Surface Waves on Metamaterials Interfaces
DEFF Research Database (Denmark)
Takayama, Osamu; Shkondin, Evgeniy; Panah, Mohammad Esmail Aryaee
2016-01-01
We analyze surface electromagnetic waves supported at the interface between isotropic medium and effective anisotropic material that can be realized by alternating conductive and dielectrics layers. This configuration can host various types of surface waves and therefore can serve as a rich...... platform for applications of surface photonics. Most of these surface waves are directional and as such their propagation can be effectively controlled by changing wavelength or material parameters tuning....
Surface waves guided by metamaterials with rotational disorder
Gric, T.; Hess, O.
2018-02-01
The analytical analysis of the metamaterial boundary with the rotational disorder reveals both bound and leaky surface plasmon (SP) modes. The dispersion relations of SPs propagating on a surface of these metamaterials are presented along with the propagation lengths. The rigorous modeling and analysis of surface waves at the boundary of two metamaterials possessing rotational disorder are presented. Dispersion properties of two different metamaterial boundaries have been investigated. The results show that the boundary of the metamaterials having different dielectrics employed allows for the presence of the particular modes crossing the light line with the significant portion at lower frequencies lying above the free space light line.
Photonics surface waves on metamaterials interfaces.
Takayama, Osamu; Bogdanov, Andrey; Lavrinenko, Andrei V
2017-09-12
A surface wave (SW) in optics is a light wave, which is supported at an interface of two dissimilar media and propagates along the interface with its field amplitude exponentially decaying away from the boundary. The research on surface waves has been flourishing in last few decades thanks to their unique properties of surface sensitivity and field localization. These features have resulted in applications in nano-guiding, sensing, light-trapping and imaging based on the near-field techniques, contributing to the establishment of the nanophotonics as a field of research. Up to present, a wide variety of surface waves has been investigated in numerous material and structure settings. This paper reviews the recent progress and development in the physics of SWs localized at metamaterial interfaces, as well as bulk media in order to provide broader perspectives on optical surface waves in general. For each type of the surface waves, we discuss material and structural platforms. We mainly focus on experimental realizations in the visible and near-infrared wavelength ranges. We also address existing and potential application of SWs in chemical and biological sensing, and experimental excitation and characterization methods. © 2017 IOP Publishing Ltd.
Experiments on seismic metamaterials: molding surface waves.
Brûlé, S; Javelaud, E H; Enoch, S; Guenneau, S
2014-04-04
Materials engineered at the micro- and nanometer scales have had a tremendous and lasting impact in photonics and phononics. At much larger scales, natural soils civil engineered at decimeter to meter scales may interact with seismic waves when the global properties of the medium are modified, or alternatively thanks to a seismic metamaterial constituted of a mesh of vertical empty inclusions bored in the initial soil. Here, we show the experimental results of a seismic test carried out using seismic waves generated by a monochromatic vibrocompaction probe. Measurements of the particles' velocities show a modification of the seismic energy distribution in the presence of the metamaterial in agreement with numerical simulations using an approximate plate model. For complex natural materials such as soils, this large-scale experiment was needed to show the practical feasibility of seismic metamaterials and to stress their importance for applications in civil engineering. We anticipate this experiment to be a starting point for smart devices for anthropic and natural vibrations.
Experiments on Seismic Metamaterials: Molding Surface Waves
Brûlé, S.; Javelaud, E. H.; Enoch, S.; Guenneau, S.
2014-04-01
Materials engineered at the micro- and nanometer scales have had a tremendous and lasting impact in photonics and phononics. At much larger scales, natural soils civil engineered at decimeter to meter scales may interact with seismic waves when the global properties of the medium are modified, or alternatively thanks to a seismic metamaterial constituted of a mesh of vertical empty inclusions bored in the initial soil. Here, we show the experimental results of a seismic test carried out using seismic waves generated by a monochromatic vibrocompaction probe. Measurements of the particles' velocities show a modification of the seismic energy distribution in the presence of the metamaterial in agreement with numerical simulations using an approximate plate model. For complex natural materials such as soils, this large-scale experiment was needed to show the practical feasibility of seismic metamaterials and to stress their importance for applications in civil engineering. We anticipate this experiment to be a starting point for smart devices for anthropic and natural vibrations.
Photonics surface waves on metamaterials interfaces
DEFF Research Database (Denmark)
Takayama, Osamu; Bogdanov, Andrey; Lavrinenko, Andrei V
2017-01-01
A surface wave (SW) in optics is a light wave, which is supported at an interface of two dissimilar media and propagates along the interface with its field amplitude exponentially decaying away from the boundary. The research on surface waves has been flourishing in last few decades thanks to the...
Surface waves on metal-dielectric metamaterials
DEFF Research Database (Denmark)
Takayama, Osamu; Shkondin, Evgeniy; Panah, Mohammad Esmail Aryaee
2016-01-01
of surface waves and, therefore, can serve as a platform allowing many applications for surface photonics. Most of these surface waves are directional and their propagation direction is sensitive to permittivities of the media forming the interface. Hence, their propagation can be effectively controlled...... by changing a wavelength or material parameters. We discover that two new types of surface waves with complex dispersion exist for a uniaxial medium with both negative ordinary and extraordinary permittivities. Such new surface wave solutions originate from the anisotropic permittivities of the uniaxial media...
Wave propagation in photonic crystals and metamaterials: Surface waves, nonlinearity and chirality
Energy Technology Data Exchange (ETDEWEB)
Wang, Bingnan [Iowa State Univ., Ames, IA (United States)
2009-01-01
Photonic crystals and metamaterials, both composed of artificial structures, are two interesting areas in electromagnetism and optics. New phenomena in photonic crystals and metamaterials are being discovered, including some not found in natural materials. This thesis presents my research work in the two areas. Photonic crystals are periodically arranged artificial structures, mostly made from dielectric materials, with period on the same order of the wavelength of the working electromagnetic wave. The wave propagation in photonic crystals is determined by the Bragg scattering of the periodic structure. Photonic band-gaps can be present for a properly designed photonic crystal. Electromagnetic waves with frequency within the range of the band-gap are suppressed from propagating in the photonic crystal. With surface defects, a photonic crystal could support surface modes that are localized on the surface of the crystal, with mode frequencies within the band-gap. With line defects, a photonic crystal could allow the propagation of electromagnetic waves along the channels. The study of surface modes and waveguiding properties of a 2D photonic crystal will be presented in Chapter 1. Metamaterials are generally composed of artificial structures with sizes one order smaller than the wavelength and can be approximated as effective media. Effective macroscopic parameters such as electric permittivity ϵ, magnetic permeability μ are used to characterize the wave propagation in metamaterials. The fundamental structures of the metamaterials affect strongly their macroscopic properties. By designing the fundamental structures of the metamaterials, the effective parameters can be tuned and different electromagnetic properties can be achieved. One important aspect of metamaterial research is to get artificial magnetism. Metallic split-ring resonators (SRRs) and variants are widely used to build magnetic metamaterials with effective μ < 1 or even μ < 0. Varactor based
Backward spoof surface wave in plasmonic metamaterial of ultrathin metallic structure
Liu, Xiaoyong; Feng, Yijun; Zhu, Bo; Zhao, Junming; Jiang, Tian
2016-02-01
Backward wave with anti-parallel phase and group velocities is one of the basic properties associated with negative refraction and sub-diffraction image that have attracted considerable interest in the context of photonic metamaterials. It has been predicted theoretically that some plasmonic structures can also support backward wave propagation of surface plasmon polaritons (SPPs), however direct experimental demonstration has not been reported, to the best of our knowledge. In this paper, a specially designed plasmonic metamaterial of corrugated metallic strip has been proposed that can support backward spoof SPP wave propagation. The dispersion analysis, the full electromagnetic field simulation and the transmission measurement of the plasmonic metamaterial waveguide have clearly validated the backward wave propagation with dispersion relation possessing negative slope and opposite directions of group and phase velocities. As a further verification and application, a contra-directional coupler is designed and tested that can route the microwave signal to opposite terminals at different operating frequencies, indicating new application opportunities of plasmonic metamaterial in integrated functional devices and circuits for microwave and terahertz radiation.
Metamaterials and wave control
Lheurette, Eric
2013-01-01
Since the concept was first proposed at the end of the 20th Century, metamaterials have been the subject of much research and discussion throughout the wave community. More than 10 years later, the number of related published articles is increasing significantly. Onthe one hand, this success can be attributed to dreams of new physical objects which are the consequences of the singular properties of metamaterials. Among them, we can consider the examples of perfect lensing and invisibility cloaking. On other hand,metamaterials also provide new tools for the design of well-known wave functions s
Metamaterial electromagnetic wave absorbers.
Watts, Claire M; Liu, Xianliang; Padilla, Willie J
2012-06-19
The advent of negative index materials has spawned extensive research into metamaterials over the past decade. Metamaterials are attractive not only for their exotic electromagnetic properties, but also their promise for applications. A particular branch-the metamaterial perfect absorber (MPA)-has garnered interest due to the fact that it can achieve unity absorptivity of electromagnetic waves. Since its first experimental demonstration in 2008, the MPA has progressed significantly with designs shown across the electromagnetic spectrum, from microwave to optical. In this Progress Report we give an overview of the field and discuss a selection of examples and related applications. The ability of the MPA to exhibit extreme performance flexibility will be discussed and the theory underlying their operation and limitations will be established. Insight is given into what we can expect from this rapidly expanding field and future challenges will be addressed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Periodic waves in nonlinear metamaterials
International Nuclear Information System (INIS)
Liu, Wen-Jun; Xiao, Jing-Hua; Yan, Jie-Yun; Tian, Bo
2012-01-01
Periodic waves are presented in this Letter. With symbolic computation, equations for monochromatic waves are studied, and analytic periodic waves are obtained. Factors affecting properties of periodic waves are analyzed. Nonlinear metamaterials, with the continuous distribution of the dielectric permittivity obtained, are different from the ones with the discrete distribution. -- Highlights: ► Equations for the monochromatic waves in transverse magnetic polarization have been studied. ► Analytic periodic waves for the equations have been obtained. ► Periodic waves are theoretically presented and studied in the nonlinear metamaterials.
Solymar, Laszlo
2014-01-01
Metamaterials is a young subject born in the 21st century. It is concerned with artificial materials which can have electrical and magnetic properties difficult or impossible to find in nature. The building blocks in most cases are resonant elements much smaller than the wavelength of the electromagnetic wave. The book offers a comprehensive treatment of all aspects of research in this field at a level that should appeal to final year undergraduates in physics or in electrical and electronic engineering. The mathematics is kept at a minimum; the aim is to explain the physics in simple terms and enumerate the major advances. It can be profitably read by graduate and post-graduate students in order to find out what has been done in the field outside their speciality, and by experts who may gain new insight about the inter-relationship of the physical phenomena involved.
Manipulating electromagnetic waves with metamaterials: Concept and microwave realizations
International Nuclear Information System (INIS)
He Qiong; Xiao Shi-Yi; Li Xin; Song Zheng-Yong; Sun Wu-Jiong; Zhou Lei; Sun Shu-Lin
2014-01-01
Our recent efforts in manipulating electromagnetic (EM) waves using metamaterials (MTMs) are reviewed with emphasis on 1) manipulating wave polarization and transporting properties using homogeneous MTMs, 2) manipulating surface-wave properties using plasmonic MTMs, and 3) bridging propagating and surface waves using inhomogeneous meta-surfaces. For all these topics, we first illustrate the physical concepts and then present several typical practical realizations and applications in the microwave regime. (topical review - plasmonics and metamaterials)
Wave propagation in mechanical metamaterials
Zhou, Y.
2017-01-01
In mechanical metamaterials, large deformations can occur in systems which are topological from the point of view of linear waves. The interplay between such nonlinearities and topology affects wave propagation. Beyond perfectly periodic systems, defects provide a way to modify and control
Reconfigurable metamaterials for terahertz wave manipulation
Hashemi, Mohammed R.; Cakmakyapan, Semih; Jarrahi, Mona
2017-09-01
Reconfigurable metamaterials have emerged as promising platforms for manipulating the spectral and spatial properties of terahertz waves without being limited by the characteristics of naturally existing materials. Here, we present a comprehensive overview of various types of reconfigurable metamaterials that are utilized to manipulate the intensity, phase, polarization, and propagation direction of terahertz waves. We discuss various reconfiguration mechanisms based on optical, electrical, thermal, and mechanical stimuli while using semiconductors, superconductors, phase-change materials, graphene, and electromechanical structures. The advantages and disadvantages of different reconfigurable metamaterial designs in terms of modulation efficiency, modulation bandwidth, modulation speed, and system complexity are discussed in detail.
Acoustic wave science realized by metamaterials.
Lee, Dongwoo; Nguyen, Duc Minh; Rho, Junsuk
2017-01-01
Artificially structured materials with unit cells at sub-wavelength scale, known as metamaterials, have been widely used to precisely control and manipulate waves thanks to their unconventional properties which cannot be found in nature. In fact, the field of acoustic metamaterials has been much developed over the past 15 years and still keeps developing. Here, we present a topical review of metamaterials in acoustic wave science. Particular attention is given to fundamental principles of acoustic metamaterials for realizing the extraordinary acoustic properties such as negative, near-zero and approaching-infinity parameters. Realization of acoustic cloaking phenomenon which is invisible from incident sound waves is also introduced by various approaches. Finally, acoustic lenses are discussed not only for sub-diffraction imaging but also for applications based on gradient index (GRIN) lens.
Wave propagation retrieval method for chiral metamaterials
DEFF Research Database (Denmark)
Andryieuski, Andrei; Malureanu, Radu; Lavrinenko, Andrei
2010-01-01
In this paper we present the wave propagation method for the retrieving of effective properties of media with circularly polarized eigenwaves, in particularly for chiral metamaterials. The method is applied for thick slabs and provides bulk effective parameters. Its strong sides are the absence...... of artificial branches of the refractive index and simplicity in implementation. We prove the validity of the method on three case studies of homogeneous magnetized plasma, bi-cross and U-shaped metamaterials....
Formation of rarefaction waves in origami-based metamaterials.
Yasuda, H; Chong, C; Charalampidis, E G; Kevrekidis, P G; Yang, J
2016-04-01
We investigate the nonlinear wave dynamics of origami-based metamaterials composed of Tachi-Miura polyhedron (TMP) unit cells. These cells exhibit strain softening behavior under compression, which can be tuned by modifying their geometrical configurations or initial folded conditions. We assemble these TMP cells into a cluster of origami-based metamaterials, and we theoretically model and numerically analyze their wave transmission mechanism under external impact. Numerical simulations show that origami-based metamaterials can provide a prototypical platform for the formation of nonlinear coherent structures in the form of rarefaction waves, which feature a tensile wavefront upon the application of compression to the system. We also demonstrate the existence of numerically exact traveling rarefaction waves in an effective lumped-mass model. Origami-based metamaterials can be highly useful for mitigating shock waves, potentially enabling a wide variety of engineering applications.
Active Metamaterial Based Ultrasonic Guided Wave Transducer System, Phase I
National Aeronautics and Space Administration — An active and tunable metamaterial phased array transducer for guided wave mode selection with high intensity per driving channel and with dramatically lower modal...
Metamaterials, from electromagnetic waves to water waves, bending waves and beyond
Dupont, G.
2015-08-04
We will review our recent work on metamaterials for different types of waves. Transposition of transform optics to water waves and bending waves on plates will be considered with potential applications of cloaking to water waves protection and anti-vibrating systems.
A metamaterial electromagnetic energy rectifying surface with high harvesting efficiency
Duan, Xin; Chen, Xing; Zhou, Lin
2016-12-01
A novel metamaterial rectifying surface (MRS) for electromagnetic energy capture and rectification with high harvesting efficiency is presented. It is fabricated on a three-layer printed circuit board, which comprises an array of periodic metamaterial particles in the shape of mirrored split rings, a metal ground, and integrated rectifiers employing Schottky diodes. Perfect impedance matching is engineered at two interfaces, i.e. one between free space and the surface, and the other between the metamaterial particles and the rectifiers, which are connected through optimally positioned vias. Therefore, the incident electromagnetic power is captured with almost no reflection by the metamaterial particles, then channeled maximally to the rectifiers, and finally converted to direct current efficiently. Moreover, the rectifiers are behind the metal ground, avoiding the disturbance of high power incident electromagnetic waves. Such a MRS working at 2.45 GHz is designed, manufactured and measured, achieving a harvesting efficiency up to 66.9% under an incident power density of 5 mW/cm2, compared with a simulated efficiency of 72.9%. This high harvesting efficiency makes the proposed MRS an effective receiving device in practical microwave power transmission applications.
DEFF Research Database (Denmark)
Zhukovsky, Sergei; Andryieuski, Andrei; Sipe, John E.
2014-01-01
of the structure by a generalized resonance pole of a reflection coefficient and using Bloch’s theorem, we derive analytical expressions for the band of large-wave-vector propagating solutions. We apply our formalism to determine the high- k band existence in two important cases: the well-known metal...... and explore the range of parameteres for which this is possible, confirming the prospects of using graphene for materials with hyperbolic dispersion. The approach is applicable to a large variety of structures, such as continuous or structured microwave, terahertz, and optical metamaterials....
Spiraling Light with Magnetic Metamaterial Quarter-Wave Turbines.
Zeng, Jinwei; Luk, Ting S; Gao, Jie; Yang, Xiaodong
2017-09-19
Miniaturized quarter-wave plate devices empower spin to orbital angular momentum conversion and vector polarization formation, which serve as bridges connecting conventional optical beam and structured light. Enabling the manipulability of additional dimensions as the complex polarization and phase of light, quarter-wave plate devices are essential for exploring a plethora of applications based on orbital angular momentum or vector polarization, such as optical sensing, holography, and communication. Here we propose and demonstrate the magnetic metamaterial quarter-wave turbines at visible wavelength to produce radially and azimuthally polarized vector vortices from circularly polarized incident beam. The magnetic metamaterials function excellently as quarter-wave plates at single wavelength and maintain the quarter-wave phase retardation in broadband, while the turbine blades consist of multiple polar sections, each of which contains homogeneously oriented magnetic metamaterial gratings near azimuthal or radial directions to effectively convert circular polarization to linear polarization and induce phase shift under Pancharatnum-Berry's phase principle. The perspective concept of multiple polar sections of magnetic metamaterials can extend to other analogous designs in the strongly coupled nanostructures to accomplish many types of light phase-polarization manipulation and structured light conversion in the desired manner.
Chiral metamaterials characterisation using the wave propagation retrieval method
DEFF Research Database (Denmark)
Andryieuski, Andrei; Lavrinenko, Andrei; Malureanu, Radu
2010-01-01
In this presentation we extend the wave propagation method for the retrieval of the effective properties to the case of chiral metamaterials with circularly polarised eigenwaves. The method is unambiguous, simple and provides bulk effective parameters. Advantages and constraints are discussed...
Controlling Energy Radiations of Electromagnetic Waves via Frequency Coding Metamaterials.
Wu, Haotian; Liu, Shuo; Wan, Xiang; Zhang, Lei; Wang, Dan; Li, Lianlin; Cui, Tie Jun
2017-09-01
Metamaterials are artificial structures composed of subwavelength unit cells to control electromagnetic (EM) waves. The spatial coding representation of metamaterial has the ability to describe the material in a digital way. The spatial coding metamaterials are typically constructed by unit cells that have similar shapes with fixed functionality. Here, the concept of frequency coding metamaterial is proposed, which achieves different controls of EM energy radiations with a fixed spatial coding pattern when the frequency changes. In this case, not only different phase responses of the unit cells are considered, but also different phase sensitivities are also required. Due to different frequency sensitivities of unit cells, two units with the same phase response at the initial frequency may have different phase responses at higher frequency. To describe the frequency coding property of unit cell, digitalized frequency sensitivity is proposed, in which the units are encoded with digits "0" and "1" to represent the low and high phase sensitivities, respectively. By this merit, two degrees of freedom, spatial coding and frequency coding, are obtained to control the EM energy radiations by a new class of frequency-spatial coding metamaterials. The above concepts and physical phenomena are confirmed by numerical simulations and experiments.
Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach
DEFF Research Database (Denmark)
Andryieuski, Andrei; Lavrinenko, Andrei
2013-01-01
In this paper we present the efficient design of functional thin-film metamaterial devices with the effective surface conductivity approach. As an example, we demonstrate a graphene based perfect absorber. After formulating the requirements to the perfect absorber in terms of surface conductivity...... we investigate the properties of graphene wire medium and graphene fishnet metamaterials and demonstrate both narrowband and broadband tunable absorbers.......In this paper we present the efficient design of functional thin-film metamaterial devices with the effective surface conductivity approach. As an example, we demonstrate a graphene based perfect absorber. After formulating the requirements to the perfect absorber in terms of surface conductivity...
Wave propagation in metamaterials and effective parameters retrieving
DEFF Research Database (Denmark)
Andryieuski, Andrei; Ha, S.; Sukhorukov, A.
2011-01-01
of the determined effective parameters and applicability to thin slabs only. The other methods based, for example, on the eigenfunctions calculations [Menzel], or analytical calculations [Simovski] require advanced skills either in numerical methods and programming or in analytical derivations and maybe considered...... as handsome for implementation. We set a goal to develop a method which is unambiguous but at the same time simple and straightforward. We assume that this can be done by observing the wave propagation inside a metamaterial slab thick enough to avoid transient effects. First, we formulated a retrieval method...... complex wave effective parameters. Extending the method further we developed the approach to determine both wave and material effective parameters through the Bloch-mode analysis [3]. The idea is to perform the Bloch mode expansion [4] of the field inside the metamaterial slab when it is illuminated...
CHIRAL WAVES IN A METAMATERIAL MEDIUM ONDAS QUIRALES EN UN MEDIO METAMATERIAL
Directory of Open Access Journals (Sweden)
Héctor Torres-Silva
2008-11-01
Full Text Available In this paper we study the anomalous refraction at the boundary of a metamaterial medium with strong chirality. The fact that for a time-harmonic monochromatic plane wave the direction of the Poynting vector is antiparallel with the direction of phase velocity, leads to exciting features that can be advantageous in the design of novel devices and components at microwaves frequencies.En este trabajo se estudia la refracción anómala en el borde de un medio metamaterial con fuerte quiralidad. El hecho de que para una onda monocromática el vector de Poynting es antiparalelo a la dirección de la velocidad de fase conduce a relevantes propiedades que pueden tener ventajas en el diseño de novedosos dispositivos y componentes a frecuencias de microondas.
Smith, David R.; Schurig, David; Starr, Anthony F.; Mock, Jack J.
2014-09-09
One exemplary metamaterial is formed from a plurality of individual unit cells, at least a portion of which have a different permeability than others. The plurality of individual unit cells are arranged to provide a metamaterial having a gradient index along at least one axis. Such metamaterials can be used to form lenses, for example.
Switching terahertz waves with gate-controlled active graphene metamaterials.
Lee, Seung Hoon; Choi, Muhan; Kim, Teun-Teun; Lee, Seungwoo; Liu, Ming; Yin, Xiaobo; Choi, Hong Kyw; Lee, Seung S; Choi, Choon-Gi; Choi, Sung-Yool; Zhang, Xiang; Min, Bumki
2012-11-01
The extraordinary electronic properties of graphene provided the main thrusts for the rapid advance of graphene electronics. In photonics, the gate-controllable electronic properties of graphene provide a route to efficiently manipulate the interaction of photons with graphene, which has recently sparked keen interest in graphene plasmonics. However, the electro-optic tuning capability of unpatterned graphene alone is still not strong enough for practical optoelectronic applications owing to its non-resonant Drude-like behaviour. Here, we demonstrate that substantial gate-induced persistent switching and linear modulation of terahertz waves can be achieved in a two-dimensional metamaterial, into which an atomically thin, gated two-dimensional graphene layer is integrated. The gate-controllable light-matter interaction in the graphene layer can be greatly enhanced by the strong resonances of the metamaterial. Although the thickness of the embedded single-layer graphene is more than six orders of magnitude smaller than the wavelength (wave by up to 47% and its phase by 32.2° at room temperature. More interestingly, the gate-controlled active graphene metamaterials show hysteretic behaviour in the transmission of terahertz waves, which is indicative of persistent photonic memory effects.
Effective Surface Conductivity Approach for Graphene Metamaterials Based Terahertz Devices
DEFF Research Database (Denmark)
Andryieuski, Andrei; Pizzocchero, Filippo; Booth, Tim
2013-01-01
We propose a description of graphene metamaterials properties through the effective surface conductivity. On the example of tunable absorber we demonstrate that this approach allows for fast and efficient design of functional terahertz devices.......We propose a description of graphene metamaterials properties through the effective surface conductivity. On the example of tunable absorber we demonstrate that this approach allows for fast and efficient design of functional terahertz devices....
Strain Imaging Using Terahertz Waves and Metamaterials
2016-11-01
polarization of incident EM waves by favoring the transmission of waves of a particular polarization. The interaction of some materials with incident...polarization of the waves after they have passed through the test material or object. Using the measured transmission intensity values, the...resolution. Shorter wavelength EM waves , such as visual light , have poor penetration ability but produce high-resolution images. However, the
Metamaterials beyond electromagnetism
Kadic, Muamer; Bückmann, Tiemo; Schittny, Robert; Wegener, Martin
2013-12-01
Metamaterials are rationally designed man-made structures composed of functional building blocks that are densely packed into an effective (crystalline) material. While metamaterials are mostly associated with negative refractive indices and invisibility cloaking in electromagnetism or optics, the deceptively simple metamaterial concept also applies to rather different areas such as thermodynamics, classical mechanics (including elastostatics, acoustics, fluid dynamics and elastodynamics), and, in principle, also to quantum mechanics. We review the basic concepts, analogies and differences to electromagnetism, and give an overview on the current state of the art regarding theory and experiment—all from the viewpoint of an experimentalist. This review includes homogeneous metamaterials as well as intentionally inhomogeneous metamaterial architectures designed by coordinate-transformation-based approaches analogous to transformation optics. Examples are laminates, transient thermal cloaks, thermal concentrators and inverters, ‘space-coiling’ metamaterials, anisotropic acoustic metamaterials, acoustic free-space and carpet cloaks, cloaks for gravitational surface waves, auxetic mechanical metamaterials, pentamode metamaterials (‘meta-liquids’), mechanical metamaterials with negative dynamic mass density, negative dynamic bulk modulus, or negative phase velocity, seismic metamaterials, cloaks for flexural waves in thin plates and three-dimensional elastostatic cloaks.
Metamaterials beyond electromagnetism.
Kadic, Muamer; Bückmann, Tiemo; Schittny, Robert; Wegener, Martin
2013-12-01
Metamaterials are rationally designed man-made structures composed of functional building blocks that are densely packed into an effective (crystalline) material. While metamaterials are mostly associated with negative refractive indices and invisibility cloaking in electromagnetism or optics, the deceptively simple metamaterial concept also applies to rather different areas such as thermodynamics, classical mechanics (including elastostatics, acoustics, fluid dynamics and elastodynamics), and, in principle, also to quantum mechanics. We review the basic concepts, analogies and differences to electromagnetism, and give an overview on the current state of the art regarding theory and experiment-all from the viewpoint of an experimentalist. This review includes homogeneous metamaterials as well as intentionally inhomogeneous metamaterial architectures designed by coordinate-transformation-based approaches analogous to transformation optics. Examples are laminates, transient thermal cloaks, thermal concentrators and inverters, 'space-coiling' metamaterials, anisotropic acoustic metamaterials, acoustic free-space and carpet cloaks, cloaks for gravitational surface waves, auxetic mechanical metamaterials, pentamode metamaterials ('meta-liquids'), mechanical metamaterials with negative dynamic mass density, negative dynamic bulk modulus, or negative phase velocity, seismic metamaterials, cloaks for flexural waves in thin plates and three-dimensional elastostatic cloaks.
Wave dynamics and composite mechanics for microstructured materials and metamaterials
2017-01-01
This volume deals with topical problems concerning technology and design in construction of modern metamaterials. The authors construct the models of mechanical, electromechanical and acoustical behavior of the metamaterials, which are founded upon mechanisms existing on micro-level in interaction of elementary structures of the material. The empiric observations on the phenomenological level are used to test the created models. The book provides solutions, based on fundamental methods and models using the theory of wave propagation, nonlinear theories and composite mechanics for media with micro- and nanostructure. They include the models containing arrays of cracks, defects, with presence of micro- and nanosize piezoelectric elements and coupled physical-mechanical fields of different nature. The investigations show that the analytical, numerical and experimental methods permit evaluation of the qualitative and quantitative properties of the materials of this sort, with diagnosis of their effective characte...
Pathway towards Programmable Wave Anisotropy in Cellular Metamaterials
Celli, Paolo; Zhang, Weiting; Gonella, Stefano
2018-01-01
In this work, we provide a proof-of-concept experimental demonstration of the wave-control capabilities of cellular metamaterials endowed with populations of tunable electromechanical resonators. Each independently tunable resonator comprises a piezoelectric patch and a resistor-inductor shunt, and its resonant frequency can be seamlessly reprogrammed without interfering with the cellular structure's default properties. We show that, by strategically placing the resonators in the lattice domain and by deliberately activating only selected subsets of them, chosen to conform to the directional features of the beamed wave response, it is possible to override the inherent wave anisotropy of the cellular medium. The outcome is the establishment of tunable spatial patterns of energy distillation resulting in a nonsymmetric correction of the wave fields.
Cui, Tie Jun
2009-01-01
Includes an introduction to optical transformation theory, revealing invisible cloaks, EM concentrators, beam splitters, and new-type antennas. This title offers a presentation of general theory on artificial metamaterials composed of periodic structures, and coverage of a rapid design method for inhomogeneous metamaterials.
International Nuclear Information System (INIS)
Lipton, Robert; Polizzi, Anthony
2014-01-01
We employ metamaterial beam-wave interaction structures for tuning the gain and bandwidth of short traveling wave tubes. The interaction structures are made from metal rings of uniform cross section, which are periodically deployed along the length of the traveling wave tube. The aspect ratio of the ring cross sections is adjusted to control both gain and bandwidth. The frequency of operation is controlled by the filling fraction of the ring cross section with respect to the size of the period cell.
Asymmetric wave transmission in a diatomic acoustic/elastic metamaterial
Energy Technology Data Exchange (ETDEWEB)
Li, Bing; Tan, K. T., E-mail: ktan@uakron.edu [Department of Mechanical Engineering, The University of Akron, Akron, Ohio 44325-3903 (United States)
2016-08-21
Asymmetric acoustic/elastic wave transmission has recently been realized using nonlinearity, wave diffraction, or bias effects, but always at the cost of frequency distortion, direction shift, large volumes, or external energy. Based on the self-coupling of dual resonators, we propose a linear diatomic metamaterial, consisting of several small-sized unit cells, to realize large asymmetric wave transmission in low frequency domain (below 1 kHz). The asymmetric transmission mechanism is theoretically investigated, and numerically verified by both mass-spring and continuum models. This passive system does not require any frequency conversion or external energy, and the asymmetric transmission band can be theoretically predicted and mathematically controlled, which extends the design concept of unidirectional transmission devices.
Unidirectional edge modes launched by surface fluctuation in magnetic metamaterials
Chen, Huajin; Luo, Youzhu; Liang, Chenghua; Li, Zhenglin; Liu, Shiyang; Lin, Zhifang
2018-03-01
We demonstrate theoretically that the surface fluctuation can be used to launch the unidirectional electromagnetic edge mode for a Gaussian beam incident normal to the magnetic metamaterials (MMs) composed of an array of ferrite rods with the uppermost layer introduced position or size fluctuation in the coupling region. Such an edge mode is solely allowed to propagate in one direction due to the time-reversal symmetry breaking in MMs under the exertion of an external magnetic field, and it is substantially enhanced by the magnetic surface plasmon resonance. The nonreciprocal excitation of the edge states can also be understood by examining the scattering amplitudes of different partial waves, which indicate that the 1st order of the angular momentum channel plays a crucial role in realizing the nonreciprocity. The present research might be significant for the implementation of unidirectional absorption and the reexamination of bound states in the continuum in the context of MMs. In addition, the unique optical property can be exploited to design electromagnetic waveguide devices, such as one-way waveguide and wave bender, which are strongly robust against the obstacles placed in the channel of designed devices, facilitating to realize optical integrated circuits.
Metamaterial-inspired structures and concepts for elastoacoustic wave energy harvesting
International Nuclear Information System (INIS)
Carrara, M; Ruzzene, M; Cacan, M R; Toussaint, J; Leamy, M J; Erturk, A
2013-01-01
Enhancement of structure-borne wave energy harvesting is investigated by exploiting metamaterial-based and metamaterial-inspired electroelastic systems. The concepts of wave focusing, localization, and funneling are leveraged to establish novel metamaterial energy harvester (MEH) configurations. The MEH systems transform the incoming structure-borne wave energy into electrical energy by coupling the metamaterial and electroelastic domains. The energy harvesting component of the work employs piezoelectric transduction due to the high power density and ease of application offered by piezoelectric materials. Therefore, in all MEH configurations studied in this work, the metamaterial system is combined with piezoelectric energy harvesting for enhanced electricity generation from waves propagating in elastic structures. Experiments are conducted to validate the dramatic performance enhancement in MEH systems as compared to using the same volume of piezoelectric patch in the absence of the metamaterial component. It is shown that MEH systems can be used for both broadband and tuned wave energy harvesting. The MEH concepts covered in this paper are (1) wave focusing using a metamaterial-inspired parabolic acoustic mirror (for broadband energy harvesting), (2) energy localization using an imperfection in a 2D lattice structure (for tuned energy harvesting), and (3) wave guiding using an acoustic funnel (for narrow-to-broadband energy harvesting). It is shown that MEH systems can boost the harvested power by more than an order of magnitude. (paper)
Terahertz wave manipulation with metamaterials based on metal and graphene
DEFF Research Database (Denmark)
Andryieuski, Andrei; Malureanu, Radu; Zalkovskij, Maksim
2013-01-01
for active and passive materials and devices. Metamaterials, metal-dielectric artificial composites, propose wide possibilities for achieving unconventional electromagnetic properties, not found in nature. Moreover, metamaterials constructed of graphene, a monolayer of carbon atoms, allow for tunable...
Liao, Zhen; Liu, Shuo; Ma, Hui Feng; Li, Chun; Jin, Biaobing; Cui, Tie Jun
2016-01-01
We numerically and experimentally demonstrate a plasmonic metamaterial whose unit cell is composed of an ultrathin metallic disk and four ultrathin metallic spiral arms at terahertz frequencies, which supports both spoof electric and magnetic localized surface plasmon (LSP) resonances. We show that the resonant wavelength is much larger than the size of the unit particle, and further find that the resonant wavelength is very sensitive to the particle’s geometrical dimensions and arrangements. It is clearly illustrated that the magnetic LSP resonance exhibits strong dependence to the incidence angle of terahertz wave, which enables the design of metamaterials to achieve an electromagnetically induced transparency effect in the terahertz frequencies. This work opens up the possibility to apply for the surface plasmons in functional devices in the terahertz band. PMID:27277417
Wang, Zhaojun; Zhou, Xiaoming
2016-12-01
The authors study the wave propagation in continuum acoustic metamaterials whose all or not all of the principal elements of the mass tensor or the scalar compressibility can be negative due to wave dispersion. Their time-domain wave characteristics are particularly investigated by the finite-difference time-domain (FDTD) method, in which algorithms for the Drude and Lorentz dispersion pertinent to acoustic metamaterials are provided necessarily. Wave propagation nature of anisotropic acoustic metamaterials with all admissible material parameters are analyzed in a general manner. It is found that anomalous negative refraction phenomena can appear in several dispersion regimes, and their unique time-domain signatures have been discovered by the FDTD modeling. It is further proposed that two different metamaterial layers with specially assigned dispersions could comprise a conjugate pair that permits wave propagation only at specific points in the wave vector space. The time-domain pulse simulation verifies that acoustic directive radiation capable of modulating radiation angle with the wave frequency can be realized with this conjugate pair. The study provides the detailed analysis of wave propagation in anisotropic and dispersive acoustic mediums, which makes a further step toward dispersion engineering and transient wave control through acoustic metamaterials.
Nguyen, Vinh Ngoc
metamaterials show material properties closely matching those predicted by full-wave simulations. Due to the high losses associated with resonant metamaterials, I shift my focus to non-resonant metamaterials. I discuss the design, fabrication, and testing of non-resonant metamaterials for fabrication on multilayer LCP printed circuit boards (PCBs). I then use these non-resonant metamaterials in a W-band planar metamaterial GRIN lens. Radiation pattern measurements show that this lens functions as a strong collimating element. Using similar lens design methods, I design a metamaterial GRIN lens from polytetrafluoroethylene-based (PTFE-based) non-resonant metamaterials. This GRIN lens is designed to match a target dielectric lens's radiation characteristics across a +/-6° field of view. Measurements at automotive radar frequencies show that this lens has approximately the same radiation characteristics as the target lens across the desired field of view. Finally, I describe the development of electrically reconfigurable metamaterials using thin-film silicon semiconductors. These silicon-based reconfigurable metamaterials were developed in close collaboration with several other researchers. My major contribution to the development of these reconfigurable metamaterials consisted of the initial metamaterial design. The Jokerst research group fabricated this initial design while TRI-NA characterized the fabricated metamaterial experimentally. Measurements showed approximately 8% variation in transmission under a 5 Volt DC bias. This variation in transmission closely matched the variation in transmission predicted by coupled electronic-electromagnetic simulation run by Yaroslav Urzhumov, one of other contributors to the development of the reconfigurable metamaterial.
Tailoring optical metamaterials to tune the atom-surface Casimir-Polder interaction.
Chan, Eng Aik; Aljunid, Syed Abdullah; Adamo, Giorgio; Laliotis, Athanasios; Ducloy, Martial; Wilkowski, David
2018-02-01
Metamaterials are fascinating tools that can structure not only surface plasmons and electromagnetic waves but also electromagnetic vacuum fluctuations. The possibility of shaping the quantum vacuum is a powerful concept that ultimately allows engineering the interaction between macroscopic surfaces and quantum emitters such as atoms, molecules, or quantum dots. The long-range atom-surface interaction, known as Casimir-Polder interaction, is of fundamental importance in quantum electrodynamics but also attracts a significant interest for platforms that interface atoms with nanophotonic devices. We perform a spectroscopic selective reflection measurement of the Casimir-Polder interaction between a Cs(6P 3/2 ) atom and a nanostructured metallic planar metamaterial. We show that by engineering the near-field plasmonic resonances of the metamaterial, we can successfully tune the Casimir-Polder interaction, demonstrating both a strong enhancement and reduction with respect to its nonresonant value. We also show an enhancement of the atomic spontaneous emission rate due to its coupling with the evanescent modes of the nanostructure. Probing excited-state atoms next to nontrivial tailored surfaces is a rigorous test of quantum electrodynamics. Engineering Casimir-Polder interactions represents a significant step toward atom trapping in the extreme near field, possibly without the use of external fields.
DEFF Research Database (Denmark)
Zhukovsky, Sergei; Lavrinenko, Andrei
2012-01-01
We propose proof-of-concept designs of Bragg reflectors and Fabry-Pe´rot resonators for large wave vector waves (Bloch bulk plasmon polaritons) in multilayer metal-dielectric hyperbolic metamaterials. The designs are based on hybrid multilayers having both subwavelength and wavelength-scale struc......We propose proof-of-concept designs of Bragg reflectors and Fabry-Pe´rot resonators for large wave vector waves (Bloch bulk plasmon polaritons) in multilayer metal-dielectric hyperbolic metamaterials. The designs are based on hybrid multilayers having both subwavelength and wavelength......-scale structuring. This multiscale approach is shown to be a promising platform for using bulk plasmonic waves in complex multilayer metamaterials as a new kind of information carriers....
Directory of Open Access Journals (Sweden)
Jing Jing Yang
2013-01-01
Full Text Available Metamaterials have attracted a great deal of attention due to their intriguing properties, as well as the large potential applications for designing functional devices. In this paper, we review the current status of metamaterial sensors, with an emphasis on the evanescent wave amplification and the accompanying local field enhancement characteristics. Examples of the sensors are given to illustrate the principle and the performance of the metamaterial sensor. The paper concludes with an optimistic outlook regarding the future of metamaterial sensor.
Directory of Open Access Journals (Sweden)
V. Belyi
2017-10-01
Full Text Available The possibility is established and the conditions are found for localization of plasmon-polaritons (PPs near the boundaries of hyperbolic metamaterials (HMs of both I and II types with arbitrary orientation of the optical axis. It is grounded that such surface PP has the transverse spin momentum which depends on the wavelength of the exciting wave, the orientation of the optical axis of the hyperbolic metamaterial, and dielectric properties of bordered media.
A wave-bending structure at Ka-band using 3D-printed metamaterial
Wu, Junqiang; Liang, Min; Xin, Hao
2018-03-01
Three-dimensional printing technologies enable metamaterials of complex structures with arbitrary inhomogeneity. In this work, a 90° wave-bending structure at the Ka-band (26.5-40 GHz) based on 3D-printed metamaterials is designed, fabricated, and measured. The wave-bending effect is realized through a spatial distribution of varied effective dielectric constants. Based on the effective medium theory, different effective dielectric constants are accomplished by special, 3D-printable unit cells, which allow different ratios of dielectric to air at the unit cell level. In contrast to traditional, metallic-structure-included metamaterial designs, the reported wave-bending structure here is all dielectric and implemented by the polymer-jetting technique, which features rapid, low-cost, and convenient prototyping. Both simulation and experiment results demonstrate the effectiveness of the wave-bending structure.
Acoustic wave propagation and stochastic effects in metamaterial absorbers
DEFF Research Database (Denmark)
Christensen, Johan; Willatzen, Morten
2014-01-01
We show how stochastic variations of the effective parameters of anisotropic structured metamaterials can lead to increased absorption of sound. For this, we derive an analytical model based on the Bourret approximation and illustrate the immediate connection between material disorder and attenua......We show how stochastic variations of the effective parameters of anisotropic structured metamaterials can lead to increased absorption of sound. For this, we derive an analytical model based on the Bourret approximation and illustrate the immediate connection between material disorder...
Li, Xiaopeng; Chen, Yangyang; Hu, Gengkai; Huang, Guoliang
2018-04-01
Designing lightweight materials and/or structures for broadband low-frequency noise/vibration mitigation is an issue of fundamental importance both practically and theoretically. In this paper, by leveraging the concept of frequency-dependent effective stiffness control, we numerically and experimentally demonstrate, for the first time, a self-adaptive metamaterial beam with digital circuit controlled mechanical resonators for strong and broadband flexural wave attenuation at subwavelength scales. The digital controllers that are capable of feedback control of piezoelectric shunts are integrated into mechanical resonators in the metamaterial, and the transfer function is semi-analytically determined to realize an effective bending stiffness in a quadratic function of the wave frequency for adaptive band gaps. The digital as well as analog control circuits as the backbone of the system are experimentally realized with the guarantee stability of the whole electromechanical system in whole frequency regions, which is the most challenging problem so far. Our experimental results are in good agreement with numerical predictions and demonstrate the strong wave attenuation in almost a three times larger frequency region over the bandwidth of a passive metamaterial. The proposed metamaterial could be applied in a range of applications in the design of elastic wave control devices.
Wave propagation retrieval method for metamaterials: Unambiguous restoration of effective parameters
DEFF Research Database (Denmark)
Andryieuski, Andrei; Malureanu, Radu; Lavrinenko, Andrei
2009-01-01
In this brief report we propose a direct method of effective-parameters restoration that is based on the wave propagation phenomenon. It is easy in implementation, has no unambiguity in retrieving effective properties and is applicable to thick metamaterial (MTM) slabs. The method is validated...
Coupled equations of electromagnetic waves in nonlinear metamaterial waveguides.
Azari, Mina; Hatami, Mohsen; Meygoli, Vahid; Yousefi, Elham
2016-11-01
Over the past decades, scientists have presented ways to manipulate the macroscopic properties of a material at levels unachieved before, and called them metamaterials. This research can be considered an important step forward in electromagnetics and optics. In this study, higher-order nonlinear coupled equations in a special kind of metamaterial waveguides (a planar waveguide with metamaterial core) will be derived from both electric and magnetic components of the transverse electric mode of electromagnetic pulse propagation. On the other hand, achieving the refractive index in this research is worthwhile. It is also shown that the coupled equations are not symmetric with respect to the electric and magnetic fields, unlike these kinds of equations in fiber optics and dielectric waveguides. Simulations on the propagation of a fundamental soliton pulse in a nonlinear metamaterial waveguide near the resonance frequency (a little lower than the magnetic resonant frequency) are performed to study its behavior. These pulses are recommended to practice in optical communications in controlled switching by external voltage, even in low power.
Wave propagation in metamaterials mimicking the topology of a cosmic string
Fernández-Núñez, Isabel; Bulashenko, Oleg
2018-04-01
We study the interference and diffraction of light when it propagates through a metamaterial medium mimicking the spacetime of a cosmic string—a topological defect with curvature singularity. The phenomenon may look like a gravitational analogue of the Aharonov-Bohm effect, since the light propagates in a region where the Riemann tensor vanishes, being nonetheless affected by the non-zero curvature confined to the string core. We carry out the full-wave numerical simulation of the metamaterial medium and give the analytical interpretation of the results by use of the asymptotic theory of diffraction, which turns out to be in excellent agreement. In particular, we show that the main features of wave propagation in a medium with conical singularity can be explained by four-wave interference involving two geometrical optics and two diffracted waves.
Controlling THz and far-IR waves with chiral and bianisotropic metamaterials
Directory of Open Access Journals (Sweden)
Kenanakis George
2015-01-01
Full Text Available Chiral and bianisotropic metamaterials, where coupling of magnetic and electric phenomena plays an important role, offer advanced possibilities for the control and manipulation of electromagnetic waves. Such a control is particularly useful in the THz and far-IR region where natural materials do not show strong response and thus they are not offered as components for a direct realization of electromagnetic wave manipulation. Among the most useful and important capabilities of chiral and bianisotropic metamaterials is the advanced control of the wave polarization that they offer, including giant polarization rotation, conversion, filtering, absorption, etc. In this paper we review our recent work demonstrating some of those capabilities, in a variety of structures, both planar and 3D-bulk ones. The structures presented show, among others, large optical activity, tunable/switchable wave ellipticity, and polarization-dependent asymmetric transmission.
Electrically driven optical metamaterials.
Le-Van, Quynh; Le Roux, Xavier; Aassime, Abdelhanin; Degiron, Aloyse
2016-06-22
The advent of metamaterials more than 15 years ago has offered extraordinary new ways of manipulating electromagnetic waves. Yet, progress in this field has been unequal across the electromagnetic spectrum, especially when it comes to finding applications for such artificial media. Optical metamaterials, in particular, are less compatible with active functionalities than their counterparts developed at lower frequencies. One crucial roadblock in the path to devices is the fact that active optical metamaterials are so far controlled by light rather than electricity, preventing them from being integrated in larger electronic systems. Here we introduce electroluminescent metamaterials based on metal nano-inclusions hybridized with colloidal quantum dots. We show that each of these miniature blocks can be individually tuned to exhibit independent optoelectronic properties (both in terms of electrical characteristics, polarization, colour and brightness), illustrate their capabilities by weaving complex light-emitting surfaces and finally discuss their potential for displays and sensors.
Wang, Wei; Liu, Jinsong; Wang, Kejia
2016-02-01
We present the design, numerical simulations and experimental measurements of an asymmetric cross terahertz metamaterial absorber (MPA) on ultra-flexible polyimide film. The perfect metamaterial absorber composed of two structured metallic layers separated with a polyimide film with a total thickness of functional layers much smaller than the operational wavelength. Two distinct absorption peaks are found at resonance frequencies of 0.439THz and 0.759 THz with resonance amplitude of near unity, which are in good agreement with the simulation results. The sample is also measured by a THz-TDS imaging system to illustrate the absorption characterization. The scanning images show that the sample could act as a perfect absorber at specific resonance frequencies while a perfect reflector at off resonance frequencies. To illustrate the physical mechanism behind these spectral responses, the distribution of the power loss and surface current are also presented. The result shows that the incident wave is trapped and absorbed by the polyimide dielectric layer at different vicinities of the proposed asymmetric cross MPA for the two absorption peaks. Furthermore, the index sensing performance of the structure is also investigated, and the calculated sensitivity is 90GHz/RIU for f1 mode and 154.7GHz/RIU for f2 mode, indicating that the higher frequency resonance absorption peak has better potential applications in sensing and detection. The ultra-flexible, low cost, high intensity dual band terahertz absorbers may pave the way for designing various terahertz functional devices, such as ultrasensitive terahertz sensors, spatial light modulators and filters.
Electromagnetic time reversal focusing of near field waves in metamaterials
Chabalko, Matthew J.; Sample, Alanson P.
2016-12-01
Precise control of electromagnetic energy on a deeply subwavelength scale in the near field regime is a fundamentally challenging problem. In this letter we demonstrate the selective focusing of electromagnetic energy via the electromagnetic time reversal in the near field of a metamaterial. Our analysis begins with fundamental mathematics, and then is extended to the experimental realm where focusing in space and time of the magnetic fields in the near field of a 1-Dimensional metamaterial is shown. Under time reversal focusing, peak instantaneous fields at receiver locations are at minimum ˜200% greater than other receivers. We then leverage the strong selective focusing capabilities of the system to show individual and selective powering of light emitting diodes connected to coil receivers placed in the near field of the metamaterial. Our results show the possibility of improving display technologies, near field imaging systems, increasing channel capacity of near field communication systems, and obtaining a greater control of energy delivery in wireless power transfer systems.
Performing derivative and integral operations for optical waves with optical metamaterials
Energy Technology Data Exchange (ETDEWEB)
Dai, Cun-Li [College of Engineering, Nanjing Agriculture University, Nanjing Jiangsu, 210031 (China); College of Science, Nanjing Agriculture University, Nanjing Jiangsu, 210095 (China); Zhao, Zhi-Gang; Li, Xiao-Lin [College of Engineering, Nanjing Agriculture University, Nanjing Jiangsu, 210031 (China); Yang, Hong-Wei, E-mail: phd_hwyang@njau.edu.cn [College of Science, Nanjing Agriculture University, Nanjing Jiangsu, 210095 (China)
2016-12-01
The graded refractive index waveguides can perform Fourier transform for an optical wave. According to this characteristic, simpler optical metamaterials with three waveguides are theoretically proposed, in which all of the waveguides are materials with a positive refractive index. By selecting the appropriate refractive index and structure size, the theory and simulations demonstrated that these metamaterials can perform mathematical operations for the outline of incident optical waves, including the first-order derivative, second-order derivative and the integral. - Highlights: • The derivative and integral operations of optical waves are achieved with a simpler model. • Both negative and positive refractive index boast the same functions. • The mathematical operations can be implemented only by changing the refractive index of the intermediate material. • The results will greatly expand the possible applications, including photon computers, picture processing, video displays and data storage.
Waves in hyperbolic and double negative metamaterials including rogues and solitons
Boardman, A. D.; Alberucci, A.; Assanto, G.; Grimalsky, V. V.; Kibler, B.; McNiff, J.; Nefedov, I. S.; Rapoport, Yu G.; Valagiannopoulos, C. A.
2017-11-01
The topics here deal with some current progress in electromagnetic wave propagation in a family of substances known as metamaterials. To begin with, it is discussed how a pulse can develop a leading edge that steepens and it is emphasised that such self-steepening is an important inclusion within a metamaterial environment together with Raman scattering and third-order dispersion whenever very short pulses are being investigated. It is emphasised that the self-steepening parameter is highly metamaterial-driven compared to Raman scattering, which is associated with a coefficient of the same form whether a normal positive phase, or a metamaterial waveguide is the vehicle for any soliton propagation. It is also shown that the influence of magnetooptics provides a beautiful and important control mechanism for metamaterial devices and that, in the future, this feature will have a significant impact upon the design of data control systems for optical computing. A major objective is fulfiled by the investigations of the fascinating properties of hyperbolic media that exhibit asymmetry of supported modes due to the tilt of optical axes. This is a topic that really merits elaboration because structural and optical asymmetry in optical components that end up manipulating electromagnetic waves is now the foundation of how to operate some of the most successful devices in photonics and electronics. It is pointed out, in this context, that graphene is one of the most famous plasmonic media with very low losses. It is a two-dimensional material that makes the implementation of an effective-medium approximation more feasible. Nonlinear non-stationary diffraction in active planar anisotropic hyperbolic metamaterials is discussed in detail and two approaches are compared. One of them is based on the averaging over a unit cell, while the other one does not include sort of averaging. The formation and propagation of optical spatial solitons in hyperbolic metamaterials is also
Waves in hyperbolic and double negative metamaterials including rogues and solitons.
Boardman, A D; Alberucci, A; Assanto, G; Grimalsky, V V; Kibler, B; McNiff, J; Nefedov, I S; Rapoport, Yu G; Valagiannopoulos, C A
2017-11-03
The topics here deal with some current progress in electromagnetic wave propagation in a family of substances known as metamaterials. To begin with, it is discussed how a pulse can develop a leading edge that steepens and it is emphasised that such self-steepening is an important inclusion within a metamaterial environment together with Raman scattering and third-order dispersion whenever very short pulses are being investigated. It is emphasised that the self-steepening parameter is highly metamaterial-driven compared to Raman scattering, which is associated with a coefficient of the same form whether a normal positive phase, or a metamaterial waveguide is the vehicle for any soliton propagation. It is also shown that the influence of magnetooptics provides a beautiful and important control mechanism for metamaterial devices and that, in the future, this feature will have a significant impact upon the design of data control systems for optical computing. A major objective is fulfiled by the investigations of the fascinating properties of hyperbolic media that exhibit asymmetry of supported modes due to the tilt of optical axes. This is a topic that really merits elaboration because structural and optical asymmetry in optical components that end up manipulating electromagnetic waves is now the foundation of how to operate some of the most successful devices in photonics and electronics. It is pointed out, in this context, that graphene is one of the most famous plasmonic media with very low losses. It is a two-dimensional material that makes the implementation of an effective-medium approximation more feasible. Nonlinear non-stationary diffraction in active planar anisotropic hyperbolic metamaterials is discussed in detail and two approaches are compared. One of them is based on the averaging over a unit cell, while the other one does not include sort of averaging. The formation and propagation of optical spatial solitons in hyperbolic metamaterials is also
Stephen, Lincy; Yogesh, N.; Subramanian, V.
