WorldWideScience

Sample records for metals plant city

  1. Determination of toxic heavy metals in indigenous medicinal plants used in Rawalpindi and Islamabad cities, Pakistan.

    Science.gov (United States)

    Mahmood, Adeel; Rashid, Sadia; Malik, Riffat Naseem

    2013-06-21

    History of medicinal plants used in local healthcare systems dates back centuries as the user considers them safe from toxic effects. Present study was aimed to document the commonly used indigenous medicinal plants and to investigate the metal toxicity and impact of pollution load in most frequently used medicinal plants from study area. Semi-structured interviews and rapid appraisal approach were employed to record the ethnomedicinal information and toxic metals were analyzed through flame atomic absorption spectrophotometer. A total of 21 wild medicinal plants was reported, and 7 were screened for toxic metal analysis. Oral mode of application (93%) was the chief route of herbal remedy administration, and leaves were found to be used as major plant part against different diseases. Main sources of remedies were wild herb (68%) followed by wild trees (18%), wild spiny shrubs (09%) and wild shrubs (5%). Trend of metal concentration was found as Fe>Ni>Cr>Pb>Cu>Zn>Mn>Cd. Indigenous medicinal plants of both cities posed the toxicity risk for Ni, Cu, Fe and crossed the safety limits set by WHO. Medicinal plants of Rawalpindi were more toxic compared to the medicinal plants of Islamabad. Prolonged intake or over dose of these medicinal plants may lead to chronic accumulation of various elements that may cause severe hazardous effect upon human health. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Assessment of heavy metal pollution of topsoils and plants in the City of Belgrade

    Directory of Open Access Journals (Sweden)

    Andrejić Gordana

    2016-01-01

    Full Text Available In order to assess heavy metal pollution in the city of Belgrade (Serbia concentrations of V, Cr, Mn, Co, Ni, Cu, Zn, Cd and Pb were measured on 18 topsoil samples collected in the proximity to central urban boulevards and in urban parks. In addition, concentrations of specified elements were determined in leaves of three evergreen plant species Buxus sempervirens L., Mahonia aquifolium (Pursh Nutt. and Prunus laurocerasus L. so as to estimate their sensitivity to heavy metal pollution. Even though various types of soils from different quarts of Belgrade were sampled, their heavy metal contents were very similar, with somewhat higher concentrations of almost all elements detected in the proximity to high traffic roads. Generally, concentrations of heavy metals in leaves of investigated plant species paralleled the heavy metal concentrations found in their respective soils and were higher in plants sampled from boulevards then from urban parks. Since investigated plant show no visible injuries induced by detected heavy metal pollution these species are suitable for the successful urban landscaping. [Projekat Ministarstva nauke Republike Srbije, br. 173030

  3. Bioaccumulation of heavy metals in plant leaves from Yan׳an city of the Loess Plateau, China.

    Science.gov (United States)

    Hu, Youning; Wang, Dexiang; Wei, Lijing; Zhang, Xinping; Song, Bin

    2014-12-01

    Urban plants are capable of reducing environmental pollutions through bioaccumulation contaminants in their tissues. The accumulation of heavy metals (Pb, Cu, Cd, Cr, and Zn) in leaves of nine tree species and five shrub species from Yan׳an city of China were investigated, and total metal accumulation capacities of different plants were evaluated using the metal accumulation index (MAI). The results indicated that plants in polluted environments are enriched in heavy metals relative to those in pristine environments, this is mainly caused by traffic emissions and coal combustion. Species with the highest accumulation of a single metal did not have the highest total metal accumulation capacity, the MAI should be an important indicator for tree species selection in phytoextraction and urban greening. Considering total accumulation capacities, Sabina chinensis, Juniperus formosana, Ailanthus altissima and Salix matsudana var. matsudana could be widely used in the Loess Plateau. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Stabilization/solidification of battery debris ampersand lead impacted material at Schuylkill Metals, Plant City, Florida

    International Nuclear Information System (INIS)

    Anguiano, T.; Floyd, D.

    1997-01-01

    The Schuylkill Metals facility in Plant City Florida (SMPCI) operated as a battery recycling facility for approximately 13 years. During its operation, the facility disposed of battery components in surrounding wetland areas. In March of 1991 the U.S. EPA and SMPCI entered into a Consent Decree for the remediation of the SMPCI site using stabilization/solidification and on-site disposal. In November of 1994, ENTACT began remediation at the facility and to date has successfully stabilized/solidified over 228,000 tons of lead impacted battery components and lead impacted material. The ENTACT process reduces the size of the material to be treated to ensure that complete mixing of the phosphate/cement additive is achieved thereby promoting the chemical reactions of stabilization and solidification. ENTACT has met the following performance criteria for treated material at the SMPCI site: (1) Hydraulic Conductivity less than 1x10 -6 cm/s, (2) Unconfined Compressive Strength greater than 50 psi, (3) Lead, Cadmium, Arsenic, Chromium TCLP Leachability below hazardous levels

  5. Environmental impact of heavy metals on the soils and plants around a coke-making factory of Jiyuan city, China

    Science.gov (United States)

    Lun Leung, Kwun

    2010-05-01

    The combustion of coal usually leads to many different kinds of pollution around coke-making factories. Among these pollutions, the heavy metal contamination in the soil and plants is one of the major concerns by people living around. Heavy metals are highly attracted to the biological tissue, and can stay in bodies of organisms for long period of time, causing a lot of hazardous diseases to human beings, animal and plants. In the developing regions of China, developing of industries has been based on the sacrifices of environments and human health. In order to evaluate the danger of heavy metal contamination from a coke factory to citizens of close inhabitants, a survey on soil and plants was conducted in the region around a coke-making factory in Jiyuan city, which is a major electricity supplying city for the Henan Province in China. In this study, 8 surface soil samples and 11 plant samples were collected from 8 different places around the coke-making factory in Jiyuan city. The collected samples are then treated in the laboratory, and 8 types of heavy metals, which include arsenic, cadmium, chromium, cobalt, copper, lead, nickel and zinc, are analyzed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES). The concentration data of heavy metals that collected from the analysis are then used to evaluate their toxicity towards living organisms and ecology by applying several biological effect standards, such as effect-range low (ERL), effect-range median (ERM) and several maximum allowances standards of heavy metal concentrations in soils and plants that established by different countries. Moreover, the relationship between the distance from the factory and the concentration of heavy metals in soils and plants are also evaluated in order to find out the contamination ranges of those heavy metals from the source. The result shows that the concentration of these 8 types of heavy metals in the

  6. How healthy is urban horticulture in high traffic areas? Trace metal concentrations in vegetable crops from plantings within inner city neighbourhoods in Berlin, Germany.

    Science.gov (United States)

    Säumel, Ina; Kotsyuk, Iryna; Hölscher, Marie; Lenkereit, Claudia; Weber, Frauke; Kowarik, Ingo

    2012-06-01

    Food production by urban dwellers is of growing importance in developing and developed countries. Urban horticulture is associated with health risks as crops in urban settings are generally exposed to higher levels of pollutants than those in rural areas. We determined the concentration of trace metals in the biomass of different horticultural crops grown in the inner city of Berlin, Germany, and analysed how the local setting shaped the concentration patterns. We revealed significant differences in trace metal concentrations depending on local traffic, crop species, planting style and building structures, but not on vegetable type. Higher overall traffic burden increased trace metal content in the biomass. The presence of buildings and large masses of vegetation as barriers between crops and roads reduced trace metal content in the biomass. Based on this we discuss consequences for urban horticulture, risk assessment, and planting and monitoring guidelines for cultivation and consumption of crops. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. How healthy is urban horticulture in high traffic areas? Trace metal concentrations in vegetable crops from plantings within inner city neighbourhoods in Berlin, Germany

    International Nuclear Information System (INIS)

    Säumel, Ina; Kotsyuk, Iryna; Hölscher, Marie; Lenkereit, Claudia; Weber, Frauke; Kowarik, Ingo

    2012-01-01

    Food production by urban dwellers is of growing importance in developing and developed countries. Urban horticulture is associated with health risks as crops in urban settings are generally exposed to higher levels of pollutants than those in rural areas. We determined the concentration of trace metals in the biomass of different horticultural crops grown in the inner city of Berlin, Germany, and analysed how the local setting shaped the concentration patterns. We revealed significant differences in trace metal concentrations depending on local traffic, crop species, planting style and building structures, but not on vegetable type. Higher overall traffic burden increased trace metal content in the biomass. The presence of buildings and large masses of vegetation as barriers between crops and roads reduced trace metal content in the biomass. Based on this we discuss consequences for urban horticulture, risk assessment, and planting and monitoring guidelines for cultivation and consumption of crops. - Highlights: ► Traffic-related pollutant deposition as important pathway for crop contamination. ► Heavy metal content often over EU standards for lead concentration in food crops. ► ‘Grow your own’ food in inner cities not always ‘healthier’ than supermarket products. ► No support for generalisations of crops as ‘risky high’ or ‘safe low’ accumulators. - Higher overall traffic burden increased, while the presence of buildings and large masses of vegetation as barriers between crops and roads reduced heavy metal content in crop biomass.

  8. Assessment of heavy metal pollution in surface soils and plant material in the post-industrial city of Katowice, Poland.

    Science.gov (United States)

    Steindor, Karolina A; Franiel, Izabella J; Bierza, Wojciech M; Pawlak, Beata; Palowski, Bernard F

    2016-01-01

    This investigation was undertaken to assess the level of environment pollution by biological monitoring. The leaves and bark of popular ornamental trees Acer pseudoplatanus L. and Acer platanoides L. and soil from the sampling sites were used to perform heavy metals pollution monitoring in urban areas with different pollution sources, as well to investigate the suitability of the leaves and bark as bioindicators of Pb, Zn, Cd and Cu pollution. Plant samples were collected at nine locations classified into three pollution groups based on metal content in the soils. The chosen pollution indices were used to assess the level of contamination according to background values. Soils in the Katowice area are found to be relatively heavily contaminated with Pb, Zn and Cd. Both of the maple tree species did not statistically differ in terms of the investigated elements' concentration in leaves or bark. Only bark samples reflected the pollution level, showing differences between the sampling points, and therefore are recommended for biomonitoring purposes.

  9. Ferrous Metal Processing Plants

    Data.gov (United States)

    Department of Homeland Security — This map layer includes ferrous metal processing plants in the United States. The data represent commodities covered by the Minerals Information Team (MIT) of the...

  10. Nonferrous Metal Processing Plants

    Data.gov (United States)

    Department of Homeland Security — This map layer includes nonferrous metal processing plants in the United States. The data represent commodities covered by the Minerals Information Team (MIT) of the...

  11. Analyses of heavy metals in sewage and sludge from treatment plants in the cities of Campinas and Jaguariúna, using synchrotron radiation total reflection X-rayfluorescence

    International Nuclear Information System (INIS)

    Souza, L.C.F.; Canteras, F.B.; Moreira, S.

    2014-01-01

    A major consequence of accelerated urban and industrial development in the last decades is water pollution. In particular, metal contamination is a significant problem, causing serious changes to the environment and adversely affecting human health. The cities of Campinas and Jaguariúna are inserted in the Campinas Metropolitan Region (CMR), one of the most dynamic regions in the Brazilian economy, accounting for 2.7% of Gross National Product (GNP) and 7.83% of São Paulo State Product—or approximately $ 70.7 billion per year. Besides having a strong economy, the region also presents an infrastructure that provides the development of the entire metropolitan area. Therefore, to study the anthropogenic influences of the cities, the evaluation of the quality of raw and treated effluent and, the sludge generated in sewage treatment plants (STP), especially with regard to heavy metals was performed by Total Reflection X-Ray Fluorescence with Synchrotron Radiation technique. The results were compared with the allowed values established by Brazilian Legislation. For raw and treated effluents collected in Jaguariúna and Campinas city in the Stations of Treatment of Sewage (Camanducaia and Anhumas), Cr presented higher concentrations than the maximum allowed values established by CONAMA 357. However, it is necessary to do other studies to define the fraction of Cr +3 and Cr +6 to compare to the new legislation. The other elements were in agreement with established regulations. For sludge sampled in the same locations, the concentrations of Cr, Cu, Pb, Ni and Zn were compared with the CONAMA 375 and showed values smaller than the maximum allowed values, indicating the possibility to re-use the sludge. - Highlights: ► Analysis of sewage and sludge composition using SR-TXRF. ► Determination of the potentially toxic elements like Cr, Ni, Cu, Zn and Pb. ► Concentrations determined were compared with Brazilian quality standards. ► It was discovered possible illegal

  12. Heavy Metals Accumulation Characteristics of Vegetables in Hangzhou City, China

    Directory of Open Access Journals (Sweden)

    GU Yan-qing

    2015-08-01

    Full Text Available A field survey of heavy metal concentrations in soils and vegetables grown in 30 vegetable farmlands of Hangzhou City were carried out. Through calculating the bioconcentration factor(BCFand transfer factor(TFfor different heavy metals(Cu, Zn, Cd, Cr and Pbin 27 kinds of different vegetables which belong to leafy vegetables, root vegetables or eggplant fruit vegetables, assessing their accumulation characteristics of heavy metals according to the differences of the bio-concentration factor, the reasonable proposals were put forward to optimize the planting structure of vegetables in mild and middle-level heavy metal contamination soils. The experimental results were as follows: In soils with mild and middle-level heavy metal contamination, leafy vegetables, such as crown daisy, cabbage, celery and Chinese long cabbage, had relatively low enrichment ability of heavy metals, so as the root and fruit vegetables like white radish, carrot, tomatoes, hence these vegetables could be planted preferentially. In contrast, some kinds of vegetables, including white amaranth, red amaranth, tatsoi, broccoli, gynura, brassica juncea and lettuce of leafy vegetables, lactuca sativa, taro, red radish and cherry radish of rhizome vegetables and sweet pepper of fruit vegetables, had relatively high accumulation ability of heavy metal, which should be avoided to be planted in soils with mild and middle-level heavy metal contamination.

  13. Site environmental report for calendar year 1992, Kansas City Plant, Kansas City, Missouri

    International Nuclear Information System (INIS)

    1993-05-01

    The Kansas City Plant is a government-owned, contractor-operated facility. AlliedSignal and its predecessors have been the operating contractors since 1949. The principal operation performed at the Kansas City Plant is the manufacture of non-nuclear components for nuclear weapons. This activity involves metals and plastics machining, plastics fabrication, plating, microelectronics, and electrical and mechanical assembly. No radioactive materials are machined or processed. This report presents information and data pertaining to the environmental monitoring program and compliance with environmental standards

  14. Plant responses to metal toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Briat, J.F. [Montpellier-2 Univ., 34 (France). Biochimie et physiologie moleculaire des plantes, CNRS, URA 2133; Lebrun, M. [Montpellier-2 Univ., 34 (France). Biochimie et physiologie vegetale appliquee

    1999-01-01

    Increased metal concentration in the soils, up to toxic levels, is becoming an important environmental problem. Safety rule evolution will require solutions in order to cope with food safety rules, and to freeze metal leakage from heavily metal-poisoned soils, such as those from industrial fallows. In this context, plants could serve to develop bio-assays in order to promote new standards, more realistic than the mass of a given metal per kg of soil, that does not consider the metal bio-disponibility. Plants could also be used for phyto-extraction and/or phyto-stabilization. To reach these objectives, a genetic approach could be useful to generate metal-tolerant plants with enough biomass. In this work is more particularly studied the plant responses to metal toxicity. Metal toxicity for living organisms involves oxidative and /or genotoxic mechanisms. Plant protection against metal toxicity occurs, at least in part, through control of root metal uptake and of long distance metal transport. Inside cells, proteins such as ferritins and metallothioneins, and glutathione-derived peptides named phyto-chelatins, participate in excess metal storage and detoxification. Low molecular weight organic molecules, mainly organic acids and amino acids and their derivatives, also play an important role in plant metal homeostasis. When these systems are overloaded, oxidative stress defense mechanisms are activated. Molecular and cellular knowledge of these processes will be necessary to improve plant metal resistance. Occurrence of naturally tolerant plants which hyper accumulate metals provides helpful tools for this research. (authors) 130 refs.

  15. Metals in aerosols of the Mexico City

    International Nuclear Information System (INIS)

    Reyes L, J.

    1998-01-01

    The general purpose and scope of this work was to have a data base that includes enough information about the heavy metals which are disseminated in the atmospheric air in Mexico City, like it is what refers to its elements, its concentration and its particle size. For this were collected samples through collectors types: of the filters unit and the cascade impactor. Through the PIXE analysis for filters and films it was identified the presence of 20 elements in the majority of samples studied of the four seasons during the years 1993-1994. The metals were classified in two groups: those of natural origin and those of anthropogenic origin. (Author)

  16. City, (from Point of Organic Pollutants and Heavy Metals

    Directory of Open Access Journals (Sweden)

    Sajad Mazlomi

    2014-03-01

    Full Text Available Background: In this study quality and quantity characteristics wastewater of hospitals, clinics and health centers of Arak city and the potential impacts of them on Arak wastewater plant investigated. Methods: In this cross-sectional  study, which done during 2011-2012, the quantity and quality  of wastewater via point of COD,BOD5, pH, TKN, PO4and also heavy metals in the hospitals, clinics and health center of Arak were studied. Then, the effects of these pollutants as equal to person on wastewater convey system and wastewater treatment plant were assisted. Results: Monitoring of BOD5, TKN, and PO4 indicated that the daily disposal rate of these pollutants were equal 778.14, 102.7, and 53.6 kg/d, respectively, which equal to 15763, 51351, and 6700 person, respectively. The average water consumption of these centers was equal to 8.2l/s, and the estimated measure of produced wastewater was6.14 l/s. Also, after analysis the measure of heavy metals, Hg production (99.331 g/d was more than other heavy metals, and the next rank was related to Zn (41.96 g/d and Ag (41.96g/d, respectively. Conclusion: Although existence pretreatment process units can help to decrease the side effects of produced wastewater, this kind of wastewater needs complete treatment. Discharge of this kind wastewater to absorption trenches led to adverse health impacts in future. Therefore, a construction separate wastewater treatment plants and proper operation of these systems can reduce ecosystem impacts of wastewater discharges.

  17. Environmental Survey preliminary report, Kansas City Plant, Kansas City, Missouri

    International Nuclear Information System (INIS)

    1988-01-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE), Kansas City Plant (KCP), conducted March 23 through April 3, 1987. The Survey is being conducted by a multidisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team members are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the KCP. The Survey covers all environmental media and all areas of environmental regulations. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data observations of the operations performed at the KCP, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain environmental problems identified during its on-site activities. The Sampling and Analysis Plan is being executed by DOE's Argonne National Laboratory. When completed, the results will be incorporated into the KCP Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the KCP Survey. 94 refs., 39 figs., 55 tabs

  18. Environmental Survey preliminary report, Kansas City Plant, Kansas City, Missouri

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE), Kansas City Plant (KCP), conducted March 23 through April 3, 1987. The Survey is being conducted by a multidisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team members are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the KCP. The Survey covers all environmental media and all areas of environmental regulations. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data observations of the operations performed at the KCP, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain environmental problems identified during its on-site activities. The Sampling and Analysis Plan is being executed by DOE's Argonne National Laboratory. When completed, the results will be incorporated into the KCP Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the KCP Survey. 94 refs., 39 figs., 55 tabs.

  19. Metal resistance sequences and transgenic plants

    Science.gov (United States)

    Meagher, Richard Brian; Summers, Anne O.; Rugh, Clayton L.

    1999-10-12

    The present invention provides nucleic acid sequences encoding a metal ion resistance protein, which are expressible in plant cells. The metal resistance protein provides for the enzymatic reduction of metal ions including but not limited to divalent Cu, divalent mercury, trivalent gold, divalent cadmium, lead ions and monovalent silver ions. Transgenic plants which express these coding sequences exhibit increased resistance to metal ions in the environment as compared with plants which have not been so genetically modified. Transgenic plants with improved resistance to organometals including alkylmercury compounds, among others, are provided by the further inclusion of plant-expressible organometal lyase coding sequences, as specifically exemplified by the plant-expressible merB coding sequence. Furthermore, these transgenic plants which have been genetically modified to express the metal resistance coding sequences of the present invention can participate in the bioremediation of metal contamination via the enzymatic reduction of metal ions. Transgenic plants resistant to organometals can further mediate remediation of organic metal compounds, for example, alkylmetal compounds including but not limited to methyl mercury, methyl lead compounds, methyl cadmium and methyl arsenic compounds, in the environment by causing the freeing of mercuric or other metal ions and the reduction of the ionic mercury or other metal ions to the less toxic elemental mercury or other metals.

  20. Heavy metal concentrations in soils and vegetation in urban areas of Quezon City, Philippines.

    Science.gov (United States)

    Navarrete, Ian A; Gabiana, Christella C; Dumo, Joan Ruby E; Salmo, Severino G; Guzman, Maria Aileen Leah G; Valera, Nestor S; Espiritu, Emilyn Q

    2017-04-01

    Limited data have been published on the chemistry of urban soils and vegetation in the Philippines. The aim of this study is to quantify the concentrations of heavy metals (i.e., Cr, Ni, Cu, Zn, and Pb) in soils and vegetation in the urban landscape of Quezon City, Philippines, and to elucidate the relationships between soil properties and the concentration of heavy metals pertaining to different land uses [i.e., protected forest (LM), park and wildlife area (PA), landfill (PL), urban poor residential and industrial areas (RA), and commercial areas (CA)]. Soil (0-15 cm) and senescent plant leaves were collected and were analyzed for soil properties and heavy metal concentrations. Results revealed that the concentrations of heavy metals (i.e., Cr, Ni, Cu, Zn, and Pb) in urban soils were higher in areas where anthropogenic activities or disturbance (PL, RA, and CA) were dominant as compared to the less disturbed areas (LM and PA). Organic matter and available phosphorous were strongly correlated with heavy metal concentrations, suggesting that heavy metal concentrations were primarily controlled by these soil properties. The average foliar heavy metal concentrations varied, ranging from 0 to 0.4 mg/kg for Cd, 0-10 mg/kg for Cr, 2-22 mg/kg for Cu, 0-5 mg/kg for Pb, and 11-250 mg/kg for Zn. The concentrations of Cd and Cr exceeded the critical threshold concentrations in some plants. Leaves of plants growing in PL (i.e., landfill) showed the highest levels of heavy metal contamination. Our results revealed that anthropogenic activities and disturbance caused by the rapid urbanization of the city are major contributors to the heavy metal accumulation and persistence in the soils in these areas.

  1. Atmospheric corrosion of metals in industrial city environment

    Directory of Open Access Journals (Sweden)

    Elzbieta Kusmierek

    2015-06-01

    Full Text Available Atmospheric corrosion is a significant problem given destruction of various materials, especially metals. The corrosion investigation in the industrial city environment was carried out during one year exposure. Corrosion potential was determined using the potentiometric method. The highest effect of corrosion processes was observed during the winter season due to increased air pollution. Corrosion of samples pre-treated in tannic acid before the exposure was more difficult compared with the samples without pretreatment. The corrosion products determined with the SEM/EDS method prove that the most corrosive pollutants present in the industrial city air are SO2, CO2, chlorides and dust.

  2. Atmospheric corrosion of metals in industrial city environment.

    Science.gov (United States)

    Kusmierek, Elzbieta; Chrzescijanska, Ewa

    2015-06-01

    Atmospheric corrosion is a significant problem given destruction of various materials, especially metals. The corrosion investigation in the industrial city environment was carried out during one year exposure. Corrosion potential was determined using the potentiometric method. The highest effect of corrosion processes was observed during the winter season due to increased air pollution. Corrosion of samples pre-treated in tannic acid before the exposure was more difficult compared with the samples without pretreatment. The corrosion products determined with the SEM/EDS method prove that the most corrosive pollutants present in the industrial city air are SO2, CO2, chlorides and dust.

  3. Advanced liquid metal reactor plant control system

    International Nuclear Information System (INIS)

    Dayal, Y.; Wagner, W.; Zizzo, D.; Carroll, D.

    1993-01-01

    The modular Advanced Liquid Metal Reactor (ALMR) power plant is controlled by an advanced state-of-the-art control system designed to facilitate plant operation, optimize availability, and protect plant investment. The control system features a high degree of automatic control and extensive amount of on-line diagnostics and operator aids. It can be built with today's control technology, and has the flexibility of adding new features that benefit plant operation and reduce O ampersand M costs as the technology matures

  4. Atmospheric corrosion of metals in industrial city environment

    OpenAIRE

    Kusmierek, Elzbieta; Chrzescijanska, Ewa

    2015-01-01

    Atmospheric corrosion is a significant problem given destruction of various materials, especially metals. The corrosion investigation in the industrial city environment was carried out during one year exposure. Corrosion potential was determined using the potentiometric method. The highest effect of corrosion processes was observed during the winter season due to increased air pollution. Corrosion of samples pre-treated in tannic acid before the exposure was more difficult compared with the s...

  5. Assessment of Metal Levels In Some Plants From Giresun

    Directory of Open Access Journals (Sweden)

    Mustafa Türkmen

    2017-09-01

    Full Text Available The study performed the metal bioaccumulations in seven plant species from Giresun city. A total 140 specimens were collected from two stations (Station A; 40° 48’ N, 38° 19’ E, Station B; 50° 54’ N, 38° 26’ E from March 2012 to September 2012. Plant samples were dissected, homogenized and dried at 105°C for 24 hours. An approximately 0.25 g sample of each plant leaf was digested with Cem Mars 5 microwave oven. After cooling, the residue was transferred to 50 ml volumetric flasks and diluted to level with deionized water. Before analysis, the samples were filtered through a 0.45 µm filter. All samples were analyzed (as mg kg-1 dry weight three times for cobalt chromium, copper, iron, manganese, nickel, lead and zinc by ICP-MS. A logarithmic transformation was done on the data to improve normality. One way ANOVA and Duncan’s multiple range tests were performed to test the differences among metal levels of species. Concentrations of metals in the examined species ranged from 0.05 to 1.80 for cobalt, 0.14 to 3.24 for chromium, 2.33 to 28.1 for copper, 38.9 to 533 for iron, 1.81 to 64.6 for manganese, 0.81 to 18.9 for nickel, 0.32 to 6.22 for lead and 14.3 to 536 for zinc, in mg kg-1 respectively. Iron had the highest concentrations in all examined plant species in both stations except Zn for Sambucus ebulus in Station B. Second highest metal was zinc after iron. On the other hand, cobalt had lowest levels than other metals. The differences among metal levels in plant species were statistically significant. Maximum Provisional Tolerable Weekly Intakes (PTWI in edible plant species were calculated.

  6. Waste water treatment plant city of Kraljevo

    Directory of Open Access Journals (Sweden)

    Marinović Dragan D.

    2016-01-01

    Full Text Available In all countries, in the fight for the preservation of environmental protection, water pollution, waste water is one of the very serious and complex environmental problems. Waste waters pollute rivers, lakes, sea and ground water and promote the development of micro-organisms that consume oxygen, which leads to the death of fish and the occurrence of pathogenic microbes. Water pollution and determination of its numerous microbiological contamination, physical agents and various chemical substances, is becoming an increasing health and general social problem. Purification of industrial and municipal waste water before discharge into waterways is of great importance for the contamination of the water ecosystems and the protection of human health. To present the results of purification of industrial and municipal wastewater in the city center Kraljevo system for wastewater treatment. The investigated physical and chemical parameters were performed before and after the city's system for wastewater treatment. The results indicate that the effect of purification present the physical and chemical parameters in waste water ranges from 0 - 19%.

  7. Divergent biology of facultative heavy metal plants.

    Science.gov (United States)

    Bothe, Hermann; Słomka, Aneta

    2017-12-01

    Among heavy metal plants (the metallophytes), facultative species can live both in soils contaminated by an excess of heavy metals and in non-affected sites. In contrast, obligate metallophytes are restricted to polluted areas. Metallophytes offer a fascinating biology, due to the fact that species have developed different strategies to cope with the adverse conditions of heavy metal soils. The literature distinguishes between hyperaccumulating, accumulating, tolerant and excluding metallophytes, but the borderline between these categories is blurred. Due to the fact that heavy metal soils are dry, nutrient limited and are not uniform but have a patchy distribution in many instances, drought-tolerant or low nutrient demanding species are often regarded as metallophytes in the literature. In only a few cases, the concentrations of heavy metals in soils are so toxic that only a few specifically adapted plants, the genuine metallophytes, can cope with these adverse soil conditions. Current molecular biological studies focus on the genetically amenable and hyperaccumulating Arabidopsis halleri and Noccaea (Thlaspi) caerulescens of the Brassicaceae. Armeria maritima ssp. halleri utilizes glands for the excretion of heavy metals and is, therefore, a heavy metal excluder. The two endemic zinc violets of Western Europe, Viola lutea ssp. calaminaria of the Aachen-Liège area and Viola lutea ssp. westfalica of the Pb-Cu-ditch of Blankenrode, Eastern Westphalia, as well as Viola tricolor ecotypes of Eastern Europe, keep their cells free of excess heavy metals by arbuscular mycorrhizal fungi which bind heavy metals. The Caryophyllaceae, Silene vulgaris f. humilis and Minuartia verna, apparently discard leaves when overloaded with heavy metals. All Central European metallophytes have close relatives that grow in areas outside of heavy metal soils, mainly in the Alps, and have, therefore, been considered as relicts of the glacial epoch in the past. However, the current

  8. [Assessment of heavy metal pollution and potential ecological risks of urban soils in Kaifeng City, China].

    Science.gov (United States)

    Li, Yi-Meng; Ma, Jian-Hua; Liu, De-Xin; Sun, Yan-Li; Chen, Yan-Fang

    2015-03-01

    Ninety-nine topsoil (0-15 cm) samples were collected from Kaifeng City, China using the grid method, and then the concentrations of As, Cd, Cr, Cu, Ni, Pb and Zn in the samples were measured by standard methods. Soil pollution levels and potential ecological risks of the heavy metals were assessed using the pollution load index (PLI) and potential ecological risk index (RI), respectively. Ordinary Kriging interpolation technique was employed to investigate the spatial distribution of PLI and RI of the city. The results showed that high pollution of Cd occurred in Kaifeng urban soils, and there was moderate pollution of Zn, slight pollution of Pb and Cu, and no pollution of Ni, Cr and As. Very high ecological risk was posed by Cd and low risk by other metals. The mean PLI of the 7 metals from all sample points was 2.53, which was categorized as moderate pollution. The average RI was 344.58 which represented a considerable ecological risk. PLI and RI shared a similar spatial distribution with high values centralized in the old industrial area in the southeast and railway stations for passengers and goods in the south of the city, followed by the old town within the ancient city wall, and low values located in the north and west areas. Cadmium was the main factor for both soil pollution and potential ecological risk primarily due to farmland topsoil in the eastern suburb of Kaifeng City with high Cd concentrations resulted from sewage irrigation deposited in the urban area by wind, human activities such as soot discharged from the chemical fertilizer plant of Kaifeng, transportation and coal combustion.

  9. Heavy metal concentrations of selected public parks of Istanbul City

    Directory of Open Access Journals (Sweden)

    Demir Goksel

    2016-01-01

    Full Text Available Many cities, especially larger metropolises, parks are very important recreational areas where people usually have closer contact with flora. Therefore, the pollution level in the parks can have a greater effect on human health. Heavy metals are ubiquitous with the environment, as a result of both natural and anthropogenic activities, and humans are exposed to them through various pathways. Essentially, these areas are assumed to be less exposed to routine contaminants, but especially in metropolises, this assumption could prove false considering these areas are stuck within the confines of a city full of pollutant activity such as intense traffic. In this study; the relationships between heavy metal pollution levels (Cd, Cr, Cu, Ni, Pb, Zn and the pH and electrical conductivity (EC of soil samples were investigated from the parks on the Asian side of Istanbul. For this purpose, the most frequently visited 16 parks were selected as sampling sites. In the second part of the study, linear correlation is used for the data analysis.

  10. Aromatic plant production on metal contaminated soils

    International Nuclear Information System (INIS)

    Zheljazkov, Valtcho D.; Craker, Lyle E.; Xing Baoshan; Nielsen, Niels E.; Wilcox, Andrew

    2008-01-01

    Field and container experiments were conducted to assess the feasibility of growing aromatic crops in metal contaminated areas and the effect of metals on herbage and oil productivity. The field experiments were conducted in the vicinities of the Non-Ferrous Metals Combine (Zn-Cu smelter) near Plovdiv, Bulgaria using coriander, sage, dill, basil, hyssop, lemon balm, and chamomile grown at various distances from the smelter. Herbage essential oil yields of basil, chamomile, dill, and sage were reduced when they were grown closer to the smelter. Metal removal from the site with the harvestable plant parts was as high as 180 g ha -1 for Cd, 660 g ha -1 for Pb, 180 g ha -1 for Cu, 350 g ha -1 for Mn, and 205 g ha -1 for Zn. Sequential extraction of soil demonstrated that metal fractionation was affected by the distance to the smelter. With decreasing distance to the smelter, the transfer factor (TF) for Cu and Zn decreased but increased for Cd, while the bioavailability factor (BF) for Cd, Pb, Cu, Mn, and Zn decreased. Scanning electron microscopy and X-ray microanalyses of contaminated soil verified that most of the Pb, Cd, Mn, Cu, and Zn were in the form of small (< 1 μm) particles, although there were larger particles (1-5 μm) with high concentrations of individual metals. This study demonstrated that high concentrations of heavy metals in soil or growth medium did not result in metal transfer into the essential oil. Of the tested metals, only Cu at high concentrations may reduce oil content. Our results demonstrated that aromatic crops may not have significant phytoremediation potential, but growth of these crops in metal contaminated agricultural soils is a feasible alternative. Aromatic crops can provide economic return and metal-free final product, the essential oil

  11. Aromatic plant production on metal contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Zheljazkov, Valtcho D. [Mississippi State, Department of Plant and Soil Sciences and North Mississippi Research and Extension Center, 5421 Highway 145 South, Verona, MS 38879 (United States)], E-mail: vj40@pss.msstate.edu; Craker, Lyle E.; Xing Baoshan [Department of Plant and Soil Sciences, 12 Stockbridge Hall, University of Massachusetts, Amherst, MA 01003 (United States); Nielsen, Niels E. [Plant Nutrition and Soil Fertility Lab, Department of Agricultural Sciences, Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK1871, Copenhagen (Denmark); Wilcox, Andrew [Harper Adams University College, Newport, Shropshire, TF10 8NB (United Kingdom)

    2008-06-01

    Field and container experiments were conducted to assess the feasibility of growing aromatic crops in metal contaminated areas and the effect of metals on herbage and oil productivity. The field experiments were conducted in the vicinities of the Non-Ferrous Metals Combine (Zn-Cu smelter) near Plovdiv, Bulgaria using coriander, sage, dill, basil, hyssop, lemon balm, and chamomile grown at various distances from the smelter. Herbage essential oil yields of basil, chamomile, dill, and sage were reduced when they were grown closer to the smelter. Metal removal from the site with the harvestable plant parts was as high as 180 g ha{sup -1} for Cd, 660 g ha{sup -1} for Pb, 180 g ha{sup -1} for Cu, 350 g ha{sup -1} for Mn, and 205 g ha{sup -1} for Zn. Sequential extraction of soil demonstrated that metal fractionation was affected by the distance to the smelter. With decreasing distance to the smelter, the transfer factor (TF) for Cu and Zn decreased but increased for Cd, while the bioavailability factor (BF) for Cd, Pb, Cu, Mn, and Zn decreased. Scanning electron microscopy and X-ray microanalyses of contaminated soil verified that most of the Pb, Cd, Mn, Cu, and Zn were in the form of small (< 1 {mu}m) particles, although there were larger particles (1-5 {mu}m) with high concentrations of individual metals. This study demonstrated that high concentrations of heavy metals in soil or growth medium did not result in metal transfer into the essential oil. Of the tested metals, only Cu at high concentrations may reduce oil content. Our results demonstrated that aromatic crops may not have significant phytoremediation potential, but growth of these crops in metal contaminated agricultural soils is a feasible alternative. Aromatic crops can provide economic return and metal-free final product, the essential oil.

  12. Metals in aerosols of the Mexico City; Metales en aerosoles de la Ciudad de Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Reyes L, J. [Instituto Nacional de Investigaciones Nucleares, Salazar, Estado de Mexico C.P. 52045 (Mexico)

    1998-07-01

    The general purpose and scope of this work was to have a data base that includes enough information about the heavy metals which are disseminated in the atmospheric air in Mexico City, like it is what refers to its elements, its concentration and its particle size. For this were collected samples through collectors types: of the filters unit and the cascade impactor. Through the PIXE analysis for filters and films it was identified the presence of 20 elements in the majority of samples studied of the four seasons during the years 1993-1994. The metals were classified in two groups: those of natural origin and those of anthropogenic origin. (Author)

  13. Indoor metallic pollution and children exposure in a mining city.

    Science.gov (United States)

    Barbieri, Enio; Fontúrbel, Francisco E; Herbas, Cristian; Barbieri, Flavia L; Gardon, Jacques

    2014-07-15

    Mining industries are known for causing strong environmental contamination. In most developing countries, the management of mining wastes is not adequate, usually contaminating soil, water and air. This situation is a source of concern for human settlements located near mining centers, especially for vulnerable populations such as children. The aim of this study was to assess the correlations of the metallic concentrations between household dust and children hair, comparing these associations in two different contamination contexts: a mining district and a suburban non-mining area. We collected 113 hair samples from children between 7 and 12 years of age in elementary schools in the mining city of Oruro, Bolivia. We collected 97 indoor dust samples from their households, as well as information about the children's behavior. Analyses of hair and dust samples were conducted to measure As, Cd, Pb, Sb, Sn, Cu and Zn contents. In the mining district, there were significant correlations between non-essential metallic elements (As, Cd, Pb, Sb and Sn) in dust and hair, but not for essential elements (Cu and Zn), which remained after adjusting for children habits. Children who played with dirt had higher dust-hair correlations for Pb, Sb, and Cu (P=0.006; 0.022 and 0.001 respectively) and children who put hands or toys in their mouths had higher dust-hair correlations of Cd (P=0.011). On the contrary, in the suburban area, no significant correlations were found between metallic elements in dust and children hair and neither children behavior nor gender modified this lack of associations. Our results suggest that, in a context of high metallic contamination, indoor dust becomes an important exposure pathway for children, modulated by their playing behavior. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Classification of Plants According to Their Heavy Metal Content ...

    African Journals Online (AJOL)

    Plants like other living organisms respond differently under different environmental conditions. An elevated level of heavy metals is one of the stresses which results into three classes of plants depending on their heavy metal content. The classes of plant species according to their accumulated heavy metals around North ...

  15. [Metallic content of water sources and drinkable water in industrial cities of Murmansk region].

    Science.gov (United States)

    Doushkina, E V; Dudarev, A A; Sladkova, Yu N; Zachinskaya, I Yu; Chupakhin, V S; Goushchin, I V; Talykova, L V; Nikanov, A N

    2015-01-01

    Performed in 2013, sampling of centralized and noncentralized water-supply and analysis of engineering technology materials on household water use in 6 cities of Murmansk region (Nikel, Zapolyarny, Olenegorsk, Montchegorsk, Apatity, Kirovsk), subjected to industrial emissions, enabled to evaluate and compare levels of 15 metals in water sources (lakes and springs) and the cities' drinkable waters. Findings are that some cities lack sanitary protection zones for water sources, most cities require preliminary water processing, water desinfection involves only chlorination. Concentrations of most metals in water samples from all the cities at the points of water intake, water preparation and water supply are within the hygienic norms. But values significantly (2-5 times) exceeding MACs (both in water sources and in drinkable waters of the cities) were seen for aluminium in Kirovsk city and for nickel in Zapolarny and Nikel cities. To decrease effects of aluminium, nickel and their compounds in the three cities' residents (and preserve health of the population and offsprings), the authors necessitate specification and adaptation of measures to purify the drinkable waters from the pollutants. In all the cities studied, significantly increased concentrations of iron and other metals were seen during water transportation from the source to the city supply--that necessitates replacement of depreciated water supply systems by modern ones. Water taken from Petchenga region springs demonstrated relatively low levels of metals, except from strontium and barium.

  16. Indoor metallic pollution and children exposure in a mining city

    Energy Technology Data Exchange (ETDEWEB)

    Barbieri, Enio, E-mail: enniobg@gmail.com [IRD (Institut de Recherche pour le Développement), La Paz (Bolivia, Plurinational State of); Fontúrbel, Francisco E. [Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago de Chile (Chile); Herbas, Cristian [Instituto IGEMA, Universidad Mayor de San Andrés, La Paz (Bolivia, Plurinational State of); Barbieri, Flavia L. [IRD (Institut de Recherche pour le Développement), La Paz (Bolivia, Plurinational State of); Universidad Mayor de San Andrés, SELADIS (Instituto de Servicios de Laboratorio para el Diagnóstico e Investigación en Salud), La Paz (Bolivia, Plurinational State of); Berlin School of Public Health, Charité Universitätsmedizin, Berlin (Germany); Gardon, Jacques [IRD (Institut de Recherche pour le Développement), La Paz (Bolivia, Plurinational State of); Universidad Mayor de San Andrés, SELADIS (Instituto de Servicios de Laboratorio para el Diagnóstico e Investigación en Salud), La Paz (Bolivia, Plurinational State of); IRD, HSM, Montpellier (France)

    2014-07-01

    Mining industries are known for causing strong environmental contamination. In most developing countries, the management of mining wastes is not adequate, usually contaminating soil, water and air. This situation is a source of concern for human settlements located near mining centers, especially for vulnerable populations such as children. The aim of this study was to assess the correlations of the metallic concentrations between household dust and children hair, comparing these associations in two different contamination contexts: a mining district and a suburban non-mining area. We collected 113 hair samples from children between 7 and 12 years of age in elementary schools in the mining city of Oruro, Bolivia. We collected 97 indoor dust samples from their households, as well as information about the children's behavior. Analyses of hair and dust samples were conducted to measure As, Cd, Pb, Sb, Sn, Cu and Zn contents. In the mining district, there were significant correlations between non-essential metallic elements (As, Cd, Pb, Sb and Sn) in dust and hair, but not for essential elements (Cu and Zn), which remained after adjusting for children habits. Children who played with dirt had higher dust-hair correlations for Pb, Sb, and Cu (P = 0.006; 0.022 and 0.001 respectively) and children who put hands or toys in their mouths had higher dust-hair correlations of Cd (P = 0.011). On the contrary, in the suburban area, no significant correlations were found between metallic elements in dust and children hair and neither children behavior nor gender modified this lack of associations. Our results suggest that, in a context of high metallic contamination, indoor dust becomes an important exposure pathway for children, modulated by their playing behavior. - Highlights: • Mining activities are an important source of environmental pollution. • Mining pollution contaminated also indoor homes, creating a risk to population. • Indoor dust and hair concentrations

  17. Indoor metallic pollution and children exposure in a mining city

    International Nuclear Information System (INIS)

    Barbieri, Enio; Fontúrbel, Francisco E.; Herbas, Cristian; Barbieri, Flavia L.; Gardon, Jacques

    2014-01-01

    Mining industries are known for causing strong environmental contamination. In most developing countries, the management of mining wastes is not adequate, usually contaminating soil, water and air. This situation is a source of concern for human settlements located near mining centers, especially for vulnerable populations such as children. The aim of this study was to assess the correlations of the metallic concentrations between household dust and children hair, comparing these associations in two different contamination contexts: a mining district and a suburban non-mining area. We collected 113 hair samples from children between 7 and 12 years of age in elementary schools in the mining city of Oruro, Bolivia. We collected 97 indoor dust samples from their households, as well as information about the children's behavior. Analyses of hair and dust samples were conducted to measure As, Cd, Pb, Sb, Sn, Cu and Zn contents. In the mining district, there were significant correlations between non-essential metallic elements (As, Cd, Pb, Sb and Sn) in dust and hair, but not for essential elements (Cu and Zn), which remained after adjusting for children habits. Children who played with dirt had higher dust-hair correlations for Pb, Sb, and Cu (P = 0.006; 0.022 and 0.001 respectively) and children who put hands or toys in their mouths had higher dust-hair correlations of Cd (P = 0.011). On the contrary, in the suburban area, no significant correlations were found between metallic elements in dust and children hair and neither children behavior nor gender modified this lack of associations. Our results suggest that, in a context of high metallic contamination, indoor dust becomes an important exposure pathway for children, modulated by their playing behavior. - Highlights: • Mining activities are an important source of environmental pollution. • Mining pollution contaminated also indoor homes, creating a risk to population. • Indoor dust and hair concentrations in As

  18. classification of plants according to their heavy metal content around

    African Journals Online (AJOL)

    Mgina

    accumulated heavy metals around North Mara Gold Mine were not known. To study such ... heavy metal hyperaccumulator plants for possible future remediation of the study area. ... mine is about 100 kilometers east of Lake. Victoria and 20 ...

  19. Climate change driven plant-metal-microbe interactions.

    Science.gov (United States)

    Rajkumar, Mani; Prasad, Majeti Narasimha Vara; Swaminathan, Sandhya; Freitas, Helena

    2013-03-01

    Various biotic and abiotic stress factors affect the growth and productivity of crop plants. Particularly, the climatic and/or heavy metal stress influence various processes including growth, physiology, biochemistry, and yield of crops. Climatic changes particularly the elevated atmospheric CO₂ enhance the biomass production and metal accumulation in plants and help plants to support greater microbial populations and/or protect the microorganisms against the impacts of heavy metals. Besides, the indirect effects of climatic change (e.g., changes in the function and structure of plant roots and diversity and activity of rhizosphere microbes) would lead to altered metal bioavailability in soils and concomitantly affect plant growth. However, the effects of warming, drought or combined climatic stress on plant growth and metal accumulation vary substantially across physico-chemico-biological properties of the environment (e.g., soil pH, heavy metal type and its bio-available concentrations, microbial diversity, and interactive effects of climatic factors) and plant used. Overall, direct and/or indirect effects of climate change on heavy metal mobility in soils may further hinder the ability of plants to adapt and make them more susceptible to stress. Here, we review and discuss how the climatic parameters including atmospheric CO₂, temperature and drought influence the plant-metal interaction in polluted soils. Other aspects including the effects of climate change and heavy metals on plant-microbe interaction, heavy metal phytoremediation and safety of food and feed are also discussed. This review shows that predicting how plant-metal interaction responds to altering climatic change is critical to select suitable crop plants that would be able to produce more yields and tolerate multi-stress conditions without accumulating toxic heavy metals for future food security. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Routine environment audit of the Kansas City Plant, Kansas City, Missouri

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-11-01

    This report documents the results of the routine environmental audit of the Kansas City Plant, Kansas City, Missouri. During this audit the activities the audit team conducted included reviews of internal documents and reports from previous audits and assessments; interviews with U.S. Department of Energy (DOE) and contractor personnel; and inspections and observations of selected facilities and operations. The onsite portion of the audit was conducted October 24-November 4, 1994, by the DOE Office of Environmental Audit (EH-24), located within the Office of Environment, Safety, and Health (EH). DOE 5482.1 B, {open_quotes}Environment, Safety, and Health Appraisal Program,{close_quotes} establishes the mission of EH-24, which is to provide comprehensive, independent oversight of Department-wide environmental programs on behalf of the Secretary of Energy. The ultimate goal of EH-24 is enhancement of environmental protection and minimization of risk to public health and the environment. EH-24 accomplishes its mission by conducting systematic and periodic evaluations of the Department`s environmental programs within line organizations and by using supplemental activities that strengthen self-assessment and oversight functions within program, field, and contractor organizations. The audit evaluated the status of programs to ensure compliance with Federal, state, and local environmental laws and regulations; compliance with DOE Orders, guidance, and directives; and conformance with accepted industry practices and standards of performance. The audit also evaluated the status and adequacy of the management systems developed to address environmental requirements.

  1. Heavy Metal Contamination in Urban Soils II Comparison of Urban Park Soils Between Two Cities with Different City and Industrial Activities

    OpenAIRE

    KOMAI, Yutaka

    1981-01-01

    A comparative investigation on the state of heavy metal contamination in park soils of two cities with different city and industrial activities was carried out. Sakai and Kishiwada, both situated in southern Osaka Prefecture, were chosen as the investigated cities which had similar natural conditions but different human activities. Park soils were regarded as suitable sites for the investigation of heavy metal problem in urban environments. Samples were taken at 34 parks distributed widely in...

  2. Structural load inventory database for the Kansas City Plant

    International Nuclear Information System (INIS)

    Hashimoto, P.S.; Johnson, M.W.; Nakaki, D.K.; Wilson, J.J.; Lynch, D.T.; Drury, M.A.

    1993-01-01

    A structural load inventory database (LID) has been developed to support configuration management at the DOE Kansas City Plant (KCP). The objective of the LID is to record loads supported by the plant structures and to provide rapid assessments of the impact of future facility modifications on structural adequacy. Development of the LID was initiated for the KCP's Main Manufacturing Building. Field walkdowns were performed to determine all significant loads supported by the structure, including the weight of piping, service equipment, etc. These loads were compiled in the LID. Structural analyses for natural phenomena hazards were performed in accordance with UCRL-15910. Software to calculate demands on the structural members due to gravity loads, total demands including both gravity and seismic loads, and structural member demand-to-capacity ratios were also developed and integrated into the LID. Operation of the LID is menu-driven. The LID user has options to review and print existing loads and corresponding demand-to-capacity ratios, and to update the supported loads and demand-to-capacity ratios for any future facility modifications

  3. Inducer pumps for liquid metal reactor plants

    International Nuclear Information System (INIS)

    Jackson, E.D.

    2002-01-01

    Pumps proposed for liquid metal reactor plants typically use centrifugal impellers as the rotating element and are required to maintain a relatively low speed to keep the suction specific speed low enough to operate at the available net positive suction head (HPSH) and to avoid cavitation damage. These low speeds of operation require that the pump diameter increase and/or multiple stages be used to achieve the design head. This frequently results in a large, heavy, complex pump design. In addition, the low speed results in a larger drive motor size so that the resultant penalty to the plant designer is multiplied. The heavier pump can also result in further complications as, e.g., the difficulty in maintaining the first critical speed sufficiently above the pump operating range to provide margin for rotor dynamic stability. To overcome some of these disadvantages, it was proposed the use of inducer pumps for Liquid Metal Fast Breeder Reactor (LMFBR) plants. This paper discusses some of the advantages of the inducer pump and the development history of designing and testing these pumps both in water and sodium. The inducer pump is seen to be a sound concept with a strong technology base derived from the aerospace and ship propulsion industries. The superior suction performance capability of the inducer offers significant system design advantages, primarily a smaller, lighter weight, less complex pump design with resulting saving in cost. Extensive testing of these pumps has been conducted in both sodium and water to demonstrate the long-life capability with no cavitation damage occurring in those designs based on Rockwell's current design criteria. These tests have utilized multiple inspection and measurement approaches to accurately assess and identify any potential for cavitation damage, and these approaches have all concluded that no damage is occurring. Therefore, it is concluded that inducer pumps can be safely designed for long life operation in sodium with

  4. Contrasting natural regeneration and tree planting in fourteen North American cities

    Science.gov (United States)

    David J. Nowak

    2012-01-01

    Field data from randomly located plots in 12 cities in the United States and Canada were used to estimate the proportion of the existing tree population that was planted or occurred via natural regeneration. In addition, two cities (Baltimore and Syracuse) were recently re-sampled to estimate the proportion of newly established trees that were planted. Results for the...

  5. Mosses Are Better than Leaves of Vascular Plants in Monitoring Atmospheric Heavy Metal Pollution in Urban Areas.

    Science.gov (United States)

    Jiang, Yanbin; Fan, Miao; Hu, Ronggui; Zhao, Jinsong; Wu, Yupeng

    2018-05-29

    Mosses and leaves of vascular plants have been used as bioindicators of environmental contamination by heavy metals originating from various sources. This study aims to compare the metal accumulation capabilities of mosses and vascular species in urban areas and quantify the suitability of different taxa for monitoring airborne heavy metals. One pleurocarpous feather moss species, Haplocladium angustifolium , and two evergreen tree species, Cinnamomum bodinieri Osmanthus fragrans , and substrate soil were sampled in the urban area of different land use types in Wuhan City in China. The concentrations of Ag, As, Cd, Co, Cr, Cu, Mn, Mo, Ni, V, Pb, and Zn in these samples were analyzed by inductively coupled plasma mass spectrometry. The differences of heavy metals concentration in the three species showed that the moss species was considerably more capable of accumulating heavy metals than tree leaves (3 times to 51 times). The accumulated concentration of heavy metals in the moss species depended on the metal species and land use type. The enrichment factors of metals for plants and the correlations of metals in plants with corresponding metals in soil reflected that the accumulated metals in plants stemmed mostly from atmospheric deposition, rather than the substrate soil. Anthropogenic factors, such as traffic emissions from automobile transportation and manufacturing industries, were primarily responsible for the variations in metal pollutants in the atmosphere and subsequently influenced the metal accumulation in the mosses. This study elucidated that the moss species H. angustifolium is relatively more suitable than tree leaves of C. bodinieri and O. fragrans in monitoring heavy metal pollution in urban areas, and currently Wuhan is at a lower contamination level of atmospheric heavy metals than some other cities in China.

  6. INAA of toxic heavy metals in solid wastes from Indian cities

    International Nuclear Information System (INIS)

    Garg, A.N.; Ramakrishna, V.V.S.; Singh, V.

    1997-01-01

    Solid wastes and sewage sludges in metropolitan cities are potential health hazards due to toxic heavy metal pollutants. Sewage sludges from six Indian cities viz., Ahmedabad, Bikaner, Bombay, Calcutta, Jaipur, Kanpur and solid wastes from six different disposal sites of the capital city of Delhi have been analyzed for 26 elements (As, Au, Ba, Br, Co, Cr, Cs, Cu, Eu, Fe, Hg, Hf, K, La, Mg, Mn, Mo, Na, P, Rb, Sb, Sc, Se, Sr, Th and Zn) by employing instrumental neutron activation analysis (INAA). Sewage sludges from Bombay after different treatments (settled, digested, aerobic, anaerobic) along with several environmental SRMs were also analyzed. An attempt has been made to attribute the pollutant sources to the degree of urbanisation and industrialization of the city. Role of treatment processes in the removal/retention of heavy metals is discussed. (author)

  7. Traversing the Links between Heavy Metal Stress and Plant Signaling

    Science.gov (United States)

    Jalmi, Siddhi K.; Bhagat, Prakash K.; Verma, Deepanjali; Noryang, Stanzin; Tayyeba, Sumaira; Singh, Kirti; Sharma, Deepika; Sinha, Alok K.

    2018-01-01

    Plants confront multifarious environmental stresses widely divided into abiotic and biotic stresses, of which heavy metal stress represents one of the most damaging abiotic stresses. Heavy metals cause toxicity by targeting crucial molecules and vital processes in the plant cell. One of the approaches by which heavy metals act in plants is by over production of reactive oxygen species (ROS) either directly or indirectly. Plants act against such overdose of metal in the environment by boosting the defense responses like metal chelation, sequestration into vacuole, regulation of metal intake by transporters, and intensification of antioxidative mechanisms. This response shown by plants is the result of intricate signaling networks functioning in the cell in order to transmit the extracellular stimuli into an intracellular response. The crucial signaling components involved are calcium signaling, hormone signaling, and mitogen activated protein kinase (MAPK) signaling that are discussed in this review. Apart from signaling components other regulators like microRNAs and transcription factors also have a major contribution in regulating heavy metal stress. This review demonstrates the key role of MAPKs in synchronously controlling the other signaling components and regulators in metal stress. Further, attempts have been made to focus on metal transporters and chelators that are regulated by MAPK signaling. PMID:29459874

  8. Concentration of heavy metals in brook trout in comparison to aquatic plants and sediments

    Energy Technology Data Exchange (ETDEWEB)

    Abo-Rady, M.D.

    1983-01-01

    From 1974 to 1977 the heavy metal content of river water, fishes (Salmo trutta fario), three aquatic plants (Cladophora glomerata, Potamogeton pectinatus, Zannichellia palustris), one river-bank plant (Phalaris arundinacea), and sediments (clay fraction) taken from the River Leine, up and downstream of Goettingen, were determined. Galvanic-bath sewage containing heavy metals caused an increase (11-60%) in the concentration of nine elements in the water. The average level of heavy metals in the river water corresponded to that of the Ems, Elbe and Weser, but was lower than that of the Neckar, Rhine and Danube. It was also below the European Community Guidelines (1975) on the quality of water used for the artificial recharging of ground water. River water upstream of the city has been used for this recharging for many years. There is a good correlation between the metal content in the investigated samples and in the water. In the muscles, only Cd, Co and Mn, in the liver Cd, Co, Cr. Hg, Mn and Zn, and in the total fish Cd, Co, Cr, Cu and Zn had increased significantly. In contrast to all other elements, Cr shows the highest concentration in the muscles. A previous accumulation of Cr in the liver is not a prerequisite for the accumulation in the muscles. Mercury shows the highest accumulation in the muscles, apparently because of the high retention rate of this element. Muscles also are a good monitor for this element. The impact of heavy metals on the Leine water was reflected in aquatic plants, which showed an increase in concentration up to 95-fold (according to metal or plant) - but not in river-bank plants. C. glomerata has the remarkable capability of accumulating all ten elements. Since P. arundinacea cannot reflect the different load of heavy metals it is therefore less suitable as a biological monitor for these metals.

  9. A review of phytoremediation technology: heavy metals uptake by plants

    Science.gov (United States)

    Sumiahadi, A.; Acar, R.

    2018-03-01

    Heavy metal is one of the serious environmental pollutions for now days as impact of industrial development in several countries. Heavy metals give toxic effects on human health and cause several serious diseases. Several techniques have been using for removing heavy metal contaminants from the environmental but these techniques have limitations such as high cost, long time, logistical problems and mechanical complexity. Phytoremediation can be used as an alternative solution for heavy metal remediation process because of its advantages as a cost-effective, efficient, environment- and eco-friendly technology based on the use of metal-accumulating plants. According to previous studies, several plants have a high potential as heavy metals bioaccumulator and can be used for phytoremediation process of heavy metals.

  10. Implementation of deep soil mixing at the Kansas City Plant

    International Nuclear Information System (INIS)

    Gardner, F.G.; Korte, N.; Strong-Gunderson, J.; Siegrist, R.L.; West, O.R.; Cline, S.R.

    1998-01-01

    In July 1996, the US Department of Energy (DOE) Kansas City Plant (KCP), AlliedSignal Federal Manufacturing and Technologies, and Oak Ridge National Laboratory (ORNL), conducted field-scale tests of in situ soil mixing and treatment technologies within the Northeast Area (NEA) of the KCP at the Former Ponds site. This demonstration, testing, and evaluation effort was conducted as part of the implementation of a deep soil mixing (DSM) innovative remedial technology demonstration project designed to test DSM in the low-permeability clay soils at the KCP. The clay soils and groundwater beneath this area are contaminated by volatile organic compounds (VOCs), primarily trichloroethene (TCE) and 1,2-dichloroethene (1,2-DCE). The demonstration project was originally designed to evaluate TCE and 1,2-DCE removal efficiency using soil mixing coupled with vapor stripping. Treatability study results, however, indicated that mixed region vapor stripping (MRVS) coupled with calcium oxide (dry lime powder) injection would improve TCE and 1,2-DCE removal efficiency in saturated soils. The scope of the KCP DSM demonstration evolved to implement DSM with the following in situ treatment methodologies for contaminant source reduction in soil and groundwater: DSM/MRVS coupled with calcium oxide injection; DSM/bioaugmentation; and DSM/chemical oxidation using potassium permanganate. Laboratory treatability studies were started in 1995 following collection of undisturbed soil cores from the KCP. These studies were conducted at ORNL, and the results provided information on optimum reagent concentrations and mixing ratios for the three in situ treatment agents to be implemented in the field demonstration

  11. Distributions, sources and pollution status of 17 trace metal/metalloids in the street dust of a heavily industrialized city of central China

    International Nuclear Information System (INIS)

    Li, Zhonggen; Feng, Xinbin; Li, Guanghui; Bi, Xiangyang; Zhu, Jianming; Qin, Haibo; Dai, Zhihui; Liu, Jinling; Li, Qiuhua; Sun, Guangyi

    2013-01-01

    A series of representative street dust samples were collected from a heavily industrialized city, Zhuzhou, in central China, with the aim to investigate the spatial distribution and pollution status of 17 trace metal/metalloid elements. Concentrations of twelve elements (Pb, Zn, Cu, Cd, Hg, As, Sb, In, Bi, Tl, Ag and Ga) were distinctly amplified by atmospheric deposition resulting from a large scale Pb/Zn smelter located in the northwest fringe of the city, and followed a declining trend towards the city center. Three metals (W, Mo and Co) were enriched in samples very close to a hard alloy manufacturing plant, while Ni and Cr appeared to derive predominantly from natural sources. Other industries and traffic had neglectable effects on the accumulation of observed elements. Cd, In, Zn, Ag and Pb were the five metal/metalloids with highest pollution levels and the northwestern part of city is especially affected by heavy metal pollution. -- Highlights: •Large-scale Pb/Zn smelters contributed to elevated trace elements in the street dust. •The hard alloy processing caused the enrichment of a few elements. •Cd, In, Zn, Ag and Pb were the most polluted elements. •Northwestern Zhuzhou suffered severe contamination for a range of trace elements. -- Pb/Zn smelting and hard alloy processing operations have caused seriously contamination of trace metal/metalloids in the street dust

  12. Heavy Metal Polluted Soils: Effect on Plants and Bioremediation Methods

    Directory of Open Access Journals (Sweden)

    G. U. Chibuike

    2014-01-01

    Full Text Available Soils polluted with heavy metals have become common across the globe due to increase in geologic and anthropogenic activities. Plants growing on these soils show a reduction in growth, performance, and yield. Bioremediation is an effective method of treating heavy metal polluted soils. It is a widely accepted method that is mostly carried out in situ; hence it is suitable for the establishment/reestablishment of crops on treated soils. Microorganisms and plants employ different mechanisms for the bioremediation of polluted soils. Using plants for the treatment of polluted soils is a more common approach in the bioremediation of heavy metal polluted soils. Combining both microorganisms and plants is an approach to bioremediation that ensures a more efficient clean-up of heavy metal polluted soils. However, success of this approach largely depends on the species of organisms involved in the process.

  13. Heavy metal content of selected African leafy vegetables planted in ...

    African Journals Online (AJOL)

    Heavy metal content of selected African leafy vegetables planted in urban and peri-urban Nairobi, Kenya. ... African Journal of Environmental Science and Technology ... Government clean-up activities and monitoring of waste disposal is ...

  14. Heavy Metal Polluted Soils: Effect on Plants and Bioremediation Methods

    OpenAIRE

    Chibuike, G. U.; Obiora, S. C.

    2014-01-01

    Soils polluted with heavy metals have become common across the globe due to increase in geologic and anthropogenic activities. Plants growing on these soils show a reduction in growth, performance, and yield. Bioremediation is an effective method of treating heavy metal polluted soils. It is a widely accepted method that is mostly carried out in situ; hence it is suitable for the establishment/reestablishment of crops on treated soils. Microorganisms and plants employ different mechanisms for...

  15. Concentrations of heavy metals in urban soils of Havana city, Cuba

    International Nuclear Information System (INIS)

    Diaz Rizo, O.; Echevarria Castillo, F.; Arado Lopez, J. O.; Hernandez Merlo, M.

    2011-01-01

    Concentrations of Cr, Co, Ni, Cu, Zn, Pb and Fe in the top-soils (0-10 cm) of Havana city urbanized and un-urbanized areas were measured by X-ray fluorescence analysis. The mean Cr, Co, Ni, Cu, Zn and Pb contents in the urban topsoil samples from Havana City (151 ± 90, 13.9 ± 4.1, 66 ± 26, 101 ± 51, 240 ± 132 and 101 ± 61 mg.kg -1 , respectively) were compared with mean concentrations for other cities around the world. The results revealed higher concentrations of heavy metals in topsoil samples from industrial sites. Lowest heavy metal contents were determined in the un-urbanized areas. The comparison with Dutch soil quality guidelines showed a slightly contamination with Cr, Co, Ni Cu and Zn in all studied sites and with Pb in industrial soils. On the other hand, the metal-to-iron normalisation using Earth crust contents as background showed that soils from urbanized areas in Havana city (industrial sites, parks and school grounds) are moderately enriched by zinc, moderately to severe enriched (city parks and school grounds) and severe enriched (industrial sites) by lead. (Author)

  16. Heavy metals in reindeer and their forage plants

    Directory of Open Access Journals (Sweden)

    O. Eriksson

    1990-09-01

    Full Text Available An attempt was made to assess the level of heavy metal transfer from forage plants to reindeer (Rangifer tarandus L. in an area in northern Lapland affected from dust from an open pit copper mine. Botanical analyses of rumen contents from reindeer provided information about the main plant species in the diet. Representative plant material was collected from sample plots within an 8 km radius from the central part of the mine and from a reference area situated about 200 km upwind of the mining site. The following plant species were analysed: Bryoria jremontii, Br. juscescens, Cladina rangiferina, Equisetum fluviatile, Descbampsiaflexuosa, Eriopborum vaginatum, Salix glauca, Salix pbylicifolia, Betula nana, and Vaccini-um myrtillus. The greatest difference between metal concentrations in the plants collected from dust contaminated area and from the reference area was found in lichens. Copper is the main metallic component of the ore and was found in higher concentrations in lichens coming from the area around the mine than in lichens from the reference area. Smaller differences were found in vascular plants. Dust particles, remaining on outer surfaces after snow smelt contributed to a limited extent to the metal contents. Species—specific accumulation of metals was observed in some plants. The uptake of lead and cadmium in some vascular plants was somewhat higher in the reference area compared with plants growing in the perifery of the mining center, probably due to the metal concentrations in the bedrock. Organ material (liver and kidney was collected from reindeer in both areas. No noticable effect on metal concentrations in the liver of the reindeer were found. Although the lead, cadmium and copper concentrations were higher in the organs collected from animals in the reference area than in those from the mining area, the levels were still below the concentrations regarded as harmful for the animals from toxicological point of view. The

  17. 78 FR 70934 - Trespassing on DOE Property: Kansas City Plant Facilities

    Science.gov (United States)

    2013-11-27

    ... than $5,000.' By operation of law, the Criminal Fine Improvements Act of 1987, Public Law 100-185, 101 Stat. 1279 (1987), increased the fine amounts from $1000/$5000 to $5000/$100,000. See, e.g., U.S. v..., Director, Security & Information Technology Systems, NNSA Kansas City Plant, 14520 Botts Road, Kansas City...

  18. Minor and trace metals levels in human milk in north western cities of Libya

    International Nuclear Information System (INIS)

    Mahabbis, M. T.; Elkubat, M. S.; Kut, H. M.

    2009-01-01

    Levels of twelve minor and trace metals were determined by using (AAS, ES and ICP/MS) in breast milk obtained from 60 women living in north western cities of Libya. Samples were collected at one week up to two years after delivery. Women with age>21 years old to an age of <43 years old were investigated. (Author)

  19. Distribution of heavy metals in plants cultivated with wastewater irrigated soils during different periods of time

    International Nuclear Information System (INIS)

    Solis, C.; Andrade, E.; Mireles, A.; Reyes-Solis, I.E.; Garcia-Calderon, N.; Lagunas-Solar, M.C.; Pina, C.U.; Flocchini, R.G.

    2005-01-01

    The Mezquital valley is a vast area near Mexico city that has been irrigated with wastewater from Mexico city for more than 50 years. At present, this water source continues to be used while new irrigation areas are being incorporated according to rural demand. This research study was conducted to evaluate the relationship between the accumulation of metals in soils and plants and the physicochemical properties of soils irrigated in this manner for 50 and 100 years, respectively. Soil properties such as pH and total organic carbon (TOC) were determined by conventional methods. Plant and soil total trace metals Fe, Co, Ni, Cu, Zn and Pb were determined using particle induced X-ray emission (PIXE). Lower pH and TOC contents were obtained for soils irrigated during 100 years, indicating a higher metal bioavailability. This is not reflected in plant content for most of the reported elements, but Zn and Pb show a higher absorption in 100 years old plots (26-79%) than in 50-year-olds plots, indicating a pH dependence

  20. NPDES Draft Permit for City of New Town Water Treatment Plant in North Dakota

    Science.gov (United States)

    Under National Pollutant Discharge Elimination System draft permit number ND0031151, The City of New Town Water Treatment Plant is authorized to discharge from its wastewater treatment facility in Mountrail County, North Dakota.

  1. Rare Plants - City of San Diego [ds455

    Data.gov (United States)

    California Natural Resource Agency — The Biological Monitoring Plan (BMP; Ogden 1996) for the Multiple Species Conservation Program (MSCP) was developed in 1996 and is a component of the City of San...

  2. Adsorption of heavy metals ions on portulaca oleracea plants

    International Nuclear Information System (INIS)

    Naqvi, R.R.

    2005-01-01

    The aim of this study is to report the ability of portulaca oleracea (Fershi in Urdu) biomass grown in uncontaminated soils to adsorb or uptake lead, cadmium, arsenic, cobalt and copper from aqueous solutions. In order to help understand the metal binding mechanism, laboratory experiments performance to determine optimal binding, and binding capacity for each of the above mentioned metals. These experiments were carried out for the mass of crushed portulaca stems. Portulaca is a plant that grows abundantly in temperature climate in the area of Quetta Balochistan. It has reddish stem and thick succulent leaves. This plant has been found to be good adsorbent for heavy metals ions. (author)

  3. Impact of Metals on Secondary Metabolites Production and Plant ...

    African Journals Online (AJOL)

    NICO

    accumulation of toxic metals in plant tissues induces major changes in plants at ... vulgaris1 with increasing concentrations of Pb in the growth medium was also ... low pH and high salinity.17 It has been widely used for pollution control .... the growth of rice,20 and Indian Mustard (Brassica juncea).18 Furthermore, elevated.

  4. Soil contamination by heavy metals in the city: a case study of Petach-Tikva, Israel

    Science.gov (United States)

    Sarah, Pariente; Zhevelev, Helena; Ido-Lichtman, Orna

    2017-04-01

    Heavy metals are among the most important pollutants which are affected by human activities. These pollutants impact both the natural and urban ecosystems. In the latter they are associated with the human health of the residents. The general aim of the study is to investigate the spatial variability of soil heavy metals in the city of Petach-Tikva. We asked if and to what extent the urban structure determines the spatial pattern of soil contamination. Urban structure in this study refers to the morphology of neighborhoods (density and height of buildings), the industrial area location and the roads system. It includes three main and industrial areas in the margins of the city. The city is also subjected to heavy traffic and contains different types of neighborhood morphology. To promote the above aim a preliminary study was conducted in 2016. Soil sampling was carried out along a strip, running from the Northwest industrial region of the city to the residential region in the center. Soil samples were randomly taken, from 0-5 cm, from industrial, near high traffic roads and between buildings areas. Each was analyzed for three heavy metals (Pb, Zn, Cu) commonly associated with industry and traffic emissions. Primary results show that for all the city studied areas the range values of Cu Zn and Pb concentrations were 1800, 1270 and 150 ppm, respectively, meaning high spatial variability of the heavy metals. In the soil of the industrial area the averages and the maximum values of Pb, Zn, and Cu concentrations were 76, 353 and 500 ppm and 153, 1286 and 1847 ppm, respectively. In the soil between buildings the averages were 20, 78 and 13 ppm and the maximum values reached 38, 165 and 37 ppm for Pb, Zn, and Cu, respectively. In the soil near roads the averages were 39, 120 and 214 ppm, and the maximum values were 153, 477 and 74 ppm for Pb, Zn, and Cu, respectively. These results indicate that the city industry has the greatest effect on soil pollution. Within the city

  5. [Distribution of Urban Soil Heavy Metal and Pollution Evaluation in Different Functional Zones of Yinchuan City].

