WorldWideScience

Sample records for metals fermi surfaces

  1. Fermi Surface and Antiferromagnetism in Europium Metal

    DEFF Research Database (Denmark)

    Andersen, O. Krogh; Loucks, T. L.

    1968-01-01

    of the nearly cubical part of the hole surface at P, and we also discuss the effects of the electron surface at H. Since it is likely that barium and europium have similar Fermi surfaces, we have presented several extremal areas and the corresponding de Haas-van Alphen frequencies in the hope that experimental...

  2. Metals: Phonon states, electron states and Fermi surfaces. Subvolume a

    International Nuclear Information System (INIS)

    Dederichs, P.H.; Schober, H.; Sellmyer, D.J.

    1981-01-01

    This collection of tables and diagrams is the first contribution to a larger programme aiming at a complete and critical tabulation of reliable data relevant to metal physics. No such complete collection exists at present, and these tables should fill a long felt need of both experimentalists and theoreticians. Group III in the New Series of the Landolt-Boernstein tables deals with Crystal and Solid State Physics. Volume III/13 to which this subvolume 13a belongs will cover all data published up to 1980 on phonon and electron states and Fermi surfaces in metals. Both experimental and theoretical results are included. (orig./WL)

  3. Electrostatic interactions between ions near Thomas-Fermi substrates and the surface energy of ionic crystals at imperfect metals.

    Science.gov (United States)

    Kaiser, V; Comtet, J; Niguès, A; Siria, A; Coasne, B; Bocquet, L

    2017-07-01

    The electrostatic interaction between two charged particles is strongly modified in the vicinity of a metal. This situation is usually accounted for by the celebrated image charges approach, which was further extended to account for the electronic screening properties of the metal at the level of the Thomas-Fermi description. In this paper we build upon a previous approach [M. A. Vorotyntsev and A. A. Kornyshev, Zh. Eksp. Teor. Fiz., 1980, 78(3), 1008-1019] and successive works to calculate the 1-body and 2-body electrostatic energy of ions near a metal in terms of the Thomas-Fermi screening length. We propose workable approximations suitable for molecular simulations of ionic systems close to metallic walls. Furthermore, we use this framework to calculate analytically the electrostatic contribution to the surface energy of a one dimensional crystal at a metallic wall and its dependence on the Thomas-Fermi screening length. These calculations provide a simple interpretation for the surface energy in terms of image charges, which allows for an estimation of the interfacial properties in more complex situations of a disordered ionic liquid close to a metal surface. The counter-intuitive outcome is that electronic screening, as characterized by a molecular Thomas-Fermi length l TF , profoundly affects the wetting of ionic systems close to a metal, in line with the recent experimental observation of capillary freezing of ionic liquids in metallic confinement.

  4. Electrostatic interactions between ions near Thomas-Fermi substrates and the surface energy of ionic crystal at imperfect metals

    Science.gov (United States)

    Kaiser, V.; Comtet, J.; Niguès, A.; Siria, A.; Coasne, B.; Bocquet, L.

    2017-01-01

    The electrostatic interaction between two charged particles is strongly modified in the vicinity of a metal. This situation is usually accounted for by the celebrated image charges approach, which was further extended to account for the electronic screening properties of the metal at the level of the Thomas-Fermi description. In this paper we build upon the approach by [Kornyshev et al. Zh. Eksp. Teor. Fiz., 78(3):1008–1019, 1980] and successive works to calculate the 1-body and 2-body electrostatic energy of ions near a metal in terms of the Thomas-Fermi screening length. We propose workable approximations suitable for molecular simulations of ionic systems close to metallic walls. Furthermore, we use this framework to calculate analytically the electrostatic contribution to the surface energy of a one dimensional crystal at a metallic wall and its dependence on the Thomas-Fermi screening length. These calculations provide a simple interpretation for the surface energy in terms of image charges, which allow for an estimate of interfacial properties in more complex situations of a disordered ionic liquid close to a metal surface. A counterintuitive outcome is that electronic screening, as characterized by a molecular Thomas-Fermi length ℓTF, profoundly affects the wetting of ionic systems close to a metal, in line with the recent experimental observation of capillary freezing of ionic liquids in metallic confinement. PMID:28436506

  5. Plasmon Modulation Spectroscopy of Noble Metals to Reveal the Distribution of the Fermi Surface Electrons in the Conduction Band

    Directory of Open Access Journals (Sweden)

    Kentaro Takagi

    2017-12-01

    Full Text Available To directly access the dynamics of electron distribution near the Fermi-surface after plasmon excitation, pump-probe spectroscopy was performed by pumping plasmons on noble-metal films and probing the interband transition. Spectral change in the interband transitions is sensitive to the electron distribution near the Fermi-surface, because it involves the d valence-band to the conduction band transitions and should reflect the k-space distribution dynamics of electrons. For the continuous-wave pump and probe experiment, the plasmon modulation spectra are found to differ from both the current modulation and temperature difference spectra, possibly reflecting signatures of the plasmon wave function. For the femtosecond-pulse pump and probe experiment, the transient spectra agree well with the known spectra upon the excitation of the respective electrons resulting from plasmon relaxation, probably because the lifetime of plasmons is shorter than the pulse duration.

  6. Regulating spin and Fermi surface topology of a quantum metal film by the surface (interface) monatomic layer

    Science.gov (United States)

    Matsuda, Iwao

    2012-02-01

    the Rashba-type surface alloy reduces the spin-relaxation time in the ultrathin film significantly [5]. These results demonstrate that spin and Fermi surface topology of a quantum metal film can be regulated by the surface (interface) monatomic layer.[0pt] [1] T. Okuda, Y. Takeichi, K. He, A. Harasawa, A. Kakizaki, and I. Matsuda, Phys. Rev. B 80, 113409 (2009).[0pt] [2] K. He, T. Hirahara, T. Okuda, S. Hasegawa, A. Kakizaki, and I. Matsuda, Phys. Rev. Lett. 101, 107604 (2008).[0pt] [3] K. He, Y. Takeichi, M. Ogawa, T. Okuda, P. Moras, D. Topwal, A. Harasawa, T. Hirahara, C. Carbone, A. Kakizaki, and I. Matsuda, Phys. Rev. Lett. 104, 156805 (2010).[0pt] [4] N. Miyata, R. Hobara, H. Narita, T. Hirahara, S. Hasegawa, and I. Matsuda, Japanese Journal of Applied Physics 50, 036602 (2011).[0pt] [5] N. Miyata, H. Narita, M. Ogawa, A. Harasawa, R. Hobara, T. Hirahara, P. Moras, D.Topwal, C.Carbone, S.Hasegawa, and I. Matsuda, Phys. Rev. B, 83, 195305 (2011).

  7. Fermi surface and effect of high magnetic fields on the metal-semimetal Peierls-like transition of (TSeT)2Cl

    International Nuclear Information System (INIS)

    Laukhin, V.; Audouard, Allan; Vignolles, David; Drigo, Lois; Alemany, Pere; Canadell, Enric

    2014-01-01

    Resistance measurements in pulsed magnetic fields up to 55 T as well as a first-principles DFT calculation of the Fermi surface for the organic metal (TSeT) 2 Cl have been performed to investigate its metal-semimetal phase transition. The results obtained are in line with the imperfect nesting that can be inferred from both the observed metallic behavior of the resistivity at low temperature and the previously reported Shubnikov-de Haas oscillations due to small carrier pockets. The DFT study points out the possibility that the LUMO bands of the TSeT donor may interact with the HOMO ones and modify the shape of the Fermi surface under pressure

  8. Unconventional Fermi surface in an insulating state

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Neil [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tan, B. S. [Cambridge Univ., Cambridge (United Kingdom); Hsu, Y. -T. [Cambridge Univ., Cambridge (United Kingdom); Zeng, B. [National High Magnetic Field Lab., Tallahassee, FL (United States); Hatnean, M. Ciomaga [Univ. of Warwick, Coventry (United Kingdom); Zhu, Z. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hartstein, M. [Cambridge Univ., Cambridge (United Kingdom); Kiourlappou, M. [Cambridge Univ., Cambridge (United Kingdom); Srivastava, A. [Cambridge Univ., Cambridge (United Kingdom); Johannes, M. D. [Center for Computational Materials Science, Washington, DC (United States); Murphy, T. P. [National High Magnetic Field Lab., Tallahassee, FL (United States); Park, J. -H. [National High Magnetic Field Lab., Tallahassee, FL (United States); Balicas, L. [National High Magnetic Field Lab., Tallahassee, FL (United States); Lonzarich, G. G. [Cambridge Univ., Cambridge (United Kingdom); Balakrishnan, G. [Univ. of Warwick, Coventry (United Kingdom); Sebastian, Suchitra E. [Cambridge Univ., Cambridge (United Kingdom)

    2015-07-17

    Insulators occur in more than one guise; a recent finding was a class of topological insulators, which host a conducting surface juxtaposed with an insulating bulk. Here, we report the observation of an unusual insulating state with an electrically insulating bulk that simultaneously yields bulk quantum oscillations with characteristics of an unconventional Fermi liquid. We present quantum oscillation measurements of magnetic torque in high-purity single crystals of the Kondo insulator SmB6, which reveal quantum oscillation frequencies characteristic of a large three-dimensional conduction electron Fermi surface similar to the metallic rare earth hexaborides such as PrB6 and LaB6. As a result, the quantum oscillation amplitude strongly increases at low temperatures, appearing strikingly at variance with conventional metallic behavior.

  9. Electronic structure, Fermi surface and optical properties of metallic compound Be{sub 8}(B{sub 48})B{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Reshak, A.H. [Institute of Complex Systems, FFPW, CENAKVA, University of South Bohemia in CB, Nove Hrady 37333 (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Azam, Sikander, E-mail: sikander.physicst@gmail.com [Institute of Complex Systems, FFPW, CENAKVA, University of South Bohemia in CB, Nove Hrady 37333 (Czech Republic); Alahmed, Z.A. [Department of Physics and Astronomy, King Saud University, Riyadh 11451 (Saudi Arabia); Chyský, Jan [Department of Instrumentation and Control Engineering, Faculty of Mechanical Engineering, CTU in Prague, Technicka 4, 166 07 Prague 6 (Czech Republic)

    2014-02-15

    The band structure, density of states, electronic charge density, Fermi surface and optical properties for B{sub 8}(Be{sub 48})B{sub 2} compound has been investigated in the support of density functional theory (DFT). The atomic positions of B{sub 8}(Be{sub 48})B{sub 2} compound were optimized by minimization of the forces acting on the atoms using the full potential linear augmented plane wave (FPLAPW) method. We have employed the local density approximation (LDA), generalized gradient approximation (GGA) and Engal-Vosko GGA (EVGGA) to indulgence the exchange correlation potential by solving Kohn–Sham equations. The result shows that the compound is metallic with sturdy hybridization near the Fermi energy level (E{sub F}). The density of states at Fermi energy, N(E{sub F}), is determined by the overlaping between B-p, B-s and Be-s states. This overlaping is strong enough indicating metallic origin with different values of N(E{sub F}). These values are 16.4, 16.27 and 14.89 states/eV, and the corresponding bare linear low-temperature electronic specific heat coefficient (γ) is found to be 2.84, 2.82 and 2.58 mJ/mol K{sup 2} for EVGGA, GGA and LDA respectively. There exists a strong hybridization between B-s and B-p states, also between B-s and Be-p states around the Fermi level. The Fermi surface is composed of three sheets. These sheets consist of set of holes and electrons. The bonding features of the compounds are analyzed using the electronic charge density in the (101 and −101) crystallographic planes and also the analyzing of charge density shows covalent bonding between B and B. The linear optical properties are also deliberated and discussed in particulars. - Highlights: • The compound is metallic. • The density of states at the Fermi energy is calculated. • The bare linear low-temperature electronic specific heat coefficient is obtained. • Fermi surface is composed of three sheets. • The bonding features are analyzed using the electronic

  10. Fermi surface in the absence of a Fermi liquid in the Kondo insulator SmB6

    Science.gov (United States)

    Hartstein, M.; Toews, W. H.; Hsu, Y.-T.; Zeng, B.; Chen, X.; Hatnean, M. Ciomaga; Zhang, Q. R.; Nakamura, S.; Padgett, A. S.; Rodway-Gant, G.; Berk, J.; Kingston, M. K.; Zhang, G. H.; Chan, M. K.; Yamashita, S.; Sakakibara, T.; Takano, Y.; Park, J.-H.; Balicas, L.; Harrison, N.; Shitsevalova, N.; Balakrishnan, G.; Lonzarich, G. G.; Hill, R. W.; Sutherland, M.; Sebastian, Suchitra E.

    2018-02-01

    The search for a Fermi surface in the absence of a conventional Fermi liquid has thus far yielded very few potential candidates. Among promising materials are spin-frustrated Mott insulators near the insulator-metal transition, where theory predicts a Fermi surface associated with neutral low-energy excitations. Here we reveal another route to experimentally realize a Fermi surface in the absence of a Fermi liquid by the experimental study of a Kondo insulator SmB6 positioned close to the insulator-metal transition. We present experimental signatures down to low temperatures (thermal conductivity well below the charge gap energy scale. Thus, the weight of evidence indicates that despite an extreme instance of Fermi liquid breakdown in Kondo insulating SmB6, a Fermi surface arises from novel itinerant low-energy excitations that couple to magnetic fields, but not weak DC electric fields.

  11. Life on the edge: a beginner’s guide to the Fermi surface

    International Nuclear Information System (INIS)

    Dugdale, S B

    2016-01-01

    The concept of the Fermi surface is at the very heart of our understanding of the metallic state. Displaying intricate and often complicated shapes, the Fermi surfaces of real metals are both aesthetically beautiful and subtly powerful. A range of examples is presented of the startling array of physical phenomena whose origin can be traced to the shape of the Fermi surface, together with experimental observations of the particular Fermi surface features. (invited comment)

  12. Fermi surface mapping: Techniques and visualization

    Energy Technology Data Exchange (ETDEWEB)

    Rotenberg, E. [Univ. of Oregon, Eugene, OR (United States). Dept. of Physics; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS); Denlinger, J. D. [Univ. of Wisconsin, Milwaukee, WI (United States); Kevan, S. D. [Univ. of Oregon, Eugene, OR (United States). Dept. of Physics; Goodman, K. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tobin, J. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mankey, G. J. [Louisiana State Univ., Baton Rouge, LA (United States). Dept. of Physics

    1997-04-01

    Angle-resolved photoemission (ARP) of valence bands is a mature technique that has achieved spectacular success in band-mapping metals, semiconductors, and insulators. The purpose of the present study was the development of experimental and analytical techniques in ARP which take advantage of third generation light sources. Here the authors studied the relatively simple Cu surface in preparation for other metals. Copper and related metals themselves are of current interest, especially due to its role as an interlayer in spin valves and other magnetic heterostructures. A major goal of this study was the development of a systematic technique to quickly (i.e. in a few hours of synchrotron beamtime) measure the FS and separate it into bulk and surface FS`s. Often, one needs to avoid bulk features altogether, which one can achieve by carefully mapping their locations in k-space. The authors will also show how they systematically map Fermi surfaces throughout large volumes of k-space, and, by processing the resulting volume data sets, provide intuitive pictures of FS`s, both bulk and surface.

  13. Charge transport by holographic Fermi surfaces

    CERN Document Server

    Faulkner, Thomas; Liu, Hong; McGreevy, John; Vegh, David

    2013-01-01

    We compute the contribution to the conductivity from holographic Fermi surfaces obtained from probe fermions in an AdS charged black hole. This requires calculating a certain part of the one-loop correction to a vector propagator on the charged black hole geometry. We find that the current dissipation is as efficient as possible and the transport lifetime coincides with the single-particle lifetime. In particular, in the case where the spectral density is that of a marginal Fermi liquid, the resistivity is linear in temperature.

  14. Zeeman-induced gapless superconductivity with a partial Fermi surface

    Science.gov (United States)

    Yuan, Noah F. Q.; Fu, Liang

    2018-03-01

    We show that an in-plane magnetic field can drive two-dimensional spin-orbit-coupled systems under the superconducting proximity effect into a gapless phase where parts of the normal state Fermi surface are gapped, and the ungapped parts are reconstructed into a small Fermi surface of Bogoliubov quasiparticles at zero energy. The charge distribution, spin texture, and density of states of such a "partial Fermi surface" are discussed. Material platforms for its physical realization are proposed.