2018-01-01
The giant optical activity of chiral metamaterials (CMMs) holds great potential for tailoring the polarization state of an electromagnetic (EM) wave. In controlling the polarization state, the aspect of asymmetric transmission (AT), where a medium allows the EM radiation to pass through in one direction while restricting it in the opposite direction, adds additional degrees of freedom such as one-way channelling functionality. In this work, a CMM formed by a pair of mutually twisted slanted complementary metal strips is realized for broadband AT accompanied with cross-polarization (CP) conversion for linearly polarized EM waves. Numerically, the proposed ultra-thin (˜λ/42) CMM shows broadband AT from 8.58 GHz to 9.73 GHz (bandwidth of 1.15 GHz) accompanied with CP transmission magnitude greater than 0.9. The transmission and reflection spectra reveal the origin of the asymmetric transmission as the direction sensitive cross polarization conversion and anisotropic electric coupling occurring in the structure which is then elaborated with the surface current analysis and electric field distribution within the structure. An experiment is carried out to verify the broadband AT based CP conversion of the proposed CMM at microwave frequencies, and a reliable agreement between numerical and experimental results is obtained. Being ultra-thin, the reported broadband AT based CP conversion of the proposed CMM is useful for controlling radiation patterns in non-reciprocal EM devices and communication networks.
Slow-wave metamaterial open panels for efficient reduction of low-frequency sound transmission
Yang, Jieun; Lee, Joong Seok; Lee, Hyeong Rae; Kang, Yeon June; Kim, Yoon Young
2018-02-01
Sound transmission reduction is typically governed by the mass law, requiring thicker panels to handle lower frequencies. When open holes must be inserted in panels for heat transfer, ventilation, or other purposes, the efficient reduction of sound transmission through holey panels becomes difficult, especially in the low-frequency ranges. Here, we propose slow-wave metamaterial open panels that can dramatically lower the working frequencies of sound transmission loss. Global resonances originating from slow waves realized by multiply inserted, elaborately designed subwavelength rigid partitions between two thin holey plates contribute to sound transmission reductions at lower frequencies. Owing to the dispersive characteristics of the present metamaterial panels, local resonances that trap sound in the partitions also occur at higher frequencies, exhibiting negative effective bulk moduli and zero effective velocities. As a result, low-frequency broadened sound transmission reduction is realized efficiently in the present metamaterial panels. The theoretical model of the proposed metamaterial open panels is derived using an effective medium approach and verified by numerical and experimental investigations.
SH wave propagation in joined half-spaces composed of elastic metamaterials
Shi, Xiaona; Shu, Haisheng; Zhou, Haiyong; Zhao, Lei; Liu, Ru; An, Shuowei; Zhu, Jie
2017-12-01
Based on the effective-medium theory, the propagation of a shear horizontal (SH) wave in joined half-spaces composed of elastic metamaterials (EMMs) is investigated. From the dispersion relations, the effects of negative effective-medium parameters on the properties of a SH wave traveling near the interface are analyzed in detail. It is found that a SH wave can always appear and travel along the interface under specific effective-parameter combinations no matter whether the effective transverse wave velocity is imaginary or real. This is significantly different from the classical case (joined half-spaces composed of natural media), and the existence of these SH interfacial wave modes may have important impacts on EMM-based SH wave manipulation, especially wave isolation and object protection.
Pizzo, Nick
2017-11-01
A simple criterion for water particles to surf an underlying surface gravity wave is presented. It is found that particles travelling near the phase speed of the wave, in a geometrically confined region on the forward face of the crest, increase in speed. The criterion is derived using the equation of John (Commun. Pure Appl. Maths, vol. 6, 1953, pp. 497-503) for the motion of a zero-stress free surface under the action of gravity. As an example, a breaking water wave is theoretically and numerically examined. Implications for upper-ocean processes, for both shallow- and deep-water waves, are discussed.
Wang, Ting; Sheng, Meiping; Ding, Xiaodong; Yan, Xiaowei
2018-03-01
This paper presents analysis on wave propagation and power flow in an acoustic metamaterial plate with lateral local resonance. The metamaterial is designed to have lateral local resonance systems attached to a homogeneous plate. Relevant theoretical analysis, numerical modelling and application prospect are presented. Results show that the metamaterial has two complete band gaps for flexural wave absorption and vibration attenuation. Damping can smooth and lower the metamaterial’s frequency responses in high frequency ranges at the expense of the band gap effect, and as an important factor to calculate the power flow is thoroughly investigated. Moreover, the effective mass density becomes negative and unbounded at specific frequencies. Simultaneously, power flow within band gaps are dramatically blocked from the power flow contour and power flow maps. Results from finite element modelling and power flow analysis reveal the working mechanism of the flexural wave attenuation and power flow blocked within the band gaps, where part of the flexural vibration is absorbed by the vertical resonator and the rest is transformed through four-link-mechanisms to the lateral resonators that oscillate and generate inertial forces indirectly to counterbalance the shear forces induced by the vibrational plate. The power flow is stored in the vertical and lateral local resonance, as well as in the connected plate.
Spectro-spatial analysis of wave packet propagation in nonlinear acoustic metamaterials
Zhou, W. J.; Li, X. P.; Wang, Y. S.; Chen, W. Q.; Huang, G. L.
2018-01-01
The objective of this work is to analyze wave packet propagation in weakly nonlinear acoustic metamaterials and reveal the interior nonlinear wave mechanism through spectro-spatial analysis. The spectro-spatial analysis is based on full-scale transient analysis of the finite system, by which dispersion curves are generated from the transmitted waves and also verified by the perturbation method (the L-P method). We found that the spectro-spatial analysis can provide detailed information about the solitary wave in short-wavelength region which cannot be captured by the L-P method. It is also found that the optical wave modes in the nonlinear metamaterial are sensitive to the parameters of the nonlinear constitutive relation. Specifically, a significant frequency shift phenomenon is found in the middle-wavelength region of the optical wave branch, which makes this frequency region behave like a band gap for transient waves. This special frequency shift is then used to design a direction-biased waveguide device, and its efficiency is shown by numerical simulations.
Starodubtsev, Evgenii
2018-02-01
For cases of isotropic, uniaxial, and biaxial electromagnetic metamaterials (MM), a comparative analysis of the effect of small deviations of local material parameters from "ideal" values on the realization of MM applications ("zero" media, the Veselago-Pendry superlens) has been carried out. On the basis of the detailed investigation of the solutions of dispersion equations, it is established that even a very small dielectric and (or) magnetic anisotropy of a general form is the universal "non-ideal" factor determining (to a much greater extent than small losses) the operability of those MM applications where the wave misphasing in the effective medium is undesirable. The characteristics of wave attenuation in the absorbing isotropic and weakly anisotropic MM are mainly comparable for the applications. Limitations of the traditional approaches using the second-order curves (or surfaces) for analytic modeling of the absorbing MM dispersion equations are shown.
Tian, Zhen
2013-09-01
A terahertz metamaterial comprised of C-shaped SRRs was experimentally devised and demonstrated to exhibit high-efficient and broadband anomalous refraction with strong phase discontinuities. The generalized refraction properties of the proposed metamaterial, including the effect of various incident angles and polarizations were investigated at broad terahertz frequencies. By employing such metasurface, we demonstrated a simple method to tailor transmission and phase of terahertz wave. © 2013 IEEE.
Borcherdt, R. D.
2007-12-01
General theoretical solutions for Rayleigh- and Love-Type surface waves in viscoelastic media describe physical characteristics of the surface waves in elastic as well as anelastic media with arbitrary amounts of intrinsic absorption. In contrast to corresponding physical characteristics for Rayleigh waves in elastic media, Rayleigh- Type surface waves in anelastic media demonstrate; 1) tilt of the particle motion orbit that varies with depth, and 2) amplitude and volumetric strain distributions with superimposed sinusoidal variations that decay exponentially with depth. Each characteristic is dependent on the amount of intrinsic absorption and the chosen model of viscoelasticity. Distinguishing characteristics of anelastic Love-Type surface waves include: 1) dependencies of the wave speed and absorption coefficient on the chosen model and amount of intrinsic absorption and frequency, and 2) superimposed sinusoidal amplitude variations with an exponential decay with depth. Numerical results valid for a variety of viscoelastic models provide quantitative estimates of the physical characteristics of both types of viscoelastic surface waves appropriate for interpretations pertinent to models of earth materials ranging from low-loss in the crust to moderate- and high-loss in water-saturated soils.
Scattering of electromagnetic waves by a graphene-coated thin cylinder of left-handed metamaterial
Pashaeiadl, Hamid; Naserpour, Mahin; Zapata-Rodríguez, Carlos J.
2018-04-01
In this paper we explored the scattering behavior of thin cylinders made of LHM and coated by a monoatomic graphene layer. A spectral tunability of the resonance peaks is evidenced by altering the chemical potential of the graphene coating, a fact that occurs at any state of polarization of the incident plane wave in opposition to the case of scatterers of dielectric core. On the contrary, no invisibility condition can be satisfied for dielectric environments. A singular performance is also found for cylinders with permittivity and permeability near zero. Practical implementations of our results can be carried out in sensing and wave manipulation driven by metamaterials.
Low frequency energy scavenging using sub-wave length scale acousto-elastic metamaterial
Directory of Open Access Journals (Sweden)
Riaz U. Ahmed
2014-11-01
Full Text Available This letter presents the possibility of energy scavenging (ES utilizing the physics of acousto-elastic metamaterial (AEMM at low frequencies (<∼3KHz. It is proposed to use the AEMM in a dual mode (Acoustic Filter and Energy Harvester, simultaneously. AEMM’s are typically reported for filtering acoustic waves by trapping or guiding the acoustic energy, whereas this letter shows that the dynamic energy trapped inside the soft constituent (matrix of metamaterials can be significantly harvested by strategically embedding piezoelectric wafers in the matrix. With unit cell AEMM model, we experimentally asserted that at lower acoustic frequencies (< ∼3 KHz, maximum power in the micro Watts (∼35µW range can be generated, whereas, recently reported phononic crystal based metamaterials harvested only nano Watt (∼30nW power against 10KΩ resistive load. Efficient energy scavengers at low acoustic frequencies are almost absent due to large required size relevant to the acoustic wavelength. Here we report sub wave length scale energy scavengers utilizing the coupled physics of local, structural and matrix resonances. Upon validation of the argument through analytical, numerical and experimental studies, a multi-frequency energy scavenger (ES with multi-cell model is designed with varying geometrical properties capable of scavenging energy (power output from ∼10µW – ∼90µW between 0.2 KHz and 1.5 KHz acoustic frequencies.
High power microwave source with a three dimensional printed metamaterial slow-wave structure
International Nuclear Information System (INIS)
French, David M.; Shiffler, Don
2016-01-01
For over the last decade, the concept of metamaterials has led to new approaches for considering the interaction of radiation with complex structures. However, practical manifestations of such a device operating at high power densities have proven difficult to achieve due to the resonant nature of metamaterials and the resultant high electric fields, which place severe constraints on manufacturing the slow wave structures. In this paper, we describe the first experimental manifestation of a high power microwave device utilizing a metallic slow wave structure (metamaterial-like) fabricated using additive manufacturing. The feasibility of utilizing additive manufacturing as a technique for building these relatively complicated structures has thus been demonstrated. The MW class microwave source operates in the C-band and shows frequency tunablility with electron beam voltage. The basic electromagnetic characteristics of this device, the construction using additive manufacturing, and the basic performance as a microwave oscillator are considered. Due to the tunable nature of the device, it shows promise not only as an oscillator but also as a microwave amplifier. Therefore, the dispersive characteristics and a discussion of the anticipated gain is included as it relates to an amplifier configuration.
Parsimonious Surface Wave Interferometry
Li, Jing
2017-10-24
To decrease the recording time of a 2D seismic survey from a few days to one hour or less, we present a parsimonious surface-wave interferometry method. Interferometry allows for the creation of a large number of virtual shot gathers from just two reciprocal shot gathers by crosscoherence of trace pairs, where the virtual surface waves can be inverted for the S-wave velocity model by wave-equation dispersion inversion (WD). Synthetic and field data tests suggest that parsimonious wave-equation dispersion inversion (PWD) gives S-velocity tomograms that are comparable to those obtained from a full survey with a shot at each receiver. The limitation of PWD is that the virtual data lose some information so that the resolution of the S-velocity tomogram can be modestly lower than that of the S-velocity tomogram inverted from a conventional survey.
DEFF Research Database (Denmark)
Takayama, Osamu; Crasovan, Lucian Cornel; Johansen, Steffen Kjær
2008-01-01
The interface of two semi-infinite media, where at least one of them is a birefringent crystal, supports a special type of surface wave that was predicted theoretically by D'yakonov in 1988. Since then, the properties of such waves, which exist in transparent media only under very special...... conditions, have been analyzed in different geometries and settings. Nevertheless, they are still awaiting experimental demonstration. The most important advances in this topic are briefly discussed in this review, pointing out aspects that have not been clearly covered by the literature. Finally......, the existence of these surface waves in specific material examples is analyzed, discussing the challenge posed by their experimental observation....
Realization of low-scattering metamaterial shell based on cylindrical wave expanding theory.
Wu, Xiaoyu; Hu, Chenggang; Wang, Min; Pu, Mingbo; Luo, Xiangang
2015-04-20
In this paper, we demonstrate the design of a low-scattering metamaterial shell with strong backward scattering reduction and a wide bandwidth at microwave frequencies. Low echo is achieved through cylindrical wave expanding theory, and such shell only contains one metamaterial layer with simultaneous low permittivity and permeability. Cut-wire structure is selected to realize the low electromagnetic (EM) parameters and low loss on the resonance brim region. The full-model simulations show good agreement with theoretical calculations, and illustrate that near -20dB reduction is achieved and the -10 dB bandwidth can reach up to 0.6 GHz. Compared with the cloak based on transformation electromagnetics, the design possesses advantage of simpler requirement of EM parameters and is much easier to be implemented when only backward scattering field is cared.
Optical isotropic negative index metamaterials
DEFF Research Database (Denmark)
Menzel, Christoph; Paul, Thomas; Rockstuhl, Carsten
2010-01-01
Towards isotropic metamaterials, we analyze isofrequency surfaces of the dispersion relation of high symmetry metamaterials and show that they are optically not isotropic. We achieve instead isotropic metamaterials that consist of carefully designed multiple layers....
Directory of Open Access Journals (Sweden)
Jung-San Chen
2016-09-01
Full Text Available This research presents an innovative asymmetric transmission design using alternate layers of water and metamaterial with complex mass density. The directional transmission behavior of acoustic waves is observed numerically inside the composite structure with gradient layer thickness distribution and the rectifying performance of the present design is evaluated. The layer thickness distributions with arithmetic and geometric gradients are considered and the effect of gradient thickness on asymmetric wave propagation is systematically investigated using finite element simulation. The numerical results indicate that the maximum pressure density and transmission through the proposed structure are significantly influenced by the wave propagation direction over a wide range of audible frequencies. Tailoring the thickness of the layered structure enables the manipulation of asymmetric wave propagation within the desired frequency range. In conclusion, the proposed design offers a new possibility for developing directional-dependent acoustic devices.
Wave propagation phenomena in metamaterials for retrieving of effective parameters
DEFF Research Database (Denmark)
Andryieuski, Andrei; Malureanu, Radu; Ha, S.
2011-01-01
reveal so-called wave effective parameters, assigned for particular ligh propagation direction in numerical or real experiments. Therefore, finding the EP is a tricky problem, which still requires a lot of contribution to get deeper insight in it. We report on our advances in restoration MMs EP taking...... into account propagation of eigen-waves in multilayered structures (thicknesses 10-100 unit cells). Thus, the question of pa-rameters convergence is naturally resolved in our approach. The method has been tested on complex three-dimensional structures like a split-cube-in-carcass and with circular polarized...... waves on chiral MMs [1, 2]. Elaborating our approach the new method has been established, where the unit-cell volume and face field averaging procedures define wave and input (Bloch) impedances correspond-ingly. The first part of the method involves the extraction of the dominating (fundamental) Bloch...
DEFF Research Database (Denmark)
Dühring, Maria Bayard
application is modulation of optical waves in waveguides. This presentation elaborates on how a SAW is generated by interdigital transducers using a 2D model of a piezoelectric, inhomogeneous material implemented in the high-level programming language Comsol Multiphysics. The SAW is send through a model......The work of this project is concerned with the simulation of surface acoustic waves (SAW) and topology optimization of SAW devices. SAWs are elastic vibrations that propagate along a material surface and are extensively used in electromechanical filters and resonators in telecommunication. A new...
Metamaterials for light rays: ray optics without wave-optical analog in the ray-optics limit
International Nuclear Information System (INIS)
Hamilton, Alasdair C; Courtial, Johannes
2009-01-01
Volumes of sub-wavelength electromagnetic elements can act like homogeneous materials: metamaterials. In analogy, sheets of optical elements such as prisms can act ray-optically like homogeneous sheet materials. In this sense, such sheets can be considered to be metamaterials for light rays (METATOYs). METATOYs realize new and unusual transformations of the directions of transmitted light rays. We study here, in the ray-optics and scalar-wave limits, the wave-optical analog of such transformations, and we show that such an analog does not always exist. Perhaps, this is the reason why many of the ray-optical possibilities offered by METATOYs have never before been considered.
Kim, Teun-Teun; Oh, Sang Soon; Kim, Hyeon-Don; Park, Hyun Sung; Hess, Ortwin; Min, Bumki; Zhang, Shuang
2017-09-01
Active control of polarization states of electromagnetic waves is highly desirable because of its diverse applications in information processing, telecommunications, and spectroscopy. However, despite the recent advances using artificial materials, most active polarization control schemes require optical stimuli necessitating complex optical setups. We experimentally demonstrate an alternative-direct electrical tuning of the polarization state of terahertz waves. Combining a chiral metamaterial with a gated single-layer sheet of graphene, we show that transmission of a terahertz wave with one circular polarization can be electrically controlled without affecting that of the other circular polarization, leading to large-intensity modulation depths (>99%) with a low gate voltage. This effective control of polarization is made possible by the full accessibility of three coupling regimes, that is, underdamped, critically damped, and overdamped regimes by electrical control of the graphene properties.
Conversion from surface wave to surface wave on reflection
DEFF Research Database (Denmark)
Novitsky, Andrey
2010-01-01
can be transmitted without changing its direction (nevertheless the amplitude varies). For other media parameters, only normally incident surface waves can be converted to surface waves. We propose applications of the predicted conversion as a beam splitter and polarization filter for surface waves.......We discuss the reflection and transmission of an incident surface wave to a pure surface wave state at another interface. This is allowed only for special media parameters: at least one of the media must be magnetic. We found such material characteristics that the obliquely incident surface wave...
From solitons to rogue waves in nonlinear left-handed metamaterials.
Shen, Yannan; Kevrekidis, P G; Veldes, G P; Frantzeskakis, D J; DiMarzio, D; Lan, X; Radisic, V
2017-03-01
In the present work, we explore soliton and roguelike wave solutions in the transmission line analog of a nonlinear left-handed metamaterial. The nonlinearity is expressed through a voltage-dependent, symmetric capacitance motivated by recently developed ferroelectric barium strontium titanate thin-film capacitor designs. We develop both the corresponding nonlinear dynamical lattice and its reduction via a multiple scales expansion to a nonlinear Schrödinger (NLS) model for the envelope of a given carrier wave. The reduced model can feature either a focusing or a defocusing nonlinearity depending on the frequency (wave number) of the carrier. We then consider the robustness of different types of solitary waves of the reduced model within the original nonlinear left-handed medium. We find that both bright and dark solitons persist in a suitable parametric regime, where the reduction to the NLS model is valid. Additionally, for suitable initial conditions, we observe a rogue wave type of behavior that differs significantly from the classic Peregrine rogue wave evolution, including most notably the breakup of a single Peregrine-like pattern into solutions with multiple wave peaks. Finally, we touch upon the behavior of generalized members of the family of the Peregrine solitons, namely, Akhmediev breathers and Kuznetsov-Ma solitons, and explore how these evolve in the left-handed transmission line.
DEFF Research Database (Denmark)
Zhukovsky, Sergei; Lavrinenko, Andrei; Sipe, J. E.
2013-01-01
Propagation of large-wavevector bulk plasmonic waves in multilayer hyperbolic metamaterials (HMMs) with two levels of structuring is theoretically studied. It is shown that when the parameters of a subwavelength metal-dielectric multilayer (substructure) are modulated (superstructured) on a larger...
Spatially-dispersive surface modes on interfaces of layered hyperbolic metamaterials
DEFF Research Database (Denmark)
Popov, Vladislav; Novitsky, Andrey
2017-01-01
In this work we present the study of influence of spatial dispersion on the existence of surface modes on the interfaces with multilayered hyperbolic metamaterials (HMMs). To that end we employ operator effective medium approximation correcting the Maxwell Garnett approximation. We find out...
Beyond local effective material properties for metamaterials
Mnasri, K.; Khrabustovskyi, A.; Stohrer, C.; Plum, M.; Rockstuhl, C.
2018-02-01
To discuss the properties of metamaterials on physical grounds and to consider them in applications, effective material parameters are usually introduced and assigned to a given metamaterial. In most cases, only weak spatial dispersion is considered. It allows to assign local material properties, e.g., a permittivity and a permeability. However, this turned out to be insufficient. To solve this problem, we study here the effective properties of metamaterials with constitutive relations beyond a local response and take strong spatial dispersion into account. This research requires two contributions. First, bulk properties in terms of eigenmodes need to be studied. We particularly investigate the isofrequency surfaces of their dispersion relation are investigated and compared to those of an actual metamaterial. The significant improvement to effectively describe it provides evidence for the necessity to use nonlocal material laws in the effective description of metamaterials. Second, to be able to capitalize on such constitutive relations, also interface conditions need to be known. They are derived in this contribution for our form of the nonlocality using a generalized (weak) formulation of Maxwell's equations. Based on such interface conditions, Fresnel expressions are obtained that predict the amplitude of the reflected and transmitted plane wave upon illuminating a slab of such a nonlocal metamaterial. This all together offers the necessary means for the in-depth analysis of metamaterials characterized by strong spatial dispersion. The general formulation we choose here renders our approach applicable to a wide class of metamaterials.
DEFF Research Database (Denmark)
Ni, X.; Naik, G. V.; Kildishev, A. V.
2011-01-01
Spontaneous emission patterns of electric and magnetic dipoles on different metallic surfaces and a hyperbolic metamaterial (HMM) surface were simulated using the dyadic Green’s function technique. The theoretical approach was verified by experimental results obtained by measuring angular-depende......-dependent emission spectra of europium ions on top of different films. The results show the modified behavior of electric and magnetic dipoles on metallic and HMM surfaces. The results of numerical calculations agree well with experimental data.......Spontaneous emission patterns of electric and magnetic dipoles on different metallic surfaces and a hyperbolic metamaterial (HMM) surface were simulated using the dyadic Green’s function technique. The theoretical approach was verified by experimental results obtained by measuring angular...
Wang, S M; Mu, S Y; Zhu, C; Gong, Y X; Xu, P; Liu, H; Li, T; Zhu, S N; Zhang, X
2012-02-27
We studied the quantum properties of magnetic plasmon waves in a three-dimensional coupled metamaterial. A Hong-Ou-Mandel dip of two-photon interference with a visibility of 86 ± 6.0% was explicitly observed, when the sample was inserted into one of the two arms of the interferometer. This meant that the quantum interference property survived in such a magnetic plasmon wave-mediated transmission process, thus testifying the magnetic plasmon waves owned a quantum nature. A full quantum model was utilized to describe our experimental results. The results showed that the metamaterials could not only steer the classical light but also the non-classical light and they might have potential application in the future quantum information.
Liu, Tuo; Zhu, Xuefeng; Chen, Fei; Liang, Shanjun; Zhu, Jie
2018-03-01
Exploring the concept of non-Hermitian Hamiltonians respecting parity-time symmetry with classical wave systems is of great interest as it enables the experimental investigation of parity-time-symmetric systems through the quantum-classical analogue. Here, we demonstrate unidirectional wave vector manipulation in two-dimensional space, with an all passive acoustic parity-time-symmetric metamaterials crystal. The metamaterials crystal is constructed through interleaving groove- and holey-structured acoustic metamaterials to provide an intrinsic parity-time-symmetric potential that is two-dimensionally extended and curved, which allows the flexible manipulation of unpaired wave vectors. At the transition point from the unbroken to broken parity-time symmetry phase, the unidirectional sound focusing effect (along with reflectionless acoustic transparency in the opposite direction) is experimentally realized over the spectrum. This demonstration confirms the capability of passive acoustic systems to carry the experimental studies on general parity-time symmetry physics and further reveals the unique functionalities enabled by the judiciously tailored unidirectional wave vectors in space.
A novel metamaterial filter with stable passband performance based on frequency selective surface
Directory of Open Access Journals (Sweden)
C. Y. Fang
2014-07-01
Full Text Available In this paper, a novel metamaterial filter based on frequency selective surface (FSS is proposed. Using the mode matching method, we theoretically studied the transmission performance of the structure. Results show that, by rotating its neighboring elements 90 degree, the novel filter has a better stability to angle of incidence than traditional structures for TE and TM polarization. As the incident angles vary from 0 to 50 degrees, the metamaterial filter exhibits a transmittance higher than 0.98 and the center frequency slightly shifts downward (from 10 GHz to 0.96 GHz for TE polarization. For TM polarization, a transmittance of 0.98 is achieved and the center frequency retains 0.96 GHz with the varying of the incident angles. Furthermore, an experimental prototype fabricated was tested in a microwave chamber, and the measured results show good agreement with the simulated ones.
Vahidi, Alireza; Rajabalipanah, Hamid; Abdolali, Ali; Cheldavi, Ahmad
2018-04-01
Achieving wideband absorption via three-dimensional (3D) metamaterials has revealed as a new emerging innovative field of research, especially in recent years. Here, a novel 3D metamaterial absorber (MA) having a sixfold symmetry is designed which consists of periodic resistive honeycomb-like units. The proposed 3D MA exhibits a strong absorptivity above 90% in the widest bandwidth ever reported to the authors' knowledge from 50 to 460 GHz (the bandwidth ratio larger than 1:9), covering both millimeter wave and low -terahertz spectra. To understand the physical mechanism of absorption, the electric field and surface current distributions, the power loss density as well as the deteriorating effects of the high-order Floquet modes are monitored and discussed. As a distinctive feature in comparison to the similar 3D MAs, our engineered absorber provides multiple resonances, contributing to further broadening of the operating bandwidth. In addition, it is shown that the honeycomb-like MA retains its polarization-insensitive absorption in a wide range of incident wave angles and polarization angles. Due to flexibility of the design, these superior performances can be simply extended to terahertz, infrared and visible frequencies, potentially leading to many promising applications in imaging, sensing, and camouflage technology.
Directory of Open Access Journals (Sweden)
Starodubtsev Evgenii
2018-01-01
Full Text Available For cases of isotropic, uniaxial, and biaxial electromagnetic metamaterials (MM, a comparative analysis of the effect of small deviations of local material parameters from “ideal” values on the realization of MM applications (“zero” media, the Veselago-Pendry superlens has been carried out. On the basis of the detailed investigation of the solutions of dispersion equations, it is established that even a very small dielectric and (or magnetic anisotropy of a general form is the universal “non-ideal” factor determining (to a much greater extent than small losses the operability of those MM applications where the wave misphasing in the effective medium is undesirable. The characteristics of wave attenuation in the absorbing isotropic and weakly anisotropic MM are mainly comparable for the applications. Limitations of the traditional approaches using the second-order curves (or surfaces for analytic modeling of the absorbing MM dispersion equations are shown.
Chen, Jiangwei; Dai, Yuyao; Yan, Lin; Zhao, Huimin
2018-04-01
In this paper, we shall demonstrate theoretically that steady bound electromagnetic eigenstate can arise in an infinite homogeneous isotropic linear metamaterial with zero-real-part-of-impedance and nonzero-imaginary-part-of-wave-vector, which is partly attributed to that, here, nonzero-imaginary-part-of-wave-vector is not involved with energy losses or gain. Altering value of real-part-of-impedance of the metamaterial, the bound electromagnetic eigenstate may become to be a progressive wave. Our work may be useful to further understand energy conversion and conservation properties of electromagnetic wave in the dispersive and absorptive medium and provides a feasible route to stop, store and release electromagnetic wave (light) conveniently by using metamaterial with near-zero-real-part-of-impedance.
Feigenbaum, Eyal; Hiszpanski, Anna M.
2017-07-01
A phase accumulation tracking (PAT) algorithm is proposed and demonstrated for the retrieval of the effective index of fishnet metamaterials (FMMs) in order to avoid the multi-branch uncertainty problem. This algorithm tracks the phase and amplitude of the dominant propagation mode across the FMM slab. The suggested PAT algorithm applies to resonant guided wave networks having only one mode that carries the light between the two slab ends, where the FMM is one example of this metamaterials sub-class. The effective index is a net effect of positive and negative accumulated phase in the alternating FMM metal and dielectric layers, with a negative effective index occurring when negative phase accumulation dominates.
Compact Single-Layer Traveling-Wave Antenna DesignUsing Metamaterial Transmission Lines
Alibakhshikenari, Mohammad; Virdee, Bal Singh; Limiti, Ernesto
2017-12-01
This paper presents a single-layer traveling-wave antenna (TWA) that is based on composite right/left-handed (CRLH)-metamaterial (MTM) transmission line (TL) structure, which is implemented by using a combination of interdigital capacitors and dual-spiral inductive slots. By embedding dual-spiral inductive slots inside the CRLH MTM-TL results in a compact TWA. Dimensions of the proposed CRLH MTM-TL TWA is 21.5 × 30.0 mm2 or 0.372λ0 × 0.520λ0 at 5.2 GHz (center frequency). The fabricated TWA operates over 1.8-8.6 GHz with a fractional bandwidth greater than 120%, and it exhibits a peak gain and radiation efficiency of 4.2 dBi and 81%, respectively, at 5 GHz. By avoiding the use of lumped components, via-holes or defected ground structures, the proposed TWA design is economic for mass production as well as easy to integrate with wireless communication systems.
Experimental Testing of a Metamaterial Slow Wave Structure for High-Power Microwave Generation
Shipman, K.; Prasad, S.; Andreev, D.; Fisher, D. M.; Reass, D. B.; Schamiloglu, E.; Gilmore, M.
2017-10-01
A high-power L band source has been developed using a metamaterial (MTM) to produce a double negative slow wave structure (SWS) for interaction with an electron beam. The beam is generated by a 700 kV, 6 kA short pulse (10 ns) accelerator. The design of the SWS consists of a cylindrical waveguide, loaded with alternating split-rings that are arrayed axially down the waveguide. The beam is guided down the center of the rings, where electrons interact with the MTM-SWS producing radiation. Power is extracted axially via a circular waveguide, and radiated by a horn antenna. Microwaves are characterized by an external detector placed in a waveguide. Mode characterization is performed using a neon bulb array. The bulbs are lit by the electric field, resulting in an excitation pattern that resembles the field pattern. This is imaged using an SLR camera. The MTM structure has electrically small features so breakdown is a concern. In addition to high speed cameras, a fiber-optic-fed, sub-ns photomultiplier tube array diagnostic has been developed and used to characterize breakdown light. Work supported by the Air Force Office of Scientific Research, MURI Grant FA9550-12-1-0489.
DEFF Research Database (Denmark)
Zhukovsky, Sergei; Zalkovskij, Maksim; Malureanu, Radu
2013-01-01
We explore the capabilities of planar metamaterials and metasurfaces to control and transform the polarization of electromagnetic radiation, and present a detailed covariant multipole theory of dimer-based metamaterials. We show that various optical properties, such as optical activity, elliptical...... dichroism or polarization conversion can be achieved in metamaterials made of simple shapes, such as nanorods, just by varying their geometrical arrangement. By virtue of the Babinet principle, the proposed theory is extended to inverted structures (membranes) where rods are replaced by slots. Such free...
Engineered metabarrier as shield from seismic surface waves.
Palermo, Antonio; Krödel, Sebastian; Marzani, Alessandro; Daraio, Chiara
2016-12-20
Resonant metamaterials have been proposed to reflect or redirect elastic waves at different length scales, ranging from thermal vibrations to seismic excitation. However, for seismic excitation, where energy is mostly carried by surface waves, energy reflection and redirection might lead to harming surrounding regions. Here, we propose a seismic metabarrier able to convert seismic Rayleigh waves into shear bulk waves that propagate away from the soil surface. The metabarrier is realized by burying sub-wavelength resonant structures under the soil surface. Each resonant structure consists of a cylindrical mass suspended by elastomeric springs within a concrete case and can be tuned to the resonance frequency of interest. The design allows controlling seismic waves with wavelengths from 10-to-100 m with meter-sized resonant structures. We develop an analytical model based on effective medium theory able to capture the mode conversion mechanism. The model is used to guide the design of metabarriers for varying soil conditions and validated using finite-element simulations. We investigate the shielding performance of a metabarrier in a scaled experimental model and demonstrate that surface ground motion can be reduced up to 50% in frequency regions below 10 Hz, relevant for the protection of buildings and civil infrastructures.
Homogenization scheme for acoustic metamaterials
Yang, Min
2014-02-26
We present a homogenization scheme for acoustic metamaterials that is based on reproducing the lowest orders of scattering amplitudes from a finite volume of metamaterials. This approach is noted to differ significantly from that of coherent potential approximation, which is based on adjusting the effective-medium parameters to minimize scatterings in the long-wavelength limit. With the aid of metamaterials’ eigenstates, the effective parameters, such as mass density and elastic modulus can be obtained by matching the surface responses of a metamaterial\\'s structural unit cell with a piece of homogenized material. From the Green\\'s theorem applied to the exterior domain problem, matching the surface responses is noted to be the same as reproducing the scattering amplitudes. We verify our scheme by applying it to three different examples: a layered lattice, a two-dimensional hexagonal lattice, and a decorated-membrane system. It is shown that the predicted characteristics and wave fields agree almost exactly with numerical simulations and experiments and the scheme\\'s validity is constrained by the number of dominant surface multipoles instead of the usual long-wavelength assumption. In particular, the validity extends to the full band in one dimension and to regimes near the boundaries of the Brillouin zone in two dimensions.
Negative stiffness honeycombs as tunable elastic metamaterials
Goldsberry, Benjamin M.; Haberman, Michael R.
2018-03-01
Acoustic and elastic metamaterials are media with a subwavelength structure that behave as effective materials displaying atypical effective dynamic properties. These material systems are of interest because the design of their sub-wavelength structure allows for direct control of macroscopic wave dispersion. One major design limitation of most metamaterial structures is that the dynamic response cannot be altered once the microstructure is manufactured. However, the ability to modify wave propagation in the metamaterial with an external stimulus is highly desirable for numerous applications and therefore remains a significant challenge in elastic metamaterials research. In this work, a honeycomb structure composed of a doubly periodic array of curved beams, known as a negative stiffness honeycomb (NSH), is analyzed as a tunable elastic metamaterial. The nonlinear static elastic response that results from large deformations of the NSH unit cell leads to a large variation in linear elastic wave dispersion associated with infinitesimal motion superposed on the externally imposed pre-strain. A finite element model is utilized to model the static deformation and subsequent linear wave motion at the pre-strained state. Analysis of the slowness surface and group velocity demonstrates that the NSH exhibits significant tunability and a high degree of anisotropy which can be used to guide wave energy depending on static pre-strain levels. In addition, it is shown that partial band gaps exist where only longitudinal waves propagate. The NSH therefore behaves as a meta-fluid, or pentamode metamaterial, which may be of use for applications of transformation elastodynamics such as cloaking and gradient index lens devices.
DEFF Research Database (Denmark)
Dühring, Maria Bayard
application is modulation of optical waves in waveguides. This presentation elaborates on how a SAW is generated by interdigital transducers using a 2D model of a piezoelectric, inhomogeneous material implemented in the high-level programming language Comsol Multiphysics. The SAW is send through a model...
SEETHARAMDOO, Divitha
2013-01-01
This chapter focuses on the potential of metamaterials in EMC applications. It is organized as follows. In section 4.2, a short overview of electromagnetic compatibility is given. To highlight the relevance of metamaterials in EMC problems, current trends in industrial applications as well as the consequent challenges arising in EMC are described. The cases of transport and telecommunications industries are considered. The two main applications foresighted are filtering and shielding. Section...
Capillary waves with surface viscosity
Shen, Li; Denner, Fabian; Morgan, Neal; van Wachem, Berend; Dini, Daniele
2017-11-01
Experiments over the last 50 years have suggested a correlation between the surface (shear) viscosity and the stability of a foam or emulsion. With recent techniques allowing more accurate measurements of the elusive surface viscosity, we examine this link theoretically using small-amplitude capillary waves in the presence of the Marangoni effect and surface viscosity modelled via the Boussinesq-Scriven model. The surface viscosity effect is found to contribute a damping effect on the amplitude of the capillary wave with subtle differences to the effect of the convective-diffusive Marangoni transport. The general wave dispersion is augmented to take into account the Marangoni and surface viscosity effects, and a first-order correction to the critical damping wavelength is derived. The authors acknowledge the financial support of the Shell University Technology Centre for fuels and lubricants.
Yunfeng, Lin; Xiaoqi, Hu; Lin, Hu
2018-04-01
A composite structure design metamaterial absorber is designed and simulated. The proposed composite structure consists of a double-hole sub-structure and a double-metallic particle sub-structure. The damping constant of bulk gold layer is optimized to eliminate the adverse effects of the grain boundary and the surface scattering of thin films on the absorption property. Two absorption peaks (A1 = 58%, A2 = 23%) are achieved based on the localized surface plasmon (LSP) modes resonance. Moreover, the plasmonic hybridization phenomenon between LSP modes is found, which leads to the absorption enhancement between two absorption peaks. The proposed metamaterial absorber holds the property of wide-angle incidence.
Investigation of surface roughness influence on hyperbolic metamaterial performance
Directory of Open Access Journals (Sweden)
S. Kozik
2014-12-01
Full Text Available The main goal of this work was to introduce simple model of surface roughness which does not involve objects with complicated shapes and could help to reduce computational costs. We described and proved numerically that the influence of surface roughness at the interfaces in metal-dielectric composite materials could be described by proper selection of refractive index of dielectric layers. Our calculations show that this model works for roughness with RMS value about 1 nm and below.
Physical nature of volume plasmon polaritons in hyperbolic metamaterials
DEFF Research Database (Denmark)
Zhukovsky, Sergei; Kidwai, Omar; Sipe, J. E.
2013-01-01
We investigate electromagnetic wave propagation in multilayered metal-dielectric hyperbolic metamaterials (HMMs). We demonstrate that high-k propagating waves in HMMs are volume plasmon polaritons. The volume plasmon polariton band is formed by coupling of short-range surface plasmon polariton ex...... excitations in the individual metal layers....
Ali, Abdulbaset; Hu, Bing; Ramahi, Omar
2015-05-15
This work presents a real life experiment of implementing an artificial intelligence model for detecting sub-millimeter cracks in metallic surfaces on a dataset obtained from a waveguide sensor loaded with metamaterial elements. Crack detection using microwave sensors is typically based on human observation of change in the sensor's signal (pattern) depicted on a high-resolution screen of the test equipment. However, as demonstrated in this work, implementing artificial intelligence to classify cracked from non-cracked surfaces has appreciable impact in terms of sensing sensitivity, cost, and automation. Furthermore, applying artificial intelligence for post-processing data collected from microwave sensors is a cornerstone for handheld test equipment that can outperform rack equipment with large screens and sophisticated plotting features. The proposed method was tested on a metallic plate with different cracks and the obtained experimental results showed good crack classification accuracy rates.
Wave propagation phenomena in structured materials and problems of metamaterials homogenization
DEFF Research Database (Denmark)
Lavrinenko, Andrei
2011-01-01
One of the most convenient ways to describe metamaterials (MM) is to homogenize structured composites and assign them with effective parameters (EPs), provided that they can be introduced. The most common way to determine EPs in literature is to derive them from the refection/transmission spectra...
DEFF Research Database (Denmark)
Lavrinenko, Andrei; Malureanu, Radu; Zalkovskij, Maksim
2012-01-01
In this work we present our activities in the fabrication and characterization of passive THz metamaterials. We use two fabrication processes to develop metamaterials either as free-standing metallic membranes or patterned metallic multi-layers on the substrates to achieve different functionaliti....... Our interest lies in metamaterials for a broad spectrum of linear properties in operations with THz waves, such as linear and circular polarizers, absorbers and devices with enhanced transmittivity, single layer dichroic and chiral systems. All the three steps (modelling, fabrication...
Sensitivity enhancement of a surface plasmon resonance sensor using porous metamaterial layers
Cherifi, Abdellatif; Bouhafs, Benamar
2017-12-01
In this work, the surface plasmon resonance (SPR) device with two porous left handed metamaterial (LHM) layers separated by an insulator gap, is investigated. The effect of the insulator gap thickness and its refractive index (RI) on the angular response of the device is analyzed. The results show that the sensitivity of the SPR sensor is enhanced compared to the standard SPR sensors. Here, the multilayer structure is probed with 738 nm-wavelength, and electromagnetic properties of active porous LHM layers are described from the effective medium theory (EMT). Furthermore, in the increase of the porosity from 0 to 0.6, the designed nanocavity exhibits a fundamental SPR mode long-range (LR) type and it can be of interest in high-performance SPR sensing.
Perfect-absorption graphene metamaterials for surface-enhanced molecular fingerprint spectroscopy
Guo, Xiangdong; Hu, Hai; Liao, Baoxin; Zhu, Xing; Yang, Xiaoxia; Dai, Qing
2018-05-01
Graphene plasmon with extremely strong light confinement and tunable resonance frequency represents a promising surface-enhanced infrared absorption (SEIRA) sensing platform. However, plasmonic absorption is relatively weak (approximately 1%-9%) in monolayer graphene nanostructures, which would limit its sensitivity. Here, we theoretically propose a hybrid plasmon-metamaterial structure that can realize perfect absorption in graphene with a low carrier mobility of 1000 cm2 V-1 s-1. This structure combines a gold reflector and a gold grating to the graphene plasmon structures, which introduce interference effect and the lightning-rod effect, respectively, and largely enhance the coupling of light to graphene. The vibration signal of trace molecules can be enhanced up to 2000-fold at the hotspot of the perfect-absorption structure, enabling the SEIRA sensing to reach the molecular level. This hybrid metal-graphene structure provides a novel path to generate high sensitivity in nanoscale molecular recognition for numerous applications.
Dual-band microstrip patch antenna based on metamaterial refractive surface
Salhi, Ridha; Labidi, Mondher; Boujemaa, Mohamed Ali; Choubani, Fethi
2017-06-01
In this paper, we present a new design of microstrip patch antenna based on metamaterial refractive surface (MRS). By optimizing the air gap between the MRS layer and the patch antenna to be 7 mm, the band width and the gain of the proposed antenna are significantly enhanced. The proposed prototype presents a dual band antenna. The center frequency for the first band is 2.44 GHz and the generated bandwidth is 25 MHz. The second band has a center frequency of 2.8 GHz and with a bandwidth of 50 MHz. The simulation results are analyzed and discussed in terms of return loss, gain and radiation pattern using electromagnetic simulator software. Finally, the designed dual band antenna is fabricated and different measurement results are performed and compared with simulation results in order to validate its performances. The proposed antenna supports WiBro (wireless broadband), ISM, WiFi, Bluetooth, WiMAX and radars services.
Wave Equation Inversion of Skeletonized SurfaceWaves
Zhang, Zhendong
2015-08-19
We present a surface-wave inversion method that inverts for the S-wave velocity from the Rayleigh dispersion curve for the fundamental-mode. We call this wave equation inversion of skeletonized surface waves because the dispersion curve for the fundamental-mode Rayleigh wave is inverted using finite-difference solutions to the wave equation. The best match between the predicted and observed dispersion curves provides the optimal S-wave velocity model. Results with synthetic and field data illustrate the benefits and limitations of this method.
Control of Rayleigh-like waves in thick plate Willis metamaterials
Directory of Open Access Journals (Sweden)
André Diatta
2016-12-01
Full Text Available Recent advances in control of anthropic seismic sources in structured soil led us to explore interactions of elastic waves propagating in plates (with soil parameters structured with concrete pillars buried in the soil. Pillars are 2 m in diameter, 30 m in depth and the plate is 50 m in thickness. We study the frequency range 5 to 10 Hz, for which Rayleigh wave wavelengths are smaller than the plate thickness. This frequency range is compatible with frequency ranges of particular interest in earthquake engineering. It is demonstrated in this paper that two seismic cloaks’ configurations allow for an unprecedented flow of elastodynamic energy associated with Rayleigh surface waves. The first cloak design is inspired by some approximation of ideal cloaks’ parameters within the framework of thin plate theory. The second, more accomplished but more involved, cloak design is deduced from a geometric transform in the full Navier equations that preserves the symmetry of the elasticity tensor but leads to Willis’ equations, well approximated by a homogenization procedure, as corroborated by numerical simulations. The two cloaks’s designs are strickingly different, and the superior efficiency of the second type of cloak emphasizes the necessity for rigour in transposition of existing cloaks’s designs in thin plates to the geophysics setting. Importantly, we focus our attention on geometric transforms applied to thick plates, which is an intermediate case between thin plates and semi-infinite media, not studied previously. Cloaking efficiency (reduction of the disturbance of the wave wavefront and its amplitude behind an obstacle and protection (reduction of the wave amplitude within the center of the cloak are studied for ideal and approximated cloaks’ parameters. These results represent a preliminary step towards designs of seismic cloaks for surface Rayleigh waves propagating in sedimentary soils structured with concrete pillars.
Resonant dielectric metamaterials
Loui, Hung; Carroll, James; Clem, Paul G; Sinclair, Michael B
2014-12-02
A resonant dielectric metamaterial comprises a first and a second set of dielectric scattering particles (e.g., spheres) having different permittivities arranged in a cubic array. The array can be an ordered or randomized array of particles. The resonant dielectric metamaterials are low-loss 3D isotropic materials with negative permittivity and permeability. Such isotropic double negative materials offer polarization and direction independent electromagnetic wave propagation.
Databases of surface wave dispersion
Directory of Open Access Journals (Sweden)
L. Boschi
2005-06-01
Full Text Available Observations of seismic surface waves provide the most important constraint on the elastic properties of the Earths lithosphere and upper mantle. Two databases of fundamental mode surface wave dispersion were recently compiled and published by groups at Harvard (Ekström et al., 1997 and Utrecht/Oxford (Trampert and Woodhouse, 1995, 2001, and later employed in 3-d global tomographic studies. Although based on similar sets of seismic records, the two databases show some significant discrepancies. We derive phase velocity maps from both, and compare them to quantify the discrepancies and assess the relative quality of the data; in this endeavour, we take careful account of the effects of regularization and parametrization. At short periods, where Love waves are mostly sensitive to crustal structure and thickness, we refer our comparison to a map of the Earths crust derived from independent data. On the assumption that second-order effects like seismic anisotropy and scattering can be neglected, we find the measurements of Ekström et al. (1997 of better quality; those of Trampert and Woodhouse (2001 result in phase velocity maps of much higher spatial frequency and, accordingly, more difficult to explain and justify geophysically. The discrepancy is partly explained by the more conservative a priori selection of data implemented by Ekström et al. (1997. Nevertheless, it becomes more significant with decreasing period, which indicates that it could also be traced to the different measurement techniques employed by the authors.
Diversiform hybrid-polarization surface plasmon polaritons in a dielectric–metal metamaterial
Directory of Open Access Journals (Sweden)
Q. Zhang
2017-04-01
Full Text Available Hybrid-polarization surface plasmon polaritons (HSPPs at the interface between an isotropic medium and a one-dimensional metal–dielectric metamaterial (MM were discussed, where the metal-layer permittivity was described with the improved Drude model. From the obtained dispersion equations, we predicated five types of HSPPs. One type is the Dyakonov-like surface polariton and another type is the tradition-like surface polarton. The others are new types of HSPPs. We establish a numerical simulation method of the attenuated total reflection (ATR measurement to examine these HSPPs. The results from the ATR spectra are consistent with those from the dispersion equations and indicate the different polarization features of these HSPPs. The numerical results also demonstrate that the observation of each type of HSPPs requires different conditions dictated by the material parameters and the polarization direction of incident light used in the ATR spectra. These results may further widen the space of potential applications of surface plasmon polaritons.
PURCELL EFFECT IN EXTREMELY ANISOTROPIC ELLIPTIC METAMATERIALS
Directory of Open Access Journals (Sweden)
Alexander V. Chebykin
2014-11-01
Full Text Available The paper deals with theoretical demonstration of Purcell effect in extremely anisotropic metamaterials with elliptical isofrequency surface. This effect is free from association with divergence in density of states unlike the case of hyperbolic metamaterials. It is shown that a large Purcell factor can be observed without excitation of modes with large wave vectors in one direction, and the component of the wave vector normal to the layers is less than k0. For these materials the possibility is given for increasing of the power radiated in the medium, as well as the power radiated from material into free space across the medium border situated transversely to the layers. We have investigated isofrequency contours and the dependence of Purcell factor from the frequency for infinite layered metamaterial structure. In the visible light range strong spatial dispersion gives no possibility to obtain enhancement of spontaneous emission in metamaterial with unit cell which consists of two layers. This effect can be achieved in periodic metal-dielectric layered nanostructures with a unit cell containing two different metallic layers and two dielectric ones. Analysis of the dependences for Purcell factor from the frequency shows that the spontaneous emission is enhanced by a factor of ten or more only for dipole orientation along metamaterial layers, but in the case of the transverse orientation radiation can be enhanced only 2-3 times at most. The results can be used to create a new type of metamaterials with elliptical isofrequency contours, providing a more efficient light emission in the far field.
The Coupling Effects of Surface Plasmon Polaritons and Magnetic Dipole Resonances in Metamaterials
Liu, Bo; Tang, Chaojun; Chen, Jing; Yan, Zhendong; Zhu, Mingwei; Sui, Yongxing; Tang, Huang
2017-11-01
We numerically investigate the coupling effects of surface plasmon polaritons (SPPs) and magnetic dipole (MD) resonances in metamaterials, which are composed of an Ag nanodisk array and a SiO2 spacer on an Ag substrate. The periodicity of the Ag nanodisk array leads to the excitation of SPPs at the surface of the Ag substrate. The near-field plasmon interactions between individual Ag nanodisks and the Ag substrate form MD resonances. When the excitation wavelengths of SPPs are tuned to approach the position of MD resonances by changing the array period of Ag nanodisks, SPPs and MD resonances are coupled together into two hybridized modes, whose positions can be well predicted by a coupling model of two oscillators. In the strong coupling regime of SPPs and MD resonances, the hybridized modes exhibit an obvious anti-crossing, resulting into an interesting phenomenon of Rabi splitting. Moreover, the magnetic fields under the Ag nanodisks are greatly enhanced, which may find some potential applications, such as magnetic nonlinearity.
The Coupling Effects of Surface Plasmon Polaritons and Magnetic Dipole Resonances in Metamaterials.
Liu, Bo; Tang, Chaojun; Chen, Jing; Yan, Zhendong; Zhu, Mingwei; Sui, Yongxing; Tang, Huang
2017-11-09
We numerically investigate the coupling effects of surface plasmon polaritons (SPPs) and magnetic dipole (MD) resonances in metamaterials, which are composed of an Ag nanodisk array and a SiO 2 spacer on an Ag substrate. The periodicity of the Ag nanodisk array leads to the excitation of SPPs at the surface of the Ag substrate. The near-field plasmon interactions between individual Ag nanodisks and the Ag substrate form MD resonances. When the excitation wavelengths of SPPs are tuned to approach the position of MD resonances by changing the array period of Ag nanodisks, SPPs and MD resonances are coupled together into two hybridized modes, whose positions can be well predicted by a coupling model of two oscillators. In the strong coupling regime of SPPs and MD resonances, the hybridized modes exhibit an obvious anti-crossing, resulting into an interesting phenomenon of Rabi splitting. Moreover, the magnetic fields under the Ag nanodisks are greatly enhanced, which may find some potential applications, such as magnetic nonlinearity.
2015-05-29
Final Report 29 May 2015 Dielectric Metamaterials SRI Project P21340 ONR Contract N00014-12-1-0722 Prepared by: Srini Krishnamurthy...2 2. Theory of Metamaterials ....................................................................................................... 2 2.1...accurately assess the impact of various forms of disorder on metamaterials (MMs) (both dielectric and metal inclusions); and (5) identify designs
SURFACE ALFVEN WAVES IN SOLAR FLUX TUBES
Energy Technology Data Exchange (ETDEWEB)
Goossens, M.; Andries, J.; Soler, R.; Van Doorsselaere, T. [Centre for Plasma Astrophysics, Department of Mathematics, Katholieke Universiteit Leuven, Celestijnenlaan 200B, 3001 Leuven (Belgium); Arregui, I.; Terradas, J., E-mail: marcel.goossens@wis.kuleuven.be [Solar Physics Group, Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)
2012-07-10
Magnetohydrodynamic (MHD) waves are ubiquitous in the solar atmosphere. Alfven waves and magneto-sonic waves are particular classes of MHD waves. These wave modes are clearly different and have pure properties in uniform plasmas of infinite extent only. Due to plasma non-uniformity, MHD waves have mixed properties and cannot be classified as pure Alfven or magneto-sonic waves. However, vorticity is a quantity unequivocally related to Alfven waves as compression is for magneto-sonic waves. Here, we investigate MHD waves superimposed on a one-dimensional non-uniform straight cylinder with constant magnetic field. For a piecewise constant density profile, we find that the fundamental radial modes of the non-axisymmetric waves have the same properties as surface Alfven waves at a true discontinuity in density. Contrary to the classic Alfven waves in a uniform plasma of infinite extent, vorticity is zero everywhere except at the cylinder boundary. If the discontinuity in density is replaced with a continuous variation of density, vorticity is spread out over the whole interval with non-uniform density. The fundamental radial modes of the non-axisymmetric waves do not need compression to exist unlike the radial overtones. In thin magnetic cylinders, the fundamental radial modes of the non-axisymmetric waves with phase velocities between the internal and the external Alfven velocities can be considered as surface Alfven waves. On the contrary, the radial overtones can be related to fast-like magneto-sonic modes.
Swimming using surface acoustic waves.
Directory of Open Access Journals (Sweden)
Yannyk Bourquin
Full Text Available Microactuation of free standing objects in fluids is currently dominated by the rotary propeller, giving rise to a range of potential applications in the military, aeronautic and biomedical fields. Previously, surface acoustic waves (SAWs have been shown to be of increasing interest in the field of microfluidics, where the refraction of a SAW into a drop of fluid creates a convective flow, a phenomenon generally known as SAW streaming. We now show how SAWs, generated at microelectronic devices, can be used as an efficient method of propulsion actuated by localised fluid streaming. The direction of the force arising from such streaming is optimal when the devices are maintained at the Rayleigh angle. The technique provides propulsion without any moving parts, and, due to the inherent design of the SAW transducer, enables simple control of the direction of travel.