    Science.gov (United States)

    Wang, You-qi; Bai, Yi-ru; Wang, Jian-yu

    2016-02-15

    Surface soil samples (0-20 cm) from eight different functional areas in Yinchuan city were collected. There were 10 samples respectively in each functional area. The urban soil heavy metals (Zn, Cd, Pb, Mn, Cu and Cr) pollution characteristics and sources in eight different functional areas were evaluated by mathematical statistics and geostatistical analysis method. Meanwhile, the spatial distributions of heavy metals based on the geography information system (GIS) were plotted. The average values of total Zn, Cd, Pb, Mn, Cu and Cr were 74.87, 0.15, 29.02, 553.55, 40.37 and 80.79 mg x kg(-1), respectively. The results showed that the average value of soil heavy metals was higher than the soil background value of Ningxia, which indicated accumulation of the heavy metals in urban soil. The single factor pollution index of soil heavy metals was in the sequence of Cu > Pb > Zn > Cr > Cd > Mn. The average values of total Zn, Cd, Pb and Cr were higher in north east, south west and central city, while the average values of Mn and Cu were higher in north east and central city. There was moderate pollution in road and industrial area of Yinchuan, while the other functional areas showed slight pollution according to Nemoro synthesis index. The pollution degree of different functional areas was as follows: road > industrial area > business district > medical treatment area > residential area > public park > development zone > science and education area. The results indicated that the soil heavy metal pollution condition in Yinchuan City has been affected by human activities with the development of economy.

  6. Metal resistant plants and phytoremediation of environmental contamination

    Science.gov (United States)

    Meagher, Richard B.; Li, Yujing; Dhankher, Om P.

    2010-04-20

    The present disclosure provides a method of producing transgenic plants which are resistant to at least one metal ion by transforming the plant with a recombinant DNA comprising a nucleic acid encoding a bacterial arsenic reductase under the control of a plant expressible promoter, and a nucleic acid encoding a nucleotide sequence encoding a phytochelatin biosynthetic enzyme under the control of a plant expressible promoter. The invention also relates a method of phytoremediation of a contaminated site by growing in the site a transgenic plant expressing a nucleic acid encoding a bacterial arsenate reductase and a nucleic acid encoding a phytochelatin biosynthetic enzyme.

  7. Improved inventory for heavy metal emissions from stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Hoffmann, Leif

    On behalf of the Ministry of the Environment DCE at Aarhus University annually reports heavy metals (HM) emissions to the UNECE CLRTAP (United Nations Economic Commission for Europe Convention on Long-Range Transboundary Air Pollution). This report presents updated heavy metal emission factors......-2009. The report also include methodology, references and an uncertainty estimate. In Denmark, stationary combustion plants are among the most important emission sources for heavy metals. Emissions of all heavy metals have decreased considerably (73 % - 92 %) since 1990. The main HM emission sources are coal...

  8. Assessment of heavy metal pollution with applications of sewage sludge and city compost for maximizing crop yields

    International Nuclear Information System (INIS)

    D'Souza, T.J.; Ramachandran, V.; Raghu, K.

    1997-01-01

    Land application of municipal sewage sludge and city compost as organic manures make it imperative to assess heavy-metal pollution in soils and crops. Greenhouse experiments, conducted on maize in a vertisol and an ultisol amended with various doses of dry sewage sludge and city compost from Mumbai, indicated significant increases in dry matter-yields only in the vertisol. Significantly higher concentrations of Zn, Cu, Co, Pb, Ni and Cd were obtained in plants grown in the amended ultisol, but not in the amended vertisol. As Cd is the most toxic, experiments were conducted with four contrasting soils amended with varying doses of Cd-enriched sewage sludge and city compost. Results showed significant reductions in dry-matter yields of maize shoots at the higher rates of sludge or compost in the ultisol and an alfisol, but with no significant effects in the vertisol or an entisol. The levels of Cd and Zn were significantly elevated in plants in all four soil types. There were negative residual effects from the sludge and compost amendments: dry-matter yields of a succeeding maize crop were decreased in the ultisol and alfisol. Experiments with soils amended with sludge enriched with either Cd or Zn at 80 mg kg -1 indicated significant reductions in dry matter in all soils with Cd, but not with Zn. The results demonstrate that sewage sludges and city composts may be effectively used for maximizing crop yields, especially in vertisols and entisols. However, caution has to be exercised when using sludges containing even relatively low levels of Cd, or high levels of Zn, depending upon soil type. (author)

  9. Interactions between plant hormones and heavy metals responses.

    Science.gov (United States)

    Bücker-Neto, Lauro; Paiva, Ana Luiza Sobral; Machado, Ronei Dorneles; Arenhart, Rafael Augusto; Margis-Pinheiro, Marcia

    2017-01-01

    Heavy metals are natural non-biodegradable constituents of the Earth's crust that accumulate and persist indefinitely in the ecosystem as a result of human activities. Since the industrial revolution, the concentration of cadmium, arsenic, lead, mercury and zinc, amongst others, have increasingly contaminated soil and water resources, leading to significant yield losses in plants. These issues have become an important concern of scientific interest. Understanding the molecular and physiological responses of plants to heavy metal stress is critical in order to maximize their productivity. Recent research has extended our view of how plant hormones can regulate and integrate growth responses to various environmental cues in order to sustain life. In the present review we discuss current knowledge about the role of the plant growth hormones abscisic acid, auxin, brassinosteroid and ethylene in signaling pathways, defense mechanisms and alleviation of heavy metal toxicity.

  10. Interactions between plant hormones and heavy metals responses

    Directory of Open Access Journals (Sweden)

    Lauro Bücker-Neto

    2017-04-01

    Full Text Available Abstract Heavy metals are natural non-biodegradable constituents of the Earth's crust that accumulate and persist indefinitely in the ecosystem as a result of human activities. Since the industrial revolution, the concentration of cadmium, arsenic, lead, mercury and zinc, amongst others, have increasingly contaminated soil and water resources, leading to significant yield losses in plants. These issues have become an important concern of scientific interest. Understanding the molecular and physiological responses of plants to heavy metal stress is critical in order to maximize their productivity. Recent research has extended our view of how plant hormones can regulate and integrate growth responses to various environmental cues in order to sustain life. In the present review we discuss current knowledge about the role of the plant growth hormones abscisic acid, auxin, brassinosteroid and ethylene in signaling pathways, defense mechanisms and alleviation of heavy metal toxicity.

  11. Spatial distribution and contamination assessment of heavy metals in street dust from Camagüey city (Cuba) using X-ray fluorescence

    International Nuclear Information System (INIS)

    Rizo, Oscar Díaz; Rivero Palma, Orestes; D’Alessandro Rodríguez, Katia; García Trápaga, César

    2015-01-01

    Concentrations of Cr, Co, Ni, Cu, Zn, Pb and Fe in the street dust from Camagüey city were studied by X-ray fluorescence analysis. The mean Cr, Co, Ni, Cu, Zn and Pb contents in the urban dust samples (97 ± 30, 14 ± 2, 35 ± 36, 94 ± 26, 199 ± 87 and 42 ± 29 mg.kg-1 dry weight, respectively) were compared with mean concentrations for other cities around the world. Spatial distribution maps indicated the same behaviour for Cr–Ni and Pb–Zn–Cu, respectively, whereas the spatial distribution of Co differs from other heavy metals. The metal-to-iron normalization, using Cuban average metal soil contents as background, showed that street dusts from Camagüey city are moderately or significantly Zn-Pb enriched in those areas associated with heavy traffic density and metallurgic plant location. However, the calculation of the potential ecological risk index shows that metal content in Camagüey street dust go not represent any risk for city population. (author)

  12. Distributions, sources and pollution status of 17 trace metal/metalloids in the street dust of a heavily industrialized city of central China.

    Science.gov (United States)

    Li, Zhonggen; Feng, Xinbin; Li, Guanghui; Bi, Xiangyang; Zhu, Jianming; Qin, Haibo; Dai, Zhihui; Liu, Jinling; Li, Qiuhua; Sun, Guangyi

    2013-11-01

    A series of representative street dust samples were collected from a heavily industrialized city, Zhuzhou, in central China, with the aim to investigate the spatial distribution and pollution status of 17 trace metal/metalloid elements. Concentrations of twelve elements (Pb, Zn, Cu, Cd, Hg, As, Sb, In, Bi, Tl, Ag and Ga) were distinctly amplified by atmospheric deposition resulting from a large scale Pb/Zn smelter located in the northwest fringe of the city, and followed a declining trend towards the city center. Three metals (W, Mo and Co) were enriched in samples very close to a hard alloy manufacturing plant, while Ni and Cr appeared to derive predominantly from natural sources. Other industries and traffic had neglectable effects on the accumulation of observed elements. Cd, In, Zn, Ag and Pb were the five metal/metalloids with highest pollution levels and the northwestern part of city is especially affected by heavy metal pollution. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Compartmentation and complexation of metals in hyperaccumulator plants

    Directory of Open Access Journals (Sweden)

    Barbara eLeitenmaier

    2013-09-01

    Full Text Available Hyperaccumulators are being intensely investigated. They are not only interesting in scientific context due to their strange behaviour in terms of dealing with high concentrations of metals, but also because of their use in phytoremediation and phytomining, for which understanding the mechanisms of hyperaccumulation is crucial. Hyperaccumulators naturally use metal accumulation as a defence against herbivores and pathogens, and therefore deal with accumulated metals in very specific ways of complexation and compartmentation, different from non-hyperaccumulator plants and also non-hyperaccumulated metals. For example, in contrast to non-hyperaccumulators, in hyperaccumulators even the classical phytochelatin-inducing metal, cadmium, is predominantly not bound by such sulfur ligands, but only by weak oxygen ligands. This applies to all hyperaccumulated metals investigated so far, as well as hyperaccumulation of the metalloid arsenic. Stronger ligands, as they have been shown to complex metals in non-hyperaccumulators, are in hyperaccumulators used for transient binding during transport to the storage sites. This confirmed that enhanced active metal transport, and not metal complexation, is the key mechanism of hyperaccumulation. Hyperaccumulators tolerate the high amount of accumulated heavy metals by sequestering them into vacuoles, usually in large storage cells of the epidermis. This is mediated by strongly elevated expression of specific transport proteins in various tissues from metal uptake in the shoots up to the storage sites in the leaf epidermis. However, this mechanism seems to be very metal specific. Non-hyperaccumulated metals in hyperaccumulators seem to be dealt with like in non-hyperaccumulator plants, i.e. detoxified by binding to strong ligands such as metallothioneins.

  14. Analysis on the distribution characteristics and sources of soil heavy metals in suburban farmland in Xiangtan City

    Science.gov (United States)

    Zhang, Yong; Sun, Xinxin

    2018-01-01

    The rapid development of the economy will inevitably have an impact on the farmland soil environment. The content of heavy metal is increasing day by day, and the heavy metal can enter people's body through different channels and endanger people's health. Based on agricultural land and crop types in accordance with the regional land use classification, using the method of the Single Factor Index and Comprehensive Pollution Index, the pollution status of heavy metals in farmland soil in the suburbs of Xiangtan city was studied and evaluated. At the same time, we use SPSS software to analyze the four heavy metal elements (Cu, Zn, As and Pb) and analyze their possible sources. The results showed that the farmland soils in Erhuan Road and Zhubu Port were polluted, and the farmland soil in Shuangma (an old industrial district) was not polluted; for different crop lands, orchards and vegetable lands were not contaminated, but rape and rice lands were contaminated. Pearson correlation analysis showed that Cu, As and Pb might come from the same pollution source, while Zn might come from other sources. Waste water from a chemical plant, crop types, automobile exhaust and other human factors may be important sources of soil pollution in agricultural fields.

  15. Characterization of heavy metal concentrations in the sediments of three freshwater rivers in Huludao City, Northeast China

    International Nuclear Information System (INIS)

    Zheng Na; Wang Qichao; Liang Zhongzhu; Zheng Dongmei

    2008-01-01

    Wuli River, Cishan River, and Lianshan River are three freshwater rivers flowing through Huludao City, in a region of northeast China strongly affected by industrialization. Contamination assessment has never been conducted in a comprehensive way. For the first time, the contamination of three rivers impacted by different sources in the same city was compared. This work investigated the distribution and sources of Hg, Pb, Cd, Zn and Cu in the surface sediments of Wuli River, Cishan River, and Lianshan River, and assessed heavy metal toxicity risk with the application of two different sets of Sediment Quality Guideline (SQG) indices (effect range low/effect range median values, ERL/ERM; and threshold effect level/probable effect level, TEL/PEL). Furthermore, this study used a toxic unit approach to compare and gauge the individual and combined metal contamination for Hg, Pb, Cd, Zn and Cu. Results showed that Hg contamination in the sediments of Wuli River originated from previous sediment contamination of the chlor-alkali producing industry, and Pb, Cd, Zn and Cu contamination was mainly derived from atmospheric deposition and unknown small pollution sources. Heavy metal contamination to Cishan River sediments was mainly derived from Huludao Zinc Plant, while atmospheric deposition, sewage wastewater and unknown small pollution were the primary sources for Lianshan River. The potential acute toxicity in sediment of Wuli River may be primarily due to Hg contamination. Hg is the major toxicity contributor, accounting for 53.3-93.2%, 7.9-54.9% to total toxicity in Wuli River and Lianshan River, respectively, followed by Cd. In Cishan River, Cd is the major sediment toxicity contributor, however, accounting for 63.2-66.9% of total toxicity. - Sediment in Wuli River, Cishan River, and Lianshan River has been contaminated by heavy metals and adverse effects would be expected frequently in Wuli River and Cishan River

  16. Factors affecting heavy metal uptake in plant selection for phytoremediation

    Energy Technology Data Exchange (ETDEWEB)

    Anton, A.; Mathe-Gaspar, G. [Research Inst. for Soil Science and Agricultural Chemistry of the Hungarian Academy of Sciences, Budapest (Hungary)

    2005-04-01

    The heavy metal uptake of ten plant species was studied under different soil and climatic conditions. Effects of soil pH, temperature, plant species and phenophase on the heavy metal content of stems and leaves were determined in pot experiments. Plants and soil samples were collected from a lead/zinc mine ore (Gyoengyoesoroszi, Hungary) and characterised by high contents of Pb, Zn, As, Cd, Cu. The possibility of an adapted phytoremediation technology was indicated by different bioconcentration factors (BCF). The BCF depended markedly (10- to 100-fold) on plant species and environmental conditions. Based on our results a ''season-adapted'' phytoextraction technology with different plant species (utilising their different temperature requirements and/or harvest time) is suggested. (orig.)

  17. Chemistry of plants which accumulate metals. [Hybanthus floribundus; Polycarpia glabra

    Energy Technology Data Exchange (ETDEWEB)

    Farago, M E; Clark, A J; Pitt, M J

    1975-01-01

    Information on the accumulation of metals in plants is reviewed. The authors report some of their investigations of the metal accumulating plants Hybanthus floribundus and Polycarpia glabra. In general, nickel levels in the aerial parts of plants are quite low, however a number of plants have been cited as nickel tolerant. The leaves of the Hybanthus plant have large epidermal cells and ridges of large cells which continue along the leaf stem and on to the main stem of the bush. It was found that nickel could be located in these large cells. The presence of nickel in the ridge cells was confirmed by an electron probe technique using a scanning electron microscope. These same areas showed high concentration of pectins. In studying the Polycarpia species, two zinc complexes were found to accumulate in the flowers and stems. 22 references.

  18. Response of magnetic properties to heavy metal pollution in dust from three industrial cities in China

    International Nuclear Information System (INIS)

    Zhu, Zongmin; Li, Zhonggen; Bi, Xiangyang; Han, Zhixuan; Yu, Genhua

    2013-01-01

    Highlights: ► Elevated magnetic particles and heavy metals coexist in dust. ► Morphology and mineralogy of magnetic particles were studied by SEM-EDX and XRD. ► Magnetic minerals in the dust consist of magnetite, hematite, and metallic iron. ► Impact of metallic iron particles and multi-sources of metal pollutants was notable. -- Abstract: Magnetic method is a reliable and powerful technique for identification of the relative contribution of industrial pollutants. However, it has not been fully applied in urban area impacted by non-ferrous metal (NFM) smelting/processing activities. The aim of this study is to explore the applicability of magnetic methods for detecting heavy metal contamination in dust from three NFM smelting/processing industrial cities (Ezhou, Zhuzhou, and Hezhang) in China. The enhancements of magnetic susceptibility (MS) and saturation isothermal remanent magnetization (SIRM) together with heavy metals were significant in the studied areas in comparison with the background values. Scanning electron microscope (SEM) analysis revealed that magnetic particles in dust from Ezhou were dominated by spherules, while those from Zhuzhou and Hezhang were mainly consisted of irregular-shaped particles. κ–T curves and X-ray diffraction (XRD) analyses indicated that the magnetic particles from Ezhou were dominated by magnetite and metallic iron, whereas those from Zhuzhou and Hezhang were consisted of magnetite and hematite. Our study indicates that magnetic properties of the dust are sensitive to the NFM smelting/processing related heavy metal pollutants. However, the relationship between magnetic parameters and heavy metals was influenced by the presence of metallic iron particles and multi-sources of metal pollutants

  19. Long term effects on petrochemical activated sludge on plants and soil. Plant growth and metal absorption

    Energy Technology Data Exchange (ETDEWEB)

    Tedesco, M.J.; Gianello, C. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Dept. de Solos; Ribas, P.I.F.; Carvalho, E.B. [CORSAN-SITEL, Triunfo, RS (Brazil). Polo Petroquimico do Sul. Dept. de Operacao e Manutencao

    1993-12-31

    An experiment to study the effects of several application rates of excess activated sludge on plants, soil and leached water was started in 1985. Sludge was applied for six years and increased plant growth due to its nitrogen and phosphorous contribution, even though the decomposition rate in soil is low. Plant zinc, cadmium and nickel content increased with sludge application, while liming decreased the amounts of these metals taken up by plants. 9 refs., 8 tabs.

  20. Long term effects on petrochemical activated sludge on plants and soil. Plant growth and metal absorption

    Energy Technology Data Exchange (ETDEWEB)

    Tedesco, M J; Gianello, C [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Dept. de Solos; Ribas, P I.F.; Carvalho, E B [CORSAN-SITEL, Triunfo, RS (Brazil). Polo Petroquimico do Sul. Dept. de Operacao e Manutencao

    1994-12-31

    An experiment to study the effects of several application rates of excess activated sludge on plants, soil and leached water was started in 1985. Sludge was applied for six years and increased plant growth due to its nitrogen and phosphorous contribution, even though the decomposition rate in soil is low. Plant zinc, cadmium and nickel content increased with sludge application, while liming decreased the amounts of these metals taken up by plants. 9 refs., 8 tabs.

  1. Estimation of Heavy Metals Contamination in the Soil of Zaafaraniya City Using the Neural Network

    Science.gov (United States)

    Ghazi, Farah F.

    2018-05-01

    The aim of this paper is to estimate the heavy metals Contamination in soils which can be used to determine the rate of environmental contamination by using new technique depend on design feedback neural network as an alternative accurate technique. The network simulates to estimate the concentration of Cadmium (Cd), Nickel (Ni), Lead (Pb), Zinc (Zn) and Copper (Cu). Then to show the accuracy and efficiency of suggested design we applied the technique in Al- Zafaraniyah in Baghdad city. The results of this paper show that the suggested networks can be successfully applied to the rapid and accuracy estimation of concentration of heavy metals.

  2. “Green” Nanotechnologies: Synthesis of Metal Nanoparticles Using Plants

    OpenAIRE

    Makarov, V. V.; Love, A. J.; Sinitsyna, O. V.; Makarova, S. S.; Yaminsky, I. V.; Taliansky, M. E.; Kalinina, N. O.

    2014-01-01

    While metal nanoparticles are being increasingly used in many sectors of the economy, there is growing interest in the biological and environmental safety of their production. The main methods for nanoparticle production are chemical and physical approaches that are often costly and potentially harmful to the environment. The present review is devoted to the possibility of metal nanoparticle synthesis using plant extracts. This approach has been actively pursued in recent years as an alternat...

  3. Metal Contamination In Plants Due To Tannery Effluent

    Directory of Open Access Journals (Sweden)

    Md. Farhad Ali

    2015-08-01

    Full Text Available Abstract This paper analyzes the determination of heavy metals named Chromium Lead and Cadmium deposited in soil as well as in the plants and vegetables due to the tanning industries of the area of Hazaribagh Dhaka. The tanneries discharge untreated tannery effluents which get mixed with the soil water of rivers and canals in this area. The determination of metals was performed for the soil that was collected from the land adjacent to the canals which bear untreated tannery effluents. The soil is affected with the untreated effluents through the deposition of heavy metals. The metals were furthers deposited into the plants and vegetables grown on that soil. The roots stems and leaves of the plants of Jute Corchorus capsularis and Spinach Basella alba grown on that soil were analyzed for determining these metals. Extreme amount of chromium was found for plants and again Lead Cadmium were found in higher amount in these parts of the two plants. These two plants are taken as a popular vegetables extensively. In case of soil the amount of Chromium Lead and Cadmium were analyzed as 87 mgL 0.131 mgL and 0.190 mgL respectively. For the roots stems and leaves of Jute Corchorus capsularis the average values are 115.62 mgL for Chromium 11.25 mgL for Lead and 2.27 mgL for Cadmium respectively. Again in case of Spinach Basella alba 124.42 mgL was found for Chromium 7.38 mgL for lead and 2.97 mgL for Cadmium as average values for these parts of the two trees. All the observed values of metals of Chromium Lead and Cadmium are higher than the permissible and specially for Chromium the amount is extremely higher.

  4. Growing Greener Cities: A Tree-Planting Handbook.

    Science.gov (United States)

    Moll, Gary; Young, Stanley

    This step-by-step guide, developed by the Global ReLeaf organization, presents tree-planting advice and simple steps to organizing a successful community tree-planting and tree-care program. The text is divided into three parts. Part 1 introduces trees and discusses the role they play as components of the living urban environment. Distinctions are…

  5. ACID/HEAVY METAL TOLERANT PLANTS

    Science.gov (United States)

    This report summarizes the results of Mine Waste Technology Program (MWTP) Activity III, Project 30. The objective of Project 30 was to select populations (i.e., ecotypes) from native, indigenous plant species that demonstrate superior growth characteristics and sustainability on...

  6. Effect of multiple metal resistant bacteria from contaminated lake sediments on metal accumulation and plant growth

    International Nuclear Information System (INIS)

    Li, Kefeng; Ramakrishna, Wusirika

    2011-01-01

    Naturally occurring bacteria play an important role in bioremediation of heavy metal pollutants in soil and wastewater. This study identified high levels of resistance to zinc, cesium, lead, arsenate and mercury in eight copper resistant Pseudomonas strains previously isolated from Torch Lake sediment. These strains showed variable susceptibility to different antibiotics. Furthermore, these metal resistant strains were capable of bioaccumulation of multiple metals and solubilization of copper. Bacterial strains TLC 3-3.5-1 and TLC 6-6.5-1 showed high bioaccumulation ability of Zn (up to 15.9 mg/g dry cell) and Pb (80.7 mg/g dry cell), respectively. All the strains produced plant growth promoting indole-3-acetic acid (IAA), iron chelating siderophore and solubilized mineral phosphate and metals. The effect of bacterial inoculation on plant growth and copper uptake by maize (Zea mays) and sunflower (Helianthus annuus) was investigated using one of the isolates (Pseudomonas sp. TLC 6-6.5-4) with higher IAA production and phosphate and metal soubilization, which resulted in a significant increase in copper accumulation in maize and sunflower, and an increase in the total biomass of maize. The multiple metal-resistant bacterial isolates characterized in our study have potential applications for remediation of metal contaminated soils in combination with plants and metal contaminated water.

  7. Effect of multiple metal resistant bacteria from contaminated lake sediments on metal accumulation and plant growth

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kefeng [Department of Biological Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931 (United States); Ramakrishna, Wusirika, E-mail: wusirika@mtu.edu [Department of Biological Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931 (United States)

    2011-05-15

    Naturally occurring bacteria play an important role in bioremediation of heavy metal pollutants in soil and wastewater. This study identified high levels of resistance to zinc, cesium, lead, arsenate and mercury in eight copper resistant Pseudomonas strains previously isolated from Torch Lake sediment. These strains showed variable susceptibility to different antibiotics. Furthermore, these metal resistant strains were capable of bioaccumulation of multiple metals and solubilization of copper. Bacterial strains TLC 3-3.5-1 and TLC 6-6.5-1 showed high bioaccumulation ability of Zn (up to 15.9 mg/g dry cell) and Pb (80.7 mg/g dry cell), respectively. All the strains produced plant growth promoting indole-3-acetic acid (IAA), iron chelating siderophore and solubilized mineral phosphate and metals. The effect of bacterial inoculation on plant growth and copper uptake by maize (Zea mays) and sunflower (Helianthus annuus) was investigated using one of the isolates (Pseudomonas sp. TLC 6-6.5-4) with higher IAA production and phosphate and metal soubilization, which resulted in a significant increase in copper accumulation in maize and sunflower, and an increase in the total biomass of maize. The multiple metal-resistant bacterial isolates characterized in our study have potential applications for remediation of metal contaminated soils in combination with plants and metal contaminated water.

  8. Heavy metal concentrations in plants and different harvestable parts: A soil-plant equilibrium model

    International Nuclear Information System (INIS)

    Guala, Sebastian D.; Vega, Flora A.; Covelo, Emma F.

    2010-01-01

    A mathematical interaction model, validated by experimental results, was developed to modeling the metal uptake by plants and induced growth decrease, by knowing metal in soils. The model relates the dynamics of the uptake of metals from soil to plants. Also, two types of relationships are tested: total and available metal content. The model successfully fitted the experimental data and made it possible to predict the threshold values of total mortality with a satisfactory approach. Data are taken from soils treated with Cd and Ni for ryegrass (Lolium perenne, L.) and oats (Avena sativa L.), respectively. Concentrations are measured in the aboveground biomass of plants. In the latter case, the concentration of metals in different parts of the plants (tillering, shooting and earing) is also modeled. At low concentrations, the effects of metals are moderate, and the dynamics appear to be linear. However, increasing concentrations show nonlinear behaviors. - The model proposed in this study makes possible to characterize the nonlinear behavior of the soil-plant interaction with metal pollution.

  9. Heavy metal concentrations in plants and different harvestable parts: A soil-plant equilibrium model

    Energy Technology Data Exchange (ETDEWEB)

    Guala, Sebastian D. [Instituto de Ciencias, Universidad Nacional de General Sarmiento, Gutierrez 1150, Los Polvorines, Buenos Aires (Argentina); Vega, Flora A. [Departamento de Bioloxia Vexetal e Ciencia do Solo, Facultade de Bioloxia, Universidade de Vigo, Lagoas, Marcosende, 36310 Vigo, Pontevedra (Spain); Covelo, Emma F., E-mail: emmaf@uvigo.e [Departamento de Bioloxia Vexetal e Ciencia do Solo, Facultade de Bioloxia, Universidade de Vigo, Lagoas, Marcosende, 36310 Vigo, Pontevedra (Spain)

    2010-08-15

    A mathematical interaction model, validated by experimental results, was developed to modeling the metal uptake by plants and induced growth decrease, by knowing metal in soils. The model relates the dynamics of the uptake of metals from soil to plants. Also, two types of relationships are tested: total and available metal content. The model successfully fitted the experimental data and made it possible to predict the threshold values of total mortality with a satisfactory approach. Data are taken from soils treated with Cd and Ni for ryegrass (Lolium perenne, L.) and oats (Avena sativa L.), respectively. Concentrations are measured in the aboveground biomass of plants. In the latter case, the concentration of metals in different parts of the plants (tillering, shooting and earing) is also modeled. At low concentrations, the effects of metals are moderate, and the dynamics appear to be linear. However, increasing concentrations show nonlinear behaviors. - The model proposed in this study makes possible to characterize the nonlinear behavior of the soil-plant interaction with metal pollution.

  10. Interaction of soil heavy metal pollution with industrialisation and the landscape pattern in Taiyuan city, China.

    Science.gov (United States)

    Liu, Yong; Su, Chao; Zhang, Hong; Li, Xiaoting; Pei, Jingfei

    2014-01-01

    Many studies indicated that industrialization and urbanization caused serious soil heavy metal pollution from industrialized age. However, fewer previous studies have conducted a combined analysis of the landscape pattern, urbanization, industrialization, and heavy metal pollution. This paper was aimed at exploring the relationships of heavy metals in the soil (Pb, Cu, Ni, As, Cd, Cr, Hg, and Zn) with landscape pattern, industrialisation, urbanisation in Taiyuan city using multivariate analysis. The multivariate analysis included correlation analysis, analysis of variance (ANOVA), independent-sample T test, and principal component analysis (PCA). Geographic information system (GIS) was also applied to determine the spatial distribution of the heavy metals. The spatial distribution maps showed that the heavy metal pollution of the soil was more serious in the centre of the study area. The results of the multivariate analysis indicated that the correlations among heavy metals were significant, and industrialisation could significantly affect the concentrations of some heavy metals. Landscape diversity showed a significant negative correlation with the heavy metal concentrations. The PCA showed that a two-factor model for heavy metal pollution, industrialisation, and the landscape pattern could effectively demonstrate the relationships between these variables. The model explained 86.71% of the total variance of the data. Moreover, the first factor was mainly loaded with the comprehensive pollution index (P), and the second factor was primarily loaded with landscape diversity and dominance (H and D). An ordination of 80 samples could show the pollution pattern of all the samples. The results revealed that local industrialisation caused heavy metal pollution of the soil, but such pollution could respond negatively to the landscape pattern. The results of the study could provide a basis for agricultural, suburban, and urban planning.

  11. Atmospheric pollution and plants, especially trees in cities

    International Nuclear Information System (INIS)

    Pauly, T.; Lohou, C.

    1992-01-01

    Trees in down live in ecologically difficult conditions and suffer a great number of aggressions. Air pollution only increases their state of weakness. Studies in this field are only at their infancy. The part of responsibility of air pollution on the decay of trees is very difficult to determine. However the effect of some pollutants can be observed at present (sulfur dioxide, ozone, hydrocarburants, dust, PAN, lead...). New special equipment will determine, quantify and perhaps resolve some problems of pollution and vegetation in our cities in the future. 11 refs

  12. Phytoremediation of the environment polluted by heavy metals: how metal-accumulating plants can help us?

    International Nuclear Information System (INIS)

    Jovanovic, Lj.; Markovic, M.; Cupac, M. S.; Janjic, V.; Santric, Lj.; Saric, M.; Cokesa, Dj.; Andric, V.

    2002-01-01

    The paper discusses a new method of cleaning up soils polluted by heavy metals and radio nuclides and other wastes using plants. The method, known as phytoremediation, has proved to be effective in many aspects in cleaning up heavy metals from soil. Besides, it is cost-effective and environmentally-friendly. Most wild plants that can be used for phytoremediation due to their high ability to absorb different pollutants have low total biomass calculated per hectare and year. However, crop plants, even those with lower ability to absorb pollutants, have high biomass per hectare and year and are therefore very promising candidates for future use as phytoremediators. To prove that, we present here the results of investigation of crops and wild plants done in Serbia's former uranium mine Kalna. In laboratory conditions, experiments on sunflower roots and whole plants showed a high potential of uranium absorption. (author)

  13. Impact of metal and metal oxide nanoparticles on plant: A critical review

    Science.gov (United States)

    Rastogi, Anshu; Zivcak, Marek; Sytar, Oksana; Kalaji, Hazem M.; He, Xiaolan; Mbarki, Sonia; Brestic, Marian

    2017-10-01

    An increasing need of nanotechnology in various industries may cause a huge environment dispersion of nanoparticles in coming years. A concern about nanoparticles interaction with flora and fauna is raised due to a growing load of it in the environment. In recent years, several investigators have shown impact of nanoparticles on plant growth and its accumulation in food source. This review examines the research performed in the last decade to show how metal and metal oxide nanoparticles are influencing the plant metabolisms. We addressed here, the impact of nanoparticle on plant in relation to its size, concentration, and exposure methodology. Based on the available reports, we proposed oxidative burst as a general mechanism through which the toxic effects of nanoparticles are spread in plants. This review summarises the current understanding and the future possibilities of plant-nanoparticle research.

  14. Characterization of microbial and metal contamination in flooded New York City neighborhoods following Superstorm Sandy

    Science.gov (United States)

    Dueker, M.; O'Mullan, G. D.; Sahajpal, R.

    2013-12-01

    Large scale flooding of waterfront neighborhoods occurred in New York City (NYC) during Superstorm Sandy. While NYC waterways commonly experience combined sewer overflow (CSO) and associated water quality degradation during rain storms, Superstorm Sandy was unique in that these potentially contaminated waters were transported over the banks and into city streets and buildings. Sampling of waterways, storm debris on city streets, and flood water trapped in building basements occurred in the days following Sandy, including in neighborhoods bordering the Gowanus Canal and Newtown Creek, which are both Superfund sites known to frequently contain high levels of sewage associated bacteria and metal contamination. Samples enumerated for the sewage indicating bacterium, Enterococcus, suggest that well-flushed waterways recovered quickly from sewage contamination in the days following the storm, with Enterococci concentrations similar to background levels measured before flooding occurred. In contrast, storm debris on city streets and waters from flooded basements had much higher levels of sewage-associated bacteria days after flooding occurred. Analysis of 180,000 bacterial 16S rRNA gene sequences obtained from flood water samples and flood debris confirmed the presence of bacterial genera often associated with sewage impacted samples (e.g. Escherichia, Streptococcus, Clostridium, Trichococcus, Aeromonas) and a community composition similar to CSO discharge. Elemental analysis suggests low levels of metal contamination in most flood water, but much higher levels of Cu, Pb, and Cr were found in leach from some storm debris samples found adjacent to the Newtown Creek and Gowanus Canal superfund sites. These data suggest a rapid recovery of water quality in local waterways after Superstorm Sandy, but that trapped flood water and debris samples in urban neighborhoods retained elevated levels of microbial sewage pollution, and in some cases metal pollution, days after that

  15. Quantification of potentially toxic elements in sewage and sludge from treatment plants in the cities of Campinas and Jaguariuna using synchrotron radiation total reflection X-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Luciana Carla Ferreira de; Canteras, Felippe Benavente; Moreira, Silvana, E-mail: silvana@fec.unicamp.br, E-mail: felippe.canteras@gmail.com, E-mail: lucarla24@gmail.com [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Inst. Politecnico. Dept. de Saneamento e Ambiente

    2013-07-01

    The rapid urban and industrial development in last decades has brought as one of the consequences, changes in the environment. The lack of planning of city growth is, today, one of the major causes of water pollution including residential, industrial, agricultural, and hospital waste. The metals contamination is a major problem, causing serious changes to the environment, causing harm to human health. The sludge generated at sewage treatment plants, is an important source of nutrients and organic matter, and therefore it can also be reused mainly for agricultural use, since contaminants are removed. The cities of Campinas and Jaguariuna are inserted in the Campinas Metropolitan Region (CMR), one of the most dynamic regions in the Brazilian economy. Therefore, to study the anthropogenic influences of the cities, evaluated the quality of raw and treated effluent and the sludge generated in sewage treatment plants, especially with regard to heavy metals. Measurements of metals were performed by Synchrotron Radiation Total Reflection X-ray Fluorescence. For treated effluent data were compared to CONAMA 357 law and Cr, Mn, Fe, Ni, Cu, Zn, Ba and Pb showed concentrations in according with the law. To reuse in agriculture the contents were compared to the limits defined by CETESB and some elements had concentrations above to the permitted preventing its reuse. For sludge, Cr, Ni, Cu, Zn, Ba and Pb, in the two treatment plants studied, the concentrations were lower than the maximum permissible values established by CONAMA 375 law allowing the sludge application sludge on agricultural land. (author)

  16. Quantification of potentially toxic elements in sewage and sludge from treatment plants in the cities of Campinas and Jaguariuna using synchrotron radiation total reflection X-ray fluorescence

    International Nuclear Information System (INIS)

    Souza, Luciana Carla Ferreira de; Canteras, Felippe Benavente; Moreira, Silvana

    2013-01-01

    The rapid urban and industrial development in last decades has brought as one of the consequences, changes in the environment. The lack of planning of city growth is, today, one of the major causes of water pollution including residential, industrial, agricultural, and hospital waste. The metals contamination is a major problem, causing serious changes to the environment, causing harm to human health. The sludge generated at sewage treatment plants, is an important source of nutrients and organic matter, and therefore it can also be reused mainly for agricultural use, since contaminants are removed. The cities of Campinas and Jaguariuna are inserted in the Campinas Metropolitan Region (CMR), one of the most dynamic regions in the Brazilian economy. Therefore, to study the anthropogenic influences of the cities, evaluated the quality of raw and treated effluent and the sludge generated in sewage treatment plants, especially with regard to heavy metals. Measurements of metals were performed by Synchrotron Radiation Total Reflection X-ray Fluorescence. For treated effluent data were compared to CONAMA 357 law and Cr, Mn, Fe, Ni, Cu, Zn, Ba and Pb showed concentrations in according with the law. To reuse in agriculture the contents were compared to the limits defined by CETESB and some elements had concentrations above to the permitted preventing its reuse. For sludge, Cr, Ni, Cu, Zn, Ba and Pb, in the two treatment plants studied, the concentrations were lower than the maximum permissible values established by CONAMA 375 law allowing the sludge application sludge on agricultural land. (author)

  17. Determination of Heavy Metals in Raw Milk Produced in Tangshan City, China

    Directory of Open Access Journals (Sweden)

    Li Aijun

    2016-01-01

    Full Text Available The objective of this study was to investigate the content of heavy metals (Arsenic, Lead, Chromium and Mercury in raw milk of Tangshan. Samples were obtained directly from dairy farms in Tangshan City. A total of 55 raw milk samples were collected in 2012, a total of 150 raw milk samples and 150 in 2013 and 2014 respectively. All the samples were analyzed by ICP-MS (Inductively Coupled Plasma Mass Spectrometry method-based on China National Standard. In general, heavy metals (Arsenic, Lead, Chromium and Mercury of raw milk in Tangshan were relatively safe for people’s health because none of those heavy metals (Arsenic, Lead, Chromium and Mercury contents exceeded the Maximum Limit set by China.

  18. Lead (Pb) and other metals in New York City community garden soils: factors influencing contaminant distributions.

    Science.gov (United States)

    Mitchell, Rebecca G; Spliethoff, Henry M; Ribaudo, Lisa N; Lopp, Donna M; Shayler, Hannah A; Marquez-Bravo, Lydia G; Lambert, Veronique T; Ferenz, Gretchen S; Russell-Anelli, Jonathan M; Stone, Edie B; McBride, Murray B

    2014-04-01

    Urban gardens provide affordable fresh produce to communities with limited access to healthy food but may also increase exposure to lead (Pb) and other soil contaminants. Metals analysis of 564 soil samples from 54 New York City (NYC) community gardens found at least one sample exceeding health-based guidance values in 70% of gardens. However, most samples (78%) did not exceed guidance values, and medians were generally below those reported in NYC soil and other urban gardening studies. Barium (Ba) and Pb most frequently exceeded guidance values and along with cadmium (Cd) were strongly correlated with zinc (Zn), a commonly measured nutrient. Principal component analysis suggested that contaminants varied independently from organic matter and geogenic metals. Contaminants were associated with visible debris and a lack of raised beds; management practices (e.g., importing uncontaminated soil) have likely reduced metals concentrations. Continued exposure reduction efforts would benefit communities already burdened by environmental exposures. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Lead (Pb) and other metals in New York City community garden soils: factors influencing contaminant distributions

    Science.gov (United States)

    Mitchell, Rebecca G.; Spliethoff, Henry M.; Ribaudo, Lisa N.; Lopp, Donna M.; Shayler, Hannah A.; Marquez-Bravo, Lydia G.; Lambert, Veronique T.; Ferenz, Gretchen S.; Russell-Anelli, Jonathan M.; Stone, Edie B.; McBride, Murray B.

    2014-01-01

    Urban gardens provide affordable fresh produce to communities with limited access to healthy food but may also increase exposure to lead (Pb) and other soil contaminants. Metals analysis of 564 soil samples from 54 New York City (NYC) community gardens found at least one sample exceeding health-based guidance values in 70% of gardens. However, most samples (78%) did not exceed guidance values, and medians were generally below those reported in NYC soil and other urban gardening studies. Barium (Ba) and Pb most frequently exceeded guidance values and along with cadmium (Cd) were strongly correlated with zinc (Zn), a commonly measured nutrient. Principal component analysis suggested that contaminants varied independently from organic matter and geogenic metals. Contaminants were associated with visible debris and a lack of raised beds; management practices (e.g., importing uncontaminated soil) have likely reduced metals concentrations. Continued exposure reduction efforts would benefit communities already burdened by environmental exposures. PMID:24502997

  20. Heavy metals and inorganic constituents in medicinal plants of ...

    African Journals Online (AJOL)

    Heavy metals such as Cr, Fe, Zn, Mn, Ni, Pb, Cu and Cd, and inorganic ions like HCO3-, CO32-, Ca2+, Mg2+, Cl-, Na+, SO42-, NO3-, Fe2+ and F- were investigated in medicinally important plants: Taraxacam officinale, Cichorium intybus and Figonia critica, applying atomic absorption spectrophotometer techniques. In the ...

  1. Increased heavy metal tolerance of cowpea plants by dual ...

    African Journals Online (AJOL)

    Through biological inoculation technology, the bacterial-mycorrhizal-legume tripartite symbiosis in artificially heavy metal polluted soil was documented and the effects of dual inoculation with arbuscular mycorrhizal (AM) fungus and Rhizobium (N-fixing bacteria, NFB) on the host plant cowpea (Vigna sinensis) in pot ...

  2. Determination of lead levels in roadside soil and plants in Damascus city

    International Nuclear Information System (INIS)

    Othman, I; Al-Oudat, M.; Al-Masri, M.S.

    1997-04-01

    Seasonal variations of lead concentration in roadside soils and plants in 12 sites in Damascus city have been investigated. Lead concentrations in soil were found to be varied from 78.4 ppm to 832 ppm; lower levels in the wet period than in the dry period were observed. While lead levels in roadside plants varied between 3.39 ppm to 13.28 ppm. The results have also shown that most of the vegetables grown on the roadside of Damascus city have high concentrations of lead and the normal washing does not decrease it to unacceptable level. (author). 15 refs., 9 tabs

  3. Plant response to heavy metals and organic pollutants in cell culture and at whole plant level

    Energy Technology Data Exchange (ETDEWEB)

    Golan-Goldhirsh, A.; Barazani, O. [Ben-Gurion Univ. of The Negev, The Jacob Blaustein Inst. for Desert Research, Albert Katz Dept. of Dryland Biotechnologies, Desert Plant Biotechnology Lab., Sede Boqer Campus (Israel); Nepovim, A.; Soudek, P.; Vanek, T. [Inst. of Organic Chemistry and Biochemistry (Czech Republic); Smrcek, S.; Dufkova, L.; Krenkova, S. [Faculty of Natural Sciences, Charles Univ. (Czech Republic); Yrjala, K. [Univ. of Helsinki, Dept. of Biosciences, Div. of General Microbiology, Helsinki (Finland); Schroeder, P. [Inst. for Soil Ecology, GSF National Research Center for Environment and Health, Neuherberg, Oberschleissheim (Germany)

    2004-07-01

    Background. Increasing awareness in the last decade concerning environmental quality had prompted research into 'green solutions' for soil and water remediation, progressing from laboratory in vitro experiments to pot and field trials. In vitro cell culture experiments provide a convenient system to study basic biological processes, by which biochemical pathways, enzymatic activity and metabolites can be specifically studied. However, it is difficult to relate cell cultures, calli or even hydroponic experiments to the whole plant response to pollutant stress. In the field, plants are exposed to additional a-biotic and biotic factors, which complicate further plant response. Hence, we often see that in vitro selected species perform poorly under soil and field conditions. Soil physical and chemical properties, plant-mycorrhizal association and soil-microbial activity affect the process of contaminant degradation by plants and/or microorganisms, pointing to the importance of pot and field experiments. Objective. This paper is a joint effort of a group of scientists in COST action 837. It represents experimental work and an overview on plant response to environmental stress from in vitro tissue culture to whole plant experiments in soil. Results. Results obtained from in vitro plant tissue cultures and whole plant hydroponic experiments indicate the phytoremediation potential of different plant species and the biochemical mechanisms involved in plant tolerance. In pot experiments, several selected desert plant species, which accumulated heavy metal in hydroponic systems, succeeded in accumulating the heavy metal in soil conditions as well. Conclusions and recommendations. In vitro plant tissue cultures provide a useful experimental system for the study of the mechanisms involved in the detoxification of organic and heavy metal pollutants. However, whole plant experimental systems, as well as hydroponics followed by pot and field trials, are essential when

  4. Fractionation and ecological risk of metals in urban river sediments in Zhongshan City, Pearl River Delta.

    Science.gov (United States)

    Cai, Jiannan; Cao, Yingzi; Tan, Haijian; Wang, Yanman; Luo, Jiaqi

    2011-09-01

    Surface sediments collected from nine urban rivers located in Zhongshan City, Pearl River Delta, were analyzed for total concentration of metals with digestion and chemical fractionation adopting the modified European Community Bureau of Reference (BCR) sequential extraction procedure. The results showed that concentration and fractionation of metals varied significantly among the rivers. The total concentration of eight metals in most rivers did not exceed the China Environmental Quality Standard for Soil, Grade III. The potential ecological risk of metals to rivers were related to the land use patterns, in the order of manufacturing areas > residential areas > agriculture areas. The concentration of Pb in the reducible fraction was relatively high (60.0-84.3%). The dominant proportions of Cd, Zn and Cu were primary in the non-residual fraction (67.0%, 71.8% and 81.4% on average respectively), while the percentages of the residual fractions of Cr and Ni varied over a wide range (43-85% and 24-71% respectively). The approaches of the Håkanson ecological risk index and Secondary Phase Enrichment Factor were applied for ecological risk assessment and metal enrichment calculation. The results indicated Hg and Cd had posed high potential ecological risk to urban rivers in this region. Meanwhile, there was widespread pollution and high enrichment of Cu in river sediments in this region. Multiple regression analysis showed that five water quality parameters (pH, DO, COD(Mn), NH(4)(+)-N, TP) had little influence on the distribution of metal fractionation. This result revealed that the ecological risk of metals was not eliminated along with the improvement in water quality. Correlation studies showed that among the metals, Group A (Cd, As, Pb, Zn Hg, r = 0.730-0.924) and Group B (Cr, Cu, Ni, r = 0.815-0.948) were obtained, and the metal contaminations were from industrial activities rather than residential.

  5. Trees as bioindicator of heavy metal pollution in three European cities

    Energy Technology Data Exchange (ETDEWEB)

    Sawidis, T. [Department of Botany, University of Thessaloniki, 54124 Thessaloniki (Greece); Breuste, J., E-mail: juergen.breuste@sbg.ac.at [Department of Geography and Geology, University of Salzburg, 5010 Salzburg (Austria); Mitrovic, M.; Pavlovic, P. [Department of Ecology, Institute for Biological Research ' Sinisa Stankovic' , University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade (Serbia); Tsigaridas, K. [Department of Botany, University of Thessaloniki, 54124 Thessaloniki (Greece)

    2011-12-15

    Concentrations of four heavy metals were determined in tree leaves and bark collected from polluted and non-polluted areas of three European cities (Salzburg, Belgrade and Thessaloniki) for a comparative study. Platanus orientalis L. and Pinus nigra Arn., widespread in urban northern and southern Europe, were tested for their suitability for air quality biomonitoring. Leaves and barks were collected uniformly of an initial quantity of about 30 g of each sample. Analysis was accomplished by electrothermal atomic absorption spectrometry after total digestion. Site-dependent variations were found with the highest concentration level measured in Belgrade, followed by Thessaloniki and Salzburg. A higher accumulation of heavy metals was found in bark compared to leaves. Pine tree bark, accumulating higher concentrations of trace metals compared to plane tree bark, shows a higher efficiency as bioindicator for urban pollution. Both indicator species are suitable for comparative studies on bioindication of urban air pollution. - Highlights: > Oriental plane and Austrian pine are suitable for comparative urban air quality biomonitoring of heavy metal pollution. > Pine tree is excellently suitable as urban bioindicator as it accumulates high concentrations of trace metals. > The highest heavy metal pollution was found in Belgrade followed by Thessaloniki and Salzburg. - Oriental plane (Platanus orientalis L.) and Austrian pine (Pinus nigra Arn.), widespread in urban northern and southern Europe, are suitable for comparative biomonitoring of urban air pollution.

  6. Trees as bioindicator of heavy metal pollution in three European cities

    International Nuclear Information System (INIS)

    Sawidis, T.; Breuste, J.; Mitrovic, M.; Pavlovic, P.; Tsigaridas, K.

    2011-01-01

    Concentrations of four heavy metals were determined in tree leaves and bark collected from polluted and non-polluted areas of three European cities (Salzburg, Belgrade and Thessaloniki) for a comparative study. Platanus orientalis L. and Pinus nigra Arn., widespread in urban northern and southern Europe, were tested for their suitability for air quality biomonitoring. Leaves and barks were collected uniformly of an initial quantity of about 30 g of each sample. Analysis was accomplished by electrothermal atomic absorption spectrometry after total digestion. Site-dependent variations were found with the highest concentration level measured in Belgrade, followed by Thessaloniki and Salzburg. A higher accumulation of heavy metals was found in bark compared to leaves. Pine tree bark, accumulating higher concentrations of trace metals compared to plane tree bark, shows a higher efficiency as bioindicator for urban pollution. Both indicator species are suitable for comparative studies on bioindication of urban air pollution. - Highlights: → Oriental plane and Austrian pine are suitable for comparative urban air quality biomonitoring of heavy metal pollution. → Pine tree is excellently suitable as urban bioindicator as it accumulates high concentrations of trace metals. → The highest heavy metal pollution was found in Belgrade followed by Thessaloniki and Salzburg. - Oriental plane (Platanus orientalis L.) and Austrian pine (Pinus nigra Arn.), widespread in urban northern and southern Europe, are suitable for comparative biomonitoring of urban air pollution.

  7. Plant resources in seven Jeonju City reservoirs: Osongjae, Gisijae, Sunggokjae, Gujujae, Seounjae, Hwanghakjae and Hacksojae

    Directory of Open Access Journals (Sweden)

    Dong-Ok Lim

    2014-09-01

    Full Text Available The vascular plants of the seven reservoirs of Jeonju City were identified as consisting of 309 taxa; 87 families, 231 genera, 270 species, 35 varieties, and four forms. Eight taxa of endemic Korean plants were identified, including Taxus cuspidata var. caepitosa and Aster koraiensis. Ten taxa of rare and endangered species were identified, including T. cuspidata and Penthorum chinense. A total of 26 taxa of floristic special plants were recorded: class V species (5 taxa included Magnolia kobus and Prunus yedoensis; class IV species (3 taxa included Prunus davidiana and Campanula takesimana; class III species (5 taxa included Acer palmatum and Alisma orientale. The hydrophytes of the seven reservoirs of Jeonju City were investigated and, of a total of 56 taxa, 46 taxa of emerged plants, two taxa of submerged plants, five taxa of floating-leaved plants, and three taxa of floating plants were identified. Thirty-two taxa of naturalized plants were identified. Among these, Sicyos angulatus, Lactuca scariola, Paspalum distichum var. indutum and P. distichum were identified, which are all wild plants that may disturb the ecosystem. The study suggests that these areas require management for the physical removal of these wild plants.

  8. Plant growth and development vs. high and low levels of plant-beneficial heavy metal ions

    Directory of Open Access Journals (Sweden)

    Namira Arif

    2016-11-01

    Full Text Available Heavy metals (HMs exists in the environment in both forms as essential and non-essential. These HM ions enter in soil biota from various sources like natural and anthropogenic. Essential HMs such as cobalt (Co, copper (Cu, iron (Fe, manganese (Mn, molybdenum (Mo, nickel (Ni, and zinc (Zn plays a beneficial role in plant growth and development. At optimum level these beneficial elements improves the plant’s nutritional level and also several mechanisms essential for the normal growth and better yield of plants. The range of their optimality for land plants is varied. Plant uptake heavy metals as a soluble component or solubilized them by root exudates. While their presence in excess become toxic for plants that switches the plant’s ability to uptake and accumulate other nonessential elements. The increased amount of HMs within the plant tissue displays direct and indirect toxic impacts. Such direct effects are the generation of oxidative stress which further aggravates inhibition of cytoplasmic enzymes and damage to cell structures. Although, indirect possession is the substitution of essential nutrients at plant’s cation exchange sites. These ions readily influence role of various enzymes and proteins, arrest metabolism, and reveal phytotoxicity. On account of recent advancements on beneficial HMs ions Co, Cu, Fe, Mn, Mo, Ni, and Zn in soil-plant system, the present paper: overview the sources of HMs in soils and their uptake and transportation mechanism, here we have discussed the role of metal transporters in transporting the essential metal ions from soil to plants. The role played by Co, Cu, Fe, Mn, Mo, Ni, and Zn at both low and high level on the plant growth and development and the mechanism to alleviate metal toxicity at high level have been also discussed. At the end, on concluding the article we have also discussed the future perspective in respect to beneficial HM ions interaction with plant at both levels.

  9. Gathering in the city: an annotated bibliography and review of the literature about human-plant interactions in urban ecosystems

    Science.gov (United States)

    R.J. McLain; K. MacFarland; L. Brody; J. Hebert; P. Hurley; M. Poe; L.P. Buttolph; N. Gabriel; M. Dzuna; M.R. Emery; S. Charnley

    2012-01-01

    The past decade has seen resurgence in interest in gathering wild plants and fungi in cities. In addition to gathering by individuals, dozens of groups have emerged in U.S., Canadian, and European cities to facilitate access to nontimber forest products (NTFPs), particularly fruits and nuts, in public and private spaces. Recent efforts within cities to encourage public...

  10. Removal of Metal Nanoparticles Colloidal Solutions by Water Plants

    Science.gov (United States)

    Olkhovych, Olga; Svietlova, Nataliia; Konotop, Yevheniia; Karaushu, Olena; Hrechishkina, Svitlana

    2016-11-01

    The ability of seven species of aquatic plants ( Elodea canadensis, Najas guadelupensis, Vallisneria spiralis L., Riccia fluitans L., Limnobium laevigatum, Pistia stratiotes L., and Salvinia natans L.) to absorb metal nanoparticles from colloidal solutions was studied. It was established that investigated aquatic plants have a high capacity for removal of metal nanoparticles from aqueous solution (30-100%) which indicates their high phytoremediation potential. Analysis of the water samples content for elements including the mixture of colloidal solutions of metal nanoparticles (Mn, Cu, Zn, Ag + Ag2O) before and after exposure to plants showed no significant differences when using submerged or free-floating hydrophytes so-called pleuston. However, it was found that the presence of submerged hydrophytes in aqueous medium ( E. canadensis, N. guadelupensis, V. spiralis L., and R. fluitans L.) and significant changes in the content of photosynthetic pigments, unlike free-floating hydrophytes ( L. laevigatum, P. stratiotes L., S. natans L.), had occur. Pleuston possesses higher potential for phytoremediation of contaminated water basins polluted by metal nanoparticles. In terms of removal of nanoparticles among studied free-floating hydrophytes, P. stratiotes L. and S. natans L. deserve on special attention.

  11. Heavy metals in eichhornia crassipes in the vicinity of a landfill in Havana city

    International Nuclear Information System (INIS)

    Olivares Rieumnot, Susana; Lima Cazorla, Lazaro; Columbie, Isaida; De La Rosa Medero, Daniel; Sanchez, Maria J.

    2006-01-01

    In this work, the levels of Cu, Pb, Zn, Cd, Cr and Cd in roots of EC which grow in a river near an important landfill in Havana City are assessed. This landfill, known as street 100 receives daily 1,600 tons of solid wastes from the city, from them, approximately 45-50% are domestic wastes, 10-15% are industrial wastes and 25-30% are other type wastes. The leachate of the landfill is discharged without treatment into Almendares River. Some reports indicate that levels of metals in the leachate and in the river surface water are relatively low, contrary to the one should wait, due to the nature of the deposited waste- type

  12. CE of phytosiderophores and related metal species in plants.

    Science.gov (United States)

    Xuan, Yue; Scheuermann, Enrico B; Meda, Anderson R; Jacob, Peter; von Wirén, Nicolaus; Weber, Günther

    2007-10-01

    Phytosiderophores (PS) and the closely related substance nicotianamine (NA) are key substances in metal uptake into graminaceous plants. Here, the CE separation of these substances and related metal species is demonstrated. In particular, the three PS 2'-deoxymugineic acid (DMA), mugineic acid (MA), and 3-epi-hydroxymugineic acid (epi-HMA), and NA, are separated using MES/Tris buffer at pH 7.3. Moreover, three Fe(III) species of the different PS are separated without any stability problems, which are often present in chromatographic analyses. Also divalent metal species of Cu, Ni, and Zn with the ligands DMA and NA are separated with the same method. By using a special, zwitterionic CE capillary, even the separation of two isomeric Fe(III) chelates with the ligand ethylenediamine-N,N'-bis(o-hydroxyphenyl)acetic acid (EDDHA) is possible (i.e., meso-Fe(III)-EDDHA and rac-Fe(III)-EDDHA), and for fast separations of NA and respective divalent and trivalent metal species, a polymer CE microchip with suppressed EOF is described. The proposed CE method is applicable to real plant samples, and enables to detect changes of metal species (Cu-DMA, Ni-NA), which are directly correlated to biological processes.

  13. Chemical speciation of trace metals in the industrial sludge of Dhaka City, Bangladesh.

    Science.gov (United States)

    Islam, Md Saiful; Al-Mamun, Md Habibullah; Feng, Ye; Tokumura, Masahiro; Masunaga, Shigeki

    2017-07-01

    The objective of this study was to assess total concentration and chemical fractionation of trace metals in the industrial wastewater and sludge collected from seven different types of industries in Dhaka City, Bangladesh. The sludge from industries is either dumped on landfills or reused as secondary resources in order to preserve natural resources. Metals were analyzed using inductively coupled plasma mass spectrometry (ICP-MS). The ranges of Cr, Ni, Cu, As, Cd, and Pb in the sludges were 1.4-9,470, 4.8-994, 12.8-444, 2.2-224, 1.9-46.0 and 1.3-87.0 mg/kg, respectively. As a whole, the average concentrations of trace metals in samples were in the decreasing order of Cr > Ni > Cu > As > Pb > Cd. The results of the Community Bureau of Reference (BCR) sequential extraction showed that the studied metals were predominantly associated with the residual fraction followed by the oxidizable fraction. The study revealed that the mobile fractions of trace metals are poorly predictable from the total content, and bioavailability of all fractions of elements tends to decrease.

  14. Influence of temperature and salinity on heavy metal uptake by submersed plants

    Energy Technology Data Exchange (ETDEWEB)

    Fritioff, A. [Department of Botany, Stockholm University, S-106 91 Stockholm (Sweden)]. E-mail: fritioff@botan.su.se; Kautsky, L. [Department of Botany, Stockholm University, S-106 91 Stockholm (Sweden); Greger, M. [Department of Botany, Stockholm University, S-106 91 Stockholm (Sweden)

    2005-01-01

    Submersed plants can be useful in reducing heavy metal concentrations in stormwater, since they can accumulate large amounts of heavy metals in their shoots. To investigate the effects of water temperature and salinity on the metal uptake of two submersed plant species, Elodea canadensis (Michx.) and Potamogeton natans (L.), these plants were grown in the presence of Cu, Zn, Cd, and Pb at 5, 11, and 20 deg. C in combination with salinities of 0, 0.5, and 5%o. The metal concentrations in the plant tissue increased with increasing temperature in both species; the exception was the concentration of Pb in Elodea, which increased with decreasing salinity. Metal concentrations at high temperature or low salinity were up to twice those found at low temperature or high salinity. Plant biomass affected the metal uptake, with low biomass plants having higher metal concentrations than did high biomass plants. - Metal concentrations increase with increasing temperature and decreasing salinity in two aquatic plants.

  15. Influence of temperature and salinity on heavy metal uptake by submersed plants

    International Nuclear Information System (INIS)

    Fritioff, A.; Kautsky, L.; Greger, M.

    2005-01-01

    Submersed plants can be useful in reducing heavy metal concentrations in stormwater, since they can accumulate large amounts of heavy metals in their shoots. To investigate the effects of water temperature and salinity on the metal uptake of two submersed plant species, Elodea canadensis (Michx.) and Potamogeton natans (L.), these plants were grown in the presence of Cu, Zn, Cd, and Pb at 5, 11, and 20 deg. C in combination with salinities of 0, 0.5, and 5%o. The metal concentrations in the plant tissue increased with increasing temperature in both species; the exception was the concentration of Pb in Elodea, which increased with decreasing salinity. Metal concentrations at high temperature or low salinity were up to twice those found at low temperature or high salinity. Plant biomass affected the metal uptake, with low biomass plants having higher metal concentrations than did high biomass plants. - Metal concentrations increase with increasing temperature and decreasing salinity in two aquatic plants

  16. Using of biogas for combined cycle of heat and electricity in City Waste Water Treatment Plant in the city of Varna

    International Nuclear Information System (INIS)

    Stankov, N.; Ovcharov, A.; Nikolov, Ch.; Petrov, P.

    2013-01-01

    This report contains a good practice example of energy production by means of biogas utilization in a Bulgarian city waste water treatment plant in Varna city (WWTP). Sewage gas production is included in the waste water and deposits treatment technological scheme of the plant before their further disposal or utilization. Sewer gas is used to fuel a combined heat and power production module which is based on reciprocating gas engines technology. This article contains data from a real site and its purpose is to present the stages of the examined process as well as the technical, economical and environmental benefits from introduction of such technology in a city WWTP. (authors)

  17. Demographic comparison of the Barsebaeck nuclear power plant with plants situated near large cities and national borders

    International Nuclear Information System (INIS)

    Walmod-Larsen, O.; Starcke, K.

    1984-06-01

    The Swedish-Danish Barsebaeck committee suggested in June 1983 that a demographic comparison of the Barsebaeck nuclear power plant be made with plants situated near other large cities and national borders. Sixteen other nuclear power plants: 13 in Western Europe, 2 in USA and 1 in Canada were chosen for the comparison. For five discrete distances out to 50 km, the population distributions have been found and compared. In addition the positions, related to the plants, of institutions, administrative centres, communication centres and other plants of public importance within the country or in neughbouring countries are described. Finally, the details of special agreements are given together with negotiations between neighbouring countries or internationally about nuclear power related matters. These include alarm and emergency procedures and agreements about liability in case of an accident in a neighbouring country. (author)

  18. Heavy metals in brick kiln located area using atomic absorption spectrophotometer: a case study from the city of Peshawar, Pakistan.

    Science.gov (United States)

    Ishaq, M; Khan, Murad Ali; Jan, F Akbar; Ahmad, I

    2010-07-01

    Environmental pollution is one of the burning issues of the world. In developed countries, there are lot of awareness about the environment and the impact of various industries on their life and surroundings. A little has been done in this direction in developing countries. In Pakistan, a big problem is the rapid conglomeration of the brick kilns in the outskirts of nearly all the urban centers to cope with the rapid construction work in big cities. A huge amount of low-grade coal or rubber tires is used as fuel in a very non-scientific manner. The purpose of the present study was to look into the impact of the brick kilns on the different aspects of environmental pollution caused by these kilns. Concentration of metals Cu, Co, Zn, Pb, Cr, Ni, Cd, and Mn were measured on 36 soil samples collected from the area and the same number of plant samples in order to establish the distribution of heavy metals in the area and to determine the effect of this distribution on the surrounding atmosphere and the possible effects on human life.

  19. Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: Mechanisms and future prospects.

    Science.gov (United States)

    Etesami, Hassan

    2018-01-01

    Heavy metal pollution of agricultural soils is one of main concerns causing some of the different ecological and environmental problems. Excess accumulation of these metals in soil has changed microbial community (e.g., structure, function, and diversity), deteriorated soil, decreased the growth and yield of plant, and entered into the food chain. Plants' tolerance to heavy metal stress needs to be improved in order to allow growth of crops with minimum or no accumulation of heavy metals in edible parts of plant that satisfy safe food demands for the world's rapidly increasing population. It is well known that PGPRs (plant growth-promoting rhizobacteria) enhance crop productivity and plant resistance to heavy metal stress. Many recent reports describe the application of heavy metal resistant-PGPRs to enhance agricultural yields without accumulation of metal in plant tissues. This review provides information about the mechanisms possessed by heavy metal resistant-PGPRs that ameliorate heavy metal stress to plants and decrease the accumulation of these metals in plant, and finally gives some perspectives for research on these bacteria in agriculture in the future. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Phytoextraction of heavy metal from sewage sludge by plants

    Directory of Open Access Journals (Sweden)

    Jaroslava Bartlová

    2010-01-01

    Full Text Available In 2008 and 2009, studies made contents of cadmium and lead in the soil and their uptake by non-traditional plants were studied in a small-plot trial. At the same time also the effect of bio-algeen preparations on phytoextraction of heavy metals by these plants was investigated. Experimental plots were established on the reclaimed land after closing down mining operations in the town of Žacléř (North-East Bohemia where a layer of sewage sludge from a wastewater treatment plant 0.6–0.8 m thick was subsequently applied. The locality is situated in the altitude of 612 m, its average annual temperature is about 6.8 °C and the mean annual precipitations are 857 mm. Analyses revealed higher concentrations of heavy metals in the applied sewage sludge. The average concentrations of lead and cadmium were 180 mg . kg−1 and 6.89 mg . kg−1, respectively. The experiment had two variants: Variant 1 – sewage sludge without any other substances, and Variant 2 – sewage sludge + bio-algeen preparations (B. A. S-90 or B. A. Root Concentrate. To find the most suitable plant species for the phytoextraction of cadmium and lead, the following non-traditional plants were cultivated in both variants: fodder mallow (Malva verticillata L., rye (Secale cereale L. var. multicaule METZG. ex ALEF. and white sweet clover (Melilotus alba MEDIC.. The highest accumulation of cadmium and lead in the aboveground biomass was found out in rye, viz 14.89 mg . kg−1 DM and 14.89 mg . kg−1 DM of Cd and Pb, respectively., As compared with other plants under study, white sweet clover exhibited the significantly lowest capability to extract both heavy metals from soil (viz 0.22 and 3.20 mg . kg−1 DM of Cd and Pb, respectively. A positive effect of bio-algeen on phytoextraction of cadmium and lead was evident in all plants. The highest yield of aboveground biomass was recorded on the plot with white sweet clover with added

  1. Research on plant of metal fuel fabrication using casting process

    International Nuclear Information System (INIS)

    Senda, Yasuhide; Mori, Yukihide

    2003-12-01

    This document presents the plant concept of metal fuel fabrication system (38tHM/y) using casting process in electrolytic recycle, which based on recent studies of its equipment design and quality control system. And we estimate the cost of its construction and operation, including costs of maintenance, consumed hardware and management of waste. The content of this work is as follows. (1) Designing of fuel fabrication equipment: We make material flow diagrams of the fuel fabrication plant and rough designs of the injection casting furnace, demolder and inspection equipment. (2) Designing of resolution system of liquid waste, which comes from analytical process facility. Increased analytical items, we rearrange analytical process facility, estimate its chemicals and amount of waste. (3) Arrangement of equipments: We made a arrangement diagram of the metal fuel fabrication equipments in cells. (4) Estimation of cost data: We estimated cost to construct the facility and to operate it. (author)

  2. Lead (Pb) and other metals in New York City community garden soils: Factors influencing contaminant distributions

    International Nuclear Information System (INIS)

    Mitchell, Rebecca G.; Spliethoff, Henry M.; Ribaudo, Lisa N.; Lopp, Donna M.; Shayler, Hannah A.; Marquez-Bravo, Lydia G.; Lambert, Veronique T.; Ferenz, Gretchen S.; Russell-Anelli, Jonathan M.; Stone, Edie B.; McBride, Murray B.

    2014-01-01

    Urban gardens provide affordable fresh produce to communities with limited access to healthy food but may also increase exposure to lead (Pb) and other soil contaminants. Metals analysis of 564 soil samples from 54 New York City (NYC) community gardens found at least one sample exceeding health-based guidance values in 70% of gardens. However, most samples (78%) did not exceed guidance values, and medians were generally below those reported in NYC soil and other urban gardening studies. Barium (Ba) and Pb most frequently exceeded guidance values and along with cadmium (Cd) were strongly correlated with zinc (Zn), a commonly measured nutrient. Principal component analysis suggested that contaminants varied independently from organic matter and geogenic metals. Contaminants were associated with visible debris and a lack of raised beds; management practices (e.g., importing uncontaminated soil) have likely reduced metals concentrations. Continued exposure reduction efforts would benefit communities already burdened by environmental exposures. - Highlights: • We measured metals concentrations in soil from 54 New York City community gardens. • Pb and Ba exceeded health-based guidance values in 9%–12% of garden beds. • Pb concentrations were similar to those in other studies of urban garden soils. • Pb and Ba were associated with Zn, with visible debris, and with non-raised beds. • Observable details can help gardeners focus testing and exposure reduction efforts. - Pb and Ba, which exceeded health-based guidance values in 10–14% of NYC community garden soil samples, are associated with non-raised beds, visible debris, higher pH and Zn

  3. Invasive alien plants in protected areas within city borders, LODZ (poland)

    International Nuclear Information System (INIS)

    Anna, B.; Grzegorz, W.J.; Krason, K.