  15. Fermi surfaces of rare-earth nickel borocarbides

    Energy Technology Data Exchange (ETDEWEB)

    Dugdale, S B; Utfeld, C; Wilkinson, I; Laverock, J; Major, Zs; Alam, M A [H H Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Canfield, P C [Ames Laboratory and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States)], E-mail: s.b.dugdale@bristol.ac.uk

    2009-01-15

    A full three-dimensional study of the Fermi surface of LuNi{sub 2}B{sub 2}C is presented, using positron annihilation. The previously identified nesting feature, part of a complex multiply connected Fermi surface sheet, is clearly revealed and observed to extend across approximately 20% of the Brillouin zone. A cuboidal Fermi surface sheet is also found, in agreement with de Haas-van Alphen observations. The Fermi surface topology of the rare-earth nickel borocarbides is shown to vary little for rare-earth elements such as Er, Tm and Yb, suggesting that this topology is broadly common.

  16. Entanglement rules for holographic Fermi surfaces

    Directory of Open Access Journals (Sweden)

    Dibakar Roychowdhury

    2016-08-01

    Full Text Available In this paper, based on the notion of Gauge/Gravity duality, we explore the laws of entanglement thermodynamics for most generic classes of Quantum Field Theories with hyperscaling violation. In our analysis, we note that for Quantum Field Theories with compressible quark like excitation, the first law of entanglement thermodynamics gets modified due to the presence of an additional term that could be identified as the entanglement chemical potential associated with hidden Fermi surfaces of the boundary theory. Most notably, we find that the so called entanglement chemical potential does not depend on the size of the entangling region and is purely determined by the quark d.o.f. encoded within the entangling region.

  17. Treatment Method for Fermi Barrel Sodium Metal Residues

    Energy Technology Data Exchange (ETDEWEB)

    Steven R. Sherman; Collin J. Knight

    2005-06-01

    Fermi barrels are 55-gallon drums that once contained bulk sodium metal from the shutdown Fermi 1 breeder reactor facility, and now contain residual sodium metal and other sodium/air reaction products. This report provides a residual sodium treatment method and proposed quality assurance steps that will ensure that all residual sodium is deactivated and removed from the Fermi barrels before disposal. The treatment method is the application of humidified carbon dioxide to the residual sodium followed by a water wash. The experimental application of the treatment method to six Fermi barrels is discussed, and recommendations are provided for further testing and evaluation of the method. Though more testing would allow for a greater refinement of the treatment technique, enough data has been gathered from the tests already performed to prove that 100% compliance with stated waste criteria can be achieved.

  18. Anomalous transport phenomena in Weyl metal beyond the Drude model for Landau's Fermi liquids.

    Science.gov (United States)

    Kim, Ki-Seok; Kim, Heon-Jung; Sasaki, M; Wang, J-F; Li, L

    2014-12-01

    Landau's Fermi-liquid theory is the standard model for metals, characterized by the existence of electron quasiparticles near a Fermi surface as long as Landau's interaction parameters lie below critical values for instabilities. Recently this fundamental paradigm has been challenged by the physics of strong spin-orbit coupling, although the concept of electron quasiparticles remains valid near the Fermi surface, where Landau's Fermi-liquid theory fails to describe the electromagnetic properties of this novel metallic state, referred to as Weyl metal. A novel ingredient is that such a Fermi surface encloses a Weyl point with definite chirality, referred to as a chiral Fermi surface, which can arise from breaking of either time reversal or inversion symmetry in systems with strong spin-orbit coupling, responsible for both the Berry curvature and the chiral anomaly. As a result, electromagnetic properties of the Weyl metallic state are described not by conventional Maxwell equations but by axion electrodynamics, where Maxwell equations are modified with a topological-in-origin spatially modulated [Formula: see text] term. This novel metallic state was realized recently in Bi[Formula: see text]Sb x around [Formula: see text] under magnetic fields, where the Dirac spectrum appears around the critical point between the normal semiconducting ([Formula: see text]) and topological semiconducting phases ([Formula: see text]) and the time reversal symmetry breaking perturbation causes the Dirac point to split into a pair of Weyl points along the direction of the applied magnetic field for a very strong spin-orbit coupled system. In this review article, we discuss how the topological structure of both the Berry curvature and the chiral anomaly (axion electrodynamics) gives rise to anomalous transport phenomena in [Formula: see text]Sb x around [Formula: see text] under magnetic fields, thus modifying the Drude model of Landau's Fermi liquids.

  19. Gapless Fermi surfaces in superconducting CeCoIn5

    Science.gov (United States)

    Barzykin, Victor; Gor'Kov, L. P.

    2007-07-01

    According to Tanatar [Phys. Rev. Lett. 95, 067002 (2005)], the low-temperature thermal conductivity in Ce1-xLaxCoIn5 , a multiband d -wave superconductor, reveals unexpected dependence on the concentration of defects as if one or more Fermi surface sheets remained ungapped below superconducting transition. The interior gap superfluidity mechanism, or unbalanced pairing, recently proposed by Liu and Wilczek [Phys. Rev. Lett. 90, 047002 (2003)] has been invoked as a possible origin of gaplessness. We indicate that the Fermi surface anisotropy in the real CeCoIn5 makes this explanation highly implausible. We emphasize the fundamental difference between unbalanced pairing of different Fermi entities and the formation of superconducting gaps on Fermi surfaces belonging to different bands. We also argue that interband interactions between electrons always induce a finite order parameter on all Fermi surfaces below the temperature of a superconducting transition. We calculate specific heat and thermal conductivity in a two-band model for a d -wave superconductor in the presence of defects. In our simple model, superconductivity originates on one Fermi surface, inducing a smaller gap on the other one. Impurities diminish the induced gap and increase the density of states, restoring rapidly the Wiedemann-Franz law for this Fermi surface. Our calculations are in agreement with experiment.

  20. Fermi level dependent native defect formation: Consequences for metal-semiconductor and semiconductor-semiconductor interfaces

    International Nuclear Information System (INIS)

    Walukiewicz, W.

    1988-02-01

    The amphoteric native defect model of the Schottky barrier formation is used to analyze the Fermi level pinning at metal/semiconductor interfaces for submonolayer metal coverages. It is assumed that the energy required for defect generation is released in the process of surface back-relaxation. Model calculations for metal/GaAs interfaces show a weak dependence of the Fermi level pinning on the thickness of metal deposited at room temperature. This weak dependence indicates a strong dependence of the defect formation energy on the Fermi level, a unique feature of amphoteric native defects. This result is in very good agreement with experimental data. It is shown that a very distinct asymmetry in the Fermi level pinning on p- and n-type GaAs observed at liquid nitrogen temperatures can be understood in terms of much different recombination rates for amphoteric native defects in those two types of materials. Also, it is demonstrated that the Fermi level stabilization energy, a central concept of the amphoteric defect system, plays a fundamental role in other phenomena in semiconductors such as semiconductor/semiconductor heterointerface intermixing and saturation of free carrier concentration. 33 refs., 6 figs

  1. Fermi surfaces and electronic structure of the Heusler alloy Co2TiSn

    International Nuclear Information System (INIS)

    Hickey, M C; Husmann, A; Holmes, S N; Jones, G A C

    2006-01-01

    The electronic structure of the Heusler alloy Co 2 TiSn is investigated here, with particular attention paid to its potential as a half-metallic ferromagnet. Ab initio calculations are performed using a plane wave pseudopotential code in the framework of density functional theory. These accurate calculations are done with convergence tolerances of 10 -5 and 10 -4 eV on the total energy and Fermi energy, respectively. The alloy is found not to be a half-metal. Minority spin electrons undergo distinctly hole-like dispersion at the Γ point in k space while the majority spin bands are metallic with a multiply connected tube-like Fermi surface. Further, the computed minority band gap and spin polarization at the Fermi level are larger when the calculation is performed using the generalized gradient approximation

  2. Fermi surface of underdoped high-Tc superconducting cuprates

    International Nuclear Information System (INIS)

    Dai, X.; Su, Z.; Yu, L.

    1997-01-01

    The coexistence of a π-flux state and a d-wave resonant-valance-bond (RVB) state is considered in this paper within the slave-boson approach. A critical value of doping concentration δ c is found, below which the coexisting π-flux and d-wave RVB state is favored in energy. The pseudo-Fermi surface of spinons and the physical electron spectral function are calculated. A clear Fermi-level crossing is found along the (0,0) to (π, π) direction, but no such crossing is detected along the (π, 0) to (π, π) direction. Also, an energy gap of d-wave symmetry appears at the Fermi level in our calculation. The above results are in agreement with the angle-resolved photoemission experiments which indicate at a d-wave pseudogap and a half-pocket-like Fermi surface in underdoped cuprates. copyright 1997 The American Physical Society

  3. Fermi

    Data.gov (United States)

    National Aeronautics and Space Administration — Fermi is a powerful space observatory that will open a wide window on the universe. Gamma rays are the highest-energy form of light, and the gamma-ray sky is...

  4. Spin-Peierls instability of three-dimensional Kitaev spin liquids with Majorana Fermi surface

    Science.gov (United States)

    Hermanns, Maria; Trebst, Simon; Rosch, Achim

    The Kitaev honeycomb model is one of the paradigmatic examples of a frustrated spin system exhibiting a quantum spin liquid ground state. The emergent low-energy degrees of freedom are Majorana fermions that can form various different (semi-)metallic states. Three-dimensional variants of this model can, in particular, harbor gapless quantum spin liquids with a Majorana Fermi surface. In this talk, we discuss Fermi surface instabilities arising from additional spin exchange terms (such as a Heisenberg coupling), which induce interactions between the emergent Majorana fermion degrees of freedom. We show that independent of the details of the interactions, the Majorana Fermi surface is always unstable. Generically, the system spontaneously dimerizes at exponentially small temperatures and forms a quantum spin liquid with nodal lines. Depending on the microscopic details, further symmetries of the system may be broken at this transition. These spin-Peierls instabilities of a 3D spin liquid are closely related to BCS instabilities of fermions.

  5. Small metal particles and the ideal Fermi gas

    International Nuclear Information System (INIS)

    Barma, Mustanpir

    1991-01-01

    Kubo's theoretical model of a small metal particle consists of a number of noninteraction electrons (an ideal Fermi gas) confined to a finite volume. By 'small' it meant that the size of the particle is intermediate between that of a few atoms cluster and the bulk solid, the radius of the particle being 5 to 50 Angstroms. The model is discussed and size dependence of various energy scales is studied. For a fermi gas confined in a sphere or a cube, two size-dependent energy scales are important. The inner scale δ is the mean spacing between successive energy levels. It governs the very low temperature behaviour. The outer scale Δ is associated with the shell structure when δ ≤T<Δ, thermodynamic properties show an oscillatory fluctuations around a smooth background as the size or energy is varied. (M.G.B.) 23 refs

  6. Anomalous transport phenomena in Weyl metal beyond the Drude model for Landauʼs Fermi liquids

    Science.gov (United States)

    Kim, Ki-Seok; Kim, Heon-Jung; Sasaki, M.; Wang, J.-F.; Li, L.

    2014-12-01

    Landau's Fermi-liquid theory is the standard model for metals, characterized by the existence of electron quasiparticles near a Fermi surface as long as Landau's interaction parameters lie below critical values for instabilities. Recently this fundamental paradigm has been challenged by the physics of strong spin-orbit coupling, although the concept of electron quasiparticles remains valid near the Fermi surface, where Landau's Fermi-liquid theory fails to describe the electromagnetic properties of this novel metallic state, referred to as Weyl metal. A novel ingredient is that such a Fermi surface encloses a Weyl point with definite chirality, referred to as a chiral Fermi surface, which can arise from breaking of either time reversal or inversion symmetry in systems with strong spin-orbit coupling, responsible for both the Berry curvature and the chiral anomaly. As a result, electromagnetic properties of the Weyl metallic state are described not by conventional Maxwell equations but by axion electrodynamics, where Maxwell equations are modified with a topological-in-origin spatially modulated θ ({\\boldsymbol{r}} ){\\boldsymbol{E}} \\cdot {\\boldsymbol{B}} term. This novel metallic state was realized recently in Bi1-xSbx around x˜ 3% under magnetic fields, where the Dirac spectrum appears around the critical point between the normal semiconducting (x\\lt 3%) and topological semiconducting phases (x\\gt 3%) and the time reversal symmetry breaking perturbation causes the Dirac point to split into a pair of Weyl points along the direction of the applied magnetic field for a very strong spin-orbit coupled system. In this review article, we discuss how the topological structure of both the Berry curvature and the chiral anomaly (axion electrodynamics) gives rise to anomalous transport phenomena in B{{i}1-x}Sbx around x˜ 3% under magnetic fields, thus modifying the Drude model of Landau's Fermi liquids.

  7. Surface effects on the propagation of sound in Fermi liquids

    International Nuclear Information System (INIS)

    Nagai, K.; Woelfle, P.

    1981-01-01

    The propagation of sound in a resonator is discussed in both the normal and superfluid Fermi liquids. A set of model hydrodynamic equations is developed for describing the transition from the hydrodynamic regime to the collisionless regime. Surface effects are incorporated by using a slip boundary condition. The resonance condition for the sound propagation in a cylindrical resonator is derived

  8. Fermi level on hydrogen terminated diamond surfaces

    Czech Academy of Sciences Publication Activity Database

    Rezek, Bohuslav; Saurer, C.; Nebel, C. E.; Stutzmann, M.; Ristein, J.; Ley, L.; Snidero, E.; Bergonzo, P.

    2003-01-01

    Roč. 82, č. 14 (2003), s. 2266-2268 ISSN 0003-6951 EU Projects: European Commission(XE) HPRN-CT-1999-00139 Grant - others:DFC(DE) NE524-2 Institutional research plan: CEZ:AV0Z1010914 Keywords : atomic force microscope(AFM) * Kelvin probe experiments * diamond surface Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.049, year: 2003

  9. Gapless Fermi Surfaces in anisotropic multiband superconductors in magnetic field.

    Science.gov (United States)

    Barzykin, Victor; Gor'kov, Lev P.

    2007-03-01

    We propose that a new state with a fully gapless Fermi surface appears in quasi-2D multiband superconductors in magnetic field applied parallel to the plane. It is characterized by a paramagnetic moment caused by a finite density of states on the open Fermi surface. We calculate thermodynamic and magnetic properties of the gapless state for both s-wave and d-wave cases, and discuss the details of the 1-st order metamagnetic phase transition that accompanies the appearance of the new phase in s-wave superconductors. We suggest possible experiments to detect this state both in the s-wave (2-H NbSe2) and d-wave (CeCoIn5) superconductors.

  10. Magnetic frustration, short-range correlations and the role of the paramagnetic Fermi surface of PdCrO2

    Science.gov (United States)

    Billington, David; Ernsting, David; Millichamp, Thomas E.; Lester, Christopher; Dugdale, Stephen B.; Kersh, David; Duffy, Jonathan A.; Giblin, Sean R.; Taylor, Jonathan W.; Manuel, Pascal; Khalyavin, Dmitry D.; Takatsu, Hiroshi

    2015-01-01

    Frustrated interactions exist throughout nature, with examples ranging from protein folding through to frustrated magnetic interactions. Whilst magnetic frustration is observed in numerous electrically insulating systems, in metals it is a rare phenomenon. The interplay of itinerant conduction electrons mediating interactions between localised magnetic moments with strong spin-orbit coupling is likely fundamental to these systems. Therefore, knowledge of the precise shape and topology of the Fermi surface is important in any explanation of the magnetic behaviour. PdCrO2, a frustrated metallic magnet, offers the opportunity to examine the relationship between magnetic frustration, short-range magnetic order and Fermi surface topology. By mapping the short-range order in reciprocal space and experimentally determining the electronic structure, we have identified the dual role played by the Cr electrons in which the itinerant ones on the nested paramagnetic Fermi surface mediate the frustrated magnetic interactions between local moments. PMID:26206589

  11. Fermi-surface topology of the Weyl semimetal NbP

    Energy Technology Data Exchange (ETDEWEB)

    Klotz, J.; Wosnitza, J. [Hochfeld-Magnetlabor (HLD-EMFL), Helmholtz-Zentrum Dresden-Rossendorf (Germany); Institut fuer Festkoerperphysik, TU Dresden (Germany); Wu, Shu-Chun; Shekhar, Chandra; Sun, Yan; Schmidt, Marcus; Nicklas, Michael; Baenitz, Michael; Felser, Claudia [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany); Uhlarz, M. [Hochfeld-Magnetlabor (HLD-EMFL), Helmholtz-Zentrum Dresden-Rossendorf (Germany); Yan, Binghai [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany); Max Planck Institute for the Physics of Complex Systems, Dresden (Germany)

    2016-07-01

    The recent discovery of Weyl semimetals in transition-metal monopnictides revealed an exotic topological matter. Weyl semimetals feature band crossings with massless dispersions in their bulk band structure, termed Weyl points. Here, we present a Fermi-surface study on the Weyl semimetal NbP that combines both experimental data and band-structure calculations. We employed torque magnetometry in order to measure the angular dependence of the de Haas-van Alphen effect in a 12 T / 350 mK system. The excellent agreement between measured and calculated quantum-oscillation frequencies evidences the existence of two electron and two hole pockets and allows to locate the position of the Weyl points with respect to the Fermi energy.