Penetration effect in uniaxial anisotropic metamaterials
Vytovtov, K.; Barabanova, E.; Zouhdi, S.
2018-02-01
Plane harmonic wave propagation along an interface between vacuum and a semi-infinite anisotropic metamaterial is considered. Possibility of penetration effect in the considered case is studied. It is shown that there is a bulk wave within the anisotropic metamaterial with an arbitrary orientation of the anisotropy axis. It is also proved that a reflected wave must propagate perpendicularly to the interface in the case of the extraordinary wave. Moreover, no wave is reflected in the case of ordinary wave propagation.
Negative index in chiral metamaterials
Singh, S.; Plum, E.; Menzel, C.; Rockstuhl, C.; Zheludev, N.; Zhang, W.
2011-01-01
We demonstrate that planar metamaterial lacking of mirror symmetry shows asymmetric transmission of terahertz waves and bands of positive, negative and zero phase and group velocities indicating a polarization sensitive negative index and slow-light media.
Advanced fabrication of hyperbolic metamaterials
DEFF Research Database (Denmark)
Shkondin, Evgeniy; Sukham, Johneph; Panah, Mohammad Esmail Aryaee
2017-01-01
Hyperbolic metamaterials can provide unprecedented properties in accommodation of high-k (high wave vector) waves and enhancement of the optical density of states. To reach such performance the metamaterials have to be fabricated with as small imperfections as possible. Here we report on our...... advances in two approaches in fabrication of optical metamaterials. We deposit ultrathin ultrasmooth gold layers with the assistance of organic material (APTMS) adhesion layer. The technology supports the stacking of such layers in a multiperiod construction with alumina spacers between gold films, which...
DEFF Research Database (Denmark)
Zhukovsky, Sergei; Andryieuski, Andrei; Lavrinenko, Andrei
2014-01-01
and explore the range of parameters, where this is possible, confirming the prospects of using graphene for materials with hyperbolic dispersion. The suggested formalism is applicable to a large variety of structures, such as continuous or structured microwave, terahertz (THz) and optical metamaterials......, optical waveguide arrays, 2D plasmonic and acoustic metamaterials....
Wave scattering from statistically rough surfaces
Bass, F G; ter Haar, D
2013-01-01
Wave Scattering from Statistically Rough Surfaces discusses the complications in radio physics and hydro-acoustics in relation to wave transmission under settings seen in nature. Some of the topics that are covered include radar and sonar, the effect of variations in topographic relief or ocean waves on the transmission of radio and sound waves, the reproduction of radio waves from the lower layers of the ionosphere, and the oscillations of signals within the earth-ionosphere waveguide. The book begins with some fundamental idea of wave transmission theory and the theory of random processes a
Excitation of surface plasma waves over corrugated slow-wave ...
Indian Academy of Sciences (India)
elements in metal waveguides increase the number of their natural modes and give rise to new effects accompanying wave propagation, e.g. excitation of SPW in these waveguides. Such large area surface wave plasma sources have been reported using a microwave launcher of large aperture formed on a waveguide, ...
Excitation of surface plasma waves over corrugated slow-wave ...
Indian Academy of Sciences (India)
Abstract. A microwave propagating along vacuum–dielectric–plasma interface excites surface plasma wave (SPW). A periodic slow-wave structure placed over dielectric slows down the SPW. The phase velocity of slow SPW is sensitive to height, periodicity, number of periods, thickness and the separation between ...
Optical magnetism in planar metamaterial heterostructures.
Papadakis, Georgia T; Fleischman, Dagny; Davoyan, Artur; Yeh, Pochi; Atwater, Harry A
2018-01-18
Harnessing artificial optical magnetism has previously required complex two- and three-dimensional structures, such as nanoparticle arrays and split-ring metamaterials. By contrast, planar structures, and in particular dielectric/metal multilayer metamaterials, have been generally considered non-magnetic. Although the hyperbolic and plasmonic properties of these systems have been extensively investigated, their assumed non-magnetic response limits their performance to transverse magnetic (TM) polarization. We propose and experimentally validate a mechanism for artificial magnetism in planar multilayer metamaterials. We also demonstrate that the magnetic properties of high-index dielectric/metal hyperbolic metamaterials can be anisotropic, leading to magnetic hyperbolic dispersion in certain frequency regimes. We show that such systems can support transverse electric polarized interface-bound waves, analogous to their TM counterparts, surface plasmon polaritons. Our results open a route for tailoring optical artificial magnetism in lithography-free layered systems and enable us to generalize the plasmonic and hyperbolic properties to encompass both linear polarizations.
Controlling sound with acoustic metamaterials
DEFF Research Database (Denmark)
Cummer, Steven A. ; Christensen, Johan; Alù, Andrea
2016-01-01
Acoustic metamaterials can manipulate and control sound waves in ways that are not possible in conventional materials. Metamaterials with zero, or even negative, refractive index for sound offer new possibilities for acoustic imaging and for the control of sound at subwavelength scales....... The combination of transformation acoustics theory and highly anisotropic acoustic metamaterials enables precise control over the deformation of sound fields, which can be used, for example, to hide or cloak objects from incident acoustic energy. Active acoustic metamaterials use external control to create......-scale metamaterial structures and converting laboratory experiments into useful devices. In this Review, we outline the designs and properties of materials with unusual acoustic parameters (for example, negative refractive index), discuss examples of extreme manipulation of sound and, finally, provide an overview...
Skeletonized wave-equation Qs tomography using surface waves
Li, Jing
2017-08-17
We present a skeletonized inversion method that inverts surface-wave data for the Qs quality factor. Similar to the inversion of dispersion curves for the S-wave velocity model, the complicated surface-wave arrivals are skeletonized as simpler data, namely the amplitude spectra of the windowed Rayleigh-wave arrivals. The optimal Qs model is then found that minimizes the difference in the peak frequencies of the predicted and observed Rayleigh wave arrivals using a gradient-based wave-equation optimization method. Solutions to the viscoelastic wave-equation are used to compute the predicted Rayleigh-wave arrivals and the misfit gradient at every iteration. This procedure, denoted as wave-equation Qs tomography (WQs), does not require the assumption of a layered model and tends to have fast and robust convergence compared to Q full waveform inversion (Q-FWI). Numerical examples with synthetic and field data demonstrate that the WQs method can accurately invert for a smoothed approximation to the subsur-face Qs distribution as long as the Vs model is known with sufficient accuracy.
Wave-equation Qs Inversion of Skeletonized Surface Waves
Li, Jing
2017-02-08
We present a skeletonized inversion method that inverts surface-wave data for the Qs quality factor. Similar to the inversion of dispersion curves for the S-wave velocity model, the complicated surface-wave arrivals are skeletonized as simpler data, namely the amplitude spectra of the windowed Rayleigh-wave arrivals. The optimal Qs model is the one that minimizes the difference in the peak frequencies of the predicted and observed Rayleigh wave arrivals using a gradient-based wave-equation optimization method. Solutions to the viscoelastic wave-equation are used to compute the predicted Rayleigh-wave arrivals and the misfit gradient at every iteration. This procedure, denoted as wave-equation Qs inversion (WQs), does not require the assumption of a layered model and tends to have fast and robust convergence compared to full waveform inversion (FWI). Numerical examples with synthetic and field data demonstrate that the WQs method can accurately invert for a smoothed approximation to the subsurface Qs distribution as long as the Vs model is known with sufficient accuracy.
Skeletonized wave equation of surface wave dispersion inversion
Li, Jing
2016-09-06
We present the theory for wave equation inversion of dispersion curves, where the misfit function is the sum of the squared differences between the wavenumbers along the predicted and observed dispersion curves. Similar to wave-equation travel-time inversion, the complicated surface-wave arrivals in traces are skeletonized as simpler data, namely the picked dispersion curves in the (kx,ω) domain. Solutions to the elastic wave equation and an iterative optimization method are then used to invert these curves for 2D or 3D velocity models. This procedure, denoted as wave equation dispersion inversion (WD), does not require the assumption of a layered model and is less prone to the cycle skipping problems of full waveform inversion (FWI). The synthetic and field data examples demonstrate that WD can accurately reconstruct the S-wave velocity distribution in laterally heterogeneous media.
El-Kady, Ihab F.; Reinke, Charles M.
2017-07-18
The topology of the elements of a metamaterial can be engineered from its desired electromagnetic constitutive tensor using an inverse group theory method. Therefore, given a desired electromagnetic response and a generic metamaterial elemental design, group theory is applied to predict the various ways that the element can be arranged in three dimensions to produce the desired functionality. An optimizer can then be applied to an electromagnetic modeling tool to fine tune the values of the electromagnetic properties of the resulting metamaterial topology.
Shallow water sound propagation with surface waves.
Tindle, Chris T; Deane, Grant B
2005-05-01
The theory of wavefront modeling in underwater acoustics is extended to allow rapid range dependence of the boundaries such as occurs in shallow water with surface waves. The theory allows for multiple reflections at surface and bottom as well as focusing and defocusing due to reflection from surface waves. The phase and amplitude of the field are calculated directly and used to model pulse propagation in the time domain. Pulse waveforms are obtained directly for all wavefront arrivals including both insonified and shadow regions near caustics. Calculated waveforms agree well with a reference solution and data obtained in a near-shore shallow water experiment with surface waves over a sloping bottom.
Zhang, Xiaoming
2016-11-01
The purpose of this Letter to the Editor is to demonstrate an effective method for estimating viscoelasticity based on measurements of the Rayleigh surface wave speed. It is important to identify the surface wave mode for measuring surface wave speed. A concept of start frequency of surface waves is proposed. The surface wave speeds above the start frequency should be used to estimate the viscoelasticity of tissue. The motivation was to develop a noninvasive surface wave elastography (SWE) technique for assessing skin disease by measuring skin viscoelastic properties. Using an optical based SWE system, the author generated a local harmonic vibration on the surface of phantom using an electromechanical shaker and measured the resulting surface waves on the phantom using an optical vibrometer system. The surface wave speed was measured using a phase gradient method. It was shown that different standing wave modes were generated below the start frequency because of wave reflection. However, the pure symmetric surface waves were generated from the excitation above the start frequency. Using the wave speed dispersion above the start frequency, the viscoelasticity of the phantom can be correctly estimated.
Guided modes of elliptical metamaterial waveguides
International Nuclear Information System (INIS)
Halterman, Klaus; Feng, Simin; Overfelt, P. L.
2007-01-01
The propagation of guided electromagnetic waves in open elliptical metamaterial waveguide structures is investigated. The waveguide contains a negative-index media core, where the permittivity ε and permeability μ are negative over a given bandwidth. The allowed mode spectrum for these structures is numerically calculated by solving a dispersion relation that is expressed in terms of Mathieu functions. By probing certain regions of parameter space, we find the possibility exists to have extremely localized waves that transmit along the surface of the waveguide
Liu, Peter Q.; Luxmoore, Isaac J.; Mikhailov, Sergey A.; Savostianova, Nadja A.; Valmorra, Federico; Faist, Jérôme; Nash, Geoffrey R.
2015-01-01
Metamaterials and plasmonics are powerful tools for unconventional manipulation and harnessing of light. Metamaterials can be engineered to possess intriguing properties lacking in natural materials, such as negative refractive index. Plasmonics offers capabilities of confining light in subwavelength dimensions and enhancing light–matter interactions. Recently, the technological potential of graphene-based plasmonics has been recognized as the latter features large tunability, higher field-confinement and lower loss compared with metal-based plasmonics. Here, we introduce hybrid structures comprising graphene plasmonic resonators coupled to conventional split-ring resonators, thus demonstrating a type of highly tunable metamaterial, where the interaction between the two resonances reaches the strong-coupling regime. Such hybrid metamaterials are employed as high-speed THz modulators, exhibiting ∼60% transmission modulation and operating speed in excess of 40 MHz. This device concept also provides a platform for exploring cavity-enhanced light–matter interactions and optical processes in graphene plasmonic structures for applications including sensing, photo-detection and nonlinear frequency generation. PMID:26584781
Liu, Peter Q.; Luxmoore, Isaac J.; Mikhailov, Sergey A.; Savostianova, Nadja A.; Valmorra, Federico; Faist, Jérôme; Nash, Geoffrey R.
2015-11-01
Metamaterials and plasmonics are powerful tools for unconventional manipulation and harnessing of light. Metamaterials can be engineered to possess intriguing properties lacking in natural materials, such as negative refractive index. Plasmonics offers capabilities of confining light in subwavelength dimensions and enhancing light-matter interactions. Recently, the technological potential of graphene-based plasmonics has been recognized as the latter features large tunability, higher field-confinement and lower loss compared with metal-based plasmonics. Here, we introduce hybrid structures comprising graphene plasmonic resonators coupled to conventional split-ring resonators, thus demonstrating a type of highly tunable metamaterial, where the interaction between the two resonances reaches the strong-coupling regime. Such hybrid metamaterials are employed as high-speed THz modulators, exhibiting ~60% transmission modulation and operating speed in excess of 40 MHz. This device concept also provides a platform for exploring cavity-enhanced light-matter interactions and optical processes in graphene plasmonic structures for applications including sensing, photo-detection and nonlinear frequency generation.
Talebi, Nahid
2017-10-01
Investigating the interaction of electron beams with materials and light has been a field of research for more than a century. The field was advanced theoretically by the rise of quantum mechanics and technically by the introduction of electron microscopes and accelerators. It is possible nowadays to uncover a multitude of information from electron-induced excitations in matter by means of advanced techniques like holography, tomography, and, most recently, photon-induced near-field electron microscopy. The question is whether the interaction can be controlled in an even, more efficient way in order to unravel important questions like modal decomposition of the electron-induced polarization by performing experiments with better spatial, temporal, and energy resolutions. This review discusses recent advances in controlling electron and light interactions at the nanoscale. Theoretical and numerical aspects of the interaction of electrons with nanostructures and metamaterials will be discussed with the aim of understanding the mechanisms of radiation in the interaction of electrons with even more sophisticated structures. Based on these mechanisms of radiation, state-of-the art and novel electron-driven few-photon sources will be discussed. Applications of such sources to gain an understanding of quantum optical effects and also to perform spectral interferometry with electron microscopes will be covered. In an inverse approach, as in the case of the inverse Smith-Purcell effect, laser-induced excitations of nanostructures can cause electron beams traveling in the near-field of such structures to accelerate, provided a synchronization criterion is satisfied. This effect is the basis for linear dielectric and metallic electron accelerators. Moreover, acceleration is accompanied by bunching of the electrons. When single electrons are considered, an efficient design of nanostructures can lead to the shaping of the electron wave function travelling adjacent to them, for
Tapping of Love waves in an isotropic surface waveguide by surface-to-bulk wave transduction.
Tuan, H.-S.; Chang, C.-P.
1972-01-01
A theoretical study of tapping a Love wave in an isotropic microacoustic surface waveguide is given. The surface Love wave is tapped by partial transduction into a bulk wave at a discontinuity. It is shown that, by careful design of the discontinuity, the converted bulk wave power and the radiation pattern may be controlled. General formulas are derived for the calculation of these important characteristics from a relatively general surface contour deformation.
From metamaterials to metadevices
Zheludev, Nikolay I.; Kivshar, Yuri S.
2012-11-01
Metamaterials, artificial electromagnetic media that are structured on the subwavelength scale, were initially suggested for the negative-index 'superlens'. Later metamaterials became a paradigm for engineering electromagnetic space and controlling propagation of waves: the field of transformation optics was born. The research agenda is now shifting towards achieving tunable, switchable, nonlinear and sensing functionalities. It is therefore timely to discuss the emerging field of metadevices where we define the devices as having unique and useful functionalities that are realized by structuring of functional matter on the subwavelength scale. In this Review we summarize research on photonic, terahertz and microwave electromagnetic metamaterials and metadevices with functionalities attained through the exploitation of phase-change media, semiconductors, graphene, carbon nanotubes and liquid crystals. The Review also encompasses microelectromechanical metadevices, metadevices engaging the nonlinear and quantum response of superconductors, electrostatic and optomechanical forces and nonlinear metadevices incorporating lumped nonlinear components.
Smolyaninov, Igor I.
2015-01-01
Hyperbolic metamaterials were originally introduced to overcome the diffraction limit of optical imaging. Soon thereafter it was realized that hyperbolic metamaterials demonstrate a number of novel phenomena resulting from the broadband singular behavior of their density of photonic states. These novel phenomena and applications include super resolution imaging, new stealth technologies, enhanced quantum-electrodynamic effects, thermal hyperconductivity, superconductivity, and interesting gra...
Frequency tunable surface magneto elastic waves
Janusonis, J.; Chang, C. L.; van Loosdrecht, P. H. M.; Tobey, R. I.
2015-01-01
We use the transient grating technique to generate narrow-band, widely tunable, in-plane surface magnetoelastic waves in a nickel film. We monitor both the structural deformation of the acoustic wave and the accompanying magnetic precession and witness their intimate coupling in the time domain.
Surface wave generation due to glacier calving
Directory of Open Access Journals (Sweden)
Stanisław R. Massel
2013-02-01
Full Text Available Coastal glaciers reach the ocean in a spectacular process called "calving". Immediately after calving, the impulsive surface waves are generated, sometimes of large height. These waves are particularly dangerous for vessels sailing close to the glacier fronts. The paper presents a theoretical model of surface wave generation due to glacier calving. To explain the wave generation process, four case studies of ice blocks falling into water are discussed: a cylindrical ice block of small thickness impacting on water, an ice column sliding into water without impact, a large ice block falling on to water with a pressure impulse, and an ice column becoming detached from the glacier wall and falling on to the sea surface. These case studies encompass simplified, selected modes of the glacier calving, which can be treated in a theoretical way. Example calculations illustrate the predicted time series of surface elevations for each mode of glacier calving.
H-fractal seismic metamaterial with broadband low-frequency bandgaps
Du, Qiujiao; Zeng, Yi; Xu, Yang; Yang, Hongwu; Zeng, Zuoxun
2018-03-01
The application of metamaterial in civil engineering to achieve isolation of a building by controlling the propagation of seismic waves is a substantial challenge because seismic waves, a superposition of longitudinal and shear waves, are more complex than electromagnetic and acoustic waves. In this paper, we design a broadband seismic metamaterial based on H-shaped fractal pillars and report numerical simulation of band structures for seismic surface waves propagating. Comparative study on the band structures of H-fractal seismic metamaterials with different levels shows that a new level of fractal structure creates new band gap, widens the total band gaps and shifts the same band gap towards lower frequencies. Moreover, the vibration modes for H-fractal seismic metamaterials are computed and analyzed to clarify the mechanism of widening band gaps. A numerical investigation of seismic surface waves propagation on a 2D array of fractal unit cells on the surface of semi-infinite substrate is proposed to show the efficiency of earthquake shielding in multiple complete band gaps.
Surface Acoustic Waves in ferroelectrics
Czech Academy of Sciences Publication Activity Database
Tarasenko A., Nataliya; Jastrabík, Lubomír; Tarasenko, Alexander
2004-01-01
Roč. 298, - (2004), s. 325-333 ISSN 0015-0193 R&D Projects: GA AV ČR IBS1010203 Keywords : Rayleigh waves * ferroelectric films * phase transition Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.517, year: 2004
Propagation of an ionizing surface electromagnetic wave
Energy Technology Data Exchange (ETDEWEB)
Boev, A.G.; Prokopov, A.V.
1976-11-01
The propagation of an rf surface wave in a plasma which is ionized by the wave itself is analyzed. The exact solution of the nonlinear Maxwell equations is discussed for the case in which the density of plasma electrons is an exponential function of the square of the electric field. The range over which the surface wave exists and the frequency dependence of the phase velocity are found. A detailed analysis is given for the case of a plasma whose initial density exceeds the critical density at the wave frequency. An increase in the wave amplitude is shown to expand the frequency range over which the plasma is transparent; The energy flux in the plasma tends toward a certain finite value which is governed by the effective ionization field.
Aghanejad, Iman; Markley, Loïc
2017-11-01
We present spatial frequency maps of power flow in metamaterials and photonic crystals in order to provide insights into their electromagnetic responses and further our understanding of backward power in periodic structures. Since 2001, many different structures across the electromagnetic spectrum have been presented in the literature as exhibiting an isotropic negative effective index. Although these structures all exhibit circular or spherical equifrequency contours that resemble those of left-handed media, here we show through k -space diagrams that the distribution of power in the spatial frequency domain can vary considerably across these structures. In particular, we show that backward power arises from high-order right-handed harmonics in photonic crystals, magnetodielectric crystals, and across the layers of coupled-plasmonic-waveguide metamaterials, while arising from left-handed harmonic pairs in split-ring resonator and wire composites, plasmonic crystals, and along the layers of coupled-plasmonic-waveguide metamaterials. We also show that the fishnet structure exhibits the same left-handed harmonic pairs as the latter group. These observations allow us to categorize different metamaterials according to their spatial spectral source of backward power and identify the mechanism behind negative refraction at a given interface. Finally, we discuss how k -space maps of power flow can be used to explain the high or low transmittance of power into different metamaterial or photonic crystal structures.
Array processing for seismic surface waves
International Nuclear Information System (INIS)
Marano, S.
2013-01-01
This dissertation submitted to the Swiss Federal Institute of Technology ETH in Zurich takes a look at the analysis of surface wave properties which allows geophysicists to gain insight into the structure of the subsoil, thus avoiding more expensive invasive techniques such as borehole drilling. This thesis aims at improving signal processing techniques for the analysis of surface waves in various directions. One main contribution of this work is the development of a method for the analysis of seismic surface waves. The method also deals with the simultaneous presence of multiple waves. Several computational approaches to minimize costs are presented and compared. Finally, numerical experiments that verify the effectiveness of the proposed cost function and resulting array geometry designs are presented. These lead to greatly improved estimation performance in comparison to arbitrary array geometries
International Nuclear Information System (INIS)
Fan Yue-Nong; Cheng Yong-Zhi; Nie Yan; Wang Xian; Gong Rong-Zhou
2013-01-01
We propose an ultrathin wide-band metamaterial absorber (MA) based on a Minkowski (MIK) fractal frequency selective surface and resistive film. This absorber consists of a periodic arrangement of dielectric substrates sandwiched with an MIK fractal loop structure electric resonator and a resistive film. The finite element method is used to simulate and analyze the absorption of the MA. Compared with the MA-backed copper film, the designed MA-backed resistive film exhibits an absorption of 90% at a frequency region of 2 GHz–20 GHz. The power loss density distribution of the MA is further illustrated to explain the mechanism of the proposed MA. Simulated absorptions at different incidence cases indicate that this absorber is polarization-insensitive and wide-angled. Finally, further simulated results indicate that the surface resistance of the resistive film and the dielectric constant of the substrate can affect the absorbing property of the MA. This absorber may be used in many military fields
Zhang, Xueqian
2013-06-21
A broadband terahertz wave deflector based on metasurface induced phase discontinuities is reported. Various frequency components ranging from 0.43 to 1.0 THz with polarization orthogonal to the incidence are deflected into a broad range of angles from 25° to 84°. A Fresnel zone plate consequently developed from the beam deflector is capable of focusing a broadband terahertz radiation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Slot-dimer babinet metamaterials as polarization shapers for terahertz waves
DEFF Research Database (Denmark)
Zhukovsky, Sergei; Chigrin, D. N.; Lavrinenko, Andrei
2013-01-01
We theoretically study optical properties of free-standing metallic membranes patterned with an array of two-slot elements (dimers) comprising two rectangular slots of different dimensions and orientation. It is shown that these structures feature extraordinary optical transmission with strong...... and spectrally selective polarization conversion capabilities. The output polarization is highly dependent on the dimer geometry, which can be used in the design of compact polarization shapers for terahertz waves....
Metamaterial CRLH Antennas on Silicon Substrate for Millimeter-Wave Integrated Circuits
Directory of Open Access Journals (Sweden)
Gheorghe Ioan Sajin
2012-01-01
Full Text Available The paper presents two composite right/left-handed (CRLH coplanar waveguide (CPW zeroth-order resonant (ZOR antennas which were designed, processed, and electrically characterized for applications in the millimetric wave frequency range. Two CRLH antennas were developed for f=27 GHz and f=38.5, GHz, respectively. The CRLH antenna on f=27 GHz shows a return loss of RL<−18.78 dB at f=26.88 GHz. The −3 dB radiation characteristic beamwidth was approximately 37° and the gain was Gi=2.82 dBi. The CRLH antenna on f=38.5 GHz has a return loss of RL<−38.5 dB at f=38.82 GHz and the −3 dB radiation characteristic beamwidth of approximately 17°. The gains were Gi=1.08 dBi at f=38 GHz and Gi=1.2 dBi at f=38.6 GHz. The maximum measured gain was Gi=1.75 dBi at f=38.2 GHz. It is, upon the authors' knowledge, the first report of millimeter wave CRLH antennas on silicon substrate in CPW technique for use in mm-wave monolithic integrated circuit.
Peralta, Xomalin Guaiuli; Brener, Igal; O'Hara, John; Azad, Abul; Smirnova, Evgenya; Williams, John D.; Averitt, Richard D.
2014-08-12
Terahertz metamaterials comprise a periodic array of resonator elements disposed on a dielectric substrate or thin membrane, wherein the resonator elements have a structure that provides a tunable magnetic permeability or a tunable electric permittivity for incident electromagnetic radiation at a frequency greater than about 100 GHz and the periodic array has a lattice constant that is smaller than the wavelength of the incident electromagnetic radiation. Microfabricated metamaterials exhibit lower losses and can be assembled into three-dimensional structures that enable full coupling of incident electromagnetic terahertz radiation in two or three orthogonal directions. Furthermore, polarization sensitive and insensitive metamaterials at terahertz frequencies can enable new devices and applications.
Amorphous Gyroscopic Topological Metamaterials
Mitchell, Noah P.; Nash, Lisa M.; Hexner, Daniel; Turner, Ari M.; Irvine, William T. M.
Mechanical topological metamaterials display striking mechanical responses, such as unidirectional surface modes that are impervious to disorder. This behavior arises from the topology of their vibrational spectra. All examples of topological metamaterials to date are finely-tuned structures such as crystalline lattices or jammed packings. Here, we present robust recipes for building amorphous topological metamaterials with arbitrary underlying structure and no long-range order. Using interacting gyroscopes as a model system, we demonstrate through experiment, simulation, and theoretical methods that the local geometry and interactions are sufficient to generate topological mobility gaps, allowing for spatially-resolved, real-space calculations of the Chern number. The robustness of our approach enables the design and self-assembly of non-crystalline materials with protected, unidirectional waveguides on the micro and macro scale.
Active terahertz metamaterial devices
Chen, Houtong; Padilla, Willie John; Averitt, Richard Douglas; O'Hara, John F.; Lee, Mark
2010-11-02
Metamaterial structures are taught which provide for the modulation of terahertz frequency signals. Each element within an array of metamaterial (MM) elements comprises multiple loops and at least one gap. The MM elements may comprise resonators with conductive loops and insulated gaps, or the inverse in which insulated loops are present with conductive gaps; each providing useful transmissive control properties. The metamaterial elements are fabricated on a semiconducting substrate configured with a means of enhancing or depleting electrons from near the gaps of the MM elements. An on to off transmissivity ratio of about 0.5 is achieved with this approach. Embodiments are described in which the MM elements incorporated within a Quantum Cascade Laser (QCL) to provide surface emitting (SE) properties.
Demultiplexing Surface Waves With Silicon Nanoantennas
DEFF Research Database (Denmark)
Sinev, I.; Bogdanov, A.; Komissarenko, F.
2017-01-01
We demonstrate directional launching of surface plasmon polaritons on thin gold film with a single silicon nanosphere. The directivity pattern of the excited surface waves exhibits rapid switching from forward to backward excitation within extremely narrow spectral hand (! 50 nm), which is driven...
Modelling and simulation of surface water waves
van Groesen, Embrecht W.C.; Westhuis, J.H.
2002-01-01
The evolution of waves on the surface of a layer of fluid is governed by non-linear effects from surface deformations and dispersive effects from the interaction with the interior fluid motion. Several simulation tools are described in this paper and compared with real life experiments in large
Electrifying photonic metamaterials for tunable nonlinear optics.
Kang, Lei; Cui, Yonghao; Lan, Shoufeng; Rodrigues, Sean P; Brongersma, Mark L; Cai, Wenshan
2014-08-11
Metamaterials have not only enabled unprecedented flexibility in producing unconventional optical properties that are not found in nature, they have also provided exciting potential to create customized nonlinear media with high-order properties correlated to linear behaviour. Two particularly compelling directions are active metamaterials, whose optical properties can be purposely tailored by external stimuli in a reversible manner, and nonlinear metamaterials, which enable intensity-dependent frequency conversion of light waves. Here, by exploring the interaction of these two directions, we leverage the electrical and optical functions simultaneously supported in nanostructured metals and demonstrate electrically controlled nonlinear optical processes from a metamaterial. Both second harmonic generation and optical rectification, enhanced by the resonance behaviour in the metamaterial absorber, are modulated externally with applied voltage signals. Our results reveal an opportunity to exploit optical metamaterials as self-contained, dynamic electro-optic systems with intrinsically embedded electrical functions and optical nonlinearities.
Acoustic metamaterials: From local resonances to broad horizons.
Ma, Guancong; Sheng, Ping
2016-02-01
Within a time span of 15 years, acoustic metamaterials have emerged from academic curiosity to become an active field driven by scientific discoveries and diverse application potentials. This review traces the development of acoustic metamaterials from the initial findings of mass density and bulk modulus frequency dispersions in locally resonant structures to the diverse functionalities afforded by the perspective of negative constitutive parameter values, and their implications for acoustic wave behaviors. We survey the more recent developments, which include compact phase manipulation structures, superabsorption, and actively controllable metamaterials as well as the new directions on acoustic wave transport in moving fluid, elastic, and mechanical metamaterials, graphene-inspired metamaterials, and structures whose characteristics are best delineated by non-Hermitian Hamiltonians. Many of the novel acoustic metamaterial structures have transcended the original definition of metamaterials as arising from the collective manifestations of constituent resonating units, but they continue to extend wave manipulation functionalities beyond those found in nature.
Automated detection and association of surface waves
Directory of Open Access Journals (Sweden)
C. R. D. Woodgold
1994-06-01
Full Text Available An algorithm for the automatic detection and association of surface waves has been developed and tested over an 18 month interval on broad band data from the Yellowknife array (YKA. The detection algorithm uses a conventional STA/LTA scheme on data that have been narrow band filtered at 20 s periods and a test is then applied to identify dispersion. An average of 9 surface waves are detected daily using this technique. Beamforming is applied to determine the arrival azimuth; at a nonarray station this could be provided by poIarization analysis. The detected surface waves are associated daily with the events located by the short period array at Yellowknife, and later with the events listed in the USGS NEIC Monthly Summaries. Association requires matching both arrival time and azimuth of the Rayleigh waves. Regional calibration of group velocity and azimuth is required. . Large variations in both group velocity and azimuth corrections were found, as an example, signals from events in Fiji Tonga arrive with apparent group velocities of 2.9 3.5 krn/s and azimuths from 5 to + 40 degrees clockwise from true (great circle azimuth, whereas signals from Kuriles Kamchatka have velocities of 2.4 2.9 km/s and azimuths off by 35 to 0 degrees. After applying the regional corrections, surface waves are considered associated if the arrival time matches to within 0.25 km/s in apparent group velocity and the azimuth is within 30 degrees of the median expected. Over the 18 month period studied, 32% of the automatically detected surface waves were associated with events located by the Yellowknife short period array, and 34% (1591 with NEIC events; there is about 70% overlap between the two sets of events. Had the automatic detections been reported to the USGS, YKA would have ranked second (after LZH in terms of numbers of associated surface waves for the study period of April 1991 to September 1992.
Optical Metamaterials Fundamentals and Applications
Cai, Wenshan
2010-01-01
Metamaterials—artificially structured materials with engineered electromagnetic properties—have enabled unprecedented flexibility in manipulating electromagnetic waves and producing new functionalities. In just a few years, the field of optical metamaterials has emerged as one of the most exciting topics in the science of light, with stunning and unexpected outcomes that have fascinated scientists and the general public alike. This volume details recent advances in the study of optical metamaterials, ranging from fundamental aspects to up-to-date implementations, in one unified treatment. Important recent developments and applications such as superlenses and cloaking devices are also treated in detail and made understandable. Optical Metamaterials will serve as a very timely book for both newcomers and advanced researchers in this rapidly evolving field. Early praise for Optical Metamaterials: "...this book is timely bringing to students and other new entrants to the field the most up to date concepts. Th...
Tutorial review of seismic surface waves' phenomenology
Levshin, A. L.; Barmin, M. P.; Ritzwoller, M. H.
2018-03-01
In recent years, surface wave seismology has become one of the leading directions in seismological investigations of the Earth's structure and seismic sources. Various applications cover a wide spectrum of goals, dealing with differences in sources of seismic excitation, penetration depths, frequency ranges, and interpretation techniques. Observed seismic data demonstrates the great variability of phenomenology which can produce difficulties in interpretation for beginners. This tutorial review is based on the many years' experience of authors in processing and interpretation of seismic surface wave observations and the lectures of one of the authors (ALL) at Workshops on Seismic Wave Excitation, Propagation and Interpretation held at the Abdus Salam International Center for Theoretical Physics (Trieste, Italy) in 1990-2012. We present some typical examples of wave patterns which could be encountered in different applications and which can serve as a guide to analysis of observed seismograms.
Surface waves in fibre-reinforced anisotropic elastic media
Indian Academy of Sciences (India)
Springer Verlag Heidelberg #4 2048 1996 Dec 15 10:16:45
reinforced solid elastic media. First, the theory of general surface waves has been derived and applied to study the particular cases of surface waves –. Rayleigh, Love and Stoneley types. The wave velocity equations are found to.
MEMS-Reconfigurable Metamaterials and Antenna Applications
Directory of Open Access Journals (Sweden)
Tomislav Debogovic
2014-01-01
Full Text Available This paper reviews some of our contributions to reconfigurable metamaterials, where dynamic control is enabled by microelectromechanical systems (MEMS technology. First, we show reconfigurable composite right-/left-handed transmission lines (CRLH-TLs having state of the art phase velocity variation and loss, thereby enabling efficient reconfigurable phase shifters and leaky-wave antennas (LWA. Second, we present very low loss metasurface designs with reconfigurable reflection properties, applicable in reflectarrays and partially reflective surface (PRS antennas. All the presented devices have been fabricated and experimentally validated. They operate in X- and Ku-bands.
Transmission and reflection properties of terahertz fractal metamaterials
DEFF Research Database (Denmark)
Malureanu, Radu; Lavrinenko, Andrei; Cooke, David
2010-01-01
We use THz time-domain spectroscopy to investigate transmission and reflection properties of metallic fractal metamaterial structures. We observe loss of free-space energy at certain resonance frequencies, indicating excitation of surface modes of the metamaterial.......We use THz time-domain spectroscopy to investigate transmission and reflection properties of metallic fractal metamaterial structures. We observe loss of free-space energy at certain resonance frequencies, indicating excitation of surface modes of the metamaterial....
Designing perturbative metamaterials from discrete models.
Matlack, Kathryn H; Serra-Garcia, Marc; Palermo, Antonio; Huber, Sebastian D; Daraio, Chiara
2018-04-01
Identifying material geometries that lead to metamaterials with desired functionalities presents a challenge for the field. Discrete, or reduced-order, models provide a concise description of complex phenomena, such as negative refraction, or topological surface states; therefore, the combination of geometric building blocks to replicate discrete models presenting the desired features represents a promising approach. However, there is no reliable way to solve such an inverse problem. Here, we introduce 'perturbative metamaterials', a class of metamaterials consisting of weakly interacting unit cells. The weak interaction allows us to associate each element of the discrete model with individual geometric features of the metamaterial, thereby enabling a systematic design process. We demonstrate our approach by designing two-dimensional elastic metamaterials that realize Veselago lenses, zero-dispersion bands and topological surface phonons. While our selected examples are within the mechanical domain, the same design principle can be applied to acoustic, thermal and photonic metamaterials composed of weakly interacting unit cells.
Viscoelastic love-type surface waves
Borcherdt, Roger D.
2008-01-01
The general theoretical solution for Love-Type surface waves in viscoelastic media provides theoreticalexpressions for the physical characteristics of the waves in elastic as well as anelastic media with arbitraryamounts of intrinsic damping. The general solution yields dispersion and absorption-coefficient curves for the waves as a function of frequency and theamount of intrinsic damping for any chosen viscoelastic model.Numerical results valid for a variety of viscoelastic models provide quantitative estimates of the physicalcharacteristics of the waves pertinent to models of Earth materials ranging from small amounts of damping in the Earth’s crust to moderate and large amounts of damping in soft soils and water-saturated sediments. Numerical results, presented herein, are valid for a wide range of solids and applications.
Surface Acoustic Wave Transducer Study.
1978-05-01
ment. — ISO Lir — ~.1 L ~~~~~~~~ ~ ~~~ L~~~I&jr ~~ —- — — —--- - - - - t - s’ rlr ~~T I O , 4 ) F ~ H I ’ ~~,! ~WI.ft ?).s. ~~~~MEPORT DOCUMENTAT I...multiplying the norma l stress components thus ensuring that the normal stress is zero at x 2 = 0. For the present , an open-circuit elec trical...boundary condition is assumed so that the norma l D-uield is zero at the surface. This is taken .5 into account in a similar manner with a step-function
Active micromixer using surface acoustic wave streaming
Branch,; Darren W. , Meyer; Grant D. , Craighead; Harold, G [Ithaca, NY
2011-05-17
An active micromixer uses a surface acoustic wave, preferably a Rayleigh wave, propagating on a piezoelectric substrate to induce acoustic streaming in a fluid in a microfluidic channel. The surface acoustic wave can be generated by applying an RF excitation signal to at least one interdigital transducer on the piezoelectric substrate. The active micromixer can rapidly mix quiescent fluids or laminar streams in low Reynolds number flows. The active micromixer has no moving parts (other than the SAW transducer) and is, therefore, more reliable, less damaging to sensitive fluids, and less susceptible to fouling and channel clogging than other types of active and passive micromixers. The active micromixer is adaptable to a wide range of geometries, can be easily fabricated, and can be integrated in a microfluidic system, reducing dead volume. Finally, the active micromixer has on-demand on/off mixing capability and can be operated at low power.
Modeling and Inversion of Scattered Surface waves
Riyanti, C.D.
2005-01-01
In this thesis, we present a modeling method based on a domain-type integral representation for waves propagating along the surface of the Earth which have been scattered in the vicinity of the source or the receivers. Using this model as starting point, we formulate an inversion scheme to estimate
Photoconductive metamaterials with giant plasmonic photogalvanic effect
DEFF Research Database (Denmark)
Zhukovsky, Sergei; Babicheva, Viktoriia; Evlyuknin, Andrey B.
2014-01-01
Photoelectric properties of metamaterials comprising oriented noncentrosymmetric metallic nanoparticle arrays in a homogeneous semiconductor matrix are theoretically studied. When uniformly illuminated by a plane wave, the asymmetric shape of the nanoparticles results in electro-motive force...
Demirhan, Y.; Alaboz, H.; Nebioğlu, M. A.; Mulla, B.; Akkaya, M.; Altan, H.; Sabah, C.; Ozyuzer, L.
2017-07-01
In this study, we present a new, unique fourcross shaped metamaterial terahertz (THz) filter fabricated from both gold thin films and YBa2Cu3O7-d high T c superconducting thin films. A commercial electromagnetic simulation software, CST Microwave Studio, is used to design and optimize the metamaterial filter structures. The proposed fourcross shaped rectangular filter structure consists of periodic metallic rings where strip lines are located at the sides of the ring. Fourcross metamaterial filters are fabricated by using e-beam lithography and ion beam etching techniques. Terahertz time-domain spectroscopy measurements validated the design predictions for both the center frequencies and bandwidths of the resonances due to the fourcross structures. The resonance switching of the transmission spectra was investigated by lowering the temperature below the critical transition temperature. This resonance switching effect is not observed in filters made up of metals. This novel fourcross rectangular resonator with a temperature-dependent resonance behavior holds great potential for active, tunable and low loss THz devices for imaging, sensing, and detection applications.
Surface and body waves from surface and underground explosions
International Nuclear Information System (INIS)
Kusubov, A.S.
1976-06-01
The characteristics of surface and ground waves were recorded for surface and underground explosions up to 100 tons and 40 kt in magnitude, respectively, and a preliminary analysis of these results is presented. The experiments were conducted at NTS in the Yucca Flats, Nevada. Ground motions were detected with triaxial geophones along seismic lines extending up to 16 miles from the point of explosions. A comparison of Rayleigh waves generated by surface and underground explosions in the same lake bed is presented indicating a very different behavior of surface and ground waves from the two types of explosions. The magnitude of the transverse wave for surface shots was smaller by a factor of two than its longitudinal counterpart. The dependence of apparent periods on the blast energy was not apparent at a fixed distance from the explosions. Changes in the apparent period with distance for both types of explosion are compared indicating a strong layering effect of the lake bed. The ground motion study was complimented by excavation of cavities generated by the explosions
Blackfolds, plane waves and minimal surfaces
Energy Technology Data Exchange (ETDEWEB)
Armas, Jay [Physique Théorique et Mathématique, Université Libre de Bruxelles and International Solvay Institutes, ULB-Campus Plaine CP231, B-1050 Brussels (Belgium); Albert Einstein Center for Fundamental Physics, University of Bern,Sidlerstrasse 5, 3012 Bern (Switzerland); Blau, Matthias [Albert Einstein Center for Fundamental Physics, University of Bern,Sidlerstrasse 5, 3012 Bern (Switzerland)
2015-07-29
Minimal surfaces in Euclidean space provide examples of possible non-compact horizon geometries and topologies in asymptotically flat space-time. On the other hand, the existence of limiting surfaces in the space-time provides a simple mechanism for making these configurations compact. Limiting surfaces appear naturally in a given space-time by making minimal surfaces rotate but they are also inherent to plane wave or de Sitter space-times in which case minimal surfaces can be static and compact. We use the blackfold approach in order to scan for possible black hole horizon geometries and topologies in asymptotically flat, plane wave and de Sitter space-times. In the process we uncover several new configurations, such as black helicoids and catenoids, some of which have an asymptotically flat counterpart. In particular, we find that the ultraspinning regime of singly-spinning Myers-Perry black holes, described in terms of the simplest minimal surface (the plane), can be obtained as a limit of a black helicoid, suggesting that these two families of black holes are connected. We also show that minimal surfaces embedded in spheres rather than Euclidean space can be used to construct static compact horizons in asymptotically de Sitter space-times.
Waves in gradient metamaterials
Shvartsburg, Alexander B
2013-01-01
This book opens a new avenue to an engendering field of applied physics, located at the “crossing” of modern photonics, electromagnetics, acoustics and material science. It also highlights the concept of “non-locality”, which proves to be not a special feature of quantum phenomena, but is shown to have an important counterpart in classical physics and its engineering applications too. Furthermore, it visualizes the physical results by means of simple analytical presentations, reduced sometimes to the elementary functions.
Ultrathin microwave metamaterial absorber utilizing embedded resistors
Kim, Young Ju; Hwang, Ji Sub; Yoo, Young Joon; Khuyen, Bui Xuan; Rhee, Joo Yull; Chen, Xianfeng; Lee, YoungPak
2017-10-01
We numerically and experimentally studied an ultrathin and broadband perfect absorber by enhancing the bandwidth with embedded resistors into the metamaterial structure, which is easy to fabricate in order to lower the Q-factor and by using multiple resonances with the patches of different sizes. We analyze the absorption mechanism in terms of the impedance matching with the free space and through the distribution of surface current at each resonance frequency. The magnetic field, induced by the antiparallel surface currents, is formed strongly in the direction opposite to the incident electromagnetic wave, to cancel the incident wave, leading to the perfect absorption. The corresponding experimental absorption was found to be higher than 97% in 0.88-3.15 GHz. The agreement between measurement and simulation was good. The aspects of our proposed structure can be applied to future electronic devices, for example, advanced noise-suppression sheets in the microwave regime.
Mathematical aspects of surface water waves
International Nuclear Information System (INIS)
Craig, Walter; Wayne, Clarence E
2007-01-01
The theory of the motion of a free surface over a body of water is a fascinating subject, with a long history in both applied and pure mathematical research, and with a continuing relevance to the enterprises of mankind having to do with the sea. Despite the recent advances in the field (some of which we will hear about during this Workshop on Mathematical Hydrodynamics at the Steklov Institute), and the current focus of the mathematical community on the topic, many fundamental mathematical questions remain. These have to do with the evolution of surface water waves, their approximation by model equations and by computer simulations, the detailed dynamics of wave interactions, such as would produce rogue waves in an open ocean, and the theory (partially probabilistic) of approximating wave fields over large regions by averaged 'macroscopic' quantities which satisfy essentially kinetic equations of motion. In this note we would like to point out open problems and some of the directions of current research in the field. We believe that the introduction of new analytical techniques and novel points of view will play an important role in the future development of the area.
Water based fluidic radio frequency metamaterials
Cai, Xiaobing; Zhao, Shaolin; Hu, Mingjun; Xiao, Junfeng; Zhang, Naibo; Yang, Jun
2017-11-01
Electromagnetic metamaterials offer great flexibility for wave manipulation and enable exceptional functionality design, ranging from negative refraction, anomalous reflection, super-resolution imaging, transformation optics to cloaking, etc. However, demonstration of metamaterials with unprecedented functionalities is still challenging and costly due to the structural complexity or special material properties. Here, we demonstrate for the first time the versatile fluidic radio frequency metamaterials with negative refraction using a water-embedded and metal-coated 3D architecture. Effective medium analysis confirms that metallic frames create an evanescent environment while simultaneously water cylinders produce negative permeability under Mie resonance. The water-metal coupled 3D architectures and the accessory devices for measurement are fabricated by 3D printing with post electroless deposition. Our study also reveals the great potential of fluidic metamaterials and versatility of the 3D printing process in rapid prototyping of customized metamaterials.
Inverse Doppler Effects in Broadband Acoustic Metamaterials.
Zhai, S L; Zhao, X P; Liu, S; Shen, F L; Li, L L; Luo, C R
2016-08-31
The Doppler effect refers to the change in frequency of a wave source as a consequence of the relative motion between the source and an observer. Veselago theoretically predicted that materials with negative refractions can induce inverse Doppler effects. With the development of metamaterials, inverse Doppler effects have been extensively investigated. However, the ideal material parameters prescribed by these metamaterial design approaches are complex and also challenging to obtain experimentally. Here, we demonstrated a method of designing and experimentally characterising arbitrary broadband acoustic metamaterials. These omni-directional, double-negative, acoustic metamaterials are constructed with 'flute-like' acoustic meta-cluster sets with seven double meta-molecules; these metamaterials also overcome the limitations of broadband negative bulk modulus and mass density to provide a region of negative refraction and inverse Doppler effects. It was also shown that inverse Doppler effects can be detected in a flute, which has been popular for thousands of years in Asia and Europe.
Parametric analysis of change in wave number of surface waves
Directory of Open Access Journals (Sweden)
Tadić Ljiljana
2015-01-01
Full Text Available The paper analyzes the dependence of the change wave number of materials soil constants, ie the frequency of the waves. The starting point in this analysis cosists of wave equation and dynamic stiffness matrix of soil.
Megaquakes, prograde surface waves and urban evolution
Lomnitz, C.; Castaños, H.
2013-05-01
Cities grow according to evolutionary principles. They move away from soft-ground conditions and avoid vulnerable types of structures. A megaquake generates prograde surface waves that produce unexpected damage in modern buildings. The examples (Figs. 1 and 2) were taken from the 1985 Mexico City and the 2010 Concepción, Chile megaquakes. About 400 structures built under supervision according to modern building codes were destroyed in the Mexican earthquake. All were sited on soft ground. A Rayleigh wave will cause surface particles to move as ellipses in a vertical plane. Building codes assume that this motion will be retrograde as on a homogeneous elastic halfspace, but soft soils are intermediate materials between a solid and a liquid. When Poisson's ratio tends to ν→0.5 the particle motion turns prograde as it would on a homogeneous fluid halfspace. Building codes assume that the tilt of the ground is not in phase with the acceleration but we show that structures on soft ground tilt into the direction of the horizontal ground acceleration. The combined effect of gravity and acceleration may destabilize a structure when it is in resonance with its eigenfrequency. Castaños, H. and C. Lomnitz, 2013. Charles Darwin and the 1835 Chile earthquake. Seismol. Res. Lett., 84, 19-23. Lomnitz, C., 1990. Mexico 1985: the case for gravity waves. Geophys. J. Int., 102, 569-572. Malischewsky, P.G. et al., 2008. The domain of existence of prograde Rayleigh-wave particle motion. Wave Motion 45, 556-564.; Figure 1 1985 Mexico megaquake--overturned 15-story apartment building in Mexico City ; Figure 2 2010 Chile megaquake Overturned 15-story R-C apartment building in Concepción
Illusions and Cloaks for Surface Waves
McManus, T. M.; Valiente-Kroon, J. A.; Horsley, S. A. R.; Hao, Y.
2014-08-01
Ever since the inception of Transformation Optics (TO), new and exciting ideas have been proposed in the field of electromagnetics and the theory has been modified to work in such fields as acoustics and thermodynamics. The most well-known application of this theory is to cloaking, but another equally intriguing application of TO is the idea of an illusion device. Here, we propose a general method to transform electromagnetic waves between two arbitrary surfaces. This allows a flat surface to reproduce the scattering behaviour of a curved surface and vice versa, thereby giving rise to perfect optical illusion and cloaking devices, respectively. The performance of the proposed devices is simulated using thin effective media with engineered material properties. The scattering of the curved surface is shown to be reproduced by its flat analogue (for illusions) and vice versa for cloaks.
Unified approach for retrieval of effective parameters of metamaterials
DEFF Research Database (Denmark)
Andryieuski, Andrei; Ha, Sangwoo; Sukhorukov, Andrey A.
2011-01-01
that our method is able to retrieve both material and wave EPs for a wide range of materials, which can be lossy or lossless, dispersive, possess negative permittivity, permeability and refractive index values. It is simple and unambiguous, free of the "branch" problem, which is an issue for the reflection....../transmission based method and has no limitations on a metamaterial slab thickness. The method does not require averaging different fields' components at various surfaces or contours. The retrieval of both wave and material EPs is performed within a single computational cycle, after exporting fields on the unit cells...
Zi, Jianchen
2018-02-15
Metamaterials have been widely applied in the polarization conversion of terahertz (THz) waves. However, common plasmonic metamaterials usually work as reflective devices and have low transmissions. All-dielectric metamaterials can overcome these shortcomings. An all-dielectric metamaterial based on silicon with elliptical air holes is reported to achieve high artificial birefringence at THz frequencies. Simulations show that with appropriate structural parameters the birefringence of the dielectric metamaterial can remain flat and is above 0.7 within a broad band. Moreover, the metamaterial can be designed as a broadband quarter wave plate. A sample metamaterial was fabricated and tested to prove the validity of the simulations, and the sample could work as a quarter wave plate at 1.76 THz. The all-dielectric metamaterial that we proposed is of great significance for high performance THz polarization converters.
Surface wave propagation over sinusoidally varying topography: Theory and observation
Davies, A. G.; Heathershaw, A. D.
Linear perturbation theory is used to show that the reflection coefficient of a patch of sinusoidal ripples on an otherwise flat bed is oscillatory in the quotient of the length of the patch and the surface wave length, and strongly dependent upon the quotient of the surface and bed wave numbers. Resonant interaction between the surface waves and the ripples if the surface wavenumber is half the ripple wavenumber is demonstrated. Few ripples, of relatively small steepness, are required to produce a substantial reflected wave. In resonant cases, the partially standing wave on the up-wave side of the ripple patch gives way, in an almost linear manner over the the ripple patch itself, to a progressive (transmitted) wave on the down-wave side. Wave tank data agree well with predictions, and suggest coupling between wave reflection and ripple growth on an erodible bed.
Nonlinear, tunable and active metamaterials
Lapine, Mikhail; Kivshar, Yuri
2015-01-01
Metamaterials, artificial electromagnetic media achieved by structuring on the subwave-length-scale were initially suggested for the negative index and superlensing. They became a paradigm for engineering electromagnetic space and controlling propagation of waves. The research agenda is now shifting on achieving tuneable, switchable, nonlinear and sensing functionalities. The time has come to talk about the emerging research field of metadevices employing active and tunable metamaterials with unique functionalities achieved by structuring of functional matter on the subwave-length scale. This book presents the first systematic and comprehensive summary of the reviews written by the pioneers and top-class experts in the field of metamaterials. It addresses many grand challenges of the cutting edge research for creating smaller and more efficient photonic structures and devices.
Plasma metamaterials as cloaking and nonlinear media
Sakai, O.; Yamaguchi, S.; Bambina, A.; Iwai, A.; Nakamura, Y.; Tamayama, Y.; Miyagi, S.
2017-01-01
Plasma metamaterials, composites of low-temperature plasmas and periodic functional microstructures, work as cloaking and nonlinear media. Due to functions of the microstructures like negative permeability, electromagnetic waves in and around plasma metamaterials propagate in a quite different manner from the case with the conventional space in which relative permeability is positive and unity. Using plasmas and plasma metamaterials, we achieve various controls of microwave propagating paths such as unidirectionality and cloaking in the two- or 3D spaces. For instance, a concentric plasma layer makes wave propagation unidirectional, and waves propagate in different routes when they start inside or outside the concentric layer. Furthermore, due to spatial permittivity gradient and anisotropic refractive index, electromagnetic waves detour in plasma metamaterial layers. Another significant point that plasma metamaterials can realize is nonlinearity. When we study high-power electromagnetic waves propagating in them, we observe several properties describable in terms of nonlinear dynamics and nonlinear photonics. Microwaves beyond threshold energy trigger bifurcations in plasma permittivity, and the second harmonic wave detected simultaneously is generated with strong emission levels. Such electromagnetic wave propagation is achieved with advantages over other materials, since plasmas and metallic microstructures work in harmony and in synergy.
Hyperbolic metamaterial lens with hydrodynamic nonlocal response
DEFF Research Database (Denmark)
Yan, Wei; Mortensen, N. Asger; Wubs, Martijn
2013-01-01
We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves of the f......We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves...... in the local-response approximation and in the hydrodynamic Drude model can differ considerably. In particular, the optimal frequency for imaging in the nonlocal theory is blueshifted with respect to that in the local theory. Thus, to detect whether nonlocal response is at work in a hyperbolic metamaterial, we...... propose to measure the near-field distribution of a hyperbolic metamaterial lens....