    2017-01-01

    The aim of the study was to present the occurrence of invasive alien plant species in two forest reserves: "Las Lagiewnicki"and "Polesie Konstantynowskie", located within the city of Lodz (Central Poland). Currently, five vascular plants (Impatiens parviflora, Juncus tenuis, Padus serotina, Quercus rubra, Robinia pseudoacacia) and one moss (Orthodontium lineare) considered as invasive were found in the studied reserves. Invasive plant species accounted for a small percentage of the flora in the studied reserves, and their sites were mainly concentrated in areas transformed by human activity. The most common species were Impatiens parviflora and Padus serotina. Due to the location of the reserves within city borders and the proven negative effect of the found species on ecological systems, their sites should be monitored. (author)

  4. Heavy metal and natural radionuclide levels in urban soils from Cienfuegos city, Cuba

    International Nuclear Information System (INIS)

    Diaz Rizo, Oscar; Quintana Miranda, Eduardo; D Alessandro Rodriguez, Katia; Lopez Pino, Neivy; Arado Lopez, Juana O.; Alonso Hernandez, Carlos M.; Cartas Aguila, Hector

    2013-01-01

    Concentrations of heavy metals and natural radionuclides in topsoil (0-10cm) from Cienfuegos city, Cuba, were determined by using X-ray fluorescence analysis and gamma ray spectrometry, respectively. The measured results of heavy metals show that the mean concentrations of Ni, Cu, Zn and Pb in the studied soil samples are higher than their corresponding background values. The calculated results of integrated pollution index of heavy metals indicate that the studied soils present severely heavy metal contamination. The concentrations of 226Ra, 232Th and 40K in the studied soil samples range from 8.3 to 32.7, 3.7 to 10.7 and 129 to 356 Bq.kg-1 with an average of 22.6, 6.3 and 272 Bq.kg-1 , respectively, which are similar than the average concentrations reported for South-central Cuban soils. The air absorbed dose rate and the annual effective dose equivalent received by the local residents due to the natural radionuclides in soil are lesser than the worldwide established limits. A significantly positive 232Th-Cu and 232Th-Zn correlations were determined, indicating the possible presence of these elements pollution source in the area.(author)

  5. Temporal evolution of pollution by trace metals and plants analysis in Apipucos reservoir, Recife, PE, Brazil

    International Nuclear Information System (INIS)

    Souza, Vivianne L.B. de; Fonseca, Cassia K.L.; Santos, Suzana O.; Paiva, Ana C. de; Silva, Waldecy A. da

    2015-01-01

    Water and sediments may reflect the current quality of an aquatic system and the historical behavior of certain hydrological and chemical parameters. Analysis of metals in sediment profiles are used to determine anomalies in their concentrations, as well as sources of pollution. This study was performed in Apipucos Reservoir in the city of Recife, Brazil. Samples of water, plants and sediments were collected in the study area and their metals content (extract by adding acids) were determined a fast sequential atomic absorption spectrometer (SpectrAA-220FS/VARIAN). The 210 Pb activity concentration in each sediment layer was determined through the beta counting of 210 Bi after lead precipitation as lead chromate. The results showed the metals' behavior in sediments: iron and manganese concentrations in sediments increase proportionately with the ages of the sediments. In general, cobalt, copper and zinc were also their concentrations increased over the years. These same elements in water are similar from the blank samples, however the roots of 'Eichhornia crassipes' assimilated higher concentrations of metals than the stems and leaves of this species. (author)

  6. Temporal evolution of pollution by trace metals and plants analysis in Apipucos reservoir, Recife, PE, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Vivianne L.B. de; Fonseca, Cassia K.L.; Santos, Suzana O.; Paiva, Ana C. de; Silva, Waldecy A. da, E-mail: vlsouza@cnen.gov.br, E-mail: riziakelia@hotmail.com [Centro Regional de Ciencias Nucleares (CRCN-NE/CNEN), Recife, PE (Brazil)

    2015-07-01

    Water and sediments may reflect the current quality of an aquatic system and the historical behavior of certain hydrological and chemical parameters. Analysis of metals in sediment profiles are used to determine anomalies in their concentrations, as well as sources of pollution. This study was performed in Apipucos Reservoir in the city of Recife, Brazil. Samples of water, plants and sediments were collected in the study area and their metals content (extract by adding acids) were determined a fast sequential atomic absorption spectrometer (SpectrAA-220FS/VARIAN). The {sup 210}Pb activity concentration in each sediment layer was determined through the beta counting of {sup 210}Bi after lead precipitation as lead chromate. The results showed the metals' behavior in sediments: iron and manganese concentrations in sediments increase proportionately with the ages of the sediments. In general, cobalt, copper and zinc were also their concentrations increased over the years. These same elements in water are similar from the blank samples, however the roots of 'Eichhornia crassipes' assimilated higher concentrations of metals than the stems and leaves of this species. (author)

  7. Metals in soils adjacent to avenues of highly dense traffic of Sao Paulo city, Brazil

    International Nuclear Information System (INIS)

    Ticianelli, Regina B.; Ribeiro, Andreza P.; Figueiredo, Ana M.G.; Nammoura-Neto, Georges M.; Silva, Nathalia C.

    2009-01-01

    Sao Paulo is the largest city in Brazil with about 19 millions of inhabitants in the metropolitan area, more than 8 million motor vehicles and strong industrial activity at the metropolitan region, which are responsible for increasing pollution in the region. Nevertheless, there is little information on metal contents in the metropolitan region soils, which would be very useful as a fingerprint of the environmental pollution. The present study aimed to determine As, Ba, Co, Cr, Sb and Zn concentrations in soils adjacent to avenues of highly dense traffic downtown Sao Paulo city: Consolacao/Reboucas Avenues; 23 de Maio Avenue and Tiradentes Avenue, to assess their possible sources and potential environmental impact. The analytical technique employed was Instrumental Neutron Activation Analysis (INAA). The results show metal concentration levels higher than the values reference values for soils of Sao Paulo, according to the Environmental Protection Agency of the State Sao Paulo (CETESB) guidelines. As, Ba and Zn showed concentration levels above the Intervention Values in some points, indicating direct or indirect potential risks to human health. The traffic related element Ba, Sb and Zn presented concentrations above the Prevention Values in points with high density traffic and may be associated to vehicular emissions. (author)

  8. Emission of heavy metals from an urban catchment into receiving water and possibility of its limitation on the example of Lodz city.

    Science.gov (United States)

    Sakson, Grazyna; Brzezinska, Agnieszka; Zawilski, Marek

    2018-04-14

    Heavy metals are among the priority pollutants which may have toxic effects on receiving water bodies. They are detected in most of samples of stormwater runoff, but the concentrations are very variable. This paper presents results of study on the amount of heavy metals discharged from urban catchment in Lodz (Poland) in 2011-2013. The research was carried out to identify the most important sources of their emission and to assess the threats to receiving water quality and opportunities of their limitation. The city is equipped with a combined sewerage in the center with 18 combined sewer overflows and with separate system in other parts. Stormwater and wastewater from both systems are discharged into 18 small urban rivers. There is a need of restoration of water bodies in the city. Research results indicate that the main issue is high emission of heavy metals, especially zinc and copper, contained in stormwater. Annual mass loads (g/ha/year) from separate system were 1629 for Zn and 305 for Cu. It was estimated that about 48% of the annual load of Zn, 38% of Cu, 61% of Pb, and 40% of Cd discharged into receiving water came from separate system, respectively 4% of Zn and Cu, 10% of Pb and 11% of Cd from CSOs, and the remaining part from wastewater treatment plant. Effective reduction of heavy metals loads discharged into receiving water requires knowledge of sources and emissions for each catchment. Obtained data may indicate the need to apply centralized solution or decentralized by source control.

  9. Health risk assessment of heavy metals in atmospheric deposition in a congested city environment in a developing country: Kandy City, Sri Lanka.

    Science.gov (United States)

    Weerasundara, Lakshika; Magana-Arachchi, D N; Ziyath, Abdul M; Goonetilleke, Ashantha; Vithanage, Meththika

    2018-08-15

    This research study which was undertaken in a congested city environment in a developing country provides a robust approach for the assessment and management of human health risk associated with atmospheric heavy metals. The case study area was Kandy City, which is the second largest city in Sri Lanka and bears the characteristics of a typical city in the developing world such as the urban footprint, high population density and traffic congestion. Atmospheric deposition samples were collected on a weekly basis and analyzed for nine heavy metals common to urban environments, namely, Al, Cr, Mn, Fe, Ni, Cu, Zn, Cd and Pb. Health risk was assessed using hazard quotient (HQ) and hazard index (HI), while the cancer risk was evaluated based on life time daily cancer risk. Al and Fe were found to be in relatively high concentrations due to the influence of both, natural and anthropogenic sources. High Zn loads were attributed to vehicular emissions and the wide use of Zn coated building materials. Contamination factor and geo-accumulation index showed that currently, Al and Fe are at uncontaminated levels and other metals are in the range of uncontaminated to contaminated levels, but with the potential to exacerbate in the long-term. The health risk assessment showed that the influence of the three exposure pathways were in the order of ingestion > dermal contact > inhalation. The HQ and HI values for children for the nine heavy metals were higher than that for adults, indicating that children may be subjected to potentially higher health risk than adults. The study methodology and outcomes provide fundamental knowledge to regulatory authorities to determine appropriate mitigation measures in relation to HM pollution in city environments in the developing world, where to-date only very limited research has been undertaken. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Rhizobacteria and plant symbiosis in heavy metal uptake and its implications for soil bioremediation

    NARCIS (Netherlands)

    Sobariu, Dana Luminita; Fertu, Daniela Ionela Tudorache; Diaconu, Mariana; Pavel, Lucian Vasile; Hlihor, Raluca Maria; Drăgoi, Elena Niculina; Curteanu, Silvia; Lenz, Markus; Corvini, Philippe François Xavier; Gavrilescu, Maria

    2016-01-01

    Certain species of plants can benefit from synergistic effects with plant growth-promoting rhizobacteria (PGPR) that improve plant growth and metal accumulation, mitigating toxic effects on plants and increasing their tolerance to heavy metals. The application of PGPR as biofertilizers and

  11. Heavy metal leaching from mine tailings as affected by plants

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, D.; Schwab, A.P.; Banks, M.K.

    1999-12-01

    A column experiment was conducted to determine the impact of soil cover and plants on heavy metal leaching from mine tailings and heavy metal contaminated soil. Columns made of PVC were constructed with 30 cm subsoil covered by 30 cm of mine tailings followed by 0, 30, or 60 cm subsoil covered by 30 cm of mine tailings followed by 0, 30, or 60 cm of clean topsoil. Two grasses, tall fescue (Festuca arundinacea Schreb.) and big bluestem (Andropogon gerardii), were grown in the columns. The columns were leached at a slow rate for 1 yr with a 0.001 M CaCl{sub 2} solution under unsaturated conditions. The presence of both tall fescue and big bluestem increased Zn and Cd concentrations in the leachate. Lead concentrations in leachates were not affected by the presence of plants. Although plants generally reduced the total amount of water leached, total mass of Zn and Cd leached generally was not impacted by plants. Total mass of Pb leached was positively correlated with total leachate collected from each column. Covering the mine tailings with 60 cm of topsoil increased the mass of Zn and Cd leached relative to no topsoil. When the subsoil was absent, Zn and Cd leaching increased by as much as 20-fold, verifying the ability of soil to act as a sink for metals. Mine tailing remediation by establishing vegetation can reduce Pb movement but may enhance short-term Cd and Zn leaching. However, the changes were relatively small and do not outweigh the benefits of using vegetation in mine tailings reclamation.

  12. Stormwater Effects on Heavy Metal Sequestration in a Bioretention System in Culver City, California

    Science.gov (United States)

    Yousavich, D. J.; Ellis, A. S.; Dorsey, J.; Johnston, K.

    2017-12-01

    Rain Gardens, also referred to as bioretention or biofilters, are often used to capture or filter urban runoff before it drains into surface or groundwater systems. The Culver City Rain Garden (CCRG) is one such system that is designed to capture and filter runoff from approximately 11 acres of mixed-use commercial and industrial land before it enters Ballona Creek. The EPA has designated Ballona Creek as an impaired waterway and established Total Maximum Daily Loads for heavy metals. Previous research has utilized sequential extractions to establish trends in heavy metal sequestration for Cu, Pb, and Zn in bioretention media. The aim of this project is to evaluate if there is a difference in heavy metal sequestration between dry and wetted bioretention media. To characterize the stormwater at the site, influent and surface water were collected and analyzed for sulfate and heavy metals 3 times during the 2016-2017 storm season. Two soil cores from the CCRG were acquired in the summer of 2017 to analyze soil metal sequestration trends. They will be subjected to different wetting conditions, sectioned into discrete depths, and digested with an established sequential extraction technique. Surface water in the CCRG shows average Dissolved Oxygen during wet conditions of 2.92 mg/L and average pH of 6.1 indicating reducing conditions near the surface and the possible protonation of adsorption sites during wet weather conditions. Influent metal data indicate average dissolved iron levels near 1 ppm and influent Cu, Pb, and Zn levels near 0.05, 0.01, and 0.5 ppm respectively. This coupled with average surface water sulfate levels near 3 ppm indicates the potential for iron oxide and sulfide mineral formation depending on redox conditions. The sequential extraction results will elucidate whether heavy metals are adsorbed or are being sequestered in mineral formation. These results will allow for the inclusion of heavy metal sequestration trends in the design of further

  13. Heavy metals pollution influences the soil of Baia Mare city Roumania

    International Nuclear Information System (INIS)

    Dumitrescu, L.; Petrescu, L.; Stanescu, L.F.; Bilal, E.

    2010-01-01

    For a connection between the environment close by industrial area and residential area; where the consequences heavy metal pollution are more acute, we had drawn samples inside Romplumb S.A. factory in Baia Mare city (Romania), the main heavy metal pollution agent, close by this factory, cross roads, areas close by parks and areas far off the main pollution agent. These samples had drawn both on the surface soil and 15 cm depth. In this subchapter we will present the analyses types and the results of these analyses taking into account the chemistry composition of drawing samples. A half of each sample was crushed very fine for ICP, XRF. From uncrushed half a part was crushed at 2 accordance with ICP results and these distributions on maps, we can see that the biggest heavy metals amount is in N-E of Baia Mare (zone I) due to the main pollution factor, Romplumb S.A... The pollution for zone II is not as big as zone I. Heavy metals in this zone are due to emission released by Romplumb S.A. and Phonix S.A. which are carry by air and due to the cross roads. The high amount of heavy metal from Baia Mare soils affects more and more people health. Health Direction Baia Mare made a lot of investigation on Baia Mare Soil. The results of these investigations are: - The hope life is smaller with 2,2 years than usual - Mortality is bigger with 10-15% than usual - Avitaminoza D*2 is 65-95% - Metabolism diseases due to Pb are frequent with 40-60%

  14. Accumulation of heavy metals by lettuce (lactuca sativa l.) irrigated with different levels of wastewater of Quetta City

    International Nuclear Information System (INIS)

    Achakzai, A.K.K.

    2011-01-01

    Heavy metal contamination of soils resulting from irrigation by wastewater is causing major concern due to the potential health risk involved. This study was therefore designed to investigate the heavy metal ions viz., Cu/sup 2/sup +/, Fe/sup 2+/, Mn/sup 2+/, Zn/sup 2+/, Pb/sup 2+/, Ni/sup 2+ and Cd/sup 2+/ concentrations by lettuce (Lactuca sativa L.) grown in pots. This leafy vegetable was irrigated with 5 different concentrations of wastewater collected from 3 different localities viz., Chiltan town, Chiltan Ghee Mill (oil industry) and Zarghoon town of Quetta city. Tap water was used as background water. Plant samples were analyzed for their heavy metal contents using Atomic Absorption Spectroscopy (AAS). Results showed that localities, treatments and their interactions (except Cu/sup 2+/ and Pb/sup 2+/) generally exhibited highly significant (P=0.01) influence on the accumulation of heavy metals. The maximum values of 9.71; 509.06; 32.47; 94.38; 8.58; 5.05 and 7.45 mg kg/sup -1/ for Cu/sup 2+/, total Fe/sup 2+/, Mn/sup 2+/, Zn/sup 2+/, Ni/sup 2+/,Pb/sup 2+/, and Cd/sup 2+/ respectively, were generally obtained in highest concentration of effluents. While maximum values of 9.02; 4.47 and 7.90 mg kg-1 of Cu/sup 2+/, Ni/sup 2+/ and Cd/sup 2+/ were obtained for Chiltan ghee mill effluents. However, maximum values i.e., 435.96 and 80.47 mg kg-1 of total Fe and Zn/sup 2+/ were recorded for Chiltan town. The highest values of 30.09 and 6.32 mg kg-1 for Mn/sup 2+/ and Pb/sup 2+/ were noted in Zarghoon town, respectively. On the basis of grand mean values,the magnitude of heavy metals detected for various metals is in order: Fe > Zn >Mn> Cu >Pb> Cd > Ni. Results further demonstrated that the total concentrations of Cu/sup 2+/, Fe/sup 2+/, Mn/sup 2+/, Zn/sup 2+/ and Ni/sup 2+/ are within the recommended international standards set by WHO/FAO, but could be reached to toxic level either by the consecutive use of effluents or by increased dietary pattern of the consumers

  15. Irrigation water quality in southern Mexico City based on bacterial and heavy metal analyses

    Energy Technology Data Exchange (ETDEWEB)

    Solis, C. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apdo Postal 20-364, 01000 Mexico, DF (Mexico)]. E-mail: corina@fisica.unam.mx; Sandoval, J. [Instituto de Ecologia, Universidad Nacional Autonoma de Mexico, Apdo Postal 70-275, 04510 Mexico, DF (Mexico); Perez-Vega, H. [Ciencias Agropecuarias, Universidad Juarez Autonoma de Tabasco, Ave. Universidad S/N. Zona de la Cultura, 86040 Villa Hermosa, Tabasco (Mexico); Mazari-Hiriart, M. [Instituto de Ecologia, Universidad Nacional Autonoma de Mexico, Apdo Postal 70-275, 04510 Mexico, DF (Mexico)

    2006-08-15

    Xochimilco is located in southern Mexico City and represents the reminiscence of the pre-Columbian farming system, the 'chinampa' agriculture. 'Chinampas' are island plots surrounded by a canal network. At present the area is densely urbanized and populated, with various contaminant sources contributing to the water quality degradation. The canal system is recharged by a combination of treated-untreated wastewater, and precipitation during the rainy season. Over 40 agricultural species, including vegetables, cereals and flowers, are produced in the 'chinampas'. In order to characterize the quality of Xochimilcos' water used for irrigation, spatial and temporal contaminant indicators such as microorganisms and heavy metals were investigated. Bacterial indicators (fecal coliforms, fecal enterococcus) were analyzed by standard analytical procedures, and heavy metals (such as Fe, Cu, Zn and Pb) were analyzed by particle induced X-ray emission (PIXE). The more contaminated sites coincide with the heavily populated areas. Seasonal variation of contaminants was observed, with the higher bacterial counts and heavy metal concentrations reported during the rainy season.

  16. Irrigation water quality in southern Mexico City based on bacterial and heavy metal analyses

    International Nuclear Information System (INIS)

    Solis, C.; Sandoval, J.; Perez-Vega, H.; Mazari-Hiriart, M.

    2006-01-01

    Xochimilco is located in southern Mexico City and represents the reminiscence of the pre-Columbian farming system, the 'chinampa' agriculture. 'Chinampas' are island plots surrounded by a canal network. At present the area is densely urbanized and populated, with various contaminant sources contributing to the water quality degradation. The canal system is recharged by a combination of treated-untreated wastewater, and precipitation during the rainy season. Over 40 agricultural species, including vegetables, cereals and flowers, are produced in the 'chinampas'. In order to characterize the quality of Xochimilcos' water used for irrigation, spatial and temporal contaminant indicators such as microorganisms and heavy metals were investigated. Bacterial indicators (fecal coliforms, fecal enterococcus) were analyzed by standard analytical procedures, and heavy metals (such as Fe, Cu, Zn and Pb) were analyzed by particle induced X-ray emission (PIXE). The more contaminated sites coincide with the heavily populated areas. Seasonal variation of contaminants was observed, with the higher bacterial counts and heavy metal concentrations reported during the rainy season

  17. Irrigation water quality in southern Mexico City based on bacterial and heavy metal analyses

    Science.gov (United States)

    Solís, C.; Sandoval, J.; Pérez-Vega, H.; Mazari-Hiriart, M.

    2006-08-01

    Xochimilco is located in southern Mexico City and represents the reminiscence of the pre-Columbian farming system, the "chinampa" agriculture. "Chinampas" are island plots surrounded by a canal network. At present the area is densely urbanized and populated, with various contaminant sources contributing to the water quality degradation. The canal system is recharged by a combination of treated-untreated wastewater, and precipitation during the rainy season. Over 40 agricultural species, including vegetables, cereals and flowers, are produced in the "chinampas". In order to characterize the quality of Xochimilcos' water used for irrigation, spatial and temporal contaminant indicators such as microorganisms and heavy metals were investigated. Bacterial indicators (fecal coliforms, fecal enterococcus) were analyzed by standard analytical procedures, and heavy metals (such as Fe, Cu, Zn and Pb) were analyzed by particle induced X-ray emission (PIXE). The more contaminated sites coincide with the heavily populated areas. Seasonal variation of contaminants was observed, with the higher bacterial counts and heavy metal concentrations reported during the rainy season.

  18. Heavy metals characteristics of settled particles of streets dust from Diwaniyah City- Qadisiyah Governorate - Southern Iraq

    Science.gov (United States)

    Al-Dabbas, Moutaz A.; Mahdi, Khalid H.; Al-Khafaji, Raad; Obayes, Kawthar H.

    2018-05-01

    Road-side dust samples were collected from selected areas of Diwaniyah city-Qadisiyah Governorate - Southern Iraq. The heavy metals (Fe, Co, Ni, Cu, Zn and Pb) in these streets dust samples were studied and used as indicator for pollution by using three of main indices (I-geo, CF, and PLI). Determination of heavy metal in the roadside dust is with XRD and XRF methods. I-geo for Co, Zn, Pb, and Ni in the studied sites shows relative values of class 1, which indicated the slightly polluted, while I-geo for Fe and Cu shows relative values of class 0, which indicated no pollution. The contamination factor for Co, Zn, Pb, and Ni classified as class 2, which indicate moderately contamination, while the contamination factor for Fe and Cu classified as class 1, which indicate low contamination. PLI values in the all of studied sites classified as class 2 (Deterioration on site quality) indicating local pollution, as well as denote perfection with (class 0) of no pollution. The distribution pattern of metals percentages was affected by gases emitted from transportation vehicles as well as the prevailing wind direction.

  19. 50 years of uranium metal production in Uranium Metal Plant, BARC, Trombay

    International Nuclear Information System (INIS)

    2009-01-01

    The Atomic Energy Programme in India, from the very beginning, has laid emphasis on indigenous capabilities in all aspects of nuclear technology. This meant keeping pace with developments abroad and recognizing the potentials of indigenous technologies. With the development of nuclear programme in India, the importance of uranium was growing at a rapid pace. The production of reactor grade uranium in India started in January 1959 when the first ingot of nuclear pure uranium was discharged using CTR process at Trombay. The decision to set up a uranium refinery to purify the crude uranium fluoride, obtained as a by-product of the DAE's Thorium Plant at Trombay, and to produce nuclear grade pure uranium metal was taken at the end of 1956. The task was assigned to the 'Project Fire Wood Group'. The main objective of the plant was to produce pure uranium metal for use in the Canada India Reactor and Zerlina. Besides this, it was to function as a pilot plant to collect operational data and to train personnel for larger plants to be set up in future. The plant designing and erection work was entrusted to Messrs. Indian Rare Earths Ltd.

  20. Traditional use of medicinal plants in a city at steppic character (M’sila, Algeria

    Directory of Open Access Journals (Sweden)

    Madani Sarri

    2014-04-01

    Full Text Available Context: M’sila city occupies a privileged position in the central part of northern Algeria. The climate of this area is continental, subject in part to the Saharan influences of which vegetation is steppic. Aims: Highlight traditional usage of plants despite environmental characteristics. Methods: An ethnobotanical survey in the city of M’sila was conducted during the period 2011-2012 in collaboration with traditional practitioners, herbalists and healers. A total of 85 adults were able to determine the species and answer questions about the traditional use of plants in artisanal processing, nutritional and medicinal domains. Results: Medicinal plants recorded in the city of M’sila were 36 divided into 16 families and 31 genera. Lamiaceae family predominates (27.8%, followed by Asteraceae (13.9%. Leaves are the most frequently used (27.4%, the aerial parts (18.5% and thus the seeds (16.3%. It appears that the population is highly dependent on these plants that allow them to treat different pathologies (digestive, stomach, diarrhea, constipation, vomiting with a percentage (18.6%, carminative (5.7% and antidiabetic (12.2%. In general, the remedies are administered orally. Indeed, therapeutic use forms are: the tisane or decoction (44.7%, infusion (27.1% and powder (12.2%. Conclusions: The ethnobotanical survey conducted among traditional healers, herbalists and healers in the M’sila city has created an inventory of 36 species and a database that collected all the information on local and traditional therapeutic applications as well as all the diseases treated.

  1. 2003 Kansas City Plant Annual Illness and Injury Surveillance Report, Revised September 2007

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, Office of Health, Safety and Security, Office of Illness and Injury Prevention Programs

    2007-10-04

    Annual Illness and Injury Surveillance Program report for 2003 for the Kansas City Plant. The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The IISP monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.

  2. Heavy metal levels in commonly used traditional medicinal plants

    International Nuclear Information System (INIS)

    Said, S.; Zahir, E.

    2010-01-01

    In the present study a survey of 24 commonly used medicinal plants of Indian subcontinent origin was carried out to evaluate their levels of heavy metals by electrothermal atomic absorption spectroscopy. The results showed that the highest mean value for Cd (12.06 mu g.g/sup -1/), Cr (24.50 mu g.g/sup -1/), Cu (15.27 mu g.g/sup -1/), Pb (1.30 mu g.g/sup -1/), Fe (885.60 mu g.g/sup -1/), Mn (90.60 mu g.g/sup -1/), Ni (9.99 mu g.g/sup -1/) and Zn (77.15 mu g.g/sup -1/) were found in Lawsonia inermis, Murraya koenigii, Mentha spicata, Beta vulgaris Linn, Mentha spicata, Lagenaria sicerana standl, Lawsonia inermis, Emblica officinalis, respectively. The mean and maximum levels of Cd in plant samples were found higher than the recommended values of the Joint Expert Committee on Food Additives of the Food and Agriculture Organization of the United Nations and the World Health Organization and may constitute a health hazard for consumers. All other heavy metals in medicinal plants were found below the recommended tolerable limits. (author)

  3. Heavy Metals in Crop Plants: Transport and Redistribution Processes on the Whole Plant Level

    Directory of Open Access Journals (Sweden)

    Valérie Page

    2015-09-01

    Full Text Available Copper, zinc, manganese, iron, nickel and molybdenum are essential micronutrients for plants. However, when present in excess they may damage the plant or decrease the quality of harvested plant products. Some other heavy metals such as cadmium, lead or mercury are not needed by plants and represent pollutants. The uptake into the roots, the loading into the xylem, the acropetal transport to the shoot with the transpiration stream and the further redistribution in the phloem are crucial for the distribution in aerial plant parts. This review is focused on long-distance transport of heavy metals via xylem and phloem and on interactions between the two transport systems. Phloem transport is the basis for the redistribution within the shoot and for the accumulation in fruits and seeds. Solutes may be transferred from the xylem to the phloem (e.g., in the small bundles in stems of cereals, in minor leaf veins. Nickel is highly phloem-mobile and directed to expanding plant parts. Zinc and to a lesser degree also cadmium are also mobile in the phloem and accumulate in meristems (root tips, shoot apex, axillary buds. Iron and manganese are characterized by poor phloem mobility and are retained in older leaves.

  4. Development of inelastic design method for liquid metal reactor plants

    International Nuclear Information System (INIS)

    Takahashi, Yukio; Take, Kohji; Kaguchi, Hitoshi; Fukuda, Yoshio; Uno, Tetsuro.

    1991-01-01

    Effective utilization of inelastic analysis in structural design assessment is expected to play an important role for avoiding too conservative design of liquid metal reactor plants. Studies have been conducted by the authors to develop a guideline for application of detailed inelastic analysis in design assessment. Both fundamental material characteristics tests and structural failure tests were conducted. Fundamental investigations were made on inelastic analysis method and creep-fatigue life prediction method based on the results of material characteristics tests. It was demonstrated through structural failure tests that the design method constructed based on these fundamental investigations can predict failure lives in structures subjected to cyclic thermal loadings with sufficient accuracy. (author)

  5. A survey of Trace Metals Determination in Hospital Waste Incinerator in Lucknow City, India

    Directory of Open Access Journals (Sweden)

    Ranjan Kumar

    2004-08-01

    Full Text Available Information on the elemental content of incinerator burning of human organ, animal and medical waste is scanty in India Nineteen trace elements were analyzed in the incinerator ash from four major hospitals, one municipal waste incinerator and two R & D laboratories engaged in animal experiment in Lucknow city. Concentrations of Zinc and Lead were found to be very high in comparison to other metals due to burning of plastic products. The source of Ca, P and K are mainly bone, teeth and other animal organs. A wide variation in trace concentration of several toxic elements have been seen due to variation in initial waste composition, design of the incinerator and operating conditions.

  6. Determination of metals in medicinal plants highly consumed in Brazil

    Directory of Open Access Journals (Sweden)

    Alexandre Soares Leal

    2013-09-01

    Full Text Available In this work, samples of the medicinal plants: Boldo (Peumus boldus, Castanha da Índia (Aesculus hippocastanum, Chá Verde (Camelia sinensis, Erva Cidreira (Melissa officinalis, Espinheira Santa (Maytenus ilicifolia, Guaraná (Paullinia cupana, Maracujá (Passiflora sp., Mulungu (Erythrina velutina, Sene (Cassia angustifolia and Valeriana (Valeriana officinalis were evaluated BY using the Neutron Activation Analysis technique (NAA- k0 in order to determine the levels of metals and other chemical contaminants. The results showed the presence of non essential elements to the human body. The diversity of chemical impurities found even at low concentration levels, considering the potential for chronic toxicity of these elements, reinforces the need to improve the implementation of good practices by growers and traders, and the hypothesis of lack of quality control in plant products.

  7. Assessment of heavy metal pollution from a Fe-smelting plant in urban river sediments using environmental magnetic and geochemical methods

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Chunxia, E-mail: cxzhang@mail.iggcas.ac.cn [State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, No. 19 Bei Tucheng Xilu, Chaoyang Dist., Beijing 100029 (China); Qiao Qingqing [State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, No. 19 Bei Tucheng Xilu, Chaoyang Dist., Beijing 100029 (China); Piper, John D.A. [Geomagnetism Laboratory, Department of Earth and Ocean Science, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Huang, Baochun [State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, No. 19 Bei Tucheng Xilu, Chaoyang Dist., Beijing 100029 (China)

    2011-10-15

    Environmental magnetic proxies provide a rapid means of assessing the degree of industrial heavy metal pollution in soils and sediments. To test the efficiency of magnetic methods for detecting contaminates from a Fe-smelting plant in Loudi City, Hunan Province (China) we investigated river sediments from Lianshui River. Both magnetic and non-magnetic (microscopic, chemical and statistical) methods were used to characterize these sediments. Anthropogenic heavy metals coexist with coarse-grained magnetic spherules. It can be demonstrated that the Pollution Load Index of industrial heavy metals (Fe, V, Cr, Mo, Zn, Pb, Cd, Cu) and the logarithm of saturation isothermal remanent magnetization, a proxy for magnetic concentration, are significantly correlated. The distribution heavy metal pollution in the Lianshui River is controlled by surface water transport and deposition. Our findings demonstrate that magnetic methods have a useful and practical application for detecting and mapping pollution in and around modern industrial cities. - Highlights: > Assessment of heavy metal (HM) pollution in river sediment using magnetic and chemical methods. > HMs from an Fe-smelting plant coexist with coarse-grained magnetic spherules. > A linear correlation between the Pollution Load Index (PLI) of industrial HMs and a magnetic concentration parameter is demonstrated. > The distribution of HM pollution in river sediments is controlled by surface water flow and deposition. - Heavy metal (HM) contamination of river sediments from industrial input by surface water transport and deposition can be detected by using magnetic methods providing a convenient assessment of HM pollution in industrialized cities.

  8. Assessment of heavy metal pollution from a Fe-smelting plant in urban river sediments using environmental magnetic and geochemical methods

    International Nuclear Information System (INIS)

    Zhang Chunxia; Qiao Qingqing; Piper, John D.A.; Huang, Baochun

    2011-01-01

    Environmental magnetic proxies provide a rapid means of assessing the degree of industrial heavy metal pollution in soils and sediments. To test the efficiency of magnetic methods for detecting contaminates from a Fe-smelting plant in Loudi City, Hunan Province (China) we investigated river sediments from Lianshui River. Both magnetic and non-magnetic (microscopic, chemical and statistical) methods were used to characterize these sediments. Anthropogenic heavy metals coexist with coarse-grained magnetic spherules. It can be demonstrated that the Pollution Load Index of industrial heavy metals (Fe, V, Cr, Mo, Zn, Pb, Cd, Cu) and the logarithm of saturation isothermal remanent magnetization, a proxy for magnetic concentration, are significantly correlated. The distribution heavy metal pollution in the Lianshui River is controlled by surface water transport and deposition. Our findings demonstrate that magnetic methods have a useful and practical application for detecting and mapping pollution in and around modern industrial cities. - Highlights: → Assessment of heavy metal (HM) pollution in river sediment using magnetic and chemical methods. → HMs from an Fe-smelting plant coexist with coarse-grained magnetic spherules. → A linear correlation between the Pollution Load Index (PLI) of industrial HMs and a magnetic concentration parameter is demonstrated. → The distribution of HM pollution in river sediments is controlled by surface water flow and deposition. - Heavy metal (HM) contamination of river sediments from industrial input by surface water transport and deposition can be detected by using magnetic methods providing a convenient assessment of HM pollution in industrialized cities.

  9. Determination of Some Heavy Metals In The Environment of SADAT Industrial City

    International Nuclear Information System (INIS)

    Nassef, M.; EI-Tahawy, M.S.; Hannigan, R.; EL Sayed, K.A.

    2007-01-01

    The aim of this study was to assess the heavy metal concentration in the soil and the groundwater of Sadat City in Egypt and its relation to the highly developed industrial activities in that area. The levels of Pb, Cr, Cu, Cd, Zr, and V were determined in the groundwater samples (as drinking water supplies) and also the same elements in the soil samples. 10 soil samples and 18 groundwater samples were collected from the city. The soil and the groundwater samples were analysed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The concentration of Pb, Cr, Cu, Cd, Zr, and V measured (in ppm) in the soil samples ranged from 0.48 to 11.3, 0.36 to 2.56, 43.7 to 304.0, 0.34 to 2.64, 0.209 to 21.7, and 0.10 to 17.0, respectively. The concentration of Pb, Cr, Cu, Cd, Zr, and V measured (in ppb) in the groundwater samples of all studied wells ranged from 0.11 to 41.32, 0.10 to 2.63, 0.14 to 5.76, 0.03 to 21.7, 11.4 to 134, and 0.08 to 5.08, respectively. The levels of Pb and Zr exceeded the threshold limits set by the WHO health-based guideline for drinking water in some studied groundwater wells

  10. Assessment of Waste Production and Heavy Metal Emission from Energy Production Sector of Zahedan City

    Directory of Open Access Journals (Sweden)

    Nayyere Poormollae

    2013-12-01

    Full Text Available Background and purpose: Due to the lack of accurate statistics on the amount of waste generated in the energy production sector in Zahedan, before any planning, one should identify all waste producing centers associated with the energy sector and also the quantity and quality of their waste in Zahedan. Materials and methods: This research is a cross-sectional descriptive study. It examined the produced wastes in the electrical energy generation sector. A questionnaire was prepared and completed for each unit that possibility produces these wastes. Moreover, in the studied units, the weigh percent per unit was determined by separating production waste, and collecting and weighing them. Results: In gas power plant of Zahedan, production of burned oil was approximately 480 liters and the annual consumption of turbine oil and compressor oil was 40 liters. In the diesel power plant, 2,200 liters of burned oil is produced for each generator after 1,500 hours of work. Concentration of heavy metals of Cr, Cd, Zn, Pb, Cu, and Ni in the burned oil sample of the gas power plant was 43.2, 0.01, 0.20, 1.3, 2.7, 0.2 mg/l, respectively and in the diesel power plant were 36.3, 0.08, 0.09, 0.9, 4.7, 1.1 mg/l. Conclusion: In the studied samples, several cases of heavy metal pollution were identified. Therefore, proper planning for appropriate management of these units is necessary for any possible leakage and environmental pollution transport. Furthermore, in order to minimize the adverse impacts of hazardous wastes on the environment and people in Zahedan, integrated hazardous wastes management should be practices in electrical energy generation plants. Moreover, one must consider the measures required to exposure, transport, and safe maintenance before managing or eliminating this type of waste.

  11. Ethnobotanic study of medicinal plants in Urmia city: identification and traditional using of antiparasites plants

    Directory of Open Access Journals (Sweden)

    Mahmoud Bahmani

    2014-09-01

    Full Text Available Objective: To identify the native medicinal plants used in parasitic diseases treatment in Urmia. Methods: This study was conducted among 35 Urmia herbalists to identify medicinal plants used in parasitic diseases treatment. We used direct observation and interviews with collected herbarium specimens by native herbs commonly in the treatment of parasitic diseases. Questionnaires were included apothecary personal information and native plants list with information includes plant local name, plant parts used, method of their use and traditional therapies. Herbarium samples listed in the questionnaire collected from the area and were sent to agricultural research centers and Urmia University Faculty of Agriculture for genus and species determination. Results: Thirteen medicinal plants from six families for treatment of diabetes in Urmia were obtained from interviews. Most families have anti diabetic effect was included Asteraceae (36%. The most used was boiling (65%. Conclusions: In view of the findings of this study indicate that plants have the potential to be a parasitic infection so it is necessary ingredients of native plants be studied to demonstrate therapeutic effects and provide field work to evaluate the clinical effects of these herbs and ingredients they claim on parasitic diseases.

  12. Sustainability study of domestic communal wastewater treatment plant in Surabaya City

    Science.gov (United States)

    Bahar, E.; Sudarno; Zaman, B.

    2017-06-01

    Sanitation is one of the critical infrastructure sectors in order to improve community health status. The Ministry of Public Works of the Republic of Indonesia to define that word sanitation include: domestic waste water management, solid waste management, rain water management (drainage management) as well as the provision of clean water. Surabaya city as the capital of East Java province and Indonesia’s second largest city with a population of 2,853,661 inhabitants in 2014 (the second largest after Jakarta), but the people who have been served by the sanitation infrastructure systems were expected at 176,105 families or about 26.95 % of the population of the city is already using sanitation facilities. In the White Book Sanitation of Surabaya City in 2010, Surabaya City sanitation development mission is to realize the wastewater management of settlements in a sustainable and affordable by the community. This study aims to assess the sustainability of the wastewater treatment plant (WWTP) domestic communal in the city of Surabaya. The method in this research is quantitative method through observation, structured interviews and laboratory testing of the variables analyzed. Analyses were performed using a technique Multidisciplinary rapid appraisal (Rap-fish) to determine the level of sustainability of the management of communal WWTP based on a number of attributes that easy scored. Attributes of each dimension includes the technical, environmental quality, institutional, economic, and social. The results of this study are sustainability index of environmental quality dimension at 84.32 with highly sustainable status, technical dimension at 62.61 with fairly sustainable status, social dimension at 57.98 with fairly sustainable status, economic dimension at 43.24 with less sustainable status, and institutional dimension at 39.67 with less sustainable status.

  13. Heavy metal determination and pollution of the soil and plants of Southeast Tavsanli (Kuetahya, Turkey)

    Energy Technology Data Exchange (ETDEWEB)

    Arik, Fetullah [Selcuk University, Engineering Architecture Faculty, Geological Engineering Department, Selcuklu, Konya (Turkey); Yaldiz, Tahsin [Emergency Service, State Hospital, Hospital St. Selcuklu, Konya (Turkey)

    2010-11-15

    An area around metallic are deposits was studied regarding heavy metal pollution and the distribution to plants. The element concentration in plants depends not only on the plant type but also on the sample type. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Alstonia scholaris (l.) r.br. planted bioindicator along different road-sides of lahore city

    International Nuclear Information System (INIS)

    Muhammad, S.; Khan, Z.U.D.; Saddiqui, M.F.

    2014-01-01

    A research work was carried out during 2009-2011 to investigate the biomonitoring potential of a road avenue tree, Alstonia scholaris (L.) R.Br. against the culminating pressure of aerial pollution in Lahore city. For this purpose seven busiest roads were selected on the basis of the flux of traffic and three leaf samples were taken for various biochemical and physiological attributes from each of the A. scholaris tree of respective road. The geographic coordinates on the map can be used for future reference. Various floral attributes of plant were selected i.e., amount of dust (g), percent (%) leaf moisture content, photosynthetic rate (meu Mm-2S-1), transpiration rate (meu Mm-2S-1), stomatal conductance (meu Mm-2S-1), chlorophyll contents (mg/g) and amount of carotenoids (mg/g) in the leaf samples. In case of % leaf moisture content, significant variation between the control (61.95) and road side plants (50.76) was observed. While minute differences between the control and road side plants were recorded in photosynthetic rate, transpiration rate, stomatal conductance, chlorophyll contents and carotenoids, which is an indication that day by day increasing air pollution pressure in Lahore city is playing pivotal role, not only in the morphological features of the plant but also affecting the physiological and biochemical. (author)

  15. Chemical Decontamination of Metallic Waste from Uranium Conversion Plant Dismantling

    International Nuclear Information System (INIS)

    Hwang, D. S.; Choi, Y. D.; Hwang, S. T.; Park, J. H.; Byun, J. I.; Jang, N. S.

    2005-01-01

    Korea Atomic Energy Research Institute (KAERI) started a decommissioning program of the uranium conversion plant. Pre-work was carried as follows; installation of the access control facility, installation of a changing room and shower room, designation of an emergency exit way and indicating signs, installation of a radiation management facility, preparation of a storage area for tools and equipments, inspection and load test of crane, distribution and packaging of existing waste, and pre-decontamination of the equipment surface and the interior. First, decommissioning work was performed in kiln room, which will be used for temporary radioactive waste storage room. Kiln room housed hydro fluorination rotary kiln for production of uranium tetra-fluoride. The kiln is about 0.8 m in diameter and 5.5 m long. The total dismantled waste was 6,690 kg, 73 % of which was metallic waste and 27 % the others such as cable, asbestos, concrete, secondary waste, etc. And effluent treatment room and filtration room were dismantled for installation of decontamination equipment and lagoon sludge treatment equipment. There were tanks and square mixer in these rooms. The total dismantled waste was 17,250 kg, 67% of which was metallic waste and 33% the others. These dismantled metallic wastes consist of stainless and carbon steel. In this paper, the stainless steel plate and pipe were decontaminated by the chemical decontamination with ultrasonic

  16. Solanaceae plant malformation in Chongqing City, China, reveals a pollution threat to the Yangtze River.

    Science.gov (United States)

    Zhang, Hongbo; Liu, Guanshan; Timko, Michael P; Li, Jiana; Wang, Wenjing; Ma, Haoran

    2014-10-21

    Water quality is under increasing threat from industrial and natural sources of pollutants. Here, we present our findings about a pollution incident involving the tap water of Chongqing City in China. In recent years, Solanaceae plants grown in greenhouses in this city have displayed symptoms of cupped, strappy leaves. These symptoms resembled those caused by chlorinated auxinic herbicides. We have determined that these symptoms were caused by the tap water used for irrigation. Using a bioactivity-guided fractionation method, we isolated a substance with corresponding auxinic activity from the tap water. The substance was named "solanicide" because of its strong bioactivity against Solanaceae plants. Further investigation revealed that the solanicide in the water system of Chongqing City is derived from the Jialing River, a major tributary of the Yangtze River. Therefore, it is also present in the Yangtze River downstream of Chongqing after the inflow of the Jialing River. Biological analyses indicated that solanicide is functionally similar to, but distinct from, other known chlorinated auxinic herbicides. Chemical assays further showed that solanicide structurally differs from those compounds. This study has highlighted a water pollution threat to the Yangtze River and its floodplain ecosystem.

  17. NOx lifetimes and emissions of cities and power plants in polluted background estimated by satellite observations

    Directory of Open Access Journals (Sweden)

    F. Liu

    2016-04-01

    Full Text Available We present a new method to quantify NOx emissions and corresponding atmospheric lifetimes from OMI NO2 observations together with ECMWF wind fields without further model input for sources located in a polluted background. NO2 patterns under calm wind conditions are used as proxy for the spatial patterns of NOx emissions, and the effective atmospheric NOx lifetime is determined from the change of spatial patterns measured at larger wind speeds. Emissions are subsequently derived from the NO2 mass above the background, integrated around the source of interest. Lifetimes and emissions are estimated for 17 power plants and 53 cities located in non-mountainous regions across China and the USA. The derived lifetimes for the ozone season (May–September are 3.8 ± 1.0 h (mean ± standard deviation with a range of 1.8 to 7.5 h. The derived NOx emissions show generally good agreement with bottom-up inventories for power plants and cities. Regional inventory shows better agreement with top-down estimates for Chinese cities compared to global inventory, most likely due to different downscaling approaches adopted in the two inventories.

  18. Heavy metals contamination in surface and groundwater supply of an urban city.

    Science.gov (United States)

    Dixit, R C; Verma, S R; Nitnaware, V; Thacker, N P

    2003-04-01

    There is a continuous increase in the demand of water supply in cities due to the industrialization and growing population. This extra supply is generally met by groundwaters or nearby available surface waters. It may lead into incomplete treatment and substandard supply of drinking water. To ensure that the intake water derived from surface and groundwater is clear, palatable, neither corrosive nor scale forming, free from undesirable taste, odor and acceptable from aesthetic and health point of view, the final water quality at Delhi have been evaluated. The final water supply of four treatment plants and 80 tubewells at Delhi were surveyed in 2000-2001 for cadmium, chromium, copper, iron, lead, manganese, nickel, selenium and zinc. The levels of manganese, copper, selenium and cadmium were found marginally above the Indian Standards (IS) specification regulated for drinking water. The data was used to assess the final water quality supplied at Delhi.

  19. Interactions between salt marsh plants and Cu nanoparticles - Effects on metal uptake and phytoremediation processes.

    Science.gov (United States)

    Andreotti, Federico; Mucha, Ana Paula; Caetano, Cátia; Rodrigues, Paula; Rocha Gomes, Carlos; Almeida, C Marisa R

    2015-10-01

    The increased use of metallic nanoparticles (NPs) raises the probability of finding NPs in the environment. A lot of information exists already regarding interactions between plants and metals, but information regarding interactions between metallic NPs and plants, including salt marsh plants, is still lacking. This work aimed to study interactions between CuO NPs and the salt marsh plants Halimione portulacoides and Phragmites australis. In addition, the potential of these plants for phytoremediation of Cu NPs was evaluated. Plants were exposed for 8 days to sediment elutriate solution doped either with CuO or with ionic Cu. Afterwards, total metal concentrations were determined in plant tissues. Both plants accumulated Cu in their roots, but this accumulation was 4 to 10 times lower when the metal was added in NP form. For P. australis, metal translocation occurred when the metal was added either in ionic or in NP form, but for H. portulacoides no metal translocation was observed when NPs were added to the medium. Therefore, interactions between plants and NPs differ with the plant species. These facts should be taken in consideration when applying these plants for phytoremediation of contaminated sediments in estuaries, as the environmental management of these very important ecological areas can be affected. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Public attitude in the city of Belgrade towards invasive alien plant species

    Directory of Open Access Journals (Sweden)

    Tomićević Jelena

    2012-01-01

    Full Text Available Biological invasions are seen as a major threat to biodiversity at a global level, while the number of new invasions is increasing at an alarming rate. Raising the awareness of the public, academic world and policy makers about the dangers caused by invasive species, is essential for the creation of the support needed to implement and coordinate the policies necessary to address this problem. The aim of this study is to determine the level of local public awareness of the existence of these plant species, examine the public attitude towards alien invasive plant species and willingness to get involved in the prevention of their spreading. The survey was conducted in four nurseries on the territory of the City of Belgrade and the investigation dealt only with alien invasive woody plant species. Thirty customers were questioned in each of the four nurseries. The results show that local public is uninformed on the issue of invasive plant species. It is necessary to constantly and intensively raise their awareness of this issue, as well as the awareness of harmful consequences that may occur due to the uncontrolled spreading of alien invasive species. This refers not only to the population that visits the nurseries and buys the plants there and to those employed in plant production and selling, but also to the whole local public and decision makers.

  1. EPR pilot study on the population of Stepnogorsk city living in the vicinity of a uranium processing plant

    Energy Technology Data Exchange (ETDEWEB)

    Zhumadilov, Kassym; Akilbekov, Abdirash; Morzabayev, Aidar [L.N. Gumilyov Eurasian National University, Astana (Kazakhstan); Ivannikov, Alexander; Stepanenko, Valeriy [Medical Radiological Research Center, Obninsk (Russian Federation); Abralina, Sholpan; Sadvokasova, Lyazzat; Rakhypbekov, Tolebay [Semey State Medical University, Semey (Kazakhstan); Hoshi, Masaharu [Hiroshima University, Research Institute for Radiation Biology and Medicine, Hiroshima (Japan)

    2015-03-15

    The aim of this pilot study was to evaluate possible doses in teeth received by workers of a uranium processing plant, in excess to the natural background dose. For this, the electron paramagnetic resonance dosimetry method was applied. Absorbed doses in teeth from the workers were compared with those measured in teeth from the Stepnogorsk city population and a control pool population from Astana city. The measured tooth samples were extracted according to medical indications. In total, 32 tooth enamel samples were analyzed, 5 from Astana city, Kazakhstan (control population), 21 from the residents of Stepnogorsk city (180 km from Astana city), and 6 from the workers of a uranium processing plant. The estimated doses in tooth enamel from the uranium processing plant workers were not significantly different to those measured in enamel from the control population. In teeth from the workers, the maximum dose in excess to background dose was 33 mGy. In two teeth from residents of Stepnogorsk city, however, somewhat larger doses were measured. The results of this pilot study encourage further investigations in an effort to receiving a final conclusion on the exposure situation of the uranium processing plant workers and the residents of Stepnogorsk city. (orig.)

  2. A nuclear power plant for Lima city. Is it a real alternative?

    International Nuclear Information System (INIS)

    Romani A, J.

    1992-01-01

    At the present, Peru has an installed electricity capacity of 4112 MW from which the 80% comes from hydroelectric sources and other 20% from thermal sources. Lima city concentrates the larger industrial activities and uses 95% of the hydro-electric supply the 5% comes from thermal origin. This situation provokes an energetic vulnerability to Lima, a city with more them 10 million of inhabitants, because climatic changes and the electric towers destruction. In the 1989-1992 period lack of energy meant economic losses for about US$ 2 100 000. To solve this problem the government is building a 300 MW thermal station. This alternative means a low investment for Kw installed but high production costs. Additionally the installation of the plant in Lima will increase the environmental contamination due to emission of about 20000 TM/year of SOx and 7500 TM/year of NOx. The research study recommends as a solution the diversification of energy sources, avoiding dependence of the hydro-electrical ones. In the same form it suggests that the next 300 MW power station to be installed for about 1998 would be a nuclear power plant but not thermal one. It also makes a revision of the new designs for nuclear power plants called safe inherently which design and construction philosophy avoid the possibility of accidents like Chernobyl. (author). 15 refs., 5 tabs., 13 figs

  3. Appraisal of medicinal plants used in alternative systems of medicines for microbial contamination, physiochemical parameters and heavy metals

    International Nuclear Information System (INIS)

    Malik, F.; Hussain, S.; Mahmood, S.

    2014-01-01

    The safety of herbal products has become a foremost apprehension in public health with their recognition and worldwide market growth and due in part to the widespread assumption that natural implies harmless. The global market of medicinal plants has been growing at a rate of 7-10% annually; capitalizing on the growing awareness of herbal and aromatic plants globally. The present study was conducted to assess the physiochemical parameters, microbial contamination and presence of heavy metals. The 24 medicinal plants were collected from open market places of various cities of Pakistan and tested by employing WHO and AOAC guidelines. Medicinal plants were found polluted with wide variety of potentially pathogenic bacterias. Microbial count and levels of arsenic and mercury in some plants were found elevated. The percentage (%) of physiochemical parameters i.e., foreign organic matter, total ash, acid insoluble ash, alcohol soluble extract, water soluble extract and moisture count of these medicinal plants were found statistically noteworthy. The nonexistence of quality control values for medicinal plants has been one of the key lacunas. Quality assurance system and WHO's guidelines on good agricultural and collection practices be methodically enforced in the medicinal plants supply chain i.e., cultivation, collection and distribution, although it is tricky task. (author)

  4. Supplemental site inspection for Air Force Plant 59, Johnson City, New York, Volume 1: Investigation report

    Energy Technology Data Exchange (ETDEWEB)

    Nashold, B.; Rosenblatt, D.; Hau, J. [and others

    1995-08-01

    This summary describes a Supplemental Site Inspection (SSI) conducted by Argonne National Laboratory (ANL) at Air Force Plant 59 (AFP 59) in Johnson City, New York. All required data pertaining to this project were entered by ANL into the Air Force-wide Installation Restoration Program Information System (IRPIMS) computer format and submitted to an appropriate authority. The work was sponsored by the United States Air Force as part of its Installation Restoration Program (IRP). Previous studies had revealed the presence of contaminants at the site and identified several potential contaminant sources. Argonne`s study was conducted to answer questions raised by earlier investigations.

  5. Facilitation drives the positive effects of plant richness on trace metal removal in a biodiversity experiment.

    Directory of Open Access Journals (Sweden)

    Jiang Wang

    Full Text Available BACKGROUND: Phytoextraction is an environmentally acceptable and inexpensive technique for mine tailing rehabilitation that uses metallophyte plants. These plants reduce the soil trace metal contents to environmentally acceptable levels by accumulating trace metals. Recently, whether more trace metals can be removed by species-rich communities of these plants received great attention, as species richness has been reported having positive effects on ecosystem functions. However, how the species richness affects trace metals removal of plant communities of mine tailing is rarely known. METHODOLOGY/PRINCIPAL FINDINGS: We examined the effects of species richness on soil trace metal removal in both natural and experimental plant communities. The root lengths and stem heights of each plant species were measured in order to calculate the functional diversity indices. Our results showed that trace metal (Cu, Cd, Pb and Zn concentrations in mine tailing soil declined as species richness increased in both the natural and experimental plant communities. Species richness, rather than functional diversity, positively affected the mineralomass of the experimental plant communities. The intensity of plant-plant facilitation increased with the species richness of experimental communities. Due to the incremental role of plant-plant facilitation, most of the species had higher biomasses, higher trace metal concentrations in their plant tissues and lower malondialdehyde concentrations in their leaves. Consequently, the positive effects of species richness on mineralomass were mostly attributable to facilitation among plants. CONCLUSIONS/SIGNIFICANCE: Our results provide clear evidence that, due to plant-plant facilitation, species richness positively affects the removal of trace metals from mine tailing soil through phytoextraction and provides further information on diversity conservation and environmental remediation in a mine tailing environment.

  6. Allocation plasticity and plant-metal partitioning: Meta-analytical perspectives in phytoremediation

    Energy Technology Data Exchange (ETDEWEB)

    Audet, Patrick [Ottawa-Carleton Institute of Biology, Department of Biology, University of Ottawa, 30 Marie-Curie Street, Ottawa, ON K1N 6N5 (Canada)], E-mail: paude086@uottawa.ca; Charest, Christiane [Ottawa-Carleton Institute of Biology, Department of Biology, University of Ottawa, 30 Marie-Curie Street, Ottawa, ON K1N 6N5 (Canada)], E-mail: ccharest@uottawa.ca

    2008-11-15

    In this meta-analysis of plant growth and metal uptake parameters, we selected 19 studies of heavy metal (HM) phytoremediation to evaluate trends of allocation plasticity and plant-metal partitioning in roots relative to shoots. We calculated indexes of biomass allocation and metal distribution for numerous metals and plant species among four families of interest for phytoremediation purposes (e.g. Brassicaceae, Fabaceae, Poaceae, and Solanaceae). We determined that plants shift their biomass and distribute metals more to roots than shoots possibly to circumvent the challenges of increasing soil-HM conditions. Although this shift is viewed as a stress-avoidance strategy complementing intrinsic stress-tolerance, our findings indicate that plants express different levels of allocation plasticity and metal partitioning depending on their overall growth strategy and status as 'fast-grower' or 'slow-grower' species. Accordingly, we propose a conceptual model of allocation plasticity and plant-metal partitioning comparing 'fast-grower' and 'slow-grower' strategies and outlining applications for remediation practices. - This meta-analysis has revealed a shift in plant biomass and metal distribution from shoots to roots possibly to protect vital functions when subjected to metal stress.

  7. Allocation plasticity and plant-metal partitioning: Meta-analytical perspectives in phytoremediation

    International Nuclear Information System (INIS)

    Audet, Patrick; Charest, Christiane

    2008-01-01

    In this meta-analysis of plant growth and metal uptake parameters, we selected 19 studies of heavy metal (HM) phytoremediation to evaluate trends of allocation plasticity and plant-metal partitioning in roots relative to shoots. We calculated indexes of biomass allocation and metal distribution for numerous metals and plant species among four families of interest for phytoremediation purposes (e.g. Brassicaceae, Fabaceae, Poaceae, and Solanaceae). We determined that plants shift their biomass and distribute metals more to roots than shoots possibly to circumvent the challenges of increasing soil-HM conditions. Although this shift is viewed as a stress-avoidance strategy complementing intrinsic stress-tolerance, our findings indicate that plants express different levels of allocation plasticity and metal partitioning depending on their overall growth strategy and status as 'fast-grower' or 'slow-grower' species. Accordingly, we propose a conceptual model of allocation plasticity and plant-metal partitioning comparing 'fast-grower' and 'slow-grower' strategies and outlining applications for remediation practices. - This meta-analysis has revealed a shift in plant biomass and metal distribution from shoots to roots possibly to protect vital functions when subjected to metal stress

  8. Heavy metal and persistent organic compound contamination in soil from Wenling: an emerging e-waste recycling city in Taizhou area, China.

    Science.gov (United States)

    Tang, Xianjin; Shen, Chaofeng; Shi, Dezhi; Cheema, Sardar A; Khan, Muhammad I; Zhang, Congkai; Chen, Yingxu

    2010-01-15

    The present study was conducted to investigate the levels and sources of heavy metals (Cu, Cr, Cd, Pb, Zn, Hg and As) and persistent organic compounds including polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in soils taken from Wenling, an emerging e-waste recycling city in Taizhou, China. The results suggested that most heavy metals exceeded the respective Grade II value of soil quality standards from State Environmental Protection Administration of China and also exceeded the Dutch optimum values. Total PAHs in soil ranged from 371.8 to 1231.2 microg/kg, and relatively higher PAHs concentrations were found in soils taken from simple household workshops. PCBs were detectable in all samples with total concentrations ranging from 52.0 to 5789.5 microg/kg, which were 2.1-232.5 times higher than that from the reference site (24.9 microg/kg). Results of this study suggested soil in the Wenling e-waste recycling area were heavily contaminated by heavy metals, PAHs and PCBs. Furthermore, compared with large-scale plants, simple household workshops contributed more heavy metals, PAHs and PCBs pollution to the soil environment, indicating that soil contamination from e-waste recycling in simple household workshops should be given more attention.

  9. Heavy Metals in Soil and Crops of an Intensively Farmed Area: A Case Study in Yucheng City, Shandong Province, China

    Directory of Open Access Journals (Sweden)

    Linsheng Yang

    2010-02-01

    Full Text Available Yucheng City is located in northwestern Shandong Province, China, and is situated on the Huang-Huai-Hai Plain, the largest alluvial plain in China. In this study, 86 surface soil samples were collected in Yucheng City and analyzed for cation exchange capacity (CEC, soil organic matter (SOM, pH, available phosphorus (avail. P, phosphorus (P, aluminum (Al, and iron (Fe. These soils were also analyzed for ‘total’ chromium (Cr, nickel (Ni, copper (Cu, zinc (Zn, arsenic (As, mercury (Hg, cadmium (Cd, and lead (Pb, together with 92 wheat samples and 37 corn samples. There was no obvious heavy metal contamination in the soil and irrigation water. But the long-term accumulation of heavy metals in soil has lead to an increase of Ni, As, Hg and Pb concentrations in some of wheat and corn samples and Cd in wheat samples. Because of the numerous sources of soil heavy metals and the lower level of heavy metal in irrigation water, there is no significant relation between soil heavy metal concentrations and irrigation water concentrations. Cr, Ni were mainly from the indigenous clay minerals according to multivariate analysis. Little contribution to soil heavy metal contents from agricultural fertilizer use was found and the local anomalies of As, Cd, Hg, Pb in wheat and corn grain are attributed to the interactive effects of irrigation and fertilizer used. Aerial Hg, however may also be the source of Hg for soil, wheat and corn.

  10. Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea

    International Nuclear Information System (INIS)

    Wu, S.C.; Cheung, K.C.; Luo, Y.M.; Wong, M.H.

    2006-01-01

    A greenhouse study was carried out with Brassica juncea to critically evaluate effects of bacterial inoculation on the uptake of heavy metals from Pb-Zn mine tailings by plants. Application of plant growth-promoting rhizobacteria, including nitrogen-fixing bacteria and phosphate and potassium solubilizers, might play an important role in the further development of phytoremediation techniques. The presence of these beneficial bacteria stimulated plant growth and protected the plant from metal toxicity. Inoculation with rhizobacteria had little influence on the metal concentrations in plant tissues, but produced a much larger above-ground biomass and altered metal bioavailability in the soil. As a consequence, higher efficiency of phytoextraction was obtained compared with control treatments. - Rhizobacteria promoted growth above normal biomass, but did not influence plant metal concentrations

  11. Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea

    Energy Technology Data Exchange (ETDEWEB)

    Wu, S.C. [Department of Biology and Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Kowloon Tong, Hong Kong (China); Joint Open Laboratory on Soil and Environment between HKBU and ISSCAS (China); Cheung, K.C. [Department of Biology and Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Kowloon Tong, Hong Kong (China); Joint Open Laboratory on Soil and Environment between HKBU and ISSCAS (China); Luo, Y.M. [Institute of Soil Science, Chinese Academy of Sciences, Nanjing (China); Joint Open Laboratory on Soil and Environment between HKBU and ISSCAS (China); Wong, M.H. [Department of Biology and Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Kowloon Tong, Hong Kong (China) and Joint Open Laboratory on Soil and Environment between HKBU and ISSCAS (China)]. E-mail: mhwong@hkbu.edu.hk

    2006-03-15

    A greenhouse study was carried out with Brassica juncea to critically evaluate effects of bacterial inoculation on the uptake of heavy metals from Pb-Zn mine tailings by plants. Application of plant growth-promoting rhizobacteria, including nitrogen-fixing bacteria and phosphate and potassium solubilizers, might play an important role in the further development of phytoremediation techniques. The presence of these beneficial bacteria stimulated plant growth and protected the plant from metal toxicity. Inoculation with rhizobacteria had little influence on the metal concentrations in plant tissues, but produced a much larger above-ground biomass and altered metal bioavailability in the soil. As a consequence, higher efficiency of phytoextraction was obtained compared with control treatments. - Rhizobacteria promoted growth above normal biomass, but did not influence plant metal concentrations.

  12. Eurochemic reprocessing plant decommissioning. Decontamination of contaminated metal

    International Nuclear Information System (INIS)

    Walthery, R.; Teunckens, L.; Lewandowski, P.

    1998-01-01

    When decommissioning nuclear installations, large quantifies of metal components are produced as well as significant amounts of other radioactive materials, which mostly show low surface contamination. Having been used or having been brought for a while in a controlled area, marks them as 'suspected material'. In view of the very high costs for radioactive waste processing and disposal, alternatives have been considered, and much effort has been spent in recycling through decontamination, melting and unconditional release of metals. In a broader context, recycling of materials can be considered as a first order ecological priority to limit the quantities of radioactive wastes to be disposed of, to reduce the technical and economic problems involved with the management of radioactive wastes, and to make economic use of primary material and conserve natural resources of basic material for future generations. Other evaluations as the environmental impact of recycling compared to non recycling (mining or production of new material) and waste treatment, with the associated risks involved, can also be considered, as well as social and political impacts of recycling. This document gives an overview of the current practices in recycling of materials at the decommissioning of the Eurochemic reprocessing plant in Dessel, Belgium. It deals with the decontamination and measurement techniques in use, and considers related technical and economic aspects and constraints. (author)

  13. The effect of technogenic emissions on the heavy metals accumulation by herbaceous plants.

    Science.gov (United States)

    Chaplygin, Victor; Minkina, Tatiana; Mandzhieva, Saglara; Burachevskaya, Marina; Sushkova, Svetlana; Poluektov, Evgeniy; Antonenko, Elena; Kumacheva, Valentina

    2018-02-07

    The effect of technogenic emissions on the input of Pb, Zn, Cd, Cu, Mn, Cr, and Ni into plants from the Poaceae and Asteraceae families has been studied. Soil and plant contamination by anthropogenic emissions from industrial enterprises leads the decreasing of crop quality; therefore, the monitoring investigation of plants and soils acquires special importance. The herbaceous plants may be used as bioindicators for main environmental changes. It was found that the high level of anthropogenic load related to atmospheric emissions from the power plant favors the heavy metal (HM) accumulation in herbaceous plants. Contamination with Pb, Cd, Cr, and Ni was revealed in plants growing near the power plant. Heavy metals arrive to plants from the soil in the form of mobile compounds. Plant family is one of the main factors affecting the HM distribution in the above- and underground parts of plants. Plants from the Poaceae family accumulate less chemical elements in their aboveground parts than the Asteraceae plants. Ambrosia artemisiifolia and Artemisia austriaca are HM accumulators. For assessing the stability of plants under contamination with HMs, metal accumulation by plants from soil (the bioconcentration factor) and metal phytoavailability from plants above- and underground parts (the acropetal coefficient) were calculated. According to the bioconcentration factor and translocation factor values, Poaceae species are most resistant to technogenic contamination with HMs. The translocation factor highest values were found for Tanacetum vulgare; the lowest bioconcentration factor values were typical for Poa pratensis.

  14. Evaluation of atmospheric pollution in Kenitra city (MOROCCO) (Particles and Metals)

    International Nuclear Information System (INIS)

    Zghaid, M.; Noack, Y.; Tahiri, M.; Zahry, F.; Bounakhla, M.; Benyaich, F

    2008-01-01

    Full text: All Recent epidemiological studies show that air pollution in general and especially particulate pollution have a strong influence on human health, particularly on the respiratory and cardio-vascular systems, but also affect the developing fetus. Like developed countries, countries under development are subject to significant air pollution both urban and industrial. The car park is often old, sometimes uncontrolled industrialization, the regulations of atmospheric emissions are infancy and the network monitoring rare. The aim of this work is to focus on the problem of particulate air pollution in Kenitra (50 km north of Rabat, Morocco) by characterizing the pollution in both quantity and quality, to assess the impact potential health and provide decision makers with reliable data. Initial results show that the OMS recommendations, along with European standards on sulfur dioxide as well as PM10 are largely outdated (80 ug / Nm 3 instead of 40 in average). This is also the case for some metals: Lead concentrations are approximately ten times greater than those encountered in urban sites in Europe; nickel is fifteen times higher than the European standard. The metals are mainly present in the thin fraction (particles below 2.5 um). The low proportion of thin particles in the total particles, show the influence of resuspension events and other natural inputs from arid or desert. The SO2 average concentrations are also quite important (60 ug / m 3 ). The concentrations near the site are much higher than those that can be measured on similar sites in Europe. It is more than probable that in this city, the health impacts are not negligible. We will look to continue this work in three aspects: Spatial distribution of particulate pollution in Kenitra; The health impact of air pollution in Kenitra; Cyto-and geno-toxicity of airborne particles in Kenitra [fr

  15. Uptake of heavy metals by Typha capensis from wetland sites polluted by effluent from mineral processing plants: implications of metal-metal interactions.

    Science.gov (United States)

    Zaranyika, M F; Nyati, W

    2017-10-01

    The aim of the present work was to demonstrate the existence of metal-metal interactions in plants and their implications for the absorption of toxic elements like Cr. Typha capensis , a good accumulator of heavy metals, was chosen for the study. Levels of Fe, Cr, Ni, Cd, Pb, Cu and Zn were determined in the soil and roots, rhizomes, stems and leaves of T. capensis from three Sites A, B and C polluted by effluent from a chrome ore processing plant, a gold ore processing plant, and a nickel ore processing plant, respectively. The levels of Cr were extremely high at Site A at 5415 and 786-16,047 μg g -1 dry weight in the soil and the plant, respectively, while the levels of Ni were high at Site C at 176 and 24-891 μg g -1 in the soil and the plant, respectively. The levels of Fe were high at all three sites at 2502-7500 and 906-13,833 μg g -1 in the soil and plant, respectively. For the rest of the metals, levels were modest at 8.5-148 and 2-264 μg g -1 in the soil and plant, respectively. Pearson's correlation analysis confirmed mutual synergistic metal-metal interactions in the uptake of Zn, Cu, Co, Ni, Fe, and Cr, which are attributed to the similarity in the radii and coordination geometry of the cations of these elements. The implications of such metal-metal interactions (or effects of one metal on the behaviour of another) on the uptake of Cr, a toxic element, and possible Cr detoxification mechanism within the plant, are discussed.

  16. Road Environments: Impact of Metals on Human Health in Heavily Congested Cities of Poland.

    Science.gov (United States)

    Adamiec, Ewa

    2017-06-29

    Road dust as a by-product of exhaust and non-exhaust emissions can be a major cause of systemic oxidative stress and multiple disorders. Substantial amounts of road dust are repeatedly resuspended, in particular at traffic lights and junctions where more braking is involved, causing potential threat to pedestrians, especially children. In order to determine the degree of contamination in the heavily traffic-congested cities of Poland, a total of 148 samples of road dust (RD), sludge from storm drains (SL) and roadside soil (RS) were collected. Sixteen metals were analysed using inductively coupled plasma mass spectrometry (ICP-MS), inductively coupled plasma atomic emission spectroscopy (ICP-OES) and atomic absorption spectroscopy (AAS) in all samples. Chemical evaluation followed by Principal Component Analysis (PCA) revealed that road environments have been severely contaminated with traffic-related elements. Concentration of copper in all road-environment samples is even higher, exceeding even up to 15 times its average concentrations established for the surrounding soils. Non-carcinogenic health risk assessment revealed that the hazard index (HI) for children in all road-environment samples exceeds the safe level of 1. Therefore, greater attention should be paid to potential health risks caused by the ingestion of traffic-related particles during outdoor activities.

  17. Metal concentrations in sediments from tourist beaches of Miri City, Sarawak, Malaysia (Borneo Island).

    Science.gov (United States)

    Nagarajan, R; Jonathan, M P; Roy, Priyadarsi D; Wai-Hwa, L; Prasanna, M V; Sarkar, S K; Navarrete-López, M

    2013-08-15

    Forty-three sediment samples were collected from the beaches of Miri City, Sarawak, Malaysia to identify the enrichment of partially leached trace metals (PLTMs) from six different tourist beaches. The samples were analyzed for PLTMs Fe, Mn, Cr, Co, Cu, Ni, Pb, Sr and Zn. The concentration pattern suggest that the southern side of the study area is enriched with Fe (1821-6097 μg g(-1)), Mn (11.57-90.22 μg g(-1)), Cr (51.50-311 μg g(-1)), Ni (18-51 μg g(-1)), Pb (8.81-84.05 μg g(-1)), Sr (25.95-140.49 μg g(-1)) and Zn (12.46-35.04 μg g(-1)). Compared to the eco-toxicological values, Cr>Effects range low (ERL), Lowest effect level (LEL), Severe effect level (SEL); Cu>Unpolluted sediments, ERL, LEL; Pb>Unpolluted sediments and Ni>ERL and LEL. Comparative results with other regions indicate that Co, Cr, Cu, Ni and Zn are higher, indicating an external input rather than natural process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Physicochemical and Heavy Metals Assessments of Leachates from Aperin Abandoned Dumpsite in Ibadan City, Nigeria

    Directory of Open Access Journals (Sweden)

    G. O. Adewuyi

    2010-01-01

    Full Text Available Leachates from Aperin dumpsite and control site in Ibadan city, were analysed for physicochemical properties and heavy metals levels. These parameters were compared with control samples and established international standards (FEPA and (WHO. The dumpsite leachates contained very high concentration of TDS (2436±1035 mg/L and significant concentrations of COD (395±135 mg/L, BOD (170±33 mg/L, Alkalinity (1157±995 mg/L, Cl- (943±175 mg/L, NO3- (0.66±0.22 mg/L PO4-(1.98±0.89 mg/L. High concentrations of Iron, Manganese, Copper, Zinc, Nickel, Cadmium and Lead were also observed. All, the parameters were above control and exceeded FEPA and WHO guidelines. The study revealed that this dumpsite is a major polluting source in the surrounding environment. This underlines the need for appropriate government agency Oyo State, Nigeria to initiate an active remediation process such as phytoremediation in combination with physicochemical methods to recover the dumpsite from contaminants and reduce the level of pollution in the surrounding environment.