  12. Fermi Surface with Dirac Fermions in CaFeAsF Determined via Quantum Oscillation Measurements

    Science.gov (United States)

    Terashima, Taichi; Hirose, Hishiro T.; Graf, David; Ma, Yonghui; Mu, Gang; Hu, Tao; Suzuki, Katsuhiro; Uji, Shinya; Ikeda, Hiroaki

    2018-02-01

    Despite the fact that 1111-type iron arsenides hold the record transition temperature of iron-based superconductors, their electronic structures have not been studied much because of the lack of high-quality single crystals. In this study, we comprehensively determine the Fermi surface in the antiferromagnetic state of CaFeAsF, a 1111 iron-arsenide parent compound, by performing quantum oscillation measurements and band-structure calculations. The determined Fermi surface consists of a symmetry-related pair of Dirac electron cylinders and a normal hole cylinder. From analyses of quantum-oscillation phases, we demonstrate that the electron cylinders carry a nontrivial Berry phase π . The carrier density is of the order of 10-3 per Fe. This unusual metallic state with the extremely small carrier density is a consequence of the previously discussed topological feature of the band structure which prevents the antiferromagnetic gap from being a full gap. We also report a nearly linear-in-B magnetoresistance and an anomalous resistivity increase above about 30 T for B ∥c , the latter of which is likely related to the quantum limit of the electron orbit. Intriguingly, the electrical resistivity exhibits a nonmetallic temperature dependence in the paramagnetic tetragonal phase (T >118 K ), which may suggest an incoherent state. Our study provides a detailed knowledge of the Fermi surface in the antiferromagnetic state of 1111 parent compounds and moreover opens up a new possibility to explore Dirac-fermion physics in those compounds.

  13. Signature of Fermi surface jumps in positron spectroscopy data

    International Nuclear Information System (INIS)

    Adam, G.; Adam, S.

    1998-12-01

    A subtractionless method for solving Fermi surface sheets (FSS), from measured n-axis-projected momentum distribution histograms by two-dimensional angular correlation of the positron-electron annihilation radiation (2D-ACAR) technique, is discussed. The window least squares statistical noise smoothing filter described in Adam et al., NIM A, 337 (1993) 188, is first refined such that the window free radial parameters (WRP) are optimally adapted to the data. In an ideal single crystal, the specific jumps induced in the WRP distribution by the existing Fermi surface jumps yield straightforward information on the resolved FSS. In a real crystal, the smearing of the derived WRP optimal values, which originates from positron annihilations with electrons at crystal imperfections, is ruled out by median smoothing of the obtained distribution, over symmetry defined stars of bins. The analysis of a gigacount 2D-ACAR spectrum, measured on the archetypal high-T c compound Y Ba 2 Cu 3 O 7-δ at room temperature, illustrates the method. Both electronic FSS, the ridge along Γ Χ direction and the pillbox centered at the S point of the first Brillouin zone, are resolved. (author)

  14. Evidence from Fermi surface analysis for the low-temperature structure of lithium

    Science.gov (United States)

    Elatresh, Sabri F.; Cai, Weizhao; Ashcroft, N. W.; Hoffmann, Roald; Deemyad, Shanti; Bonev, Stanimir A.

    2017-05-01

    The low-temperature crystal structure of elemental lithium, the prototypical simple metal, is a several-decades-old problem. At 1 atm pressure and 298 K, Li forms a body-centered cubic lattice, which is common to all alkali metals. However, a low-temperature phase transition was experimentally detected to a structure initially identified as having the 9R stacking. This structure, proposed by Overhauser in 1984, has been questioned repeatedly but has not been confirmed. Here we present a theoretical analysis of the Fermi surface of lithium in several relevant structures. We demonstrate that experimental measurements of the Fermi surface based on the de Haas-van Alphen effect can be used as a diagnostic method to investigate the low-temperature phase diagram of lithium. This approach may overcome the limitations of X-ray and neutron diffraction techniques and makes possible, in principle, the determination of the lithium low-temperature structure (and that of other metals) at both ambient and high pressure. The theoretical results are compared with existing low-temperature ambient pressure experimental data, which are shown to be inconsistent with a 9R phase for the low-temperature structure of lithium.

  15. On the interrelation between bulk and thin-film Fermi surfaces

    KAUST Repository

    Schwingenschlögl, Udo

    2010-12-01

    A general scheme for inferring the Fermi surface of a finite slab from ab initio electronic-structure calculations for the parent bulk system is introduced. The simple cubic ReO 3 oxide is studied as an example system. We show that our scheme provides an accurate approximation of the Fermi surface even for very thin slabs. © 2010 Europhysics Letters Association.

  16. High-temperature superconductivity from fine-tuning of Fermi-surface singularities in iron oxypnictides.

    Science.gov (United States)

    Charnukha, A; Evtushinsky, D V; Matt, C E; Xu, N; Shi, M; Büchner, B; Zhigadlo, N D; Batlogg, B; Borisenko, S V

    2015-12-18

    In the family of the iron-based superconductors, the REFeAsO-type compounds (with RE being a rare-earth metal) exhibit the highest bulk superconducting transition temperatures (Tc) up to 55 K and thus hold the key to the elusive pairing mechanism. Recently, it has been demonstrated that the intrinsic electronic structure of SmFe0.92Co0.08AsO (Tc = 18 K) is highly nontrivial and consists of multiple band-edge singularities in close proximity to the Fermi level. However, it remains unclear whether these singularities are generic to the REFeAsO-type materials and if so, whether their exact topology is responsible for the aforementioned record Tc. In this work, we use angle-resolved photoemission spectroscopy (ARPES) to investigate the inherent electronic structure of the NdFeAsO0.6F0.4 compound with a twice higher Tc = 38 K. We find a similarly singular Fermi surface and further demonstrate that the dramatic enhancement of superconductivity in this compound correlates closely with the fine-tuning of one of the band-edge singularities to within a fraction of the superconducting energy gap Δ below the Fermi level. Our results provide compelling evidence that the band-structure singularities near the Fermi level in the iron-based superconductors must be explicitly accounted for in any attempt to understand the mechanism of superconducting pairing in these materials.

  17. Quantum oscillations in insulators with neutral Fermi surfaces

    Science.gov (United States)

    Sodemann, Inti; Chowdhury, Debanjan; Senthil, T.

    2018-02-01

    We develop a theory of quantum oscillations in insulators with an emergent Fermi sea of neutral fermions minimally coupled to an emergent U(1 ) gauge field. As pointed out by Motrunich [Phys. Rev. B 73, 155115 (2006), 10.1103/PhysRevB.73.155115], in the presence of a physical magnetic field the emergent magnetic field develops a nonzero value leading to Landau quantization for the neutral fermions. We focus on the magnetic field and temperature dependence of the analog of the de Haas-van Alphen effect in two and three dimensions. At temperatures above the effective cyclotron energy, the magnetization oscillations behave similarly to those of an ordinary metal, albeit in a field of a strength that differs from the physical magnetic field. At low temperatures, the oscillations evolve into a series of phase transitions. We provide analytical expressions for the amplitude and period of the oscillations in both of these regimes and simple extrapolations that capture well their crossover. We also describe oscillations in the electrical resistivity of these systems that are expected to be superimposed with the activated temperature behavior characteristic of their insulating nature and discuss suitable experimental conditions for the observation of these effects in mixed-valence insulators and triangular lattice organic materials.

  18. Final state effects in photoemission studies of Fermi surfaces

    International Nuclear Information System (INIS)

    Kurtz, Richard L; Browne, Dana A; Mankey, Gary J

    2007-01-01

    Photoelectron spectroscopy is one of the most important methods for extracting information about the Fermi surface (FS) of materials. An electron photoexcited from the FS is emitted from the crystal conserving the parallel momentum, k parallel , while the perpendicular momentum k perpendicular is reduced due to the surface potential barrier. A simple interpretation of the process assumes the final state is free-electron-like allowing one to 'map' the detected photoelectron back to its initial k momentum. There are multiple final state effects that can complicate the interpretation of photoelectron data and these effects are reviewed here. These can involve both energy and k broadening, which can give rise to shadow or ghost FS contours, scattering and final state diffraction effects that modify intensities, and matrix element effects which reflect the symmetries of the states involved and can be highly dependent on photon polarization. These matrix elements result in contours of photoelectron intensity that follow the dispersion in k-space of the initial state, the FS, and the final state. Locations where intensities go to zero due to matrix element and symmetry effects can result in gaps where FS contours 'disappear'. Recognition that these effects can play a significant role in determining the measured angular distributions is crucial in developing an informed model of where the FS contours actually lie in relation to measured intensity contours

  19. Fermi Surface with Dirac Fermions in CaFeAsF Determined via Quantum Oscillation Measurements

    Directory of Open Access Journals (Sweden)

    Taichi Terashima

    2018-02-01

    Full Text Available Despite the fact that 1111-type iron arsenides hold the record transition temperature of iron-based superconductors, their electronic structures have not been studied much because of the lack of high-quality single crystals. In this study, we comprehensively determine the Fermi surface in the antiferromagnetic state of CaFeAsF, a 1111 iron-arsenide parent compound, by performing quantum oscillation measurements and band-structure calculations. The determined Fermi surface consists of a symmetry-related pair of Dirac electron cylinders and a normal hole cylinder. From analyses of quantum-oscillation phases, we demonstrate that the electron cylinders carry a nontrivial Berry phase π. The carrier density is of the order of 10^{-3} per Fe. This unusual metallic state with the extremely small carrier density is a consequence of the previously discussed topological feature of the band structure which prevents the antiferromagnetic gap from being a full gap. We also report a nearly linear-in-B magnetoresistance and an anomalous resistivity increase above about 30 T for B∥c, the latter of which is likely related to the quantum limit of the electron orbit. Intriguingly, the electrical resistivity exhibits a nonmetallic temperature dependence in the paramagnetic tetragonal phase (T>118  K, which may suggest an incoherent state. Our study provides a detailed knowledge of the Fermi surface in the antiferromagnetic state of 1111 parent compounds and moreover opens up a new possibility to explore Dirac-fermion physics in those compounds.

  20. Fermi surface and quantum well states of V(110) films on W(110)

    Energy Technology Data Exchange (ETDEWEB)

    Krupin, Oleg [MS 6-2100, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Rotenberg, Eli [MS 6-2100, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Kevan, S D [Department of Physics, University of Oregon, Eugene, OR 97403 (United States)

    2007-09-05

    Using angle-resolved photoemission spectroscopy, we have measured the Fermi surface of V(110) films epitaxially grown on a W(110) substrate. We compare our results for thicker films to existing calculations and measurements for bulk vanadium and find generally very good agreement. For thinner films, we observe and analyse a diverse array of quantum well states that split and distort the Fermi surface segments. We have searched unsuccessfully for a thickness-induced topological transition associated with contact between the zone-centre jungle gym and zone-boundary hole ellipsoid Fermi surface segments. We also find no evidence for ferromagnetic splitting of any bands on this surface.

  1. Fermi Surfaces of Iron-Pnictide High-Tc Superconductors from the Limit of Local Magnetic Moments

    Science.gov (United States)

    Araujo, Miguel; Sacramento, Pedro; Rodriguez, Jose

    2012-02-01

    We study a 2-orbital t-J model for an isolated square lattice of iron atoms, which stack up to form an iron-pnictide high-Tc superconductor. The two orbitals in question are the degenerate d±= 3d(x±iy)z ones, which maximize the Hund's Rule coupling. First-neighbor and second-neighbor hopping (t) and Heisenberg exchange (J) are included. A Schwinger-boson-slave-fermion mean-field analysis yields a hidden half metal state in which holes hop through a d+d- spin background without much hopping across orbitals. This state is characterized by an inner and an outer Fermi surface pocket centered at the γ point. The Fermi surface pockets resemble those predicted by band structure calculations that include all five 3d orbitals. By sweeping the Hund's coupling, we also identify a quantum-critical point (QCP) where zero-energy spin-wave excitations exist at the momenta associated with commensurate spin-density-wave (cSDW) order. These low-energy spin-waves result in nested Fermi-surface pockets centered at cSDW momenta. Exact diagonalization of one hole in the 2-orbital t-J model over a 4x4 square lattice yields low-energy spectra that are consistent with the nested Fermi surfaces that are predicted to exist at the QCP.

  2. Prediction of Fermi-Surface Pressure Dependence in Rb and Cs

    DEFF Research Database (Denmark)

    Jan, J. P.; MacDonald, A. H.; Skriver, Hans Lomholt

    1980-01-01

    The linear muffin-tin orbitals method of band-structure calculation, combined with a Gaussian integration technique using special directions in the Brillouin zone, has been used to calculate Fermi radii and extremal cross-sectional areas of the Fermi surface in rubidium and cesium. Band shifts we...

  3. Observation of hidden Fermi surface nesting in a two dimensional conductor

    International Nuclear Information System (INIS)

    Breuer, K.; Stagerescu, C.; Smith, K.E.; Greenblatt, M.; Ramanujachary, K.

    1996-01-01

    We report the first direct measurement of hidden Fermi surface nesting in a two dimensional conductor. The system studied was Na 0.9 Mo 6 O 17 , and the measured Fermi surface consists of electron and hole pockets that can be combined to form sets of pseudo-one-dimensional Fermi surfaces, exhibiting the nesting necessary to drive a Peierls transition to a charge density wave state. The observed nesting vector is shown to be in excellent agreement with theory. copyright 1996 The American Physical Society

  4. Fermi Level Pinning at Electrical Metal Contacts of Monolayer Molybdenum Dichalcogenides.

    Science.gov (United States)

    Kim, Changsik; Moon, Inyong; Lee, Daeyeong; Choi, Min Sup; Ahmed, Faisal; Nam, Seunggeol; Cho, Yeonchoo; Shin, Hyeon-Jin; Park, Seongjun; Yoo, Won Jong

    2017-02-28

    Electrical metal contacts to two-dimensional (2D) semiconducting transition metal dichalcogenides (TMDCs) are found to be the key bottleneck to the realization of high device performance due to strong Fermi level pinning and high contact resistances (R c ). Until now, Fermi level pinning of monolayer TMDCs has been reported only theoretically, although that of bulk TMDCs has been reported experimentally. Here, we report the experimental study on Fermi level pinning of monolayer MoS 2 and MoTe 2 by interpreting the thermionic emission results. We also quantitatively compared our results with the theoretical simulation results of the monolayer structure as well as the experimental results of the bulk structure. We measured the pinning factor S to be 0.11 and -0.07 for monolayer MoS 2 and MoTe 2 , respectively, suggesting a much stronger Fermi level pinning effect, a Schottky barrier height (SBH) lower than that by theoretical prediction, and interestingly similar pinning energy levels between monolayer and bulk MoS 2 . Our results further imply that metal work functions have very little influence on contact properties of 2D-material-based devices. Moreover, we found that R c is exponentially proportional to SBH, and these processing parameters can be controlled sensitively upon chemical doping into the 2D materials. These findings provide a practical guideline for depinning Fermi level at the 2D interfaces so that polarity control of TMDC-based semiconductors can be achieved efficiently.

  5. Quantum critical fluctuations due to nested Fermi surface: The case of spinless fermions

    International Nuclear Information System (INIS)

    Schlottmann, P.

