MODOS GUIADOS EM SLABS METAMATERIAIS GUIDED MODES IN METAMATERIAL SLABS
Directory of Open Access Journals (Sweden)
Leonardo André Ambrosio
2006-12-01
Full Text Available Este trabalho apresenta um estudo de revisão de modos propagantes em um guia-de-onda slab constituído de materiais com índices de refração negativo, os chamados metamateriais, Mostra-se que os modos guiados em um slab metamaterial possuem algumas propriedades particulares, tais como a propagação de ondas lentas simétricas ou anti-simétricas, a ausência de modos fundamentais para ondas rápidas e a possibilidade de propagação de ondas guiadas em um meio menos denso. A análise é baseada em expansões de campo no guia e nos espaços superior e inferior ao mesmo.This paper presents a review of the propagation modes in a slab waveguide consisting of negative refraction index materials, known as metamaterials. Some particular properties of guided modes in a metamaterial slab, such as slow symmetric or antisymmetric slow wave propagation, the absence of fundamental modes for fast waves and the possibility of guided waves in a less dense medium. The analysis is based on field expansions in the guide and the upper and lower spaces of it.
Metamaterial-enabled transformation optics
Landy, Nathan
Transformation Optics is a design methodology that uses the form invariance of Maxwell's equations to distort electromagnetic fields. This distortion is imposed on a region of space by mimicking a curvilinear coordinate system with prescribed magnetoelectric material parameters. By simply specifying the correct coordinate transformation, researchers have created such exotic devices as invisibility cloaks, ``perfect'' lenses, and illusion devices. Unfortunately, these devices typically require correspondingly exotic material parameters that do not occur in Nature. Researchers have therefore turned to complex artificial media known as metamaterials to approximate the desired responses. However, the metamaterial design process is complex, and there are limitations on the responses that they achieve. In this dissertation, we explore both the applicability and limitations of metamaterials in Transformation Optics design. We begin in Chapter 2 by investigating the freedoms available to use in the transformation optics design process itself. We show that quasi-conformal mappings may be used to alleviate some of the complexity of material design in both two- and three-dimensional design. We then go on in Chapter 3 to apply this method to the design of a transformation-optics modified optic. We show that even a highly-approximate implementation of such a lens would retain many of the key performance feautures that we would expect from a full material prescription. However, the approximations made in the design of our lens may not be valid in other areas of transformation optical design. For instance, the high-frequency approximations of our lens design ignore the effects of impedance mismatch, and the approximation is not valid when the material parameters vary on the order of a wavelength. Therefore, in Chapter 4 we use other freedoms available to us to design a full-parameter cloak of invisibility. By tailoring the electromagnetic environment of our cloak, we are able to
Generalized field-transforming metamaterials
International Nuclear Information System (INIS)
Tretyakov, Sergei A; Nefedov, Igor S; Alitalo, Pekka
2008-01-01
In this paper, we introduce a generalized concept of field-transforming metamaterials, which perform field transformations defined as linear relations between the original and transformed fields. These artificial media change the fields in a prescribed fashion in the volume occupied by the medium. We show what electromagnetic properties of transforming medium are required. The coefficients of these linear functions can be arbitrary scalar functions of position and frequency, which makes the approach quite general and opens a possibility to realize various unusual devices.
Cui, Tie Jun
2009-01-01
Includes an introduction to optical transformation theory, revealing invisible cloaks, EM concentrators, beam splitters, and new-type antennas. This title offers a presentation of general theory on artificial metamaterials composed of periodic structures, and coverage of a rapid design method for inhomogeneous metamaterials.
Large Positive and Negative Lateral Shifts from an Anisotropic Metamaterial Slab Backed by a Metal
International Nuclear Information System (INIS)
Min, Cheng; Rong, Chen
2009-01-01
The lateral shift of a light beam at the surface of an anisotropic metamaterial (AMM) slab backed by a metal is investigated. Analytical expressions of the lateral shifts are derived using the stationary-phase method, in the case that total refection does and does not occur at the first interface. The sign of the lateral shift in two situations is discussed, and the necessary conditions for the lateral shift to be positive or negative are given. It is shown that the thickness and physical parameters of the AMM slab and the incident angle of the light beam strongly affect the properties of the lateral shift. Numerical results validate these conclusions. The lossy effect of the metamaterial on the lateral shift is also investigated
μ-near-zero metamaterial slabs for a new concept of plasmonic sensing platforms
Girón-Sedas, J. A.; Oliveira, Osvaldo N.; Mejía-Salazar, J. R.
2018-05-01
We demonstrate that the excitation of magnetic bulk plasmon-like resonances in μ-near-zero double-negative metamaterial slabs is suitable for the design of new sensing platforms, where light-to-plasmon coupling is reached without requiring a prism or grating coupler. This allows for excitation with light coming directly from the air and for dielectric substrates with any refractive index. In the microwave region this architecture is able to detect changes as small as 10-2 in the refractive index of the superstrate. If the metamaterial slab is backed by a metallic substrate, on the other hand, the system can be used as a light-absorber for light harvesting applications.
Effects of Metamaterial Slabs Applied to Wireless Power Transfer at 13.56 MHz
Kim, Gunyoung; Oh, Taek-Kyu; Lee, Bomson
2015-01-01
This paper analyzes the effects of a metamaterial slab (or a practical “perfect lens”) with negative permeability applied to a two loop magnetically coupled wireless power transfer (WPT) system at 13.56 MHz, based on theory, full-wave electromagnetic- (EM-) simulations, and measurements. When using lossless slabs with ideal negative permeability in EM-simulations, the WPT efficiencies have been found to be enhanced close to 100% due to the magnetic field focusing. For the case of using a real...
Effects of Metamaterial Slabs Applied to Wireless Power Transfer at 13.56 MHz
Directory of Open Access Journals (Sweden)
Gunyoung Kim
2015-01-01
Full Text Available This paper analyzes the effects of a metamaterial slab (or a practical “perfect lens” with negative permeability applied to a two loop magnetically coupled wireless power transfer (WPT system at 13.56 MHz, based on theory, full-wave electromagnetic- (EM- simulations, and measurements. When using lossless slabs with ideal negative permeability in EM-simulations, the WPT efficiencies have been found to be enhanced close to 100% due to the magnetic field focusing. For the case of using a realistic slab made of ring resonators (RR μr=-1-j0.23 with s/d=0.5 (s: slab width, d: distance between the transmitting and receiving loops, the WPT efficiency has been found to significantly decrease to about 20%, even lower than that of a free space case (32% due to the heavy power absorption in the slab. However, some efficiency enhancement can be achieved when s/d is optimized between 0.1 and 0.3. Overall, the significant enhancement of efficiencies when using a lossless slab becomes moderate or only marginal when employing a realistic slab.
Transformation electromagnetics and metamaterials fundamental principles and applications
Werner, Douglas H
2013-01-01
Transformation electromagnetics is a systematic design technique for optical and electromagnetic devices that enables novel wave-material interaction properties. The associated metamaterials technology for designing and realizing optical and electromagnetic devices can control the behavior of light and electromagnetic waves in ways that have not been conventionally possible. The technique is credited with numerous novel device designs, most notably the invisibility cloaks, perfect lenses and a host of other remarkable devices.Transformation Electromagnetics and Metamaterials: Fundamental Princ
Bera, Anirban; Barik, Ranjan Kumar; Sattorov, Matlabjon; Kwon, Ohjoon; Min, Sun-Hong; Baek, In-Keun; Kim, Seontae; So, Jin-Kyu; Park, Gun-Sik
2014-02-10
Metallic metamaterials with positive dielectric responses are promising as an alternative to dielectrics for the generation of Cerenkov radiation [J.-K. So et al., Appl. Phys. Lett. 97(15), 151107 (2010)]. We propose here by theoretical analysis a mechanism to couple out Cerenkov radiation from the slab surfaces in the transverse direction. The proposed method based on Brillouin-zone folding is to periodically modify the thickness of the metamaterial slab in the axial direction. Moreover, the intensity of the surface-coupled radiation by this mechanism shows an order-of-magnitude enhancement compared to that of ordinary Smith-Purcell radiation.
International Nuclear Information System (INIS)
Rybin, O.; Nawaz, T.; Abbasi, T.
2007-01-01
An improved broadband method for determining complex effective refractive index, permittivity and permeability of an arbitrary passive metamaterial in microwave frequency range has been proposed. Evaluation of the effective parameters is realized using the reflection-transmission S-parameters obtained by simulation or experimental measurements and analytically evaluated interface reflection coefficient of the slab. Formulas for evaluation of effective permittivity and permeability which contain the square root of complex functions of S-parameters have been proposed in (1-2). But this method does not propose a way to avoid an ambiguity arising in choosing the square root branch of product of effective permittivity and permeability. Moreover the above calculation procedure requires evaluating the square root branch of function of S-parameters. Proposed way to choose the square root branch gives sometimes mistaken results. Our method is much simple as compared with the above mentioned formulas and it does not require making a choice of square root branch of complex functions of S-parameters in order to evaluate any of the parameters (refractive index, permittivity or permeability). Instead we obtain a formula for complex refractive index which is simple. On the basis of proposed model effective permittivity and permeability for rod meta-materials can be evaluated with enhanced precision and accuracy. Proposed method is easy to be implemented in engineering problems and does not require using complicated mathematical calculations. Comparison of precision of the presented method with the Nicolson-Ross techniques (1-2) has been made using the simulations for different configurations of rod meta-materials. Some discussion concerning the sensitivity of the effective parameters of meta-materials for the accuracy of the frequency dependent S -parameters is also presented in this paper. (author)
Directive Emission Obtained by Mu and Epsilon-Near-Zero Metamaterials
Directory of Open Access Journals (Sweden)
J. Yang
2009-06-01
Full Text Available In this work, we use Mu and Epsilon-Near-Zero (MENZ metamaterials to realize the substrates that can modify the emission of an embedded line source. Simulation results show that the cylindrical waves emitted from the line source can be perfectly converted to plane wave through the MENZ metamaterial slab with planar exit face. Hence the line source together with the metamaterial slab constructs a high directive slab antenna. The directive radiation pattern of the MENZ metamaterial-assisted slab antenna is independent on the thickness of the slab, the position of the line source, and the shape of the entrance face of the slab, but the slab with grooved entrance side will result in stronger far-field intensity. We also show that the MENZ metamaterials can be applied to the design of antenna array. Moreover, compared with the high directive slab antenna obtained by coordinate transformation approach, the MENZ metamaterial-assisted antenna is more preferable.
Realization of a thermal cloak-concentrator using a metamaterial transformer.
Liu, Ding-Peng; Chen, Po-Jung; Huang, Hsin-Haou
2018-02-06
By combining rotating squares with auxetic properties, we developed a metamaterial transformer capable of realizing metamaterials with tunable functionalities. We investigated the use of a metamaterial transformer-based thermal cloak-concentrator that can change from a cloak to a concentrator when the device configuration is transformed. We established that the proposed dual-functional metamaterial can either thermally protect a region (cloak) or focus heat flux in a small region (concentrator). The dual functionality was verified by finite element simulations and validated by experiments with a specimen composed of copper, epoxy, and rotating squares. This work provides an effective and efficient method for controlling the gradient of heat, in addition to providing a reference for other thermal metamaterials to possess such controllable functionalities by adapting the concept of a metamaterial transformer.
Sub-wavelength grating mode transformers in silicon slab waveguides.
Bock, Przemek J; Cheben, Pavel; Schmid, Jens H; Delâge, André; Xu, Dan-Xia; Janz, Siegfried; Hall, Trevor J
2009-10-12
We report on several new types of sub-wavelength grating (SWG) gradient index structures for efficient mode coupling in high index contrast slab waveguides. Using a SWG, an adiabatic transition is achieved at the interface between silicon-on-insulator waveguides of different geometries. The SWG transition region minimizes both fundamental mode mismatch loss and coupling to higher order modes. By creating the gradient effective index region in the direction of propagation, we demonstrate that efficient vertical mode transformation can be achieved between slab waveguides of different core thickness. The structures which we propose can be fabricated by a single etch step. Using 3D finite-difference time-domain simulations we study the loss, polarization dependence and the higher order mode excitation for two types (triangular and triangular-transverse) of SWG transition regions between silicon-on-insulator slab waveguides of different core thicknesses. We demonstrate two solutions to reduce the polarization dependent loss of these structures. Finally, we propose an implementation of SWG structures to reduce loss and higher order mode excitation between a slab waveguide and a phase array of an array waveguide grating (AWG). Compared to a conventional AWG, the loss is reduced from -1.4 dB to < -0.2 dB at the slab-array interface.
Hybrid SN Laplace Transform Method For Slab Lattice Calculations
International Nuclear Information System (INIS)
Segatto, Cynthia F.; Vilhena, Marco T.; Zani, Jose H.; Barros, Ricardo C.
2008-01-01
In typical lattice cells where a highly absorbing, small fuel element is embedded in the moderator, a large weakly absorbing medium, high-order transport methods become unnecessary. In this paper we describe a hybrid discrete ordinates (S N ) method for slab lattice calculations. This hybrid S N method combines the convenience of a low-order S N method in the moderator with a high-order S N method in the fuel. We use special fuel-moderator interface conditions based on an approximate angular flux interpolation analytical method and the Laplace transform (LTS N ) numerical method to calculate the neutron flux distribution and the thermal disadvantage factor. We present numerical results for a range of typical model problems. (authors)
Ghasemi, Rasta; Degiron, Aloyse; Leroux, Xavier; Lupu, Anatole; de Lustrac, André
2013-05-01
The transformation optics was introduced by J. Pendry and U. Leonhardt in 2006 [1,2]. In this method an initial space is transformed into a new space and this transformed space can be materialized by a material, which the electromagnetic parameters can be deduced from the metric of the transformed space. In the general case the electromagnetic parameters are anisotropic tensors. At microwave frequencies these materials can be realized using classical metamaterials like SRR form J. Pendry or ELC from D. Smith [3]. At infrared wavelengths this realization is a challenge because the dimensions of the metamaterials are much smaller than the wavelength and become nanometric. Then the design of these metamaterials must be simplified and original methods must be developed to allow the realization of these metamaterials with controlled electromagnetic properties. In this paper we describe the realization of a multilayer metamaterial working at infrared wavelength, which the permittivity and the permeability can be adjusted separately. We give some examples of realized multilayer materials operating around 150THz, with a comparison between the results of full wave simulations of these materials and their characterizations using a Fourier Transform Infrared Spectrometer.
Transformation Laplacian metamaterials: recent advances in manipulating thermal and dc fields
International Nuclear Information System (INIS)
Han, Tiancheng; Qiu, Cheng-Wei
2016-01-01
The full control of single or even multiple physical fields has attracted intensive research attention in the past decade, thanks to the development of metamaterials and transformation optics. Significant progress has been made in vector fields (e.g., optics, electromagnetics, and acoustics), leading to a host of strikingly functional metamaterials, such as invisibility cloaks, illusion devices, concentrators, and rotators. However, metamaterials in vector fields, designed through coordinate transformation of Maxwell’s equations, usually require extreme parameters and impose challenges on the actual realization. In this context, metamaterials in scalar fields (e.g., thermal and dc fields), which are mostly governed by the Laplace equation, lead to more plausible and facile implementations, since there are native insulators and excellent conductors (serving as two extreme cases). This paper therefore is particularly dedicated to reviewing the most recent advances in Laplacian metamaterials in manipulating thermal (both transient and steady states) and dc fields, separately and (or) simultaneously. We focus on the theory, design, and realization of thermal/dc functional metamaterials that can be used to control heat flux and electric current at will. We also provide an outlook toward the challenges and future directions in this fascinating area. (review)
Transformation Laplacian metamaterials: recent advances in manipulating thermal and dc fields
Han, Tiancheng; Qiu, Cheng-Wei
2016-04-01
The full control of single or even multiple physical fields has attracted intensive research attention in the past decade, thanks to the development of metamaterials and transformation optics. Significant progress has been made in vector fields (e.g., optics, electromagnetics, and acoustics), leading to a host of strikingly functional metamaterials, such as invisibility cloaks, illusion devices, concentrators, and rotators. However, metamaterials in vector fields, designed through coordinate transformation of Maxwell’s equations, usually require extreme parameters and impose challenges on the actual realization. In this context, metamaterials in scalar fields (e.g., thermal and dc fields), which are mostly governed by the Laplace equation, lead to more plausible and facile implementations, since there are native insulators and excellent conductors (serving as two extreme cases). This paper therefore is particularly dedicated to reviewing the most recent advances in Laplacian metamaterials in manipulating thermal (both transient and steady states) and dc fields, separately and (or) simultaneously. We focus on the theory, design, and realization of thermal/dc functional metamaterials that can be used to control heat flux and electric current at will. We also provide an outlook toward the challenges and future directions in this fascinating area.
Quantum optical effective-medium theory and transformation quantum optics for metamaterials
DEFF Research Database (Denmark)
Wubs, Martijn; Amooghorban, Ehsan; Zhang, Jingjing
2016-01-01
electrodynamics of media with both loss and gain. In the second part of this paper, we present a new application of transformation optics whereby local spontaneous-emission rates of quantum emitters can be designed. This follows from an analysis how electromagnetic Green functions transform under coordinate......While typically designed to manipulate classical light, metamaterials have many potential applications for quantum optics as well. We argue why a quantum optical effective-medium theory is needed. We present such a theory for layered metamaterials that is valid for light propagation in all spatial...... directions, thereby generalizing earlier work for one-dimensional propagation. In contrast to classical effective-medium theory there is an additional effective parameter that describes quantum noise. Our results for metamaterials are based on a rather general Lagrangian theory for the quantum...
Vector frequency-comb Fourier-transform spectroscopy for characterizing metamaterials
International Nuclear Information System (INIS)
Ganz, T; Brehm, M; Von Ribbeck, H G; Keilmann, F; Van der Weide, D W
2008-01-01
We determine infrared transmission amplitude and phase spectra of metamaterial samples at well-defined incidence and polarization with a vector ('asymmetric') frequency-comb Fourier-transform spectrometer (c-FTS) that uses no moving elements. The metamaterials are free-standing metallic hole arrays; we study their resonances in the 7-13 μm and 100-1000 μm wavelength regions due both to interaction with bulk waves (Wood anomaly) and with leaky surface plasmon polaritons (near-unity transmittance, coupling features and dispersion). Such complex-valued transmission and reflection spectra could be used to compute a metamaterial's complex dielectric function directly, as well as its magnetic and magneto-optical permeability functions.
International Nuclear Information System (INIS)
Restrepo-Flórez, Juan Manuel; Maldovan, Martin
2017-01-01
We introduce a new class of metamaterial device to achieve separation of compounds by using coordinate transformations and metamaterial theory. By rationally designing the spatial anisotropy for mass diffusion, we simultaneously concentrate different compounds in different spatial locations, leading to separation of mixtures across a metamaterial membrane. The separation of mixtures into their constituent compounds is critically important in biophysics, biomedical, and chemical applications. We present a practical case where a mixture of oxygen and nitrogen diffusing through a polymeric planar matrix is separated. This work opens doors to new paradigms in membrane separations via coordinate transformations and metamaterials by introducing novel properties and unconventional mass diffusion phenomena. (paper)
Metamaterials beyond electromagnetism
International Nuclear Information System (INIS)
Kadic, Muamer; Bückmann, Tiemo; Schittny, Robert; Wegener, Martin
2013-01-01
Metamaterials are rationally designed man-made structures composed of functional building blocks that are densely packed into an effective (crystalline) material. While metamaterials are mostly associated with negative refractive indices and invisibility cloaking in electromagnetism or optics, the deceptively simple metamaterial concept also applies to rather different areas such as thermodynamics, classical mechanics (including elastostatics, acoustics, fluid dynamics and elastodynamics), and, in principle, also to quantum mechanics. We review the basic concepts, analogies and differences to electromagnetism, and give an overview on the current state of the art regarding theory and experiment—all from the viewpoint of an experimentalist. This review includes homogeneous metamaterials as well as intentionally inhomogeneous metamaterial architectures designed by coordinate-transformation-based approaches analogous to transformation optics. Examples are laminates, transient thermal cloaks, thermal concentrators and inverters, ‘space-coiling’ metamaterials, anisotropic acoustic metamaterials, acoustic free-space and carpet cloaks, cloaks for gravitational surface waves, auxetic mechanical metamaterials, pentamode metamaterials (‘meta-liquids’), mechanical metamaterials with negative dynamic mass density, negative dynamic bulk modulus, or negative phase velocity, seismic metamaterials, cloaks for flexural waves in thin plates and three-dimensional elastostatic cloaks. (review article)
Metamaterials beyond electromagnetism
Kadic, Muamer; Bückmann, Tiemo; Schittny, Robert; Wegener, Martin
2013-12-01
Metamaterials are rationally designed man-made structures composed of functional building blocks that are densely packed into an effective (crystalline) material. While metamaterials are mostly associated with negative refractive indices and invisibility cloaking in electromagnetism or optics, the deceptively simple metamaterial concept also applies to rather different areas such as thermodynamics, classical mechanics (including elastostatics, acoustics, fluid dynamics and elastodynamics), and, in principle, also to quantum mechanics. We review the basic concepts, analogies and differences to electromagnetism, and give an overview on the current state of the art regarding theory and experiment—all from the viewpoint of an experimentalist. This review includes homogeneous metamaterials as well as intentionally inhomogeneous metamaterial architectures designed by coordinate-transformation-based approaches analogous to transformation optics. Examples are laminates, transient thermal cloaks, thermal concentrators and inverters, ‘space-coiling’ metamaterials, anisotropic acoustic metamaterials, acoustic free-space and carpet cloaks, cloaks for gravitational surface waves, auxetic mechanical metamaterials, pentamode metamaterials (‘meta-liquids’), mechanical metamaterials with negative dynamic mass density, negative dynamic bulk modulus, or negative phase velocity, seismic metamaterials, cloaks for flexural waves in thin plates and three-dimensional elastostatic cloaks.
International Nuclear Information System (INIS)
Petersen, Claudio Zen; Vilhena, Marco T.; Barros, Ricardo C.
2009-01-01
In this paper the application of the Laplace transform method is described in order to determine the energy-dependent albedo matrix that is used in the boundary conditions multigroup neutron diffusion eigenvalue problems in slab geometry for nuclear reactor global calculations. In slab geometry, the diffusion albedo substitutes without approximation the baffle-reflector system around the active domain. Numerical results to typical test problems are shown to illustrate the accuracy and the efficiency of the Chebysheff acceleration scheme. (orig.)
A coordinate transform method for one-speed neutron transport in composite slabs
International Nuclear Information System (INIS)
Haidar, N.H.S.
1988-01-01
The optical path transformation is applied to reduce the one-speed neutron transport equation for a class of composite subcritical slabs to single-region problems. The class idealises, within the uncertainty of the one-speed model, a variety of practical situations such as U-D 2 O-C-Zr-Pb or Pu-U-Na-Fe symmetric reactor assemblies; which may possibly contain a symmetrically anisotropic neutron source. A closed form double series solution, which turns out to be quite convenient for design and optimisation purposes, has been obtained, in terms of discontinuous functions for the multi-regional angular flux by application of a double finite Legendre transform. Disadvantage factor evaluations for a U-C lattice cell resulting from a low-order P 0 P 1 approximation of this method are found to be in full agreement with hybrid diffusion-transport estimates. (author)
Local field in finite-size metamaterials
DEFF Research Database (Denmark)
Bordo, Vladimir
2018-01-01
The theory of the optical response of a metamaterial slab which is represented by metal nanoparticles embedded in a dielectric matrix is developed. It is demonstrated that the account of the reflections from the slab boundaries essentially modifies the local field in the slab and leads...
International Nuclear Information System (INIS)
Kim, J. Joon; Kim, Sun K.; Kim, Jong W.
1998-01-01
Retained δ-ferrite in 304 stainless steel is known to prevent hot cracking during continuous casting. Excess content of retained δ-ferrite lowers the hot workability. So it is necessary to control the amount of retained δ-ferrite in stainless steel. A numerical model based on coupled analysis of macro heat transfer and micro diffusion transformation has been developed in order to predict retained δ-ferrite in continuously cast 304 stainless steel slab. The finite difference technique for moving boundary problem has been formulated utilizing 'murray-landis variable-grid method'. The reliability of numerical model is compared with the other results. The prediction of δ-ferrite content in CC type 304 stainless steel slabs shows good agreement between measured and predicted results. Effect of secondary cooling condition on the δ-ferrite has been also investigated
Directory of Open Access Journals (Sweden)
Yayun Dong
2017-05-01
Full Text Available Shifting medium is a kind of metamaterial, which can optically shift a space or an object a certain distance away from its original position. Based on the shifting medium, we propose a concise pair of shifting slabs covering the transmitting or receiving coil in a two-coil wireless power transfer system to decrease the equivalent distance between the coils. The electromagnetic parameters of the shifting slabs are calculated by transformation optics. Numerical simulations validate that the shifting slabs can approximately shift the electromagnetic fields generated by the covered coil; thus, the magnetic coupling and the efficiency of the system are enhanced while remaining the physical transmission distance unchanged. We also verify the advantages of the shifting slabs over the magnetic superlens. Finally, we provide two methods to fabricate shifting slabs based on split-ring resonators.
Dong, Yayun; Yang, Xijun; Jin, Nan; Li, Wenwen; Yao, Chen; Tang, Houjun
2017-05-01
Shifting medium is a kind of metamaterial, which can optically shift a space or an object a certain distance away from its original position. Based on the shifting medium, we propose a concise pair of shifting slabs covering the transmitting or receiving coil in a two-coil wireless power transfer system to decrease the equivalent distance between the coils. The electromagnetic parameters of the shifting slabs are calculated by transformation optics. Numerical simulations validate that the shifting slabs can approximately shift the electromagnetic fields generated by the covered coil; thus, the magnetic coupling and the efficiency of the system are enhanced while remaining the physical transmission distance unchanged. We also verify the advantages of the shifting slabs over the magnetic superlens. Finally, we provide two methods to fabricate shifting slabs based on split-ring resonators.
Transformation thermotics：thermal metamaterials and their applications%变换热学：热超构材料及其应用∗
Institute of Scientific and Technical Information of China (English)
沈翔瀛; 黄吉平
2016-01-01
热输运是自然界中最普遍的现象之一，如何高效操控热流在工业等领域有着巨大的应用价值。尽管主导热传导过程的扩散方程与波动方程迥异，但是，自2008年和2012年起，已有研究人员成功地将变换理论推广到宏观热传导领域。自此之后，多种具有特异性质的新型热材料在变换热学的理论框架下被设计出来，并同时获得实验验证。本文介绍该领域的研究进展，并同时介绍在热超构材料实验中软物质材料所起的关键作用。%Heat transportation is one of the most ubiquitous phenomenon in the mother nature. Manipulating heat flow at will is of tremendous value in industry, civil life and even military. It would be a common sense that in different materials thermal properties are different. According to this knowledge people may design thermal materials to control heat conduction. One of the most common and successful example is blanket, which has been invented for thousands of years to keep us warm in cold days and keep icecream cool in summer. However, those great inventions are not powerful enough to manipulate heat flow at will. So there are still a lot of demands for designing the so-called metamaterials which have special properties that should not exist in nature. In 2006, Leonhardt and Pendry’s research group (Pendry, Schurig and Smith) independently proposed a type of optical metamaterial which is also called invisible cloak. This device is well known for bending light around an object to make it invisible. Such a significant progress soon enlightened a lot of scientists in different aspects since it offers a powerful approach to design metamaterials. The principle of invisible cloak, which is concluded as transformation optics has been applied to light waves, acoustic, seismic, elastic waves, hydrodynamics and even matter waves as they all satisfy with wave equation. Although the conduction equation which governs the process of
Energy Technology Data Exchange (ETDEWEB)
Chen, Hou-tong [Los Alamos National Laboratory; Taylor, Antoineete J [Los Alamos National Laboratory; Azad, Abul K [Los Alamos National Laboratory; O' Hara, John F [Los Alamos National Laboratory
2009-01-01
In this paper we present our recent developments in terahertz (THz) metamaterials and devices. Planar THz metamaterials and their complementary structures fabricated on suitable substrates have shown electric resonant response, which causes the band-pass or band-stop property in THz transmission and reflection. The operational frequency can be further tuned up to 20% upon photoexcitation of an integrated semiconductor region in the splitring resonators as the metamaterial elements. On the other hand, the use of semiconductors as metamaterial substrates enables dynamical control of metamaterial resonances through photoexcitation, and reducing the substrate carrier lifetime further enables an ultrafast switching recovery. The metamaterial resonances can also be actively controlled by application of a voltage bias when they are fabricated on semiconductor substrates with appropriate doping concentration and thickness. Using this electrically driven approach, THz modulation depth up to 80% and modulation speed of 2 MHz at room temperature have been demonstrated, which suggests practical THz applications.
El-Kady, Ihab F.; Reinke, Charles M.
2017-07-18
The topology of the elements of a metamaterial can be engineered from its desired electromagnetic constitutive tensor using an inverse group theory method. Therefore, given a desired electromagnetic response and a generic metamaterial elemental design, group theory is applied to predict the various ways that the element can be arranged in three dimensions to produce the desired functionality. An optimizer can then be applied to an electromagnetic modeling tool to fine tune the values of the electromagnetic properties of the resulting metamaterial topology.
Spatial gradient tuning in metamaterials
Driscoll, Tom; Goldflam, Michael; Jokerst, Nan; Basov, Dimitri; Smith, David
2011-03-01
Gradient Index (GRIN) metamaterials have been used to create devices inspired by, but often surpassing the potential of, conventional GRIN optics. The unit-cell nature of metamaterials presents the opportunity to exert much greater control over spatial gradients than is possible in natural materials. This is true not only during the design phase but also offers the potential for real-time reconfiguration of the metamaterial gradient. This ability fits nicely into the picture of transformation-optics, in which spatial gradients can enable an impressive suite of innovative devices. We discuss methods to exert control over metamaterial response, focusing on our recent demonstrations using Vanadium Dioxide. We give special attention to role of memristance and mem-capacitance observed in Vanadium Dioxide, which simplify the demands of stimuli and addressing, as well as intersecting metamaterials with the field of memory-materials.
Controlling sound with acoustic metamaterials
DEFF Research Database (Denmark)
Cummer, Steven A. ; Christensen, Johan; Alù, Andrea
2016-01-01
Acoustic metamaterials can manipulate and control sound waves in ways that are not possible in conventional materials. Metamaterials with zero, or even negative, refractive index for sound offer new possibilities for acoustic imaging and for the control of sound at subwavelength scales....... The combination of transformation acoustics theory and highly anisotropic acoustic metamaterials enables precise control over the deformation of sound fields, which can be used, for example, to hide or cloak objects from incident acoustic energy. Active acoustic metamaterials use external control to create......-scale metamaterial structures and converting laboratory experiments into useful devices. In this Review, we outline the designs and properties of materials with unusual acoustic parameters (for example, negative refractive index), discuss examples of extreme manipulation of sound and, finally, provide an overview...
2016-06-01
employs the in- variance of the Maxwell equations under coordinate transformations to convert the free- space wave solutions in a coordinate... ENERGY WEAPON DEFENSE by Jacob D. Thompson June 2016 Thesis Co-Advisors: James Luscombe Brett Borden Approved for public release; distribution is...2014 to 06-17-2016 4. TITLE AND SUBTITLE NONLINEAR EFFECTS IN TRANSFORMATION OPTICS-BASED METAMATE- RIAL SHIELDS FOR COUNTER DIRECTED ENERGY WEAPON
Energy Technology Data Exchange (ETDEWEB)
Wang, Zhong-Yue, E-mail: zhongyuewang@ymail.com
2014-06-15
Einstein utilized Lorentz invariance from Maxwell's equations to modify mechanical laws and establish the special theory of relativity. Similarly, we may have a different theory if there exists another covariance of Maxwell's equations. In this paper, we find such a new transformation where Maxwell's equations are still unchanged. Consequently, Veselago's metamaterial and other systems have negative phase velocities without double negative permittivity and permeability can be described by a unified theory. People are interested in the application of metamaterials and negative phase velocities but do not appreciate the magnitude and significance to the spacetime conception of modern physics and philosophy.
Spatial transformation for deep penetration of one-speed neutrons in slabs
International Nuclear Information System (INIS)
Sjoestrand, N.G.
1999-01-01
An exponential transformation has been introduced to facilitate the calculation of the neutron flux in deep penetration problems. One-speed neutrons were considered with isotropic or linearly anisotropic scattering. The S n -method was used, but some problems were solved with the integral equation method, too. Comparisons have been made with older and newer results obtained by others. It turns out that an exponential transformation may lead to more accurate results in S n -calculations but not when using the integral equation method
Beyond local effective material properties for metamaterials
Mnasri, K.; Khrabustovskyi, A.; Stohrer, C.; Plum, M.; Rockstuhl, C.
2018-02-01
To discuss the properties of metamaterials on physical grounds and to consider them in applications, effective material parameters are usually introduced and assigned to a given metamaterial. In most cases, only weak spatial dispersion is considered. It allows to assign local material properties, e.g., a permittivity and a permeability. However, this turned out to be insufficient. To solve this problem, we study here the effective properties of metamaterials with constitutive relations beyond a local response and take strong spatial dispersion into account. This research requires two contributions. First, bulk properties in terms of eigenmodes need to be studied. We particularly investigate the isofrequency surfaces of their dispersion relation are investigated and compared to those of an actual metamaterial. The significant improvement to effectively describe it provides evidence for the necessity to use nonlocal material laws in the effective description of metamaterials. Second, to be able to capitalize on such constitutive relations, also interface conditions need to be known. They are derived in this contribution for our form of the nonlocality using a generalized (weak) formulation of Maxwell's equations. Based on such interface conditions, Fresnel expressions are obtained that predict the amplitude of the reflected and transmitted plane wave upon illuminating a slab of such a nonlocal metamaterial. This all together offers the necessary means for the in-depth analysis of metamaterials characterized by strong spatial dispersion. The general formulation we choose here renders our approach applicable to a wide class of metamaterials.
Arbitrarily thin metamaterial structure for perfect absorption and giant magnification
DEFF Research Database (Denmark)
Jin, Yi; Xiao, Sanshui; Mortensen, N. Asger
2011-01-01
In our common understanding, for strong absorption or amplification in a slab structure, the desire of reducing the slab thickness seems contradictory to the condition of small loss or gain. In this paper, this common understanding is challenged. It is shown that an arbitrarily thin metamaterial ...
Wave propagation retrieval method for chiral metamaterials
DEFF Research Database (Denmark)
Andryieuski, Andrei; Malureanu, Radu; Lavrinenko, Andrei
2010-01-01
In this paper we present the wave propagation method for the retrieving of effective properties of media with circularly polarized eigenwaves, in particularly for chiral metamaterials. The method is applied for thick slabs and provides bulk effective parameters. Its strong sides are the absence...
International Nuclear Information System (INIS)
Litchinitser, N M; Shalaev, V M
2008-01-01
The invention of metamaterials prompts reconsideration of a number of fundamental physical phenomena and enables a variety of unique properties and functionalities. These include negative refractive index, magnetism at optical frequencies, sub-wavelength resolution, ''backward'' phase matching conditions for nonlinear optical processes, and even rendering objects invisible – cloaking. In this brief review, recent progress in basic theory, design, fabrication, characterization, and potential applications of optical metamaterials is discussed
Obayashi, M.; Fukao, Y.; Yoshimitsu, J.
2015-12-01
A great shock occurred at an unusual depth of 678 km far away from the well-defined Wadati-Benioff zone of the Izu-Bonin arc (Fig.1). To the north of this region the slab is stagnant above the 660 km discontinuity and to the south it penetrates the discontinuity (Fig.2). Thus, the slab in this region can be viewed as in a transitional state from the stagnant to penetrating slab. Here, the steeply dipping part of the slab bends sharply to horizontal and the great shock happened at the lowest corner of this bending. The CMT indicates a pure normal faulting with the trench-normal near horizontal tensional axis and the near vertical compressional axis (Fig.1). We suggest that this mechanism reflects a transitional state of slab deformation from the bending-dominant mode to the penetration-dominant mode. The mechanism is consistent with either of these two two modes. We show that the mechanism is also consistent with the resultant stress field generated by many deep shocks occurring along the Wadati-Benioff zone. The calculated stress field changes rapidly along a trench-normal profile at a depth of 680 km and becomes similar to that generated by the great shock at points near the hypocenter (Fig.3). Thus, the stress field due to the Wadati-Benioff zone earthquakes works to enhance the occurrence of deep shocks of the type of the 2015 great shock, which represents slab deformation associated with the transition from stagnant to penetrating slab.
Subramaniam, B; Claudius, J S
1990-03-08
Cancer therapy using chemotherapeutic drugs frequently involves injection of the drug into the body through some intravenous mode of administration, viz, continuous (drip) infusion or single/multiple bolus injection(s). An understanding of the effect of the various modes of administration upon tumor penetration of drug is essential to rational design of drug therapy. This paper investigates drug penetration into a model tumor of slab geometry (between two capillaries) in which the overall transport rate of drug is limited by intra-tumor transport characterized by an effective diffusion coefficient. Employing the method of Finite Fourier Transforms (FFT), analytical solutions have been obtained for transient drug distribution in both the plasma and the tumor following three modes of administration, viz, continuous infusion, single bolus injection and equally-spaced equal-dose multiple bolus injections, of a given amount of drug. The qualitative trends exhibited by the plasma drug distribution profiles are consistent with reported experimental studies. Two concepts, viz, the dimensionless decay constant and the plasma/tumor drug concentration trajectories, are found to be particularly useful in the rational design of drug therapy. The dimensionless decay constant provides a measure of the rate of drug decay in the plasma relative to the rate of drug diffusion into the tumor and is thus characteristic of the tumor/drug system. The magnitude of this parameter dictates the choice of drug administration mode for minimizing drug decay in the plasma while simultaneously maximizing drug transport into the tumor. The concentration trajectories provide a measure of the plasma drug concentration relative to the tumor drug concentration at various times following injection. When the tumor drug concentration exceeds the plasma drug concentration, the drug will begin to diffuse out of the tumor. Knowledge of the time at which this diffusion reversal occurs is especially useful
Water based fluidic radio frequency metamaterials
Cai, Xiaobing; Zhao, Shaolin; Hu, Mingjun; Xiao, Junfeng; Zhang, Naibo; Yang, Jun
2017-11-01
Electromagnetic metamaterials offer great flexibility for wave manipulation and enable exceptional functionality design, ranging from negative refraction, anomalous reflection, super-resolution imaging, transformation optics to cloaking, etc. However, demonstration of metamaterials with unprecedented functionalities is still challenging and costly due to the structural complexity or special material properties. Here, we demonstrate for the first time the versatile fluidic radio frequency metamaterials with negative refraction using a water-embedded and metal-coated 3D architecture. Effective medium analysis confirms that metallic frames create an evanescent environment while simultaneously water cylinders produce negative permeability under Mie resonance. The water-metal coupled 3D architectures and the accessory devices for measurement are fabricated by 3D printing with post electroless deposition. Our study also reveals the great potential of fluidic metamaterials and versatility of the 3D printing process in rapid prototyping of customized metamaterials.
Viscothermal Losses in Double-Negative Acoustic Metamaterials
DEFF Research Database (Denmark)
Cutanda Henriquez, Vicente; García-Chocano, Victor M.; Sánchez-Dehesa, José
2017-01-01
The influence of losses in double-negative metamaterial slabs recently introduced by Graciá-Salgado et al. [Phys. Rev. B 88, 224305 (2013)] is comprehensively studied. Viscous and thermal losses are considered in the linearized Navier-Stokes equations with no flow. Despite the extremely low thick...
Metamaterial polarization converter analysis: limits of performance
DEFF Research Database (Denmark)
Markovich, Dmitry L.; Andryieuski, Andrei; Zalkovskij, Maksim
2013-01-01
and a single layer with a ground plane can have 100 % polarization conversion efficiency. We tested our conclusions numerically reaching the designated limits of efficiency using a simple metamaterial design. Our general analysis provides useful guidelines for the metamaterial polarization converter design......In this paper, we analyze the theoretical limits of a metamaterial-based converter with orthogonal linear eigenpolarizations that allow linear-to-elliptical polarization transformation with any desired ellipticity and ellipse orientation. We employ the transmission line approach providing a needed...... level of the design generalization. Our analysis reveals that the maximal conversion efficiency for transmission through a single metamaterial layer is 50 %, while the realistic reflection configuration can give the conversion efficiency up to 90 %. We show that a double layer transmission converter...
Generalized nihility media from transformation optics
International Nuclear Information System (INIS)
Yan, Wei; Yan, Min; Qiu, Min
2011-01-01
Nihility media in the previous literature are usually understood as media with ε = μ = 0. Transformation optics opens a new perspective for capturing the essence of such media. From this perspective, we generalize the definition of nihility media as transformation media derived from volumeless geometrical elements. A volumeless geometrical elements can be either a point (P), a line (L), or a surface (S). Their corresponding transformation media are therefore called P-, L-, or S-type nihility media, respectively. The previous defined nihility media with ε = μ = 0 is a special case under the P-type nihility media. The constructions of nihility media by metamaterials are discussed. The eigenfields in different types of nihility media are derived. The interactions between an externally incident wave and a slab of nihility media in a free space background are analyzed. Furthermore, we discuss compensated bilayers composed of nihility media. It is shown that for a slab of P-type nihility media, a normally incident wave can perfectly transmit through, while all obliquely incident waves are completely blocked; for a slab made of L-type nihility media, both normally and obliquely incident waves can transmit with some reflections, which can be eliminated by adding a compensating L-type nihility media; for a slab of S-type nihility media, all field components can perfectly transmit through
Metamaterial antennas: the most successful metamaterial technology?
DEFF Research Database (Denmark)
Breinbjerg, Olav
2015-01-01
The Thomson Reuters Web of Science™ lists more than 1500 journal articles related to metamaterial antennas from 2001 to 2015; this paper overviews some major objectives of such antennas.......The Thomson Reuters Web of Science™ lists more than 1500 journal articles related to metamaterial antennas from 2001 to 2015; this paper overviews some major objectives of such antennas....
Optical programmable metamaterials
Gong, Cheng; Zhang, Nan; Dai, Zijie; Liu, Weiwei
2018-02-01
We suggest and demonstrate the concept of optical programmable metamaterials which can configure the device's electromagnetic parameters by the programmable optical stimuli. In such metamaterials, the optical stimuli produced by a FPGA controlled light emitting diode array can switch or combine the resonance modes which are coupled in. As an example, an optical programmable metamaterial terahertz absorber is proposed. Each cell of the absorber integrates four meta-rings (asymmetric 1/4 rings) with photo-resistors connecting the critical gaps. The principle and design of the metamaterials are illustrated and the simulation results demonstrate the functionalities for programming the metamaterial absorber to change its bandwidth and resonance frequency.
Active terahertz metamaterials
Energy Technology Data Exchange (ETDEWEB)
Chen, Hou-tong [Los Alamos National Laboratory; O' Hara, John F [Los Alamos National Laboratory; Taylor, Antoinette J [Los Alamos National Laboratory
2009-01-01
In this paper we present an overview of research in our group in terahertz (THz) metamaterials and their applications. We have developed a series of planar metamaterials operating at THz frequencies, all of which exhibit a strong resonant response. By incorporating natural materials, e.g. semiconductors, as the substrates or as critical regions of metamaterial elements, we are able to effectively control the metamaterial resonance by the application of external stimuli, e.g., photoexcitation and electrical bias. Such actively controllable metamaterials provide novel functionalities for solid-state device applications with unprecedented performance, such as THz spectroscopy, imaging, and many others.
A Broadband Ultrathin Nonlinear Switching Metamaterial
Directory of Open Access Journals (Sweden)
E. Zarnousheh Farahani
2017-05-01
Full Text Available In this paper, an ultrathin planar nonlinear metamaterial slab is designed and simulated. Nonlinearity is provided through placing diodes in each metamaterial unit cell. The diodes are auto-biased and activated by an incident wave. The proposed structure represents a broadband switching property between two transmission and reflection states depending on the intensity of the incident wave. High permittivity values are presented creating a near zero effective impedance at low power states, around the second resonant mode of the structure unit cell; as the result, the incident wave is reflected. Increasing the incident power to the level which can activate the loaded diodes in the structure results in elimination of the resonance and consequently a drop in the permittivity values near the permeability one as well as a switch to the transmission state. A full wave as well as a nonlinear simulations are performed. An optimization method based on weed colonization is applied to the unit cell of the metamaterial slab to achieve the maximum switching bandwidth. The structure represents a 24% switching bandwidth of a 10 dB reduction in the reflection coefficient.
Low-loss negative index metamaterials for X, Ku, and K microwave bands
Directory of Open Access Journals (Sweden)
David A. Lee
2015-04-01
Full Text Available Low-loss, negative-index of refraction metamaterials were designed and tested for X, Ku, and K microwave frequency bands. An S-shaped, split-ring resonator was used as a unit cell to design homogeneous slabs of negative-index metamaterials. Then, the slabs of metamaterials were cut unto prisms to measure experimentally the negative index of refraction of a plane electromagnetic wave. Theoretical simulations using High-Frequency Structural Simulator, a finite element equation solver, were in good agreement with experimental measurements. The negative index of refraction was retrieved from the angle- and frequency-dependence of the transmitted intensity of the microwave beam through the metamaterial prism and compared well to simulations; in addition, near-field electromagnetic intensity mapping was conducted with an infrared camera, and there was also a good match with the simulations for expected frequency ranges for the negative index of refraction.
Induced transparencies in metamaterial waveguides doped with quantum dots
International Nuclear Information System (INIS)
Singh, Mahi R; Brzozowski, Marek; Racknor, Chris
2015-01-01
The light-mater interaction in quantum dots doped artificial electromagnetic materials such as metamaterial waveguides has been studied. The effect of surface plasmon polaritons (SPPs) on the absorption coefficient of quantum dots in metamaterial waveguides is investigated. The waveguides are made by sandwiching a metamaterial slab between two dielectric material layers. An ensemble of quantum dots are deposited near the waveguide interfaces. The transfer matrix method is used to calculate the SSPs in the waveguide and the density matrix method and Schrödinger equation method are used to calculate the absorption spectrum. It is found that when the thickness of the metamaterial slab is greater than the SPP wavelength the SPP energy is degenerate. However when the thickness of the slab is smaller than that of the SPP wavelength the degeneracy of SPP state splits into odd and even SPP modes due the surface mode interaction (SMI) of the waveguide. We also found that the absorption spectrum has a minima (transparent state) which is due to strong coupling between excitons in quantum dots and SPPs in the waveguide. This transparent state is called the SPP induced transparency. However when the thickness of the slab is smaller than that of the SPP wavelength one transparent state in the absorption spectrum split into two transparent states due to the surface mode interaction. This type of transparency is called the SMI induced transparency. Transparent states can be achieved by applying pulse stress field or an intense laser pulse field. Hence present findings can be used to fabricate the metamaterial optical sensors and switches. (paper)
Fabrication and Optical Measurements of Nanoscale Meta-Materials: Terahertz and Beyond
Martin, Michael C.; Hao, Zhao; Liddle, Alex; Anderson, Erik H.; Padilla, Willie J.; Schurig, David; Smith, David R.
2005-01-01
Recently, artificial meta-materials have been reported [1] that have a negative index of refraction, which allows a homogeneous flat slab of the material to behave as a perfect lens [2], possibly even creating sub-diffraction limited focusing. These novel artificial materials have numerous potential applications in science, technology, and medicine [3],especially if their novel behavior can be extended to the technologically critical near-infrared and visible region.The meta-materials co...
Theory and design of nonlinear metamaterials
Rose, Alec Daniel
and oscillators. By applying this set of tools and knowledge to microwave metamaterials, I experimentally confirm several novel nonlinear phenomena. Most notably, I construct a backward wave nonlinear medium from varactor-loaded split ring resonators loaded in a rectangular waveguide, capable of generating second-harmonic opposite to conventional nonlinear materials with a conversion efficiency as high as 1.5%. In addition, I confirm nonlinear magnetoelectric coupling in two dual gap varactor-loaded split ring resonator metamaterials through measurement of the amplitude and phase of the second-harmonic generated in the forward and backward directions from a thin slab. I then use the presence of simultaneous nonlinearities in such metamaterials to observe nonlinear interference, manifest as unidirectional difference frequency generation with contrasts of 6 and 12 dB in the forward and backward directions, respectively. Finally, I apply these principles and intuition to several plasmonic platforms with the goal of achieving similar enhancements and configurations at optical frequencies. Using the example of fluorescence enhancement in optical patch antennas, I develop a semi-classical numerical model for the calculation of field-induced enhancements to both excitation and spontaneous emission rates of an embedded fluorophore, showing qualitative agreement with experimental results, with enhancement factors of more than 30,000. Throughout these series of works, I emphasize the indispensability of effective design and retrieval tools in understanding and optimizing both metamaterials and plasmonic systems. Ultimately, when weighed against the disadvantages in fabrication and optical losses, the results presented here provide a context for the application of nonlinear metamaterials within three distinct areas where a competitive advantage over conventional materials might be obtained: fundamental science demonstrations, linear and nonlinear anisotropy engineering, and
Focusing: coming to the point in metamaterials
Guenneau, S.; Diatta, A.; McPhedran, R. C.
2010-04-01
This paper reviews some properties of lenses in curved and folded optical spaces. The point of the paper is to show some limitations of geometrical optics in the analysis of subwavelength focusing. We first provide a comprehensive derivation for the equation of geodesics in curved optical spaces, which is a tool of choice to design metamaterials in transformation optics. We then analyse the resolution of the image of a line source radiating in the Maxwell fisheye and the Veselago-Pendry slab lens. The former optical medium is deduced from the stereographic projection of a virtual sphere and displays a heterogeneous refractive index n(r) which is proportional to the inverse of 1 + r 2. The latter is described by a homogeneous, but negative, refractive index. It has been suggested that the fisheye makes a perfect lens without negative refraction [Leonhardt, Philbin arxiv:0805.4778v2]. However, we point out that the definition of super-resolution in such a heterogeneous medium should be computed with respect to the wavelength in a homogenised medium, and it is perhaps more adequate to talk about a conjugate image rather than a perfect image (the former does not necessarily contain the evanescent components of the source). We numerically find that both the Maxwell fisheye and a thick silver slab lens lead to a resolution close to λ/3 in transverse magnetic polarisation (electric field pointing orthogonal to the plane). We note a shift of the image plane in the latter lens. We also observe that two sources lead to multiple secondary images in the former lens, as confirmed from light rays travelling along geodesics of the virtual sphere. We further observe resolutions ranging from λ/2 to nearly λ/4 for magnetic dipoles of varying orientations of dipole moments within the fisheye in transverse electric polarisation (magnetic field pointing orthogonal to the plane). Finally, we analyse the Eaton lens for which the source and its image are either located within a unit
Vibrant times for mechanical metamaterials
DEFF Research Database (Denmark)
Christensen, Johan; Kadic, Muamer; Kraft, Oliver
2015-01-01
Metamaterials are man-made designer matter that obtains its unusual effective properties by structure rather than chemistry. Building upon the success of electromagnetic and acoustic metamaterials, researchers working on mechanical metamaterials strive at obtaining extraordinary or extreme...... mass density, negative modulus, pentamode, anisotropic mass density, Origami, nonlinear, bistable, and reprogrammable mechanical metamaterials....
Advances in active and nonlinear metamaterials
Boardman, A. D.; Mitchell-Thomas, R. C.; Rapoport, Y. G.
2012-09-01
Metamaterial research is an extremely important global activity that promises to change our lives in many different ways. These include making objects invisible and the dramatic impact of metamaterials upon the energy and medical sectors of society. Behind all of the applications, however, lies the business of creating metamaterials that are not going to be crippled by the kind of loss that is naturally heralded by use of resonant responses in their construction. Under the general heading of active and tunable metamaterials, an elegant route to the inclusion of nonlinearity and waveguide complexity coupled to soliton behavior suggested by forms of transformation dynamics is presented. In addition, various discussions will be framed within a magnetooptical environment that deploys externally applied magnetic field orientations. Light can then be directed to achieve energy control and be deployed for a variety of outcomes. Quite apart from the fact that the manufacture of metamaterials is attracting such a lot of global attention, the ability to control light, for example, in these materials is also immensely interesting and will lead to a new dawn of integrated circuits and computers. Recognizing the role of nonlinearity raises the possibility that dramatic manufacturing and applications are on the horizon.
DEFF Research Database (Denmark)
Lavrinenko, Andrei; Malureanu, Radu; Zalkovskij, Maksim
2012-01-01
In this work we present our activities in the fabrication and characterization of passive THz metamaterials. We use two fabrication processes to develop metamaterials either as free-standing metallic membranes or patterned metallic multi-layers on the substrates to achieve different functionalities...
Preface to Special Topic: Acoustic Metamaterials and Metasurfaces
Assouar, Badreddine
2018-03-01
The advent of acoustic metamaterials in the beginning of 2000s and very recently of acoustic metasurfaces has created tremendous excitement and efforts in the field of materials science and physics by introducing and building real transformative research and dealing with unprecedented physics and applications. The acoustic/elastic metamaterials and metasurfaces, which can simply be described as designed artificial materials with unusual physical properties, form the core of the present Special Topic published by the Journal of Applied Physics.
Metamaterials and wave control
Lheurette, Eric
2013-01-01
Since the concept was first proposed at the end of the 20th Century, metamaterials have been the subject of much research and discussion throughout the wave community. More than 10 years later, the number of related published articles is increasing significantly. Onthe one hand, this success can be attributed to dreams of new physical objects which are the consequences of the singular properties of metamaterials. Among them, we can consider the examples of perfect lensing and invisibility cloaking. On other hand,metamaterials also provide new tools for the design of well-known wave functions s
Negative stiffness honeycombs as tunable elastic metamaterials
Goldsberry, Benjamin M.; Haberman, Michael R.