  19. Heavy metals in urban road sediments of the city of Mexicali, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Meza T, L. M.; Quintero N, M.; Valdez S, B., E-mail: montserrat.meza@uabc.edu.mx [Universidad Autonoma de Baja California, Facultad de Ingenieria, Unidad Mexicali, 21280 Mexicali, Baja California (Mexico)

    2014-07-01

    A chemical sediment characterization of urban streets in the city of Mexicali at Baja California, Mexico, was conducted to estimate the most important heavy metals along with PM{sub 10} and PM{sub 2.5} emission factors to evaluate the amount of particulate matter. Sampling was conducted from february to may 2008, following a random statistical design, in 60 sampling sites on a geo referenced map at UTM 11 North. Samples were identified and treated in the laboratory, after undergoing cracking, drying, sieving, and weighing to get less than 75 microns of sediment by using a dry method. Twelve representative samples were selected for chemical characterization using energy dispersive X-rays (EDX) and inductively coupled plasma (Icp). The most significant elements found were zinc (Zn) and lead (Pb) with concentrations ranging from 1 to 15 mg/kg and 11 to 25 mg/kg, respectively, corresponding to the third classification from a reference set of a study by US EPA in 1981-1997. The clay type known as illite was identified in four specific samples. (author)

  20. Heavy Metal Stress, Signaling, and Tolerance Due to Plant-Associated Microbes: An Overview

    Science.gov (United States)

    Tiwari, Shalini; Lata, Charu

    2018-01-01

    Several anthropogenic activities including mining, modern agricultural practices, and industrialization have long-term detrimental effect on our environment. All these factors lead to increase in heavy metal concentration in soil, water, and air. Soil contamination with heavy metals cause several environmental problems and imparts toxic effect on plant as well as animals. In response to these adverse conditions, plants evolve complex molecular and physiological mechanisms for better adaptability, tolerance, and survival. Nowadays conventional breeding and transgenic technology are being used for development of metal stress resistant varieties which, however, are time consuming and labor intensive. Interestingly the use of microbes as an alternate technology for improving metal tolerance of plants is gaining momentum recently. The use of these beneficial microorganisms is considered as one of the most promising methods for safe crop-management practices. Interaction of plants with soil microorganisms can play a vital role in acclimatizing plants to metalliferous environments, and can thus be explored to improve microbe-assisted metal tolerance. Plant-associated microbes decrease metal accumulation in plant tissues and also help to reduce metal bioavailability in soil through various mechanisms. Nowadays, a novel phytobacterial strategy, i.e., genetically transformed bacteria has been used to increase remediation of heavy metals and stress tolerance in plants. This review takes into account our current state of knowledge of the harmful effects of heavy metal stress, the signaling responses to metal stress, and the role of plant-associated microbes in metal stress tolerance. The review also highlights the challenges and opportunities in this continued area of research on plant–microbe–metal interaction. PMID:29681916

  1. Heavy Metal Stress, Signaling, and Tolerance Due to Plant-Associated Microbes: An Overview

    Directory of Open Access Journals (Sweden)

    Shalini Tiwari

    2018-04-01

    Full Text Available Several anthropogenic activities including mining, modern agricultural practices, and industrialization have long-term detrimental effect on our environment. All these factors lead to increase in heavy metal concentration in soil, water, and air. Soil contamination with heavy metals cause several environmental problems and imparts toxic effect on plant as well as animals. In response to these adverse conditions, plants evolve complex molecular and physiological mechanisms for better adaptability, tolerance, and survival. Nowadays conventional breeding and transgenic technology are being used for development of metal stress resistant varieties which, however, are time consuming and labor intensive. Interestingly the use of microbes as an alternate technology for improving metal tolerance of plants is gaining momentum recently. The use of these beneficial microorganisms is considered as one of the most promising methods for safe crop-management practices. Interaction of plants with soil microorganisms can play a vital role in acclimatizing plants to metalliferous environments, and can thus be explored to improve microbe-assisted metal tolerance. Plant-associated microbes decrease metal accumulation in plant tissues and also help to reduce metal bioavailability in soil through various mechanisms. Nowadays, a novel phytobacterial strategy, i.e., genetically transformed bacteria has been used to increase remediation of heavy metals and stress tolerance in plants. This review takes into account our current state of knowledge of the harmful effects of heavy metal stress, the signaling responses to metal stress, and the role of plant-associated microbes in metal stress tolerance. The review also highlights the challenges and opportunities in this continued area of research on plant–microbe–metal interaction.

  2. TRANSITION METAL TRANSPORT IN PLANTS AND ASSOCIATED ENDOSYMBIONTS: ARBUSCULAR MYCORRHIZAL FUNGI AND RHIZOBIA

    Directory of Open Access Journals (Sweden)

    Manuel González-Guerrero

    2016-07-01

    Full Text Available Transition metals such as iron, copper, zinc, or molybdenum, are essential nutrients for plants. These elements are involved in almost every biological process, including photosynthesis, tolerance to biotic and abiotic stress, or symbiotic nitrogen fixation. However, plants often grow in soils with limiting metallic oligonutrient bioavailability. Consequently, to ensure the proper metal levels, plants have developed a complex metal uptake and distribution system, that not only involves the plant itself, but also its associated microorganisms. These microorganisms can simply increase metal solubility in soils and making them more accessible to the host plant, as well as induce the plant metal deficiency response, or deliver directly transition elements to cortical cells. Other, instead of providing metals can act as metal sinks, such as endosymbiotic rhizobia in legume nodules that requires relatively large amounts to carry out nitrogen fixation. In this review, we propose to do an overview of metal transport mechanisms in the plant-microbe system, emphasizing the role of arbuscular mycorrhizal fungi and endosymbiotic rhizobia.

  3. Heavy metals content in plant-growing products as the results of agroecological monitoring

    International Nuclear Information System (INIS)

    Kuznetsov, A.V.; Lunev, M.I.; Pavlikhina, A.V.; Lobas, N.V.

    2008-01-01

    The generalised data on the heavy metals and arsenic contents in grain and vegetable cultures, green mass and hay of various grasses are presented. The dependence of heavy metal accumulation factors in plant-growing products on soil properties is shown. The estimation of levels of the heavy metals contents in accordance with the admissible content standards is given.

  4. Nutrient and metal uptake in wetland plants at stormwater detension ponds

    DEFF Research Database (Denmark)

    Istenic, Darja; Arias, Carlos Alberto; Brix, Hans

    2011-01-01

    Nutrients and metals were analysed in tissues of various wetland plants growing in stormwater detention ponds in Denmark. Nutrient and metal concentrations in below and aboveground tissues were compared to the concentrations of the adjacent sediment. The results showed accumulation of heavy metal...

  5. Use and abuse of trace metal concentrations in plant tissue for biomonitoring and phytoextraction

    NARCIS (Netherlands)

    Mertens, Jan; Luyssaert, Sebastiaan; Verheyen, Kris

    2005-01-01

    Some plant species accumulate trace metals from the soil in their aboveground biomass. Therefore, some scientists have concluded that these species are suitable for biomonitoring trace metal concentrations in the soil or for removing excessive trace metals from the soil by means of phytoextraction.

  6. Phytoremediation of Metal Contaminated Soil Using Willow: Exploiting Plant-Associated Bacteria to Improve Biomass Production and Metal Uptake.

    Science.gov (United States)

    Janssen, Jolien; Weyens, Nele; Croes, Sarah; Beckers, Bram; Meiresonne, Linda; Van Peteghem, Pierre; Carleer, Robert; Vangronsveld, Jaco

    2015-01-01

    Short rotation coppice (SRC) of willow and poplar is proposed for economic valorization and concurrently as remediation strategy for metal contaminated land in northeast-Belgium. However, metal phytoextraction appears insufficient to effectuate rapid reduction of soil metal contents. To increase both biomass production and metal accumulation of SRC, two strategies are proposed: (i) in situ selection of the best performing clones and (ii) bioaugmentation of these clones with beneficial plant-associated bacteria. Based on field data, two experimental willow clones, a Salix viminalis and a Salix alba x alba clone, were selected. Compared to the best performing commercial clones, considerable increases in stem metal extraction were achieved (up to 74% for Cd and 91% for Zn). From the selected clones, plant-associated bacteria were isolated and identified. All strains were subsequently screened for their plant growth-promoting and metal uptake enhancing traits. Five strains were selected for a greenhouse inoculation experiment with the selected clones planted in Cd-Zn-Pb contaminated soil. Extraction potential tended to increase after inoculation of S. viminalis plants with a Rahnella sp. strain due to a significantly increased twig biomass. However, although bacterial strains showing beneficial traits in vitro were used for inoculation, increments in extraction potential were not always observed.

  7. Hazardous Heavy metal distribution in Dahuofang catchment, Fushun, Liaoning, an important industry city in China: a case study

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Gang [State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Bejing (China); The CAS/Shandong Provincial Key Laboratory of Coastal Environmental Process, Yantai Institute of Coastal Zone Research, Yantai Institute of Costal Zone Research, Chinese Academy of Sciences, Yantai (China); Wu, Ji-You [State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Bejing (China); Graduate University of Chinese Academy of Sciences, Beijing (China); Shao, Hong-Bo [The CAS/Shandong Provincial Key Laboratory of Coastal Environmental Process, Yantai Institute of Coastal Zone Research, Yantai Institute of Costal Zone Research, Chinese Academy of Sciences, Yantai (China); Institute for Life Sciences, Qingdao University of Science and Technology (QUST), Qingdao (China)

    2012-12-15

    Located in Liaoning Province, one of the traditional heavy industrial areas in China, Dahuofang Reservoir provides drinking water for nearly 30 000 000 citizens, as well as industrial and agricultural water for dozens of several cities and rural areas. The distribution of hazardous heavy metals is described in several types of soil, crops, and in different industrial or mining areas and main sewage irrigation areas. Five possible reasons that may cause the pollution are analyzed and listed. Also we provide some pragmatic suggestions for the remediation of heavy metals in contaminated soils. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. The Role of Plant Growth-Promoting Bacteria in Metal Phytoremediation.

    Science.gov (United States)

    Kong, Zhaoyu; Glick, Bernard R

    2017-01-01

    Phytoremediation is a promising technology that uses plants and their associated microbes to clean up contaminants from the environment. In recent years, phytoremediation assisted by plant growth-promoting bacteria (PGPB) has been highly touted for cleaning up toxic metals from soil. PGPB include rhizospheric bacteria, endophytic bacteria and the bacteria that facilitate phytoremediation by other means. This review provides information about the traits and mechanisms possessed by PGPB that improve plant metal tolerance and growth, and illustrate mechanisms responsible for plant metal accumulation/translocation in plants. Several recent examples of phytoremediation of metals facilitated by PGPB are reviewed. Although many encouraging results have been reported in the past years, there have also been numerous challenges encountered in phytoremediation in the field. To implement PGPB-assisted phytoremediation of metals in the natural environment, there is also a need to critically assess the ecological effects of PGPB, especially for those nonnative bacteria. © 2017 Elsevier Ltd All rights reserved.

  9. Comparison of trace metals in intake and discharge waters of power plants using clean techniques

    International Nuclear Information System (INIS)

    Salvito, D.T.; Allen, H.E.

    1995-01-01

    In order to determine the impact to receiving waters of trace metals potentially discharged from a once-through, non-contact cooling water system from a power plant, a study was conducted utilizing clean sampling and analytical techniques for a series of metals. Once-through, non-contact cooling water at power plants is frequently discharged back to the fresh or saline waterbody utilized for its intake water. This water is used to cool plant condensers. Intake and discharge data were collected and evaluated using paired t-tests. Study results indicate that there is no measurable contribution of metals from non-contact cooling water from this power plant

  10. Comparative Study of Heavy Metals in Soil and Selected Medicinal Plants

    Directory of Open Access Journals (Sweden)

    Afzal Shah

    2013-01-01

    Full Text Available Essential and nonessential heavy metals like iron (Fe, nickel (Ni, manganese (Mn, zinc (Zn, copper (Cu, cadmium (Cd, chromium (Cr, and lead (Pb were analyzed in four selected medicinal plants such as Capparis spinosa, Peganum harmala, Rhazya stricta, and Tamarix articulata by flame atomic absorption spectrophotometer (FAAS. These medicinal plants are extensively used as traditional medicine for treatment of various ailments by local physicians in the area from where these plants were collected. The concentration level of heavy metals in the selected plants was found in the decreasing order as Fe > Zn > Mn > Cu > Ni > Cr > Cd > Pb. The results revealed that the selected medicinal plants accumulate these elements at different concentrations. Monitoring such medicinal plants for heavy metals concentration is of great importance for physicians, health planners, health care professionals, and policymakers in protecting the public from the adverse effects of these heavy metals.

  11. Study of heavy metal concentration (As, Ba, Cd, Hg, Pb, Crin water resources and river of Borujerd city in 2008-2009

    Directory of Open Access Journals (Sweden)

    bahram kamarehei

    2010-02-01

    Full Text Available with industrial and economic growth and different material production that humans gained from natural resources for their comfort and walfare, inwardly introduced toxic material and heavy metal entered environment that there created serious problems for themselves and environment. This study accomplished to determine heavy metal concentration (As, Ba, Cd, Hg, Pb, Crin water resources and river of Borujerd city in 2008-2009. Materials and Methods: This descriptive cross-sectional study was conducted to determine heavy metal concentration (As, Ba, Cd, Hg, Pb, Cr in water resources and river of Borujerd city. 54 samples of water were taken from 18 drinking water wells, and also in two times 8 samples of Borujerd river were taken from before and after the city. Then samples carried into the lab and were concentrated ten times using expressed methods and standard methods. Then heavy metal concentration determined by AAP (WFX 130 and results analyzed by SPSS and EXCEL software. Results: Heavy metal concentration average (As, Ba, Cd, Hg, Pb, Cr in drinking water wells were 0. 0, 0. 3222, 0. 0014, 0. 0002, 0. 0077 mg/l respectively. and heavy metal concentration in river water after the city has been increased than before the city. Conclusion: Results indicated that heavy metal concentration average in Borujerd drinking water wells were lower than standard amounts and drinking water wells didn’t pollute with heavy metal. But heavy metal concentration in river water after the city has been increased than the before of it because city waste water enters the city river.

  12. Tracing Sources and Contamination Assessments of Heavy Metals in Road and Foliar Dusts in a Typical Mining City, China.

    Science.gov (United States)

    Yang, Jie; Teng, Yanguo; Song, Liuting; Zuo, Rui

    2016-01-01

    Road and foliar dust samples from four land-use districts of Panzhihua City, a famous V-Ti magnetite production area of China, were collected to investigate the sources and distribution characteristics of 9 heavy metals (V, Pb, Cd, Cu, Zn, Ni, Cr, Fe, and Mn). The results suggest that foliar samples had smaller particle size and higher heavy metal contents than road dusts. The contamination assessments of heavy metals were as follows: Pb and V (significant enrichment) > Zn, Ni, Cr, Fe, and Mn (moderate enrichment) > Cd and Ni (minimal enrichment). Statistical analyses showed Pb, as the primary pollution element, originated from waste incineration and lead-fuel combustion. The sources of Zn, Ni, Cr, Fe, V, and Mn were fugitive dust and traffic activities. Potential origins of Cu were corrosion of alloys used in vehicle components, vehicle covers, or other metallic surfaces and materials. The sources of Cd were different from any other heavy metals. Traffic and industrial activities were the main anthropogenic origins of heavy metals in dusts of Panzhihua, and more attention should be paid to heavy metal pollution in agricultural area.

  13. Tracing Sources and Contamination Assessments of Heavy Metals in Road and Foliar Dusts in a Typical Mining City, China.

    Directory of Open Access Journals (Sweden)

    Jie Yang

    Full Text Available Road and foliar dust samples from four land-use districts of Panzhihua City, a famous V-Ti magnetite production area of China, were collected to investigate the sources and distribution characteristics of 9 heavy metals (V, Pb, Cd, Cu, Zn, Ni, Cr, Fe, and Mn. The results suggest that foliar samples had smaller particle size and higher heavy metal contents than road dusts. The contamination assessments of heavy metals were as follows: Pb and V (significant enrichment > Zn, Ni, Cr, Fe, and Mn (moderate enrichment > Cd and Ni (minimal enrichment. Statistical analyses showed Pb, as the primary pollution element, originated from waste incineration and lead-fuel combustion. The sources of Zn, Ni, Cr, Fe, V, and Mn were fugitive dust and traffic activities. Potential origins of Cu were corrosion of alloys used in vehicle components, vehicle covers, or other metallic surfaces and materials. The sources of Cd were different from any other heavy metals. Traffic and industrial activities were the main anthropogenic origins of heavy metals in dusts of Panzhihua, and more attention should be paid to heavy metal pollution in agricultural area.

  14. Utilization of plants for stabilization and cleaning up of metal contaminated soil and water

    Directory of Open Access Journals (Sweden)

    Miroslav Štofko

    2006-06-01

    Full Text Available Phytoremediation has been defined as the use of green plants and their associated rhizospheric microorganisms to remove, degrade, or contain contaminants located in soisl, sediments, groundwater, surface water, and even the atmosphere. Categories of phytoremediation include - phytoextraction or phytoaccumulation, phytotransformation, phytostimulation or plant-assisted bioremediation, phytovolatilization, rhizofiltration, pump and tree, phytostabilization, and hydraulic control. Phytoremediation of heavy metal contaminated soils basically includes phytostabilization, phytoextraction, rhizofiltration and phytovolatilization. Selection of plants for phytoremediation of metals depends on a particular application.

  15. DEVELOPMENT OF A PLANT TEST SYSTEM FOR EVALUATION OF THE TOXICITY OF METAL CONTAMINATED SOILS. I. SENSITIVITY OF PLANT SPECIES TO HEAVY METAL STRESS

    Directory of Open Access Journals (Sweden)

    Andon VASSILEV

    2001-09-01

    Full Text Available The sensitivity of young bean, cucumber and lettuce plants to heavy metals stress was studied at control conditions in a climatic room. The plants were grown in pots with perlite and supplied daily by half-strength Hoagland nutrient solution. The plants were treated for 8 days with different heavy metal doses (full, ½ and ¼ starting at appearance of the fi rst true leaf (cucumber and bean or the full development of the second leaf (lettuce. The full dose consisted 500 μM Zn, 50 μM Cd and 20 μM Cu added to the nutrient solution. Based on the measured morphological (fresh weight, leaf area, root length and physiological parameters (photosynthetic pigments content and activity of guaiacol peroxidase in roots, the cucumber plants presented the highest sensitivity to heavy metal stress.

  16. Feasibility study on replacement of power plant and desalination plant in Aktau City, Manghistau Region, Republic of Kazakhstan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the purpose of conserving energy and reducing greenhouse effect gas emission, feasibility study was conducted for improvement of efficiency of power generation/desalination facilities at MAEK Energy Center, Aktau City, Manghistau, Kazakhstan. Presently, the main facilities are the conventional natural gas fired power plant, evaporation type seawater desalination facility, hot water production facility, etc. In the project, introduction of the following was planned to be made: cogeneration facility composed of two units of 1,100-degree C class gas turbine and reverse osmosis (RO) type desalination facility for drinking water production with a capacity of 50,000 t/d. As a result of the study, the energy conservation amount in this project was 151,900-165,400 toe/y in power generation facility, and the greenhouse effect gas reduction amount was 355,000-387,000 t-CO2/y in power generation facility and 268,000 t-CO2/y in desalination facility. The construction cost and operational cost of the plant were 45.7 billion yen and 2.8 billion yen/y. In the economical estimation, ROI and ROE before tax were 7.4 and 34.8, respectively, which were considered to be appropriate values as social infrastructure related conditions. (NEDO)

  17. Assessment of heavy metal tolerance in native plant species from soils contaminated with electroplating effluent.

    Science.gov (United States)

    Sainger, Poonam Ahlawat; Dhankhar, Rajesh; Sainger, Manish; Kaushik, Anubha; Singh, Rana Pratap

    2011-11-01

    Heavy metals concentrations of (Cr, Zn, Fe, Cu and Ni) were determined in plants and soils contaminated with electroplating industrial effluent. The ranges of total soil Cr, Zn, Fe, Cu and Ni concentrations were found to be 1443-3240, 1376-3112, 683-2228, 263-374 and 234-335 mg kg⁻¹, respectively. Metal accumulation, along with hyperaccumulative characteristics of the screened plants was investigated. Present study highlighted that metal accumulation in different plants varied with species, tissues and metals. Only one plant (Amaranthus viridis) accumulated Fe concentrations over 1000 mg kg⁻¹. On the basis of TF, eight plant species for Zn and Fe, three plant species for Cu and two plant species for Ni, could be used in phytoextraction technology. Although BAF of all plant species was lesser than one, these species exhibited high metal adaptability and could be considered as potential hyperaccumulators. Phytoremediation potential of these plants can be used to remediate metal contaminated soils, though further investigation is still needed. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Predicting heavy metal concentrations in soils and plants using field spectrophotometry

    Science.gov (United States)

    Muradyan, V.; Tepanosyan, G.; Asmaryan, Sh.; Sahakyan, L.; Saghatelyan, A.; Warner, T. A.

    2017-09-01

    Aim of this study is to predict heavy metal (HM) concentrations in soils and plants using field remote sensing methods. The studied sites were an industrial town of Kajaran and city of Yerevan. The research also included sampling of soils and leaves of two tree species exposed to different pollution levels and determination of contents of HM in lab conditions. The obtained spectral values were then collated with contents of HM in Kajaran soils and the tree leaves sampled in Yerevan, and statistical analysis was done. Consequently, Zn and Pb have a negative correlation coefficient (p regression models and artificial neural network (ANN) for HM prediction were developed. Good results were obtained for the best stress sensitive spectral band ANN (R2 0.9, RPD 2.0), Simple Linear Regression (SLR) and Partial Least Squares Regression (PLSR) (R2 0.7, RPD 1.4) models. Multiple Linear Regression (MLR) model was not applicable to predict Pb and Zn concentrations in soils in this research. Almost all full spectrum PLS models provide good calibration and validation results (RPD>1.4). Full spectrum ANN models are characterized by excellent calibration R2, rRMSE and RPD (0.9; 0.1 and >2.5 respectively). For prediction of Pb and Ni contents in plants SLR and PLS models were used. The latter provide almost the same results. Our findings indicate that it is possible to make coarse direct estimation of HM content in soils and plants using rapid and economic reflectance spectroscopy.

  19. Plant growth promotion, metabolite production and metal tolerance of dark septate endophytes isolated from metal-polluted poplar phytomanagement sites.

    Science.gov (United States)

    Berthelot, Charlotte; Leyval, Corinne; Foulon, Julie; Chalot, Michel; Blaudez, Damien

    2016-10-01

    Numerous studies address the distribution and the diversity of dark septate endophytes (DSEs) in the literature, but little is known about their ecological role and their effect on host plants, especially in metal-polluted soils. Seven DSE strains belonging to Cadophora, Leptodontidium, Phialophora and Phialocephala were isolated from roots of poplar trees from metal-polluted sites. All strains developed on a wide range of carbohydrates, including cell-wall-related compounds. The strains evenly colonized birch, eucalyptus and ryegrass roots in re-synthesis experiments. Root and shoot growth promotion was observed and was both plant and strain dependent. Two Phialophora and Leptodontidium strains particularly improved plant growth. However, there was no correlation between the level of root colonization by DSEs and the intensity of growth promotion. All strains produced auxin and six also stimulated plant growth through the release of volatile organic compounds (VOCs). SPME-GC/MS analyses revealed four major VOCs emitted by Cadophora and Leptodontidium The strains exhibited growth at high concentrations of several metals. The ability of metal-resistant DSE strains to produce both soluble and volatile compounds for plant growth promotion indicates interesting microbial resources with high potential to support sustainable production of bioenergy crops within the context of the phytomanagement of metal-contaminated sites. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Development of a model to select plants with optimum metal phytoextraction potential.

    Science.gov (United States)

    Guala, Sebastián D; Vega, Flora A; Covelo, Emma F

    2011-07-01

    The aim of the present study is to propose a nonlinear model which provides an indicator for the maximum phytoextraction of metals to help in the decision-making process. Research into different species and strategies plays an important role in the application of phytoextraction techniques to the remediation of contaminated soil. Also, the convenience of species according to their biomass and pollutant accumulation capacities has gained important space in discussions regarding remediation strategies, whether to choose species with low accumulation capacities and high biomass or high accumulation capacities with low biomass. The effects of heavy metals in soil on plant growth are studied by means of a nonlinear interaction model which relates the dynamics of the uptake of heavy metals by plants to heavy metal deposed in soil. The model, presented theoretically, provides an indicator for the maximum phytoextraction of metals which depends on adjustable parameters of both the plant and the environmental conditions. Finally, in order to clarify its applicability, a series of experimental results found in the literature are presented to show how the model performs consistently with real data. The inhibition of plant growth due to heavy metal concentration can be predicted by a simple kinetic model. The model proposed in this study makes it possible to characterize the nonlinear behaviour of the soil-plant interaction with heavy metal pollution in order to establish maximum uptake values for heavy metals in the harvestable part of plants.

  1. Metal stress consequences on frost hardiness of plants at northern high latitudes: a review and hypothesis

    International Nuclear Information System (INIS)

    Taulavuori, Kari; Prasad, M.N.V.; Taulavuori, Erja; Laine, Kari

    2005-01-01

    This paper reviews the potential of trace/heavy metal-induced stress to reduce plant frost hardiness at northern high latitudes. The scientific questions are first outlined prior to a brief summary of heavy metal tolerance. The concepts of plant capacity and survival adaptation were used to formulate a hypothesis, according to which heavy metal stress may reduce plant frost hardiness for the following reasons: (1) Heavy metals change membrane properties through impaired resource acquisition and subsequent diminution of the cryoprotectant pool. (2) Heavy metals change membrane properties directly through oxidative stress, i.e. an increase of active oxygen species. (3) The involved co-stress may further increase oxidative stress. (4) The risk of frost injury increases due to membrane alterations. An opposite perspective was also discussed: could metal stress result in enhanced plant frost hardiness? This phenomenon could be based on the metabolism (i.e. glutathione, polyamines, proline, heat shock proteins) underlying a possible general adaptation syndrome of stress (GAS). As a result of the review it was suggested that metal-induced stress seems to reduce rather than increase plant frost hardiness. - Metal stress may reduce plant frost hardiness

  2. Metal stress consequences on frost hardiness of plants at northern high latitudes: a review and hypothesis

    Energy Technology Data Exchange (ETDEWEB)

    Taulavuori, Kari [Department of Biology, University of Oulu, PO Box 3000, FIN-90014, Oulu (Finland)]. E-mail: kari.taulavuori@oulu.fi; Prasad, M.N.V. [Department of Plant Sciences, University of Hyderabad, Hyderabad 500 046, Andhra Pradesh (India); Taulavuori, Erja [Department of Biology, University of Oulu, PO Box 3000, FIN-90014, Oulu (Finland); Laine, Kari [Department of Biology, University of Oulu, PO Box 3000, FIN-90014, Oulu (Finland)

    2005-05-01

    This paper reviews the potential of trace/heavy metal-induced stress to reduce plant frost hardiness at northern high latitudes. The scientific questions are first outlined prior to a brief summary of heavy metal tolerance. The concepts of plant capacity and survival adaptation were used to formulate a hypothesis, according to which heavy metal stress may reduce plant frost hardiness for the following reasons: (1) Heavy metals change membrane properties through impaired resource acquisition and subsequent diminution of the cryoprotectant pool. (2) Heavy metals change membrane properties directly through oxidative stress, i.e. an increase of active oxygen species. (3) The involved co-stress may further increase oxidative stress. (4) The risk of frost injury increases due to membrane alterations. An opposite perspective was also discussed: could metal stress result in enhanced plant frost hardiness? This phenomenon could be based on the metabolism (i.e. glutathione, polyamines, proline, heat shock proteins) underlying a possible general adaptation syndrome of stress (GAS). As a result of the review it was suggested that metal-induced stress seems to reduce rather than increase plant frost hardiness. - Metal stress may reduce plant frost hardiness.

  3. Assessment of WQI and Microbial pollution for two water treatment plants in Baghdad city

    Directory of Open Access Journals (Sweden)

    Mohammed AliAl-Hashimi

    2017-03-01

    Full Text Available Tigris River is the main water source for all water treatment plants in Baghdad city. In current study, Water Quality Index (WQI and microbial pollution was obtained for two water treatment plants and their networks in Baghdad city Al-Karama and Al-Wathba WTP for both raw and treated water, In order to assess water suitability as a source of domestic water supply. Physical, chemical, and Microbialparameters werestudied fora period of four months (March-June, 2014. The parameters which were taken into account for the present work are pH, turbidity (Nephelometric Turbidity Unit, Total Alkalinity (TA, Electrical Conductivity (EC, Calcium (Ca++, Magnesium (Mg++, Total Hardness (TH, Total Dissolved Solids (TDS,Chloride (Cl-, and Most Probable Number (MPN method as microbial pollution indicator. The results indicate that WQI for untreated Tigris water was classified as "unfit for human consumption" at both WTPs intakes and along study period and after water passing through the sequence treatment units in WTPs its quality is gradually increased and finally, the treated water quality ranged from "Good" to " Moderately polluted" at both All-Karama and Al-Wathba WTPs. In networks the quality of water ranged between "Good" to "moderately polluted" in Al-Karama WTP network and between "Moderately polluted" to "severely polluted" in Al-Wathba WTP network. For Microbiological pollution, MPN throughout the period of study was between (0-150 cell/100ml at Al-Karama WTP and between (0- 240 cell/100ml at Al-Wathba WTP. The highest value obtained was (240 cell/100ml at raw water in Al- Wathba WTP intake in June, while the lowest value obtained was (0 cell/100ml at all chlorinated samples.

  4. Agroecological Responses of Heavy Metal Pollution with Special Emphasis on Soil Health and Plant Performances

    Directory of Open Access Journals (Sweden)

    Vaibhav Srivastava

    2017-10-01

    Full Text Available With modern day urbanization and industrialization, heavy metal (HM contamination has become a prime concern for today's society. The impacts of metal contamination on agriculture range from the agricultural soil to the produce in our food basket. The heavy metals (HMs and metalloids, including Cr, Mn, Co, Ni, Cu, Zn, Cd, Sn, Hg, Pb, among others, can result in significant toxic impacts. The intensification of agricultural land use and changes in farming practices along with technological advancement have led to heavy metal pollution in soil. Metals/metalloids concentrations in the soil are increasing at alarming rate and affect plant growth, food safety, and soil microflora. The biological and geological reorganization of heavy metal depends chiefly on green plants and their metabolism. Metal toxicity has direct effects to flora that forms an integral component of ecosystems. Altered biochemical, physiological, and metabolic processes are found in plants growing in regions of high metal pollution. However, metals like Cu, Mn, Co, Zn, and Cr are required in trace amounts by plants for their metabolic activities. The present review aims to catalog major published works related to heavy metal contamination in modern day agriculture, and draw a possible road map toward future research in this domain.

  5. The mechanism of metal nanoparticle formation in plants: limits on accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Haverkamp, R. G., E-mail: r.haverkamp@massey.ac.nz; Marshall, A. T. [Massey University, School of Engineering and Advanced Technology (New Zealand)

    2009-08-15

    Metal nanoparticles have many potential technological applications. Biological routes to the synthesis of these particles have been proposed including production by vascular plants, known as phytoextraction. While many studies have looked at metal uptake by plants, particularly with regard to phytoremediation and hyperaccumulation, few have distinguished between metal deposition and metal salt accumulation. This work describes the uptake of AgNO{sub 3}, Na{sub 3}Ag(S{sub 2}O{sub 3}){sub 2}, and Ag(NH{sub 3}){sub 2}NO{sub 3} solutions by hydroponically grown Brassica juncea and the quantitative measurement of the conversion of these salts to silver metal nanoparticles. Using X-ray absorption near edge spectroscopy (XANES) to determine the metal speciation within the plants, combined with atomic absorption spectroscopy (AAS) for total Ag, the quantity of reduction of Ag{sup I} to Ag{sup 0} is reported. Transmission electron microscopy (TEM) showed Ag particles of 2-35 nm. The factors controlling the amount of silver accumulated are revealed. It is found that there is a limit on the amount of metal nanoparticles that may be deposited, of about 0.35 wt.% Ag on a dry plant basis, and that higher levels of silver are obtained only by the concentration of metal salts within the plant, not by deposition of metal. The limit on metal nanoparticle accumulation, across a range of metals, is proposed to be controlled by the total reducing capacity of the plant for the reduction potential of the metal species and limited to reactions occurring at an electrochemical potential greater than 0 V (verses the standard hydrogen electrode).

  6. Heavy Metal Pollution Delineation Based on Uncertainty in a Coastal Industrial City in the Yangtze River Delta, China

    Directory of Open Access Journals (Sweden)

    Bifeng Hu

    2018-04-01

    Full Text Available Assessing heavy metal pollution and delineating pollution are the bases for evaluating pollution and determining a cost-effective remediation plan. Most existing studies are based on the spatial distribution of pollutants but ignore related uncertainty. In this study, eight heavy-metal concentrations (Cr, Pb, Cd, Hg, Zn, Cu, Ni, and Zn were collected at 1040 sampling sites in a coastal industrial city in the Yangtze River Delta, China. The single pollution index (PI and Nemerow integrated pollution index (NIPI were calculated for every surface sample (0–20 cm to assess the degree of heavy metal pollution. Ordinary kriging (OK was used to map the spatial distribution of heavy metals content and NIPI. Then, we delineated composite heavy metal contamination based on the uncertainty produced by indicator kriging (IK. The results showed that mean values of all PIs and NIPIs were at safe levels. Heavy metals were most accumulated in the central portion of the study area. Based on IK, the spatial probability of composite heavy metal pollution was computed. The probability of composite contamination in the central core urban area was highest. A probability of 0.6 was found as the optimum probability threshold to delineate polluted areas from unpolluted areas for integrative heavy metal contamination. Results of pollution delineation based on uncertainty showed the proportion of false negative error areas was 6.34%, while the proportion of false positive error areas was 0.86%. The accuracy of the classification was 92.80%. This indicated the method we developed is a valuable tool for delineating heavy metal pollution.

  7. Heavy Metal Pollution Delineation Based on Uncertainty in a Coastal Industrial City in the Yangtze River Delta, China

    Science.gov (United States)

    Zhao, Ruiying; Chen, Songchao; Zhou, Yue; Jin, Bin; Li, Yan

    2018-01-01

    Assessing heavy metal pollution and delineating pollution are the bases for evaluating pollution and determining a cost-effective remediation plan. Most existing studies are based on the spatial distribution of pollutants but ignore related uncertainty. In this study, eight heavy-metal concentrations (Cr, Pb, Cd, Hg, Zn, Cu, Ni, and Zn) were collected at 1040 sampling sites in a coastal industrial city in the Yangtze River Delta, China. The single pollution index (PI) and Nemerow integrated pollution index (NIPI) were calculated for every surface sample (0–20 cm) to assess the degree of heavy metal pollution. Ordinary kriging (OK) was used to map the spatial distribution of heavy metals content and NIPI. Then, we delineated composite heavy metal contamination based on the uncertainty produced by indicator kriging (IK). The results showed that mean values of all PIs and NIPIs were at safe levels. Heavy metals were most accumulated in the central portion of the study area. Based on IK, the spatial probability of composite heavy metal pollution was computed. The probability of composite contamination in the central core urban area was highest. A probability of 0.6 was found as the optimum probability threshold to delineate polluted areas from unpolluted areas for integrative heavy metal contamination. Results of pollution delineation based on uncertainty showed the proportion of false negative error areas was 6.34%, while the proportion of false positive error areas was 0.86%. The accuracy of the classification was 92.80%. This indicated the method we developed is a valuable tool for delineating heavy metal pollution. PMID:29642623

  8. Heavy Metal Pollution Delineation Based on Uncertainty in a Coastal Industrial City in the Yangtze River Delta, China.

    Science.gov (United States)

    Hu, Bifeng; Zhao, Ruiying; Chen, Songchao; Zhou, Yue; Jin, Bin; Li, Yan; Shi, Zhou

    2018-04-10

    Assessing heavy metal pollution and delineating pollution are the bases for evaluating pollution and determining a cost-effective remediation plan. Most existing studies are based on the spatial distribution of pollutants but ignore related uncertainty. In this study, eight heavy-metal concentrations (Cr, Pb, Cd, Hg, Zn, Cu, Ni, and Zn) were collected at 1040 sampling sites in a coastal industrial city in the Yangtze River Delta, China. The single pollution index (PI) and Nemerow integrated pollution index (NIPI) were calculated for every surface sample (0-20 cm) to assess the degree of heavy metal pollution. Ordinary kriging (OK) was used to map the spatial distribution of heavy metals content and NIPI. Then, we delineated composite heavy metal contamination based on the uncertainty produced by indicator kriging (IK). The results showed that mean values of all PIs and NIPIs were at safe levels. Heavy metals were most accumulated in the central portion of the study area. Based on IK, the spatial probability of composite heavy metal pollution was computed. The probability of composite contamination in the central core urban area was highest. A probability of 0.6 was found as the optimum probability threshold to delineate polluted areas from unpolluted areas for integrative heavy metal contamination. Results of pollution delineation based on uncertainty showed the proportion of false negative error areas was 6.34%, while the proportion of false positive error areas was 0.86%. The accuracy of the classification was 92.80%. This indicated the method we developed is a valuable tool for delineating heavy metal pollution.

  9. Assessment of heavy metals in street dust in Kathmandu metropolitan city and their possible impacts on the environment

    International Nuclear Information System (INIS)

    Tamrakar, C.S.; Shakya, P.R.

    2011-01-01

    Street dust often contains elevated concentrations of heavy metals and can influence on environment and human health. Therefore, a study on the characteristics of heavy metals in street dusts at different localities was carried out in the metropolitan city of Kathmandu of Nepal. A total of 20 street dusts have been sampled from four sampling sites with various activities or characteristics such as mechanical workshops (MWK), motor parks (MPK), market areas (MKA) and residential areas (RDA) and analyzed for Zn, Pb, Ni, Cr and Cd using the atomic absorption spectrophotometric method. Results showed that street dust samples contained significant levels of the metals studied compared to the values from the control site. The variation in concentration of most of the heavy metals determined decreased in an order represented as MWK>MPK>MKA>RDA>Control. While the RDA and MKA give the same element abundance order as Zn > Pb > Ni > Cr > Cd, the MPK and MWK show different abundance order in some elemental contents. In all the street dusts, zinc is the most available and labile element followed by lead. From the place of low activity (RDA) to the place of high activity (MWK), the metal concentrations in street dusts varied from 55.4-419.3 mu g/sup -1/ for Zn, 12.3-116.8 mu g/sup -1/ for Pb, 4.9-86.3 mu /sup -1/ for Ni, 1.4-14.3 mu g/sup -1/ for Cr and 0.3-39.6 mu g/sup -1/ for Cd respectively. Results indicate that the metal pollutants in street dusts could significantly contribute to deteriorate the environmental status of the city of Kathmandu metropolis. (author)

  10. Threat of heavy metal pollution in halophytic and mangrove plants of Tamil Nadu, India

    Energy Technology Data Exchange (ETDEWEB)

    Agoramoorthy, Govindasamy; Chen, F.-A. [Department of Pharmacy, Tajen University, Yanpu, Pingtung 907, Taiwan (China); Hsu, Minna J. [Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (China)], E-mail: hsumin@mail.nsysu.edu.tw

    2008-09-15

    Mangrove and halophytic plants occur along the coastal areas of Tamil Nadu, south India and these plants have been used in traditional medicine for centuries. Heavy metals are known to pose a potential threat to terrestrial and aquatic biota. However, little is known on the toxic levels of heavy metals found in mangrove and halophytic plants that are used in traditional medicine in India. To understand heavy metal toxicity, we investigated the bioconcentration factors (BCF) of heavy metals in leaves collected from eight mangroves and five halophytes in the protected Pichavaram mangrove forest reserve in Tamil Nadu State, south India. Data presented in this paper describe the impact of essential (Cu, Fe, Mg, Mn and Zn) and non-essential/environmentally toxic trace metals (Hg, Pb and Sn) in mangrove and halophytic medicinal plants. The concentrations of Pb among 13 plant species were higher than the normal range of contamination reported for plants. The average concentration of Hg in the halophytic plants (0.43 {+-} 0.37 {mu}g/g) was seven times higher than mangrove plants (0.06 {+-} 0.03 {mu}g/g) and it indicated pollutants from industrial sources affecting halophytes more than mangroves. - Metal effects occur in India's mangrove ecosystem.

  11. Threat of heavy metal pollution in halophytic and mangrove plants of Tamil Nadu, India

    International Nuclear Information System (INIS)

    Agoramoorthy, Govindasamy; Chen, F.-A.; Hsu, Minna J.

    2008-01-01

    Mangrove and halophytic plants occur along the coastal areas of Tamil Nadu, south India and these plants have been used in traditional medicine for centuries. Heavy metals are known to pose a potential threat to terrestrial and aquatic biota. However, little is known on the toxic levels of heavy metals found in mangrove and halophytic plants that are used in traditional medicine in India. To understand heavy metal toxicity, we investigated the bioconcentration factors (BCF) of heavy metals in leaves collected from eight mangroves and five halophytes in the protected Pichavaram mangrove forest reserve in Tamil Nadu State, south India. Data presented in this paper describe the impact of essential (Cu, Fe, Mg, Mn and Zn) and non-essential/environmentally toxic trace metals (Hg, Pb and Sn) in mangrove and halophytic medicinal plants. The concentrations of Pb among 13 plant species were higher than the normal range of contamination reported for plants. The average concentration of Hg in the halophytic plants (0.43 ± 0.37 μg/g) was seven times higher than mangrove plants (0.06 ± 0.03 μg/g) and it indicated pollutants from industrial sources affecting halophytes more than mangroves. - Metal effects occur in India's mangrove ecosystem

  12. A city scale study on the effects of intensive groundwater heat pump systems on heavy metal contents in groundwater.

    Science.gov (United States)

    García-Gil, Alejandro; Epting, Jannis; Garrido, Eduardo; Vázquez-Suñé, Enric; Lázaro, Jesús Mateo; Sánchez Navarro, José Ángel; Huggenberger, P; Calvo, Miguel Ángel Marazuela

    2016-12-01

    As a result of the increasing use of shallow geothermal resources, hydraulic, thermal and chemical impacts affecting groundwater quality can be observed with ever increasing frequency (Possemiers et al., 2014). To overcome the uncertainty associated with chemical impacts, a city scale study on the effects of intensive geothermal resource use by groundwater heat pump systems on groundwater quality, with special emphasis on heavy metal contents was performed. Statistical analysis of geochemical data obtained from several field campaigns has allowed studying the spatiotemporal relationship between temperature anomalies in the aquifer and trace element composition of groundwater. The relationship between temperature and the concentrations of trace elements resulted in weak correlations, indicating that temperature changes are not the driving factor in enhancing heavy metal contaminations. Regression models established for these correlations showed a very low reactivity or response of heavy metal contents to temperature changes. The change rates of heavy metal contents with respect to temperature changes obtained indicate a low risk of exceeding quality threshold values by means of the exploitation regimes used, neither producing nor enhancing contamination significantly. However, modification of pH, redox potential, electrical conductivity, dissolved oxygen and alkalinity correlated with the concentrations of heavy metals. In this case, the change rates of heavy metal contents are higher, with a greater risk of exceeding threshold values. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. City PLANTastic

    DEFF Research Database (Denmark)

    , any attempt to create a green city is motivated by certain ecological, political and esthetical perspectives. Therefore the role of plants in tomorrows cities is everything but straightforward. Rather, a broad range of possibilities unfolds. City PLANTastic is the title of the 8th World in Denmark...

  14. Public health impact assessment of a proposed cogeneration plant in the Quebec city metropolitan area

    Energy Technology Data Exchange (ETDEWEB)

    Lajoie, P; Bolduc, D; Gauvin, D; Guerrier, P; Gauthier, R [Quebec Public Health Center, Ste-Foy (Canada); Laflamme, P [Laval Univ. (Canada). Dept. of Preventive Medicine

    1996-12-31

    In 1994, public hearings were held in Quebec city concerning a 120 megawatt (MW) gas cogeneration project that was to be coupled with an already existing pulp and paper mill in the downtown area. Cogeneration plants are often described as highly beneficial from the point of view of local environment. It is well known that the burning of natural gas emits far less sulfur dioxide (SO{sub 2}) and particulate matters (PM) than the combustion of oil or coal. The proposed plant would use high pressure vapour from a nearby incinerator plant and natural gas to produce low pressure vapor for the paper mill industry as well as electricity. The cogeneration plant would allow the paper mill to stop burning heavy oil. By using natural gas instead of heavy oil, the new cogeneration-paper mill complex (CPC) is expected to reinforce the recent trend and willingness towards improving downtown air quality. On the other hand, the CPC would emit more CO{sub 2}, due to the production of additional electricity. According to the Rio de Janeiro Agreement ratified in 1988, Canada is committed to stabilize its greenhouse gas emissions by the year 2000. Nevertheless, the cogeneration file is a new option considered by the Quebec Provincial Governement in its last energy triennal plan. However, it must be specified that the Province of Quebec contributes to less than 15 % of the total Canadian CO{sub 2} production although it represents more than 25 % of its population. Furthermore the maximum production of electricity by this file has been set to 250 MW. It is a very small fraction of the total production of electricity in Quebec, which is 200 TW

  15. Public health impact assessment of a proposed cogeneration plant in the Quebec city metropolitan area

    Energy Technology Data Exchange (ETDEWEB)

    Lajoie, P.; Bolduc, D.; Gauvin, D.; Guerrier, P.; Gauthier, R. [Quebec Public Health Center, Ste-Foy (Canada); Laflamme, P. [Laval Univ. (Canada). Dept. of Preventive Medicine

    1995-12-31

    In 1994, public hearings were held in Quebec city concerning a 120 megawatt (MW) gas cogeneration project that was to be coupled with an already existing pulp and paper mill in the downtown area. Cogeneration plants are often described as highly beneficial from the point of view of local environment. It is well known that the burning of natural gas emits far less sulfur dioxide (SO{sub 2}) and particulate matters (PM) than the combustion of oil or coal. The proposed plant would use high pressure vapour from a nearby incinerator plant and natural gas to produce low pressure vapor for the paper mill industry as well as electricity. The cogeneration plant would allow the paper mill to stop burning heavy oil. By using natural gas instead of heavy oil, the new cogeneration-paper mill complex (CPC) is expected to reinforce the recent trend and willingness towards improving downtown air quality. On the other hand, the CPC would emit more CO{sub 2}, due to the production of additional electricity. According to the Rio de Janeiro Agreement ratified in 1988, Canada is committed to stabilize its greenhouse gas emissions by the year 2000. Nevertheless, the cogeneration file is a new option considered by the Quebec Provincial Governement in its last energy triennal plan. However, it must be specified that the Province of Quebec contributes to less than 15 % of the total Canadian CO{sub 2} production although it represents more than 25 % of its population. Furthermore the maximum production of electricity by this file has been set to 250 MW. It is a very small fraction of the total production of electricity in Quebec, which is 200 TW

  16. Study of Plant Cell Wall Polymers Affected by Metal Accumulation Using Stimulated Raman Scattering Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Shi-You [Harvard Univ., Cambridge, MA (United States)

    2015-03-02

    This project aims to employ newly-developed chemical imaging techniques to measure, in real-time, the concentration, dynamics and spatial distribution of plant cell wall polymers during biomass growth with inoculation of transgenic symbiotic fungi, and to explore a new pathway of delivering detoxified metal to plant apoplast using transgenic symbiotic fungi, which will enhance metal accumulation from soil, and potentially these metals may in turn be used as catalysts to improve the efficiency of biomass conversion to biofuels. The proposed new pathway of biomass production will: 1) benefit metal and radionuclide contaminant mobility in subsurface environments, and 2) potentially improve biomass production and process for bioenergy

  17. Study of heavy trace metals in some medicinal-herbal plants of Pakistan

    International Nuclear Information System (INIS)

    Khattak, M.I.

    2011-01-01

    The paper presents heavy trace metals analysis in some widely used medicinal- herbal plants of Pakistan by using Inductively Coupled Plasma. Because these commonly used medicinal- herbal plants from Pakistan are being specifically utilized for the treatment of various diseases, so samples of medicinal-herbal plants were collected from open market and from the fields. Collected samples were digested and analyzed for their nutritional trace metals (Pb, Cd, Fe, Zn, Ni, Cu and Mn) composition and then the results obtained were compared to international and national standards as required by World Health Organizations. The deficiency or excess of the samples for essential trace metals are reported. (author)

  18. on the use of selected aquatic plants in tracing of some heavy metal pollutants

    International Nuclear Information System (INIS)

    Hammad, D.M.; Tawfik, T.A.

    2004-01-01

    three aquatic macrophyte plants namely; Cyperus Rotundus (emergent plant), Phragmits Australis (emergent plant) and Echhornia crassipes (floating plant) were selected to measure their ability for uptake of heavy metal pollutants from their ambient environments and to decide the possibility of using such plants in practical applications of water and sediment purity monitoring and decontamination . these plants with the corresponding water and sediment samples were collected from El-rayah El-menoufy (comparable site), near El- kanater El- khayria which receives its water directly from the River Nile (Dommietta branch) and from two drains namely. El remal drain (sewage drain), which receives its water from Abu-rawash waste water treatment plant and El-tibeen drain (mixed agricultural and industrial drain), located at the right bank of the River Nile and surrounded by huge industrial factories and receives its water from El-khashab canal. the water, sediment and plant samples collected from the selected areas were analyzed for anions, cations and heavy metal contents. studying and comparing the accumulative capacity of the emergent and floating plants to measure their ability in phytoremediatic applications and heavy metal pollution studies were performed . the correlations between the heavy metal concentrations in plants and in their ambient environments were calculated and the potential of the examined plants for pollution monitoring was estimated . in addition, the natural radioactivity of the environmental sediments was evaluated for K-40, Th -232 and Ra-226. the results obtained were compared with the international reference values

  19. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants.

    Science.gov (United States)

    Shahid, Muhammad; Pourrut, Bertrand; Dumat, Camille; Nadeem, Muhammad; Aslam, Muhammad; Pinelli, Eric

    2014-01-01

    As a result of the industrial revolution, anthropogenic activities have enhanced there distribution of many toxic heavy metals from the earth's crust to different environmental compartments. Environmental pollution by toxic heavy metals is increasing worldwide, and poses a rising threat to both the environment and to human health.Plants are exposed to heavy metals from various sources: mining and refining of ores, fertilizer and pesticide applications, battery chemicals, disposal of solid wastes(including sewage sludge), irrigation with wastewater, vehicular exhaust emissions and adjacent industrial activity.Heavy metals induce various morphological, physiological, and biochemical dysfunctions in plants, either directly or indirectly, and cause various damaging effects. The most frequently documented and earliest consequence of heavy metal toxicity in plants cells is the overproduction of ROS. Unlike redox-active metals such as iron and copper, heavy metals (e.g, Pb, Cd, Ni, AI, Mn and Zn) cannot generate ROS directly by participating in biological redox reactions such as Haber Weiss/Fenton reactions. However, these metals induce ROS generation via different indirect mechanisms, such as stimulating the activity of NADPH oxidases, displacing essential cations from specific binding sites of enzymes and inhibiting enzymatic activities from their affinity for -SH groups on the enzyme.Under normal conditions, ROS play several essential roles in regulating the expression of different genes. Reactive oxygen species control numerous processes like the cell cycle, plant growth, abiotic stress responses, systemic signalling, programmed cell death, pathogen defence and development. Enhanced generation of these species from heavy metal toxicity deteriorates the intrinsic antioxidant defense system of cells, and causes oxidative stress. Cells with oxidative stress display various chemical,biological and physiological toxic symptoms as a result of the interaction between ROS and

  20. Pollution and health risk of potentially toxic metals in urban road dust in Nanjing, a mega-city of China

    International Nuclear Information System (INIS)

    Liu, Enfeng; Yan, Ting; Birch, Gavin; Zhu, Yuxin

    2014-01-01

    Spatial variations in concentrations of a suite of potentially toxic metals (Ba, Cr, Cu, Fe, Mn, Ni, Pb and Zn) and Ca in road dusts (n = 99) from urban trunk roads (TR) in Nanjing, a mega-city in China, were established. Metal pollution levels, sources and human health risk (non-carcinogenic) were studied. In contrast to previous studies, we labeled the indicative metals relating to non-exhaust traffic emissions by comparing metal pollution between crossroad and park road dusts, and then anthropogenic sources of metals in TR dusts were assessed combining their spatial pollution patterns, principal component analysis and Pb isotopic compositions. Results showed that the metals were enriched in TR dusts compared to background soil concentrations with mean enrichment factors (EFs) of 2.2–23, indicating considerable anthropogenic influence. The degrees of metal pollution ranged from minimal to extremely high and ranked by Ca > Cu > Pb ≈ Zn > Cr ≈ Fe > Ni ≈ Ba > Mn on average. Pollution of Cr, Cu, Fe, Mn, Ni, Pb and Zn in TR dusts resulted primarily from industrial emissions (e.g., coal combustion and smelting) and high pollution levels were found close to suburb industrial complexes, whereas pollution of Ba and Ca was mainly related to construction/demolition sources and was generally distributed homogeneously. The relatively minor contribution of non-exhaust traffic emissions to metal pollution in TR dusts was considered to be due to overwhelming industrial and construction/demolition contributions, as well as to the dilution effect of natural soil particles. Ingestion appears to be the major route of exposure for road dust for both adults and children, followed by dermal contact. The non-carcinogenic health risk resulting from exposure to the potentially toxic metals in TR dusts was within the safe level based on the Hazard Index (HI), except in pollution hotspots where exposure to Pb, Cr, and Cu may be hazardous to children. - Highlights: • Pollution and

  1. Pollution and health risk of potentially toxic metals in urban road dust in Nanjing, a mega-city of China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Enfeng, E-mail: efliu@niglas.ac.cn [State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008 (China); Yan, Ting [State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Birch, Gavin [School of Geosciences, University of Sydney, Sydney, NSW 2006 (Australia); Zhu, Yuxin [State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008 (China)

    2014-04-01

    Spatial variations in concentrations of a suite of potentially toxic metals (Ba, Cr, Cu, Fe, Mn, Ni, Pb and Zn) and Ca in road dusts (n = 99) from urban trunk roads (TR) in Nanjing, a mega-city in China, were established. Metal pollution levels, sources and human health risk (non-carcinogenic) were studied. In contrast to previous studies, we labeled the indicative metals relating to non-exhaust traffic emissions by comparing metal pollution between crossroad and park road dusts, and then anthropogenic sources of metals in TR dusts were assessed combining their spatial pollution patterns, principal component analysis and Pb isotopic compositions. Results showed that the metals were enriched in TR dusts compared to background soil concentrations with mean enrichment factors (EFs) of 2.2–23, indicating considerable anthropogenic influence. The degrees of metal pollution ranged from minimal to extremely high and ranked by Ca > Cu > Pb ≈ Zn > Cr ≈ Fe > Ni ≈ Ba > Mn on average. Pollution of Cr, Cu, Fe, Mn, Ni, Pb and Zn in TR dusts resulted primarily from industrial emissions (e.g., coal combustion and smelting) and high pollution levels were found close to suburb industrial complexes, whereas pollution of Ba and Ca was mainly related to construction/demolition sources and was generally distributed homogeneously. The relatively minor contribution of non-exhaust traffic emissions to metal pollution in TR dusts was considered to be due to overwhelming industrial and construction/demolition contributions, as well as to the dilution effect of natural soil particles. Ingestion appears to be the major route of exposure for road dust for both adults and children, followed by dermal contact. The non-carcinogenic health risk resulting from exposure to the potentially toxic metals in TR dusts was within the safe level based on the Hazard Index (HI), except in pollution hotspots where exposure to Pb, Cr, and Cu may be hazardous to children. - Highlights: • Pollution and

  2. Rhizofiltration of a Heavy metal (lead) containing wastewater using the wetland plant carex pendula

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Brijesh K. [Environmental Hydrogeology Group, Department of Earth Sciences, Faculty of Geosciences, University of Utrecht, Utrecht (Netherlands); Indian Institute of Technology Delhi, Department of Civil Engineering, New Delhi (India); Siebel, Maarten A.; Bruggen, Johan J.A. van [Department of Environmental Resources, UNESCO-IHE Institute for Water Education, Delft (Netherlands)

    2011-05-15

    Rhizofiltration is a subset technique of phytoremediation which refers to the approach of using plant biomass for removing contaminants, primarily toxic metals, from polluted water. The effective implementation of this in situ remediation technology requires experimental as well as conceptual insight of plant-water interactions that control the extraction of targeted metal from polluted water resources. Therefore, pot and simulation experiments are used in this study to investigate the rhizofiltration of a lead containing wastewater using plants of Carex pendula, a common wetland plant found in Europe. The metal contaminant extraction along with plant growth and water uptake rates from a wastewater having varying Pb concentration is studied experimentally for 2 wk. The temporal distribution of the metal concentration in the wastewater and the accumulated metal in different compartments of C. pendula at the end are analyzed using atomic absorption spectrometry. Parameters of the metal uptake kinetics are deduced experimentally for predicting the metal removal by root biomass. Further, mass balance equations coupled with the characterized metal uptake kinetics are used for simulating the metal partitioning from the wastewater to its accumulation in the plant biomass. The simulated metal content in wastewater and plant biomass is compared with the observed data showing a good agreement with the later. Results show that C. pendula accumulates considerable amounts of lead, particularly in root biomass, and can be considered for the cleanup of lead contaminated wastewaters in combination with proper biomass disposal alternatives. Also, the findings can be used for performing further non-hydroponics experiment to mimic the real wetland conditions more closely. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. The correlation of metal content in medicinal plants and their water extracts

    Directory of Open Access Journals (Sweden)

    Ranđelović Saša S.

    2013-01-01

    Full Text Available The quality of some medicinal plants and their water extracts from South East Serbia is determined on the basis of metal content using atomic absorption spectrometry. The two methods were used for the preparation of water extracts, to examine the impact of the preparation on the content of metals in them. Content of investigated metals in both water extracts is markedly lower then in medicinal plants, but were higher in water extract prepared by method (I, with exception of lead content. The coefficients of extraction for the observed metal can be represented in the following order: Zn > Mn > Pb > Cu > Fe. Correlation coefficients between the metal concentration in the extract and total metal content in plant material vary in the range from 0.6369 to 0.9956. This indicates need the plants to be collected and grown in the unpolluted area and to examine the metal content. The content of heavy metals in the investigated medicinal plants and their water extracts is below the maximum allowable values, so they are safe to use.

  4. Translocation of metals in pea plants grown on various amendment of electroplating industrial sludge.

    Science.gov (United States)

    Bose, Sutapa; Chandrayan, Sudarshana; Rai, Vivek; Bhattacharyya, A K; Ramanathan, A L

    2008-07-01

    A pot-culture experiment was conducted to observe the effects of acidic sludge addition to the soils on bioavailability and uptake of heavy metals in different parts of pea plant as well as its influence on the growth of that plant. It is observed from our result the abundances of total and bio-available heavy metals in sludge vary as follows: Fe>Mn>Cr>Ni>Cu>Pb>Zn>Cd and Fe>Ni>Mn>Cr>Cu>Zn>Pb>Cd. Sludge applications increased both the total metals, DTPA-extractable metals and total N in the soils. On the other hand lime application has decreased the bioavailability of heavy metals with no change in total N in sludge amended soils. Organic carbon showed positive correlation with all metals except Zn, Cr and Pb. CEC also showed a strong positive correlation (R(2)>0.7) with the low translocation efficiency of pea plants. The value of translocation factor from shoot to seed was found to be smaller than root to shoot of pea plants. Our study thus shows that pea plants were found to be well adapted to the soil amended with 10% sludge with 0.5% lime treatment, minimizing most of the all metal uptake in the shoot of that plant. So, on the basis of the present study, possible treatment may be recommended for the secure disposal of acidic electroplating sludge.

  5. Using Synchrotron X-ray Fluorescence Microprobes in the Study of Metal Homeostasis in Plants

    International Nuclear Information System (INIS)

    Punshon, T.; Guerinot, M.; Lanzirotti, A.

    2009-01-01

    Background and Aims: This Botanical Briefing reviews the application of synchrotron X-ray fluorescence (SXRF) microprobes to the plant sciences; how the technique has expanded our knowledge of metal(loid) homeostasis, and how it can be used in the future. Scope: The use of SXRF microspectroscopy and microtomography in research on metal homeostasis in plants is reviewed. The potential use of SXRF as part of the ionomics toolbox, where it is able to provide fundamental information on the way that plants control metal homeostasis, is recommended. Conclusions: SXRF is one of the few techniques capable of providing spatially resolved in-vivo metal abundance data on a sub-micrometre scale, without the need for chemical fixation, coating, drying or even sectioning of samples. This gives researchers the ability to uncover mechanisms of plant metal homeostasis that can potentially be obscured by the artefacts of sample preparation. Further, new generation synchrotrons with smaller beam sizes and more sensitive detection systems will allow for the imaging of metal distribution within single living plant cells. Even greater advances in our understanding of metal homeostasis in plants can be gained by overcoming some of the practical boundaries that exist in the use of SXRF analysis.

  6. Naturally occurring arsenic in the groundwater at the Kansas City Plant

    Energy Technology Data Exchange (ETDEWEB)

    Korte, N.E.

    1990-12-01

    This report describes an investigation concerning the presence of arsenic in concentrations exceeding 0.4 mg/L in the groundwater under the Department of Energy's Kansas City Plant (KCP). The study consisted of four distinct phases: a thorough review of the technical literature, a historical survey of arsenic use at the facility, a laboratory study of existing techniques for determining arsenic speciation, and a field program including water, soil, and sediment sampling. The historical survey and literature review demonstrated that plant activities had not released significant quantities of arsenic to the environment but that similar occurrences of arsenic in alluvial groundwater are widespread in the midwestern United States. Laboratory studies showed that a chromatographic separation technique was necessary to accurately determine arsenic speciation for the KCP groundwater samples. Field studies revealed that naturally occurring reducing conditions prevalent in the subsurface are responsible for dissolving arsenic previously sorbed by iron oxides. Indeed, the data demonstrated that the bulk arsenic concentration of site subsoils and sediments is {approximately}7 mg/kg, whereas the arsenic content of iron oxide subsamples is as high as 84 mg/kg. Literature showed that similar concentrations of arsenic in sediments occur naturally and are capable of producing the levels of arsenic found in groundwater monitoring wells at the KCP. The study concludes, therefore, that the arsenic present in the KCP groundwater is the result of natural phenomena. 44 refs., 8 figs., 14 tabs.

  7. Quantification of Heavy Metals in Mining Affected Soil and Their Bioaccumulation in Native Plant Species.

    Science.gov (United States)

    Nawab, Javed; Khan, Sardar; Shah, Mohammad Tahir; Khan, Kifayatullah; Huang, Qing; Ali, Roshan

    2015-01-01

    Several anthropogenic and natural sources are considered as the primary sources of toxic metals in the environment. The current study investigates the level of heavy metals contamination in the flora associated with serpentine soil along the Mafic and Ultramafic rocks northern-Pakistan. Soil and wild native plant species were collected from chromites mining affected areas and analyzed for heavy metals (Cr, Ni, Fe, Mn, Co, Cu and Zn) using atomic absorption spectrometer (AAS-PEA-700). The heavy metal concentrations were significantly (p soil as compared to reference soil, however Cr and Ni exceeded maximum allowable limit (250 and 60 mg kg(-1), respectively) set by SEPA for soil. Inter-metal correlations between soil, roots and shoots showed that the sources of contamination of heavy metals were mainly associated with chromites mining. All the plant species accumulated significantly higher concentrations of heavy metals as compared to reference plant. The open dumping of mine wastes can create serious problems (food crops and drinking water contamination with heavy metals) for local community of the study area. The native wild plant species (Nepeta cataria, Impatiens bicolor royle, Tegetis minuta) growing on mining affected sites may be used for soil reclamation contaminated with heavy metals.

  8. Jacks of metal(loid chelation trade in plants – an overview

    Directory of Open Access Journals (Sweden)

    Naser A. Anjum

    2015-04-01

    Full Text Available Varied environmental compartments including soils are being contaminated by a myriad toxic metal(loids (hereafter termed as ‘metal/s’ mainly through anthropogenic activities. These metals may contaminate food chain and bring irreparable consequences in human. Plant-based approach (phytoremediation stands second to none among bioremediation technologies meant for sustainable cleanup of soils/sites with metal-contamination. In turn, the capacity of plants to tolerate potential consequences caused by the extracted/accumulated metals decides the effectiveness and success of phytoremediation system. Chelation is among the potential mechanisms that largely govern metal-tolerance in plant cells by maintaining low concentrations of free metals in cytoplasm. Metal-chelation can be performed by compounds of glutathione (GSH (reduced GSH; phytochelatins, PCs; metallothioneins, MTs and non-GSH (histidine, nicotianamine, organic acids origin. This paper presents an appraisal of recent reports on both GSH and non-GSH associated compounds in an effort to shed light on the significance of these compounds in metal-plant tolerance, as well as to provide scientific clues for the development of phytoextraction strategies.

  9. 77 FR 19718 - Ford Motor Company Twin Cities Assembly Plant Vehicle Operations Division Including On-Site...

    Science.gov (United States)

    2012-04-02

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-81,038] Ford Motor Company Twin... February 9, 2012, applicable to workers of Ford Motor Company, Twin Cities Assembly Plant, Vehicle..., and Pacer International were employed on-site at the St. Paul, Minnesota location of Ford Motor...

  10. Decontamination of soils polluted with heavy metals using plants as determined by nuclear technique

    International Nuclear Information System (INIS)

    Lotfy, S.M

    2010-01-01

    The objectives of this work were three folds. First, to study the mobility and fate of heavy metals in two polluted sites (Mostorud soil, irrigated with contaminated water for more than 30 years and El-Gabal EL-Asfar soil, subjected to sewage effluent irrigation for more than 50 years) utilizing a modified tessier's sequential extraction procedure to evaluate the effect of total metal concentrations on metal partitioning into different fractions. Second, to evaluate the efficiency of some plant species (sunflower, cotton, penakium, Napier grass, and Squash) to extract heavy metals out of polluted soils. Third, to enhance the phyto-extraction of heavy metals by sunflower plant using some chemical chelators (citric acids, EDTA, and Ammonium nitrate) in order to improve the remediation of pollutants as well as to protect soil quality.It was observed that the distribution of heavy metals in various chemical fractions depends on the total heavy metals content. The distribution of heavy metals forms in the studied soils was in the following decreasing order: residual > Fe-Mn oxides > carbonates > organic > exchangeable > water soluble.Either higher metal accumulation in shoots or enhanced metal accumulation in roots was mainly due to improved phyto-extraction or rhizo-filtration efficiency, respectively. Heavy metals accumulation in shoots and roots of the investigated plant species was as follow: sunflower > cotton > penakium > Napier grass > Squash with a lower order of magnitude. Sunflower showed superiority for heavy metals extraction.Application of chemical chelators (soil amendments) enhanced the phyto-extraction efficiency of heavy metals by sunflower in both Mostorud and El-Gabal El-Asfar soils. Citric acid enhanced metals accumulation in shoots and roots more than EDTA and ammonium nitrate. Citric acid with rate of 20 m mole/kg soil was the best chelators to enhance phyto- extraction of heavy metals by sunflower.

  11. Use of non-hyperaccumulator plant species for the phytoextraction of heavy metals using chelating agents

    Directory of Open Access Journals (Sweden)

    Lucas Anjos Souza

    2013-08-01

    Full Text Available Soil contamination by heavy metals is a challenge faced by many countries, and engineering technologies to solve this problem are expensive and can cause negative impacts on the environment. One way to minimise the levels of heavy metals in the soil is to use plants that can absorb and accumulate heavy metals into harvestable parts, a process called phytoextraction. Typical plant species used in research involving phytoextraction are heavy metal hyperaccumulators, but plants from this group are not good biomass producers and grow more slowly than most species; thus, they have an important role in helping scientists understand the mechanisms involved in accumulating high amounts of heavy metals without developing symptoms or dying. However, because of their slow growth, it is not practical to use these species for phytoextraction. An alternative approach is to use non-hyperaccumulator plants assisted by chelating agents, which may improve the ability of plants to accumulate more heavy metals than they would naturally. Chelating agents can be synthetic or organic acids, and the advantages and disadvantages of their use in improving the phytoextraction potential of non-hyperaccumulator plants are discussed in this article. We hope to draw attention to ways to improve the phytoextraction potential of non-hyperaccumulator plants that produce a large amount of biomass and to stimulate more research on phytoextraction-inducing substances.

  12. Correlation between heavy metal contents and antioxidants in medicinal plants grown in mining areas

    International Nuclear Information System (INIS)

    Maharia, R.; Dutta, R.K.; Acharya, R.; Reddy, A.V.R.

    2010-01-01

    Full texts: Medicinal plants are widely used as alternate therapeutic agents for various diseases. Three medicinal plants grown in copper mining regions of Khetri in Rajasthan was analyzed for heavy metal contents by instrumental neutron activation analysis. The copper levels were found to be two to three folds higher in these plant leaves as compared to the reported copper levels in the medicinal plants grown in environmentally friendly regions. In our previous study on heavy metals in soil and medicinal plant of Khetri region we have shown bioaccumulation of Cu in the medicinal plants. In addition, the levels of Cr, Fe and Zn were also higher. Antioxidant properties of medicinal plants are one of their major therapeutic functionalities. The role of elevated levels of heavy metals in the medicinal plants was studied with respect to their antioxidant properties. Standard procedures were used for measuring total phenols, flavanoids and DPPH assay of these medicinal plants which were correlated with the heavy metals contents of these plants

  13. The use of heavy metal accumulating plants for detoxication of chemically polluted soils

    Directory of Open Access Journals (Sweden)

    Jacek Antonkiewicz

    2004-01-01

    Full Text Available The studies conducted from 1997 to 1999 in a vegetation hall were performed as a pot experiment on ordinary silt soil. Jerusalem artichoke, maize, Sida hermaphrodita Rusby, amaranth and hemp were used as indicator plants. The results confirmed, great diversification of the element contents which depends not only on the species but also on the part of individual plants. Analysis of the data revealed also another dependence: increased concentration of heavy metals in the soil corresponded to a higher content of heavy metals in the plants. Significant differences in this respect were observed for the plant species grown in unpolluted or differently contaminated soil.

  14. Determination of particle size and content of metals in the atmosphere of ZMCM (Metropolitan Zone of Mexico City)

    International Nuclear Information System (INIS)

    Aldape U, F.; Flores M, J.; Diaz, R.V.; Garcia G, R.