    2007-01-01

    A quantum critical point (QCP) can be obtained by tuning the critical temperature of a second-order phase transition to zero. A simple model of spinless fermions with nested Fermi surface leading to a charge density wave is considered. The QCP is obtained by tuning the nesting mismatch of the Fermi surface, which has the following consequences: (i) For the tuned QCP, the specific heat over T and the effective mass increase with the logarithm of the temperature as T is lowered. (ii) For the tuned QCP the linewidth of the quasi-particles is sublinear in T and ω. (iii) The specific heat and the linewidth display a crossover from non-Fermi liquid (∼T) to Fermi liquid (∼T 2 ) behavior with increasing nesting mismatch and decreasing temperature. (iv) For the tuned QCP, the dynamical charge susceptibility has a quasi-elastic peak with a linewidth proportional to T. (v) For non-critical Fermi vector mismatch the peak is inelastic. (vi) While the specific heat and the quasi-particle linewidth are only weakly dependent on the geometry of the nested Fermi surfaces, the momentum-dependent dynamical susceptibility is expected to be affected by the shape of the Fermi surface

  6. Band Structure and Fermi Surface of Cu2Sb by the LMTO Method

    DEFF Research Database (Denmark)

    Jan, J. P.; Skriver, Hans Lomholt

    1977-01-01

    The linear muffin-tin orbital (LMTO) method of bandstructure calculation has been applied to the simple tetragonal compound Cu2Sb. The d bands of Cu lie substantially below the Fermi level, and the Fermi surface is a recognizable distortion of the free-electron model. The Fermi surface has sheets......-orbit splitting, and of another closed sheet. Earlier de Haas-van Alphen results are explained semiquantitatively by the model, which also accounts for open orbits seen in high-field magnetoresistance experiments....

  7. Fermi surfaces of YRu2Si2 and LaRu2Si2

    International Nuclear Information System (INIS)

    Settai, R.; Ikezawa, H.; Toshima, H.; Takashita, M.; Ebihara, T.; Sugawara, H.; Kimura, T.; Motoki, K.; Onuki, Y.

    1995-01-01

    We have measured the de Haas-van Alphen effect of YRu 2 Si 2 and LaRu 2 Si 2 to clarify the Fermi surfaces and cyclotron masses. Main hole-Fermi surfaces of both compounds with a distorted ellipsoid shape are similar, occupying about half of the Brillouin zone. The small hole-Fermi surfaces with the shape of a rugby ball are three in number for LaRu 2 Si 2 , and one for YRu 2 Si 2 . An electron-Fermi surface consists of a doughnut like shape for LaRu 2 Si 2 , while a cylinder along the [001] direction and a multiply-connected shape exist for YRu 2 Si 2 . The cyclotron masses of YRu 2 Si 2 are a little larger than those of LaRu 2 Si 2 . ((orig.))

  8. Characterization of the Fermi surface of BEDT-TTF4[Hg2Cl6].PhCl by electronic band structure calculations

    International Nuclear Information System (INIS)

    Veiros, L.F.; Canadell, E.

    1994-01-01

    Tight-binding band structure calculations for the room temperature structure of BEDT-TTF 4 [Hg 2 Cl 6 ]-PhCl show the existence of closed electron and hole Fermi surfaces, in agreement with the 2D metallic conductivity of this salt. It is shown that these closed Fermi surfaces result from the hybridization of two hidden 1D Fermi surfaces. However, our study also shows that a transition associated with either a usual or a hidden nesting type mechanism is unlikely. This explains why this salt retains its metallic properties without any resistivity anomaly down to 1.3 K. Our study suggests that BEDT-TTF 4 [Hg 2 Cl 6 ]-PhCl is somewhat anisotropic 2D semimetal and should exhibit Shubnikov-de Haas oscillations corresponding to a cross-sectional area of approximately 13% of the first Brillouin zone. (orig.)

  9. Theoretical reconsideration of antiferromagnetic Fermi surfaces in URu{sub 2}Si{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Yamagami, Hiroshi, E-mail: yamagami@cc.kyoto-su.ac.jp [Department of Physics, Faculty of Science, Kyoto Sangyo University, Kyoto 603-8555 (Japan)

    2011-01-01

    In an itinerant 5f-band model, the antiferromagnetic (AFM) Fermi surfaces of URu{sub 2}Si{sub 2} are reconsidered using a relativistic LAPW method within a local spin-density approximation, especially taking into account the lattice parameters dependent on pressures. The reduction of the z-coordinate of the Si sites results in the effect of flattening the Ru-Si layers of URu{sub 2}Si{sub 2} crystal structure, thus weakening a hybridization/mixing between the U-5f and Ru-4d states in the band structure. Consequently the 5f bands around the Fermi level are more flat in the dispersion with decreasing the z-coordinate, thus producing three closed Fermi surfaces like 'curing-stone', 'rugby-ball' and 'ball'. The origins of de Haas-van Alphen branches can be qualitatively interpreted from the obtained AFM Fermi surfaces.

  10. Theoretical reconsideration of antiferromagnetic Fermi surfaces in URu2Si2

    International Nuclear Information System (INIS)

    Yamagami, Hiroshi

    2011-01-01

    In an itinerant 5f-band model, the antiferromagnetic (AFM) Fermi surfaces of URu 2 Si 2 are reconsidered using a relativistic LAPW method within a local spin-density approximation, especially taking into account the lattice parameters dependent on pressures. The reduction of the z-coordinate of the Si sites results in the effect of flattening the Ru-Si layers of URu 2 Si 2 crystal structure, thus weakening a hybridization/mixing between the U-5f and Ru-4d states in the band structure. Consequently the 5f bands around the Fermi level are more flat in the dispersion with decreasing the z-coordinate, thus producing three closed Fermi surfaces like 'curing-stone', 'rugby-ball' and 'ball'. The origins of de Haas-van Alphen branches can be qualitatively interpreted from the obtained AFM Fermi surfaces.

  11. The effect of Fermi energy on reaction of water with oxide surfaces

    Science.gov (United States)

    Mullins, W. M.

    1989-07-01

    The experimental relationship found between oxide Fermi level and aqueous point of zero charge (pzc) is modeled by the generalized Lewis acid-base theory. This model describes a nearly linear relationship between the position of the Fermi level in the band gap and the net charge transferred in a surface acid-base reaction. The situation of a water molecule adsorbed onto an uncharged, insulator (alumina) surface is examined. The charge in the reaction is assumed to shift the dissociation equilibrium of the water molecule, resulting in a net surface charge on the insulator. The pzc of the surface is calculated as a function of insulator Fermi level from these equilibria. This model predicts very strong effects of doping, surface states and surface space charges on pzc of insulators but possibly small effects of structure and stoichiometry.

  12. Spin-liquid Mott quantum criticality in two dimensions: Destabilization of a spinon Fermi surface and emergence of one-dimensional spin dynamics

    Science.gov (United States)

    Han, Jae-Ho; Cho, Yong-Heum; Kim, Ki-Seok

    2017-06-01

    Resorting to a recently developed theoretical device called dimensional regularization for quantum criticality with a Fermi surface, we examine a metal-insulator quantum phase transition from a Landau's Fermi-liquid state to a U(1) spin-liquid phase with a spinon Fermi surface in two dimensions. Unfortunately, we fail to approach the spin-liquid Mott quantum critical point from the U(1) spin-liquid state within the dimensional regularization technique. Self-interactions between charge fluctuations called holons are not screened, which shows a run-away renormalization group flow, interpreted as holons remain gapped. This leads us to consider another fixed point, where the spinon Fermi surface can be destabilized across the Mott transition. Based on this conjecture, we reveal the nature of the spin-liquid Mott quantum critical point: Dimensional reduction to one dimension occurs for spin dynamics described by spinons. As a result, Landau damping for both spin and charge dynamics disappear in the vicinity of the Mott quantum critical point. When the flavor number of holons is over its critical value, an interacting fixed point appears to be identified with an inverted X Y universality class, controlled within the dimensional regularization technique. On the other hand, a fluctuation-driven first order metal-insulator transition results when it is below the critical number. We propose that the destabilization of a spinon Fermi surface and the emergence of one-dimensional spin dynamics near the spin-liquid Mott quantum critical point can be checked out by spin susceptibility with a 2 kF transfer momentum, where kF is a Fermi momentum in the U(1) spin-liquid state: The absence of Landau damping in U(1) gauge fluctuations gives rise to a divergent behavior at zero temperature while it vanishes in the presence of a spinon Fermi surface.

  13. Band Structure and Fermi-Surface Properties of Ordered beta-Brass

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Christensen, N. E.

    1973-01-01

    , but that their position relative to the Fermi level is correct. The derived Fermi-surface model allows a detailed interpretation of the de Hass-van Alphen (dHvA) data. The present model has no open orbit along for B→∥ 〈110〉. This agrees with dHvA as well as magnetoresistance measurements. Four new extremal cross sections...

  14. Two-dimensional Fermi surfaces in Kondo insulating SmB6

    Science.gov (United States)

    Li, Gang

    There has been renewed interest in Samarium Hexaboride, which is a strongly correlated heavy Fermion material. Hybridization between itinerant electrons and localized orbitals lead to an opening of charge gap at low temperature. However, the resistivity of SmB6 does not diverge at low temperature. Former studies suggested that this residual conductance is contributed by various origins. Recent theoretical developments suggest that the particular symmetry of energy bands of SmB6 may host a topologically non-trivial surface state, i.e., a topological Kondo insulator. To probe the Fermiology of the possible metallic surface state, we use sensitive torque magnetometry to detect the de Haas van Alphen (dHvA) effect due to Landau level quantization on flux-grown crystals, down to He-3 temperature and up to 45 Tesla. Our angular and temperature dependent data suggest two-dimensional Fermi Surfaces lie in both crystalline (001) and (101) surface planes of SmB6.

  15. Bulk Fermi surface of the Weyl type-II semimetallic candidate γ -MoTe2

    Science.gov (United States)

    Rhodes, D.; Schönemann, R.; Aryal, N.; Zhou, Q.; Zhang, Q. R.; Kampert, E.; Chiu, Y.-C.; Lai, Y.; Shimura, Y.; McCandless, G. T.; Chan, J. Y.; Paley, D. W.; Lee, J.; Finke, A. D.; Ruff, J. P. C.; Das, S.; Manousakis, E.; Balicas, L.

    2017-10-01

    The electronic structure of semimetallic transition-metal dichalcogenides, such as WTe2 and orthorhombic γ -MoTe2 , are claimed to contain pairs of Weyl points or linearly touching electron and hole pockets associated with a nontrivial Chern number. For this reason, these compounds were recently claimed to conform to a new class, deemed type-II, of Weyl semimetallic systems. A series of angle-resolved photoemission experiments (ARPES) claim a broad agreement with these predictions detecting, for example, Fermi arcs at the surface of these crystals. We synthesized single crystals of semimetallic MoTe2 through a Te flux method to validate these predictions through measurements of its bulk Fermi surface (FS) via quantum oscillatory phenomena. We find that the superconducting transition temperature of γ -MoTe2 depends on disorder as quantified by the ratio between the room- and low-temperature resistivities, suggesting the possibility of an unconventional superconducting pairing symmetry. Similarly to WTe2, the magnetoresistivity of γ -MoTe2 does not saturate at high magnetic fields and can easily surpass 106%. Remarkably, the analysis of the de Haas-van Alphen (dHvA) signal superimposed onto the magnetic torque indicates that the geometry of its FS is markedly distinct from the calculated one. The dHvA signal also reveals that the FS is affected by the Zeeman effect precluding the extraction of the Berry phase. A direct comparison between the previous ARPES studies and density-functional-theory (DFT) calculations reveals a disagreement in the position of the valence bands relative to the Fermi level ɛF. Here, we show that a shift of the DFT valence bands relative to ɛF, in order to match the ARPES observations, and of the DFT electron bands to explain some of the observed dHvA frequencies, leads to a good agreement between the calculations and the angular dependence of the FS cross-sectional areas observed experimentally. However, this relative displacement

  16. Non-Fermi-Liquid Behavior in Metallic Quasicrystals with Local Magnetic Moments

    Science.gov (United States)

    Andrade, Eric C.; Jagannathan, Anuradha; Miranda, Eduardo; Vojta, Matthias; Dobrosavljević, Vladimir

    2015-07-01

    Motivated by the intrinsic non-Fermi-liquid behavior observed in the heavy-fermion quasicrystal Au51Al34Yb15 , we study the low-temperature behavior of dilute magnetic impurities placed in metallic quasicrystals. We find that a large fraction of the magnetic moments are not quenched down to very low temperatures T , leading to a power-law distribution of Kondo temperatures P (TK)˜TKα -1, with a nonuniversal exponent α , in a remarkable similarity to the Kondo-disorder scenario found in disordered heavy-fermion metals. For α <1 , the resulting singular P (TK) induces non-Fermi-liquid behavior with diverging thermodynamic responses as T →0 .

  17. Fermi surface study of organic conductors using a magneto-optical measurement under high magnetic fields

    International Nuclear Information System (INIS)

    Kimata, M; Ohta, H; Koyama, K; Motokawa, M; Kondo, R; Kagoshima, S; Tanaka, H; Tokumoto, M; Kobayashi, H; Kobayashi, A

    2006-01-01

    Magneto-optical measurements have been performed in organic conductors β''-(BEDT-TTF) 2 CsCd(SCN) 4 and λ-(BETS) 2 FeCl 4 . Although the zero magnetic field ground state of β''-(BEDT-TTF) 2 CsCd(SCN) 4 is considered as the density wave state, periodic orbit resonances (POR's) attributed to quasi-one-dimensional (Q1D) and quasi-two-dimensional (Q2D) Fermi surfaces (FS's) have been observed above 6 T. The existence of these FS's are predicted by the band calculation based on room temperature lattice parameters. This result may suggest the destruction of the density wave state at 6 T, and the primal metallic state revives in the high field phase above 6 T. In the case of λ-(BETS) 2 FeCl 4 , large changes of the transmission intensity of electromagnetic waves around 10 T, which correspond to the insulator-metal transition, have been observed. However, no POR-like resonance has been observed. This may be due to the restriction of the observed frequency-field region

  18. Origin of Fermi-level pinning at GaAs surfaces and interfaces

    Science.gov (United States)

    Colleoni, Davide; Miceli, Giacomo; Pasquarello, Alfredo

    2014-12-01

    Through first-principles simulation methods, we assign the origin of Fermi-level pinning at GaAs surfaces and interfaces to the bistability between the As-As dimer and two As dangling bonds, which transform into each other upon charge trapping. This defect is shown to be naturally formed both at GaAs surfaces upon oxygen deposition and in the near-interface substoichiometric oxide. Using electron-counting arguments, we infer that the identified defect occurs in opposite charge states. The Fermi-level pinning then results from the amphoteric nature of this defect which drives the Fermi level to its defect level. These results account for the experimental characterization at both GaAs surfaces and interfaces within a unified picture, wherein the role of As antisites is elucidated.

  19. Emergent nesting of the Fermi surface from local-moment description of iron-pnictide high-Tc superconductors

    Science.gov (United States)

    Rodriguez, Jose P.; Araujo, Miguel A. N.; Sacramento, Pedro D.

    2014-07-01

    We uncover the low-energy spectrum of a t-J model for electrons on a square lattice of spin-1 iron atoms with 3dxz and 3dyz orbital character by applying Schwinger-boson-slave-fermion mean-field theory and by exact diagonalization of one hole roaming over a 4 × 4 × 2 lattice. Hopping matrix elements are set to produce hole bands centered at zero two-dimensional (2D) momentum in the free-electron limit. Holes can propagate coherently in the t-J model below a threshold Hund coupling when long-range antiferromagnetic order across the d + = 3d(x + iy)z and d - = 3d(x - iy)z orbitals is established by magnetic frustration that is off-diagonal in the orbital indices. This leads to two hole-pocket Fermi surfaces centered at zero 2D momentum. Proximity to a commensurate spin-density wave (cSDW) that exists above the threshold Hund coupling results in emergent Fermi surface pockets about cSDW momenta at a quantum critical point (QCP). This motivates the introduction of a new Gutzwiller wavefunction for a cSDW metal state. Study of the spin-fluctuation spectrum at cSDW momenta indicates that the dispersion of the nested band of one-particle states that emerges is electron-type. Increasing Hund coupling past the QCP can push the hole-pocket Fermi surfaces centered at zero 2D momentum below the Fermi energy level, in agreement with recent determinations of the electronic structure of mono-layer iron-selenide superconductors.