Transformation seismology: composite soil lenses for steering surface elastic Rayleigh waves.
Colombi, Andrea; Guenneau, Sebastien; Roux, Philippe; Craster, Richard V
2016-04-29
Metamaterials are artificially structured media that exibit properties beyond those usually encountered in nature. Typically they are developed for electromagnetic waves at millimetric down to nanometric scales, or for acoustics, at centimeter scales. By applying ideas from transformation optics we can steer Rayleigh-surface waves that are solutions of the vector Navier equations of elastodynamics. As a paradigm of the conformal geophysics that we are creating, we design a square arrangement of Luneburg lenses to reroute Rayleigh waves around a building with the dual aim of protection and minimizing the effect on the wavefront (cloaking). To show that this is practically realisable we deliberately choose to use material parameters readily available and this metalens consists of a composite soil structured with buried pillars made of softer material. The regular lattice of inclusions is homogenized to give an effective material with a radially varying velocity profile and hence varying the refractive index of the lens. We develop the theory and then use full 3D numerical simulations to conclusively demonstrate, at frequencies of seismological relevance 3-10 Hz, and for low-speed sedimentary soil (vs: 300-500 m/s), that the vibration of a structure is reduced by up to 6 dB at its resonance frequency.
Resonant surface acoustic wave chemical detector
Brocato, Robert W.; Brocato, Terisse; Stotts, Larry G.
2017-08-08
Apparatus for chemical detection includes a pair of interdigitated transducers (IDTs) formed on a piezoelectric substrate. The apparatus includes a layer of adsorptive material deposited on a surface of the piezoelectric substrate between the IDTs, where each IDT is conformed, and is dimensioned in relation to an operating frequency and an acoustic velocity of the piezoelectric substrate, so as to function as a single-phase uni-directional transducer (SPUDT) at the operating frequency. Additionally, the apparatus includes the pair of IDTs is spaced apart along a propagation axis and mutually aligned relative to said propagation axis so as to define an acoustic cavity that is resonant to surface acoustic waves (SAWs) at the operating frequency, where a distance between each IDT of the pair of IDTs ranges from 100 wavelength of the operating frequency to 400 wavelength of the operating frequency.
Surface acoustic wave actuated cell sorting (SAWACS).
Franke, T; Braunmüller, S; Schmid, L; Wixforth, A; Weitz, D A
2010-03-21
We describe a novel microfluidic cell sorter which operates in continuous flow at high sorting rates. The device is based on a surface acoustic wave cell-sorting scheme and combines many advantages of fluorescence activated cell sorting (FACS) and fluorescence activated droplet sorting (FADS) in microfluidic channels. It is fully integrated on a PDMS device, and allows fast electronic control of cell diversion. We direct cells by acoustic streaming excited by a surface acoustic wave which deflects the fluid independently of the contrast in material properties of deflected objects and the continuous phase; thus the device underlying principle works without additional enhancement of the sorting by prior labelling of the cells with responsive markers such as magnetic or polarizable beads. Single cells are sorted directly from bulk media at rates as fast as several kHz without prior encapsulation into liquid droplet compartments as in traditional FACS. We have successfully directed HaCaT cells (human keratinocytes), fibroblasts from mice and MV3 melanoma cells. The low shear forces of this sorting method ensure that cells survive after sorting.
Study of Planar Surface Wave Excited Plasma
Tian, Caizhong
2008-10-01
The need for plasma processing has increased as miniaturization in semiconductor manufacturing goes ahead. In these processes, a large-diameter plasma source is required with respect to 300mm wafer size. A Radial Line Slot Antenna (RLSA) driven surface-wave-sustained plasma is a potential best candidate to various applications with respect to damage free process. Many researches focus on the control of plasma density and electron temperature in RLSA technique. However, the plasma stability and uniformity control are less implemented in the practice. In recent years, we study sheath formation and plasma behavior at the interface, where the surface wave propagate, by using electromagnetic particle-in-cell simulation techniques. The simulations include the effects of ionization, and allow us to study the buildup of plasma density associated with ionization in the presence of the large fields of the RF-enhanced sheath. Our results show both the mechanism of plasma generation and heating at the plasma dielectric interface and the strong effect on geometric design of dielectric. Various scenarios are of interest, and help us to design an optimal RLSA driven plasma source, where the plasma stability and uniformity are firmly sustained under the various process conditions. Plasma diagnosis is carried out to reveal the more essential difference in plasma behavior between our RLSA and a custom inductively coupled plasma (ICP) source.
Assessing ground compaction via time lapse surface wave analysis
Czech Academy of Sciences Publication Activity Database
Dal Moro, Giancarlo; Al-Arifi, N.; Moustafa, S.S.R.
2016-01-01
Roč. 13, č. 3 (2016), s. 249-256 ISSN 1214-9705 Institutional support: RVO:67985891 Keywords : Full velocity spectrum (FVS) analysis * ground compaction * ground compaction * phase velocities * Rayleigh waves * seismic data inversion * surface wave dispersion * surface waves Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.699, year: 2016
Surface waves in fibre-reinforced anisotropic elastic media
Indian Academy of Sciences (India)
reinforced solid elastic media. First, the theory of general surface waves has been derived and applied to study the particular cases of surface waves – Rayleigh, Love and Stoneley types. The wave velocity equations are found to be in agreement with ...
Surface waves in a cylindrical borehole through partially-saturated ...
Indian Academy of Sciences (India)
M D Sharma
published online 14 February 2018. Propagation of surface waves is discussed in a cylindrical borehole through a liquid-saturated porous solid of infinite extent. ...... 1992). In the dictionary of exploration geophysics, pseudo-Rayleigh waves are identified as the ground roll, which is a particular type of surface wave that.
Controlling the emission and propagation of light with nano-plasmonic metamaterials and metasurfaces
Ni, Xingjie
Metamaterials---artificially structured materials with engineered electromagnetic properties---have enabled unprecedented flexibility in manipulating electromagnetic waves and producing new functionalities. Metasurfaces are subwavelength thin metamaterial layers to introduce unusual properties do not exist in nature. They can play a fundamental role in generating synthetic scattering diagrams of macroscopic objects. Optical metamaterials and metasurfaces have enabled unprecedented flexibility in manipulating light waves and producing new functionalities. We have studied various topics in this field, from designs to potential applications. We experimentally demonstrated the world's first optical metasurface which is capable of precisely manipulating light in arbitrary ways over a broad range of near-infrared light, which could make possible of many optical innovations such as more powerful microscopes, telecommunications and computers. We proposed the first hyperbolic metasurface, which consist of a highly anisotropic material layer and an isotropic material layer can support Dyakonov surface waves that have hyperbolic dispersion. This type of metasurfaces support a broadband singularity in the photonic density of states, which opens up another possibility to engineer the spontaneous emission efficiency. We also developed a set of parallel simulation tools which can handle a variety of problems in nanophotonics and plasmonics. Especially, we established an on-line research environment for the research community with six tools, which deliver a cloud computing service with no demand for either any powerful computational hardware or any additional software installations and cover a range of tasks including the design and simulation of complex transformation optics devices and optical metamaterials.
Metamaterial mirrors in optoelectronic devices
Esfandyarpour, Majid
2014-06-22
The phase reversal that occurs when light is reflected from a metallic mirror produces a standing wave with reduced intensity near the reflective surface. This effect is highly undesirable in optoelectronic devices that use metal films as both electrical contacts and optical mirrors, because it dictates a minimum spacing between the metal and the underlying active semiconductor layers, therefore posing a fundamental limit to the overall thickness of the device. Here, we show that this challenge can be circumvented by using a metamaterial mirror whose reflection phase is tunable from that of a perfect electric mirror († = €) to that of a perfect magnetic mirror († = 0). This tunability in reflection phase can also be exploited to optimize the standing wave profile in planar devices to maximize light-matter interaction. Specifically, we show that light absorption and photocurrent generation in a sub-100 nm active semiconductor layer of a model solar cell can be enhanced by ∼20% over a broad spectral band. © 2014 Macmillan Publishers Limited.
Voltage adjusting characteristics in terahertz transmission through Fabry-Pérot-based metamaterials
Directory of Open Access Journals (Sweden)
Jun Luo
2015-10-01
Full Text Available Metallic electric split-ring resonators (SRRs with featured size in micrometer scale, which are connected by thin metal wires, are patterned to form a periodically distributed planar array. The arrayed metallic SRRs are fabricated on an n-doped gallium arsenide (n-GaAs layer grown directly over a semi-insulating gallium arsenide (SI-GaAs wafer. The patterned metal microstructures and n-GaAs layer construct a Schottky diode, which can support an external voltage applied to modify the device properties. The developed architectures present typical functional metamaterial characters, and thus is proposed to reveal voltage adjusting characteristics in the transmission of terahertz waves at normal incidence. We also demonstrate the terahertz transmission characteristics of the voltage controlled Fabry-Pérot-based metamaterial device, which is composed of arrayed metallic SRRs. To date, many metamaterials developed in earlier works have been used to regulate the transmission amplitude or phase at specific frequencies in terahertz wavelength range, which are mainly dominated by the inductance-capacitance (LC resonance mechanism. However, in our work, the external voltage controlled metamaterial device is developed, and the extraordinary transmission regulation characteristics based on both the Fabry-Pérot (FP resonance and relatively weak surface plasmon polariton (SPP resonance in 0.025-1.5 THz range, are presented. Our research therefore shows a potential application of the dual-mode-resonance-based metamaterial for improving terahertz transmission regulation.
General analytical approach for sound transmission loss analysis through a thick metamaterial plate
International Nuclear Information System (INIS)
Oudich, Mourad; Zhou, Xiaoming; Badreddine Assouar, M.
2014-01-01
We report theoretically and numerically on the sound transmission loss performance through a thick plate-type acoustic metamaterial made of spring-mass resonators attached to the surface of a homogeneous elastic plate. Two general analytical approaches based on plane wave expansion were developed to calculate both the sound transmission loss through the metamaterial plate (thick and thin) and its band structure. The first one can be applied to thick plate systems to study the sound transmission for any normal or oblique incident sound pressure. The second approach gives the metamaterial dispersion behavior to describe the vibrational motions of the plate, which helps to understand the physics behind sound radiation through air by the structure. Computed results show that high sound transmission loss up to 72 dB at 2 kHz is reached with a thick metamaterial plate while only 23 dB can be obtained for a simple homogeneous plate with the same thickness. Such plate-type acoustic metamaterial can be a very effective solution for high performance sound insulation and structural vibration shielding in the very low-frequency range
Implementing Quantum Search Algorithm with Metamaterials.
Zhang, Weixuan; Cheng, Kaiyang; Wu, Chao; Wang, Yi; Li, Hongqiang; Zhang, Xiangdong
2018-01-01
Metamaterials, artificially structured electromagnetic (EM) materials, have enabled the realization of many unconventional EM properties not found in nature, such as negative refractive index, magnetic response, invisibility cloaking, and so on. Based on these man-made materials with novel EM properties, various devices are designed and realized. However, quantum analog devices based on metamaterials have not been achieved so far. Here, metamaterials are designed and printed to perform quantum search algorithm. The structures, comprising of an array of 2D subwavelength air holes with different radii perforated on the dielectric layer, are fabricated using a 3D-printing technique. When an incident wave enters in the designed metamaterials, the profile of beam wavefront is processed iteratively as it propagates through the metamaterial periodically. After ≈N roundtrips, precisely the same as the efficiency of quantum search algorithm, searched items will be found with the incident wave all focusing on the marked positions. Such a metamaterial-based quantum searching simulator may lead to remarkable achievements in wave-based signal processors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Near-perfect conversion of a propagating plane wave into a surface wave using metasurfaces
Tcvetkova, S. N.; Kwon, D.-H.; Díaz-Rubio, A.; Tretyakov, S. A.
2018-03-01
In this paper theoretical and numerical studies of perfect/nearly perfect conversion of a plane wave into a surface wave are presented. The problem of determining the electromagnetic properties of an inhomogeneous lossless boundary which would fully transform an incident plane wave into a surface wave propagating along the boundary is considered. An approximate field solution which produces a slowly growing surface wave and satisfies the energy conservation law is discussed and numerically demonstrated. The results of the study are of great importance for the future development of such devices as perfect leaky-wave antennas and can potentially lead to many novel applications.
Directory of Open Access Journals (Sweden)
Z. Zhang
2017-09-01
Full Text Available We propose a polarization-dependent multi-functional metamaterial using ring-cross resonator. Based on the analysis of surface current distributions induced by different polarized incidence, we demonstrate that the proposed metamaterial serves as a polarization filter, a transparent wall and a circular polarizer under different polarization normal incidence. Additionally, parameter analyses on the control of resonance are discussed to complementally explain the physical origin. Simulated results show that the proposed metamaterial functions as a polarization filter eliminating the x-polarization wave at 10.1 GHz and y-polarization wave at 14.3 GHz, a transparent wall transmitting both x-polarized and y-polarized incident waves at 12.6 GHz, and a broadband circular polarizer converting the +45° polarized (-45° polarized incident wave to the left (right handed circularly polarized wave from 10.8 to 12.8 GHz, respectively. Measured results agree well with the simulation and validate the performance of the proposed multifunctional metamaterial.
Novel Metamaterial Blueprints and Elements for Electromagnetic Applications
Odabasi, Hayrettin
In the first part of this dissertation, we explore the metric invariance of Maxwell's equations to design metamaterial blueprints for three novel electromagnetic devices. The metric invariance of Maxwell's equations here means that the effects of an (hypothetical) distortion of the background spatial domain on the electromagnetic fields can be mimicked by properly chosen material constitutive tensors. The exploitation of such feature of Maxwell's equations to derive metamaterial devices has been denoted as `transformation optics' (TO). The first device proposed here consists of metamaterial blueprints of waveguide claddings for (waveguide) miniaturization. These claddings provide a precise control of mode distribution and frequency cut-off. The proposed claddings are distinct from conventional dielectric loadings as the former do not support hybrid modes and are impedance-matched to free-space. We next derive a class of metamaterial blueprints designed for low-profile antenna applications, whereby a simple spatial transformation is used to yield uniaxial metamaterial substrate with electrical height higher than its physical height and surface waves are not supported, which is an advantage for patch antenna applications. We consider the radiation from horizontal wire and patch antennas in the presence of such substrates. Fundamental characteristics such as return loss and radiation pattern of the antennas are investigated in detail. Finally, transformation optics is also applied to design cylindrical impedance-matched absorbers. In this case, we employ a complex-valued transformation optics approach (in the Fourier domain) as opposed to the conventional real-valued approach. A connection of such structures with perfectly matched layers and recently proposed optical pseudo black-hole devices is made. In the second part of this dissertation, we move from the derivation of metamaterial blueprints to the application of pre-defined unit-cell metamaterial structures for
Energy Technology Data Exchange (ETDEWEB)
Kourtzanidis, Konstantinos, E-mail: kkourt@utexas.edu; Pederson, Dylan M.; Raja, Laxminarayan L. [Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712-1221 (United States)
2016-05-28
We propose and study numerically a tunable and reconfigurable metamaterial based on coupled split-ring resonators (SRRs) and plasma discharges. The metamaterial couples the magnetic-electric response of the SRR structure with the electric response of a controllable plasma slab discharge that occupies a volume of the metamaterial. Because the electric response of a plasma depends on its constitutive parameters (electron density and collision frequency), the plasma-based metamaterial is tunable and active. Using three-dimensional numerical simulations, we analyze the coupled plasma-SRR metamaterial in terms of transmittance, performing parametric studies on the effects of electron density, collisional frequency, and the position of the plasma slab with respect to the SRR array. We find that the resonance frequency can be controlled by the plasma position or the plasma-to-collision frequency ratio, while transmittance is highly dependent on the latter.
Artificial TE-mode surface waves at metal surfaces mimicking surface plasmons.
Sun, Zhijun; Zuo, Xiaoliu; Guan, Tengpeng; Chen, Wei
2014-02-24
Manipulation of light in subwavelength scale can be realized with metallic nanostructures for TM-polarization components due to excitation of surface plasmons. TE-polarization components of light are usually excluded in subwavelength metal structures for mesoscopic optical interactions. Here we show that, by introducing very thin high index dielectric layers on structured metal surfaces, pseudo surface polarization currents can be induced near metal surfaces, which bring to excitation of artificial TE-mode surface waves at the composite meta-surfaces. This provides us a way to manipulate TE-polarized light in subwavelength scale. Typical properties of the artificial surface waves are further demonstrate for their excitation, propagation, optical transmission, and enhancement and resonances of the localized fields, mimicking those of surface plasmon waves.
Tay, Z. J.; Soh, W. T.; Ong, C. K.
2018-02-01
This paper presents an experimental study of the inverse spin Hall effect (ISHE) in a bilayer consisting of a yttrium iron garnet (YIG) and platinum (Pt) loaded on a metamaterial split ring resonator (SRR). The system is excited by a microstrip feed line which generates both surface and bulk spin waves in the YIG. The spin waves subsequently undergo spin pumping from the YIG film to an adjacent Pt layer, and is converted into a charge current via the ISHE. It is found that the presence of the SRR causes a significant enhancement of the mangetic field near the resonance frequency of the SRR, resulting in a significant increase in the ISHE signal. Furthermore, the type of spin wave generated in the system can be controlled by changing the external applied magnetic field angle (θH ). When the external applied magnetic field is near parallel to the microstrip line (θH = 0 ), magnetostatic surface spin waves are predominantly excited. On the other hand, when the external applied magnetic field is perpendicular to the microstrip line (θH = π/2 ), backward volume magnetostatic spin waves are predominantly excited. Hence, it can be seen that the SRR structure is a promising method of achieving spin-charge conversion, which has many advantages over a coaxial probe.
Energy Technology Data Exchange (ETDEWEB)
Shelton, David; Boreman, Glenn; D' Archangel, Jeffrey
2015-11-10
Infrared metamaterial arrays containing Au elements immersed in a medium of benzocyclobutene (BCB) were fabricated and selectively etched to produce small square flakes with edge dimensions of approximately 20 .mu.m. Two unit-cell designs were fabricated: one employed crossed-dipole elements while the other utilized square-loop elements.
THz detectors using surface Josephson plasma waves in layered superconductors
International Nuclear Information System (INIS)
Savel'ev, Sergey; Yampol'skii, Valery; Nori, Franco
2006-01-01
We describe a proposal for THz detectors based on the excitation of surface waves, in layered superconductors, at frequencies lower than the Josephson plasma frequency ω J . These waves propagate along the vacuum-superconductor interface and are attenuated in both transverse directions out of the surface (i.e., towards the superconductor and towards the vacuum). The surface Josephson plasma waves are also important for the complete suppression of the specular reflection from a sample (Wood's anomalies, used for gratings) and produce a huge enhancement of the wave absorption, which can be used for the detection of THz waves
Quasilinear ridge structures in water surface waves
Blümel, R.; Davidson, I. H.; Reinhardt, W. P.; Lin, H.; Sharnoff, M.
1992-02-01
Nodal patterns of stationary capillary waves formed on the surface of water enclosed in an agitated ripple tank with circular and stadium-shaped cylindrical walls are examined in the low-frequency (ν700 Hz) regimes. In the low-frequency regime, in agreement with predictions of quantum-chaos theory, the shape of the tank's boundaries (integrable or nonintegrable) dictates the type of nodal patterns obtained. In the high-frequency regime we obtain nodal patterns characterized by short-range order (called ``scarlets'' because they are believed to be the precursors of quantum scars), as recently predicted in the quantum-chaos context by P. O'Connor, J. Gehlen, and E. J. Heller [Phys. Rev. Lett. 58, 1296 (1987)].
International Nuclear Information System (INIS)
Zhang, Yaxin; Xu, Gaiqi; Qiao, Shen; Zhou, Yucong; Wu, Zhenhua; Yang, Ziqiang
2015-01-01
We presented an enhanced resonance with ultra-wide band in the terahertz (THz) regime in a THz metamaterial system composed of a pair of circular rings arrays which act as two opposite mirrors. The two opposite mirrors, both of which will induce a dipolar-like resonance under the incident wave, together with the gap between them will constitute a Fabry–Perot cavity which contributes to a Fabry–Perot oscillation in the system. These two kinds of resonant modes, the dipolar-like resonance and Fabry–Perot oscillation, can be coupled with each other in an optimized structure, which leads to an enhanced electromagnetic resonance. From the experimental results, it can be found that such coupling leads to a nearly zero transmission zone with 0.12 THz bandwidth which is much better than individual conventional metamaterial system. This coupling mechanism could provide a new way for the realization of strong resonance, which shows great potential for THz pass-band or stop-band filters, THz resonators, THz absorbers, frequency selective devices and so on. (paper)
Surface Plasmon Wave Adapter Designed with Transformation Optics
DEFF Research Database (Denmark)
Zhang, Jingjing; Xiao, Sanshui; Wubs, Martijn
2011-01-01
On the basis of transformation optics, we propose the design of a surface plasmon wave adapter which confines surface plasmon waves on non-uniform metal surfaces and enables adiabatic mode transformation of surface plasmon polaritons with very short tapers. This adapter can be simply achieved wit...... with homogeneous anisotropic naturally occurring materials or subwavelength grating-structured dielectric materials. Full wave simulations based on a finite-element method have been performed to validate our proposal.......On the basis of transformation optics, we propose the design of a surface plasmon wave adapter which confines surface plasmon waves on non-uniform metal surfaces and enables adiabatic mode transformation of surface plasmon polaritons with very short tapers. This adapter can be simply achieved...
Perspective: Acoustic metamaterials in transition
Wu, Ying
2017-12-15
Acoustic metamaterials derive their novel characteristics from the interaction between acoustic waves with designed structures. Since its inception seventeen years ago, the field has been driven by fundamental geometric and physical principles that guide the structure design rules as well as provide the basis for wave functionalities. Recent examples include resonance-based acoustic metasurfaces that offer flexible control of acoustic wave propagation such as focusing and re-direction; parity-time (PT)-symmetric acoustics that utilizes the general concept of pairing loss and gain to achieve perfect absorption at a single frequency; and topological phononics that can provide one-way edge state propagation. However, such novel functionalities are not without constraints. Metasurface elements rely on resonances to enhance their coupling to the incident wave; hence, its functionality is limited to a narrow frequency band. Topological phononics is the result of the special lattice symmetry that must be fixed at the fabrication stage. Overcoming such constraints naturally forms the basis for further developments. We identify two emergent directions: Integration of acoustic metamaterial elements for achieving broadband characteristics as well as acoustic wave manipulation tasks more complex than the single demonstrative functionality; and active acoustic metamaterials that can adapt to environment as well as to go beyond the constraints on the passive acoustic metamaterials. Examples of a successful recent integration of multi-resonators in achieving broadband sound absorption can be found in optimal sound-absorbing structures, which utilize causality constraint as a design tool in realizing the target-set absorption spectrum with a minimal sample thickness. Active acoustic metamaterials have also demonstrated the capability to tune bandgaps as well as to alter property of resonances in real time through stiffening of the spring constants, in addition to the PT symmetric
Arbitrarily thin metamaterial structure for perfect absorption and giant magnification
DEFF Research Database (Denmark)
Jin, Yi; Xiao, Sanshui; Mortensen, N. Asger
2011-01-01
layer can perfectly absorb or giantly amplify an incident plane wave at a critical angle when the real parts of the permittivity and permeability of the metamaterial are zero while the absolute imaginary parts can be arbitrarily small. The metamaterial layer needs a totally reflective substrate...
Frequency and wavelength prediction of ultrasonic induced liquid surface waves.
Mahravan, Ehsan; Naderan, Hamid; Damangir, Ebrahim
2016-12-01
A theoretical investigation of parametric excitation of liquid free surface by a high frequency sound wave is preformed, using potential flow theory. Pressure and velocity distributions, resembling the sound wave, are applied to the free surface of the liquid. It is found that for impinging wave two distinct capillary frequencies will be excited: One of them is the same as the frequency of the sound wave, and the other is equal to the natural frequency corresponding to a wavenumber equal to the horizontal wavenumber of the sound wave. When the wave propagates in vertical direction, mathematical formulation leads to an equation, which has resonance frequency equal to half of the excitation frequency. This can explain an important contradiction between the frequency and the wavelength of capillary waves in the two cases of normal and inclined interaction of the sound wave and the free surface of the liquid. Copyright © 2016 Elsevier B.V. All rights reserved.
DEFF Research Database (Denmark)
Malureanu, Radu; Jepsen, Peter Uhd; Xiao, S.
2010-01-01
applications. THz radiation can be employed for various purposes, among them the study of vibrations in biological molecules, motion of electrons in semiconductors and propagation of acoustic shock waves in crystals. We propose here a new THz fractal MTM design that shows very high transmission in the desired...... frequency range as well as a clear differentiation between one polarisation and another. Based on theoretical predictions we fabricated and measured a fractal based THz metamaterial that shows more than 60% field transmission at around 1THz for TE polarized light while the TM waves have almost 80% field...... transmission peak at 0.6THz. One of the main characteristics of this design is its tunability by design: by simply changing the length of the fractal elements one can choose the operating frequency window. The modelling, fabrication and characterisation results will be presented in this paper. Due to the long...
Surface Acoustic Wave (SAW Vibration Sensors
Directory of Open Access Journals (Sweden)
Jerzy Filipiak
2011-12-01
Full Text Available In the paper a feasibility study on the use of surface acoustic wave (SAW vibration sensors for electronic warning systems is presented. The system is assembled from concatenated SAW vibration sensors based on a SAW delay line manufactured on a surface of a piezoelectric plate. Vibrations of the plate are transformed into electric signals that allow identification of the sensor and localization of a threat. The theoretical study of sensor vibrations leads us to the simple isotropic model with one degree of freedom. This model allowed an explicit description of the sensor plate movement and identification of the vibrating sensor. Analysis of frequency response of the ST-cut quartz sensor plate and a damping speed of its impulse response has been conducted. The analysis above was the basis to determine the ranges of parameters for vibrating plates to be useful in electronic warning systems. Generally, operation of electronic warning systems with SAW vibration sensors is based on the analysis of signal phase changes at the working frequency of delay line after being transmitted via two circuits of concatenated four-terminal networks. Frequencies of phase changes are equal to resonance frequencies of vibrating plates of sensors. The amplitude of these phase changes is proportional to the amplitude of vibrations of a sensor plate. Both pieces of information may be sent and recorded jointly by a simple electrical unit.
Transformation of second sound into surface waves in superfluid helium
International Nuclear Information System (INIS)
Khalatnikov, I.M.; Kolmakov, G.V.; Pokrovsky, V.L.
1995-01-01
The Hamiltonian theory of superfluid liquid with a free boundary is developed. Nonlinear amplitudes of parametric Cherenkov radiation of a surface wave by second sound and the inner decay of second sound waves are found. Threshold amplitudes of second sound waves for these two processes are determined. 4 refs
Phase spectral composition of wind generated ocean surface waves
Digital Repository Service at National Institute of Oceanography (India)
Varkey, M.J.
A study of the composition of the phase spectra of wind generated ocean surface waves is carried out using wave records collected employing a ship borne wave recorder. It is found that the raw phase spectral estimates could be fitted by the Uniform...
Nonlinear interaction of the surface waves at a plasma boundary
International Nuclear Information System (INIS)
Dolgopolov, V.V.; El-Naggar, I.A.; Hussein, A.M.; Khalil, Sh.M.
1976-01-01
Amplitudes of electromagnetic waves with combination frequencies, radiating from the plasma boundary due to nonlinear interaction of the surface waves, have been found. Previous papers on this subject did not take into account that the tangential components of the electric field of waves with combination frequencies were discontinuous at the plasma boundary. (Auth.)
Temperature-mediated transition from Dyakonov-Tamm surface waves to surface-plasmon-polariton waves
Chiadini, Francesco; Fiumara, Vincenzo; Mackay, Tom G.; Scaglione, Antonio; Lakhtakia, Akhlesh
2017-08-01
The effect of changing the temperature on the propagation of electromagnetic surface waves (ESWs), guided by the planar interface of a homogeneous isotropic temperature-sensitive material (namely, InSb) and a temperature-insensitive structurally chiral material (SCM) was numerically investigated in the terahertz frequency regime. As the temperature rises, InSb transforms from a dissipative dielectric material to a dissipative plasmonic material. Correspondingly, the ESWs transmute from Dyakonov-Tamm surface waves into surface-plasmon-polariton waves. The effects of the temperature change are clearly observed in the phase speeds, propagation distances, angular existence domains, multiplicity, and spatial profiles of energy flow of the ESWs. Remarkably large propagation distances can be achieved; in such instances the energy of an ESW is confined almost entirely within the SCM. For certain propagation directions, simultaneous excitation of two ESWs with (i) the same phase speeds but different propagation distances or (ii) the same propagation distances but different phase speeds are also indicated by our results.
Hot carrier metamaterial detectors and energy converters
Krayer, Lisa; Munday, Jeremy N.
Metamaterials can be used to manipulate the flow of light in ways not typically available with traditional materials. Beyond their optical properties, metamaterials can be used as the basis for optoelectronic devices through the incorporation of a metal-semiconductor interface. The absorbed radiation in the metal can excite surface plasmons, which nonradiatively decay into hot electrons or holes that can be injected into the base semiconductor and contribute to photocurrent generation. In this talk, we will present our latest work on metamaterial photo-detectors and solar energy converters.
Opportunities and pitfalls in surface-wave interpretation
Schuster, Gerard T.
2017-01-21
Many explorationists think of surface waves as the most damaging noise in land seismic data. Thus, much effort is spent in designing geophone arrays and filtering methods that attenuate these noisy events. It is now becoming apparent that surface waves can be a valuable ally in characterizing the near-surface geology. This review aims to find out how the interpreter can exploit some of the many opportunities available in surface waves recorded in land seismic data. For example, the dispersion curves associated with surface waves can be inverted to give the S-wave velocity tomogram, the common-offset gathers can reveal the presence of near-surface faults or velocity anomalies, and back-scattered surface waves can be migrated to detect the location of near-surface faults. However, the main limitation of surface waves is that they are typically sensitive to S-wave velocity variations no deeper than approximately half to one-third the dominant wavelength. For many exploration surveys, this limits the depth of investigation to be no deeper than approximately 0.5-1.0 km.
Generalized metamaterials: Definitions and taxonomy.
Kim, Noori; Yoon, Yong-Jin; Allen, Jont B
2016-06-01
This article reviews the development of metamaterials (MM), starting from Newton's discovery of the wave equation, and ends with a discussion of the need for a technical taxonomy (classification) of these materials, along with a better defined definition of metamaterials. It is intended to be a technical definition of metamaterials, based on a historical perspective. The evolution of MMs began with the discovery of the wave equation, traceable back to Newton's calculation of the speed of sound. The theory of sound evolved to include quasi-statics (Helmholtz) and the circuit equations of Kirchhoff's circuit laws, leading to the ultimate development of Maxwell's equations and the equation for the speed of light. Be it light, or sound, the speed of the wave-front travel defines the wavelength, and thus the quasi-static (QS) approximation. But there is much more at stake than QSs. Taxonomy requires a proper statement of the laws of physics, which includes at least the six basic network postulates: (P1) causality (non-causal/acausal), (P2) linearity (non-linear), (P3) real (complex) time response, (P4) passive (active), (P5) time-invariant (time varying), and (P6) reciprocal (non-reciprocal). These six postulates are extended to include MMs.
HF Surface Wave Radar Operation in Adverse Conditions
National Research Council Canada - National Science Library
Ponsford, Anthony M; Dizaji, Reza M; McKerracher, Richard
2005-01-01
...) system based on HF Surface Wave Radar (HFSWR). the primary objective behind the programme was to demonstrate the capability of HFSWR to continuously detect and track surface targets (ships and icebergs...
Surface wave propagation in a fluid-saturated incompressible ...
Indian Academy of Sciences (India)
saturated incompressible porous media. Many studies have discussed the surface wave propagation in elastic media and a com- prehensive review is available in the standard texts, e.g., Ewing et al (1957) and Achenbach. (1976). The surface ...
Surface wave propagation characteristics in atmospheric pressure plasma column
International Nuclear Information System (INIS)
Pencheva, M; Benova, E; Zhelyazkov, I
2007-01-01
In the typical experiments of surface wave sustained plasma columns at atmospheric pressure the ratio of collision to wave frequency (ν/ω) is much greater than unity. Therefore, one might expect that the usual analysis of the wave dispersion relation, performed under the assumption ν/ω = 0, cannot give adequate description of the wave propagation characteristics. In order to study these characteristics we have analyzed the wave dispersion relationship for arbitrary ν/ω. Our analysis includes phase and wave dispersion curves, attenuation coefficient, and wave phase and group velocities. The numerical results show that a turning back point appears in the phase diagram, after which a region of backward wave propagation exists. The experimentally observed plasma column is only in a region where wave propagation coefficient is higher than the attenuation coefficient. At the plasma column end the electron density is much higher than that corresponding to the turning back point and the resonance
Isotropic optical metamaterials
DEFF Research Database (Denmark)
Lederer, Falk; Rockstuhl, C.; Menzel, C.
2010-01-01
Metamaterial imaging applications require optical isotropy. We show that highly symmetric unit cells do not necessarily exhibit this property. We prove that the dispersion relation can be tailored using a supercell metama-terial. Such metamaterial exhibits an isotropic negative index close to -1...
Metamaterials: A Personal View
Directory of Open Access Journals (Sweden)
A. Sihvola
2009-06-01
Full Text Available This article discusses fundamental properties of metamaterials. Firstly, it is argued that the defining property of metamaterials is emergence and not that they should display properties not observable in nature. In addition, the regime where matter can be assigned effective properties will be quantified using concepts of metamaterialization period and number of generations.
Polarizability extraction of complementary metamaterial elements in waveguides for aperture modeling
Pulido-Mancera, Laura; Bowen, Patrick T.; Imani, Mohammadreza F.; Kundtz, Nathan; Smith, David
2017-12-01
We consider the design and modeling of metasurfaces that couple energy from guided waves to propagating wave fronts. To this purpose, we develop a comprehensive, multiscale dipolar interpretation for large arrays of complementary metamaterial elements embedded in a waveguide structure. Within this modeling technique, the detailed electromagnetic response of each metamaterial element is replaced by a polarizable dipole, described by means of an effective polarizability. In this paper, we present two methods to extract this effective polarizability. The first method invokes surface equivalence principles, averaging over the effective surface currents and charges induced in the element's surface in order to obtain the effective dipole moments, from which the effective polarizability can be inferred. The second method is based in the coupled-mode theory, from which a direct relationship between the effective polarizability and the amplitude coefficients of the scattered waves can be deduced. We demonstrate these methods on several variants of waveguide-fed metasurface elements (both one- and two-dimensional waveguides), finding excellent agreement between the two, as well as with the analytical expressions derived for circular and elliptical irises. With the effective polarizabilities of the metamaterial elements accurately determined, the radiated fields generated by a waveguide-fed metasurface can be found self-consistently by including the interactions between polarizable dipoles. The dipole description provides an effective perspective and computational framework for engineering metasurface structures such as holograms, lenses, and beam-forming arrays, among others.
Plasmonic metamaterial absorber for broadband manipulation of mechanical resonances
Zhu, Hai; Yi, Fei; Cubukcu, Ertugrul
2016-11-01
Metamaterials are artificial materials that exhibit unusual properties for electromagnetic and sound waves. The quanta, namely photons and phonons, of these waves interact resonantly with these exotic man-made materials enabling many applications. For instance, resonant light absorption in photonic metamaterials can efficiently convert optical energy into heat based on the photothermal effect. Here, we present a plasmonic metamaterial that simultaneously supports thermomechanically coupled optical and mechanical resonances for controlling mechanical damping with light. In this metamaterial absorber with voltage-tunable Fano resonances, we experimentally achieve optically pumped coherent mechanical oscillations based on a plasmomechanical parametric gain mechanism over an ∼4 THz bandwidth. Through the reverse effect, optical damping of mechanical resonance is also achieved. Our results provide a metamaterial-based approach for optical manipulation of the dynamics of mechanical oscillators.
Multi-component joint analysis of surface waves
Czech Academy of Sciences Publication Activity Database
Dal Moro, Giancarlo; Moura, R.M.M.; Moustafa, S.S.R.
2015-01-01
Roč. 119, AUG (2015), s. 128-138 ISSN 0926-9851 Institutional support: RVO:67985891 Keywords : surface waves * surface wave dispersion * seismic data acquisition * seismic data inversion * velocity spectrum Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.355, year: 2015
Surface acoustic wave devices for sensor applications
Bo, Liu; Xiao, Chen; Hualin, Cai; Mohammad, Mohammad Ali; Xiangguang, Tian; Luqi, Tao; Yi, Yang; Tianling, Ren
2016-02-01
Surface acoustic wave (SAW) devices have been widely used in different fields and will continue to be of great importance in the foreseeable future. These devices are compact, cost efficient, easy to fabricate, and have a high performance, among other advantages. SAW devices can work as filters, signal processing units, sensors and actuators. They can even work without batteries and operate under harsh environments. In this review, the operating principles of SAW sensors, including temperature sensors, pressure sensors, humidity sensors and biosensors, will be discussed. Several examples and related issues will be presented. Technological trends and future developments will also be discussed. Project supported by the National Natural Science Foundation of China (Nos. 60936002, 61025021, 61434001, 61574083), the State Key Development Program for Basic Research of China (No. 2015CB352100), the National Key Project of Science and Technology (No. 2011ZX02403-002) and the Special Fund for Agroscientific Research in the Public Interest of China (No. 201303107). M.A.M is additionally supported by the Postdoctoral Fellowship (PDF) program of the Natural Sciences and Engineering Research Council (NSERC) of Canada and the China Postdoctoral Science Foundation (CPSF).
Theoretical and Numerical Modeling of Acoustic Metamaterials for Aeroacoustic Applications
Directory of Open Access Journals (Sweden)
Umberto Iemma
2016-05-01
Full Text Available The advent, during the first decade of the 21st century, of the concept of acoustic metamaterial has disclosed an incredible potential of development for breakthrough technologies. Unfortunately, the extension of the same concepts to aeroacoustics has turned out to be not a trivial task, because of the different structure of the governing equations, characterized by the presence of the background aerodynamic convection. Some of the approaches recently introduced to circumvent the problem are biased by a fundamental assumption that makes the actual realization of devices extremely unlikely: the metamaterial should guarantee an adapted background aerodynamic convection in order to modify suitably the acoustic field and obtain the desired effect, thus implying the porosity of the cloaking device. In the present paper, we propose an interpretation of the metamaterial design that removes this unlikely assumption, focusing on the identification of an aerodynamically-impermeable metamaterial capable of reproducing the surface impedance profile required to achieve the desired scattering abatement. The attention is focused on a moving obstacle impinged by an acoustic perturbation induced by a co-moving source. The problem is written in a frame of reference rigidly connected to the moving object to couple the convective wave equation in the hosting medium with the inertially-anisotropic wave operator within the cloak. The problem is recast in an integral form and numerically solved through a boundary-field element method. The matching of the local wave vector is used to derive a convective design of the metamaterial applicable to the specific problem analyzed. Preliminary numerical results obtained under the simplifying assumption of a uniform aerodynamic flow reveal a considerable enhancement of the masking capability of the convected design. The numerical method developed shows a remarkable computational efficiency, completing a simulation of the entire
Hyperbolic polaritonic crystals based on nanostructured nanorod metamaterials.
Dickson, Wayne; Beckett, Stephen; McClatchey, Christina; Murphy, Antony; O'Connor, Daniel; Wurtz, Gregory A; Pollard, Robert; Zayats, Anatoly V
2015-10-21
Surface plasmon polaritons usually exist on a few suitable plasmonic materials; however, nanostructured plasmonic metamaterials allow a much broader range of optical properties to be designed. Here, bottom-up and top-down nanostructuring are combined, creating hyperbolic metamaterial-based photonic crystals termed hyperbolic polaritonic crystals, allowing free-space access to the high spatial frequency modes supported by these metamaterials. © 2015 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
International Nuclear Information System (INIS)
El Naggar, I.A.; Hussein, A.M.; Khalil, Sh.M.
1992-09-01
Electromagnetic waves radiated with combination frequencies from a semi-bounded plasma due to nonlinear interaction of radiation with surface wave (both of P-polarization) has been investigated. Waves are radiated both into vacuum and plasma are found to be P-polarized. We take into consideration the continuity at the plasma boundary of the tangential components of the electric field of the waves. The case of normal incidence of radiation and rarefield plasma layer is also studied. (author). 7 refs
2015-09-30
Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves Lian Shen St. Anthony Falls Laboratory and Department of Mechanical...on studying surface gravity wave evolution and spectrum in the presence of surface currents caused by strongly nonlinear internal solitary waves...interaction of surface and internal gravity waves in the South China Sea. We will seek answers to the following questions: 1) How does the wind-wave
Eigenwave spectrum of surface acoustic waves on a rough self-affine fractal surface
Palasantzas, George
1994-01-01
The propagation of a sound wave along a statistically rough solid-vacuum interface is investigated for the case of self-affine fractals. The wave-number relation ω=ω(k) is examined for the transverse polarized surface wave. The range of existence of this wave is analyzed as a function of the degree
Wave-current interaction near the Gulf Stream during the surface wave dynamics experiment
Wang, David W.; Liu, Antony K.; Peng, Chih Y.; Meindl, Eric A.
1994-01-01
This paper presents a case study on the wave-current interaction near the local curvature of a Gulf Stream meander. The wave data were obtained from in situ measurements by a pitch-roll discus buoy during the Surface Wave Dynamics Experiment (SWADE) conducted off Wallops Island, Virginia, from October 1990 to March 1991. Owing to the advection of the Gulf Stream by the semidiurnal tide, the discus buoy was alternately located outside and inside the Gulf Stream. The directional wave measurements from the buoy show the changes in wave direction, wave energy, and directional spreading when waves encountered the current in the Gulf Stream meanders. A wave refraction model, using the ray-tracing method with an estimated Gulf Stream velocity field and meandering condition, was used to simulate wave refraction patterns and to estimate wave parameters at relative locations corresponding to buoy measurements. The numerical simulation shows that a focusing zone of wave rays was formed near the boundary and behind the crest of a simulated Gulf Stream meander. The focusing of wave rays causes changes in wave direction, increases in wave energy, and decreases in wave directional spreading, which are in good agreement with the results from the buoy measurements.
A sound future for acoustic metamaterials.
Cummer, Steven
2017-05-01
The field of acoustic metamaterials borrowed ideas from electromagnetics and optics to create engineered structures that exhibit desired fluid or fluid-like properties for the propagation of sound. These metamaterials offer the possibility of manipulating and controlling sound waves in ways that are challenging or impossible with conventional materials. Metamaterials with zero, or negative, refractive index for sound offer new possibilities for acoustic imaging and for the control of sound at subwavelength scales. The combination of transformation acoustics theory and highly anisotropic acoustic metamaterials enables precise control over the deformation of sound fields, which can be used, for example, to hide or cloak objects from incident acoustic energy. And active acoustic metamaterials use external control and power to create effective material properties that are fundamentally not possible with passive structures. Challenges remain, including the development of efficient techniques for fabricating large-scale metamaterial structures and, critically, converting exciting laboratory experiments into practically useful devices. In this presentation, I will outline the recent history of the field, describe some of the designs and properties of materials with unusual acoustic parameters, discuss examples of extreme manipulation of sound, and finally, provide a personal perspective on future directions in the field.
Plasmonic Nanocone Arrays as Photoconductive and Photovoltaic Metamaterials
DEFF Research Database (Denmark)
Zhukovsky, Sergei; Babicheva, Viktoriia; Evlyuknin, Andrey B.
2014-01-01
Photoconductive and photovolta ic properties of metamaterials comprising plasmonic nanocone arrays embedded in a semiconductor matrix are studied. Under uniform plane-wave illumination, directed photocurrent and electromotive force arise ne ar asymmetrically shaped nanocones. The resulting giant ...
Metamaterials for perfect absorption
Lee, Young Pak; Yoo, Young Joon; Kim, Ki Won
2016-01-01
This book provides a comprehensive overview of the theory and practical development of metamaterial-based perfect absorbers (MMPAs). It begins with a brief history of MMPAs which reviews the various theoretical and experimental milestones in their development. The theoretical background and fundamental working principles of MMPAs are then discussed, providing the necessary background on how MMPAs work and are constructed. There then follows a section describing how different MMPAs are designed and built according to the operating frequency of the electromagnetic wave, and how their behavior is changed. Methods of fabricating and characterizing MMPAs are then presented. The book elaborates on the performance and characteristics of MMPAs, including electromagnetically-induced transparency (EIT). It also covers recent advances in MMPAs and their applications, including multi-band, broadband, tunability, polarization independence and incidence independence. Suitable for graduate students in optical sciences and e...
Direct detection of near-surface faults by migration of back-scattered surface waves
Yu, Han
2014-08-05
We show that diffraction stack migration can be used to estimate the distribution of near-surface faults. The assumption is that near-surface faults generate detectable back-scattered surface waves from impinging surface waves. The processing steps are to isolate the back-scattered surface waves, and then migrate them by diffraction migration using the surface wave velocity as the migration velocity. Instead of summing events along trial quasi-hyperbolas, surface wave migration sums events along trial quasi-linear trajectories that correspond to the moveout of back-scattered surface waves. A deconvolution filter derived from the data can be used to collapse a dispersive arrival into a non-dispersive event. Results with synthetic data and field records validate the feasibility of this method. Applying this method to USArray data or passively recorded exploration data might open new opportunities in mapping tectonic features over the extent of the array.
Chiral metamaterials: retrieval of the effective parameters with and without substrate
Zhao, Rongkuo; Koschny, Thomas; Soukoulis, Costas M.
2010-01-01
After the prediction that strong enough optical activity may result in negative refraction and negative reflection, more and more artificial chiral metamaterials were designed and fabricated at difference frequency ranges from microwaves to optical waves. Therefore, a simple and robust method to retrieve the effective constitutive parameters for chiral metamaterials is urgently needed. Here, we analyze the wave propagation in chiral metamaterials and follow the regular retrieval procedure for...
Transformation electromagnetics and metamaterials fundamental principles and applications
Werner, Douglas H
2013-01-01
Transformation electromagnetics is a systematic design technique for optical and electromagnetic devices that enables novel wave-material interaction properties. The associated metamaterials technology for designing and realizing optical and electromagnetic devices can control the behavior of light and electromagnetic waves in ways that have not been conventionally possible. The technique is credited with numerous novel device designs, most notably the invisibility cloaks, perfect lenses and a host of other remarkable devices.Transformation Electromagnetics and Metamaterials: Fundamental Princ
Study of Magnetohydrodynamic Surface Waves on Liquid Gallium
International Nuclear Information System (INIS)
Hantao Ji; William Fox; David Pace; Rappaport, H.L.
2004-01-01
Magnetohydrodynamic (MHD) surface waves on liquid gallium are studied theoretically and experimentally in the small magnetic Reynolds number limit. A linear dispersion relation is derived when a horizontal magnetic field and a horizontal electric current is imposed. No wave damping is found in the shallow liquid limit while waves always damp in the deep liquid limit with a magnetic field parallel to the propagation direction. When the magnetic field is weak, waves are weakly damped and the real part of the dispersion is unaffected, while in the opposite limit waves are strongly damped with shortened wavelengths. In a table-top experiment, planar MHD surface waves on liquid gallium are studied in detail in the regime of weak magnetic field and deep liquid. A non-invasive diagnostic accurately measures surface waves at multiple locations by reflecting an array of lasers off the surface onto a screen, which is recorded by an Intensified-CCD camera. The measured dispersion relation is consistent with the linear theory with a reduced surface tension likely due to surface oxidation. In excellent agreement with linear theory, it is observed that surface waves are damped only when a horizontal magnetic field is imposed parallel to the propagation direction. No damping is observed under a perpendicular magnetic field. The existence of strong wave damping even without magnetic field suggests the importance of the surface oxide layer. Implications to the liquid metal wall concept in fusion reactors, especially on the wave damping and a Rayleigh-Taylor instability when the Lorentz force is used to support liquid metal layer against gravity, are discussed
Observation of Zenneck-Like Waves over a Metasurface Designed for Launching HF Radar Surface Wave
Directory of Open Access Journals (Sweden)
Florent Jangal
2016-01-01
Full Text Available Since the beginning of the 20th century a controversy has been continuously revived about the existence of the Zenneck Wave. This wave is a theoretical solution of Maxwell’s equations and might be propagated along the interface between the air and a dielectric medium. The expected weak attenuation at large distance explains the constant interest for this wave. Notably in the High Frequency band such a wave had been thought as a key point to reduce the high attenuation observed in High Frequency Surface Wave Radar. Despite many works on that topic and various experiments attempted during one century, there is still an alternation of statements between its existence and its nonexistence. We report here an experiment done during the optimisation of the transmitting antennas for Surface Wave Radars. Using an infrared method, we visualize a wave having the structure described by Zenneck above a metasurface located on a dielectric slab.
Highly Efficient Wave-Front Reshaping of Surface Waves with Dielectric Metawalls
Dong, Shaohua; Zhang, Yu; Guo, Huijie; Duan, Jingwen; Guan, Fuxin; He, Qiong; Zhao, Haibin; Zhou, Lei; Sun, Shulin
2018-01-01
Controlling the wave fronts of surface waves (including surface-plamon polaritons and their equivalent counterparts) at will is highly important in photonics research, but the available mechanisms suffer from the issues of low efficiency, bulky size, and/or limited functionalities. Inspired by recent studies of metasurfaces that can freely control the wave fronts of propagating waves, we propose to use metawalls placed on a plasmonic surface to efficiently reshape the wave fronts of incident surface waves (SWs). Here, the metawall is constructed by specifically designed meta-atoms that can reflect SWs with desired phases and nearly unit amplitudes. As a proof of concept, we design and fabricate a metawall in the microwave regime (around 12 GHz) that can anomalously reflect the SWs following the generalized Snell's law with high efficiency (approximately 70%). Our results, in excellent agreement with full-wave simulations, provide an alternative yet efficient way to control the wave fronts of SWs in different frequency domains. We finally employ full-wave simulations to demonstrate a surface-plasmon-polariton focusing effect at telecom wavelength based on our scheme.
Experimental demonstration of a metal-dielectric metamaterial refractive index sensor
Li, Shengyong; Ai, Xiaochuan; Wu, Ronghua; Chen, Jiajun
2018-03-01
A metamaterial equipment is designed and experimental verified in the near-infrared with two reflectivity dips. The metamaterial equipment shows independent of polarization. Simulated results indicate that the reflectivity dip is excited by the coupling of localized surface plasmon (LSP) modes. The metamaterial equipment can work as a refractive index detection sensor with high figure of merit (FOM) value. This proposed metamaterial sensor can be applied in detecting different biochemical liquid.
Enhanced Sensitive Love Wave Surface Acoustic Wave Sensor Designed for Immunoassay Formats
Puiu, Mihaela; Gurban, Ana-Maria; Rotariu, Lucian; Brajnicov, Simona; Viespe, Cristian; Bala, Camelia
2015-01-01
We report a Love wave surface acoustic wave (LW-SAW) immunosensor designed for the detection of high molecular weight targets in liquid samples, amenable also for low molecular targets in surface competition assays. We implemented a label-free interaction protocol similar to other surface plasmon resonance bioassays having the advantage of requiring reduced time analysis. The fabricated LW-SAW sensor supports the detection of the target in the nanomolar range, and can be ultimately incorporat...
Ray-map migration of transmitted surface waves
Li, Jing
2016-08-25
Near-surface normal faults can sometimes separate two distinct zones of velocity heterogeneity, where the medium on one side of the fault has a faster velocity than on the other side. Therefore, the slope of surface-wave arrivals in a common-shot gather should abruptly change near the surface projection of the fault. We present ray-map imaging method that migrates transmitted surface waves to the fault plane, and therefore it roughly estimates the orientation, depth, and location of the near-surface fault. The main benefits of this method are that it is computationally inexpensive and robust in the presence of noise.
Energy Technology Data Exchange (ETDEWEB)
Peralta, J.; López-Valverde, M. A. [Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía, 18008 Granada (Spain); Imamura, T. [Institute of Space and Astronautical Science-Japan Aerospace Exploration Agency 3-1-1, Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Read, P. L. [Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford (United Kingdom); Luz, D. [Centro de Astronomia e Astrofísica da Universidade de Lisboa (CAAUL), Observatório Astronómico de Lisboa, Tapada da Ajuda, 1349-018 Lisboa (Portugal); Piccialli, A., E-mail: peralta@iaa.es [LATMOS, UVSQ, 11 bd dAlembert, 78280 Guyancourt (France)
2014-07-01
This paper is the second in a two-part study devoted to developing tools for a systematic classification of the wide variety of atmospheric waves expected on slowly rotating planets with atmospheric superrotation. Starting with the primitive equations for a cyclostrophic regime, we have deduced the analytical solution for the possible waves, simultaneously including the effect of the metric terms for the centrifugal force and the meridional shear of the background wind. In those cases where the conditions for the method of the multiple scales in height are met, these wave solutions are also valid when vertical shear of the background wind is present. A total of six types of waves have been found and their properties were characterized in terms of the corresponding dispersion relations and wave structures. In this second part, we study the waves' solutions when several atmospheric approximations are applied: Lamb, surface, and centrifugal waves. Lamb and surface waves are found to be quite similar to those in a geostrophic regime. By contrast, centrifugal waves turn out to be a special case of Rossby waves that arise in atmospheres in cyclostrophic balance. Finally, we use our results to identify the nature of the waves behind atmospheric periodicities found in polar and lower latitudes of Venus's atmosphere.
Numerical simulation of floating bodies in extreme free surface waves
Directory of Open Access Journals (Sweden)
Z. Z. Hu
2011-02-01
Full Text Available In this paper, we use the in-house Computational Fluid Dynamics (CFD flow code AMAZON-SC as a numerical wave tank (NWT to study wave loading on a wave energy converter (WEC device in heave motion. This is a surface-capturing method for two fluid flows that treats the free surface as contact surface in the density field that is captured automatically without special provision. A time-accurate artificial compressibility method and high resolution Godunov-type scheme are employed in both fluid regions (air/water. The Cartesian cut cell method can provide a boundary-fitted mesh for a complex geometry with no requirement to re-mesh globally or even locally for moving geometry, requiring only changes to cut cell data at the body contour. Extreme wave boundary conditions are prescribed in an empty NWT and compared with physical experiments prior to calculations of extreme waves acting on a floating Bobber-type device. The validation work also includes the wave force on a fixed cylinder compared with theoretical and experimental data under regular waves. Results include free surface elevations, vertical displacement of the float, induced vertical velocity and heave force for a typical Bobber geometry with a hemispherical base under extreme wave conditions.