2018-03-01
Acoustic and elastic metamaterials are media with a subwavelength structure that behave as effective materials displaying atypical effective dynamic properties. These material systems are of interest because the design of their sub-wavelength structure allows for direct control of macroscopic wave dispersion. One major design limitation of most metamaterial structures is that the dynamic response cannot be altered once the microstructure is manufactured. However, the ability to modify wave propagation in the metamaterial with an external stimulus is highly desirable for numerous applications and therefore remains a significant challenge in elastic metamaterials research. In this work, a honeycomb structure composed of a doubly periodic array of curved beams, known as a negative stiffness honeycomb (NSH), is analyzed as a tunable elastic metamaterial. The nonlinear static elastic response that results from large deformations of the NSH unit cell leads to a large variation in linear elastic wave dispersion associated with infinitesimal motion superposed on the externally imposed pre-strain. A finite element model is utilized to model the static deformation and subsequent linear wave motion at the pre-strained state. Analysis of the slowness surface and group velocity demonstrates that the NSH exhibits significant tunability and a high degree of anisotropy which can be used to guide wave energy depending on static pre-strain levels. In addition, it is shown that partial band gaps exist where only longitudinal waves propagate. The NSH therefore behaves as a meta-fluid, or pentamode metamaterial, which may be of use for applications of transformation elastodynamics such as cloaking and gradient index lens devices.
Liu, Changxu
2015-01-01
We investigate both theoretically and experimentally a new type of laser, which exploits a broadband light "condensation" process sustained by the stimulated amplification of an optical blackbody metamaterial. © 2014 Optical Society of America.
Ahn, Young Kwan; Lee, Hyung Jin; Kim, Yoon Young
2017-08-30
Conical refraction, which is quite well-known in electromagnetic waves, has not been explored well in elastic waves due to the lack of proper natural elastic media. Here, we propose and design a unique anisotropic elastic metamaterial slab that realizes conical refraction for horizontally incident longitudinal or transverse waves; the single-mode wave is split into two oblique coupled longitudinal-shear waves. As an interesting application, we carried out an experiment of parallel translation of an incident elastic wave system through the anisotropic metamaterial slab. The parallel translation can be useful for ultrasonic non-destructive testing of a system hidden by obstacles. While the parallel translation resembles light refraction through a parallel plate without angle deviation between entry and exit beams, this wave behavior cannot be achieved without the engineered metamaterial because an elastic wave incident upon a dissimilar medium is always split at different refraction angles into two different modes, longitudinal and shear.
Metamaterials critique and alternatives
Munk, Ben A
2009-01-01
A Convincing and Controversial Alternative Explanation of Metamaterials with a Negative Index of Refraction In a book that will generate both support and controversy, one of the world's foremost authorities on periodic structures addresses several of the current fashions in antenna design-most specifically, the popular subject of double negative metamaterials. Professor Munk provides a comprehensive theoretical electromagnetic investigation of the issues and concludes that many of the phenomena claimed by researchers may be impossible. While denying the existence of negative refractio
Acoustic Metamaterials in Aeronautics
Directory of Open Access Journals (Sweden)
Giorgio Palma
2018-06-01
Full Text Available Metamaterials, man-made composites that are scaled smaller than the wavelength, have demonstrated a huge potential for application in acoustics, allowing the production of sub-wavelength acoustic absorbers, acoustic invisibility, perfect acoustic mirrors and acoustic lenses for hyper focusing, and acoustic illusions and enabling new degrees of freedom in the control of the acoustic field. The zero, or even negative, refractive sound index of metamaterials offers possibilities for the control of acoustic patterns and sound at sub-wavelength scales. Despite the tremendous growth in research on acoustic metamaterials during the last decade, the potential of metamaterial-based technologies in aeronautics has still not been fully explored, and its utilization is still in its infancy. Thus, the principal concepts mentioned above could very well provide a means to develop devices that allow the mitigation of the impact of civil aviation noise on the community. This paper gives a review of the most relevant works on acoustic metamaterials, analyzing them for their potential applicability in aeronautics, and, in this process, identifying possible implementation areas and interesting metabehaviors. It also identifies some technical challenges and possible future directions for research with the goal of unveiling the potential of metamaterials technology in aeronautics.
Launching and controlling Gaussian beams from point sources via planar transformation media
Odabasi, Hayrettin; Sainath, Kamalesh; Teixeira, Fernando L.
2018-02-01
Based on operations prescribed under the paradigm of complex transformation optics (CTO) [F. Teixeira and W. Chew, J. Electromagn. Waves Appl. 13, 665 (1999), 10.1163/156939399X01104; F. L. Teixeira and W. C. Chew, Int. J. Numer. Model. 13, 441 (2000), 10.1002/1099-1204(200009/10)13:5%3C441::AID-JNM376%3E3.0.CO;2-J; H. Odabasi, F. L. Teixeira, and W. C. Chew, J. Opt. Soc. Am. B 28, 1317 (2011), 10.1364/JOSAB.28.001317; B.-I. Popa and S. A. Cummer, Phys. Rev. A 84, 063837 (2011), 10.1103/PhysRevA.84.063837], it was recently shown in [G. Castaldi, S. Savoia, V. Galdi, A. Alù, and N. Engheta, Phys. Rev. Lett. 110, 173901 (2013), 10.1103/PhysRevLett.110.173901] that a complex source point (CSP) can be mimicked by parity-time (PT ) transformation media. Such coordinate transformation has a mirror symmetry for the imaginary part, and results in a balanced loss/gain metamaterial slab. A CSP produces a Gaussian beam and, consequently, a point source placed at the center of such a metamaterial slab produces a Gaussian beam propagating away from the slab. Here, we extend the CTO analysis to nonsymmetric complex coordinate transformations as put forth in [S. Savoia, G. Castaldi, and V. Galdi, J. Opt. 18, 044027 (2016), 10.1088/2040-8978/18/4/044027] and verify that, by using simply a (homogeneous) doubly anisotropic gain-media metamaterial slab, one can still mimic a CSP and produce Gaussian beam. In addition, we show that a Gaussian-like beams can be produced by point sources placed outside the slab as well. By making use of the extra degrees of freedom (the real and imaginary parts of the coordinate transformation) provided by CTO, the near-zero requirement on the real part of the resulting constitutive parameters can be relaxed to facilitate potential realization of Gaussian-like beams. We illustrate how beam properties such as peak amplitude and waist location can be controlled by a proper choice of (complex-valued) CTO Jacobian elements. In particular, the beam waist
Two-dimensional metamaterial optics
International Nuclear Information System (INIS)
Smolyaninov, I I
2010-01-01
While three-dimensional photonic metamaterials are difficult to fabricate, many new concepts and ideas in the metamaterial optics can be realized in two spatial dimensions using planar optics of surface plasmon polaritons. In this paper we review recent progress in this direction. Two-dimensional photonic crystals, hyperbolic metamaterials, and plasmonic focusing devices are demonstrated and used in novel microscopy and waveguiding schemes
Micromachined tunable metamaterials: a review
International Nuclear Information System (INIS)
Liu, A Q; Zhu, W M; Tsai, D P; Zheludev, N I
2012-01-01
This paper reviews micromachined tunable metamaterials, whereby the tuning capabilities are based on the mechanical reconfiguration of the lattice and/or the metamaterial element geometry. The primary focus of this review is the feasibility of the realization of micromachined tunable metamaterials via structure reconfiguration and the current state of the art in the fabrication technologies of structurally reconfigurable metamaterial elements. The micromachined reconfigurable microstructures not only offer a new tuning method for metamaterials without being limited by the nonlinearity of constituent materials, but also enable a new paradigm of reconfigurable metamaterial-based devices with mechanical actuations. With recent development in nanomachining technology, it is possible to develop structurally reconfigurable metamaterials with faster tuning speed, higher density of integration and more flexible choice of the working frequencies. (review article)
Metamaterial electromagnetic wave absorbers.
Watts, Claire M; Liu, Xianliang; Padilla, Willie J
2012-06-19
The advent of negative index materials has spawned extensive research into metamaterials over the past decade. Metamaterials are attractive not only for their exotic electromagnetic properties, but also their promise for applications. A particular branch-the metamaterial perfect absorber (MPA)-has garnered interest due to the fact that it can achieve unity absorptivity of electromagnetic waves. Since its first experimental demonstration in 2008, the MPA has progressed significantly with designs shown across the electromagnetic spectrum, from microwave to optical. In this Progress Report we give an overview of the field and discuss a selection of examples and related applications. The ability of the MPA to exhibit extreme performance flexibility will be discussed and the theory underlying their operation and limitations will be established. Insight is given into what we can expect from this rapidly expanding field and future challenges will be addressed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Elastic metamaterials and dynamic homogenization: a review
Directory of Open Access Journals (Sweden)
Ankit Srivastava
2015-01-01
Full Text Available In this paper, we review the recent advances which have taken place in the understanding and applications of acoustic/elastic metamaterials. Metamaterials are artificially created composite materials which exhibit unusual properties that are not found in nature. We begin with presenting arguments from discrete systems which support the case for the existence of unusual material properties such as tensorial and/or negative density. The arguments are then extended to elastic continuums through coherent averaging principles. The resulting coupled and nonlocal homogenized relations, called the Willis relations, are presented as the natural description of inhomogeneous elastodynamics. They are specialized to Bloch waves propagating in periodic composites and we show that the Willis properties display the unusual behavior which is often required in metamaterial applications such as the Veselago lens. We finally present the recent advances in the area of transformation elastodynamics, charting its inspirations from transformation optics, clarifying its particular challenges, and identifying its connection with the constitutive relations of the Willis and the Cosserat types.
Zadpoor, A.A.
2016-01-01
The emerging concept of mechanical meta-materials has received increasing attention during the last few years partially due to the advances in additive manufacturing techniques that have enabled fabricating materials with arbitrarily complex micro/nano-architectures. The rationally designed
Unravelling Origami Metamaterial Behavior
Eidini, Maryam; Paulino, Glaucio
2015-03-01
Origami has shown to be a substantial source of inspiration for innovative design of mechanical metamaterials for which the material properties arise from their geometry and structural layout. Most research on origami-inspired materials relies on known patterns, especially on classic Miura-ori pattern. In the present research, we have created origami-inspired metamaterials and we have shown that the folded materials possess properties as remarkable as those of Miura-ori on which there is a lot of recent research. We have also introduced and placed emphasis on several important concepts that are confused or overlooked in the literature, e.g. concept of planar Poisson's ratio for folded materials from different conceptual viewpoints, and we have clarified the importance of such concepts by applying them to the folded sheet metamaterials introduced in our research. The new patterns are appropriate for a broad range of applications, from mechanical metamaterials to deployable and kinetic structures, at both small and large scales.
Aperiodic-metamaterial-based absorber
Directory of Open Access Journals (Sweden)
Quanlong Yang
2017-09-01
Full Text Available The periodic-metamaterial-based perfect absorber has been studied broadly. Conversely, if the unit cell in the metamaterial-based absorber is arranged aperiodically (aperiodic-metamaterial-based absorber, how does it perform? Inspired by this, here we present a systematic study of the aperiodic-metamaterial-based absorber. By investigating the response of metamaterial absorbers based on periodic, Fibonacci, Thue-Morse, and quasicrystal lattices, we found that aperiodic-metamaterial-based absorbers could display similar absorption behaviors as the periodic one in one hand. However, their absorption behaviors show different tendency depending on the thicknesses of the spacer. Further studies on the angle and polarization dependence of the absorption behavior are also presented.
Homogenization of resonant chiral metamaterials
DEFF Research Database (Denmark)
Andryieuski, Andrei; Menzel, C.; Rockstuhl, Carsten
2010-01-01
Homogenization of metamaterials is a crucial issue as it allows to describe their optical response in terms of effective wave parameters as, e.g., propagation constants. In this paper we consider the possible homogenization of chiral metamaterials. We show that for meta-atoms of a certain size...... an analytical criterion for performing the homogenization and a tool to predict the homogenization limit. We show that strong coupling between meta-atoms of chiral metamaterials may prevent their homogenization at all....
Research Advance in Smart Metamaterials
Directory of Open Access Journals (Sweden)
YU Xiang-long
2016-07-01
Full Text Available Metamaterials, man-made materials, enable us to design our own "atoms", and thereby to create materials with unprecedented effective properties that have not yet been found in nature. Smart metamaterial is one of those that is an intelligent perceptive to the changes from external environments and simultaneously having the capability to respond to thermal and mechanical stimuli. This paper can provide a review on these smart metamaterials in perspective of science, engineering and industrial products. We divide smart metamaterials according to what they are tuning into: optical, mechanical, thermal and coupled smart metamaterials. The rest of two techniques we addressed are modelling/simulation and fabrication/gene engineering. All of these types smart materials presented here are associated with at least five fundamental research: coupled mechanism of multi-physics fields, man-made design for atom/molecular, metamaterials coupled with natural materials, tunability of metamaterials, and mechanism of sensing metamaterials. Therefore, we give a systematic overview of various potential smart metamaterials together with the upcoming challenges in the intriguing and promising research field.
Doped Chiral Polymer Metamaterials (DCPM)
National Aeronautics and Space Administration — The goal of this research is to develop lightweight, flexible, compact metamaterials with tunable resonance frequencies for effective optical and communication tools...
Unified approach for retrieval of effective parameters of metamaterials
DEFF Research Database (Denmark)
Andryieuski, Andrei; Ha, Sangwoo; Sukhorukov, Andrey A.
2011-01-01
that our method is able to retrieve both material and wave EPs for a wide range of materials, which can be lossy or lossless, dispersive, possess negative permittivity, permeability and refractive index values. It is simple and unambiguous, free of the "branch" problem, which is an issue for the reflection....../transmission based method and has no limitations on a metamaterial slab thickness. The method does not require averaging different fields' components at various surfaces or contours. The retrieval of both wave and material EPs is performed within a single computational cycle, after exporting fields on the unit cells...
Slab replacement maturity guidelines.
2014-04-01
This study investigated the use of maturity method to determine early age strength of concrete in slab : replacement application. Specific objectives were (1) to evaluate effects of various factors on the compressive : maturity-strength relationship ...
Hierarchical honeycomb auxetic metamaterials
Mousanezhad, Davood; Babaee, Sahab; Ebrahimi, Hamid; Ghosh, Ranajay; Hamouda, Abdelmagid Salem; Bertoldi, Katia; Vaziri, Ashkan
2015-12-01
Most conventional materials expand in transverse directions when they are compressed uniaxially resulting in the familiar positive Poisson’s ratio. Here we develop a new class of two dimensional (2D) metamaterials with negative Poisson’s ratio that contract in transverse directions under uniaxial compressive loads leading to auxeticity. This is achieved through mechanical instabilities (i.e., buckling) introduced by structural hierarchy and retained over a wide range of applied compression. This unusual behavior is demonstrated experimentally and analyzed computationally. The work provides new insights into the role of structural organization and hierarchy in designing 2D auxetic metamaterials, and new opportunities for developing energy absorbing materials, tunable membrane filters, and acoustic dampeners.
Investigation of negative permeability metamaterials for wireless power transfer
Directory of Open Access Journals (Sweden)
Wenhui Xin
2017-11-01
Full Text Available In order to enhance the transmission efficiency of wireless power transfer (WPT, a negative permeability metamaterials (NPM with a structure of honeycomb composed by units of hexagon-shaped spirals copper is proposed in this paper. The unit parameters of the NPM are optimized, to make sure the negative permeability at the special frequency. The S-parameters of the designed NPM are measured by a network analyzer and the permeability is extracted, it shows the honeycomb NPM has a negative permeability at 6.43 MHz. A two-coil WPT is setup and the transmission efficiency of WPT embedded with NPM at the different position and with different structure are investigated. The measured results show that the 2-slab honeycomb NPM have a good perform compared with the 1-slab NPM, and the efficiency can be increased up to 51%. The results show that honeycomb NPM embedded in the WPT help to improve the transmission efficiency remarkable.
Investigation of negative permeability metamaterials for wireless power transfer
Xin, Wenhui; Mi, Chunting Chris; He, Fei; Jiang, Meng; Hua, Dengxin
2017-11-01
In order to enhance the transmission efficiency of wireless power transfer (WPT), a negative permeability metamaterials (NPM) with a structure of honeycomb composed by units of hexagon-shaped spirals copper is proposed in this paper. The unit parameters of the NPM are optimized, to make sure the negative permeability at the special frequency. The S-parameters of the designed NPM are measured by a network analyzer and the permeability is extracted, it shows the honeycomb NPM has a negative permeability at 6.43 MHz. A two-coil WPT is setup and the transmission efficiency of WPT embedded with NPM at the different position and with different structure are investigated. The measured results show that the 2-slab honeycomb NPM have a good perform compared with the 1-slab NPM, and the efficiency can be increased up to 51%. The results show that honeycomb NPM embedded in the WPT help to improve the transmission efficiency remarkable.
Metamaterial Electromagnetic Superabsorber with Arbitrary Geometries
Directory of Open Access Journals (Sweden)
Jingjing Yang
2010-06-01
Full Text Available The electromagnetic superabsorber that has larger absorption cross section than its real size may be a novel photothermal device with improved solar energy conversion rates. Based on a transformation optical approach, the material parameters for a two-dimensional (2D metamaterial-assisted electromagnetic superabsorber with arbitrary geometries are derived and validated by numerical simulation. We find that for the given geometry size, the absorption cross section of the superabsorber using nonlinear transformation is larger than that using linear transformation. These transformations can also be specialized to the designing the N-sided regular polygonal superabsorber just by changing the contour equation. All theoretical and numerical results validate the material parameters for the 2D electromagnetic superabsorber we have developed.
Magnetoactive Acoustic Metamaterials.
Yu, Kunhao; Fang, Nicholas X; Huang, Guoliang; Wang, Qiming
2018-04-11
Acoustic metamaterials with negative constitutive parameters (modulus and/or mass density) have shown great potential in diverse applications ranging from sonic cloaking, abnormal refraction and superlensing, to noise canceling. In conventional acoustic metamaterials, the negative constitutive parameters are engineered via tailored structures with fixed geometries; therefore, the relationships between constitutive parameters and acoustic frequencies are typically fixed to form a 2D phase space once the structures are fabricated. Here, by means of a model system of magnetoactive lattice structures, stimuli-responsive acoustic metamaterials are demonstrated to be able to extend the 2D phase space to 3D through rapidly and repeatedly switching signs of constitutive parameters with remote magnetic fields. It is shown for the first time that effective modulus can be reversibly switched between positive and negative within controlled frequency regimes through lattice buckling modulated by theoretically predicted magnetic fields. The magnetically triggered negative-modulus and cavity-induced negative density are integrated to achieve flexible switching between single-negative and double-negative. This strategy opens promising avenues for remote, rapid, and reversible modulation of acoustic transportation, refraction, imaging, and focusing in subwavelength regimes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Modeling of causality with metamaterials
International Nuclear Information System (INIS)
Smolyaninov, Igor I
2013-01-01
Hyperbolic metamaterials may be used to model a 2 + 1-dimensional Minkowski space–time in which the role of time is played by one of the spatial coordinates. When a metamaterial is built and illuminated with a coherent extraordinary laser beam, the stationary pattern of light propagation inside the metamaterial may be treated as a collection of particle world lines, which represents a complete ‘history’ of this 2 + 1-dimensional space–time. While this model may be used to build interesting space–time analogs, such as metamaterial ‘black holes’ and a metamaterial ‘big bang’, it lacks causality: since light inside the metamaterial may propagate back and forth along the ‘timelike’ spatial coordinate, events in the ‘future’ may affect events in the ‘past’. Here we demonstrate that a more sophisticated metamaterial model may fix this deficiency via breaking the mirror and temporal (PT) symmetries of the original model and producing one-way propagation along the ‘timelike’ spatial coordinate. The resulting 2 + 1-dimensional Minkowski space–time appears to be causal. This scenario may be considered as a metamaterial model of the Wheeler–Feynman absorber theory of causality. (paper)
Light propagation in multilayer metamaterials
Maas, R.C.
2015-01-01
Metamaterials are artificially constructed materials composed of sub-wavelength building blocks that are designed to interact with light in ways that cannot be achieved with natural materials. Over the last years, improvements in nanoscale fabrication and in metamaterial design have led to the
International Nuclear Information System (INIS)
Gurvitz, E A; Vozianova, A V; Khodzitsky, M K
2014-01-01
New approach to design beam splitter on basis of the transformation optics using angle constitutive parameters distribution of medium was proposed. The beam splitter was numerically simulated by COMSOL Multiphysics for terahertz frequency range. The numerical simulations were carried out for ideal and reduced constitutive parameters of medium for the case of TM plane wave
Near-field imaging of interacting nano objects with metal and metamaterial superlenses
International Nuclear Information System (INIS)
Hakkarainen, T; Setälä, T; Friberg, A T
2012-01-01
Employing rigorous electromagnetic theory we investigate optical the near-field imaging of two interacting dipole-like objects with metal and slightly lossy metamaterial nanoslab superlenses. Our analysis indicates that the dipole emission is suppressed by near-field interactions when the objects are close to the lens or each other. This strongly influences the image quality, in particular with objects of small size and high polarizability. The interference from two nearby objects also affects the resolution and subwavelength definition can only be obtained for objects with dipole moments predominantly orthogonal to the slab. Such an optimal imaging condition is achieved with excitation by total internal reflection. With simulations we show that in these circumstances, subwavelength resolutions of about λ/5 for silver superlens and λ/10 for metamaterial slab are reached. (paper)
Calvo-Velasco, D. M.; Porras-Montenegro, N.
2018-04-01
By using the scattering matrix formalism, it is studied the optical properties of one dimensional photonic crystals made of multiple layers of dielectric and uniaxial anisotropic single negative electric metamaterial with Drude type responses, with inclusions of graphene in between the dielectric-dielectric interfaces (DGMPC). The transmission spectra for transverse electric (TE) and magnetic (TM) polarization are presented as a function of the incidence angle, the graphene chemical potential, and the metamaterial plasma frequencies. It is found for the TM polarization the tunability of the DGMPC optical response with the graphene chemical potential, which can be observed by means of transmission or reflexion bands around the metamaterial plasmon-polariton frequency, with bandwidths depending on both the incidence angle and the metamaterial plasma frequency. Also, the transmission band is observed when losses in the metamaterial slabs are considered for finite systems. The conditions for the appearance of these bands are shown analytically. We consider this work contributes to open new possibilities to the design of photonic devices with DGMPCs.
Papasimakis, Nikitas; Fedotov, Vassili A.; Zheludev, Nikolay I.; Prosvirnin, Sergey L.
2007-01-01
We demonstrate that propagation of microwave pulses can be significantly affected by the presence of a planar fish-scale metamaterial, which is at least 30 times thinner than the wavelength. In the resonant band of the fish-scale structure, a spectrally narrow pulse (18 ns) can be significantly delayed (by 5.6 ns) as if propagating through an 84 cm thick dielectric (epsilon=3.77), while a short pulse (220 ps) will split in two roughly equal pulses propagating with subluminal and superluminal ...
Advanced fabrication of hyperbolic metamaterials
DEFF Research Database (Denmark)
Shkondin, Evgeniy; Sukham, Johneph; Panah, Mohammad Esmail Aryaee
2017-01-01
Hyperbolic metamaterials can provide unprecedented properties in accommodation of high-k (high wave vector) waves and enhancement of the optical density of states. To reach such performance the metamaterials have to be fabricated with as small imperfections as possible. Here we report on our...... advances in two approaches in fabrication of optical metamaterials. We deposit ultrathin ultrasmooth gold layers with the assistance of organic material (APTMS) adhesion layer. The technology supports the stacking of such layers in a multiperiod construction with alumina spacers between gold films, which...
DEFF Research Database (Denmark)
Thoft-Christensen, Palle
1989-01-01
In the paper it is shown how upper and lower bounds for the reliability of plastic slabs can be determined. For the fundamental case it is shown that optimal bounds of a deterministic and a stochastic analysis are obtained on the basis of the same failure mechanisms and the same stress fields....
Field Enhancement in a Grounded Dielectric Slab by Using a Single Superstrate Layer
Directory of Open Access Journals (Sweden)
Constantinos A. Valagiannopoulos
2012-01-01
Full Text Available The addition of a dielectric layer on a slab configuration is frequently utilized in various electromagnetic devices in order to give them certain desired operational characteristics. In this work, we consider a grounded dielectric film-slab, which is externally excited by a normally-incident Gaussian beam. On top of the film-slab, we use an additional suitably selected single isotropic superstrate layer in order to increase the field concentration inside the slab and hence achieve optimal power transfer from the external source to the internal region. We define a quantity of interest, called “enhancement factor,” expressing the increase of the field concentration in the film-slab when the superstrate is present compared to the case that it is absent. It is shown that large enhancement factor values may be achieved by choosing properly the permittivity, the permeability, and the thickness of the superstrate. In particular, it is demonstrated that the field in the film-slab is significantly enhanced when the slab is composed by an ϵ-near-zero (ENZ or low-index metamaterial.
Hyperbolic Metamaterials with Complex Geometry
DEFF Research Database (Denmark)
Lavrinenko, Andrei; Andryieuski, Andrei; Zhukovsky, Sergei
2016-01-01
We investigate new geometries of hyperbolic metamaterialssuch as highly corrugated structures, nanoparticle monolayer assemblies, super-structured or vertically arranged multilayersand nanopillars. All structures retain basic propertiesof hyperbolic metamaterials, but have functionality improved...
Perspective: Acoustic metamaterials in transition
Wu, Ying; Yang, Min; Sheng, Ping
2017-01-01
Acoustic metamaterials derive their novel characteristics from the interaction between acoustic waves with designed structures. Since its inception seventeen years ago, the field has been driven by fundamental geometric and physical principles
Shape morphing Kirigami mechanical metamaterials.
Neville, Robin M; Scarpa, Fabrizio; Pirrera, Alberto
2016-08-05
Mechanical metamaterials exhibit unusual properties through the shape and movement of their engineered subunits. This work presents a new investigation of the Poisson's ratios of a family of cellular metamaterials based on Kirigami design principles. Kirigami is the art of cutting and folding paper to obtain 3D shapes. This technique allows us to create cellular structures with engineered cuts and folds that produce large shape and volume changes, and with extremely directional, tuneable mechanical properties. We demonstrate how to produce these structures from flat sheets of composite materials. By a combination of analytical models and numerical simulations we show how these Kirigami cellular metamaterials can change their deformation characteristics. We also demonstrate the potential of using these classes of mechanical metamaterials for shape change applications like morphing structures.
Homogenization of resonant chiral metamaterials
Andryieuski, Andrei; Menzel, Christoph; Rockstuhl, Carsten; Malureanu, Radu; Lederer, Falk; Lavrinenko, Andrei
2010-01-01
Homogenization of metamaterials is a crucial issue as it allows to describe their optical response in terms of effective wave parameters as e.g. propagation constants. In this paper we consider the possible homogenization of chiral metamaterials. We show that for meta-atoms of a certain size a critical density exists above which increasing coupling between neighboring meta-atoms prevails a reasonable homogenization. On the contrary, a dilution in excess will induce features reminiscent to pho...
Science meets magic: photonic metamaterials
Ozbay, Ekmel
2012-05-01
The word "magic" is usually associated with movies, fiction, children stories, etc. but seldom with the natural sciences. Recent advances in metamaterials have changed this notion, in which we can now speak of "almost magical" properties that scientists could only dream about only a decade ago. In this article, we review some of the recent "almost magical" progress in the field of meta-materials.
Critical opalescence in hyperbolic metamaterials
International Nuclear Information System (INIS)
Smolyaninov, Igor I
2011-01-01
Hyperbolic metamaterials in which the dielectric component exhibits critical opalescence have been considered. It appears that fluctuations of the effective refractive index in these materials are strongly enhanced and so 'virtual electromagnetic black holes' may appear as a result of these fluctuations. Therefore, the behaviour of 'optical space' inside hyperbolic metamaterials looks somewhat similar to the behaviour of real physical space-time on the Planck scale
Critical opalescence in hyperbolic metamaterials
Smolyaninov, Igor I.
2011-12-01
Hyperbolic metamaterials in which the dielectric component exhibits critical opalescence have been considered. It appears that fluctuations of the effective refractive index in these materials are strongly enhanced and so 'virtual electromagnetic black holes' may appear as a result of these fluctuations. Therefore, the behaviour of 'optical space' inside hyperbolic metamaterials looks somewhat similar to the behaviour of real physical space-time on the Planck scale.
Chang, Jui-Yung
Recently, nanostructured metamaterials have attracted lots of attentions due to its tunable artificial properties. In particular, nanowire/nanohole based metamaterials which are known of the capability of large area fabrication were intensively studied. Most of the studies are only based on the electrical responses of the metamaterials; however, magnetic response, is usually neglected since magnetic material does not exist naturally within the visible or infrared range. For the past few years, artificial magnetic response from nanostructure based metamaterials has been proposed. This reveals the possibility of exciting resonance modes based on magnetic responses in nanowire/nanohole metamaterials which can potentially provide additional enhancement on radiative transport. On the other hand, beyond classical far-field radiative heat transfer, near-field radiation which is known of exceeding the Planck's blackbody limit has also become a hot topic in the field. This PhD dissertation aims to obtain a deep fundamental understanding of nanowire/nanohole based metamaterials in both far-field and near-field in terms of both electrical and magnetic responses. The underlying mechanisms that can be excited by nanowire/nanohole metamaterials such as electrical surface plasmon polariton, magnetic hyperbolic mode, magnetic polariton, etc., will be theoretically studied in both far-field and near-field. Furthermore, other than conventional effective medium theory which only considers the electrical response of metamaterials, the artificial magnetic response of metamaterials will also be studied through parameter retrieval of far-field optical and radiative properties for studying near-field radiative transport. Moreover, a custom-made AFM tip based metrology will be employed to experimentally study near-field radiative transfer between a plate and a sphere separated by nanometer vacuum gaps in vacuum. This transformative research will break new ground in nanoscale radiative heat
Shape-matching soft mechanical metamaterials
Mirzaali Mazandarani, M.; Janbaz, S.; Strano, M.; Vergani, L.; Zadpoor, A.A.
2018-01-01
Architectured materials with rationally designed geometries could be used to create mechanical metamaterials with unprecedented or rare properties and functionalities. Here, we introduce "shape-matching" metamaterials where the geometry of cellular structures comprising auxetic and conventional
Resonance control of mid-infrared metamaterials using arrays of split-ring resonator pairs
Yue, Weisheng
2016-01-11
We present our design, fabrication and characterization of resonance-controllable metamaterials operating at mid-infrared wavelengths. The metamaterials are composed of pairs of back-to-back or face-to-face U-shape split-ring resonators (SRRs). Transmission spectra of the metamaterials are measured using Fourier-transform infrared spectroscopy. The results show that the transmission resonance is dependent on the distance between the two SRRs in each SRR pair. The dips in the transmission spectrum shift to shorter wavelengths with increasing distance between the two SRRs for both the back-to-back and face-to-face SRR pairs. The position of the resonance dips in the spectrum can hence be controlled by the relative position of the SRRs. This mechanism of resonance control offers a promising way of developing metamaterials with tunability for optical filters and bio/chemical sensing devices in integrated nano-optics.
Resonance control of mid-infrared metamaterials using arrays of split-ring resonator pairs
Yue, Weisheng; Wang, Zhihong; Whittaker, John; Schedin, Fredrik; Wu, Zhipeng; Han, Jiaguang
2016-01-01
We present our design, fabrication and characterization of resonance-controllable metamaterials operating at mid-infrared wavelengths. The metamaterials are composed of pairs of back-to-back or face-to-face U-shape split-ring resonators (SRRs). Transmission spectra of the metamaterials are measured using Fourier-transform infrared spectroscopy. The results show that the transmission resonance is dependent on the distance between the two SRRs in each SRR pair. The dips in the transmission spectrum shift to shorter wavelengths with increasing distance between the two SRRs for both the back-to-back and face-to-face SRR pairs. The position of the resonance dips in the spectrum can hence be controlled by the relative position of the SRRs. This mechanism of resonance control offers a promising way of developing metamaterials with tunability for optical filters and bio/chemical sensing devices in integrated nano-optics.
Deformable wire array: fiber drawn tunable metamaterials
DEFF Research Database (Denmark)
Fleming, Simon; Stefani, Alessio; Tang, Xiaoli
2017-01-01
By fiber drawing we fabricate a wire array metamaterial, the structure of which can be actively modified. The plasma frequency can be tuned by 50% by compressing the metamaterial; recovers when released and the process can be repeated.......By fiber drawing we fabricate a wire array metamaterial, the structure of which can be actively modified. The plasma frequency can be tuned by 50% by compressing the metamaterial; recovers when released and the process can be repeated....
International Nuclear Information System (INIS)
Kokhanovsky, A.A.
2002-01-01
This paper is devoted to an alternative derivation of the asymptotic equations for the reflection and transmission functions of turbid slabs. The derivation is based on the reciprocity principle and the law of conservation of energy. Thus it is very general. This allows us to apply the obtained equations even in cases where the foundations of the radiative transfer theory are in question (e.g. for highly concentrated suspensions and pastes). (author)
International Nuclear Information System (INIS)
Satapathy, A.K.; Singh, K.C.
1996-01-01
The process of re-establishment of wetting of hot surface is of practical importance in chemical, metallurgical and nuclear industries. Rewetting is considered in emergency core cooling in nuclear reactors in the event of postulated loss of coolant accident (LOCA). This paper deals with numerical solution of the two-dimensional quasi-static conduction controlled rewetting of an infinite parallel sided composite slab assuming perfect contact is maintained at the interface. On the wetted side upstream of the quench front, a constant heat transfer coefficient is assumed. The downstream of quench front and unwetted side of slab are supposed to be adiabatic. The solution gives the quench front temperature as a function of various model parameters such as Peclet number, wet side Blot number, dimensionless thickness of slab and cladding to fuel ratio of thermal conductivities. The results show that for large values of rewetting velocities, the dimensionless rewetting temperature is unaffected by fuel properties for all values of Blot numbers. (author). 7 refs., 2 tabs., 1 fig
DEFF Research Database (Denmark)
Malureanu, Radu; Jepsen, Peter Uhd; Xiao, S.
2010-01-01
applications. THz radiation can be employed for various purposes, among them the study of vibrations in biological molecules, motion of electrons in semiconductors and propagation of acoustic shock waves in crystals. We propose here a new THz fractal MTM design that shows very high transmission in the desired...... frequency range as well as a clear differentiation between one polarisation and another. Based on theoretical predictions we fabricated and measured a fractal based THz metamaterial that shows more than 60% field transmission at around 1THz for TE polarized light while the TM waves have almost 80% field...... transmission peak at 0.6THz. One of the main characteristics of this design is its tunability by design: by simply changing the length of the fractal elements one can choose the operating frequency window. The modelling, fabrication and characterisation results will be presented in this paper. Due to the long...
Solymar, Laszlo
2014-01-01
Metamaterials is a young subject born in the 21st century. It is concerned with artificial materials which can have electrical and magnetic properties difficult or impossible to find in nature. The building blocks in most cases are resonant elements much smaller than the wavelength of the electromagnetic wave. The book offers a comprehensive treatment of all aspects of research in this field at a level that should appeal to final year undergraduates in physics or in electrical and electronic engineering. The mathematics is kept at a minimum; the aim is to explain the physics in simple terms and enumerate the major advances. It can be profitably read by graduate and post-graduate students in order to find out what has been done in the field outside their speciality, and by experts who may gain new insight about the inter-relationship of the physical phenomena involved.
Metamaterials for perfect absorption
Lee, Young Pak; Yoo, Young Joon; Kim, Ki Won
2016-01-01
This book provides a comprehensive overview of the theory and practical development of metamaterial-based perfect absorbers (MMPAs). It begins with a brief history of MMPAs which reviews the various theoretical and experimental milestones in their development. The theoretical background and fundamental working principles of MMPAs are then discussed, providing the necessary background on how MMPAs work and are constructed. There then follows a section describing how different MMPAs are designed and built according to the operating frequency of the electromagnetic wave, and how their behavior is changed. Methods of fabricating and characterizing MMPAs are then presented. The book elaborates on the performance and characteristics of MMPAs, including electromagnetically-induced transparency (EIT). It also covers recent advances in MMPAs and their applications, including multi-band, broadband, tunability, polarization independence and incidence independence. Suitable for graduate students in optical sciences and e...
Electro-magnetostatic homogenization of bianisotropic metamaterials
Fietz, Chris
2012-01-01
We apply the method of asymptotic homogenization to metamaterials with microscopically bianisotropic inclusions to calculate a full set of constitutive parameters in the long wavelength limit. Two different implementations of electromagnetic asymptotic homogenization are presented. We test the homogenization procedure on two different metamaterial examples. Finally, the analytical solution for long wavelength homogenization of a one dimensional metamaterial with microscopically bi-isotropic i...
Numerical methods for metamaterial design
2013-01-01
This book describes a relatively new approach for the design of electromagnetic metamaterials. Numerical optimization routines are combined with electromagnetic simulations to tailor the broadband optical properties of a metamaterial to have predetermined responses at predetermined wavelengths. After a review of both the major efforts within the field of metamaterials and the field of mathematical optimization, chapters covering both gradient-based and derivative-free design methods are considered. Selected topics including surrogate-base optimization, adaptive mesh search, and genetic algorithms are shown to be effective, gradient-free optimization strategies. Additionally, new techniques for representing dielectric distributions in two dimensions, including level sets, are demonstrated as effective methods for gradient-based optimization. Each chapter begins with a rigorous review of the optimization strategy used, and is followed by numerous examples that combine the strategy with either electromag...
A programmable nonlinear acoustic metamaterial
Directory of Open Access Journals (Sweden)
Tianzhi Yang
2017-09-01
Full Text Available Acoustic metamaterials with specifically designed lattices can manipulate acoustic/elastic waves in unprecedented ways. Whereas there are many studies that focus on passive linear lattice, with non-reconfigurable structures. In this letter, we present the design, theory and experimental demonstration of an active nonlinear acoustic metamaterial, the dynamic properties of which can be modified instantaneously with reversibility. By incorporating active and nonlinear elements in a single unit cell, a real-time tunability and switchability of the band gap is achieved. In addition, we demonstrate a dynamic “editing” capability for shaping transmission spectra, which can be used to create the desired band gap and resonance. This feature is impossible to achieve in passive metamaterials. These advantages demonstrate the versatility of the proposed device, paving the way toward smart acoustic devices, such as logic elements, diode and transistor.
Periodic waves in nonlinear metamaterials
International Nuclear Information System (INIS)
Liu, Wen-Jun; Xiao, Jing-Hua; Yan, Jie-Yun; Tian, Bo
2012-01-01
Periodic waves are presented in this Letter. With symbolic computation, equations for monochromatic waves are studied, and analytic periodic waves are obtained. Factors affecting properties of periodic waves are analyzed. Nonlinear metamaterials, with the continuous distribution of the dielectric permittivity obtained, are different from the ones with the discrete distribution. -- Highlights: ► Equations for the monochromatic waves in transverse magnetic polarization have been studied. ► Analytic periodic waves for the equations have been obtained. ► Periodic waves are theoretically presented and studied in the nonlinear metamaterials.
Nonlinear surface waves at ferrite-metamaterial waveguide structure
Hissi, Nour El Houda; Mokhtari, Bouchra; Eddeqaqi, Noureddine Cherkaoui; Shabat, Mohammed Musa; Atangana, Jacques
2016-09-01
A new ferrite slab made of a metamaterial (MTM), surrounded by a nonlinear cover cladding and a ferrite substrate, was shown to support unusual types of electromagnetic surface waves. We impose the boundary conditions to derive the dispersion relation and others necessary to formulate the proposed structure. We analyse the dispersion properties of the nonlinear surface waves and we calculate the associated propagation index and the film-cover interface nonlinearity. In the calculation, several sets of the permeability of the MTM are considered. Results show that the waves behaviour depends on the values of the permeability of the MTM, the thickness of the waveguide and the film-cover interface nonlinearity. It is also shown that the use of the singular solutions to the electric field equation allows to identify several new properties of surface waves which do not exist in conventional waveguide.
Topological Gyroscopic Metamaterials
Nash, Lisa Michelle
Topological materials are generally insulating in their bulk, with protected conducting states on their boundaries that are robust against disorder and perturbation of material property. The existence of these conducting edge states is characterized by an integer topological invariant. Though the phenomenon was first discovered in electronic systems, recent years have shown that topological states exist in classical systems as well. In this thesis we are primarily concerned with the topological properties of gyroscopic materials, which are created by coupling networks of fast-spinning objects. Through a series of simulations, numerical calculations, and experiments, we show that these materials can support topological edge states. We find that edge states in these gyroscopic metamaterials bear the hallmarks of topology related to broken time reversal symmetry: they transmit excitations unidirectionally and are extremely robust against experimental disorder. We also explore requirements for topology by studying several lattice configurations and find that topology emerges naturally in gyroscopic systems.A simple prescription can be used to create many gyroscopic lattices. Though many of our gyroscopic networks are periodic, we explore amorphous point-sets and find that topology also emerges in these networks.
Long-life slab replacement concrete.
2015-03-01
This research was initiated following reports of high incidence of cracking on FDOT concrete pavement replacement : slab projects. Field slabs were instrumented for data acquisition from high-early-strength concrete pavement : replacement slabs place...
Elastic metamaterials for tuning circular polarization of electromagnetic waves.
Zárate, Yair; Babaee, Sahab; Kang, Sung H; Neshev, Dragomir N; Shadrivov, Ilya V; Bertoldi, Katia; Powell, David A
2016-06-20
Electromagnetic resonators are integrated with advanced elastic material to develop a new type of tunable metamaterial. An electromagnetic-elastic metamaterial able to switch on and off its electromagnetic chiral response is experimentally demonstrated. Such tunability is attained by harnessing the unique buckling properties of auxetic elastic materials (buckliballs) with embedded electromagnetic resonators. In these structures, simple uniaxial compression results in a complex but controlled pattern of deformation, resulting in a shift of its electromagnetic resonance, and in the structure transforming to a chiral state. The concept can be extended to the tuning of three-dimensional materials constructed from the meta-molecules, since all the components twist and deform into the same chiral configuration when compressed.
Electromagnetic forces in negative-refractive-index metamaterials: A first-principles study
Yannopapas, Vassilios; Galiatsatos, Pavlos G.
2008-04-01
According to the theory of Veselago, when a particle immersed within a metamaterial with negative refractive index is illuminated by plane wave, it experiences a reversed radiation force due to the antiparallel directions of the phase velocity and energy flow. By employing an ab initio method, we show that, in the limit of zero losses, the effect of reversed radiation pressure is generally true only for the specular beam. Waves generated by diffraction of the incident light at the surface of the slab of the metamaterial can produce a total force which is parallel to the radiation flow. However, when the actual losses of the materials are taken into account, the phenomenon of reversed radiation force is evident within the whole range of a negative refractive index band.
Topological Susceptibility from Slabs
Bietenholz, Wolfgang; Gerber, Urs
2015-01-01
In quantum field theories with topological sectors, a non-perturbative quantity of interest is the topological susceptibility chi_t. In principle it seems straightforward to measure chi_t by means of Monte Carlo simulations. However, for local update algorithms and fine lattice spacings, this tends to be difficult, since the Monte Carlo history rarely changes the topological sector. Here we test a method to measure chi_t even if data from only one sector are available. It is based on the topological charges in sub-volumes, which we denote as slabs. Assuming a Gaussian distribution of these charges, this method enables the evaluation of chi_t, as we demonstrate with numerical results for non-linear sigma-models.
Topological susceptibility from slabs
Energy Technology Data Exchange (ETDEWEB)
Bietenholz, Wolfgang [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A.P. 70-543, Distrito Federal, C.P. 04510 (Mexico); Forcrand, Philippe de [Institute for Theoretical Physics, ETH Zürich,CH-8093 Zürich (Switzerland); CERN, Physics Department, TH Unit, CH-1211 Geneva 23 (Switzerland); Gerber, Urs [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A.P. 70-543, Distrito Federal, C.P. 04510 (Mexico); Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo,Edificio C-3, Apdo. Postal 2-82, Morelia, Michoacán, C.P. 58040 (Mexico)
2015-12-14
In quantum field theories with topological sectors, a non-perturbative quantity of interest is the topological susceptibility χ{sub t}. In principle it seems straightforward to measure χ{sub t} by means of Monte Carlo simulations. However, for local update algorithms and fine lattice spacings, this tends to be difficult, since the Monte Carlo history rarely changes the topological sector. Here we test a method to measure χ{sub t} even if data from only one sector are available. It is based on the topological charges in sub-volumes, which we denote as slabs. Assuming a Gaussian distribution of these charges, this method enables the evaluation of χ{sub t}, as we demonstrate with numerical results for non-linear σ-models.
Shrinking an arbitrary object as one desires using metamaterials
Jiang, Wei Xiang; Cui, Tie Jun; Yang, Xin Mi; Ma, Hui Feng; Cheng, Qiang
2011-05-01
Based on transformation optics, we present a shrinking device, which can transform an arbitrary object virtually into a small-size object with different material parameters as one desires. Such an illusion device will confuse the detectors or the viewers, and hence the real size and material parameters of the enclosed object cannot be perceived. We fabricated and measured a shrinking device by using metamaterials, which works at the nonresonant frequency and has low loss. The device has been validated by both numerical simulations and experiments on circular and square objects. Good shrinking performance has been demonstrated.
Homogenization scheme for acoustic metamaterials
Yang, Min
2014-02-26
We present a homogenization scheme for acoustic metamaterials that is based on reproducing the lowest orders of scattering amplitudes from a finite volume of metamaterials. This approach is noted to differ significantly from that of coherent potential approximation, which is based on adjusting the effective-medium parameters to minimize scatterings in the long-wavelength limit. With the aid of metamaterials’ eigenstates, the effective parameters, such as mass density and elastic modulus can be obtained by matching the surface responses of a metamaterial\\'s structural unit cell with a piece of homogenized material. From the Green\\'s theorem applied to the exterior domain problem, matching the surface responses is noted to be the same as reproducing the scattering amplitudes. We verify our scheme by applying it to three different examples: a layered lattice, a two-dimensional hexagonal lattice, and a decorated-membrane system. It is shown that the predicted characteristics and wave fields agree almost exactly with numerical simulations and experiments and the scheme\\'s validity is constrained by the number of dominant surface multipoles instead of the usual long-wavelength assumption. In particular, the validity extends to the full band in one dimension and to regimes near the boundaries of the Brillouin zone in two dimensions.
Multiscale mechanics of dynamical metamaterials
Geers, M.G.D.; Kouznetsova, V.; Sridhar, A.; Krushynska, A.; Kleiber, M.; Burczynski, T.; Wilde, K.; Gorski, J.; Winkelmann, K.; Smakosz, L.
2016-01-01
This contribution focuses on the computational multi-scale solution of wave propagation phenomena in dynamic metamaterials. Taking the Bloch-Floquet solution for the standard elastic case as a point of departure, an extended scheme is presented to solve for heterogeneous visco-elastic materials. The
Casimir interactions between graphene sheets and metamaterials
International Nuclear Information System (INIS)
Drosdoff, D.; Woods, Lilia M.
2011-01-01
The Casimir force between graphene sheets and metamaterials is studied. Theoretical results based on the Lifshitz theory for layered, planar, two-dimensional systems in media are presented. We consider graphene-graphene, graphene-metamaterial, and metal-graphene-metamaterial configurations. We find that quantum effects of the temperature-dependent force are not apparent until the submicron range. In contrast to results with bulk dielectric and bulk metallic materials, no Casimir repulsion is found when graphene is placed on top of a magnetically active metamaterial substrate, regardless of the strength of the low-frequency magnetic response. In the case of the metal-graphene-metamaterial setting, repulsion between the metamaterial and the metal-graphene system is possible only when the dielectric response from the metal contributes significantly.
DEFF Research Database (Denmark)
Bock, Lars Nicolai
2011-01-01
Artiklen diskuterer ordet "transformation" med udgangspunkt i dels hvorledes ordet bruges i arkitektfaglig terminologi og dels med fokus på ordets potentielle indhold og egnethed i samme teminologi.......Artiklen diskuterer ordet "transformation" med udgangspunkt i dels hvorledes ordet bruges i arkitektfaglig terminologi og dels med fokus på ordets potentielle indhold og egnethed i samme teminologi....
Energy Technology Data Exchange (ETDEWEB)
LACKS,S.A.
2003-10-09
Transformation, which alters the genetic makeup of an individual, is a concept that intrigues the human imagination. In Streptococcus pneumoniae such transformation was first demonstrated. Perhaps our fascination with genetics derived from our ancestors observing their own progeny, with its retention and assortment of parental traits, but such interest must have been accelerated after the dawn of agriculture. It was in pea plants that Gregor Mendel in the late 1800s examined inherited traits and found them to be determined by physical elements, or genes, passed from parents to progeny. In our day, the material basis of these genetic determinants was revealed to be DNA by the lowly bacteria, in particular, the pneumococcus. For this species, transformation by free DNA is a sexual process that enables cells to sport new combinations of genes and traits. Genetic transformation of the type found in S. pneumoniae occurs naturally in many species of bacteria (70), but, initially only a few other transformable species were found, namely, Haemophilus influenzae, Neisseria meningitides, Neisseria gonorrheae, and Bacillus subtilis (96). Natural transformation, which requires a set of genes evolved for the purpose, contrasts with artificial transformation, which is accomplished by shocking cells either electrically, as in electroporation, or by ionic and temperature shifts. Although such artificial treatments can introduce very small amounts of DNA into virtually any type of cell, the amounts introduced by natural transformation are a million-fold greater, and S. pneumoniae can take up as much as 10% of its cellular DNA content (40).
Multiband Negative Permittivity Metamaterials and Absorbers
Directory of Open Access Journals (Sweden)
Yiran Tian
2013-01-01
Full Text Available Design and characteristics of multiband negative permittivity metamaterial and its absorber configuration are presented in this paper. The proposed multiband metamaterial is composed of a novel multibranch resonator which can possess four electric resonance frequencies. It is shown that, by controlling the length of the main branches of such resonator, the resonant frequencies and corresponding absorbing bands of metamaterial absorber can be shifted in a large frequency band.
Multifunctional metamaterial designs for antenna applications
Ferrer González, Pere Josep
2015-01-01
Premi Extraordinari de Doctorat, promoció 2014-2015. Àmbit d'Enginyeria de les TIC Over the last decades, Metamaterials (MTMs) have caught the attention of the scientific community. Metamaterials are basically artificially engineered materials which can provide unusual electromagnetic properties not present in nature. Among other novel and special EM applications, such as the negative refraction index (NRI) application, Metamaterials allow the realisation of perfect magnetic conductors (PM...
Engineering modes in optical fibers with metamaterial
DEFF Research Database (Denmark)
Yan, Min; Mortensen, Asger; Qiu, Min
2009-01-01
In this paper, we report a preliminary theoretical study on optical fibers with fine material inclusions whose geometrical inhomogeneity is almost indistinguishable by the operating wavelength.We refer to such fibers as metamaterial optical fibers, which can conceptually be considered...... as an extension from the previously much publicized microstructured optical fibers. Metamaterials can have optical properties not obtainable in naturally existing materials, including artificial anisotropy as well as graded material properties. Therefore, incorporation of metamaterial in optical fiber designs can...
Electromagnetic ``black holes'' in hyperbolic metamaterials
Smolyaninov, Igor
2013-03-01
We demonstrate that spatial variations of the dielectric tensor components in a hyperbolic metamaterial may lead to formation of electromagnetic ``black holes'' inside this metamaterial. Similar to real black holes, horizon area of the electromagnetic ``black holes'' is quantized in units of the effective ``Planck scale'' squared. Potential experimental realizations of such electromagnetic ``black holes'' will be considered. For example, this situation may be realized in a hyperbolic metamaterial in which the dielectric component exhibits critical opalescence.
Towards three-dimensional optical metamaterials
Tanaka, Takuo; Ishikawa, Atsushi
2017-12-01
Metamaterials have opened up the possibility of unprecedented and fascinating concepts and applications in optics and photonics. Examples include negative refraction, perfect lenses, cloaking, perfect absorbers, and so on. Since these metamaterials are man-made materials composed of sub-wavelength structures, their development strongly depends on the advancement of micro- and nano-fabrication technologies. In particular, the realization of three-dimensional metamaterials is one of the big challenges in this research field. In this review, we describe recent progress in the fabrication technologies for three-dimensional metamaterials, as well as proposed applications.
Stein, H. J.; Hannah, J. L.