  20. Unconventional Fermi surface associated with novel quasiparticles in the Kondo insulator SmB6

    Science.gov (United States)

    Sebastian, Suchitra

    The search for a Fermi surface in the absence of a Fermi liquid has endured for decades. We present evidence for the realisation of such a state in the Kondo Insulator SmB6, which is an extreme example of Fermi liquid breakdown. Experimental results are presented from complementary techniques including quantum oscillations, specific heat capacity, thermal conductivity, and oscillatory entropy down to low temperatures. An experimental comparison is made with alternative theoretical models that associate novel quasiparticles with the unconventional Fermi surface we uncover in SmB6. A new paradigm for the realisation of a Fermi surface in the absence of conventional quasiparticles is proposed in the vicinity of a Kondo insulator transition. This work was performed in collaboration with M. Hartstein, W. H. Toews, Y.-T. Hsu, B. Zeng, X. Chen, M. Ciomaga Hatnean, Q. R. Zhang, S. Nakamura, A. S. Padgett, G. Rodway-Gant, J. Berk, M. K. Kingston, G. H. Zhang, M. K. Chan, S. Yamashita, T. Sakakibara, Y. Takano, J. -H. Park, L. Balicas, N. Harrison, N. Shitsevalova, G. Balakrishnan, G. G. Lonzarich, R. W. Hill, and M. Sutherland.

  1. Kondo effect and non-Fermi liquid behavior in metallic glasses containing Yb, Ce, and Sm

    Science.gov (United States)

    Huang, B.; Yang, Y. F.; Wang, W. H.

    2013-04-01

    The low temperature properties of metallic glasses containing different concentrations of ytterbium, cerium, and samarium are studied. It is found that the Kondo effect caused by exchange interactions between the conduction and 4f electrons and non-Fermi liquid behavior appear in the strongly disordered alloys. We study the origins for these unique features and demonstrate that the found Kondo effect is inherited from the crystalline counterparts. The results might have significance on investigating the strong electron-electron interaction systems with structural disorder and be helpful for designing new metallic glasses with functional properties.

  2. Energy Bands and Fermi Surface for beta-MgMh and beta-MgTl

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt

    1977-01-01

    surfaces are found to be sp-like but there are narrow 5d bands far below—and wide 3d and 6d bands far above—the Fermi levels. For β′-MgHg the calculated angular variation of extremal cross sections of the Fermi surface agrees very well with de Haas-van Alphen data and thereby provide an interpretation......The energy bands of ordered β′-MgHg and β′-MgTl have been calculated by the relativistic linear-muffintin-orbital method. We show how the gross features of the energy bands may be estimated from Wigner-Seitz rules. The densities of states are calculated and the heat capacities derived. The Fermi...

  3. Calculated Fermi surface properties of LaSn3 and YSn3 under pressure

    International Nuclear Information System (INIS)

    Kanchana, V.

    2012-01-01

    The electronic structure, Fermi surface and elastic properties of the iso-structural and iso-electronic LaSn 3 and YSn 3 intermetallic compounds are studied under pressure within the frame work of density functional theory including spin-orbit coupling. The LaSn 3 Fermi surface consists of two sheets, of which the second is very complex. Under pressure a third sheet appears around compression V/V 0 =0.94, while a small topology changes in the second sheet is seen at compression V/V 0 =0.90. This may be in accordance with the anomalous behavior in the superconducting transition temperature observed in LaSn 3 , which has been suggested to reflect a Fermi surface topological transition, along with a non-monotonic pressure dependence of the density of states at the Fermi level. The similar behavior is not observed in YSn 3 for which the Fermi surface includes three sheets already at ambient conditions, and the topology remains unchanged under pressure. The reason for the difference in behavior between LaSn 3 and YSn 3 is the role of spin-orbit coupling and the hybridization of La-4f state with the Sn-p state in the vicinity of the Fermi level, which is well explained using the band structure calculation. The elastic constants and related mechanical properties are calculated at ambient as well as at elevated pressures. The elastic constants increase with pressure for both compounds and satisfy the conditions for mechanical stability under pressure. (author)

  4. Antibacterial Metallic Touch Surfaces

    Directory of Open Access Journals (Sweden)

    Victor M. Villapún

    2016-08-01

    Full Text Available Our aim is to present a comprehensive review of the development of modern antibacterial metallic materials as touch surfaces in healthcare settings. Initially we compare Japanese, European and US standards for the assessment of antimicrobial activity. The variations in methodologies defined in these standards are highlighted. Our review will also cover the most relevant factors that define the antimicrobial performance of metals, namely, the effect of humidity, material geometry, chemistry, physical properties and oxidation of the material. The state of the art in contact-killing materials will be described. Finally, the effect of cleaning products, including disinfectants, on the antimicrobial performance, either by direct contact or by altering the touch surface chemistry on which the microbes attach, will be discussed. We offer our outlook, identifying research areas that require further development and an overview of potential future directions of this exciting field.

  5. Magnetic field-induced Landau Fermi liquid in high-T{sub c} metals

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M.Ya.; Shaginyan, V.R

    2003-08-25

    We consider the behavior of strongly correlated electron liquid in high-temperature superconductors within the framework of the fermion condensation model. We show that at low temperatures the normal state recovered by the application of a magnetic field larger than the critical field can be viewed as the Landau Fermi liquid induced by the magnetic field. In this state, the Wiedemann-Franz law and the Korringa law are held and the elementary excitations are the Landau Fermi liquid quasiparticles. Contrary to what might be expected from the Landau theory, the effective mass of quasiparticles depends on the magnetic field. The recent experimental verifications of the Wiedemann-Franz law in heavily hole-overdoped, overdoped and optimally doped cuprates and the verification of the Korringa law in the electron-doped copper oxide superconductor strongly support the existence of fermion condensate in high-T{sub c} metals.

  6. Illumination-induced changes of the Fermi surface topology in three-dimensional superlattices

    Czech Academy of Sciences Publication Activity Database

    Goncharuk, Natalya; Smrčka, Ludvík; Svoboda, Pavel; Vašek, Petr; Kučera, Jan; Krupko, Yu.; Wegscheider, W.

    2007-01-01

    Roč. 75, č. 24 (2007), 245322/1-245322/7 ISSN 1098-0121 R&D Projects: GA MŠk LC510; GA AV ČR KAN400100652 Institutional research plan: CEZ:AV0Z10100521 Keywords : persistent photoconductivity * superlattice * Fermi surface Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.172, year: 2007

  7. Fermi-surface collapse and dynamical scaling near a quantum-critical point

    Science.gov (United States)

    Friedemann, Sven; Oeschler, Niels; Wirth, Steffen; Krellner, Cornelius; Geibel, Christoph; Steglich, Frank; Paschen, Silke; Kirchner, Stefan; Si, Qimiao

    2010-01-01

    Quantum criticality arises when a macroscopic phase of matter undergoes a continuous transformation at zero temperature. While the collective fluctuations at quantum-critical points are being increasingly recognized as playing an important role in a wide range of quantum materials, the nature of the underlying quantum-critical excitations remains poorly understood. Here we report in-depth measurements of the Hall effect in the heavy-fermion metal YbRh2Si2, a prototypical system for quantum criticality. We isolate a rapid crossover of the isothermal Hall coefficient clearly connected to the quantum-critical point from a smooth background contribution; the latter exists away from the quantum-critical point and is detectable through our studies only over a wide range of magnetic field. Importantly, the width of the critical crossover is proportional to temperature, which violates the predictions of conventional theory and is instead consistent with an energy over temperature, E/T, scaling of the quantum-critical single-electron fluctuation spectrum. Our results provide evidence that the quantum-dynamical scaling and a critical Kondo breakdown simultaneously operate in the same material. Correspondingly, we infer that macroscopic scale-invariant fluctuations emerge from the microscopic many-body excitations associated with a collapsing Fermi-surface. This insight is expected to be relevant to the unconventional finite-temperature behavior in a broad range of strongly correlated quantum systems. PMID:20668246

  8. Fermi surface changes in dilute magnesium alloys: a pseudopotential band structure model

    International Nuclear Information System (INIS)

    Fung, W.K.

    1976-01-01

    The de Haas-van Alphen effect has been used to study the Fermi surface of pure magnesium and its dilute alloys containing lithium and indium. The quantum oscillations in magnetization were detected by means of a torque magnetometer in magnetic field up to 36 kilogauss and temperature range of 4.2 0 to 1.7 0 K. The results provide information on the effects of lithium and indium solutes on the Fermi surface of magnesium in changes of extremal cross sections and effective masses as well as the relaxation times associated with the orbits. The nonlocal pseudopotential model proposed by Kimball, Stark and Mueller has been fitted to the Fermi surface of magnesium and extended to include the dilute alloys, fitting all the observed de Haas-van Alphen frequencies with an accuracy of better than 1 percent. A modified rigid band interpretation including both Fermi energy and local band edge changes computed from the model, gives an overall satisfactory description of the observed frequency shifts. With the pseudo-wavefunctions provided by the nonlocal model, the relaxation times in terms of Dingle temperatures for several orbits have been predicted using Sorbello's multiple-plane-wave phase shift model. The calculation with phase shifts obtained from a model potential yields a greater anisotropy than has been observed experimentally, while a two-parameter phase shift model provides a good fit to the experimental results

  9. Interaction-induced singular Fermi surface in a high-temperature oxypnictide superconductor.

    Science.gov (United States)

    Charnukha, A; Thirupathaiah, S; Zabolotnyy, V B; Büchner, B; Zhigadlo, N D; Batlogg, B; Yaresko, A N; Borisenko, S V

    2015-05-21

    In the family of iron-based superconductors, LaFeAsO-type materials possess the simplest electronic structure due to their pronounced two-dimensionality. And yet they host superconductivity with the highest transition temperature Tc ≈ 55K. Early theoretical predictions of their electronic structure revealed multiple large circular portions of the Fermi surface with a very good geometrical overlap (nesting), believed to enhance the pairing interaction and thus superconductivity. The prevalence of such large circular features in the Fermi surface has since been associated with many other iron-based compounds and has grown to be generally accepted in the field. In this work we show that a prototypical compound of the 1111-type, SmFe(0.92)Co(0.08)AsO , is at odds with this description and possesses a distinctly different Fermi surface, which consists of two singular constructs formed by the edges of several bands, pulled to the Fermi level from the depths of the theoretically predicted band structure by strong electronic interactions. Such singularities dramatically affect the low-energy electronic properties of the material, including superconductivity. We further argue that occurrence of these singularities correlates with the maximum superconducting transition temperature attainable in each material class over the entire family of iron-based superconductors.

  10. Spin-Peierls Instability of Three-Dimensional Spin Liquids with Majorana Fermi Surfaces

    Science.gov (United States)

    Hermanns, Maria; Trebst, Simon; Rosch, Achim

    2015-10-01

    Three-dimensional (3D) variants of the Kitaev model can harbor gapless spin liquids with a Majorana Fermi surface on certain tricoordinated lattice structures such as the recently introduced hyperoctagon lattice. Here, we investigate Fermi surface instabilities arising from additional spin exchange terms (such as a Heisenberg coupling) which introduce interactions between the emergent Majorana fermion degrees of freedom. We show that independent of the sign and structure of the interactions, the Majorana surface is always unstable. Generically, the system spontaneously doubles its unit cell at exponentially small temperatures and forms a spin liquid with line nodes. Depending on the microscopics, further symmetries of the system can be broken at this transition. These spin-Peierls instabilities of a 3D spin liquid are closely related to BCS instabilities of fermions.

  11. Organometallic chemistry of metal surfaces

    International Nuclear Information System (INIS)

    Muetterties, E.L.

    1981-06-01

    The organometallic chemistry of metal surfaces is defined as a function of surface crystallography and of surface composition for a set of cyclic hydrocarbons that include benzene, toluene, cyclohexadienes, cyclohexene, cyclohexane, cyclooctatetraene, cyclooctadienes, cyclooctadiene, cycloheptatriene and cyclobutane. 12 figures

  12. Gapless Fermi Surfaces of Anisotropic Multiband Superconductors in a Magnetic Field

    Science.gov (United States)

    Barzykin, Victor; Gor'Kov, L. P.

    2007-02-01

    We propose that a new state with a fully gapless Fermi surface appears in quasi-2D multiband superconductors in magnetic field applied parallel to the plane. It is characterized by a paramagnetic moment caused by a finite density of states on the open Fermi surface. We calculate thermodynamic and magnetic properties of the gapless state for both s-wave and d-wave cases, and discuss the details of the first order metamagnetic phase transition that accompanies the appearance of the new phase in s-wave superconductors. We suggest possible experiments to detect this state both in the s-wave (2-H NbSe2) and d-wave (CeCoIn5) superconductors.

  13. Unifying ultrafast demagnetization and intrinsic Gilbert damping in Co/Ni bilayers with electronic relaxation near the Fermi surface

    Science.gov (United States)

    Zhang, Wei; He, Wei; Zhang, Xiang-Qun; Cheng, Zhao-Hua; Teng, Jiao; Fähnle, Manfred

    2017-12-01

    The ability to controllably manipulate the laser-induced ultrafast magnetic dynamics is a prerequisite for future high-speed spintronic devices. The optimization of devices requires the controllability of the ultrafast demagnetization time τM and intrinsic Gilbert damping αintr. In previous attempts to establish a relationship between τM and αintr, the rare-earth doping of a permalloy film with two different demagnetization mechanisms was not a suitable candidate. Here, we choose Co/Ni bilayers to investigate the relations between τM and αintr by means of the time-resolved magneto-optical Kerr effect (TR-MOKE) via adjusting the thickness of the Ni layers, and obtain an approximately proportional relation between these two parameters. The remarkable agreement between the TR-MOKE experiment and the prediction of a breathing Fermi-surface model confirms that a large Elliott-Yafet spin-mixing parameter b2 is relevant to the strong spin-orbital coupling at the Co/Ni interface. More importantly, a proportional relation between τM and αintr in such metallic films or heterostructures with electronic relaxation near the Fermi surface suggests the local spin-flip scattering dominates the mechanism of ultrafast demagnetization, otherwise the spin-current mechanism dominates. It is an effective method to distinguish the dominant contributions to ultrafast magnetic quenching in metallic heterostructures by simultaneously investigating both the ultrafast demagnetization time and Gilbert damping. Our work can open an avenue to manipulate the magnitude and efficiency of terahertz emission in metallic heterostructures such as perpendicular magnetic anisotropic Ta/Pt/Co/Ni/Pt/Ta multilayers, and then it has an immediate implication for the design of high-frequency spintronic devices.

  14. Giant magnetoresistance, three-dimensional Fermi surface and origin of resistivity plateau in YSb semimetal.

    Science.gov (United States)

    Pavlosiuk, Orest; Swatek, Przemysław; Wiśniewski, Piotr

    2016-12-09

    Very strong magnetoresistance and a resistivity plateau impeding low temperature divergence due to insulating bulk are hallmarks of topological insulators and are also present in topological semimetals where the plateau is induced by magnetic field, when time-reversal symmetry (protecting surface states in topological insulators) is broken. Similar features were observed in a simple rock-salt-structure LaSb, leading to a suggestion of the possible non-trivial topology of 2D states in this compound. We show that its sister compound YSb is also characterized by giant magnetoresistance exceeding one thousand percent and low-temperature plateau of resistivity. We thus performed in-depth analysis of YSb Fermi surface by band calculations, magnetoresistance, and Shubnikov-de Haas effect measurements, which reveals only three-dimensional Fermi sheets. Kohler scaling applied to magnetoresistance data accounts very well for its low-temperature upturn behavior. The field-angle-dependent magnetoresistance demonstrates a 3D-scaling yielding effective mass anisotropy perfectly agreeing with electronic structure and quantum oscillations analysis, thus providing further support for 3D-Fermi surface scenario of magnetotransport, without necessity of invoking topologically non-trivial 2D states. We discuss data implying that analogous field-induced properties of LaSb can also be well understood in the framework of 3D multiband model.

  15. Anisotropic non-Fermi liquids

    Science.gov (United States)

    Sur, Shouvik; Lee, Sung-Sik

    2016-11-01

    We study non-Fermi-liquid states that arise at the quantum critical points associated with the spin density wave (SDW) and charge density wave (CDW) transitions in metals with twofold rotational symmetry. We use the dimensional regularization scheme, where a one-dimensional Fermi surface is embedded in (3 -ɛ ) -dimensional momentum space. In three dimensions, quasilocal marginal Fermi liquids arise both at the SDW and CDW critical points: the speed of the collective mode along the ordering wave vector is logarithmically renormalized to zero compared to that of Fermi velocity. Below three dimensions, however, the SDW and CDW critical points exhibit drastically different behaviors. At the SDW critical point, a stable anisotropic non-Fermi-liquid state is realized for small ɛ , where not only time but also different spatial coordinates develop distinct anomalous dimensions. The non-Fermi liquid exhibits an emergent algebraic nesting as the patches of Fermi surface are deformed into a universal power-law shape near the hot spots. Due to the anisotropic scaling, the energy of incoherent spin fluctuations disperse with different power laws in different momentum directions. At the CDW critical point, on the other hand, the perturbative expansion breaks down immediately below three dimensions as the interaction renormalizes the speed of charge fluctuations to zero within a finite renormalization group scale through a two-loop effect. The difference originates from the fact that the vertex correction antiscreens the coupling at the SDW critical point whereas it screens at the CDW critical point.