Effect of irregularity on torsional surface waves in an initially ...
Indian Academy of Sciences (India)
Effect of irregularity on torsional surface waves in an initially stressed anisotropic porous layer sandwiched between homogeneous and non-homogeneous half- ... Torsional wave; anisotropy; initial stress; irregularity; non-homogeneity ... Department of Applied Mathematics, Indian School of Mines, Dhanbad 826 004, India.
Interpretation of nonlinearity in wind generated ocean surface waves
Digital Repository Service at National Institute of Oceanography (India)
Varkey, M.J.
This study attempts to resolve a mix-up between a physical process and its mathematical interpretation in the context of wind waves on ocean surface. Wind generated wave systems, are conventionally interpreted as a result of interaction of a number...
Surface waves in fibre-reinforced anisotropic elastic media
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
MS received 1 March 2002. Abstract. In the paper under discussion, the problem of surface waves in fibre- reinforced anisotropic elastic media has been studied. The authors express the plane strain displacement components in terms of two scalar potentials to decouple the plane motion into P and SV waves. In the present ...
Customized shaping of vibration modes by acoustic metamaterial synthesis
Xu, Jiawen; Li, Shilong; Tang, J.
2018-04-01
Acoustic metamaterials have attractive potential in elastic wave guiding and attenuation over specific frequency ranges. The vast majority of related investigations are on transient waves. In this research we focus on stationary wave manipulation, i.e., shaping of vibration modes. Periodically arranged piezoelectric transducers shunted with inductive circuits are integrated to a beam structure to form a finite-length metamaterial beam. We demonstrate for the first time that, under a given operating frequency of interest, we can facilitate a metamaterial design such that this frequency becomes a natural frequency of the integrated system. Moreover, the vibration mode corresponding to this natural frequency can be customized and shaped to realize tailored/localized response distribution. This is fundamentally different from previous practices of utilizing geometry modification and/or feedback control to achieve mode tailoring. The metamaterial design is built upon the combinatorial effects of the bandgap feature and the effective resonant cavity feature, both attributed to the dynamic characteristics of the metamaterial beam. Analytical investigations based on unit-cell dynamics and modal analysis of the metamaterial beam are presented to reveal the underlying mechanism. Case illustrations are validated by finite element analyses. Owing to the online tunability of circuitry integrated, the proposed mode shaping technique can be online adjusted to fit specific requirements. The customized shaping of vibration modes by acoustic metamaterial synthesis has potential applications in vibration suppression, sensing enhancement and energy harvesting.
A two-component NZRI metamaterial based rectangular cloak
Directory of Open Access Journals (Sweden)
Sikder Sunbeam Islam
2015-10-01
Full Text Available A new two-component, near zero refractive index (NZRI metamaterial is presented for electromagnetic rectangular cloaking operation in the microwave range. In the basic design a pi-shaped, metamaterial was developed and its characteristics were investigated for the two major axes (x and z-axis wave propagation through the material. For the z-axis wave propagation, it shows more than 2 GHz bandwidth and for the x-axis wave propagation; it exhibits more than 1 GHz bandwidth of NZRI property. The metamaterial was then utilized in designing a rectangular cloak where a metal cylinder was cloaked perfectly in the C-band area of microwave regime. The experimental result was provided for the metamaterial and the cloak and these results were compared with the simulated results. This is a novel and promising design for its two-component NZRI characteristics and rectangular cloaking operation in the electromagnetic paradigm.
Finite element simulations of surface effect on Rayleigh waves
He, Jin; Zhao, Jinling
2018-03-01
Rayleigh waves influenced by surface effect are investigated by using finite element methods, in which eigenfrequency analysis are performed on a model composed of a half-space covered by the surface effect dominated domain. For a given wavelength, the frequency of the Rayleigh wave is obtained as the eigenfrequency of the model satisfying Floquet periodic boundary conditions. The thickness of the surface effect can be set to be infinitely small or a finite value in the finite element methods. The curvature-dependent out-of-plane force induced by surface tension as described by the generalized Young-Laplace equation is realized through geometric nonlinear analysis. The finite element simulations show that the assumptions of small curvature and infinitely small thickness of the surface effect widely used in theoretical approaches become invalid when Rayleigh waves are highly influenced by the surface effect. This work gives a more accurate insight into the surface effect on Rayleigh waves and provides a potential method for measuring the thickness of the surface effect from the dispersion curves of surface effect influenced Rayleigh wave velocities.
Characterization of Meta-Materials Using Computational Electromagnetic Methods
Deshpande, Manohar; Shin, Joon
2005-01-01
An efficient and powerful computational method is presented to synthesize a meta-material to specified electromagnetic properties. Using the periodicity of meta-materials, the Finite Element Methodology (FEM) is developed to estimate the reflection and transmission through the meta-material structure for a normal plane wave incidence. For efficient computations of the reflection and transmission over a wide band frequency range through a meta-material a Finite Difference Time Domain (FDTD) approach is also developed. Using the Nicholson-Ross method and the Genetic Algorithms, a robust procedure to extract electromagnetic properties of meta-material from the knowledge of its reflection and transmission coefficients is described. Few numerical examples are also presented to validate the present approach.
Surface Wave Focusing and Acoustic Communications in the Surf Zone
National Research Council Canada - National Science Library
Preisig, James
2004-01-01
The forward scattering of acoustic signals off of shoaling surface gravity waves in the surf zone results in a time-varying channel impulse response that is characterized by intense, rapidly fluctuating arrivals...
Response of surface buoy moorings in steady and wave flows
Digital Repository Service at National Institute of Oceanography (India)
Anand, N.M.; Nayak, B.U.; SanilKumar, V.
A numerical model has been developed to evaluate the dynamics of surface buoy mooring systems under wave and current loading. System tension response and variation of tension in the mooring line at various depths have been evaluated for deep water...
CAMEX-3 JPL SURFACE ACOUSTIC WAVE (SAW) HYGROMETER V1
National Aeronautics and Space Administration — This CAMEX-3 Jet Propulsion Laboratory (JPL) Surface Acoustic Wave (SAW) Hygrometer dataset consists of dewpoint timeline measurements acquired during each DC-8...
Near field evidence of backward surface plasmon polaritons on negative index material boundaries
Energy Technology Data Exchange (ETDEWEB)
Cuevas, Mauro, E-mail: cuevas@df.uba.ar [Facultad de Ingeniería y Tecnología Informática, Universidad de Belgrano, Villanueva 1324, C1426BMJ, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); Grunhut, Vivian [Facultad de Ingeniería, Universidad Austral (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); Depine, Ricardo A. [Grupo de Electromagnetismo Aplicado, Departamento de Física, FCEN, Universidad de Buenos Aires and IFIBA, Ciudad Universitaria, Pabellón I, C1428EHA, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina)
2016-12-09
Highlights: • Electromagnetic scattering from a localized defect on a NIM surface is presented. • The electromagnetic response strongly depends on the SPPs excited. • Near field distribution reveals the forward or backward character of SPPs excited. - Abstract: We present a detailed analysis about the electromagnetic response of a metamaterial surface with a localized defect. The excitation of electromagnetic surface waves leads to a near-field distribution showing a periodic dependence along the metamaterial surface. We find that this periodic pattern provides a direct demonstration of the forward or backward surface wave propagation.
Estimating propagation velocity through a surface acoustic wave sensor
Xu, Wenyuan; Huizinga, John S.
2010-03-16
Techniques are described for estimating the propagation velocity through a surface acoustic wave sensor. In particular, techniques which measure and exploit a proper segment of phase frequency response of the surface acoustic wave sensor are described for use as a basis of bacterial detection by the sensor. As described, use of velocity estimation based on a proper segment of phase frequency response has advantages over conventional techniques that use phase shift as the basis for detection.
Lage-area planar RF plasma productions by surface waves
International Nuclear Information System (INIS)
Nonaka, S.
1994-01-01
Large-area rf plasmas are confirmed to be produced by means of RF discharges inside a large-area dielectric tube. The plasma space is 73 cm x 176 cm and 2.5 cm. The plasma is thought to be produced by an odd plasma-surface wave (PSW ο ) in case of using large-area electrodes and by an even plasma-surface wave (PSW ο ) in case of without the electrodes. (author). 7 refs, 4 figs
Modulation of cavity-polaritons by surface acoustic waves
DEFF Research Database (Denmark)
de Lima, M. M.; Poel, Mike van der; Hey, R.
2006-01-01
We modulate cavity-polaritons using surface acoustic waves. The corresponding formation of a mini-Brillouin zone and band folding of the polariton dispersion is demonstrated for the first time. Results are in good agreement with model calculations.......We modulate cavity-polaritons using surface acoustic waves. The corresponding formation of a mini-Brillouin zone and band folding of the polariton dispersion is demonstrated for the first time. Results are in good agreement with model calculations....
Anomalous Surface Wave Launching by Handedness Phase Control
Zhang, Xueqian
2015-10-09
Anomalous launch of a surface wave with different handedness phase control is achieved in a terahertz metasurface based on phase discontinuities. The polarity of the phase profile of the surface waves is found to be strongly correlated to the polarization handedness, promising polarization-controllable wavefront shaping, polarization sensing, and environmental refractive-index sensing. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Oscillon dynamics and rogue wave generation in Faraday surface ripples.
Xia, H; Maimbourg, T; Punzmann, H; Shats, M
2012-09-14
We report new experimental results which suggest that the generation of extreme wave events in the Faraday surface ripples is related to the increase in the horizontal mobility of oscillating solitons (oscillons). The analysis of the oscillon trajectories in a horizontal plane shows that at higher vertical acceleration, oscillons move chaotically, merge and form enclosed areas on the water surface. The probability of the formation of such craters, which precede large wave events, increases with the increase in horizontal mobility.
Auxetic-like metamaterials as novel earthquake protections
Directory of Open Access Journals (Sweden)
Ungureanu Bogdan
2015-01-01
Full Text Available We propose that wave propagation through a class of mechanical metamaterials opens unprecedented avenues in seismic wave protection based on spectral properties of auxetic-like metamaterials. The elastic parameters of these metamaterials like the bulk and shear moduli, the mass density, and even the Poisson ratio, can exhibit negative values in elastic stop bands. We show here that the propagation of seismic waves with frequencies ranging from 1 Hz to 40 Hz can be influenced by a decameter scale version of auxetic-like metamaterials buried in the soil, with the combined effects of impedance mismatch, local resonances and Bragg stop bands. More precisely, we numerically examine and illustrate the markedly different behaviors between the propagation of seismic waves through a homogeneous isotropic elastic medium (concrete and an auxetic-like metamaterial plate consisting of 43 cells (40 m × 40 m × 40 m, utilized here as a foundation of a building one would like to protect from seismic site effects. This novel class of seismic metamaterials opens band gaps at frequencies compatible with seismic waves when they are designed appropriately, what makes them interesting candidates for seismic isolation structures.
The Surface Wave Scattering-Microwave Scanner (SWS-MS)
Geffrin, Jean-Michel; Chamtouri, Maha; Merchiers, Olivier; Tortel, Hervé; Litman, Amélie; Bailly, Jean-Sébastien; Lacroix, Bernard; Francoeur, Mathieu; Vaillon, Rodolphe
2016-01-01
The Surface Wave Scattering-Microwave Scanner (SWS-MS) is a device that allows the measurement of the electromagnetic fields scattered by objects totally or partially submerged in surface waves. No probe is used to illuminate the sample, nor to guide or scatter the local evanescent waves. Surface waves are generated by total internal reflection and the amplitude and phase of the fields scattered by the samples are measured directly, both in the far-field and the near-field regions. The device's principles and their practical implementation are described in details. The surface wave generator is assessed by measuring the spatial distribution of the electric field above the surface. Drift correction and the calibration method for far-field measurements are explained. Comparison of both far-field and near-field measurements against simulation data shows that the device provides accurate results. This work suggests that the SWS-MS can be used for producing experimental reference data, for supporting a better understanding of surface wave scattering, for assisting in the design of near-field optical or infrared systems thanks to the scale invariance rule in electrodynamics, and for performing nondestructive control of defects in materials.
Rayleigh waves, surface disorder, and phonon localization in nanostructures
Maurer, L. N.; Mei, S.; Knezevic, I.
2016-07-01
We introduce a technique to calculate thermal conductivity in disordered nanostructures: a finite-difference time-domain solution of the elastic-wave equation combined with the Green-Kubo formula. The technique captures phonon wave behavior and scales well to nanostructures that are too large or too surface disordered to simulate with many other techniques. We investigate the role of Rayleigh waves and surface disorder on thermal transport by studying graphenelike nanoribbons with free edges (allowing Rayleigh waves) and fixed edges (prohibiting Rayleigh waves). We find that free edges result in a significantly lower thermal conductivity than fixed ones. Free edges both introduce Rayleigh waves and cause all low-frequency modes (bulk and surface) to become more localized. Increasing surface disorder on free edges draws energy away from the center of the ribbon and toward the disordered edges, where it gets trapped in localized surface modes. These effects are not seen in ribbons with fixed boundary conditions and illustrate the importance of phonon-surface modes in nanostructures.
Electric field vector measurements in a surface ionization wave discharge
International Nuclear Information System (INIS)
Goldberg, Benjamin M; Adamovich, Igor V; Lempert, Walter R; Böhm, Patrick S; Czarnetzki, Uwe
2015-01-01
This work presents the results of time-resolved electric field vector measurements in a short pulse duration (60 ns full width at half maximum), surface ionization wave discharge in hydrogen using a picosecond four-wave mixing technique. Electric field vector components are measured separately, using pump and Stokes beams linearly polarized in the horizontal and vertical planes, and a polarizer placed in front of the infrared detector. The time-resolved electric field vector is measured at three different locations across the discharge gap, and for three different heights above the alumina ceramic dielectric surface, ∼100, 600, and 1100 μm (total of nine different locations). The results show that after breakdown, the discharge develops as an ionization wave propagating along the dielectric surface at an average speed of 1 mm ns −1 . The surface ionization wave forms near the high voltage electrode, close to the dielectric surface (∼100 μm). The wave front is characterized by significant overshoot of both vertical and horizontal electric field vector components. Behind the wave front, the vertical field component is rapidly reduced. As the wave propagates along the dielectric surface, it also extends further away from the dielectric surface, up to ∼1 mm near the grounded electrode. The horizontal field component behind the wave front remains quite significant, to sustain the electron current toward the high voltage electrode. After the wave reaches the grounded electrode, the horizontal field component experiences a secondary rise in the quasi-dc discharge, where it sustains the current along the near-surface plasma sheet. The measurement results indicate presence of a cathode layer formed near the grounded electrode with significant cathode voltage fall, ≈3 kV, due to high current density in the discharge. The peak reduced electric field in the surface ionization wave is 85–95 Td, consistent with dc breakdown field estimated from the Paschen
Wave impedance retrieving via Bloch modes analysis
DEFF Research Database (Denmark)
Andryieuski, Andrei; Ha, S.; Sukhorukov, A.
2011-01-01
-ciples violation, like antiresonance behaviour with Im(ε) wave impedances by the surface and volume aver-aging of the electromagnetic field...... of the Bloch mode, respectively. Case studies prove that our ap-proach can determine material and wave effective parameters of lossy and lossless metamaterials. In some examples when the passivity is violated we made further analysis and showed that this is due to the failure of concept of impedance retrieving...
Large scale phononic metamaterials for seismic isolation
Energy Technology Data Exchange (ETDEWEB)
Aravantinos-Zafiris, N. [Department of Sound and Musical Instruments Technology, Ionian Islands Technological Educational Institute, Stylianou Typaldou ave., Lixouri 28200 (Greece); Sigalas, M. M. [Department of Materials Science, University of Patras, Patras 26504 (Greece)
2015-08-14
In this work, we numerically examine structures that could be characterized as large scale phononic metamaterials. These novel structures could have band gaps in the frequency spectrum of seismic waves when their dimensions are chosen appropriately, thus raising the belief that they could be serious candidates for seismic isolation structures. Different and easy to fabricate structures were examined made from construction materials such as concrete and steel. The well-known finite difference time domain method is used in our calculations in order to calculate the band structures of the proposed metamaterials.
Graphene and Graphene Metamaterials for Terahertz Absorbers
DEFF Research Database (Denmark)
Andryieuski, Andrei; Pizzocchero, Filippo; Booth, Tim
2013-01-01
Graphene, due to the possibility to tune its conductivity, is the promising material for a range of the terahertz (THz) applications, such as tunable reflectors, absorbers, modulators, filters and polarization converters. Subwavelength structuring of graphene in order to form metamaterials allows...... for even more control over the THz waves. In this poster presentation I will show an elegant way to describe the graphene metamaterials and the design of graphene based absorbers. I will also present our recent experimental results on the graphene absorbers characterization....
Large scale phononic metamaterials for seismic isolation
International Nuclear Information System (INIS)
Aravantinos-Zafiris, N.; Sigalas, M. M.
2015-01-01
In this work, we numerically examine structures that could be characterized as large scale phononic metamaterials. These novel structures could have band gaps in the frequency spectrum of seismic waves when their dimensions are chosen appropriately, thus raising the belief that they could be serious candidates for seismic isolation structures. Different and easy to fabricate structures were examined made from construction materials such as concrete and steel. The well-known finite difference time domain method is used in our calculations in order to calculate the band structures of the proposed metamaterials
Bistability in mushroom-type metamaterials
Fernandes, David E.; Silveirinha, Mário G.
2017-07-01
Here, we study the electromagnetic response of asymmetric mushroom-type metamaterials loaded with nonlinear elements. It is shown that near a Fano resonance, these structures may have a strong tunable, bistable, and switchable response and enable giant nonlinear effects. By using an effective medium theory and full wave simulations, it is proven that the nonlinear elements may allow the reflection and transmission coefficients to follow hysteresis loops, and to switch the metamaterial between "go" and "no-go" states similar to an ideal electromagnetic switch.
Equivalent circuit analysis of terahertz metamaterial filters
Zhang, Xueqian
2011-01-01
An equivalent circuit model for the analysis and design of terahertz (THz) metamaterial filters is presented. The proposed model, derived based on LMC equivalent circuits, takes into account the detailed geometrical parameters and the presence of a dielectric substrate with the existing analytic expressions for self-inductance, mutual inductance, and capacitance. The model is in good agreement with the experimental measurements and full-wave simulations. Exploiting the circuit model has made it possible to predict accurately the resonance frequency of the proposed structures and thus, quick and accurate process of designing THz device from artificial metamaterials is offered. ©2011 Chinese Optics Letters.
Tunable and Memory Metamaterials
2015-12-02
AFRL-AFOSR-VA-TR-2015-0402 TUNABLE AND MEMORY METAMATERIALS Dimitri Basov UNIVERSITY OF CALIFORNIA SAN DIEGO Final Report 12/02/2015 DISTRIBUTION A...DATES COVERED (From - To) 15-08-2010 to 14-08-2015 4. TITLE AND SUBTITLE TUNABLE AND MEMORY METAMATERIALS 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550...common limitations of infrared metamaterials in order to achieve low electromagnetic losses and broad tunability of the electromagnetic response. One
Nucleation of reaction-diffusion waves on curved surfaces
International Nuclear Information System (INIS)
Kneer, Frederike; Schöll, Eckehard; Dahlem, Markus A
2014-01-01
We study reaction-diffusion waves on curved two-dimensional surfaces, and determine the influence of curvature upon the nucleation and propagation of spatially localized waves in an excitable medium modelled by the generic FitzHugh–Nagumo model. We show that the stability of propagating wave segments depends crucially on the curvature of the surface. As they propagate, they may shrink to the uniform steady state, or expand, depending on whether they are smaller or larger, respectively, than a critical nucleus. This critical nucleus for wave propagation is modified by the curvature acting like an effective space-dependent local spatial coupling, similar to diffuson, thus extending the regime of propagating excitation waves beyond the excitation threshold of flat surfaces. In particular, a negative gradient of Gaussian curvature Γ, as on the outside of a torus surface (positive Γ), when the wave segment symmetrically extends into the inside (negative Γ), allows for stable propagation of localized wave segments remaining unchanged in size and shape, or oscillating periodically in size. (paper)
Surface-wave potential for triggering tectonic (nonvolcanic) tremor
Hill, D.P.
2010-01-01
Source processes commonly posed to explain instances of remote dynamic triggering of tectonic (nonvolcanic) tremor by surface waves include frictional failure and various modes of fluid activation. The relative potential for Love- and Rayleigh-wave dynamic stresses to trigger tectonic tremor through failure on critically stressed thrust and vertical strike-slip faults under the Coulomb-Griffith failure criteria as a function of incidence angle is anticorrelated over the 15- to 30-km-depth range that hosts tectonic tremor. Love-wave potential is high for strike-parallel incidence on low-angle reverse faults and null for strike-normal incidence; the opposite holds for Rayleigh waves. Love-wave potential is high for both strike-parallel and strike-normal incidence on vertical, strike-slip faults and minimal for ~45?? incidence angles. The opposite holds for Rayleigh waves. This pattern is consistent with documented instances of tremor triggered by Love waves incident on the Cascadia mega-thrust and the San Andreas fault (SAF) in central California resulting from shear failure on weak faults (apparent friction, ????? 0.2). However, documented instances of tremor triggered by surface waves with strike-parallel incidence along the Nankai megathrust beneath Shikoku, Japan, is associated primarily with Rayleigh waves. This is consistent with the tremor bursts resulting from mixed-mode failure (crack opening and shear failure) facilitated by near-lithostatic ambient pore pressure, low differential stress, with a moderate friction coefficient (?? ~ 0.6) on the Nankai subduction interface. Rayleigh-wave dilatational stress is relatively weak at tectonic tremor source depths and seems unlikely to contribute significantly to the triggering process, except perhaps for an indirect role on the SAF in sustaining tremor into the Rayleigh-wave coda that was initially triggered by Love waves.
Improved ion acceleration via laser surface plasma waves excitation
Energy Technology Data Exchange (ETDEWEB)
Bigongiari, A. [CEA/DSM/LSI, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France); TIPS/LULI, Université Paris 6, CNRS, CEA, Ecole Polytechnique, 3, rue Galilée, 94200 Ivry-sur-Seine (France); Raynaud, M. [CEA/DSM/LSI, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Riconda, C. [TIPS/LULI, Université Paris 6, CNRS, CEA, Ecole Polytechnique, 3, rue Galilée, 94200 Ivry-sur-Seine (France); Héron, A. [CPHT, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France)
2013-05-15
The possibility of enhancing the emission of the ions accelerated in the interaction of a high intensity ultra-short (<100 fs) laser pulse with a thin target (<10λ{sub 0}), via surface plasma wave excitation is investigated. Two-dimensional particle-in-cell simulations are performed for laser intensities ranging from 10{sup 19} to 10{sup 20} Wcm{sup −2}μm{sup 2}. The surface wave is resonantly excited by the laser via the coupling with a modulation at the target surface. In the cases where the surface wave is excited, we find an enhancement of the maximum ion energy of a factor ∼2 compared to the cases where the target surface is flat.
Scattering of surface waves modelled by the integral equation method
Lu, Laiyu; Maupin, Valerie; Zeng, Rongsheng; Ding, Zhifeng
2008-09-01
The integral equation method is used to model the propagation of surface waves in 3-D structures. The wavefield is represented by the Fredholm integral equation, and the scattered surface waves are calculated by solving the integral equation numerically. The integration of the Green's function elements is given analytically by treating the singularity of the Hankel function at R = 0, based on the proper expression of the Green's function and the addition theorem of the Hankel function. No far-field and Born approximation is made. We investigate the scattering of surface waves propagating in layered reference models imbedding a heterogeneity with different density, as well as Lamé constant contrasts, both in frequency and time domains, for incident plane waves and point sources.
An omnidirectional electromagnetic absorber made of metamaterials
International Nuclear Information System (INIS)
Cheng Qiang; Cui Tiejun; Jiang Weixiang; Cai Bengeng
2010-01-01
In a recent theoretical work by Narimanov and Kildishev (2009 Appl. Phys. Lett. 95 041106) an optical omnidirectional light absorber based on metamaterials was proposed, in which theoretical analysis and numerical simulations showed that all optical waves hitting the absorber are trapped and absorbed. Here we report the first experimental demonstration of an omnidirectional electromagnetic absorber in the microwave frequency. The proposed device is composed of non-resonant and resonant metamaterial structures, which can trap and absorb electromagnetic waves coming from all directions spirally inwards without any reflections due to the local control of electromagnetic fields. It is shown that the absorption rate can reach 99 per cent in the microwave frequency. The all-directional full absorption property makes the device behave like an 'electromagnetic black body', and the wave trapping and absorbing properties simulate, to some extent, an 'electromagnetic black hole.' We expect that such a device could be used as a thermal emitting source and to harvest electromagnetic waves.
2014-11-17
associated with backward electromagnetic and elastic waves are reviewed. Particular realizations of negative spatial dispersion which enable such... elastic waves are reviewed. Particular realizations of negative spatial dispersion which enable such waves are discussed OUTLINE * NIMs and BEMWs...Metamaterials, metasurfaces, magneto -dielectrics and nano-technology materials have been introduced recently under different names with the general objectives of
Experimental Investigations on Microshock Waves and Contact Surfaces
Kai, Yun; Garen, Walter; Teubner, Ulrich
2018-02-01
The present work reports on progress in the research of a microshock wave. Because of the lack of a good understanding of the propagation mechanism of the microshock flow system (shock wave, contact surface, and boundary layer), the current work concentrates on measuring microshock flows with special attention paid to the contact surface. A novel setup involving a glass capillary (with a 200 or 300 μ m hydraulic diameter D ) and a high-speed magnetic valve is applied to generate a shock wave with a maximum initial Mach number of 1.3. The current work applies a laser differential interferometer to perform noncontact measurements of the microshock flow's trajectory, velocity, and density. The current work presents microscale measurements of the shock-contact distance L that solves the problem of calculating the scaling factor Sc =Re ×D /(4 L ) (introduced by Brouillette), which is a parameter characterizing the scaling effects of shock waves. The results show that in contrast to macroscopic shock waves, shock waves at the microscale have a different propagation or attenuation mechanism (key issue of this Letter) which cannot be described by the conventional "leaky piston" model. The main attenuation mechanism of microshock flow may be the ever slower moving contact surface, which drives the shock wave. Different from other measurements using pressure transducers, the current setup for density measurements resolves the whole microshock flow system.
Temperature Compensation of Surface Acoustic Waves on Berlinite
Searle, David Michael Marshall
The surface acoustic wave properties of Berlinite (a-AlPO4) have been investigated theoretically and experimentally, for a variety of crystallographic orientations, to evaluate its possible use as a substrate material for temperature compensated surface acoustic wave devices. A computer program has been developed to calculate the surface wave properties of a material from its elastic, piezoelectric, dielectric and lattice constants and their temperature derivatives. The program calculates the temperature coefficient of delay, the velocity of the surface wave, the direction of power flow and a measure of the electro-mechanical coupling. These calculations have been performed for a large number of orientations using a modified form of the data given by Chang and Barsch for Berlinite and predict several new temperature compensated directions. Experimental measurements have been made of the frequency-temperature response of a surface acoustic wave oscillator on an 80° X axis boule cut which show it to be temperature compensated in qualitative agreement with the theoretical predictions. This orientation shows a cubic frequency-temperature dependence instead of the expected parabolic response. Measurements of the electro-mechanical coupling coefficient k gave a value lower than predicted. Similar measurements on a Y cut plate gave a value which is approximately twice that of ST cut quartz, but again lower than predicted. The surface wave velocity on both these cuts was measured to be slightly higher than predicted by the computer program. Experimental measurements of the lattice parameters a and c are also presented for a range of temperatures from 25°C to just above the alpha-beta transition at 584°C. These results are compared with the values obtained by Chang and Barsch. The results of this work indicate that Berlinite should become a useful substrate material for the construction of temperature compensated surface acoustic wave devices.
Scattering of a TEM wave from a time varying surface
Elcrat, Alan R.; Harder, T. Mark; Stonebraker, John T.
1990-03-01
A solution is given for reflection of a plane wave with TEM polarization from a planar surface with time varying properties. These properties are given in terms of the currents on the surface. The solution is obtained by numerically solving a system of differential-delay equations in the time domain.
Vibrant times for mechanical metamaterials
DEFF Research Database (Denmark)
Christensen, Johan; Kadic, Muamer; Kraft, Oliver
2015-01-01
Metamaterials are man-made designer matter that obtains its unusual effective properties by structure rather than chemistry. Building upon the success of electromagnetic and acoustic metamaterials, researchers working on mechanical metamaterials strive at obtaining extraordinary or extreme...... mass density, negative modulus, pentamode, anisotropic mass density, Origami, nonlinear, bistable, and reprogrammable mechanical metamaterials....
Solar energy converter using surface plasma waves
Anderson, L. M. (Inventor)
1984-01-01
Sunlight is dispersed over a diffraction grating formed on the surface of a conducting film on a substrate. The angular dispersion controls the effective grating period so that a matching spectrum of surface plasmons is excited for parallel processing on the conducting film. The resulting surface plasmons carry energy to an array of inelastic tunnel diodes. This solar energy converter does not require different materials for each frequency band, and sunlight is directly converted to electricity in an efficient manner by extracting more energy from the more energetic photons.
Surface waves in the partially ionized solar plasma slab
Pandey, B. P.
2013-12-01
The properties of surface waves in the partially ionized, incompressible magnetized plasma slab are investigated in the present work. The waves are affected by the non-ideal magnetohydrodynamic (MHD) effects which cause the finite drift of the magnetic field in the medium. When the finite drift of the magnetic field is ignored, the characteristics of the wave propagation in the partially ionized plasma fluid are similar to the ideal MHD, except now the propagation properties depend on the fractional ionization of the medium. In the presence of the Hall diffusion, the propagation of the sausage and kink surface waves depends on the level of fractional ionization of the medium. For example, short wavelength surface modes cannot propagate in the medium if the scale over which Hall operates is comparable to the size of the plasma slab. With the increasing ionization, the surface modes of shorter wavelength are permitted in the system. When both the Hall and Pedersen diffusion are present in the medium, the waves undergo damping. In the case of Pedersen dominating Hall, the damping of the long wavelength fluctuations is dependent on the ratio of the plasma densities inside and outside the slab and on the square of the Pedersen diffusivity. For typical solar parameters, waves may damp over few minutes.
Near Surface Characterization Of Concrete Structures Using Rayleigh Waves
Al Wardany, R.; Ballivy, G.; Saleh, K.; Rhazi, J.; Gallias, J.
2004-05-01
The deterioration of the near surface concrete minimises the structural behaviour, capacity, and working lifespan for civil engineering structures and dams. Repair strategy and maintenance require careful examination and determination of the degraded depth. In this aim, dispersive properties of Rayleigh waves are used to detect concrete stratification and cracks. Current work focuses on an experimental study and application of multichannel Rayleigh wave methods on high concrete volumes. The method considers a wavefield in the frequency-wavenumber domain to separate existing Rayleigh modes and determine the appropriate shear wave velocity profile. The classical phase unwrapping analysis technique is also used to localise near surface cracks and defects. This new way in concrete nondestructive testing lead to a best evaluation of near surface stiffness and properties from the surface of concrete structures.
Anisotropic metamaterial waveguide driven by a cold and relativistic electron beam
Torabi, Mahmoud; Shokri, Babak
2018-03-01
We study the interaction of a cold and relativistic electron beam with a cylindrical waveguide loaded by an anisotropic and dispersive metamaterial layer. The general dispersion relation for the transverse magnetic (TM) mode, through the linear fluid model and Maxwell equations decomposition method, is derived. The effects of some metamaterial parameters on dispersion relation are presented. A qualitative discussion shows the possibility of monomodal propagation band widening and obtaining more control on dispersion relation behavior. Especially for epsilon negative near zero metamaterials, these effects are considerable. Finally, the anisotropy and metamaterial layer thickness impacts on wave growth rate for different metamaterials are considered. The results demonstrate that we can control both wave growth rate and voltage of saturation peak by metamaterial parameters.
Directive Emission Obtained by Mu and Epsilon-Near-Zero Metamaterials
Directory of Open Access Journals (Sweden)
J. Yang
2009-06-01
Full Text Available In this work, we use Mu and Epsilon-Near-Zero (MENZ metamaterials to realize the substrates that can modify the emission of an embedded line source. Simulation results show that the cylindrical waves emitted from the line source can be perfectly converted to plane wave through the MENZ metamaterial slab with planar exit face. Hence the line source together with the metamaterial slab constructs a high directive slab antenna. The directive radiation pattern of the MENZ metamaterial-assisted slab antenna is independent on the thickness of the slab, the position of the line source, and the shape of the entrance face of the slab, but the slab with grooved entrance side will result in stronger far-field intensity. We also show that the MENZ metamaterials can be applied to the design of antenna array. Moreover, compared with the high directive slab antenna obtained by coordinate transformation approach, the MENZ metamaterial-assisted antenna is more preferable.
Acoustic Luneburg lens using orifice-type metamaterial unit cells
Park, Choon Mahn; Lee, Sang Hun
2018-02-01
A two-dimensional acoustic Luneburg lens that can be easily expanded into a three-dimensional sphere is fabricated. The required spatial distribution of the refractive index for this Luneburg lens is realized using the characteristics of orifice-type metamaterial unit cells. Typical characteristics of the resulting acoustic Luneburg lens, such as its aberration-free performance and capability for antipodal focusing of the lens for the incident plane waves, are investigated through experiments and simulations with the attenuation loss at frequencies that satisfy the homogeneous medium condition of the metamaterial. With the designed metamaterial, we achieved the minimum spot that lies within the classical diffraction limit at the focal point.
Classification of topological phonons in linear mechanical metamaterials.
Süsstrunk, Roman; Huber, Sebastian D
2016-08-16
Topological phononic crystals, alike their electronic counterparts, are characterized by a bulk-edge correspondence where the interior of a material dictates the existence of stable surface or boundary modes. In the mechanical setup, such surface modes can be used for various applications such as wave guiding, vibration isolation, or the design of static properties such as stable floppy modes where parts of a system move freely. Here, we provide a classification scheme of topological phonons based on local symmetries. We import and adapt the classification of noninteracting electron systems and embed it into the mechanical setup. Moreover, we provide an extensive set of examples that illustrate our scheme and can be used to generate models in unexplored symmetry classes. Our work unifies the vast recent literature on topological phonons and paves the way to future applications of topological surface modes in mechanical metamaterials.
Classification of topological phonons in linear mechanical metamaterials
Süsstrunk, Roman
2016-01-01
Topological phononic crystals, alike their electronic counterparts, are characterized by a bulk–edge correspondence where the interior of a material dictates the existence of stable surface or boundary modes. In the mechanical setup, such surface modes can be used for various applications such as wave guiding, vibration isolation, or the design of static properties such as stable floppy modes where parts of a system move freely. Here, we provide a classification scheme of topological phonons based on local symmetries. We import and adapt the classification of noninteracting electron systems and embed it into the mechanical setup. Moreover, we provide an extensive set of examples that illustrate our scheme and can be used to generate models in unexplored symmetry classes. Our work unifies the vast recent literature on topological phonons and paves the way to future applications of topological surface modes in mechanical metamaterials. PMID:27482105
Artificial ocean upwelling utilizing the energy of surface waves
Soloviev, Alexander
2016-04-01
Artificial upwelling can bring cold water from below the thermocline to the sea surface. Vershinsky, Pshenichnyy, and Soloviev (1987) developed a prototype device, utilizing the energy of surface waves to create an upward flow of water in the tube. This is a wave-inertia pump consisting of a vertical tube, a valve, and a buoy to keep the device afloat. An outlet valve at the top of the unit synchronizes the operation of the device with surface waves and prevents back-splashing. A single device with a 100 m long and 1.2 m diameter tube is able to produce up to 1 m3s-1 flow of deep water to the surface. With a 10 oC temperature difference over 100 m depth, the negative heat supply rate to the sea surface is 42 MW, which is equivalent to a 42 Wm-2 heat flux, if distributed over 1 km2 area. Such flux is comparable to the average net air-sea flux. A system of artificial upwelling devices can cool down the sea surface, modify climate on a regional scale and possibly help mitigate hurricanes. The cold water brought from a deeper layer, however, has a larger density than the surface water and therefore has a tendency to sink back down. In this work, the efficiency of wave-inertia pumps and climatic consequences are estimated for different environmental conditions using a computational fluid dynamics model.
Impedance-Matched, Double-Zero Optical Metamaterials Based on Weakly Resonant Metal Oxide Nanowires
Directory of Open Access Journals (Sweden)
Diego R. Abujetas
2018-03-01
Full Text Available Artificial optical metamaterial with a zero index of refraction holds promise for many diverse phenomena and applications, which can be achieved with vacuum (or related surface impedance and materials in the optical domain. Here, we propose simple metal-oxide nanorods as meta-atoms on the basis of an effective medium approach, based on their weak overlapping (electric/magnetic resonances. We thus studied the optical properties of TiO 2 nanowire arrays with a high-filling fraction through their photonic band structure, which exhibits a double-degeneracy point without a band gap at the center of the Brillouin zone. Various configurations are considered that reveal their performance over a reasonable range of incident wave vectors as impedance-matched, double-zero, bulk (low-loss metamaterials.
Multiple scattering formulation of two-dimensional acoustic and electromagnetic metamaterials
Energy Technology Data Exchange (ETDEWEB)
Torrent, Daniel; Sanchez-Dehesa, Jose, E-mail: datorma1@upvnet.upv.es, E-mail: jsdehesa@upvnet.upv.es [Grupo de Fenomenos Ondulatorios, Departamento de IngenierIa Electronica, Universitat Politecnica de Valencia, Camino de Vera s/n (Edificio 7F), ES-46022 Valencia (Spain)
2011-09-15
A multiple scattering formulation of two-dimensional (2D) acoustic metamaterials is presented. This approach is comprehensive and can lead to frequency-dependent effective parameters (scalar bulk modulus and tensorial mass density), as it is possible to have not only positive or negative ellipsoidal refractive index, but also positive or negative hyperbolic refractive index. The correction due to multiple scattering interactions is included in the theory and it is demonstrated that its contribution is important only for lattices with high filling fractions. Since the surface fields on the scatterers are mainly responsible for the anomalous behavior of the resulting effective medium, complex scatterers can be used to engineer the frequency response. Anisotropic effects are also discussed within this formulation and some numerical examples are reported. A homogenization theory is also extended to electromagnetic wave propagation in 2D lattices of dielectric structures, where Mie resonances are found to be responsible for the metamaterial behavior.
Resonance meets homogenization - Construction of meta-materials with astonishing properties
Schweizer, Ben
2016-01-01
Meta-materials are assemblies of small components. Even though the single component consists of ordinary materials, the meta-material may behave effectively in a way that is not known from ordinary materials. In this text, we discuss some meta-materials that exhibit unusual properties in the propagation of sound or light. The phenomena are based on resonance effects in the small components. The small (sub-wavelength) components can be resonant to the wave-length of an extern...
Transformation optics approach for Goos-Hänchen shift enhancement at metamaterial interfaces
Lambrechts, Lieve; Ginis, Vincent; Danckaert, Jan; Tassin, Philippe
2016-04-01
Since its first observation in 1947, the Goos-Hänchen effect—an electromagnetic wave phenomenon where a totally reflected beam with finite cross section undergoes a lateral displacement from its position predicted by geometric optics—has been extensively investigated for various types of optical media such as dielectrics, metals and photonic crystals. Given their huge potential for guiding and sensing applications, the search for giant and tunable Goos-Hänchen shifts is still an open question in the field of optics and photonics. Metamaterials allow for unprecedented control over electromagnetic properties and thus provide an interesting platform in this quest for Goos-Hänchen shift enhancement. Over the last few years, the Goos-Hänchen effect has been investigated for specific metamaterial interfaces including graphene-on-dielectric surfaces, negative index materials and epsilon- near-zero materials. In this contribution, we generalize the approach for the investigation of the Goos-Hänchen effect based on the geometric formalism of transformation optics. Although this metamaterial design methodology is generally applied to manipulate the propagation of light through continuous media, we show how it can also be used to describe the reflections arising at the interface between a vacuum region and a transformed region with a metamaterial implementation. Furthermore, we establish an analytical model that relates the magnitude of the Goos-Hänchen shift to the underlying geometry of the transformed medium. This model shows how the dependence of the Goos-Hänchen shift on geometric parameters can be used to dramatically enhance the size of the shift by an appropriate choice of permittivity and permeability tensors. Numerical simulations of a beam with spatial Gaussian profile incident upon metamaterial interfaces verify the model and firmly establish a novel route towards Goos-Hänchen shift engineering using transformation optics.
LATERAL FLOODING ASSOCIATED TO WAVE FLOOD GENERATION ON RIVER SURFACE
Directory of Open Access Journals (Sweden)
C. Ramírez-Núñez
2016-06-01
Full Text Available This research provides a wave flood simulation using a high resolution LiDAR Digital Terrain Model. The simulation is based on the generation of waves of different amplitudes that modify the river level in such a way that water invades the adjacent areas. The proposed algorithm firstly reconstitutes the original river surface of the studied river section and then defines the percentage of water loss when the wave floods move downstream. This procedure was applied to a gently slope area in the lower basin of Coatzacoalcos river, Veracruz (Mexico defining the successive areas where lateral flooding occurs on its downstream movement.
Lateral Flooding Associated to Wave Flood Generation on River Surface
Ramírez-Núñez, C.; Parrot, J.-F.
2016-06-01
This research provides a wave flood simulation using a high resolution LiDAR Digital Terrain Model. The simulation is based on the generation of waves of different amplitudes that modify the river level in such a way that water invades the adjacent areas. The proposed algorithm firstly reconstitutes the original river surface of the studied river section and then defines the percentage of water loss when the wave floods move downstream. This procedure was applied to a gently slope area in the lower basin of Coatzacoalcos river, Veracruz (Mexico) defining the successive areas where lateral flooding occurs on its downstream movement.
Numerical Simulation of Floating Bodies in Extreme Free Surface Waves
Hu, Zheng Zheng; Causon, Derek; Mingham, Clive; Qiang, Ling
2010-05-01
A task of the EPSRC funded research project 'Extreme Wave loading on Offshore Wave Energy Devices: a Hierarchical Team Approach' is to investigate the survivability of two wave energy converter (WEC) devices Pelamis and the Manchester Bobber using different CFD approaches. Both devices float on the water surface, generating the electricity from the motion of the waves. In this paper, we describe developments of the AMAZON-SC 3D numerical wave tank (NWT) to study extreme wave loading of a fixed or floating (in Heave motion) structure. The extreme wave formulation as an inlet condition is due to Dalzell (1999) and Ning et. al. (2009) in which a first or second-order Stokes focused wave can be prescribed. The AMAZON-SC 3D code (see e.g. Hu et al. (2009)) uses a cell centred finite volume method of the Godunov-type for the space discretization of the Euler and Navier Stokes equations. The computational domain includes both air and water regions with the air/water boundary captured as a discontinuity in the density field thereby admitting the break up and recombination of the free surface. Temporal discretisation uses the artificial compressibility method and a dual time stepping strategy to maintain a divergence free velocity field. Cartesian cut cells are used to provide a fully boundary-fitted gridding capability on an regular background Cartesian grid. Solid objects are cut out of the background mesh leaving a set of irregularly shaped cells fitted to the boundary. The advantages of the cut cell approach have been outlined previously by Causon et al. (2000, 2001) including its flexibility for dealing with complex geometries whether stationary or in relative motion. The field grid does not need to be recomputed globally or even locally for moving body cases; all that is necessary is to update the local cut cell data at the body contour for as long as the motion continues. The handing of numerical wave paddles and device motion in a NWT is therefore straightforward
Simulation of Zitterbewegung by modelling the Dirac equation in Metamaterials
Ahrens, Sven; Jiang, Jun; Sun, Yong; Zhu, Shi-Yao
2015-01-01
We develop a dynamic description of an effective Dirac theory in metamaterials, in which the wavefunction is modeled by the corresponding electric and magnetic field in the metamaterial. This electro-magnetic field can be probed in the experimental setup, which means that the wavefunction of the effective theory is directly accessible by measurement. Our model is based on a plane wave expansion, which ravels the identification of Dirac spinors with single-frequency excitations of the electro-...
Electrical dynamic modulation of THz radiation based on superconducting metamaterials
Li, Chun; Wu, Jingbo; Jiang, Shoulu; Su, Runfeng; Zhang, Caihong; Jiang, Chengtao; Zhou, Gaochao; Jin, Biaobing; Kang, Lin; Xu, Weiwei; Chen, Jian; Wu, Peiheng
2017-08-01
We demonstrate an electrically tunable superconducting metamaterial capable of modulating terahertz waves dynamically. The device is based on electromagnetically induced transparency-like metamaterials, and the maximum modulation depth reaches 79.8% in the transmission window. Controlled by an electrical sinusoidal signal, such a device could achieve a modulation speed of approximately 1 MHz. The superior property and simplicity of design make this device promising for the development of high performance THz systems.
Bloch-mode analysis for retrieving effective parameters of metamaterials
DEFF Research Database (Denmark)
Andryieuski, Andrei; Ha, Sangwoo; Sukhorukov, Andrey A.
2012-01-01
We introduce an approach for retrieving effective parameters of metamaterials based on the Bloch-mode analysis of quasiperiodic composite structures. We demonstrate that, in the case of single-mode propagation, a complex effective refractive index can be assigned to the structure, being restored...... that this approach can be useful for retrieval of both material and wave effective parameters of a broad range of metamaterials....
Surface waves in an heterogeneous anisotropic continental lithosphere
Maupin, V.
2003-04-01
At global as well as at regional scale, the lithosphere appears usually faster to Love waves than to Rayleigh waves. This Love-Rayleigh discrepancy can be modelled by introducing transverse isotropy in the mantle. In continental structures, the amount of transverse isotropy necessary to explain the discrepancy is however often quite large and not compatible with results of SKS-splitting analysis and azimuthal variation of surface wave velocities, at least in the simple framework of large scale uniform olivine orientation in the continental lithosphere. Models where the orientation of the olivine is incoherent at the scale of a few hundred km have been proposed to reconcile the different datasets, but the surface wave characteristics in such anisotropic heterogeneous models have not yet been analysed in detail. Using a mode-coupling scheme for calculating surface wave propagation in heterogeneous anisotropic structures, we analyse the characteristics of Rayleigh and Love waves in such laterally varying anisotropic models. We generate 3-D stochastic models of olivine orientation with different characteristics: preferred orientation dominantly horizontal, vertical or equally distributed in all directions, and use different correlation lengths in the horizontal and vertical directions to constrain the scale at which the anisotropy is coherent. We analyse the apparent Love-Rayleigh discrepancy and the phase velocity azimuthal variation these models generate and the mode-coupling and polarisation anomalies they produce.
Enhanced sensitive love wave surface acoustic wave sensor designed for immunoassay formats.
Puiu, Mihaela; Gurban, Ana-Maria; Rotariu, Lucian; Brajnicov, Simona; Viespe, Cristian; Bala, Camelia
2015-05-05
We report a Love wave surface acoustic wave (LW-SAW) immunosensor designed for the detection of high molecular weight targets in liquid samples, amenable also for low molecular targets in surface competition assays. We implemented a label-free interaction protocol similar to other surface plasmon resonance bioassays having the advantage of requiring reduced time analysis. The fabricated LW-SAW sensor supports the detection of the target in the nanomolar range, and can be ultimately incorporated in portable devices, suitable for point-of-care testing (POCT) applications.
Enhanced Sensitive Love Wave Surface Acoustic Wave Sensor Designed for Immunoassay Formats
Directory of Open Access Journals (Sweden)
Mihaela Puiu
2015-05-01
Full Text Available We report a Love wave surface acoustic wave (LW-SAW immunosensor designed for the detection of high molecular weight targets in liquid samples, amenable also for low molecular targets in surface competition assays. We implemented a label-free interaction protocol similar to other surface plasmon resonance bioassays having the advantage of requiring reduced time analysis. The fabricated LW-SAW sensor supports the detection of the target in the nanomolar range, and can be ultimately incorporated in portable devices, suitable for point-of-care testing (POCT applications.
Thermal hyperbolic metamaterials.
Guo, Yu; Jacob, Zubin
2013-06-17
We explore the near-field radiative thermal energy transfer properties of hyperbolic metamaterials. The presence of unique electromagnetic states in a broad bandwidth leads to super-planckian thermal energy transfer between metamaterials separated by a nano-gap. We consider practical phonon-polaritonic metamaterials for thermal engineering in the mid-infrared range and show that the effect exists in spite of the losses, absorption and finite unit cell size. For thermophotovoltaic energy conversion applications requiring energy transfer in the near-infrared range we introduce high temperature hyperbolic metamaterials based on plasmonic materials with a high melting point. Our work paves the way for practical high temperature radiative thermal energy transfer applications of hyperbolic metamaterials.
Directory of Open Access Journals (Sweden)
Stephan Schwaiger
2012-01-01
Full Text Available In this paper we review metamaterials fabricated from self-rolling strained metal-semiconductor layer systems. These systems relax their strain upon release from the substrate by rolling up into microtubes with a cross-section similar to a rolled-up carpet. We show that the walls of these microtubes represent three-dimensional optical metamaterials which so far could be used, for example, for the realization of broadband hyperlenses, fishnet metamaterials, or optically active three-dimensional metamaterials utilizing the unique possibility to stack optically active semiconductor heterostructures and metallic nanostructures. Furthermore, we discuss THz metamaterials based on arrays of rolled-up metal semiconductor microtubes and helices.
Isotropic Single Negative Metamaterials
Directory of Open Access Journals (Sweden)
P. Protiva
2008-09-01
Full Text Available This paper presents the application of simple, and therefore cheap, planar resonators for building 3D isotropic metamaterials. These resonators are: a broadside-coupled split ring resonator with a magnetic response providing negative permeability; an electric dipole terminated by a loop inductor together with a double H-shaped resonator with an electric response providing negative permittivity. Two kinds of 3D isotropic single negative metamaterials are reported. The first material consists of unit cells in the form of a cube bearing on its faces six equal planar resonators with tetrahedral symmetry. In the second material, the planar resonators boxed into spherical plastic shells and randomly distributed in a hosting material compose a real 3D volumetric metamaterial with an isotropic response. In both cases the metamaterial shows negative permittivity or permeability, according to the type of resonators that are used. The experiments prove the isotropic behavior of the cells and of the metamaterial specimens.
Surface-Wave Relocation of Remote Continental Earthquakes
Kintner, J. A.; Ammon, C. J.; Cleveland, M.
2017-12-01
Accurate hypocenter locations are essential for seismic event analysis. Single-event location estimation methods provide relatively imprecise results in remote regions with few nearby seismic stations. Previous work has demonstrated that improved relative epicentroid precision in oceanic environments is obtainable using surface-wave cross correlation measurements. We use intermediate-period regional and teleseismic Rayleigh and Love waves to estimate relative epicentroid locations of moderately-sized seismic events in regions around Iran. Variations in faulting geometry, depth, and intermediate-period dispersion make surface-wave based event relocation challenging across this broad continental region. We compare and integrate surface-wave based relative locations with InSAR centroid location estimates. However, mapping an earthquake sequence mainshock to an InSAR fault deformation model centroid is not always a simple process, since the InSAR observations are sensitive to post-seismic deformation. We explore these ideas using earthquake sequences in western Iran. We also apply surface-wave relocation to smaller magnitude earthquakes (3.5 wave dispersion. Frequency-domain inter-event phase observations are used to understand the time-domain cross-correlation information, and to choose the appropriate band for applications using shorter periods. Over short inter-event distances, the changing group velocity does not strongly degrade the relative locations. For small-magnitude seismic events in continental regions, surface-wave relocation does not appear simple enough to allow broad routine application, but using this method to analyze individual earthquake sequences can provide valuable insight into earthquake and faulting processes.
Relationship between ultrasonic Rayleigh waves and surface residual stress
International Nuclear Information System (INIS)
Adler, L.; Cook, K.V.; Dewey, B.R.; King, R.T.
1977-01-01
Local variations of Rayleigh (surface) circumferential ultrasonic wave velocity near a pipe-girth weld in large-diameter thin-wall type 316H stainless steel pipe were measured. The weldment was similar to those anticipated for the Liquid Metal Fast Breeder Reactor (LMFBR) piping systems. The residual stress distribution was estimated independently from shell theory for an elastic, infinite, thin shell with circumferential line loading. An upper bound on the magnitude of the residual stresses was estimated assuming the deformation of the shell was entirely elastic. The pattern of surface wave velocity variations matches the theoretical residual stress pattern closely. It is suggested that the monitoring of surface wave velocity variations might be used for characterizing residual stress patterns near critical welds in piping, aiding in design calculations, and for in-service monitoring of the state of stress of weldments
Surface Acoustic Wave Devices for Harsh Environment Wireless Sensing
Directory of Open Access Journals (Sweden)
David W. Greve
2013-05-01
Full Text Available Langasite surface acoustic wave devices can be used to implement harsh-environment wireless sensing of gas concentration and temperature. This paper reviews prior work on the development of langasite surface acoustic wave devices, followed by a report of recent progress toward the implementation of oxygen gas sensors. Resistive metal oxide films can be used as the oxygen sensing film, although development of an adherent barrier layer will be necessary with the sensing layers studied here to prevent interaction with the langasite substrate. Experimental results are presented for the performance of a langasite surface acoustic wave oxygen sensor with tin oxide sensing layer, and these experimental results are correlated with direct measurements of the sensing layer resistivity.
Langasite Surface Acoustic Wave Sensors: Fabrication and Testing
Energy Technology Data Exchange (ETDEWEB)
Zheng, Peng; Greve, David W.; Oppenheim, Irving J.; Chin, Tao-Lun; Malone, Vanessa
2012-02-01
We report on the development of harsh-environment surface acoustic wave sensors for wired and wireless operation. Surface acoustic wave devices with an interdigitated transducer emitter and multiple reflectors were fabricated on langasite substrates. Both wired and wireless temperature sensing was demonstrated using radar-mode (pulse) detection. Temperature resolution of better than ±0.5°C was achieved between 200°C and 600°C. Oxygen sensing was achieved by depositing a layer of ZnO on the propagation path. Although the ZnO layer caused additional attenuation of the surface wave, oxygen sensing was accomplished at temperatures up to 700°C. The results indicate that langasite SAW devices are a potential solution for harsh-environment gas and temperature sensing.