    1994-01-01

    Inside the breathable fraction of the atmosphere of Mexico City, the presence of metals in suspended particles, is determined and quantified. The detection was carry out simultaneously in three places of the city, using collectors of the type stacking filter unit (SFU) which allow the separation of particles according to its size. The SFU detectors allow the separation in two size: 'Gross' mass from 2.5 to 1.5 μm and 'fine' mass for particles smallest than 2.5 μm. The analysis of the samples was fulfilled by means of PIXE method. Samples were irradiated with a proton beam, and based in the X-ray spectra the elements were identified and quantified, which allow to establish the temporal behavior of the concentrations per element for gross mass and fine mass in each one of the places of sampling. (Author)

  15. Spatial distribution and source identification of heavy metals in surface soils in a typical coal mine city, Lianyuan, China.

    Science.gov (United States)

    Liang, Jie; Feng, Chunting; Zeng, Guangming; Gao, Xiang; Zhong, Minzhou; Li, Xiaodong; Li, Xin; He, Xinyue; Fang, Yilong

    2017-06-01

    In this study, we investigated the pollution degree and spatial distribution of heavy metals and determined their sources in topsoil in a typical coal mine city, Lianyuan, Hunan Province, China. We collected 6078 soil surface samples in different land use types. And the concentrations of Zn, Cd, Cu, Hg, Pb, Sb, As, Mo, V, Mn, Fe and Cr were measured. The average contents of all heavy metals were lower than their corresponding Grade II values of Chinese Soil Quality Standard with the exception of Hg. However, average contents of twelve heavy metals, except for Mn, exceeded their background level in soils in Hunan Province. Based on one-way analysis of variance (ANOVA), the contents of Cu, Zn, Cd, Pb, Hg, Mo and V were related to the anthropogenic source and there were statistically significant differences in their concentrations among different land use patterns. The spatial variation of heavy metal was visualized by GIS. The PMF model was used to ascertain contamination sources of twelve heavy metals and apportion their source contributions in Lianyuan soils. The results showed that the source contributions of the natural source, atmospheric deposition, industrial activities and agricultural activities accounted for 33.6%, 26.05%, 23.44% and 16.91%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Rhizofiltration of a Heavy Metal (Lead) Containing Wastewater Using the Wetland Plant Carex pendula

    NARCIS (Netherlands)

    Yadav, B.K.; Siebel, M.A.; Van Bruggen, J.J.A.

    2011-01-01

    Rhizofiltration is a subset technique of phytoremediation which refers to the approach of using plant biomass for removing contaminants, primarily toxic metals, from polluted water. The effective implementation of this in situ remediation technology requires experimental as well as conceptual

  17. Spatial Patterns and Risk Assessment of Heavy Metals in Soils in a Resource-Exhausted City, Northeast China.

    Directory of Open Access Journals (Sweden)

    Hongwei Chen

    Full Text Available Northeast China is an intensive area of resource-exhausted city, which is facing the challenges of industry conversion and sustainable development. In order to evaluate the soil environmental quality influenced by mining activities over decades, the concentration and spatial distribution of arsenic (As, cadmium (Cd, chromium (Cr, copper (Cu, nickel (Ni, lead (Pb, and Zinc (Zn in surface soils (0-20cm of a typical resource-exhausted city were investigated by analyzing 306 soil samples. The results showed that the average concentrations in the samples were 6.17 mg/kg for As, 0.19 mg/kg for Cd, 51.08 mg/kg for Cr, 23.27 mg/kg for Cu, 31.15 mg/kg for Ni, 22.17 mg/kg for Pb, and 54.21 mg/kg for Zn. Metals distribution maps produced by using the inverse distance weighted interpolation method and results revealed that all investigated metals showed distinct geographical patterns, and the concentrations were higher in urban and industrial areas than in farmland. Pearson correlation and principal component analysis showed that there were significant positive correlations (p<0.05 between all of the metals, and As, Cd, Cr, Mn, Ni, Pb, and Zn were closely associated with the first principal component (PC1, which explained 39.81% of the total variance. Cu and As were mainly associated with the second component (PC2. Based on the calculated Nemerow pollution index, percentage for slightly polluted (1

    city transformation.

  18. Mechanisms of stress avoidance and tolerance by plants used in phytoremediation of heavy metals

    OpenAIRE

    Jutsz Anna Małachowska; Gnida Anna

    2015-01-01

    Heavy metal pollution of soil is a significant environmental problem and has a negative impact on human health and agriculture. Phytoremediation can be an alternative environmental treatment technology, using the natural ability of plants to take up and accumulate pollutants or transform them. Proper development of plants in contaminated areas (e.g. heavy metals) requires them to generate the appropriate protective mechanisms against the toxic effects of these pollutants. This paper presents ...

  19. Mechanisms of Heavy Metal Sequestration in Soils: Plant-Microbe Interactions and Organic Matter Aging

    Energy Technology Data Exchange (ETDEWEB)

    Teresa W.-M. Fan; Richard M. Higashi; David Crowley; Andrew N. Lane: Teresa A. Cassel; Peter G. Green

    2004-12-31

    For stabilization of heavy metals at contaminated sites, the three way interaction among soil organic matter (OM)-microbes-plants, and their effect on heavy metal binding is critically important for long-term sustainability, a factor that is poorly understood at the molecular level. Using a soil aging system, the humification of plant matter such as wheat straw was probed along with the effect on microbial community on soil from the former McClellan Air Force Base.

  20. Radioactive caesium contamination due to Fukushima Daiichi Nuclear Power Plants accident in Osaka city. Evaluation of accumulation and decontamination of radioactive materials via reverse logistics function of a city

    International Nuclear Information System (INIS)

    Nishio, Takayuki; Kitano, Masaaki; Sakai, Mamoru; Takakura, Akito; Katahira, Kenshi; Nishitani, Takashi

    2015-01-01

    We surveyed background level of radioactive contamination in city area of Osaka before combusting the wide area disposal of disastrous debris at a municipal waste incineration plant of Osaka city. The debris was caused by Tohoku district great earthquake disaster and suspected to be contaminated with radionuclides released from the Fukushima Daiichi Nuclear Power Plants. We also investigated radioactivity in incineration ash of municipal waste incineration plants and of sewage treatment plants, as well as in water clarifier sludge of potable water treatment plants, and evaluated the accumulation and cleansing of radioactive materials via the reverse logistic function of the city. Radioactive caesium deposited in Osaka city area was estimated to be approximately 4.3 GBq from the concentrations observed in the monthly fallout, whereas that collected as municipal wastes and sewage was estimated to be approximately 0.9 GBq a year in 2011. Even two years after the accident, "1"3"4Cs, which is the evidence of the Fukushima Daiichi Nuclear Power Plant accident, had been detected in the municipal wastes at a level comparable to the activities found just after the accident, however, the radioactive caesium concentration in fallout measured in the Osaka city area had decreased below a detection limit after May 2012. Introduction of materials contaminated with radioactive caesium from outside the city area was suspected because the observed contamination level was inexplicable by that of observed in the environmental wastes such as pruned branches which are contaminated by with the fallout in city area of Osaka. (author)

  1. Metal stress consequences on frost hardiness of plants at northern high latitudes: a review and hypothesis.

    Science.gov (United States)

    Taulavuori, Kari; Prasad, M N V; Taulavuori, Erja; Laine, Kari

    2005-05-01

    This paper reviews the potential of trace/heavy metal-induced stress to reduce plant frost hardiness at northern high latitudes. The scientific questions are first outlined prior to a brief summary of heavy metal tolerance. The concepts of plant capacity and survival adaptation were used to formulate a hypothesis, according to which heavy metal stress may reduce plant frost hardiness for the following reasons: (1) Heavy metals change membrane properties through impaired resource acquisition and subsequent diminution of the cryoprotectant pool. (2) Heavy metals change membrane properties directly through oxidative stress, i.e. an increase of active oxygen species. (3) The involved co-stress may further increase oxidative stress. (4) The risk of frost injury increases due to membrane alterations. An opposite perspective was also discussed: could metal stress result in enhanced plant frost hardiness? This phenomenon could be based on the metabolism (i.e. glutathione, polyamines, proline, heat shock proteins) underlying a possible general adaptation syndrome of stress (GAS). As a result of the review it was suggested that metal-induced stress seems to reduce rather than increase plant frost hardiness.

  2. Concentration of heavy metals from traffic emissions on plant ...

    African Journals Online (AJOL)

    In recent years, emission and combustion of fossils and fuels have been identified as primary sources of atmospheric metallic burden. Detailed information about this is not readily available in Nigeria. This study was therefore carried out to determine the concentration of heavy metals (e.g. lead, mercury and cadmium} ...

  3. Investigation of heavy metals content in medicinal plant, eclipta alba L

    International Nuclear Information System (INIS)

    Hussain, I.; Khan, H.

    2010-01-01

    Heavy metal such as Cr, Fe, Zn, Mn, Ni, Pb, Cu and Cd were investigated in a= medicinally important plant, Eclipta alba L. as well as in the soil it was grown using atomic absorption spectrophotometer. The plant samples were collected from their natural habitat at three different locations of Peshawar Pakistan. The whole plant materials (roots, stems and leaves) were found to contain all heavy metals except Cd, which corresponds to their concentration in the soil it was grown. Among all the heavy metals, Fe was found to be at the highest level (8.95 to 27.7 mg/kg) followed by Mn (0.44 to 14.0 mg/kg) and Zn (1.04 to 4.50 mg/kg), while the rest of metals were at low concentration. The present study showed that E. alba L. is suitable for the control of environmental pollutants such as heavy metals, however, for medicinal purposes; it should be collected from those areas which are not contaminated with heavy metals. The purpose of the current study was to standardize various indigenous medicinal plants for heavy metals contamination and to make awareness among the public regarding its safer use and collection areas, containing high level of heavy metals and their adverse health affects. (author)

  4. Accumulation of Heavy Metals in Soil and Kiwifruit of Planting Base in Western Hunan Province, China

    Directory of Open Access Journals (Sweden)

    WANG Ren-cai

    2017-05-01

    Full Text Available The heavy metals accumulation in soil and kiwi fruit plant in Western Hunan Province main kiwifruit planting base were analyzed, such as As, Pb, Hg, Cd, Cr. The results showed that the accumulation of heavy metals in soil of 6 kiwifruit planting areas were not obvious. The contents of heavy metals in most of areas of Western Hunan Province were below the national standard, except one area where the soil contents of cadmium (4.900 mg·kg-1, mercury (0.634 mg·kg-1were exceeded. At the same time, the comprehensive pollution index of heavy metals was less than 0.7 in these areas. There were 5 bases with no pollution of heavy metal, all which the kiwifruit could be safely produced in line with the requirements of the green kiwifruit planting base soil standards. At these areas, the contents of various heavy metals(except cadmium and mercurywere small in the branches and leaves of kiwifruit; kiwifruit had a very well capacity to absorb the cadmium when the cadmium content of its branches reached 12.73%. The heavy metal contents of the kiwifruit in the 6 regions, which belonging to the pollutionfree green fruits, were below or far lower than the national standard. According to the comprehensive analysis, the soil condition of the main cultivated land in Western Hunan Province was good, and the fruit had no heavy metal residues.

  5. Estimation of metal uptake in plant parts of roadside grown maize at selected growth stages

    OpenAIRE

    Anongo, M'ember C.; Uyovbisere, Edward O.; Ekong, Nsima J.

    2015-01-01

    Health risk assessment of heavy metals in roadside grown foodcrops consumed by humans is a very good technique because such assessment would provide information about any threat regarding heavy metal contamination. Plant and corresponding soil samples were collected for trace metal analysis to ascertain potential health risks. The non-significant differences of lead (Pb) and cadmium (Cd) levels among the selected growth stages shows that the levels of Pb and Cd in the foodcrops were not influ...

  6. Flowering plants of Hedera helix L. in the Grunwald district of the city of Poznań

    Directory of Open Access Journals (Sweden)

    Stanisława Korszun

    2012-12-01

    Full Text Available In the period from September 2008 to July 2009 in the Grunwald district in the city of Poznań, Poland, a total of 609 localities of flowering English ivy were recorded, for which 769 plants were described. These plants were found in different localities, most of them euhemerobic. The biggest number of flowering specimens was recorded in home gardens. Support for climbing plants was mainly provided by trees and shrubs, including fruit trees – pear and apple trees. Among the other tree species, the biggest group comprises Scots pine, common birch, European larch and common locust. Other types of supports included fences, buildings and elements of small architecture. A very high number of specimens in the generative stage in the Grunwald district indicates considerable popularity and at the same time very good adaptation of ivy not only to the climatic conditions of the city of Poznań, but also to anthropogenic changes in the habitat.

  7. Use and abuse of trace metal concentrations in plant tissue for biomonitoring and phytoextraction

    International Nuclear Information System (INIS)

    Mertens, Jan; Luyssaert, Sebastiaan; Verheyen, Kris

    2005-01-01

    Some plant species accumulate trace metals from the soil in their aboveground biomass. Therefore, some scientists have concluded that these species are suitable for biomonitoring trace metal concentrations in the soil or for removing excessive trace metals from the soil by means of phytoextraction. A significant correlation between the chemical composition of foliage and soil is not a sufficient condition for using the chemical composition of foliage as a biomonitor for the quality of the soil. The chemical composition of foliage can, however, provide additional information to the traditional soil samples. The phytoextraction potential of a plant species cannot solely be evaluated on the basis of the trace metal concentrations in the plant and soil tissue. Data on the depth of the rooting zone, the density of the soil and the harvestable biomass should also be taken into account. Although plant tissue analysis is a useful tool in a wide range of studies and applications, trace metal concentrations in plant tissue cannot be viewed in isolation. Instead it should be analysed and interpreted in relation to other information such as soil concentrations, rooted zone, biomass production, etc. - Plants that accumulate soil metals in their aboveground biomass are often incorrectly considered to be suitable for monitoring soil pollution or for phytoextraction purposes

  8. Liquid Metal Fast Breeder Reactor plant maintenance and equipment design

    International Nuclear Information System (INIS)

    Swannack, D.L.

    1982-01-01

    This paper provides a summary of maintenance equipment considerations and actual plant handling experiences from operation of a sodium-cooled reactor, the Fast Flux Test Facility (FFTF). Equipment areas relating to design, repair techniques, in-cell handling, logistics and facility services are discussed. Plant design must make provisions for handling and replacement of components within containment or allow for transport to an ex-containment area for repair. The modular cask assemblies and transporter systems developed for FFTF can service major plant components as well as smaller units. The plant and equipment designs for the Clinch River Breeder Reactor (CRBR) plant have been patterned after successful FFTF equipment

  9. Effects of different drying processes on the concentrations of metals and metalloids in plant materials

    International Nuclear Information System (INIS)

    Anawar, H.M.; Canha, N.; Freitas, M.C; Santa Regina, I.; Garcia-Sanchez, A.

    2011-01-01

    The drying process of fresh plant materials may affect the porous structure, dehydration and a number of quality characteristics of these materials. Therefore, this study has investigated the effect of different drying processes on the variation of metal and metalloid concentrations in the dried plant materials. Seven varieties of native plant species collected from Sao Domingos mine were analyzed by instrumental neutron activation analysis (INAA) to investigate the effects of freeze-drying (FD), ambient air-drying (AAD) and oven-drying (OD) process on the concentrations of metals and metalloids in the plant biomass. Comparison of ambient air-dried, oven-dried and freeze-dried preparations allows a phenomenological description of the dehydration artefacts. In the quantitative analysis of metals and metalloids, FD and OD plant samples show the higher concentrations of metals and metalloids when compared to those in the AAD plant biomass. The freeze-drying process is comparatively reliable for determination of metals and metalloids concentrations in plant materials. (author)

  10. Evaluation of Levels, Sources and Health Hazards of Road-Dust Associated Toxic Metals in Jalalabad and Kabul Cities, Afghanistan.

    Science.gov (United States)

    Jadoon, Waqar Azeem; Khpalwak, Wahdatullah; Chidya, Russel Chrispine Garven; Abdel-Dayem, Sherif Mohamed Mohamed Ali; Takeda, Kazuhiko; Makhdoom, Masood Arshad; Sakugawa, Hiroshi

    2018-01-01

    This study was designed to investigate selected road-dust associated heavy metals, their relations with natural and anthropogenic sources, and potential human and environmental health risks. For this purpose, 42 and 36 road-dusts samples were collected from Jalalabad and Kabul cities (Afghanistan), respectively. The following elements were found in descending concentrations: Mn, Zn, Pb, Ni, Cu, Cr, Co, and Cd in Jalalabad; and Mn, Zn, Ni, Cu, Cr, Pb, Co, and Cd in Kabul. Except for Ni, all the elemental contents were less than the Canadian permissible limits in residential/parkland soils. Principle Component Analysis and enrichment of Cd, Cu, Ni, Pb, and Zn pointed to anthropogenic sources, whereas Co, Cr, and Mn indicated crustal inputs. Broadly, Cd monomial risk index ([Formula: see text]) was considerable; however, one site each in both cities showed high risk ([Formula: see text] ≥ 350). The potential ecological risk (RI) is mostly low; however, at some sites, the risk was considerable. Ingestion appeared to be the main exposure route (99%) for heavy metals and contributed > 90% to noncancerous (all residents), as well as 92% (children) and 75-89% (adults) cancerous risks. The noncancerous risks of all metals and their integrated risks for all residents were within acceptable levels. Moreover, potential cancer risks in children from Ni and Cr were slightly higher than the US-EPA safe levels but were within acceptable levels for adults. This study found higher risks to children and therefore recommends proper management and ways to control metals pollution load in these areas to decrease human health and RIs.

  11. Determination of the Content of Heavy Metals in Pyrite Contaminated Soil and Plants

    Directory of Open Access Journals (Sweden)

    Miroslava Marić

    2008-09-01

    Full Text Available Determination of a pyrite contaminated soil texture, content of heavy metals in the soil and soil pH, was the aim in the investigation. Acidification of damaged soil was corrected by calcium carbonate. Mineral nutrients and organic matter (NPK, dung, earthworm cast, straw and coal dust were added to damaged soil. Afterwards, the soil was used for oat production. Determination of total heavy metal contents (Cu, Pb, Zn, Fe in soil was performed by atomic absorption spectrofotometry. Plant material (stems, seeds was analysed, too. Total concentration of the heavy metals in the plant material were greater than in crop obtained in unaffected soil.

  12. Eliminating Cyanide, Reducing Heavy Metals, and Harvesting Gold from Mining Waste with Plants

    DEFF Research Database (Denmark)

    2001-01-01

    : All plants (as far as known) have an enzyme to detoxify cyanide by binding it to an amino acid. Cyanide in the appropriate dose can be used by plants as nitrogen source. Compared to other organisms, plants can tolerate high doses of free and complexed cyanidess. Using plants for detoxifying mining......Large amounts of cyanides are used in gold mining. The application is open and generates environmental problems. Regulators therefore insist on detoxifying cyanide-contaminated wastewater. There are existing technologies to remove cyanides, but none uses plants. Here, a new technology is introduced...... wastewater combines several benefits: cyanide is removed, plants are irrigated and fertilised. Heavy metals (including gold) are extracted by plants. Plants can be harvested and used, e.g., for energy production by burning. The ash of the plants is probaly rich in gold and a resource for further gold...

  13. Vegetation structure and heavy metal uptake by plants in the mining ...

    African Journals Online (AJOL)

    This study assessed the plant species composition and the heavy metal uptake by plants in the mining-impacted and non mining-impacted areas of the southern Lake Victoria basin. The vegetation of the wetlands was stratified into riverine forest, riverine thickets, swampy grassland, open woodland and floodplain grassland ...

  14. Remediation of toxic ad hazardous wastes: plants as biological agents to mitigate heavy metal pollution

    International Nuclear Information System (INIS)

    Cadiz, Nina M.; Principe, Eduardo B.

    2005-01-01

    This papers introduced the plants as biological agents to control heavy metal pollution and the process used the green plants to clean contaminated soils or to render the toxic ions harmless is a new technology called phytoremediation with two levels, the phytostabilization and phytoextraction

  15. Total mercury, methyl mercury, and heavy metal concentrations in Hyeongsan River and its tributaries in Pohang city, South Korea.

    Science.gov (United States)

    Bailon, Mark Xavier; David, Anneschel Sheehan; Park, Yeongeon; Kim, Eunhee; Hong, Yongseok

    2018-04-11

    Heavy metal contamination in aquatic systems is a big problem in many areas around the world. In 2016, high mercury concentrations were reported in bivalves (Corbicula leana) and sediments near the confluence of the Hyeongsan River and Chilseong Creek located in Pohang, a steel industrial city in the south-east coast of the Korean peninsula. Given that both the Chilseong and Gumu creeks run through the Pohang industrial complex and ultimately flow to the Hyeongsan River, it is imperative to determine if the industrial effluents have any impact on the mercury contamination in these two streams and the Hyeongsan River. In this work, we investigated the concentration levels of different heavy metals using cold vapor atomic fluorescence spectroscopy and inductively coupled plasma-mass spectroscopy. The metal concentration in the water samples from the Hyeongsan River, Gumu Creek, and Chilseong Creek did not exceed the limits for drinking water quality set by the US EPA and World Health Organization. However, the sediment samples were found to be heavily contaminated by Hg with levels exceeding the toxic effect threshold. Gumu Creek was found to be heavily contaminated. The concentrations of the different heavy metals increased downstream, and the samples collected from the sites in the Hyeongsan River near the Gumu Creek, an open channel for wastewater discharge of companies in the Pohang Industrial Complex, showed higher contamination levels, indicating that the effluents from the industrial complex are a possible source of contamination in the river.

  16. Heavy Metals (Mercury, Lead and Cadmium Determination in 17 Species of Fish Marketed in Khorramabad City, West of Iran

    Directory of Open Access Journals (Sweden)

    Ali Mortazavi

    2016-01-01

    Full Text Available Heavy metals entrance to fish body tissues and transferring to human body systems after their consuming makes numerous undesirable effects and health problems. The aim of this study was to determine some heavy metals (lead, cadmium and mercury in fresh fishes marketed in Khorramabad City, west of Iran. In this descriptive study, five samples of 17 fish species with high consumption were purchased randomly in 2014. Measurement of mercury, lead and cadmium was performed using atomic absorption spectrometry. All measurements were performed three times for each sample. Lead mean levels in fish samples was in the range 0.736 -1.005 ppm, cadmium range was from 0.196 to 0.015 ppm and mean content of mercury was  0.431 - 0.107 ppm. At present mean concentration of lead, mercury and cadmium in supplied fishes muscle is lower than maximum recommended levels according to WHO, EC and FDA guidelines. Based on the obtained results of this study and the importance of heavy metals in foods and their impacts on human health, continuous monitoring of heavy metals levels in foods is necessary.

  17. Potential effect of natural gas wells on alluvial groundwater contamination at the Kansas City Plant

    Energy Technology Data Exchange (ETDEWEB)

    Pickering, D.A.; Laase, A.D. [Oak Ridge National Lab., TN (United States); Locke, D.A. [Oak Ridge Inst. for Science and Education, TN (United States)

    1993-05-01

    This report is the result of a request for further information about several abandoned natural gas wells at the US Department of Energy`s Kansas City Plant (KCP). The request was prompted by an old map showing several, possibly eight, natural gas wells located under or near what is now the southeast corner of the Main Manufacturing Building at KCP. Volatile organic compound contamination in the alluvial aquifer surrounding the gas wells might possibly contaminate the bedrock aquifer if the gas wells still exist as conduits. Several circumstances exist that make it doubtful that contamination is entering the bedrock aquifers: (1) because regional groundwater flow in the bedrock beneath the KCP is expected to be vertically upward, contaminants found in the alluvial aquifer should not migrate down the old wells; (2) because of the low hydraulic conductivity of the bedrock units, contaminant transport would be extremely slow if the contaminants were migrating down the wells; and (3) casing, apparently set through the alluvium in all of the wells, would have deteriorated and may have collapsed; if the casing collapsed, the silty clays in the alluvium would also collapse and seal the well. No definitive information has been discovered about the exact location of the wells. No further search for or consideration of the old gas wells is recommended.

  18. Potential effect of natural gas wells on alluvial groundwater contamination at the Kansas City Plant

    Energy Technology Data Exchange (ETDEWEB)

    Pickering, D.A.; Laase, A.D. (Oak Ridge National Lab., TN (United States)); Locke, D.A. (Oak Ridge Inst. for Science and Education, TN (United States))

    1993-05-01

    This report is the result of a request for further information about several abandoned natural gas wells at the US Department of Energy's Kansas City Plant (KCP). The request was prompted by an old map showing several, possibly eight, natural gas wells located under or near what is now the southeast corner of the Main Manufacturing Building at KCP. Volatile organic compound contamination in the alluvial aquifer surrounding the gas wells might possibly contaminate the bedrock aquifer if the gas wells still exist as conduits. Several circumstances exist that make it doubtful that contamination is entering the bedrock aquifers: (1) because regional groundwater flow in the bedrock beneath the KCP is expected to be vertically upward, contaminants found in the alluvial aquifer should not migrate down the old wells; (2) because of the low hydraulic conductivity of the bedrock units, contaminant transport would be extremely slow if the contaminants were migrating down the wells; and (3) casing, apparently set through the alluvium in all of the wells, would have deteriorated and may have collapsed; if the casing collapsed, the silty clays in the alluvium would also collapse and seal the well. No definitive information has been discovered about the exact location of the wells. No further search for or consideration of the old gas wells is recommended.

  19. Potential effect of natural gas wells on alluvial groundwater contamination at the Kansas City Plant

    International Nuclear Information System (INIS)

    Pickering, D.A.; Laase, A.D.; Locke, D.A.

    1993-05-01

    This report is the result of a request for further information about several abandoned natural gas wells at the US Department of Energy's Kansas City Plant (KCP). The request was prompted by an old map showing several, possibly eight, natural gas wells located under or near what is now the southeast corner of the Main Manufacturing Building at KCP. Volatile organic compound contamination in the alluvial aquifer surrounding the gas wells might possibly contaminate the bedrock aquifer if the gas wells still exist as conduits. Several circumstances exist that make it doubtful that contamination is entering the bedrock aquifers: (1) because regional groundwater flow in the bedrock beneath the KCP is expected to be vertically upward, contaminants found in the alluvial aquifer should not migrate down the old wells; (2) because of the low hydraulic conductivity of the bedrock units, contaminant transport would be extremely slow if the contaminants were migrating down the wells; and (3) casing, apparently set through the alluvium in all of the wells, would have deteriorated and may have collapsed; if the casing collapsed, the silty clays in the alluvium would also collapse and seal the well. No definitive information has been discovered about the exact location of the wells. No further search for or consideration of the old gas wells is recommended

  20. Kansas City plant ultraviolet/ozone/hydrogen peroxide groundwater treatment system overview

    International Nuclear Information System (INIS)

    Stites, M.E.; Hughes, R.F.

    1992-01-01

    The Kansas City Plant (KCP) has committed to the utilization of a groundwater treatment system, for removal of volatile organic compounds (VOCs), that discharges a minimal amount of pollutants to the environment. An advanced oxidation process (AOP) system utilizing ozone, ultraviolet radiation, and hydrogen peroxide serves in this capacity. Packed tower aeration and activated carbon filtration are listed as best available technologies (BATs) by the Environmental Protection Agency (EPA) for the removal of VOCs in water. The disadvantage to these BATs is that they transfer the VOCs from the water medium to the air or carbon media respectively. Operation of the system began in May 1988 at a flow rate of 22.7 liters per minute (lpm) (6 gallons per minute (gpm)). An additional 102.2 lpm (27 gpm) of flow were added in October 1990. Various efforts to optimize and track the treatment unites efficiency have been carried out. A maximum influent reading of 26,590 parts per billion (ppb) of total VOCs has been recorded. Following the addition of flows, removal efficiency has averaged approximately 95%. Both air and water effluents are factored into this calculation. (author)

  1. Investigation of heavy metals in sweets from different shop of peshawar city

    International Nuclear Information System (INIS)

    Noor, S.; Wajid, A.; Shah, J.; Peerzada, N.

    2007-01-01

    A study was carried out to determine the contents of heavy metals in sweets by Atomic Absorption Spectrophotometry. Six varieties of sweets, including Gulab Jamun, Rasgula, Patesa white chum chum, colored chumchum and Basin Ka laddoo, from eight shops of Peshawar were analyzed. The metals investigated were Fe, Ni, Cu, Mn, Ph and Cd. The level of Fe 6.11+- 0.15-17.65+- 0.16ppm and Mn 5.32 +- 0.06-10.84+- 0.05 ppm was found to be highest. The overall concentration of metals showed that metal load in sweets of all shops seem to be in the limits offered by RDA for respective metals. (author)

  2. Effect of plants on the bioavailability of metals and other chemical properties of biosolids in a column study.

    Science.gov (United States)

    Huynh, Trang T; Laidlaw, W Scott; Singh, Balwant; Zhang, Hao; Baker, Alan J M

    2012-10-01

    The effects of metal-accumulating plants (Salix x reichardtii and Populus balsamifera) on the chemical properties and dynamics of metals in biosolids were investigated using different techniques including diffusive gradients in thin films (DGT), sequential extraction procedures and partitioning coefficient (K(d)). Plants could effectively extract Cd, Ni, and Zn and decreased dissolved organic carbon (DOC). The presence of plants increased the potential bioavailability of these metals, as assessed by an increase in the ratio of metal measured by DGT and metals in the solution. The plants affected the Cd, Ni, and Zn pools (soluble/exchangeable; Fe/Mn oxide and organic matter bound) characterised by sequential extraction and K(d) but did not reduce the total metals in either substrate. However, plants had no effect on Cu, presumably because of the effective buffering of available Cu by organic matter in both solution and solid phases. A high density of plant roots was associated with increased leaching of metals.

  3. Expressing a bacterial mercuric ion binding protein in plant for phytoremediation of heavy metals.

    Science.gov (United States)

    Hsieh, Ju-Liang; Chen, Ching-Yi; Chiu, Meng-Hsuen; Chein, Mei-Fang; Chang, Jo-Shu; Endo, Ginro; Huang, Chieh-Chen

    2009-01-30

    A specific mercuric ion binding protein (MerP) originating from transposon TnMERI1 of Bacillus megaterium strain MB1 isolated from Minamata Bay displayed good adsorption capability for a variety of heavy metals. In this study, the Gram-positive MerP protein was expressed in transgenic Arabidopsis to create a model system for phytoremediation of heavy metals. Under control of an actin promoter, the transgenic Arabidpsis showed higher tolerance and accumulation capacity for mercury, cadium and lead when compared with the control plant. Results from confocal microscopy analysis also indicate that MerP was localized at the cell membrane and vesicles of plant cells. The developed transgenic plants possessing excellent metal-accumulative ability could have potential applications in decontamination of heavy metals.

  4. Spatial distribution of heavy metal concentrations in urban, suburban and agricultural soils in a Mediterranean city of Algeria

    International Nuclear Information System (INIS)

    Maas, S.; Scheifler, R.; Benslama, M.; Crini, N.; Lucot, E.; Brahmia, Z.; Benyacoub, S.; Giraudoux, P.

    2010-01-01

    As part of a larger program aiming at assessing transfer and effects of metals in food webs, this work studied the spatial distribution of Cd, Cr, Cu, Pb, and Zn in 101 sub-surface soils, systematically sampled (1 x 1 km regular grid) over a large area around Annaba, the fourth most-populated city of Algeria. Cd and Cr exhibited only one abnormally high value, with all other concentrations being close to pedogeological background. Some places in the centre of the city were polluted by Pb (up to 823 mg kg -1 ), probably due to aerial deposition from gasoline exhausts. Zn never exceeded regulatory limits over the whole sampling area. Cu was the only element for which a spatial autocorrelation occurred. A spatial interpolation by cokriging allowed the identification of agricultural activities as the main Cu pollution source. Our approach revealed various anthropogenic pollution sources, more efficiently for large-scale patterns than for local abnormalities. - A large-scale study of heavy metal concentrations in the area of Annaba (Algeria) shows Cu and Pb contamination in agricultural and urban soils, respectively

  5. Mapping of heavy metals accumulated in plants using submilli-pixe camera

    International Nuclear Information System (INIS)

    Watanabe, R.; Hara, J.; Inoue, C.; Chida, T.; Amartaivan, TS.; Matsuyama, S.; Yamazaki, H.; Ishii, K.

    2004-01-01

    Phytoremediation is a technology for remediation of contaminated soils. In this study, we used a submilli-PIXE camera to analyze plants and soils from a shooting range. Some heavy metals were rapidly and easily detected in these samples. Element dot-maps of the plant show Cu and Pb accumulated in the epidermis of subterranean stems and the venation of leaves. From these findings, it is possible to map the distribution of heavy metals and to detail their location in the plant, using the submilli-PIXE analysis is an effective tool for undertaking phytoremediation research. (author)

  6. Using magnetic and chemical measurements to detect atmospherically-derived metal pollution in artificial soils and metal uptake in plants

    International Nuclear Information System (INIS)

    Sapkota, B.; Cioppa, M.T.

    2012-01-01

    Quantification of potential effects of ambient atmospheric pollution on magnetic and chemical properties of soils and plants requires precise experimental studies. A controlled growth experiment assessing magnetic and chemical parameters was conducted within (controls) and outside (exposed) a greenhouse setting. Magnetic susceptibility (MS) measurements showed that while initial MS values were similar for the sample sets, the overall MS value of exposed soil was significantly greater than in controls, suggesting an additional input of Fe-containing particles. Scanning electron microscope images of the exposed soils revealed numerous angular magnetic particles and magnetic spherules typical of vehicular exhaust and combustion processes, respectively. Similarly, chemical analysis of plant roots showed that plants grown in the exposed soil had higher concentrations of Fe and heavy (toxic) metals than controls. This evidence suggests that atmospheric deposition contributed to the MS increase in exposed soils and increased metal uptake by plants grown in this soil. - Highlights: ► Magnetic susceptibility (MS) values increased in exposed soils during the growth. ► MS values in control soils decreased from their initial values during the growth. ► Decrease in MS values due to downwards migration of Fe particles, magnetic mineral transformations and Fe uptake by plants. ► Higher metal uptake in plants grown in exposed soils than those grown in controls. ► Atmospheric particulate deposition isolated as main contributor to these effects. - Variations in atmospheric particulate levels are measurable using magnetic and chemical techniques on soils and plant biomass, and suggest pollutant levels may be higher than previously recognized.

  7. PLANT CONTAMINATION AND PHYTOTOXICITY DUE TO HEAVY METALS FROM SOIL AND WATER

    Directory of Open Access Journals (Sweden)

    Judith Prieto Mendez

    2008-12-01

    Full Text Available High levels of heavy metals, such as: lead, nickel, cadmium and manganese, which are present in soil and wastewater used for agricultural irrigation, are due to the fact that these metals can be accumulated into these systems, of main importance for agriculture. Because of its non-biodegradability features, toxicity effects onto several crops and consequences on their bio-availability, this may result hazardous. This literature survey highlights and remarks relative sensitivity of some plants before heavy metals presence and crops trend to accumulate them, emphasizing aspects related to some soil physicochemical characteristics and heavy metals phyto-toxicity.

  8. Cleanup operations at the Oak Ridge Gaseous Diffusion Plant contaminated metal scrapyard

    International Nuclear Information System (INIS)

    Williams, L.C.

    1987-01-01

    Cleanup operations at the contaminated metal storage yard located at the Oak Ridge, Tennessee, Gaseous Diffusion Plant have been completed. The storage yard, in existence since the early 1970s, contained an estimated 35,000 tons of mixed-type metals spread over an area of roughly 30 acres. The overall cleanup program required removing the metal from the storage yard, sorting by specific metal types, and size reduction of specific types for future processing. This paper explains the methods and procedures used to accomplish this task

  9. Spatial Patterns and Risk Assessment of Heavy Metals in Soils in a Resource-Exhausted City, Northeast China

    Science.gov (United States)

    Chen, Hongwei; An, Jing; Wei, Shuhe; Gu, Jian

    2015-01-01

    Northeast China is an intensive area of resource-exhausted city, which is facing the challenges of industry conversion and sustainable development. In order to evaluate the soil environmental quality influenced by mining activities over decades, the concentration and spatial distribution of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and Zinc (Zn) in surface soils (0-20cm) of a typical resource-exhausted city were investigated by analyzing 306 soil samples. The results showed that the average concentrations in the samples were 6.17 mg/kg for As, 0.19 mg/kg for Cd, 51.08 mg/kg for Cr, 23.27 mg/kg for Cu, 31.15 mg/kg for Ni, 22.17 mg/kg for Pb, and 54.21 mg/kg for Zn. Metals distribution maps produced by using the inverse distance weighted interpolation method and results revealed that all investigated metals showed distinct geographical patterns, and the concentrations were higher in urban and industrial areas than in farmland. Pearson correlation and principal component analysis showed that there were significant positive correlations (pmetals, and As, Cd, Cr, Mn, Ni, Pb, and Zn were closely associated with the first principal component (PC1), which explained 39.81% of the total variance. Cu and As were mainly associated with the second component (PC2). Based on the calculated Nemerow pollution index, percentage for slightly polluted (1soils were reached 57.33%, while 42.65% topsoil samples are moderate polluted (2soil environmental function areas were classified and proper soil environmental management policy was proposed to decrease the environmental risks in the process of industrial city transformation. PMID:26413806

  10. Marsh plant response to metals: Exudation of aliphatic low molecular weight organic acids (ALMWOAs)

    Science.gov (United States)

    Rocha, A. Cristina S.; Almeida, C. Marisa R.; Basto, M. Clara P.; Vasconcelos, M. Teresa S. D.

    2016-03-01

    Metal exposure is known to induce the production and secretion of substances, such as aliphatic low molecular weight organic acids (ALMWOAs), into the rhizosphere by plant roots. Knowledge on this matter is extensive for soil plants but still considerably scarce regarding marsh plants roots adapted to high salinity media. Phragmites australis and Halimione portulacoides, two marsh plants commonly distributed in European estuarine salt marshes, were used to assess the response of roots of both species, in terms of ALMWOAs exudation, to Cu, Ni and Cd exposure (isolated and in mixture since in natural environment, they are exposed to mixture of metals). As previous studies were carried out in unrealistic and synthetic media, here a more natural medium was selected. Therefore, in vitro experiments were carried out, with specimens of both marsh plants, and in freshwater contaminated with two different Cu, Ni and Cd concentrations (individual metal and in mixture). Both marsh plants were capable of liberating ALMWOAs into the surrounding medium. Oxalic, citric and maleic acids were found in P. australis root exudate solutions and oxalic and maleic acids in H. portulacoides root exudate solutions. ALMWOA liberation by both plants was plant species and metal-dependent. For instance, Cu affected the exudation of oxalic acid by H. portulacoides and of oxalic and citric acids by P. australis roots. In contrast, Ni and Cd did not stimulate any specific response. Regarding the combination of all metals, H. portulacoides showed a similar response to that observed for Cu individually. However, in the P. australis case, at high metal concentration mixture, a synergetic effect led to the increase of oxalic acid levels in root exudate solution and to a decrease of citric acid liberation. A correlation between ALMWOAs exudation and metal accumulation could not be established. P. australis and H. portulacoides are considered suitable metal phytoremediators of estuarine impacted areas

  11. Pyrolysis and reutilization of plant residues after phytoremediation of heavy metals contaminated sediments: For heavy metals stabilization and dye adsorption.

    Science.gov (United States)

    Gong, Xiaomin; Huang, Danlian; Liu, Yunguo; Zeng, Guangming; Wang, Rongzhong; Wei, Jingjing; Huang, Chao; Xu, Piao; Wan, Jia; Zhang, Chen

    2018-04-01

    This study aimed to investigate the effect of pyrolysis on the stabilization of heavy metals in plant residues obtained after phytoremediation. Ramie residues, being collected after phytoremediation of metal contaminated sediments, were pyrolyzed at different temperatures (300-700 °C). Results indicated that pyrolysis was effective in the stabilization of Cd, Cr, Zn, Cu, and Pb in ramie residues by converting the acid-soluble fraction of metals into residual form and decreasing the TCLP-leachable metal contents. Meanwhile, the reutilization potential of using the pyrolysis products generated from ramie residues obtained after phytoremediation as sorbents was investigated. Adsorption experiments results revealed that the pyrolysis products presented excellent ability to adsorb methylene blue (MB) with a maximum adsorption capacity of 259.27 mg/g. This study demonstrated that pyrolysis could be used as an efficient alternative method for stabilizing heavy metals in plant residues obtained after phytoremediation, and their pyrolysis products could be reutilized for dye adsorption. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Alleviation of Heavy Metal Stress in Plants and Remediation of Soil by Rhizosphere Microorganisms.

    Science.gov (United States)

    Mishra, Jitendra; Singh, Rachna; Arora, Naveen K

    2017-01-01

    Increasing concentration of heavy metals (HM) due to various anthropogenic activities is a serious problem. Plants are very much affected by HM pollution particularly in contaminated soils. Survival of plants becomes tough and its overall health under HM stress is impaired. Remediation of HM in contaminated soil is done by physical and chemical processes which are costly, time-consuming, and non-sustainable. Metal-microbe interaction is an emerging but under-utilized technology that can be exploited to reduce HM stress in plants. Several rhizosphere microorganisms are known to play essential role in the management of HM stresses in plants. They can accumulate, transform, or detoxify HM. In general, the benefit from these microbes can have a vast impact on plant's health. Plant-microbe associations targeting HM stress may provide another dimension to existing phytoremediation and rhizoremediation uses. In this review, applied aspects and mechanisms of action of heavy metal tolerant-plant growth promoting (HMT-PGP) microbes in ensuring plant survival and growth in contaminated soils are discussed. The use of HMT-PGP microbes and their interaction with plants in remediation of contaminated soil can be the approach for the future. This low input and sustainable biotechnology can be of immense use/importance in reclaiming the HM contaminated soils, thus increasing the quality and yield of such soils.

  13. Model evaluation of plant metal content and biomass yield for the phytoextraction of heavy metals by switchgrass.

    Science.gov (United States)

    Chen, Bo-Ching; Lai, Hung-Yu; Juang, Kai-Wei

    2012-06-01

    To better understand the ability of switchgrass (Panicum virgatum L.), a perennial grass often relegated to marginal agricultural areas with minimal inputs, to remove cadmium, chromium, and zinc by phytoextraction from contaminated sites, the relationship between plant metal content and biomass yield is expressed in different models to predict the amount of metals switchgrass can extract. These models are reliable in assessing the use of switchgrass for phytoremediation of heavy-metal-contaminated sites. In the present study, linear and exponential decay models are more suitable for presenting the relationship between plant cadmium and dry weight. The maximum extractions of cadmium using switchgrass, as predicted by the linear and exponential decay models, approached 40 and 34 μg pot(-1), respectively. The log normal model was superior in predicting the relationship between plant chromium and dry weight. The predicted maximum extraction of chromium by switchgrass was about 56 μg pot(-1). In addition, the exponential decay and log normal models were better than the linear model in predicting the relationship between plant zinc and dry weight. The maximum extractions of zinc by switchgrass, as predicted by the exponential decay and log normal models, were about 358 and 254 μg pot(-1), respectively. To meet the maximum removal of Cd, Cr, and Zn, one can adopt the optimal timing of harvest as plant Cd, Cr, and Zn approach 450 and 526 mg kg(-1), 266 mg kg(-1), and 3022 and 5000 mg kg(-1), respectively. Due to the well-known agronomic characteristics of cultivation and the high biomass production of switchgrass, it is practicable to use switchgrass for the phytoextraction of heavy metals in situ. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Design and assessment of solar PV plant for girls hostel (GARGI of MNIT University, Jaipur city: A case study

    Directory of Open Access Journals (Sweden)

    Rahul Khatri

    2016-11-01

    Full Text Available In this paper designing and assessment of a solar PV plant for meeting the energy demand of girl’s hostel at MNIT University Jaipur city was analyzed. A solar PV plant was designed with its financial and environmental assessment considering recent market prices. All the aspects related to a solar PV plant were considered for financial feasibility of PV plant near this location. The different financial parameters which affect the financial feasibility of PV plant were considered i.e. discount rate, effective discount rate, rate of escalation of electricity cost, salvage value of the plant etc. The environmental aspect related with the energy generated with PV plant i.e. reduction in carbon emission and carbon credits earned was also considered. Result obtained with the assessment of the proposed plant with different discount rate and current rate of inflation shows that the max IRR 6.85% and NPV of $1,430,834 was obtained with a discount rate of 8% and an inflation rate of 7.23% when no land cost considered and if land cost was considered the maximum IRR was 1.96% and NPV of $630,833. Minimum discounted payback of the plant will be 13.4 years if inflation was considered.

  15. Effect of Heavy Metals in Plants of the Genus Brassica

    Science.gov (United States)

    Mourato, Miguel P.; Moreira, Inês N.; Leitão, Inês; Pinto, Filipa R.; Sales, Joana R.; Louro Martins, Luisa

    2015-01-01

    Several species from the Brassica genus are very important agricultural crops in different parts of the world and are also known to be heavy metal accumulators. There have been a large number of studies regarding the tolerance, uptake and defense mechanism in several of these species, notably Brassica juncea and B. napus, against the stress induced by heavy metals. Numerous studies have also been published about the capacity of these species to be used for phytoremediation purposes but with mixed results. This review will focus on the latest developments in the study of the uptake capacity, oxidative damage and biochemical and physiological tolerance and defense mechanisms to heavy metal toxicity on six economically important species: B. juncea, B. napus, B. oleracea, B. carinata, B. rapa and B. nigra. PMID:26247945

  16. Rhizobacteria and plant symbiosis in heavy metal uptake and its implications for soil bioremediation.

    Science.gov (United States)

    Sobariu, Dana Luminița; Fertu, Daniela Ionela Tudorache; Diaconu, Mariana; Pavel, Lucian Vasile; Hlihor, Raluca-Maria; Drăgoi, Elena Niculina; Curteanu, Silvia; Lenz, Markus; Corvini, Philippe François-Xavier; Gavrilescu, Maria

    2017-10-25

    Certain species of plants can benefit from synergistic effects with plant growth-promoting rhizobacteria (PGPR) that improve plant growth and metal accumulation, mitigating toxic effects on plants and increasing their tolerance to heavy metals. The application of PGPR as biofertilizers and atmospheric nitrogen fixators contributes considerably to the intensification of the phytoremediation process. In this paper, we have built a system consisting of rhizospheric Azotobacter microbial populations and Lepidium sativum plants, growing in solutions containing heavy metals in various concentrations. We examined the ability of the organisms to grow in symbiosis so as to stimulate the plant growth and enhance its tolerance to Cr(VI) and Cd(II), to ultimately provide a reliable phytoremediation system. The study was developed at the laboratory level and, at this stage, does not assess the inherent interactions under real conditions occurring in contaminated fields with autochthonous microflora and under different pedoclimatic conditions and environmental stresses. Azotobacter sp. bacteria could indeed stimulate the average germination efficiency of Lepidium sativum by almost 7%, average root length by 22%, average stem length by 34% and dry biomass by 53%. The growth of L. sativum has been affected to a greater extent in Cd(II) solutions due its higher toxicity compared to that of Cr(VI). The reduced tolerance index (TI, %) indicated that plant growth in symbiosis with PGPR was however affected by heavy metal toxicity, while the tolerance of the plant to heavy metals was enhanced in the bacteria-plant system. A methodology based on artificial neural networks (ANNs) and differential evolution (DE), specifically a neuro-evolutionary approach, was applied to model germination rates, dry biomass and root/stem length and proving the robustness of the experimental data. The errors associated with all four variables are small and the correlation coefficients higher than 0

  17. Trace metal geochemistry in mangrove sediments and their transfer to mangrove plants (New Caledonia)

    International Nuclear Information System (INIS)

    Marchand, C.; Fernandez, J.-M.; Moreton, B.

    2016-01-01

    Because of their physico-chemical inherent properties, mangrove sediments may act as a sink for pollutants coming from catchments. The main objective of this study was to assess the distribution of some trace metals in the tissues of various mangrove plants developing downstream highly weathered ferralsols, taking into account metals partitioning in the sediment. In New Caledonia, mangroves act as a buffer between open-cast mines and the world's largest lagoon. As a result of the erosion of lateritic soils, Ni and Fe concentrations in the sediment were substantially higher than the world average. Whatever the mangrove stand and despite low bioaccumulation and translocations factors, Fe and Ni were also the most abundant metals in the different plant tissues. This low bioaccumulation may be explained by: i) the low availability of metals, which were mainly present in the form of oxides or sulfur minerals, and ii) the root systems acting as barriers towards the transfer of metals to the plant. Conversely, Cu and Zn metals had a greater mobility in the plant, and were characterized by high bioconcentration and translocation factors compared to the other metals. Cu and Zn were also more mobile in the sediment as a result of their association with organic matter. Whatever the metal, a strong decrease of trace metal stock was observed from the landside to the seaside of the mangrove, probably as a result of the increased reactivity of the sediment due to OM enrichment. This reactivity lead to higher dissolution of bearing phases, and thus to the export of dissolved trace metals trough the tidal action. Cu and Zn were the less concerned by the phenomenon probably as a result of higher plant uptake and their restitution to the sediment with litter fall in stands where tidal flushing is limited. - Highlights: • Unusual high concentrations of Fe and Ni were measured in mangrove tissues. • Bioconcentration and translocation factors of Fe, Ni, Co and Mn were low. • Low

  18. Trace metal geochemistry in mangrove sediments and their transfer to mangrove plants (New Caledonia)

    Energy Technology Data Exchange (ETDEWEB)

    Marchand, C., E-mail: cyril.marchand@ird.fr [Institut de Recherche pour le Développement (IRD), UR 206/UMR 7590 IMPMC, 98848 Nouméa, New Caledonia (France); Fernandez, J.-M.; Moreton, B. [AEL/LEA, 7 rue Loriot de Rouvray, 98800 Nouméa, New Caledonia (France)

    2016-08-15

    Because of their physico-chemical inherent properties, mangrove sediments may act as a sink for pollutants coming from catchments. The main objective of this study was to assess the distribution of some trace metals in the tissues of various mangrove plants developing downstream highly weathered ferralsols, taking into account metals partitioning in the sediment. In New Caledonia, mangroves act as a buffer between open-cast mines and the world's largest lagoon. As a result of the erosion of lateritic soils, Ni and Fe concentrations in the sediment were substantially higher than the world average. Whatever the mangrove stand and despite low bioaccumulation and translocations factors, Fe and Ni were also the most abundant metals in the different plant tissues. This low bioaccumulation may be explained by: i) the low availability of metals, which were mainly present in the form of oxides or sulfur minerals, and ii) the root systems acting as barriers towards the transfer of metals to the plant. Conversely, Cu and Zn metals had a greater mobility in the plant, and were characterized by high bioconcentration and translocation factors compared to the other metals. Cu and Zn were also more mobile in the sediment as a result of their association with organic matter. Whatever the metal, a strong decrease of trace metal stock was observed from the landside to the seaside of the mangrove, probably as a result of the increased reactivity of the sediment due to OM enrichment. This reactivity lead to higher dissolution of bearing phases, and thus to the export of dissolved trace metals trough the tidal action. Cu and Zn were the less concerned by the phenomenon probably as a result of higher plant uptake and their restitution to the sediment with litter fall in stands where tidal flushing is limited. - Highlights: • Unusual high concentrations of Fe and Ni were measured in mangrove tissues. • Bioconcentration and translocation factors of Fe, Ni, Co and Mn were low.

  19. Heavy metal tolerance in plants: Role of transcriptomics, proteomics, metabolomics and ionomics

    Directory of Open Access Journals (Sweden)

    Samiksha eSingh

    2016-02-01

    Full Text Available Heavy metal contamination of soil and water causing toxicity/stress has become one important constraint to crop productivity and quality. This situation has further worsened by the increasing population growth and inherent food demand. It have been reported in several studies that counterbalancing toxicity, due to heavy metal requires complex mechanisms at molecular, biochemical, physiological, cellular, tissue and whole plant level, which might manifest in terms of improved crop productivity. Recent advances in various disciplines of biological sciences such as metabolomics, transcriptomics, proteomics etc. have assisted in the characterization of metabolites, transcription factors, stress-inducible proteins involved in heavy metal tolerance, which in turn can be utilized for generating heavy metal tolerant crops. This review summarizes various tolerance strategies of plants under heavy metal toxicity, covering the role of metabolites (metabolomics, trace elements (ionomics, transcription factors (transcriptomics, various stress-inducible proteins (proteomics as well as the role of plant hormones. We also provide a glance at strategies adopted by metal accumulating plants also known as metallophytes.

  20. Heavy Metal Tolerance in Plants: Role of Transcriptomics, Proteomics, Metabolomics, and Ionomics

    Science.gov (United States)

    Singh, Samiksha; Parihar, Parul; Singh, Rachana; Singh, Vijay P.; Prasad, Sheo M.

    2016-01-01

    Heavy metal contamination of soil and water causing toxicity/stress has become one important constraint to crop productivity and quality. This situation has further worsened by the increasing population growth and inherent food demand. It has been reported in several studies that counterbalancing toxicity due to heavy metal requires complex mechanisms at molecular, biochemical, physiological, cellular, tissue, and whole plant level, which might manifest in terms of improved crop productivity. Recent advances in various disciplines of biological sciences such as metabolomics, transcriptomics, proteomics, etc., have assisted in the characterization of metabolites, transcription factors, and stress-inducible proteins involved in heavy metal tolerance, which in turn can be utilized for generating heavy metal-tolerant crops. This review summarizes various tolerance strategies of plants under heavy metal toxicity covering the role of metabolites (metabolomics), trace elements (ionomics), transcription factors (transcriptomics), various stress-inducible proteins (proteomics) as well as the role of plant hormones. We also provide a glance of some strategies adopted by metal-accumulating plants, also known as “metallophytes.” PMID:26904030

  1. Meta-Analysis of the Copper, Zinc, and Cadmium Absorption Capacities of Aquatic Plants in Heavy Metal-Polluted Water.

    Science.gov (United States)

    Li, Jing; Yu, Haixin; Luan, Yaning

    2015-11-26

    The use of aquatic plants for phytoremediation is an important method for restoring polluted ecosystems. We sought to analyze the capacity of different aquatic plant species to absorb heavy metals and to summarize available relevant scientific data on this topic. We present a meta-analysis of Cu, Zn, and Cd absorption capacities of aquatic plants to provide a scientific basis for the selection of aquatic plants suitable for remediation of heavy-metal pollution. Plants from the Gramineae, Pontederiaceae, Ceratophyllaceae, Typhaceae and Haloragaceae showed relatively strong abilities to absorb these metals. The ability of a particular plant species to absorb a given metal was strongly correlated with its ability to absorb the other metals. However, the absorption abilities varied with the plant organ, with the following trend: roots > stems > leaves. The pH of the water and the life habits of aquatic plants (submerged and emerged) also affect the plant's ability to absorb elements. Acidic water aids the uptake of heavy metals by plants. The correlation observed between element concentrations in plants with different aquatic life habits suggested that the enrichment mechanism is related to the surface area of the plant exposed to water. We argue that this meta-analysis would aid the selection of aquatic plants suitable for heavy-metal absorption from polluted waters.

  2. The potential of genetic engineering of plants for the remediation of soils contaminated with heavy metals.

    Science.gov (United States)

    Fasani, Elisa; Manara, Anna; Martini, Flavio; Furini, Antonella; DalCorso, Giovanni

    2018-05-01

    The genetic engineering of plants to facilitate the reclamation of soils and waters contaminated with inorganic pollutants is a relatively new and evolving field, benefiting from the heterologous expression of genes that increase the capacity of plants to mobilize, stabilize and/or accumulate metals. The efficiency of phytoremediation relies on the mechanisms underlying metal accumulation and tolerance, such as metal uptake, translocation and detoxification. The transfer of genes involved in any of these processes into fast-growing, high-biomass crops may improve their reclamation potential. The successful phytoextraction of metals/metalloids and their accumulation in aerial organs have been achieved by expressing metal ligands or transporters, enzymes involved in sulfur metabolism, enzymes that alter the chemical form or redox state of metals/metalloids and even the components of primary metabolism. This review article considers the potential of genetic engineering as a strategy to improve the phytoremediation capacity of plants in the context of heavy metals and metalloids, using recent case studies to demonstrate the practical application of this approach in the field. © 2017 John Wiley & Sons Ltd.

  3. Effect of metal tolerant plant growth promoting bacteria on growth and metal accumulation in Zea mays plants grown in fly ash amended soil.

    Science.gov (United States)

    Kumar, Kalpna V; Patra, D D

    2013-01-01

    The present study was undertaken to examine the effect of the application of fly ash (FA) into Garden soil (GS), with and without inoculation of plant growth promoting bacteria (PGPB), on the growth and metal uptake by Zea mays plants. Three FA tolerant PGPB strains, Pseudomonas sp. PS5, PS14, and Bacillus sp. BC29 were isolated from FA contaminated soils and assessed for their plant growth promoting features on the Z. mays plants. All three strains were also examined for their ability to solubilize phosphate and to produce Indole Acetic Acid (IAA), siderophores, and hydrogencynide acid (HCN) production. Although inoculation of all strains significantly enhanced the growth of plants at both the concentration of FA but maximum growth was observed in plants inoculated with BC29 and PS14 at low level (25%) of FA concentration. The experimental results explored the plant growth promoting features of selected strains which not only enhanced growth and biomass of plants but also protected them from toxicity of FA.

  4. High-efficiency heat pump technology using metal hydrides (eco-energy city project)

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Y.; Harada, T.; Niikura, J.; Yamamoto, Y.; Suzuki, J. [Human Environmental Systems Development Center, Matsushita Electric Industrial Co., Ltd., Moriguchi, Osaka (Japan); Gamo, T. [Corporate Environmental Affairs Div., Matsushita Electric Industrial Co., Ltd., Kadoma, Osaka (Japan)

    1999-07-01

    Metal hybrides are effective materials for utilizing hydrogen as a clean energy medium. That is, when the metal hydrides absorb or desorb the hydrogen, a large heat output of reaction occurs. So, the metal hydrides can be applied to a heat pump. We have researched on a high efficiency heat pump technology using their metal hydrides. In this report, a double effect type metal hydride heat pump configuration is described in which the waste heat of 160 C is recovered in a factory cite and transported to areas far distant from the industrial district. In the heat recovery unit, a low pressure hydrogen is converted into highly effective high pressure hydrogen by applying the metal hydrides. Other metal hydrides perform the parts of heating by absorbing the hydrogen and cooling by desorbing the hydrogen in the heat supply unit. One unit scale of the system is 3 kW class as the sum of heating and cooling. This system using the hydrogen absorbing alloy also has good energy storage characteristics and ambient hydrogen pressure self-safety control ability. Furthermore, this heating and cooling heat supply system is not harmful to the natural environment because it is a chlorofluorocarbon-free, and low noise type system. We have developed in the following element technologies to attain the above purposes, that is development of hydrogen absorbing alloys with high heat outputs and technologies to construct the heat pump system. This study is proceeded at present as one of the programs in New Sunshine Project, which aims for development of ingenious energy utilization technology to achieve reduction of primary energy consumption with keeping cultural and wealthy life and preventing deterioration of global environment. (orig.)

  5. Utilization of Plant Refuses as Component of Heavy Metal Ion ...

    African Journals Online (AJOL)

    The ability of the fabricated sensors to detect the presence of heavy metals was analyzed using electrochemical methods like cyclic voltammetry and differential pulse anodic stripping voltammetry. Results showed that the fabricated electrode were able to detect the presence of mercury and lead ions in aqueous solutions ...

  6. Source discrimination of heavy metals in sediment and water of To Lich River in Hanoi City using multivariate statistical approaches.

    Science.gov (United States)

    Thuong, Nguyen Thi; Yoneda, Minoru; Ikegami, Maiko; Takakura, Masato

    2013-10-01

    The concentrations of Mn, Fe, Ni, Cr, Cu, Pb, Zn, As, and Cd were determined to evaluate the level of contamination of To Lich River in Hanoi City. All metal concentrations in 0-10-cm water samples, except Mn, were lower than the maximum permitted concentration for irrigation water standard. Meanwhile, concentrations of As, Cd, and Zn in 0-30-cm sediments were likely to have adverse effects on agriculture and aquatic life. Sediment pollution assessment was undertaken using enrichment factor and geoaccumulation index (I geo). The I geo results indicated that the sediment was not polluted with Cr, Mn, Fe, and Ni, and the pollution level increased in the order of Cu < Pb < Zn < As < Cd. Meanwhile, significant enrichment was shown for Cd, As, Zn, and Pb. Cluster and principal component analyses suggest that As and Mn in sediment were derived from both lithogenic and anthropogenic sources, while Cu, Pb, Zn, Cr, Cd, and Ni originated from anthropogenic sources such as vehicular fumes for Pb and metallic discharge from industrial sources and fertilizer application for other metals.

  7. Heavy metal toxicity in rice and soybean plants cultivated in contaminated soil

    Directory of Open Access Journals (Sweden)

    Maria Lígia de Souza Silva

    2014-04-01

    Full Text Available Heavy metals can accumulate in soil and cause phytotoxicity in plants with some specific symptoms. The present study evaluated the specific symptoms on rice and soybeans plants caused by excess of heavy metals in soil. Rice and soybean were grown in pots containing soil with different levels of heavy metals. A completely randomized design was used, with four replications, using two crop species and seven sample soils with different contamination levels. Rice and soybean exhibited different responses to the high concentrations of heavy metals in the soil. Rice plants accumulated higher Cu, Mn, Pb and Zn concentrations and were more sensitive to high concentrations of these elements in the soil, absorbing them more easily compared to the soybean plants. However, high available Zn concentrations in the soil caused phytotoxicity symptoms in rice and soybean, mainly chlorosis and inhibited plant growth. Further, high Zn concentrations in the soil reduced the Fe concentration in the shoots of soybean and rice plants to levels considered deficient.

  8. Radionuclides and heavy metal uptake by lolium italicum plant as affected by saline water irrigation

    International Nuclear Information System (INIS)

    Ramadan, A.A.; Aly, A.I.; Helal, M.H.

    2001-01-01

    The use of saline waters to grow crops on increasingly metal polluted soils is becoming a common practice in the arid regions. Nevertheless, the effects of soil and water salinity on radionuclides and heavy metal fluxes in polluted areas are not well understood. The aim of this study was to evaluate in pot experiments the plant uptake of cesium-137, Co-60, Mn-54, Zinc, cadmium and copper from a polluted alluvial aridisol as affected by salt water irrigation. Fertilized soil material was planted in pots with L. Italicum for 18 weeks under greenhouse conditions. The plants were irrigated either with water or with salt solution of variable variable Na/Ca ratio and harvested every 5-7 weeks. In addition to elemental analysis of plants and soil extracts root length was determined by a gridline intersect method and the viable part of the roots was estimated by a root protein inex. Saline (Na) water irrigation increased cobalt-60, manganese-54 and heavy metal solubility in soil, reduced root viability and enhanced the uptake of Co-60, Mn-54, Cd, Cu, Zn and Na by L.italicum and reduced the uptake of Cs-137. Ca counteracted these effects partly. The presented results demonstrated a dual effect of salinity on radiouclides and heavy metal availability to plants and suggest a relationship between root mortality and the enhanced Co-60, Mn-54, and heavy metake ny salt stressed plants

  9. Relationship between plant biodiversity and heavy metal bioavailability in grasslands overlying an abandoned mine.

    Science.gov (United States)

    Hernández, A J; Pastor, J

    2008-04-01

    Abandoned metal mines in the Sierra de Guadarrama, Madrid, Spain, are often located in areas of high ecological value. This is true of an abandoned barium mine situated in the heart of a bird sanctuary. Today the area sustains grasslands, interspersed with oakwood formations of Quercus ilex and heywood scrub (Retama sphaerocarpa L.), used by cattle, sheep and wild animals. Our study was designed to establish a relationship between the plant biodiversity of these grasslands and the bioavailability of heavy metals in the topsoil layer of this abandoned mine. We conducted soil chemical analyses and performed a greenhouse evaluation of the effects of different soil heavy metal concentrations on biodiversity. The greenhouse bioassays were run for 6 months using soil samples obtained from the mine polluted with heavy metals (Cu, Zn, Pb and Cd) and from a control pasture. Soil heavy metal and Na concentrations, along with the pH, had intense negative effects on plant biodiversity, as determined through changes in the Shannon index and species richness. Numbers of grasses, legumes, and composites were reduced, whilst other species (including ruderals) were affected to a lesser extent. Zinc had the greatest effect on biodiversity, followed by Cd and Cu. When we compared the sensitivity of the biodiversity indicators to the different metal content variables, pseudototal metal concentrations determined by X-ray fluorescence (XRF) were the most sensitive, followed by available and soluble metal contents. Worse correlations between biodiversity variables and metal variables were shown by pseudototal contents obtained by plasma emission spectroscopy (ICP-OES). Our results highlight the importance of using as many different indicators as possible to reliably assess the response shown by plants to heavy metal soil pollution.

  10. Distribution and risk evaluation of heavy metals in agricultural soils of southeastern Zunyi city, China

    International Nuclear Information System (INIS)

    Chen Hongliang; Xu Huajie; Song Yuping; Tan Hong; Xie Feng; He Jinlin

    2008-01-01

    The pollution of heavy metals (As, Pb, Cd, Cr, and Hg) in agricultural soils of Southeastern Zunyi, Guizhou Province were investigated and assessed in this paper. The results showed that the average contents of heavy metals in the soils were As 11.39mg/kg, Pb 38.75mg/kg, Cd 0.34mg/kg, Cr 40.45mg/kg, Hg 0.21mg/kg. The Cd is the main contamination element, with an average single pollution index of 1.13, and an average single ecological risk index of 50.85, showing this area is in medium ecological risk class. The highest pollution index is 1.43 in Zunyi County, with an average single ecological risk index of 64.35. The results also indicated that Cd and Hg had caused some relevant ecological risk by comparing the pollution index with the ecological risk index of heavy metals. (authors)

  11. Accumulation, mobility and plant availability of heavy metals in soils irrigated with untreated sewage effluent in Central Mexico

    International Nuclear Information System (INIS)

    Siebe-Grabach, C.

    1994-01-01

    In Irrigation District 03, Tula, Mexico, wastewater from Mexico City has been used for irrigating agricultural land since the beginning of this century. Today, approximately 85 000 ha are irrigated, alfalfa and maize being the main crops. The sewage effluent does not receive any treatment previous to its evacuation to this irrigation district, and only a part of the water is stored in the Endho Dam before being used, receiving in this way a kind or primary treatment through the sedimentation processes taking place. The reuse of wastewater for agricultural purposes represents an economic source of water and nutrients and has become an important disposal alternative for Mexico City. Nevertheless the contaminants and pathogens contained in the water represent a potential public health hazard and the production capacity of the soils. The aim of the present investigation is to determine the actual contamination levels of heavy metals (Pb, Cd, Cu, Zn) in soils, analysing the accumulation tendencies in time and space, and also to characterize their mobility and plant availability and thus their ecotoxicity. (orig.) [de

  12. Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China.

    Science.gov (United States)

    Qing, Xiao; Yutong, Zong; Shenggao, Lu

    2015-10-01

    The purpose of this study was to determine the concentrations and health risk of heavy metals in urban soils from a steel industrial district in China. A total of 115 topsoil samples from Anshan city, Liaoning, Northeast China were collected and analyzed for Cr, Cd, Pb, Zn, Cu, and Ni. The geoaccumulation index (Igeo), pollution index (PI), and potential ecological risk index (PER) were calculated to assess the pollution level in soils. The hazard index (HI) and carcinogenic risk (RI) were used to assess human health risk of heavy metals. The average concentration of Cr, Cd, Pb, Zn, Cu, and Ni were 69.9, 0.86, 45.1, 213, 52.3, and 33.5mg/kg, respectively. The Igeo and PI values of heavy metals were in the descending order of Cd>Zn>Cu>Pb>Ni>Cr. Higher Igeo value for Cd in soil indicated that Cd pollution was moderate. Pollution index indicated that urban soils were moderate to highly polluted by Cd, Zn, Cu, and Pb. The spatial distribution maps of heavy metals revealed that steel industrial district was the contamination hotspots. Principal component analysis (PCA) and matrix cluster analysis classified heavy metals into two groups, indicating common industrial sources for Cu, Zn, Pb, and Cd. Matrix cluster analysis classified the sampling sites into four groups. Sampling sites within steel industrial district showed much higher concentrations of heavy metals compared to the rest of sampling sites, indicating significant contamination introduced by steel industry on soils. The health risk assessment indicated that non-carcinogenic values were below the threshold values. The hazard index (HI) for children and adult has a descending order of Cr>Pb>Cd>Cu>Ni>Zn. Carcinogenic risks due to Cr, Cd, and Ni in urban soils were within acceptable range for adult. Carcinogenic risk value of Cr for children is slightly higher than the threshold value, indicating that children are facing slight threat of Cr. These results provide basic information of heavy metal pollution control

  13. Distribution and migration of heavy metals in atmospheric air of the cities of the Republic of Uzbekistan

    International Nuclear Information System (INIS)

    Kulmatov, R.A.; Kulmatova, D.R.

    2007-01-01

    Full text: Among the pollutants of environment the heavy metals (HM) Hg, Cd, As, Sb, Se, Cr, U and others and numerous of their compounds have the importance meaning, which have cumulative, carcinogenic and mutagenic effect. The solution of problems of monitoring and protection of the atmospheric air requires the studying of distribution and migration forms of HM in atmospheric air of cities, and so-called 'background' territories. Insufficient sensitivity and accuracy of physical-chemical methods of analyzes requires development and applying high-sensitive and multi-component analysis methods of determination of contents and migration forms of HM in atmospheric air. The method of neutron-activated analyze, based on using of impactor and method of condensation proposed by us for the determining contents of large number HM on level 10 -7 -10 -13 gr/m 3 and disperse elements of content aerosols, and phase distribution of HM in air at one time. Aerosol phase caught on the filter of AFA type, and vapor-gas by method of condensation on traps. Mass median diameters (MMD) of particles on steps of the modified impactor Mea used by us were as follow: on 1st step - 11.5; on 2nd - 3.6; on 3rd - 1.8; on 4th - 1.03; on 5th - >0.4 μm. The efficiency of division of aerosol particles on the impactor estimated by electronic microscope. Elements containing in composition of particle with size 3 for Fe, Al, Na and Cl, and from 0.001 till 0.01 μg/m 3 for U, As, Co, Se, Cd, Au and Hg. There was determined that the distributions of concentration of HM in atmospheric air cities obey to logarithmically-normal law of distribution. Studying of migration forms of HM in atmospheric air of big cities exposed follows: In atmospheric air cities of HM such as Hg, Se, Zn, Cr, Au and Br in prevalent quantity migrates in composition of particle with size 50%) migrates in composition of submicron particles or vapor-gas phase with size < 0.4 μm, that allows to bring them to the number of global

  14. Genomic analyses of metal resistance genes in three plant growth promoting bacteria of legume plants in Northwest mine tailings, China.

