sources lead to significant F-scores. Furthermore, their integration with genomic data leads to a significant increase in F-scores, especially for priors extracted from full text PubMed articles, known co-expression modules and genetic interactions. Lastly, we observed that the results are consistent for three different data sets: experimental knock-down data and two

  17. Deciphering energy-associated gene networks operating in the response of Arabidopsis plants to stress and nutritional cues.

    Science.gov (United States)

    Avin-Wittenberg, Tamar; Tzin, Vered; Angelovici, Ruthie; Less, Hadar; Galili, Gad

    2012-06-01

    Plants need to continuously adjust their transcriptome in response to various stresses that lead to inhibition of photosynthesis and the deprivation of cellular energy. This adjustment is triggered in part by a coordinated re-programming of the energy-associated transcriptome to slow down photosynthesis and activate other energy-promoting gene networks. Therefore, understanding the stress-related transcriptional networks of genes belonging to energy-associated pathways is of major importance for engineering stress tolerance. In a bioinformatics approach developed by our group, termed 'gene coordination', we previously divided genes encoding for enzymes and transcription factors in Arabidopsis thaliana into three clusters, displaying altered coordinated transcriptional behaviors in response to multiple biotic and abiotic stresses (Plant Cell, 23, 2011, 1264). Enrichment analysis indicated further that genes controlling energy-associated metabolism operate as a compound network in response to stress. In the present paper, we describe in detail the network association of genes belonging to six central energy-associated pathways in each of these three clusters described in our previous paper. Our results expose extensive stress-associated intra- and inter-pathway interactions between genes from these pathways, indicating that genes encoding proteins involved in energy-associated metabolism are expressed in a highly coordinated manner. We also provide examples showing that this approach can be further utilized to elucidate candidate genes for stress tolerance and functions of isozymes. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  18. A sparse regulatory network of copy-number driven gene expression reveals putative breast cancer oncogenes.

    Science.gov (United States)

    Yuan, Yinyin; Curtis, Christina; Caldas, Carlos; Markowetz, Florian

    2012-01-01

    Copy number aberrations are recognized to be important in cancer as they may localize to regions harboring oncogenes or tumor suppressors. Such genomic alterations mediate phenotypic changes through their impact on expression. Both cis- and transacting alterations are important since they may help to elucidate putative cancer genes. However, amidst numerous passenger genes, trans-effects are less well studied due to the computational difficulty in detecting weak and sparse signals in the data, and yet may influence multiple genes on a global scale. We propose an integrative approach to learn a sparse interaction network of DNA copy-number regions with their downstream transcriptional targets in breast cancer. With respect to goodness of fit on both simulated and real data, the performance of sparse network inference is no worse than other state-of-the-art models but with the advantage of simultaneous feature selection and efficiency. The DNA-RNA interaction network helps to distinguish copy-number driven expression alterations from those that are copy-number independent. Further, our approach yields a quantitative copy-number dependency score, which distinguishes cis- versus trans-effects. When applied to a breast cancer data set, numerous expression profiles were impacted by cis-acting copy-number alterations, including several known oncogenes such as GRB7, ERBB2, and LSM1. Several trans-acting alterations were also identified, impacting genes such as ADAM2 and BAGE, which warrant further investigation. An R package named lol is available from www.markowetzlab.org/software/lol.html.

  19. Comprehensive Gene Expression Profiling Reveals Synergistic Functional Networks in Cerebral Vessels after Hypertension or Hypercholesterolemia

    Science.gov (United States)

    Ong, Wei-Yi; Ng, Mary Pei-Ern; Loke, Sau-Yeen; Jin, Shalai; Wu, Ya-Jun; Tanaka, Kazuhiro; Wong, Peter Tsun-Hon

    2013-01-01

    Atherosclerotic stenosis of cerebral arteries or intracranial large artery disease (ICLAD) is a major cause of stroke especially in Asians, Hispanics and Africans, but relatively little is known about gene expression changes in vessels at risk. This study compares comprehensive gene expression profiles in the middle cerebral artery (MCA) of New Zealand White rabbits exposed to two stroke risk factors i.e. hypertension and/or hypercholesterolemia, by the 2-Kidney-1-Clip method, or dietary supplementation with cholesterol. Microarray and Ingenuity Pathway Analyses of the MCA of the hypertensive rabbits showed up-regulated genes in networks containing the node molecules: UBC (ubiquitin), P38 MAPK, ERK, NFkB, SERPINB2, MMP1 and APP (amyloid precursor protein); and down-regulated genes related to MAPK, ERK 1/2, Akt, 26 s proteasome, histone H3 and UBC. The MCA of hypercholesterolemic rabbits showed differentially expressed genes that are surprisingly, linked to almost the same node molecules as the hypertensive rabbits, despite a relatively low percentage of ‘common genes’ (21 and 7%) between the two conditions. Up-regulated common genes were related to: UBC, SERPINB2, TNF, HNF4A (hepatocyte nuclear factor 4A) and APP, and down-regulated genes, related to UBC. Increased HNF4A message and protein were verified in the aorta. Together, these findings reveal similar nodal molecules and gene pathways in cerebral vessels affected by hypertension or hypercholesterolemia, which could be a basis for synergistic action of risk factors in the pathogenesis of ICLAD. PMID:23874591

  20. Gene Networks in the Wild: Identifying Transcriptional Modules that Mediate Coral Resistance to Experimental Heat Stress.