2017-12-01
The application of Re-Os isotope geochemistry to dating single oils is a nascent field [1,2]. Challenges include dissection of oils into asphaltene-maltene (ASPH-MALT) components in a way that preserves meaningful chronologic and source information. Significantly, oil-water mixing rapidly transfers Os to the oil, while Re exchange is sluggish [3]. The Os initial ratio of the oil is shifted in the direction of Os carried in the aqueous fluid, whereas the Re-Os isotopic age is preserved. We show that this phenomenon is operative in natural systems. Further, we show that deserpentinization of old oceanic slabs [4], may be linked to expulsion of Os-enriched waters into overlying sedimentary sections - a process that may be of fundamental importance for oil generation. This conclusion does not diminish the role of traditional organic-rich shales as source rocks for the hydrocarbon, but shows that external fluids are essential to petroleum generation. Moreover, the external fluids may be an important driver for expulsion and migration of oils. We have taken apart several petroleum systems from source rock, to residual oil, to tar mat development, to in situ live oil, through to produced oil. In many cases, a fluid with low 187Os/188Os - unlike that of normal basinal brines - provides a critical component to the oil-water mixture. Funding - CHRONOS project supported by Norwegian petroleum industry (Eni-Norge, Lundin, Aker BP) Acknowledgement - Christine Fichler [4], who first queried us on old slabs and oil, and stimulated ideas. [1] Georgiev, S.V., Stein, H.J., Hannah, J.L., Galimberti, R., Nali, M., Yang, G., and Zimmerman, A. (2016) Re-Os dating of maltenes and asphaltenes within single samples of crude oil: Geochim. Cosmochim. Acta 179: 53-75. [doi.org/10.1016/j.gca.2016.01.016] [2] DiMarzio, J., Georgiev, S.V., Stein, H.J., and Hannah, J.L. (in press) Residency of rhenium and osmium in a heavy crude oil: Geochim. Cosmochim. Acta. [3] Hurtig, N.C., Georgiev, S
Effects of nonlocal response on the density of states of hyperbolic metamaterials
DEFF Research Database (Denmark)
Yan, Wei; Wubs, Martijn; Mortensen, N. Asger
2012-01-01
. By expanding the Green function in a plane-wave basis and using the transfer matrix method to calculate the reflection coefficients, we study the local density of states (LDOS) of hyperbolic metamaterials. We show that the nonlocal response of the electron gas in the metal removes the singularity of both...... radiative and non-radiative local density of states, and also sets up a finite maximal value. We also briefly discuss the effects of the nonlocal response on other plasmonic structures, such as a metallic semi-infinite substrate and a metallic slab....
Baker, W.R.
1959-08-25
Transformers of a type adapted for use with extreme high power vacuum tubes where current requirements may be of the order of 2,000 to 200,000 amperes are described. The transformer casing has the form of a re-entrant section being extended through an opening in one end of the cylinder to form a coaxial terminal arrangement. A toroidal multi-turn primary winding is disposed within the casing in coaxial relationship therein. In a second embodiment, means are provided for forming the casing as a multi-turn secondary. The transformer is characterized by minimized resistance heating, minimized external magnetic flux, and an economical construction.
Metamaterials, from electromagnetic waves to water waves, bending waves and beyond
Dupont, G.
2015-08-04
We will review our recent work on metamaterials for different types of waves. Transposition of transform optics to water waves and bending waves on plates will be considered with potential applications of cloaking to water waves protection and anti-vibrating systems.
Perspective: Acoustic metamaterials in transition
Wu, Ying
2017-12-15
Acoustic metamaterials derive their novel characteristics from the interaction between acoustic waves with designed structures. Since its inception seventeen years ago, the field has been driven by fundamental geometric and physical principles that guide the structure design rules as well as provide the basis for wave functionalities. Recent examples include resonance-based acoustic metasurfaces that offer flexible control of acoustic wave propagation such as focusing and re-direction; parity-time (PT)-symmetric acoustics that utilizes the general concept of pairing loss and gain to achieve perfect absorption at a single frequency; and topological phononics that can provide one-way edge state propagation. However, such novel functionalities are not without constraints. Metasurface elements rely on resonances to enhance their coupling to the incident wave; hence, its functionality is limited to a narrow frequency band. Topological phononics is the result of the special lattice symmetry that must be fixed at the fabrication stage. Overcoming such constraints naturally forms the basis for further developments. We identify two emergent directions: Integration of acoustic metamaterial elements for achieving broadband characteristics as well as acoustic wave manipulation tasks more complex than the single demonstrative functionality; and active acoustic metamaterials that can adapt to environment as well as to go beyond the constraints on the passive acoustic metamaterials. Examples of a successful recent integration of multi-resonators in achieving broadband sound absorption can be found in optimal sound-absorbing structures, which utilize causality constraint as a design tool in realizing the target-set absorption spectrum with a minimal sample thickness. Active acoustic metamaterials have also demonstrated the capability to tune bandgaps as well as to alter property of resonances in real time through stiffening of the spring constants, in addition to the PT symmetric
Slab replacement maturity guidelines : [summary].
2014-04-01
Concrete sets in hours at moderate temperatures, : but the bonds that make concrete strong continue : to mature over days to years. However, for : replacement concrete slabs on highways, it is : crucial that concrete develop enough strength : within ...
New Packaging for Amplifier Slabs
Energy Technology Data Exchange (ETDEWEB)
Riley, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Thorsness, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Suratwala, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Steele, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rogowski, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2015-03-18
The following memo provides a discussion and detailed procedure for a new finished amplifier slab shipping and storage container. The new package is designed to maintain an environment of <5% RH to minimize weathering.
Active metamaterial: Gain and stability, and microfluidic chip for THz cell spectroscopy
Tang, Qi
Metamaterials are artificially designed composite materials which can exhibit unique and unusual properties such as the negative refractive index, negative phase velocity, etc. The concept of metamaterials becomes prevalent in the electromagnetic society since the first experimental implementation in the early 2000s. Many fascinated potential applications, e.g. super lens, invisibility cloaking, and novel antennas that are electrically small, have been proposed based on metamaterials. However, most of the applications still remain in theory and are not suitable for practical applications mainly due to the intrinsic loss and narrow bandwidth (large dispersion) determined by the fundamental physics of metamaterials. In this dissertation, we incorporate active gain devices into conventional passive metamaterials to overcome loss and even provide gain. Two types of active gain negative refractive index metamaterials are proposed, designed and experimentally demonstrated, including an active composite left-/right-handed transmission line and an active volumetric metamaterial. In addition, we investigate the non-Foster circuits for broadband matching of electrically small antennas. A rigorous way of analyzing the stability of non-Foster circuits by normalized determinant function is proposed. We study the practical factors that may affect the stability of non-Foster circuits, including the device parasitics, DC biasing, layouts and load impedance. A stable floating negative capacitor is designed, fabricated and tested. Moreover, it is important to resolve the sign of refractive index for active gain media which can be quite challenging. We investigate the analytical solution of a gain slab system, and apply the Nyquist criterion to analyze the stability of a causal gain medium. We then emphasize that the result of frequency domain simulation has to be treated with care. Lastly, this dissertation discusses another interesting topic about THz spectroscopy of live cells
Isotropic Negative Thermal Expansion Metamaterials.
Wu, Lingling; Li, Bo; Zhou, Ji
2016-07-13
Negative thermal expansion materials are important and desirable in science and engineering applications. However, natural materials with isotropic negative thermal expansion are rare and usually unsatisfied in performance. Here, we propose a novel method to achieve two- and three-dimensional negative thermal expansion metamaterials via antichiral structures. The two-dimensional metamaterial is constructed with unit cells that combine bimaterial strips and antichiral structures, while the three-dimensional metamaterial is fabricated by a multimaterial 3D printing process. Both experimental and simulation results display isotropic negative thermal expansion property of the samples. The effective coefficient of negative thermal expansion of the proposed models is demonstrated to be dependent on the difference between the thermal expansion coefficient of the component materials, as well as on the circular node radius and the ligament length in the antichiral structures. The measured value of the linear negative thermal expansion coefficient of the three-dimensional sample is among the largest achieved in experiments to date. Our findings provide an easy and practical approach to obtaining materials with tunable negative thermal expansion on any scale.
Acoustic metamaterials with synergetic coupling
Ma, Fuyin; Huang, Meng; Wu, Jiu Hui
2017-12-01
In this paper, we propose a general design concept for acoustic metamaterials that introduces a ubiquitous synergetic behavior into the design procedure, in which the structure of the design is driven by its functional requirements. Since the physical properties of the widely used, resonant-type metamaterials are mainly determined by the eigenmodes of the structure, we first introduce the design concept through the modal displacement distributions on two typical plate-type structures. Next, by employing broadband sound attenuations that involve both the insulation and absorption as the typical targets, two synergetic coupling behaviors are systematically revealed among the dense resonant modes and multi-cell. Furthermore, through plate-type multiple-cell structures assembled from nine oscillators, the design is shown to realize strong broadband attenuations with either the average sound transmission loss (STL) below 2000 Hz higher than 40 dB or the absorption approximately 0.99 in the range of 400-700 Hz wherein the average absorption below 800 Hz remains higher than 0.8. Finally, two multi-cell plate-type samples are fabricated and then used experimentally to measure the STLs in support of the proposed synergetic coupling design method. Both the computational and experimental results demonstrate that the proposed synergetic design concept could effectively initiate a design for metamaterials that offer a new degree of freedom for broadband sound attenuations.
Generalized metamaterials: Definitions and taxonomy.
Kim, Noori; Yoon, Yong-Jin; Allen, Jont B
2016-06-01
This article reviews the development of metamaterials (MM), starting from Newton's discovery of the wave equation, and ends with a discussion of the need for a technical taxonomy (classification) of these materials, along with a better defined definition of metamaterials. It is intended to be a technical definition of metamaterials, based on a historical perspective. The evolution of MMs began with the discovery of the wave equation, traceable back to Newton's calculation of the speed of sound. The theory of sound evolved to include quasi-statics (Helmholtz) and the circuit equations of Kirchhoff's circuit laws, leading to the ultimate development of Maxwell's equations and the equation for the speed of light. Be it light, or sound, the speed of the wave-front travel defines the wavelength, and thus the quasi-static (QS) approximation. But there is much more at stake than QSs. Taxonomy requires a proper statement of the laws of physics, which includes at least the six basic network postulates: (P1) causality (non-causal/acausal), (P2) linearity (non-linear), (P3) real (complex) time response, (P4) passive (active), (P5) time-invariant (time varying), and (P6) reciprocal (non-reciprocal). These six postulates are extended to include MMs.
DEFF Research Database (Denmark)
Strikwerda, Andrew; Zalkovskij, Maksim; Lorenzen, Dennis Lund
2014-01-01
We present a metamaterial, consisting of a cross structure and a metal mesh filter, that forms a composite with greater functional bandwidth than any terahertz (THz) metamaterial to date. Metamaterials traditionally have a narrow usable bandwidth that is much smaller than common THz sources......, such as photoconductive antennas and difference frequency generation. The composite structure shown here expands the usable bandwidth to exceed that of current THz sources. To highlight the applicability of this combination, we demonstrate a series of bandpass filters with only a single pass band, with a central...... frequency (f) that is scalable from 0.86–8.51 THz, that highly extinguishes other frequencies up to >240 THz. The performance of these filters is demonstrated in experiment, using both air biased coherent detection and a Fourier transform infrared spectrometer (FTIR), as well as in simulation. We present...
DEFF Research Database (Denmark)
Zhukovsky, Sergei; Zalkovskij, Maksim; Malureanu, Radu
2013-01-01
We explore the capabilities of planar metamaterials and metasurfaces to control and transform the polarization of electromagnetic radiation, and present a detailed covariant multipole theory of dimer-based metamaterials. We show that various optical properties, such as optical activity, elliptical...... dichroism or polarization conversion can be achieved in metamaterials made of simple shapes, such as nanorods, just by varying their geometrical arrangement. By virtue of the Babinet principle, the proposed theory is extended to inverted structures (membranes) where rods are replaced by slots. Such free......-standing “metasurface membranes” can act as thin-film spectrally sensitive polarization shapers for THz radiation. Proof-of-principle devices (a linear polarizer and a structure with giant optical activity) are fabricated and characterized. Experimental results coincide with those of full-wave numerical simulations...
Numerical investigation of band gaps in 3D printed cantilever-in-mass metamaterials
Qureshi, Awais; Li, Bing; Tan, K. T.
2016-06-01
In this research, the negative effective mass behavior of elastic/mechanical metamaterials is exhibited by a cantilever-in-mass structure as a proposed design for creating frequency stopping band gaps, based on local resonance of the internal structure. The mass-in-mass unit cell model is transformed into a cantilever-in-mass model using the Bernoulli-Euler beam theory. An analytical model of the cantilever-in-mass structure is derived and the effects of geometrical dimensions and material parameters to create frequency band gaps are examined. A two-dimensional finite element model is created to validate the analytical results, and excellent agreement is achieved. The analytical model establishes an easily tunable metamaterial design to realize wave attenuation based on locally resonant frequency. To demonstrate feasibility for 3D printing, the analytical model is employed to design and fabricate 3D printable mechanical metamaterial. A three-dimensional numerical experiment is performed using COMSOL Multiphysics to validate the wave attenuation performance. Results show that the cantilever-in-mass metamaterial is capable of mitigating stress waves at the desired resonance frequency. Our study successfully presents the use of one constituent material to create a 3D printed cantilever-in-mass metamaterial with negative effective mass density for stress wave mitigation purposes.
Tunable metamaterials fabricated by fiber drawing
DEFF Research Database (Denmark)
Fleming, Simon; Stefani, Alessio; Tang, Xiaoli
2017-01-01
We demonstrate a practical scalable approach to the fabrication of tunable metamaterials. Designed for terahertz (THz) wavelengths, the metamaterial is comprised of polyurethane filled with an array of indium wires using the well-established fiber drawing technique. Modification of the dimensions...
Effective medium theory for anisotropic metamaterials
Zhang, Xiujuan; Wu, Ying
2015-01-01
-dimensional metamaterial composed of a rectangular array of elliptic cylinders and derive an effective medium theory for such a metamaterial. We find that it is possible to obtain a closed-form analytical solution for the anisotropic effective medium parameters, provided
Tunable microwave metamaterials based on ordinary water
DEFF Research Database (Denmark)
Lavrinenko, Andrei V.; Jacobsen, Rasmus Elkjær; Arslanagic, Samel
2017-01-01
All-dielectric metamaterials are the growing trend in optics and electromagnetics. They require materials with high permittivity, for example silicon in photonics. Aiming the microwaves range we present here water as a unique substance for employing in metamaterials design. Dependence of water...
Circuit QED with hybrid metamaterial transmission lines
Energy Technology Data Exchange (ETDEWEB)
Ruloff, Stefan; Taketani, Bruno; Wilhelm, Frank [Theoretical Physics, Universitaet des Saarlandes, Saarbruecken (Germany)
2016-07-01
We're working on the theory of metamaterials providing some interesting results. The negative refraction index causes an opposite orientation of the wave vector k and the Poynting vector S of the travelling waves. Hence the metamaterial has a falling dispersion relation ∂ω(k)/∂k < 0 implying that low frequencies correspond to short wavelengths. Metamaterials are simulated by left-handed transmission lines consisting of discrete arrays of series capacitors and parallel inductors to ground. Unusual physics arises when right-and left-handed transmission lines are coupled forming a hybrid metamaterial transmission line. E.g. if a qubit is placed in front of a hybrid metamaterial transmission line terminated in an open circuit, the spontaneous emission rate is weakened or unaffected depending on the transition frequency of the qubit. Some other research interests are the general analysis of metamaterial cavities and the mode structure of hybrid metamaterial cavities for QND readout of multi-qubit operators. Especially the precise answer to the question about the definition of the mode volume of a metamaterial cavity is one of our primary goals.
Numerical analysis of Swiss roll metamaterials
International Nuclear Information System (INIS)
Demetriadou, A; Pendry, J B
2009-01-01
A Swiss roll metamaterial is a resonant magnetic medium, with a negative magnetic permeability for a range of frequencies, due to its self-inductance and self-capacitance components. In this paper, we discuss the band structure, S-parameters and effective electromagnetic parameters of Swiss roll metamaterials, with both analytical and numerical results, which show an exceptional convergence.
Anomalous acoustic dispersion in architected microlattice metamaterials
KröDel, Sebastian; Palermo, Antonio; Daraio, Chiara
The ability to control dispersion in acoustic metamaterials is crucial to realize acoustic filtering and rectification devices as well as perfect imaging using negative refractive index materials. Architected microlattice metamaterials immersed in fluid constitute a versatile platform for achieving such control. We investigate architected microlattice materials able to exploit locally resonant modes of their fundamental building blocks that couple with propagating acoustic waves. Using analytical, numerical and experimental methods we find that such lattice materials show a hybrid dispersion behavior governed by Biot's theory for long wavelengths and multiple scattering theory when wave frequency is close to the resonances of the building block. We identify the relevant geometric parameters to alter and control the group and phase velocities in this class of acoustic metamaterials. Furthermore, we fabricate small-scale acoustic metamaterial samples using high precision SLA additive manufacturing and test the resulting materials experimentally using a customized ultrasonic setup. This work paves the way for new acoustic devices based on microlattice metamaterials.
Optical properties of nanowire metamaterials with gain
DEFF Research Database (Denmark)
Isidio de Lima, Joaquim Junior; Adam, Jost; Rego, Davi
2016-01-01
The transmittance, reflectance and absorption of a nanowire metamaterial with optical gain are numerically simulated and investigated. It is assumed that the metamaterial is represented by aligned silver nanowires embedded into a semiconductor matrix, made of either silicon or gallium phosphide....... The gain in the matrix is modeled by adding a negative imaginary part to the dielectric function of the semiconductor. It is found that the optical coefficients of the metamaterial depend on the gain magnitude in a non-trivial way: they can both increase and decrease with gain depending on the lattice...... constant of the metamaterial. This peculiar behavior is explained by the field redistribution between the lossy metal nanowires and the amplifying matrix material. These findings are significant for a proper design of nanowire metamaterials with low optical losses for diverse applications....
Novel frontier in quantum metamaterials (Conference Presentation)
Jha, Pankaj K.
2016-09-01
Metamaterials are artificial materials with exotic physical, chemical and optical properties not found in natural materials. In the past decade they have attracted monumental attention from the scientific community owing to their applications ranging from physics to engineering. However, the conventional solid-state metamaterial platforms suffer from inevitable optical loss, defects which severely curtain their application at few-photon level. The quest for quantum optical applications with metamaterial-based technologies has stimulated researchers to engineer novel lossless materials and construct new platforms. Recently, by integrating two important and timely realms of science - trapped atom physics and metamaterials -, we proposed and theoretically demonstrated a topologically reconfigurable and lossless quantum metamaterial. The atomic lattice quantum metamaterial is immune to aforementioned critical challenges and can be employed at a single-photon level. Moreover, in stark contrast to conventional solid-state platforms, optical lattices provide the necessary freedom to precisely localize (within few nanometer of uncertainty) a probe atom, inside the atomic lattice quantum metamaterial to harness its exotic optical properties. In addition to its aforementioned novel characteristics, our atomic lattice quantum metamaterial offers a unique degree of freedom, namely all-optical control on ultrafast time scales over the photonic topological transition of isofrequency contours using weak fields, not possible with previous solid-state platforms. In this work, we leverage the tools, techniques, scientific advances in the field of atomic, molecular and optical physics, integrated with the concepts used in metamaterials to propose and theoretically demonstrate a novel platform towards quantum metamaterial with novel functionalities by bringing together the best of two worlds.
Tomography of the subducting Pacific slab and the 2015 Bonin deepest earthquake (Mw 7.9)
Zhao, Dapeng; Fujisawa, Moeto; Toyokuni, Genti
2017-03-01
On 30 May 2015 an isolated deep earthquake (~670 km, Mw 7.9) occurred to the west of the Bonin Islands. To clarify its causal mechanism and its relationship to the subducting Pacific slab, we determined a detailed P-wave tomography of the deep earthquake source zone using a large number of arrival-time data. Our results show that this large deep event occurred within the subducting Pacific slab which is penetrating into the lower mantle. In the Izu-Bonin region, the Pacific slab is split at ~28° north latitude, i.e., slightly north of the 2015 deep event hypocenter. In the north the slab becomes stagnant in the mantle transition zone, whereas in the south the slab is directly penetrating into the lower mantle. This deep earthquake was caused by joint effects of several factors, including the Pacific slab’s fast deep subduction, slab tearing, slab thermal variation, stress changes and phase transformations in the slab, and complex interactions between the slab and the ambient mantle.
Metamaterials for light rays: ray optics without wave-optical analog in the ray-optics limit
International Nuclear Information System (INIS)
Hamilton, Alasdair C; Courtial, Johannes
2009-01-01
Volumes of sub-wavelength electromagnetic elements can act like homogeneous materials: metamaterials. In analogy, sheets of optical elements such as prisms can act ray-optically like homogeneous sheet materials. In this sense, such sheets can be considered to be metamaterials for light rays (METATOYs). METATOYs realize new and unusual transformations of the directions of transmitted light rays. We study here, in the ray-optics and scalar-wave limits, the wave-optical analog of such transformations, and we show that such an analog does not always exist. Perhaps, this is the reason why many of the ray-optical possibilities offered by METATOYs have never before been considered.
The dynamics of double slab subduction
Holt, A. F.; Royden, L. H.; Becker, T. W.
2017-04-01
We use numerical models to investigate the dynamics of two interacting slabs with parallel trenches. Cases considered are: a single slab reference, outward dipping slabs (out-dip), inward dipping slabs (in-dip) and slabs dipping in the same direction (same-dip). Where trenches converge over time (same-dip and out-dip systems), large positive dynamic pressures in the asthenosphere are generated beneath the middle plate and large trench-normal extensional forces are transmitted through the middle plate. This results in slabs that dip away from the middle plate at depth, independent of trench geometry. The single slab, the front slab in the same-dip case and both out-dip slabs undergo trench retreat and exhibit stable subduction. However, slabs within the other double subduction systems tend to completely overturn at the base of the upper mantle, and exhibit either trench advance (rear slab in same-dip), or near-stationary trenches (in-dip). For all slabs, the net slab-normal dynamic pressure at 330 km depth is nearly equal to the slab-normal force induced by slab buoyancy. For double subduction, the net outward force on the slabs due to dynamic pressure from the asthenosphere is effectively counterbalanced by the net extensional force transmitted through the middle plate. Thus, dynamic pressure at depth, interplate coupling and lithospheric stresses are closely linked and their effects cannot be isolated. Our results provide insights into both the temporal evolution of double slab systems on Earth and, more generally, how the various components of subduction systems, from mantle flow/pressure to interplate coupling, are dynamically linked.
Reconfigurable metamaterials for terahertz wave manipulation
Hashemi, Mohammed R.; Cakmakyapan, Semih; Jarrahi, Mona
2017-09-01
Reconfigurable metamaterials have emerged as promising platforms for manipulating the spectral and spatial properties of terahertz waves without being limited by the characteristics of naturally existing materials. Here, we present a comprehensive overview of various types of reconfigurable metamaterials that are utilized to manipulate the intensity, phase, polarization, and propagation direction of terahertz waves. We discuss various reconfiguration mechanisms based on optical, electrical, thermal, and mechanical stimuli while using semiconductors, superconductors, phase-change materials, graphene, and electromechanical structures. The advantages and disadvantages of different reconfigurable metamaterial designs in terms of modulation efficiency, modulation bandwidth, modulation speed, and system complexity are discussed in detail.
Magneto-optical response in bimetallic metamaterials
Atmatzakis, Evangelos; Papasimakis, Nikitas; Fedotov, Vassili; Vienne, Guillaume; Zheludev, Nikolay I.
2018-01-01
We demonstrate resonant Faraday polarization rotation in plasmonic arrays of bimetallic nano-ring resonators consisting of Au and Ni sections. This metamaterial design allows the optimization of the trade-off between the enhancement of magneto-optical effects and plasmonic dissipation. Nickel sections corresponding to as little as 6% of the total surface of the metamaterial result in magneto-optically induced polarization rotation equal to that of a continuous nickel film. Such bimetallic metamaterials can be used in compact magnetic sensors, active plasmonic components, and integrated photonic circuits.
Reversed rainbow with a nonlocal metamaterial
Energy Technology Data Exchange (ETDEWEB)
Morgado, Tiago A., E-mail: tiago.morgado@co.it.pt; Marcos, João S.; Silveirinha, Mário G., E-mail: mario.silveirinha@co.it.pt [Department of Electrical Engineering, Instituto de Telecomunicações, University of Coimbra, 3030 Coimbra (Portugal); Costa, João T. [CST AG, Bad Nauheimer Strasse 19, 64289 Darmstadt (Germany); Costa, Jorge R. [Instituto de Telecomunicações and Instituto Universitário de Lisboa (ISCTE-IUL), 1649-026 Lisboa (Portugal); Fernandes, Carlos A. [Instituto de Telecomunicações, and Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal)
2014-12-29
One of the intriguing potentials of metamaterials is the possibility to realize a nonlocal electromagnetic reaction, such that the effective medium response at a given point is fundamentally entangled with the macroscopic field distribution at long distances. Here, it is experimentally and numerically verified that a microwave nonlocal metamaterial formed by crossed metallic wires enables a low-loss broadband anomalous material response such that the refractive index decreases with frequency. Notably, it is shown that an electromagnetic beam refracted by our metamaterial prism creates a reversed microwave rainbow.
Graphene-enhanced metamaterials in THz applications
DEFF Research Database (Denmark)
Andryieuski, Andrei; Chigrin, Dmitry N.; Khromova, Irina
Terahertz (THz) radiation is widely employed in a broad range of fields in biology, medicine, communication, security, chemistry, and spectroscopy. To expand the application of terahertz radiation new device designs and fabrication methods are needed. The ability of metamaterials to manipulate...... electromagnetic waves makes them natural candidates for THz optical components [1]. However, ranges of light manipulation can be strongly expanded by involving graphene as a structural component of metamaterials. The interplay between interband and intraband transitions in graphene allows converting a multilayer...... on hyperbolic-like dispersion [4]. We believe that graphene-enhanced metamaterials constitute a useful functional element for the THz-infrared integrated optics devices....
Toward high throughput optical metamaterial assemblies.
Fontana, Jake; Ratna, Banahalli R
2015-11-01
Optical metamaterials have unique engineered optical properties. These properties arise from the careful organization of plasmonic elements. Transitioning these properties from laboratory experiments to functional materials may lead to disruptive technologies for controlling light. A significant issue impeding the realization of optical metamaterial devices is the need for robust and efficient assembly strategies to govern the order of the nanometer-sized elements while enabling macroscopic throughput. This mini-review critically highlights recent approaches and challenges in creating these artificial materials. As the ability to assemble optical metamaterials improves, new unforeseen opportunities may arise for revolutionary optical devices.
Long-life slab replacement concrete : [summary].
2015-04-01
Concrete slab replacement projects in Florida have demonstrated a high incidence of : replacement slab cracking. Causes of cracking have not been reliably determined. University of South Florida researchers : sought to identify the factors or : param...
Generating Atomistic Slab Surfaces with Adsorbates
2017-12-01
slabs of various thickness and with various vacuum spacing need be calculated. This can occur in serial or simultaneously . If performed in serial, the...the user. Although the optimization of the slab thickness and vacuum padding can be done simultaneously , it is more computationally conservative to...monolayer is a slab (True if slab), the type of mesh desired (adsorbates.py was written for “Gamma”), how detailed the mesh should be (in units of inverse
Spread prestressed concrete slab beam bridges.
2015-04-01
TxDOT uses prestressed slab beam bridges for short-span bridges ranging from approximately 3050 ft in : length. These bridges have precast, pretensioned slab beams placed immediately adjacent to one another : with a cast-in-place slab made composi...
Metamaterials and Metasurfaces in THz Applications
DEFF Research Database (Denmark)
Lavrinenko, Andrei; Malureanu, Radu; Zalkovskij, Maksim
We present a set of terahertz optical components, such as linear and circular polarizers, absorbers, devices with enhanced transmittance, and single layer chiral systems based on metamaterials. Discussion covers design rules, fabrication and characterization....
Broadband plasmon induced transparency in terahertz metamaterials
Zhu, Zhihua; Yang, Xu; Gu, Jianqiang; Jiang, Jun; Yue, Weisheng; Tian, Zhen; Tonouchi, Masayoshi; Han, Jiaguang; Zhang, Weili
2013-01-01
Plasmon induced transparency (PIT) could be realized in metamaterials via interference between different resonance modes. Within the sharp transparency window, the high dispersion of the medium may lead to remarkable slow light phenomena
Topological sound in active-liquid metamaterials
Souslov, Anton; van Zuiden, Benjamin C.; Bartolo, Denis; Vitelli, Vincenzo
2017-11-01
Liquids composed of self-propelled particles have been experimentally realized using molecular, colloidal or macroscopic constituents. These active liquids can flow spontaneously even in the absence of an external drive. Unlike spontaneous active flow, the propagation of density waves in confined active liquids is not well explored. Here, we exploit a mapping between density waves on top of a chiral flow and electrons in a synthetic gauge field to lay out design principles for artificial structures termed topological active metamaterials. We design metamaterials that break time-reversal symmetry using lattices composed of annular channels filled with a spontaneously flowing active liquid. Such active metamaterials support topologically protected sound modes that propagate unidirectionally, without backscattering, along either sample edges or domain walls and despite overdamped particle dynamics. Our work illustrates how parity-symmetry breaking in metamaterial structure combined with microscopic irreversibility of active matter leads to novel functionalities that cannot be achieved using only passive materials.
Deployable Thermoelectric Metamaterial Energy Harvesting Monitoring System
National Aeronautics and Space Administration — This project will combine a novel asynchronous monitoring system with the first-of-its-kind thermoelectric metamaterial. The thermoelectric prototype is constructed...
Interferometric direction finding with a metamaterial detector
Energy Technology Data Exchange (ETDEWEB)
Venkatesh, Suresh; Schurig, David, E-mail: david.schurig@utah.edu [Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Shrekenhamer, David; Padilla, Willie [Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467 (United States); Xu, Wangren; Sonkusale, Sameer [Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts 02155 (United States)
2013-12-16
We present measurements and analysis demonstrating useful direction finding of sources in the S band (2–4 GHz) using a metamaterial detector. An augmented metamaterial absorber that supports magnitude and phase measurement of the incident electric field, within each unit cell, is described. The metamaterial is implemented in a commercial printed circuit board process with off-board back-end electronics. We also discuss on-board back-end implementation strategies. Direction finding performance is analyzed for the fabricated metamaterial detector using simulated data and the standard algorithm, MUtiple SIgnal Classification. The performance of this complete system is characterized by its angular resolution as a function of radiation density at the detector. Sources with power outputs typical of mobile communication devices can be resolved at kilometer distances with sub-degree resolution and high frame rates.
Quantum levitation by left-handed metamaterials
Energy Technology Data Exchange (ETDEWEB)
Leonhardt, Ulf; Philbin, Thomas G [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS (United Kingdom)
2007-08-15
Left-handed metamaterials make perfect lenses that image classical electromagnetic fields with significantly higher resolution than the diffraction limit. Here, we consider the quantum physics of such devices. We show that the Casimir force of two conducting plates may turn from attraction to repulsion if a perfect lens is sandwiched between them. For optical left-handed metamaterials, this repulsive force of the quantum vacuum may levitate ultra-thin mirrors.
Quantum levitation by left-handed metamaterials
International Nuclear Information System (INIS)
Leonhardt, Ulf; Philbin, Thomas G
2007-01-01
Left-handed metamaterials make perfect lenses that image classical electromagnetic fields with significantly higher resolution than the diffraction limit. Here, we consider the quantum physics of such devices. We show that the Casimir force of two conducting plates may turn from attraction to repulsion if a perfect lens is sandwiched between them. For optical left-handed metamaterials, this repulsive force of the quantum vacuum may levitate ultra-thin mirrors
Method for Bubbledeck Concrete Slab with Gaps
Directory of Open Access Journals (Sweden)
Sergiu Călin
2009-01-01
Full Text Available The composite slabs are made of BubbleDeck type slab elements with spherical gaps, poured in place on transversal and longitudinal directions. By introducing the gaps leads to a 30...50\\% lighter slab which reduces the loads on the columns, walls and foundations, and of course of the entire building. BubbleDeck slab elements are plates with ribs on two directions made of reinforced concrete or precast concrete with spherical shaped bubbles. These slab elements have a bottom and an upper concrete part connected with vertical ribs that go around the gaps.
Dynamic metamaterial aperture for microwave imaging
International Nuclear Information System (INIS)
Sleasman, Timothy; Imani, Mohammadreza F.; Gollub, Jonah N.; Smith, David R.
2015-01-01
We present a dynamic metamaterial aperture for use in computational imaging schemes at microwave frequencies. The aperture consists of an array of complementary, resonant metamaterial elements patterned into the upper conductor of a microstrip line. Each metamaterial element contains two diodes connected to an external control circuit such that the resonance of the metamaterial element can be damped by application of a bias voltage. Through applying different voltages to the control circuit, select subsets of the elements can be switched on to create unique radiation patterns that illuminate the scene. Spatial information of an imaging domain can thus be encoded onto this set of radiation patterns, or measurements, which can be processed to reconstruct the targets in the scene using compressive sensing algorithms. We discuss the design and operation of a metamaterial imaging system and demonstrate reconstructed images with a 10:1 compression ratio. Dynamic metamaterial apertures can potentially be of benefit in microwave or millimeter wave systems such as those used in security screening and through-wall imaging. In addition, feature-specific or adaptive imaging can be facilitated through the use of the dynamic aperture
Dynamic metamaterial aperture for microwave imaging
Energy Technology Data Exchange (ETDEWEB)
Sleasman, Timothy; Imani, Mohammadreza F.; Gollub, Jonah N.; Smith, David R. [Center for Metamaterials and Integrated Plasmonics, Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina, 27708 (United States)
2015-11-16
We present a dynamic metamaterial aperture for use in computational imaging schemes at microwave frequencies. The aperture consists of an array of complementary, resonant metamaterial elements patterned into the upper conductor of a microstrip line. Each metamaterial element contains two diodes connected to an external control circuit such that the resonance of the metamaterial element can be damped by application of a bias voltage. Through applying different voltages to the control circuit, select subsets of the elements can be switched on to create unique radiation patterns that illuminate the scene. Spatial information of an imaging domain can thus be encoded onto this set of radiation patterns, or measurements, which can be processed to reconstruct the targets in the scene using compressive sensing algorithms. We discuss the design and operation of a metamaterial imaging system and demonstrate reconstructed images with a 10:1 compression ratio. Dynamic metamaterial apertures can potentially be of benefit in microwave or millimeter wave systems such as those used in security screening and through-wall imaging. In addition, feature-specific or adaptive imaging can be facilitated through the use of the dynamic aperture.
Levitated crystals and quasicrystals of metamaterials
Energy Technology Data Exchange (ETDEWEB)
Wang, Zhehui [Los Alamos National Laboratory; Morris, Christopher [Los Alamos National Laboratory; Goree, John A [Dept Phys and Astron., University of Iowa
2012-07-25
New scientific and technological opportunities exist by marrying dusty plasma research with metamaterials. Specifically, by balancing control and self-assembly, certain laboratory plasmas can become a generic levitation platform for novel structure formation and nanomaterial synthesis. We propose to experimentally investigate two dimensional (2D) and three dimensional (3D) levitated structures of metamaterials and their properties. Such structures can self assemble in laboratory plasmas, similar to levitated dust crystals which were discovered in the mid 1990's. Laboratory plasma platform for metamaterial formation eliminates substrates upon which most metamaterials have to be supported. Three types of experiments, with similar setups, are discussed here. Levitated crystal structures of metamaterials using anisotropic microparticles are the most basic of the three. The second experiment examines whether quasicrystals of metamaterials are possible. Quasicrystals, discovered in the 1980's, possess so-called forbidden symmetries according to the conventional crystallography. The proposed experiment could answer many fundamental questions about structural, thermal and dynamical properties of quasicrystals. And finally, how to use nanoparticle coated microparticles to synthesize very long carbon nanotubes is also described. All of the experiments can fit inside a standard International Space Station locker with dimensions of 8-inch x 17-inch X 18-inch. Microgravity environment is deemed essential in particular for large 3D structures and very long carbon nanotube synthesis.
Transmission and reflection properties of terahertz fractal metamaterials
DEFF Research Database (Denmark)
Malureanu, Radu; Lavrinenko, Andrei; Cooke, David
2010-01-01
We use THz time-domain spectroscopy to investigate transmission and reflection properties of metallic fractal metamaterial structures. We observe loss of free-space energy at certain resonance frequencies, indicating excitation of surface modes of the metamaterial.......We use THz time-domain spectroscopy to investigate transmission and reflection properties of metallic fractal metamaterial structures. We observe loss of free-space energy at certain resonance frequencies, indicating excitation of surface modes of the metamaterial....
Directory of Open Access Journals (Sweden)
Guoqiang Xu
2017-10-01
Full Text Available Active control of heat flux can be realized with transformation optics (TO thermal metamaterials. Recently, a new class of metamaterial tunable cells has been proposed, aiming to significantly reduce the difficulty of fabrication and to flexibly switch functions by employing several cells assembled on related positions following the TO design. However, owing to the integration and rotation of materials in tunable cells, they might lead to extra thermal losses as compared with the previous continuum design. This paper focuses on investigating the thermodynamic properties of tunable cells under related design parameters. The universal expression for the local entropy generation rate in such metamaterial systems is obtained considering the influence of rotation. A series of contrast schemes are established to describe the thermodynamic process and thermal energy distributions from the viewpoint of entropy analysis. Moreover, effects of design parameters on thermal dissipations and system irreversibility are investigated. In conclusion, more thermal dissipations and stronger thermodynamic processes occur in a system with larger conductivity ratios and rotation angles. This paper presents a detailed description of the thermodynamic properties of metamaterial tunable cells and provides reference for selecting appropriate design parameters on related positions to fabricate more efficient and energy-economical switchable TO devices.
Controlling the emission and propagation of light with nano-plasmonic metamaterials and metasurfaces
Ni, Xingjie
Metamaterials---artificially structured materials with engineered electromagnetic properties---have enabled unprecedented flexibility in manipulating electromagnetic waves and producing new functionalities. Metasurfaces are subwavelength thin metamaterial layers to introduce unusual properties do not exist in nature. They can play a fundamental role in generating synthetic scattering diagrams of macroscopic objects. Optical metamaterials and metasurfaces have enabled unprecedented flexibility in manipulating light waves and producing new functionalities. We have studied various topics in this field, from designs to potential applications. We experimentally demonstrated the world's first optical metasurface which is capable of precisely manipulating light in arbitrary ways over a broad range of near-infrared light, which could make possible of many optical innovations such as more powerful microscopes, telecommunications and computers. We proposed the first hyperbolic metasurface, which consist of a highly anisotropic material layer and an isotropic material layer can support Dyakonov surface waves that have hyperbolic dispersion. This type of metasurfaces support a broadband singularity in the photonic density of states, which opens up another possibility to engineer the spontaneous emission efficiency. We also developed a set of parallel simulation tools which can handle a variety of problems in nanophotonics and plasmonics. Especially, we established an on-line research environment for the research community with six tools, which deliver a cloud computing service with no demand for either any powerful computational hardware or any additional software installations and cover a range of tasks including the design and simulation of complex transformation optics devices and optical metamaterials.
Granular metamaterials for vibration mitigation
Gantzounis, G.; Serra-Garcia, M.; Homma, K.; Mendoza, J. M.; Daraio, C.
2013-09-01
Acoustic metamaterials that allow low-frequency band gaps are interesting for many practical engineering applications, where vibration control and sound insulation are necessary. In most prior studies, the mechanical response of these structures has been described using linear continuum approximations. In this work, we experimentally and theoretically address the formation of low-frequency band gaps in locally resonant granular crystals, where the dynamics of the system is governed by discrete equations. We investigate the quasi-linear behavior of such structures. The analysis shows that a stopband can be introduced at about one octave lower frequency than in materials without local resonances. Broadband and multi-frequency stopband characteristics can also be achieved by strategically tailoring the non-uniform local resonance parameters.
Is it possible to homogenize resonant chiral metamaterials ?
DEFF Research Database (Denmark)
Andryieuski, Andrei; Menzel, Christoph; Rockstuhl, Carsten
2010-01-01
Homogenization of metamaterials is very important as it makes possible description in terms of effective parameters. In this contribution we consider the homogenization of chiral metamaterials. We show that for some metamaterials there is an optimal meta-atom size which depends on the coupling...
Auxetic metamaterials from disordered networks
Reid, Daniel R.; Pashine, Nidhi; Wozniak, Justin M.; Jaeger, Heinrich M.; Liu, Andrea J.; Nagel, Sidney R.; de Pablo, Juan J.
2018-02-01
Recent theoretical work suggests that systematic pruning of disordered networks consisting of nodes connected by springs can lead to materials that exhibit a host of unusual mechanical properties. In particular, global properties such as Poisson’s ratio or local responses related to deformation can be precisely altered. Tunable mechanical responses would be useful in areas ranging from impact mitigation to robotics and, more generally, for creation of metamaterials with engineered properties. However, experimental attempts to create auxetic materials based on pruning-based theoretical ideas have not been successful. Here we introduce a more realistic model of the networks, which incorporates angle-bending forces and the appropriate experimental boundary conditions. A sequential pruning strategy of select bonds in this model is then devised and implemented that enables engineering of specific mechanical behaviors upon deformation, both in the linear and in the nonlinear regimes. In particular, it is shown that Poisson’s ratio can be tuned to arbitrary values. The model and concepts discussed here are validated by preparing physical realizations of the networks designed in this manner, which are produced by laser cutting 2D sheets and are found to behave as predicted. Furthermore, by relying on optimization algorithms, we exploit the networks’ susceptibility to tuning to design networks that possess a distribution of stiffer and more compliant bonds and whose auxetic behavior is even greater than that of homogeneous networks. Taken together, the findings reported here serve to establish that pruned networks represent a promising platform for the creation of unique mechanical metamaterials.
Preface: Deep Slab and Mantle Dynamics
Suetsugu, Daisuke; Bina, Craig R.; Inoue, Toru; Wiens, Douglas A.
2010-11-01
We are pleased to publish this special issue of the journal Physics of the Earth and Planetary Interiors entitled "Deep Slab and Mantle Dynamics". This issue is an outgrowth of the international symposium "Deep Slab and Mantle Dynamics", which was held on February 25-27, 2009, in Kyoto, Japan. This symposium was organized by the "Stagnant Slab Project" (SSP) research group to present the results of the 5-year project and to facilitate intensive discussion with well-known international researchers in related fields. The SSP and the symposium were supported by a Grant-in-Aid for Scientific Research (16075101) from the Ministry of Education, Culture, Sports, Science and Technology of the Japanese Government. In the symposium, key issues discussed by participants included: transportation of water into the deep mantle and its role in slab-related dynamics; observational and experimental constraints on deep slab properties and the slab environment; modeling of slab stagnation to constrain its mechanisms in comparison with observational and experimental data; observational, experimental and modeling constraints on the fate of stagnant slabs; eventual accumulation of stagnant slabs on the core-mantle boundary and its geodynamic implications. This special issue is a collection of papers presented in the symposium and other papers related to the subject of the symposium. The collected papers provide an overview of the wide range of multidisciplinary studies of mantle dynamics, particularly in the context of subduction, stagnation, and the fate of deep slabs.
Full control and manipulation of heat signatures: cloaking, camouflage and thermal metamaterials.
Han, Tiancheng; Bai, Xue; Thong, John T L; Li, Baowen; Qiu, Cheng-Wei
2014-03-19
Thermal camouflage and cloaking can transform an actual heat signature into a pre-controlled one. A viable recipe for controlling and manipulating heat signatures using thermal metamaterials to empower cloaking and camouflage in heat conduction is demonstrated. The thermal signature of the object is thus metamorphosed and perceived as multiple targets with different geometries and compositions, with the original object cloaked. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Retrieval of high-order susceptibilities of nonlinear metamaterials
International Nuclear Information System (INIS)
Wang Zhi-Yu; Qiu Jin-Peng; Chen Hua; Mo Jiong-Jiong; Yu Fa-Xin
2017-01-01
Active metamaterials embedded with nonlinear elements are able to exhibit strong nonlinearity in microwave regime. However, existing S -parameter based parameter retrieval approaches developed for linear metamaterials do not apply in nonlinear cases. In this paper, a retrieval algorithm of high-order susceptibilities for nonlinear metamaterials is derived. Experimental demonstration shows that, by measuring the power level of each harmonic while sweeping the incident power, high-order susceptibilities of a thin-layer nonlinear metamaterial can be effectively retrieved. The proposedapproach can be widely used in the research of active metamaterials. (paper)
Highly-dispersive electromagnetic induced transparency in planar symmetric metamaterials.
Lu, Xiqun; Shi, Jinhui; Liu, Ran; Guan, Chunying
2012-07-30
We propose, design and experimentally demonstrate highly-dispersive electromagnetically induced transparency (EIT) in planar symmetric metamaterials actively switched and controlled by angles of incidence. Full-wave simulation and measurement results show EIT phenomena, trapped-mode excitations and the associated local field enhancement of two symmetric metamaterials consisting of symmetrically split rings (SSR) and a fishscale (FS) metamaterial pattern, respectively, strongly depend on angles of incidence. The FS metamaterial shows much broader spectral splitting than the SSR metamaterial due to the surface current distribution variation.
Programmable Self-Locking Origami Mechanical Metamaterials.
Fang, Hongbin; Chu, Shih-Cheng A; Xia, Yutong; Wang, Kon-Well
2018-04-01
Developing mechanical metamaterials with programmable properties is an emerging topic receiving wide attention. While the programmability mainly originates from structural multistability in previously designed metamaterials, here it is shown that nonflat-foldable origami provides a new platform to achieve programmability via its intrinsic self-locking and reconfiguration capabilities. Working with the single-collinear degree-4 vertex origami tessellation, it is found that each unit cell can self-lock at a nonflat configuration and, therefore, possesses wide design space to program its foldability and relative density. Experiments and numerical analyses are combined to demonstrate that by switching the deformation modes of the constituent cell from prelocking folding to postlocking pressing, its stiffness experiences a sudden jump, implying a limiting-stopper effect. Such a stiffness jump is generalized to a multisegment piecewise stiffness profile in a multilayer model. Furthermore, it is revealed that via strategically switching the constituent cells' deformation modes through passive or active means, the n-layer metamaterial's stiffness is controllable among 2 n target stiffness values. Additionally, the piecewise stiffness can also trigger bistable responses dynamically under harmonic excitations, highlighting the metamaterial's rich dynamic performance. These unique characteristics of self-locking origami present new paths for creating programmable mechanical metamaterials with in situ controllable mechanical properties. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Combined conduction and radiation with phase change in teflon slabs
International Nuclear Information System (INIS)
Shih, T.M.; Hsu, I.C.; Cunnington, G.R. Jr.
1986-01-01
A new approach to investigate, numerically, an one-dimensional Stefan problem with combined radiation and conduction has been developed. This numerical scheme is a modified version of the heat flux method and the scheme tracks the moving phase changing interface by coordinate transformation. The physical problem involves the radiative heating on one side of a Teflon slab; causing the material to melt and sublime as the melt-solid interface recedes. The other side of the Teflon slab is insulated. The results of this numerical scheme has been compared with results reported in the literature; before attempting to use this scheme to predict the experimental data. Satisfactory agreement between numerical results and the results in the literature as well as the experimental data has been obtained in both comparisons
Acoustic metamaterials: From local resonances to broad horizons
Ma, Guancong; Sheng, Ping
2016-01-01
Within a time span of 15 years, acoustic metamaterials have emerged from academic curiosity to become an active field driven by scientific discoveries and diverse application potentials. This review traces the development of acoustic metamaterials from the initial findings of mass density and bulk modulus frequency dispersions in locally resonant structures to the diverse functionalities afforded by the perspective of negative constitutive parameter values, and their implications for acoustic wave behaviors. We survey the more recent developments, which include compact phase manipulation structures, superabsorption, and actively controllable metamaterials as well as the new directions on acoustic wave transport in moving fluid, elastic, and mechanical metamaterials, graphene-inspired metamaterials, and structures whose characteristics are best delineated by non-Hermitian Hamiltonians. Many of the novel acoustic metamaterial structures have transcended the original definition of metamaterials as arising from the collective manifestations of constituent resonating units, but they continue to extend wave manipulation functionalities beyond those found in nature. PMID:26933692
Acoustic metamaterials: From local resonances to broad horizons.
Ma, Guancong; Sheng, Ping
2016-02-01
Within a time span of 15 years, acoustic metamaterials have emerged from academic curiosity to become an active field driven by scientific discoveries and diverse application potentials. This review traces the development of acoustic metamaterials from the initial findings of mass density and bulk modulus frequency dispersions in locally resonant structures to the diverse functionalities afforded by the perspective of negative constitutive parameter values, and their implications for acoustic wave behaviors. We survey the more recent developments, which include compact phase manipulation structures, superabsorption, and actively controllable metamaterials as well as the new directions on acoustic wave transport in moving fluid, elastic, and mechanical metamaterials, graphene-inspired metamaterials, and structures whose characteristics are best delineated by non-Hermitian Hamiltonians. Many of the novel acoustic metamaterial structures have transcended the original definition of metamaterials as arising from the collective manifestations of constituent resonating units, but they continue to extend wave manipulation functionalities beyond those found in nature.
Shape-matching soft mechanical metamaterials.
Mirzaali, M J; Janbaz, S; Strano, M; Vergani, L; Zadpoor, A A
2018-01-17
Architectured materials with rationally designed geometries could be used to create mechanical metamaterials with unprecedented or rare properties and functionalities. Here, we introduce "shape-matching" metamaterials where the geometry of cellular structures comprising auxetic and conventional unit cells is designed so as to achieve a pre-defined shape upon deformation. We used computational models to forward-map the space of planar shapes to the space of geometrical designs. The validity of the underlying computational models was first demonstrated by comparing their predictions with experimental observations on specimens fabricated with indirect additive manufacturing. The forward-maps were then used to devise the geometry of cellular structures that approximate the arbitrary shapes described by random Fourier's series. Finally, we show that the presented metamaterials could match the contours of three real objects including a scapula model, a pumpkin, and a Delft Blue pottery piece. Shape-matching materials have potential applications in soft robotics and wearable (medical) devices.
Broadband plasmon induced transparency in terahertz metamaterials
Zhu, Zhihua
2013-04-25
Plasmon induced transparency (PIT) could be realized in metamaterials via interference between different resonance modes. Within the sharp transparency window, the high dispersion of the medium may lead to remarkable slow light phenomena and an enhanced nonlinear effect. However, the transparency mode is normally localized in a narrow frequency band, which thus restricts many of its applications. Here we present the simulation, implementation, and measurement of a broadband PIT metamaterial functioning in the terahertz regime. By integrating four U-shape resonators around a central bar resonator, a broad transparency window across a frequency range greater than 0.40 THz is obtained, with a central resonance frequency located at 1.01 THz. Such PIT metamaterials are promising candidates for designing slow light devices, highly sensitive sensors, and nonlinear elements operating over a broad frequency range. © 2013 IOP Publishing Ltd.
Hyperbolic metamaterial lens with hydrodynamic nonlocal response.
Yan, Wei; Mortensen, N Asger; Wubs, Martijn
2013-06-17
We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves of the free-electron plasma in the metal constituents. We derive the nonlocal corrections to the effective material parameters analytically, and illustrate the noticeable nonlocal effects on the dispersion curves numerically. As an application, we find that the focusing characteristics of a HMM lens in the local-response approximation and in the hydrodynamic Drude model can differ considerably. In particular, the optimal frequency for imaging in the nonlocal theory is blueshifted with respect to that in the local theory. Thus, to detect whether nonlocal response is at work in a hyperbolic metamaterial, we propose to measure the near-field distribution of a hyperbolic metamaterial lens.
Broadband plasmon induced transparency in terahertz metamaterials
International Nuclear Information System (INIS)
Zhu Zhihua; Yang Xu; Gu Jianqiang; Jiang Jun; Tian Zhen; Han Jiaguang; Zhang Weili; Yue Weisheng; Tonouchi, Masayoshi
2013-01-01
Plasmon induced transparency (PIT) could be realized in metamaterials via interference between different resonance modes. Within the sharp transparency window, the high dispersion of the medium may lead to remarkable slow light phenomena and an enhanced nonlinear effect. However, the transparency mode is normally localized in a narrow frequency band, which thus restricts many of its applications. Here we present the simulation, implementation, and measurement of a broadband PIT metamaterial functioning in the terahertz regime. By integrating four U-shape resonators around a central bar resonator, a broad transparency window across a frequency range greater than 0.40 THz is obtained, with a central resonance frequency located at 1.01 THz. Such PIT metamaterials are promising candidates for designing slow light devices, highly sensitive sensors, and nonlinear elements operating over a broad frequency range. (paper)
Highly dispersive transparency in coupled metamaterials
International Nuclear Information System (INIS)
Thuy, V T T; Park, J W; Lee, Y P; Tung, N T; Lam, V D; Rhee, J Y
2010-01-01
We investigate the coupling between bright and quasi-dark eigenmodes in a planar metamaterial supporting highly dispersive transparency. The specific design of such a metamaterial consists of a cut wire (CW) and a single-gap split-ring resonator (SRR). Through the numerical simulation and the equivalent-circuit analysis, we demonstrate that the response of the SRR, which is weakly excited by external electric field, plays the role of a quasi-dark eigenmode in the presence of a strongly radiative CW. Furthermore, by extending and relating our study to the trapped mode resonances and the coupling between dark and bright modes, a more comprehensive perspective for the metamaterial realization of highly dispersive transmission and slow-light applications is provided
2013-05-01
Based on a recent study on cost efficient alternative bridge approach slab (BAS) designs (Thiagarajan et : al. 2010) has recommended three new BAS designs for possible implementation by MoDOT namely a) 20 feet cast-inplace : slab with sleeper slab (C...