Surface Wave Velocity-Stress Relationship in Uniaxially Loaded Concrete
DEFF Research Database (Denmark)
Shokouhi, Parisa; Zoëga, Andreas; Wiggenhauser, Herbert
2012-01-01
loading cycles revealed that the velocities show a stress-memory effect in good agreement with the Kaiser effect. Comparing the velocities measured during loading and unloading, the effects of stress and damage on the measured velocities could be differentiated. Moreover, the stress dependency of surface......The sonic surface wave (or Rayleigh wave) velocity measured on prismatic concrete specimens under uniaxial compression was found to be highly stress-dependent. At low stress levels, the acoustoelastic effect and the closure of existing microcracks results in a gradual increase in surface wave...... velocities. At higher stress levels, concrete suffers irrecoverable damage: the existing microcracks widen and coalesce and new microcracks form. This progressive damage process leads first to the flattening and eventually the drop in the velocity-stress curves. Measurements on specimens undergoing several...
Ultrasonic attenuation of surface acoustic waves in superconducting zinc
International Nuclear Information System (INIS)
Bailey, W.E.; Marshall, B.J.
1979-01-01
The attenuation of 90-MHz elastic surface waves propagating in both 3,000 and 10,000 A films of zinc has been measured as a function of temperature from 3 to 0.38 K. The surface acoustic waves were generated and detected by using a surface-acoustic-wave device interdigital transducers plated onto a Y-Z cut lithium-niobate substrate. Utilizing the experimental results, in the BCS theory, energy gaps of 2Δ (0) equal to 4.17 +- 0.20 and 3.81 +- 0.20 in units of k/sub B/T/sub c/ were calculated for the 3,000 and 10,000 A films, respectively. The transition temperatures for the 3,000 and 10,000 A films were 1.5 +- 0.01 and 1.31 +- 0.01 K, respectively
Broadband room temperature strong coupling between quantum dots and metamaterials.
Indukuri, Chaitanya; Yadav, Ravindra Kumar; Basu, J K
2017-08-17
Herein, we report the first demonstration of room temperature enhanced light-matter coupling in the visible regime for metamaterials using cooperative coupled quasi two dimensional quantum dot assemblies located at precise distances from the hyperbolic metamaterial (HMM) templates. The non-monotonic variation of the magnitude of strong coupling, manifested in terms of strong splitting of the photoluminescence of quantum dots, can be explained in terms of enhanced LDOS near the surface of such metamaterials as well as the plasmon mediated super-radiance of closely spaced quantum dots (QDs). Our methodology of enhancing broadband, room temperature, light-matter coupling in the visible regime for metamaterials opens up new possibilities of utilising these materials for a wide range of applications including QD based thresholdless nanolasers and novel metamaterial based integrated photonic devices.
Sun, Jingbo; Liu, Xiaoming; Zhou, Ji; Kudyshev, Zhaxylyk; Litchinitser, Natalia M
2015-11-04
Anomalous field enhancement accompanied by resonant absorption phenomenon was originally discussed in the context of plasma physics and in applications related to radio-communications between the ground and spacecraft returning to Earth. Indeed, there is a critical period of time when all communications are lost due to the reflection/absorption of electromagnetic waves by the sheath of plasma created by a high speed vehicle re-entering the atmosphere. While detailed experimental studies of these phenomena in space are challenging, the emergence of electromagnetic metamaterials enables researchers exceptional flexibility to study them in the laboratory environment. Here, we experimentally demonstrated the strong localized field enhancement of magnetic field for an electromagnetic wave propagating in Mie-resonance-based inhomogeneous metamaterials with magnetic permeability gradually changing from positive to negative values. Although these experiments were performed in the microwave frequency range, the proposed all-dielectric approach to transition metamaterials can be extended to terahertz, infrared, and visible frequencies. We anticipate that these results, besides most basic science aspects, hold the potential for numerous applications, including low-intensity nonlinear transformation optics, topological photonics, and the broader area of surface and interface science.
Measuring sea surface height with a GNSS-Wave Glider
Morales Maqueda, Miguel Angel; Penna, Nigel T.; Foden, Peter R.; Martin, Ian; Cipollini, Paolo; Williams, Simon D.; Pugh, Jeff P.
2017-04-01
A GNSS-Wave Glider is a novel technique to measure sea surface height autonomously using the Global Navigation Satellite System (GNSS). It consists of an unmanned surface vehicle manufactured by Liquid Robotics, a Wave Glider, and a geodetic-grade GNSS antenna-receiver system, with the antenna installed on a mast on the vehicle's deck. The Wave Glider uses the differential wave motion through the water column for propulsion, thus guaranteeing an, in principle, indefinite autonomy. Solar energy is collected to power all on-board instrumentation, including the GNSS system. The GNSS-Wave Glider was first tested in Loch Ness in 2013, demonstrating that the technology is capable of mapping geoid heights within the loch with an accuracy of a few centimetres. The trial in Loch Ness did not conclusively confirm the reliability of the technique because, during the tests, the state of the water surface was much more benign than would normally be expect in the open ocean. We now report on a first deployment of a GNSS-Wave Glider in the North Sea. The deployment took place in August 2016 and lasted thirteen days, during which the vehicle covered a distance of about 350 nautical miles in the north western North Sea off Great Britain. During the experiment, the GNSS-Wave Glider experienced sea states between 1 (0-0.1 m wave heights) and 5 (2.5-4 m wave heights). The GNSS-Wave Glider data, recorded at 5 Hz frequency, were analysed using a post-processed kinematic GPS-GLONASS precise point positioning (PPP) approach, which were quality controlled using double difference GPS kinematic processing with respect to onshore reference stations. Filtered with a 900 s moving-average window, the PPP heights reveal geoid patterns in the survey area that are very similar to the EGM2008 geoid model, thus demonstrating the potential use of a GNSS-Wave Glider for marine geoid determination. The residual of subtracting the modelled or measured marine geoid from the PPP signal combines information
Super-virtual Interferometric Separation and Enhancement of Back-scattered Surface Waves
Guo, Bowen
2015-08-19
Back-scattered surface waves can be migrated to detect near-surface reflectors with steep dips. A robust surface-wave migration requires the prior separation of the back-scattered surface-wave events from the data. This separation is often difficult to implement because the back-scattered surface waves are masked by the incident surface waves. We mitigate this problem by using a super-virtual interferometric method to enhance and separate the back-scattered surface waves. The key idea is to calculate the virtual back-scattered surface waves by stacking the resulting virtual correlated and convolved traces associated with the incident and back-scattered waves. Stacking the virtual back-scattered surface waves improves their signal-to-noise ratio and separates the back-scattered surface-waves from the incident field. Both synthetic and field data results validate the robustness of this method.
Photonic Crystal Biosensor Based on Optical Surface Waves
Directory of Open Access Journals (Sweden)
Giovanni Dietler
2013-02-01
Full Text Available A label-free biosensor device based on registration of photonic crystal surface waves is described. Angular interrogation of the optical surface wave resonance is used to detect changes in the thickness of an adsorbed layer, while an additional simultaneous detection of the critical angle of total internal reflection provides independent data of the liquid refractive index. The abilities of the device are demonstrated by measuring of biotin molecule binding to a streptavidin monolayer, and by measuring association and dissociation kinetics of immunoglobulin G proteins. Additionally, deposition of PSS / PAH polyelectrolytes is recorded in situ resulting calculation of PSS and PAH monolayer thicknesses separately.
Velocity profiles and surface roughness under breaking waves
Craig, Peter D.
1996-01-01
Recent measurements under wave-breaking conditions in the ocean, lakes, and tanks reveal a layer immediately below the surface in which dissipation decays as depth to the power -2 to -4 and downwind velocities are approximately linear with depth. This behavior is consistent with predictions of a conventional, one-dimensional, level 2.5 turbulence closure model, in which the influence of breaking waves is parameterized as a surface source of turbulent kinetic energy. The model provides an analytic solution which describes the near-surface power law behavior and the deeper transition to the "law of the wall." The mixing length imposed in the model increases linearly away from a minimum value, the roughness length, at the surface. The surface roughness emerges as an important scaling factor in the wave-enhanced layer but is the major unknown in the formulation. Measurements in the wave-affected layer are still rare, but one exceptional set, both in terms of its accuracy and proximity to the surface, is that collected by Cheung and Street [1988] in the Stanford wind tunnel. Their velocity profiles first confirm the accuracy of the model, and, second, allow estimation, via a best fit procedure, of roughness lengths at five different wind speeds. Conclusions are tentative but indicate that the roughness length increases with wind speed and appears to take a value of approximately one sixth the dominant surface wavelength. A more traditional wall-layer model, which ignores the flux of turbulent kinetic energy, will also accurately reproduce the measured velocity profiles. In this case, enhanced surface turbulence is forced on the model by the assumption of a large surface roughness, three times that required by the full model. However, the wall-layer model cannot predict the enhanced dissipation near the surface.
Surface waves on currents with arbitrary vertical shear
Smeltzer, Benjamin K.; Ellingsen, Simen Å.
2017-04-01
We study dispersion properties of linear surface gravity waves propagating in an arbitrary direction atop a current profile of depth-varying magnitude using a piecewise linear approximation and develop a robust numerical framework for practical calculation. The method has been much used in the past for the case of waves propagating along the same axis as the background current, and we herein extend and apply it to problems with an arbitrary angle between the wave propagation and current directions. Being valid for all wavelengths without loss of accuracy, the scheme is particularly well suited to solve problems involving a broad range of wave vectors, such as ship waves and Cauchy-Poisson initial value problems. We examine the group and phase velocities over different wavelength regimes and current profiles, highlighting characteristics due to the depth-variable vorticity. We show an example application to ship waves on an arbitrary current profile and demonstrate qualitative differences in the wake patterns between concave down and concave up profiles when compared to a constant shear profile with equal depth-averaged vorticity. We also discuss the nature of additional solutions to the dispersion relation when using the piecewise-linear model. These are vorticity waves, drifting vortical structures which are artifacts of the piecewise model. They are absent for a smooth profile and are spurious in the present context.
Boussinesq modeling of surface waves due to underwater landslides
Directory of Open Access Journals (Sweden)
D. Dutykh
2013-05-01
Full Text Available Consideration is given to the influence of an underwater landslide on waves at the surface of a shallow body of fluid. The equations of motion that govern the evolution of the barycenter of the landslide mass include various dissipative effects due to bottom friction, internal energy dissipation, and viscous drag. The surface waves are studied in the Boussinesq scaling, with time-dependent bathymetry. A numerical model for the Boussinesq equations is introduced that is able to handle time-dependent bottom topography, and the equations of motion for the landslide and surface waves are solved simultaneously. The numerical solver for the Boussinesq equations can also be restricted to implement a shallow-water solver, and the shallow-water and Boussinesq configurations are compared. A particular bathymetry is chosen to illustrate the general method, and it is found that the Boussinesq system predicts larger wave run-up than the shallow-water theory in the example treated in this paper. It is also found that the finite fluid domain has a significant impact on the behavior of the wave run-up.
Analysis of Surface Wave Attenuation in Mangrove Forests
Directory of Open Access Journals (Sweden)
Safwan Hadi
2003-11-01
Full Text Available This paper presents an analytical study on surface wave attenuation in mangrove forest using analytical model developed by Massel et.al. (1999. The energy dissipation in the frequency domain is determined by treating the mangrove forest as a random media with certain characteristics using the geometry of mangrove trunks and their locations. Initial nonlinear governing equations are linearized using the concept of minimalization in the stochastic sense and interactions between mangrove trunks and roots have been introduced through the modification of the drag coefficients. To see the effectiveness of the mangrove forest in attenuating wave energy the analytical model was applied to two types of mangrove forest i.e. Rhizophora and Ceriops forests. The resulting rate of wave energy attenuation depends strongly on the density of the mangrove forest, and on diameter of mangrove roots and trunks. More effective wave energy attenuation is shown by Rhizophora.
Optimized nonlinear inversion of surface-wave dispersion data
International Nuclear Information System (INIS)
Raykova, Reneta B.
2014-01-01
A new code for inversion of surface wave dispersion data is developed to obtain Earth’s crustal and upper mantle velocity structure. The author developed Optimized Non–Linear Inversion ( ONLI ) software, based on Monte-Carlo search. The values of S–wave velocity VS and thickness h for a number of horizontal homogeneous layers are parameterized. Velocity of P–wave VP and density ρ of relevant layers are calculated by empirical or theoretical relations. ONLI explores parameters space in two modes, selective and full search, and the main innovation of software is evaluation of tested models. Theoretical dispersion curves are calculated if tested model satisfied specific conditions only, reducing considerably the computation time. A number of tests explored impact of parameterization and proved the ability of ONLI approach to deal successfully with non–uniqueness of inversion problem. Key words: Earth’s structure, surface–wave dispersion, non–linear inversion, software
Imaging near-surface heterogeneities by natural migration of backscattered surface waves
AlTheyab, Abdullah
2016-02-01
We present a migration method that does not require a velocity model to migrate backscattered surface waves to their projected locations on the surface. This migration method, denoted as natural migration, uses recorded Green\\'s functions along the surface instead of simulated Green\\'s functions. The key assumptions are that the scattering bodies are within the depth interrogated by the surface waves, and the Green\\'s functions are recorded with dense receiver sampling along the free surface. This natural migration takes into account all orders of multiples, mode conversions and non-linear effects of surface waves in the data. The natural imaging formulae are derived for both active source and ambient-noise data, and computer simulations show that natural migration can effectively image near-surface heterogeneities with typical ambient-noise sources and geophone distributions.
Optimizing surface acoustic wave sensors for trace chemical detection
Energy Technology Data Exchange (ETDEWEB)
Frye, G.C.; Kottenstette, R.J.; Heller, E.J. [and others
1997-06-01
This paper describes several recent advances for fabricating coated surface acoustic wave (SAW) sensors for applications requiring trace chemical detection. Specifically, we have demonstrated that high surface area microporous oxides can provide 100-fold improvements in SAW sensor responses compared with more typical polymeric coatings. In addition, we fabricated GaAs SAW devices with frequencies up to 500 MHz to provide greater sensitivity and an ideal substrate for integration with high-frequency electronics.
Surface plasma waves over bismuth–vacuum interface
Indian Academy of Sciences (India)
Home; Journals; Pramana – Journal of Physics; Volume 61; Issue 3. Surface plasma waves over bismuth–vacuum interface. Ashim P Jain J Parashar. Brief Report Volume 61 Issue ... Author Affiliations. Ashim P Jain1 J Parashar1. Department of Applied Physics, Samrat Ashok Technological Institute, Vidisha 464 001, India ...
Quantitative photography of intermittency in surface wave turbulence
International Nuclear Information System (INIS)
Wright, W.; Budakian, R.; Putterman, S.J.
1997-01-01
At high amplitudes of excitation surface waves on water distribute their energy according to a Kolmogorov type of turbulent power spectrum. We have used diffusing light photography to measure the power spectrum and to quantify the presence of large structures in the turbulent state
Standing surface acoustic wave (SSAW) based multichannel cell sorting.
Ding, Xiaoyun; Lin, Sz-Chin Steven; Lapsley, Michael Ian; Li, Sixing; Guo, Xiang; Chan, Chung Yu; Chiang, I-Kao; Wang, Lin; McCoy, J Philip; Huang, Tony Jun
2012-11-07
We introduce a novel microfluidic device for cell sorting in continuous flow using tunable standing surface acoustic waves. This method allows individual cells to be precisely directed into five different outlet channels in a single step. It is versatile, simple, label-free, non-invasive, and highly controllable.
Surface wave multipath signals in near-field microwave imaging.
Meaney, Paul M; Shubitidze, Fridon; Fanning, Margaret W; Kmiec, Maciej; Epstein, Neil R; Paulsen, Keith D
2012-01-01
Microwave imaging techniques are prone to signal corruption from unwanted multipath signals. Near-field systems are especially vulnerable because signals can scatter and reflect from structural objects within or on the boundary of the imaging zone. These issues are further exacerbated when surface waves are generated with the potential of propagating along the transmitting and receiving antenna feed lines and other low-loss paths. In this paper, we analyze the contributions of multi-path signals arising from surface wave effects. Specifically, experiments were conducted with a near-field microwave imaging array positioned at variable heights from the floor of a coupling fluid tank. Antenna arrays with different feed line lengths in the fluid were also evaluated. The results show that surface waves corrupt the received signals over the longest transmission distances across the measurement array. However, the surface wave effects can be eliminated provided the feed line lengths are sufficiently long independently of the distance of the transmitting/receiving antenna tips from the imaging tank floor. Theoretical predictions confirm the experimental observations.
Surface Wave Multipath Signals in Near-Field Microwave Imaging
Directory of Open Access Journals (Sweden)
Paul M. Meaney
2012-01-01
Full Text Available Microwave imaging techniques are prone to signal corruption from unwanted multipath signals. Near-field systems are especially vulnerable because signals can scatter and reflect from structural objects within or on the boundary of the imaging zone. These issues are further exacerbated when surface waves are generated with the potential of propagating along the transmitting and receiving antenna feed lines and other low-loss paths. In this paper, we analyze the contributions of multi-path signals arising from surface wave effects. Specifically, experiments were conducted with a near-field microwave imaging array positioned at variable heights from the floor of a coupling fluid tank. Antenna arrays with different feed line lengths in the fluid were also evaluated. The results show that surface waves corrupt the received signals over the longest transmission distances across the measurement array. However, the surface wave effects can be eliminated provided the feed line lengths are sufficiently long independently of the distance of the transmitting/receiving antenna tips from the imaging tank floor. Theoretical predictions confirm the experimental observations.
Note on the surface wave due to the prescribed elevation
Indian Academy of Sciences (India)
Home; Journals; Pramana – Journal of Physics; Volume 62; Issue 1. Note on the surface wave due to the prescribed elevation. Niranjan Das. Brief Reports Volume 62 Issue 1 January 2004 pp 135-142. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/pram/062/01/0135-0142 ...
Surface plasma waves over bismuth–vacuum interface
Indian Academy of Sciences (India)
electron laser, a fast emerging device of high power coherent radiation. In §2 we derive the dispersion relation for surface plasma waves using a fluid theory. In §3 we study the SPW excitation by an electron beam. A discussion of results is given in §4. 2. SPW propagation. Consider a bismuth (Bi)–free space interface (x = 0) ...
Dispersive surface waves along partially saturated porous media
Chao, G.; Smeulders, D.M.J.; Van Dongen, M.E.H.
2006-01-01
Numerical results for the velocity and attenuation of surface wave modes in fully permeable liquid/partially saturated porous solid plane interfaces are reported in a broadband of frequencies (100?Hz–1?MHz). A modified Biot theory of poromechanics is implemented which takes into account the
Field verification of ADCP surface gravity wave elevation spectra
Hoitink, A.J.F.; Peters, H.C.; Schroevers, M.
2007-01-01
Acoustic Doppler current profilers (ADCPs) can measure orbital velocities induced by surface gravity waves, yet the ADCP estimates of these velocities are subject to a relatively high noise level. The present paper introduces a linear filtration technique to significantly reduce the influence of
Tuning Acoustic Wave Properties by Mechanical Resonators on a Surface
DEFF Research Database (Denmark)
Dühring, Maria Bayard; Laude, Vincent; Khelif, Abdelkrim
Vibrations generated by high aspects ratio electrodes are studied by the finite element method. It is found that the modes are combined of a surface wave and vibration in the electrodes. For increasing aspect ratio most of the mechanical energy is confined to the electrodes which act as mechanical...
Surface plasma waves over bismuth–vacuum interface
Indian Academy of Sciences (India)
A surface plasma wave (SPW) over bismuth–vacuum interface has a signature of mass anisotropy of free electrons. For SPW propagation along the trigonal axis there is no birefringence. The frequency cutoff of SPW cutoff= p / 2 ( L + ) lies in the far infrared region and can be accessed using free electron laser.
Surface plasma waves over bismuth–vacuum interface
Indian Academy of Sciences (India)
A surface plasma wave (SPW) over bismuth–vacuum interface has a signature of mass anisotropy of free electrons. For SPW propagation along the trigonal axis there is no birefringence. The frequency cutoff of SPW ωcutoff = ωp/. Ô. 2(εL +ε) lies in the far infrared region and can be accessed using free electron laser.
Metamaterials Application in Sensing
Directory of Open Access Journals (Sweden)
Hui Sun
2012-02-01
Full Text Available Metamaterials are artificial media structured on a size scale smaller than wavelength of external stimuli, and they can exhibit a strong localization and enhancement of fields, which may provide novel tools to significantly enhance the sensitivity and resolution of sensors, and open new degrees of freedom in sensing design aspect. This paper mainly presents the recent progress concerning metamaterials-based sensing, and detailedly reviews the principle, detecting process and sensitivity of three distinct types of sensors based on metamaterials, as well as their challenges and prospects. Moreover, the design guidelines for each sensor and its performance are compared and summarized.
Combinatorial Mechanical Metamaterials
van Hecke, Martin
The structure of most mechanical metamaterials is periodic so that their design space is that of the unit cell. Here we introduce a combinatorial strategy to create a vast number of distinct mechanical metamaterials, each with a unique spatial texture and response. These are aperiodic stackings of anisotropic building blocks, and their functionality rests on both the block design and their stacking configuration which is governed by a tiling problem. We realize such metamaterials by 3D printing, and show that they act as soft machines, capable of pattern recognition and pattern analysis.
Islam, Md Moinul; Islam, Mohammad Tariqul; Samsuzzaman, Md; Faruque, Mohammad Rashed Iqbal; Misran, Norbahiah; Mansor, Mohd Fais
2015-01-23
A miniaturized antenna employing a negative index metamaterial with modified split-ring resonator (SRR) and capacitance-loaded strip (CLS) unit cells is presented for Ultra wideband (UWB) microwave imaging applications. Four left-handed (LH) metamaterial (MTM) unit cells are located along one axis of the antenna as the radiating element. Each left-handed metamaterial unit cell combines a modified split-ring resonator (SRR) with a capacitance-loaded strip (CLS) to obtain a design architecture that simultaneously exhibits both negative permittivity and negative permeability, which ensures a stable negative refractive index to improve the antenna performance for microwave imaging. The antenna structure, with dimension of 16 × 21 × 1.6 mm³, is printed on a low dielectric FR4 material with a slotted ground plane and a microstrip feed. The measured reflection coefficient demonstrates that this antenna attains 114.5% bandwidth covering the frequency band of 3.4-12.5 GHz for a voltage standing wave ratio of less than 2 with a maximum gain of 5.16 dBi at 10.15 GHz. There is a stable harmony between the simulated and measured results that indicate improved nearly omni-directional radiation characteristics within the operational frequency band. The stable surface current distribution, negative refractive index characteristic, considerable gain and radiation properties make this proposed negative index metamaterial antenna optimal for UWB microwave imaging applications.
Directory of Open Access Journals (Sweden)
Md. Moinul Islam
2015-01-01
Full Text Available A miniaturized antenna employing a negative index metamaterial with modified split-ring resonator (SRR and capacitance-loaded strip (CLS unit cells is presented for Ultra wideband (UWB microwave imaging applications. Four left-handed (LH metamaterial (MTM unit cells are located along one axis of the antenna as the radiating element. Each left-handed metamaterial unit cell combines a modified split-ring resonator (SRR with a capacitance-loaded strip (CLS to obtain a design architecture that simultaneously exhibits both negative permittivity and negative permeability, which ensures a stable negative refractive index to improve the antenna performance for microwave imaging. The antenna structure, with dimension of 16 × 21 × 1.6 mm3, is printed on a low dielectric FR4 material with a slotted ground plane and a microstrip feed. The measured reflection coefficient demonstrates that this antenna attains 114.5% bandwidth covering the frequency band of 3.4–12.5 GHz for a voltage standing wave ratio of less than 2 with a maximum gain of 5.16 dBi at 10.15 GHz. There is a stable harmony between the simulated and measured results that indicate improved nearly omni-directional radiation characteristics within the operational frequency band. The stable surface current distribution, negative refractive index characteristic, considerable gain and radiation properties make this proposed negative index metamaterial antenna optimal for UWB microwave imaging applications.
Islam, Md. Moinul; Islam, Mohammad Tariqul; Samsuzzaman, Md.; Faruque, Mohammad Rashed Iqbal; Misran, Norbahiah; Mansor, Mohd Fais
2015-01-01
A miniaturized antenna employing a negative index metamaterial with modified split-ring resonator (SRR) and capacitance-loaded strip (CLS) unit cells is presented for Ultra wideband (UWB) microwave imaging applications. Four left-handed (LH) metamaterial (MTM) unit cells are located along one axis of the antenna as the radiating element. Each left-handed metamaterial unit cell combines a modified split-ring resonator (SRR) with a capacitance-loaded strip (CLS) to obtain a design architecture that simultaneously exhibits both negative permittivity and negative permeability, which ensures a stable negative refractive index to improve the antenna performance for microwave imaging. The antenna structure, with dimension of 16 × 21 × 1.6 mm3, is printed on a low dielectric FR4 material with a slotted ground plane and a microstrip feed. The measured reflection coefficient demonstrates that this antenna attains 114.5% bandwidth covering the frequency band of 3.4–12.5 GHz for a voltage standing wave ratio of less than 2 with a maximum gain of 5.16 dBi at 10.15 GHz. There is a stable harmony between the simulated and measured results that indicate improved nearly omni-directional radiation characteristics within the operational frequency band. The stable surface current distribution, negative refractive index characteristic, considerable gain and radiation properties make this proposed negative index metamaterial antenna optimal for UWB microwave imaging applications. PMID:28787945
A Broadband Ultrathin Nonlinear Switching Metamaterial
Directory of Open Access Journals (Sweden)
E. Zarnousheh Farahani
2017-05-01
Full Text Available In this paper, an ultrathin planar nonlinear metamaterial slab is designed and simulated. Nonlinearity is provided through placing diodes in each metamaterial unit cell. The diodes are auto-biased and activated by an incident wave. The proposed structure represents a broadband switching property between two transmission and reflection states depending on the intensity of the incident wave. High permittivity values are presented creating a near zero effective impedance at low power states, around the second resonant mode of the structure unit cell; as the result, the incident wave is reflected. Increasing the incident power to the level which can activate the loaded diodes in the structure results in elimination of the resonance and consequently a drop in the permittivity values near the permeability one as well as a switch to the transmission state. A full wave as well as a nonlinear simulations are performed. An optimization method based on weed colonization is applied to the unit cell of the metamaterial slab to achieve the maximum switching bandwidth. The structure represents a 24% switching bandwidth of a 10 dB reduction in the reflection coefficient.
Investigation into Mass Loading Sensitivity of Sezawa Wave Mode-Based Surface Acoustic Wave Sensors
Directory of Open Access Journals (Sweden)
N. Ramakrishnan
2013-02-01
Full Text Available In this work mass loading sensitivity of a Sezawa wave mode based surface acoustic wave (SAW device is investigated through finite element method (FEM simulation and the prospects of these devices to function as highly sensitive SAW sensors is reported. A ZnO/Si layered SAW resonator is considered for the simulation study. Initially the occurrence of Sezawa wave mode and displacement amplitude of the Rayleigh and Sezawa wave mode is studied for lower ZnO film thickness. Further, a thin film made of an arbitrary material is coated over the ZnO surface and the resonance frequency shift caused by mass loading of the film is estimated. It was observed that Sezawa wave mode shows significant sensitivity to change in mass loading and has higher sensitivity (eight times higher than Rayleigh wave mode for the same device configuration. Further, the mass loading sensitivity was observed to be greater for a low ZnO film thickness to wavelength ratio. Accordingly, highly sensitive SAW sensors can be developed by coating a sensing medium over a layered SAW device and operating at Sezawa mode resonance frequency. The sensitivity can be increased by tuning the ZnO film thickness to wavelength ratio.
Source effects on surface waves from Nevada Test Site explosions
International Nuclear Information System (INIS)
Patton, H.J.; Vergino, E.S.
1981-11-01
Surface waves recorded on the Lawrence Livermore National Laboratory (LLNL) digital network have been used to study five underground nuclear explosions detonated in Yucca Valley at the Nevada Test Site. The purpose of this study is to characterize the reduced displacement potential (RDP) at low frequencies and to test secondary source models of underground explosions. The observations consist of Rayleigh- and Love-wave amplitude and phase spectra in the frequency range 0.03 to 0.16 Hz. We have found that Rayleigh-wave spectral amplitudes are modeled well by a RDP with little or no overshoot for explosions detonated in alluvium and tuff. On the basis of comparisons between observed and predicted source phase, the spall closure source proposed by Viecelli does not appear to be a significant source of Rayleigh waves that reach the far field. We tested two other secondary source models, the strike-slip, tectonic strain release model proposed by Toksoez and Kehrer and the dip-slip thrust model of Masse. The surface-wave observations do not provide sufficient information to discriminate between these models at the low F-values (0.2 to 0.8) obtained for these explosions. In the case of the strike-slip model, the principal stress axes inferred from the fault slip angle and strike angle are in good agreement with the regional tectonic stress field for all but one explosion, Nessel. The results of the Nessel explosion suggest a mechanism other than tectonic strain release
On the interaction between ocean surface waves and seamounts
Sosa, Jeison; Cavaleri, Luigi; Portilla-Yandún, Jesús
2017-12-01
Of the many topographic features, more specifically seamounts, that are ubiquitous in the ocean floor, we focus our attention on those with relatively shallow summits that can interact with wind-generated surface waves. Among these, especially relatively long waves crossing the oceans (swells) and stormy seas are able to affect the water column up to a considerable depth and therefore interact with these deep-sea features. We quantify this interaction through numerical experiments using a numerical wave model (SWAN), in which a simply shaped seamount is exposed to waves of different length. The results show a strong interaction that leads to significant changes in the wave field, creating wake zones and regions of large wave amplification. This is then exemplified in a practical case where we analyze the interaction of more realistic sea conditions with a very shallow rock in the Yellow Sea. Potentially important for navigation and erosion processes, mutatis mutandis, these results are also indicative of possible interactions with emerged islands and sand banks in shelf seas.
The Measurement and Interpretation of Surface Wave Group Arrival Times
Masters, G.; Kane, D.; Morrow, J.; Zhou, Y.; Tromp, J.
2005-12-01
We have recently developed an efficient technique for measuring the relative group arrival times of surface waves by using cross-correlation and cluster analysis of waveform envelope functions. Applying the analysis to minor arc Love and Rayleigh waves in the frequency band 7 to 35 mHz for all events over magnitude 5.5 results in a dataset of over 200,000 measurements at each frequency for long period Rayleigh waves (frequency less than 25 mHz) and about 100,000 measurements at the shorter periods. Analysis of transverse components results in about half as many Love wave measurements. Simple ray theory inversions of the relative arrival times for apparent group velocity produce maps which are accurate representations of the data (often over 90% variance reduction of the relative arrival times) and which show features strongly correlated with tectonics and crustal thickness. The apparent group velocity variations can be extremely large: 30% velocity variations for 20 mHz Rayleigh waves and 40% variations for 30 mHz Rayleigh waves and can have abrupt lateral changes. This raises the concern that non-ray theory effects could be important. Indeed, a recent analysis by Dahlen and Zhou (personal communication) suggests that the group arrival times should be a functions of both the group velocity AND the phase velocity. The simplest way to test the interpretation of the measurements is to perform the analysis on synthetic seismograms computed for a realistic model of the Earth. Here, we use the SEM with a model which incorporates realistic crust and mantle structure. We are currently computing synthetics for a suite of roughly 1000 events recorded globally that extend to a period of 18 seconds. We shall present the results of applying both ray-based and finite frequency inversions to the synthetic data as well as evaluating the effects of off path propagation at short periods using surface wave ray tracing.
International Nuclear Information System (INIS)
Petrishchev, Vitaly; Leonov, Sergey; Adamovich, Igor V
2014-01-01
Surface ionization wave discharges generated by high-voltage nanosecond pulses, propagating over a planar quartz surface and over liquid surfaces (distilled water and 1-butanol) have been studied in a rectangular cross section test cell. The discharge was initiated using a custom-made, alternating polarity, high-voltage nanosecond pulse plasma generator, operated at a pulse repetition rate of 100–500 Hz, with a pulse peak voltage and current of 10–15 kV and 7–20 A, respectively, a pulse FWHM of ∼100 ns, and a coupled pulse energy of 2–9 mJ/pulse. Wave speed was measured using a capacitive probe. ICCD camera images demonstrated that the ionization wave propagated predominantly over the quartz wall or over the liquid surface adjacent to the grounded waveguide placed along the bottom wall of the test cell. Under all experimental conditions tested, the surface plasma ‘sheet’ was diffuse and fairly uniform, both for positive and negative polarities. The parameters of ionization wave discharge propagating over distilled water and 1-butanol surfaces were close to those of the discharge over a quartz wall. No perturbation of the liquid surface by the discharge was detected. In most cases, the positive polarity surface ionization wave propagated at a higher speed and over a longer distance compared to the negative polarity wave. For all three sets of experiments (surface ionization wave discharge over quartz, water and 1-butanol), wave speed and travel distance decreased with pressure. Diffuse, highly reproducible surface ionization wave discharge was also observed over the liquid butanol–saturated butanol vapor interface, as well as over the distilled water–saturated water vapor interface, without buffer gas flow. No significant difference was detected between surface ionization discharges sustained using single-polarity (positive or negative), or alternating polarity high-voltage pulses. Plasma emission images yielded preliminary evidence of charge
Dissipative elastic metamaterial with a low-frequency passband
Liu, Yongquan; Yi, Jianlin; Li, Zheng; Su, Xianyue; Li, Wenlong; Negahban, Mehrdad
2017-06-01
We design and experimentally demonstrate a dissipative elastic metamaterial structure that functions as a bandpass filter with a low-frequency passband. The mechanism of dissipation in this structure is well described by a mass-spring-damper model that reveals that the imaginary part of the wavenumber is non-zero, even in the passband of dissipative metamaterials. This indicates that transmittance in this range can be low. A prototype for this viscoelastic metamaterial model is fabricated by 3D printing techniques using soft and hard acrylics as constituent materials. The transmittance of the printed metamaterial is measured and shows good agreement with theoretical predictions, demonstrating its potential in the design of compact waveguides, filters and other advanced devices for controlling mechanical waves.
Dissipative elastic metamaterial with a low-frequency passband
Directory of Open Access Journals (Sweden)
Yongquan Liu
2017-06-01
Full Text Available We design and experimentally demonstrate a dissipative elastic metamaterial structure that functions as a bandpass filter with a low-frequency passband. The mechanism of dissipation in this structure is well described by a mass-spring-damper model that reveals that the imaginary part of the wavenumber is non-zero, even in the passband of dissipative metamaterials. This indicates that transmittance in this range can be low. A prototype for this viscoelastic metamaterial model is fabricated by 3D printing techniques using soft and hard acrylics as constituent materials. The transmittance of the printed metamaterial is measured and shows good agreement with theoretical predictions, demonstrating its potential in the design of compact waveguides, filters and other advanced devices for controlling mechanical waves.
Engineering metamaterial absorbers from dense gold nanoparticle stacks
Hewlett, Sheldon; Mock, Adam
2017-09-01
Both ordered and disordered electromagnetic metamaterials have been shown to exhibit interesting and technologically relevant properties that would not be present in the constituent materials in their bulk form. Disordered metamaterials can be fabricated using low-cost and scalable fabrication approaches which are particularly advantageous at the nanoscale. This work shows how a solution-based deposition process can be leveraged to introduce quasi-ordering in disordered gold metamaterials to achieve 94% absorption over the visible spectrum. Full-wave electrodynamic simulations suggest that more advanced structures consistent with this fabrication approach could exhibit 98% average absorption over the entire solar spectrum. We envision this simple and cost-effective fabrication of highly absorbing disordered metamaterials to be of use for thermovoltaics and solar cells.
Investigation of graphene-integrated tunable metamaterials in THz regime
Demir, S. Mahircan; Yüksek, Yahya; Sabah, Cumali
2018-05-01
A metallic fishnet metamaterial structure in sub-THz region is presented. The proposed structure is based on hexagonal resonators. Simulations have been performed by a 3D full-wave electromagnetic simulator and a negative refractive index has been observed at the frequency range between 0.55 and 0.70 THz with the help of the graphene layer. In order to observe the effect of the graphene layer, the metamaterial structure has been simulated and examined before and after graphene integration. Significant modification in the propagation properties has been observed after the graphene integration. Change in S-parameters with the size variation of hexagonal resonators and alteration in graphene thickness are also presented as a parametric study to show the tunability of the structure. Suitability of the metamaterial for sensor applications has been investigated. The proposed metamaterial structure is promising to be effectively used for tunability and sensor applications.
Lagrangian modelling of ocean surface waves and synthetic aperture radar wave measurements
Energy Technology Data Exchange (ETDEWEB)
Fouques, Sebastien
2005-07-01
The present thesis is concerned with the estimation of the ocean wave spectrum from synthetic aperture radar imaging and the modelling of ocean surface waves using the Lagrangian formalism. The first part gives a short overview of the theories of ocean surface waves and synthetic aperture radar (SAR) whereas the second part consists of five independent publications. The first two articles investigate the influence of the radar backscatter model on the SAR imaging of ocean waves. In Article I, Monte Carlo simulations of SAR images of the ocean surface are carried out using a nonlinear backscatter model that include both specular reflection and Bragg scattering and the results are compared to simulations from the classical Hasselmann integral transform (Hasselmann and Hasselmann, 1991). It is shown that nonlinearities in the backscatter model strongly influence the imaging of range-travelling waves and that the former can suppress the range-splitting effect (Bruning et al., 1988). Furthermore, in Article II a database of Envisat-ASAR Wave Mode products co-located with directional wave spectra from the numerical model WAM and which contains range-travelling wave cases only, is set up. The WAM spectra are used as input to several ocean-to-SAR integral transforms, with various real aperture radar (RAR) models and the obtained SAR image cross-spectra are compared to the Envisat-ASAR observations. A first result is that the use of a linear backscatter model leads to a high proportion of non-physical negative backscatter values in the RAR image, as suggested by Schulz-Stellenfleth (2001). Then, a comparison between the observed SAR cross-spectra and the ones simulated through Hasselmann's integral transform reveals that only twenty percents of the observations show a range-splitting effect as strong as in the simulations. A much better agreement is obtained when using the integral transform by Schulz-Stellenfleth (2003), which is based on a nonlinear hackscatter model
Superresolution near-field imaging with surface waves
Fu, Lei; Liu, Zhaolun; Schuster, Gerard
2018-02-01
We present the theory for near-field superresolution imaging with surface waves and time reverse mirrors (TRMs). Theoretical formulae and numerical results show that applying the TRM operation to surface waves in an elastic half-space can achieve superresolution imaging of subwavelength scatterers if they are located less than about 1/2 of the shear wavelength from the source line. We also show that the TRM operation for a single frequency is equivalent to natural migration, which uses the recorded data to approximate the Green's functions for migration, and only costs O(N4) algebraic operations for post-stack migration compared to O(N6) operations for natural pre-stack migration. Here, we assume the sources and receivers are on an N × N grid and there are N2 trial image points on the free surface. Our theoretical predictions of superresolution are validated with tests on synthetic data. The field-data tests suggest that hidden faults at the near surface can be detected with subwavelength imaging of surface waves by using the TRM operation if they are no deeper than about 1/2 the dominant shear wavelength.
Superresolution Near-field Imaging with Surface Waves
Fu, Lei
2017-10-21
We present the theory for near-field superresolution imaging with surface waves and time reverse mirrors (TRMs). Theoretical formulas and numerical results show that applying the TRM operation to surface waves in an elastic half-space can achieve superresolution imaging of subwavelength scatterers if they are located less than about 1/2 of the shear wavelength from the source line. We also show that the TRM operation for a single frequency is equivalent to natural migration, which uses the recorded data to approximate the Green’s functions for migration, and only costs O(N4) algebraic operations for poststack migration compared to O(N6) operations for natural prestack migration. Here, we assume the sources and receivers are on an N × N grid and there are N2 trial image points on the free surface. Our theoretical predictions of superresolution are validated with tests on synthetic data. The field-data tests suggest that hidden faults at the near surface can be detected with subwavelength imaging of surface waves by using the TRM operation if they are no deeper than about 1/2 the dominant shear wavelength.
Photon management assisted by surface waves on photonic crystals
Angelini, Angelo
2017-01-01
This book illustrates original pathways to manipulate light at the nanoscale by means of surface electromagnetic waves (here, Bloch surface waves, BSWs) on planar dielectric multilayers, also known as one-dimensional photonic crystals. This approach is particularly valuable as it represents an effective alternative to the widely exploited surface plasmon paradigm. After a brief overview on the fundamentals of BSWs, several significant applications of BSW-sustaining structures are described. Particular consideration is given to the propagation, guiding, and diffraction of BSW-coupled radiation. Further, the interaction of organic emitters with BSWs on planar and corrugated multilayers is investigated, including fluorescence beaming in free space. To provide greater insight into sensing applications, an illustrative example of fluorescent microarray-based detection is presented. The book is intended for scientists and researchers working on photon management opportunities in fields such as biosensing, optical c...
Nonlinear Waves and Solitons on Contours and Closed Surfaces
Ludu, Andrei
2007-01-01
The present volume is an introduction to nonlinear waves and soliton theory in the special environment of compact spaces such a closed curves and surfaces and other domain contours. It assumes familiarity with basic soliton theory and nonlinear dynamical systems. The first part of the book introduces the mathematical concept required for treating the manifolds considered. Emphasis on the relevant notions from topology and differential geometry. An introduction to the theory of motion of curves and surfaces - as part of the emerging field of contour dynamics - is given. The second and third parts discuss the modeling of various physical solitons on compact systems, such as filaments, loops and drops made of almost incompressible materials thereby intersecting with a large number of physical disciplines from hydrodynamics to compact object astrophysics. Nonlinear Waves and Solitons on Contours and Closed Surfaces provides graduate students and researchers in mathematics, physics and engineering with a ready tut...
Imaging near-surface heterogeneities by natural migration of surface waves
Liu, Zhaolun
2016-09-06
We demonstrate that near-surface heterogeneities can be imaged by natural migration of backscattered surface waves in common shot gathers. No velocity model is required because the data are migrated onto surface points with the virtual Green\\'s functions computed from the shot gathers. Migrating shot gathers recorded by 2D and 3D land surveys validates the effectiveness of detecting nearsurface heterogeneities by natural migration. The implication is that more accurate hazard maps can be created by migrating surface waves in land surveys.
Liu, Changxu
2015-01-01
We investigate both theoretically and experimentally a new type of laser, which exploits a broadband light "condensation" process sustained by the stimulated amplification of an optical blackbody metamaterial. © 2014 Optical Society of America.
Programmable mechanical metamaterials
Florijn, H.C.B.
2016-01-01
We present a novel strategy to overcome this limitation and create programmable me chanical metamaterials, where the response of a single structure is determined and can be changed by the amount of lateral confinement.
Phase mixing and surface wave decay in an inhomogeneous plasma
International Nuclear Information System (INIS)
Cally, P.S.; Sedlacek, Z.
1992-02-01
The decay rate is calculated of an Alfven or plasma surface wave propagating along an inhomogeneous layer of plasma. The inhomogeneous profile is thin and odd, but otherwise arbitrary. The wave's decay rate is determined using two fundamentally different methods, the integral-differential equation approach of Sedlacek and the Fourier expansion technique of Cally, and found by both to depend only on the slope of the Alfven or plasma frequency profile at the r esonant point , and not on other details of its shape. The result is verified numerically. This problem represents a good example with which to compare and contrast the two methods. (author) 3 figs., 7 refs
Surface wave phase velocities between Bulgaria and the Czech Republic
Czech Academy of Sciences Publication Activity Database
Gaždová, Renata; Kolínský, Petr; Popova, I.; Dimitrova, L.
2011-01-01
Roč. 18, č. 2 (2011), s. 16-23 ISSN 1803-1447. [OVA´11 – New Knowledge and Measurements in Seismology, Engineering Geophysics and Geotechnics. Ostrava, 12.04.2011-14.04.2011] R&D Projects: GA ČR GA205/09/1244 Institutional research plan: CEZ:AV0Z30460519 Keywords : surface waves * phase velocity * shear wave velocity Subject RIV: DC - Siesmology, Volcanology, Earth Structure http://www.caag.cz/egrse/2011-2/03%20gazdova_ova.pdf
Sensitivity of Rayleigh wave ellipticity and implications for surface wave inversion
Cercato, Michele
2018-04-01
The use of Rayleigh wave ellipticity has gained increasing popularity in recent years for investigating earth structures, especially for near-surface soil characterization. In spite of its widespread application, the sensitivity of the ellipticity function to the soil structure has been rarely explored in a comprehensive and systematic manner. To this end, a new analytical method is presented for computing the sensitivity of Rayleigh wave ellipticity with respect to the structural parameters of a layered elastic half-space. This method takes advantage of the minor decomposition of the surface wave eigenproblem and is numerically stable at high frequency. This numerical procedure allowed to retrieve the sensitivity for typical near surface and crustal geological scenarios, pointing out the key parameters for ellipticity interpretation under different circumstances. On this basis, a thorough analysis is performed to assess how ellipticity data can efficiently complement surface wave dispersion information in a joint inversion algorithm. The results of synthetic and real-world examples are illustrated to analyse quantitatively the diagnostic potential of the ellipticity data with respect to the soil structure, focusing on the possible sources of misinterpretation in data inversion.
Surface impedance of travelling--Wave antenna in magnetized plasma
International Nuclear Information System (INIS)
Denisenko, I.B.; Ostrikov, K.N.
1993-01-01
Wave properties of metal antennas immersed in a magnetoactive plasma are intensively studied nowadays with the objects of radio communications in ionosphere, plasma heating, gas discharge technique. Many papers are devoted to studies of sheath waves (SW) in magnetoplasma, which are surface by nature and propagate along the metal-low-density sheath-plasma waveguide structure. The results of these papers suggest that the existence of these waves makes significant contribution in antenna impedance. Note that the impedance measurement is one of possible ways of experimental surface waves characterization. In the present report the surface impedance of travelling SW antenna immersed in magnetoactive plasma is calculated and its dependence on the waveguide structure parameters such as plasma density, external magnetic field H 0 and electrons collisional frequency values, sheath region width, conductivity of metal surface is studied. The calculations have been carried out in a quasiplane approximation, when antenna radius greatly exceeds the SW skin depth. Note that the finite conductivity of metal is necessary to be taken into account to provide a finite surface impedance value. The surface impedance is calculated in two cases, namely when SW propagate along (Ζ parallel ) and across (Ζ perpendicular ) the external magnetic field. The relation between the values Ζ parallel and Ζ perpendicular is obtained. This relation shows that the values Ζ parallel and Ζ parallel may satisfy both inequalities Ζ parallel much-gt Ζ perpendicular and Ζ perpendicular approx-gt Ζ perpendicular dependent on the parameters of the structure. The comparison of dispersion properties of the SW propagating along Η 0 with the experimental results is carried out. The results are shown to satisfactorily correspond to the experimental results
Artificial upwelling using the energy of surface waves
Soloviev, A.
2016-02-01
The ocean is an important component of climate and climate change, since the heat capacity of a few meters of the upper ocean is equivalent to the heat capacity of the entire atmosphere. (Solar radiation and IR balance in the atmosphere are of course major factors as well.) Artificial upwelling devices using the energy of surface waves, similar to those developed by Vershinskiy, Pshenichnyy, and Soloviev (1987), can bring cold water from below the thermocline to the sea surface. Their wave-inertia pump consisted of a vertical tube, a valve, and a buoy to keep the device afloat. The device operated by using energy of surface waves to create an upward flow of water in the tube. An outlet valve at the top of the unit synchronized the operation of the device with surface waves and prevented back-splashing. A single device with a 100 m long and 1.2 m diameter tube is able to produce up to 1 m3s-1 flow of deep water to the surface. With a 10oC temperature difference over 100 m depth, the negative heat supply rate to the sea surface is 42 MW, which is equivalent to a 42 Wm-2 heat flux, if distributed over 1 km2 area. Such flux is comparable to the average net air-sea flux. This type of artificial upwelling can cool down the sea surface, modify climate on a regional scale and possibly help mitigate hurricanes. The cold water brought from the deep layer, however, has a larger density than the surface water and therefore has a tendency to sink back down. In this work, the efficiency of wave-inertia pumps has been estimated for different environmental conditions using a computational fluid dynamics model. The cooled near-surface layer of the ocean will be getting more heat from the sun, which is a detrimental consequence. Cloud seeding can help to mitigate this extra warming. A synergistic approach to climate engineering can thus reduce detriments and increase potential benefits of this system to society.
Superconductor terahertz metamaterial
Gu, Jianqiang; Singh, Ranjan; Tian, Zhen; Cao, Wei; Xing, Qirong; Han, Jiaguang; Zhang, Weili
2010-01-01
We characterize the behaviour of split ring resonators made up of high-transition temperature YBCO superconductor using terahertz time domain spectroscopy. The superconductor metamaterial shows sharp change in the transmission spectrum at the fundamental inductive-capacitive resonance and the dipole resonance as the temperature dips below the transition temperature. Our results reveal that the high performance of such a metamaterial is limited by material imperfections and defects such as cra...
Zadpoor, A.A.
2016-01-01
The emerging concept of mechanical meta-materials has received increasing attention during the last few years partially due to the advances in additive manufacturing techniques that have enabled fabricating materials with arbitrarily complex micro/nano-architectures. The rationally designed micro/nano-architecture of mechanical meta-materials gives rise to unprecedented or rare mechanical properties that could be exploited to create advanced materials with novel functionalities. This paper pr...
Metamaterials critique and alternatives
Munk, Ben A
2009-01-01
A Convincing and Controversial Alternative Explanation of Metamaterials with a Negative Index of Refraction In a book that will generate both support and controversy, one of the world's foremost authorities on periodic structures addresses several of the current fashions in antenna design-most specifically, the popular subject of double negative metamaterials. Professor Munk provides a comprehensive theoretical electromagnetic investigation of the issues and concludes that many of the phenomena claimed by researchers may be impossible. While denying the existence of negative refractio
Metamaterial Model of Tachyonic Dark Energy
Directory of Open Access Journals (Sweden)
Igor I. Smolyaninov
2014-02-01
Full Text Available Dark energy with negative pressure and positive energy density is believed to be responsible for the accelerated expansion of the universe. Quite a few theoretical models of dark energy are based on tachyonic fields interacting with itself and normal (bradyonic matter. Here, we propose an experimental model of tachyonic dark energy based on hyperbolic metamaterials. Wave equation describing propagation of extraordinary light inside hyperbolic metamaterials exhibits 2 + 1 dimensional Lorentz symmetry. The role of time in the corresponding effective 3D Minkowski spacetime is played by the spatial coordinate aligned with the optical axis of the metamaterial. Nonlinear optical Kerr effect bends this spacetime resulting in effective gravitational force between extraordinary photons. We demonstrate that this model has a self-interacting tachyonic sector having negative effective pressure and positive effective energy density. Moreover, a composite multilayer SiC-Si hyperbolic metamaterial exhibits closely separated tachyonic and bradyonic sectors in the long wavelength infrared range. This system may be used as a laboratory model of inflation and late time acceleration of the universe.
Nano metamaterials for ultrasensitive Terahertz biosensing
Lee, Dong-Kyu; Kang, Ji-Hun; Kwon, Junghoon; Lee, Jun-Seok; Lee, Seok; Woo, Deok Ha; Kim, Jae Hun; Song, Chang-Seon; Park, Q-Han; Seo, Minah
2017-01-01
As a candidate for a rapid detection of biomaterials, terahertz (THz) spectroscopy system can be considered with some advantage in non-destructive, label-free, and non-contact manner. Because protein-ligand binding energy is in the THz range, especially, most important conformational information in molecular interactions can be captured by THz electromagnetic wave. Based on the THz time-domain spectroscopy system, THz nano-metamaterial sensing chips were prepared for great enhancing of detect...
Photoconductive metamaterials with giant plasmonic photogalvanic effect
DEFF Research Database (Denmark)
Zhukovsky, Sergei; Babicheva, Viktoriia; Evlyuknin, Andrey B.
2014-01-01
Photoelectric properties of metamaterials comprising oriented noncentrosymmetric metallic nanoparticle arrays in a homogeneous semiconductor matrix are theoretically studied. When uniformly illuminated by a plane wave, the asymmetric shape of the nanoparticles results in electro-motive force...... and photocurrent without any external potential. This is the direct analogue of the photogalvanic effect existing in ferroelectric or piezoelectric crystals, e.g., bismuth ferrite. The reported plasmonic photogalvanic effect is valuable for characterizing photoconductive properties of plasmonic nanostructures...
Lee, Sangdae; Kim, Yong-Il; Kim, Ki-Bok
2013-11-01
Biosensors are used in a variety of fields for early diagnosis of diseases, measurement of toxic contaminants, quick detection of pathogens, and separation of specific proteins or DNA. In this study, we fabricated and evaluated the capability of a high sensitivity Love wave surface acoustic wave (SAW) biosensor. The experimental setup was composed of the fabricated 155-MHz Love wave SAW biosensor, a signal measurement system, a liquid flow system, and a temperature-control system. Subsequently, we measured the lower limit of detection (LOD) of the 155-MHz Love wave SAW biosensor, and calculated the association and dissociation constants between protein G and anti-mouse IgG using kinetic analysis. We compared these results with those obtained using a commercial surface plasmon resonance (SPR) biosensor. We found that the LOD of the SAW biosensor for anti-mouse IgG and mouse IgG was 0.5 and 1 microg/ml, respectively, and the resultant equilibrium association and dissociation constants were similar to the corresponding values obtaining using the commercial SPR biosensor. Thus, we conclude that the fabricated 155-MHz Love wave SAW biosensor exhibited the high sensitivity of the commercial SPR biosensor and was able to analyze the binding properties of the ligand and receptor by kinetic analysis similarly to the commercial SPR biosensor.
Waves on the surface of the Orion molecular cloud.
Berné, Olivier; Marcelino, Núria; Cernicharo, José
2010-08-19
Massive stars influence their parental molecular cloud, and it has long been suspected that the development of hydrodynamical instabilities can compress or fragment the cloud. Identifying such instabilities has proved difficult. It has been suggested that elongated structures (such as the 'pillars of creation') and other shapes arise because of instabilities, but alternative explanations are available. One key signature of an instability is a wave-like structure in the gas, which has hitherto not been seen. Here we report the presence of 'waves' at the surface of the Orion molecular cloud near where massive stars are forming. The waves seem to be a Kelvin-Helmholtz instability that arises during the expansion of the nebula as gas heated and ionized by massive stars is blown over pre-existing molecular gas.
New pure shear elastic surface waves in magneto-electro-elastic half-space
Melkumyan, Arman
2006-01-01
Pure shear surface waves guided by the free surface of a magneto-electro-elastic material are investigated. Three surface waves are obtained for various magneto-electrical conditions on the free surface of the magneto-electro-elastic half-space. The velocities of propagation and the existence conditions for each of these waves are obtained in explicit exact form.