    Science.gov (United States)

    Rose, Noah H; Seneca, Francois O; Palumbi, Stephen R

    2015-12-28

    Organisms respond to environmental variation partly through changes in gene expression, which underlie both homeostatic and acclimatory responses to environmental stress. In some cases, so many genes change in expression in response to different influences that understanding expression patterns for all these individual genes becomes difficult. To reduce this problem, we use a systems genetics approach to show that variation in the expression of thousands of genes of reef-building corals can be explained as variation in the expression of a small number of coexpressed "modules." Modules were often enriched for specific cellular functions and varied predictably among individuals, experimental treatments, and physiological state. We describe two transcriptional modules for which expression levels immediately after heat stress predict bleaching a day later. One of these early "bleaching modules" is enriched for sequence-specific DNA-binding proteins, particularly E26 transformation-specific (ETS)-family transcription factors. The other module is enriched for extracellular matrix proteins. These classes of bleaching response genes are clear in the modular gene expression analysis we conduct but are much more difficult to discern in single gene analyses. Furthermore, the ETS-family module shows repeated differences in expression among coral colonies grown in the same common garden environment, suggesting a heritable genetic or epigenetic basis for these expression polymorphisms. This finding suggests that these corals harbor high levels of gene-network variation, which could facilitate rapid evolution in the face of environmental change. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  1. Gene networks specific for innate immunity define post-traumatic stress disorder.

    Science.gov (United States)

    Breen, M S; Maihofer, A X; Glatt, S J; Tylee, D S; Chandler, S D; Tsuang, M T; Risbrough, V B; Baker, D G; O'Connor, D T; Nievergelt, C M; Woelk, C H

    2015-12-01

    The molecular factors involved in the development of Post-Traumatic Stress Disorder (PTSD) remain poorly understood. Previous transcriptomic studies investigating the mechanisms of PTSD apply targeted approaches to identify individual genes under a cross-sectional framework lack a holistic view of the behaviours and properties of these genes at the system-level. Here we sought to apply an unsupervised gene-network based approach to a prospective experimental design using whole-transcriptome RNA-Seq gene expression from peripheral blood leukocytes of U.S. Marines (N=188), obtained both pre- and post-deployment to conflict zones. We identified discrete groups of co-regulated genes (i.e., co-expression modules) and tested them for association to PTSD. We identified one module at both pre- and post-deployment containing putative causal signatures for PTSD development displaying an over-expression of genes enriched for functions of innate-immune response and interferon signalling (Type-I and Type-II). Importantly, these results were replicated in a second non-overlapping independent dataset of U.S. Marines (N=96), further outlining the role of innate immune and interferon signalling genes within co-expression modules to explain at least part of the causal pathophysiology for PTSD development. A second module, consequential of trauma exposure, contained PTSD resiliency signatures and an over-expression of genes involved in hemostasis and wound responsiveness suggesting that chronic levels of stress impair proper wound healing during/after exposure to the battlefield while highlighting the role of the hemostatic system as a clinical indicator of chronic-based stress. These findings provide novel insights for early preventative measures and advanced PTSD detection, which may lead to interventions that delay or perhaps abrogate the development of PTSD.

  2. SINCERITIES: Inferring gene regulatory networks from time-stamped single cell transcriptional expression profiles.

    Science.gov (United States)

    Papili Gao, Nan; Ud-Dean, S M Minhaz; Gandrillon, Olivier; Gunawan, Rudiyanto

    2017-09-14

    Single cell transcriptional profiling opens up a new avenue in studying the functional role of cell-to-cell variability in physiological processes. The analysis of single cell expression profiles creates new challenges due to the distributive nature of the data and the stochastic dynamics of gene transcription process. The reconstruction of gene regulatory networks (GRNs) using single cell transcriptional profiles is particularly challenging, especially when directed gene-gene relationships are desired. We developed SINCERITIES (SINgle CEll Regularized Inference using TIme-stamped Expression profileS) for the inference of GRNs from single cell transcriptional profiles. We focused on time-stamped cross-sectional expression data, commonly generated from transcriptional profiling of single cells collected at multiple time points after cell stimulation. SINCERITIES recovers directed regulatory relationships among genes by employing regularized linear regression (ridge regression), using temporal changes in the distributions of gene expressions. Meanwhile, the modes of the gene regulations (activation and repression) come from partial correlation analyses between pairs of genes. We demonstrated the efficacy of SINCERITIES in inferring GRNs using in silico time-stamped single cell expression data and single cell transcriptional profiles of THP-1 monocytic human leukemia cells. Th