International Nuclear Information System (INIS)
Pham, Thanh Son; Ranaweera, Aruna Kumara; Ngo, Duc Viet; Lee, Jong-Wook
2017-01-01
To meet both safety and efficiency demands of future wireless power transfer (WPT) systems, field leakage to the nearby environment should be controlled below a certain level. Therefore, field localization is one of the key issues in advanced WPT systems. Recently, metamaterials have shown great potential for enhanced control of electromagnetic propagation in various environments. In this work, we investigate a locally modified metamaterial to create a two-dimensional (2D) cavity for field localization at a sub-wavelength scale. We also show that the field localization in the cavity can be explained using Fano-type interference. We believe that this is one of the first works demonstrating that Fano-type interference can be applied for resonance-coupled mid-range WPT. Using the proposed approach, we achieve a localized WPT in a region that is eight times smaller than that of a transmit coil. At a distance of 0.6 meters, the measured efficiency is 56.5%, which represents a six-fold and two-fold enhancement compared to free space and uniform metamaterial slabs, respectively. (paper)
Son Pham, Thanh; Kumara Ranaweera, Aruna; Viet Ngo, Duc; Lee, Jong-Wook
2017-08-01
To meet both safety and efficiency demands of future wireless power transfer (WPT) systems, field leakage to the nearby environment should be controlled below a certain level. Therefore, field localization is one of the key issues in advanced WPT systems. Recently, metamaterials have shown great potential for enhanced control of electromagnetic propagation in various environments. In this work, we investigate a locally modified metamaterial to create a two-dimensional (2D) cavity for field localization at a sub-wavelength scale. We also show that the field localization in the cavity can be explained using Fano-type interference. We believe that this is one of the first works demonstrating that Fano-type interference can be applied for resonance-coupled mid-range WPT. Using the proposed approach, we achieve a localized WPT in a region that is eight times smaller than that of a transmit coil. At a distance of 0.6 meters, the measured efficiency is 56.5%, which represents a six-fold and two-fold enhancement compared to free space and uniform metamaterial slabs, respectively.
A microsphere suspension model of metamaterial fluids
Directory of Open Access Journals (Sweden)
Qian Duan
2017-05-01
Full Text Available Drawing an analogy to the liquid phase of natural materials, we theoretically propose a microsphere suspension model to realize a metamaterial fluid with artificial electromagnetic indexes. By immersing high-ε, micrometer-sized dielectric spheres in a low-ε insulating oil, the structured fluid exhibits liquid-like properties from dispersing phase as well as the isotropic negative electromagnetic parameters caused by Mie resonances from dispersed microspheres. The work presented here will benefit the development of structured fluids toward metamaterials.
Equivalent circuit analysis of terahertz metamaterial filters
Zhang, Xueqian
2011-01-01
An equivalent circuit model for the analysis and design of terahertz (THz) metamaterial filters is presented. The proposed model, derived based on LMC equivalent circuits, takes into account the detailed geometrical parameters and the presence of a dielectric substrate with the existing analytic expressions for self-inductance, mutual inductance, and capacitance. The model is in good agreement with the experimental measurements and full-wave simulations. Exploiting the circuit model has made it possible to predict accurately the resonance frequency of the proposed structures and thus, quick and accurate process of designing THz device from artificial metamaterials is offered. ©2011 Chinese Optics Letters.
The Talbot effect in a metamaterial
Nikkhah, H.; Hasan, M.; Hall, T. J.
2018-02-01
The effect of anisotropy and spatial dispersion of a metamaterial on the Talbot effect may be engineered in principle. This has profound implications for applications of the Talbot effect such as the design of a multimode interference coupler (MMI). The paper describes how a metamaterial can suppress the modal phase error which otherwise limits the scaling of MMI port dimension. A binary multilayer dielectric material described by the Kronig-Penney model is shown to provide a close approximation to the required dispersion relation. Results of simulations of a multi-slotted waveguide MMI engineered to provide a polarising beam splitter function are given as an example of the method.
Magnetic nanoparticles for tunable microwave metamaterials
Noginova, Natalia; Williams, Quincy Leon; Dallas, Panagiotis; Giannelis, Emmanuel P.
2012-01-01
Commonly, metamaterials are electrically engineered systems with optimized spatial arrangement of subwavelength sized metal and dielectric components. We explore alternative methods based on use of magnetic inclusions, such as magnetic nanoparticles, which can allow permeability of a composite to be tuned from negative to positive at the range of magnetic resonance. To better understand effects of particle size and magnetization dynamics, we performed electron magnetic resonance study on several varieties of magnetic nanoparticles and determined potential of nanoparticle use as building blocks for tunable microwave metamaterials. © (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Graphene and Graphene Metamaterials for Terahertz Absorbers
DEFF Research Database (Denmark)
Andryieuski, Andrei; Pizzocchero, Filippo; Booth, Tim
2013-01-01
Graphene, due to the possibility to tune its conductivity, is the promising material for a range of the terahertz (THz) applications, such as tunable reflectors, absorbers, modulators, filters and polarization converters. Subwavelength structuring of graphene in order to form metamaterials allows...... for even more control over the THz waves. In this poster presentation I will show an elegant way to describe the graphene metamaterials and the design of graphene based absorbers. I will also present our recent experimental results on the graphene absorbers characterization....
Trampoline metamaterial: Local resonance enhancement by springboards
Bilal, Osama R.; Hussein, Mahmoud I.
2013-09-01
We investigate the dispersion characteristics of locally resonant elastic metamaterials formed by the erection of pillars on the solid regions in a plate patterned by a periodic array of holes. We show that these solid regions effectively act as springboards leading to an enhanced resonance behavior by the pillars when compared to the nominal case of pillars with no holes. This local resonance amplification phenomenon, which we define as the trampoline effect, is shown to cause subwavelength bandgaps to increase in size by up to a factor of 4. This outcome facilitates the utilization of subwavelength metamaterial properties over exceedingly broad frequency ranges.
Magnetic nanoparticles for tunable microwave metamaterials
Noginova, Natalia
2012-09-24
Commonly, metamaterials are electrically engineered systems with optimized spatial arrangement of subwavelength sized metal and dielectric components. We explore alternative methods based on use of magnetic inclusions, such as magnetic nanoparticles, which can allow permeability of a composite to be tuned from negative to positive at the range of magnetic resonance. To better understand effects of particle size and magnetization dynamics, we performed electron magnetic resonance study on several varieties of magnetic nanoparticles and determined potential of nanoparticle use as building blocks for tunable microwave metamaterials. © (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Faraday wave lattice as an elastic metamaterial.
Domino, L; Tarpin, M; Patinet, S; Eddi, A
2016-05-01
Metamaterials enable the emergence of novel physical properties due to the existence of an underlying subwavelength structure. Here, we use the Faraday instability to shape the fluid-air interface with a regular pattern. This pattern undergoes an oscillating secondary instability and exhibits spontaneous vibrations that are analogous to transverse elastic waves. By locally forcing these waves, we fully characterize their dispersion relation and show that a Faraday pattern presents an effective shear elasticity. We propose a physical mechanism combining surface tension with the Faraday structured interface that quantitatively predicts the elastic wave phase speed, revealing that the liquid interface behaves as an elastic metamaterial.
Hyperbolic metamaterials: Nonlocal response regularizes broadband supersingularity
DEFF Research Database (Denmark)
Yan, Wei; Wubs, Martijn; Mortensen, N. Asger
2012-01-01
We study metamaterials known as hyperbolic media that in the usual local-response approximation exhibit hyperbolic dispersion and an associated broadband singularity in the density of states. Instead, from the more microscopic hydrodynamic Drude theory we derive qualitatively different optical...... properties of these metamaterials, due to the free-electron nonlocal optical response of their metal constituents. We demonstrate that nonlocal response gives rise to a large-wavevector cutoff in the dispersion that is inversely proportional to the Fermi velocity of the electron gas, but also for small...
Large scale phononic metamaterials for seismic isolation
International Nuclear Information System (INIS)
Aravantinos-Zafiris, N.; Sigalas, M. M.
2015-01-01
In this work, we numerically examine structures that could be characterized as large scale phononic metamaterials. These novel structures could have band gaps in the frequency spectrum of seismic waves when their dimensions are chosen appropriately, thus raising the belief that they could be serious candidates for seismic isolation structures. Different and easy to fabricate structures were examined made from construction materials such as concrete and steel. The well-known finite difference time domain method is used in our calculations in order to calculate the band structures of the proposed metamaterials
Enhanced spin Hall effect of tunneling light in hyperbolic metamaterial waveguide.
Tang, Tingting; Li, Chaoyang; Luo, Li
2016-08-01
Giant enhancement of spin Hall effect of tunneling light (SHETL) is theoretically proposed in a frustrated total internal reflection (FTIR) structure with hyperbolic metamaterial (HMM). We calculate the transverse shift of right-circularly polarized light in a SiO2-air-HMM-air-SiO2 waveguide and analyze the physical mechanism of the enhanced SHETL. The HMM anisotropy can greatly increase the transverse shift of polarized light even though HMM loss might reduce it. Compared with transverse shift of transmitted light through a single HMM slab with ZnAlO/ZnO multilayer, the maximum transverse shift of tunneling light through a FTIR structure with identical HMM can be significantly enlarged by more than three times which reaches -38 μm without any amplification method.
Design and analysis of lumped resistor loaded metamaterial absorber with transmission band.
Chen, Xi; Li, Youquan; Fu, Yunqi; Yuan, Naichang
2012-12-17
A new type of multi-layer metamaterial (MM) absorber is represented in this paper, which behave as a dielectric slab in transmission band and act as an absorber in another lower band. The equivalent circuit model of each layer in this MM absorber has been established. The transmission line (TL) model is introduced to analysis the mechanism of electromagnetic wave traveling through this MM absorber. Both theoretical and experimental results indicate this MM absorber has a transmission band at 21GHz and an absorptive band from 5GHz to 13GHz. A good match of TL model results and measurement results verified the validity of TL model in analyzing and optimizing the performances of this kind of absorber.
Metamaterial mirrors in optoelectronic devices
Esfandyarpour, Majid
2014-06-22
The phase reversal that occurs when light is reflected from a metallic mirror produces a standing wave with reduced intensity near the reflective surface. This effect is highly undesirable in optoelectronic devices that use metal films as both electrical contacts and optical mirrors, because it dictates a minimum spacing between the metal and the underlying active semiconductor layers, therefore posing a fundamental limit to the overall thickness of the device. Here, we show that this challenge can be circumvented by using a metamaterial mirror whose reflection phase is tunable from that of a perfect electric mirror († = €) to that of a perfect magnetic mirror († = 0). This tunability in reflection phase can also be exploited to optimize the standing wave profile in planar devices to maximize light-matter interaction. Specifically, we show that light absorption and photocurrent generation in a sub-100 nm active semiconductor layer of a model solar cell can be enhanced by ∼20% over a broad spectral band. © 2014 Macmillan Publishers Limited.
Metamaterial mirrors in optoelectronic devices
Esfandyarpour, Majid; Garnett, Erik C.; Cui, Yi; McGehee, Michael D.; Brongersma, Mark L.
2014-01-01
The phase reversal that occurs when light is reflected from a metallic mirror produces a standing wave with reduced intensity near the reflective surface. This effect is highly undesirable in optoelectronic devices that use metal films as both electrical contacts and optical mirrors, because it dictates a minimum spacing between the metal and the underlying active semiconductor layers, therefore posing a fundamental limit to the overall thickness of the device. Here, we show that this challenge can be circumvented by using a metamaterial mirror whose reflection phase is tunable from that of a perfect electric mirror († = €) to that of a perfect magnetic mirror († = 0). This tunability in reflection phase can also be exploited to optimize the standing wave profile in planar devices to maximize light-matter interaction. Specifically, we show that light absorption and photocurrent generation in a sub-100 nm active semiconductor layer of a model solar cell can be enhanced by ∼20% over a broad spectral band. © 2014 Macmillan Publishers Limited.
Thermodynamics of superconducting quantum metamaterials
Energy Technology Data Exchange (ETDEWEB)
Dallaire-Demers, Pierre-Luc; Wilhelm-Mauch, Frank [Universitaet des Saarlandes (Germany)
2015-07-01
Left-handed matematerials are capacitively coupled layers of inductive pieces of conductors. These systems are well studied in the context of microwave metamaterials but their full quantum description or their embedding in highly correlated materials like superconductors are still an open problem. Notably, they are known to have a Van Hove singularity in the density of states at low energy and high pseudo-momentum that could effectively couple and condense Cooper pairs. The goal of this research is to analyze the thermodynamical properties of the order parameter of stacked layers of superconductors with a small repulsive Coulomb interaction. A 3D toy model of such a material is mapped to a Fermi-Hubbard lattice. The temperature dependent anomalous correlation functions are computed variationally from a self-energy functional of a small cluster where inter-cluster tunneling is treated perturbatively. The effect of the repulsive interaction on the Cooper pairs binding can then be seen from the momentum distribution of the condensation amplitude. Such a material could potentially be realized with optical lattices or nanoscaled superconductors.
Slab Penetration vs. Slab Stagnation: Mantle Reflectors as an Indicator
Okeler, A.; Gu, Y. J.; Schultz, R.; Contenti, S. M.
2011-12-01
Subducting oceanic lithosphere along convergent margins may stagnate near the base of the upper mantle or penetrate into the lower mantle. These dynamic processes cause extensive thermal and compositional variations, which can be observed in terms of impedance contrast (reflectivity) and topography of mantle transition zone (MTZ) discontinuities, i.e., 410- and 660-km discontinuities. In this study, we utilize ~ 15000 surface-reflected shear waves (SS) and their precursory arrivals (S410S and S660S) to analyze subduction related deformations on mantle reflectivity structure. We apply pre-stack, time-to-depth migration technique to SS precursors, and move weak underside reflections using PREM-predicted travel-time curves. Common Mid-point gathers are formed to investigate structure under the western Pacific, south America, and Mediterranean convergent boundaries. In general, mantle reflectivity structures are consistent with previous seismic tomography models. In regions of slab penetration (e.g., southern Kurile arc, Aegean Sea), our results show 1) a substantial decrease in S660S amplitude, and 2) strong lower mantle reflector(s) at ~ 900 km depth. These reflective structures are supported by zones of high P and S velocities extending into the lower mantle. Our 1-D synthetic simulations suggest that the decreasing S660S amplitudes are, at least partially, associated with shear wave defocusing due to changes in reflector depth (by ±20 km) within averaging bin. Assuming a ~500 km wide averaging area, a dipping reflector with 6-8 % slope can reduce the amplitude of a SS precursor by ~50%. On the other hand, broad depressions with strong impedance contrast at the base of the MTZ characterize the regions of slab stagnation, such as beneath the Tyrrhenian Sea and northeastern China. For the latter region, substantial topography on the 660-km discontinuity west of the Wadati-Benioff zone suggests that the stagnant part of the Pacific plate across Honshu arc is not
Contribution to the study of slab thickness
International Nuclear Information System (INIS)
Moraitis, G.A.; Rorris, G.P.
1978-01-01
A method is proposed for calculating the time-independent values of the equivalent slab thickness of the ionosphere, defined as the ratio of the total electron content to the corresponding maximum electron density of the F region. Periodic variations of slab thickness are studied and are correlated to relative changes in exospheric temperature, deduced from the OGO-6 model
Photon transport in thin disordered slabs
Indian Academy of Sciences (India)
We examine using Monte Carlo simulations, photon transport in optically `thin' slabs whose thickness is only a few times the transport mean free path *, with particles of different scattering anisotropies. The conﬁned geometry causes an auto-selection of only photons with looping paths to remain within the slab.
Repairing reinforced concrete slabs using composite layers
International Nuclear Information System (INIS)
Naghibdehi, M. Ghasemi; Sharbatdar, M.K.; Mastali, M.
2014-01-01
There are several strengthening methods for rehabilitation of RC structural elements. The efficiency of these methods has been demonstrated by many researchers. Due to their mechanical properties, using fibrous materials in rehabilitation applications is growing fast. Therefore, this study presents rehabilitation of slabs in such a way that plain concrete layers on top, on bottom, on the entire cross section are replaced by reinforced concrete layers. In order to reinforce the concrete, Polypropylene (PP) and steel fibers were used by 0.5%, 1% and 2% fiber volume fractions. Nineteen slabs were studied under flexural loadings and fibrous material effects on the initial crack force, the maximum loading carrying capacity, absorbed energy and ductility were investigated. The obtained results demonstrated that increasing the fiber volume fraction or using reinforced concrete layer on top, bottom, or at the entire cross section of the slabs not only always leads to improvement in the slab performance, but also sometimes debilitates the slab performance. Hence, this study will propose the best positioning of reinforced concrete layer, fiber volume fraction and fiber type to achieve the best flexural performance of slabs. - Highlights: • Using PP fibers at the bottom layer led to the best slab performance in bending. • Using steel fiber at the top layer and entire cross-section led to the best slab performance. • Maximum increase in the initial crack force and loading were obtained at 2% steel fiber. • Maximum increase in the initial crack force and loading were obtained at 1% PP fiber
0-6722 : spread prestressed concrete slab beam bridges.
2014-08-01
The Texas Department of Transportation uses : precast prestressed concrete slab beam bridges for : shorter-span bridges of approximately 3050 ft in : length. Conventional slab beam bridges have slab : beams placed immediately adjacent to one anoth...
The heterogeneous response method in slab geometry
International Nuclear Information System (INIS)
Villarino, E.A.; Stamm'ler, R.J.J.
1984-01-01
The heterogeneous response method (HRM) has been developed to calculate the multigroup flux in a heterogeneous system, e.g. a fuel assembly, without having to resort to dubious homogenization recipes. Here, the method is described in slab geometry in a manner that facilitates its computerization. By dividing the system into subsystems or nodes, say pin cells, two levels of calculation are created, which define a set of local problems and a global problem, respectively. In the local problem, collision probabilities are used to obtain for a node in vacuum, its response fluxes caused by sources and in-currents. They preserve the heterogeneous character of the node. In the global problem, the nodes are coupled by cosine currents. A suitable transformation reduces the number of two unknown currents per interface to one unknown per node, its total transmitted in-current. The global equation system thus becomes a set of three-point relations, which can be solved efficiently. In cases typical of fuel-assembly situations, the HRM produces fluxes that compare very well with the direct solution of the entire system by collision probabilities, though at a fraction of the computer cost. Extension of the method to 2- and 3-D systems is discussed. (author)
Design of Metamaterials for control of electromagnetic waves
Koschny, Thomas
2014-03-01
Metamaterials are artificial effective media supporting propagating waves that derive their properties form the average response of deliberately designed and arranged, usually resonant scatterers with structural length-scales much smaller than the wavelength inside the material. Electromagnetic metamaterials are the most important implementation of metamaterials, which are made from deeply sub-wavelength electric, magnetic and chiral resonators and can be designed to work from radio frequencies all the way to visible light. Metamaterials have been major new development in physics and materials science over the last decade and are still attracting more interest as they enable us to create materials with unique properties like negative refraction, flat and super lenses, impedance matching eliminating reflection, perfect absorbers, deeply sub-wavelength sized wave guides and cavities, tunability, enhanced non-linearity and gain, chirality and huge optical activity, control of Casimir forces, and spontaneous emission, etc. In this talk, I will discuss the design, numerical simulation, and mathematical modeling of metamaterials. I will survey the current state of the art and discuss challenges, possible solutions and perspectives. In particular, the problem of dissipative loss and their possible compensation by incorporating spatially distributed gain in metamaterials. If the gain sub-system is strongly coupled to the sub-wavelength resonators of the metamaterial loss compensation and undamping of the resonant response of the metamaterials can occur. I will explore new, alternative dielectric low loss resonators for metamaterials as well as the potential of new conducting materials such as Graphene to replace metals as the conducting material in resonant metamaterials. Two dimensional metamaterials or metasurfaces, implementations of effective electromagnetic current sheets in which both electric and magnetic sheet conductivities are controlled by the average response
Performing derivative and integral operations for optical waves with optical metamaterials
Energy Technology Data Exchange (ETDEWEB)
Dai, Cun-Li [College of Engineering, Nanjing Agriculture University, Nanjing Jiangsu, 210031 (China); College of Science, Nanjing Agriculture University, Nanjing Jiangsu, 210095 (China); Zhao, Zhi-Gang; Li, Xiao-Lin [College of Engineering, Nanjing Agriculture University, Nanjing Jiangsu, 210031 (China); Yang, Hong-Wei, E-mail: phd_hwyang@njau.edu.cn [College of Science, Nanjing Agriculture University, Nanjing Jiangsu, 210095 (China)
2016-12-01
The graded refractive index waveguides can perform Fourier transform for an optical wave. According to this characteristic, simpler optical metamaterials with three waveguides are theoretically proposed, in which all of the waveguides are materials with a positive refractive index. By selecting the appropriate refractive index and structure size, the theory and simulations demonstrated that these metamaterials can perform mathematical operations for the outline of incident optical waves, including the first-order derivative, second-order derivative and the integral. - Highlights: • The derivative and integral operations of optical waves are achieved with a simpler model. • Both negative and positive refractive index boast the same functions. • The mathematical operations can be implemented only by changing the refractive index of the intermediate material. • The results will greatly expand the possible applications, including photon computers, picture processing, video displays and data storage.
Realization of low-scattering metamaterial shell based on cylindrical wave expanding theory.
Wu, Xiaoyu; Hu, Chenggang; Wang, Min; Pu, Mingbo; Luo, Xiangang
2015-04-20
In this paper, we demonstrate the design of a low-scattering metamaterial shell with strong backward scattering reduction and a wide bandwidth at microwave frequencies. Low echo is achieved through cylindrical wave expanding theory, and such shell only contains one metamaterial layer with simultaneous low permittivity and permeability. Cut-wire structure is selected to realize the low electromagnetic (EM) parameters and low loss on the resonance brim region. The full-model simulations show good agreement with theoretical calculations, and illustrate that near -20dB reduction is achieved and the -10 dB bandwidth can reach up to 0.6 GHz. Compared with the cloak based on transformation electromagnetics, the design possesses advantage of simpler requirement of EM parameters and is much easier to be implemented when only backward scattering field is cared.
International Nuclear Information System (INIS)
Ionin, Andrei A; Kozlov, A Yu; Seleznev, L V; Sinitsyn, D V
2009-01-01
A compact capacitive transverse RF-discharge-pumped slab CO laser with cryogenically cooled electrodes, which operates both in the cw and repetitively pulsed regimes, is fabricated. The laser operation is studied in the free running multifrequency regime at the vibrational - rotational transitions of the fundamental (V + 1 → V) vibrational bands of the CO molecule in the spectral region from 5.1 to 5.4 μm. Optimal operation conditions (gas mixture composition and pressure, RF pump parameters) are determined. It is shown that only gas mixtures with a high content of oxygen (up to 20% with respect to the concentration of CO molecules) can be used as an active medium of this laser. It is demonstrated that repetitively pulsed pumping is more efficient compared to cw pumping. In this case, quasi-cw lasing regime can be obtained. The maximum average output power of ∼12 W was obtained for this laser operating on fundamental bands and its efficiency achieved ∼14 %. The frequency-selective operation regime of the slab RF-discharge-pumped CO laser was realised at ∼ 100 laser lines in the spectral region from 5.0 to 6.5 μm with the average output power of up to several tens of milliwatts in each line. Lasing at the transitions of the first vibrational overtone (V + 2 → V) of the CO molecule is obtained in the spectral region from 2.5 to 3.9 μm. The average output power of the overtone laser achieved 0.3 W. All the results were obtained without the forced gas mixture exchange in the discharge chamber. Under fixed experimental conditions, repetitively pulsed lasing (with fluctuations of the output characteristics no more than ±10 %) was stable for more than an hour. (lasers)
The Green's function method for critical heterogeneous slabs
International Nuclear Information System (INIS)
Kornreich, D.E.
1996-01-01
Recently, the Green's Function Method (GFM) has been employed to obtain benchmark-quality results for nuclear engineering and radiative transfer calculations. This was possible because of fast and accurate calculations of the Green's function and the associated Fourier and Laplace transform inversions. Calculations have been provided in one-dimensional slab geometries for both homogeneous and heterogeneous media. A heterogeneous medium is analyzed as a series of homogeneous slabs, and Placzek's lemma is used to extend each slab to infinity. This allows use of the infinite medium Green's function (the anisotropic plane source in an infinite homogeneous medium) in the solution. To this point, a drawback of the GFM has been the limitation to media with c 1; however, mathematical solutions exist which result in oscillating Green's functions. Such calculations are briefly discussing. The limitation to media with c < 1 has been relaxed so that the Green's function may also be calculated for media with c ≥ 1. Thus, materials that contain fissionable isotopes may be modeled
Identifying the perfect absorption of metamaterial absorbers
Duan, G.; Schalch, J.; Zhao, X.; Zhang, J.; Averitt, R. D.; Zhang, X.
2018-01-01
We present a detailed analysis of the conditions that result in unity absorption in metamaterial absorbers to guide the design and optimization of this important class of functional electromagnetic composites. Multilayer absorbers consisting of a metamaterial layer, dielectric spacer, and ground plane are specifically considered. Using interference theory, the dielectric spacer thickness and resonant frequency for unity absorption can be numerically determined from the functional dependence of the relative phase shift of the total reflection. Further, using transmission line theory in combination with interference theory we obtain analytical expressions for the unity absorption resonance frequency and corresponding spacer layer thickness in terms of the bare resonant frequency of the metamaterial layer and metallic and dielectric losses within the absorber structure. These simple expressions reveal a redshift of the unity absorption frequency with increasing loss that, in turn, necessitates an increase in the thickness of the dielectric spacer. The results of our analysis are experimentally confirmed by performing reflection-based terahertz time-domain spectroscopy on fabricated absorber structures covering a range of dielectric spacer thicknesses with careful control of the loss accomplished through water absorption in a semiporous polyimide dielectric spacer. Our findings can be widely applied to guide the design and optimization of the metamaterial absorbers and sensors.
Metamaterial Model of Tachyonic Dark Energy
Directory of Open Access Journals (Sweden)
Igor I. Smolyaninov
2014-02-01
Full Text Available Dark energy with negative pressure and positive energy density is believed to be responsible for the accelerated expansion of the universe. Quite a few theoretical models of dark energy are based on tachyonic fields interacting with itself and normal (bradyonic matter. Here, we propose an experimental model of tachyonic dark energy based on hyperbolic metamaterials. Wave equation describing propagation of extraordinary light inside hyperbolic metamaterials exhibits 2 + 1 dimensional Lorentz symmetry. The role of time in the corresponding effective 3D Minkowski spacetime is played by the spatial coordinate aligned with the optical axis of the metamaterial. Nonlinear optical Kerr effect bends this spacetime resulting in effective gravitational force between extraordinary photons. We demonstrate that this model has a self-interacting tachyonic sector having negative effective pressure and positive effective energy density. Moreover, a composite multilayer SiC-Si hyperbolic metamaterial exhibits closely separated tachyonic and bradyonic sectors in the long wavelength infrared range. This system may be used as a laboratory model of inflation and late time acceleration of the universe.
Characterization of nanodiamonds for metamaterial applications
Shalaginov, Mikhail; Naik, Gururaj; Ishii, Satoshi; Slipchenko, Mikhail; Boltasseva, Alexandra; Cheng, Ji-Xin; Smolyaninov, A N; Kochman, E; Shalaev, Vladimir
2011-01-01
Several different types of nanodiamonds were characterized in order to find the best sample to be used in further experiments with metamaterials. In this work we present the results of optical analysis of aqueous suspensions containing nanodiamonds, SEM analysis of diamond particles dispersed on silicon substrates and measurements of photoluminescence from defects in nanodiamonds.
Laser Writing of Multiscale Chiral Polymer Metamaterials
Directory of Open Access Journals (Sweden)
E. P. Furlani
2012-01-01
Full Text Available A new approach to metamaterials is presented that involves laser-based patterning of novel chiral polymer media, wherein chirality is realized at two distinct length scales, intrinsically at the molecular level and geometrically at a length scale on the order of the wavelength of the incident field. In this approach, femtosecond-pulsed laser-induced two-photon lithography (TPL is used to pattern a photoresist-chiral polymer mixture into planar chiral shapes. Enhanced bulk chirality can be realized by tuning the wavelength-dependent chiral response at both the molecular and geometric level to ensure an overlap of their respective spectra. The approach is demonstrated via the fabrication of a metamaterial consisting of a two-dimensional array of chiral polymer-based L-structures. The fabrication process is described and modeling is performed to demonstrate the distinction between molecular and planar geometric-based chirality and the effects of the enhanced multiscale chirality on the optical response of such media. This new approach to metamaterials holds promise for the development of tunable, polymer-based optical metamaterials with low loss.
Investigations into homogenization of electromagnetic metamaterials
DEFF Research Database (Denmark)
Clausen, Niels Christian Jerichau
This dissertation encompasses homogenization methods, with a special interest into their applications to metamaterial homogenization. The first method studied is the Floquet-Bloch method, that is based on the assumption of a material being infinite periodic. Its field can then be expanded in term...
Magnetization of left-handed metamaterials
International Nuclear Information System (INIS)
Kourakis, I; Shukla, P K
2006-01-01
We propose a possible mechanism for the generation of magnetic fields in negative refraction index composite metamaterials. Considering the propagation of a high-frequency modulated amplitude electric field in a left-handed material (LHM), we show that the ponderomotive interaction between the field and low-frequency potential distributions leads to spontaneous generation of magnetic fields, whose form and properties are discussed
Strain Imaging Using Terahertz Waves and Metamaterials
2016-11-01
predictions. 14. SUBJECT TERMS Birefringence, Terahertz Waves, Metamaterials 15. NUMBER OF PAGES 16 16. PRICE CODE 17. SECURITY...opaque objects by using the principles of strain-induced birefringence. 4 III. CONCEPT To overcome the inability of visual light to penetrate ...opaque objects, terahertz radiation was investigated. Longer wavelength EM waves, such as radio waves, have excellent penetration ability but low image
Optical properties of silver composite metamaterials
Energy Technology Data Exchange (ETDEWEB)
Orbons, S.M. [School of Physics, University of Melbourne, Victoria 3010 (Australia)]. E-mail: sorbons@ph.unimelb.edu.au; Freeman, D. [Centre for Ultrahigh-bandwidth Devices for Optical Systems, Laser Physics Centre, Australian National University, ACT 0200 (Australia); Luther-Davies, B. [Centre for Ultrahigh-bandwidth Devices for Optical Systems, Laser Physics Centre, Australian National University, ACT 0200 (Australia); Gibson, B.C. [Quantum Communications Victoria, School of Physics, University of Melbourne, Victoria 3010 (Australia); Huntington, S.T. [Quantum Communications Victoria, School of Physics, University of Melbourne, Victoria 3010 (Australia); Jamieson, D.N. [School of Physics, University of Melbourne, Victoria 3010 (Australia); Roberts, A. [School of Physics, University of Melbourne, Victoria 3010 (Australia)
2007-05-15
We present a computational and experimental study investigating the optical properties of nanoscale silver composite metamaterials fabricated by ion beam lithography. Both simulations and experimental results demonstrate high transmission efficiencies in the near infra-red through these devices. Implications for experimentally verifying the calculated near-field distributions of these materials are also discussed.
Metamaterials modelling, fabrication, and characterisation techniques
DEFF Research Database (Denmark)
Malureanu, Radu; Zalkovskij, Maksim; Andryieuski, Andrei
2012-01-01
Metamaterials are artificially designed media that show averaged properties not yet encountered in nature. Among such properties, the possibility of obtaining optical magnetism and negative refraction are the ones mainly exploited but epsilon-near-zero and sub-unitary refraction index are also...
Casimir interactions for anisotropic magnetodielectric metamaterials
Energy Technology Data Exchange (ETDEWEB)
Da Rosa, Felipe S [Los Alamos National Laboratory; Dalvit, Diego A [Los Alamos National Laboratory; Milonni, Peter W [Los Alamos National Laboratory
2008-01-01
We extend our previous work on the generalization of the Casimir-Lifshitz theory to treat anisotropic magnetodielectric media, focusing on the forces between metals and magnetodielectric metamaterials and on the possibility of inferring magnetic effects by measurements of these forces.
Optical magnetism in planar metamaterial heterostructures.
Papadakis, Georgia T; Fleischman, Dagny; Davoyan, Artur; Yeh, Pochi; Atwater, Harry A
2018-01-18
Harnessing artificial optical magnetism has previously required complex two- and three-dimensional structures, such as nanoparticle arrays and split-ring metamaterials. By contrast, planar structures, and in particular dielectric/metal multilayer metamaterials, have been generally considered non-magnetic. Although the hyperbolic and plasmonic properties of these systems have been extensively investigated, their assumed non-magnetic response limits their performance to transverse magnetic (TM) polarization. We propose and experimentally validate a mechanism for artificial magnetism in planar multilayer metamaterials. We also demonstrate that the magnetic properties of high-index dielectric/metal hyperbolic metamaterials can be anisotropic, leading to magnetic hyperbolic dispersion in certain frequency regimes. We show that such systems can support transverse electric polarized interface-bound waves, analogous to their TM counterparts, surface plasmon polaritons. Our results open a route for tailoring optical artificial magnetism in lithography-free layered systems and enable us to generalize the plasmonic and hyperbolic properties to encompass both linear polarizations.
Super Talbot effect in indefinite metamaterial.
Zhao, Wangshi; Huang, Xiaoyue; Lu, Zhaolin
2011-08-01
The Talbot effect (or the self-imaging effect) can be observed for a periodic object with a pitch larger than the diffraction limit of an imaging system, where the paraxial approximation is applied. In this paper, we show that the super Talbot effect can be achieved in an indefinite metamaterial even when the period is much smaller than the diffraction limit in both two-dimensional and three-dimensional numerical simulations, where the paraxial approximation is not applied. This is attributed to the evanescent waves, which carry the information about subwavelength features of the object, can be converted into propagating waves and then conveyed to far field by the metamaterial, where the permittivity in the propagation direction is negative while the transverse ones are positive. The indefinite metamaterial can be approximated by a system of thin, alternating multilayer metal and insulator (MMI) stack. As long as the loss of the metamaterial is small enough, deep subwavelength image size can be obtained in the super Talbot effect.
MEMS for Tunable Photonic Metamaterial Applications
Stark, Thomas
Photonic metamaterials are materials whose optical properties are derived from artificially-structured sub-wavelength unit cells, rather than from the bulk properties of the constituent materials. Examples of metamaterials include plasmonic materials, negative index materials, and electromagnetic cloaks. While advances in simulation tools and nanofabrication methods have allowed this field to grow over the past several decades, many challenges still exist. This thesis addresses two of these challenges: fabrication of photonic metamaterials with tunable responses and high-throughput nanofabrication methods for these materials. The design, fabrication, and optical characterization of a microelectromechanical systems (MEMS) tunable plasmonic spectrometer are presented. An array of holes in a gold film, with plasmon resonance in the mid-infrared, is suspended above a gold reflector, forming a Fabry-Perot interferometer of tunable length. The spectra exhibit the convolution of extraordinary optical transmission through the holes and Fabry-Perot resonances. Using MEMS, the interferometer length is modulated from 1.7 mum to 21.67 mum , thereby tuning the free spectral range from about 2900 wavenumbers to 230.7 wavenumbers and shifting the reflection minima and maxima across the infrared. Due to its broad spectral tunability in the fingerprint region of the mid-infrared, this device shows promise as a tunable biological sensing device. To address the issue of high-throughput, high-resolution fabrication of optical metamaterials, atomic calligraphy, a MEMS-based dynamic stencil lithography technique for resist-free fabrication of photonic metamaterials on unconventional substrates, has been developed. The MEMS consists of a moveable stencil, which can be actuated with nanometer precision using electrostatic comb drive actuators. A fabrication method and flip chip method have been developed, enabling evaporation of metals through the device handle for fabrication on an
Reducing the losses of optical metamaterials
International Nuclear Information System (INIS)
Fang, Anan
2010-01-01
The field of metamaterials is driven by fascinating and far-reaching theoretical visions, such as perfect lenses, invisibility cloaking, and enhanced optical nonlinearities. However, losses have become the major obstacle towards real world applications in the optical regime. Reducing the losses of optical metamaterials becomes necessary and extremely important. In this thesis, two approaches are taken to reduce the losses. One is to construct an indefinite medium. Indefinite media are materials where not all the principal components of the permittivity and permeability tensors have the same sign. They do not need the resonances to achieve negative permittivity, (var e psilon). So, the losses can be comparatively small. To obtain indefinite media, three-dimensional (3D) optical metallic nanowire media with different structures are designed. They are numerically demonstrated that they are homogeneous effective indefinite anisotropic media by showing that their dispersion relations are hyperbolic. Negative group refraction and pseudo focusing are observed. Another approach is to incorporate gain into metamaterial nanostructures. The nonlinearity of gain is included by a generic four-level atomic model. A computational scheme is presented, which allows for a self-consistent treatment of a dispersive metallic photonic metamaterial coupled to a gain material incorporated into the nanostructure using the finite-difference time-domain (FDTD) method. The loss compensations with gain are done for various structures, from 2D simplified models to 3D realistic structures. Results show the losses of optical metamaterials can be effectively compensated by gain. The effective gain coefficient of the combined system can be much larger than the bulk gain counterpart, due to the strong local-field enhancement.
Reducing the losses of optical metamaterials
Energy Technology Data Exchange (ETDEWEB)
Fang, Anan [Iowa State Univ., Ames, IA (United States)
2010-01-01
The field of metamaterials is driven by fascinating and far-reaching theoretical visions, such as perfect lenses, invisibility cloaking, and enhanced optical nonlinearities. However, losses have become the major obstacle towards real world applications in the optical regime. Reducing the losses of optical metamaterials becomes necessary and extremely important. In this thesis, two approaches are taken to reduce the losses. One is to construct an indefinite medium. Indefinite media are materials where not all the principal components of the permittivity and permeability tensors have the same sign. They do not need the resonances to achieve negative permittivity, ε. So, the losses can be comparatively small. To obtain indefinite media, three-dimensional (3D) optical metallic nanowire media with different structures are designed. They are numerically demonstrated that they are homogeneous effective indefinite anisotropic media by showing that their dispersion relations are hyperbolic. Negative group refraction and pseudo focusing are observed. Another approach is to incorporate gain into metamaterial nanostructures. The nonlinearity of gain is included by a generic four-level atomic model. A computational scheme is presented, which allows for a self-consistent treatment of a dispersive metallic photonic metamaterial coupled to a gain material incorporated into the nanostructure using the finite-difference time-domain (FDTD) method. The loss compensations with gain are done for various structures, from 2D simplified models to 3D realistic structures. Results show the losses of optical metamaterials can be effectively compensated by gain. The effective gain coefficient of the combined system can be much larger than the bulk gain counterpart, due to the strong local-field enhancement.
Hybrid antiresonant metamaterial waveguides for THz and IR
DEFF Research Database (Denmark)
Stefani, Alessio; Lwin, Richard; Argyros, Alexander
2016-01-01
We report on a novel waveguide concept which combines antiresonant and metamaterial guidance. The guidance is achieved in the hollow core and loss as low as 2.3 dB/km are theoretically achievable in the THz frequency range. Both purely antiresonant and antiresonant metamaterial fibers have been f...... fabricated and characterized. The realized metamaterial fiber has been simulated to have 0.3 dB/m loss at 0.3 THz....
Recent Advances and Current Trends in Metamaterial-by-Design
Anselmi, N.; Gottardi, G.
2018-02-01
Thanks to their potential applications in several engineering areas, metamaterials gained much of attentions among different research communities, leading to the development of several analysis and synthesis tools. In this context, the metamaterial-by-design (MbD) paradigm has been recently introduced as a powerful tool for the design of complex metamaterials-based structures. In this work a review of the state-of-art, as well as the recent advancements of MbD-based methods are presented.
What is a good conductor for metamaterials or plasmonics
Directory of Open Access Journals (Sweden)
Soukoulis Costas M.
2015-04-01
Full Text Available We review conducting materials like metals, conducting oxides and graphene for nanophotonic applications. We emphasize that metamaterials and plasmonic systems benefit from different conducting materials. Resonant metamaterials need conductors with small resistivity, since dissipative loss in resonant metamaterials is proportional to the real part of the resistivity of the conducting medium it contains. For plasmonic systems, one must determine the propagation length at a desired level of confinement to estimate the dissipative loss.
Estimation of the Reliability of Plastic Slabs
DEFF Research Database (Denmark)
Pirzada, G. B. : Ph.D.
In this thesis, work related to fundamental conditions has been extended to non-fundamental or the general case of probabilistic analysis. Finally, using the ss-unzipping technique a door has been opened to system reliability analysis of plastic slabs. An attempt has been made in this thesis...... to give a probabilistic treatment of plastic slabs which is parallel to the deterministic and systematic treatment of plastic slabs by Nielsen (3). The fundamental reason is that in Nielsen (3) the treatment is based on a deterministic modelling of the basic material properties for the reinforced...
Finite-difference time-domain simulation of electromagnetic bandgap and bi-anisotropic metamaterials
Bray, Matthew G.
The term "Metamaterial" has been introduced into the electromagnetic lexicon in recent years to describe new artificial materials with electromagnetic properties that are not found in naturally occurring materials. Metamaterials exhibit electromagnetic properties that are not observed in its constituent materials, and/or not observed in nature. This thesis will analyze two different classes of metamaterials through the use of the finite-difference time-domain (FDTD) technique. The first class of metamaterials are artificial magnetic conductors (AMC) which approximate the behavior of a perfect magnetic conductor (PMC) over a finite frequency range. The AMC metamaterials are created through the use of an electromagnetic bandgap (EBG) structure. A periodic FDTD code is used to simulate a full-wave model of the metallodielectric EBG structures. The AMCs developed with the aid of the FDTD tool are then used to create low-profile antenna systems consisting of a dipole antenna in close proximity to an AMC surface. Through the use of this FDTD tool, several original contributions were made to the electromagnetic community. These include the first dual-band independently tunable EBG AMC ground plane and the first linearly polarized single-band and dual-band tunable antenna/EBG systems. The second class of materials analyzed are bi-anisotropic metamaterials. Bi-anisotropic media are the largest class of linear media which is able to describe the macroscopic material properties of artificial dielectrics, artificial magnetics, artificial chiral materials, left-handed materials, and other composite materials. The dispersive properties of these materials can be approximated by the oscillator model. This model assumes a Lorentzian frequency profile for the permittivity and permeability and a Condon model for chirality. A new FDTD formulation is introduced which can simulate this type of bi-anisotropic media. This FDTD method incorporates the dispersive material properties through
All-optical photonic band control in a quantum metamaterial
Energy Technology Data Exchange (ETDEWEB)
Felbacq, D.; Rousseau, E. [University of Montpellier, Laboratory Charles Coulomb UMR CNRS-UM 5221, Montpellier (France)
2017-09-15
Metamaterials made of periodic collections of dielectric nanorods are considered theoretically. When quantum resonators are embedded within the nanorods, one obtains a quantum metamaterial, whose electromagnetic properties depend upon the state of the quantum resonators. The theoretical model predicts that when the resonators are pumped and reach the inversion regime, the quantum metamaterial exhibits an all-optical switchable conduction band. The phenomenon can be described by considering the pole stucture of the scattering matrix of the metamaterial. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Acoustic metamaterials capable of both sound insulation and energy harvesting
Li, Junfei; Zhou, Xiaoming; Huang, Guoliang; Hu, Gengkai
2016-04-01
Membrane-type acoustic metamaterials are well known for low-frequency sound insulation. In this work, by introducing a flexible piezoelectric patch, we propose sound-insulation metamaterials with the ability of energy harvesting from sound waves. The dual functionality of the metamaterial device has been verified by experimental results, which show an over 20 dB sound transmission loss and a maximum energy conversion efficiency up to 15.3% simultaneously. This novel property makes the metamaterial device more suitable for noise control applications.
Acoustic metamaterials capable of both sound insulation and energy harvesting
International Nuclear Information System (INIS)
Li, Junfei; Zhou, Xiaoming; Hu, Gengkai; Huang, Guoliang
2016-01-01
Membrane-type acoustic metamaterials are well known for low-frequency sound insulation. In this work, by introducing a flexible piezoelectric patch, we propose sound-insulation metamaterials with the ability of energy harvesting from sound waves. The dual functionality of the metamaterial device has been verified by experimental results, which show an over 20 dB sound transmission loss and a maximum energy conversion efficiency up to 15.3% simultaneously. This novel property makes the metamaterial device more suitable for noise control applications. (paper)
Local field effects and metamaterials based on colloidal quantum dots
International Nuclear Information System (INIS)
Porvatkina, O V; Tishchenko, A A; Strikhanov, M N
2015-01-01
Metamaterials are composite structures that exhibit interesting and unusual properties, e.g. negative refractive index. In this article we consider metamaterials based on colloidal quantum dots (CQDs). We investigate these structures taking into account the local field effects and theoretically analyze expressions for permittivity and permeability of metamaterials based on CdSe CQDs. We obtain inequality describing the conditions when material with definite concentration of CQDs is metamaterial. Also we investigate how the values of dielectric polarizability and magnetic polarizability of CQDs depend on the dots radius and properties the material the quantum dots are made of. (paper)
A new metamaterial-based wideband rectangular invisibility cloak
Islam, S. S.; Hasan, M. M.; Faruque, M. R. I.
2018-02-01
A new metamaterial-based wideband electromagnetic rectangular cloak is being introduced in this study. The metamaterial unit cell shows sharp transmittances in the C- and X-bands and displays wideband negative effective permittivity region there. The metamaterial unit cell was then applied in designing a rectangular-shaped electromagnetic cloak. The scattering reduction technique was adopted for the cloaking operation. The cloak operates in the certain portion of C-and X-bands that covers more than 4 GHz bandwidth region. The experimental results were provided as well for the metamaterial and the cloak.
Bayesian inference for spatio-temporal spike-and-slab priors
DEFF Research Database (Denmark)
Andersen, Michael Riis; Vehtari, Aki; Winther, Ole
2017-01-01
a transformed Gaussian process on the spike-and-slab probabilities. An expectation propagation (EP) algorithm for posterior inference under the proposed model is derived. For large scale problems, the standard EP algorithm can be prohibitively slow. We therefore introduce three different approximation schemes...
The state-of-the-art of the LTAN method in the solution of the transport equation in a slab
International Nuclear Information System (INIS)
Vieira Cardona, A.; Panta Pazos, R.; Tullio de Vilhena, M.
2004-01-01
In this work we report the state-of-the-art of the LTA N method, reporting the derivation of the LTA N homogeneous and particular solution in a slab for large N (N N method. We show that the LTA N method, consequently the Laplace transform technique, is a quite general approach to solve a wide class of transport problems in a slab mainly the ones requiring an arbitrary source and large N
Conjecture with water and rheological control for subducting slab in the mantle transition zone
Directory of Open Access Journals (Sweden)
Fumiko Tajima
2015-01-01
Full Text Available Seismic observations have shown structural variation near the base of the mantle transition zone (MTZ where subducted cold slabs, as visualized with high seismic speed anomalies (HSSAs, flatten to form stagnant slabs or sink further into the lower mantle. The different slab behaviors were also accompanied by variation of the “660 km” discontinuity depths and low viscosity layers (LVLs beneath the MTZ that are suggested by geoid inversion studies. We address that deep water transport by subducted slabs and dehydration from hydrous slabs could affect the physical properties of mantle minerals and govern slab dynamics. A systematic series of three-dimensional numerical simulation has been conducted to examine the effects of viscosity reduction or contrast between slab materials on slab behaviors near the base of the MTZ. We found that the viscosity reduction of subducted crustal material leads to a separation of crustal material from the slab main body and its transient stagnation in the MTZ. The once trapped crustal materials in the MTZ eventually sink into the lower mantle within 20–30 My from the start of the plate subduction. The results suggest crustal material recycle in the whole mantle that is consistent with evidence from mantle geochemistry as opposed to a two-layer mantle convection model. Because of the smaller capacity of water content in lower mantle minerals than in MTZ minerals, dehydration should occur at the phase transformation depth, ∼660 km. The variation of the discontinuity depths and highly localized low seismic speed anomaly (LSSA zones observed from seismic P waveforms in a relatively high frequency band (∼1 Hz support the hypothesis of dehydration from hydrous slabs at the phase boundary. The LSSAs which correspond to dehydration induced fluids are likely to be very local, given very small hydrogen (H+ diffusivity associated with subducted slabs. The image of such local LSSA zones embedded in HSSAs may not
Disordered Plamonics and Complex Metamaterials
Gongora, J. S. Totero
2017-05-01
Complex systems are ensembles of interconnected elements where mutual interaction and an optimized amount of disorder produce advanced functionalities. These systems are abundant in our daily experience: typical examples are the brain, biological ecosystems, society, and finance. In the last century, researchers have investigated the fundamental properties of disordered systems, unveiling fascinating and counterintuitive dynamics. The main aim of this Dissertation is the study of a new platform of disorder-enhanced photonics systems, denoted as Complex Metamaterials. Due to its ultrafast time scale nanophotonics represents an ideal framework to investigate and harness complex dynamics. Starting from the theoretical modeling of disordered plasmonic systems, I discuss advanced real-life applications, including the generation of highly-resistant structural colors from porous metal surfaces and the realization of early-stage cancer detectors based on surface roughness and self-similarity. In addition to the effects of structural disorder on plasmonic systems I also investigate the complex emission dynamics from non-conventional nanolasers. Lasers represent the quintessential example of a complex photonic system due to the simultaneous presence of strong nonlinearities and multi-mode interactions. At the same time, the integration of nanolasers with silicon-based electronic circuitry represents one of the greatest technological challenges in the field of nanophotonics. By combining ab-initio simulations and analytical modeling, I characterize the nonlinear emission from three-dimensional plasmonic nanolasers known as SPASERs. My results show for the first time the occurrence of a spontaneous rotational emission in spherical SPASERs, which originates from the nonlinear interaction of several lasing modes. I further discuss how rotating nanolasers can be employed as a fundamental building block for integrated quantum simulators, random information sources, and brain
Parameter retrieval of chiral metamaterials based on the state-space approach.
Zarifi, Davoud; Soleimani, Mohammad; Abdolali, Ali
2013-08-01
This paper deals with the introduction of an approach for the electromagnetic characterization of homogeneous chiral layers. The proposed method is based on the state-space approach and properties of a 4×4 state transition matrix. Based on this, first, the forward problem analysis through the state-space method is reviewed and properties of the state transition matrix of a chiral layer are presented and proved as two theorems. The formulation of a proposed electromagnetic characterization method is then presented. In this method, scattering data for a linearly polarized plane wave incident normally on a homogeneous chiral slab are combined with properties of a state transition matrix and provide a powerful characterization method. The main difference with respect to other well-established retrieval procedures based on the use of the scattering parameters relies on the direct computation of the transfer matrix of the slab as opposed to the conventional calculation of the propagation constant and impedance of the modes supported by the medium. The proposed approach allows avoiding nonlinearity of the problem but requires getting enough equations to fulfill the task which was provided by considering some properties of the state transition matrix. To demonstrate the applicability and validity of the method, the constitutive parameters of two well-known dispersive chiral metamaterial structures at microwave frequencies are retrieved. The results show that the proposed method is robust and reliable.
International Nuclear Information System (INIS)
Monticone Francesco; Alù Andrea
2014-01-01
The rise of plasmonic metamaterials in recent years has unveiled the possibility of revolutionizing the entire field of optics and photonics, challenging well-established technological limitations and paving the way to innovations at an unprecedented level. To capitalize the disruptive potential of this rising field of science and technology, it is important to be able to combine the richness of optical phenomena enabled by nanoplasmonics in order to realize metamaterial components, devices, and systems of increasing complexity. Here, we review a few recent research directions in the field of plasmonic metamaterials, which may foster further advancements in this research area. We will discuss the anomalous scattering features enabled by plasmonic nanoparticles and nanoclusters, and show how they may represent the fundamental building blocks of complex nanophotonic architectures. Building on these concepts, advanced components can be designed and operated, such as optical nanoantennas and nanoantenna arrays, which, in turn, may be at the basis of metasurface devices and complex systems. Following this path, from basic phenomena to advanced functionalities, the field of plasmonic metamaterials offers the promise of an important scientific and technological impact, with applications spanning from medical diagnostics to clean energy and information processing. (topical review - plasmonics and metamaterials)
Analysis of Double Skin Composite Slabs
Directory of Open Access Journals (Sweden)
Husain M. Husain
2018-03-01
Full Text Available This paper deals with finite element modeling of the ultimate load behavior of double skin composite (DSC slabs. In a DSC slab, shear connectors in the form of nut bolt technique studs are used to transfer shear between the outer skin made of steel plates and the concrete core. The current study is based on finite element analysis using ANSYS Version 11 APDL release computer program. Experimental programmes were carried out by the others, two simply supported DSC beams were tested until failure under a concentrated load applied at the center. These test specimens were analyzed by the finite element method and the analyses have shown that these slabs displayed a high degree of flexural characteristics, ultimate strength, and ductility. The close agreement has been observed between the finite element and experimental results for ultimate loads and load–deflection responses. The finite element model was thus found to be capable of predicting the behavior of DSC slabs accurately.
Calculating seismic of slabs ITA NNP Garona
International Nuclear Information System (INIS)
Ezeberry, J. I.; Guerrero, A.; Gamarra, J.; Beltran, F.
2014-01-01
This article describes the methodology that Idom has employed to perform the seismic evaluation of slabs within the ITA project of the NPP Santa Maria de Garona. Seismic calculations that have been conducted include consideration of the effects of the interaction of soil structure as well as the possible take-off containers with respect to slab during the earthquake. Therefore, the main contribution of the work is the study of the coupling of rolling containers with the flexibility of the whole ground-slab For calculations has been used ABAQUS/Explicit program, allowing to solve effectively the nonlinearities listed above using explicit integration algorithms over time. The results of the calculations reflect the importance of jointly analyse the seismic responses of slab and containers. (Author)
Sun, Jingbo; Liu, Xiaoming; Zhou, Ji; Kudyshev, Zhaxylyk; Litchinitser, Natalia M
2015-11-04
Anomalous field enhancement accompanied by resonant absorption phenomenon was originally discussed in the context of plasma physics and in applications related to radio-communications between the ground and spacecraft returning to Earth. Indeed, there is a critical period of time when all communications are lost due to the reflection/absorption of electromagnetic waves by the sheath of plasma created by a high speed vehicle re-entering the atmosphere. While detailed experimental studies of these phenomena in space are challenging, the emergence of electromagnetic metamaterials enables researchers exceptional flexibility to study them in the laboratory environment. Here, we experimentally demonstrated the strong localized field enhancement of magnetic field for an electromagnetic wave propagating in Mie-resonance-based inhomogeneous metamaterials with magnetic permeability gradually changing from positive to negative values. Although these experiments were performed in the microwave frequency range, the proposed all-dielectric approach to transition metamaterials can be extended to terahertz, infrared, and visible frequencies. We anticipate that these results, besides most basic science aspects, hold the potential for numerous applications, including low-intensity nonlinear transformation optics, topological photonics, and the broader area of surface and interface science.