  16. Fermi surface and band structure of BiPd from ARPES studies

    Science.gov (United States)

    Lohani, H.; Mishra, P.; Gupta, Anurag; Awana, V. P. S.; Sekhar, B. R.

    2017-03-01

    We present a detailed electronic structure study of the non-centrosymmetric superconductor BiPd based on our angle resolved photoemission spectroscopy (ARPES) measurements and Density Functional Theory (DFT) based calculations. We observe a high intensity distribution on the Fermi surface (FS) of this compound resulting from various electron and hole like bands which are present in the vicinity of the Fermi energy (Ef). The near Ef states are primarily composed of Bi-6p with a little admixture of Pd-4dx2-y2/zy orbitals. There are various spin-orbit split bands involved in the crossing of Ef making a complex FS. The FS mainly consists of multi sheets of three dimensions which disfavor the nesting between different sheets of the FS. Our comprehensive study elucidates that BiPd could be a s-wave multiband superconductor.

  17. Corrosion-resistant metal surfaces

    Science.gov (United States)

    Sugama, Toshifumi [Wading River, NY

    2009-03-24

    The present invention relates to metal surfaces having thereon an ultrathin (e.g., less than ten nanometer thickness) corrosion-resistant film, thereby rendering the metal surfaces corrosion-resistant. The corrosion-resistant film includes an at least partially crosslinked amido-functionalized silanol component in combination with rare-earth metal oxide nanoparticles. The invention also relates to methods for producing such corrosion-resistant films.

  18. Bond Formation in Diatomic Transition Metal Hydrides: Insights from the Analysis of Domain-Averaged Fermi Holes

    Czech Academy of Sciences Publication Activity Database

    Cooper, D.L.; Ponec, Robert

    2013-01-01

    Roč. 113, č. 2 (2013), s. 102-111 ISSN 0020-7608 R&D Projects: GA ČR GA203/09/0118 Institutional support: RVO:67985858 Keywords : transition metal hydrides * bond formation * analysis of domain averaged Fermi holes Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.166, year: 2013

  19. Band structure and fermi surface of an extremely overdoped iron-based superconductor KFe2As2.

    Science.gov (United States)

    Sato, T; Nakayama, K; Sekiba, Y; Richard, P; Xu, Y-M; Souma, S; Takahashi, T; Chen, G F; Luo, J L; Wang, N L; Ding, H

    2009-07-24

    We have performed high-resolution angle-resolved photoemission spectroscopy on heavily overdoped KFe_{2}As_{2} (transition temperature T_{c} = 3 K). We observed several renormalized bands near the Fermi level with a renormalization factor of 2-4. While the Fermi surface around the Brillouin-zone center is qualitatively similar to that of optimally doped Ba_{1-x}K_{x}Fe_{2}As_{2} (x = 0.4; T_{c} = 37 K), the Fermi surface topology around the zone corner (M point) is markedly different: the two electron Fermi surface pockets are completely absent due to an excess of hole doping. This result indicates that the electronic states around the M point play an important role in the high-T_{c} superconductivity of Ba_{1-x}K_{x}Fe_{2}As_{2} and suggests that the interband scattering via the antiferromagnetic wave vector essentially controls the T_{c} value in the overdoped region.

  20. Are Vicinal Metal Surfaces Stable?

    DEFF Research Database (Denmark)

    Frenken, J. W. M.; Stoltze, Per

    1999-01-01

    We use effective medium theory to demonstrate that the energies of many metal surfaces are lowered when these surfaces are replaced by facets with lower-index orientations. This implies that the low-temperature equilibrium shapes of many metal crystals should be heavily faceted. The predicted...... instability of vicinal metal surfaces is at variance with the almost generally observed stability of these surfaces. We argue that the unstable orientations undergo a defaceting transition at relatively low temperatures, driven by the high vibrational entropy of steps....

  1. The surface energy of metals

    DEFF Research Database (Denmark)

    Vitos, Levente; Ruban, Andrei; Skriver, Hans Lomholt

    1998-01-01

    We have used density functional theory to establish a database of surface energies for low index surfaces of 60 metals in the periodic table. The data may be used as a consistent starting point for models of surface science phenomena. The accuracy of the database is established in a comparison...

  2. Fermi Surface Manipulation by External Magnetic Field Demonstrated for a Prototypical Ferromagnet

    Directory of Open Access Journals (Sweden)

    E. Młyńczak

    2016-12-01

    Full Text Available We consider the details of the near-surface electronic band structure of a prototypical ferromagnet, Fe(001. Using high-resolution angle-resolved photoemission spectroscopy, we demonstrate openings of the spin-orbit-induced electronic band gaps near the Fermi level. The band gaps, and thus the Fermi surface, can be manipulated by changing the remanent magnetization direction. The effect is of the order of ΔE=100  meV and Δk=0.1  Å^{−1}. We show that the observed dispersions are dominated by the bulk band structure. First-principles calculations and one-step photoemission calculations suggest that the effect is related to changes in the electronic ground state and not caused by the photoemission process itself. The symmetry of the effect indicates that the observed electronic bulk states are influenced by the presence of the surface, which might be understood as related to a Rashba-type effect. By pinpointing the regions in the electronic band structure where the switchable band gaps occur, we demonstrate the significance of spin-orbit interaction even for elements as light as 3d ferromagnets. These results set a new paradigm for the investigations of spin-orbit effects in the spintronic materials. The same methodology could be used in the bottom-up design of the devices based on the switching of spin-orbit gaps such as electric-field control of magnetic anisotropy or tunneling anisotropic magnetoresistance.

  3. Quantum oscillations without a Fermi surface. The anomalous de Haas-van Alphen effect and relation to SmB{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Knolle, Johannes; Cooper, Nigel [T.C.M. Group, Cavendish Laboratory, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2016-07-01

    The de Haas-van Alphen effect (dHvAE), describing oscillations of the magnetization as a function of magnetic field, is commonly assumed to be a definite sign for the presence of a Fermi surface (FS). Indeed, the effect forms the basis of a well-established experimental procedure for accurately measuring FS topology and geometry of metallic systems, with parameters commonly extracted by fitting to the Lifshitz-Kosevich (LK) theory based on Fermi liquid theory. Here we show that, in contrast to this canonical situation, there can be quantum oscillations even for band insulators of certain types. We provide simple analytic formulas describing the temperature dependence of the quantum oscillations in this setting, showing strong deviations from LK theory. We draw connections to recent experiments on the tentative topological Kondo insulator SmB{sub 6}.

  4. Magnetic correlations and quantum criticality in the insulating antiferromagnetic, insulating spin liquid, renormalized Fermi liquid, and metallic antiferromagnetic phases of the Mott system V2O3

    Science.gov (United States)

    Bao, Wei; Broholm, C.; Aeppli, G.; Carter, S. A.; Dai, P.; Rosenbaum, T. F.; Honig, J. M.; Metcalf, P.; Trevino, S. F.

    1998-11-01

    Magnetic correlations in all four phases of pure and doped vanadium sesquioxide (V2O3) have been examined by magnetic thermal-neutron scattering. Specifically, we have studied the antiferromagnetic and paramagnetic phases of metallic V2-yO3, the antiferromagnetic insulating and paramagnetic metallic phases of stoichiometric V2O3, and the antiferromagnetic and paramagnetic phases of insulating V1.944Cr0.056O3. While the antiferromagnetic insulator can be accounted for by a localized Heisenberg spin model, the long-range order in the antiferromagnetic metal is an incommensurate spin-density wave, resulting from a Fermi surface nesting instability. Spin dynamics in the strongly correlated metal are dominated by spin fluctuations with a ``single lobe'' spectrum in the Stoner electron-hole continuum. Furthermore, our results in metallic V2O3 represent an unprecedentedly complete characterization of the spin fluctuations near a metallic quantum critical point, and provide quantitative support for the self-consistent renormalization theory for itinerant antiferromagnets in the small moment limit. Dynamic magnetic correlations for ħωmetal and the paramagnetic insulator, introduces a sudden switching of magnetic correlations to a different spatial periodicity which indicates a sudden change in the underlying spin Hamiltonian. To describe this phase transition and also the unusual short-range order in the paramagnetic state, it seems necessary to take into account the orbital degrees of freedom associated with the degenerate d orbitals at the Fermi level in V2O3.

  5. Plastic Deformation of Metal Surfaces

    DEFF Research Database (Denmark)

    Hansen, Niels; Zhang, Xiaodan; Huang, Xiaoxu

    2013-01-01

    Plastic deformation of metal surfaces by sliding and abrasion between moving parts can be detrimental. However, when the plastic deformation is controlled for example by applying different peening techniques hard surfaces can be produced which can increase the fracture resistance and fatigue life...

  6. Strategic surfaces in sheet metal forming

    DEFF Research Database (Denmark)

    Olsson, David Dam; Andreasen, Jan Lasson; Bay, Niels

    Out-line: Introduction to tribology in sheet metal forming Developed strategic surfaces Tribological testing of strategic surfaces Conclusion......Out-line: Introduction to tribology in sheet metal forming Developed strategic surfaces Tribological testing of strategic surfaces Conclusion...

  7. A layered Dirac system candidate: Fermi surface and anomalous Berry phase in ZrSiSe

    Science.gov (United States)

    Chiu, Yu-Che; Chen, Kuan-Wen; Graf, David; Zhou, Qiong; Martin, Thomas J.; Chan, Julia Y.; Johannes, Michelle; Baumbach, Ryan E.; Balicas, Luis

    ZrSiSe was recently claimed to correspond to a novel type of nodal Dirac system. We synthesized single crystals through a combination of solid state reaction and chemical vapor transport. The as-grown single crystals display residual resistivities on the order of 100 nOhmcm at 2K yielding a resistivity ratio surpassing 200. Magnetoresistance (MR) measurements reveal a non-saturating increase in the resistivity by a factor of 500000% under fields up to 35 Tesla. De Haas van Alphen measurements under high magneticfields reveal a Fermi surface that is more complex than previously reported, although its geometry generally agrees with band structure calculations that indicate Dirac-like dispersion in the bulk around the Fermi energy. The charge carrier effective masses extracted from Lifshitz-Kosevich (LK) fits to the amplitude of quantum oscillations were found to range between 0.08me to 0.5me where me is the free electron mass. Fittings of the oscillatory signal to the LK formalism further reveal the existence of cyclotron orbits displaying non-trivial Berry phases approaching pi, which is consistent with the expectations from band structure calculations. funded by DOE, NSF, NHMFL.

  8. Field-angle-resolved anisotropy in superconducting CeCoIn5 using realistic Fermi surfaces

    Science.gov (United States)

    Das, Tanmoy; Vorontsov, A. B.; Vekhter, I.; Graf, Matthias J.

    2013-05-01

    We compute the field-angle-resolved specific heat and thermal conductivity using realistic model band structures for the heavy-fermion superconductor CeCoIn5 to identify the gap structure and location of nodes. We use a two-band tight-binding parametrization of the band dispersion as input for the self-consistent calculations in the quasiclassical formulation of the superconductivity. Systematic analysis shows that modest in-plane anisotropy in the density of states and Fermi velocity in tetragonal crystals significantly affects the fourfold oscillations in thermal quantities, when the magnetic field is rotated in the basal plane. The Fermi-surface anisotropy substantially shifts the location of the lines in the H-T plane, where the oscillations change sign compared to quasicylindrical model calculations. In particular, at high fields, the anisotropy and sign reversal are found even for isotropic gaps. Our findings imply that a simultaneous analysis of the specific heat and thermal conductivity, with an emphasis on the low-energy sector, is needed to restrict potential pairing scenarios in multiband superconductors. We discuss the impact of our results on recent measurements of the Ce-115 family, namely, CeTIn5 with T= Co, Rh, Ir.

  9. Fermi Surface Evolution Across Multiple Charge Density Wave Transitions in ErTe3

    Energy Technology Data Exchange (ETDEWEB)

    Moore, R.G.; /SLAC, SSRL /Stanford U., Geballe Lab.; Brouet, V.; /Orsay, LPS; He, R.; /SLAC, SSRL /Stanford U., Geballe Lab.; Lu, D.H.; /SLAC, SSRL; Ru, N.; Chu, J.-H.; Fisher, I.R.; /Stanford U., Geballe Lab.; Shen, Z.-X.; /SLAC, SSRL /Stanford U., Geballe Lab.

    2010-02-15

    The Fermi surface (FS) of ErTe{sub 3} is investigated using angle-resolved photoemission spectroscopy (ARPES). Low temperature measurements reveal two incommensurate charge density wave (CDW) gaps created by perpendicular FS nesting vectors. A large {Delta}{sub 1} = 175 meV gap arising from a CDW with c* - q{sub CDW1} {approx} 0.70(0)c* is in good agreement with the expected value. A second, smaller {Delta}{sub 2} = 50 meV gap is due to a second CDW with a* - q{sub CDW2} {approx} 0.68(5)a*. The temperature dependence of the FS, the two gaps and possible interaction between the CDWs are examined.

  10. ARPES on Na0.6CoO2: Fermi surface and unusual band dispersion.

    Science.gov (United States)

    Yang, H-B; Wang, S-C; Sekharan, A K P; Matsui, H; Souma, S; Sato, T; Takahashi, T; Takeuchi, T; Campuzano, J C; Jin, R; Sales, B C; Mandrus, D; Wang, Z; Ding, H

    2004-06-18

    The electronic structure of single crystals Na0.6CoO2, which are closely related to the superconducting Na0.3CoO2.yH(2)O (T(c) approximately 5 K), is studied by angle-resolved photoelectron spectroscopy. While the measured Fermi surface (FS) is consistent with the large FS enclosing the Gamma point from the band theory, the predicted small FS pockets near the K points are absent. In addition, the band dispersion is found to be highly renormalized, and anisotropic along the two principal axes (Gamma-K, Gamma-M). Our measurements also indicate that an extended flatband is formed slightly above E(F) along Gamma-K.

  11. Fermi level pinning in metal/Al{sub 2}O{sub 3}/InGaAs gate stack after post metallization annealing

    Energy Technology Data Exchange (ETDEWEB)

    Winter, R.; Krylov, I.; Cytermann, C.; Eizenberg, M. [Department of Materials Science and Engineering, Technion—Israel Institute of Technology, Haifa 32000 (Israel); Tang, K.; Ahn, J.; McIntyre, P. C. [Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 (United States)

    2015-08-07

    The effect of post metal deposition annealing on the effective work function in metal/Al{sub 2}O{sub 3}/InGaAs gate stacks was investigated. The effective work functions of different metal gates (Al, Au, and Pt) were measured. Flat band voltage shifts for these and other metals studied suggest that their Fermi levels become pinned after the post-metallization vacuum annealing. Moreover, there is a difference between the measured effective work functions of Al and Pt, and the reported vacuum work function of these metals after annealing. We propose that this phenomenon is caused by charging of indium and gallium induced traps at the annealed metal/Al{sub 2}O{sub 3} interface.

  12. Reduction of Fermi level pinning and recombination at polycrystalline CdTe surfaces by laser irradiation

    Science.gov (United States)

    Simonds, Brian J.; Kheraj, Vipul; Palekis, Vasilios; Ferekides, Christos; Scarpulla, Michael A.

    2015-06-01

    Laser processing of polycrystalline CdTe is a promising approach that could potentially increase module manufacturing throughput while reducing capital expenditure costs. For these benefits to be realized, the basic effects of laser irradiation on CdTe must be ascertained. In this study, we utilize surface photovoltage spectroscopy (SPS) to investigate the changes to the electronic properties of the surface of polycrystalline CdTe solar cell stacks induced by continuous-wave laser annealing. The experimental data explained within a model consisting of two space charge regions, one at the CdTe/air interface and one at the CdTe/CdS junction, are used to interpret our SPS results. The frequency dependence and phase spectra of the SPS signal are also discussed. To support the SPS findings, low-temperature spectrally-resolved photoluminescence and time-resolved photoluminescence were also measured. The data show that a modest laser treatment of 250 W/cm2 with a dwell time of 20 s is sufficient to reduce the effects of Fermi level pinning at the surface due to surface defects.