    Science.gov (United States)

    Xie, Pin; Hao, Xiuli; Herzberg, Martin; Luo, Yantao; Nies, Dietrich H; Wei, Gehong

    2015-01-01

    To better understand the diversity of metal resistance genetic determinant from microbes that survived at metal tailings in northwest of China, a highly elevated level of heavy metal containing region, genomic analyses was conducted using genome sequence of three native metal-resistant plant growth promoting bacteria (PGPB). It shows that: Mesorhizobium amorphae CCNWGS0123 contains metal transporters from P-type ATPase, CDF (Cation Diffusion Facilitator), HupE/UreJ and CHR (chromate ion transporter) family involved in copper, zinc, nickel as well as chromate resistance and homeostasis. Meanwhile, the putative CopA/CueO system is expected to mediate copper resistance in Sinorhizobium meliloti CCNWSX0020 while ZntA transporter, assisted with putative CzcD, determines zinc tolerance in Agrobacterium tumefaciens CCNWGS0286. The greenhouse experiment provides the consistent evidence of the plant growth promoting effects of these microbes on their hosts by nitrogen fixation and/or indoleacetic acid (IAA) secretion, indicating a potential in-site phytoremediation usage in the mining tailing regions of China. Copyright © 2014. Published by Elsevier B.V.

  15. Metal nanoparticles (other than gold or silver) prepared using plant extracts for medical applications

    Science.gov (United States)

    Pasca, Roxana-Diana; Santa, Szabolcs; Racz, Levente Zsolt; Racz, Csaba Pal

    2016-12-01

    There are many modalities to prepare metal nanoparticles, but the reducing of the metal ions with plant extracts is one of the most promising because it is considerate less toxic for the environment, suitable for the use of those nanoparticles in vivo and not very expensive. Various metal ions have been already studied such as: cobalt, copper, iron, platinum, palladium, zinc, indium, manganese and mercury and the number of plant extracts used is continuously increasing. The prepared systems were characterized afterwards with a great number of methods of investigation: both spectroscopic (especially UV-Vis spectroscopy) and microscopic (in principal, electron microscopy-TEM) methods. The applications of the metal nanoparticles obtained are diverse and not completely known, but the medical applications of such nanoparticles occupy a central place, due to their nontoxic components, but some diverse industrial applications do not have to be forgotten.

  16. Statistical Analysis Of Heavy Metals Concentration In Watermelon Plants Irrigated By Wastewater

    Science.gov (United States)

    Khanjani, M. J.; Maghsoudi moud, A. A.; Saffari, V. R.; Hashamipor, S. M.; Soltanizadeh, M.

    2008-01-01

    Concentration of heavy metals in vegetables irrigated by urban wastewater is a cause of serious concern due to the potentials health problems of consuming contaminated produce. In this study it is tried to model the concentration of heavy metals (Cd, Cr, Cu, Fe,…) as a function of their concentration in watermelon roots and stems. Our study shows there is a good relationship between them for most of collected data. By measuring the concentration in root and stem of watermelon plant samples before harvesting, the concentration of heavy metal in watermelon's fruit can be estimated by presented mathematical models. This study shows the concentrations of heavy metals in fruits, roots and stems of watermelon plants are very high and in dangerous level when irrigated by municipal waste water.

  17. Economic, Demographic, and Fiscal Impact of Nuchik, Inc. Poultry Processing Plant on the City of Artesia and the Artesia Public Schools.

    Science.gov (United States)

    McDonald, Brian

    The city of Artesia (New Mexico) was considering the issuance of $210 million in industrial revenue bonds (IRB) for construction of a new poultry processing plant 5 miles west of Artesia in Eddy County. Since property financed with IRB is exempt from all state and local property taxes for the life of the bonds, the city of Artesia requested an…

  18. Metals and metalloids accumulation by wild plants from a mining zone of Mexico

    International Nuclear Information System (INIS)

    Juarez Santillana, L. F.; Lucho Constantino, C. A.; Blasco, J. L.; Beltran Hernandez, R. I.

    2009-01-01

    In extreme environments, as mineralized soils, there are adapted organisms to these abnormal conditions. Plants that inhabit these kinds of soils are called metallophytes, and their capacity to tolerate and/or accumulate metals is important for the cleanup of metal polluted ecosystems. The objective of this study was therefore to identify the species of metallophytes present in the mining zone of Zimapan, Hidalgo. (Author)

  19. Modeling phytoextraction of heavy metals at multiply contaminated soils with hyperaccumulator plants

    OpenAIRE

    Khodaverdiloo, Habib

    2009-01-01

    Soils and waters contaminated with heavy metals pose a major environmental and human health problem that needs an effective and affordable technological solution. Phytoextraction offers a reasonable technology which uses plants to extract the heavy metals from soils. However, the effectiveness of this new method needs to be demonstrated by means of mathematical modeling. The phytoextraction models also are needed to manage the contaminated soils. A thorough literature review indic...

  20. Bio-accumulation of essential and heavy metals in plant food

    OpenAIRE

    Balabanova, Biljana; Stafilov, Trajče

    2017-01-01

    The contamination of soils due to the presence of toxic metals can result in serious negative consequences, such as damage of ecosystems and of agricultural productivity, deterioration of food chain and serious human and animal health problems. The impact of soil pollution (due to urban and mining areas) on the food chain presents a challenge for many investigations. Availability of essential and potentially toxic metals in polluted soil and their possible transfer in various plant foods were...

  1. Assessing Metal Exposures in a Community near a Cement Plant in the Northeast U.S.

    OpenAIRE

    Zhao Dong; Michael S. Bank; John D. Spengler

    2015-01-01

    Cement production is a major source of metals and metalloids in the environment, while exposures to metals and metalloids may impact human health in the surrounding communities. We recruited 185 participants living in the vicinity of a cement plant in the northeast U.S., and measured the levels of aluminum (Al), arsenic (As), cadmium (Cd), lead (Pb), mercury (Hg), and selenium (Se) in blood and Hg in hair samples from them. A questionnaire was used to assess potential sources of Hg exposure...

  2. Speciation, sources, and risk assessment of heavy metals in suburban vegetable garden soil in Xianyang City, Northwest China

    Science.gov (United States)

    Wang, Lijun; Tao, Wendong; Smardon, Richard C.; Xu, Xue; Lu, Xinwei

    2018-06-01

    Intensive anthropogenic activities can lead to soil heavy metal contamination resulting in potential risks to the environment and to human health. To reveal the concentrations, speciation, sources, pollution level, and ecological risk of heavy metals in vegetable garden soil, a total of 136 soil samples were collected from three vegetable production fields in the suburbs of Xianyang City, Northwest China. These samples were analyzed by inductively coupled plasma- atomic emission spectrometry and atomic fluorescence spectrometry. The results showed that the mean concentrations of Cd, Co, Cu, Mn, Pb, Zn, and Hg in vegetable garden soil were higher than the corresponding soil element background values of Shaanxi Province. The heavy metals studied in vegetable garden soil were primarily found in the residual fraction, averaging from 31.26% (Pb) to 90.23% (Cr). Considering the non-residual fractions, the mobility or potential risk was in the order of Pb (68.74%)>Co (60.54%)>Mn (59.28%) >Cd (53.54%) ≫Ni (23.36%) >Zn (22.73%)>Cu (14.93%)>V (11.81%)>Cr (9.78%). Cr, Mn, Ni, V, and As in the studied soil were related to soilforming parent materials, while Cu, Hg, Zn, Cd, Co, and Pb were associated with the application of plastic films, fertilizers, and pesticides, as well as traffic emissions and industrial fumes. Cr, Ni, V, and As presented low contamination levels, whereas Co, Cu, Mn, Pb, and Zn levels were moderate, and Cd and Hg were high. Ecological risk was low for Co, Cr, Cu, Mn, Pb, Zn, and As, with high risk observed for Cd and Hg. The overall pollution level and ecological risk of these heavy metals were high.

  3. Contamination and health risks from heavy metals in cultivated soil in Zhangjiakou City of Hebei Province, China.

    Science.gov (United States)

    Liang, Qian; Xue, Zhan-Jun; Wang, Fei; Sun, Zhi-Mei; Yang, Zhi-Xin; Liu, Shu-Qing

    2015-12-01

    A total of 79 topsoil samples (ranging from 0 to 20 cm in depth) were collected from a grape cultivation area of Zhangjiakou City, China. The total concentrations of As, Cd, Hg, Cr, Cu, Mn, Ni, Pb, and Zn in soil samples were determined to evaluate pollution levels and associated health risks in each sample. Pollution levels were calculated using enrichment factors (EF) and geoaccumulation index (I geo). Health risks for adults and children were quantified using hazard indexes (HI) and aggregate carcinogenic risks (ACR). The mean concentrations of measured heavy metals Cd, Hg, and Cu, only in the grape cultivation soil samples, were higher than the background values of heavy metals in Hebei Province. According to principal component analysis (PCA), the anthropogenic activities related to agronomic and fossil fuel combustion practices attributed to higher accumulations of Cd, Hg, and Cu, which have slightly polluted about 10-40% of the sampled soils. However, the HI for all of the heavy metals were lower than 1 (within safe limits), and the ACR of As was in the 10(-6)-10(-4) range (a tolerable level). This suggests the absence of both non-carcinogenic and carcinogenic health risks for adults and children through oral ingestion and dermal absorption exposure pathways in the studied area. It should be also noted that the heightened vulnerability of children to health risks was accounted for higher HI and ACR values. Consequently, heavy metal concentrations (e.g., Cd, Hg, Cu) should be periodically monitored in these soils and improved soil management practices are required to minimize possible impacts on children's health.

  4. Speciation, sources, and risk assessment of heavy metals in suburban vegetable garden soil in Xianyang City, Northwest China

    Science.gov (United States)

    Wang, Lijun; Tao, Wendong; Smardon, Richard C.; Xu, Xue; Lu, Xinwei

    2017-07-01

    Intensive anthropogenic activities can lead to soil heavy metal contamination resulting in potential risks to the environment and to human health. To reveal the concentrations, speciation, sources, pollution level, and ecological risk of heavy metals in vegetable garden soil, a total of 136 soil samples were collected from three vegetable production fields in the suburbs of Xianyang City, Northwest China. These samples were analyzed by inductively coupled plasma- atomic emission spectrometry and atomic fluorescence spectrometry. The results showed that the mean concentrations of Cd, Co, Cu, Mn, Pb, Zn, and Hg in vegetable garden soil were higher than the corresponding soil element background values of Shaanxi Province. The heavy metals studied in vegetable garden soil were primarily found in the residual fraction, averaging from 31.26% (Pb) to 90.23% (Cr). Considering the non-residual fractions, the mobility or potential risk was in the order of Pb (68.74%)>Co (60.54%)>Mn (59.28%) >Cd (53.54%) ≫Ni (23.36%) >Zn (22.73%)>Cu (14.93%)>V (11.81%)>Cr (9.78%). Cr, Mn, Ni, V, and As in the studied soil were related to soilforming parent materials, while Cu, Hg, Zn, Cd, Co, and Pb were associated with the application of plastic films, fertilizers, and pesticides, as well as traffic emissions and industrial fumes. Cr, Ni, V, and As presented low contamination levels, whereas Co, Cu, Mn, Pb, and Zn levels were moderate, and Cd and Hg were high. Ecological risk was low for Co, Cr, Cu, Mn, Pb, Zn, and As, with high risk observed for Cd and Hg. The overall pollution level and ecological risk of these heavy metals were high.

  5. [Pollution Assessment and Spatial Distribution Characteristics of Heavy Metals in Soils of Coal Mining Area in Longkou City].

    Science.gov (United States)

    Liu, Shuo; Wu, Quan-yuan; Cao, Xue-jiang; Wang, Ji-ning; Zhang, Long-long; Cai, Dong-quan; Zhou, Li-yuan; Liu, Na

    2016-01-15

    The present paper takes the coal mining area of Longkou City as the research area. Thirty-six topsoil (0-20 cm) samples were collected and the contents of 5 kinds of heavy metals were determined, including Cd, As, Ni, Ph, Cr. Geo-statistics analysis was used to analyze the spatial distribution of heavy metals. Principal component analysis (PCA) was used to explore the pollution sources of heavy metals and the degree of heavy metals pollution was evaluated by weighted average comprehensive pollution evaluation method. The results showed that enrichment phenomenon was significant for the 5 kinds of heavy metals. Taking secondary standard of National Environment Quality Standard for Soil as the background value, their exceed standard rates were 72.22%, 100%, 100%, 91.67%, 100%, respectively. Average contents of heavy metals in the soil samples were all over the national standard level two and were 1.53, 11.86, 2.40, 1.31, 4.09 times of the background value. In addition, the average contents were much higher than the background value of the topsoil in the eastern part of Shandong Province and were 9.85, 39.98, 8.85, 4.29, 12.71 times of the background value. According to the semivariogram model, we obtained the nugget-effects of 5 kinds of heavy metals and their values were in the order of As (0.644) > Cd (0.627) > Cr (0.538) > Ni (0.411) > Pb (0.294), all belonging to moderate spatial correlation. On the whole, the central part of the Sangyuan Coal Mine and its surrounding areas were the most seriously polluted, while the pollution of heavy metals in the east and west of the study area was relatively light. Principal component analysis suggested that the enrichment of Cd, As, Ni, Cr was due to irrigation of wastewater, the discharge of industry and enterprise, and the industrial activity. Automobile exhaust and coal combustion were the main pollution sources of Pb. The single-factor assessment of heavy metals pollution showed that the degree of different heavy metals

  6. Distillation plant for tritium enrichment in metallic lithium

    International Nuclear Information System (INIS)

    Barnert, E.; Butzek, D.; Cordewiner, J.; Heinrichs, E.

    1984-06-01

    To close the external fuel cycle of fusion reactors, the tritium obtained from lithium must be separated off. One way of doing this is by high-temperature distillation and subsequent permeation. The construction of high-temperature distillation plant is described. For the time being, deuterium is processed instead of tritium. (orig.) [de

  7. Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: An ecosustainable approach

    Energy Technology Data Exchange (ETDEWEB)

    Rai, P.K. [Mizoram Central University, Tanhril (India). School for Earth Science & Natural Resource Management

    2008-07-01

    This review addresses the global problem of heavy metal pollution originating from increased industrialization and urbanization and its amelioration by using wetland plants both in a microcosm as well as natural/field condition. This review mentions salient features of wetland ecosystems, their vegetation component, and the pros and cons involved in heavy metal removal. Wetland plants are preferred over other bio-agents due to their low cost, frequent abundance in aquatic ecosystems, and easy handling. Constructed wetlands proved to be effective for the abatement of heavy metal pollution from acid mine drainage; landfill leachate; thermal power; and municipal, agricultural, refinery, and chlor-alkali effluent. the physicochemical properties of wetlands provide many positive attributes for remediating heavy metals. Typha, Phragmites, Eichhornia, Azolla, Lemna, and other aquatic macrophytes are some of the potent wetland plants for heavy metal removal. Biomass disposal problem and seasonal growth of aquatic macrophytes are some limitations in the transfer of phytoremediation technology from the laboratory to the field. However, the disposed biomass of macrophytes may be used for various fruitful applications. An ecosustainable model has been developed through the author's various works, which may ameliorate some of the limitations. The creation of more areas for phytoremediation may also aid in wetlands conservation. Genetic engineering and biodiversity prospecting of endangered wetland plants are important future prospects in this regard.

  8. In-Situ Analysis Of Metal(loid)s In Plants: State Of The Art And Artefacts

    Science.gov (United States)

    Metals and metalloids play important roles in plant function and metabolism. Likewise, plants subsequently introduce vital dietary nutrition to people and animals. Understanding the transport, localisation and speciation of these elements is critical for understanding availabil...

  9. Accumulation of heavy metals from contaminated soil to plants and evaluation of soil remediation by vermiculite.

    Science.gov (United States)

    Malandrino, Mery; Abollino, Ornella; Buoso, Sandro; Giacomino, Agnese; La Gioia, Carmela; Mentasti, Edoardo

    2011-01-01

    We evaluated the distribution of 15 metal ions, namely Al, Cd, Cu, Cr, Fe, La, Mn, Ni, Pb, Sc, Ti, V, Y, Zn and Zr, in the soil of a contaminated site in Piedmont (Italy). This area was found to be heavily contaminated with Cu, Cr and Ni. The availability of these metal ions was studied using Tessier's sequential extraction procedure: the fraction of mobile species, which potentially is the most harmful for the environment, was much higher than that normally present in unpolluted soils. This soil was hence used to evaluate the effectiveness of treatment with vermiculite to reduce the availability of the pollutants to two plants, Lactuca sativa and Spinacia oleracea, by pot experiments. The results indicated that the addition of vermiculite significantly reduces the uptake of metal pollutants by plants, confirming the possibility of using this clay in amendment treatments of metal-contaminated soils. The effect of plant growth on metal fractionation in soils was investigated. Finally, the sum of the metal percentages extracted into the first two fractions of Tessier's protocol was found to be suitable in predicting the phytoavailability of most of the pollutants present in the investigated soil. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Assessing Metal Exposures in a Community near a Cement Plant in the Northeast U.S.

    Directory of Open Access Journals (Sweden)

    Zhao Dong

    2015-01-01

    Full Text Available Cement production is a major source of metals and metalloids in the environment, while exposures to metals and metalloids may impact human health in the surrounding communities. We recruited 185 participants living in the vicinity of a cement plant in the northeast U.S., and measured the levels of aluminum (Al, arsenic (As, cadmium (Cd, lead (Pb, mercury (Hg, and selenium (Se in blood and Hg in hair samples from them. A questionnaire was used to assess potential sources of Hg exposure. Multivariate regressions and spatial analyses were performed to evaluate the relative importance of different routes of exposures. The metal concentrations in blood or hair samples of our study participants were comparable to the U.S. general or regional population. Smoking contributed significantly to Cd and Pb exposures, and seafood consumption contributed significantly to Hg and As exposures, while variables related to the cement plant were not significantly associated with metal concentrations. Our results suggest that our study population was not at elevated health risk due to metal exposures, and that the contribution of the cement plant to metal exposures in the surrounding community was minimal.

  11. Studies on Terrestrial Herbaceous Plants Tolerance to Excess Heavy Metals: Methodological Approach

    Directory of Open Access Journals (Sweden)

    Andon Vassilev

    2010-12-01

    Full Text Available Plant tolerance to heavy metals is а scientific issue attracting significantattention due to the possible use of tolerant plants for phytoremediation purposes as wellas due to the fact that the molecular mechanisms of this phenomenon are not clearenough. Despite of the increasing volume of research on the problem, the availableinformation in many cases is incomplete and/or difficult to compare with other studiesbecause of the significant differences in the experimental designs, range of used metalconcentrations, exposure time, etc. In this review-paper both the advantages andlimitations of the used experimental designs as well as the methods for evaluation ofheavy metal tolerance are briefly discussed.

  12. Growth responses and metal accumulation capabilities of woody plants during the phytoremediation of tannery sludge.

    Science.gov (United States)

    Shukla, O P; Juwarkar, Asha A; Singh, S K; Khan, Shoeb; Rai, U N

    2011-01-01

    Five woody plants species (i.e. Terminalia arjuna, Prosopis juliflora, Populus alba, Eucalyptus tereticornis and Dendrocalamus strictus) were selected for phytoremediation and grow on tannery sludge dumps of Common Effluent Treatment Plant (CETP), Unnao (Uttar Pradesh), India. Concentration of toxic metals were observed high in the raw tannery sludge i.e. Fe-1667>Cr-628>Zn-592>Pb-427>Cu-354>Mn-210>Cd-125>Ni-76 mg kg(-1) dw, respectively. Besides, physico-chemical properties of the raw sludge represented the toxic nature to human health and may pose numerous risks to local environment. The growth performances of woody plants were assessed in terms of various growth parameters such as height, diameter at breast height (DBH) and canopy area of plants. All the plant species have the capabilities to accumulate substantial amount of toxic metals in their tissues during the remediation. The ratio of accumulated metals in the plants were found in the order Fe>Cr>Mn>Pb>Zn>Cu>Cd>Ni and significant changes in physico-chemical parameters of tannery sludge were observed after treatment. All the woody plants indicated high bioconcentration factor for different metals in the order Fe>Cr>Mn>Ni>Cd>Pb>Zn>Cu. After one year of phytoremediation, the level of toxic metals were removed from tannery sludge up to Cr (70.22)%, Ni (59.21)%, Cd (58.4)%, Fe (49.75)%, Mn (30.95)%, Zn (22.80)%, Cu (20.46)% and Pb (14.05)%, respectively. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. The insects as an assessment tool of ecotoxicology associated with metal toxic plants.

    Science.gov (United States)

    Azmat, Rafia; Moin, Sumeira; Saleem, Ailyan

    2018-04-01

    In this article, the assessment of lethal effects of Copper (Cu) on Luffa acutangula and Spinacia oleracea plants investigated in relation to the presence of insect species Oxycarenus hyalinipennis. The analysis of Cu-treated plants displays the information of rapid growth of Oxycarenus hyalinipennis species in triplicate. However, results showed that the impact of metal toxicity appeared as the reduced growth rate of plants, and dense growth of the insect species Oxycarenus halinipennis followed by the chewing/degradation of the toxic plant. The insect's inductees into polluted plants were justified by morphological and primary molecular level using plant stress hypothesis through analysis of the primary chemistry of leaves and roots. That includes various sugar contents which substantiated that these compounds act as the best feeding stimulant from oviposition to adult stage of the insects and accountable for the enactment of insects in the toxic plants. The relationship of these insects to the toxic plants linked with the higher contents of glucose, carbohydrates, and cellulose. The higher carbohydrate and cellulose content in both plants species under Cu accumulation exhibited more signs of insect mutilation over control plants and the lack of chemical resistances allowed the adult insects to spread, survive, reproduce and live long. The presence of insects developed relationships that assimilate all developmental, biological, and the interactive toxicity of Cu in both plant species which indicate the risk associated with these plants. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Heavy Metal Pollution and Ecological Assessment around the Jinsha Coal-Fired Power Plant (China).

    Science.gov (United States)

    Huang, Xianfei; Hu, Jiwei; Qin, Fanxin; Quan, Wenxuan; Cao, Rensheng; Fan, Mingyi; Wu, Xianliang

    2017-12-18

    Heavy metal pollution is a serious problem worldwide. In this study, 41 soil samples and 32 cabbage samples were collected from the area surrounding the Jinsha coal-fired power plant (JCFP Plant) in Guizhou Province, southwest China. Pb, Cd, Hg, As, Cu and Cr concentrations in soil samples and cabbage samples were analysed to study the pollution sources and risks of heavy metals around the power plant. The results indicate that the JCFP Plant contributes to the Pb, Cd, As, Hg, Cu, and Cr pollution in nearby soils, particularly Hg pollution. Cu and Cr in soils from both croplands and forestlands in the study area derive mainly from crustal materials or natural processes. Pb, Cd and As in soils from croplands arise partly through anthropogenic activities, but these elements in soils from forestlands originate mainly from crustal materials or natural processes. Hg pollution in soils from both croplands and forestlands is caused mainly by fly ash from the JCFP Plant. The cabbages grown in the study area were severely contaminated with heavy metals, and more than 90% of the cabbages had Pb concentrations exceeding the permissible level established by the Ministry of Health and the Standardization Administration of the People's Republic of China. Additionally, 30% of the cabbages had As concentrations exceeding the permissible level. Because forests can protect soils from heavy metal pollution caused by atmospheric deposition, close attention should be given to the Hg pollution in soils and to the concentrations of Pb, As, Hg and Cr in vegetables from the study area.

  15. Heavy Metal Pollution Potential of Zinc Leach Residues Discarded in çinkur Plant

    OpenAIRE

    ALTUNDOĞAN, H. Soner; ERDEM, Mehmet; ORHAN, Ramazan

    1998-01-01

    In this paper, results of the study on heavy metals solubility behaviour of filter cakes from leaching of clinkerized Waelz oxide and flue dust collected during clinkerization in çinkur plant are given. The release of heavy metals into water was investigated by subjecting the cakes to solubility tests systematically. The effect of contact time, pH, liquid/solid ratio and successive extractions on the releasing of heavy metals (Cd, Pb, Mn and Zn) into water was examined and their conc...

  16. Uptake and distribution of soil-applied labelled heavy metals in cereal plants and products

    International Nuclear Information System (INIS)

    Oberlaender, H.E.; Roth, K.

    1983-01-01

    In the present paper investigations are described on the uptake, distribution and translocation of mercury, cadmium, chromium and zinc by spring and winter varieties of wheat, rye and barley. Pot experiments were carried out at low concentrations of the heavy metals in order to avoid growth interference during the uptake. Using radioisotopes the pathway of the metals was traced through different organs into the milling products. An ion-exchanger was added to the soils and its efficiency of reducing the uptake of the metals by the plants was tested

  17. Water supply and disposal in the City of Kiev following the accident at Chernobyl nuclear power plant

    International Nuclear Information System (INIS)

    Tzarik, N.

    1990-01-01

    Kiev is the capital of the Ukrainian Soviet Socialist Republic, and is the USSR's third largest city, with a population of 2.7 million people. The city water supply is dependent on three sources; two surface ones, i.e. the rivers Dniepr and Desna, and one underground one. The average total water consumption of the city amounts to 1.5 x 10 6 m 3 /day. The Chernobyl Power Plant accident posed a threat to the normal operation of the Kiev water supply system. In the circumstances, it became necessary to adopt the most urgent measures aimed at ensuring a continuous delivery of potable water to the city under conditions of the potential radioactive contamination of water supply sources. Round-the-clock monitoring of the radioactivity of the water source has taken place, including the control of water quality at various treatment stages, the variation of radioactivity of different filter loading materials and the radioactivity of waste waters, sludge and silt. The main concern was the threat of contamination of the Kiev reservoir. However the concentration of radionuclides in the drinking water supply has not exceeded the permissible limits. Various requirements for the water supply in the face of radioactive contamination are mentioned such as several water supplies, one of which is preferably an underground source, flexible conditions of water treatment and continuous radiation monitoring of the water supply (UK)

  18. The distribution of metal elements in plant leaf. Second report

    International Nuclear Information System (INIS)

    Ohnishi, Toshiyuki; Masuko, Shoji; Noya, Youichi; Kasahara, Shigeru

    2002-01-01

    We have reported in first report as to metal elements containing in some leaf such as clethra, bamboo and maple. This time, we measured the contents zinc, cesium and cobalt about clethra, maple in root, blanch and anthotaxy. As to cesium, the density contained in anthotaxy of clethra was 1.5 times as much as that of soil. In the same manner, the density of cobalt contained in the blanch of clethra was 10 times as much as that of maple. As to zinc, the difference contained root, blanch and leaf between clethra and maple were small. (author)

  19. Phytoextraction of toxic metals by sunflower and corn plants

    Czech Academy of Sciences Publication Activity Database

    Soudek, Petr; Petrová, Šárka; Benešová, Dagmar; Vaněk, Tomáš

    2010-01-01

    Roč. 8, 3-4 (2010), s. 383-390 ISSN 1459-0255 R&D Projects: GA MŠk 2B08058; GA MŠk 1M06030; GA MŠk OC09082 Institutional research plan: CEZ:AV0Z50380511 Keywords : Toxic metals * lead * zinc Subject RIV: DK - Soil Contamination ; De-contamination incl. Pesticides Impact factor: 0.425, year: 2010 www.isfae.org/scientficjournal/2010/issue3/abstracts/abstract68.php

  20. Microbial and Plant-Assisted Bioremediation of Heavy Metal Polluted Environments: A Review

    Directory of Open Access Journals (Sweden)

    Omena Bernard Ojuederie

    2017-12-01

    Full Text Available Environmental pollution from hazardous waste materials, organic pollutants and heavy metals, has adversely affected the natural ecosystem to the detriment of man. These pollutants arise from anthropogenic sources as well as natural disasters such as hurricanes and volcanic eruptions. Toxic metals could accumulate in agricultural soils and get into the food chain, thereby becoming a major threat to food security. Conventional and physical methods are expensive and not effective in areas with low metal toxicity. Bioremediation is therefore an eco-friendly and efficient method of reclaiming environments contaminated with heavy metals by making use of the inherent biological mechanisms of microorganisms and plants to eradicate hazardous contaminants. This review discusses the toxic effects of heavy metal pollution and the mechanisms used by microbes and plants for environmental remediation. It also emphasized the importance of modern biotechnological techniques and approaches in improving the ability of microbial enzymes to effectively degrade heavy metals at a faster rate, highlighting recent advances in microbial bioremediation and phytoremediation for the removal of heavy metals from the environment as well as future prospects and limitations. However, strict adherence to biosafety regulations must be followed in the use of biotechnological methods to ensure safety of the environment.

  1. Long-term field metal extraction by Pelargonium: phytoextraction efficiency in relation to plant maturity.

    Science.gov (United States)

    Shahid, Muhammad; Arshad, Muhammad; Kaemmerer, Michel; Pinelli, Eric; Probst, Anne; Baque, David; Pradere, Philippe; Dumat, Camille

    2012-01-01

    The long length of periods required for effective soil remediation via phytoextraction constitutes a weak point that reduces its industrial use. However, these calculated periods are mainly based on short-term and/or hydroponic controlled experiments. Moreover, only a few studies concern more than one metal, although soils are scarcely polluted by only one element. In this scientific context, the phytoextraction of metals and metalloids (Pb, Cd, Zn, Cu, and As) by Pelargonium was measured after a long-term field experiment. Both bulk and rhizosphere soils were analyzed in order to determine the mechanisms involved in soil-root transfer. First, a strong increase in lead phytoextraction was observed with plant maturity, significantly reducing the length of the period required for remediation. Rhizosphere Pb, Zn, Cu, Cd, and As accumulation was observed (compared to bulk soil), indicating metal mobilization by the plant, perhaps in relation to root activity. Moreover, metal phytoextraction and translocation were found to be a function of the metals' nature. These results, taken altogether, suggest that Pelargonium could be used as a multi-metal hyperaccumulator under multi-metal soil contamination conditions, and they also provide an interesting insight for improving field phytoextraction remediation in terms of the length of time required, promoting this biological technique.

  2. Microbial and Plant-Assisted Bioremediation of Heavy Metal Polluted Environments: A Review

    Science.gov (United States)

    Ojuederie, Omena Bernard

    2017-01-01

    Environmental pollution from hazardous waste materials, organic pollutants and heavy metals, has adversely affected the natural ecosystem to the detriment of man. These pollutants arise from anthropogenic sources as well as natural disasters such as hurricanes and volcanic eruptions. Toxic metals could accumulate in agricultural soils and get into the food chain, thereby becoming a major threat to food security. Conventional and physical methods are expensive and not effective in areas with low metal toxicity. Bioremediation is therefore an eco-friendly and efficient method of reclaiming environments contaminated with heavy metals by making use of the inherent biological mechanisms of microorganisms and plants to eradicate hazardous contaminants. This review discusses the toxic effects of heavy metal pollution and the mechanisms used by microbes and plants for environmental remediation. It also emphasized the importance of modern biotechnological techniques and approaches in improving the ability of microbial enzymes to effectively degrade heavy metals at a faster rate, highlighting recent advances in microbial bioremediation and phytoremediation for the removal of heavy metals from the environment as well as future prospects and limitations. However, strict adherence to biosafety regulations must be followed in the use of biotechnological methods to ensure safety of the environment. PMID:29207531

  3. Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China

    International Nuclear Information System (INIS)

    Deng, H.; Ye, Z.H.; Wong, M.H.

    2004-01-01

    The concentrations of lead, zinc, copper and cadmium accumulated by 12 emergent-rooted wetland plant species including different populations of Leersia hexandra, Juncus effusus and Equisetum ramosisti were investigated in field conditions of China. The results showed that metal accumulation by wetland plants differed among species, populations and tissues. Populations grown in substrata with elevated metals contained significantly higher metals in plants. Metals accumulated by wetland plants were mostly distributed in root tissues, suggesting that an exclusion strategy for metal tolerance widely exists in them. That some species/populations could accumulate relatively high metal concentrations (far above the toxic concentration to plants) in their shoots indicates that internal detoxification metal tolerance mechanism(s) are also included. The factors affecting metal accumulation by wetland plants include metal concentrations, pH, and nutrient status in substrata. Mostly concentrations of Pb and Cu in both aboveground and underground tissues of the plants were significantly positively related to their total and/or DTPA-extractable fractions in substrata while negatively to soil N and P, respectively. The potential use of these wetland plants in phytoremediation is also discussed

  4. Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China

    Energy Technology Data Exchange (ETDEWEB)

    Deng, H.; Ye, Z.H.; Wong, M.H

    2004-11-01

    The concentrations of lead, zinc, copper and cadmium accumulated by 12 emergent-rooted wetland plant species including different populations of Leersia hexandra, Juncus effusus and Equisetum ramosisti were investigated in field conditions of China. The results showed that metal accumulation by wetland plants differed among species, populations and tissues. Populations grown in substrata with elevated metals contained significantly higher metals in plants. Metals accumulated by wetland plants were mostly distributed in root tissues, suggesting that an exclusion strategy for metal tolerance widely exists in them. That some species/populations could accumulate relatively high metal concentrations (far above the toxic concentration to plants) in their shoots indicates that internal detoxification metal tolerance mechanism(s) are also included. The factors affecting metal accumulation by wetland plants include metal concentrations, pH, and nutrient status in substrata. Mostly concentrations of Pb and Cu in both aboveground and underground tissues of the plants were significantly positively related to their total and/or DTPA-extractable fractions in substrata while negatively to soil N and P, respectively. The potential use of these wetland plants in phytoremediation is also discussed.

  5. Reduction in health risk induced by semi-volatile organic compounds and metals in a drinking water treatment plant

    International Nuclear Information System (INIS)

    Zhao, F.; Yin, J.; Zhang, X. X.; Chen, Y.; Zhang, Y.; Wu, B.; Li, M.

    2015-01-01

    This study investigated health risk reduction in a drinking water treatment plant of Nanjing City (China) based on chemical detection of 22 semi-volatile organic compounds (SVOCs) and 24 metallic elements in source water and drinking water during 2009–2011. Chemical analysis showed that 15 SVOCs and 9 metals were present in the water. Health risk assessment revealed that hazard quotient of each pollutant and hazard index (HI) of all the detectable pollutants were below 1.00, indicating that the chemicals posed negligible non-carcinogenic risk to local residents. Benzo(a)pyrene may induce carcinogenic risk since its risk index via both oral and dermal exposure exceeded the safety level (1.00E-6), but other SVOCs induced no carcinogenic risk. Total HI of the SVOCs was 1.08E-3 for the source water and 1.56E-3 for the drinking water, suggesting that the used conventional treatment processes (coagulation/sedimentation, sand filtration and chlorine disinfection) cannot effectively reduce the non-carcinogenic risk. The source water had higher carcinogenic risk than the drinking water, but risk index of the drinking water still exceeded 1.00E-6. This study might serve as a basis for health risk assessment of drinking water and also as a benchmark for the authorities to reduce health risk arising from trace-level hazardous pollutants.

  6. Determination of heavy metals contamination of trees and soils due vehicular emission in Karachi city

    International Nuclear Information System (INIS)

    Ara, F.; Iqbal, M.Z.; Qureshi, M.S.

    1996-01-01

    The concentration of Cu, Fe, Ni, and Pb in Eucalyptus sp. and Ficus religiosa leaves were at highest at those sites where the traffic density was highest, but the level of Zn in Eucalyptus sp. was highest at the other site. Cr was not detected in both the species in any area, while Cd was fund only in samples of Eucalyptus sp. Other site is comparatively less polluted area, therefore the level of these metals in leaves of above mentioned trees were low. The levels of above metals in soil were low as compared to leaves samples. Cu was highest at the site where the traffic is highest and lowest at other site, while level of P was highest in heavily traffic area and lowest at comparatively less traffic site soil samples. Zn showed significant results, highest concentration was detected at the highly polluted areas. (orig/A.B.)

  7. Metals in particle-size fractions of the soils of five European cities

    International Nuclear Information System (INIS)

    Ajmone-Marsan, F.; Biasioli, M.; Kralj, T.; Grcman, H.; Davidson, C.M.; Hursthouse, A.S.; Madrid, L.; Rodrigues, S.

    2008-01-01

    Soils from Aveiro, Glasgow, Ljubljana, Sevilla and Torino have been investigated in view of their potential for translocation of potentially toxic elements (PTE) to the atmosphere. Soils were partitioned into five size fractions and Cr, Cu, Ni, Pb and Zn were measured in the fractions and the whole soil. All PTE concentrated in the <10 μm fraction. Cr and Ni concentrated also in the coarse fraction, indicating a lithogenic contribution. An accumulation factor (AF) was calculated for the <2 and <10 μm fraction. The AF values indicate that the accumulation in the finer fractions is higher where the overall contamination is lower. AF for Cr and Ni are particularly low in Glasgow and Torino. An inverse relationship was found between the AF of some metals and the percentage of <10 μm particles that could be of use in risk assessment or remediation practices. - Metals in size fractions of urban soils

  8. Liquid metal reactor/Pressurized water reactor plant comparison study

    International Nuclear Information System (INIS)

    Halverson, T.G.

    1986-01-01

    The selection between alternative electric power generating technologies is mainly based on their overall economics. Capital costs account for over 60% of the total busbar cost of nuclear plants. Estimates reported in the literature have shown capital cost ratios of LMRs to PWRs ranging from less than 1 to as high as 1.8. To reduce this range of uncertainty, the study selected a method for cataloging plant hardware and then performed comparisons using engineering judgment as to the anticipated and reasonable cost differences. The paper summarizes the resulting one-on-one comparisons of components, systems, and buildings and identifies the LMR-PWR similarities and differences which influence costs. The study leads to the conclusion that the capital cost of the most up-to-date large LMR design would be very close to that of the latest PWRs

  9. Alleviation of Heavy Metal Stress in Plants and Remediation of Soil by Rhizosphere Microorganisms

    OpenAIRE

    Mishra, Jitendra; Singh, Rachna; Arora, Naveen K.

    2017-01-01

    Increasing concentration of heavy metals (HM) due to various anthropogenic activities is a serious problem. Plants are very much affected by HM pollution particularly in contaminated soils. Survival of plants becomes tough and its overall health under HM stress is impaired. Remediation of HM in contaminated soil is done by physical and chemical processes which are costly, time-consuming, and non-sustainable. Metal–microbe interaction is an emerging but under-utilized technology that can be ex...

  10. [Study on transition metals in airborne particulate matter in Shanghai city's subway].

    Science.gov (United States)

    Bao, Liang-Man; Lei, Qian-Tao; Tan, Ming-Guang; Li, Xiao-Lin; Zhang, Gui-Lin; Liu, Wei; Li, Yan

    2014-06-01

    PM10 and PM2.5 aerosol particle samples were collected at a subway station in Shanghai and their morphology, chemical composition and transition metal species were studied. The mass concentrations of PM10 and PM2.5 inside the subway station were significantly higher than those measured in aboveground ambient air. The PM levels inside subway were much higher than the state control limit. The aerosol composition in the metro station was quite different from that of the aboveground urban particles. Concentrations of Fe, Mn and Cr were higher than the averages of aboveground urban air particles by factors of 8, 2, and 2, respectively, showing a substantial enrichment in subway. Scanning electron microscope (SEM) analysis showed that the subway particles had flat surfaces in combination with parallel scratches and sharp edges and looked like metal sheets or flakes. Furthermore, analysis of the atomic composition of typical subway particles by energy dispersive X-Ray (EDX) spectroscopy showed that oxygen and iron dominated the mass of the particles. The X-ray absorption near-edge structure (XANES) spectroscopy results showed that a fraction (> 26%) of the total iron in the PM10 was in the form of pure Fe, while in the street particles Fe(III) was shown to be a significant fraction of the total iron. The work demonstrated that the underground subway stations in Shanghai were an important microenvironment for exposure to transition metal aerosol for the people taking subway train for commuting every day and those who work in the subway stations, and the metal particle exposure for people in the subway station should not be ignored.

  11. Phytoremediation of soil co-contaminated with heavy metals and TNT using four plant species.

    Science.gov (United States)

    Lee, Insook; Baek, Kyunghwa; Kim, Hyunhee; Kim, Sunghyun; Kim, Jaisoo; Kwon, Youngseok; Chang, Yoontoung; Bae, Bumhan

    2007-11-01

    We investigated the germination, growth rates and uptake of contaminants of four plant species, barnyard grass (Echinochloa crusgalli), sunflower (Helianthus annuus), Indian mallow (Abutilon avicennae) and Indian jointvetch (Aeschynomene indica), grown in soil contaminated with cadmium (Cd), lead (Pb) and 2,4,6-trinitrotoluene (TNT). These contaminants are typically found at shooting ranges. Experiments were carried out over 180 days using both single plant cultures and cultures containing an equal mix of the 4 plant species. Germination rates differed among the species in single culture (92% for H. annuus, 84% for E. crusgalli, 48% for A. avicennae and 38% Ae. indica). In the 4-plant mix culture, phytoremediation for the removal of heavy metals and TNT from contaminated soils should use a single plant species rather than a mixture of several plants.

  12. Acute phytotoxicity of seven metals alone and in mixture: Are Italian soil threshold concentrations suitable for plant protection?

    International Nuclear Information System (INIS)

    Baderna, Diego; Lomazzi, Eleonora; Pogliaghi, Alberto; Ciaccia, Gianluca; Lodi, Marco; Benfenati, Emilio

    2015-01-01

    Metals can pollute soils in both urban and rural areas with severe impacts on the health of humans, plants and animals living there. Information on metal toxicity is therefore important for ecotoxicology. This study investigated the phytotoxicity of different metals frequently found as pollutants in soils: arsenic, cadmium, chromium, lead, mercury, nickel and zinc. Cucumber (Cucumis sativus), sorghum (Sorghum saccharatum) and cress (Lepidium sativum) seeds were used as models for other plants used in human nutrition such as cereals, rice, fruits and vegetables. The 72-h germination rate and root elongations were selected as short-term ecotoxicological endpoints in seeds exposed to single metals and mixtures. Metals were spiked onto OECD standard soils in concentrations comparable to current Italian contamination threshold concentrations for residential and commercial soils. Arsenic, chromium, mercury and nickel were the most toxic metals in our experimental conditions, particularly to cress seeds (5.172, 152 and 255.4 mg/kg as 72 h IC50 for arsenic, mercury and nickel respectively). Italian limits were acceptable for plant protection only for exposure to each metal alone but not for the mixtures containing all the metals concentrations expected by their respective legislative threshold. The effects of the mixture were class-specific: trends were comparable in dicots but different in monocots. The response induced by the mixture at high concentrations differed from that theoretically obtainable by summing the effects of the individual metals. This might be due to partial antagonism of the metals in soil or to the formation of complexes between the metals, which reduce the bioavailability of the pollutants for plants. - Graphical abstract: Metals investigated: Arsenic, Cadmium, Chromium, Lead, Mercury, Nickel and Zinc. - Highlights: • The short-term phytotoxicity of seven metals was investigated with 3 higher plants. • Italian limits for arsenic and nickel in

  13. Acute phytotoxicity of seven metals alone and in mixture: Are Italian soil threshold concentrations suitable for plant protection?

    Energy Technology Data Exchange (ETDEWEB)

    Baderna, Diego, E-mail: diego.baderna@marionegri.it; Lomazzi, Eleonora; Pogliaghi, Alberto; Ciaccia, Gianluca; Lodi, Marco; Benfenati, Emilio

    2015-07-15

    Metals can pollute soils in both urban and rural areas with severe impacts on the health of humans, plants and animals living there. Information on metal toxicity is therefore important for ecotoxicology. This study investigated the phytotoxicity of different metals frequently found as pollutants in soils: arsenic, cadmium, chromium, lead, mercury, nickel and zinc. Cucumber (Cucumis sativus), sorghum (Sorghum saccharatum) and cress (Lepidium sativum) seeds were used as models for other plants used in human nutrition such as cereals, rice, fruits and vegetables. The 72-h germination rate and root elongations were selected as short-term ecotoxicological endpoints in seeds exposed to single metals and mixtures. Metals were spiked onto OECD standard soils in concentrations comparable to current Italian contamination threshold concentrations for residential and commercial soils. Arsenic, chromium, mercury and nickel were the most toxic metals in our experimental conditions, particularly to cress seeds (5.172, 152 and 255.4 mg/kg as 72 h IC50 for arsenic, mercury and nickel respectively). Italian limits were acceptable for plant protection only for exposure to each metal alone but not for the mixtures containing all the metals concentrations expected by their respective legislative threshold. The effects of the mixture were class-specific: trends were comparable in dicots but different in monocots. The response induced by the mixture at high concentrations differed from that theoretically obtainable by summing the effects of the individual metals. This might be due to partial antagonism of the metals in soil or to the formation of complexes between the metals, which reduce the bioavailability of the pollutants for plants. - Graphical abstract: Metals investigated: Arsenic, Cadmium, Chromium, Lead, Mercury, Nickel and Zinc. - Highlights: • The short-term phytotoxicity of seven metals was investigated with 3 higher plants. • Italian limits for arsenic and nickel in

  14. Tree Mortality Undercuts Ability of Tree-Planting Programs to Provide Benefits: Results of a Three-City Study

    Directory of Open Access Journals (Sweden)

    Sarah Widney

    2016-03-01

    Full Text Available Trees provide numerous benefits for urban residents, including reduced energy usage, improved air quality, stormwater management, carbon sequestration, and increased property values. Quantifying these benefits can help justify the costs of planting trees. In this paper, we use i-Tree Streets to quantify the benefits of street trees planted by nonprofits in three U.S. cities (Detroit, Michigan; Indianapolis, Indiana, and Philadelphia, Pennsylvania from 2009 to 2011. We also use both measured and modeled survival and growth rates to “grow” the tree populations 5 and 10 years into the future to project the future benefits of the trees under different survival and growth scenarios. The 4059 re-inventoried trees (2864 of which are living currently provide almost $40,000 (USD in estimated annual benefits ($9–$20/tree depending on the city, the majority (75% of which are increased property values. The trees can be expected to provide increasing annual benefits during the 10 years after planting if the annual survival rate is higher than the 93% annual survival measured during the establishment period. However, our projections show that with continued 93% or lower annual survival, the increase in annual benefits from tree growth will not be able to make up for the loss of benefits as trees die. This means that estimated total annual benefits from a cohort of planted trees will decrease between the 5-year projection and the 10-year projection. The results of this study indicate that without early intervention to ensure survival of planted street trees, tree mortality may be significantly undercutting the ability of tree-planting programs to provide benefits to neighborhood residents.

  15. Production of positron emitters of metallic elements to study plant uptake and distribution

    International Nuclear Information System (INIS)

    Watanabe, S.; Ishioka, N.S.; Sekine, T.; Osa, A.; Koizumi, M.; Kiyomiya, S.; Nakanishi, H.; Mori, S.

    2001-01-01

    The metallic positron emitters 52 Mn, 52 Fe and 62 Zn, the elements of which are essential nutrients for plants as well as for animals, have been produced for a new tracer method in plant physiology. The tracer method utilizes the detection of annihilation γ-rays, like PET in nuclear medicine, to obtain two-dimensional images on a plant as well as to obtain radioactivity counts at specified points in a plant; this method allows us to observe the tracer movement in a living plant without touching the test plant. The previously reported methods of radiochemical separation of these metallic positron emitters from targets were partly modified from the view of their use in plant physiology. Radionuclidic impurities remaining in the final solutions were examined by γ-ray spectrometry, and their influences on the above-mentioned measurements are discussed. From the experiments on a barley plant, the speeds of 52 Mn 2+ ion and 52 Fe 3+ - mugineic-acid complex have been obtained for the first time to be 0.2 cm/min and 1.0 cm/min, respectively. (orig.)

  16. Characterization of As and trace metals embedded in PM10 particles in Puebla City, México.

    Science.gov (United States)

    Morales-García, S S; Rodríguez-Espinosa, P F; Jonathan, M P; Navarrete-López, M; Herrera-García, M A; Muñoz-Sevilla, N P

    2014-01-01

    Forty-eight air-filter samples (PM10) were analysed to identify the concentration level of partially leached metals (PLMs; As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and V) from Puebla City, México. Samples were collected during 2008 from four monitoring sites: (1) Tecnológico (TEC), (2) Ninfas (NIN), (3) Hermanos Serdán (HS) and (4) Agua Santa (AS). The results indicate that in TEC, As (avg. 424 ng m(-3)), V (avg. 19.2 ng m(-3)), Fe (avg. 1,202 ng m(-3)), Cu (avg. 86.6 ng m(-3)), Cr (41.9 ng m(-3)) and Ni (18.6 ng m(-3)) are on the higher side than other populated regions around the world. The enrichment of PLMs is due to the industrial complexes generating huge dust particles involving various operations. The results are supported by the correlation of metals (Mn, Cd and Co) with Fe indicating its anthropogenic origin and likewise, As with Cd, Co, Fe, Mn, Pb and V. The separate cluster of As, Fe and Mn clearly signifies that it is due to continuous eruption of fumaroles from the active volcano Popocatépetl in the region.

  17. Levels and sources of heavy metals and PAHs in sediment of Djibouti-city (Republic of Djibouti).

    Science.gov (United States)

    Mahdi Ahmed, Moussa; Doumenq, Pierre; Awaleh, Mohamed Osman; Syakti, Agung Dhamar; Asia, Laurence; Chiron, Serge

    2017-07-15

    Selected heavy metals and polycyclic aromatic hydrocarbons (PAHs) were determined in marine sediment from 28 sites Djibouti city. The concentrations of trace elements varied from 0 to 288.1mg/kg with relative abundance of trace metals in sediments was in the order of Zn>Cu>Ni>Cr>Co>Pb>Cd. Zn, Cu and Ni exceeded consensus based sediment quality guideline values 7, 14, 15 sites respectively. Enrichment factor and pollution load index showed relatively low to moderate contamination. The concentrations of total 16 PAHs varied widely depending on the sample location and ranged from 2.65 to 3760.11ng·g -1 , with the mean concentration value of 387.87ng·g -1 . Compositions and relative abundance of individual PAH using molecular diagnostic ratio using congener's m/z 178 and 202 indicated pyrolytic origin and reflecting a petroleum combustion, grass/wood and coal combustion and a petrogenic source. This study represents the first pollution baseline and a reference for future studies in Djibouti. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Soil fertility and plant diversity enhance microbial performance in metal-polluted soils.

    Science.gov (United States)

    Stefanowicz, Anna M; Kapusta, Paweł; Szarek-Łukaszewska, Grażyna; Grodzińska, Krystyna; Niklińska, Maria; Vogt, Rolf D

    2012-11-15

    This study examined the effects of soil physicochemical properties (including heavy metal pollution) and vegetation parameters on soil basal respiration, microbial biomass, and the activity and functional richness of culturable soil bacteria and fungi. In a zinc and lead mining area (S Poland), 49 sites were selected to represent all common plant communities and comprise the area's diverse soil types. Numerous variables describing habitat properties were reduced by PCA to 7 independent factors, mainly representing subsoil type (metal-rich mining waste vs. sand), soil fertility (exchangeable Ca, Mg and K, total C and N, organic C), plant species richness, phosphorus content, water-soluble heavy metals (Zn, Cd and Pb), clay content and plant functional diversity (based on graminoids, legumes and non-leguminous forbs). Multiple regression analysis including these factors explained much of the variation in most microbial parameters; in the case of microbial respiration and biomass, it was 86% and 71%, respectively. The activity of soil microbes was positively affected mainly by soil fertility and, apparently, by the presence of mining waste in the subsoil. The mining waste contained vast amounts of trace metals (total Zn, Cd and Pb), but it promoted microbial performance due to its inherently high content of macronutrients (total Ca, Mg, K and C). Plant species richness had a relatively strong positive effect on all microbial parameters, except for the fungal component. In contrast, plant functional diversity was practically negligible in its effect on microbes. Other explanatory variables had only a minor positive effect (clay content) or no significant influence (phosphorus content) on microbial communities. The main conclusion from this study is that high nutrient availability and plant species richness positively affected the soil microbes and that this apparently counteracted the toxic effects of metal contamination. Copyright © 2012 Elsevier B.V. All rights

  19. Heavy metal and radioactivity measurements in fish, water, plants and soils in tin-mining pool

    International Nuclear Information System (INIS)

    Muhammad Samudi Yasir; Norlaili Ahmad Kabir; Redzuwan Yahaya; Amran Abdul Majid

    2008-01-01

    Malaysia aggressively reclaimed most of their disused tin-mining pool especially for agricultural activities, freshwater fish farming area, recreational area, houses area and even as an industrial area. Past mining activities might induced the concentration of naturally occurring radionuclide (NORM) and heavy metal at the disused tin-mining pool ecosystem. A study has been conducted on the status of heavy metal (Hf, Zr, Mn, Cu, Zn, As, Cd, Sn, Sb, Ba, Hg and Pb) concentration and naturally occurring radionuclide activity in fish, water, plants and sediments at three different disused tin-mining pool near by Sepang and Puchong, Selangor Darul Ehsan. Sample of fish, water, plant and sediment being analyze using ICP-MS. The concentrations of heavy metal in sediment and plant are higher than its concentrations in fish and followed by water. The highest concentration of heavy metal in sediment and water is barium, whereas the highest concentration of heavy metal in fish and plant is zinc and manganese. The result also showed that only mercury level in fish collected in second disused tin-mining pool (0.53 ± 0.20 mg/ kg) is exceed the maximum limit (0.5 mg/ kg) prescribe by the Malaysian Food Act (Act 281). The activity of U-238 and Th-232 in sediment was found to be relatively higher than its activity in fish, plant or water (30.76 ± 2.71 to 35.34 ± 0.27 Bq/ kg) and (9.37 ± 2.30 - 18.86 ± 2.60 Bq/ kg). The determination of K-40 activity showed that it is highly contained in plant and fish than in sediment or water. (author)

  20. The environmental risk prediction for Odessa city in the case of ammonia emissions from Odessa Port Plant

    Directory of Open Access Journals (Sweden)

    Sergiy V. Melnik

    2015-06-01

    Full Text Available In this paper, we consider the environmental risk prediction for Odessa's citizens in the case of ammonia emissions from Odessa Port Plant. The potential risk of ammonia emission can be calculated by multiplying the probability of an accident and the probability of human health damage. One of the steps in the quantitative risk assessment is the analysis of weather conditions such as wind direction. From 1899 wind-rose analysis shows an increasing the frequency of winds direction which is dangerous for the city. The ammonia concentration in the city can be calculated by the TOXI ver.2.2 method, based on the Gaussian dispersion model for pollutants in the atmosphere. The magnitude of risk was assessed by two methods: the US EPA method, and Integrated Hygienic Method, based on normal probability distribution. The results of the risk assessment for the two methods showed an acceptable risk for Odessa's citizens in the case of ammonia emissions into the atmosphere.

  1. Heavy metal accumulation in soils, plants, and hair samples: an assessment of heavy metal exposure risks from the consumption of vegetables grown on soils previously irrigated with wastewater.

    Science.gov (United States)

    Massaquoi, Lamin Daddy; Ma, Hui; Liu, Xue Hui; Han, Peng Yu; Zuo, Shu-Mei; Hua, Zhong-Xian; Liu, Dian-Wu

    2015-12-01

    It is common knowledge that soils irrigated with wastewater accumulate heavy metals more than those irrigated with cleaner water sources. However, little is known on metal concentrations in soils and cultivars after the cessation of wastewater use. This study assessed the accumulation and health risk of heavy metals 3 years post-wastewater irrigation in soils, vegetables, and farmers' hair. Soils, vegetables, and hair samples were collected from villages previously irrigating with wastewater (experimental villages) and villages with no history of wastewater irrigation (control villages). Soil samples were digested in a mixture of HCL/HNO3/HCLO4/HF. Plants and hair samples were digested in HNO3/HCLO4 mixture. Inductive coupled plasma-optical emission spectrometer (ICP-OES) was used to determine metal concentrations of digested extracts. Study results indicate a persistence of heavy metal concentration in soils and plants from farms previously irrigated with wastewater. In addition, soils previously irrigated with wastewater were severely contaminated with cadmium. Hair metal concentrations of farmers previously irrigating with wastewater were significantly higher (P metal concentrations in hair samples of farmers previously irrigating with wastewater were not associated with current soil metal concentrations. The study concludes that there is a persistence of heavy metals in soils and plants previously irrigated with wastewater, but high metal concentrations in hair samples of farmers cannot be associated with current soil metal concentrations.

  2. Health risk assessment of citrus contaminated with heavy metals in Hamedan city, potential risk of Al and Cu

    Directory of Open Access Journals (Sweden)

    Oshin Rezaei Raja

    2016-08-01

    Full Text Available Background: Fruits especially citrus species are an integral part of human diet. Contamination of foodstuffs by heavy and toxic metals via environmental pollution has become an inevitable challenge these days. Therefore, the effect of pollutants on food safety for human consumption is a global public concern. In this regards, this study was conducted for Al and Cu health risk assessment through the consumption of citrus species (orange, grapefruit, sweet lime and tangerine in Hamedan city in 2015. Methods: After collecting and preparing 4 samples from each citrus species with acid digestion method, the concentrations of Al and Cu were determined using inductively coupled plasma optical emission spectrometry (ICP–OES with three replications. In addition, SPSS was employed to compare the mean concentrations of metals with maximum permissible limits (MPL of the World Health Organization (WHO. Results: The results showed that the mean concentrations of Al in citrus samples were 3.25±0.35 mg/kg and higher than WHO maximum permissible limits. The mean concentrations of Cu in citrus samples with 0.16±0.05 mg/kg are lower than WHO maximum permissible limits. Also, the computed health risk assessment revealed that there was no potential risk for children and adult by consuming the studied citrus. Conclusion: Based on the results, consumption of citrus species has no adverse effect on the consumers’ health, but as a result of the increased utilization of agricultural inputs (metal based fertilizers and pesticides, sewage sludge and wastewater by farmers and orchardists, regular periodic monitoring of chemical pollutants content in foodstuffs are recommended for food safety.

  3. Assessment of environmentally available metals in sediment samples from water for public supply of the city of Palmas, Tocantis, Brazil

    International Nuclear Information System (INIS)

    Oliveira, Bruna Rafaela

    2012-01-01

    The sediments are an important compartment used as a tool for assessment of aquatic ecosystems quality, for indicating the presence of contaminants released continuously into the environment as a result of human activities. Among chemical substances discharged to surface water, there are metals that in undesirable amounts, can be toxic to biota. Due to the importance of sediment and of shortage of data of water quality of the Araguaia-Tocantins river system, the present study conducted an assessment of environmentally available metals in sediment samples from water for public supply of the city of Palmas, in Tocantins, Brazil. The concentrations of As, Cd, Pb and Se were analyzed by Graphite Furnace Atomic Absorption Spectrometry (GFAAS), Ag, Al, B, Ba, Be, Ca, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Sb, Sc, Si, Ti, V and Zn were analyzed by Inductively Coupled Plasma Optical Emission Spectrometry (ICPOES) and Hg by Cold Vapor Atomic Absorption Spectrometry (CVAAS). Two partial solubilization processes were performed for a comparative study, one with HCl 0,1 M and agitation at room temperature, considered a milder method for metal extraction from anthropogenic origin, and another with HNO 3 8 M and microwave heating, considered as an alternative to more complex methods of total digestion, since it provides a good evaluation of the total concentration of the elements. The sediment quality evaluation was realized by comparing the concentration values of the elements As, Cd, Cr, Cu, Hg, Ni, Pb and Zn with the quality guidelines (TEL and PEL) adopted by Canadian Council of Minister of the Environment (CCME), to thereby contribute to the environmental quality of the water of the Araguaia-Tocantins river system. (author)

  4. Contamination characteristics and source apportionment of heavy metals in topsoil from an area in Xi'an city, China.

    Science.gov (United States)

    Chen, Xiuduan; Lu, Xinwei

    2018-04-30

    As soil-extractable elements potentially pose ecological and health risks, identifying their contamination characteristics and sources is crucial. Therefore, to understand topsoil trace elements in the urban ring zone from the Second Ring Road to the Third Ring of Xi'an city in China, we determined the concentrations of Zn, Co, V, As, Cu, Mn, Ba, Ni and Pb, and analyzed the sources of the contamination. The results showed that the individual pollution indices of Pb, Co, Cu, Zn, Ba, Ni, Mn, As, and V were 1.79, 1.48, 1.41, 1.33, 1.20, 1.07, 1.04, 0.99, and 0.99, respectively. Evaluation with the aid of the pollution load index (PLI) indicated slight soil contamination by these elements in the study area. Using the positive matrix factorization (PMF) method, we identified four sources of contamination, namely (1) a natural source, (2) traffic emission source, (3) industrial emission source, and (4) mixed source. PMF is an effective tool for source apportionment of heavy metals in topsoil. The contribution rates of the natural source, traffic source, mixed source, and industrial source to the heavy metal contamination were specified as 25.04%, 24.71%, 24.99%, and 25.26%, respectively. Considering the above, any attempt to reduce the soil environmental cost of urban development, has to take into account the heavy metal contamination of the topsoil from industries, traffic, and other activities. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Metal uptake by native plants and revegetation potential of mining sulfide-rich waste-dumps.

    Science.gov (United States)

    Gomes, Patrícia; Valente, Teresa; Pamplona, Jorge; Braga, Maria Amália Sequeira; Pissarra, José; Gil, José António Grande; de la Torre, Maria Luisa

    2014-01-01

    Waste dumps resulting from metal exploitation create serious environmental damage, providing soil and water degradation over long distances. Phytostabilization can be used to remediate these mining sites. The present study aims to evaluate the behavior of selected plant species (Erica arborea, Ulex europaeus, Agrostis delicatula, and Cytisus multiflorus) that grow spontaneously in three sulfide-rich waste-dumps (Lapa Grande, Cerdeirinha, and Penedono, Portugal). These sites represent different geological, climatic and floristic settings. The results indicate distinctive levels and types of metal contamination: Penedono presents highest sulfate and metal contents, especially As, with low levels of Fe. In contrast, at Lapa Grande and Cerdeirinha Fe, Mn, and Zn are the dominant metals. In accordance, each waste dump develops a typical plant community, providing a specific vegetation inventory. At Penedono, Agrostis delicatula accumulates As, Pb, Cu, Mn, and Zn, showing higher bioaccumulation factors (BF) for Mn (32.1) and As (24.4). At Cerdeirinha, Ulex europaeus has the highest BF for Pb (984), while at Lapa Grande, Erica arborea presents high BF for Mn (9.8) and Pb (8.1). Regarding TF, low values were obtained for most of the metals, especially As (TF < 1). Therefore, the results obtained from representative plant species suggest appropriate behavior for phytostabilization measures.

  6. Accumulation of heavy metals in plants and potential phytoremediation of lead by potato, Solanum tuberosum L.

    Science.gov (United States)

    Antonious, George F; Snyder, John C

    2007-05-01

    The use of sewage sludge as a source of nutrients in crop production is increasing in the United States and worldwide. A field study was conducted on a 10% slope at Kentucky State University Research Farm. Eighteen plots of 22x3.7 m each were separated using metal borders and the soil in six plots was mixed with sewage sludge, six plots were mixed with yard waste compost, and six unamended plots were used for comparison purposes. During a subsequent 3-year study, plots were planted with potato (year 1), pepper (year 2), and broccoli (year 3). The objectives of this investigation were to: (i) characterize chemical properties of soil-incorporated sewage sludge and yard waste compost; (ii) determine the concentration of seven heavy metals (Cd, Cr, Ni, Pb, Zn, Cu, and Mo) in sewage sludge and yard waste compost used for land farming; and (iii) monitor heavy metal concentrations in edible portions of plants at harvest. Concentrations of heavy metals in sewage sludge were below the U.S. EPA limits. Analysis of potato tubers, peppers, and broccoli grown in sludge-amended soil showed that Cd, Cr, Ni, and Pb were not significantly different from control plants. Concentrations of Zn, Cu, and Mo were significantly greater in tubers and peppers grown in sludge compared to their respective controls. Zn and Mo in broccoli heads were higher than their control plants. The ability of potato to accumulate lead needs additional investigation to optimize the phytoremediation of this pollutant element.

  7. Airborne heavy metal pollution in the environment of a danish steel plant

    DEFF Research Database (Denmark)

    Vestergaard, N. K.; Stephansen, U.; Rasmussen, L.

    1986-01-01

    A survey of heavy metal deposition was carried out in the vicinity of a Danish steel plant. Bulk precipitation and transplanted lichen (Hypogymnia physodes (L.) Nyl.) were sampled at 12 stations in the environment before and after the production had been converted from open-hearth furnaces...

  8. Genetic engineering in the improvement of plants for phytoremediation of metal polluted soils.

    NARCIS (Netherlands)

    Karenlampi, S.; Schat, H.; Vangronsveld, J.; Verkley, J.A.C.; van der Lelie, D.; Mergeay, M.; Tervahauta, A.I.

    2000-01-01

    Metal concentrations in soils are locally quite high, and are still increasing due to many human activities, leading to elevated risk for health and the environment. Phytoremediation may offer a viable solution to this problem, and the approach is gaining increasing interest. Improvement of plants

  9. 9 CFR 355.33 - Plant number to be embossed on metal containers.

    Science.gov (United States)

    2010-01-01

    ... AND VOLUNTARY INSPECTION AND CERTIFICATION CERTIFIED PRODUCTS FOR DOGS, CATS, AND OTHER CARNIVORA... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Plant number to be embossed on metal containers. 355.33 Section 355.33 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT...

  10. Metal uptake by plants from sludge-amended soils: caution is required in the plateau interpretation

    DEFF Research Database (Denmark)

    Hamon, R.E.; Holm, Peter Engelund; Lorenz, S.E.

    1999-01-01

    by increased sorption sites provided by the sludge constituents at the high sludge loading rates. We grew Raphanus sativus L. in a soil historically amended with sewage sludge at different rates and examined concentrations of Cd and Zn in the plants and in corresponding rhizosphere soil solution. Metal...

  11. Thin layer activation : on-line monitoring of metal loss in process plant

    International Nuclear Information System (INIS)

    Boulton, L.H.; Wallace, G.

    1993-01-01

    Corrosion, erosion and wear of metals is a common cause of failure in some process plant and equipment. Monitoring of these destructive effects has been done for many years to help plant engineers minimise the damage, in order to avoid unexpected failures and unscheduled shutdowns. Traditional methods of monitoring, such as standard NDT techniques, inform the engineer of what has happened, providing data such as culmulative loss of wall thickness. The modern approach to monitoring however, is to employ a technique which gives both current loss rates as well as integrated losses. Thin Layer Activation (TLA) provides on-line monitoring of corrosion, erosion and wear of metals, to a high degree of accuracy. It also gives cumulative information which can be backed up with weight-loss results if required. Thus current rather than historical loss rates are measured before any significant loss of metal has occurred. (author). 14 refs., 2 figs

  12. A survey of repair practices for nuclear power plant containment metallic pressure boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Oland, C.B.; Naus, D.J. [Oak Ridge National Lab., TN (United States)

    1998-05-01

    The Nuclear Regulatory Commission has initiated a program at the Oak Ridge National Laboratory to provide assistance in their assessment of the effects of potential degradation on the structural integrity and leaktightness of metal containment vessels and steel liners of concrete containments in nuclear power plants. One of the program objectives is to identify repair practices for restoring metallic containment pressure boundary components that have been damaged or degraded in service. This report presents issues associated with inservice condition assessments and continued service evaluations and identifies the rules and requirements for the repair and replacement of nonconforming containment pressure boundary components by welding or metal removal. Discussion topics include base and welding materials, welding procedure and performance qualifications, inspection techniques, testing methods, acceptance criteria, and documentation requirements necessary for making acceptable repairs and replacements so that the plant can be returned to a safe operating condition.

  13. A survey of repair practices for nuclear power plant containment metallic pressure boundaries

    International Nuclear Information System (INIS)

    Oland, C.B.; Naus, D.J.

    1998-05-01

    The Nuclear Regulatory Commission has initiated a program at the Oak Ridge National Laboratory to provide assistance in their assessment of the effects of potential degradation on the structural integrity and leaktightness of metal containment vessels and steel liners of concrete containments in nuclear power plants. One of the program objectives is to identify repair practices for restoring metallic containment pressure boundary components that have been damaged or degraded in service. This report presents issues associated with inservice condition assessments and continued service evaluations and identifies the rules and requirements for the repair and replacement of nonconforming containment pressure boundary components by welding or metal removal. Discussion topics include base and welding materials, welding procedure and performance qualifications, inspection techniques, testing methods, acceptance criteria, and documentation requirements necessary for making acceptable repairs and replacements so that the plant can be returned to a safe operating condition

  14. Recycle of radioactive scrap metal from the Oak Ridge Gaseous Diffusion Plant (K-25 Site)

    Energy Technology Data Exchange (ETDEWEB)

    Meehan, R.W. [DOE-Oak Ridge Operations Office, TN (United States)

    1997-02-01

    The scale of the metal available for reuse at the plant includes 22 million pounds of Ni, 17 million pounds of Al, 47 million pounds of copper, and 835 million pounds of steels. In addition there is a wide range of industrial equipment and other items of value. The author describes small bench scale and pilot plant scale efforts made at treating metal for decontamination and fabrication into cast stock or specialized containers for reuse within the DOE complex or release. These projects show that much of the material can be cleaned or chemically decontaminated to a level where it can be free released to various markets. Of the remaining metals, much of it can be cast into products which can be absorbed within the DOE complex.

  15. Heavy Metal Pollution in Settled Dust Associated with Different Urban Functional Areas in a Heavily Air-Polluted City in North China

    Science.gov (United States)

    Wan, Dejun; Han, Zhangxiong; Yang, Jinsong; Yang, Guanglin; Liu, Xingqi

    2016-01-01

    Understanding variations of heavy metals in atmospheric particles between different functional areas is significant for pollution control and urban planning in cities. To reveal pollution and spatial distribution of heavy metals in atmospheric particles from different urban functional areas in Shijiazhuang in North China, 43 settled dust samples were collected over the main urban area and heavy metal concentrations were determined in their pollution indexes (IPIs) of the ten heavy metals are 2.7–13.6 (5.7 ± 2.2), suggesting high or very high pollution levels of most dust. Relatively lower IPIs occur mainly in the administration-education area, the commercial area, and other unclassified sites; while peaks occur mainly in the North Railway Station, the northeastern industrial area, and some sites near heavily trafficked areas, implying the significant influence of intensive industrial (including coal combustion) and traffic activities on atmospheric heavy metal accumulation. These results suggest a clear need of mitigating atmospheric heavy metal pollution via controlling emissions of toxic metals (especially Cd and Pb) from industrial and traffic sources in the city. PMID:27834903

  16. Heavy Metal Pollution in Settled Dust Associated with Different Urban Functional Areas in a Heavily Air-Polluted City in North China.

    Science.gov (United States)

    Wan, Dejun; Han, Zhangxiong; Yang, Jinsong; Yang, Guanglin; Liu, Xingqi

    2016-11-10

    Understanding variations of heavy metals in atmospheric particles between different functional areas is significant for pollution control and urban planning in cities. To reveal pollution and spatial distribution of heavy metals in atmospheric particles from different urban functional areas in Shijiazhuang in North China, 43 settled dust samples were collected over the main urban area and heavy metal concentrations were determined in their pollution indexes (IPIs) of the ten heavy metals are 2.7-13.6 (5.7 ± 2.2), suggesting high or very high pollution levels of most dust. Relatively lower IPIs occur mainly in the administration-education area, the commercial area, and other unclassified sites; while peaks occur mainly in the North Railway Station, the northeastern industrial area, and some sites near heavily trafficked areas, implying the significant influence of intensive industrial (including coal combustion) and traffic activities on atmospheric heavy metal accumulation. These results suggest a clear need of mitigating atmospheric heavy metal pollution via controlling emissions of toxic metals (especially Cd and Pb) from industrial and traffic sources in the city.