Wang, Ting; Sheng, Meiping; Ding, Xiaodong; Yan, Xiaowei
2018-03-01
This paper presents analysis on wave propagation and power flow in an acoustic metamaterial plate with lateral local resonance. The metamaterial is designed to have lateral local resonance systems attached to a homogeneous plate. Relevant theoretical analysis, numerical modelling and application prospect are presented. Results show that the metamaterial has two complete band gaps for flexural wave absorption and vibration attenuation. Damping can smooth and lower the metamaterial’s frequency responses in high frequency ranges at the expense of the band gap effect, and as an important factor to calculate the power flow is thoroughly investigated. Moreover, the effective mass density becomes negative and unbounded at specific frequencies. Simultaneously, power flow within band gaps are dramatically blocked from the power flow contour and power flow maps. Results from finite element modelling and power flow analysis reveal the working mechanism of the flexural wave attenuation and power flow blocked within the band gaps, where part of the flexural vibration is absorbed by the vertical resonator and the rest is transformed through four-link-mechanisms to the lateral resonators that oscillate and generate inertial forces indirectly to counterbalance the shear forces induced by the vibrational plate. The power flow is stored in the vertical and lateral local resonance, as well as in the connected plate.
Hrubesova, E.; Lahuta, H.; Mohyla, M.; Quang, T. B.; Phi, N. D.
2018-04-01
The paper is focused on the sensitivity analysis of behaviour of the subsoil – foundation system as regards the variant properties of fibre-concrete slab resulting into different relative stiffness of the whole cooperating system. The character of slab and its properties are very important for the character of external load transfer, but the character of subsoil cannot be neglected either because it determines the stress-strain behaviour of the all system and consequently the bearing capacity of structure. The sensitivity analysis was carried out based on experimental results, which include both the stress values in soil below the foundation structure and settlements of structure, characterized by different quantity of fibres in it. Flat dynamometers GEOKON were used for the stress measurements below the observed slab, the strains inside slab were registered by tensometers, the settlements were monitored geodetically. The paper is focused on the comparison of soil stresses below the slab for different quantity of fibres in structure. The results obtained from the experimental stand can contribute to more objective knowledge of soil – slab interaction, to the evaluation of real carrying capacity of the slab, to the calibration of corresponding numerical models, to the optimization of quantity of fibres in the slab, and finally, to higher safety and more economical design of slab.
Mantle wedge serpentinization effects on slab dips
Directory of Open Access Journals (Sweden)
Eh Tan
2017-01-01
Full Text Available The mechanical coupling between a subducting slab and the overlying mantle wedge is an important factor in controlling the subduction dip angle and the flow in mantel wedge. This paper investigates the role of the amount of mantle serpentinization on the subduction zone evolution. With numerical thermos-mechanical models with elasto-visco-plastic rheology, we vary the thickness and depth extent of mantle serpentinization in the mantle wedge to control the degree of coupling between the slab and mantle wedge. A thin serpentinized mantle layer is required for stable subduction. For models with stable subduction, we find that the slab dip is affected by the down-dip extent and the mantle serpentinization thickness. A critical down-dip extent exists in mantle serpentinization, determined by the thickness of the overriding lithosphere. If the down-dip extent does not exceed the critical depth, the slab is partially coupled to the overriding lithosphere and has a constant dip angle regardless of the mantle serpentinization thickness. However, if the down-dip extent exceeds the critical depth, the slab and the base of the overriding lithosphere would be separated and decoupled by a thick layer of serpentinized peridotite. This allows further slab bending and results in steeper slab dip. Increasing mantle serpentinization thickness will also result in larger slab dip. We also find that with weak mantle wedge, there is no material flowing from the asthenosphere into the serpentinized mantle wedge. All of these results indicate that serpentinization is an important ingredient when studying the subduction dynamics in the mantle wedge.
Fano resonances from gradient-index metamaterials.
Xu, Yadong; Li, Sucheng; Hou, Bo; Chen, Huanyang
2016-01-27
Fano resonances - resonant scattering features with a characteristic asymmetric profile - have generated much interest, due to their extensive and valuable applications in chemical or biological sensors, new types of optical switches, lasers and nonlinear optics. They have been observed in a wide variety of resonant optical systems, including photonic crystals, metamaterials, metallic gratings and nanostructures. In this work, a waveguide structure is designed by employing gradient-index metamaterials, supporting strong Fano resonances with extremely sharp spectra. As the changes in the transmission spectrum originate from the interaction of guided modes from different channels, instead of resonance structures or metamolecules, the Fano resonances can be observed for both transverse electric and transverse magnetic polarizations. These findings are verified by fine agreement with analytical calculations and experimental results at microwave, as well as simulated results at near infrared frequencies.
Wireless energy transfer between anisotropic metamaterials shells
Energy Technology Data Exchange (ETDEWEB)
Díaz-Rubio, Ana; Carbonell, Jorge; Sánchez-Dehesa, José, E-mail: jsdehesa@upv.es
2014-06-15
The behavior of strongly coupled Radial Photonic Crystals shells is investigated as a potential alternative to transfer electromagnetic energy wirelessly. These sub-wavelength resonant microstructures, which are based on anisotropic metamaterials, can produce efficient coupling phenomena due to their high quality factor. A configuration of selected constitutive parameters (permittivity and permeability) is analyzed in terms of its resonant characteristics. The coupling to loss ratio between two coupled resonators is calculated as a function of distance, the maximum (in excess of 300) is obtained when the shells are separated by three times their radius. Under practical conditions an 83% of maximum power transfer has been also estimated. -- Highlights: •Anisotropic metamaterial shells exhibit high quality factors and sub-wavelength size. •Exchange of electromagnetic energy between shells with high efficiency is analyzed. •Strong coupling is supported with high wireless transfer efficiency. •End-to-end energy transfer efficiencies higher than 83% can be predicted.
Manipulation of wavefront using helical metamaterials.
Yang, Zhenyu; Wang, Zhaokun; Tao, Huan; Zhao, Ming
2016-08-08
Helical metamaterials, a kind of 3-dimensional structure, has relatively strong coupling effect among the helical nano-wires. Therefore, it is expected to be a good candidate for generating phase shift and controlling wavefront with high efficiency. In this paper, using the finite-difference time-domain (FDTD) method, we studied the phase shift properties in the helical metamaterials. It is found that the phase shift occurs for both transmitted and reflected light waves. And the maximum of reflection coefficients can reach over 60%. In addition, the phase shift (φ) is dispersionless in the range of 600 nm to 860 nm, that is, it is only dominated by the initial angle (θ) of the helix. The relationship between them is φ = ± 2θ. Using Jones calculus we give a further explanation for these properties. Finally, by arranging the helixes in an array with a constant phase gradient, the phenomenon of anomalous refraction was also observed in a broad wavelength range.
Hyperbolic metamaterial lens with hydrodynamic nonlocal response
DEFF Research Database (Denmark)
Yan, Wei; Mortensen, N. Asger; Wubs, Martijn
2013-01-01
We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves...... of the free-electron plasma in the metal constituents. We derive the nonlocal corrections to the effective material parameters analytically, and illustrate the noticeable nonlocal effects on the dispersion curves numerically. As an application, we find that the focusing characteristics of a HMM lens...... in the local-response approximation and in the hydrodynamic Drude model can differ considerably. In particular, the optimal frequency for imaging in the nonlocal theory is blueshifted with respect to that in the local theory. Thus, to detect whether nonlocal response is at work in a hyperbolic metamaterial, we...
Wireless energy transfer between anisotropic metamaterials shells
International Nuclear Information System (INIS)
Díaz-Rubio, Ana; Carbonell, Jorge; Sánchez-Dehesa, José
2014-01-01
The behavior of strongly coupled Radial Photonic Crystals shells is investigated as a potential alternative to transfer electromagnetic energy wirelessly. These sub-wavelength resonant microstructures, which are based on anisotropic metamaterials, can produce efficient coupling phenomena due to their high quality factor. A configuration of selected constitutive parameters (permittivity and permeability) is analyzed in terms of its resonant characteristics. The coupling to loss ratio between two coupled resonators is calculated as a function of distance, the maximum (in excess of 300) is obtained when the shells are separated by three times their radius. Under practical conditions an 83% of maximum power transfer has been also estimated. -- Highlights: •Anisotropic metamaterial shells exhibit high quality factors and sub-wavelength size. •Exchange of electromagnetic energy between shells with high efficiency is analyzed. •Strong coupling is supported with high wireless transfer efficiency. •End-to-end energy transfer efficiencies higher than 83% can be predicted
An omnidirectional electromagnetic absorber made of metamaterials
International Nuclear Information System (INIS)
Cheng Qiang; Cui Tiejun; Jiang Weixiang; Cai Bengeng
2010-01-01
In a recent theoretical work by Narimanov and Kildishev (2009 Appl. Phys. Lett. 95 041106) an optical omnidirectional light absorber based on metamaterials was proposed, in which theoretical analysis and numerical simulations showed that all optical waves hitting the absorber are trapped and absorbed. Here we report the first experimental demonstration of an omnidirectional electromagnetic absorber in the microwave frequency. The proposed device is composed of non-resonant and resonant metamaterial structures, which can trap and absorb electromagnetic waves coming from all directions spirally inwards without any reflections due to the local control of electromagnetic fields. It is shown that the absorption rate can reach 99 per cent in the microwave frequency. The all-directional full absorption property makes the device behave like an 'electromagnetic black body', and the wave trapping and absorbing properties simulate, to some extent, an 'electromagnetic black hole.' We expect that such a device could be used as a thermal emitting source and to harvest electromagnetic waves.
Bianisotropic metamaterials based on twisted asymmetric crosses
International Nuclear Information System (INIS)
Reyes-Avendaño, J A; Sampedro, M P; Juárez-Ruiz, E; Pérez-Rodríguez, F
2014-01-01
The effective bianisotropic response of 3D periodic metal-dielectric structures, composed of crosses with asymmetrically-cut wires, is investigated within a general homogenization theory using the Fourier formalism and the form-factor division approach. It is found that the frequency dependence of the effective permittivity for a system of periodically-repeated layers of metal crosses exhibits two strong resonances, whose separation is due to the cross asymmetry. Besides, bianisotropic metamaterials, having a base of four twisted asymmetric crosses, are proposed. The designed metamaterials possess negative refractive index at frequencies determined by the cross asymmetry, the gap between the arms of adjacent crosses lying on the same plane, and the type of Bravais lattice. (papers)
Engineering photonic density of states using metamaterials
DEFF Research Database (Denmark)
Jacob, Z.; Kim, J.Y.; Naik, G.V.
2010-01-01
The photonic density of states (PDOS), like its electronic counterpart, is one of the key physical quantities governing a variety of phenomena and hence PDOS manipulation is the route to new photonic devices. The PDOS is conventionally altered by exploiting the resonance within a device such as a......The photonic density of states (PDOS), like its electronic counterpart, is one of the key physical quantities governing a variety of phenomena and hence PDOS manipulation is the route to new photonic devices. The PDOS is conventionally altered by exploiting the resonance within a device...... such as a microcavity or a bandgap structure like a photonic crystal. Here we show that nanostructured metamaterials with hyperbolic dispersion can dramatically enhance the photonic density of states paving the way for metamaterial-based PDOS engineering....
Active Microwave Metamaterials Incorporating Ideal Gain Devices
Directory of Open Access Journals (Sweden)
Hao Xin
2010-12-01
Full Text Available Incorporation of active devices/media such as transistors for microwave and gain media for optics may be very attractive for enabling desired low loss and broadband metamaterials. Such metamaterials can even have gain which may very well lead to new and exciting physical phenomena. We investigate microwave composite right/left-handed transmission lines (CRLH-TL incorporating ideal gain devices such as constant negative resistance. With realistic lumped element values, we have shown that the negative phase constant of this kind of transmission lines is maintained (i.e., left-handedness kept while gain can be obtained (negative attenuation constant of transmission line simultaneously. Possible implementation and challenging issues of the proposed active CRLH-TL are also discussed.
Nonlinearities in Periodic Structures and Metamaterials
Denz, Cornelia; Kivshar, Yuri S
2010-01-01
Optical information processing of the future is associated with a new generation of compact nanoscale optical devices operating entirely with light. Moreover, adaptive features such as self-guiding, reconfiguration and switching become more and more important. Nonlinear devices offer an enormous potential for these applications. Consequently, innovative concepts for all-optical communication and information technologies based on nonlinear effects in photonic-crystal physics and nanoscale devices as metamaterials are of high interest. This book focuses on nonlinear optical phenomena in periodic media, such as photonic crystals, optically-induced, adaptive lattices, atomic lattices or metamaterials. The main purpose is to describe and overview new physical phenomena that result from the interplay between nonlinearities and structural periodicities and is a guide to actual and future developments for the expert reader in optical information processing, as well as in the physics of cold atoms in optical lattices.
Metamaterial Embedded Wearable Rectangular Microstrip Patch Antenna
Directory of Open Access Journals (Sweden)
J. G. Joshi
2012-01-01
Full Text Available This paper presents an indigenous low-cost metamaterial embedded wearable rectangular microstrip patch antenna using polyester substrate for IEEE 802.11a WLAN applications. The proposed antenna resonates at 5.10 GHz with a bandwidth and gain of 97 MHz and 4.92 dBi, respectively. The electrical size of this antenna is 0.254λ×0.5λ. The slots are cut in rectangular patch to reduce the bending effect. This leads to mismatch the impedance at WLAN frequency band; hence, a metamaterial square SRR is embedded inside the slot. A prototype antenna has been fabricated and tested, and the measured results are presented in this paper. The simulated and measured results of the proposed antenna are found to be in good agreement. The bending effect on the performance of this antenna is experimentally verified.
Terahertz broadband polarization converter based on metamaterials
Li, Yonghua; Zhao, Guozhong
2018-01-01
Based on the metamaterial composed of symmetrical split resonant ring, a broadband reflective terahertz polarization converter is proposed. The numerical simulation shows that it can rotate the polarization direction of linear polarized wave 90° in the range of 0.7-1.8THz and the polarization conversion ratio is over 90%. The reflection coefficient of the two electric field components in the diagonal direction is the same and the phase difference is 180° ,which leads to the cross-polarization rotation.In order to further study the physical mechanism of high polarization conversion, we analyze the surface current distribution of the resonant ring. The polarization converter has potential applications in terahertz wave plate and metamaterial antenna design.
Influence of slab connection in case of expanded concrete pavements
Deluka-Tibljaš, Aleksandra; Prager, Andrija; Rukavina, Tatjana
2002-01-01
Load transfer from the stressed slab to the neighboring unstressed slab is analyzed in order to establish possibilities for stress reduction in concrete. The contact between slabs is established by means of reinforcing steel shear studs while the influence of friction in the concrete to concrete contact is neglected. The influence of slab thickness, slab cross-section and spacing of shear studs is analyzed, and the expansion joint movement due to change in temperature is studied. Conditions e...
Graphene-Enhanced Metamaterials for THz Applications
DEFF Research Database (Denmark)
Andryieuski, Andrei; Khromova, Irina; Zhukovsky, Sergei
2016-01-01
Terahertz (THz) radiation is gaining momentum in biology, medicine, communication, security, chemistry, and spectroscopy applications. To expand the usability of terahertz radiation the man-made metal-dielectric composite metamaterials are typically considered owing to their ability to effectively...... manipulate electromagnetic waves. The possibilities of light manipulation can be extended even more by involving new active materials as a structural component – such as, for example, graphene. Its prominent conductivity tunability through the electrochemical potential change allows converting a multilayer...
Hybrid Metamaterials for Solar Biofuel Generation
2014-10-30
transfer. The designed charge separation domain will be benignly expressed in bacteria as a chimera with naturally occurring protein domains which...form useful to humankind. Biosolar energy research has begun to modify photosynthetic bacteria , algae, or plants to carry out more efficient...commercial applications. Figure 7 shows four oriented metamaterial polarizers/ lenses without light illuminating the backside (Fig. 7A) and with light
Hyperbolic metamaterial lens with hydrodynamic nonlocal response
Yan, Wei; Mortensen, N. Asger; Wubs, Martijn
2013-01-01
We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves of the free-electron plasma in the metal constituents. We derive the nonlocal corrections to the effective material parameters analytically, and illustrate the noticeable nonlocal effects on the dispersion cu...
Extreme chirality in Swiss roll metamaterials
International Nuclear Information System (INIS)
Demetriadou, A; Pendry, J B
2009-01-01
The chiral Swiss roll metamaterial is a resonant, magnetic medium that exhibits a negative refractive band for one-wave polarization. Its unique structure facilitates huge chiral effects: a plane polarized wave propagating through this system can change its polarization by 90 deg. in less than a wavelength. Such chirality is at least 100 times greater than previous structures have achieved. In this paper, we discuss this extreme chiral behaviour with both numerical and analytical results.
Casimir effect in the presence of metamaterials
Energy Technology Data Exchange (ETDEWEB)
Kort-Kamp, W.J.M.; Pinheiro, F.A.; Maia Neto, P.A.; Farina, C. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil); Rosa, F.S.S. [Universite Paris-Sud (France). Lab. Charles Fabry
2011-07-01
Full text: The Casimir effect was theoretically predicted in 1948 by H. G. B. Casimir. In its original form, it is the attraction between two parallel plates made of perfectly conductors in vacuum. The novelty in the Casimir result was the method used and not the fact that two neutral bodies attract each other, since the force between two neutral, but polarizable, atoms was previously treated by London in 1930. Casimir demonstrated that the force between the plates could be calculated from the variation in the zero-point energy of the quantized electromagnetic field caused by the presence of the plates. Nowadays there is no doubt about the existence of this effect, which has been observed in the last decade in experiments of great precision. Casimir forces play an important role in nanotechnology, in particular in the study of micro- and nano-electromechanical systems, because these forces become dominant in the nanoscopic scale. Casimir forces are responsible for an attraction of individual parts of these devices, making them eventually to stick together. As a result, attractive Casimir forces constitute a nuisance for practical applications. Therefore the investigation of a repulsive Casimir force is of great current interest. It has been recently argued that Casimir repulsion could be obtained by an adequate choice of artificial materials, the so-called metamaterials, with engineered electromagnetic properties [R. Zhao et al, PRL 103, 103602 (2009)]. In this work we investigate the interaction between an atom and a chiral metamaterial plate. Using realistic parameters, obtained from recent experiments and computer simulations, we show that state-of-the-art chiral metamaterials are not able generate Casimir repulsive forces. We also investigate the possibility of magneto-optical metamaterials to exhibit a repulsive Casimir force. To accomplish this, we discuss the dispersive interaction between a magneto-optical sphere and a chiral surface or a magneto
Elastic metamaterial beam with remotely tunable stiffness
Energy Technology Data Exchange (ETDEWEB)
Qian, Wei [University of Michigan–Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240 (China); Yu, Zhengyue [School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Wang, Xiaole [School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Lai, Yun [College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Yellen, Benjamin B., E-mail: yellen@duke.edu [University of Michigan–Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240 (China); Department of Mechanical Engineering and Materials Science, Duke University, P.O. Box 90300, Hudson Hall, Durham, North Carolina 27708 (United States)
2016-02-07
We demonstrate a dynamically tunable elastic metamaterial, which employs remote magnetic force to adjust its vibration absorption properties. The 1D metamaterial is constructed from a flat aluminum beam milled with a linear array of cylindrical holes. The beam is backed by a thin elastic membrane, on which thin disk-shaped permanent magnets are mounted. When excited by a shaker, the beam motion is tracked by a Laser Doppler Vibrometer, which conducts point by point scanning of the vibrating element. Elastic waves are unable to propagate through the beam when the driving frequency excites the first elastic bending mode in the unit cell. At these frequencies, the effective mass density of the unit cell becomes negative, which induces an exponentially decaying evanescent wave. Due to the non-linear elastic properties of the membrane, the effective stiffness of the unit cell can be tuned with an external magnetic force from nearby solenoids. Measurements of the linear and cubic static stiffness terms of the membrane are in excellent agreement with experimental measurements of the bandgap shift as a function of the applied force. In this implementation, bandgap shifts by as much as 40% can be achieved with ∼30 mN of applied magnetic force. This structure has potential for extension in 2D and 3D, providing a general approach for building dynamically tunable elastic metamaterials for applications in lensing and guiding elastic waves.
Review of Plasmonic Nanocomposite Metamaterial Absorber
Directory of Open Access Journals (Sweden)
Mehdi Keshavarz Hedayati
2014-02-01
Full Text Available Plasmonic metamaterials are artificial materials typically composed of noble metals in which the features of photonics and electronics are linked by coupling photons to conduction electrons of metal (known as surface plasmon. These rationally designed structures have spurred interest noticeably since they demonstrate some fascinating properties which are unattainable with naturally occurring materials. Complete absorption of light is one of the recent exotic properties of plasmonic metamaterials which has broadened its application area considerably. This is realized by designing a medium whose impedance matches that of free space while being opaque. If such a medium is filled with some lossy medium, the resulting structure can absorb light totally in a sharp or broad frequency range. Although several types of metamaterials perfect absorber have been demonstrated so far, in the current paper we overview (and focus on perfect absorbers based on nanocomposites where the total thickness is a few tens of nanometer and the absorption band is broad, tunable and insensitive to the angle of incidence. The nanocomposites consist of metal nanoparticles embedded in a dielectric matrix with a high filling factor close to the percolation threshold. The filling factor can be tailored by the vapor phase co-deposition of the metallic and dielectric components. In addition, novel wet chemical approaches are discussed which are bio-inspired or involve synthesis within levitating Leidenfrost drops, for instance. Moreover, theoretical considerations, optical properties, and potential application of perfect absorbers will be presented.
Perforated membrane-type acoustic metamaterials
International Nuclear Information System (INIS)
Langfeldt, F.; Kemsies, H.; Gleine, W.; Estorff, O. von
2017-01-01
This letter introduces a modified design of membrane-type acoustic metamaterials (MAMs) with a ring mass and a perforation so that an airflow through the membrane is enabled. Simplified analytical investigations of the perforated MAM (PMAM) indicate that the perforation introduces a second anti-resonance, where the effective surface mass density of the PMAM is much higher than the static value. The theoretical results are validated using impedance tube measurements, indicating good agreement between the theoretical predictions and the measured data. The anti-resonances yield high low-frequency sound transmission loss values with peak values over 25 dB higher than the corresponding mass-law. - Highlights: • A new membrane-type acoustic metamaterial exhibiting negative density is presented. • The metamaterial design contains a ring mass with a perforation through the membrane. • The sound transmission loss exhibits narrow-band peaks much higher than the mass-law. • The emergence of the peaks is explained using a simple theoretical model. • Impedance tube measurements are used to validate the theoretical predictions.
Perforated membrane-type acoustic metamaterials
Energy Technology Data Exchange (ETDEWEB)
Langfeldt, F., E-mail: Felix.Langfeldt@haw-hamburg.de [Department of Automotive and Aeronautical Engineering, Hamburg University of Applied Sciences, Berliner Tor 9, D-20099 Hamburg (Germany); Kemsies, H., E-mail: Hannes.Kemsies@haw-hamburg.de [Department of Automotive and Aeronautical Engineering, Hamburg University of Applied Sciences, Berliner Tor 9, D-20099 Hamburg (Germany); Gleine, W., E-mail: Wolfgang.Gleine@haw-hamburg.de [Department of Automotive and Aeronautical Engineering, Hamburg University of Applied Sciences, Berliner Tor 9, D-20099 Hamburg (Germany); Estorff, O. von, E-mail: estorff@tu-harburg.de [Institute of Modelling and Computation, Hamburg University of Technology, Denickestr. 17, D-21073 Hamburg (Germany)
2017-04-25
This letter introduces a modified design of membrane-type acoustic metamaterials (MAMs) with a ring mass and a perforation so that an airflow through the membrane is enabled. Simplified analytical investigations of the perforated MAM (PMAM) indicate that the perforation introduces a second anti-resonance, where the effective surface mass density of the PMAM is much higher than the static value. The theoretical results are validated using impedance tube measurements, indicating good agreement between the theoretical predictions and the measured data. The anti-resonances yield high low-frequency sound transmission loss values with peak values over 25 dB higher than the corresponding mass-law. - Highlights: • A new membrane-type acoustic metamaterial exhibiting negative density is presented. • The metamaterial design contains a ring mass with a perforation through the membrane. • The sound transmission loss exhibits narrow-band peaks much higher than the mass-law. • The emergence of the peaks is explained using a simple theoretical model. • Impedance tube measurements are used to validate the theoretical predictions.
Review of Recent Metamaterial Microfluidic Sensors.
Salim, Ahmed; Lim, Sungjoon
2018-01-15
Metamaterial elements/arrays exhibit a sensitive response to fluids yet with a small footprint, therefore, they have been an attractive choice to realize various sensing devices when integrated with microfluidic technology. Micro-channels made from inexpensive biocompatible materials avoid any contamination from environment and require only microliter-nanoliter sample for sensing. Simple design, easy fabrication process, light weight prototype, and instant measurements are advantages as compared to conventional (optical, electrochemical and biological) sensing systems. Inkjet-printed flexible sensors find their utilization in rapidly growing wearable electronics and health-monitoring flexible devices. Adequate sensitivity and repeatability of these low profile microfluidic sensors make them a potential candidate for point-of-care testing which novice patients can use reliably. Aside from degraded sensitivity and lack of selectivity in all practical microwave chemical sensors, they require an instrument, such as vector network analyzer for measurements and not readily available as a self-sustained portable sensor. This review article presents state-of-the-art metamaterial inspired microfluidic bio/chemical sensors (passive devices ranging from gigahertz to terahertz range) with an emphasis on metamaterial sensing circuit and microfluidic detection. We also highlight challenges and strategies to cope these issues which set future directions.
Review of Recent Metamaterial Microfluidic Sensors
Directory of Open Access Journals (Sweden)
Ahmed Salim
2018-01-01
Full Text Available Metamaterial elements/arrays exhibit a sensitive response to fluids yet with a small footprint, therefore, they have been an attractive choice to realize various sensing devices when integrated with microfluidic technology. Micro-channels made from inexpensive biocompatible materials avoid any contamination from environment and require only microliter–nanoliter sample for sensing. Simple design, easy fabrication process, light weight prototype, and instant measurements are advantages as compared to conventional (optical, electrochemical and biological sensing systems. Inkjet-printed flexible sensors find their utilization in rapidly growing wearable electronics and health-monitoring flexible devices. Adequate sensitivity and repeatability of these low profile microfluidic sensors make them a potential candidate for point-of-care testing which novice patients can use reliably. Aside from degraded sensitivity and lack of selectivity in all practical microwave chemical sensors, they require an instrument, such as vector network analyzer for measurements and not readily available as a self-sustained portable sensor. This review article presents state-of-the-art metamaterial inspired microfluidic bio/chemical sensors (passive devices ranging from gigahertz to terahertz range with an emphasis on metamaterial sensing circuit and microfluidic detection. We also highlight challenges and strategies to cope these issues which set future directions.
Experiments on seismic metamaterials: molding surface waves.
Brûlé, S; Javelaud, E H; Enoch, S; Guenneau, S
2014-04-04
Materials engineered at the micro- and nanometer scales have had a tremendous and lasting impact in photonics and phononics. At much larger scales, natural soils civil engineered at decimeter to meter scales may interact with seismic waves when the global properties of the medium are modified, or alternatively thanks to a seismic metamaterial constituted of a mesh of vertical empty inclusions bored in the initial soil. Here, we show the experimental results of a seismic test carried out using seismic waves generated by a monochromatic vibrocompaction probe. Measurements of the particles' velocities show a modification of the seismic energy distribution in the presence of the metamaterial in agreement with numerical simulations using an approximate plate model. For complex natural materials such as soils, this large-scale experiment was needed to show the practical feasibility of seismic metamaterials and to stress their importance for applications in civil engineering. We anticipate this experiment to be a starting point for smart devices for anthropic and natural vibrations.
Nonlinear left-handed transmission line metamaterials
International Nuclear Information System (INIS)
Kozyrev, A B; Weide, D W van der
2008-01-01
Metamaterials, exhibiting simultaneously negative permittivity ε and permeability μ, more commonly referred to as left-handed metamaterials (LHMs) and also known as negative-index materials, have received substantial attention in the scientific and engineering communities [1]. Most studies of LHMs (and electromagnetic metamaterials in general) have been in the linear regime of wave propagation and have already inspired new types of microwave circuits and devices. The results of these studies have already been the subject of numerous reviews and books. This review covers a less explored but rapidly developing area of investigation involving media that combine nonlinearity (dependence of the permittivity and permeability on the magnitude of the propagating field) with the anomalous dispersion exhibited by LHM. The nonlinear phenomena in such media will be considered on the example of a model system: the nonlinear left-handed transmission line. These nonlinear phenomena include parametric generation and amplification, harmonic and subharmonic generation as well as modulational instabilities and envelope solitons. (topical review)
Elastic metamaterial beam with remotely tunable stiffness
Qian, Wei; Yu, Zhengyue; Wang, Xiaole; Lai, Yun; Yellen, Benjamin B.
2016-02-01
We demonstrate a dynamically tunable elastic metamaterial, which employs remote magnetic force to adjust its vibration absorption properties. The 1D metamaterial is constructed from a flat aluminum beam milled with a linear array of cylindrical holes. The beam is backed by a thin elastic membrane, on which thin disk-shaped permanent magnets are mounted. When excited by a shaker, the beam motion is tracked by a Laser Doppler Vibrometer, which conducts point by point scanning of the vibrating element. Elastic waves are unable to propagate through the beam when the driving frequency excites the first elastic bending mode in the unit cell. At these frequencies, the effective mass density of the unit cell becomes negative, which induces an exponentially decaying evanescent wave. Due to the non-linear elastic properties of the membrane, the effective stiffness of the unit cell can be tuned with an external magnetic force from nearby solenoids. Measurements of the linear and cubic static stiffness terms of the membrane are in excellent agreement with experimental measurements of the bandgap shift as a function of the applied force. In this implementation, bandgap shifts by as much as 40% can be achieved with ˜30 mN of applied magnetic force. This structure has potential for extension in 2D and 3D, providing a general approach for building dynamically tunable elastic metamaterials for applications in lensing and guiding elastic waves.
Graphene based metamaterials for terahertz cloaking and subwavelength imaging
Forouzmand, Seyedali
Graphene is a two-dimensional carbon crystal that became one of the most controversial topics of research in the last few years. The intense interest in graphene stems from recent demonstrations of their potentially revolutionary electromagnetic applications -- including negative refraction, subdiffraction imaging, and even invisibility -- which have suggested a wide range of new devices for communications, sensing, and biomedicine. In addition, it has been shown that graphene is amenable to unique patterning schemes such as cutting, bending, folding, and fusion that are predicted to lead to interesting properties. A recent proposed application of graphene is in engineering the scattering properties of objects, which may be leveraged in applications such as radar-cross-section management and stealth, where it may be required to make one object look like another object or render an object completely invisible. We present the analytical formulation for the analysis of electromagnetic interaction with a finite conducting wedge covered with a cylindrically shaped nanostructured graphene metasurface, resulting in the scattering cancellation of the dominant scattering mode for all the incident and all the observation angles. Following this idea, the cylindrical graphene metasurface is utilized for cloaking of several concentric finite conducting wedges. In addition, a wedge shaped metasurface is proposed as an alternative approach for cloaking of finite wedges. The resolution of the conventional imaging lenses is restricted by the natural diffraction limit. Artificially engineered metamaterials now offer the possibility of creating a superlens that overcomes this restriction. We demonstrate that a wire medium (WM) slab loaded with graphene sheets enables the enhancement of the near field for subwavelength imaging at terahertz (THz) frequencies. The analysis is based on the nonlocal homogenization model for WM with the additional boundary condition in the connection of
Magnetic response of split-ring resonator metamaterials: From ...
Indian Academy of Sciences (India)
finally becomes comparable to the size of the unit cell of the metamaterial. In the intermediate stages ... metamaterials has been explained using an LC-circuit paradigm [4]. SRR, or its vari- ..... becomes truly problematic here. The second gap ...
Theoretical modeling of critical temperature increase in metamaterial superconductors
Smolyaninov, Igor; Smolyaninova, Vera
Recent experiments have demonstrated that the metamaterial approach is capable of drastic increase of the critical temperature Tc of epsilon near zero (ENZ) metamaterial superconductors. For example, tripling of the critical temperature has been observed in Al-Al2O3 ENZ core-shell metamaterials. Here, we perform theoretical modelling of Tc increase in metamaterial superconductors based on the Maxwell-Garnett approximation of their dielectric response function. Good agreement is demonstrated between theoretical modelling and experimental results in both aluminum and tin-based metamaterials. Taking advantage of the demonstrated success of this model, the critical temperature of hypothetic niobium, MgB2 and H2S-based metamaterial superconductors is evaluated. The MgB2-based metamaterial superconductors are projected to reach the liquid nitrogen temperature range. In the case of an H2S-based metamaterial Tc appears to reach 250 K. This work was supported in part by NSF Grant DMR-1104676 and the School of Emerging Technologies at Towson University.
Experimental Verification of Plasmonic Cloaking at Microwave Frequencies with Metamaterials
International Nuclear Information System (INIS)
Edwards, Brian; Engheta, Nader; Alu, Andrea; Silveirinha, Mario G.
2009-01-01
Plasmonic cloaking is a scattering-cancellation technique based on the local negative polarizability of metamaterials. Here we report its first experimental realization and measurement at microwave frequencies. An array of metallic fins embedded in a high-permittivity fluid has been used to create a metamaterial plasmonic shell capable of cloaking a dielectric cylinder, yielding over 75% reduction of total scattering width.
Absorption and dispersion in metamaterials: Feasibility of device ...
Indian Academy of Sciences (India)
We present a quantitative study of the effects of losses in layered media with a metamaterial layer as the constituent. The metamaterial is modelled by a causal isotropic effective medium (Lorentz-type) response. The parameters for the model are picked from a recent experiment. Two specific examples, namely, that of ...
Optically active Babinet planar metamaterial film for terahertz polarization manipulation
DEFF Research Database (Denmark)
Zalkovskij, Maksim; Malureanu, Radu; Kremers, C.
2013-01-01
A planar Babinet-inverted dimer metamaterial possessing strong optical activity is proposed and characterized. An original fabrication method to produce large area (up to several cm2) freely suspended flexible metallic membranes is implemented to fabricate the metamaterial. Its optical properties...
Experimental demonstration of metamaterial "multiverse" in a ferrofluid.
Smolyaninov, Igor I; Yost, Bradley; Bates, Evan; Smolyaninova, Vera N
2013-06-17
Extraordinary light rays propagating inside a hyperbolic metamaterial look similar to particle world lines in a 2 + 1 dimensional Minkowski spacetime. Magnetic nanoparticles in a ferrofluid are known to form nanocolumns aligned along the magnetic field, so that a hyperbolic metamaterial may be formed at large enough nanoparticle concentration nH. Here we investigate optical properties of such a metamaterial just below nH. While on average such a metamaterial is elliptical, thermal fluctuations of nanoparticle concentration lead to transient formation of hyperbolic regions (3D Minkowski spacetimes) inside this metamaterial. Thus, thermal fluctuations in a ferrofluid look similar to creation and disappearance of individual Minkowski spacetimes (universes) in the cosmological multiverse. This theoretical picture is supported by experimental measurements of polarization-dependent optical transmission of a cobalt based ferrofluid at 1500 nm.
Optically controlled redshift switching effects in hybrid fishscale metamaterials
Directory of Open Access Journals (Sweden)
Yu Wang
2018-05-01
Full Text Available We numerically demonstrate optically controlled THz response in a hybrid fishscale metamaterial with embedded photoconductive silicon at oblique incidence of TE wave. The oblique incidence allows excitation of Fano-type trapped mode resonance in a 2-fold rotational symmetric metamaterial. The hybrid fishscale metamaterial exhibits an optically controlled redshift switching effect in the THz range. The switching effect is dominated by the conductivity of the silicon instead of mechanically adjusting angles of incidence. The tuning frequency range is up to 0.3THz with a large modulation depth and high transmission in the “ON” state. The fishscale metamaterial-based switching has been experimentally verified by its microwave counterpart integrated by variable resistors. Our work provides an alternative route to realize tunable Fano-type response in metamaterials and is of importance to active manipulation, sensing and switching of THz waves in practical applications.
Optically controlled redshift switching effects in hybrid fishscale metamaterials
Wang, Yu; Zhu, Jinwei; Zhang, Hao; Zhang, Wenxing; Dong, Guohua; Ye, Peng; Lv, Tingting; Zhu, Zheng; Li, Yuxiang; Guan, Chunying; Shi, Jinhui
2018-05-01
We numerically demonstrate optically controlled THz response in a hybrid fishscale metamaterial with embedded photoconductive silicon at oblique incidence of TE wave. The oblique incidence allows excitation of Fano-type trapped mode resonance in a 2-fold rotational symmetric metamaterial. The hybrid fishscale metamaterial exhibits an optically controlled redshift switching effect in the THz range. The switching effect is dominated by the conductivity of the silicon instead of mechanically adjusting angles of incidence. The tuning frequency range is up to 0.3THz with a large modulation depth and high transmission in the "ON" state. The fishscale metamaterial-based switching has been experimentally verified by its microwave counterpart integrated by variable resistors. Our work provides an alternative route to realize tunable Fano-type response in metamaterials and is of importance to active manipulation, sensing and switching of THz waves in practical applications.
Double-negative metamaterial for mobile phone application
Hossain, M. I.; Faruque, M. R. I.; Islam, M. T.
2017-01-01
In this paper, a new design and analysis of metamaterial and its applications to modern handset are presented. The proposed metamaterial unit-cell design consists of two connected square spiral structures, which leads to increase the effective media ratio. The finite instigation technique based on Computer Simulation Technology Microwave Studio is utilized in this investigation, and the measurement is taken in an anechoic chamber. A good agreement is observed among simulated and measured results. The results indicate that the proposed metamaterial can successfully cover cellular phone frequency bands. Moreover, the uses of proposed metamaterial in modern handset antennas are also analyzed. The results reveal that the proposed metamaterial attachment significantly reduces specific absorption rate values without reducing the antenna performances.
Nanoparticles doped film sensing based on terahertz metamaterials
Liu, Weimin; Fan, Fei; Chang, Shengjiang; Hou, Jiaqing; Chen, Meng; Wang, Xianghui; Bai, Jinjun
2017-12-01
A nanoparticles concentration sensor based on doped film and terahertz (THz) metamaterial has been proposed. By coating the nanoparticles doped polyvinyl alcohol (PVA) film on the surface of THz metamaterial, the effects of nanoparticle concentration on the metamaterial resonances are investigated through experiments and numerical simulations. Results show that resonant frequency of the metamaterial linearly decreases with the increment of doping concentration. Furthermore, numerical simulations illustrate that the redshift of resonance results from the changes of refractive index of the doped film. The concentration sensitivity of this sensor is 3.12 GHz/0.1%, and the refractive index sensitivity reaches 53.33 GHz/RIU. This work provides a non-contact, nondestructive and sensitive method for the detection of nanoparticles concentration and brings out a new application on THz film metamaterial sensing.
Low-SAR metamaterial-inspired printed monopole antenna
Hossain, M. I.; Faruque, M. R. I.; Islam, M. T.; Ali, M. T.
2017-01-01
In this paper, a low-SAR metamaterial-embedded planar monopole antenna is introduced for a wireless communication system. A printed monopole antenna is designed for modern mobile, which operates in GSM, UMTS, LTE, WLAN, and Bluetooth frequency bands. A metamaterial structure is designed to use in the mobile handset with a multi-band printed monopole antenna. The finite integration technique of the CST microwave studio is used in this study. The measurement of antenna performances is taken in an anechoic chamber, and the SAR values are measured using COMOSAR system. The results indicate that metamaterial structure leads to reduce SAR without affecting antenna performance significantly. According to the measured results, the metamaterial attachment leads to reduce 87.7% peak SAR, 68.2% 1-g SAR, and 46.78% 10-g SAR compared to antenna without metamaterial.
DEFF Research Database (Denmark)
Chemia, Zurab; Dolejš, David; Steinle-Neumann, Gerd
2015-01-01
We explore the effects of variable material properties, phase transformations, and metamorphic devolatilization reactions on the thermal structure of a subducting slab using thermodynamic phase equilibrium calculations combined with a thermal evolution model. The subducting slab is divided...... into three layers consisting of oceanic sediments, altered oceanic crust, and partially serpentinized or anhydrous harzburgite. Solid-fluid equilibria and material properties are computed for each layer individually to illustrate distinct thermal consequences when chemical and mechanical homogenization...... indicate that subducting sediments and oceanic crust warm by 40 and 70°C, respectively, before the effect of wedge convection and heating is encountered at 1.7 GPa. Retention of fluid in the slab pore space plays a negligible role in oceanic crust and serpentinized peridotites. By contrast, the large...
Active Metamaterials for Terahertz Communication and Imaging
Rout, Saroj
In recent years there has been significant interest in terahertz (THz) systems mostly due to their unique applications in communication and imaging. One of the primary reason for this resurgence is the use of metamaterials to design THz devices due to lack of natural materials that can respond to this electromagnetic spectrum, the so-called ''THz gap''. Even after years of intense research, THz systems are complex and expensive, unsuitable for mainstream applications. This work focuses on bridging this gap by building all solid-state THz devices for imaging and communication applications in a commercial integrated circuit (IC) technology. One such canonical device is a THz wave modulator that can be used in THz wireless communication devices and as spatial light modulator (SLM) for THz imaging systems. The key contribution of this thesis is a metamaterial based THz wave modulator fabricated in a commercial gallium arsenide (GaAs) process resonant at 0.46 THz using a novel approach of embedding pseudomorphic high electron mobility transistors (pHEMTs) in metamaterial and demonstrate modulation values over 30%, and THz modulation at frequencies up to 10 MHz. Using the THz wave modulator, we fabricated and experimentally demonstrated an all solid-state metamaterial based THz spatial light modulator (SLM) as a 2x2 pixel array operating around 0.46 THz, by raster scanning an occluded metal object in polystyrene using a single-pixel imaging setup. This was an important step towards building an low-voltage (1V), low power, on-chip integrable THz imaging device. Using the characterization result from the THz SLM, we computationally demonstrated a multi-level amplitude shift keying (ASK) terahertz wireless communication system using spatial light modulation instead of traditional voltage mode modulation, achieving higher spectral efficiency for high speed communication. We show two orders of magnitude improvement in symbol error rate (SER) for a degradation of 20 dB in
Effective Medium Theory for Anisotropic Metamaterials
Zhang, Xiujuan
2017-11-12
This dissertation includes the study of effective medium theories (EMTs) and their applications in describing wave propagation in anisotropic metamaterials, which can guide the design of metamaterials. An EMT based on field averaging is proposed to describe a peculiar anisotropic dispersion relation that is linear along the symmetry line but quadratic in the perpendicular direction. This dispersion relation is associated with the topological transition of the iso-frequency contours (IFCs), suggesting interesting wave propagation behaviors from beam shaping to beam splitting. In the framework of coherent potential approximation, an analytical EMT is further developed, with the ability to build a direct connection between the microscopic structure and the macroscopic material properties, which overcomes the requirement of prior knowledge of the field distributions. The derived EMT is valid beyond the long-wavelength limit. Using the EMT, an anisotropic zero-index metamaterial is designed. Moreover, the derived EMT imposes a condition that no scattered wave is generated in the ambient medium, which suggests the input signal cannot detect any object that might exist, making it invisible. Such correspondence between the EMT and the invisibilityinspires us to explore the wave cloaking in the same framework of coherent potential approximation. To further broaden the application realm of EMT, an EMT using the parameter retrieval method is studied in the regimes where the previously-developed EMTs are no longer accurate. Based on this study, in conjunction with the EMT mentioned above, a general scheme to realize coherent perfect absorption (CPA) in anisotropic metamaterials is proposed. As an exciting area in metamaterials, the field of metasurfaces has drawn great attention recently. As an easily attainable device, a grating may be the simplest version of metasurfaces. Here, an analytical EMT for gratings made of cylinders is developed by using the multiple scattering
Accidents due to falls from roof slabs.
Rudelli, Bruno Alves; Silva, Marcelo Valerio Alabarce da; Akkari, Miguel; Santili, Claudio
2013-01-01
CONTEXT AND OBJECTIVE Falls from the roof slabs of houses are accidents of high potential severity that occur in large Brazilian cities and often affect children and adolescents. The aims of this study were to characterize the factors that predispose towards this type of fall involving children and adolescents, quantify the severity of associated lesions and suggest preventive measures. DESIGN AND SETTING Descriptive observational prospective longitudinal study in two hospitals in the metropolitan region of São Paulo. METHODS Data were collected from 29 cases of falls from roof slabs involving children and adolescents between October 2008 and October 2009. RESULTS Cases involving males were more prevalent, accounting for 84%. The predominant age group was schoolchildren (7 to 12 years old; 44%). Leisure activities were most frequently being practiced on the roof slab at the time of the fall (86%), and flying a kite was the most prevalent game (37.9%). In 72% of the cases, the children were unaccompanied by an adult responsible for them. Severe conditions such as multiple trauma and traumatic brain injuries resulted from 79% of the accidents. CONCLUSION Falls from roof slabs are accidents of high potential severity, and preventive measures aimed towards informing parents and guardians about the dangers and risk factors associated with this type of accident are needed, along with physical protective measures, such as low walls around the slab and gates with locks to restrict free access to these places.
Accidents due to falls from roof slabs
Directory of Open Access Journals (Sweden)
Bruno Alves Rudelli
Full Text Available CONTEXT AND OBJECTIVE Falls from the roof slabs of houses are accidents of high potential severity that occur in large Brazilian cities and often affect children and adolescents. The aims of this study were to characterize the factors that predispose towards this type of fall involving children and adolescents, quantify the severity of associated lesions and suggest preventive measures. DESIGN AND SETTING Descriptive observational prospective longitudinal study in two hospitals in the metropolitan region of São Paulo. METHODS Data were collected from 29 cases of falls from roof slabs involving children and adolescents between October 2008 and October 2009. RESULTS Cases involving males were more prevalent, accounting for 84%. The predominant age group was schoolchildren (7 to 12 years old; 44%. Leisure activities were most frequently being practiced on the roof slab at the time of the fall (86%, and flying a kite was the most prevalent game (37.9%. In 72% of the cases, the children were unaccompanied by an adult responsible for them. Severe conditions such as multiple trauma and traumatic brain injuries resulted from 79% of the accidents. CONCLUSION Falls from roof slabs are accidents of high potential severity, and preventive measures aimed towards informing parents and guardians about the dangers and risk factors associated with this type of accident are needed, along with physical protective measures, such as low walls around the slab and gates with locks to restrict free access to these places.
Horizontal cloaking and vertical reflection by transformation acoustics
Directory of Open Access Journals (Sweden)
Min Kyung Lee
2013-05-01
Full Text Available This investigation shows that if an acoustic metamaterial bounded by an external rectangle and an internal circular cavity is properly engineered by a set of transformation equations that satisfy certain requirements, it can virtually cloak an object against incoming acoustic waves in one direction and make an incoming wave along the orthogonal direction reflected by an object located inside its inner cavity. The specific transformation equations realizing the metamaterial are suggested and an analysis is carried out to investigate the wave phenomena taking place along the cavity boundary.
Slab tears and intermediate-depth seismicity
Meighan, Hallie E.; ten Brink, Uri S.; Pulliam, Jay
2013-01-01
Active tectonic regions where plate boundaries transition from subduction to strike slip can take several forms, such as triple junctions, acute, and obtuse corners. Well-documented slab tears that are associated with high rates of intermediate-depth seismicity are considered here: Gibraltar arc, the southern and northern ends of the Lesser Antilles arc, and the northern end of Tonga trench. Seismicity at each of these locations occurs, at times, in the form of swarms or clusters, and various authors have proposed that each marks an active locus of tear propagation. The swarms and clusters start at the top of the slab below the asthenospheric wedge and extend 30–60 km vertically downward within the slab. We propose that these swarms and clusters are generated by fluid-related embrittlement of mantle rocks. Focal mechanisms of these swarms generally fit the shear motion that is thought to be associated with the tearing process.
Behaviour of a stiffened circular slab
International Nuclear Information System (INIS)
Kulkarni, M.G.; Subramanian, K.V.
1975-01-01
Configuration of intake structure for cooling water system for Madras Atomic Power Project was studied on a hydraulic model and it was recommended to provide a circular slab in the structure to give directional property to the inflow and reduce air entrainment. This slab, as indicated by hydraulic model tests was required to withstand hydrodynamic pressures of the order of 10T/m 2 due to breaking waves of about 6 m height. Analysis of this circular cover slab, Stiffened by radial and circumferential beams, carried with the help of an analysis based on grid idealisation is presented. Results of approximate design analysis to assess behaviour of radial stiffener have been compared. Actual design is based on judgement of actual degree of fixity possessed by the supports or restraints. (author)
Fire resistance of prefabricated monolithic slab
Directory of Open Access Journals (Sweden)
Gravit Marina
2017-01-01
Full Text Available A prefabricated monolithic slab (PMS has a number of valuable advantages, they allow to significantly decrease the weight of construction keeping the necessary structural-load capacity, to speed up and cheapen work conduction, to increase the heat isolating properties of an enclosure structure [1]. In order to create a design method of prefabricated monolithic slab fire-resistance, it's necessary to perform a series of PMS testing, one of which is being described in this article. Subjected to the test is a fragment of prefabricated monolithic slab with polystyrene concrete inserts along the beams with bent metal profile 250 mm thick, with a 2.7 m span loaded with evenly spread load equal to 600 kg/m2. After 3 hour testing for fire-resistance [2] no signs of construction ultimate behavior were detected.
Directory of Open Access Journals (Sweden)
Qing-yuan Xu
Full Text Available A subway train-steel spring floating slab track-tunnel coupling dynamic model, considering short and middle-long wavelength random track irregularities, and longitudinal connection between adjacent slabs of steel spring floating slab track, was developed. And the influence of slab length on dynamic characteristics of the system under different track conditions and train speeds are theoretically studied. The calculated results show: (1 In general, the acceleration of each component of the coupled system decreases with the increase of slab length under the perfectly smooth track condition; (2 Slab length has different influence laws on acceleration of each component of subway train-steel spring floating slab track-tunnel coupled system under random irregularity of track condition. The lower the dominant frequency distribution of vibration acceleration is, the higher influence slab length has; (3 With the increase of slab length, the force of rail, fastener and steel spring also decreases significantly, which helps to lengthen the service life of these components; (4 With the increase of slab length, the longitudinal bending moment of slab increases sharply at first, then it begins to drop slightly. When slab length exceeds the distance between two bogies of a vehicle, the longitudinal bending moment of slab changes little; (5 Slab length has significant influence on the dynamic force and displacement of the coupled system when train speed is higher.
Active isotropic slabs: conditions for amplified reflection
Perez, Liliana I.; Matteo, Claudia L.; Etcheverry, Javier; Duplaá, María Celeste
2012-12-01
We analyse in detail the necessary conditions to obtain amplified reflection (AR) in isotropic interfaces when a plane wave propagates from a transparent medium towards an active one. First, we demonstrate analytically that AR is not possible if a single interface is involved. Then, we study the conditions for AR in a very simple configuration: normal incidence on an active slab immersed in transparent media. Finally, we develop an analysis in the complex plane in order to establish a geometrical method that not only describes the behaviour of active slabs but also helps to simplify the calculus.
Active isotropic slabs: conditions for amplified reflection
International Nuclear Information System (INIS)
Perez, Liliana I; Duplaá, María Celeste; Matteo, Claudia L; Etcheverry, Javier
2012-01-01
We analyse in detail the necessary conditions to obtain amplified reflection (AR) in isotropic interfaces when a plane wave propagates from a transparent medium towards an active one. First, we demonstrate analytically that AR is not possible if a single interface is involved. Then, we study the conditions for AR in a very simple configuration: normal incidence on an active slab immersed in transparent media. Finally, we develop an analysis in the complex plane in order to establish a geometrical method that not only describes the behaviour of active slabs but also helps to simplify the calculus. (paper)
Moisture transfer in a concrete slab
International Nuclear Information System (INIS)
Huang, C.L.D.; Siang, H.H.; Kirmser, P.G.
1979-01-01
A diffusion theory with a linear or a nonlinear coefficient of diffusivity is insufficient for the characterization of the drying behaviour of hydrated concrete slabs. A general mathematical model, based on nonequilibrium, irreversible flows of heat and mass, yields a set of nonlinear partial differential equations of parabolic type. Implicit finite difference calculations for a concrete slab yield moisture, temperature, and pressure histories as well as global average drying rates. Graphs show that during the pendular state of dessication, diffusion, capillary, and evaporation-condensation processes are the governing mechanisms in drying. (orig.)
Optical metamaterials with quasicrystalline symmetry: symmetry-induced optical isotropy
International Nuclear Information System (INIS)
Kruk, S.S.; Decker, M.; Helgert, Ch.; Neshev, D.N.; Kivshar, Y.S.; Staude, I.; Powell, D.A.; Pertsch, Th.; Menzel, Ch.; Helgert, Ch.; Etrich, Ch.; Rockstuhl, C.; Menzel, Ch.