  13. Reduction of Fermi level pinning and recombination at polycrystalline CdTe surfaces by laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Simonds, Brian J. [Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Kheraj, Vipul [Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Department of Applied Physics, S. V. National Institute of Technology, Surat 395 007 (India); Palekis, Vasilios; Ferekides, Christos [Electrical Engineering, University of South Florida, Tampa, Florida 33620 (United States); Scarpulla, Michael A., E-mail: scarpulla@eng.utah.edu [Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112 (United States)

    2015-06-14

    Laser processing of polycrystalline CdTe is a promising approach that could potentially increase module manufacturing throughput while reducing capital expenditure costs. For these benefits to be realized, the basic effects of laser irradiation on CdTe must be ascertained. In this study, we utilize surface photovoltage spectroscopy (SPS) to investigate the changes to the electronic properties of the surface of polycrystalline CdTe solar cell stacks induced by continuous-wave laser annealing. The experimental data explained within a model consisting of two space charge regions, one at the CdTe/air interface and one at the CdTe/CdS junction, are used to interpret our SPS results. The frequency dependence and phase spectra of the SPS signal are also discussed. To support the SPS findings, low-temperature spectrally-resolved photoluminescence and time-resolved photoluminescence were also measured. The data show that a modest laser treatment of 250 W/cm{sup 2} with a dwell time of 20 s is sufficient to reduce the effects of Fermi level pinning at the surface due to surface defects.

  14. Fermi surface properties of AB3 (A = Y, La; B = Pb, In, Tl) intermetallic compounds under pressure

    DEFF Research Database (Denmark)

    Ram, Swetarekha; Kanchana, V; Svane, Axel

    2013-01-01

    The electronic structures, densities of states, Fermi surfaces and elastic properties of AB3 (A = La, Y; B = Pb, In, Tl) compounds are studied under pressure using the full-potential linear augmented plane wave (FP-LAPW) method within the local density approximation for the exchange–correlation f...

  15. Enhanced photochemistry on metal surfaces

    International Nuclear Information System (INIS)

    Goncher, G.M.; Parsons, C.A.; Harris, C.B.

    1984-01-01

    Due to the fast relaxation of molecular excited states in the vicinity of a metal or semiconductor surface, few observations of surface photochemistry have been reported. The following work concerns the surface-enhanced photo-reactions of a variety of physisorbed molecules on roughened Ag surfaces. In summary, photodecomposition leads to a graphitic surface carbon product which is monitored via surface-enhanced Raman scattering. In most cases an initial two-photon molecular absorption step followed by further absorption and fragmentation is thought to occur. Enhancement of the incident fields occurs through roughness-mediated surface plasmon resonances. This mechanism provides the amplified electromagnetic surface fields responsible for the observed photodecomposition. The photodecomposition experiments are performed under ultra-high vacuum. Surface characterization of the roughened surfaces was done by Scanning Electron Microscopy (SEM), and electron-stimulated emission. The SEM revealed morphology on the order of 300-400 A. This size of roughness feature, when modelled as isolated spheres should exhibit the well-known Mie resonances for light of the correct wavelengths. For protrusions existing on a surface these Mie resonances can be thought of as a coupling of the light with the surface plasmon. Experimental verification of these resonances was provided by the electron-stimulated light emission results. These showed that a polished Ag surface emitted only the expected transition radiation at the frequency of the Ag bulk plasmon. Upon roughening, however, a broad range of lower frequencies extending well into the visible are seen from electron irradiation of the surface. Large enhancements are expected for those frequencies which are able to couple into the surface modes

  16. Splitting Fermi Surfaces and Heavy Electronic States in Non-Centrosymmetric U3Ni3Sn4

    Science.gov (United States)

    Maurya, Arvind; Harima, Hisatomo; Nakamura, Ai; Shimizu, Yusei; Homma, Yoshiya; Li, DeXin; Honda, Fuminori; Sato, Yoshiki J.; Aoki, Dai

    2018-04-01

    We report the single-crystal growth of the non-centrosymmetric paramagnet U3Ni3Sn4 by the Bridgman method and the Fermi surface properties detected by de Haas-van Alphen (dHvA) experiments. We have also investigated single-crystal U3Ni3Sn4 by single-crystal X-ray diffraction, magnetization, electrical resistivity, and heat capacity measurements. The angular dependence of the dHvA frequencies reveals many closed Fermi surfaces, which are nearly spherical in topology. The experimental results are in good agreement with local density approximation (LDA) band structure calculations based on the 5f-itinerant model. The band structure calculation predicts many Fermi surfaces, mostly with spherical shape, derived from 12 bands crossing the Fermi energy. To our knowledge, the splitting of Fermi surfaces due to the non-centrosymmetric crystal in 5f-electron systems is experimentally detected for the first time. The temperature dependence of the dHvA amplitude reveals a large cyclotron effective mass of up to 35 m0, indicating the heavy electronic state of U3Ni3Sn4 due to the proximity of the quantum critical point. From the field dependence of the dHvA amplitude, a mean free path of conduction electrons of up to 1950 Å is detected, reflecting the good quality of the grown crystal. The small splitting energy related to the antisymmetric spin-orbit interaction is most likely due to the large cyclotron effective mass.

  17. Vortex cores and vortex motion in superconductors with anisotropic Fermi surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Galvis, J.A. [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Condensed Matter Physics Center (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Departamento de Ciencias Naturales, Facultad de ingeniería y Ciencias Básicas, Universidad Central, Bogotá (Colombia); National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310 (United States); Herrera, E.; Guillamón, I.; Vieira, S. [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Condensed Matter Physics Center (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Unidad Asociada de Altos Campos Magnéticos y Bajas Temperaturas, UAM, CSIC, Madrid (Spain); Suderow, H., E-mail: hermann.suderow@uam.es [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Condensed Matter Physics Center (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Unidad Asociada de Altos Campos Magnéticos y Bajas Temperaturas, UAM, CSIC, Madrid (Spain)

    2017-02-15

    Highlights: • The observation of vortex cores is reviewed, with emphasis in new experiments. • Vortex cores are follow superconducting gap and Fermi surface shapes. • The vortex core shape influences vortex dynamics. - Abstract: Explaning static and dynamic properties of the vortex lattice in anisotropic superconductors requires a careful characterization of vortex cores. The vortex core contains Andreev bound states whose spatial extension depends on the anisotropy of the electronic band-structure and superconducting gap. This might have an impact on the anisotropy of the superconducting properties and on vortex dynamics. Here we briefly summarize basic concepts to understand anisotropic vortex cores and review vortex core imaging experiments. We further discuss moving vortex lattices and the influence of vortex core shape in vortex motion. We find vortex motion in highly tilted magnetic fields. We associate vortex motion to the vortex entry barrier and the screening currents at the surface. We find preferential vortex motion along the main axis of the vortex lattice. After travelling integers of the intervortex distance, we find that vortices move more slowly due to the washboard potential of the vortex lattice.

  18. Vortex cores and vortex motion in superconductors with anisotropic Fermi surfaces

    International Nuclear Information System (INIS)

    Galvis, J.A.; Herrera, E.; Guillamón, I.; Vieira, S.; Suderow, H.

    2017-01-01

    Highlights: • The observation of vortex cores is reviewed, with emphasis in new experiments. • Vortex cores are follow superconducting gap and Fermi surface shapes. • The vortex core shape influences vortex dynamics. - Abstract: Explaning static and dynamic properties of the vortex lattice in anisotropic superconductors requires a careful characterization of vortex cores. The vortex core contains Andreev bound states whose spatial extension depends on the anisotropy of the electronic band-structure and superconducting gap. This might have an impact on the anisotropy of the superconducting properties and on vortex dynamics. Here we briefly summarize basic concepts to understand anisotropic vortex cores and review vortex core imaging experiments. We further discuss moving vortex lattices and the influence of vortex core shape in vortex motion. We find vortex motion in highly tilted magnetic fields. We associate vortex motion to the vortex entry barrier and the screening currents at the surface. We find preferential vortex motion along the main axis of the vortex lattice. After travelling integers of the intervortex distance, we find that vortices move more slowly due to the washboard potential of the vortex lattice.

  19. Electronic structure, Fermi surface topology and spectroscopic optical properties of LaBaCo{sub 2}O{sub 5.5} compound

    Energy Technology Data Exchange (ETDEWEB)

    Reshak, A.H. [New Technologies – Research Center, University of West Bohemia, Univerzitni 8, Pilsen 306 14 (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Al-Douri, Y. [Institute of Nano Electronic Engineering, University Malaysia Perlis, 01000 Kangar, Perlis (Malaysia); Khenata, R. [Laboratoire de Physique Quantique et de Modélisation Mathématique (LPQ3M), Département de Technologie, Université de Mascara, Mascara 29000 (Algeria); Khan, Wilayat; Khan, Saleem Ayaz [New Technologies – Research Center, University of West Bohemia, Univerzitni 8, Pilsen 306 14 (Czech Republic); Azam, Sikander, E-mail: sikander.physicst@gmail.com [New Technologies – Research Center, University of West Bohemia, Univerzitni 8, Pilsen 306 14 (Czech Republic)

    2014-08-01

    We have investigated the electronic band structure, Fermi surface topology, chemical bonding and optical properties of LaBaCo{sub 2}O{sub 5.5} compound. The first-principle calculations based on density functional theory (DFT) by means of the full-potential linearized augmented plane-wave method were employed. The atomic positions of LaBaCo{sub 2}O{sub 5.5} compound were optimized by minimizing the forces acting on atoms. We employed the local density approximation (LDA), generalized gradient approximation (GGA) and Engel–Vosko GGA (EVGGA) to treat the exchange correlation potential by solving Kohn–Sham equations. Electronic structure and bonding properties are studied throughout the calculation of densities of states, Fermi surfaces and charge densities. Furthermore, the optical properties are investigated via the calculation of the dielectric tensor component in order to characterize the linear optical properties. Optical spectra are analyzed by means of the electronic structure, which provides theoretical understanding of the conduction mechanism of the investigated compound. - Highlights: • DFT-FPLAPW method used for calculating the properties of LaBaCo{sub 2}O{sub 5.5} compound. • This study shows that nature of the compound is metallic. • Crystallographic plane which shows covalent character of O–Co bond. • The optical properties were also calculated and analyzed. • The Fermi surface of LaBaCo{sub 2}O{sub 5.5} is composed of five bands crossing along Γ–Z direction.

  20. Fermi surface deformation in a simple iron-based superconductor, FeSe

    Science.gov (United States)

    Coldea, Amalia; Watson, Matthew; Kim, Timur; Haghighirad, Amir; McCollam, Alix; Hoesch, Moritz; Schofield, Andrew

    2015-03-01

    One of the outstanding problems in the field superconductivity is the identification of the normal state out of which superconductivity emerges. FeSe is one of the simplest and most intriguing iron-based superconductors, since in its bulk form it undergoes a structural transition before it becomes superconducting, whereas its single-layer form is believed to be a high-temperature superconductor. The nature of the structural transition, occurring in the absence of static magnetism, is rather unusual and how the electronic structure is stabilized by breaking of the rotational symmetry is the key to understand the superconductivity in bulk FeSe. Here we report angle-resolved photoemission spectroscopy measurements on FeSe that gives direct access to the band structure and orbital-dependent effects. We complement our studies on bulk FeSe with low-temperature angular-dependent quantum oscillation measurements using applied magnetic fields that are sufficiently strong to suppress superconductivity and reach the normal state. These studies reveal a strong deformation of Fermi surface through the structural transition driven by electronic correlations and orbital-dependent effects. . This work was supported by EPSRC, UK (EP/I004475/1), Diamond Light Source, UK and HFML, Nijmegen.

  1. Fermi Surface, Pressure-Induced Antiferromagnetic Order, and Superconductivity in FeSe

    Science.gov (United States)

    Ishizuka, Jun; Yamada, Takemi; Yanagi, Yuki; Ōno, Yoshiaki

    2018-01-01

    The pressure dependence of the structural (Ts), antiferromagnetic (Tm), and superconducting (Tc) transition temperatures in FeSe is investigated on the basis of the 16-band d-p model. At ambient pressure, a shallow hole pocket disappears due to the correlation effect, as observed in the angular-resolved photoemission spectroscopy (ARPES) and quantum oscillation (QO) experiments, resulting in the suppression of the antiferromagnetic order, in contrast to the other iron pnictides. The orbital-polarization interaction between the Fe d orbital and Se p orbital is found to drive the ferro-orbital order responsible for the structural transition without accompanying the antiferromagnetic order. The pressure dependence of the Fermi surfaces is derived from the first-principles calculation and is found to well account for the opposite pressure dependences of Ts and Tm, around which the enhanced orbital and magnetic fluctuations cause the double-dome structure of the eigenvalue λ in the Eliashberg equation, as consistent with that of Tc in FeSe.

  2. Continuum Lowering and Fermi-Surface Rising in Strongly Coupled and Degenerate Plasmas

    Science.gov (United States)

    Hu, S. X.

    2017-08-01

    Continuum lowering is a well known and important physics concept that describes the ionization potential depression (IPD) in plasmas caused by thermal- or pressure-induced ionization of outer-shell electrons. The existing IPD models are often used to characterize plasma conditions and to gauge opacity calculations. Recent precision measurements have revealed deficits in our understanding of continuum lowering in dense hot plasmas. However, these investigations have so far been limited to IPD in strongly coupled but nondegenerate plasmas. Here, we report a first-principles study of the K -edge shifting in both strongly coupled and fully degenerate carbon plasmas, with quantum molecular dynamics calculations based on the all-electron density-functional theory. The resulting K -edge shifting versus plasma density, as a probe to the continuum lowering and the Fermi-surface rising, is found to be significantly different from predictions of existing IPD models. In contrast, a simple model of "single-atom-in-box," developed in this work, accurately predicts K -edge locations as ab initio calculations provide.

  3. NbSe3: Fermi surface and magnetoresistance under uniaxial stress

    International Nuclear Information System (INIS)

    Tessema, G.X.; Gamble, B.K.; Kuh, J.; Skove, M.J.; Lacerda, A.H.; Bennett, M.

    1999-01-01

    The Fermi surface of NbSe 3 below the two CDW transitions is still not very clear. Large magnetoresistance and giant quantum oscillations have been seen at low temperature below the second CDW transition. The SdH oscillations are attributed to one or several small pieces of electron or hole pockets spared by the two CDW transitions at 145 and 59 K. In a previous low field study (μ 0 H<8 T) of the transverse magnetoresistance (H in the (b,c) plane) we have shown that the extremal area of one of these pockets decreases linearly with strain, ε, vanishing at ε = 2.5%. Here we extend our study into the high magnetic field regime (pulsed 60 T) and investigate the effect of uniaxial stress on the magnetoresistance (I//H). Our high field study is consistent with the fermiology study and shows that uniaxial stress leads to the obliteration of a small closed pocket. Above 1% strain the magnetoresistance is linear with H with no sign of saturation. (orig.)

  4. Growth, Characterization and Fermi Surface of Heavy Fermion CeCoIn5 Superconductor

    International Nuclear Information System (INIS)

    Jia Xiao-Wen; Liu Yan; Yu Li; He Jun-Feng; Zhao Lin; Zhang Wen-Tao; Liu Hai-Yun; Liu Guo-Dong; He Snao-Long; Zhang Jun; Lu Wei; Wu Yue; Dong Xiao-Li; Sun Li-Ling; Wang Gui-Ling; Zhu Yong; Wang Xiao-Yang; Peng Qin-Jun; Wang Zhi-Min; Zhang Shen-Jin

    2011-01-01

    High quality single crystals of heavy Fermion CeCoIn 5 superconductor have been grown by flux method with a typical size of (1 − 2) × (1 − 2) × (∼ 0.1) mm 3 . The single crystals are characterized by structural analysis from x-ray diffraction and Laue diffraction, as well as compositional analysis. Magnetic and electrical measurements on the single crystals show a sharp superconducting transition with a transition temperature at T c,onset ∼2.3 K and a transition width of ∼0.15K. The resistivity of the CeCoIn 5 crystal exhibits a hump at ∼45 K, which is typical of a heavy Fermion system. High resolution angle-resolved photoemission spectroscopy (ARPES) measurements of CeCoIn 5 reveal clear Fermi surface sheets that are consistent with the band structure calculations when assuming itinerant Ce 4f electrons at low temperature. This work provides important information on the electronic structure of heavy Fermion CeCoIn 5 superconductor. It also lays a foundation for further studies on the physical properties and superconducting mechanism of the heavy Fermion superconductors. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  5. Enrico Fermi

    Indian Academy of Sciences (India)

    IAS Admin

    (hereafter Fermi) – the first world war had ended, and Trieste and. Trento had been won back from Austria though at great human cost. Fermi completed his PhD at Pisa in 1922, just around the time the .... That year only two Nobel awards were given – to Pearl Buck for literature, to Fermi for physics. Fermi, Laura and their ...