Elastic metamaterial beam with remotely tunable stiffness
Qian, Wei; Yu, Zhengyue; Wang, Xiaole; Lai, Yun; Yellen, Benjamin B.
2016-02-01
We demonstrate a dynamically tunable elastic metamaterial, which employs remote magnetic force to adjust its vibration absorption properties. The 1D metamaterial is constructed from a flat aluminum beam milled with a linear array of cylindrical holes. The beam is backed by a thin elastic membrane, on which thin disk-shaped permanent magnets are mounted. When excited by a shaker, the beam motion is tracked by a Laser Doppler Vibrometer, which conducts point by point scanning of the vibrating element. Elastic waves are unable to propagate through the beam when the driving frequency excites the first elastic bending mode in the unit cell. At these frequencies, the effective mass density of the unit cell becomes negative, which induces an exponentially decaying evanescent wave. Due to the non-linear elastic properties of the membrane, the effective stiffness of the unit cell can be tuned with an external magnetic force from nearby solenoids. Measurements of the linear and cubic static stiffness terms of the membrane are in excellent agreement with experimental measurements of the bandgap shift as a function of the applied force. In this implementation, bandgap shifts by as much as 40% can be achieved with ˜30 mN of applied magnetic force. This structure has potential for extension in 2D and 3D, providing a general approach for building dynamically tunable elastic metamaterials for applications in lensing and guiding elastic waves.
Elastic metamaterial beam with remotely tunable stiffness
International Nuclear Information System (INIS)
Qian, Wei; Yu, Zhengyue; Wang, Xiaole; Lai, Yun; Yellen, Benjamin B.
2016-01-01
We demonstrate a dynamically tunable elastic metamaterial, which employs remote magnetic force to adjust its vibration absorption properties. The 1D metamaterial is constructed from a flat aluminum beam milled with a linear array of cylindrical holes. The beam is backed by a thin elastic membrane, on which thin disk-shaped permanent magnets are mounted. When excited by a shaker, the beam motion is tracked by a Laser Doppler Vibrometer, which conducts point by point scanning of the vibrating element. Elastic waves are unable to propagate through the beam when the driving frequency excites the first elastic bending mode in the unit cell. At these frequencies, the effective mass density of the unit cell becomes negative, which induces an exponentially decaying evanescent wave. Due to the non-linear elastic properties of the membrane, the effective stiffness of the unit cell can be tuned with an external magnetic force from nearby solenoids. Measurements of the linear and cubic static stiffness terms of the membrane are in excellent agreement with experimental measurements of the bandgap shift as a function of the applied force. In this implementation, bandgap shifts by as much as 40% can be achieved with ∼30 mN of applied magnetic force. This structure has potential for extension in 2D and 3D, providing a general approach for building dynamically tunable elastic metamaterials for applications in lensing and guiding elastic waves
Bulk photovoltaic effect in photoconductive metamaterials based on cone-shaped nanoparticles
DEFF Research Database (Denmark)
Zhukovsky, Sergei; Babicheva, Viktoriia; Uskov, Alexander V.
2014-01-01
Photoelectric properties of metamaterials comprising asymmetrically shaped, similarly oriented metallic nanoparticles embedded in a homogeneous semiconductor matrix are theoretic ally and numerically studied. The asymmetric shape of the nanoparticles is found to result in the existence of a prefer...... for characterizing photoemission and photoconductive properties of plasmonic nanostructures. They can find many uses for photodetection-related and photovoltaic applications...... red direction where “hot” photoelectrons are emitted from the nanoparticle surface under the action of the localized plasmonic resonance excited in the nanoparticles. The resulting directional photocurrent flow occurring when nanoparticles are uniformly illuminated by a homogeneous plane wave...
Cluster observations of surface waves on the dawn flank magnetopause
Directory of Open Access Journals (Sweden)
C. J. Owen
2004-03-01
Full Text Available On 14 June 2001 the four Cluster spacecraft recorded multiple encounters of the dawn-side flank magnetopause. The characteristics of the observed electron populations varied between a cold, dense magnetosheath population and warmer, more rarified boundary layer population on a quasi-periodic basis. The demarcation between these two populations can be readily identified by gradients in the scalar temperature of the electrons. An analysis of the differences in the observed timings of the boundary at each spacecraft indicates that these magnetopause crossings are consistent with a surface wave moving across the flank magnetopause. When compared to the orientation of the magnetopause expected from models, we find that the leading edges of these waves are approximately 45° steeper than the trailing edges, consistent with the Kelvin-Helmholtz (KH driving mechanism. A stability analysis of this interval suggests that the magnetopause is marginally stable to this mechanism during this event. Periods in which the analysis predicts that the magnetopause is unstable correspond to observations of greater wave steepening. Analysis of the pulses suggests that the waves have an average wavelength of approximately 3.4 R_{E} and move at an average speed of ~65km s^{-1} in an anti-sunward and northward direction, despite the spacecraft location somewhat south of the GSE Z=0 plane. This wave propagation direction lies close to perpendicular to the average magnetic field direction in the external magnetosheath, suggesting that these waves may preferentially propagate in the direction that requires no bending of these external field lines
Key words. Magnetospheric physics (magnetospheric configuration and dynamics; MHD waves and unstabilities; solar wind-magnetosphere interactions
Wave-equation dispersion inversion of surface waves recorded on irregular topography
Li, Jing
2017-08-17
Significant topographic variations will strongly influence the amplitudes and phases of propagating surface waves. Such effects should be taken into account, otherwise the S-velocity model inverted from the Rayleigh dispersion curves will contain significant inaccuracies. We now show that the recently developed wave-equation dispersion inversion (WD) method naturally takes into account the effects of topography to give accurate S-velocity tomograms. Application of topographic WD to demonstrates that WD can accurately invert dispersion curves from seismic data recorded over variable topography. We also apply this method to field data recorded on the crest of mountainous terrain and find with higher resolution than the standard WD tomogram.
Characterization of microchannel anechoic corners formed by surface acoustic waves
Destgeer, Ghulam; Alam, Ashar; Ahmed, Husnain; Park, Jinsoo; Jung, Jin Ho; Park, Kwangseok; Sung, Hyung Jin
2018-02-01
Surface acoustic waves (SAWs) generated in a piezoelectric substrate couple with a liquid according to Snell's law such that a compressional acoustic wave propagates obliquely at a Rayleigh angle ( θ t) inside the microchannel to form a region devoid of a direct acoustic field, which is termed a microchannel anechoic corner (MAC). In the present study, we used microchannels with various heights and widths to characterize the width of the MAC region formed by a single travelling SAW. The attenuation of high-frequency SAWs produced a strong acoustic streaming flow that moved the particles in and out of the MAC region, whereas reflections of the acoustic waves within the microchannel resulted in standing acoustic waves that trapped particles at acoustic pressure nodes located within or outside of the MAC region. A range of actuation frequencies and particle diameters were used to investigate the effects of the acoustic streaming flow and the direct acoustic radiation forces by the travelling as well as standing waves on the particle motion with respect to the MAC region. The width of the MAC ( w c), measured experimentally by tracing the particles, increased with the height of the microchannel ( h m) according to a simple trigonometric equation w c = h m × tan ( θ t ).
Assessment of soil compaction properties based on surface wave techniques
Jihan Syamimi Jafri, Nur; Rahim, Mohd Asri Ab; Zahid, Mohd Zulham Affandi Mohd; Faizah Bawadi, Nor; Munsif Ahmad, Muhammad; Faizal Mansor, Ahmad; Omar, Wan Mohd Sabki Wan
2018-03-01
Soil compaction plays an important role in every construction activities to reduce risks of any damage. Traditionally, methods of assessing compaction include field tests and invasive penetration tests for compacted areas have great limitations, which caused time-consuming in evaluating large areas. Thus, this study proposed the possibility of using non-invasive surface wave method like Multi-channel Analysis of Surface Wave (MASW) as a useful tool for assessing soil compaction. The aim of this study was to determine the shear wave velocity profiles and field density of compacted soils under varying compaction efforts by using MASW method. Pre and post compaction of MASW survey were conducted at Pauh Campus, UniMAP after applying rolling compaction with variation of passes (2, 6 and 10). Each seismic data was recorded by GEODE seismograph. Sand replacement test was conducted for each survey line to obtain the field density data. All seismic data were processed using SeisImager/SW software. The results show the shear wave velocity profiles increase with the number of passes from 0 to 6 passes, but decrease after 10 passes. This method could attract the interest of geotechnical community, as it can be an alternative tool to the standard test for assessing of soil compaction in the field operation.
Self-assembled nanostructured metamaterials
Ponsinet, Virginie; Baron, Alexandre; Pouget, Emilie; Okazaki, Yutaka; Oda, Reiko; Barois, Philippe
2017-07-01
The concept of metamaterials emerged in the years 2000 with the achievement of artificial structures enabling nonconventional propagation of electromagnetic waves, such as negative phase velocity or negative refraction. The electromagnetic response of metamaterials is generally based on the presence of optically resonant elements —or meta-atoms— of sub-wavelength size and well-designed morphology so as to provide the desired electric and magnetic optical properties. Top-down technologies based on lithography techniques have been intensively used to fabricate a variety of efficient electric and magnetic resonators operating from microwave to visible light frequencies. However, the technological limits of the top-down approach are reached in visible light where a huge number of nanometre-sized elements is required. We show here that the bottom-up fabrication route based on the combination of nanochemistry and the self-assembly methods of colloidal physics provide an excellent alternative for the large-scale synthesis of complex meta-atoms, as well as for the fabrication of 2D and 3D samples exhibiting meta-properties in visible light. Contribution to the Focus Issue Self-assemblies of Inorganic and Organic Nanomaterials edited by Marie-Paule Pileni.
Ross, Michael B; Blaber, Martin G; Schatz, George C
2014-06-17
The a priori ability to design electromagnetic wave propagation is crucial for the development of novel metamaterials. Incorporating plasmonic building blocks is of particular interest due to their ability to confine visible light. Here we explore the use of anisotropy in nanoscale and mesoscale plasmonic array architectures to produce noble metal-based metamaterials with unusual optical properties. We find that the combination of nanoscale and mesoscale anisotropy leads to rich opportunities for metamaterials throughout the visible and near-infrared. The low volume fraction (metamaterials explored herein exhibit birefringence, a skin depth approaching that of pure metals for selected wavelengths, and directionally confined waves similar to those found in optical fibres. These data provide design principles with which the electromagnetic behaviour of plasmonic metamaterials can be tailored using high aspect ratio nanostructures that are accessible via a variety of synthesis and assembly methods.
Bending and splitting of spoof surface acoustic waves through structured rigid surface
Xie, Sujun; Ouyang, Shiliang; He, Zhaojian; Wang, Xiaoyun; Deng, Ke; Zhao, Heping
2018-03-01
In this paper, we demonstrated that a 90°-bended imaging of spoof surface acoustic waves with subwavelength resolution of 0.316λ can be realized by a 45° prism-shaped surface phononic crystal (SPC), which is composed of borehole arrays with square lattice in a rigid plate. Furthermore, by combining two identical prism-shaped phononic crystal to form an interface (to form a line-defect), the excited spoof surface acoustic waves can be split into bended and transmitted parts. The power ratio between the bended and transmitted surface waves can be tuned arbitrarily by adjusting the defect size. This acoustic system is believed to have potential applications in various multifunctional acoustic solutions integrated by different acoustical devices.
Circuit Design of Surface Acoustic Wave Based Micro Force Sensor
Yuanyuan Li; Wenke Lu; Changchun Zhu; Qinghong Liu; Haoxin Zhang; Chenchao Tang
2014-01-01
Pressure sensors are commonly used in industrial production and mechanical system. However, resistance strain, piezoresistive sensor, and ceramic capacitive pressure sensors possess limitations, especially in micro force measurement. A surface acoustic wave (SAW) based micro force sensor is designed in this paper, which is based on the theories of wavelet transform, SAW detection, and pierce oscillator circuits. Using lithium niobate as the basal material, a mathematical model is established ...
Improved Modeling and Prediction of Surface Wave Amplitudes
2017-05-31
data does not license the holder or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any patented... advantages of the membrane surface wave technique are that 1) it is orders of magnitude faster than 3-dimensional finite-difference; and 2) it...0.5 km depth. Although the CMT sources should more accurately reproduce the observed signals from each event, they have two disadvantages : 1) in the
Conoscopic interferometry of surface-acoustic-wave substrate crystals.
Ayräs, P H; Friberg, A T; Kaivola, M A; Salomaa, M M
1999-09-01
Conoscopic interferometry is applied for determining the crystal orientation of lithium niobate and other commonly employed substrate wafers for integrated-optic and surface-acoustic-wave devices. The method is particularly applicable for detecting the orientation of the optic axes of the strongly birefringent niobate but is less sensitive for lithium tantalate or quartz. Conoscopic interference is a low-cost and easy-to-use method that is especially suitable for laboratory usage.
Surface wave propagation in a fluid-saturated incompressible ...
Indian Academy of Sciences (India)
Surface wave propagation in a fluid-saturated incompressible porous medium157 where ˙xi˙xi˙xi and ¨xi¨xi¨xi(i = F,S) denote the velocities and accelerations of solid and fluid phases respectively and p is the effective pore pressure of the incompressible pore fluid. ρS and ρF are the densities of the solid and fluid phases ...
Monolithic GaAs surface acoustic wave chemical microsensor array
Energy Technology Data Exchange (ETDEWEB)
HIETALA,VINCENT M.; CASALNUOVO,STEPHEN A.; HELLER,EDWIN J.; WENDT,JOEL R.; FRYE-MASON,GREGORY CHARLES; BACA,ALBERT G.
2000-03-09
A four-channel surface acoustic wave (SAW) chemical sensor array with associated RF electronics is monolithically integrated onto one GaAs IC. The sensor operates at 690 MHz from an on-chip SAW based oscillator and provides simple DC voltage outputs by using integrated phase detectors. This sensor array represents a significant advance in microsensor technology offering miniaturization, increased chemical selectivity, simplified system assembly, improved sensitivity, and inherent temperature compensation.
Surface acoustic wave probe implant for predicting epileptic seizures
Gopalsami, Nachappa [Naperville, IL; Kulikov, Stanislav [Sarov, RU; Osorio, Ivan [Leawood, KS; Raptis, Apostolos C [Downers Grove, IL
2012-04-24
A system and method for predicting and avoiding a seizure in a patient. The system and method includes use of an implanted surface acoustic wave probe and coupled RF antenna to monitor temperature of the patient's brain, critical changes in the temperature characteristic of a precursor to the seizure. The system can activate an implanted cooling unit which can avoid or minimize a seizure in the patient.
Multi-channel Analysis of Passive Surface Waves (MAPS)
Xia, J.; Cheng, F. Mr; Xu, Z.; Wang, L.; Shen, C.; Liu, R.; Pan, Y.; Mi, B.; Hu, Y.
2017-12-01
Urbanization is an inevitable trend in modernization of human society. In the end of 2013 the Chinese Central Government launched a national urbanization plan—"Three 100 Million People", which aggressively and steadily pushes forward urbanization. Based on the plan, by 2020, approximately 100 million people from rural areas will permanently settle in towns, dwelling conditions of about 100 million people in towns and villages will be improved, and about 100 million people in the central and western China will permanently settle in towns. China's urbanization process will run at the highest speed in the urbanization history of China. Environmentally friendly, non-destructive and non-invasive geophysical assessment method has played an important role in the urbanization process in China. Because human noise and electromagnetic field due to industrial life, geophysical methods already used in urban environments (gravity, magnetics, electricity, seismic) face great challenges. But humanity activity provides an effective source of passive seismic methods. Claerbout pointed out that wavefileds that are received at one point with excitation at the other point can be reconstructed by calculating the cross-correlation of noise records at two surface points. Based on this idea (cross-correlation of two noise records) and the virtual source method, we proposed Multi-channel Analysis of Passive Surface Waves (MAPS). MAPS mainly uses traffic noise recorded with a linear receiver array. Because Multi-channel Analysis of Surface Waves can produces a shear (S) wave velocity model with high resolution in shallow part of the model, MPAS combines acquisition and processing of active source and passive source data in a same flow, which does not require to distinguish them. MAPS is also of ability of real-time quality control of noise recording that is important for near-surface applications in urban environment. The numerical and real-world examples demonstrated that MAPS can be
Ultrasonic phased array with surface acoustic wave for imaging cracks
Directory of Open Access Journals (Sweden)
Yoshikazu Ohara
2017-06-01
Full Text Available To accurately measure crack lengths, we developed a real-time surface imaging method (SAW PA combining an ultrasonic phased array (PA with a surface acoustic wave (SAW. SAW PA using a Rayleigh wave with a high sensitivity to surface defects was implemented for contact testing using a wedge with the third critical angle that allows the Rayleigh wave to be generated. Here, to realize high sensitivity imaging, SAW PA was optimized in terms of the wedge and the imaging area. The improved SAW PA was experimentally demonstrated using a fatigue crack specimen made of an aluminum alloy. For further verification in more realistic specimens, SAW PA was applied to stainless-steel specimens with a fatigue crack and stress corrosion cracks (SCCs. The fatigue crack was visualized with a high signal-to-noise ratio (SNR and its length was measured with a high accuracy of better than 1 mm. The SCCs generated in the heat-affected zones (HAZs of a weld were successfully visualized with a satisfactory SNR, although responses at coarse grains appeared throughout the imaging area. The SCC lengths were accurately measured. The imaging results also precisely showed complicated distributions of SCCs, which were in excellent agreement with the optically observed distributions.
Combinatorial design of textured mechanical metamaterials.
Coulais, Corentin; Teomy, Eial; de Reus, Koen; Shokef, Yair; van Hecke, Martin
2016-07-28
The structural complexity of metamaterials is limitless, but, in practice, most designs comprise periodic architectures that lead to materials with spatially homogeneous features. More advanced applications in soft robotics, prosthetics and wearable technology involve spatially textured mechanical functionality, which requires aperiodic architectures. However, a naive implementation of such structural complexity invariably leads to geometrical frustration (whereby local constraints cannot be satisfied everywhere), which prevents coherent operation and impedes functionality. Here we introduce a combinatorial strategy for the design of aperiodic, yet frustration-free, mechanical metamaterials that exhibit spatially textured functionalities. We implement this strategy using cubic building blocks-voxels-that deform anisotropically, a local stacking rule that allows cooperative shape changes by guaranteeing that deformed building blocks fit together as in a three-dimensional jigsaw puzzle, and three-dimensional printing. These aperiodic metamaterials exhibit long-range holographic order, whereby the two-dimensional pixelated surface texture dictates the three-dimensional interior voxel arrangement. They also act as programmable shape-shifters, morphing into spatially complex, but predictable and designable, shapes when uniaxially compressed. Finally, their mechanical response to compression by a textured surface reveals their ability to perform sensing and pattern analysis. Combinatorial design thus opens up a new avenue towards mechanical metamaterials with unusual order and machine-like functionalities.
Numerical study of surface water waves generated by mass movement
Energy Technology Data Exchange (ETDEWEB)
Ghozlani, Belgacem; Hafsia, Zouhaier; Maalel, Khlifa, E-mail: ghozlanib@yahoo.fr [Ecole Nationale d' Ingenieurs de Tunis, Laboratoire de Modelisation en ' Hydraulique et Environnement, BP 37, Le Belvedere, 1002 Tunis (Tunisia)
2013-10-01
In this paper waves generated by two-dimensional mass movement are simulated using a numerical model based on the full hydrodynamic coupling between rigid-body motion and ambient fluid flow. This approach has the capability to represent the dynamics of the moving rigid body, which avoids the need to prescribe the body velocity based on the data measurements. This model is implemented in the CFX code and uses the Reynolds average Navier-Stokes equations solver coupled to the recently developed immersed solid technique. The latter technique allows us to follow implicitly the motion of the solid block based on the rigid body solver. The volume-of-fluid method is used to track the free surface locations. The accuracy of the present model is firstly examined against the simple physical case of a freely falling rigid body into water reproducing Scott Russell's solitary waves. More complex and realistic simulations of aerial and submarine mass-movement, simulated by a rigid wedge sliding into water along a 45 Degree-Sign slope, are then performed. Simulated results of the aerial mass movement show the complex flow patterns in terms of the velocity fields and free surface profiles. Results are in good agreement with the available experimental data. In addition, the physical processes associated with the generation of water wave by two-dimensional submarine mass-movement are explored. The effects of the initial submergence and specific gravity on the slide mass kinematics and maximum wave amplitude are investigated. The terminal velocity and initial acceleration of the slide mass are well predicted when compared to experimental results. It is found that the initial submergence did not have a significant effect on the initial acceleration of the slide block centre of mass. However, it depends nonlinearly on the specific gravity. The maximum wave amplitude and the time at which it occurred are also presented as a function of the initial submergence and specific gravity
Surface acoustic wave micromotor with arbitrary axis rotational capability
Tjeung, Ricky T.; Hughes, Mark S.; Yeo, Leslie Y.; Friend, James R.
2011-11-01
A surface acoustic wave (SAW) actuated rotary motor is reported here, consisting of a millimeter-sized spherical metal rotor placed on the surface of a lead zirconate titanate piezoelectric substrate upon which the SAW is made to propagate. At the design frequency of 3.2 MHz and with a fixed preload of 41.1 μN, the maximum rotational speed and torque achieved were approximately 1900 rpm and 5.37 μN-mm, respectively, producing a maximum output power of 1.19 μW. The surface vibrations were visualized using laser Doppler vibrometry and indicate that the rotational motion arises due to retrograde elliptical motions of the piezoelectric surface elements. Rotation about orthogonal axes in the plane of the substrate has been obtained by using orthogonally placed interdigital electrodes on the substrate to generate SAW impinging on the rotor, offering a means to generate rotation about an arbitrary axis in the plane of the substrate.
Microwave metamaterials—from passive to digital and programmable controls of electromagnetic waves
Cui, Tie Jun
2017-08-01
Since 2004, my group at Southeast University has been carrying out research into microwave metamaterials, which are classified into three catagories: metamaterials based on the effective medium model, plasmonic metamaterials for spoof surface plasmon polaritons (SPPs), and coding and programmable metamaterials. For effective-medium metamaterials, we have developed a general theory to accurately describe effective permittivity and permeability in semi-analytical forms, from which we have designed and realized a three dimensional (3D) wideband ground-plane invisibility cloak, a free-space electrostatic invisibility cloak, an electromagnetic black hole, optical/radar illusions, and radially anisotropic zero-index metamaterial for omni-directional radiation and a nearly perfect power combination of source array, etc. We have also considered the engineering applications of microwave metamaterials, such as a broadband and low-loss 3D transformation-optics lens for wide-angle scanning, a 3D planar gradient-index lens for high-gain radiations, and a random metasurface for reducing radar cross sections. In the area of plasmonic metamaterials, we proposed an ultrathin, narrow, and flexible corrugated metallic strip to guide SPPs with a small bending loss and radiation loss, from which we designed and realized a series of SPP passive devices (e.g. power divider, coupler, filter, and resonator) and active devices (e.g. amplifier and duplexer). We also showed a significant feature of the ultrathin SPP waveguide in overcoming the challenge of signal integrity in traditional integrated circuits, which will help build a high-performance SPP wireless communication system. In the area of coding and programmable metamaterials, we proposed a new measure to describe a metamaterial from the viewpoint of information theory. We have illustrated theoretically and experimentally that coding metamaterials composed of digital units can be controlled by coding sequences, leading to different
Surface Wave Simulation and Processing with MatSeis
Energy Technology Data Exchange (ETDEWEB)
THOMPSON,BEVERLY D.; CHAEL,ERIC P.; YOUNG,CHRISTOPHER J.; WALTER,WILLIAM R.; PASYANOS,MICHAEL E.
2000-08-07
In order to exploit the information on surface wave propagation that is stored in large seismic event datasets, Sandia and Lawrence Livermore National Laboratories have developed a MatSeis interface for performing phase-matched filtering of Rayleigh arrivals. MatSeis is a Matlab-based seismic processing toolkit which provides graphical tools for analyzing seismic data from a network of stations. Tools are available for spectral and polarization measurements, as well as beam forming and f-k analysis with array data, to name just a few. Additionally, one has full access to the Matlab environment and any functions available there. Previously the authors reported the development of new MatSeis tools for calculating regional discrimination measurements. The first of these performs Lg coda analysis as developed by Mayeda and coworkers at Lawrence Livermore National Laboratory. A second tool measures regional phase amplitude ratios for an event and compares the results to ratios from known earthquakes and explosions. Release 1.5 of MatSeis includes the new interface for the analysis of surface wave arrivals. This effort involves the use of regionalized dispersion models from a repository of surface wave data and the construction of phase-matched filters to improve surface wave identification, detection, and magnitude calculation. The tool works as follows. First, a ray is traced from source to receiver through a user-defined grid containing different group velocity versus period values to determine the composite group velocity curve for the path. This curve is shown along with the upper and lower group velocity bounds for reference. Next, the curve is used to create a phase-matched filter, apply the filter, and show the resultant waveform. The application of the filter allows obscured Rayleigh arrivals to be more easily identified. Finally, after screening information outside the range of the phase-matched filter, an inverse version of the filter is applied to obtain a
Effective Medium Theory for Anisotropic Metamaterials
Zhang, Xiujuan
2017-11-12
This dissertation includes the study of effective medium theories (EMTs) and their applications in describing wave propagation in anisotropic metamaterials, which can guide the design of metamaterials. An EMT based on field averaging is proposed to describe a peculiar anisotropic dispersion relation that is linear along the symmetry line but quadratic in the perpendicular direction. This dispersion relation is associated with the topological transition of the iso-frequency contours (IFCs), suggesting interesting wave propagation behaviors from beam shaping to beam splitting. In the framework of coherent potential approximation, an analytical EMT is further developed, with the ability to build a direct connection between the microscopic structure and the macroscopic material properties, which overcomes the requirement of prior knowledge of the field distributions. The derived EMT is valid beyond the long-wavelength limit. Using the EMT, an anisotropic zero-index metamaterial is designed. Moreover, the derived EMT imposes a condition that no scattered wave is generated in the ambient medium, which suggests the input signal cannot detect any object that might exist, making it invisible. Such correspondence between the EMT and the invisibilityinspires us to explore the wave cloaking in the same framework of coherent potential approximation. To further broaden the application realm of EMT, an EMT using the parameter retrieval method is studied in the regimes where the previously-developed EMTs are no longer accurate. Based on this study, in conjunction with the EMT mentioned above, a general scheme to realize coherent perfect absorption (CPA) in anisotropic metamaterials is proposed. As an exciting area in metamaterials, the field of metasurfaces has drawn great attention recently. As an easily attainable device, a grating may be the simplest version of metasurfaces. Here, an analytical EMT for gratings made of cylinders is developed by using the multiple scattering
National Aeronautics and Space Administration — We propose to develop broad-band metamaterial antireflection (AR) coatings for the far-infrared and millimeter wave bands. The proposed coating technology could...
All-angle collimation of incident light in μ-near-zero metamaterials.
Fedorov, Vladimir Yu; Nakajima, Takashi
2013-11-18
We use the theory of inhomogeneous waves to study the transmission of light in μ-near-zero metamaterials. We find the effect of all-angle collimation of incident light, which means that the vector of energy flow in a wave transmitted to a μ-near-zero metamaterial is perpendicular to the interface for any incident angles if an incident wave is s-polarized. This effect is similar to the all-angle collimation of incident light recently found through a different theoretical framework in ε-near-zero metamaterials for a p-polarized incident wave [S. Feng, Phys. Rev. Lett. 108, 193904 (2012)]. To provide a specific example, we consider the transmission of light in a negative-index metamaterial in the spectral region with a permeability resonance, and show that all-angle collimation indeed takes place at the wavelength for which the real part of permeability is vanishingly small.
Long wave dispersion relations for surface waves in a magnetically structured atmosphere
International Nuclear Information System (INIS)
Rae, I.C.; Roberts, B.
1983-01-01
A means of obtaining approximate dispersion relations for long wavelength magnetoacoustic surface waves propagating in a magnetically structured atmosphere is presented. A general dispersion relation applying to a wide range of magnetic profiles is obtained, and illustrated for the special cases of a single interface and a magnetic slab. In the slab geometry, for example, the dispersion relation contains both the even (sausage) and odd (kink) modes in one formalism
Calculation of surface acoustic waves in a multilayered piezoelectric structure
International Nuclear Information System (INIS)
Zhang Zuwei; Wen Zhiyu; Hu Jing
2013-01-01
The propagation properties of the surface acoustic waves (SAWs) in a ZnO—SiO 2 —Si multilayered piezoelectric structure are calculated by using the recursive asymptotic method. The phase velocities and the electromechanical coupling coefficients for the Rayleigh wave and the Love wave in the different ZnO—SiO 2 —Si structures are calculated and analyzed. The Love mode wave is found to be predominantly generated since the c-axis of the ZnO film is generally perpendicular to the substrate. In order to prove the calculated results, a Love mode SAW device based on the ZnO—SiO 2 —Si multilayered structure is fabricated by micromachining, and its frequency responses are detected. The experimental results are found to be mainly consistent with the calculated ones, except for the slightly larger velocities induced by the residual stresses produced in the fabrication process of the films. The deviation of the experimental results from the calculated ones is reduced by thermal annealing. (semiconductor physics)
Multi-directional plasmonic surface-wave splitters with full bandwidth isolation
Energy Technology Data Exchange (ETDEWEB)
Gao, Zhen; Gao, Fei [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore); Zhang, Baile, E-mail: blzhang@ntu.edu.sg [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore); Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637371 (Singapore)
2016-03-14
We present a multidirectional plasmonic surface-wave splitter with full bandwidth isolation experimentally based on coupled defect surface modes in a surface-wave photonic crystal. In contrast to conventional plasmonic surface-wave frequency splitters with polaritonic dispersion relations that overlap at low frequencies, this multidirectional plasmonic surface-wave splitter based on coupled defect surface modes can split different frequency bands into different waveguide branches without bandwidth overlap. Transmission spectra and near-field imaging measurements have been implemented in the microwave frequencies to verify the performance of the multidirectional plasmonic surface-wave splitter. This surface wave structure can be used as a plasmonic wavelength-division multiplexer that may find potential applications in the surface-wave integrated circuits from microwave to terahertz frequencies.
Darinskii, A N; Weihnacht, M; Schmidt, H
2013-07-01
A numerical study is carried out of the surface acoustic wave generation by a bulk acoustic wave in a half-infinite anisotropic half-space without piezoeffect. The efficient conversion of bulk waves into surface waves occurs due to a grating area created on the surface of the substrate. Our simulations are fully based on the finite element method. Given the incident bulk wave, we directly determine the amplitude of the surface wave and investigate its dependence on various parameters specifying the situation under consideration, such as the frequency and the polarization of the bulk wave, the length of the grating, the geometrical size of grooves or strips forming the grating. Copyright © 2013 Elsevier B.V. All rights reserved.
Self-focusing of electromagnetic surface waves on a nonlinear impedance surface
Energy Technology Data Exchange (ETDEWEB)
Luo, Zhangjie, E-mail: zhangjie-luo-cn@126.com [College of Electronics and Information Engineering, Sichuan University, Chengdu 610064 (China); Applied Electromagnetics Group, Electrical and Computer Engineering Department, University of California, San Diego, California 92093 (United States); Chen, Xing [College of Electronics and Information Engineering, Sichuan University, Chengdu 610064 (China); Long, Jiang; Quarfoth, Ryan; Sievenpiper, Daniel, E-mail: dsievenpiper@eng.ucsd.edu [Applied Electromagnetics Group, Electrical and Computer Engineering Department, University of California, San Diego, California 92093 (United States)
2015-05-25
The self-focusing effect of optical beams has been a popular topic of study for quite a while, but such a nonlinear phenomenon at microwave frequencies has never been realized, partially due to the underdevelopment of nonlinear material. In this research, self-focused electromagnetic (EM) surface waves are demonstrated on a circuit-based, power-dependent impedance surface. The formation of a self-focused beam is investigated using a series of discrete-time simulations, and the result is further validated in measurement. It is experimentally observed that, in contrast to the normal scattering of low-power surface waves, high-power waves propagate through the surface while maintaining narrow beam width, and even converge extremely tightly to create a hot spot with higher power. The result is essentially a nonlinear effect of the surface that compensates for the natural tendency of surface waves to diffract. This intriguing experiment can be extended to various potential EM applications such as power-dependent beam steering antennas and nonlinear microwave propagation or dissipation.
Metamaterials with magnetism and chirality
Tomita, Satoshi; Kurosawa, Hiroyuki; Ueda, Tetsuya; Sawada, Kei
2018-02-01
This review introduces and overviews electromagnetism in structured metamaterials which undergo simultaneous time-reversal and space-inversion symmetry breaking due to magnetism and chirality. Direct experimental observation of optical magnetochiral effects in a single metamolecule with magnetism and chirality is demonstrated at microwave frequencies. Numerical simulations based on a finite element method reproduce the experimental results well, and predict the emergence of giant magnetochiral effects, by combining resonances in the metamolecule. Toward the realization of magnetochiral effects at higher frequencies than microwaves, a metamolecule is miniaturized in the presence of ferromagnetic resonance in a cavity and coplanar waveguide. This work opens the door to the realization of a one-way mirror and synthetic gauge fields for electromagnetic waves.
Particle separation by phase modulated surface acoustic waves.
Simon, Gergely; Andrade, Marco A B; Reboud, Julien; Marques-Hueso, Jose; Desmulliez, Marc P Y; Cooper, Jonathan M; Riehle, Mathis O; Bernassau, Anne L
2017-09-01
High efficiency isolation of cells or particles from a heterogeneous mixture is a critical processing step in lab-on-a-chip devices. Acoustic techniques offer contactless and label-free manipulation, preserve viability of biological cells, and provide versatility as the applied electrical signal can be adapted to various scenarios. Conventional acoustic separation methods use time-of-flight and achieve separation up to distances of quarter wavelength with limited separation power due to slow gradients in the force. The method proposed here allows separation by half of the wavelength and can be extended by repeating the modulation pattern and can ensure maximum force acting on the particles. In this work, we propose an optimised phase modulation scheme for particle separation in a surface acoustic wave microfluidic device. An expression for the acoustic radiation force arising from the interaction between acoustic waves in the fluid was derived. We demonstrated, for the first time, that the expression of the acoustic radiation force differs in surface acoustic wave and bulk devices, due to the presence of a geometric scaling factor. Two phase modulation schemes are investigated theoretically and experimentally. Theoretical findings were experimentally validated for different mixtures of polystyrene particles confirming that the method offers high selectivity. A Monte-Carlo simulation enabled us to assess performance in real situations, including the effects of particle size variation and non-uniform acoustic field on sorting efficiency and purity, validating the ability to separate particles with high purity and high resolution.
The Mean Curvature of the Influence Surface of Wave Equation With Sources on a Moving Surface
Farassat, F.; Farris, Mark
1999-01-01
The mean curvature of the influence surface of the space-time point (x, t) appears in linear supersonic propeller noise theory and in the Kirchhoff formula for a supersonic surface. Both these problems are governed by the linear wave equation with sources on a moving surface. The influence surface is also called the Sigma - surface in the aeroacoustic literature. This surface is the locus, in a frame fixed to the quiescent medium, of all the points of a radiating surface f(x, t) = 0 whose acoustic signals arrive simultaneously to an observer at position x and at the time t. Mathematically, the Sigma- surface is produced by the intersection of the characteristic conoid of the space-time point (x, t) and the moving surface. In this paper, we derive the expression for the local mean curvature of the Sigma - space of the space-time point for a moving rigid or deformable surface f(x, t) = 0. This expression is a complicated function of the geometric and kinematic parameters of the surface f(x, t) = 0. Using the results of this paper, the solution of the governing wave equation of high speed propeller noise radiation as well as the Kirchhoff formula for a supersonic surface can be written as very compact analytic expression.
On the dependence of sea surface roughness on wind waves
DEFF Research Database (Denmark)
Johnson, H.K.; Højstrup, J.; Vested, H.J.
1998-01-01
The influence of wind waves on the momentum transfer (wind stress) between the atmosphere and sea surface was studied using new measured data from the RASEX experiment and other datasets compiled by Donelan et al. Results of the data analysis indicate that errors in wind friction velocity u...... that calculations of the wind friction velocities using the wave-spectra-dependent expression of Hansen and Larsen agrees quite well with measured values during RASEX. It also gives a trend in Charnock parameter consistent with that found by combining the field data. Last, calculations using a constant Charnock...... parameter (0.018) also give very good results for the wind friction velocities at the RASEX site....
Surface Acoustic Wave Vibration Sensors for Measuring Aircraft Flutter
Wilson, William C.; Moore, Jason P.; Juarez, Peter D.
2016-01-01
Under NASA's Advanced Air Vehicles Program the Advanced Air Transport Technology (AATT) Project is investigating flutter effects on aeroelastic wings. To support that work a new method for measuring vibrations due to flutter has been developed. The method employs low power Surface Acoustic Wave (SAW) sensors. To demonstrate the ability of the SAW sensor to detect flutter vibrations the sensors were attached to a Carbon fiber-reinforced polymer (CFRP) composite panel which was vibrated at six frequencies from 1Hz to 50Hz. The SAW data was compared to accelerometer data and was found to resemble sine waves and match each other closely. The SAW module design and results from the tests are presented here.
Zero refractive index in time-Floquet acoustic metamaterials
Koutserimpas, Theodoros T.; Fleury, Romain
2018-03-01
New scientific investigations of artificially structured materials and experiments have exhibited wave manipulation to the extreme. In particular, zero refractive index metamaterials have been on the front line of wave physics research for their unique wave manipulation properties and application potentials. Remarkably, in such exotic materials, time-harmonic fields have an infinite wavelength and do not exhibit any spatial variations in their phase distribution. This unique feature can be achieved by forcing a Dirac cone to the center of the Brillouin zone ( Γ point), as previously predicted and experimentally demonstrated in time-invariant metamaterials by means of accidental degeneracy between three different modes. In this article, we propose a different approach that enables true conical dispersion at Γ with twofold degeneracy and generates zero index properties. We break time-reversal symmetry and exploit a time-Floquet modulation scheme to demonstrate a time-Floquet acoustic metamaterial with zero refractive index. This behavior, predicted using stroboscopic analysis, is confirmed by full-wave finite element simulations. Our results establish the relevance of time-Floquet metamaterials as a novel reconfigurable platform for wave control.
High intensity surface plasma waves, theory and PIC simulations
Raynaud, M.; Héron, A.; Adam, J.-C.
2018-01-01
With the development of intense (>1019 W cm‑2) short pulses (≤25 fs) laser with very high contrast, surface plasma wave (SPW) can be explored in the relativistic regime. As the SPW propagates with a phase velocity close to the speed of light it may results in a strong acceleration of electron bunches along the surface permitting them to reach relativistic energies. This may be important e.g. for applications in the field of plasma-based accelerators. We investigate in this work the excitation of SPWs on grating preformed over-dense plasmas for laser intensities ranging from 1019 up to 1021 W cm‑2. We discuss the nature of the interaction with respect to the solid case in which surface plasmon can be resonantly excited with weak laser intensity. In particular, we show the importance of the pulse duration and focalization of the laser beam on the amplitude of the SPW.
Reconfigurable nanomechanical photonic metamaterials.
Zheludev, Nikolay I; Plum, Eric
2016-01-01
The changing balance of forces at the nanoscale offers the opportunity to develop a new generation of spatially reconfigurable nanomembrane metamaterials in which electromagnetic Coulomb, Lorentz and Ampère forces, as well as thermal stimulation and optical signals, can be engaged to dynamically change their optical properties. Individual building blocks of such metamaterials, the metamolecules, and their arrays fabricated on elastic dielectric membranes can be reconfigured to achieve optical modulation at high frequencies, potentially reaching the gigahertz range. Mechanical and optical resonances enhance the magnitude of actuation and optical response within these nanostructures, which can be driven by electric signals of only a few volts or optical signals with power of only a few milliwatts. We envisage switchable, electro-optical, magneto-optical and nonlinear metamaterials that are compact and silicon-nanofabrication-technology compatible with functionalities surpassing those of natural media by orders of magnitude in some key design parameters.
Active metamaterials terahertz modulators and detectors
Rout, Saroj
2017-01-01
This book covers the theoretical background and experimental methods for engineers and physicist to be able to design, fabricate and characterize terahertz devices using metamaterials. Devices utilize mainstream semiconductor foundry processes to make them for communication and imaging applications. This book will provide engineers and physicists a comprehensive reference to construct such devices with general background in circuits and electromagnetics. The authors describe the design and construction of electromagnetic (EM) devices for terahertz frequencies (108-1010cycles/sec) by embedding solid state electronic devices into artificial metamaterials where each unit cell is only a fraction of the wavelength of the incident EM wave. The net effect is an electronically tunable bulk properties with effective electric (permittivity) and magnetic (permeability) that can be utilized to make novel devices to fill the terahertz gap.
Graphene-enhanced metamaterials in THz applications
DEFF Research Database (Denmark)
Andryieuski, Andrei; Chigrin, Dmitry N.; Khromova, Irina
electromagnetic waves makes them natural candidates for THz optical components [1]. However, ranges of light manipulation can be strongly expanded by involving graphene as a structural component of metamaterials. The interplay between interband and intraband transitions in graphene allows converting a multilayer...... graphene/dielectric structure into a transparent and/or electromagnetically dense artificial medium in a narrow THz or infra-red frequency range. The gate voltage can be used to electrically control the concentration of carriers in the graphene sheets and, thus, efficiently change the dispersion...... of the whole structure. Placed inside a hollow waveguide, a multilayer graphene/dielectric metamaterial provides high-speed modulation of radiation and offers novel concepts for terahertz modulators and tunable bandpass filters. We exemplify it showing performance of waveguide-based terahertz modulators...
Surface-wave-sustained plasma torch for water treatment
Marinova, P.; Benova, E.; Todorova, Y.; Topalova, Y.; Yotinov, I.; Atanasova, M.; Krcma, F.
2018-02-01
In this study the effects of water treatment by surface-wave-sustained plasma torch at 2.45 GHz are studied. Changes in two directions are obtained: (i) changes of the plasma characteristics during the interaction with the water; (ii) water physical and chemical characteristics modification as a result of the plasma treatment. In addition, deactivation of Gram positive and Gram negative bacteria in suspension are registered. A number of charged and excited particles from the plasma interact with the water. As a result the water chemical and physical characteristics such as the water conductivity, pH, H2O2 concentration are modified. It is observed that the effect depends on the treatment time, wave power, and volume of the treated liquid. At specific discharge conditions determined by the wave power, gas flow, discharge tube radius, thickness and permittivity, the surface-wave-sustained discharge (SWD) operating at atmospheric pressure in argon is strongly non-equilibrium with electron temperature T e much higher than the temperature of the heavy particles (gas temperature T g). It has been observed that SWD argon plasma with T g close to the room temperature is able to produce H2O2 in the water with high efficiency at short exposure times (less than 60 sec). The H2O2 decomposition is strongly dependant on the temperature thus the low operating gas temperature is crucial for the H2O2 production efficiency. After scaling up the device, the observed effects can be applied for the waste water treatment in different facilities. The innovation will be useful especially for the treatment of waters and materials for medical application.
Slow upper mantle beneath Southern Norway from surface waves
Weidle, C.; Maupin, V.
2009-04-01
A recent regional surface wave tomography for Northern Europe revealed unprecedented images of the upper mantle beneath the (Tertiary) North Atlantic and the bordering Fennoscandian craton of Archean-Proterozoic age. With respect to the circum-Atlantic regions of uplift, no common mantle pattern supporting the uplift of these regions is observed. The western boundary of the thick cratonic lithosphere follows the trend of the continental margin offshore northern Norway (i.e. the northern Scandes are underlain by thick lithosphere) whereas further south the boundary of the craton is located further east beneath southwestern Sweden. SV shear wave velocities beneath southern Norway are 10% slower than ak135 (at 70-115 km depth) and these low-velocities are clearly connected to the North Atlantic low-velocity regime through a ~ 400 km wide "channel". The low-velocity anomaly beneath Southern Norway coincides in geometry roughly with the dome-like high topography of the southern Scandes and may thus have a non-negligible contribution to the isostatic balance of the region. The amplitude and depth-distribution of this anomaly are due to be further constrained by new data that were acquired during the MAGNUS experiment in 2006-2008. The temporary seismic network, consisting of 40 broadband seismometers covers to a large extent the location of the anomaly as imaged by the regional tomography. This enables us to get unique control on the tomographic model at improved lateral and vertical resolution. Preliminary analysis of surface wave phase velocities yields an average 1-D shear wave velocity profile for southern Norway as a first step to constrain the presence and depth extent of this low-velocity anomaly.
Standing surface waves in dusty microwave slot-excited plasma
International Nuclear Information System (INIS)
Ostrikov, K.N.; Yu, M.Y.; Sugai, H.
2000-01-01
Full text: The effect of charged dust particles on microwave slot-excited plasma has been studied. The dusts absorb significant proportion of the plasma electrons, which leads to a substantial modification of the electromagnetic field structure. The overall charge balance and the eigenfrequencies of the standing TM electromagnetic surface modes are modified by the presence of dust. It has been found that the originally excited surface waves can be shifted out of resonance. For certain proportions of dusts, mode conversion appears to be possible. Microwave gas discharges sustained by surface waves (SW) are promising for many industrial applications as sources of large-volume and large-area low-temperature plasmas. Here, we study the surface-wave sustained microwave plasma reactor contaminated by fine dust particles that usually appear as a substrate-etching product or as a result of polymerization in the gaseous phase. The structure that models the slot-excited planar plasma source is considered. A vertical circular cylinder is short-circuited at its top by a metal plate. A dielectric layer isolates the cylinder top from the plasma, and the chamber bottom is open. We have shown that uncontrolled release of the dusts in the discharge chamber can adversely affect the discharge performance and under certain conditions cause a discharge disruption. This can best be understood by noting that macroparticles absorb a significant proportion of plasma electrons and hence modify the ionization-recombination balance. Moreover, stable operation of the microwave surface-wave sustained discharge depends on the resonant conditions for the operating mode, and it is thus crucial to understand how dusts affect the eigenfrequencies of the SWs. We have demonstrated that introduction of additional amounts of contaminant results in a significant shift of the electron plasma density from its resonant value for the initially excited resonant mode. The system can thus be moved out of
Surface-Wave Tomography of Yucca Flat, Nevada
Toney, L. D.; Abbott, R. E.; Knox, H. A.; Preston, L. A.; Hoots, C. R.
2016-12-01
In 2015, Sandia National Laboratories conducted an active-source seismic survey of Yucca Flat, Nevada, on the Nevada National Security Site. The Yucca Flat basin hosted over 900 nuclear tests between 1951 and 1992. Data from this survey will help characterize seismic propagation effects of the area, informing models for the next phase of the Source Physics Experiments. The survey source was a 13,000-kg weight-drop at 91 locations along a 19-km N-S transect and 56 locations along an 11-km E-W transect. Over 350 three-component 2-Hz geophones were variably spaced at 10, 20, and 100 m along each line. We employed roll-along survey geometry to ensure 10-m receiver spacing within 2 km of the source. Phase velocity surface-wave analysis via the refraction-microtremor (ReMi) method was previously performed on this data in order to obtain an S-wave velocity model of the subsurface. However, the results of this approach were significantly impacted in areas where ray paths were proximate to underground nuclear tests, resulting in a spatially incomplete model. We have processed the same data utilizing group velocities and the multiple filter technique (MFT), with the hope that the propagation of wave groups is less impacted by the disrupted media surrounding former tests. We created a set of 30 Gaussian band-pass filters with scaled relative passbands and central frequencies ranging from 1 to 50 Hz. We picked fundamental Rayleigh wave arrivals from the filtered data; these picks were then inverted for 2D S-wave velocity along the transects. The new S-wave velocity model will be integrated with previous P-wave tomographic results to yield a more complete model of the subsurface structure of Yucca Flat. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Li, Jing
2017-12-22
A robust imaging technology is reviewed that provide subsurface information in challenging environments: wave-equation dispersion inversion (WD) of surface waves for the shear velocity model. We demonstrate the benefits and liabilities of the method with synthetic seismograms and field data. The benefits of WD are that 1) there is no layered medium assumption, as there is in conventional inversion of dispersion curves, so that the 2D or 3D S-velocity model can be reliably obtained with seismic surveys over rugged topography, and 2) WD mostly avoids getting stuck in local minima. The synthetic and field data examples demonstrate that WD can accurately reconstruct the S-wave velocity distributions in laterally heterogeneous media if the dispersion curves can be identified and picked. The WD method is easily extended to anisotropic media and the inversion of dispersion curves associated with Love wave. The liability is that is almost as expensive as FWI and only recovers the Vs distribution to a depth no deeper than about 1/2~1/3 wavelength.
Energy Technology Data Exchange (ETDEWEB)
Lee, Myoung-Jae [Department of Physics, Hanyang University, Seoul 04763 (Korea, Republic of); Research Institute for Natural Sciences, Hanyang University, Seoul 04763 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588 (Korea, Republic of); Department of Electrical and Computer Engineering, MC 0407, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0407 (United States)
2017-02-12
High frequency electrostatic wave propagation in a dense and semi-bounded electron quantum plasma is investigated with consideration of the Bohm potential. The dispersion relation for the surface mode of quantum plasma is derived and numerically analyzed. We found that the quantum effect enhances the frequency of the wave especially in the high wave number regime. However, the frequency of surface wave is found to be always lower than that of the bulk wave for the same quantum wave number. The group velocity of the surface wave for various quantum wave number is also obtained. - Highlights: • High frequency electrostatic wave propagation is investigated in a dense semi-bounded quantum plasma. • The dispersion relation for the surface mode of quantum plasma is derived and numerically analyzed. • The quantum effect enhances the frequency of the wave especially in the high wave number regime. • The frequency of surface wave is found to be always lower than that of the bulk wave. • The group velocity of the surface wave for various quantum wave number is also obtained.
Directory of Open Access Journals (Sweden)
J.-M. Friedt
2016-12-01
Full Text Available We use an instrument combining optical (surface plasmon resonance and acoustic (Love mode surface acoustic wave device real-time measurements on a same surface for the identification of water content in collagen and fibrinogen protein layers. After calibration of the surface acoustic wave device sensitivity by copper electrodeposition and surfactant adsorption, the bound mass and its physical properties – density and optical index – are extracted from the complementary measurement techniques and lead to thickness and water ratio values compatible with the observed signal shifts. Such results are especially usefully for protein layers with a high water content as shown here for collagen on an hydrophobic surface. We obtain the following results: collagen layers include 70±20% water and are 16±3 to 19±3 nm thick for bulk concentrations ranging from 30 to 300 μg/ml. Fibrinogen layers include 50±10% water for layer thicknesses in the 6±1.5 to 13±2 nm range when the bulk concentration is in the 46 to 460 μg/ml range. Keywords: surface acoustic wave, surface plasmon resonance, collagen, fibrinogen, density, thickness
Three-dimensional metamaterials
Burckel, David Bruce [Albuquerque, NM
2012-06-12
A fabrication method is capable of creating canonical metamaterial structures arrayed in a three-dimensional geometry. The method uses a membrane suspended over a cavity with predefined pattern as a directional evaporation mask. Metallic and/or dielectric material can be evaporated at high vacuum through the patterned membrane to deposit resonator structures on the interior walls of the cavity, thereby providing a unit cell of micron-scale dimension. The method can produce volumetric metamaterial structures comprising layers of such unit cells of resonator structures.
Internal gravity wave contributions to global sea surface variability
Savage, A.; Arbic, B. K.; Richman, J. G.; Shriver, J. F.; Buijsman, M. C.; Zamudio, L.; Wallcraft, A. J.; Sharma, H.
2016-02-01
High-resolution (1/12th and 1/25th degree) 41-layer simulations of the HYbrid Coordinate Ocean Model (HYCOM), forced by both atmospheric fields and the astronomical tidal potential, are used to construct global maps of sea-surface height (SSH). The HYCOM output has been separated into steric, non-steric, and total sea-surface height and the maps display variance in subtidal, tidal, and supertidal bands. Two of the global maps are of particular interest in planning for the upcoming Surface Water and Ocean Topography (SWOT) wide-swath satellite altimeter mission; (1) a map of the nonstationary tidal signal (estimated after removing the stationary tidal signal via harmonic analysis), and (2) a map of the steric supertidal contributions, which are dominated by the internal gravity wave continuum. Both of these maps display signals of order 1 cm2, the target accuracy for the SWOT mission. Therefore, both non-stationary internal tides and non-tidal internal gravity waves are likely to be important sources of "noise" that must be accurately removed before examination of lower-frequency phenomena can take place.
Surface wave propagation effects on buried segmented pipelines
Directory of Open Access Journals (Sweden)
Peixin Shi
2015-08-01
Full Text Available This paper deals with surface wave propagation (WP effects on buried segmented pipelines. Both simplified analytical model and finite element (FE model are developed for estimating the axial joint pullout movement of jointed concrete cylinder pipelines (JCCPs of which the joints have a brittle tensile failure mode under the surface WP effects. The models account for the effects of peak ground velocity (PGV, WP velocity, predominant period of seismic excitation, shear transfer between soil and pipelines, axial stiffness of pipelines, joint characteristics, and cracking strain of concrete mortar. FE simulation of the JCCP interaction with surface waves recorded during the 1985 Michoacan earthquake results in joint pullout movement, which is consistent with the field observations. The models are expanded to estimate the joint axial pullout movement of cast iron (CI pipelines of which the joints have a ductile tensile failure mode. Simplified analytical equation and FE model are developed for estimating the joint pullout movement of CI pipelines. The joint pullout movement of the CI pipelines is mainly affected by the variability of the joint tensile capacity and accumulates at local weak joints in the pipeline.
Surface Modification on Acoustic Wave Biosensors for Enhanced Specificity
Directory of Open Access Journals (Sweden)
Nathan D. Gallant
2012-09-01
Full Text Available Changes in mass loading on the surface of acoustic biosensors result in output frequency shifts which provide precise measurements of analytes. Therefore, to detect a particular biomarker, the sensor delay path must be judiciously designed to maximize sensitivity and specificity. B-cell lymphoma 2 protein (Bcl-2 found in urine is under investigation as a biomarker for non-invasive early detection of ovarian cancer. In this study, surface chemistry and biofunctionalization approaches were evaluated for their effectiveness in presenting antibodies for Bcl-2 capture while minimizing non-specific protein adsorption. The optimal combination of sequentially adsorbing protein A/G, anti-Bcl-2 IgG and Pluronic F127 onto a hydrophobic surface provided the greatest signal-to-noise ratio and enabled the reliable detection of Bcl-2 concentrations below that previously identified for early stage ovarian cancer as characterized by a modified ELISA method. Finally, the optimal surface modification was applied to a prototype acoustic device and the frequency shift for a range of Bcl-2 concentration was quantified to demonstrate the effectiveness in surface acoustic wave (SAW-based detection applications. The surface functionalization approaches demonstrated here to specifically and sensitively detect Bcl-2 in a working ultrasonic MEMS biosensor prototype can easily be modified to detect additional biomarkers and enhance other acoustic biosensors.