2013-01-01
Taking advantage of symmetry considerations, we have analyzed the potential of various metamaterials to affect the polarization state of light upon oblique illumination. We have shown that depending on the angle of illumination, metamaterials are able to support specific polarization states. The presented methodology that using ellipticity and circular dichroism, provides an unambiguous language for discussing the impact of the inherent symmetry of the metamaterial lattices on their far-field response. Our findings allow the quantification analysis of the impact of inter-element coupling and lattice symmetry on the optical properties of metamaterials, and to separate this contribution from the response associated with a single meta-atom. In addition, we have studied the concept of optical quasicrystalline metamaterials, revealing that the absence of translational symmetry (periodicity) of quasicrystalline metamaterials causes an isotropic optical response, while the long-range positional order preserves the resonance properties. Our findings constitute an important step towards the design of optically isotropic metamaterials and metasurfaces. (authors)
Harnessing the metal-insulator transition for tunable metamaterials
Charipar, Nicholas A.; Charipar, Kristin M.; Kim, Heungsoo; Bingham, Nicholas S.; Suess, Ryan J.; Mathews, Scott A.; Auyeung, Raymond C. Y.; Piqué, Alberto
2017-08-01
The control of light-matter interaction through the use of subwavelength structures known as metamaterials has facilitated the ability to control electromagnetic radiation in ways not previously achievable. A plethora of passive metamaterials as well as examples of active or tunable metamaterials have been realized in recent years. However, the development of tunable metamaterials is still met with challenges due to lack of materials choices. To this end, materials that exhibit a metal-insulator transition are being explored as the active element for future metamaterials because of their characteristic abrupt change in electrical conductivity across their phase transition. The fast switching times (▵t < 100 fs) and a change in resistivity of four orders or more make vanadium dioxide (VO2) an ideal candidate for active metamaterials. It is known that the properties associated with thin film metal-insulator transition materials are strongly dependent on the growth conditions. For this work, we have studied how growth conditions (such as gas partial pressure) influence the metalinsulator transition in VO2 thin films made by pulsed laser deposition. In addition, strain engineering during the growth process has been investigated as a method to tune the metal-insulator transition temperature. Examples of both the optical and electrical transient dynamics facilitating the metal-insulator transition will be presented together with specific examples of thin film metamaterial devices.
Customized shaping of vibration modes by acoustic metamaterial synthesis
Xu, Jiawen; Li, Shilong; Tang, J.
2018-04-01
Acoustic metamaterials have attractive potential in elastic wave guiding and attenuation over specific frequency ranges. The vast majority of related investigations are on transient waves. In this research we focus on stationary wave manipulation, i.e., shaping of vibration modes. Periodically arranged piezoelectric transducers shunted with inductive circuits are integrated to a beam structure to form a finite-length metamaterial beam. We demonstrate for the first time that, under a given operating frequency of interest, we can facilitate a metamaterial design such that this frequency becomes a natural frequency of the integrated system. Moreover, the vibration mode corresponding to this natural frequency can be customized and shaped to realize tailored/localized response distribution. This is fundamentally different from previous practices of utilizing geometry modification and/or feedback control to achieve mode tailoring. The metamaterial design is built upon the combinatorial effects of the bandgap feature and the effective resonant cavity feature, both attributed to the dynamic characteristics of the metamaterial beam. Analytical investigations based on unit-cell dynamics and modal analysis of the metamaterial beam are presented to reveal the underlying mechanism. Case illustrations are validated by finite element analyses. Owing to the online tunability of circuitry integrated, the proposed mode shaping technique can be online adjusted to fit specific requirements. The customized shaping of vibration modes by acoustic metamaterial synthesis has potential applications in vibration suppression, sensing enhancement and energy harvesting.
Behaviour of reinforced concrete slabs with steel fibers
Baarimah, A. O.; Syed Mohsin, S. M.
2017-11-01
This paper investigates the potential effect of steel fiber added into reinforced concrete slabs. Four-point bending test is conducted on six slabs to investigate the structural behaviour of the slabs by considering two different parameters; (i) thickness of slab (ii) volume fraction of steel fiber. The experimental work consists of six slabs, in which three slabs are designed in accordance to Eurocode 2 to fulfil shear capacity characteristic, whereas, the other three slabs are designed with 17% less thickness, intended to fail in shear. Both series of slabs are added with steel fiber with a volume fraction of Vf = 0%, Vf = 1% and Vf = 2% in order to study the effect and potential of fiber to compensate the loss in shear capacity. The slab with Vf = 0% steel fiber and no reduction in thickness is taken as the control slab. The experimental result suggests promising improvement of the load carrying capacity (up to 32%) and ductility (up to 87%) as well as delayed in crack propagation for the slabs with Vf = 2%. In addition, it is observed that addition of fibers compensates the reduction in the slab thickness as well as changes the failure mode of the slab from brittle to a more ductile manner.
Dielectric optical antenna thermal emitters and metamaterials
Schuller, Jonathan Aaron
Optical antennas are critical components in nanophotonics research due to their unparalleled ability to concentrate electromagnetic energy into nanoscale volumes. Researchers typically construct such antennas from wavelength-size metallic structures. However, recent research has begun to exploit the scattering resonances of high-permittivity particles to realize all-dielectric optical antennas, emitters, and metamaterials. In this thesis, we experimentally and theoretically characterize the resonant modes of subwavelength rod-shaped dielectric particles and demonstrate their use in negative index metamaterials and novel infrared light emitters. At mid-infrared frequencies, Silicon Carbide (SiC) is an ideal system for studying the behavior of dielectric optical antennas. At frequencies below the TO phonon resonance, SiC behaves like a dielectric with very large refractive index. Using infrared spectroscopy and analytical Mie calculations we show that individual rod-shaped SiC particles exhibit a multitude of resonant modes. Detailed investigations of these SiC optical antennas reveal a wealth of new physics and applications. We discuss the distinct electromagnetic field profile for each mode, and demonstrate that two of the dielectric-type Mie resonances can be combined in a particle array to form a negative index metamaterial. We further show that these particles can serve as "broadcasting" antennas. Using a custom-built thermal emission microscope we collect emissivity spectra from single SiC particles at elevated temperatures, highlighting their use as subwavelength resonant light emitters. Finally, we derive and verify a variety of general analytical results applicable to all cylindrical dielectric antennas.
Dielectric Optical Antenna Emitters and Metamaterials
Schuller, Jon
2009-03-01
Optical antennas are critical components in nanophotonics research due to their unparalleled ability to concentrate electromagnetic energy into nanoscale volumes. Researchers typically construct such antennas from wavelength-size metallic structures. However, recent research has begun to exploit the scattering resonances of high-permittivity particles to realize all-dielectric optical antennas, emitters, and metamaterials. In this talk, we experimentally and theoretically characterize the resonant modes of subwavelength rod-shaped dielectric particles and demonstrate their use in negative index metamaterials and novel infrared light emitters. At mid-infrared frequencies, Silicon Carbide (SiC) is an ideal system for studying the behavior of dielectric optical antennas. At frequencies below the TO phonon resonance, SiC behaves like a dielectric with very large refractive index. Using infrared spectroscopy and analytical Mie calculations we show that individual rod-shaped SiC particles exhibit a multitude of resonant modes. Detailed investigations of these SiC optical antennas reveal a wealth of new physics and applications. We discuss the distinct electromagnetic field profile for each mode, and demonstrate that two of the dielectric-type Mie resonances can be combined in a particle array to form a negative index metamaterial [1]. We further show that these particles can serve as ``broadcasting'' antennas. Using a custom-built thermal emission microscope we collect emissivity spectra from single SiC particles at elevated temperatures, highlighting their use as subwavelength resonant light emitters. Finally, we derive and verify a variety of general analytical results applicable to all cylindrical dielectric antennas and discuss extensions of the demonstrated concepts to different materials systems and frequency regimes. [1] J.A. Schuller, et al., Phys. Rev. Lett. 99, 107401 (2007)
Guided modes of elliptical metamaterial waveguides
International Nuclear Information System (INIS)
Halterman, Klaus; Feng, Simin; Overfelt, P. L.
2007-01-01
The propagation of guided electromagnetic waves in open elliptical metamaterial waveguide structures is investigated. The waveguide contains a negative-index media core, where the permittivity ε and permeability μ are negative over a given bandwidth. The allowed mode spectrum for these structures is numerically calculated by solving a dispersion relation that is expressed in terms of Mathieu functions. By probing certain regions of parameter space, we find the possibility exists to have extremely localized waves that transmit along the surface of the waveguide
Thermally tunable magnetic metamaterials at THz frequencies
International Nuclear Information System (INIS)
Bui, Son Tung; Nguyen, Van Dung; Bui, Xuan Khuyen; Vu, Dinh Lam; Nguyen, Thanh Tung; Lievens, Peter; Lee, YoungPak
2013-01-01
We investigate theoretically and numerically the tunability of the magnetic property of metamaterial in the THz region via thermal control. One component of the meta-atom is InSb, playing an important role as an alterable metal. When the temperature of the InSb stack increases from 300 to 350 K, the resonance peak of the transmission spectra shows a shift from 0.6 to 0.85 THz accompanied by a stronger magnetic behavior. The S-parameter retrieval method realizes the tunability of the negative permeability achieved in the above heating range. (paper)
MEMS-Reconfigurable Metamaterials and Antenna Applications
Directory of Open Access Journals (Sweden)
Tomislav Debogovic
2014-01-01
Full Text Available This paper reviews some of our contributions to reconfigurable metamaterials, where dynamic control is enabled by microelectromechanical systems (MEMS technology. First, we show reconfigurable composite right-/left-handed transmission lines (CRLH-TLs having state of the art phase velocity variation and loss, thereby enabling efficient reconfigurable phase shifters and leaky-wave antennas (LWA. Second, we present very low loss metasurface designs with reconfigurable reflection properties, applicable in reflectarrays and partially reflective surface (PRS antennas. All the presented devices have been fabricated and experimentally validated. They operate in X- and Ku-bands.
Seismic metamaterials based on isochronous mechanical oscillators
Energy Technology Data Exchange (ETDEWEB)
Finocchio, G., E-mail: gfinocchio@unime.it; Garescì, F.; Azzerboni, B. [Department of Electronic Engineering, Industrial Chemistry and Engineering, University of Messina, C.da di Dio, I-98166 Messina (Italy); Casablanca, O.; Chiappini, M. [Istituto Nazionale di Geofisica e Vulcanologia (INGV), Via Vigna Murata 605, 00143 Roma (Italy); Ricciardi, G. [Department of Civil, Informatic, Architectural, and Environmental Engineering and Applied Mathematics, C.da di Dio, I-98166 Messina (Italy); Alibrandi, U. [Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576 (Singapore)
2014-05-12
This Letter introduces a seismic metamaterial (SM) composed by a chain of mass-in-mass system able to filter the S-waves of an earthquake. We included the effect of the SM into the mono dimensional model for the soil response analysis. The SM modifies the soil behavior and in presence of an internal damping the amplitude of the soil amplification function is reduced also in a region near the resonance frequency. This SM can be realized by a continuous structure with inside a 3d-matrix of isochronous oscillators based on a sphere rolling over a cycloidal trajectory.
Polymeric matrix materials for infrared metamaterials
Dirk, Shawn M; Rasberry, Roger D; Rahimian, Kamyar
2014-04-22
A polymeric matrix material exhibits low loss at optical frequencies and facilitates the fabrication of all-dielectric metamaterials. The low-loss polymeric matrix material can be synthesized by providing an unsaturated polymer, comprising double or triple bonds; partially hydrogenating the unsaturated polymer; depositing a film of the partially hydrogenated polymer and a crosslinker on a substrate; and photopatterning the film by exposing the film to ultraviolet light through a patterning mask, thereby cross-linking at least some of the remaining unsaturated groups of the partially hydrogenated polymer in the exposed portions.
Impedance matched thin metamaterials make metals absorbing.
Mattiucci, N; Bloemer, M J; Aközbek, N; D'Aguanno, G
2013-11-13
Metals are generally considered good reflectors over the entire electromagnetic spectrum up to their plasma frequency. Here we demonstrate an approach to tailor their absorbing characteristics based on the effective metamaterial properties of thin, periodic metallo-dielectric multilayers by exploiting a broadband, inherently non-resonant, surface impedance matching mechanism. Based on this mechanism, we design, fabricate and test omnidirectional, thin ( 99%) over a frequency range spanning from the UV to the IR. Our approach opens new venues to design cost effective materials for many applications such as thermo-photovoltaic energy conversion devices, light harvesting for solar cells, flat panel display, infrared detectors, stray light reduction, stealth and others.
Electromagnetic Field Control and Optimization Using Metamaterials
2009-12-01
Popović, and K. Hingerl. “Imperfect cloak- ing devices based on metamaterials,” Acta Physica Polonica A , 112(5):1083– 1088, 2007. 148 44. Jiang, Wei X...f. Jcpq Date Accepted: ... M ( A T~ S’t’P 2 GCt:f M. U. Thomas Date Dean, Graduate School of Engineering and Management APIT/DEE/ENG/09-13...dictated by the theory are inhomogeneous, anisotropic, and, in some instances, singular at various locations. In order for a cloak to be practically
Energy Technology Data Exchange (ETDEWEB)
Smolyaninov, Igor I., E-mail: smoly@umd.edu
2014-11-15
Modern advances in transformation optics and electromagnetic metamaterials made possible experimental demonstrations of highly unusual curvilinear “optical spaces”, such as various geometries necessary for electromagnetic cloaking. Recently we demonstrated that mapping light intensity in a hyperbolic metamaterial may also model the flow of time in an effective (2+1) dimensional Minkowski spacetime. Curving such an effective spacetime creates experimental model of a toy “big bang”. Here we demonstrate that at low light levels this model may be used to emulate a fully covariant version of quantum mechanics in a (2+1) dimensional Minkowski spacetime. When quantum mechanical description is applied near the toy “big bang”, the Everett's “universal wave function” formalism arises naturally, in which the wave function of the model “universe” appears to be a quantum superposition of mutually orthogonal “parallel universe” states.
Permanent magnetic ferrite based power-tunable metamaterials
Zhang, Guanqiao; Lan, Chuwen; Gao, Rui; Zhou, Ji
2017-08-01
Power-tunable metamaterials based on barium permanent magnetic ferrite have been proposed and fabricated in this research. Scattering parameter measurements confirm a shift in resonant frequency in correlation to changes in incident electromagnetic power within microwave frequency band. The tunable phenomenon represented by a blue-shift in transmission spectra in the metamaterials array can be attributed to a decrease in saturation magnetization resulting from FMR-induced temperature elevation upon resonant conditions. This power-dependent behavior offers a simple and practical route towards dynamically fine-tunable ferrite metamaterials.
A 3D Optical Metamaterial Made by Self-Assembly
Vignolini, Silvia
2011-10-24
Optical metamaterials have unusual optical characteristics that arise from their periodic nanostructure. Their manufacture requires the assembly of 3D architectures with structure control on the 10-nm length scale. Such a 3D optical metamaterial, based on the replication of a self-assembled block copolymer into gold, is demonstrated. The resulting gold replica has a feature size that is two orders of magnitude smaller than the wavelength of visible light. Its optical signature reveals an archetypal Pendry wire metamaterial with linear and circular dichroism. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A 3D Optical Metamaterial Made by Self-Assembly
Vignolini, Silvia; Yufa, Nataliya A.; Cunha, Pedro S.; Guldin, Stefan; Rushkin, Ilia; Stefik, Morgan; Hur, Kahyun; Wiesner, Ulrich; Baumberg, Jeremy J.; Steiner, Ullrich
2011-01-01
Optical metamaterials have unusual optical characteristics that arise from their periodic nanostructure. Their manufacture requires the assembly of 3D architectures with structure control on the 10-nm length scale. Such a 3D optical metamaterial, based on the replication of a self-assembled block copolymer into gold, is demonstrated. The resulting gold replica has a feature size that is two orders of magnitude smaller than the wavelength of visible light. Its optical signature reveals an archetypal Pendry wire metamaterial with linear and circular dichroism. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Metamaterial inspired electromagnetic applications role of intelligent systems
2017-01-01
This book focuses on the role of soft-computing-based electromagnetic computational engines in design and optimization of a wide range of electromagnetic applications. In addition to the theoretical background of metamaterials and soft-computing techniques, the book discusses novel electromagnetic applications such as tensor analysis for invisibility cloaking, metamaterial structures for cloaking applications, broadband radar absorbers, and antennas. The book will prove to be a valuable resource for academics and professionals, as well as military researchers working in the area of metamaterials.
Vortexlike Power Flow at the Interfaces of Metamaterial Lens
Directory of Open Access Journals (Sweden)
K. Fang
2012-10-01
Full Text Available The metamaterial lens with DPS/DNS/DPS structure has been realized by using the two-dimensional (2D isotropic transmission line approach. We studied the vortexlike power flow at the interfaces of metamaterial lens and validated by the finite-difference time-domain (FDTD simulator. The computational results showing its different conditions near DPS/DNS and other kinds of interfaces are obtained by CST STUDIO SUITE at different frequencies, and demonstrate the intuitionistic power location at the metamaterial lens interfaces.
Acoustic cloaking and transformation acoustics
International Nuclear Information System (INIS)
Chen Huanyang; Chan, C T
2010-01-01
In this review, we give a brief introduction to the application of the new technique of transformation acoustics, which draws on a correspondence between coordinate transformation and material properties. The technique is formulated for both acoustic waves and linear liquid surface waves. Some interesting conceptual devices can be designed for manipulating acoustic waves. For example, we can design acoustic cloaks that make an object invisible to acoustic waves, and the cloak can either encompass or lie outside the object to be concealed. Transformation acoustics, as an analog of transformation optics, can go beyond invisibility cloaking. As an illustration for manipulating linear liquid surface waves, we show that a liquid wave rotator can be designed and fabricated to rotate the wave front. The acoustic transformation media require acoustic materials which are anisotropic and inhomogeneous. Such materials are difficult to find in nature. However, composite materials with embedded sub-wavelength resonators can in principle be made and such 'acoustic metamaterials' can exhibit nearly arbitrary values of effective density and modulus tensors to satisfy the demanding material requirements in transformation acoustics. We introduce resonant sonic materials and Helmholtz resonators as examples of acoustic metamaterials that exhibit resonant behaviour in effective density and effective modulus. (topical review)
Lifetime Reliability Assessment of Concrete Slab Bridges
DEFF Research Database (Denmark)
Thoft-Christensen, Palle
A procedure for lifetime assesment of the reliability of short concrete slab bridges is presented in the paper. Corrosion of the reinforcement is the deterioration mechanism used for estimating the reliability profiles for such bridges. The importance of using sensitivity measures is stressed....... Finally the produce is illustrated on 6 existing UK bridges....
All-polymer photonic crystal slab sensor
DEFF Research Database (Denmark)
Hermannsson, Pétur Gordon; Sørensen, Kristian Tølbøl; Vannahme, Christoph
2015-01-01
An all-polymer photonic crystal slab sensor is presented, and shown to exhibit narrow resonant reflection with a FWHM of less than 1 nm and a sensitivity of 31 nm/RIU when sensing media with refractive indices around that of water. This results in a detection limit of 4.5x10-6 RIU when measured...
Slab cooling system design using computer simulation
Lain, M.; Zmrhal, V.; Drkal, F.; Hensen, J.L.M.
2007-01-01
For a new technical library building in Prague computer simulations were carried out to help design of slab cooling system and optimize capacity of chillers. In the paper is presented concept of new technical library HVAC system, the model of the building, results of the energy simulations for
Reinforcement of the concrete base slab of the ATLAS cavern
Maximilien Brice
2002-01-01
Photo 02: UX15 cavern, preparation for concreting of base slab first lift. Photo 05: UX15 cavern, placing of reinforcement for base slab first lift. Photo 07: UX15 cavern, preparation for concreting of base slab first lift. Photo 09: UX15 cavern, placing of reinforcement for base slab first lift. Photo 10: UX15 cavern, view into PX14 shaft above. Photo 12: UX15 cavern, temporary access platform of RB16 tunnel. Photo 15: UJ17 chamber, invert excavation.
Cost analysis of reinforced concrete slabs and columns
Spuś, Piotr
2013-01-01
The construction industry is increasingly looking for solutions that are both simple and effective and that provide cost savings, speed and flexibility of execution. Two-way slabs are a form of construction unique to reinforced concrete comparing with the other major structural materials. It is an efficient, economical, and widely used structural system. The present dissertation aims to analyze and compare costs between four types of slabs: waffle slab with recuperate molds, flat slabs wit...
Development Length for Headed Bars in Slab-Column Joints of RC Slab Bridges
2015-12-04
In accordance with the Caltrans Seismic Design Criteria, the superstructure in a slab bridge should remain essentially elastic and only the pile extensions/columns are permitted to develop inelastic deformations during a seismic event. Hence, the lon...
Modified bond model for shear in slabs under concentrated loads
Lantsoght, E.O.L.; Van der Veen, C.; De Boer, A.
2015-01-01
Slabs subjected to concentrated loads close to supports, as occurring for truck loads on slab bridges, are less studied than beams in shear or slab-column connections in punching. To predict the shear capacity for this case, the Bond Model for concentric punching shear was studied initially.
Nonimaging concentrators for diode-pumped slab lasers
Lacovara, Philip; Gleckman, Philip L.; Holman, Robert L.; Winston, Roland
1991-10-01
Diode-pumped slab lasers require concentrators for high-average power operation. We detail the properties of diode lasers and slab lasers which set the concentration requirements and the concentrator design methodologies that are used, and describe some concentrator designs used in high-average power slab lasers at Lincoln Laboratory.
Control of exceptional points in photonic crystal slabs
DEFF Research Database (Denmark)
Kaminski, Piotr Marek; Taghizadeh, Alireza; Breinbjerg, Olav
2017-01-01
Various ways of controlling the extent of the ring of exceptional points in photonic crystal slabs are investigated. The extent of the ring in photonic crystal slabs is found to vary with the thickness of the slab. This enables recovery of Dirac cones in open, non-Hermitian systems, such as a pho...
A hybrid Scatter/Transform cloaking model
Directory of Open Access Journals (Sweden)
Gad Licht
2015-01-01
Full Text Available A new Scatter/Transform cloak is developed that combines the light bending of refraction characteristic of a Transform cloak with the scatter cancellation characteristic of a Scatter cloak. The hybrid cloak incorporates both Transform’s variable index of refraction with modified linear intrusions to maximize the Scatter cloak effect. Scatter/Transform improved the scattering cross-section of cloaking in a 2-dimensional space to 51.7% compared to only 39.6% or 45.1% respectively with either Scatter or Transform alone. Metamaterials developed with characteristics based on the new ST hybrid cloak will exhibit superior cloaking capabilities.
Topological mechanics: from metamaterials to active matter
Vitelli, Vincenzo
2015-03-01
Mechanical metamaterials are artificial structures with unusual properties, such as negative Poisson ratio, bistability or tunable acoustic response, which originate in the geometry of their unit cell. At the heart of such unusual behavior is often a mechanism: a motion that does not significantly stretch or compress the links between constituent elements. When activated by motors or external fields, these soft motions become the building blocks of robots and smart materials. In this talk, we discuss topological mechanisms that possess two key properties: (i) their existence cannot be traced to a local imbalance between degrees of freedom and constraints (ii) they are robust against a wide range of structural deformations or changes in material parameters. The continuum elasticity of these mechanical structures is captured by non-linear field theories with a topological boundary term similar to topological insulators and quantum Hall systems. We present several applications of these concepts to the design and experimental realization of 2D and 3D topological structures based on linkages, origami, buckling meta-materials and lastly active media that break time-reversal symmetry.
One-dimensional rigid film acoustic metamaterials
Ma, Fuyin; Wu, Jiu Hui; Huang, Meng
2015-11-01
We have designed a 1D film-type acoustic metamaterial structure consisting of several polymer films directly stacked on each other. It is experimentally revealed that the mass density law can be broken by such structures in the low frequency range. By comparing the sound transmission loss (STL) curves of structures with different numbers of cycles, materials and incident sound directions, several physical properties of the 1D film-type acoustic metamaterial are revealed, which consist of cyclical effects, surface effects and orientation effects. It is suggested that the excellent low frequency sound insulation capacity is influenced by both the cycle number and the stiffness of the film surface. Meanwhile, the surface effect plays a dominant role among these physical properties. Due to the surface acoustic property, for structures with a particular combination form, the STL dominated by the cyclical effects may reach saturation with increasing number of construction periods. Moreover, in some cases, the sound insulation ability is diverse for different sound incidence directions. This kind of 1D film-type periodic structure with these special physical properties provides a new concept for the regulation of sound waves.
One-dimensional rigid film acoustic metamaterials
International Nuclear Information System (INIS)
Ma, Fuyin; Wu, Jiu Hui; Huang, Meng
2015-01-01
We have designed a 1D film-type acoustic metamaterial structure consisting of several polymer films directly stacked on each other. It is experimentally revealed that the mass density law can be broken by such structures in the low frequency range. By comparing the sound transmission loss (STL) curves of structures with different numbers of cycles, materials and incident sound directions, several physical properties of the 1D film-type acoustic metamaterial are revealed, which consist of cyclical effects, surface effects and orientation effects. It is suggested that the excellent low frequency sound insulation capacity is influenced by both the cycle number and the stiffness of the film surface. Meanwhile, the surface effect plays a dominant role among these physical properties. Due to the surface acoustic property, for structures with a particular combination form, the STL dominated by the cyclical effects may reach saturation with increasing number of construction periods. Moreover, in some cases, the sound insulation ability is diverse for different sound incidence directions. This kind of 1D film-type periodic structure with these special physical properties provides a new concept for the regulation of sound waves. (paper)
Ultrathin microwave absorber based on metamaterial
International Nuclear Information System (INIS)
Kim, Y J; Yoo, Y J; Hwang, J S; Lee, Y P
2016-01-01
We suggest that ultrathin broadband metamaterial is a perfect absorber in the microwave regime by utilizing the properties of a resistive sheet and metamaterial. Meta-atoms are composed of four-leaf clover-shape metallic patterns and a metal plane separated by three intermediate resistive sheet layers between four dielectric layers. We interpret the absorption mechanism of the broadband by using the distribution of surface currents at specific frequencies. The simulated absorption was over 99% in 1.8–4.2 GHz. The corresponding experimental absorption was also over 99% in 2.62–4.2 GHz; however, the absorption was slightly lower than 99% in 1.8–2.62 GHz because of the sheet resistance and the changed values for the dielectric constant. Furthermore, it is independent of incident angle. The results of this research indicate the possibility of applications, due to the suppression of noxious exposure, in cell phones, computers and microwave equipments. (paper)
Effective medium theory for anisotropic metamaterials
Zhang, Xiujuan
2015-01-20
Materials with anisotropic material parameters can be utilized to fabricate many fascinating devices, such as hyperlenses, metasolids, and one-way waveguides. In this study, we analyze the effects of geometric anisotropy on a two-dimensional metamaterial composed of a rectangular array of elliptic cylinders and derive an effective medium theory for such a metamaterial. We find that it is possible to obtain a closed-form analytical solution for the anisotropic effective medium parameters, provided the aspect ratio of the lattice and the eccentricity of the elliptic cylinder satisfy certain conditions. The derived effective medium theory not only recovers the well-known Maxwell-Garnett results in the quasi-static regime, but is also valid beyond the long-wavelength limit, where the wavelength in the host medium is comparable to the size of the lattice so that previous anisotropic effective medium theories fail. Such an advance greatly broadens the applicable realm of the effective medium theory and introduces many possibilities in the design of structures with desired anisotropic material characteristics. A real sample of a recently theoretically proposed anisotropic medium, with a near-zero index to control the flux, is achieved using the derived effective medium theory, and control of the electromagnetic waves in the sample is clearly demonstrated.
Design and experimentally measure a high performance metamaterial filter
Xu, Ya-wen; Xu, Jing-cheng
2018-03-01
Metamaterial filter is a kind of expecting optoelectronic device. In this paper, a metal/dielectric/metal (M/D/M) structure metamaterial filter is simulated and measured. Simulated results indicate that the perfect impedance matching condition between the metamaterial filter and the free space leads to the transmission band. Measured results show that the proposed metamaterial filter achieves high performance transmission on TM and TE polarization directions. Moreover, the high transmission rate is also can be obtained when the incident angle reaches to 45°. Further measured results show that the transmission band can be expanded through optimizing structural parameters. The central frequency of the transmission band is also can be adjusted through optimizing structural parameters. The physical mechanism behind the central frequency shifted is solved through establishing an equivalent resonant circuit model.
A two-component NZRI metamaterial based rectangular cloak
Directory of Open Access Journals (Sweden)
Sikder Sunbeam Islam
2015-10-01
Full Text Available A new two-component, near zero refractive index (NZRI metamaterial is presented for electromagnetic rectangular cloaking operation in the microwave range. In the basic design a pi-shaped, metamaterial was developed and its characteristics were investigated for the two major axes (x and z-axis wave propagation through the material. For the z-axis wave propagation, it shows more than 2 GHz bandwidth and for the x-axis wave propagation; it exhibits more than 1 GHz bandwidth of NZRI property. The metamaterial was then utilized in designing a rectangular cloak where a metal cylinder was cloaked perfectly in the C-band area of microwave regime. The experimental result was provided for the metamaterial and the cloak and these results were compared with the simulated results. This is a novel and promising design for its two-component NZRI characteristics and rectangular cloaking operation in the electromagnetic paradigm.
Dissipative elastic metamaterial with a low-frequency passband
Directory of Open Access Journals (Sweden)
Yongquan Liu
2017-06-01
Full Text Available We design and experimentally demonstrate a dissipative elastic metamaterial structure that functions as a bandpass filter with a low-frequency passband. The mechanism of dissipation in this structure is well described by a mass-spring-damper model that reveals that the imaginary part of the wavenumber is non-zero, even in the passband of dissipative metamaterials. This indicates that transmittance in this range can be low. A prototype for this viscoelastic metamaterial model is fabricated by 3D printing techniques using soft and hard acrylics as constituent materials. The transmittance of the printed metamaterial is measured and shows good agreement with theoretical predictions, demonstrating its potential in the design of compact waveguides, filters and other advanced devices for controlling mechanical waves.
Sound reduction by metamaterial-based acoustic enclosure
Directory of Open Access Journals (Sweden)
Shanshan Yao
2014-12-01
Full Text Available In many practical systems, acoustic radiation control on noise sources contained within a finite volume by an acoustic enclosure is of great importance, but difficult to be accomplished at low frequencies due to the enhanced acoustic-structure interaction. In this work, we propose to use acoustic metamaterials as the enclosure to efficiently reduce sound radiation at their negative-mass frequencies. Based on a circularly-shaped metamaterial model, sound radiation properties by either central or eccentric sources are analyzed by numerical simulations for structured metamaterials. The parametric analyses demonstrate that the barrier thickness, the cavity size, the source type, and the eccentricity of the source have a profound effect on the sound reduction. It is found that increasing the thickness of the metamaterial barrier is an efficient approach to achieve large sound reduction over the negative-mass frequencies. These results are helpful in designing highly efficient acoustic enclosures for blockage of sound in low frequencies.
Substrate effects on terahertz metamaterial resonances for various metal thicknesses
International Nuclear Information System (INIS)
Park, S. J.; Ahn, Y. H.
2014-01-01
We demonstrate dielectric substrate effects on the resonance shift of terahertz metamaterials with various metal thicknesses by using finite-difference time-domain simulations. We found a small red shift in the metamaterial resonance with increasing metal thickness for the free-standing case. Conversely, when the metamaterial pattern was supported by a substrate with a high dielectric constant, the resonant frequency exhibited a large blue shift because the relative contribution of the substrate's refractive index to the resonant frequency decreased drastically as we increased the metal thickness. We determined the substrate's refractive index, 1.26, at which the metamaterial resonance was independent of the metal thickness. We extracted the effective refractive index as a function of the substrate's refractive index explicitly, which was noticeably different for different film thicknesses.
Modelling, fabrication and characterisation of THz fractal meta-materials
DEFF Research Database (Denmark)
Xiao, S.; Zhou, L.; Malureanu, Radu
2011-01-01
We present theoretical predictions, fabrication procedure and characterisation results of fractal metamaterials for the THz frequency range. The characterisation results match well the predicted response thus validating both the fabrication procedure as well as the simulation one. Such systems sh...
Active Metamaterial Based Ultrasonic Guided Wave Transducer System, Phase I
National Aeronautics and Space Administration — An active and tunable metamaterial phased array transducer for guided wave mode selection with high intensity per driving channel and with dramatically lower modal...
Active control of a plasmonic metamaterial for quantum state engineering
Uriri, S. A.; Tashima, T.; Zhang, X.; Asano, M.; Bechu, M.; Güney, D. Ö.; Yamamoto, T.; Özdemir, Ş. K.; Wegener, M.; Tame, M. S.
2018-05-01
We experimentally demonstrate the active control of a plasmonic metamaterial operating in the quantum regime. A two-dimensional metamaterial consisting of unit cells made from gold nanorods is investigated. Using an external laser, we control the temperature of the metamaterial and carry out quantum process tomography on single-photon polarization-encoded qubits sent through, characterizing the metamaterial as a variable quantum channel. The overall polarization response can be tuned by up to 33% for particular nanorod dimensions. To explain the results, we develop a theoretical model and find that the experimental results match the predicted behavior well. This work goes beyond the use of simple passive quantum plasmonic systems and shows that external control of plasmonic elements enables a flexible device that can be used for quantum state engineering.
Monlinear fish-scale metamaterial via coupled duffing oscillators
Kochetov, Bogdan; Tuz, Vladimir; Mladyonov, Pavel; Prosvirnin, Sergey; Kochetova, Lyudmila
2012-01-01
The dynamic system of two coupled Duffing oscillators is considered in order to predict the optical response of the nonlinear planar fish-scale metamaterial. The direct numerical calculation of meta material response confirms the correctness of the proposed model
Investigation of graphene-integrated tunable metamaterials in THz regime
Demir, S. Mahircan; Yüksek, Yahya; Sabah, Cumali
2018-05-01
A metallic fishnet metamaterial structure in sub-THz region is presented. The proposed structure is based on hexagonal resonators. Simulations have been performed by a 3D full-wave electromagnetic simulator and a negative refractive index has been observed at the frequency range between 0.55 and 0.70 THz with the help of the graphene layer. In order to observe the effect of the graphene layer, the metamaterial structure has been simulated and examined before and after graphene integration. Significant modification in the propagation properties has been observed after the graphene integration. Change in S-parameters with the size variation of hexagonal resonators and alteration in graphene thickness are also presented as a parametric study to show the tunability of the structure. Suitability of the metamaterial for sensor applications has been investigated. The proposed metamaterial structure is promising to be effectively used for tunability and sensor applications.
Preferential emission into epsilon-near-zero metamaterial [Invited
International Nuclear Information System (INIS)
Galfsky, Tal; Sun, Zheng; Jacob, Zubin; Menon, Vinod M.
2015-01-01
We report the use of epsilon near zero (ENZ) metamaterial to control spontaneous emission from Zinc-Oxide (ZnO) excitons. The ENZ material consists of alternating layers of silver and alumina with subwavelength thicknesses, resulting in an effective medium where one of the components of the dielectric constant approach zero between 370nm-440nm wavelength range. Bulk ZnO with photoluminescence maximum in the ENZ regime was deposited via atomic layer deposition to obtain a smooth film with near field coupling to the ENZ metamaterial. Preferential emission from the ZnO layer into the metamaterial with suppression of forward emission by 90% in comparison to ZnO on silicon is observed. We attribute this observation to the presence of dispersionless plasmonic modes in the ENZ regime as shown by the results of theoretical modeling presented here. Integration of ENZ metamaterials with light emitters is an attractive platform for realizing a low threshold subwavelength laser
Acoustic metamaterials for new two-dimensional sonic devices
Energy Technology Data Exchange (ETDEWEB)
Torrent, Daniel; Sanchez-Dehesa, Jose [Wave Phenomena Group, Department of Electronic Engineering, Polytechnic University of Valencia, C/Camino de Vera sn, E-46022 Valencia (Spain)
2007-09-15
It has been shown that two-dimensional arrays of rigid or fluidlike cylinders in a fluid or a gas define, in the limit of large wavelengths, a class of acoustic metamaterials whose effective parameters (sound velocity and density) can be tailored up to a certain limit. This work goes a step further by considering arrays of solid cylinders in which the elastic properties of cylinders are taken into account. We have also treated mixtures of two different elastic cylinders. It is shown that both effects broaden the range of acoustic parameters available for designing metamaterials. For example, it is predicted that metamaterials with perfect matching of impedance with air are now possible by using aerogel and rigid cylinders equally distributed in a square lattice. As a potential application of the proposed metamaterial, we present a gradient index lens for airborne sound (i.e. a sonic Wood lens) whose functionality is demonstrated by multiple scattering simulations.
Sound reduction by metamaterial-based acoustic enclosure
Energy Technology Data Exchange (ETDEWEB)
Yao, Shanshan; Li, Pei; Zhou, Xiaoming; Hu, Gengkai, E-mail: hugeng@bit.edu.cn [Key Laboratory of Dynamics and Control of Flight Vehicle, Ministry of Education and School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081 (China)
2014-12-15
In many practical systems, acoustic radiation control on noise sources contained within a finite volume by an acoustic enclosure is of great importance, but difficult to be accomplished at low frequencies due to the enhanced acoustic-structure interaction. In this work, we propose to use acoustic metamaterials as the enclosure to efficiently reduce sound radiation at their negative-mass frequencies. Based on a circularly-shaped metamaterial model, sound radiation properties by either central or eccentric sources are analyzed by numerical simulations for structured metamaterials. The parametric analyses demonstrate that the barrier thickness, the cavity size, the source type, and the eccentricity of the source have a profound effect on the sound reduction. It is found that increasing the thickness of the metamaterial barrier is an efficient approach to achieve large sound reduction over the negative-mass frequencies. These results are helpful in designing highly efficient acoustic enclosures for blockage of sound in low frequencies.
Enhancement of the Purcell factor in multiperiodic hyperboliclike metamaterials
DEFF Research Database (Denmark)
Chebykin, A. V.; Babicheva, V. E.; Iorsh, I. V.
2016-01-01
Spontaneous emission enhancement is theoretically investigated in multiperiodic metal-dielectric multilayers (multiperiodic hyperboliclike metamaterials or photonic hypercrystals) where the unit cell consists of two layers of different dielectrics alternating with identical metallic layers. It is...
Fiber-Drawn Metamaterial for THz Waveguiding and Imaging
DEFF Research Database (Denmark)
Atakaramians, Shaghik; Stefani, Alessio; Li, Haisu
2017-01-01
and sub-diffraction imaging. We show the experimental demonstration of THz radiation guidance through hollow core waveguides with metamaterial cladding, where substantial improvements were realized compared to conventional hollow core waveguides, such as reduction of size, greater flexibility, increased...
Metamaterial-Backed Conformal Antennas for Space Exploration
National Aeronautics and Space Administration — The purpose of this experiment is to demonstrate a successful X-band antenna array fabricated on a high-permittivity substrate together with bandgap metamaterials...
Three-dimensional metamaterials fabricated using Proton Beam Writing
Energy Technology Data Exchange (ETDEWEB)
Bettiol, A.A., E-mail: a.bettiol@nus.edu.sg [Centre for Ion Beam Applications, Department of Physics, National University of Singapore, 2 Science Dr. 3, Singapore 117542 (Singapore); Turaga, S.P.; Yan, Y.; Vanga, S.K. [Centre for Ion Beam Applications, Department of Physics, National University of Singapore, 2 Science Dr. 3, Singapore 117542 (Singapore); Chiam, S.Y. [NUS High School for Maths and Science, 20 Clementi Avenue 1, Singapore 129957 (Singapore)
2013-07-01
Proton Beam Writing (PBW) is a direct write lithographic technique that has recently been applied to the fabrication of three dimensional metamaterials. In this work, we show that the unique capabilities of PBW, namely the ability to fabricate arrays of high resolution, high aspect ratio microstructures in polymer or replicated into metal, is well suited to metamaterials research. We have also developed a novel method for selectively electroless plating silver directly onto polymer structures that were fabricated using PBW. This method opens up new avenues for utilizing PBW for making metamaterials and other sub-wavelength metallic structures. Several potential applications of three dimensional metamaterials fabricated using PBW are discussed, including sensing and negative refractive index materials.
Scheme for achieving coherent perfect absorption by anisotropic metamaterials
Zhang, Xiujuan; Wu, Ying
2017-01-01
in conjunction with retrieval method to determine practical metamaterial absorbers. The scheme is scalable to frequencies and applicable to various incident angles. Numerical simulations show that perfect absorption is achieved in the designed absorbers over a
Thermal effects of metamorphic reactions in a three-component slab
DEFF Research Database (Denmark)
Chemia, Zurab; Dolejš, David; Steinle-Neumann, Gerd
2010-01-01
Thermal evolution of a subducting crust is of primary importance for understanding physical properties, phase transformations, fluid migration and melting regimes at convergent plate boundaries. Various factors influencing the thermal structure of a subduction zone have been considered previously......), and moderately serpentinized harzburgite (SHB). These layers are examined over the range of pressure-temperature conditions of interest by computing metamorphic phase diagrams and retrieving whole-rock thermodynamic properties. Our results suggest that metamorphic reactions consume a significant amount of slab...
A review of nano-optics in metamaterial hybrid heterostructures
Energy Technology Data Exchange (ETDEWEB)
Singh, Mahi R. [Department of Physics and Astronomy, Western University, London N6G 3K7 (Canada)
2014-03-31
We present a review for the nonlinear nano-optics in quantum dots doped in a metamaterial heterostructure. The heterostructure is formed by depositing a metamaterial on a dielectric substrate and ensemble of noninteracting quantum dots are doped near the heterostructure interface. It is shown that there is enhancement of the second harmonic generation due to the surface plasmon polaritons field present at the interface.
Simulation of Zitterbewegung by modelling the Dirac equation in Metamaterials
Ahrens, Sven; Jiang, Jun; Sun, Yong; Zhu, Shi-Yao
2015-01-01
We develop a dynamic description of an effective Dirac theory in metamaterials, in which the wavefunction is modeled by the corresponding electric and magnetic field in the metamaterial. This electro-magnetic field can be probed in the experimental setup, which means that the wavefunction of the effective theory is directly accessible by measurement. Our model is based on a plane wave expansion, which ravels the identification of Dirac spinors with single-frequency excitations of the electro-...
Enhancement of critical temperature in fractal metamaterial superconductors
Energy Technology Data Exchange (ETDEWEB)
Smolyaninov, Igor I., E-mail: smoly@umd.edu [Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742 (United States); Smolyaninova, Vera N. [Department of Physics Astronomy and Geosciences, Towson University, 8000 York Road, Towson, MD 21252 (United States)
2017-04-15
Fractal metamaterial superconductor geometry has been suggested and analyzed based on the recently developed theoretical description of critical temperature increase in epsilon near zero (ENZ) metamaterial superconductors. Considerable enhancement of critical temperature has been predicted in such materials due to appearance of large number of additional poles in the inverse dielectric response function of the fractal. Our results agree with the recent observation (Fratini et al. Nature 466, 841 (2010)) that fractal defect structure promotes superconductivity.
Terahertz wave manipulation with metamaterials based on metal and graphene
DEFF Research Database (Denmark)
Andryieuski, Andrei; Malureanu, Radu; Zalkovskij, Maksim
2013-01-01
response. In this presentation we overview our results on theory, fabrication and characterization of metal and graphene based metamaterials for the THz range. We show that the multiple layers of structured graphene can form a hyperbolic dispersion medium lens able to resolve the subwavelength features [2......]. We analyze the limitations and demonstrate numerically and experimentally the chiral and nonchiral thin-film metamaterial based polarization converters [3–5] and graphene total absorbers for THz radiation [6]....
Manipulating electromagnetic waves with metamaterials: Concept and microwave realizations
International Nuclear Information System (INIS)
He Qiong; Xiao Shi-Yi; Li Xin; Song Zheng-Yong; Sun Wu-Jiong; Zhou Lei; Sun Shu-Lin
2014-01-01
Our recent efforts in manipulating electromagnetic (EM) waves using metamaterials (MTMs) are reviewed with emphasis on 1) manipulating wave polarization and transporting properties using homogeneous MTMs, 2) manipulating surface-wave properties using plasmonic MTMs, and 3) bridging propagating and surface waves using inhomogeneous meta-surfaces. For all these topics, we first illustrate the physical concepts and then present several typical practical realizations and applications in the microwave regime. (topical review - plasmonics and metamaterials)
Properties of Sub-wavelength Resonances in Metamaterial Cylinders
DEFF Research Database (Denmark)
Arslanagic, Samel; Clausen, N.C.J.; Pedersen, R.R.
2008-01-01
The analytical solution for the canonical configuration with electric line source illumination of concentric metamaterial cylinders is employed to study the properties of the observed sub-wavelength resonances. The near- and far-field distributions, the frequency and geometry bandwidths, and the ......, and the line source impedance are investigated for varying electromagnetic and geometrical parameters. The results of this study are of importance for metamaterial-based miniaturization of antennas....
Flowing Air-Water Cooled Slab Nd: Glass Laser
Lu, Baida; Cai, Bangwei; Liao, Y.; Xu, Shifa; Xin, Z.
1989-03-01
A zig-zag optical path slab geometry Nd: glass laser cooled through flowing air-water is developed by us. Theoretical studies on temperature distribution of slab and rod configurations in the unsteady state clarify the advantages of the slab geometry laser. The slab design and processing are also reported. In our experiments main laser output characteristics, e. g. laser efficiency, polarization, far-field divergence angle as well as resonator misalignment are investigated. The slab phosphate glass laser in combination with a crossed Porro-prism resonator demonstrates a good laser performance.
Waves in man-made materials: superlattice to metamaterials
Tsu, Raphael; Fiddy, Michael A.
2014-07-01
While artificial or man-made structures date back to Lord Rayleigh, the work started by Lewin in 1947, placing spheres onto cubic lattices, greatly enriched microwave materials and devices. It was very suggestive of both metamaterials and photonics crystals. Effective medium models were used to describe bulk properties with some success. The concept of metamaterials followed photonic crystals, and these both were introduced after the introduction of the man-made superlattices designed to enrich the class of materials for electronic devices. The work on serrated ridged waveguides by Kirschbaum and Tsu for the control of the refractive index of microwave lenses as well as microwave matching devices in 1959 used a combination of theory, such as Floquet's theory, Bloch theory in one dimension, as well as periodic lumped loading. There is much in common between metamaterials and superlattices, but in this paper, we discuss some practical limitations to both. It is pointed out that unlike superlattices where kl > 1 is the most important criterion, metamaterials try to avoid involve such restrictions. However, the natural random fluctuations that limit the properties of naturally occurring materials are shown to take a toll on the theoretical predictions of metamaterials. The question is how great that toll, i.e. how significant those fluctuations will be, in diminishing the unusual properties that metamaterials can exhibit.
Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission
International Nuclear Information System (INIS)
Li, Zhaofeng; Mutlu, Mehmet; Ozbay, Ekmel
2013-01-01
We summarize the progress in the development and application of chiral metamaterials. After a brief review of the salient features of chiral metamaterials, such as giant optical activity, circular dichroism, and negative refractive index, the common method for the retrieval of effective parameters for chiral metamaterials is surveyed. Then, we introduce some typical chiral structures, e.g., chiral metamaterial consisting of split ring resonators, complementary chiral metamaterial, and composite chiral metamaterial, on the basis of the studies of the authors’ group. The coupling effect during the construction of bulk chiral metamaterials is mentioned and discussed. We introduce the application of bianisotropic chiral structures in the field of asymmetric transmission. Finally, we mention a few directions for future research on chiral metamaterials. (review article)
DEFF Research Database (Denmark)
Ishii, Satoshi; Babicheva, Viktoriia E.; Shalaginov, Mikhail Y.
2016-01-01
Hyperbolic metamaterials possess unique optical properties owing to their hyperbolic dispersion. As hyperbolic metamaterials can be constructed just from periodic multilayers of metals and dielectrics, they have attracted considerable attention in the nanophotonics community. Here, we review some...
Zi, Jianchen
2018-02-15
Metamaterials have been widely applied in the polarization conversion of terahertz (THz) waves. However, common plasmonic metamaterials usually work as reflective devices and have low transmissions. All-dielectric metamaterials can overcome these shortcomings. An all-dielectric metamaterial based on silicon with elliptical air holes is reported to achieve high artificial birefringence at THz frequencies. Simulations show that with appropriate structural parameters the birefringence of the dielectric metamaterial can remain flat and is above 0.7 within a broad band. Moreover, the metamaterial can be designed as a broadband quarter wave plate. A sample metamaterial was fabricated and tested to prove the validity of the simulations, and the sample could work as a quarter wave plate at 1.76 THz. The all-dielectric metamaterial that we proposed is of great significance for high performance THz polarization converters.
Evidence of fire resistance of hollow-core slabs
DEFF Research Database (Denmark)
Hertz, Kristian Dahl; Sørensen, Lars Schiøtt; Giuliani, Luisa
is therefore going on in the Netherlands about the fire resistance of hollow-core slabs. In 2014 the producers of hollow-core slabs have published a report of a project called Holcofire containing a collection of 162 fire tests on hollow-core slabs giving for the first time an overview of the fire tests made....... The present paper analyses the evidence now available for assessment of the fire resistance of extruded hollow-core slabs. The 162 fire tests from the Holcofire report are compared against the requirements for testing from the product standard for hollow-core slabs EN1168 and knowledge about the possible......Hollow-core slabs have during the past 50 years comprised a variety of different structures with different cross-sections and reinforcement. At present the extruded hollow-core slabs without cross-reinforcement in the bottom flange and usually round or oval longitudinal channels (holes...
Novel Radon Sub-Slab Suctioning System
DEFF Research Database (Denmark)
Rasmussen, Torben Valdbjørn
2013-01-01
A new principle for radon protection is currently presented which makes use of a system of horizontal pressurised air ducts located within the lower part of the rigid insulation layer of the ground-floor slab. The function of this system is based on the principles of pressure reduction within...... a grid of horizontal air ducts with low pressure which are able to remove air and radon from the ground. Results showed the system to be effective in preventing radon infiltrating from the ground through the ground-floor slab, avoiding high concentrations of radon being accumulated inside houses....... For the system to be effective, the pressure within the ducts must be lower than the pressure inside the house. The new principle was shown to be effective in preventing radon from polluting the indoor air by introducing low pressure in the horizontal grid of air ducts. A lower pressure than the pressure inside...
Upstand Finite Element Analysis of Slab Bridges
O'Brien, Eugene J.; Keogh, D.L.
1998-01-01
For slab bridge decks with wide transverse edge cantilevers, the plane grillage analogy is shown to be an inaccurate method of linear elastic analysis due to variations in the vertical position of the neutral axis. The upstand grillage analogy is also shown to give inaccurate results, this time due to inappropriate modelling of in-plane distortions. An alternative method, known as upstand finite element analysis, is proposed which is sufficiently simple to be used on an everyday basis in the ...
Convection in Slab and Spheroidal Geometries
Porter, David H.; Woodward, Paul R.; Jacobs, Michael L.
2000-01-01
Three-dimensional numerical simulations of compressible turbulent thermally driven convection, in both slab and spheroidal geometries, are reviewed and analyzed in terms of velocity spectra and mixing-length theory. The same ideal gas model is used in both geometries, and resulting flows are compared. The piecewise-parabolic method (PPM), with either thermal conductivity or photospheric boundary conditions, is used to solve the fluid equations of motion. Fluid motions in both geometries exhibit a Kolmogorov-like k(sup -5/3) range in their velocity spectra. The longest wavelength modes are energetically dominant in both geometries, typically leading to one convection cell dominating the flow. In spheroidal geometry, a dipolar flow dominates the largest scale convective motions. Downflows are intensely turbulent and up drafts are relatively laminar in both geometries. In slab geometry, correlations between temperature and velocity fluctuations, which lead to the enthalpy flux, are fairly independent of depth. In spheroidal geometry this same correlation increases linearly with radius over the inner 70 percent by radius, in which the local pressure scale heights are a sizable fraction of the radius. The effects from the impenetrable boundary conditions in the slab geometry models are confused with the effects from non-local convection. In spheroidal geometry nonlocal effects, due to coherent plumes, are seen as far as several pressure scale heights from the lower boundary and are clearly distinguishable from boundary effects.
Photonics surface waves on metamaterials interfaces
DEFF Research Database (Denmark)
Takayama, Osamu; Bogdanov, Andrey; Lavrinenko, Andrei V
2017-01-01
A surface wave (SW) in optics is a light wave, which is supported at an interface of two dissimilar media and propagates along the interface with its field amplitude exponentially decaying away from the boundary. The research on surface waves has been flourishing in last few decades thanks...... to their unique properties of surface sensitivity and field localization. These features have resulted in applications in nano-guiding, sensing, light-trapping and imaging based on the near-field techniques, contributing to the establishment of the nanophotonics as a field of research. Up to present, a wide...... variety of surface waves has been investigated in numerous material and structure settings. This paper reviews the recent progress and development in the physics of SWs localized at metamaterial interfaces, as well as bulk media in order to provide broader perspectives on optical surface waves in general...
Metamaterial-Enhanced Nonlinear Terahertz Spectroscopy
Directory of Open Access Journals (Sweden)
Zhang X.
2013-03-01
Full Text Available We demonstrate large nonlinear terahertz responses in the gaps of metamaterial split ring resonators in several materials and use nonlinear THz transmission and THz-pump/THz-probe spectroscopy to study the nonlinear responses and dynamics. We use the field enhancement in the SRR gaps to initiate high-field phenomena at lower incident fields. In vanadium dioxide, we drive the insulator-to-metal phase transition with high-field THz radiation. The film conductivity increases by over two orders of magnitude and the phase transition occurs on a several picosecond timescale. In gallium arsenide, we observe high-field transport phenomena, including mobility saturation and impact ionization. The carrier density increases by up to ten orders of magnitude at high fields. At the highest fields, we demonstrate THz-induced damage in both vanadium dioxide and gallium arsenide.