  17. Stabilization of heavy metals in fired clay brick incorporated with wastewater treatment plant sludge: Leaching analysis

    Science.gov (United States)

    Kadir, A. A.; Hassan, M. I. H.; Salim, N. S. A.; Sarani, N. A.; Ahmad, S.; Rahmat, N. A. I.

    2018-04-01

    Wastewater treatment sludge or known as sewage sludge is regarded as the residue and produced by the sedimentation of the suspended solid during treatment at the wastewater treatment plant. As such, this sludge was gained from the separation process of the liquids and solids. This sludge wastes has becomes national issues in recent years due to the increasing amount caused by population and industrialization growth in Malaysia. This research was conducted to fully utilize the sludge that rich in dangerous heavy metals and at the same time act as low cost alternative materials in brick manufacturing. The investigation includes determination of heavy metal concentration and chemical composition of the sludge, physical and mechanical properties. Wastewater treatment sludge samples were collected from wastewater treatment plant located in Johor, Malaysia. X-Ray Fluorescence was conducted to determine the heavy metals concentration of wastewater treatment sludge. Different percentage of sludges which are 0%, 1%, 5%, 10%, and 20%, has been incorporated into fired clay brick. The leachability of heavy metals in fired clay brick that incorporated with sludge were determined by using Toxicity Characteristic Leaching Procedure (TCLP) and Synthetic Precipitation Leachability Procedure (SPLP) that has been analyzed by using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The results show a possibility to stabilize the heavy metals in fired clay brick incorporated with wastewater treatment sludge. 20% of the sludge incorporated into the brick is the most suitable for building materials as it leached less heavy metals concentration and complying with USEPA standard.

  18. Using of the geoinformation technologies for estimation of heavy metals distribution in the soils of urban ecosystems (on example of the city of Kaliningrad, Russia)

    Science.gov (United States)

    Chupakhina, Nataliia; Skrypnik, Lubov; Maslennikov, Pavel; Belov, Nicolai; Feduraev, Pavel; Chupakhina, Galina

    2017-04-01

    Urbanization can be described as a global socio-economic process, accompanied by a profound change of the anthropogenic environment and as a replacement of the natural ecosystems by the urban ones. Heavy metals occupy an important place among the different types of urban environmental pollutants. Since they do not undergo physico-chemical and biological degradation, they can accumulate in the surface soil layer for a long time, being available for the roots of plants and actively involved in the migration processes via trophic pathways. Study of accumulation of heavy metals in the most important component of urban ecosystems, which is soils, allows us to get a reliable estimate of the intensity of technogenic processes and to trace the major migration flows of these toxicants in the urbanized area. The geographic information systems (GIS) are a useful tool for collection, analysis, processing, synthesis and management of the spatially-distributed and other types of data. They provide the two-way communication between cartographic objects and databases. The aim of this study was to investigate the possibility of using of GIS technologies for estimating of distribution of heavy metals in the soil of the city of Kaliningrad. A Kaliningrad land region of 18.4 sq.km was investigated. Locations for the collection of samples were determined based on the analysis of anthropogenic loading of the streets of Kaliningrad. The total number of the locations was 57. The selected locations were marked with squares of 1.5 km per 1.5 km. Within each square 7-9 soil samples were collected using the "envelope" method, each sample was collected three times. The abundances of heavy metals (strontium, lead, zinc, copper, nickel, chromium, arsenic) in the soil was determined using the X-ray fluorescence method (Spectroscan Max, NPO Spektron, Saint-Petersburg, Russia). Each sample was purified, in order to remove roots, large rocks, glass, etc., before placing to the cell of the

  19. Alleviation of Heavy Metal Stress in Plants and Remediation of Soil by Rhizosphere Microorganisms

    Directory of Open Access Journals (Sweden)

    Jitendra Mishra

    2017-09-01

    Full Text Available Increasing concentration of heavy metals (HM due to various anthropogenic activities is a serious problem. Plants are very much affected by HM pollution particularly in contaminated soils. Survival of plants becomes tough and its overall health under HM stress is impaired. Remediation of HM in contaminated soil is done by physical and chemical processes which are costly, time-consuming, and non-sustainable. Metal–microbe interaction is an emerging but under-utilized technology that can be exploited to reduce HM stress in plants. Several rhizosphere microorganisms are known to play essential role in the management of HM stresses in plants. They can accumulate, transform, or detoxify HM. In general, the benefit from these microbes can have a vast impact on plant’s health. Plant–microbe associations targeting HM stress may provide another dimension to existing phytoremediation and rhizoremediation uses. In this review, applied aspects and mechanisms of action of heavy metal tolerant-plant growth promoting (HMT-PGP microbes in ensuring plant survival and growth in contaminated soils are discussed. The use of HMT-PGP microbes and their interaction with plants in remediation of contaminated soil can be the approach for the future. This low input and sustainable biotechnology can be of immense use/importance in reclaiming the HM contaminated soils, thus increasing the quality and yield of such soils.

  20. Plant and fungal biodiversity from metal mine wastes under remediation at Zimapan, Hidalgo, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Ortega-Larrocea, Maria del Pilar [Departamento de Edafologia, Instituto de Geologia, Universidad Nacional Autonoma de Mexico (UNAM) (Mexico); Xoconostle-Cazares, Beatriz [Departamento de Biotecnologia y Bioingenieria, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Av. IPN 2508, Zacatenco 07360, D.F. (Mexico); Maldonado-Mendoza, Ignacio E. [Centro Interdisciplinario de Investigacion para el Desarrollo Integral Regional (CIIDIR)-Instituto Politecnico Nacional - Unidad Sinaloa, Blvd. Juan de Dios Batiz Paredes No. 250, Guasave, Sinaloa 81101 (Mexico); Carrillo-Gonzalez, Rogelio [Programa de Edafologia, Colegio de Postgraduados en Ciencias Agricolas, Campus Montecillo, Carretera Mexico-Texcoco, km 36.5, Texcoco, Estado de Mexico 56230 (Mexico); Hernandez-Hernandez, Jani [Departamento de Edafologia, Instituto de Geologia, Universidad Nacional Autonoma de Mexico (UNAM) (Mexico); Garduno, Margarita Diaz [Universidad Autonoma Chapingo, Carretera Mexico-Texcoco, km 38.5, Chapingo, Estado de Mexico 56230 (Mexico); Lopez-Meyer, Melina [Centro Interdisciplinario de Investigacion para el Desarrollo Integral Regional (CIIDIR)-Instituto Politecnico Nacional - Unidad Sinaloa, Blvd. Juan de Dios Batiz Paredes No. 250, Guasave, Sinaloa 81101 (Mexico); Gomez-Flores, Lydia [Departamento de Biotecnologia y Bioingenieria, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Av. IPN 2508, Zacatenco 07360, D.F. (Mexico); Gonzalez-Chavez, Ma. del Carmen A., E-mail: carmeng@colpos.m [Programa de Edafologia, Colegio de Postgraduados en Ciencias Agricolas, Campus Montecillo, Carretera Mexico-Texcoco, km 36.5, Texcoco, Estado de Mexico 56230 (Mexico)

    2010-05-15

    Plant establishment, presence of arbuscular mycorrhizal fungi (AMF) and other rhizospheric fungi were studied in mine wastes from Zimapan, Hidalgo state, Mexico, using a holistic approach. Two long-term afforested and three non-afforested mine tailings were included in this research. Fifty-six plant species belonging to 29 families were successfully established on the afforested sites, while unmanaged tailings had only a few native plant species colonizing the surrounding soils. Almost all plant roots collected were associated to AMF in these sites. The genus Glomus was the most abundant AMF species found in their rhizosphere; however, the Acaulospora genus was also observed. Other rhizospheric fungi were identified by 18S rDNA sequencing analysis. Their role in these substrates, i.e. biocontrol, pollutant- and organic matter-degradation, and aides that increase plant metal tolerance is discussed. Our results advance the understanding of fungal diversity in sites polluted with metals and present alternative plants for remediation use. - Rhizospheric fungi and organic matter encourage plant vegetation of tailings by pioneers and colonizing species.

  1. Plant and fungal biodiversity from metal mine wastes under remediation at Zimapan, Hidalgo, Mexico

    International Nuclear Information System (INIS)

    Ortega-Larrocea, Maria del Pilar; Xoconostle-Cazares, Beatriz; Maldonado-Mendoza, Ignacio E.; Carrillo-Gonzalez, Rogelio; Hernandez-Hernandez, Jani; Garduno, Margarita Diaz; Lopez-Meyer, Melina; Gomez-Flores, Lydia; Gonzalez-Chavez, Ma. del Carmen A.

    2010-01-01

    Plant establishment, presence of arbuscular mycorrhizal fungi (AMF) and other rhizospheric fungi were studied in mine wastes from Zimapan, Hidalgo state, Mexico, using a holistic approach. Two long-term afforested and three non-afforested mine tailings were included in this research. Fifty-six plant species belonging to 29 families were successfully established on the afforested sites, while unmanaged tailings had only a few native plant species colonizing the surrounding soils. Almost all plant roots collected were associated to AMF in these sites. The genus Glomus was the most abundant AMF species found in their rhizosphere; however, the Acaulospora genus was also observed. Other rhizospheric fungi were identified by 18S rDNA sequencing analysis. Their role in these substrates, i.e. biocontrol, pollutant- and organic matter-degradation, and aides that increase plant metal tolerance is discussed. Our results advance the understanding of fungal diversity in sites polluted with metals and present alternative plants for remediation use. - Rhizospheric fungi and organic matter encourage plant vegetation of tailings by pioneers and colonizing species.

  2. Heavy metal contamination and ecological risk of farmland soils adjoining steel plants in Tangshan, Hebei, China.

    Science.gov (United States)

    Yang, Liyun; Yang, Maomao; Wang, Liping; Peng, Fei; Li, Yuan; Bai, Hao

    2018-01-01

    The purpose of this study was to determine the heavy metal concentrations and ecological risks to farmland soils caused by atmospheric deposition adjoining five industrial steel districts in Tangshan, Hebei, China. A total of 39 topsoil samples from adjoining these plants were collected and analyzed for Pb, Zn, Cu, Cr, and As. The geo-accumulation index (Igeo) and potential ecological risk index (PERI) were calculated to assess the heavy metal pollution level in soils. The results showed that the levels of Pb and As in farmland soils adjoining all steel plants were more than the background value, with the As content being excessively high. The Cr and Cu contents of some samples were over the background values, but the Zn content was not. In all the research areas, the largest Igeo value of the heavy metals was for As, followed by Pb, and the largest monomial PERI ([Formula: see text]) was As, which showed that the pollution of As in farmland soils was significant and had considerable ecological risk. Additionally, the heavy metal sequential extraction experiments showed that Pb and Cr, which exceeded the background value, were present in about 20% of the exchangeable and carbonate-bound fractions in the soils surrounding some steel plants. This would imply the risk of these heavy metals being absorbed and accumulated by the crops. Therefore, the local government needs to control the pollution of heavy metals in the farmland soils adjoining the steel plant as soon as possible, in order to avoid possible ecological and food safety risks.

  3. Amelioration of iron mine soils with biosolids: Effects on plant tissue metal content and earthworms.

    Science.gov (United States)

    Cele, Emmanuel Nkosinathi; Maboeta, Mark

    2016-11-01

    The achievement of environmentally sound and economically feasible disposal strategies for biosolids is a major issue in the wastewater treatment industry around the world, including Swaziland. Currently, an iron ore mine site, which is located within a wildlife sanctuary, is being considered as a suitable place where controlled disposal of biosolids may be practiced. Therefore, this study was conducted to investigate the effects of urban biosolids on iron mine soils with regard to plant metal content and ecotoxicological effects on earthworms. This was done through chemical analysis of plants grown in biosolid-amended mine soil. Earthworm behaviour, reproduction and bioaccumulation tests were also conducted on biosolid-amended mine soil. According to the results obtained, the use of biosolids led to creation of soil conditions that were generally favourable to earthworms. However, plants were found to have accumulated Zn up to 346 mg kg -1 (in shoots) and 462 mg kg -1 (in roots). This was more than double the normal Zn content of plants. It was concluded that while biosolids can be beneficial to mine soils and earthworms, they can also lead to elevated metal content in plant tissues, which might be a concern to plant-dependant wildlife species. Nonetheless, it was not possible to satisfactorily estimate risks to forage quality since animal feeding tests with hyperaccumulator plants have not been reported. Quite possibly, there may be no cause for alarm since the uptake of metals from soil is greater in plants grown in pots in the greenhouse than from the same soil in the field since pot studies fail to mimic field conditions where the soil is heterogeneous and where the root system possesses a complex topology. It was thought that further field trials might assist in arriving at more satisfactory conclusions.

  4. A feasibility study of perennial/annual plant species to restore soils contaminated with heavy metals

    Science.gov (United States)

    Zacarías, Montserrat; Beltrán, Margarita; Gilberto Torres, Luis; González, Abelardo

    A feasibility study was carried out to evaluate the application of perennial/annual plant species in a phytoextraction process of a previously washed industrial urban soil contaminated by nickel, arsenic and cupper. The plant species selected for this study were Ipomea (Ipomea variada); grass (Poa pratensis); grass mixture (Festuca rubra, Cynodon dactylon, Lolium multiforum, Pennisetum sp.); Monks Cress (Tropaeolum majus); ficus (Ficus benajamina) and fern (Pteris cretica). Soil was characterized and it presented the following heavy metals concentrations (dry weight): 80 mg of Ni/kg, 456-656 mg of As/kg and 1684-3166 mg of Cu/kg. Germination and survival in contaminated soil tests were conducted, from these, P. pratensis was discarded and the rest of plant species tested were used for the phytoextraction selection test. After 4 months of growth, biomass production was determined, and content of Ni, As and Cu was analyzed in plant’s tissue. Metal biological absorption coefficient (BAC), bio-concentration factor (BCF) and translocation factor (TF), were calculated. Regarding to biomass generation it was observed, in every case, an inhibition of the plant growth compared with blanks sown in a non contaminated soil; inhibition ranged from 22.5% for the Monk cress to 98% for Ipomea. Even though the later presented high BAC, BCF and TF, its growth was severely inhibited, and therefore, due its low biomass generation, it is not recommended for phytoextraction under conditions for this study. Heavy metals concentrations in plant’s tissue (dry weight) were as high as 866 mg Cu/kg and 602 mg As/kg for grass mixture; and 825 mg As/kg was observed for Monks cress. Grass mixture and monks cress had high BAC, BCF and TF, also they had high metal concentrations in its plants tissues and the lowest growth inhibition rates; hence the application in phytoextraction processes of these plants is advisable.

  5. Uptake of metals and metalloids by Conyza canadensis L. from a thermoelectric power plant landfill

    Directory of Open Access Journals (Sweden)

    Vukojević Vesna

    2016-01-01

    Full Text Available Fourteen metals and metalloids were determined in Conyza canadensis L. harvested from the fly ash landfill of the thermoelectric power plant “Kolubara” (Serbia. Fly ash samples were collected together with the plant samples and subjected to sequential extraction according to the three-step sequential extraction scheme proposed by the Community Bureau of Reference (BCR; now the Standards, Measurements and Testing Program. The contents of metals and metalloids were determined by inductively coupled plasma optical emission spectrometry (ICP-OES in plant root and the aboveground part and correlated with their contents in the fly ash samples. The bioconcentration factor (BCF and translocation factors (TF were calculated to access uptake of metals from fly ash and their translocation to the aboveground part. Results regarding As revealed that fly ash samples in the proximity of the active cassette had higher amounts of the element. Principal component analysis (PCA showed that As had no impact on the classification of plant parts. BCF for As ranged from 1.44 to 23.8 and varied, depending on the investigated area; TF for As ranged from 0.43 to 2.61, indicating that the plant translocated As from root to shoot. In addition to As, Conyza canadensis L. exhibited efficient uptake of other metals from fly ash. According to the calculated BCF and TF, the plant retained Al, Fe and Cr in the root and translocated Zn, Cd, Cu and As from root to shoot in the course of the detoxifying process. [Projekat Ministarstva nauke Republike Srbije, br. 172030 i br. 172017

  6. Relations between variously available fractions of trace metals in the soil and their actual plant-uptake

    International Nuclear Information System (INIS)

    Bujtas, K.; Csillag, J.

    1999-01-01

    In a pot experiment, availabilities of Cd, Cr, Ni, Pb, and Zn added to the soil as metal nitrates or as enrichment of sewage sludge were evaluated by comparing concentrations of their total potentially available, presumably plant-available and directly plant-available forms in the soil. At excessively increasing soil contamination, the plant-available concentrations increased more than the total soil contents, thus the relative availabilities of the metals increased. This was reflected in the amounts taken up by the young maize test plants and in the plant/soil transfer factors. Transfer factors calculated for the 'plant-available' soil metal contents depended less on the contamination level than those based on total soil metal contents. Refs. 8 (author)

  7. The ecological risk assessment of heavy metals in the Kuihe River basin (Xuzhou section) and the characteristics of plant enrichment

    Science.gov (United States)

    Sun, Ling; Zheng, Lei

    2018-01-01

    In order to investigate Kuihe River basin of heavy metals (As, Cd, Cr, Cu, Mn, Ni, Pb and Zn) pollution, the determination of the Kuihe River water body, the bottom of the river silt, riparian soil plants and heavy metal content of 9 kinds of riparian plants, investigate the pollution situation, so as to screen out the plants that has potential of enrichment and rehabilitation of heavy metal pollution. The results showed that Cd and Mn in the water body exceed bid; The pollution of Zn and Cu in the bottom mud is serious, potential ecological risk of heavy metals is Zn>Cu>Pb>Ni>Cd>As>Cr>Mn Riparian soil affected by sewage and overflow of sediment has significant positive correlation with soil heavy metals, among them, the Zn and Cu are heavy pollution; The selective absorption of heavy metals by 9 kinds of dominant plant leads to its bio concentration factor (BCF) of Cr and Pb on the low side, are all less than 1, from the translocation factor (TF), Setcreasea purpurea and Poa annua showed obvious roots type hoarding. Poa annua and Lycium chinense have a resistance on the absorption of heavy metals, Lythrum salicaria, Photinia serrulata and Broussonetia papyrifera have a unique advantage on enrichment of heavy metals, Broussonetia papyri era on a variety of strong ability of enrichment and transfer of heavy metals suggests that the woody plants in the vast application prospect in the field of rehabilitation technology of heavy metals.

  8. Both heavy metal-amendment of soil and aphid-infestation increase Cd and Zn concentrations in phloem exudates of a metal-hyperaccumulating plant.

    Science.gov (United States)

    Stolpe, Clemens; Giehren, Franziska; Krämer, Ute; Müller, Caroline

    2017-07-01

    Plants that are able to hyperaccumulate heavy metals show increased concentrations of these metals in their leaf tissue. However, little is known about the concentrations of heavy metals and of organic defence metabolites in the phloem sap of these plants in response to either heavy metal-amendment of the soil or biotic challenges such as aphid-infestation. In this study, we investigated the effects of heavy metal-exposure and of aphid-infestation on phloem exudate composition of the metal hyperaccumulator species Arabidopsis halleri L. O'Kane & Al-Shehbaz (Brassicaceae). The concentrations of elements and of organic defence compounds, namely glucosinolates, were measured in phloem exudates of young and old (mature) leaves of plants challenged either by amendment of the soil with cadmium and zinc and/or by an infestation with the generalist aphid Myzus persicae. Metal-amendment of the soil led to increased concentrations of Cd and Zn, but also of two other elements and one indole glucosinolate, in phloem exudates. This enhanced defence in the phloem sap of heavy metal-hyperaccumulating plants can thus potentially act as effective protection against aphids, as predicted by the elemental defence hypothesis. Aphid-infestation also caused enhanced Cd and Zn concentrations in phloem exudates. This result provides first evidence that metal-hyperaccumulating plants can increase heavy metal concentrations tissue-specifically in response to an attack by phloem-sucking herbivores. Overall, the concentrations of most elements, including the heavy metals, and glucosinolates were higher in phloem exudates of young leaves than in those of old leaves. This defence distribution highlights that the optimal defence theory, which predicts more valuable tissue to be better defended, is applicable for both inorganic and organic defences. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Dust pollution of the atmosphere in the vicinity of coal-fired power plant (Omsk City, Russia)

    Science.gov (United States)

    Talovskaya, Anna V.; Raputa, Vladimir F.; Litay, Victoriya V.; Yazikov, Egor G.; Yaroslavtseva, Tatyana V.; Mikhailova, Kseniya Y.; Parygina, Irina A.; Lonchakova, Anna D.; Tretykova, Mariya I.

    2015-11-01

    The article shows the results of dust pollution level of air in the vicinity of coal-fired power plant of Omsk city on the base of study snow cover pollution. The samples were collected west-, east- and northeastwards at a distance of 0,75-6 km from the chimney for range-finding of dust emission transfer. The research findings have shown the dust load changes from 53 till 343 mg•(m2·day)-1 in the vicinity of power plant. The ultimate dust load was detected at a distance of 3-3,5 km. On the basis of asymptotics of equation solution for impurity transfer, we have made numerical analysis of dust load rate. With the usage of ground-based facilities and satellites we have determined the wind shifts in the atmospheric boundary layer have a significant impact on the field forming of long-term dustfall.

  10. [Situation and assessment of heavy metal pollution in river and mud in one city in Henan Province].

    Science.gov (United States)

    Xi, Jingzhuan; Li, Cuimei; Wang, Shouying; Jiang, Zhigang; Zhang, Miaomiao; Han, Guangliang

    2010-11-01

    To study the heavy metal contamination status in river water and mud in the suburb of a city in Henan Province. Typical sampling method is used to select a farmland irrigation river of the suburb of a city. Use the atomic absorption spectrophotometry, and measure the heavy metal cadmium (Cd), copper (Cu), lead (Pb) in the river water samples and mud samples by graphite furnace method and flame method, respectively. The results of water were compared with GB 3838-2002, Environmental Quality Standards for Surface Water, and GB 5084-2005, Standards for Irrigation Water Quality. The results of mud were compared with national soil background value. The contents of Cu and Cd in the river samples do not exceed the standard, and that of Pb is 3 to 6 times higher than the standard. According to the single factor pollution index method, the single factor pollution indice of Cu, and Cd in the river are less than 0.2 and are of clean level, while that of Pb reaches 6.84, indicating the Pb pollution in river water is severe. Cu in mud is more than 4 times of the soil background value, and that of Cd is more than 69 times of the soil background value, and that of Pb is more than 2 times of the soil background value. The single item pollution index indicates, in mud, the pollution index of Pb is 2.5, medium level pollution. The pollution indice of Cu and Cd in mud are more than 3, is severe pollution, and the Cd pollution is especially heavy, and the single pollution index reaches 67.76. The comprehensive pollution indice of the river and the mud are 5.346 and 84.115, respectively, indicating that both are at heavy pollution level. The main pollution source of the river originates from Pb, and that of the mud is from Cd and it is required to take measure and control as early as possible.

  11. Closed vessel miniaturized microwave assisted chelating extraction for determination of trace metals in plant materials

    Science.gov (United States)

    Czarnecki, Sezin; Duering, Rolf-Alexander

    2013-04-01

    In recent years, the use of closed vessel microwave assisted extraction (MAE) for plant samples has shown increasing research interest which will probably substitute conventional procedures in the future due to their general disadvantages including consumption of time and solvents. The objective of this study was to demonstrate an innovative miniaturized closed vessel microwave assisted extraction (µMAE) method under the use of EDTA (µMAE-EDTA) to determine metal contents (Cd, Co, Cu, Mn, Ni, Pb, Zn) in plant samples (Lolio-Cynosuretum) by inductively coupled plasma-optical emission spectrometry (ICP-OES). Validation of the method was done by comparison of the results with another miniaturized closed vessel microwave HNO3 method (µMAE-H) and with two other macro scale MAE procedures (MAE-H and MAE-EDTA) which were applied by using a mixture of nitric acid (HNO3) and hydrogen peroxide (H2O2) (MAE-H) and EDTA (MAE-EDTA), respectively. The already established MAE-H method is taken into consideration as a reference validation MAE method for plant material. A conventional plant extraction (CE) method, based on dry ashing and dissolving of the plant material in HNO3, was used as a confidence comparative method. Certified plant reference materials (CRMs) were used for comparison of recovery rates from different extraction protocols. This allowed the validation of the applicability of the µMAE-EDTA procedure. For 36 real plant samples with triplicates each, µMAE-EDTA showed the same extraction yields as the MAE-H in the determination of Cd, Co, Cu, Mn, Ni, Pb, and Zn contents in plant samples. Analytical parameters in µMAE-EDTA should be further investigated and adapted for other metals of interest. By the reduction and elimination of the use of hazardous chemicals in environmental analysis and thus allowing a better understanding of metal distribution and accumulation process in plants and also the metal transfer from soil to plants and into the food chain, µ

  12. Heavy metals in contaminated environment: Destiny of secondary metabolite biosynthesis, oxidative status and phytoextraction in medicinal plants.

    Science.gov (United States)

    Asgari Lajayer, Behnam; Ghorbanpour, Mansour; Nikabadi, Shahab

    2017-11-01

    Contamination of soils, water and air with toxic heavy metals by various human activities is a crucial environmental problem in both developing and developed countries. Heavy metals could be introduced into medicinal plant products through contaminated environment (soil, water and air resources) and/or poor production practices. Growing of medicinal plants in heavy metal polluted environments may eventually affect the biosynthesis of secondary metabolites, causing significant changes in the quantity and quality of these compounds. Certain medicinal and aromatic plants can absorb and accumulate metal contaminants in the harvestable foliage and, therefore, considered to be a feasible alternative for remediation of polluted sites without any contamination of essential oils. Plants use different strategies and complex arrays of enzymatic and non-enzymatic anti-oxidative defense systems to cope with overproduction of ROS causes from the heavy metals entered their cells through foliar and/or root systems. This review summarizes the reports of recent investigations involving heavy metal accumulation by medicinal plants and its effects on elicitation of secondary metabolites, toxicity and detoxification pathways, international standards regarding in plants and plant-based products, and human health risk assessment of heavy metals in soil-medicinal plants systems. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Plant and fungal biodiversity from metal mine wastes under remediation at Zimapan, Hidalgo, Mexico.

    Science.gov (United States)

    Ortega-Larrocea, María del Pilar; Xoconostle-Cázares, Beatriz; Maldonado-Mendoza, Ignacio E; Carrillo-González, Rogelio; Hernández-Hernández, Jani; Garduño, Margarita Díaz; López-Meyer, Melina; Gómez-Flores, Lydia; González-Chávez, Ma del Carmen A

    2010-05-01

    Plant establishment, presence of arbuscular mycorrhizal fungi (AMF) and other rhizospheric fungi were studied in mine wastes from Zimapan, Hidalgo state, Mexico, using a holistic approach. Two long-term afforested and three non-afforested mine tailings were included in this research. Fifty-six plant species belonging to 29 families were successfully established on the afforested sites, while unmanaged tailings had only a few native plant species colonizing the surrounding soils. Almost all plant roots collected were associated to AMF in these sites. The genus Glomus was the most abundant AMF species found in their rhizosphere; however, the Acaulospora genus was also observed. Other rhizospheric fungi were identified by 18S rDNA sequencing analysis. Their role in these substrates, i.e. biocontrol, pollutant- and organic matter-degradation, and aides that increase plant metal tolerance is discussed. Our results advance the understanding of fungal diversity in sites polluted with metals and present alternative plants for remediation use. Copyright 2009 Elsevier Ltd. All rights reserved.

  14. Determination of metallic elements in soils and plants in industrial and urban sites

    Energy Technology Data Exchange (ETDEWEB)

    Delearte, E; Nangniot, P; Impens, R

    1973-01-01

    The first phase of a program to study metals in soils and plants in industrial and urban sites is reported. The metals analyzed were copper, cobalt, nickel, zinc, lead, and cadmium. The soil samples were taken at increasing distances from potential emission sources with respect to dominant wind directions. Ubiquitous plants, such as Tussilago farfara L., Plantago major L., Mercurialis annua L., and Agrostis velgaris With. were used as samples for differential oscillopolarographic analyses. Soil samples taken around a zinc ore roasting plant showed very high zinc contents, and irregular distribution of cadmium and copper. Plant samples taken at different distances from the plant revealed rapid reduction of the copper, zinc, and cadmium levels with increasing distance. Very high concentrations of copper were found in plants around a petroleum refinery. Leaves of Aeer platanoides variety Schwedlerii in a town contained an average of 14.1 ppM copper, 0.7 ppM cobalt, 5.4 ppM nickel, 160 ppM zinc, 145 ppM lead, and 0.08 ppM cadmium, relative to the dry weight. The findings indicate that samples should be obtained over a period of sufficient length.

  15. Effect of co-existing plant specie on soil microbial activity under heavy metal stress

    International Nuclear Information System (INIS)

    Nwuche, C. O.; Ugoji, E. O.

    2010-01-01

    The influence of plant primary compounds on the activity of soil microbial communities under heavy metal stress was studied in a pot-culture field experiment conducted in a green house. Amaranthus spinosus was cultivated in an agricultural soil previously amended in the laboratory with solutions of different trace elements in two separate treatment modes: singly and in combination. Culture-independent metabolism based indices such as the rate of carbon and nitrogen mineralization, microbial biomass carbon and soil basal respiration were monitored fortnightly over a period of six weeks. Result shows that plant detritus have significant modifying effect on soil microbe-metal interactions. Data on microbial and biochemical processes in the respective mesocosms did not vary from control; not even in mesocosms containing very high concentrations of copper, zinc and nickel. The soil microbial biomass carbon and the rate of carbon and nitrogen cycling were not impeded by the respective metal treatment while the respiration responses increased as a result of increase in metabolic activity of the soil microbes. The plant based substrates enabled the soil microflora to resist high metal contamination because of its tendency to absorb large amounts of inorganic cations.

  16. Heavy metal atmospheric emissions from coal-fired power plants - Assessment and uncertainties

    International Nuclear Information System (INIS)

    Lecuyer, I.; Ungar, A.; Peter, H.; Karl, U.

    2004-01-01

    Power generation using fossil fuel combustion (coal and fuel-oil) participates, with other sectors, to heavy metal atmospheric emissions. The dispersion of these hazardous pollutants throughout the environment is more and more regulated. In order to assess the annual flows emitted from EDF coal-fired power plants, a computerized tool has been developed, based on the methodology defined by IFARE/DFIU in 1997. The heavy metal partition factors within the plant unit are determined according to the type of unit and the coal characteristics. Heavy metals output flows, and especially those emitted with flue gas at the stack, are then deduced from the actual coal consumption and chemical composition. A first inventory of heavy metal emissions from EDF coal-fired power plants has been achieved for year 2001. Values are accurate (± 40 %) for nonvolatile elements (Cr, Cu, Co, Mn, Ni, V) and for PM 10 and PM 2.5 (particulate matter below 10 μm and 2.5 μm). The uncertainty is higher (± 80 %) for volatile elements (As, Pb, Zn). Excess indicative values are given for elements which are both volatile and at low concentrations in coal (Hg, Se, Cd). (author)

  17. Ecological investigations on plant associations in differently disturbed heavy-metal contaminated soils of Great Britain

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, W

    1968-01-01

    In different areas of Great Britain comparing ecological studies have been made on disturbed and undisturbed heavy metal contaminated soils. In Grizedale (Pennine), sampling of an undisturbed transect having high levels of major nutrients showed marked differentiation within a small area, only related to the plant available levels of zinc, copper, and lead. However, studies on disturbed heavy metal soils and spoil-heaps revealed a low water capacity and a low supply of major nutrients, particularly of N and P. These suggest that here both the enrichment of heavy metals and the considerable decrease of other nutrients are important in determining the heavy metal vegetation, and in maintaining it against other species. The quantity of zinc in plants is not related to the total or plant-available amount of zinc in soil, but confirmed physiological experiments on the influence of phosphorus and different zinc compounds (complexed or inorganic) on the uptake and distribution of zinc in Thlaspi alpestre and Minnartia rerum. Also an antagonism between lead and copper was revealed. 24 references.

  18. The effect of hydrological regime on the metal bioavailability for the wetland plant species Salix cinerea

    International Nuclear Information System (INIS)

    Vandecasteele, Bart; Quataert, Paul; Tack, Filip M.G.

    2005-01-01

    The hydrological conditions on a site constitute one of the many factors that may affect the availability of potentially toxic trace metals for uptake by plants. Bioavailability of Cd, Mn and Zn in a contaminated dredged sediment-derived soil under different hydrological regimes was determined by measuring metal uptake by the wetland plant species Salix cinerea, both in field circumstances and in a greenhouse experiment. Longer submersion periods in the field caused lower Cd concentrations in leaves and bark. The wetland hydrological regime in the greenhouse experiment resulted in normal Cd and Zn concentrations in the leaves, while the upland hydrological regime resulted in elevated Cd and Zn concentrations in the leaves. Field observations and the greenhouse experiment suggest that a hydrological regime that creates or sustains a wetland is a potential management option that reduces metal bioavailability to willows. This would constitute a safe management option of metal-polluted, willow-dominated wetlands provided that wetland conditions can be maintained throughout the full growing season. - A hydrological regime aiming at wetland creation is a potential management option that favors reducing Cd plant availability in polluted freshwater wetlands

  19. The Assessment of Toxic Metals in Plants Used in Cosmetics and Cosmetology

    Directory of Open Access Journals (Sweden)

    Agnieszka Fischer

    2017-10-01

    Full Text Available Heavy metals polluting the natural environment are absorbed by plants. The use of herbs as components of cosmetics may pose a health risk for humans. The aim of the study was to determine the concentrations of Pb, Cd and Hg in selected species of herbs (horsetail Equisetum arvense, nettle Urtica dioica, St. John’s wort Hypericum perforatum, wormwood Artemisia absinthium, yarrow Achillea millefolium, cottonwood Solidago virgaurea self-collected from the natural environment in two different locations, and purchased in stores on the territory of Poland. The concentration of the metals studied was: 4.67–23.8 mg/kg Pb, 0.01–1.51 mg/kg Cd, 0.005–0.028 mg/kg Hg. Different concentrations of metals, depending on species and origin of plants, were found. The mean concentration of all studied metals was the lowest in St. John’s wort, and the highest in nettle. In herbs purchased in Polish stores, the concentration of Pb was higher than in plants self-collected in the natural environment.

  20. Evaluation of Air Pollution Tolerance Index of Plants and Ornamental Shrubs in Enugu City: Implications for Urban Heat Island Effect

    Directory of Open Access Journals (Sweden)

    2016-11-01

    Full Text Available The study compared the air pollution tolerance indices (APTI of five plant species and five ornamental shrubs in Enugu Urban Center. Laboratory analysis was performed on the four physiological and biological parameters including leaf relative water content (RWC, ascorbic acid (AA content, total leaf chlorophyll (TCH and leaf extract pH. These parameters were used to develop an air pollution tolerance index. Factor analysis and descriptive statistics were utilized in the analysis to examine the interactions between these parameters. Vegetation monitoring in terms of its APTI acts as a \\'Bioindicator\\' of air pollution. The study also showed the possibility of utilizing APTI as a tool for selecting plants or ornamental shrubs for urban heat Island mitigation in Enugu City. The result of APTI showed order of tolerance for plants as Anacarduim occidentale (23.20, Pinus spp (22.35, Catalpa burgei (22.57, Magifera indica (23.37, and Psidum guajava (24.15.The result of APTI showed increasing order of sensitivity for ornamental shrubs from ixora red (14.32, yellow ficus(12.63, masquerade pine(12.26, Tuja pine(11.000,to Yellow bush(10.60. The APTI of all the plants examined were higher than those of ornamental shrubs. Thus suggesting that plants in general were more tolerant to air pollution than ornamental shrubs. The ornamental shrubs with lower APTI values (sensitive were recommended as bioindicator of poor urban air quality while plants with high APTI values (tolerant are planted around areas anticipated to have high air pollution load. The result of this current study is therefore handy for future planning and as well provides tolerant species for streetscape and urban heat island mitigation.

  1. Phytoaccumulation of heavy metals in natural plants thriving on wastewater effluent at Hattar industrial estate, Pakistan.

    Science.gov (United States)

    Irshad, Muhammad; Ahmad, Sajjad; Pervez, Arshid; Inoue, Mitsuhiro

    2015-01-01

    The objective of this research was to compare the potential of native plants for the phytoaccumulation of heavy metals (HM). Thirteen predominant plant species (including trees, bushes and grasses) namely Ricinus communis, Ipomoea carnea, Cannabis sativa, Parthenium hysterophorus, Acacia nilotica, Dalbergia sissoo, Acacia modesta, Solanum nigrum, Xanthium stromarium, Chenopodium album, Cynodon dactylon, Eleusine indica, and Dactyloctenium aegyptium were collected from the wastewater originated from Hattar industrial estate of Pakistan, Plants shoots and roots were analyzed for heavy metals/metalloid: Pb, Cr, Cd, Zn, Fe, Ni, and As. Among plant species, the accumulation potential for HM varied depending on the type of element. Regardless of the plant species, HM concentrations varied in the order of Fe>Zn>Cr>Pb>Ni>Cd>As. Tree species of R. communis, A. nilotica, A. modesta, and D. sissoo exhibited an enhanced concentrations of metals. Accumulation pattern of Fe, Pb, Cd, and As in plants could be related to the HM composition of soil and wastewater. Most of the species exhibited higher HM composition in the root as compared to shoot. The species that found with greater ability to absorb HM in the root, got higher HM concentrations in its shoot. Shoot tissue concentrations of HM were attained by the species as D. sissoo>A. modesta>A. nilotica>R. communis>I. carnea>C. album>E. indica>P. hysterophorus>S. nigrum>C. sativa>D. aegyptium>X. strumarium>C. dactylon. Based on results, tree plants were noticed as higher accumulators of HM in polluted soils.

  2. Leaf biochemical responses and fruit oil quality parameters in olive plants subjected to airborne metal pollution.

    Science.gov (United States)

    Fourati, Radhia; Scopa, Antonio; Ben Ahmed, Chedlia; Ben Abdallah, Ferjani; Terzano, Roberto; Gattullo, Concetta Eliana; Allegretta, Ignazio; Galgano, Fernanda; Caruso, Marisa Carmela; Sofo, Adriano

    2017-02-01

    This study was carried out in two olive orchards (Olea europaea L., cv. Chemlali) located in a polluted area near a fertilizers factory and in a control unpolluted site, managed with similar cultivation techniques. The aim was to investigate the physiological and biochemical responses of polluted plants (PP), exposed to atmospheric metal contamination (Cd, Cu, Fe, Mn, Ni and Pb) as compared to control plants (CP). Leaves, roots and fruits of PP showed a depression of their non-enzymatic and enzymatic antioxidant defences and a disruption of their hormonal homeostasis. The anomalous physiological status of PP was also demonstrated by the lower values of pigments in leaves and fruits, as compared to CP. Atmospheric metals negatively affected olive oil chemical and sensory quality. However, despite metal deposition on fruit surfaces, the accumulation of potentially toxic metals in olive oil was negligible. Considering that olive oil is an important food product worldwide and that many productive olive orchards are exposed to several sources of pollution, this work could contribute to clarify the effects of atmospheric metal pollution on olive oil quality and its potential toxicity for humans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Isoelectric focusing of small non-covalent metal species from plants.

    Science.gov (United States)

    Köster, Jessica; Hayen, Heiko; von Wirén, Nicolaus; Weber, Günther

    2011-03-01

    IEF is known as a powerful electrophoretic separation technique for amphoteric molecules, in particular for proteins. The objective of the present work is to prove the suitability of IEF also for the separation of small, non-covalent metal species. Investigations are performed with copper-glutathione complexes, with the synthetic ligand ethylenediamine-N,N'-bis(o-hydroxyphenyl)acetic acid (EDDHA) and respective metal complexes (Fe, Ga, Al, Ni, Zn), and with the phytosiderophore 2'-deoxymugineic acid (DMA) and its ferric complex. It is shown that ethylenediamine-N,N'-bis(o-hydroxyphenyl)acetic acid and DMA species are stable during preparative scale IEF, whereas copper-glutathione dissociates considerably. It is also shown that preparative scale IEF can be applied successfully to isolate ferric DMA from real plant samples, and that multidimensional separations are possible by combining preparative scale IEF with subsequent HPLC-MS analysis. Focusing of free ligands and respective metal complexes with di- and trivalent metals results in different pIs, but CIEF is usually needed for a reliable estimation of pI values. Limitations of the proposed methods (preparative IEF and CIEF) and consequences of the results with respect to metal speciation in plants are discussed. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Airborne particulate metals in the New York City subway: a pilot study to assess the potential for health impacts.

    Science.gov (United States)

    Grass, David S; Ross, James M; Family, Farnosh; Barbour, Jonathan; James Simpson, H; Coulibaly, Drissa; Hernandez, Jennifer; Chen, Yingdi; Slavkovich, Vesna; Li, Yongliang; Graziano, Joseph; Santella, Regina M; Brandt-Rauf, Paul; Chillrud, Steven N

    2010-01-01

    A prior study in New York City observed that airborne concentrations of three metals found in steel - iron, manganese, and chromium - are more than 100 times higher in the subway system than in aboveground air. To investigate the potential for health effects of exposure at these levels, we conducted a pilot study of subway workers comparing personal exposures to steel dust with biomarkers of metal exposure, oxidative stress, and DNA damage in blood and urine samples. Workers wore a personal air sampler operating at 4L/m for one to three work shifts with blood and urine samples collected at the end of the final shift. We found that PM(2.5) exposures varied among subway workers on the basis of job title and job activity. The subway workers' mean time-weighted PM(2.5) exposure was 52 microg/m3, with a median of 27 microg/m3, and a range of 6-469 microg/m3. The observed concentrations of PM(2.5), iron, manganese, and chromium fell well below occupational standards. Biomarker concentrations among the 39 subway workers were compared with a group of 11 bus drivers, and a group of 25 suburban office workers. Concentrations of DNA-protein crosslinks and chromium in plasma were significantly higher in subway workers than in bus drivers, but no significant difference was observed for these biomarkers between subway workers and office workers. Urinary isoprostane concentrations were significantly correlated with the number of years working in the subway system, and were detected at higher, though not significantly higher, concentrations in subway workers than in bus drivers or office workers. At the group level, there was no consistent pattern of biomarker concentrations among subway workers significantly exceeding those of the bus drivers and office workers. At the individual level, steel dust exposure was not correlated with any of the biomarkers measured.

  5. A plant taxonomic survey of the Uranium City region, Lake Athabasca north shore, emphasizing the naturally colonizing plants on uranium mine and mill wastes and other human-disturbed sites

    International Nuclear Information System (INIS)

    Harms, V.L.

    1982-07-01

    A goal of this study was to acquire more complete baseline data on the existing flora of the Uranium City region, both in natural and human-disturbed sites. Emphasis was given to determining which plant species were naturally revegetating various abandoned uranium mine and mill waste disposal areas, other human-disturbed sites, and ecologically analogous sites. Another goal was to document the occurrence and distribution in the study region of rare and possibly endangered species. A further objective was to suggest regionally-occurring species with potential value for revegetating uranium mine and mill waste sites. Field investigations were carried out in the Uranium City region during August, 1981. During this time 1412 plant collections were made; a total of 366 plant species - trees, shrubs, forbs, graminoids, lichens, and bryophytes were recorded. The report includes an annotated checklist of plant species of the Uranium City region and a reference index of plant taxa indicating species that have high revegetation potential

  6. Determining Suitable Places for Saffron Planting Using Fuzzy Hierarchical Analysis Process in the City of Torbat Heydarieh

    Directory of Open Access Journals (Sweden)

    Mahdieh Rashid Sorkhabadi

    2016-01-01

    Full Text Available The city of Torbat Heydarieh located in the central Khorasan is the largest producer of saffron in the world. According to the influence of various environmental factors on the growth and yield of saffron, the process of assessing land ratio for its cultivation requires the use of various detailed spatial and descriptive pieces of information. In this study, first the conditions of cultivating saffron have been studied in detail and suitable regions for planting saffron have been identified using maps of elevation, slope, soil characteristics, water and some climatic factors influencing the cultivation of saffron including effective threshold temperature, rainfall and sunshine hours. For this purpose, Fuzzy Analytical Hierarchy Process (FAHP method was applied and modeling and spatial analysis were carried out using Arc GIS software environment based on the lands of the city of Torbat Heydarieh which were evaluated for their suitability for cultivation of saffron. It is worth noting that the final map showed that 43 percent of the central parts of Torbat Heydarieh have the highest potential for saffron cultivation. To evaluate the results and ensure the accuracy of the final map data, plant functions and crop qualities were compared with obtained data from final maps and the accuracy of the results was confirmed that shows the effectiveness of Fuzzy Analytical Hierarchy Process (FAHP method  in assessing the potential of lands for saffron cultivation.

  7. Monitoring of heavy metal levels in the major rivers and in residents' blood in Zhenjiang City, China, and assessment of heavy metal elimination via urine and sweat in humans.

    Science.gov (United States)

    Sheng, Jianguo; Qiu, Wenhui; Xu, Bentuo; Xu, Hui; Tang, Chong

    2016-06-01

    The coastal areas of China face great challenges, owing to heavy metal contamination caused by rapid industrialization and urbanization. To our knowledge, this study is the first report of the levels of heavy metals in the major rivers of Zhenjiang, one of the most important cities of the Yangtze River Delta in China. In addition, we measured heavy metal levels in the blood of 76 residents of Zhenjiang. The results suggest that the presence of heavy metals in the blood may threaten human health and the distribution appeared to correspond to most highly populated areas and/or areas with high traffic. We also found that the concentration of heavy metals in human blood showed an accumulation effect with increase in age. Moreover, the levels of most heavy metals were lower in participants who regularly exercised than in those who did not. We studied heavy metal levels in the urine and sweat of another 17 volunteers to monitor the elimination of bioaccumulated heavy metal. Heavy metals were found in the urine and sweat of all the 17 participants and were more concentrated in sweat. Induced micturition and sweating appear to be potential methods for the elimination of heavy metals from the human body.

  8. Rhizosphere Microbial Community Composition Affects Cadmium and Zinc Uptake by the Metal-Hyperaccumulating Plant Arabidopsis halleri

    Science.gov (United States)

    Muehe, E. Marie; Weigold, Pascal; Adaktylou, Irini J.; Planer-Friedrich, Britta; Kraemer, Ute; Kappler, Andreas

    2015-01-01

    The remediation of metal-contaminated soils by phytoextraction depends on plant growth and plant metal accessibility. Soil microorganisms can affect the accumulation of metals by plants either by directly or indirectly stimulating plant growth and activity or by (im)mobilizing and/or complexing metals. Understanding the intricate interplay of metal-accumulating plants with their rhizosphere microbiome is an important step toward the application and optimization of phytoremediation. We compared the effects of a “native” and a strongly disturbed (gamma-irradiated) soil microbial communities on cadmium and zinc accumulation by the plant Arabidopsis halleri in soil microcosm experiments. A. halleri accumulated 100% more cadmium and 15% more zinc when grown on the untreated than on the gamma-irradiated soil. Gamma irradiation affected neither plant growth nor the 1 M HCl-extractable metal content of the soil. However, it strongly altered the soil microbial community composition and overall cell numbers. Pyrosequencing of 16S rRNA gene amplicons of DNA extracted from rhizosphere samples of A. halleri identified microbial taxa (Lysobacter, Streptomyces, Agromyces, Nitrospira, “Candidatus Chloracidobacterium”) of higher relative sequence abundance in the rhizospheres of A. halleri plants grown on untreated than on gamma-irradiated soil, leading to hypotheses on their potential effect on plant metal uptake. However, further experimental evidence is required, and wherefore we discuss different mechanisms of interaction of A. halleri with its rhizosphere microbiome that might have directly or indirectly affected plant metal accumulation. Deciphering the complex interactions between A. halleri and individual microbial taxa will help to further develop soil metal phytoextraction as an efficient and sustainable remediation strategy. PMID:25595759

  9. Survey of heavy metal pollution (copper, lead, zinc, cadmium, iron and manganese in drinking water resources of Nurabad city, Lorestan, Iran 2013

    Directory of Open Access Journals (Sweden)

    GHodratolah Shams Khorramabadi

    2016-09-01

    Full Text Available Background: Healthy water passes through the pipelines from supply resources to consuming places in which passing from these stages may cause some cases of contamination like heavy metal contamination. Therefore, the aim of this study was to evaluate the contamination of heavy metals (copper, lead, zinc, cadmium, iron, and manganese in water resources of Nurabad city of Lorestan in 2013. Materials and Methods: In this cross-sectional study, samples were collected from 7 wells of drinking water and 2 water storage tanks during 6 months in Nurabad. So that, heavy metal parameters such as copper, lead, zinc, cadmium, iron, and manganese were measured using an atomic absorption device and also electrical conductivity, sulfate, chloride and total dissolved solids were also measured in accordance with standard methods. Results: Results indicated that the concentration of studied metals in water sources was lower than the national standards and World Health Organization standard, and in the water supply system the concentration of some metals was more than standard level. Moreover, the results showed that the concentration of studied heavy metals were more in winter than in autumn. Conclusion: Generally, in the water resources of Nurabad city the concentration of studied heavy metals was lower than the national standards and World Health Organization standard and there are not problems for water consumers. However, due to public health and the presence of a high concentration of these metals in the distribution supply, the heavy metal concentration in drinking water of this region should be monitored regularly by responsible organizations.

  10. Test installation for studying erosion-corrosion of metals for coal washing plants

    Energy Technology Data Exchange (ETDEWEB)

    Hoey, G. R.; Dingley, W.; Wiles, C. T.

    1979-02-15

    A test installation was constructed for investigating erosion-corrosion of metals by coal-water slurries. Erosion-corrosion tests of mild steel panels were conducted using slurries of alundum, quartz, washed coal and coal refuse. Wear rates were found to depend on type of abrasive, particle size and water conductivity and were reduced by cathodic protection and inhibitors. Cathodic protection of mild steel in coal slurries containing sulphate ion reduced wear by 90% and 86% for stationary and rotating panels, respectively. This study has demonstrated that the successful application of corrosion control techniques would reduce metal wastage in coal washing plants. The test installation is considered suitable for developing the techniques.

  11. The marginal cost of carbon abatement from planting street trees in New York City

    Science.gov (United States)

    Kent F. Kovacs; Robert G. Haight; Suhyun Jung; Dexter H. Locke; Jarlath. O' Neil-Dunne

    2013-01-01

    Urban trees can store carbon through the growth process and reduce fossil fuel use by lowering cooling and heating energy consumption of buildings through the process of transpiration, shading, and the blocking of wind. However, the planting and maintenance of urban trees come at a cost. We estimate the discounted cost of net carbon reductions associated with planting...

  12. Graphite-based detectors of alkali metals for nuclear power plants

    International Nuclear Information System (INIS)

    Kalandarishvili, A.G.; Kuchukhidze, V.A.; Sordiya, T.D.; Shartava, Sh.Sh.; Stepennov, B.S.

    1993-01-01

    The coolants most commonly used in today's fast reactors are alkali metals or their alloys. A major problem in nuclear plant design is leakproofing of the liquid-metal cooling system, and many leak detection methods and safety specifications have been developed as a result. Whatever the safety standards adopted for nuclear plants in different countries, they all rely on the basic fact that control of the contamination and radiation hazards involved requires reliable monitoring equipment. Results are presented of trials with some leak detectors for the alkali-metal circuits of nuclear reactors. The principal component affecting the detector performance is the sensing element. In the detectors graphite was employed, whose laminar structure enables it to absorb efficiently alkali-metal vapors at high temperatures (320--500 K). This produces a continuous series of alkali-metal-graphite solid solutions with distinct electrical, thermal, and other physical properties. The principle of operation of the detectors resides in the characteristic reactions of the metal-graphite system. One detector type uses the change of electrical conductivity of the graphite-film sensor when it is exposed to alkali-metal vapor. In order to minimize the effect of temperature on the resistance the authors prepared composite layers of graphite intercalated with a donor impurity (cesium or barium), and a graphite-nickel material. The addition of a small percentage of cesium, barium, or nickel produces a material whose temperature coefficient of resistance is nearly zero. Used as a sensing element, such a material can eliminate the need for thermostatic control of the detector

  13. Field report-Iidate village and Minamisoma city in Fukushima prefecture and Onagawa Nuclear Power Plants of Tohoku Electric Power

    International Nuclear Information System (INIS)

    Nakamura, Etsuji

    2011-01-01

    Although the accident of Fukushima Daiichi Nuclear Power Plants of Tokyo Electric Power Co., Inc. was foreseen to be an end with bringing the reactor a stable cooling condition and mitigating the release of radioactive materials, there would be various uncertainties and risks. The public was turned to 'nuclear power phase-out ' or 'nuclear power reduced' and Fukushima prefecture launched a restoration vision not dependent on nuclear power. In July editors joined the visit on Iidate village and Minamisoma city in Fukushima prefecture and Onagawa Nuclear Power Plants of Tohoku Electric Power Co., Inc., which was organized by Energy and Environmental Email Forum. This feature consisted of six articles based on interviews with respective mayor and discussion meeting of participants. Nuclear world would be responsible for the cooperation and support of Fukushima moving toward restoration with the same stance. Development of renewable energy utilizing damaged fields might be promoted. Respective district was tried to restore based on the trademark of 'Iidate-village in the world' or introduction of central facilities of decommission technology or medical care against radiation hazards. Onagawa Nuclear Power Plants of Tohoku Electric Power Co., Inc., which was 14.8 m above sea level, was not damaged so much by the tsunami of 13 m high and after the disaster many residents in a neighboring area came to the nuclear power plant office for the refuge. (T. Tanaka)

  14. Improvement in the bioenergetics system of plants under metal stress environment via seaweeds

    International Nuclear Information System (INIS)

    Azmat, R.; Askari, S.

    2015-01-01

    The effects of Hg and its remediation through seaweeds on seedlings were escorted in a greenhouse experiment in a randomized block design. The effects of Hg were monitored in relation with bioenergetics system of Trigonella foenumgraecum plant at test site scale. Plants that were exposed to Hg, showed affect in diverse ways, including affinity to suffer in morphological as well as on sugar metabolism. The stress imposed by Hg exposure also extends to chloroplast pigments that lead to the distorted photosynthetic apparatus. The outcomes of reduced contents of photosynthetic machinery related with reduced contents of glucose, sucrose, total soluble sugars and carbohydrate contents of plants. These contents plays vital rule for providing bioenergy to the plant growth regulation. It was suggested that Hg is lethal for plant bioenergetics system due to which plants fail to survive under stress. The lethal effects of Hg were tried to remediate through green seaweeds (Codium iyengrii). It was observed that seaweeds successfully controlled the mobility of Hg metal and improves the plant growth regulatory system at lower applied dose only. While at higher dose of Hg, seaweeds were also effective but to a certain limits. It was established that continuous addition of Hg in soil and aquatic resources execute to the plant productivity. It is demand of time to develop alternative eco-friendly remediation technologies for controlling, cleaning Hg-polluted zones. (author)

  15. Identification of metals into fine particles (PM2.5) during the dry cold season in the Toluca City

    International Nuclear Information System (INIS)

    Martinez P, A. A.; Aldape U, F.

    2008-01-01

    To know the elemental content of fine particles PM 2.5 that can affect people in the Toluca City, such as metals and another, it was made a campaign collection of fine particles during dry-cold ( November 2006-March 2007). The aerosol samples were collected on Teflon filters with an equipment BGI model PQ200 mark authorized by the Environment Protection Agency (EPA), every other day with a time resolution of 24 h. The determination of the elemental composition of the samples was performed by means of the technique Particle Induced X-Ray Emission (PIXE). The results of the analysis showed consistently 13 elements S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, as, throughout the collection period. We calculated the enrich factor that separates the elements of the natural component of the anthropogenic component. The correlation matrix shows the pairs of elements that are contained in the same air mass as Vanadium and Nickel. From the results it is concluded that the sources that gave rise to these particles are the burning of fossil fuels in motor vehicles, lubricants, additives and burning tires wear of automotive vehicles, besides the products used in agricultural activities. (Author)

  16. Nickel detoxification and plant growth promotion by multi metal resistant plant growth promoting Rhizobium species RL9.

    Science.gov (United States)

    Wani, Parvaze Ahmad; Khan, Mohammad Saghir

    2013-07-01

    Pollution of the biosphere by heavy metals is a global threat that has accelerated dramatically since the beginning of industrial revolution. The aim of the study is to check the resistance of RL9 towards the metals and to observe the effect of Rhizobium species on growth, pigment content, protein and nickel uptake by lentil in the presence and absence of nickel. The multi metal tolerant and plant growth promoting Rhizobium strain RL9 was isolated from the nodules of lentil. The strain not only tolerated nickel but was also tolerant o cadmium, chromium, nickel, lead, zinc and copper. The strain tolerated nickel 500 μg/mL, cadmium 300 μg/mL, chromium 400 μg/mL, lead 1,400 μg/mL, zinc 1,000 μg/mL and copper 300 μg/mL, produced good amount of indole acetic acid and was also positive for siderophore, hydrogen cyanide and ammonia. The strain RL9 was further assessed with increasing concentrations of nickel when lentil was used as a test crop. The strain RL9 significantly increased growth, nodulation, chlorophyll, leghaemoglobin, nitrogen content, seed protein and seed yield compared to plants grown in the absence of bioinoculant but amended with nickel The strain RL9 decreased uptake of nickel in lentil compared to plants grown in the absence of bio-inoculant. Due to these intrinsic abilities strain RL9 could be utilized for growth promotion as well as for the remediation of nickel in nickel contaminated soil.

  17. Soil-plant transfer models for metals to improve soil screening value guidelines valid for São Paulo, Brazil.

    NARCIS (Netherlands)

    Dos Santos-Araujo, Sabrina N; Swartjes, Frank A; Versluijs, Kees W; Moreno, Fabio Netto; Alleoni, Luís R F

    2017-01-01

    In Brazil, there is a lack of combined soil-plant data attempting to explain the influence of specific climate, soil conditions, and crop management on heavy metal uptake and accumulation by plants. As a consequence, soil-plant relationships to be used in risk assessments or for derivation of soil

  18. Mapping the Metal Uptake in Plants from Jasper Ridge Biological Preserve - Oral Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Allison [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-24

    Serpentine soil originates in the Earth’s mantle and contains high concentrations of potentially toxic transition metals. Although serpentine soil limits plant growth, endemic and adapted plants at Jasper Ridge Biological Preserve, located behind SLAC National Accelerator Laboratory, can tolerate these conditions. Serpentine soil and seeds belonging to native California and invasive plants were collected at Jasper Ridge. The seeds were grown hydroponically and on serpentine and potting soil to examine the uptake and distribution of ions in the roots and shoots using synchrotron micro-focused X-ray fluorescence spectroscopy. The results were used to determine differences between serpentinetolerant plants. Rye grown on potting soil was enriched in Ni, Fe, Mn, and Cr compared to purple needlegrass grown on serpentine soil. Serpentine vegetation equally suppressed the uptake of Mn, Ni, and Fe in the roots and shoots. The uptake of Ca and Mg affected the uptake of other elements such as K, S, and P.

  19. Heavy metal contamination and risk assessment in water, paddy soil, and rice around an electroplating plant.

    Science.gov (United States)

    Liu, Jie; Zhang, Xue-Hong; Tran, Henry; Wang, Dun-Qiu; Zhu, Yi-Nian

    2011-11-01

    The objective of this paper is to assess the impact of long-term electroplating industrial activities on heavy metal contamination in agricultural soils and potential health risks for local residents. Water, soil, and rice samples were collected from sites upstream (control) and downstream of the electroplating wastewater outlet. The concentrations of heavy metals were determined by an atomic absorption spectrophotometer. Fractionation and risk assessment code (RAC) were used to evaluate the environmental risks of heavy metals in soils. The health risk index (HRI) and hazard index (HI) were calculated to assess potential health risks to local populations through rice consumption. Hazardous levels of Cu, Cr, and Ni were observed in water and paddy soils at sites near the plant. According to the RAC analysis, the soils showed a high risk for Ni and a medium risk for Cu and Cr at certain sites. The rice samples were primarily contaminated with Ni, followed by Cr and Cu. HRI values >1 were not found for any heavy metal. However, HI values for adults and children were 2.075 and 1.808, respectively. Water, paddy soil, and rice from the studied area have been contaminated by Cu, Cr, and Ni. The contamination of these elements is related to the electroplating wastewater. Although no single metal poses health risks for local residents through rice consumption, the combination of several metals may threaten the health of local residents. Cu and Ni are the key components contributing to the potential health risks.

  20. A Review on Heavy Metals (As, Pb, and Hg Uptake by Plants through Phytoremediation

    Directory of Open Access Journals (Sweden)

    Bieby Voijant Tangahu

    2011-01-01

    Full Text Available Heavy metals are among the most important sorts of contaminant in the environment. Several methods already used to clean up the environment from these kinds of contaminants, but most of them are costly and difficult to get optimum results. Currently, phytoremediation is an effective and affordable technological solution used to extract or remove inactive metals and metal pollutants from contaminated soil and water. This technology is environmental friendly and potentially cost effective. This paper aims to compile some information about heavy metals of arsenic, lead, and mercury (As, Pb, and Hg sources, effects and their treatment. It also reviews deeply about phytoremediation technology, including the heavy metal uptake mechanisms and several research studies associated about the topics. Additionally, it describes several sources and the effects of As, Pb, and Hg on the environment, the advantages of this kind of technology for reducing them, and also heavy metal uptake mechanisms in phytoremediation technology as well as the factors affecting the uptake mechanisms. Some recommended plants which are commonly used in phytoremediation and their capability to reduce the contaminant are also reported.

  1. The effect of the accident of Fukushima Daiichi Nuclear Power Plants on Niigata city based on tritium concentration in precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Kataoka, N. [Department of Chemistry and Chemical Engineering, Faculty of Engineering, Niigata University 8050 Ikarashi 2-III ocho, Niigata-shi, Nishiku, Niigata Pref. 950-2181 (Japan); Environmental Analytical Center of Niigata Prefecture 53-1 Ojigouya, Kounan-ku, Niigata Pref. 950-1144 (Japan); Imaizumi, H.; Kano, N.; Ying, W. [Department of Chemistry and Chemical Engineering, Faculty of Engineering, Niigata University 8050 Ikarashi 2-III ocho, Niigata-shi, Nishiku, Niigata Pref. 950-2181 (Japan)

    2014-07-01

    The maximum value of tritium concentration in precipitation was 200 Bq/kg in Niigata city when atmospheric nuclear-bomb tests were performed in 1960s. After that, tritium concentration continuously decreased and reached to environmental revel (0.5~1.0 Bq/kg). However, after the accident of Fukushima daiichi nuclear power plants, the tritium concentration in precipitation increased in Niigata city. Therefore the observation of tritium concentration had to be carried out. In our laboratory, we have investigated the tritium concentration in precipitation and also investigated the relation between the tritium concentration and other ion (Na⁺, Mg⁺, K⁺, Ca⁺, Cl⁻, NO3⁺ or SO₄²⁻) concentration in precipitation in Niigata city. In this study, precipitation in Niigata city was gathered monthly and the evaluation of tritium concentration in precipitation was performed. In addition, we also collected the precipitation hourly (short precipitation). Each water sample thus obtained was distilled with sodium peroxide and potassium permanganate. Then the water sample thus distilled was enriched in SPE electronic enrichment apparatus, and the tritium concentration in the sample thus treated was measured in a liquid scintillation counter. On the other hand, each ion concentration in the sample was measured by ion chromatography or Atomic Absorption Spectrometry. From the above the mentioned, the following five matters can be found. (1) The tritium concentration in the samples in March and April 2011 were twice or three times higher than that in March and April in annual years. In other words, it is considered that the thus high level concentration of tritium leads to the evaluation of the effect of the accident of the Fukushima nuclear power plants on Niigata city. (2) As to the sample, the concentration of the non-sea salt Ca²⁺ (nssCa²⁺) is similar to that in March and April in annual years. (3) For each short precipitation sample collected on March 15, 2011

  2. Translocation of heavy metals from soils into floral organs and rewards of Cucurbita pepo: Implications for plant reproductive fitness.

    Science.gov (United States)

    Xun, Erna; Zhang, Yanwen; Zhao, Jimin; Guo, Jixun

    2017-11-01

    Metals and metalloids in soil could be transferred into reproductive organs and floral rewards of hyperaccumulator plants and influence their reproductive success, yet little is known whether non-hyperaccumulator plants can translocate heavy metals from soil into their floral organs and rewards (i.e., nectar and pollen) and, if so, whether plant reproduction will be affected. In our studies, summer squash (Cucurbita pepo L. cv. Golden Apple) was exposed to heavy-metal treatments during bud stage to investigate the translocation of soil-supplemented zinc, copper, nickel and lead into its floral organs (pistil, anther and nectary) and rewards (nectar and pollen) as well as floral metal accumulation effects on its reproduction. The results showed that metals taken up by squash did translocate into its floral organs and rewards, although metal accumulation varied depending on different metal types and concentrations as well as floral organ/reward types. Mean foraging time of honey bees to each male and female flower of squash grown in metal-supplemented soils was shorter relative to that of plants grown in control soils, although the visitation rate of honeybees to both male and female flowers was not affected by metal treatments. Pollen viability, pollen removal and deposition as well as mean mass per seed produced by metal-treated squash that received pollen from plants grown in control soils decreased with elevated soil-supplemented metal concentrations. The fact that squash could translocate soil-supplemented heavy metals into floral organs and rewards indicated possible reproductive consequences caused either directly (i.e., decreasing pollen viability or seed mass) or indirectly (i.e., affecting pollinators' visitation behavior to flowers) to plant fitness. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. The Use of Plants for Remediation of Metal-Contaminated Soils

    Directory of Open Access Journals (Sweden)

    Andon Vassilev

    2004-01-01

    Full Text Available The use of green plants to remove, contain, inactivate, or degrade harmful environmental contaminants (generally termed phytoremediation is an emerging technology. In this paper, an overview is given of existing information concerning the use of plants for the remediation of metal-contaminated soils. Both site decontamination (phytoextraction and stabilization techniques (phytostabilization are described. In addition to the plant itself, the use of soil amendments for mobilization (in case of phytoextraction and immobilization (in case of phytostabilization is discussed. Also, the economical impacts of changed land-use, eventual valorization of biomass, and cost-benefit aspects of phytoremediation are treated. In spite of the growing public and commercial interest and success, more fundamental research is needed still to better exploit the metabolic diversity of the plants themselves, but also to better understand the complex interactions between metals, soil, plant roots, and micro-organisms (bacteria and mycorrhiza in the rhizosphere. Further, more demonstration experiments are needed to measure the underlying economics, for publicacceptance and last but not least, to convince policy makers.

  4. An advanced field experimental design to assess plant tolerance to heavy metal pollution

    Science.gov (United States)

    Łopata, Barbara; Szarek-Łukaszewska, Grażyna; Babst-Kostecka, Alicja

    2016-04-01

    Only a limited number of vascular plant species can survive and reproduce in toxic metalliferous environments. Among these species, pseudometallophytes are particularly interesting, as their metallicolous (M) populations on metalliferous soils and non-metallicolous (NM) populations on non-metalliferous soils show very pronounced ecological differences. Pseudometallophytes thus provide excellent opportunities for multidisciplinary research to improve phytoremediation and phytomining. Numerous methods have been developed to investigate plant adaptation to metal pollution, the majority of which has been conducted under controlled laboratory conditions. Although these efforts have significantly advanced our understanding of mechanisms underlying metal tolerance in plants, populations must be reciprocally transplanted to clearly identify natural selection. Only then is it possible to test, whether the fitness of native plants is higher than that of nonnative populations and thereby prove local adaptation. Here, we present an enhanced field experimental design aimed at verification of local adaptation to habitats with different levels of heavy metal soil contamination. At two M and two NM sites, we established a total of 12 plots (4 sites x 3 plots each), removed the existing local vegetation, and collected soil samples for chemical analyses (5 samples per plot). Plant collection (N= 480) from all four selected populations was established under laboratory conditions prior to the transplant experiment. Genotypes were randomly distributed within each plot (240 x 270 cm) and planted along a regulary spaced grid (30x30cm cell size) in spring 2015. Measurements will start in spring 2016, by which time plants are expected to have acclimatized to the local conditions. For the two subsiquent years, growth, survival, fitness, life cycle and herbivory consumption will be monitored for each transplant. On a weekly basis, we will record: 1) pictures of each transplant to determine

  5. Assessment of operators' mental workload using physiological and subjective measures in cement, city traffic and power plant control centers.

    Science.gov (United States)

    Fallahi, Majid; Motamedzade, Majid; Heidarimoghadam, Rashid; Soltanian, Ali Reza; Miyake, Shinji

    2016-01-01

    The present study aimed to evaluate the operators' mental workload (MW) of cement, city traffic control and power plant control centers using subjective and objective measures during system vital parameters monitoring. This cross-sectional study was conducted from June 2014 to February 2015 at the cement, city traffic control and power plant control centers. Electrocardiography and electroencephalography data were recorded from forty males during performing their daily working in resting, low mental workload (LMW), high mental workload (HMW) and recovery conditions (each block 5 minutes). The NASA-Task Load Index (TLX) was used to evaluate the subjective workload of the operators. The results showed that increasing MW had a significant effect on the operators subjective responses in two conditions ([1,53] = 216.303, P < 0.001, η2 = 0.803). Also,the Task-MW interaction effect on operators subjective responses was significant (F [3, 53] = 12.628,P < 0.001, η2 = 0.417). Analysis of repeated measures analysis of variance (ANOVA) indicated that increasing mental demands had a significant effect on heart rate, low frequency/high frequency ratio, theta and alpha band activity. The results suggested that when operators' mental demands especially in traffic control and power plant tasks increased, their mental fatigue and stress level increased and their mental health deteriorated. Therefore, it may be necessary to implement an ergonomic program or administrative control to manage mental probably health in these control centers. Furthermore, by evaluating MW, the control center director can organize the human resources for each MW condition to sustain the appropriate performance as well as improve system functions.

  6. Assessment of operators’ mental workload using physiological and subjective measures in cement, city traffic and power plant control centers

    Science.gov (United States)

    Fallahi, Majid; Motamedzade, Majid; Heidarimoghadam, Rashid; Soltanian, Ali Reza; Miyake, Shinji

    2016-01-01

    Background: The present study aimed to evaluate the operators’ mental workload (MW) of cement, city traffic control and power plant control centers using subjective and objective measures during system vital parameters monitoring. Methods: This cross-sectional study was conducted from June 2014 to February 2015 at the cement, city traffic control and power plant control centers. Electrocardiography and electroencephalography data were recorded from forty males during performing their daily working in resting, low mental workload (LMW), high mental workload (HMW) and recovery conditions (each block 5 minutes). The NASA-Task Load Index (TLX) was used to evaluate the subjective workload of the operators. Results: The results showed that increasing MW had a significant effect on the operators subjective responses in two conditions ([1,53] = 216.303, P < 0.001, η2 = 0.803). Also,the Task-MW interaction effect on operators subjective responses was significant (F [3, 53] = 12.628,P < 0.001, η2 = 0.417). Analysis of repeated measures analysis of variance (ANOVA) indicated that increasing mental demands had a significant effect on heart rate, low frequency/high frequency ratio, theta and alpha band activity. Conclusion: The results suggested that when operators’ mental demands especially in traffic control and power plant tasks increased, their mental fatigue and stress level increased and their mental health deteriorated. Therefore, it may be necessary to implement an ergonomic program or administrative control to manage mental probably health in these control centers. Furthermore, by evaluating MW, the control center director can organize the human resources for each MW condition to sustain the appropriate performance as well as improve system functions. PMID:27386425

  7. Nuclear microprobe study of heavy metal uptake and transport in aquatic plant species

    International Nuclear Information System (INIS)

    Kertesz, Zs.; Kocsar, I.; Szikszai, Z.; Lakatos, Gy.