Ultra-thin infrared metamaterial detector for multicolor imaging applications.
Montoya, John A; Tian, Zhao-Bing; Krishna, Sanjay; Padilla, Willie J
2017-09-18
The next generation of infrared imaging systems requires control of fundamental electromagnetic processes - absorption, polarization, spectral bandwidth - at the pixel level to acquire desirable information about the environment with low system latency. Metamaterial absorbers have sparked interest in the infrared imaging community for their ability to enhance absorption of incoming radiation with color, polarization and/or phase information. However, most metamaterial-based sensors fail to focus incoming radiation into the active region of a ultra-thin detecting element, thus achieving poor detection metrics. Here our multifunctional metamaterial absorber is directly integrated with a novel mid-wave infrared (MWIR) and long-wave infrared (LWIR) detector with an ultra-thin (~λ/15) InAs/GaSb Type-II superlattice (T2SL) interband cascade detector. The deep sub-wavelength metamaterial detector architecture proposed and demonstrated here, thus significantly improves the detection quantum efficiency (QE) and absorption of incoming radiation in a regime typically dominated by Fabry-Perot etalons. Our work evinces the ability of multifunctional metamaterials to realize efficient wavelength selective detection across the infrared spectrum for enhanced multispectral infrared imaging applications.
Circuit Design of Surface Acoustic Wave Based Micro Force Sensor
Directory of Open Access Journals (Sweden)
Yuanyuan Li
2014-01-01
Full Text Available Pressure sensors are commonly used in industrial production and mechanical system. However, resistance strain, piezoresistive sensor, and ceramic capacitive pressure sensors possess limitations, especially in micro force measurement. A surface acoustic wave (SAW based micro force sensor is designed in this paper, which is based on the theories of wavelet transform, SAW detection, and pierce oscillator circuits. Using lithium niobate as the basal material, a mathematical model is established to analyze the frequency, and a peripheral circuit is designed to measure the micro force. The SAW based micro force sensor is tested to show the reasonable design of detection circuit and the stability of frequency and amplitude.
Surface waves in fibre-reinforced anisotropic elastic media
Indian Academy of Sciences (India)
Springer Verlag Heidelberg #4 2048 1996 Dec 15 10:16:45
The absence of stress over the free surface enables us to replace the right-hand side of (20) and (21) by zero, giving. 2rA + (s2 − 1)B = 0,. (24). [(λ + α) + r2(λ + 2µT )A − (2µT − α)s = 0. (25). Eliminating A and B from (24) and (25) we obtain the Rayleigh type of waves in the fibre-reinforced elastic medium as. (1 − s2)[(λ + α) + ...
A proper methodology aimed at surface wave tomography
Directory of Open Access Journals (Sweden)
J. Badal
1997-06-01
Full Text Available When applying a methodology for obtaining the 3D shear-wave velocity structure of a medium from surface wave dispersion data, the problem must be considered with caution since one inverts path-averaged velocities and the use of any inversion method entails some drawbacks such as lack of uniqueness, unwarranted stability and constraints affecting the data. In order to avoid the application of consecutive inversions and to overcome these drawbacks, we propose alternative mapping methods, for example spatial prediction methods, or else the use of an algorithm that, from a mathematical viewpoint, can be understood through the application of the orthogonal projection theorem onto convex sets (POCS. Among the first ones, we try inverse weighted distance interpolation. The POCS algorithm we have used discretises a second order differential equation for the velocity field with boundary conditions. All these imaging techniques aimed at volumetric modelling and the visualisation of data are discussed, and finally we show some results based on ray path velocities obtained previously by inversion of phase and group velocities of Rayleigh waves propagating across the Iberian peninsula.
Liu, Zhaolun
2017-03-06
We have developed a methodology for detecting the presence of near-surface heterogeneities by naturally migrating backscattered surface waves in controlled-source data. The near-surface heterogeneities must be located within a depth of approximately one-third the dominant wavelength λ of the strong surface-wave arrivals. This natural migration method does not require knowledge of the near-surface phase-velocity distribution because it uses the recorded data to approximate the Green’s functions for migration. Prior to migration, the backscattered data are separated from the original records, and the band-passed filtered data are migrated to give an estimate of the migration image at a depth of approximately one-third λ. Each band-passed data set gives a migration image at a different depth. Results with synthetic data and field data recorded over known faults validate the effectiveness of this method. Migrating the surface waves in recorded 2D and 3D data sets accurately reveals the locations of known faults. The limitation of this method is that it requires a dense array of receivers with a geophone interval less than approximately one-half λ.
Variational space–time (dis)continuous Galerkin method for nonlinear free surface water waves
Gagarina, Elena; Ambati, V.R.; van der Vegt, Jacobus J.W.; Bokhove, Onno
2014-01-01
A new variational finite element method is developed for nonlinear free surface gravity water waves using the potential flow approximation. This method also handles waves generated by a wave maker. Its formulation stems from Miles’ variational principle for water waves together with a finite element
Variational space-time (dis)continuous Galerkin method for nonlinear free surface waves
Gagarina, Elena; van der Vegt, Jacobus J.W.; Ambati, V.R.; Bokhove, Onno
A new variational finite element method is developed for nonlinear free surface gravity water waves. This method also handles waves generated by a wave maker. Its formulation stems from Miles' variational principle for water waves together with a space-time finite element discretization that is
Yu, Han
2016-04-26
We demonstrate that diffraction stack migration can be used to discover the distribution of near-surface faults. The methodology is based on the assumption that near-surface faults generate detectable back-scattered surface waves from impinging surface waves. We first isolate the back-scattered surface waves by muting or FK filtering, and then migrate them by diffraction migration using the surface wave velocity as the migration velocity. Instead of summing events along trial quasi-hyperbolas, surface wave migration sums events along trial quasi-linear trajectories that correspond to the moveout of back-scattered surface waves. We have also proposed a natural migration method that utilizes the intrinsic traveltime property of the direct and the back-scattered waves at faults. For the synthetic data sets and the land data collected in Aqaba, where surface wave velocity has unexpected perturbations, we migrate the back-scattered surface waves with both predicted velocity profiles and natural Green\\'s function without velocity information. Because the latter approach avoids the need for an accurate velocity model in event summation, both the prestack and stacked migration images show competitive quality. Results with both synthetic data and field records validate the feasibility of this method. We believe applying this method to global or passive seismic data can open new opportunities in unveiling tectonic features.
Anisotropic dissipation in lattice metamaterials
Directory of Open Access Journals (Sweden)
Dimitri Krattiger
2016-12-01
Full Text Available Plane wave propagation in an elastic lattice material follows regular patterns as dictated by the nature of the lattice symmetry and the mechanical configuration of the unit cell. A unique feature pertains to the loss of elastodynamic isotropy at frequencies where the wavelength is on the order of the lattice spacing or shorter. Anisotropy may also be realized at lower frequencies with the inclusion of local resonators, especially when designed to exhibit directionally non-uniform connectivity and/or cross-sectional geometry. In this paper, we consider free and driven waves within a plate-like lattice−with and without local resonators−and examine the effects of damping on the isofrequency dispersion curves. We also examine, for free waves, the effects of damping on the frequency-dependent anisotropy of dissipation. Furthermore, we investigate the possibility of engineering the dissipation anisotropy by tuning the directional properties of the prescribed damping. The results demonstrate that uniformly applied damping tends to reduce the intensity of anisotropy in the isofrequency dispersion curves. On the other hand, lattice crystals and metamaterials are shown to provide an excellent platform for direction-dependent dissipation engineering which may be realized by simple changes in the spatial distribution of the damping elements.
Resent developments in high-frequency surface-wave techniques
Xia, J.; Pan, Y.; Zeng, C.
2012-12-01
High-frequency Rayleigh-wave methods, such as Multi-channel Analysis of Surface Waves (MASW), are getting increasingly attention in the near-surface geophysics and geotechnique community in the last 20 years because of their non-invasive, non-destructive, efficient, and low-cost advantages and their success in environmental and engineering applications. They are viewed by near-surface geophysics community as the one of most promise techniques in the future. However, they face unique problems related to extremely irregular velocity variations in near-surface geology or man-made constructions, for example, highway, foundation, dam, levee, jetty, etc., which are not solvable by techniques or algorithms widely used in earthquake seismology or oil/gas seismic exploration. We present solutions to the problems associated with near-surface materials that possess velocity inverse and high Poisson's ratio. Calculation of dispersion curves by existing algorithms may fail for some special velocity models due to velocity inverse (a high-velocity layer on the top of a low-velocity layer). Two velocity models are most common in near-surface applications. One is a low-velocity half space model and the other a high-velocity topmost layer. The former model results in a complex matrix that no roots can be found in the real number domain, which implies that no phase velocities can be calculated in certain frequency ranges based on current exist algorithms. A solution is to use the real part of the root of the complex number. It is well-known that phase velocities approach about 91% of the shear (S)-wave velocity of the topmost layer when wavelengths are much shorter than the thickness of the topmost layer. The later model, however, results in that phase velocities in a high-frequency range calculated using the current algorithms approach a velocity associated with the S-wave velocity of the second layer NOT the topmost layer. A solution to this problem is to use a two-layer model to
Nonlinear waves and solitons on contours and closed surfaces
Ludu, Andrei
2012-01-01
This volume is an introduction to nonlinear waves and soliton theory in the special environment of compact spaces such a closed curves and surfaces and other domain contours. It assumes familiarity with basic soliton theory and nonlinear dynamical systems. The first part of the book introduces the mathematical concept required for treating the manifolds considered, providing relevant notions from topology and differential geometry. An introduction to the theory of motion of curves and surfaces - as part of the emerging field of contour dynamics - is given. The second and third parts discuss the modeling of various physical solitons on compact systems, such as filaments, loops and drops made of almost incompressible materials thereby intersecting with a large number of physical disciplines from hydrodynamics to compact object astrophysics. This book is intended for graduate students and researchers in mathematics, physics and engineering. This new edition has been thoroughly revised, expanded and updated.
Visualization of terahertz surface waves propagation on metal foils
Wang, Xinke; Wang, Sen; Sun, Wenfeng; Feng, Shengfei; Han, Peng; Yan, Haitao; Ye, Jiasheng; Zhang, Yan
2016-01-01
Exploitation of surface plasmonic devices (SPDs) in the terahertz (THz) band is always beneficial for broadening the application potential of THz technologies. To clarify features of SPDs, a practical characterization means is essential for accurately observing the complex field distribution of a THz surface wave (TSW). Here, a THz digital holographic imaging system is employed to coherently exhibit temporal variations and spectral properties of TSWs activated by a rectangular or semicircular slit structure on metal foils. Advantages of the imaging system are comprehensively elucidated, including the exclusive measurement of TSWs and fall-off of the time consumption. Numerical simulations of experimental procedures further verify the imaging measurement accuracy. It can be anticipated that this imaging system will provide a versatile tool for analyzing the performance and principle of SPDs. PMID:26729652
Cui, Shichao; Harne, Ryan L
2017-06-01
A metamaterial that capitalizes on a double porosity architecture is introduced for controlling broadband acoustic energy suppression properties. When the metamaterial is subjected to static compressive stress, a global rotation of the internal metamaterial architecture is induced that softens the effective stiffness and results in a considerable means to tailor wave transmission and absorption properties. The influences of mass inclusions and compression constraints are examined by computational and experimental efforts. The results indicate that the mass inclusions and applied constraints can significantly impact the absorption and transmission properties of double porosity metamaterials, while the appropriate utilization of the underlying poroelastic media can further magnify these parametric influences. Based on the widespread implementation of compressed poroelastic media in applications, the results of this research uncover how internal metamaterial architecture and constraints may be exploited to enhance engineering noise control properties while using less poroelastic material mass.
Surface Waves Propagating on Grounded Anisotropic Dielectric Slab
Directory of Open Access Journals (Sweden)
Zhuozhu Chen
2018-01-01
Full Text Available This paper investigates the characteristics of surface waves propagating on a grounded anisotropic dielectric slab. Distinct from the existing analyses that generally assume that the fields of surface wave uniformly distribute along the transverse direction of the infinitely large grounded slab, our method takes into account the field variations along the transverse direction of a finite-width slab. By solving Maxwell’s equations in closed-form, it is revealed that no pure transverse magnetic (TM or transverse electric (TE mode exists if the fields are non-uniformly distributed along the transverse direction of the grounded slab. Instead, two hybrid modes, namely quasi-TM and quasi-TE modes, are supported. In addition, the propagation characteristics of two hybrid modes supported by the grounded anisotropic slab are analyzed in terms of the slab thickness, slab width, as well as the relative permittivity tensor of the anisotropic slab. Furthermore, different methods are employed to compare the analyses, as well as to validate our derivations. The proposed method is very suitable for practical engineering applications.
Optical tracking of local surface wave for skin viscoelasticity.
Guan, Yubo; Lu, Mingzhu; Shen, Zhilong; Wan, Mingxi
2014-06-01
Rapid and effective determination of biomechanical properties is important in examining and diagnosing skin thermal injury. Among the methods used, viscoelasticity quantification is one of the most effective methods in determining such properties. This study aims to rapidly determine skin viscoelasticity by optically tracking the local surface wave. New elastic and viscous coefficients were proposed to indicate skin viscoelasticity based on a single impulse response of the skin. Experiments were performed using fresh porcine skin samples. Surface wave was generated in a single impulse using a vibrator with a ball-tipped device and was detected using a laser Doppler vibrometer. The motions along the depth direction were monitored using an ultrasound system. The ultrasound monitoring results indicated the multi-layered viscoelasticity of the epidermis and dermis. The viscoelastic coefficients from four healthy samples show a potential viscoelasticity variation of porcine skin. In one sample, the two coefficients were evidently higher than those in a healthy area if the skin was slightly burned. These results indicate that the proposed method is sensitive, effective, and quick in determining skin viscoelasticity. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
Zadpoor, A.A.
2016-01-01
The emerging concept of mechanical meta-materials has received increasing attention during the last few years partially due to the advances in additive manufacturing techniques that have enabled fabricating materials with arbitrarily complex micro/nano-architectures. The rationally designed
Determination of optimum "multi-channel surface wave method" field parameters.
2012-12-01
Multi-channel surface wave methods (especially the multi-channel analyses of surface wave method; MASW) are routinely used to : determine the shear-wave velocity of the subsurface to depths of 100 feet for site classification purposes. Users are awar...
Wind fields of storms from surface isobars for wave hindcasting
Digital Repository Service at National Institute of Oceanography (India)
Varkey, M.J.; Vaithiyanathan, R.; Santanam, K.
Marine operations of various types are critically linked to mean and extreme wave statistics. In the Indian seas extreme wave conditions are caused by cyclones and steady strong monsoon winds. Wave data from cyclone areas are not directly available...
Metamaterial apertures for coherent computational imaging on the physical layer.
Lipworth, Guy; Mrozack, Alex; Hunt, John; Marks, Daniel L; Driscoll, Tom; Brady, David; Smith, David R
2013-08-01
We introduce the concept of a metamaterial aperture, in which an underlying reference mode interacts with a designed metamaterial surface to produce a series of complex field patterns. The resonant frequencies of the metamaterial elements are randomly distributed over a large bandwidth (18-26 GHz), such that the aperture produces a rapidly varying sequence of field patterns as a function of the input frequency. As the frequency of operation is scanned, different subsets of metamaterial elements become active, in turn varying the field patterns at the scene. Scene information can thus be indexed by frequency, with the overall effectiveness of the imaging scheme tied to the diversity of the generated field patterns. As the quality (Q-) factor of the metamaterial resonators increases, the number of distinct field patterns that can be generated increases-improving scene estimation. In this work we provide the foundation for computational imaging with metamaterial apertures based on frequency diversity, and establish that for resonators with physically relevant Q-factors, there are potentially enough distinct measurements of a typical scene within a reasonable bandwidth to achieve diffraction-limited reconstructions of physical scenes.
Aperiodic-metamaterial-based absorber
Directory of Open Access Journals (Sweden)
Quanlong Yang
2017-09-01
Full Text Available The periodic-metamaterial-based perfect absorber has been studied broadly. Conversely, if the unit cell in the metamaterial-based absorber is arranged aperiodically (aperiodic-metamaterial-based absorber, how does it perform? Inspired by this, here we present a systematic study of the aperiodic-metamaterial-based absorber. By investigating the response of metamaterial absorbers based on periodic, Fibonacci, Thue-Morse, and quasicrystal lattices, we found that aperiodic-metamaterial-based absorbers could display similar absorption behaviors as the periodic one in one hand. However, their absorption behaviors show different tendency depending on the thicknesses of the spacer. Further studies on the angle and polarization dependence of the absorption behavior are also presented.
Perspective on resonances of metamaterials.
Min, Li; Huang, Lirong
2015-07-27
Electromagnetic resonance as the most important characteristic of metamaterials enables lots of exotic phenomena, such as invisible, negative refraction, man-made magnetism, etc. Conventional LC-resonance circuit model as the most authoritative and classic model is good at explaining and predicting the fundamental resonance wavelength of a metamaterial, while feels hard for high-order resonances, especially for resonance intensity (strength of resonance, determining on the performance and efficiency of metamaterial-based devices). In present work, via an easy-to-understand mass-spring model, we present a different and comprehensive insight for the resonance mechanism of metamaterials, through which both the resonance wavelengths (including the fundamental and high-order resonance wavelengths) and resonance intensities of metamaterials can be better understood. This developed theory has been well verified by different-material and different-structure resonators. This perspective will provide a broader space for exploring novel optical devices based on metamaterials (or metasurfaces).
Quantum entanglement distillation with metamaterials.
al Farooqui, Md Abdullah; Breeland, Justin; Aslam, Muhammad I; Sadatgol, Mehdi; Özdemir, Şahin K; Tame, Mark; Yang, Lan; Güney, Durdu Ö
2015-07-13
We propose a scheme for the distillation of partially entangled two-photon Bell and three-photon W states using metamaterials. The distillation of partially entangled Bell states is achieved by using two metamaterials with polarization dependence, one of which is rotated by π/2 around the direction of propagation of the photons. On the other hand, the distillation of three-photon W states is achieved by using one polarization dependent metamaterial and two polarization independent metamaterials. Upon transmission of the photons of the partially entangled states through the metamaterials the entanglement of the states increases and they become distilled. This work opens up new directions in quantum optical state engineering by showing how metamaterials can be used to carry out a quantum information processing task.
Eilon, Zachary; Fischer, Karen M.; Dalton, Colleen A.
2018-04-01
We present a methodology for 1-D imaging of upper mantle structure using a Bayesian approach that incorporates a novel combination of seismic data types and an adaptive parameterisation based on piecewise discontinuous splines. Our inversion algorithm lays the groundwork for improved seismic velocity models of the lithosphere and asthenosphere by harnessing the recent expansion of large seismic arrays and computational power alongside sophisticated data analysis. Careful processing of P- and S-wave arrivals isolates converted phases generated at velocity gradients between the mid-crust and 300 km depth. This data is allied with ambient noise and earthquake Rayleigh wave phase velocities to obtain detailed VS and VP velocity models. Synthetic tests demonstrate that converted phases are necessary to accurately constrain velocity gradients, and S-p phases are particularly important for resolving mantle structure, while surface waves are necessary for capturing absolute velocities. We apply the method to several stations in the northwest and north-central United States, finding that the imaged structure improves upon existing models by sharpening the vertical resolution of absolute velocity profiles, offering robust uncertainty estimates, and revealing mid-lithospheric velocity gradients indicative of thermochemical cratonic layering. This flexible method holds promise for increasingly detailed understanding of the upper mantle.
Jahani, Saman; Jacob, Zubin
2016-01-01
The ideal material for nanophotonic applications will have a large refractive index at optical frequencies, respond to both the electric and magnetic fields of light, support large optical chirality and anisotropy, confine and guide light at the nanoscale, and be able to modify the phase and amplitude of incoming radiation in a fraction of a wavelength. Artificial electromagnetic media, or metamaterials, based on metallic or polar dielectric nanostructures can provide many of these properties by coupling light to free electrons (plasmons) or phonons (phonon polaritons), respectively, but at the inevitable cost of significant energy dissipation and reduced device efficiency. Recently, however, there has been a shift in the approach to nanophotonics. Low-loss electromagnetic responses covering all four quadrants of possible permittivities and permeabilities have been achieved using completely transparent and high-refractive-index dielectric building blocks. Moreover, an emerging class of all-dielectric metamaterials consisting of anisotropic crystals has been shown to support large refractive index contrast between orthogonal polarizations of light. These advances have revived the exciting prospect of integrating exotic electromagnetic effects in practical photonic devices, to achieve, for example, ultrathin and efficient optical elements, and realize the long-standing goal of subdiffraction confinement and guiding of light without metals. In this Review, we present a broad outline of the whole range of electromagnetic effects observed using all-dielectric metamaterials: high-refractive-index nanoresonators, metasurfaces, zero-index metamaterials and anisotropic metamaterials. Finally, we discuss current challenges and future goals for the field at the intersection with quantum, thermal and silicon photonics, as well as biomimetic metasurfaces.
S-wave velocity measurements along levees in New Orleans using passive surface wave methods
Hayashi, K.; Lorenzo, J. M.; Craig, M. S.; Gostic, A.
2017-12-01
In order to develop non-invasive methods for levee inspection, geophysical investigations were carried out at four sites along levees in the New Orleans area: 17th Street Canal, London Avenue Canal, Marrero Levee, and Industrial Canal. Three of the four sites sustained damage from Hurricane Katrina in 2005 and have since been rebuilt. The geophysical methods used include active and passive surface wave methods, and capacitively coupled resistivity. This paper summarizes the acquisition and analysis of the 1D and 2D passive surface wave data. Twelve wireless seismic data acquisition units with 2 Hz vertical component geophones were used to record data. Each unit includes a GPS receiver so that all units can be synchronized over any distance without cables. The 1D passive method used L shaped arrays of three different sizes with geophone spacing ranging from 5 to 340 m. Ten minutes to one hour of ambient noise was recorded with each array, and total data acquisition took approximately two hours at each site. The 2D method used a linear array with a geophone spacing of 5m. Four geophones were moved forward every 10 minutes along 400 1000 m length lines. Data acquisition took several hours for each line. Recorded ambient noise was processed using the spatial autocorrelation method and clear dispersion curves were obtained at all sites (Figure 1a). Minimum frequencies ranged from 0.4 to 0.7 Hz and maximum frequencies ranged from 10 to 30 Hz depending on the site. Non-linear inversion was performed and 1D and 2D S-wave velocity models were obtained. The 1D method penetrated to depths ranging from 200 to 500 m depending on the site (Figure 1b). The 2D method penetrated to a depth of 40 60 m and provided 400 1000 m cross sections along the levees (Figure 2). The interpretation focused on identifying zones beneath the levees or canal walls having low S-wave velocities corresponding to saturated, unconsolidated sands, or low-rigidity clays. Resultant S-wave velocity profiles
Risk analysis of breakwater caisson under wave attack using load surface approximation
Kim, Dong Hyawn
2014-12-01
A new load surface based approach to the reliability analysis of caisson-type breakwater is proposed. Uncertainties of the horizontal and vertical wave loads acting on breakwater are considered by using the so-called load surfaces, which can be estimated as functions of wave height, water level, and so on. Then, the first-order reliability method (FORM) can be applied to determine the probability of failure under the wave action. In this way, the reliability analysis of breakwaters with uncertainties both in wave height and in water level is possible. Moreover, the uncertainty in wave breaking can be taken into account by considering a random variable for wave height ratio which relates the significant wave height to the maximum wave height. The proposed approach is applied numerically to the reliability analysis of caisson breakwater under wave attack that may undergo partial or full wave breaking.
Method for determining the effective permeability and permittivity of metamaterial
Butko, L. N.; Anzulevich, A. P.; Buchelnikov, V. D.; Fediy, A. A.; Bychkov, I. V.
2017-09-01
A easy method is proposed to use for the numerical determination of the permeability and permittivity by modeling the distribution of electromagnetic fields in the samples by finite element method based on the numerical solution of the differential equation with corresponding boundary conditions. Well-known metamaterial consisting of rectilinear thin wires array forming a 2D square lattice within the non-conductive host media was theoretically investigated in this paper. In the second photonic transparency range the investigated structure demonstrates the properties of both the left-handed metamaterial and the photonic crystal allowing Bragg diffraction of electromagnetic waves.
Scheme for achieving coherent perfect absorption by anisotropic metamaterials
Zhang, Xiujuan
2017-02-22
We propose a unified scheme to achieve coherent perfect absorption of electromagnetic waves by anisotropic metamaterials. The scheme describes the condition on perfect absorption and offers an inverse design route based on effective medium theory in conjunction with retrieval method to determine practical metamaterial absorbers. The scheme is scalable to frequencies and applicable to various incident angles. Numerical simulations show that perfect absorption is achieved in the designed absorbers over a wide range of incident angles, verifying the scheme. By integrating these absorbers, we further propose an absorber to absorb energy from two coherent point sources.
Spectrally tunable linear polarization rotation using stacked metallic metamaterials
Romain, Xavier; Baida, Fadi I.; Boyer, Philippe
2017-08-01
We make a theoretical study of the transmission properties of a stack of metallic metamaterials and show that is able to achieve a perfect transmission selectively exhibiting broadband (Q {10}5) polarization rotation. We especially highlight how the arrangement of the stacked structure, as well as the metamaterial unit cell geometry, has a large influence on transmission in the spectral domain. For this purpose, we use an extended analytical Jones formalism that allows us to obtain a rigorous and analytical expression of the transmission. Such versatile structures could find potential applications in polarimetry or in the control of light polarization for THz waves.
Manipulating scattering features by metamaterials
Directory of Open Access Journals (Sweden)
Lu Cui
2016-01-01
Full Text Available We present a review on manipulations of electromagnetic scattering features by using metamaterials or metasurfaces. Several approaches in controlling the scattered fields of objects are presented, including invisibility cloaks and radar illusions based on transformation optics, carpet cloak using gradient metamaterials, dc cloaks, mantle cloaks based on scattering cancellation, “skin” cloaks using phase compensation, scattering controls with coding/programmable metasurfaces, and scattering reductions by multilayered structures. Finally, the future development of metamaterials on scattering manipulation is predicted.
Effect of attenuation correction on surface amplitude distribution of wind waves
Digital Repository Service at National Institute of Oceanography (India)
Varkey, M.J.
Some selected wave profiles recorded using a ship borne wave recorder are analysed to study the effect of attenuation correction on the distribution of the surface amplitudes. A new spectral width parameter is defined to account for wide band...
Effect of phase coupling on surface amplitude distribution of wind waves
Digital Repository Service at National Institute of Oceanography (India)
Varkey, M.J.
Nonlinear features of wind generated surface waves are considered here to be caused by nonrandomness (non-Uniform) in the phase spectrum. Nonrandomness in recorded waves, if present, would be generally obscured within the error level of observations...
Nonlinear left-handed transmission line metamaterials
International Nuclear Information System (INIS)
Kozyrev, A B; Weide, D W van der
2008-01-01
Metamaterials, exhibiting simultaneously negative permittivity ε and permeability μ, more commonly referred to as left-handed metamaterials (LHMs) and also known as negative-index materials, have received substantial attention in the scientific and engineering communities [1]. Most studies of LHMs (and electromagnetic metamaterials in general) have been in the linear regime of wave propagation and have already inspired new types of microwave circuits and devices. The results of these studies have already been the subject of numerous reviews and books. This review covers a less explored but rapidly developing area of investigation involving media that combine nonlinearity (dependence of the permittivity and permeability on the magnitude of the propagating field) with the anomalous dispersion exhibited by LHM. The nonlinear phenomena in such media will be considered on the example of a model system: the nonlinear left-handed transmission line. These nonlinear phenomena include parametric generation and amplification, harmonic and subharmonic generation as well as modulational instabilities and envelope solitons. (topical review)
Nano metamaterials for ultrasensitive Terahertz biosensing.
Lee, Dong-Kyu; Kang, Ji-Hun; Kwon, Junghoon; Lee, Jun-Seok; Lee, Seok; Woo, Deok Ha; Kim, Jae Hun; Song, Chang-Seon; Park, Q-Han; Seo, Minah
2017-08-15
As a candidate for a rapid detection of biomaterials, terahertz (THz) spectroscopy system can be considered with some advantage in non-destructive, label-free, and non-contact manner. Because protein-ligand binding energy is in the THz range, especially, most important conformational information in molecular interactions can be captured by THz electromagnetic wave. Based on the THz time-domain spectroscopy system, THz nano-metamaterial sensing chips were prepared for great enhancing of detection sensitivity. A metamaterial sensing chip was designed for increasing of absorption cross section of the target sample, related to the transmitted THz near field enhancement via the composition of metamaterial. The measured THz optical properties were then analyzed in terms of refractive index and absorption coefficient, and compared with simulation results. Also, virus quantification regarding various concentrations of the viruses was performed, showing a clear linearity. The proposed sensitive and selective THz detection method can provide abundant information of detected biomaterials to help deep understanding of fundamental optical characteristics of them, suggesting rapid diagnosis way especially useful for such dangerous and time-sensitive target biomaterials.
Waveform inversion of surface waves at geotechnical scale
Billien, M.; Maupin, V.
2003-04-01
The depth profile of the shear modulus in the Earth is commonly measured by analysing the dispersion of surface waves, and this at very different scales, from a few meters in geotechnique, to a few hundred km in seismology. In geotechnique, inverting seismograms for the shear modulus of the structure is a challenging problem due to the very large span of possible model parameters and to the highly non-linear relation between model and wavefield. We present here an analysis of how a global search algorithm can be used to solve this problem. The technique is based on comparing the data with complete synthetic seismograms and using a so-called neighbourhood algorithm to search in an efficient way for models which best fit the data. The synthetic seismograms are made in plane layered structures with the discrete wavenumber integration method. Multimode surface waves can be treated without extracting the modal dispersion curves, and models with decreasing velocity with depth can be analysed. The performance of the method is of course strongly dependent on the misfit function which is used to compare data and synthetics. In most cases, misfits calculated in the frequency domain lead to better results than misfits calculated in the time domain. Since the surface layers have a much larger influence on the waveforms than the parameters of the deeper layers, we found necessary to use the search algorithm in an iterative way, searching first for the velocity in the first layer, and then refining iteratively the profile with depth. Although global search methods with computation of full synthetic seismograms can of course not compete with linearised inversions of dispersion curves in terms of computation time, we show that they are feasible on an ordinary workstation in a reasonable amount of time, and can therefore be an alternative inversion method for complex datasets.
The Effect of the Leeuwin Current on Offshore Surface Gravity Waves in Southwest Western Australia
Wandres, Moritz; Wijeratne, E. M. S.; Cosoli, Simone; Pattiaratchi, Charitha
2017-11-01
The knowledge of regional wave regimes is critical for coastal zone planning, protection, and management. In this study, the influence of the offshore current regime on surface gravity waves on the southwest Western Australian (SWWA) continental shelf was examined. This was achieved by coupling the three dimensional, free surface, terrain-following hydrodynamic Regional Ocean Modelling System (ROMS) and the third generation wave model Simulating WAves Nearshore (SWAN) using the Coupled Ocean-Atmosphere-WaveSediment Transport (COAWST) model. Different representative states of the Leeuwin Current (LC), a strong pole-ward flowing boundary current with a persistent eddy field along the SWWA shelf edge were simulated and used to investigate their influence on different large wave events. The coupled wave-current simulations were compared to wave only simulations, which represented scenarios in the absence of a background current field. Results showed that the LC and the eddy field significantly impact SWWA waves. Significant wave heights increased (decreased) when currents were opposing (aligning with) the incoming wave directions. During a fully developed LC system significant wave heights were altered by up to ±25% and wave directions by up to ±20°. The change in wave direction indicates that the LC may modify nearshore wave dynamics and consequently alter sediment patterns. Operational regional wave forecasts and hindcasts may give flawed predictions if wave-current interaction is not properly accounted for.
Impacts of Ocean Waves on the Atmospheric Surface Layer: Simulations and Observations
National Research Council Canada - National Science Library
Sullivan, Peter P; McWilliams, James C; Melville, W. K
2008-01-01
... planetary boundary layers (PBL). Efforts were focused on the effects of surface gravity waves on the near-surface dynamics, surface fluxes, and coupling between the atmospheric and oceanic PBLs...
International Nuclear Information System (INIS)
Dragila, R.; Vukovic, S.
1988-01-01
The properties of surfave waves that are associated with a boundary between a rare plasma and a dense magnetoactive plasma and that propagate along a dc magnetic field are investigated. It is shown that the presence of the magnetic field introduces symmetry in terms of the polarization of the incident electromagnetic wave that excites the surface waves. A surface wave excited by an incident p-polarized (s-polarized) electromagnetic wave leaks in the form of an s-polarized (p-polarized) electromagnetic wave. The rate of rotation of polarization is independent of the polarization of the incident wave. Because a surface wave can leak in the form of an s-polarized electromagnetic wave, it can also be pumped by such a wave, and conditions were found for excitation of a surface wave by an s-polarized incident electromagnetic wave
Doped Chiral Polymer Metamaterials (DCPM)
National Aeronautics and Space Administration — The goal of this research is to develop lightweight, flexible, compact metamaterials with tunable resonance frequencies for effective optical and communication tools...
Doped Chiral Polymer Metamaterials Project
National Aeronautics and Space Administration — Doped Chiral Polymer Metamaterials (DCPM) with tunable resonance frequencies have been developed by adding plasmonic inclusions into chiral polymers with variable...
International Nuclear Information System (INIS)
Khalil, Sh.M.; El-Sherif, N.; El-Siragy, N.M.; Tanta Univ.; El-Naggar, I.A.; Alexandria Univ.
1985-01-01
Investigation is made for nonlinear interaction between incident radiation and a surface wave in a magnetized plasma layer. Both interacting waves are of P polarization. The generated currents and fields at combination frequencies are obtained analytically. Unlike the S-polarized interacting waves, the magnetic field affects the fundamental waves and leads to an amplification of generated waves when their frequencies approach the cyclotron frequency. (author)
Enhanced Transmission of Light and Matter through Nanoapertures without Assistance of Surface Waves
Kukhlevsky, S. V.
2006-01-01
Subwavelength aperture arrays in thin metal films enable enhanced transmission of light and matter waves [for example, see T.W. Ebbesen et al., Nature (London) 391, 667 (1998) and E. Moreno et al., Phys. Rev. Lett. 95, 170406 (2005)]. The phenomenon relies on resonant excitation of the surface electron or matter waves. We show another mechanism that provides a great transmission enhancement not by coupling to the surface waves but by the interference of diffracted evanescent waves in the far-...
Upper-Mantle Shear Velocities beneath Southern California Determined from Long-Period Surface Waves
Polet, J.; Kanamori, H.
1997-01-01
We used long-period surface waves from teleseismic earthquakes recorded by the TERRAscope network to determine phase velocity dispersion of Rayleigh waves up to periods of about 170 sec and of Love waves up to about 150 sec. This enabled us to investigate the upper-mantle velocity structure beneath southern California to a depth of about 250 km. Ten and five earthquakes were used for Rayleigh and Love waves, respectively. The observed surface-wave dispersion shows a clear Love/Rayleigh-wave d...
Circuit Model of Gain in Metamaterials
Boardman, Allan D.; King, Neil; Rapoport, Yuriy
Metamaterials embody exciting prospects for a new generation of novel photonic devices. From their initial emergence as a physical construct in the GHz domain at the start of the 21st century [1-3], they have attracted a significant amount of global interest [4-13] with considerable effort being undertaken to extend their operation into the THz window and even optical regimes [14,15]. However, as they stand, early theoretical indications are that losses will cause potential problems for all possible frequencies and, in particular, kill any opportunity [16] for a useful metamaterial operating around and above 30THz. Such losses are inevitably closely linked to the resonant behaviour of the metaparticles and is addressed here by the placement of active diodes onto a form of metallic split-ring. The use of diodes to create a nonlinear magnetic response [16] and to create tunability [17] has already been discussed but active diodes [18] not only promise means of reducing losses but they can be deployed to produce an overall gain [19]. This behaviour is readily scalable from GHz to THz and even to nanowire [20] and nanoparticle-based metamaterials [21] operating in the optical frequency window. Nevertheless, it is highlighted here that instabilities could present a serious issue. From an investigation of the dispersion relation for a plane wave, a number of conditions are derived that identify the limits placed upon the system parameters, in order to ensure stable overall gain. Any examination of loss, or gain, must, however, be conducted from the perspective of the entire metamaterial, including the permittivity. Depending on the level of sophistication required in the fabrication technique, split-rings may be engineered with different shapes and deployed in a number of different arrays. The most popular have either a circular, or square shape. The term "split-ring" is treated here as a generic name and is not necessarily indicative of a specific shape.
Effect of near-surface topography on high-frequency Rayleigh-wave propagation
Wang, Limin; Xu, Yixian; Xia, Jianghai; Luo, Yinhe
2015-05-01
Rayleigh waves, which are formed due to interference of P- and Sv-waves near the free surface, propagate along the free surface and vanish exponentially in the vertical direction. Their propagation is strongly influenced by surface topography. Due to the high resolution and precision requirements of near-surface investigations, the high-frequency Rayleigh waves are usually used for near-surface structural detecting. Although there are some numerical studies on high-frequency Rayleigh-wave propagation on topographic free surface, detailed analysis of characters of high-frequency Rayleigh-wave propagation on topographic free surface remains untouched. Hence, research of propagation of Rayleigh waves on complex topographic surface becomes critical for Rayleigh-wave methods in near-surface applications. To study the propagation of high-frequency Rayleigh waves on topographic free surface, two main topographic models are designed in this study. One of the models contains a depressed topographic surface, and another contains an uplifted topographic surface. We numerically simulate the propagation of high-frequency Rayleigh waves on these two topographic surfaces by finite-difference method. Soon afterwards, we analyze the propagation character of high-frequency Rayleigh waves on such topographic models, and compare the variations on its energy and frequency before and after passing the topographic region. At last, we discuss the relationship between the variations and topographical steepness of each model. Our numerical results indicate that influence of depressed topography for high-frequency Rayleigh waves is more distinct than influence of uplifted topography. Rayleigh waves produce new scattering body waves during passing the depressed topography with reduction of amplitude and loss of high-frequency components. Moreover, the steeper the depressed topography is, the more energy of Rayleigh waves is lost. The uplifted topography with gentle slope produces similar
Tunable dielectric properties of ferrite-dielectric based metamaterial.
Directory of Open Access Journals (Sweden)
K Bi
Full Text Available A ferrite-dielectric metamaterial composed of dielectric and ferrite cuboids has been investigated by experiments and simulations. By interacting with the electromagnetic wave, the Mie resonance can take place in the dielectric cuboids and the ferromagnetic precession will appear in the ferrite cuboids. The magnetic field distributions show the electric Mie resonance of the dielectric cuboids can be influenced by the ferromagnetic precession of ferrite cuboids when a certain magnetic field is applied. The effective permittivity of the metamaterial can be tuned by modifying the applied magnetic field. A good agreement between experimental and simulated results is demonstrated, which confirms that these metamaterials can be used for tunable microwave devices.
Phonon band structures of the three dimensional latticed pentamode metamaterials
Directory of Open Access Journals (Sweden)
Guan Wang
2017-02-01
Full Text Available The artificially designed three-dimensional (3D pentamode metamaterials have such an extraordinary characteristic that the solid materials behave like liquids. Meanwhile, the ideal structure of the pentamode metamaterials arranges in the same way as that of the diamond crystals. In the present research, we regard three types of pentamode metamaterials derived from the 3D crystal lattices as research objects. The phonon band structures of the candidate pentamode structures are calculated by using the finite element method (FEM. We illustrate the relation between the ratio of the bulk modulus B and the shear modulus G of different combinations of D and d. Finally, we find out the relationship between the phonon band structure and the structure parameters. It is useful for generating the phonon band structure and controlling elastic wave propagation.
Viscoelasticity evaluation of rubber by surface reflection of supersonic wave.
Omata, Nobuaki; Suga, Takahiro; Furusawa, Hirokazu; Urabe, Shinichi; Kondo, Takeru; Ni, Qing-Qing
2006-12-22
The main characteristic of rubber is a viscoelasticity. So it is important to research the characteristic of the viscoelasticity of the high frequency band for the friction between a rubber material and the hard one with roughness, for instance, the tire and the road. As for the measurement of the viscoelasticity of rubber, DMA (dynamic mechanical analysis) is general. However, some problems are pointed out to the measurement of the high frequency band by DMA. Then, we evaluated the viscoelasticity characteristic by the supersonic wave measurement. However, attenuation of rubber is large, and when the viscoelasticity is measured by the supersonic wave therefore, it is inconvenient and limited in a past method by means of bottom reflection. In this report, we tried the viscoelasticity evaluation by the method of using complex surface reflection coefficient and we compared with the friction coefficient under wide-range friction velocity. As a result, some relationships had been found for two properties. We report the result that character of viscoelasticity of rubber was comparable to friction coefficient.
Multimode Surface Wave Tomography Of Asia And Surroundings
Lebedev, S.; van der Hilst, R. D.
We construct a large-scale, high-resolution, 3-D model of the upper mantle beneath Asia, Australia, and surrounding oceans. Automated Multimode Inversion of surface waves (Lebedev and Nolet, 2000) is used to extract the waveform phase information from the regional S and fundamental-mode wavetrains and relate it to structural per- turbations in the Earth. Efficient selection of the wavetrains uncontaminated by scat- tered waves ensures high accuracy of the measurements. Full automation allows us to constrain the tomographic model using a large waveform data set of about twenty thousand vertical-component seismograms and to achieve lateral resolution of 400- 700 km, varying with the local ray-path coverage. The tectonically diverse region of study encompasses units ranging from stable Archean cratons and the oldest ocean floor on Earth to currently opening backarc basins. The western half of the Pacific ``Ring of Fire" dominates the cross-sections down to 150 km depth. At greater depths, a pattern of prominent high-velocity anoma- lies is created by the deep roots of Precambrian continental units (Yangtze, India, Siberia, and Kazakhstan), oceanic lithosphere subducted in the Western Pacific, and the Indian lithosphere descending beneath Tibet. High-velocity continental roots are present beneath some Precambrian units but absent beneath others, depending on their tectonic history. Laterally, the roots can reach beyond the present extent of the overly- ing Archean-Proterozoic crust by as much as a few hundred kilometers.
Multimode Surface Wave Tomography of Asia and Western Pacific.
Lebedev, S.; van der Hilst, R. D.
2001-12-01
We invert a few tens of thousand long-period seismograms and select about twenty thousand to constrain a large-scale, high-resolution, 3-D model of the upper mantle beneath Asia, Australia, and Western Pacific. Automated Multimode Inversion of surface waves (Lebedev and Nolet, 2000) is used to extract the waveform phase information from the regional S and fundamental mode wavetrains and relate it to structural perturbations in the Earth. Efficient selection of the wavetrains uncontaminated by scattered waves ensures high accuracy of our measurements. Full automation allows us to constrain the tomographic model using a very large waveform data set and to achieve lateral resolution of 300-700 km, varying with the local ray-path coverage. The tectonically diverse region of study encompasses units ranging from stable Archean cratons and the oldest ocean floor on Earth to currently opening backarc basins. The western half of the Pacific ``Ring of Fire'' dominates the cross-sections down to 150 km depth. At greater depths, a pattern of prominent high-velocity anomalies is created by the deep roots of Precambrian continental units, oceanic lithosphere subducted in the Western Pacific, and the Indian lithosphere descending beneath Tibet.
Surface Acoustic Wave (SAW Resonators for Monitoring Conditioning Film Formation
Directory of Open Access Journals (Sweden)
Siegfried Hohmann
2015-05-01
Full Text Available We propose surface acoustic wave (SAW resonators as a complementary tool for conditioning film monitoring. Conditioning films are formed by adsorption of inorganic and organic substances on a substrate the moment this substrate comes into contact with a liquid phase. In the case of implant insertion, for instance, initial protein adsorption is required to start wound healing, but it will also trigger immune reactions leading to inflammatory responses. The control of the initial protein adsorption would allow to promote the healing process and to suppress adverse immune reactions. Methods to investigate these adsorption processes are available, but it remains difficult to translate measurement results into actual protein binding events. Biosensor transducers allow user-friendly investigation of protein adsorption on different surfaces. The combination of several transduction principles leads to complementary results, allowing a more comprehensive characterization of the adsorbing layer. We introduce SAW resonators as a novel complementary tool for time-resolved conditioning film monitoring. SAW resonators were coated with polymers. The adsorption of the plasma proteins human serum albumin (HSA and fibrinogen onto the polymer-coated surfaces were monitored. Frequency results were compared with quartz crystal microbalance (QCM sensor measurements, which confirmed the suitability of the SAW resonators for this application.
A Microring Temperature Sensor Based on the Surface Plasmon Wave
Directory of Open Access Journals (Sweden)
Wenchao Li
2015-01-01
Full Text Available A structure of microring sensor suitable for temperature measurement based on the surface plasmon wave is put forward in this paper. The sensor uses surface plasmon multilayer waveguiding structure in the vertical direction and U-shaped microring structure in the horizontal direction and utilizes SOI as the thermal material. The transfer function derivation of the structure of surface plasmon microring sensor is according to the transfer matrix method. While the change of refractive index of Si is caused by the change of ambient temperature, the effective refractive index of the multilayer waveguiding structure is changed, resulting in the drifting of the sensor output spectrum. This paper focuses on the transmission characteristics of multilayer waveguide structure and the impact on the output spectrum caused by refractive index changes in temperature parts. According to the calculation and simulation, the transmission performance of the structure is stable and the sensitivity is good. The resonance wavelength shift can reach 0.007 μm when the temperature is increased by 100 k and FSR can reach about 60 nm. This structure achieves a high sensitivity in the temperature sense taking into account a wide range of filter frequency selections, providing a theoretical basis for the preparation of microoptics.
Kinetic computer modeling of microwave surface-wave plasma production
International Nuclear Information System (INIS)
Ganachev, Ivan P.
2004-01-01
Kinetic computer plasma modeling occupies an intermediate position between the time consuming rigorous particle dynamic simulation and the fast but rather rough cold- or warm-plasma fluid models. The present paper reviews the kinetic modeling of microwave surface-wave discharges with accent on recent kinetic self-consistent models, where the external input parameters are reduced to the necessary minimum (frequency and intensity of the applied microwave field and pressure and geometry of the discharge vessel). The presentation is limited to low pressures, so that Boltzmann equation is solved in non-local approximation and collisional electron heating is neglected. The numerical results reproduce correctly the bi-Maxwellian electron energy distribution functions observed experimentally. (author)
Chiral Metamaterials: retrieval of the effective parameters with and without substrate
Energy Technology Data Exchange (ETDEWEB)
Zhao, Rongkuo; Koschny, Thomas; Soukoulis, Costas M.
2010-06-23
After the prediction that strong enough optical activity may result in negative refraction and negative reflection, more and more artificial chiral metamaterials were designed and fabricated at difference frequency ranges from microwaves to optical waves. Therefore, a simple and robust method to retrieve the effective constitutive parameters for chiral metamaterials is urgently needed. Here, we analyze the wave propagation in chiral metamaterials and follow the regular retrieval procedure for ordinary metamaterials and apply it in chiral metamaterial slabs. Then based on the transfer matrix technique, the parameter retrieval is extended to treat samples with not only the substrate but also the top layers. After the parameter retrieval procedure, we take two examples to check our method and study how the substrate influences on the thin chiral metamaterials slabs. We find that the substrate may cause the homogeneous slab to be inhomogeneous, i.e. the reflections in forward and backward directions are different. However, the chiral metamaterial where the resonance element is embedded far away from the substrate is insensitive to the substrate.
Chiral metamaterials: retrieval of the effective parameters with and without substrate.
Zhao, Rongkuo; Koschny, Thomas; Soukoulis, Costas M
2010-07-05
After the prediction that strong enough optical activity may result in negative refraction and negative reflection, more and more artificial chiral metamaterials were designed and fabricated at difference frequency ranges from microwaves to optical waves. Therefore, a simple and robust method to retrieve the effective constitutive parameters for chiral metamaterials is urgently needed. Here, we analyze the wave propagation in chiral metamaterials and follow the regular retrieval procedure for ordinary metamaterials and apply it in chiral metamaterial slabs. Then based on the transfer matrix technique, the parameter retrieval is extended to treat samples with not only the substrate but also the top layers. After the parameter retrieval procedure, we take two examples to check our method and study how the substrate influences on the thin chiral metamaterials slabs. We find that the substrate may cause the homogeneous slab to be inhomogeneous, i.e. the reflections in forward and backward directions are different. However, the chiral metamaterial where the resonance element is embedded far away from the substrate is insensitive to the substrate.
A Surface Wave's View of the Mid-Continent Rift
Foster, A. E.; Darbyshire, F. A.; Schaeffer, A. J.
2017-12-01
The presence of the Mid-Continent Rift (MCR), a 1.1Ga failed rift in central North America, raises many questions. We address the following: what lasting effects has it had on the continental lithosphere? Though many studies have looked at the area with a variety of data types, the combination of USArray Transportable Array stations to the south, permanent and temporary Canadian stations to the north, and SPREE stations in strategic locations crossing the rift provide a new opportunity for a regional surface-wave study. We select 80 stations with roughly 200 km spacing, resulting in dense path coverage of a broad area centered on the MCR. We use teleseismic data for all earthquakes from January 2005-August 2016 with a magnitude greater than 6.0, amounting to over 1200 events, and we make Rayleigh wave two-station dispersion measurements for all station pairs with suitable event-station geometry. We invert these measurements for anisotropic phase-velocity maps at periods of 20-200 s, yielding information not only on the wave speed but also the current fabric of the lithosphere, a complicated record of strain from formation, through modification from orogeny, attempted rifting, and hotspot interaction, to present day plate motion. We observe a clear signature of the MCR at short (20-25 s) periods, with the slowest phase-velocity anomaly in the region aligning with the strongest gravity anomaly. At increasing periods, and thus greater depths, this slowest anomaly shifts to beneath the center of Lake Superior (30-40 s). Eventually, it appears to merge with a slow anomaly to the north associated with the Nipigon Embayment, and contrasts sharply with an adjacent fast anomaly in the western Superior Province. In our preliminary anisotropy results, we observe weak anisotropy at the latitude of the MCR and to the south, whereas to the north of the MCR we find strong anisotropy. This is similar to the spatial variations in magnitude of delay times from shear-wave splitting
Flat lens effect on seismic waves propagation in the subsoil.
Brûlé, Stéphane; Javelaud, Emmanuel H; Enoch, Stefan; Guenneau, Sébastien
2017-12-22
We show that seismic energy simulated by an artificial source that mainly propagates Rayleigh surface waves, is focused in structured soil made of a grid of holes distributed in the ground. We carry out large-scale field tests with a structured soil made of a grid consisting of cylindrical and vertical holes in the ground and a low frequency artificial source (seismic metamaterials to counteract partially or totally the most devastating components of seismic signals.
Seismic metamaterials based on isochronous mechanical oscillators
Energy Technology Data Exchange (ETDEWEB)
Finocchio, G., E-mail: gfinocchio@unime.it; Garescì, F.; Azzerboni, B. [Department of Electronic Engineering, Industrial Chemistry and Engineering, University of Messina, C.da di Dio, I-98166 Messina (Italy); Casablanca, O.; Chiappini, M. [Istituto Nazionale di Geofisica e Vulcanologia (INGV), Via Vigna Murata 605, 00143 Roma (Italy); Ricciardi, G. [Department of Civil, Informatic, Architectural, and Environmental Engineering and Applied Mathematics, C.da di Dio, I-98166 Messina (Italy); Alibrandi, U. [Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576 (Singapore)
2014-05-12
This Letter introduces a seismic metamaterial (SM) composed by a chain of mass-in-mass system able to filter the S-waves of an earthquake. We included the effect of the SM into the mono dimensional model for the soil response analysis. The SM modifies the soil behavior and in presence of an internal damping the amplitude of the soil amplification function is reduced also in a region near the resonance frequency. This SM can be realized by a continuous structure with inside a 3d-matrix of isochronous oscillators based on a sphere rolling over a cycloidal trajectory.
Xu, Zhenlong; Tong, Jie; Wu, Fugen
2018-03-01
Magnetorheological elastomers (MREs) are used as cladding in three-dimensional locally resonant acoustic metamaterial (LRAM) cores. The metamaterial units are combined into a vibration isolator. Two types of LRAMs, namely, cubic and spherical kernels, are constructed. The finite element method is used to analyze the elastic band structures, transmittances, and vibration modes of the incident elastic waves. Results show that the central position and width of the LRAM elastic bandgap can be controlled by the application of an external magnetic field; furthermore, they can be adjusted by changing the MRE cladding thickness. These methods contribute to the design of metamaterial MRE vibration isolators.
Liu, Zhengqi; Liu, Xiaoshan; Huang, Shan; Pan, Pingping; Chen, Jing; Liu, Guiqiang; Gu, Gang
2015-03-04
Broadband electromagnetic wave absorbers are highly desirable in numerous applications such as solar-energy harvesting, thermo-photovoltaics, and photon detection. The aim to efficiently achieve ultrathin broadband absorbers with high-yield and low-cost fabrication process has long been pursued. Here, we theoretically propose and experimentally demonstrate a unique broadband plasmonic-metamaterial absorber by utilizing a sub-10 nm meta-surface film structure to replace the precisely designed metamaterial crystal in the common metal-dielectric-metal absorbers. The unique ultrathin meta-surface can be automatically obtained during the metal film formation process. Spectral bandwidth with absorbance above 80% is up to 396 nm, where the full absorption width at half-maximum is about 92%. The average value of absorbance across the whole spectral range of 370-880 nm reaches 83%. These super absorption properties can be attributed to the particle plasmon resonances and plasmon near-field coupling by the automatically formed metallic nanoparticles as well as the plasmon polaritons of the metal film with the induced plasmonic magnetic resonances occurring between the top meta-surface and the bottom metal mirror. This method is quite simple, cost-effective for large-area fabrication, and compatible with current industrial methods for microelectro-mechanical systems, which makes it an outstanding candidate for advanced high-efficiency absorber materials.