Ultrasmooth Patterned Metals for Plasmonics and Metamaterials
Nagpal, Prashant; Lindquist, Nathan C.; Oh, Sang-Hyun; Norris, David J.
2009-07-01
Surface plasmons are electromagnetic waves that can exist at metal interfaces because of coupling between light and free electrons. Restricted to travel along the interface, these waves can be channeled, concentrated, or otherwise manipulated by surface patterning. However, because surface roughness and other inhomogeneities have so far limited surface-plasmon propagation in real plasmonic devices, simple high-throughput methods are needed to fabricate high-quality patterned metals. We combined template stripping with precisely patterned silicon substrates to obtain ultrasmooth pure metal films with grooves, bumps, pyramids, ridges, and holes. Measured surface-plasmon-propagation lengths on the resulting surfaces approach theoretical values for perfectly flat films. With the use of our method, we demonstrated structures that exhibit Raman scattering enhancements above 107 for sensing applications and multilayer films for optical metamaterials.
Dispersion engineering in metamaterials and metasurfaces
Li, Xiong; Pu, Mingbo; Ma, Xiaoliang; Guo, Yinghui; Gao, Ping; Luo, Xiangang
2018-02-01
Dispersion engineering is essential for spectral utilization in electromagnetic systems. However, it is difficult to manage the dispersions in both natural materials and traditional electromagnetic waveguides since they are tightly related to fine structures of atoms, molecules and causality. The emergence of metamaterials and metasurfaces, which are made of subwavelength inclusions offers tremendous freedom to manipulate the electromagnetic parameters of materials and modes. Here, we review the basic principles, practical applications and recent advancements of the dispersion engineering in metadevices. The contributions of dispersion management in metadevice-based super-resolution imaging/nanolithography systems, planar functional devices, as well as the broadband perfect absorbers/polarization converters are discussed in depth. The challenges faced by this field as well as future developing trends are also presented in the conclusions.
Ultrathin microwave metamaterial absorber utilizing embedded resistors
Kim, Young Ju; Hwang, Ji Sub; Yoo, Young Joon; Khuyen, Bui Xuan; Rhee, Joo Yull; Chen, Xianfeng; Lee, YoungPak
2017-10-01
We numerically and experimentally studied an ultrathin and broadband perfect absorber by enhancing the bandwidth with embedded resistors into the metamaterial structure, which is easy to fabricate in order to lower the Q-factor and by using multiple resonances with the patches of different sizes. We analyze the absorption mechanism in terms of the impedance matching with the free space and through the distribution of surface current at each resonance frequency. The magnetic field, induced by the antiparallel surface currents, is formed strongly in the direction opposite to the incident electromagnetic wave, to cancel the incident wave, leading to the perfect absorption. The corresponding experimental absorption was found to be higher than 97% in 0.88-3.15 GHz. The agreement between measurement and simulation was good. The aspects of our proposed structure can be applied to future electronic devices, for example, advanced noise-suppression sheets in the microwave regime.
Active control of chirality in nonlinear metamaterials
International Nuclear Information System (INIS)
Zhu, Yu; Chai, Zhen; Yang, Hong; Hu, Xiaoyong; Gong, Qihuang
2015-01-01
An all-optical tunabe chirality is realized in a photonic metamaterial, the metamolecule of which consists of a nonlinear nano-Au:polycrystalline indium-tin oxide layer sandwiched between two L-shaped gold nano-antennas twisted 90° with each other. The maximum circular dichroism reached 30%. Under excitation of a 40 kW/cm 2 weak pump light, the peak in the circular dichroism shifts 45 nm in the short-wavelength direction. An ultrafast response time of 35 ps is maintained. This work not only opens up the possibility for the realization of ultralow-power and ultrafast all-optical tunable chirality but also offers a way to construct ultrahigh-speed on-chip biochemical sensors
Geared Topological Metamaterials with Tunable Mechanical Stability
Directory of Open Access Journals (Sweden)
Anne S. Meeussen
2016-11-01
Full Text Available The classification of materials into insulators and conductors has been shaken up by the discovery of topological insulators that conduct robustly at the edge but not in the bulk. In mechanics, designating a material as insulating or conducting amounts to asking if it is rigid or floppy. Although mechanical structures that display topological floppy modes have been proposed, they are all vulnerable to global collapse. Here, we design and build mechanical metamaterials that are stable and yet capable of harboring protected edge and bulk modes, analogous to those in electronic topological insulators and Weyl semimetals. To do so, we exploit gear assemblies that, unlike point masses connected by springs, incorporate both translational and rotational degrees of freedom. Global structural stability is achieved by eliminating geometrical frustration of collective gear rotations extending through the assembly. The topological robustness of the mechanical modes makes them appealing across scales from engineered macrostructures to networks of toothed microrotors of potential use in micromachines.
Zi, Jianchen; Xu, Quan; Wang, Qiu; Tian, Chunxiu; Li, Yanfeng; Zhang, Xixiang; Han, Jiaguang; Zhang, Weili
2018-01-01
metamaterial can remain flat and is above 0.7 within a broad band. Moreover, the metamaterial can be designed as a broadband quarter wave plate. A sample metamaterial was fabricated and tested to prove the validity of the simulations, and the sample could work
International Nuclear Information System (INIS)
Torabi, Mohsen; Zhang, Kaili
2014-01-01
This article investigates the classical entropy generation in cooled slabs. Two types of materials are assumed for the slab: homogeneous material and FGM (functionally graded material). For the homogeneous material, the thermal conductivity is assumed to be a linear function of temperature, while for the FGM slab the thermal conductivity is modeled to vary in accordance with the rule of mixtures. The boundary conditions are assumed to be convective and radiative concurrently, and the internal heat generation of the slab is a linear function of temperature. Using the DTM (differential transformation method) and resultant temperature fields from the DTM, the local and total entropy generation rates within slabs are derived. The effects of physically applicable parameters such as the thermal conductivity parameter for the homogenous slab, β, the thermal conductivity parameter for the FGM slab, γ, gradient index, j, internal heat generation parameter, Q, Biot number at the right side, Nc 2 , conduction–radiation parameter, Nr 2 , dimensionless convection sink temperature, δ, and dimensionless radiation sink temperature, η, on the local and total entropy generation rates are illustrated and explained. The results demonstrate that considering temperature- or coordinate-dependent thermal conductivity and radiation heat transfer at both sides of the slab have great effects on the entropy generation. - Highlights: • The paper investigates entropy generation in a slab due to heat generation and convective–radiative boundary conditions. • Both homogeneous material and FGM (functionally graded material) were considered. • The calculations are carried out using the differential transformation method which is a well-tested analytical technique
Experimental and theoretical investigation of column - flat slab joint ductility
International Nuclear Information System (INIS)
Iskhakov, I.; Ribakov, Y.; Shah, A.
2009-01-01
Most modern seismic codes use ductility as one of the basic design parameters. Actually, ductility defines the ability of a structure or its elements to absorb energy by plastic deformations. Until the end of the previous century ductility was defined qualitatively. Most research works related to ductility are focused on structural elements' sections. This study was aimed at complex experimental and theoretical investigation of flat slab-column joints ductility. It is one of the first attempts to obtain quantitative values of joint's ductility for the case of high strength concrete columns and normal strength concrete slabs. It was shown that the flat slab-column joint is a three-dimension (3D) element and its ductility in horizontal and vertical directions are different. This is the main difference between ductility of elements and joint ductility. In case of flat slab-column joints, essential contribution to joint's ductility can be obtained due to the slab's confining effect. Based on experimental data, the authors demonstrate that flat slab-column joint's ductility depends on the joint's confining effect in two horizontal and vertical directions. Furthermore, the influence of slab load intensity and slab reinforcement ratio on the joint's ductility is performed in this study. It is also demonstrated that the effect of the ratio between the slab thickness and the column's section dimension on the ductility parameter is significant. Equations for obtaining a quantitative value of a flat slab-column joint's ductility parameter were developed.
Electrically driven hybrid photonic metamaterials for multifunctional control
Kang, Lei; Liu, Liu; Campbell, Sawyer D.; Yue, Taiwei; Ren, Qiang; Mayer, Theresa S.; Werner, Douglas H.
2017-08-01
The unique light-matter interaction in metamaterials, a type of artificial medium in which the geometrical features of subunits dominate their optical responses, have been utilized to achieve exotic material properties that are rare or nonexistent in natural materials. Furthermore, to extend their behaviors, active materials have been introduced into metamaterial systems to advance tunability, switchability and nonlinearity. Nevertheless, practical examples of versatile photonic metamaterials remain exceedingly rare for two main reasons. On the one hand, in sharp contrast to the broad material options available at lower frequencies, it is less common to find active media in the optical regime that can provide pronounced dielectric property changes under external stimuli, such as electric and magnetic fields. Vanadium dioxide (VO2), offering a large refractive index variation over a broad frequency range due to its near room temperature insulator-to-metal transition (IMT), has been favored in recent studies on tunable metamaterials. On the other hand, it turns out that regulating responses of hybrid metamaterials to external forces in an integrated manner is not a straightforward task. Recently, metamaterial-enabled devices (i.e., metadevices) with `self-sufficient' or `self-contained' electrical and optical properties have enabled complex functionalities. Here, we present a design methodology along with the associated experimental validation of a VO2 thin film integrated optical metamaterial absorber as a hybrid photonic platform for electrically driven multifunctional control, including reflectance switching, a rewritable memory process and manageable localized camouflage. The nanoengineered topologically continuous metal structure simultaneously supports the optical resonance and electrical functionality that actuates the phase transition in VO2 through the process of Joule heating. This work provides a universal approach to creating self-sufficient and highly
Reflection and transmission of light at periodic layered metamaterial films
Paul, Thomas; Menzel, Christoph; Śmigaj, Wojciech; Rockstuhl, Carsten; Lalanne, Philippe; Lederer, Falk
2011-09-01
The appropriate description of light scattering (transmission/reflection) at a bulky artificial medium, consisting of a sequence of functional metamaterial and natural material films, represents a major challenge in current theoretical nano-optics. Because in many relevant cases, in particular, in the optical domain, a metamaterial must not be described by an effective permittivity and permeability the usual Fresnel formalism cannot be applied. A reliable alternative consists in using a Bloch mode formalism known, e.g., from the theory of photonic crystals. It permits to split this complex issue into two more elementary ones, namely the study of light propagation in an infinitely extended metamaterial and the analysis of light scattering at interfaces between adjacent meta and natural materials. The first problem is routinely solved by calculating the relevant Bloch modes and their dispersion relations. The second task is more involved and represents the subject of the present study. It consists in using the general Bloch mode orthogonality to derive rigorous expressions for the reflection and transmission coefficients at an interface between two three-dimensional absorptive periodic media for arbitrary incidence. A considerable simplification can be achieved if only the fundamental Bloch modes of both media govern the scattering properties at the interface. If this approximation is valid, which depends on the longitudinal metamaterial period, the periodic metamaterial may be termed homogeneous. Only in this case the disentanglement of the fundamental modes of both media can be performed and the reflection/transmission coefficients can be expressed in terms of two impedances, each depending solely on the properties of the fundamental mode of the respective medium. In order to complement the picture, we apply the present formalism to the quite general problem of reflection/transmission at a metamaterial film sandwiched between a dissimilar metamaterial. This
Biryol, C. B.; Wagner, L. S.; Fischer, K. M.; Hawman, R. B.
2014-12-01
Our new results from teleseismic, finite-frequency, body-wave tomography analysis reveal a relatively steep east-dipping fast velocity anomaly beneath the Southeastern US. The resolving power of our dataset is good enough to retrieve major mantle anomalies, such as this fast velocity body, owing to the dense receiver coverage provided by US Transportable Array (TA) and the SouthEastern Suture of the Appalachian Margin Experiment (SESAME). Various resolution and recovery tests demonstrate the robustness of this anomaly in our tomographic model between the depths of 60 and 660 km. Our images reveal that the dip of this structure decreases significantly in the mantle transition zone where it terminates. We also observe major gaps in the lateral continuity of this structure. Based on the amplitude, location and geometry of the velocity perturbation, we interpret this anomaly as remnant subducted lithosphere, suspended in the upper mantle after a subduction phase as young as 100-110 Ma or as old as 1Ga. Basic calculations and evaluations on the geometry and location of this anomaly help us to narrow down the origin of this slab to the Farallon flat-slab subduction in the west and Grenville Subduction during assembly of supercontinent Rodinia. Our images reveal possible mechanisms that would allow this slab to remain in the upper mantle without sinking into deeper mantle for such extended periods of time. We believe the flat geometry of the slab near the transition zone and the fragmented nature provide important clues about processes that could delay/resist the sinking while providing necessary time for it to transform into a more neutrally buoyant state. In this respect, we believe our results have broad implications for subduction processes and piece-meal slab failure, as well as tectonic implications for characteristics of former subduction zones that help shape North American Plate.
Volcanism in slab tear faults is larger than in island-arcs and back-arcs.
Cocchi, Luca; Passaro, Salvatore; Tontini, Fabio Caratori; Ventura, Guido
2017-11-13
Subduction-transform edge propagators are lithospheric tears bounding slabs and back-arc basins. The volcanism at these edges is enigmatic because it is lacking comprehensive geological and geophysical data. Here we present bathymetric, potential-field data, and direct observations of the seafloor on the 90 km long Palinuro volcanic chain overlapping the E-W striking tear of the roll-backing Ionian slab in Southern Tyrrhenian Sea. The volcanic chain includes arc-type central volcanoes and fissural, spreading-type centers emplaced along second-order shears. The volume of the volcanic chain is larger than that of the neighbor island-arc edifices and back-arc spreading center. Such large volume of magma is associated to an upwelling of the isotherms due to mantle melts upraising from the rear of the slab along the tear fault. The subduction-transform edge volcanism focuses localized spreading processes and its magnitude is underestimated. This volcanism characterizes the subduction settings associated to volcanic arcs and back-arc spreading centers.
International Nuclear Information System (INIS)
Ranaweera, A L A K; Moscoso, Carlos Arriola; Lee, Jong-Wook
2015-01-01
In a wireless power transfer (WPT) system, misalignment between transmitter and receiver coils is one of the key factors affecting efficiency. Recently, metamaterials have shown great potential to enhance electromagnetic propagation in various environments. In this work, we apply a metamaterial to enhance the WPT in a more general environment where misalignment is considered. Using an anisotropic metamaterial, we obtain a significant efficiency enhancement. Therefore, we propose that the metamaterial is an effective means to mitigate the decreased efficiency caused by misalignment. In addition, we investigate the effect of coil misalignment on the threshold distance beyond which the metamaterial enhances the performance of WPT. (paper)
Applicability of point-dipoles approximation to all-dielectric metamaterials
DEFF Research Database (Denmark)
Kuznetsova, S. M.; Andryieuski, Andrei; Lavrinenko, Andrei
2015-01-01
All-dielectric metamaterials consisting of high-dielectric inclusions in a low-dielectric matrix are considered as a low-loss alternative to resonant metal-based metamaterials. In this paper we investigate the applicability of the point electric and magnetic dipoles approximation to dielectric meta......-atoms on the example of a dielectric ring metamaterial. Despite the large electrical size of high-dielectric meta-atoms, the dipole approximation allows for accurate prediction of the metamaterials properties for the rings with diameters up to approximate to 0.8 of the lattice constant. The results provide important...... guidelines for design and optimization of all-dielectric metamaterials....
International Nuclear Information System (INIS)
Massimiliano, Rosa; Azmy, Y.Y.; Morel, J.E.
2005-01-01
The general expressions for the matrix elements of the discrete Sn-equivalent integral transport operator have been derived in slab geometry. Their asymptotic behavior has been investigated both for a homogeneous slab and for a heterogeneous slab characterized by a periodic material discontinuity wherein each optically thick cell is surrounded by two optically thin cells in a repeating pattern. In the case of a homogeneous slab, the asymptotic analysis conducted in a diffusive limit obtained as the thick limit of computational cell size for a highly scattering medium, has shown that the discretized integral transport operator is approximated by a sparse matrix characterized by a tri-diagonal diffusion-like coupling stencil. Also, the tri-diagonal matrix structure, characteristic of the diffusion coupling stencil, is approached at a fast exponential rate. In the case of periodically heterogeneous slab configurations, the asymptotic behavior investigated is that in which the cells' optical thicknesses are pushed apart, i.e. the thick is made thicker while the thin is made thinner at a prescribed rate. It has been shown that in this limit the discretized integral transport operator is approximated by a penta-diagonal structure. Notwithstanding, the discrete operator is amenable to algebraic transformations leading to a matrix representation still asymptotically approaching a tri-diagonal structure at a fast exponential rate. The existence of a low order tri-diagonal approximation to the full discrete integral transport operator in the case of a periodically heterogeneous slab might provide a basic understanding of the superior convergence properties of diffusion-based acceleration schemes observed in slab geometry, even in the presence of sharp material discontinuities. The obtained results also suggest that a sparse approximation to the S n -equivalent integral transport operator might itself be used as the low-order operator in an acceleration scheme for the
Assembling optically active and nonactive metamaterials with chiral units
Directory of Open Access Journals (Sweden)
Xiang Xiong
2012-12-01
Full Text Available Metamaterials constructed with chiral units can be either optically active or nonactive depending on the spatial configuration of the building blocks. For a class of chiral units, their effective induced electric and magnetic dipoles, which originate from the induced surface electric current upon illumination of incident light, can be collinear at the resonant frequency. This feature provides significant advantage in designing metamaterials. In this paper we concentrate on several examples. In one scenario, chiral units with opposite chiralities are used to construct the optically nonactive metamaterial structure. It turns out that with linearly polarized incident light, the pure electric or magnetic resonance (and accordingly negative permittivity or negative permeability can be selectively realized by tuning the polarization of incident light for 90°. Alternatively, units with the same chirality can be assembled as a chiral metamaterial by taking the advantage of the collinear induced electric and magnetic dipoles. It follows that for the circularly polarized incident light, negative refractive index can be realized. These examples demonstrate the unique approach to achieve certain optical properties by assembling chiral building blocks, which could be enlightening in designing metamaterials.
Low-cost metamaterial-on-paper chemical sensor.
Sadeqi, Aydin; Nejad, Hojatollah Rezaei; Sonkusale, Sameer
2017-07-10
We present a disposable low cost paper-based metamaterial for sensing liquids based on their dielectric properties. The sensor is based on resonance shift due to the change in the effective capacitance of each resonator in the metamaterial array. Key novelty in the design is the implementation of metamaterial on low cost and ubiquitous paper substrate. This metamaterial-on-paper sensor is fabricated in a totally cleanroom-free process using wax printing and screen printing. Wax patterning of paper enables creation of microfluidic channels such that liquid analytes can be delivered to each metamaterial unit cell for sensing. Screen printing is used to implement disc shaped resonator unit cells. We demonstrate sensing of liquids: Oil, methanol, glycerol and water each showing an average resonance frequency shift of 1.12 (9.6%), 4.12 (35.4%), 8.76 (75.3%) and 11.63 GHz (100%) around the center frequency of around 94 GHz respectively. Being label-free, this approach can be expanded to sense other liquids based on their dielectric constants.
Controlling Energy Radiations of Electromagnetic Waves via Frequency Coding Metamaterials.
Wu, Haotian; Liu, Shuo; Wan, Xiang; Zhang, Lei; Wang, Dan; Li, Lianlin; Cui, Tie Jun
2017-09-01
Metamaterials are artificial structures composed of subwavelength unit cells to control electromagnetic (EM) waves. The spatial coding representation of metamaterial has the ability to describe the material in a digital way. The spatial coding metamaterials are typically constructed by unit cells that have similar shapes with fixed functionality. Here, the concept of frequency coding metamaterial is proposed, which achieves different controls of EM energy radiations with a fixed spatial coding pattern when the frequency changes. In this case, not only different phase responses of the unit cells are considered, but also different phase sensitivities are also required. Due to different frequency sensitivities of unit cells, two units with the same phase response at the initial frequency may have different phase responses at higher frequency. To describe the frequency coding property of unit cell, digitalized frequency sensitivity is proposed, in which the units are encoded with digits "0" and "1" to represent the low and high phase sensitivities, respectively. By this merit, two degrees of freedom, spatial coding and frequency coding, are obtained to control the EM energy radiations by a new class of frequency-spatial coding metamaterials. The above concepts and physical phenomena are confirmed by numerical simulations and experiments.
Permanent magnetic ferrite based power-tunable metamaterials
Energy Technology Data Exchange (ETDEWEB)
Zhang, Guanqiao; Lan, Chuwen [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Gao, Rui [High Temperature Thermochemistry Laboratory, Department of Mining and Materials Engineering, McGill University, Montreal, Quebec H3A 0C5 (Canada); Zhou, Ji, E-mail: zhouji@tsinghua.edu.cn [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)
2017-08-15
Highlights: • Power-tunable metamaterials based on barium permanent magnetic ferrite have been proposed and fabricated. • It is observed that resonant frequency of the array shifts upon altering the output power. • This kind of power-tunable behavior is due to the temperature rise as a result of FMR-induced heat buildup. • This work offers a practical idea to tune ferrite metamaterials besides magneto-tunability and thermal-tunability. - Abstract: Power-tunable metamaterials based on barium permanent magnetic ferrite have been proposed and fabricated in this research. Scattering parameter measurements confirm a shift in resonant frequency in correlation to changes in incident electromagnetic power within microwave frequency band. The tunable phenomenon represented by a blue-shift in transmission spectra in the metamaterials array can be attributed to a decrease in saturation magnetization resulting from FMR-induced temperature elevation upon resonant conditions. This power-dependent behavior offers a simple and practical route towards dynamically fine-tunable ferrite metamaterials.
Ultra-thin infrared metamaterial detector for multicolor imaging applications.
Montoya, John A; Tian, Zhao-Bing; Krishna, Sanjay; Padilla, Willie J
2017-09-18
The next generation of infrared imaging systems requires control of fundamental electromagnetic processes - absorption, polarization, spectral bandwidth - at the pixel level to acquire desirable information about the environment with low system latency. Metamaterial absorbers have sparked interest in the infrared imaging community for their ability to enhance absorption of incoming radiation with color, polarization and/or phase information. However, most metamaterial-based sensors fail to focus incoming radiation into the active region of a ultra-thin detecting element, thus achieving poor detection metrics. Here our multifunctional metamaterial absorber is directly integrated with a novel mid-wave infrared (MWIR) and long-wave infrared (LWIR) detector with an ultra-thin (~λ/15) InAs/GaSb Type-II superlattice (T2SL) interband cascade detector. The deep sub-wavelength metamaterial detector architecture proposed and demonstrated here, thus significantly improves the detection quantum efficiency (QE) and absorption of incoming radiation in a regime typically dominated by Fabry-Perot etalons. Our work evinces the ability of multifunctional metamaterials to realize efficient wavelength selective detection across the infrared spectrum for enhanced multispectral infrared imaging applications.
Seismic isolation of buildings using composite foundations based on metamaterials
Casablanca, O.; Ventura, G.; Garescı, F.; Azzerboni, B.; Chiaia, B.; Chiappini, M.; Finocchio, G.
2018-05-01
Metamaterials can be engineered to interact with waves in entirely new ways, finding application on the nanoscale in various fields such as optics and acoustics. In addition, acoustic metamaterials can be used in large-scale experiments for filtering and manipulating seismic waves (seismic metamaterials). Here, we propose seismic isolation based on a device that combines some properties of seismic metamaterials (e.g., periodic mass-in-mass systems) with that of a standard foundation positioned right below the building for isolation purposes. The concepts on which this solution is based are the local resonance and a dual-stiffness structure that preserves large (small) rigidity for compression (shear) effects. In other words, this paper introduces a different approach to seismic isolation by using certain principles of seismic metamaterials. The experimental demonstrator tested on the laboratory scale exhibits a spectral bandgap that begins at 4.5 Hz. Within the bandgap, it filters more than 50% of the seismic energy via an internal dissipation process. Our results open a path toward the seismic resilience of buildings and a critical infrastructure to shear seismic waves, achieving higher efficiency compared to traditional seismic insulators and passive energy-dissipation systems.
Imaging performance of an isotropic negative dielectric constant slab.
Shivanand; Liu, Huikan; Webb, Kevin J
2008-11-01
The influence of material and thickness on the subwavelength imaging performance of a negative dielectric constant slab is studied. Resonance in the plane-wave transfer function produces a high spatial frequency ripple that could be useful in fabricating periodic structures. A cost function based on the plane-wave transfer function provides a useful metric to evaluate the planar slab lens performance, and using this, the optimal slab dielectric constant can be determined.
Unstable drift eigenmode in slab geometry
International Nuclear Information System (INIS)
Tsotsonis, S.; Hirose, A.
1986-01-01
The unstable Pearlstein-Berk mode of drift waves in plane, sheared slab geometry has later been shown to be stable when electron Landau resonance is rigorously treated. Based on the variational method previously developed the authors have found that in addition to the absolutely stable Pearlstein-Berk mode, there exists an absolutely unstable eigenfunction characterized by ω ≤ ω/sub chemical bonde/, and weak ''radial'' dependence. Also, the growth rate, only weakly depends on the magnetic shear and ion/electron temperature ratio
Chen, M.; Kiser, E.; Niu, F.
2016-12-01
The nature of deep-focus earthquakes with depths greater than 300 km has long been controversial. Mechanisms that may promote brittle deformation at such depths include dehydration embrittlement, phase transformational faulting, and thermal runaway instabilities. Of these, the most commonly referenced mechanism—phase transformational faulting—involves the breakdown of metastable olivine within the core of a cold subducting slab. Seismic observations of the metastable olivine wedge, as well as its spatial relationship to deep-focus seismicity, are limited. Classical 1-D ray-theory based tomography images indicate that deep-focus hypocenters coincide with the highest wave speed anomalies within the slab, traditionally viewed as the slab's cold core. However, our latest full waveform tomography images of the Kuril, Japan, and Izu-Bonin slabs show systematically deep-focus earthquakes located near the top of high wave speed regions, with hypocentral or centroid locations determined by EHB, global CMT, or JMA. In order to reduce location bias in global CMT solutions due to unmodeled 3-D structure, we relocate tens of deep-focus earthquakes within the new 3-D structural model based on a full wavefield modeling code SPECFEM3D_GLOBE, with seismic waves simulated to the shortest period of 9 seconds. We also determine the centroid locations of high-frequency energy (0.8 Hz-2 Hz) from back-projection results of several large earthquakes to understand how rupture propagates within the slab. The spatial correlations between the 3-D wave speed model and high-precision centroid locations from both long period and high frequency seismic waves further indicate that the deep-focus earthquakes occur and propagate near the top of the subducting slab. We will discuss the constraints that these relationships place on the mechanism of deep-focus earthquakes.
Structural Test and Analysis of RC Slab After Fire Loading
International Nuclear Information System (INIS)
Chung, Chulhun; Im, Cho Rong; Park, Jaegyun
2013-01-01
In the present study the behavior of fire and the residual strength of fire-ignited RC slabs are investigated by experimental tests and numerical simulations. The fire tests of RC slabs were carried out in a furnace using the ISO 834 standard fire. The load capacity of the cooled RC slabs that were not loaded during the fire tests was evaluated by additional 3 point bending tests. The influence of the proportion of PP (polypropylene) fibers in the RC slabs on the structural behavior of the RC slabs after the fire loading was investigated. The results of the fire tests showed that the maximum temperature of concrete with PP fiber was lower than that of concrete without PP fiber. As the concrete was heated, the ultimate compressive strength decreased and the ultimate strain increased. The load-deflection relations of RC slabs after fire loading were compared by using existing stress-strain-temperature models. The comparison between the numerical analysis and the experimental tests showed that some numerical analyses were reliable and therefore, can be applied to evaluate the ultimate load of RC slabs after fire loading. The ultimate load capacity after cooling down the RC slabs without PP fiber showed a considerable reduction from that of the RC slabs with PP fiber
Structural Test and Analysis of RC Slab After Fire Loading
Energy Technology Data Exchange (ETDEWEB)
Chung, Chulhun; Im, Cho Rong; Park, Jaegyun [Dankook Univ., Yongin (Korea, Republic of)
2013-04-15
In the present study the behavior of fire and the residual strength of fire-ignited RC slabs are investigated by experimental tests and numerical simulations. The fire tests of RC slabs were carried out in a furnace using the ISO 834 standard fire. The load capacity of the cooled RC slabs that were not loaded during the fire tests was evaluated by additional 3 point bending tests. The influence of the proportion of PP (polypropylene) fibers in the RC slabs on the structural behavior of the RC slabs after the fire loading was investigated. The results of the fire tests showed that the maximum temperature of concrete with PP fiber was lower than that of concrete without PP fiber. As the concrete was heated, the ultimate compressive strength decreased and the ultimate strain increased. The load-deflection relations of RC slabs after fire loading were compared by using existing stress-strain-temperature models. The comparison between the numerical analysis and the experimental tests showed that some numerical analyses were reliable and therefore, can be applied to evaluate the ultimate load of RC slabs after fire loading. The ultimate load capacity after cooling down the RC slabs without PP fiber showed a considerable reduction from that of the RC slabs with PP fiber.
Tunable bandgaps in a deployable metamaterial
Nanda, Aditya; Karami, M. A.
2018-06-01
In this manuscript, we investigate deployable structures (such as solar arrays) and origami-inspired foldable structures as metamaterials capable of tunable wave manipulation. Specifically, we present a metamaterial whose bandgaps can be modulated by changing the fold angle of adjacent panels. The repeating unit cell of the structure consists of a beam (representing a panel) and a torsional spring (representing the folding mechanism). Two important cases are considered. Firstly, the fold angle (angle between adjacent beams), Ψ, is zero and only flexural waves propagate. In the second case, the fold angle is greater than zero (Ψ > 0). This causes longitudinal and transverse vibration to be coupled. FEM models are used to validate both these analyses. Increasing the fold angle was found to inflict notable changes to the wave transmission characteristics of the structure. In general, increasing the fold angles caused the bandwidth of bandgaps to increase. For the lowest four bandgaps we found bandwidth increases of 252 %, 177 %, 230 % and 163 % respectively at Ψ = 90 deg (relative to the bandwidths at Ψ = 0). In addition, non-trivial increases in bandwidth of the odd-numbered bandgaps occurs even at small fold angles-the bandwidth for the first and third bandgaps effectively double in size (increase by 100 %) at Ψ = 20 deg relative to those at Ψ = 0. This could have ramifications in the context of tunable wave manipulation and adaptive filtering. In addition, by expanding out the characteristic equation of transfer matrix for the straight structure, we prove that the upper band edge of the nth bandgap will always equal the nth simply supported natural frequency of the constituent beam. Further, we found that the ratio (EI/kt) is a pertinent parameter affecting the bandwidth of bandgaps. For low values of the ratio, effectively, no bandgap exists. For higher values of the ratio (EI/kt), we obtain a relatively large bandgap over which no waves propagate. This can
Coffered slabs as a perspective type of the reinforced concrete structures
Kibkalo Anton; Volkov Mikhail; Vodolagina Anna; Murgul Vera
2016-01-01
The article discusses coffered slabs. In this paper considered the technology of arrangement of this slabs. Cast-in-place and precast ways of construction of coffered slab are reviewed. Сast-in-place and precast coffered slabs has been analysed in this article. Among other things construction of coffered slabs has an economical and technical advantages.
Coffered slabs as a perspective type of the reinforced concrete structures
Directory of Open Access Journals (Sweden)
Kibkalo Anton
2016-01-01
Full Text Available The article discusses coffered slabs. In this paper considered the technology of arrangement of this slabs. Cast-in-place and precast ways of construction of coffered slab are reviewed. Сast-in-place and precast coffered slabs has been analysed in this article. Among other things construction of coffered slabs has an economical and technical advantages.
Anomalously Weak Scattering in Metal-Semiconductor Multilayer Hyperbolic Metamaterials
Directory of Open Access Journals (Sweden)
Hao Shen
2015-05-01
Full Text Available In contrast to strong plasmonic scattering from metal particles or structures in metal films, we show that patterns of arbitrary shape fabricated out of multilayer hyperbolic metamaterials become invisible within a chosen band of optical frequencies. This is due to anomalously weak scattering when the in-plane permittivity of the multilayer hyperbolic metamaterials is tuned to match with the surrounding medium. This new phenomenon is described theoretically and demonstrated experimentally by optical characterization of various patterns in Au-Si multilayer hyperbolic metamaterials. This anomalously weak scattering is insensitive to pattern sizes, shapes, and incident angles, and has potential applications in scattering cross-section engineering, optical encryption, low-observable conductive probes, and optoelectric devices.
Textile inspired flexible metamaterial with negative refractive index
Burgnies, L.; Lheurette, É.; Lippens, D.
2015-04-01
This work introduces metallo-dielectric woven fabric as a metamaterial for phase-front manipulation. Dispersion diagram as well as effective medium parameters retrieved from reflection and transmission coefficients point out negative values of refractive index. By numerical simulations, it is evidenced that a pair of meandered metallic wires, arranged in a top to bottom configuration, can yield to a textile metamaterial with simultaneously negative permittivity and permeability. While the effective negative permittivity stems from the metallic grid arrangement, resonating current loop resulting from the top to bottom configuration of two meandered metallic wires in near proximity produces magnetic activity with negative permeability. By adjusting the distance between pairs of metallic wires, the electric plasma frequency can be shifted to overlap the magnetic resonance. Finally, it is shown that the woven metamaterial is insensitive to the incident angle up to around 60°.
Forced underwater laminar flows with active magnetohydrodynamic metamaterials
Culver, Dean; Urzhumov, Yaroslav
2017-12-01
Theory and practical implementations for wake-free propulsion systems are proposed and proven with computational fluid dynamic modeling. Introduced earlier, the concept of active hydrodynamic metamaterials is advanced by introducing magnetohydrodynamic metamaterials, structures with custom-designed volumetric distribution of Lorentz forces acting on a conducting fluid. Distributions of volume forces leading to wake-free, laminar flows are designed using multivariate optimization. Theoretical indications are presented that such flows can be sustained at arbitrarily high Reynolds numbers. Moreover, it is shown that in the limit Re ≫102 , a fixed volume force distribution may lead to a forced laminar flow across a wide range of Re numbers, without the need to reconfigure the force-generating metamaterial. Power requirements for such a device are studied as a function of the fluid conductivity. Implications to the design of distributed propulsion systems underwater and in space are discussed.
Regression Methods for Ophthalmic Glucose Sensing Using Metamaterials
Directory of Open Access Journals (Sweden)
Philipp Rapp
2011-01-01
Full Text Available We present a novel concept for in vivo sensing of glucose using metamaterials in combination with automatic learning systems. In detail, we use the plasmonic analogue of electromagnetically induced transparency (EIT as sensor and evaluate the acquired data with support vector machines. The metamaterial can be integrated into a contact lens. This sensor changes its optical properties such as reflectivity upon the ambient glucose concentration, which allows for in situ measurements in the eye. We demonstrate that estimation errors below 2% at physiological concentrations are possible using simulations of the optical properties of the metamaterial in combination with an appropriate electrical circuitry and signal processing scheme. In the future, functionalization of our sensor with hydrogel will allow for a glucose-specific detection which is insensitive to other tear liquid substances providing both excellent selectivity and sensitivity.
Quantum metamaterials in the microwave and optical ranges
Energy Technology Data Exchange (ETDEWEB)
Zagoskin, Alexandre M. [Loughborough University, Department of Physics, Loughborough (United Kingdom); Moscow Institute for Steel and Alloys, Theoretical Physics and Quantum Technologies Department, Moscow (Russian Federation); Felbacq, Didier; Rousseau, Emmanuel [University of Montpellier, Laboratory Charles Coulomb UMR CNRS-UM 5221, Montpellier (France)
2016-12-15
Quantum metamaterials generalize the concept of metamaterials (artificial optical media) to the case when their optical properties are determined by the interplay of quantum effects in the constituent 'artificial atoms' with the electromagnetic field modes in the system. The theoretical investigation of these structures demonstrated that a number of new effects (such as quantum birefringence, strongly nonclassical states of light, etc.) are to be expected, prompting the efforts on their fabrication and experimental investigation. Here we provide a summary of the principal features of quantum metamaterials and review the current state of research in this quickly developing field, which bridges quantum optics, quantum condensed matter theory and quantum information processing. (orig.)
Gradient index metamaterials realized by drilling hole arrays
International Nuclear Information System (INIS)
Mei Zhonglei; Cui Tiejun; Bai Jing
2010-01-01
Gradient index metamaterials have wide applications in the microwave and optical fields. Based on the quasi-static theory, such materials at the microwave band have been realized by drilling hole arrays on ordinary dielectric materials. As applications of the gradient index metamaterials, novel devices including a 45 0 dielectric wave-bending structure, a 16 0 wave-steering lens and a microwave focusing lens are designed and fabricated. Field mapping measurements validate the proposed gradient index metamaterials and the device designs. The method can be directly and easily extended to the design of cloaks, various lenses, beam shifters and beam-steering devices. It can also be applied in the optical band as long as quasi-static conditions are satisfied. The method and the devices may find applications in integrated circuit systems.
An effective medium description of 'Swiss Rolls', a magnetic metamaterial
International Nuclear Information System (INIS)
Wiltshire, M C K; Pendry, J B; Williams, W; Hajnal, J V
2007-01-01
The 'Swiss Roll' metamaterial medium is well suited to operation in the radio frequency (RF) range, because it has a low resonant frequency and a strong magnetic response. Two prisms of this material, one hexagonal and one square, have been constructed and characterized both at the metamaterial's resonant frequency of 21.5 MHz and above it, where the effective permeability is strongly negative. A series of spatial resonances is observed in the field patterns on the surfaces of the prisms. Using an effective medium description, we have carried out both analytical and numerical modelling of the electromagnetic behaviour of the metamaterial, and find, within certain obvious limitations, extremely good agreement between the measured and modelled results
Tunable Multilayer Graphene Metamaterials for Terahertz/Infrared Waveguide Modulators
DEFF Research Database (Denmark)
Khromova, Irina; Andryieuski, Andrei; Lavrinenko, Andrei
regimes of multilayer graphene-dielectric artificial metamaterials. The interplay between interband and intraband transitions in graphene allows converting the structure into a transparent and/or electromagnetically dense artificial medium. The gate voltage can be used to electrically control...... the concentration of carriers in the graphene sheets and, thus, efficiently change the dispersion of the whole structure. Placed inside a hollow waveguide, a multilayer graphene/dielectric metamaterial provides high-speed modulation and tunable bandpass filtering. The absence of scattered radiation enables dense...... the latter to shift its central frequency by 1:25% per every meV graphene Fermi energy change. We believe that graphene-dielectric multilayer metamaterials will constitute the functional platform for THz-IR waveguide-integrated devices....
Performance of terahertz metamaterials as high-sensitivity sensor
He, Yanan; Zhang, Bo; Shen, Jingling
2017-09-01
A high-sensitivity sensor based on the resonant transmission characteristics of terahertz (THz) metamaterials was investigated, with the proposal and fabrication of rectangular bar arrays of THz metamaterials exhibiting a period of 180 μm on a 25 μm thick flexible polyimide. Varying the size of the metamaterial structure revealed that the length of the rectangular unit modulated the resonant frequency, which was verified by both experiment and simulation. The sensing characteristics upon varying the surrounding media in the sample were tested by simulation and experiment. Changing the surrounding medium from that of air to that of alcohol or oil produced resonant frequency redshifts of 80 GHz or 150 GHz, respectively, which indicates that the sensor possessed a high sensitivity of 667 GHz per unit of refractive index. Finally, the influence of the sample substrate thickness on the sensor sensitivity was investigated by simulation. It may be a reference for future sensor design.
Radiative transfer model for contaminated rough slabs.
Andrieu, François; Douté, Sylvain; Schmidt, Frédéric; Schmitt, Bernard
2015-11-01
We present a semi-analytical model to simulate the bidirectional reflectance distribution function (BRDF) of a rough slab layer containing impurities. This model has been optimized for fast computation in order to analyze massive hyperspectral data by a Bayesian approach. We designed it for planetary surface ice studies but it could be used for other purposes. It estimates the bidirectional reflectance of a rough slab of material containing inclusions, overlaying an optically thick media (semi-infinite media or stratified media, for instance granular material). The inclusions are assumed to be close to spherical and constituted of any type of material other than the ice matrix. It can be any other type of ice, mineral, or even bubbles defined by their optical constants. We assume a low roughness and we consider the geometrical optics conditions. This model is thus applicable for inclusions larger than the considered wavelength. The scattering on the inclusions is assumed to be isotropic. This model has a fast computation implementation and thus is suitable for high-resolution hyperspectral data analysis.
Metamaterial based embedded acoustic filters for structural applications
Directory of Open Access Journals (Sweden)
Hongfei Zhu
2013-09-01
Full Text Available We investigate the use of acoustic metamaterials to design structural materials with frequency selective characteristics. By exploiting the properties of acoustic metamaterials, we tailor the propagation characteristics of the host structure to effectively filter the constitutive harmonics of an incoming broadband excitation. The design approach exploits the characteristics of acoustic waveguides coupled by cavity modes. By properly designing the cavity we can tune the corresponding resonant mode and, therefore, coupling the waveguide at a prescribed frequency. This structural design can open new directions to develop broadband passive vibrations and noise control systems fully integrated in structural components.
Dual band metamaterial perfect absorber based on Mie resonances
Energy Technology Data Exchange (ETDEWEB)
Liu, Xiaoming; Lan, Chuwen; Li, Bo; Zhou, Ji, E-mail: zhouji@tsinghua.edu.cn [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Bi, Ke [School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Zhao, Qian [State Key Lab of Tribology, Department of Precision Instruments and Mechanology, Tsinghua University, Beijing 100084 (China)
2016-08-08
We numerically and experimentally demonstrated a polarization insensitive dual-band metamaterial perfect absorber working in wide incident angles based on the two magnetic Mie resonances of a single dielectric “atom” with simple structure. Two absorption bands with simulated absorptivity of 99% and 96%, experimental absorptivity of 97% and 94% at 8.45 and 11.97 GHz were achieved due to the simultaneous magnetic and electric resonances in dielectric “atom” and copper plate. Mie resonances of dielectric “atom” provide a simple way to design metamaterial perfect absorbers with high symmetry.
Scheme for achieving coherent perfect absorption by anisotropic metamaterials
Zhang, Xiujuan
2017-02-22
We propose a unified scheme to achieve coherent perfect absorption of electromagnetic waves by anisotropic metamaterials. The scheme describes the condition on perfect absorption and offers an inverse design route based on effective medium theory in conjunction with retrieval method to determine practical metamaterial absorbers. The scheme is scalable to frequencies and applicable to various incident angles. Numerical simulations show that perfect absorption is achieved in the designed absorbers over a wide range of incident angles, verifying the scheme. By integrating these absorbers, we further propose an absorber to absorb energy from two coherent point sources.
Tunable waveguide bends with graphene-based anisotropic metamaterials
Chen, Zhao-xian; Chen, Ze-guo; Ming, Yang; Wu, Ying; Lu, Yan-qing
2016-01-01
We design tunable waveguide bends filled with graphene-based anisotropic metamaterials to achieve a nearly perfect bending effect. The anisotropic properties of the metamaterials can be described by the effective medium theory. The nearly perfect bending effect is demonstrated by finite element simulations of various structures with different bending curvatures and shapes. This effect is attributed to zero effective permittivity along the direction of propagation and matched effective impedance at the interfaces between the bending part and the dielectric waveguides. We envisage that the design will be applicable in the far-infrared and terahertz frequency ranges owing to the tunable dielectric responses of graphene.
Smolyaninova, Vera N; Yost, Bradley; Zander, Kathryn; Osofsky, M S; Kim, Heungsoo; Saha, Shanta; Greene, R L; Smolyaninov, Igor I
2014-12-04
A recent proposal that the metamaterial approach to dielectric response engineering may increase the critical temperature of a composite superconductor-dielectric metamaterial has been tested in experiments with compressed mixtures of tin and barium titanate nanoparticles of varying composition. An increase of the critical temperature of the order of ΔT ~ 0.15 K compared to bulk tin has been observed for 40% volume fraction of barium titanate nanoparticles. Similar results were also obtained with compressed mixtures of tin and strontium titanate nanoparticles.
Smolyaninova, Vera N.; Yost, Bradley; Zander, Kathryn; Osofsky, M. S.; Kim, Heungsoo; Saha, Shanta; Greene, R. L.; Smolyaninov, Igor I.
2014-12-01
A recent proposal that the metamaterial approach to dielectric response engineering may increase the critical temperature of a composite superconductor-dielectric metamaterial has been tested in experiments with compressed mixtures of tin and barium titanate nanoparticles of varying composition. An increase of the critical temperature of the order of ΔT ~ 0.15 K compared to bulk tin has been observed for 40% volume fraction of barium titanate nanoparticles. Similar results were also obtained with compressed mixtures of tin and strontium titanate nanoparticles.
Anisotropic mass density by two-dimensional acoustic metamaterials
Energy Technology Data Exchange (ETDEWEB)
Torrent, Daniel; Sanchez-Dehesa, Jose [Wave Phenomena Group, Department of Electronic Engineering, Polytechnic University of Valencia, C/Camino de Vera s/n, E-46022 Valencia (Spain)], E-mail: jsdehesa@upvnet.upv.es
2008-02-15
We show that specially designed two-dimensional arrangements of full elastic cylinders embedded in a nonviscous fluid or gas define (in the homogenization limit) a new class of acoustic metamaterials characterized by a dynamical effective mass density that is anisotropic. Here, analytic expressions for the dynamical mass density and the effective sound velocity tensors are derived in the long wavelength limit. Both show an explicit dependence on the lattice filling fraction, the elastic properties of cylinders relative to the background, their positions in the unit cell, and their multiple scattering interactions. Several examples of these metamaterials are reported and discussed.
Tunable waveguide bends with graphene-based anisotropic metamaterials
Chen, Zhao-xian
2016-01-15
We design tunable waveguide bends filled with graphene-based anisotropic metamaterials to achieve a nearly perfect bending effect. The anisotropic properties of the metamaterials can be described by the effective medium theory. The nearly perfect bending effect is demonstrated by finite element simulations of various structures with different bending curvatures and shapes. This effect is attributed to zero effective permittivity along the direction of propagation and matched effective impedance at the interfaces between the bending part and the dielectric waveguides. We envisage that the design will be applicable in the far-infrared and terahertz frequency ranges owing to the tunable dielectric responses of graphene.
Electromagnetically Induced Transparency in Symmetric Planar Metamaterial at THz Wavelengths
Directory of Open Access Journals (Sweden)
Abdelwaheb Ourir
2015-03-01
Full Text Available We report the experimental observation and the evidence of the analogue of electromagnetically-induced transparency (EIT in a symmetric planar metamaterial. This effect has been obtained in the THz range thanks to a destructive Fano-interference between the two first modes of an array of multi-gap split ring resonators deposited on a silicon substrate. This structure is a planar thin film material with four-fold symmetry. Thanks to this property, a polarization-independent transmission has been achieved. The proposed metamaterial is well adapted to variety of slow-light applications in the infrared and optical range.
Looking into meta-atoms of plasmonic nanowire metamaterial
Tsai, Kuntong
2014-09-10
Nanowire-based plasmonic metamaterials exhibit many intriguing properties related to the hyperbolic dispersion, negative refraction, epsilon-near-zero behavior, strong Purcell effect, and nonlinearities. We have experimentally and numerically studied the electromagnetic modes of individual nanowires (meta-atoms) forming the metamaterial. High-resolution, scattering-type near-field optical microscopy has been used to visualize the intensity and phase of the modes. Numerical and analytical modeling of the mode structure is in agreement with the experimental observations and indicates the presence of the nonlocal response associated with cylindrical surface plasmons of nanowires.
Babinet principle applied to the design of metasurfaces and metamaterials.
Falcone, F; Lopetegi, T; Laso, M A G; Baena, J D; Bonache, J; Beruete, M; Marqués, R; Martín, F; Sorolla, M
2004-11-05
The electromagnetic theory of diffraction and the Babinet principle are applied to the design of artificial metasurfaces and metamaterials. A new particle, the complementary split rings resonator, is proposed for the design of metasurfaces with high frequency selectivity and planar metamaterials with a negative dielectric permittivity. Applications in the fields of frequency selective surfaces and polarizers, as well as in microwave antennas and filter design, can be envisaged. The tunability of all these devices by an applied dc voltage is also achievable if these particles are etched on the appropriate substrate.
Hazardous materials sensing: An electrical metamaterial approach
Energy Technology Data Exchange (ETDEWEB)
Rawat, Vaishali; Kitture, Rohini [Department of Applied Physics, Defence Institute of Advanced Technology (DIAT), Girinagar, Pune 411025 (India); Kumari, Dimple [Department of Applied Chemistry, Defence Institute of Advanced Technology (DIAT), Girinagar, Pune 411025 (India); Rajesh, Harsh [Society for Applied Microwave Electronics Engineering and Research (SAMEER), IIT-Bombay Campus, Powai, Mumbai (India); Banerjee, Shaibal [Department of Applied Chemistry, Defence Institute of Advanced Technology (DIAT), Girinagar, Pune 411025 (India); Kale, S.N., E-mail: sangeetakale2004@gmail.com [Department of Applied Physics, Defence Institute of Advanced Technology (DIAT), Girinagar, Pune 411025 (India)
2016-10-01
Metamaterials are recently emerging materials exhibiting amazing properties such as extremely miniaturized antennas, waveguides, optical couplers, multiplexers and filters. Such structures also respond to the variation in their ambient conditions when exposed to toxic and hazardous materials, which are especially hazardous to human health. Through this manuscript, we document our studies on three different high energy materials; namely 2- bromo-2nitropropane-1,3-diol (BNP), bis (1,3-diazido prop-2-yl) malonate (AM) and bis (1,3-diazido prop-2-yl) glutarate (AG). A Complementary Split Ring Resonator has been fabricated at resonant frequency of 4.48 GHz using copper on FR4 substrate. The energetic materials were exposed to the sensor and results were monitored using Vector Network Analyzer. The volume of liquids was varied from 0.5 µL to 3 µL. Prominent and explicit shifts in the transmission resonant frequency and amplitude was seen as a signature of each energetic material. The signatures were not only sensitive to the specific toxic group in the material but also to the volume of the liquid subjected to this sensor. The results are correlated with the simulation results, basic chemistry of the materials and permittivity measurements. The ultra-fast reversibility and repeatability, with good sensitivity and specificity of these devices project their applications in sensitive locations, particularly to combat for human security and health issues.
Controlling enhanced absorption in graphene metamaterial
Zhou, Qihui; Liu, Peiguo; Bian, Li-an; Liu, Hanqing; Liu, Chenxi; Chen, Genghui
2018-04-01
In this paper, a controllable terahertz (THz) metamaterial absorber (MA) is designed with the circuit analog method. Taking advantage of the patterned graphene on SiO2/doped Si/polyimide substrates with a gold reflector, the controllable MA achieves perfect absorption at 0.75 THz. The chemical potential of graphene is regulated by controlling the voltage between graphene and doped Si layers. As the chemical potential varies from 0 eV to 0.5 eV, the MA is changed from reflection (0.99). The distributions of surface current and electric field are illustrated to analyze the resonant characteristic of patterned graphene. According to the resonant characteristic, we introduce patterned graphene elements with different dimension in a unit cell, which effectively extends the effective absorption bandwidth (absorption > 0 . 9) from 0.67-0.93 THz to 0.52-0.95 THz. Moreover, replacing part of the graphene structure with gold, the switchable MA is turned into a frequency tunable MA. The absorption peak moves from 0.62 THz to 0.92 THz as the chemical potential increases from 0.1 eV to 0.5 eV. These designs overcome limitation of traditional absorbers and exhibit great potentials in many practical applications.
Photonics surface waves on metamaterials interfaces.
Takayama, Osamu; Bogdanov, Andrey; Lavrinenko, Andrei V
2017-09-12
A surface wave (SW) in optics is a light wave, which is supported at an interface of two dissimilar media and propagates along the interface with its field amplitude exponentially decaying away from the boundary. The research on surface waves has been flourishing in last few decades thanks to their unique properties of surface sensitivity and field localization. These features have resulted in applications in nano-guiding, sensing, light-trapping and imaging based on the near-field techniques, contributing to the establishment of the nanophotonics as a field of research. Up to present, a wide variety of surface waves has been investigated in numerous material and structure settings. This paper reviews the recent progress and development in the physics of SWs localized at metamaterial interfaces, as well as bulk media in order to provide broader perspectives on optical surface waves in general. For each type of the surface waves, we discuss material and structural platforms. We mainly focus on experimental realizations in the visible and near-infrared wavelength ranges. We also address existing and potential application of SWs in chemical and biological sensing, and experimental excitation and characterization methods. © 2017 IOP Publishing Ltd.
Static non-reciprocity in mechanical metamaterials.
Coulais, Corentin; Sounas, Dimitrios; Alù, Andrea
2017-02-23
Reciprocity is a general, fundamental principle governing various physical systems, which ensures that the transfer function-the transmission of a physical quantity, say light intensity-between any two points in space is identical, regardless of geometrical or material asymmetries. Breaking this transmission symmetry offers enhanced control over signal transport, isolation and source protection. So far, devices that break reciprocity (and therefore show non-reciprocity) have been mostly considered in dynamic systems involving electromagnetic, acoustic and mechanical wave propagation associated with fields varying in space and time. Here we show that it is possible to break reciprocity in static systems, realizing mechanical metamaterials that exhibit vastly different output displacements under excitation from different sides, as well as one-way displacement amplification. This is achieved by combining large nonlinearities with suitable geometrical asymmetries and/or topological features. In addition to extending non-reciprocity and isolation to statics, our work sheds light on energy propagation in nonlinear materials with asymmetric crystalline structures and topological properties. We anticipate that breaking reciprocity will open avenues for energy absorption, conversion and harvesting, soft robotics, prosthetics and optomechanics.