    2005-01-01

    Complete text of publication follows. In aquatic ecosystems water contamination by trace metals is one of the main types of pollution that may stress the biotic community. Although some metals are needed as micronutrients for autotrophic organisms, they can have toxic effects at higher concentration. Aquatic plants can take up large quantities of nutrients and metals from the environment, they can live under extreme environmental conditions therefore they are being increasingly used in remediation processes to reduce contamination. Besides the usually applied bulk analytical techniques quantitative micro-PIXE investigation of the macro, micro and trace element distribution within the root can lead to a better understanding of the heavy metal up-take, transport and detoxification mechanisms of the plants and thus helps to select the proper species for the remedial activity, or possibly to increase the efficiency of the remediation. In this work we determined the elemental distributions in root cross sections and along the roots of reed (Phragmaties australis), bulrush (Typha angustifolia) and sea club-rush (Bolboschoemus maritimus) using the Debrecen nuclear microprobe. The plants originate from the dried units of the wastewater sedimentation pond system of the tannery of Kunszentmarton. 1500 m 3 waste water containing lime, sodium-salts, ammonium-salts, chromium-salts, sodium, chlorine and magnesium ions, sulphur and organic material was released to the pond system every day till 1988. The chosen species are the dominant species of the area, composing 85-90% of the green plant covering. This heavily contaminated area has been regularly monitored by the colleagues of the Dept. of Applied Ecology of the Univ. of Debrecen since 1998. They focused their work the potentially toxic heavy metal chromium. In order to conserve the samples in the living state, the roots were frozen in liquid nitrogen. 16-20 μm thick cross sections were made with cryo-microtome, and all the

  8. Recovering metals from sewage sludge, waste incineration residues and similar substances with hyperaccumulative plants

    Science.gov (United States)

    Kisser, Johannes; Gattringer, Heinz; Iordanopoulos-Kisser, Monika

    2015-04-01

    Sewage sludges as well as ashes from waste incineration plants are known accumulation sinks of many elements that are either important nutrients for biological organisms (phosphorus, potassium, magnesium, etc.) or valuable metals when considered on their own in pure form (nickel, chrome, zinc, etc.); they are also serious pollutants when they occur in wild mixtures at localized anthropogenic end- of-stream points. Austria and many other countries have to import up to 90% of the material inputs of metals from abroad. These primary resources are becoming more expensive as they become more scarce and remaining deposits more difficult to mine, which is a serious concern for industrialized nations. Basic economic and strategic reasoning demands an increase in recycling activities and waste minimization. Technologies to recover metals in a reasonable and economically relevant manner from very diffuse sources are practically non-existent or require large amounts of energy and chemicals, which pose environmental risks. On the other hand agriculture uses large volumes of mineral fertilizers, which are often sourced from mines as well, and thus are also subject to the same principle of finiteness and potential shortage in supply. These converted biological nutrients are taken up by crops and through the food chain and human consumption end up in sewage systems and in wastewater treatment plants in great quantities. The metabolized nutrients mostly do not return to agriculture, but due to contamination with heavy metals are diverted to be used as construction aggregates or are thermally treated and end up rather uselessly in landfills. The project BIO-ORE aimed to explore new pathways to concentrate metals from diluted sources such as sewage sludge and wastewater by using highly efficient biological absorption and transport mechanisms. These enzymatic systems from plants work with very little energy input. The process is called bioaccumulation and can be most effectively

  9. Heavy Metals in Soil&Plant System Under Conditions of the South of Tyumen Region

    Science.gov (United States)

    Oznobihina, A. O.; Gayevaya, E. V.

    2017-11-01

    The article considers the problems of pollution with heavy metals (zinc, copper, cadmium and lead) of topsoil and plant products. The article contains the results analysis for laboratory trials of the researched components of the natural environment in the territory of the reference plots of the south of the Tyumen region. The authors assessed soil pollution and the samples of natural as well as perennial grasses, rape, oats, wheat, barley with heavy metals. A correlation between the content of zinc, copper, cadmium, lead in the soil and plants growing in it was determined. The article identifies the regions where the agrotechnical procedures directed to the decrease of toxicants’ negative influence on the life form should be considered.

  10. Do heavy metals and metalloids influence the detoxification of organic xenobiotics in plants?

    Science.gov (United States)

    Schröder, Peter; Lyubenova, Lyudmila; Huber, Christian

    2009-11-01

    Mixed pollution with trace elements and organic industrial compounds is characteristic for many spill areas and dumping sites. The danger for the environment and human health from such sites is large, and sustainable remediation strategies are urgently needed. Phytoremediation seems to be a cheap and environmentally sound option for the removal of unwanted compounds, and the hyperaccumulation of trace elements and toxic metals is seemingly independent from the metabolism of organic xenobiotics. However, stress reactions, ROS formation and depletion of antioxidants will also cause alterations in xenobiotic detoxification. Here, we investigate the capability of plants to detoxify chlorophenols via glutathione conjugation in a mixed pollution situation. Typha latifolia and Phragmites australis plants for the present study were grown under greenhouse conditions in experimental ponds. A Picea abies L. suspension culture was grown in a growth chamber. Cadmium sulphate, sodium arsenate and lead chloride in concentrations from 10 to 500 microM were administered to plants. Enzymes of interest for the present study were: glutathione transferase (GST), glutathione reductase, ascorbate peroxidase and peroxidase. Measurements were performed according to published methods. GST spectrophotometric assays included the model substrates CDNB, DCNB, NBC, NBoC and the herbicide Fluorodifen. Heavy metals lead to visible stress symptoms in higher plants. Besides one long-term experiment of 72 days duration, the present study shows time and concentration-dependent plant alterations already after 24 and 72 h Cd incubation. P. abies spruce cell cultures react to CdSO(4) and Na(2)HAsO(4) with an oxidative burst, similar to that observed after pathogen attack or elicitor treatment. Cd application resulted in a reduction in GSH and GSSG contents. When a heavy metal mixture containing Na(2)HAsO(4), CdSO(4) and PbCl(2) was applied to cultures, both GSH and GSSG levels declined. Incubation with

  11. Effects of Fe plaque and organic acids on metal uptake by wetland plants under drained and waterlogged conditions.

    Science.gov (United States)

    Li, W C; Deng, H; Wong, M H

    2017-12-01

    This study aims to assess the role of Fe plaque in metal uptake and translocation by different wetland plants and examine the effects of organic acids on metal detoxification in wetland plants. It was found that although exposed to a similar level of metals in rhizosphere soil solution, metal uptake by shoots of Cypercus flabelliformis and Panicum paludosum was greatly reduced, consequently leading to a better growth under flooded than under drained conditions. This may be related to the enhanced Fe plaque in the former, but due to the decreased root permeability in the latter under anoxic conditions. The Fe plaque on root surface has potential to sequester metals and then reduce metal concentrations and translocation in shoot tissues. However, whether the Fe plaque acts as a barrier to metal uptake and translocation may also be dependent on the root anatomy. Although metal tolerance in wetland plants mainly depends upon their metal exclusion ability, the higher-than-toxic-level of metal concentrations in some species indicates that internal metal detoxification might also exist. It was suggested that malic or citric acid in shoots of P. paludosum and C. flabelliformis may account for their internal detoxification for Zn. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Correlation between Screening estimation and noise measurement in Small Plants in Varamin city

    Directory of Open Access Journals (Sweden)

    S. A. R. Negahban

    2013-08-01

    Conclusion: No correlation was shown between the results of the two methods used. Thus, it is recommended to change the parameters used in the noise screening form for small plants, with less than 5 workers.

  13. Pilot plant studies on the extraction of antimony metal from lower grade krinj stibnite ore

    International Nuclear Information System (INIS)

    Rehman, W.; Riaz, M.; Ishaq, M.

    2013-01-01

    Antimony is a silvery white, brittle and crystalline solid which is extensively consumed in lead acid batteries, antimonial lead alloys, flame retardants and a variety of metallic products. The antimony content of commercial ores range from 5-60% and determines the method of extraction, either pyrometallurgical or hydrometallurgical. The present study focuses on pilot plant scale extraction of antimony metal from lower grade stibnite ore of Krinj (Chitral) without the use of iron scrap, thus eliminating the second step of iron removal in conventional direct reduction method. A tilting gas fired furnace with digital temperature control system and a heat recuperator was designed to optimize the operating parameters for extraction of antimony metal. Weight ratios of flux and reductant, operating time and operating temperature were optimized. Highest percentage recovery and purity were achieved using soda ash as a flux, at a temperature of 900 degree C for 2 hours. (author)

  14. Microbiological quality assessment of commercially available medicinal plants in Peshawar city, Pakistan

    International Nuclear Information System (INIS)

    Khattak, K.F.

    2012-01-01

    Medicinal plants naturally harbor a variety of microorganisms. Besides, representing a direct health hazard to the consumer, these contaminated materials can cause the spoilage of pharmaceuticals and traditional preparations to which they are added. Assessment of microbiological loads of plants to assure safety and quality is therefore worth investigation. In the present study, 45 commercially available medicinal plants were evaluated for aerobic bacteria, fungi, coliforms, E. coli and Salmonella. All investigations were carried out in triplicate using standard methods. The results of the study revealed very high microbial loads and the presence of pathogenic bacteria in the plant samples. The aerobic bacterial count ranged from 1.3 x 102 to 5.6 x 10/sup 9/ cfu/g. The highest load was detected in the rhizomes of Curcuma longa. The coliform counts varied from 1.5 x 10/sup 2/ to 1.6 x 10/sup 4/ cfu/g. Among the selected herbs, 23 showed the presence of E. coli, while Salmonella spp. was detected in 13 samples. The fungal counts were above the international permissible level in the tested samples. It was concluded that commercially available plants may be high-risk substances and therefore quality of the plants may be regularly checked to ensure safety and make them fit for human consumption. (author)

  15. Industrial wastes of the cities of Baku and Sumgait and their effect on green plantings

    Energy Technology Data Exchange (ETDEWEB)

    Amirov, R O; Ismaylov, A R

    1969-01-01

    Baku and Sumgait had large oil production and chemical industries. Investigations showed that injury in green planting depended essentially on the nature of the waste products. Air polluted with SO/sub 2/, chlorine, and fluorine compounds produced dark brown bumps on the leaves. As the distance from the industries increased, the frequency and the intensity of the injuries decreased. Some of the ornamental species were beter adjusted and had a greater resistance. The establishment and development of green plantings were important for combating air pollution and for the sanitary well-being of the industrial area. Plans of landscaping of industrial enterprises included green plantings directly on the territory of the enterprises as well as in areas surrounding them in a radius of 150-500 m. Green shelter belts were needed for protection of the strong northern winds. The selection of plants was made considering their gas resistance, their drought resistance, as well as the plants' ability to grow in solonchak-solonets, clayey, and clayey loam soils characteristic for the Apsheron Peninsula. Trees and bushes were planted by the trench method. Irrigation with waste water was avoided.

  16. HEAVY METAL CONTENT OF FLOOD SEDIMENTS AND PLANTS NEAR THE RIVER TISZA

    Directory of Open Access Journals (Sweden)

    SZILÁRD SZABÓ

    2008-12-01

    Full Text Available The River Tisza is Hungary’s especially important river. It is significant not only because of the source of energy and the value insured by water (hydraulical power, shipping route, stock of fish,aquatic environment etc. but the active floodplain between levees as well. Ploughlands, orchards, pastures, forests and oxbow lakes can be found here. They play a significant role in the life of the people living near the river and depend considerably on the quality of the sediments settled by the river. Several sources of pollution can be found in the catchment area of the River Tisza and some of them significantly contribute to the pollution of the river and its active floodplain. In this paper we study the concentration of zinc, copper, nickel and cobalt in sediments settled in the active floodplain and the ratio of these metals taken up by plants. Furthermore, our aim was to study the vertical distribution of these elements by the examination of soil profiles. The metal content of the studiedarea does not exceed the critical contamination level, except in the case of nickel, and the ratio of metals taken up by plants does not endanger the living organisms. The vertical distribution of metals in the soil is heterogeneous, depending on the ratio of pollution coming from abroad and the quality of flood.

  17. Effects of acidification on metal accumulation by aquatic plants and invertebrates. 1. Constructed wetlands

    Science.gov (United States)

    Albers, P.H.; Camardese, M.B.

    1993-01-01

    The pH of lake water is often inversely correlated with concentrations of trace metals in the water column. Concentrations of Al, Cd, Ca, Cu, Fe, Hg, Pb, Mg, Mn, Ni, P, and Zn were compared in water, plants, and aquatic insects from three acidified (pH 5.0) and three nonacidified (pH 6.5) constructed wetlands. Concentrations of Zn in water and bur-reed (Sparganium americanum) were higher in acidified wetlands than in nonacidified wetlands. Floating nonrooted plants contained mean concentrations of Fe, Mg, and Mn that were higher than recommended maximum levels for poultry feed. The mean concentrations of all metals in insects were below recommended maximum levels for poultry feed and below levels that cause toxic effects in wild birds. Smaller than expected increases of metal concentrations in the water of acidified wetlands were probably due to limited mobilization of metals from the sediments and insignificant changes in sedimentation of aqueous metals. Calcium was lower in acidified than in nonacidified wetland water, but the Ca content of insects and bur-reed was not lower. Low concentrations of Ca in aquatic insects from both groups of wetlands indicate that calcium-rich crustaceans and mollusks are probably important to female waterfowl and their young during the spring, when invertebrates make up the majority of the diet. Although toxic effects from metal ingestion seem to be unlikely consequences of wetland acidification, the adverse effect of low pH on the occurrence of crustaceans and mollusks could threaten egg production and development of young.

  18. The effect of bottom sediment supplement on heavy metals content in plants (Zea mays and soil

    Directory of Open Access Journals (Sweden)

    Baran A.

    2013-04-01

    Full Text Available Important aspect of bottom sediments is the problem of their management or disposal after their extraction from the bottom of rivers, dam reservoirs, ports, channels or ponds. The research aimed at an assessment of potential environmental management of bottom sediment used as an admixture to light soil basing on its effect on contents of heavy metals in plants and soil. The research was conducted on light soil with granulometric structure of weakly loamy sand. The bottom sediment was added to light soil in the amount of 0 (control 5, 10, 30 i 50%. The test plant was maize (Zea mays, “Bora” c.v. The sediment applied in the presented research revealed high share of silt and clay fractions, alkaline pH and low contents of heavy metals, therefore it may be used as an admixture to the above mentioned soils to improve their productivity. The applied bottom sediment to the soil affected a decreased in Zn, Cd and Pb content in maize in comparison with the treatment without the deposit whereas increased content of Cu, Cr and Ni. No exceeded permissible content of heavy metals concerning plant assessment in view of their forage usability were registered in maize biomass.

  19. Rhamnolipids production by multi-metal-resistant and plant-growth-promoting rhizobacteria.

    Science.gov (United States)

    Singh, Anil Kumar; Cameotra, Swaranjit Singh

    2013-07-01

    The biosurfactant-producing Pseudomonas aeruginosa A11, with plant-growth-promoting (PGP) and multi-metal-resistant (MMR) features was isolated from the rhizosphere of a wild plant Parthenium hysterophorus. The strain A11 was able to utilize glycerol as a carbon source and produce 4,436.9 mg/L of biosurfactant after 120 h of incubation. The biosurfactants was characterized as rhamnolipids (RLs) by thin layer chromatography, Fourier transform infrared spectroscopy, nuclear magnetic resonance, and liquid chromatography-mass spectrometry analysis. Eight different RLs congeners were detected with RhaRhaC₁₀C₁₀ being most abundant. The purified rhamnolipid, dirhamnolipid, and monorhamnolipid reduced the surface tension of water to 29, 36, and 42 mN/m with critical micelle concentration of 83, 125, and 150 mg/L, respectively. The strain A11 demonstrated resistance against all the metals detected in rhizosphere except Hg and Ni. The strain A11 also possessed plant-growth-promoting features like siderophores, hydrogen cyanide, catalase, ammonia production, and phosphate solubilization. The dirhamnolipids formed crystals upon incubation at 4 °C, thus making separation of dirhamnolipids easy. Biosurfactant-producing ability along with MMR and PGP traits of the strain A11 makes it a potential candidate for application in the bacterial assisted enhancement of phytoremediation of heavy-metal-contaminated sites.

  20. Comparative evaluation of phytoremediation of metal contaminated soil of firing range by four different plant species

    Directory of Open Access Journals (Sweden)

    Saadia R. Tariq

    2016-11-01

    Full Text Available The phytoremediation potential of Helianthus annuus, Zea maize, Brassica campestris and Pisum sativum was studied for the soil of firing range contaminated with selected metals i.e. Cd, Cu, Co, Ni, Cr and Pb. The seedlings of the selected plants germinated in a mixture of sand and alluvial soil were transferred to the pots containing the soil of firing ranges and allowed to grow to the stage of reproductive growth. Subsequently they were harvested and then analyzed for selected metals by using AAS. Among the studied plants, P. sativum exhibited highest removal efficiency (i.e. 96.23% and bioconcentration factor for Pb thereby evidencing it to be Pb hyperaccumulator from the soil of firing ranges. Z. maize appreciably reduced the levels of all the selected metals in the soil but the highest phytoextraction capacity was shown for Pb i.e. 66.36%, which was enhanced to approximately 74% on EDTA application. H. annuus represented the highest removal potential for Cd i.e. 56.03% which was further increased on EDTA application. Thus it proved to be an accumulator of Cd after EDTA application. It was therefore concluded that different plants possess different phytoremediation potentials under given set of conditions.

  1. Toxic metal tolerance in native plant species grown in a vanadium mining area.

    Science.gov (United States)

    Aihemaiti, Aikelaimu; Jiang, Jianguo; Li, De'an; Li, Tianran; Zhang, Wenjie; Ding, Xutong

    2017-12-01

    Vanadium (V) has been extensively mined in China and caused soil pollution in mining area. It has toxic effects on plants, animals and humans, posing potential health risks to communities that farm and graze cattle adjacent to the mining area. To evaluate in situ phytoremediation potentials of native plants, V, chromium, copper and zinc concentrations in roots and shoots were measured and the bioaccumulation (BAF) and translocation (TF) efficiencies were calculated. The results showed that Setaria viridis accumulated greater than 1000 mg kg -1 V in its shoots and exhibited TF > 1 for V, Cr, Zn and BAF > 1 for Cu. The V accumulation amount in the roots of Kochia scoparia also surpassed 1000 mg kg -1 and showed TF > 1 for Zn. Chenopodium album had BAF > 1 for V and Zn and Daucus carota showed TF > 1 for Cu. Eleusine indica presented strong tolerance and high metal accumulations. S. viridis is practical for in situ phytoextractions of V, Cr and Zn and phytostabilisation of Cu in V mining area. Other species had low potential use as phytoremediation plant at multi-metal polluted sites, but showed relatively strong resistance to V, Cr, Cu and Zn toxicity, can be used to vegetate the contaminated soils and stabilise toxic metals in V mining area.

  2. Chemical and plant extractability of metals and plant growth on soils amended with sludge

    Energy Technology Data Exchange (ETDEWEB)

    Gaynor, J.D.; Halstead, R.L.

    1976-02-01

    The addition of sludge to a Fox sandy loam (sl), Granby sl and Rideau clay (c) soil increased soil pH, total C, NaHCO3 extractable P, cation exchange capacity and exchangeable Ca. Sludge application increased DTPA-extractable Cd 2 to 5 times, Pb 2 to 3 times, Cu 3 to 7 times and Zn 7 to 31 times. Metal extractability in Granby and Fox sl soils was not greatly changed after 11 mo incubation but extractable Zn, Cu, Pb and Cd were reduced in the clay soil following incubation. Cropping to lettuce reduced the quantity of metal extracted from Fox sl soil and to a lesser extent from Rideau c soil but not from Granby sl soil. Lettuce (Lactuca sativa L.) yields were significantly reduced for the first crop grown on sludge + fertilizer-treated Rideau c and Granby sl soils and for all three harvests from similarly treated Fox s 1 soil compared to harvests from soils treated with fertilizer only. Yield reduction for the first crop was attributed to a salt effect, as subsequent yields on Rideau c and Granby sl soils were similar to harvests from fertilized treatments. Saturation extract conductivities for all sludge treatments were higher for incubated than for cropped soils. Generally Zn, Cu and Pb tissue concentrations in lettuce harvested from sludge + fertilizer-treated Fox and Granby sl soils were significantly increased but total uptake was only increased for Zn. Metal uptake and tissue concentrations for lettuce grown on similarly treated Rideau c soil were equal to or less than those found in lettuce harvested from the fertilizer-only treatment. To a lesser extent similar trends were observed with the tomato (Lycospersicon esculentum Mill.) crop. 27 references, 3 tables.

  3. Heavy metals effects on forage crops yields and estimation of elements accumulation in plants as affected by soil

    International Nuclear Information System (INIS)

    Grytsyuk, N.; Arapis, G.; Perepelyatnikova, L.; Ivanova, T.; Vynograds'ka, V.

    2006-01-01

    Heavy metals (Cu, Cd, Pb, Zn) effect on the productivity of forage crops (clover and perennial cereal grasses) and their accumulation in plants, depending on the concentration of these elements in a soil, has been studied in micro-field experiments on three types of soil. The principle objective was to determine regularities of heavy metals migration in a soil-plant system aiming the estimation of permissible levels of heavy metals content in soils with the following elaboration of methods, which regulate the toxicants transfer to plants. Methods of field experiments, agrochemical and atomic absorption analysis were used. Results were statistically treated by Statistica 6.0, S-Plus 6. Experimental results have shown that the intensity of heavy metals accumulation in plants depends on the type of the soil, the species of plants, the physicochemical properties of heavy metals and their content in the soil. Logarithmic interdependency of heavy metals concentration in soils and their accumulation in plants is suggested. However, the strong correlation between the different heavy metals concentrations in the various soils and the yield of crops was not observed. Toxicants accumulation in crops decreased in time

  4. Heavy metals effects on forage crops yields and estimation of elements accumulation in plants as affected by soil.

    Science.gov (United States)

    Grytsyuk, N; Arapis, G; Perepelyatnikova, L; Ivanova, T; Vynograds'ka, V

    2006-02-01

    Heavy metals (Cu, Cd, Pb, Zn) effect on the productivity of forage crops (clover and perennial cereal grasses) and their accumulation in plants, depending on the concentration of these elements in a soil, has been studied in micro-field experiments on three types of soil. The principle objective was to determine regularities of heavy metals migration in a soil-plant system aiming the estimation of permissible levels of heavy metals content in soils with the following elaboration of methods, which regulate the toxicants transfer to plants. Methods of field experiments, agrochemical and atomic absorption analysis were used. Results were statistically treated by Statistica 6.0, S-Plus 6. Experimental results have shown that the intensity of heavy metals accumulation in plants depends on the type of the soil, the species of plants, the physicochemical properties of heavy metals and their content in the soil. Logarithmic interdependency of heavy metals concentration in soils and their accumulation in plants is suggested. However, the strong correlation between the different heavy metals concentrations in the various soils and the yield of crops was not observed. Toxicants accumulation in crops decreased in time.

  5. The traditional knowledge about melitophile plants in rural communities in the city of Sigefredo Pacheco, Piauí

    Directory of Open Access Journals (Sweden)

    Ederson de Sousa Martins

    2017-07-01

    Full Text Available The knowledge about plants with melitophile potential is highlighted in the research field, this way; these pieces of information are collected in the rural areas. Thus, ethnobotany, which studies the relation between human groups and plants, is fundamental, because it brings information about the species visited by bees as well as beekeepers and meliponiculturers, helping with environmental protection, especially native tree species and different bee groups. The objective of this study was to conduct an ethnobotanical survey about the knowledge the residents of two rural communities in the city of  Sigrefredo Pacheco, state of Piauí, about melitophile plants. The study was conducted through interviews in every house (41 of the two communities, totalizing 69 interviewees. 31 species were cited, and the family Leguminosae was highlighted.the most cited species were: Croton blanchetianus Baill. (25 and Hyptis suaveolens (L. Poit. (25, in which the native species stood out (77,4%. It is possible to observe that the younger portion had the smaller participation and about gender, it is noticeable that men presented a major number of citation addressing plants than women. The study concludes that the knowledge of melitophile plants is present among the residents of the communities, that they know the profitable practices to the conservation of the melitophile flora, though; they are not overspread in the community. It is necessary to know more and more the knowledge about apicultural flora in rural communities, in order to rescue and value this knowledge, as well as local conservation measures.

  6. Phytoremediation potential of wild plants growing on soil contaminated with heavy metals.

    Science.gov (United States)

    Čudić, Vladica; Stojiljković, Dragoslava; Jovović, Aleksandar

    2016-09-01

    Phytoremediation is an emerging technology that employs higher plants to cleanup contaminated environments, including metal-polluted soils. Because it produces a biomass rich in extracted toxic metals, further treatment of this biomass is necessary. The aim of our study was to assess the five-year potential of the following native wild plants to produce biomass and remove heavy metals from a polluted site: poplar (Populus ssp.), ailanthus (Ailanthus glandulosa L.), false acacia (Robinia pseudoacacia L.), ragweed (Artemisia artemisiifolia L.), and mullein (Verbascum thapsus L). Average soil contamination with Pb, Cd, Zn, Cu, Ni, Cr, and As in the root zone was 22,948.6 mg kg-1, 865.4 mg kg-1, 85,301.7 mg kg-1, 3,193.3 mg kg-1, 50.7 mg kg-1, 41.7 mg kg-1,and 617.9 mg kg-1, respectively. We measured moisture and ash content, concentrations of Pb, Cd, Zn, Cu, Ni, Cr, and As in the above-ground parts of the plants and in ash produced by combustion of the plants, plus gross calorific values. The plants' phytoextraction and phytostabilisation potential was evaluated based on their bioconcentration factor (BCF) and translocation factor (TF). Mullein was identified as a hyperaccumulator for Cd. It also showed a higher gross calorific value (19,735 kJ kg-1) than ragweed (16,469 kJ kg-1).The results of this study suggest that mullein has a great potential for phytoextraction and for biomass generation, and that ragweed could be an effective tool of phytostabilisation.

  7. Test the Efficiency of some Plants in the Tolerant of Air Pollution within the City of Baghdad. Iraq

    Directory of Open Access Journals (Sweden)

    Israa M. Jasim

    2018-03-01

    Full Text Available This study was designed to monitor the ambient air pollution in several sites within Baghdad City of Iraq. The readings started from May 2016 to April 2017. The highest concentration of sulfur dioxide (SO2 was 2.28 ppmm-3 while nitrogen dioxide (NO2 was 3.68 ppmm-3 and suspended particulate matter was 585.1 μgm-3. This study also included estimating the value of the air pollution tolerance index (APTI for four plant's species Olea europaea L., Ziziphus spina-Christi (L. Desf, Albizia lebbeck(L. Benth. and Eucalyptus camaldulensis Dehnh. Were cultivated on the road sides. The study includes four biochemical parameters, total chlorophyll content, ascorbic acid content, pH and relative water content of plant leaves. The results show that combining variety of these parameters give more certain results than those of single parameter. These four estimated parameters have positive correlation with each other and with the values of the air pollution tolerance index in all plants studied.

  8. Zinc Regime in the Sewage Sludge-Soil-Plant System of a City Waste Water Treatment Pond

    Directory of Open Access Journals (Sweden)

    Lacatusu Radu

    2014-10-01

    Full Text Available The sewage sludge from wastewater treatment plant of Iasi, a city with 300,000 inhabitants, for domestic and industrial origin, was stored in a mud pond arranged on an area of 18,920 m2. Chemical analyzes of the sludge showed that, of all the chemical elements determined, only Zn is found at pollutant level (5739 mg∙kg-1, i.e. almost 30 times more than the maximum allowable limit for Zn in soil and 45 times more than the Zn content of the soil on which the mud pond has been set. Over time, the content of Zn in the mud pond, but also from soil to which it has been placed, has become upper the normal content of the surrounding soil up to a depth of 260 cm. On the other hand, the vegetation installed on sewage sludge in the process of mineralization, composed predominantly of Phragmites, Rumex, Chenopodium, and Aster species had accumulated in roots, stems and leaves Zn quantities equivalent to 1463 mg Kg-1, 3988 mg Kg-1, 1463 mg Kg-1, respectively, 1120 mg∙Kg-1. The plants in question represents the natural means of phytoremediation, and sewage sludge as such may constitute a fertilizer material for soils in the area, on which Zn deficiency in maize has been recorded. In addition, the ash resulted from the incineration of plants loaded with zinc may constitute, in its turn, a good material for fertilizing of the soils that are deficient in zinc.

  9. Block survey of wall covered with plant in the city of Tokyo [Japan] and evaluation of thermal environment of wall greening system

    International Nuclear Information System (INIS)

    Shibuya, K.; Soh, Y.; Satoh, S.

    2007-01-01

    There were 384 (8877 square m) walls which covered with plant on 10 square km in the city of Tokyo, and the green wall rate in the city of Tokyo was 0.88%. Vines, for example Parthenocissus tricuspidata and Hedera helix, were widely used. The factor of thinking better of the landscape in urban area was one of the easily management of plants. The three wall greening systems, a wall covered with hanging climbers and two types of self-contained living wall, mitigated the thermal environment. However its degree can be depended on the greening method and the greenery occupancy rate of wall

  10. Determination of heavy metals in medicinal plants from the wild and cultivated garden in Wilberforce Island, Niger Delta region, Nigeria

    Directory of Open Access Journals (Sweden)

    Edebi N. Vaikosen

    2017-04-01

    Full Text Available Context: Adverse effects from herbal medicines may be partly due to the association of heavy metals with medicinal plants. Aims: To determine residual levels of Ni, Cr, Pb and Cd in nine selected medicinal plant species and the surrounding soils collected from the Faculty of Pharmacy medicinal garden and College of Health Sciences residential quarters, Amassoma, Bayelsa state, Nigeria. Methods: Nine plant species: Jatropha tanjorensis, Ipomoea batatas, Celosia argentea, Zea mays, Colocasia esculenta, Corchorus olitorius, Vernonia amygdalina, Ocimum gratissimum and Talinum triangulare were collected with their surrounding soil samples. The samples were dried and subjected to atomic absorption spectrophotometry (AAS to determine the heavy metal concentrations. Results: The detection frequencies of heavy metals in medicinal plants were: Cd – 100%, Pb – 11%, Ni – 0% and Cr – 0%. The residential quarter was more contaminated than cultivated medicinal garden. Order of residual concentration in bulk soils was Cr > Cd > Ni > Pb. Bioaccumulation factor ranged from 0 – 25.93 for foliar tissues. Cadmium in plant species ranged from 0.23 to 2.44 µg/g with > 88% exceeding the WHO maximum limit for medicinal plant materials. Conclusions: The heavy metal concentrations in medicinal plants were dependent on the collection sites, plant species and physico-chemical properties of soil. Cd exhibited the greatest bioavailability in the investigated plants and soils. Cd and Pb found in plant foliage were due to uptake from soil and aerial deposition, respectively.

  11. Effects of Chemical Applications to Metal Polluted Soils on Cadmium Uptake by Rice Plant

    Directory of Open Access Journals (Sweden)

    Yoo J. H.

    2013-04-01

    Full Text Available Pot experiment using metal polluted soils was conducted to investigate the effects of lime, iron and sulfur on changes in Cd availability and uptake by rice plant. Drainage and irrigation of water were performed to develop redox changes like field cultivation. Iron chloride and sodium sulfate solutions were applied to the pots in the middle of growth period of rice plant. Reactive metal pool in heavily polluted soils was slightly decreased after treatments with lime, iron chloride, sodium sulfate and combination of these chemicals. However, cadmium uptake by rice plant was significantly different across the treatments and the extent of Cd pollution. For highly polluted soils, more Cd reduction was observed in iron chloride treatments. Cd content in polished rice for iron chloride and (iron chloride+organic matter treatments was only 16-23% and 25-37% compared to control and liming, respectively. Treatment of (iron chloride+sulfate rather increased Cd content in rice. For moderately polluted soils, Cd reduction rate was the order of (OM+iron chloride > iron chloride > lime. Other treatments including sulfate rather increased Cd content in rice maximum 3 times than control. It was proposed to determine the optimum application rate of iron for minimizing hazardous effect on rice plant.

  12. Marine environment status assessment based on macrophytobenthic plants as bio-indicators of heavy metals pollution

    International Nuclear Information System (INIS)

    Zalewska, Tamara; Danowska, Beata

    2017-01-01

    The main aim of study was to develop the environmental quality standards (EQS MP ) for selected heavy metals: Pb, Cd, Hg and Ni bioaccumulated in the tissues of marine macrophytobenthic plants: Chara baltica, Cladophora spp., Coccotylus truncatus, Furcellaria lumbricalis, Polysiphonia fucoides, Stuckenia pectinata and Zanichellia palustris, collected in designated areas of the southern Baltic Sea in period 2008–2015. The calculated concentration ratios (CR), which attained very high values: 10 4 L kg −1 for lead, 10 3 L kg −1 for nickel and mercury and even 10 5 L kg −1 for cadmium formed the basis for the determination of EQS MP values. The EQS MP values were: 26 mg kg −1 d.w. for Pb, 33 mg kg −1 d.w. for Cd, 32 mg kg −1 d.w. for Ni and 0.4 mg kg −1 d.w. for Hg. The application of macrophytobenthic plants as bioindicators in marine environment status assessment of certain areas of the Baltic Sea is also described in the paper. - Highlights: • Macrophytobenthic plants were applied as a bioindicators for heavy metals pollution assessment. • The environmental quality standards for Pb, Cd, Ni, Hg in macrophytobenthic plants were evaluated. • The marine environment status assessment method based on bioindicators was proposed.

  13. Effects of heavy metals on plants and resistance mechanisms. A state-of-the-art report with special reference to literature published in Chinese journals.

    Science.gov (United States)

    Cheng, Shuiping

    2003-01-01

    As one of the consequences of heavy metal pollution in soil, water and air, plants are contaminated by heavy metals in some parts of China. To understand the effects of heavy metals upon plants and the resistance mechanisms, would make it possible to use plants for cleaning and remediating heavy metal-polluted sites. The research results on the effects of heavy metals on plants and resistant mechanisms are compiled from Chinese publications from scientific journals and university journals, mostly published during the last decade. Effects of heavy metals on plants result in growth inhibition, structure damage, a decline of physiological and biochemical activities as well as of the function of plants. The effects and bioavailability of heavy metals depend on many factors, such as environmental conditions, pH, species of element, organic substances of the media and fertilization, plant species. But, there are also studies on plant resistance mechanisms to protect plants against the toxic effects of heavy metals such as combining heavy metals by proteins and expressing of detoxifying enzyme and nucleic acid, these mechanisms are integrated to protect the plants against injury by heavy metals. There are two aspects on the interaction of plants and heavy metals. On one hand, heavy metals show negative effects on plants. On the other hand, plants have their own resistance mechanisms against toxic effects and for detoxifying heavy metal pollution. To study the effects of heavy metals on plants and mechanisms of resistance, one must select crop cultivars and/or plants for removing heavy metals from soil and water. More highly resistant plants can be selected especially for a remediation of the pollution site. The molecular mechanisms of resistance of plants to heavy metals should be studied further to develop the actual resistance of these plants to heavy metals. Understanding the bioavailability of heavy metals is advantageous for plant cultivation and phytoremediation

  14. Supplemental site inspection for Air Force Plant 59, Johnson City, New York, Volume 3: Appendices F-Q

    Energy Technology Data Exchange (ETDEWEB)

    Nashold, B.; Rosenblatt, D.; Hau, J. [and others

    1995-08-01

    This summary describes a Supplemental Site Inspection (SSI) conducted by Argonne National Laboratory (ANL) at Air Force Plant 59 (AFP 59) in Johnson City, New York. All required data pertaining to this project were entered by ANL into the Air Force-wide Installation Restoration Program Information System (IRPIMS) computer format and submitted to an appropriate authority. The work was sponsored by the United States Air Force as part of its Installation Restoration Program (IRP). Previous studies had revealed the presence of contaminants at the site and identified several potential contaminant sources. Argonne`s study was conducted to answer questions raised by earlier investigations. This volume consists of appendices F-Q, which contain the analytical data from the site characterization.

  15. Role of Heavy Metal Pumps in Transport of Zinc from Soil to Seeds of Plants

    DEFF Research Database (Denmark)

    Olsen, Lene Irene

    . In Arabidopsis roots, the heavy metal ATPases AtHMA2 and AtHMA4 are localized to the pericycle cells and are important for the export of zinc, in order for zinc to enter the xylem and get to the shoot. I have identified a new novel role for AtHMA2 and AtHMA4 in the developing seed. The Arabidopsis seed consists...... at this location actively export zinc from the mother plant seed coat. Mutant plants that lack AtHMA2 and AtHMA4 accumulate zinc in the seed coat, and consequently have vastly reduced amounts of zinc inside the seed. The finding that AtHMA2 and AtHMA4 are involved in pumping zinc out of the mother plant seed coat...

  16. Green manure plants for remediation of soils polluted by metals and metalloids: ecotoxicity and human bioavailability assessment.

    Science.gov (United States)

    Foucault, Y; Lévêque, T; Xiong, T; Schreck, E; Austruy, A; Shahid, M; Dumat, C

    2013-10-01

    Borage, white mustard and phacelia, green manure plants currently used in agriculture to improve soil properties were cultivated for 10 wk on various polluted soils with metal(loid) concentrations representative of urban brownfields or polluted kitchen gardens. Metal(loid) bioavailability and ecotoxicity were measured in relation to soil characteristics before and after treatment. All the plants efficiently grow on the various polluted soils. But borage and mustard only are able to modify the soil characteristics and metal(loid) impact: soil respiration increased while ecotoxicity, bioaccessible lead and total metal(loid) quantities in soils can be decreased respectively by phytostabilization and phytoextraction mechanisms. These two plants could therefore be used for urban polluted soil refunctionalization. However, plant efficiency to improve soil quality strongly depends on soil characteristics. Copyright © 2013. Published by Elsevier Ltd.

  17. Economic justification of building a power plant on gas from the city dump in Skopje (Macedonia)

    International Nuclear Information System (INIS)

    Sihamarn, K.; Popovska, Sanja

    1995-01-01

    Municipal waste treatment is a big problem in almost all urban environments in the world. Its combustion, after previous material sorting and separation for which recycling is possible, is considered the best method. Unfortunately, this method is very expensive and it can be used only in developed countries. Methane production from the municipal waste and its further use in the electric power production is consider a more appropriate method for developing countries. In the Republic of Macedonia the municipal waste problem is foremost in Skopje, where the cumulative quantities of municipal waste enable the production of c-ca 2 million m3 methane annually, sufficing to propel of a thermal power plant capacitating 11 MW. Considering all possible risks of non systematic and incomplete waste retrieval, the estimate is that under the current conditions, the 5,5 MW need of the thermal power plant can completely be covered. According to the data processed from the 5,5 MW Greenmaunt power plant in New Zealand which is being exploited for the last 5 years, the attempt of a evaluating the economic justification of setting up an equivalent power plant in Skopje is currently underway. 2 tabs

  18. Determination of cesium-137 soil-to-plant concentration ratios for vegetables in Goiania City, Brazil

    International Nuclear Information System (INIS)

    Lauria, D.C.; Sachett, I.A.; Pereira, J.C.; Zenaro, R.

    1994-01-01

    The radiological accident that occurred in Goiania City, Brazil, in September 1987, led to the spreading of 137 Cs in the urban area. Even after the decontamination procedure, there was a reminiscence of 137 Cs activity in the soil of residential gardens. This activity was enough to conduct preliminary experiments for determination of soil to vegetable concentration ratios. Experiments were conducted for carrots, lettuce and radishes. Two types of experimental patterns were used to determine the concentration ratios: lysimeters cultivation under greenhouse condition and soil cultivation in open field plot. The concentration ratios measured for cultivation under greenhouse and field plot conditions are considerably higher than those mentioned in the International Union of Radioecologist (IUR) data bank for the same vegetables and cultivation condition. (author) 5 refs.; 2 figs.; 3 tabs

  19. Comparison of adaptability to heavy metals among crop plants (part 2). Adaptability to zinc group metals-studies on the comparative plant nutrition

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, A; Tadano, T; Muto, K

    1975-01-01

    Eighteen crop species were grown in culture solution having graded levels of Zn, Cd and Hg, and the differences among species in response to these elements were discussed. As the average of all species tested, the metal content of the shoot is Ca > Mn > Zn > Cd > Hg, and the root-to-shoot content ratio is reversed at equivalent levels. These values increase with an increase in the level of respective ions in the culture solution. The metal concentration in the shoot among species does not change significantly with the level of that element. There is a positive correlation among species between Zn and Cd, but Hg shows a different trend. The tolerance to Zn is weak in many species of Gramineae and Curciferae, and strong Solanaceae and Umbelliferae. Many species of Gramineae are very tolerant to high levels of Zn or Cd due to a high excluding power of the roots, but possess a weak tolerance to high Hg levels. Egg-plant, soybean, and pea are susceptible to high levels of all three elements.

  20. Multivariate statistical assessment of heavy metal pollution sources of groundwater around a lead and zinc plant

    Directory of Open Access Journals (Sweden)

    Zamani Abbas Ali

    2012-12-01

    Full Text Available Abstract The contamination of groundwater by heavy metal ions around a lead and zinc plant has been studied. As a case study groundwater contamination in Bonab Industrial Estate (Zanjan-Iran for iron, cobalt, nickel, copper, zinc, cadmium and lead content was investigated using differential pulse polarography (DPP. Although, cobalt, copper and zinc were found correspondingly in 47.8%, 100.0%, and 100.0% of the samples, they did not contain these metals above their maximum contaminant levels (MCLs. Cadmium was detected in 65.2% of the samples and 17.4% of them were polluted by this metal. All samples contained detectable levels of lead and iron with 8.7% and 13.0% of the samples higher than their MCLs. Nickel was also found in 78.3% of the samples, out of which 8.7% were polluted. In general, the results revealed the contamination of groundwater sources in the studied zone. The higher health risks are related to lead, nickel, and cadmium ions. Multivariate statistical techniques were applied for interpreting the experimental data and giving a description for the sources. The data analysis showed correlations and similarities between investigated heavy metals and helps to classify these ion groups. Cluster analysis identified five clusters among the studied heavy metals. Cluster 1 consisted of Pb, Cu, and cluster 3 included Cd, Fe; also each of the elements Zn, Co and Ni was located in groups with single member. The same results were obtained by factor analysis. Statistical investigations revealed that anthropogenic factors and notably lead and zinc plant and pedo-geochemical pollution sources are influencing water quality in the studied area.

  1. Multivariate statistical assessment of heavy metal pollution sources of groundwater around a lead and zinc plant.

    Science.gov (United States)

    Zamani, Abbas Ali; Yaftian, Mohammad Reza; Parizanganeh, Abdolhossein

    2012-12-17

    The contamination of groundwater by heavy metal ions around a lead and zinc plant has been studied. As a case study groundwater contamination in Bonab Industrial Estate (Zanjan-Iran) for iron, cobalt, nickel, copper, zinc, cadmium and lead content was investigated using differential pulse polarography (DPP). Although, cobalt, copper and zinc were found correspondingly in 47.8%, 100.0%, and 100.0% of the samples, they did not contain these metals above their maximum contaminant levels (MCLs). Cadmium was detected in 65.2% of the samples and 17.4% of them were polluted by this metal. All samples contained detectable levels of lead and iron with 8.7% and 13.0% of the samples higher than their MCLs. Nickel was also found in 78.3% of the samples, out of which 8.7% were polluted. In general, the results revealed the contamination of groundwater sources in the studied zone. The higher health risks are related to lead, nickel, and cadmium ions. Multivariate statistical techniques were applied for interpreting the experimental data and giving a description for the sources. The data analysis showed correlations and similarities between investigated heavy metals and helps to classify these ion groups. Cluster analysis identified five clusters among the studied heavy metals. Cluster 1 consisted of Pb, Cu, and cluster 3 included Cd, Fe; also each of the elements Zn, Co and Ni was located in groups with single member. The same results were obtained by factor analysis. Statistical investigations revealed that anthropogenic factors and notably lead and zinc plant and pedo-geochemical pollution sources are influencing water quality in the studied area.

  2. Capital cost evaluation of liquid metal reactor by plant type - comparison of modular type with monolithic type -

    International Nuclear Information System (INIS)

    Mun, K. H.; Seok, S. D.; Song, K. D.; Kim, I. C.

    1999-01-01

    A preliminary economic comparison study was performed for KALIMER(Korea Advanced LIquid MEtal Reactor)between a modular plant type with 8 150MWe modules and a 1200MWe monolithic plant type. In both cases of FOAK (First-Of-A-Kind) Plant and NOAK (Nth-Of-A-Kind) Plant, the result says that the economics of monolithic plant is superior to its modular plant. In case of NOAK plant comparison, however, the cost difference is not significant. It means that modular plant can compete with monolithic plant in capital cost if it makes efforts of cost reduction and technical progress on the assumption that the same type of NOAK plant will be constructed continuously

  3. Investigation and Evaluation of Heavy Metals Pollution of Agricultural Soils Near a Steel Plant

    Directory of Open Access Journals (Sweden)

    XIE Tuan-hui

    2018-02-01

    Full Text Available The pollution of heavy metals in farmland around a steel plant in the west of Fujian Province was investigated. The pollution index method, principal component analysis and factor analysis on the pollution of Cr, Pb, Cd, Ni, Cu, Zn and As in the soils were carried out to clarify the pollution status, the main source, the degree, and the distribution of the heavy metals pollution in the soil. The secondary standards for acidic agricultural soils of "soil environmental quality standard"(GB 15618-1995were used as the evaluation criterion. The single factor evaluation results showed that the pollution of soil by Cd and Zn in the investigated area was widespread and serious and the points over standard rate was 100% and 95.5% respectively, while the pollution by Pb, Cu and As was slight and the points over standard rate was 29.6%,15.9% and 6.8% respectively. The soils were not polluted by Cr and Ni. The principal component analysis and factor analysis showed that the correlation between Pb, Cd, Cu, Zn and As was significant and homologous. Therefore, the pollution of Pb, Cd, Cu, Zn and As of the soils should be mainly attributed to the pollutants emitted from the steel plant. The correlation between Cr and Ni was also significant and homologous. It was deduced that Cr and Ni in the soils were largely originated from the soils themselves. The comprehensive pollution degree of the heavy metals in the soils decreased as the distance between the steel plant and farmland increasing. The soils of the fields near the entrance of irrigation water from the waste water of the steel plant were more seriously polluted.

  4. Effect Of Heavy Metals Stress On Enzyme Activities And Chlorophyll Content Of Pea (Pisum Sativum) And Tomato Plants

    International Nuclear Information System (INIS)

    Ahmed, B.M.; El Maghrabi, G.; Hashem, M.F.

    2013-01-01

    The effects of heavy metal stress on the chlorophyll in addition to catalase and peroxidase activities were studied in the leaves and roots of tomato and pea plants. Four groups were studied; the control group and other three groups treated with heavy metals. Group 1HM was treated with 1.0 mg CuSO 4 /l + 0.2 mg CdSO 4 /l + 0.1 mg ZnNO 3 /l every 10 days while in group 5 HM and group 10 HM, the doses were 5 and 10 folds the 1 HM, respectively. Leaves and roots of control and heavy metal-stressed plants were harvested after 10 weeks for chlorophyll determination. The chlorophyll content, especially chlo. b, was significantly decreased with the increase in heavy metals stress in both plants. In leaves of heavy metal-stressed plants, the peroxidase level in different stress levels was increased with increasing stress levels in tomato and pea while catalase was unchanged in leaves of tomato in comparison with the control. The activities of catalase and peroxidase in roots of heavy metal-stressed plants were increased in group 5 HM then decreased in case of group 10 HM. The increase in enzyme activities demonstrated that tomato is more tolerant to heavy metals than pea

  5. Metal and metalloid removal in constructed wetlands, with emphasis on the importance of plants and standardized measurements: A review

    International Nuclear Information System (INIS)

    Marchand, L.; Mench, M.; Jacob, D.L.; Otte, M.L.

    2010-01-01

    This review integrates knowledge on the removal of metals and metalloids from contaminated waters in constructed wetlands and offers insight into future R and D priorities. Metal removal processes in wetlands are described. Based on 21 papers, the roles and impacts on efficiency of plants in constructed wetlands are discussed. The effects of plant ecotypes and class (monocots, dicots) and of system size on metal removal are addressed. Metal removal rates in wetlands depend on the type of element (Hg > Mn > Fe = Cd > Pb = Cr > Zn = Cu > Al > Ni > As), their ionic forms, substrate conditions, season, and plant species. Standardized procedures and data are lacking for efficiently comparing properties of plants and substrates. We propose a new index, the relative treatment efficiency index (RTEI), to quantify treatment impacts on metal removal in constructed wetlands. Further research is needed on key components, such as effects of differences in plant ecotypes and microbial communities, in order to enhance metal removal efficiency. - A new index, the relative treatment efficiency index (RTEI), to quantify treatment impacts on metal and metalloid removal in constructed wetlands.

  6. Treatment of Wastewater from Electroplating, Metal Finishing and Printed Circuit Board Manufacturing. Operation of Wastewater Treatment Plants Volume 4.

    Science.gov (United States)

    California State Univ., Sacramento. Dept. of Civil Engineering.

    One of four manuals dealing with the operation of wastewater plants, this document was designed to address the treatment of wastewater from electroplating, metal finishing, and printed circuit board manufacturing. It emphasizes how to operate and maintain facilities which neutralize acidic and basic waters; treat waters containing metals; destroy…

  7. Red mud (RM)-Induced enhancement of iron plaque formation reduces arsenic and metal accumulation in two wetland plant species.

    Science.gov (United States)

    Yang, J X; Guo, Q J; Yang, J; Zhou, X Y; Ren, H Y; Zhang, H Z; Xu, R X; Wang, X D; Peters, M; Zhu, G X; Wei, R F; Tian, L Y; Han, X K

    2016-01-01

    Human activities have resulted in arsenic (As) and heavy metals accumulation in paddy soils in China. Phytoremediation has been suggested as an effective and low-cost method to clean up contaminated soils. A combined soil-sand pot experiment was conducted to investigate the influence of red mud (RM) supply on iron plaque formation and As and heavy metal accumulation in two wetland plant species (Cyperus alternifolius Rottb., Echinodorus amazonicus Rataj), using As and heavy metals polluted paddy soil combined with three rates of RM application (0, 2%, 5%). The results showed that RM supply significantly decreased As and heavy metals accumulation in shoots of the two plants due to the decrease of As and heavy metal availability and the enhancement of the formation of iron plaque on the root surface and in the rhizosphere. Both wetland plants supplied with RM tended to have more Fe plaque, higher As and heavy metals on roots and in their rhizospheres, and were more tolerant of As and heavy metal toxicity. The results suggest that RM-induced enhancement of the formation of iron plaque on the root surface and in the rhizosphere of wetland plants may be significant for remediation of soils contaminated with As and heavy metals.

  8. DEVELOPMENT OF THE REFERENCE MATERIALS PRODUCTION BRANCH IN THE JOINT STOCK COMPANY "THE GULIDOV KRASNOYARSK NON-FERROUS METALS PLANT"

    Directory of Open Access Journals (Sweden)

    K. A. Shatnykh

    2015-01-01

    Full Text Available The article deals with the development of the branch for the reference materials production in the Joint Stock Company "The Gulidov Krasnoyarsk Non-Ferrous Metals Plant" (JSC "Krastsvetmet". Here the most important workings for reference materials including the work for the London precious metal exchange, current and future works are stated.

  9. Growth Response and Tolerance to Heavy Metals of two Swamp Species inoculated with a Plant Growth-Promoting Rhizobacteria

    International Nuclear Information System (INIS)

    Rodriguez-Dorantes, A.; Labra-Cardon, D.; Guerrero-Zuniga, A.; Montes-Villafan, S.

    2009-01-01

    Due to the sensitivity and the sequestration ability of the microbial communities to heavy metals, microbes have been used for bioremediation. Recently the application of plant growth-promoting rhizobacteria (PGPR) for the bioremediation of this kind of contaminants has been done. This study evaluated the growth response and the tolerance to heavy metals of two swamp species. (Author)

  10. Roles for root iron plaque in sequestration and uptake of heavy metals and metalloids in aquatic and wetland plants.

    Science.gov (United States)

    Tripathi, Rudra D; Tripathi, Preeti; Dwivedi, Sanjay; Kumar, Amit; Mishra, Aradhana; Chauhan, Puneet S; Norton, Gareth J; Nautiyal, Chandra S

    2014-10-01

    Toxic metal(loid) contamination of soil and sediment poses long term risk to soil and human health through plant-human or plant-animal-human food chain pathways. Iron plaque (IP) formation is frequent in aquatic and wetland plant species and is responsible for the sequestration of various metal(loids). The presence of IP may act as a buffer or barrier and may thus enhance or reduce the uptake of potentially phytotoxic metals and metalloids by plants. If IP acts as a barrier, then low IP producing macrophytes/aquatic plants may be better accumulators of toxic metals and may find use in constructed wetlands for remediation of pollutants, while high IP forming edible plant species could be safer for human consumption. Conversely, if IP acts as a buffer for mineral nutrients and toxic elements then those cultivars may be rich in nutrients, but may also cause toxicity. However, an ecotoxicological risk is also inevitable if IP rich macrophyte roots containing heavy metals are consumed by herbivores. In this review, we summarize the current understanding about the role of IP in metal and metalloid sequestration, uptake, and transport. Furthermore, we will address the role of root IP in Oryza sativa for arsenic (As) sequestration leading to lower grain As translocation, reducing the risk of human exposure.

  11. Laboratory tests for the phytoextraction of heavy metals from polluted harbor sediments using aquatic plants.

    Science.gov (United States)

    Mânzatu, Carmen; Nagy, Boldizsár; Ceccarini, Alessio; Iannelli, Renato; Giannarelli, Stefania; Majdik, Cornelia

    2015-12-30

    The aim of this study was to investigate the concentrations and pollution levels of heavy metals, organochlorine pesticides, and polycyclic aromatic hydrocarbons in marine sediments from the Leghorn Harbor (Italy) on the Mediterranean Sea. The phytoextraction capacity of three aquatic plants Salvinia natans, Vallisneria spiralis, and Cabomba aquatica was also tested in the removal of lead and copper, present in high concentration in these sediments. The average detectable concentrations of metals accumulated by the plants in the studied area were as follows: >3.328 ± 0.032 mg/kg dry weight (DW) of Pb and 2.641 ± 0.014 mg/kg DW of Cu for S. natans, >3.107 ± 0.034 g/kg DW for V. spiralis, and >2.400 ± 0.029 mg/kg DW for C. aquatica. The occurrence of pesticides was also analyzed in the sediment sample by gas chromatography coupled with mass spectrometry (GC/MS). Due to its metal and organic compound accumulation patterns, S. natans is a potential candidate in phytoextraction strategies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Environmental radiation status in Nagareyama city (Chiba prefecture) after the TEPCO Fukushima Dai-ichi nuclear power plant disaster

    International Nuclear Information System (INIS)

    Iiizumi, Sadao; Fujii, Hirofumi; Iimoto, Takeshi

    2012-01-01

    Nagareyama city is located in the northwestern part of Chiba prefecture in the metropolitan area of Tokyo, Japan. The city is located ∼200 km south of the TEPCO Fukushima Dai-ichi nuclear power plant. As of April 1, 2012, the population of the city was 166,493 and its area was 35.28 km"2. Responding to many requests from the citizens, the local government has performed official surveys of environmental radiation status after the disaster. The radiation surveillance in this area has been conducted by the radiation protection specialists. The two primary measured quantities were (1) the ambient radiation dose (microsieverts per hour) at all school yards, public parks and at representative locations as selected by the local government, and (2) the specific radioactivity (becquerels per kilogram) of the drinking water and of local food items. These data have been reported on the city's website, in addition to being reported three times per month in the public relations magazine of the local government. This presentation provides the background status and technical information on the related activities. In addition, this presentation documents the measured environmental radiation data. The ambient radiation dose in the city has been surveyed since June of 2011. In the 1st period of the surveillance (from May to September of 2011), data were collected from 40 locations. The highest value of the measured ambient radiation dose was 0.58 μSv h"-"1, obtained at the elevation of 1 m above the ground, and the lowest value was 0.17 μSv h"-"1. The average level of ambient radiation was ∼0.32 μSv h"-"1, and those measured values included the natural background dose rate that was detected by the energy compensation type survey-meters. In the latest period of surveillance, the ambient radiation levels were measured around school yards. The peak value of ambient radiation level was 0.36 μSv h"-"1, the minimal value was 0.08 μSv h"-"1, and the average over all locations was

  13. Environmental radiation status in Nagareyama city (Chiba prefecture) after the TEPCO Fukushima Dai-ichi nuclear power plant disaster

    International Nuclear Information System (INIS)

    Iiizumi, Sadao; Fujii, Hirofumi; Iimoto, Takeshi

    2013-01-01

    Nagareyama city is located in the northwestern part of Chiba prefecture in the metropolitan area of Tokyo, Japan. The city is located ∼200 km south of the TEPCO Fukushima Dai-ichi nuclear power plant. As of April 1, 2012, the population of the city was 166,493 and its area was 35.28 km"2. Responding to many requests from the citizens, the local government has performed official surveys of environmental radiation status after the disaster. The radiation surveillance in this area has been conducted by the radiation protection specialists. The two primary measured quantities were (1) the ambient radiation dose (microsieverts per hour) at all school yards, public parks and at representative locations as selected by the local government, and (2) the specific radioactivity (becquerels per kilogram) of the drinking water and of local food items. These data have been reported on the city's website, in addition to being reported three times per month in the public relations magazine of the local government. This presentation provides the background status and technical information on the related activities. In addition, this presentation documents the measured environmental radiation data. The ambient radiation dose in the city has been surveyed since June of 2011. In the 1st period of the surveillance (from May to September of 2011), data were collected from 40 locations. The highest value of the measured ambient radiation dose was 0.58 μSv h"-"1, obtained at the elevation of 1 m above the ground, and the lowest value was 0.17 μSv h"-"1. The average level of ambient radiation was ∼0.32 μSv h"-"1, and those measured values included the natural background dose rate that was detected by the energy compensation type surveymeters. In the latest period of surveillance, the ambient radiation levels were measured around school yards. The peak value of ambient radiation level was 0.36 μSv h"-"1, the minimal value was 0.08 μSv h"-"1, and the average over all locations was 0

  14. Combination of magnetic parameters and heavy metals to discriminate soil-contamination sources in Yinchuan--a typical oasis city of Northwestern China.

    Science.gov (United States)

    Xia, Dunsheng; Wang, Bo; Yu, Ye; Jia, Jia; Nie, Yan; Wang, Xin; Xu, Shujing

    2014-07-01

    Various industrial processes and vehicular traffic result in harmful emissions containing both magnetic minerals and heavy metals. In this study, we investigated the levels of magnetic and heavy metal contamination of topsoils from Yinchuan city in northwestern China. The results demonstrate that magnetic mineral assemblages in the topsoil are dominated by pseudo-single domain (PSD) and multi-domain (MD) magnetite. The concentrations of anthropogenic heavy metals (Cr, Cu, Pb and Zn) and the magnetic properties of χlf, SIRM, χARM, and 'SOFT' and 'HARD' remanence are significantly correlated, suggesting that the magnetic minerals and heavy metals have common sources. Combined use of principal components and fuzzy cluster analysis of the magnetic and chemical data set indicates that the magnetic and geochemical properties of the particulates emitted from different sources vary significantly. Samples from university campus and residential areas are mainly affected by crustal material, with low concentrations of magnetic minerals and heavy metals, while industrial pollution sources are characterized by high concentrations of coarse magnetite and Cr, Cu, Pb and Zn. Traffic pollution is characterized by Pb and Zn, and magnetite. Magnetic measurements of soils are capable of differentiating sources of magnetic minerals and heavy metals from industrial processes, vehicle fleets and soil parent material. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Presence of Aeromonas spp in water from drinking-water- and wastewater-treatment plants in Mexico City.

    Science.gov (United States)

    Villarruel-López, Angélica; Fernández-Rendón, Elizabeth; Mota-de-la-Garza, Lydia; Ortigoza-Ferado, Jorge

    2005-01-01

    The frequency of Aeromonas spp in three wastewater-treatment plants (WWTPs) and two drinking-water plants (DWPs) in México City was determined. Samples were taken throughout a year by the Moore's swab technique. A total of 144 samples were obtained from WWTPs and 96 from DWPs of both incoming and outflowing water. Aeromonas spp was isolated in 31% of the samples, from both kinds of sources. The technique used for the isolation of the pathogen was suitable for samples with high associate microbiota content and for those with a scarce microbial content. The presence of mesophilic-aerobic, coliform, and fecal-coliform organisms was investigated to determine whether there was any correlation with the presence of Aeromonas spp. Most samples from WWTP, which did not comply with the Mexican standards, had the pathogen, and some of the samples from the outflow of the DWP, which were within the limits set by the Mexican standards, also had Aeromonas spp. Most samples containing Aeromonas spp. had concentrations below 0.1 ppm residual chlorine, and the strains were resistant to 0.3 ppm, which supports the recommendation to increase the residual chlorine concentration to 0.5 to 1.0 ppm, as recommended by the Mexican standards.

  16. Plant and animal species composition and heavy metal content in fly ash ecosystems

    International Nuclear Information System (INIS)

    Brieger, G.; Wells, J.R.; Hunter, R.D.

    1992-01-01

    Plant and animal species present on a coal fly ash slurry pond site and a dry deposit site were surveyed and sampled during a two-day period in October. Elemental analyses were determined for most of the species encountered. A total of 48 plant species were observed on the two sites, with 35 species on the wet site, and 20 on the dry site. Eighteen terrestrial and 7 aquatic animal species were found on the wet site, exclusive of vertebrates which were not studied with the exception of a carp (Cyprinus carpio). Eleven terrestrial invertebrate and one aquatic species were observed on the dry site. Neutron activation analysis was carried out for: Se, Hg, Cr, Ni, Zn, Co, Sb, Cd, and As. Using literature values for phytotoxicity, it is concluded that, in general, plants did not accumulate toxic levels of metals. Only one plant (Impatiens biflora Willd.) showed a significant level of Cd. Of 20 plants analyzed on the wet site, 10 had excessive Se concentrations (>5 ppm); on the dry site 6 out of 18 had high Se values. In animals (Gryllus sp.; Melanoplus sp.; Trachelipus sp; Lumbricus terrestris; Physa integra; Cyprinus carpio) the trace metal concentration was generally in between that of control animals and that of the fly ash itself. One exception included Zn, which, although the most variable element examined, was concentrated in all the terrestrial animals to levels higher than in fly ash. Crickets are the most consistent bioconcentrators with Cr, Se, and Zn at higher levels than for control animals. All animals species studied accumulated Se compared to controls. 48 refs., 6 tabs

  17. Effects of elemental sulphur on heavy metal uptake by plants growing on municipal sewage sludge.

    Science.gov (United States)

    Dede, Gulgun; Ozdemir, Saim

    2016-01-15

    In this study experiment was carried out to determine the phytoextraction potential of six plant species (Conium maculatum, Brassica oleraceae var. oleraceae, Brassica juncea, Datura stramonium, Pelargonium hortorum and Conyza canadensis) grown in a sewage sludge medium amended with metal uptake promoters. The solubility of Cu, Cd and Pb was significantly increased with the application of elemental S due to decrease of pH. Faecal coliform number was markedly decreased by addition of elemental sulphur. The extraction of Cu, Cr and Pb from sewage sludge by using B. juncea plant was observed as 65%, 65% and 54% respectively that is statistically similar to EDTA as sulphur. The bioaccumulation factors were found higher (>1) in the plants tested for Cu and Pb like B. juncea. Translocation index (TI) calculated values for Cd and Pb were greater than one (>1) in both C. maculatum and B. oleraceae var. oleraceae. The results cleared that the amendment of sludge with elemental sulphur showed potential to solubilize heavy metals in phytoremediation as much as EDTA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Effects of petroleum and metal contaminated soil on plants and earthworms: Survival and bioaccumulation

    International Nuclear Information System (INIS)

    Tatem, H.E.; Simmers, J.W.; Skogerboe, J.G.; Lee, C.R.

    1993-01-01

    Earthworms, Eisenia foetida, and bermudagrass, Cynodon dactylon, were used in the laboratory to test the toxicity of contaminated sediment taken from a small fresh water lake in North Carolina. This work was part of an investigation to determine the potential effects of upland disposal of this sediment. The contaminated sediment contained As, Cr, Cu, Pb, Hg, Ni, Zn and petroleum hydrocarbons at concentrations much greater than nearby soils. Test cylinders were planted with bermudagrass; earthworms were added 30 days later. Both species were harvested at 60 days, weighed and submitted for chemical analyses. Cynodon was affected by the contaminated sediment but grew well in the mixtures of sediment and upland soil. Similar results were obtained with the Eisenia. These species did not accumulate hydrocarbons from the sediment with the possible exception of pyrene. The metals Cd, Pb, and Zn were elevated in plants exposed to the contaminated sediment. Earthworms exposed to this sediment accumulated Pb to concentrations greater than animals exposed to the manure control. This work demonstrated that a contaminated freshwater sediment was not toxic to plants or earthworms and that most petroleum hydrocarbons were not accumulated. The only metal that may be of some concern was Pb

  19. Correlation between heavy metal contents and antioxidant activities in medicinal plants grown in copper mining areas

    International Nuclear Information System (INIS)

    Maharia, R.S.; Dutta, R.K.; Acharya, R.; Reddy, A.V.R.

    2012-01-01

    Three commonly used medicinal plants, e.g., Adhatoda vasica, Cassia fistula, and Withania somnifera grown in two contrasting environmental conditions, namely from copper mining site and from control site corresponding to soil not contaminated with Cu, to understand correlations between high Cu bioaccumulation in medicinal plants on their antioxidant activities. Concentrations of some essential metals, e.g., Cr, Mn, Fe, Cu, Zn, and Se in the leaves of these plants were measured by instrumental neutron activation analysis. The Cu levels in the samples from mining site were in the range of 32.6 to 57.2 mg/kg, which were 5-7 folds higher than the control samples, while Cr levels were about 2-folds higher in the mining site. Speciation studies of Cr revealed negligible content of toxic hexavalent Cr. Antioxidant assay of these plants from both the sampling sites, measured as total phenolic content, total flavonoid content, 2,2'-diphenyl-1-picrylhydrazyl, free radical scavenging ability, and chelating ability with ferrous ions exhibited maximum activity for A. vasica, while that of W. somnifera was minimum. However, the variations in the antioxidant activities for each medicinal plant species from mining site and control site did not reveal significant differences. (author)

  20. Residual stress measurements in the dissimilar metal weld in pressurizer safety nozzle of nuclear power plant

    International Nuclear Information System (INIS)

    Campos, Wagner R.C.; Rabello, Emerson G.; Mansur, Tanius R.; Scaldaferri, Denis H.B.; Paula, Raphael G.; Souto, Joao P.R.S.; Carvalho Junior, Ideir T.

    2013-01-01

    Weld residual stresses have a large influence on the behavior of cracking that could possibly occur under normal operation of components. In case of an unfavorable environment, both stainless steel and nickel-based weld materials can be susceptible to stress-corrosion cracking (SCC). Stress corrosion cracks were found in dissimilar metal welds of some pressurized water reactor (PWR) nuclear plants. In the nuclear reactor primary circuit the presence of tensile residual stress and corrosive environment leads to so-called Primary Water Stress Corrosion Cracking (PWSCC). The PWSCC is a major safety concern in the nuclear power industry worldwide. PWSCC usually occurs on the inner surface of weld regions which come into contact with pressurized high temperature water coolant. However, it is very difficult to measure the residual stress on the inner surfaces of pipes or nozzles because of inaccessibility. A mock-up of weld parts of a pressurizer safety nozzle was fabricated. The mock-up was composed of three parts: an ASTM A508 C13 nozzle, an ASTM A276 F316L stainless steel safe-end, an AISI 316L stainless steel pipe and different filler metals of nickel alloy 82/182 and AISI 316L. This work presents the results of measurements of residual strain from the outer surface of the mock-up welded in base metals and filler metals by hole-drilling strain-gage method of stress relaxation. (author)

  1. Chemically assisted phytoextraction: a review of potential soil amendments for increasing plant uptake of heavy metals.

    Science.gov (United States)

    Meers, E; Tack, F M G; Van Slycken, S; Ruttens, A; Du Laing, G; Vangronsveld, J; Verloo, M G

    2008-01-01

    The contamination of soils by trace metals has been an unfortunate sideeffect of industrialization. Some of these contaminants can interfere with vulnerable enduses of soil, such as agriculture or nature, already at relatively low levels of contamination. Reversely, conventional civil-technical soil-remediation techniques are too expensive to remediate extended areas of moderately contaminated soil. Phytoextraction has been proposed as a more economic complementary approach to deal with this specific niche of soil contamination. However, phytoextraction has been shown to be a slow-working process due to the low amounts of metals that can be annually removed from the soil under normal agronomic conditions. Therefore, extensive research has been conducted on process optimization by means of chemically improving plant availability and the uptake of heavy metals. A wide range of potential amendments has been proposed in the literature, with considerable attention being spent on aminopolycarboxylic acids such as ethylenediaminetetraacetic acid (EDTA). However, these compounds have received increasing criticism due to their environmental persistence and associated risks for leaching. This review presents an overview of potential soil amendments that can be employed for enhancing metal uptake by phytoextraction crops, with a distinct focus on more degradable alternatives to persistent compounds such as EDTA.

  2. Accumulation of heavy metals in an ecosystem influenced by zinc-plant emissions

    Directory of Open Access Journals (Sweden)

    Zuzanna Czuchajowska

    2014-01-01

    Full Text Available Accumulation of Pb, Zn, Cd, Mn, Fe and Mg reaching the selected ecosystem in the dust emitted by a zinc-mill, was estimated in the leaves of Pinus silvestris, Vaccinium myrtillus and Vaccinium vitis-idaea, the main plant components of the system, and in the five upper soil layers. The values of metal concentration were different for the three considered species and showed-for each of them - dependence on the pollution degree of the stand. This regularity concerned Pb, Zn, Cd and Mn but not Fe and Mg. A significant positive correlation exists between the content of Pb, Zn and Cd in the soil and their concentration in leaves, the correlation for Mil is significant but negative. Manganese in leaves proved to be an antagonist in respect to the other metals.

  3. Nuclear power plant containment metallic pressure boundary materials and plans for collecting and presenting their properties

    International Nuclear Information System (INIS)

    Oland, C.B.

    1995-04-01

    A program is being conducted at the Oak Ridge National Laboratory (ORNL to assist the Nuclear Regulatory Commission (NRC)) in their assessment of the effects of degradation (primarily corrosion) on the structural capacity and leaktight integrity of metal containments and steel liners of reinforced concrete structures in nuclear power plants. One of the program objectives is to characterize and quantify manifestations of corrosion on the properties of steels used to construct containment pressure boundary components. This report describes a plan for use in collecting and presenting data and information on ferrous alloys permitted for use in construction of pressure retaining components in concrete and metal containments. Dis