Acoustic cloak/anti-cloak device with realizable passive/active metamaterials
International Nuclear Information System (INIS)
Shen Huijie; Wen Jihong; Yu Dianlong; Cai Li; Wen Xisen; Païdoussis, Michael P.
2012-01-01
Utilizing the coordinate transformation method, together with exchange of variables between Maxwell's equations and the acoustic equations with axial-invariance in cylindrical coordinates, the acoustic parameters (anisotropic density and scalar bulk modulus) for an ideal cloak and an ideal anti-cloak are obtained. An anti-cloak allows the inside object to ‘see’ outside, but to be invisible from outside; whereas a cloak is invisible from outside, but ‘blind’ from inside. Utilizing a scattering algorithm developed in this paper, the pressure field calculation of the cloak/anti-cloak is performed and the concepts and characteristics of the acoustic cloak/anti-cloak are revisited. To be more easily achievable experimentally, a multilayered cloak/anti-cloak model with homogeneous isotropic materials is introduced, and its corresponding pressure distributions are calculated. Also, the total scattering cross-section curves for the multilayered cloak and anti-cloak over a certain frequency range are presented and compared. Finally, an active acoustic metamaterial made up of piezo-diaphragm cavity arrays is designed for the cloak/anti-cloak. Taking into account the coupling between adjacent cavity cells, a multi-control strategy for piezo-diaphragm cavity arrays is exploited, rendering possible wide ranges of effective densities and effective bulk moduli (or acoustic speeds), or even double-negative transformation medium (i.e. both density and bulk modulus parameters are negative). With such sets of active acoustic metamaterials, the cloak and anti-cloak may become both theoretically and experimentally realizable. (paper)
Radon Sub-slab Suctioning System Integrated in Insulating Layer
DEFF Research Database (Denmark)
Rasmussen, Torben Valdbjørn
2013-01-01
This poster presents a new radon sub-slab suctioning system. This system makes use of a grid of horizontal pressurised air ducts located within the lower part of the rigid insulation layer of the ground floor slab. For this purpose a new system of prefabricated lightweight elements is introduced...
Ultimate deformation capacity of reinforced concrete slabs underblast load
Doormaal, J.C.A.M. van; Weerheijm, J.
1996-01-01
In this paper a test method to determine the deformation capacity and the resistance-deformation curve of blast-loaded slabs is described. This method was developed at TNO-PML. The method has been used to determine the ultimate deformation capacity of some simply supported reinforced concrete slabs
On Early Age Crack Formation in FRC Slabs
DEFF Research Database (Denmark)
Olesen, John Forbes; Stang, Henrik
1997-01-01
The problem of early age crack formation in FRC slabs due to restrained temperature and shrinkage deformations, is given an analytical treatment. A model taking into account the ageing properties of the tensile softening curve and the continued development in the temperature and shrinkage...... deformations after crack initiation, is presented. Based on this model a design strategy for FRC slabs is outlined....
Surface Waves Propagating on Grounded Anisotropic Dielectric Slab
Directory of Open Access Journals (Sweden)
Zhuozhu Chen
2018-01-01
Full Text Available This paper investigates the characteristics of surface waves propagating on a grounded anisotropic dielectric slab. Distinct from the existing analyses that generally assume that the fields of surface wave uniformly distribute along the transverse direction of the infinitely large grounded slab, our method takes into account the field variations along the transverse direction of a finite-width slab. By solving Maxwell’s equations in closed-form, it is revealed that no pure transverse magnetic (TM or transverse electric (TE mode exists if the fields are non-uniformly distributed along the transverse direction of the grounded slab. Instead, two hybrid modes, namely quasi-TM and quasi-TE modes, are supported. In addition, the propagation characteristics of two hybrid modes supported by the grounded anisotropic slab are analyzed in terms of the slab thickness, slab width, as well as the relative permittivity tensor of the anisotropic slab. Furthermore, different methods are employed to compare the analyses, as well as to validate our derivations. The proposed method is very suitable for practical engineering applications.
Evolution and diversity of subduction zones controlled by slab width
Schellart, W. P.; Freeman, J.A.; Stegman, D. R.; Moresi, L.; May, D.
2007-01-01
Subducting slabs provide the main driving force for plate motion and flow in the Earth's mantle, and geodynamic, seismic and geochemical studies offer insight into slab dynamics and subduction-induced flow. Most previous geodynamic studies treat subduction zones as either infinite in trench-parallel
Storm-time slab thickness at low latitudes
International Nuclear Information System (INIS)
Chauhan, N.S.; Gurm, H.S.
1981-01-01
The ATS-6 data for a period of 1975-76 is used for the study of slab thickness during two moderate storms (Ksub(p) - ) around the crest of the anomaly, Ahmedabad and a very great (Ksub(p) + ) outside the equatorial anomaly region, Delhi. While at Ahmedabad, on the average, the slab thickness is found to be above the frequency. Comparison of slab thickness with foF2 and the equatorial magnetic record (for Ahmedabad only) shows that the foF2 changes alone cannot be held responsible for the slab thickness variation and thus entry of the plasma flux from the plasmasphere cannot be ruled out. The pressure variation effect of storm-time heating on the slab thickness at Ahmedabad is that even for Ksub(p)=8, the thermal expansion and the contraction effects are unable to explain complete quantitative and qualitative features of the observations
Shear strength of end slabs of prestressed concrete reactor vessels
International Nuclear Information System (INIS)
Cheung, K.C.; Gotschall, H.L.; Liu, T.C.
1975-01-01
Prestressed concrete reactor vessels (PCRV's) have been adopted for primary containments in most large high-temperature gas-cooled reactor installations. The most common configuration for PCRVs is a right-vertical cylinder with thick end slabs. In order to assess the integrity of a PCRV it is necessary to predict the ultimate strength of the end slabs. The complexity of the basic mechanism of shear failure in the PCRV end slabs has thus far prohibited the development of a completely analytical solution. However, many experimental investigations of PCRV end slabs have been conducted over the past decade. This information makes it possible to establish empirical formulae for the ultimate strength of PCRV end slabs. The basis and development of an empirical shear-flexure interaction expression is presented. (Auth.)
Analysis of Meniscus Fluctuation in a Continuous Casting Slab Mold
Zhang, Kaitian; Liu, Jianhua; Cui, Heng; Xiao, Chao
2018-03-01
A water model of slab mold was established to analyze the microscopic and macroscopic fluctuation of meniscus. The fast Fourier transform and wavelet entropy were adopted to analyze the wave amplitude, frequency, and components of fluctuation. The flow patterns under the meniscus were measured by using particle image velocimetry measurement and then the mechanisms of meniscus fluctuation were discussed. The results reflected that wavelet entropy had multi-scale and statistical properties, and it was suitable for the study of meniscus fluctuation details both in time and frequency domain. The basic wave, frequency of which exceeding 1 Hz in the condition of no mold oscillation, was demonstrated in this work. In fact, three basic waves were found: long-wave with low frequency, middle-wave with middle frequency, and short-wave with high frequency. In addition, the upper roll flow in mold had significant effect on meniscus fluctuation. When the position of flow impinged was far from the meniscus, long-wave dominated the fluctuation and the stability of meniscus was enhanced. However, when the velocity of flow was increased, the short-wave dominated the meniscus fluctuation and the meniscus stability was decreased.
Untangling Slab Dynamics Using 3-D Numerical and Analytical Models
Holt, A. F.; Royden, L.; Becker, T. W.
2016-12-01
Increasingly sophisticated numerical models have enabled us to make significant strides in identifying the key controls on how subducting slabs deform. For example, 3-D models have demonstrated that subducting plate width, and the related strength of toroidal flow around the plate edge, exerts a strong control on both the curvature and the rate of migration of the trench. However, the results of numerical subduction models can be difficult to interpret, and many first order dynamics issues remain at least partially unresolved. Such issues include the dominant controls on trench migration, the interdependence of asthenospheric pressure and slab dynamics, and how nearby slabs influence each other's dynamics. We augment 3-D, dynamically evolving finite element models with simple, analytical force-balance models to distill the physics associated with subduction into more manageable parts. We demonstrate that for single, isolated subducting slabs much of the complexity of our fully numerical models can be encapsulated by simple analytical expressions. Rates of subduction and slab dip correlate strongly with the asthenospheric pressure difference across the subducting slab. For double subduction, an additional slab gives rise to more complex mantle pressure and flow fields, and significantly extends the range of plate kinematics (e.g., convergence rate, trench migration rate) beyond those present in single slab models. Despite these additional complexities, we show that much of the dynamics of such multi-slab systems can be understood using the physics illuminated by our single slab study, and that a force-balance method can be used to relate intra-plate stress to viscous pressure in the asthenosphere and coupling forces at plate boundaries. This method has promise for rapid modeling of large systems of subduction zones on a global scale.
Infinite slab-shield dose calculations
International Nuclear Information System (INIS)
Russell, G.J.
1989-01-01
I calculated neutron and gamma-ray equivalent doses leaking through a variety of infinite (laminate) slab-shields. In the shield computations, I used, as the incident neutron spectrum, the leakage spectrum (<20 MeV) calculated for the LANSCE tungsten production target at 90 degree to the target axis. The shield thickness was fixed at 60 cm. The results of the shield calculations show a minimum in the total leakage equivalent dose if the shield is 40-45 cm of iron followed by 20-15 cm of borated (5% B) polyethylene. High-performance shields can be attained by using multiple laminations. The calculated dose at the shield surface is very dependent on shield material. 4 refs., 4 figs., 1 tab
LASERS: A cryogenic slab CO laser
Ionin, Andrei A.; Kozlov, A. Yu; Seleznev, L. V.; Sinitsyn, D. V.
2009-03-01
A compact capacitive transverse RF-discharge-pumped slab CO laser with cryogenically cooled electrodes, which operates both in the cw and repetitively pulsed regimes, is fabricated. The laser operation is studied in the free running multifrequency regime at the vibrational - rotational transitions of the fundamental (V + 1 → V) vibrational bands of the CO molecule in the spectral region from 5.1 to 5.4 μm. Optimal operation conditions (gas mixture composition and pressure, RF pump parameters) are determined. It is shown that only gas mixtures with a high content of oxygen (up to 20% with respect to the concentration of CO molecules) can be used as an active medium of this laser. It is demonstrated that repetitively pulsed pumping is more efficient compared to cw pumping. In this case, quasi-cw lasing regime can be obtained. The maximum average output power of ~12 W was obtained for this laser operating on fundamental bands and its efficiency achieved ~14 %. The frequency-selective operation regime of the slab RF-discharge-pumped CO laser was realised at ~ 100 laser lines in the spectral region from 5.0 to 6.5 μm with the average output power of up to several tens of milliwatts in each line. Lasing at the transitions of the first vibrational overtone (V + 2 → V) of the CO molecule is obtained in the spectral region from 2.5 to 3.9 μm. The average output power of the overtone laser achieved 0.3 W. All the results were obtained without the forced gas mixture exchange in the discharge chamber. Under fixed experimental conditions, repetitively pulsed lasing (with fluctuations of the output characteristics no more than ±10 %) was stable for more than an hour.
Hybrid plasmonic/semiconductor nanoparticle monolayer assemblies as hyperbolic metamaterials
DEFF Research Database (Denmark)
Zhukovsky, Sergei; Ozel, Tuncay; Mutlugun, Evren
2014-01-01
effective permittivity tensor of the structure. This results in increased photonic density of states and strong enhancement of quantum dot luminescence, in line with recent experimental results. Our findings demonstrate that hyperbolic metamaterials can increase the radiative decay rate of emission centers...
Highly-stretchable 3D-architected Mechanical Metamaterials
Jiang, Yanhui; Wang, Qiming
2016-09-01
Soft materials featuring both 3D free-form architectures and high stretchability are highly desirable for a number of engineering applications ranging from cushion modulators, soft robots to stretchable electronics; however, both the manufacturing and fundamental mechanics are largely elusive. Here, we overcome the manufacturing difficulties and report a class of mechanical metamaterials that not only features 3D free-form lattice architectures but also poses ultrahigh reversible stretchability (strain > 414%), 4 times higher than that of the existing counterparts with the similar complexity of 3D architectures. The microarchitected metamaterials, made of highly stretchable elastomers, are realized through an additive manufacturing technique, projection microstereolithography, and its postprocessing. With the fabricated metamaterials, we reveal their exotic mechanical behaviors: Under large-strain tension, their moduli follow a linear scaling relationship with their densities regardless of architecture types, in sharp contrast to the architecture-dependent modulus power-law of the existing engineering materials; under large-strain compression, they present tunable negative-stiffness that enables ultrahigh energy absorption efficiencies. To harness their extraordinary stretchability and microstructures, we demonstrate that the metamaterials open a number of application avenues in lightweight and flexible structure connectors, ultraefficient dampers, 3D meshed rehabilitation structures and stretchable electronics with designed 3D anisotropic conductivity.
Auxetic Mechanical Metamaterials to Enhance Sensitivity of Stretchable Strain Sensors.
Jiang, Ying; Liu, Zhiyuan; Matsuhisa, Naoji; Qi, Dianpeng; Leow, Wan Ru; Yang, Hui; Yu, Jiancan; Chen, Geng; Liu, Yaqing; Wan, Changjin; Liu, Zhuangjian; Chen, Xiaodong
2018-03-01
Stretchable strain sensors play a pivotal role in wearable devices, soft robotics, and Internet-of-Things, yet these viable applications, which require subtle strain detection under various strain, are often limited by low sensitivity. This inadequate sensitivity stems from the Poisson effect in conventional strain sensors, where stretched elastomer substrates expand in the longitudinal direction but compress transversely. In stretchable strain sensors, expansion separates the active materials and contributes to the sensitivity, while Poisson compression squeezes active materials together, and thus intrinsically limits the sensitivity. Alternatively, auxetic mechanical metamaterials undergo 2D expansion in both directions, due to their negative structural Poisson's ratio. Herein, it is demonstrated that such auxetic metamaterials can be incorporated into stretchable strain sensors to significantly enhance the sensitivity. Compared to conventional sensors, the sensitivity is greatly elevated with a 24-fold improvement. This sensitivity enhancement is due to the synergistic effect of reduced structural Poisson's ratio and strain concentration. Furthermore, microcracks are elongated as an underlying mechanism, verified by both experiments and numerical simulations. This strategy of employing auxetic metamaterials can be further applied to other stretchable strain sensors with different constituent materials. Moreover, it paves the way for utilizing mechanical metamaterials into a broader library of stretchable electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Plasmonic Nanocone Arrays as Photoconductive and Photovoltaic Metamaterials
DEFF Research Database (Denmark)
Zhukovsky, Sergei; Babicheva, Viktoriia; Evlyuknin, Andrey B.
2014-01-01
Photoconductive and photovolta ic properties of metamaterials comprising plasmonic nanocone arrays embedded in a semiconductor matrix are studied. Under uniform plane-wave illumination, directed photocurrent and electromotive force arise ne ar asymmetrically shaped nanocones. The resulting giant...... photogalvanic effect is a plasmonic analogue of the bulk photovoltaic effect in ferroelectrics....
Add-on unidirectional elastic metamaterial plate cloak
Lee, Min Kyung; Kim, Yoon Young
2016-02-01
Metamaterial cloaks control the propagation of waves to make an object invisible or insensible. To manipulate elastic waves in space, a metamaterial cloak is typically embedded in a base system that includes or surrounds a target object. The embedding is undesirable because it structurally weakens or permanently alters the base system. In this study, we propose a new add-on metamaterial elastic cloak that can be placed over and mechanically coupled with a base structure without embedding. We designed an add-on type annular metamaterial plate cloak through conformal mapping, fabricated it and performed cloaking experiments in a thin-plate with a hole. Experiments were performed in a thin plate by using the lowest symmetric Lamb wave centered at 100 kHz. As a means to check the cloaking performance of the add-on elastic plate cloak, possibly as a temporary stress reliever or a so-called “stress bandage”, the degree of stress concentration mitigation and the recovery from the perturbed wave field due to a hole were investigated.
Chiral metamaterials characterisation using the wave propagation retrieval method
DEFF Research Database (Denmark)
Andryieuski, Andrei; Lavrinenko, Andrei; Malureanu, Radu
2010-01-01
In this presentation we extend the wave propagation method for the retrieval of the effective properties to the case of chiral metamaterials with circularly polarised eigenwaves. The method is unambiguous, simple and provides bulk effective parameters. Advantages and constraints are discussed...
The wave attenuation mechanism of the periodic local resonant metamaterial
Chang, I.-Ling; Liang, Zhen-Xian; Kao, Hao-Wei; Chang, Shih-Hsiang; Yang, Chih-Ying
2018-01-01
This research discusses the wave propagation behavior and attenuation mechanism of the elastic metamaterial with locally resonant sub-structure. The dispersion relation of the single resonance system, i.e., periodic spring mass system with sub-structure, could be derived based on lattice dynamics and the band gap could be easily identified. The dynamically equivalent properties, i.e., mass and elastic property, of the single resonance system are derived and found to be frequency dependent. Negative effective properties are found in the vicinity of the local resonance. It is examined whether the band gap always coincides with the frequency range of negative effective properties. The wave attenuation mechanism and the characteristic dynamic behavior of the elastic metamaterial are also studied from the energy point of view. From the analysis, it is clarified that the coupled Bragg-resonance band gap is much wider than the narrow-banded local resonance and the corresponding effective material properties at band gap could be either positive or negative. However, the band gap is totally overlapping with the frequency range of negative effective properties for the metamaterial with band gap purely caused by local resonance. The presented analysis can be extended to other forms of elastic metamaterials involving periodic resonator structures.
Homogenization of metamaterials: Parameters retrieval methods and intrinsic problems
DEFF Research Database (Denmark)
Andryieuski, Andrei; Malureanu, Radu; Lavrinenko, Andrei
2010-01-01
Metamaterials (MTMs) claim a lot of attention worldwide. Description of the MTMs in terms of effective parameters is a simple and useful tool for characterisation of their electromagnetic properties. So a reliable effective parameters restoration method is on demand. In this paper we report about...
Wave propagation phenomena in metamaterials for retrieving of effective parameters
DEFF Research Database (Denmark)
Andryieuski, Andrei; Malureanu, Radu; Ha, S.
2011-01-01
In the talk we give an overview of the developed restoration procedures and discuss their pros and cons in connection of assigning effective parameters (EP) to metamaterials (MMs). There are plenty of notorious physical phenomena preserving the unambiguous retrieving of EP, like strong coupling...
Broadband low-frequency sound isolation by lightweight adaptive metamaterials
Liao, Yunhong; Chen, Yangyang; Huang, Guoliang; Zhou, Xiaoming
2018-03-01
Blocking broadband low-frequency airborne noises is highly desirable in lots of engineering applications, while it is extremely difficult to be realized with lightweight materials and/or structures. Recently, a new class of lightweight adaptive metamaterials with hybrid shunting circuits has been proposed, demonstrating super broadband structure-borne bandgaps. In this study, we aim at examining their potentials in broadband sound isolation by establishing an analytical model that rigorously combines the piezoelectric dynamic couplings between adaptive metamaterials and acoustics. Sound transmission loss of the adaptive metamaterial is investigated with respect to both the frequency and angular spectrum to demonstrate their sound-insulation effects. We find that efficient sound isolation can indeed be pursued in the broadband bi-spectrum for not only the case of the small resonator's periodicity where only one mode relevant to the mass-spring resonance exists, but also for the large-periodicity scenario, so that the total weight can be even lighter, in which the multiple plate-resonator coupling modes appear. In the latter case, the negative spring stiffness provided by the piezoelectric stack has been utilized to suppress the resonance-induced high acoustic transmission. Such kinds of adaptive metamaterials could open a new approach for broadband noise isolation with extremely lightweight structures.
Electromagnetically induced transparency in metamaterials at near-infrared frequency
DEFF Research Database (Denmark)
Zhang, Jingjing; Xiao, Sanshui; Jeppesen, Claus
2010-01-01
We employ a planar metamaterial structure composed of a splitring-resonator (SRR) and paired nano-rods to experimentally realize a spectral response at near-infrared frequencies resembling that of electromagnetically induced transparency. A narrow transparency window associated with low loss...
Solitons and decoherence in left-handed metamaterials
International Nuclear Information System (INIS)
Marklund, Mattias; Shukla, Padma K.; Stenflo, Lennart; Brodin, Gert
2005-01-01
We present exact electromagnetic solitary pulses that can be experimentally obtained within nonlinear left-handed metamaterials. The effect of pulse decoherence on the modulation instability of partially incoherent electromagnetic waves is also investigated. The results may contribute to a better understanding of nonlinear electromagnetic pulse propagation in media with negative index of refraction
Spiraling Light with Magnetic Metamaterial Quarter-Wave Turbines.
Zeng, Jinwei; Luk, Ting S; Gao, Jie; Yang, Xiaodong
2017-09-19
Miniaturized quarter-wave plate devices empower spin to orbital angular momentum conversion and vector polarization formation, which serve as bridges connecting conventional optical beam and structured light. Enabling the manipulability of additional dimensions as the complex polarization and phase of light, quarter-wave plate devices are essential for exploring a plethora of applications based on orbital angular momentum or vector polarization, such as optical sensing, holography, and communication. Here we propose and demonstrate the magnetic metamaterial quarter-wave turbines at visible wavelength to produce radially and azimuthally polarized vector vortices from circularly polarized incident beam. The magnetic metamaterials function excellently as quarter-wave plates at single wavelength and maintain the quarter-wave phase retardation in broadband, while the turbine blades consist of multiple polar sections, each of which contains homogeneously oriented magnetic metamaterial gratings near azimuthal or radial directions to effectively convert circular polarization to linear polarization and induce phase shift under Pancharatnum-Berry's phase principle. The perspective concept of multiple polar sections of magnetic metamaterials can extend to other analogous designs in the strongly coupled nanostructures to accomplish many types of light phase-polarization manipulation and structured light conversion in the desired manner.
A metamaterial electromagnetic energy rectifying surface with high harvesting efficiency
Directory of Open Access Journals (Sweden)
Xin Duan
2016-12-01
Full Text Available A novel metamaterial rectifying surface (MRS for electromagnetic energy capture and rectification with high harvesting efficiency is presented. It is fabricated on a three-layer printed circuit board, which comprises an array of periodic metamaterial particles in the shape of mirrored split rings, a metal ground, and integrated rectifiers employing Schottky diodes. Perfect impedance matching is engineered at two interfaces, i.e. one between free space and the surface, and the other between the metamaterial particles and the rectifiers, which are connected through optimally positioned vias. Therefore, the incident electromagnetic power is captured with almost no reflection by the metamaterial particles, then channeled maximally to the rectifiers, and finally converted to direct current efficiently. Moreover, the rectifiers are behind the metal ground, avoiding the disturbance of high power incident electromagnetic waves. Such a MRS working at 2.45 GHz is designed, manufactured and measured, achieving a harvesting efficiency up to 66.9% under an incident power density of 5 mW/cm2, compared with a simulated efficiency of 72.9%. This high harvesting efficiency makes the proposed MRS an effective receiving device in practical microwave power transmission applications.
Acoustic wave propagation and stochastic effects in metamaterial absorbers
DEFF Research Database (Denmark)
Christensen, Johan; Willatzen, Morten
2014-01-01
We show how stochastic variations of the effective parameters of anisotropic structured metamaterials can lead to increased absorption of sound. For this, we derive an analytical model based on the Bourret approximation and illustrate the immediate connection between material disorder and attenua...
Towards optimal design of locally resonant acoustic metamaterials
Krushynska, A.O.; Kouznetsova, V.; Geers, M.G.D.
2014-01-01
The paper presents an in-depth analysis of solid locally resonant acoustic metamaterials (LRAMs) consisting of rubber-coated inclusions. Dispersion properties of two-dimensional LRAMs are studied by means of finite-element modal analysis. For an incompressible rubber, only one practically important
A metamaterial electromagnetic energy rectifying surface with high harvesting efficiency
Duan, Xin; Chen, Xing; Zhou, Lin
2016-12-01
A novel metamaterial rectifying surface (MRS) for electromagnetic energy capture and rectification with high harvesting efficiency is presented. It is fabricated on a three-layer printed circuit board, which comprises an array of periodic metamaterial particles in the shape of mirrored split rings, a metal ground, and integrated rectifiers employing Schottky diodes. Perfect impedance matching is engineered at two interfaces, i.e. one between free space and the surface, and the other between the metamaterial particles and the rectifiers, which are connected through optimally positioned vias. Therefore, the incident electromagnetic power is captured with almost no reflection by the metamaterial particles, then channeled maximally to the rectifiers, and finally converted to direct current efficiently. Moreover, the rectifiers are behind the metal ground, avoiding the disturbance of high power incident electromagnetic waves. Such a MRS working at 2.45 GHz is designed, manufactured and measured, achieving a harvesting efficiency up to 66.9% under an incident power density of 5 mW/cm2, compared with a simulated efficiency of 72.9%. This high harvesting efficiency makes the proposed MRS an effective receiving device in practical microwave power transmission applications.
Ultrasensitive Terahertz Waveguide Modulators Using Multilayer Graphene Metamaterials
DEFF Research Database (Denmark)
Khromova, I.; Andryieuski, Andrei; Lavrinenko, Andrei
2014-01-01
We study terahertz-infrared electromagnetic properties of multilayer graphene- dielectric metamaterial and present novel waveguide-based devices: modulators with high mod- ulation depth ( > 38 dB at 0 : 07 eV graphene’s Fermi energy change) or extreme sensitivity (mod- ulation depth of > 13 : 2 d...
A titanium nitride based metamaterial for applications in the visible
DEFF Research Database (Denmark)
Naik, Gururaj V.; Saha, Bivas; Liu, Jing
2013-01-01
Epitaxially grown TiN/Al0.6Sc0.4N superlattice behaves as a hyperbolic metamaterial (HMM) in the visible range. Since HMMs enhance photonic-density-of-states and reduce lifetime of an emitter, we observed nine times decrease in lifetime of a dye molecule placed close to this HMM. © 2013 The Optic...
A topology optimization method for design of negative permeability metamaterials
DEFF Research Database (Denmark)
Diaz, A. R.; Sigmund, Ole
2010-01-01
A methodology based on topology optimization for the design of metamaterials with negative permeability is presented. The formulation is based on the design of a thin layer of copper printed on a dielectric, rectangular plate of fixed dimensions. An effective media theory is used to estimate the ...
Water: Promising Opportunities For Tunable All-dielectric Electromagnetic Metamaterials
DEFF Research Database (Denmark)
Andryieuski, Andrei; Kuznetsova, Svetlana M.; Zhukovsky, Sergei
2015-01-01
We reveal an outstanding potential of water as an inexpensive, abundant and bio-friendly high-refractive-index material for creating tunable all-dielectric photonic structures and metamaterials. Specifically, we demonstrate thermal, mechanical and gravitational tunability of magnetic and electric...
Zero refractive index in time-Floquet acoustic metamaterials
Koutserimpas, Theodoros T.; Fleury, Romain
2018-03-01
New scientific investigations of artificially structured materials and experiments have exhibited wave manipulation to the extreme. In particular, zero refractive index metamaterials have been on the front line of wave physics research for their unique wave manipulation properties and application potentials. Remarkably, in such exotic materials, time-harmonic fields have an infinite wavelength and do not exhibit any spatial variations in their phase distribution. This unique feature can be achieved by forcing a Dirac cone to the center of the Brillouin zone ( Γ point), as previously predicted and experimentally demonstrated in time-invariant metamaterials by means of accidental degeneracy between three different modes. In this article, we propose a different approach that enables true conical dispersion at Γ with twofold degeneracy and generates zero index properties. We break time-reversal symmetry and exploit a time-Floquet modulation scheme to demonstrate a time-Floquet acoustic metamaterial with zero refractive index. This behavior, predicted using stroboscopic analysis, is confirmed by full-wave finite element simulations. Our results establish the relevance of time-Floquet metamaterials as a novel reconfigurable platform for wave control.
Wave propagation in metamaterials and effective parameters retrieving
DEFF Research Database (Denmark)
Andryieuski, Andrei; Ha, S.; Sukhorukov, A.
2011-01-01
Metamaterials, as a class of artificial materials with extraordinary electromagnetic properties, require reliable methods of their properties determination. The vast majority of researchers and engineers apply the simple S-parameters based method [1]. Its disadvantage is the ambiguity of the dete...
International Nuclear Information System (INIS)
Lu, X; Tervola, P; Viljanen, M
2005-01-01
This paper provides an efficient analytical tool for solving the heat conduction equation in a multi-dimensional composite slab subject to generally time-dependent boundary conditions. A temporal Laplace transformation and novel separation of variables are applied to the heat equation. The time-dependent boundary conditions are approximated with Fourier series. Taking advantage of the periodic properties of Fourier series, the corresponding analytical solution is obtained and expressed explicitly through employing variable transformations. For such conduction problems, nearly all the published works necessitate numerical work such as computing residues or searching for eigenvalues even for a one-dimensional composite slab. In this paper, the proposed method involves no numerical iteration. The final closed form solution is straightforward; hence, the physical parameters are clearly shown in the formula. The accuracy of the developed analytical method is demonstrated by comparison with numerical calculations
Zhai, Zirui; Wang, Yong; Jiang, Hanqing
2018-03-01
Origami has been employed to build deployable mechanical metamaterials through folding and unfolding along the crease lines. Deployable metamaterials are usually flexible, particularly along their deploying and collapsing directions, which unfortunately in many cases leads to an unstable deployed state, i.e., small perturbations may collapse the structure along the same deployment path. Here we create an origami-inspired mechanical metamaterial with on-demand deployability and selective collapsibility through energy analysis. This metamaterial has autonomous deployability from the collapsed state and can be selectively collapsed along two different paths, embodying low stiffness for one path and substantially high stiffness for another path. The created mechanical metamaterial yields load-bearing capability in the deployed direction while possessing great deployability and collapsibility. The principle in this work can be utilized to design and create versatile origami-inspired mechanical metamaterials that can find many applications.
EDITORIAL: Focus on Cloaking and Transformation Optics
Leonhardt, Ulf; Smith, David R.
2008-11-01
'Any sufficiently advanced technology is indistinguishable from magic', as the late Arthur C Clarke wrote. So what does it take to do magic by technology? Transformation optics has developed some tantalizing ideas and the first practical demonstrations of 'pure and applied magic'. Transformation optics gathers an unusual mix of scientists, ranging from practically-minded engineers to imaginative theoretical physicists and mathematicians or hybrids of all three. The engineers have been developing new materials with extraordinary electromagnetic properties, from materials for microwaves, to be used in radar or wireless technology, to materials for terahertz radiation and visible light. These materials typically are composites—they consist of artificial structures much smaller than the wavelength that act like man-made atoms, apart being much larger in size. The properties of these artificial atoms depend on their shapes and sizes and so they are tunable, in contrast to most real atoms or molecules. This degree of control is what makes these materials—called metamaterials—so interesting. Such new-won freedom invites the other side of the spectrum of scientists, the theorists, to dream. Just imagine there are no practical limits on electromagnetic materials—what could we do with them? One exciting application of metamaterials has been Veselago's idea of negative refraction, dating back to the 1960s. Metamaterials have breathed life into Veselago's idea, culminating in recent optical demonstrations (see for example [1,2]). Another application is cloaking, developing ideas and first experimental demonstrations for invisibility devices [3]. It turns out that both negative refraction and cloaking are examples where materials seem to transform the geometry of space. Any optical material appears to change light's perception of space, as countless optical illusions prove, but the materials of transformation optics act in more specific ways: they appear to perform
Effect of kenaf fiber in reinforced concrete slab
Syed Mohsin, S. M.; Baarimah, A. O.; Jokhio, G. A.
2018-04-01
The effect of kenaf fibers in reinforced concrete slab with different thickness is discusses and presented in this paper. Kenaf fiber is a type of natural fiber and is added in the reinforced concrete slab to improve the structure strength and ductility. For this study, three types of mixtures were prepared with fiber volume fraction of 0%, 1% and 2%, respectively. The design compressive strength considered was 20 MPa. Six cubes were prepared to be tested at 7th and 28th day. A total of six reinforced concrete slab with two variances of thickness were also prepared and tested under four-point bending test. The differences in the thickness is to study the potential of kenaf fiber to serve as part of shear reinforcement in reinforced concrete slab that was design to fail in shear. It was observed that, addition of kenaf fiber in reinforced concrete slab improves the flexural strength and ductility of the reinforced concrete slab. In the slab with reduction in thickness, the mode of failure change from brittle to ductile with the inclusion of kenaf fiber.
Bui, Huu Nguyen; Pham, Thanh Son; Ngo, Viet; Lee, Jong-Wook
2017-09-01
Controlling power to an unintended area is an important issue for enabling wireless power transfer (WPT) systems. The control allows us to enhance efficiency as well as suppress unnecessary flux leakage. The flux leakage from WPT can be reduced effectively via selective field localization. To realize field localization, we propose the use of cavities formed on a single metamaterial slab that acts as a defected metasurface. The cavity is formed by strong field confinement using a hybridization bandgap (HBG), which is created by wave interaction with a two-dimensional array of local resonators on the metasurface. This approach using an HBG demonstrates strong field localization around the cavity regions. Motivated by this result, we further investigate various cavity configurations for different sizes of the transmitter (Tx) and receiver (Rx) resonators. Experiments show that the area of field localization increases with the number of cavities, confirming the successful control of different cavity configurations on the metasurface. Transmission measurements of different cavities show that the number of cavities is an important parameter for efficiency, and excess cavities do not enhance the efficiency but increase unnecessary power leakage. Thus, there exists an optimum number of cavities for a given size ratio between the Tx and Rx resonators. For a 6:1 size ratio, this approach achieves efficiency improvements of 3.69× and 1.59× compared to free space and a uniform metasurface, respectively. For 10:1 and 10:2 size ratios, the efficiency improvements are 3.26× and 1.98× compared to free space and a uniform metasurface, respectively.
Requalification analysis of a circular composite slab for seismic load
International Nuclear Information System (INIS)
Srinivasan, M.G.; Kot, C.A.
1993-01-01
The circular roof slab of an existing facility was analyzed to requalify the structure for supporting a significant seismic load that it was not originally designed for. The slab has a clear span of 66 ft and consists of a 48 in. thick reinforced concrete member and a steel liner plate. Besides a number of smaller penetrations, the slab contains two significant cutouts. The dominant load for the slab came from seismic excitation. It was characterized by a response spectrum with a peak spectral acceleration of 0.72 g in the vertical direction. The first part of the analysis showed that the nature of attachment between the liner plate and the reinforced concrete (RC) slab would justify assuming composite action between the two. A finite clement analysis, with the ANSYS code, was made to investigate the region surrounding the openings. As the reinforcement in the slab was quite inhomogeneous, it was necessary to determine the stresses in other areas of the slab also. These were obtained with closed form expressions. Finally it is shown that the strength design provisions of the Code Requirements for Nuclear Safety Related Concrete Structures were met by the reinforced concrete slab and the allowable stress provisions of the American National Standard for safety related steel structures in nuclear facilities were met by the liner plate. The composite action between the RC slab and the liner plate provides for the additional strength required to support the enhanced seismic load. The issues that complicated the analysis of this nontypical structure, i.e., composite action and nonlinear stiffness of RC sections, are discussed. It was possible to circumvent the difficulties by making conservative and simplifying assumptions. If design codes incorporate guidelines on practical methods for dynamic analysis of RC structures, some of the unneeded conservatism could be eliminated in future designs
Choi, Muhan; Kang, Byungsoo; Yi, Yoonsik; Lee, Seung Hoon; Kim, Inbo; Han, Jae-Hyung; Yi, Minwoo; Ahn, Jaewook; Choi, Choon-Gi
2016-05-01
We introduce a flexible multilayered THz metamaterial designed by using the Babinet's principle with the functionality of narrow band-pass filter. The metamaterial gives us systematic way to design frequency selective surfaces working on intended frequencies and bandwidths. It shows highly enhanced transmission of 80% for the normal incident THz waves due to the strong coupling of the two layers of metamaterial complementary to each other.
Rayleigh-Taylor instability in accelerated elastic-solid slabs
Piriz, S. A.; Piriz, A. R.; Tahir, N. A.
2017-12-01
We develop the linear theory for the asymptotic growth of the incompressible Rayleigh-Taylor instability of an accelerated solid slab of density ρ2, shear modulus G , and thickness h , placed over a semi-infinite ideal fluid of density ρ110.1007/s000330050121] to arbitrary values of AT and unveil the singular feature of an instability threshold below which the slab is stable for any perturbation wavelength. As a consequence, an accelerated elastic-solid slab is stable if ρ2g h /G ≤2 (1 -AT) /AT .
Interaction of an ion bunch with a plasma slab
Energy Technology Data Exchange (ETDEWEB)
Krasovitskiy, V. B., E-mail: krasovit@mail.ru [Russian Academy of Sciences, Keldysh Institute of Applied Mathematics (Russian Federation); Turikov, V. A. [Peoples’ Friendship University of Russia (Russian Federation)
2016-11-15
Charge neutralization of a short ion bunch passing through a plasma slab is studied by means of numerical simulation. It is shown that a fraction of plasma electrons are trapped by the bunch under the action of the collective charge separation field. The accelerated electrons generated in this process excite beam−plasma instability, thereby violating the trapping conditions. The process of electron trapping is also strongly affected by the high-frequency electric field caused by plasma oscillations at the slab boundaries. It is examined how the degree of charge neutralization depends on the parameters of the bunch and plasma slab.
Light-assisted templated self assembly using photonic crystal slabs.
Mejia, Camilo A; Dutt, Avik; Povinelli, Michelle L
2011-06-06
We explore a technique which we term light-assisted templated self-assembly. We calculate the optical forces on colloidal particles over a photonic crystal slab. We show that exciting a guided resonance mode of the slab yields a resonantly-enhanced, attractive optical force. We calculate the lateral optical forces above the slab and predict that stably trapped periodic patterns of particles are dependent on wavelength and polarization. Tuning the wavelength or polarization of the light source may thus allow the formation and reconfiguration of patterns. We expect that this technique may be used to design all-optically reconfigurable photonic devices.
Novel biometric flow slab design for improvement of PEMFC performance
Energy Technology Data Exchange (ETDEWEB)
Wang, Chin-Tsan; Hu, Yuh-Chung; Zheng, Pei-Lun [Department of Mechanical and Electro-Mechanical Engineering, Center of Green Technology, National I Lan University, I Lan 26047 (China)
2010-04-15
Designing a better flow slab is important to cell performance because of its significant influence on the total pressure drop and flow uniformity. Two novel biometric flow slabs, BFF1 and BFF2, which are addressed in this study, are believed to enhance the capability of oxygen transportation and promote the liquid water removal. Hence, its possession of a higher flow uniformity and lower pressure drop would produce a better power performance than the serpentine and parallel flow. These findings with respect to the design of biometric flow slab could be useful to promote the cell performance of PEMFC, and could even be expanded to other cell types. (author)
Dynamic Eigenvalue Problem of Concrete Slab Road Surface
Pawlak, Urszula; Szczecina, Michał
2017-10-01
The paper presents an analysis of the dynamic eigenvalue problem of concrete slab road surface. A sample concrete slab was modelled using Autodesk Robot Structural Analysis software and calculated with Finite Element Method. The slab was set on a one-parameter elastic subsoil, for which the modulus of elasticity was separately calculated. The eigen frequencies and eigenvectors (as maximal vertical nodal displacements) were presented. On the basis of the results of calculations, some basic recommendations for designers of concrete road surfaces were offered.
Origami-based cellular metamaterial with auxetic, bistable, and self-locking properties
Kamrava, Soroush; Mousanezhad, Davood; Ebrahimi, Hamid; Ghosh, Ranajay; Vaziri, Ashkan
2017-04-01
We present a novel cellular metamaterial constructed from Origami building blocks based on Miura-ori fold. The proposed cellular metamaterial exhibits unusual properties some of which stemming from the inherent properties of its Origami building blocks, and others manifesting due to its unique geometrical construction and architecture. These properties include foldability with two fully-folded configurations, auxeticity (i.e., negative Poisson’s ratio), bistability, and self-locking of Origami building blocks to construct load-bearing cellular metamaterials. The kinematics and force response of the cellular metamaterial during folding were studied to investigate the underlying mechanisms resulting in its unique properties using analytical modeling and experiments.
Lee, Hyung Jin; Lee, Heung Son; Ma, Pyung Sik; Kim, Yoon Young
2016-09-01
In this paper, the scattering (S-) parameter retrieval method is presented specifically for anisotropic elastic metamaterials; so far, no retrieval has been accomplished when elastic metamaterials exhibit fully anisotropic behavior. Complex constitutive property and intrinsic scattering behavior of elastic metamaterials make their characterization far more complicated than that for acoustic and electromagnetic metamaterials. In particular, elastic metamaterials generally exhibit anisotropic scattering behavior due to higher scattering modes associated with shear deformation. They also exhibit nonlocal responses to some degrees, which originate from strong multiple scattering interactions even in the long wavelength limit. Accordingly, the conventional S-parameter retrieval methods cannot be directly used for elastic metamaterials, because they determine only the diagonal components in effective tensor property. Also, the conventional methods simply use the analytic inversion formulae for the material characterization so that inherent nonlocality cannot be taken into account. To establish a retrieval method applicable to anisotropic elastic metamaterials, we propose an alternative S-parameter method to deal with full anisotropy of elastic metamaterials. To retrieve the whole effective anisotropic parameter, we utilize not only normal but also oblique wave incidences. For the retrieval, we first retrieve the ratio of the effective stiffness tensor to effective density and then determine the effective density. The proposed retrieval method is validated by characterizing the effective material parameters of various types of non-resonant anisotropic metamaterials. It is found that the whole effective parameters are retrieved consistently regardless of used retrieval conditions in spite of inherent nonlocality.
International Nuclear Information System (INIS)
Kuddusi, Luetfullah; Denton, Jesse C.
2007-01-01
The constructal solution for cooling of electronics requires solution of a fundamental heat conduction problem in a composite slab composed of a heat generating slab and a thin strip of high conductivity material that is responsible for discharging the generated heat to a heat sink located at one end of the strip. The fundamental 2D heat conduction problem is solved analytically by applying an integral transform method. The analytical solution is then employed in a constructal solution, following Bejan, for cooling of electronics. The temperature and heat flux distributions of the elemental heat generating slabs are assumed to be the same as those of the analytical solution in all the elemental volumes and the high conductivity strips distributed in the different constructs. Although the analytical solution of the fundamental 2D heat conduction problem improves the accuracy of the distributions in the elemental slabs, the results following Bejan's strategy do not affirm the accuracy of Bejan's constructal solution itself as applied to this problem of cooling of electronics. Several different strategies are possible for developing a constructal solution to this problem as is indicated
Anderson localization in metamaterials with compositional disorder
Torres-Herrera, E. J.; Izrailev, F. M.; Makarov, N. M.
2011-11-01
We consider one-dimensional periodic-on-average bi-layered models with random perturbations in dielectric constants of both basic slabs composing the structure unit-cell. We show that when the thicknesses da and db of basic layers are essentially nonequal, da ≠ db, the localization length Lloc is described by the universal expression for two cases: (a) both layers are made from right-handed materials (the RH-RH model), (b) the a layers are of a right-handed material while the b layers are of a left-handed material (the RH-LH model). For these models the derived expression for Lloc includes all possible correlations between two disorders. However, when da = db the RH-LH model exhibits a highly nontrivial properties originated from inhomogeneous distribution of the phase of propagating wave, even in the case of white-noise disorder. We analytically show that in this case the localization length diverges in the conventional second order in perturbation parameters. Therefore, recently numerically discovered anomalies in Lloc are due to the next order of approximation. On the other hand, for the RH-RH model the general expression for Lloc remains valid for da = db as well.
Anderson localization in metamaterials with compositional disorder
International Nuclear Information System (INIS)
Torres-Herrera, E.J.; Izrailev, F.M.; Makarov, N.M.
2011-01-01
We consider one-dimensional periodic-on-average bi-layered models with random perturbations in dielectric constants of both basic slabs composing the structure unit-cell. We show that when the thicknesses da and db of basic layers are essentially nonequal, da not = db, the localization length L-l-o-c is described by the universal expression for two cases: (a) both layers are made from right-handed materials (the RH-RH model), (b) the a layers are of a right-handed material while the b layers are of a left-handed material (the RH-LH model). For these models the derived expression for L-l-o-c includes all possible correlations between two disorders. However, when da = db the RH-LH model exhibits a highly nontrivial properties originated from inhomogeneous distribution of the phase of propagating wave, even in the case of white-noise disorder. We analytically show that in this case the localization length diverges in the conventional second order in perturbation parameters. Therefore, recently numerically discovered anomalies in L-l-o-c are due to the next order of approximation. On the other hand, for the RH-RH model the general expression for Lloc remains valid for da = db as well.
Photonic slab heterostructures based on opals
Palacios-Lidon, Elisa; Galisteo-Lopez, Juan F.; Juarez, Beatriz H.; Lopez, Cefe
2004-09-01
In this paper the fabrication of photonic slab heterostructures based on artificial opals is presented. The innovated method combines high-quality thin-films growing of opals and silica infiltration by Chemical Vapor Deposition through a multi-step process. By varying structure parameters, such as lattice constant, sample thickness or refractive index, different heterostructures have been obtained. The optical study of these systems, carried out by reflectance and transmittance measurements, shows that the prepared samples are of high quality further confirmed by Scanning Electron Microscopy micrographs. The proposed novel method for sample preparation allows a high control of the involved structure parameters, giving the possibility of tunning their photonic behavior. Special attention in the optical response of these materials has been addressed to the study of planar defects embedded in opals, due to their importance in different photonic fields and future technological applications. Reflectance and transmission measurements show a sharp resonance due to localized states associated with the presence of planar defects. A detailed study of the defect mode position and its dependance on defect thickness and on the surrounding photonic crystal is presented as well as evidence showing the scalability of the problem. Finally, it is also concluded that the proposed method is cheap and versatile allowing the preparation of opal-based complex structures.
Hybrid Heat Capacity - Moving Slab Laser Concept
International Nuclear Information System (INIS)
Stappaerts, E A
2002-01-01
A hybrid configuration of a heat capacity laser (HCL) and a moving slab laser (MSL) has been studied. Multiple volumes of solid-state laser material are sequentially diode-pumped and their energy extracted. When a volume reaches a maximum temperature after a ''sub-magazine depth'', it is moved out of the pumping region into a cooling region, and a new volume is introduced. The total magazine depth equals the submagazine depth times the number of volumes. The design parameters are chosen to provide high duty factor operation, resulting in effective use of the diode arrays. The concept significantly reduces diode array cost over conventional heat capacity lasers, and it is considered enabling for many potential applications. A conceptual design study of the hybrid configuration has been carried out. Three concepts were evaluated using CAD tools. The concepts are described and their relative merits discussed. Because of reduced disk size and diode cost, the hybrid concept may allow scaling to average powers on the order of 0.5 MW/module
Rotational flow in tapered slab rocket motors
Saad, Tony; Sams, Oliver C.; Majdalani, Joseph
2006-10-01
Internal flow modeling is a requisite for obtaining critical parameters in the design and fabrication of modern solid rocket motors. In this work, the analytical formulation of internal flows particular to motors with tapered sidewalls is pursued. The analysis employs the vorticity-streamfunction approach to treat this problem assuming steady, incompressible, inviscid, and nonreactive flow conditions. The resulting solution is rotational following the analyses presented by Culick for a cylindrical motor. In an extension to Culick's work, Clayton has recently managed to incorporate the effect of tapered walls. Here, an approach similar to that of Clayton is applied to a slab motor in which the chamber is modeled as a rectangular channel with tapered sidewalls. The solutions are shown to be reducible, at leading order, to Taylor's inviscid profile in a porous channel. The analysis also captures the generation of vorticity at the surface of the propellant and its transport along the streamlines. It is from the axial pressure gradient that the proper form of the vorticity is ascertained. Regular perturbations are then used to solve the vorticity equation that prescribes the mean flow motion. Subsequently, numerical simulations via a finite volume solver are carried out to gain further confidence in the analytical approximations. In illustrating the effects of the taper on flow conditions, comparisons of total pressure and velocity profiles in tapered and nontapered chambers are entertained. Finally, a comparison with the axisymmetric flow analog is presented.
Evaluation of precast concrete slabs using a heavy vehicle simulator
CSIR Research Space (South Africa)
Kohler, E
2008-10-01
Full Text Available Precast slabs are considered an attractive pavement option for rehabilitation or reconstruction cases where traffic closures of less than eight hours are required. Benefits include long life expectancy of concrete cast in factory...
Novel variational approach for analysis of photonic crystal slabs
International Nuclear Information System (INIS)
Aram, Mohammad Hasan; Khorasani, Sina
2015-01-01
We propose a new method, based on variational principle, for the analysis of photonic crystal (PC) slabs. Most of the methods used today treat PC slabs as three-dimensional (3D) crystal, and this makes these methods very time and/or memory consuming. In our proposed method, we use the Bloch theorem to expand the field on infinite plane waves, whose amplitudes depend on the component perpendicular to the slab surface. By approximating these amplitudes with appropriate functions, we can find modes of PC slabs almost as fast as we can find modes of two-dimensional crystals. In addition to this advantage, we can also calculate radiation modes with this method, which is not feasible with the 3D plane wave expansion method. (paper)
Fire resistance of extruded hollow-core slabs
DEFF Research Database (Denmark)
Hertz, Kristian Dahl; Sørensen, Lars Schiøtt; Giuliani, Luisa
2017-01-01
to the structural codes with data derived from a standard fire test and from a thorough examination of the comprehensive test documentation available on fire exposed hollow-core slabs. Findings – Mechanisms for loss of load-bearing capacity are clarified, and evidence of the fire resistance is found. Originality......Purpose – Prefabricated extruded hollow-core slabs are preferred building components for floor structures in several countries. It is therefore important to be able to document the fire resistance of these slabs proving fulfilment of standard fire resistance requirements of 60 and 120 min found...... in most national building regulations. The paper aims to present a detailed analysis of the mechanisms responsible for the loss of loadbearing capacity of hollow-core slabs when exposed to fire. Design/methodology/approach – Furthermore, it compares theoretica calculation and assessment according...
General analysis of slab lasers using geometrical optics.
Chung, Te-yuan; Bass, Michael
2007-02-01
A thorough and general geometrical optics analysis of a slab-shaped laser gain medium is presented. The length and thickness ratio is critical if one is to achieve the maximum utilization of absorbed pump power by the laser light in such a medium; e.g., the fill factor inside the slab is to be maximized. We point out that the conditions for a fill factor equal to 1, laser light entering and exiting parallel to the length of the slab, and Brewster angle incidence on the entrance and exit faces cannot all be satisfied at the same time. Deformed slabs are also studied. Deformation along the width direction of the largest surfaces is shown to significantly reduce the fill factor that is possible.
Radon exhalation study from cement, cement slabs and concrete slabs with variation in fly ash
International Nuclear Information System (INIS)
Sharma, Nisha; Singh, Jaspal
2012-01-01
Fly ash is a waste product from coal-fired power plants. Fly ash has become a subject of world-wide interest in recent years because of its diverse uses, e.g. in the manufacture of concrete for building purposes, for the filling of underground cavities, or as a component of building material. The fly ash may contain enhanced levels of the natural radionuclides in the uranium and thorium series and by using the fly ash in building materials, the radiation levels in houses may thus be technologically enhanced. Because of its relatively high radionuclide contents (including 226 Ra), fly ash may, however, present a potential hazard to the population through its radon emanation, which would be highly undesirable. Since fly ash is frequently used as a building material, the idea of the experiment was to mix fly ash in different proportions in the cement in the powder form, cemented slabs and concrete slabs to study the combined behaviors. Alpha sensitive LR-115 type II plastic track detector, commonly known as Solid State Nuclear Track Detectors (SSNTDs), were used to measure the radon concentration. The alpha particles emitted from the radon causes the radiation damaged tracks. The chemical etching in NaOH at 60°C for about 90 minutes was done to reveal these latent tracks, which were then scanned and counted by an optical microscope of suitable magnification. By calculating the track density of registered tracks, the radon concentrations were determined. In case of cement in the powder form and in cemented slab, starting from the pure cement, fly ash was added up to 70% by weight. In this case the radon exhalation rate has increased by addition of fly ash in the cement and in case of concrete slabs by the addition of fly ash in the cement the radon exhalation increases up to 60% and then decreases. Therefore, on the basis of our investigations we concluded that in general radon exhalation rate increases with the addition of fly ash. (author)
Calculation of shear strength of prestressed hollow core slabs by use of plastic theory
DEFF Research Database (Denmark)
Hoang, Linh Cao; Jørgensen, H.G.; Nielsen, Mogens Peter
2014-01-01
Th is paper deals with calculations of the shear capacity of precast, prestressed hollow core slabs. Such slabs are often used as floor systems in building structures. A common way to produce hollow core slabs is to use the extrusion technique where long strips of slabs are extruded and thereafter...
Optimising the Slab Yard Planning and Crane Scheduling Problem using a two-stage heuristic
DEFF Research Database (Denmark)
Hansen, Anders Dohn; Clausen, Jens
2010-01-01
In this paper, we present the Slab Yard Planning and Crane Scheduling Problem. The problem has its origin in steel production facilities with a large throughput. A slab yard is used as a buffer for slabs that are needed in the upcoming production. Slabs are transported by cranes and the problem...