  6. Anisotropic Fermi Surface and Quantum Limit Transport in High Mobility Three-Dimensional Dirac Semimetal Cd_{3}As_{2}

    Directory of Open Access Journals (Sweden)

    Yanfei Zhao

    2015-09-01

    Full Text Available Three-dimensional topological Dirac semimetals have a linear dispersion in 3D momentum space and are viewed as the 3D analogues of graphene. Here, we report angle-dependent magnetotransport on the newly revealed Cd_{3}As_{2} single crystals and clearly show how the Fermi surface evolves with crystallographic orientations. Remarkably, when the magnetic field lies in the [112] or [441[over ¯

  7. Formation of halo-structures in oxygen isotopes through change of occupancy of levels near Fermi surface

    International Nuclear Information System (INIS)

    Bhattacharya, Rupayan

    2000-01-01

    Recently a new parametrisation of Skyrme interaction has been formulated in order to study the level inversions of A=9 isobars. The role of occupancy of 2s 1/2 level in determining the halo structures of O, N, C, B and Be nuclei was shown. A thorough investigation on the binding energies, rms charge, neutron and matter distribution and occupation probabilities of levels near the Fermi surface has been done in the present work

  8. Large Rashba spin splitting of a metallic surface-state band on a semiconductor surface

    Science.gov (United States)

    Yaji, Koichiro; Ohtsubo, Yoshiyuki; Hatta, Shinichiro; Okuyama, Hiroshi; Miyamoto, Koji; Okuda, Taichi; Kimura, Akio; Namatame, Hirofumi; Taniguchi, Masaki; Aruga, Tetsuya

    2010-01-01

    The generation of spin-polarized electrons at room temperature is an essential step in developing semiconductor spintronic applications. To this end, we studied the electronic states of a Ge(111) surface, covered with a lead monolayer at a fractional coverage of 4/3, by angle-resolved photoelectron spectroscopy (ARPES), spin-resolved ARPES and first-principles electronic structure calculation. We demonstrate that a metallic surface-state band with a dominant Pb 6p character exhibits a large Rashba spin splitting of 200 meV and an effective mass of 0.028 me at the Fermi level. This finding provides a material basis for the novel field of spin transport/accumulation on semiconductor surfaces. Charge density analysis of the surface state indicated that large spin splitting was induced by asymmetric charge distribution in close proximity to the nuclei of Pb atoms. PMID:20975678

  9. Charge transfer effects on the Fermi surface of Ba0.5K 0.5Fe2As2

    KAUST Repository

    Nazir, Safdar

    2011-01-31

    Ab-initio calculations within density functional theory are performed to obtain a more systematic understanding of the electronic structure of iron pnictides. As a prototypical compound we study Ba0.5K 0.5Fe2As2 and analyze the changes of its electronic structure when the interaction between the Fe2As 2 layers and their surrounding is modified. We find strong effects on the density of states near the Fermi energy as well as the Fermi surface. The role of the electron donor atoms in iron pnictides thus cannot be understood in a rigid band picture. Instead, the bonding within the Fe2As 2 layers reacts to a modified charge transfer from the donor atoms by adapting the intra-layer Fe-As hybridization and charge transfer in order to maintain an As3- valence state. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The 7 × 1 Fermi Surface Reconstruction in a Two-dimensional f -electron Charge Density Wave System: PrTe3

    Science.gov (United States)

    Lee, Eunsook; Kim, D. H.; Kim, Hyun Woo; Denlinger, J. D.; Kim, Heejung; Kim, Junwon; Kim, Kyoo; Min, B. I.; Min, B. H.; Kwon, Y. S.; Kang, J.-S.

    2016-01-01

    The electronic structure of a charge density wave (CDW) system PrTe3 and its modulated structure in the CDW phase have been investigated by employing ARPES, XAS, Pr 4 f RPES, and first-principles band structure calculation. Pr ions are found to be nearly trivalent, supporting the CDW instability in the metallic Te sheets through partial filling. Finite Pr 4 f spectral weight is observed near the Fermi level, suggesting the non-negligible Pr 4 f contribution to the CDW formation through the Pr 4 f -Te 5p hybridization. The two-fold symmetric features in the measured Fermi surface (FS) of PrTe3 are explained by the calculated FS for the assumed 7 × 1 CDW supercell formation in Te sheets. The shadow bands and the corresponding very weak FSs are observed, which originate from both the band folding due to the 3D interaction of Te sheets with neighboring Pr-Te layers and that due to the CDW-induced FS reconstruction. The straight vertical FSs are observed along kz, demonstrating the nearly 2D character for the near-EF states. The observed linear dichroism reveals the in-plane orbital character of the near-EF Te 5p states. PMID:27453329

  11. Orbital character and electron correlation effects on two- and three-dimensional Fermi surfaces in KFe2As2 revealed by angle-resolved photoemission spectroscopy

    Directory of Open Access Journals (Sweden)

    Teppei eYoshida

    2014-04-01

    Full Text Available We have investigated orbital character and electron correlation effects on Fermi surfaces in the hole-overdoped iron pnictide superconductor KFe2As2, which shows a low Tc of ~4 K, by angle-resolved photoemission spectroscopy. From the polarization-dependence of the ARPES spectra, we have determined the orbital character of each Fermi surface. Electron mass renormalization of each band is quantitatively consistent with de Haas-van Alphen results. The outer beta and middle zeta Fermi surfaces show large renormalization factor of m*/mb ~6-7, while the inner Fermi surface has a smaller factor m*/mb ~2. Middle hole Fermi surface zeta has strong three-dimensionality compared to other Fermi surfaces, indicating the d3z2-r2 orbital character, which may be related to the octet-line nodes recently observed by laser ARPES. The observed orbital-dependent mass renormalization would give constraints on the pairing mechanism with line nodes of this system.

  12. Electrochemical nitridation of metal surfaces

    Science.gov (United States)

    Wang, Heli; Turner, John A.

    2015-06-30

    Electrochemical nitridation of metals and the produced metals are disclosed. An exemplary method of electrochemical nitridation of metals comprises providing an electrochemical solution at low temperature. The method also comprises providing a three-electrode potentiostat system. The method also comprises stabilizing the three-electrode potentiostat system at open circuit potential. The method also comprises applying a cathodic potential to a metal.

  13. Surface Coordination Chemistry of Metal Nanomaterials.

    Science.gov (United States)

    Liu, Pengxin; Qin, Ruixuan; Fu, Gang; Zheng, Nanfeng

    2017-02-15

    Surface coordination chemistry of nanomaterials deals with the chemistry on how ligands are coordinated on their surface metal atoms and influence their properties at the molecular level. This Perspective demonstrates that there is a strong link between surface coordination chemistry and the shape-controlled synthesis, and many intriguing surface properties of metal nanomaterials. While small adsorbates introduced in the synthesis can control the shapes of metal nanocrystals by minimizing their surface energy via preferential coordination on specific facets, surface ligands properly coordinated on metal nanoparticles readily promote their catalysis via steric interactions and electronic modifications. The difficulty in the research of surface coordination chemistry of nanomaterials mainly lies in the lack of effective tools to characterize their molecular surface coordination structures. Also highlighted are several model material systems that facilitate the characterizations of surface coordination structures, including ultrathin nanostructures, atomically precise metal nanoclusters, and atomically dispersed metal catalysts. With the understanding of surface coordination chemistry, the molecular mechanisms behind various important effects (e.g., promotional effect of surface ligands on catalysis, support effect in supported metal nanocatalysts) of metal nanomaterials are disclosed.

  14. Observation of an electron band above the Fermi level in FeTe0.55Se0.45 from in-situ surface doping

    International Nuclear Information System (INIS)

    Zhang, P.; Ma, J.; Qian, T.; Richard, P.; Ding, H.; Xu, N.; Xu, Y.-M.; Fedorov, A. V.; Denlinger, J. D.; Gu, G. D.

    2014-01-01

    We used in-situ potassium (K) evaporation to dope the surface of the iron-based superconductor FeTe 0.55 Se 0.45 . The systematic study of the bands near the Fermi level confirms that electrons are doped into the system, allowing us to tune the Fermi level of this material and to access otherwise unoccupied electronic states. In particular, we observe an electron band located above the Fermi level before doping that shares similarities with a small three-dimensional pocket observed in the cousin, heavily electron-doped KFe 2−x Se 2 compound.

  15. Metal Sorption to Dolomite Surfaces

    International Nuclear Information System (INIS)

    Brady, P.V.; Papenguth, H.W.; Kelly, J.W.

    1999-01-01

    Potential human intrusion into the Waste Isolation Pilot Plant (WIPP) might release actinides into the Culebra Dolomite where sorption reactions will affect of radiotoxicity from the repository. Using a limited residence time reactor the authors have measured Ca, Mg, Nd adsorption/exchange as a function of ionic strength, P CO2 , and pH at 25 C. By the same approach, but using as input radioactive tracers, adsorption/exchange of Am, Pu, U, and Np on dolomite were measured as a function of ionic strength, P CO2 , and pH at 25 C. Metal adsorption is typically favored at high pH. Calcium and Mg adsorb in near-stoichiometric proportions except at high pH. Adsorption of Ca and Mg is diminished at high ionic strengths (e.g., 0.5M NaCl) pointing to association of Na + with the dolomite surface, and the possibility that Ca and Mg sorb as hydrated, outer-sphere complexes. Sulfate amplifies sorption of Ca and Mg, and possibly Nd as well. Exchange of Nd for surface Ca is favored at high pH, and when Ca levels are low. Exchange for Ca appears to control attachment of actinides to dolomite as well, and high levels of Ca 2+ in solution will decrease Kds. At the same time, to the extent that high P CO2 increase Ca 2+ levels, JK d s will decrease with CO 2 levels as well, but only if sorbing actinide-carbonate complexes are not observed to form (Am-carbonate complexes appear to sorb; Pu-complexes might sorb as well; U-carbonate complexation leads to desorption). This indirect CO 2 effect is observed primarily at, and above, neutral pH. High NaCl levels do not appear to affect to actinide K d s

  16. An introduction to surface alloying of metals

    CERN Document Server

    Hosmani, Santosh S; Goyal, Rajendra Kumar

    2014-01-01

    An Introduction to Surface Alloying of Metals aims to serve as a primer to the basic aspects of surface alloying of metals. The book serves to elucidate fundamentals of surface modification and their engineering applications. The book starts with basics of surface alloying and goes on to cover key surface alloying methods, such as carburizing, nitriding, chromizing, duplex treatment, and the characterization of surface layers. The book will prove useful to students at both the undergraduate and graduate levels, as also to researchers and practitioners looking for a quick introduction to surface alloying.

  17. Chemical Dynamics at Surfaces of Metal Nanomaterials

    Science.gov (United States)

    2014-07-23

    method to determine 3D molecular structures One of the major problems in experimentally studying heterogeneous catalysis is the lack of tools...the determinations of molecular structures and dynamics on the surfaces of metal nanomaterials – the critical component of heterogeneous catalysts...for the determinations of molecular structures on the surfaces of metal nanomaterials. Practical catalysts, e.g. oxide-supported metal clusters, are

  18. Dissolution of topological Fermi arcs in a dirty Weyl semimetal

    Science.gov (United States)

    Slager, Robert-Jan; Juričić, Vladimir; Roy, Bitan

    2017-11-01

    Weyl semimetals (WSMs) have recently attracted a great deal of attention as they provide a condensed matter realization of chiral anomaly, feature topologically protected Fermi arc surface states, and sustain sharp chiral Weyl quasiparticles up to a critical disorder at which a continuous quantum phase transition (QPT) drives the system into a metallic phase. We here numerically demonstrate that with increasing strength of disorder, the Fermi arc gradually loses its sharpness, and close to the WSM-metal QPT it completely dissolves into the metallic bath of the bulk. The predicted topological nature of the WSM-metal QPT and the resulting bulk-boundary correspondence across this transition can be directly observed in angle-resolved photoemission spectroscopy (ARPES) and Fourier transformed scanning tunneling microscopy (STM) measurements by following the continuous deformation of the Fermi arcs with increasing disorder in recently discovered Weyl materials.

  19. Unconventional pairing originating from disconnected Fermi surfaces in the iron-based superconductor

    OpenAIRE

    Kuroki, Kazuhiko; Aoki, Hideo

    2009-01-01

    For the iron-based high $T_c$ superconductor LaFeAsO$_{1-x}$F$_x$, we construct a minimal model, where all of the five Fe $d$ bands turn out to be involved. We then investigate the origin of superconductivity with a five-band random-phase approximation by solving the Eliashberg equation. We conclude that the spin fluctuation modes arising from the nesting between the disconnected Fermi pockets realise, basically, an extended s-wave pairing, where the gap changes sign across the nesting vector.

  20. Point Measurements of Fermi Velocities by a Time-of-Flight Method

    DEFF Research Database (Denmark)

    Falk, David S.; Henningsen, J. O.; Skriver, Hans Lomholt

    1972-01-01

    The present paper describes in detail a new method of obtaining information about the Fermi velocity of electrons in metals, point by point, along certain contours on the Fermi surface. It is based on transmission of microwaves through thin metal slabs in the presence of a static magnetic field...... applied parallel to the surface. The electrons carry the signal across the slab and arrive at the second surface with a phase delay which is measured relative to a reference signal; the velocities are derived by analyzing the magnetic field dependence of the phase delay. For silver we have in this way...... obtained one component of the velocity along half the circumference of the centrally symmetric orbit for B→∥[100]. The results are in agreement with current models for the Fermi surface. For B→∥[011], the electrons involved are not moving in a symmetry plane of the Fermi surface. In such cases one cannot...

  1. Electronic annealing Fermi operator expansion for DFT calculations on metallic systems

    Science.gov (United States)

    Aarons, Jolyon; Skylaris, Chris-Kriton

    2018-02-01

    Density Functional Theory (DFT) calculations with computational effort which increases linearly with the number of atoms (linear-scaling DFT) have been successfully developed for insulators, taking advantage of the exponential decay of the one-particle density matrix. For metallic systems, the density matrix is also expected to decay exponentially at finite electronic temperature and linear-scaling DFT methods should be possible by taking advantage of this decay. Here we present a method for DFT calculations at finite electronic temperature for metallic systems which is effectively linear-scaling (O(N)). Our method generates the elements of the one-particle density matrix and also finds the required chemical potential and electronic entropy using polynomial expansions. A fixed expansion length is always employed to generate the density matrix, without any loss in accuracy by the application of a high electronic temperature followed by successive steps of temperature reduction until the desired (low) temperature density matrix is obtained. We have implemented this method in the ONETEP linear-scaling (for insulators) DFT code which employs local orbitals that are optimised in situ. By making use of the sparse matrix machinery of ONETEP, our method exploits the sparsity of Hamiltonian and density matrices to perform calculations on metallic systems with computational cost that increases asymptotically linearly with the number of atoms. We demonstrate the linear-scaling computational cost of our method with calculation times on palladium nanoparticles with up to ˜13 000 atoms.

  2. Electronic annealing Fermi operator expansion for DFT calculations on metallic systems.

    Science.gov (United States)

    Aarons, Jolyon; Skylaris, Chris-Kriton

    2018-02-21

    Density Functional Theory (DFT) calculations with computational effort which increases linearly with the number of atoms (linear-scaling DFT) have been successfully developed for insulators, taking advantage of the exponential decay of the one-particle density matrix. For metallic systems, the density matrix is also expected to decay exponentially at finite electronic temperature and linear-scaling DFT methods should be possible by taking advantage of this decay. Here we present a method for DFT calculations at finite electronic temperature for metallic systems which is effectively linear-scaling (O(N)). Our method generates the elements of the one-particle density matrix and also finds the required chemical potential and electronic entropy using polynomial expansions. A fixed expansion length is always employed to generate the density matrix, without any loss in accuracy by the application of a high electronic temperature followed by successive steps of temperature reduction until the desired (low) temperature density matrix is obtained. We have implemented this method in the ONETEP linear-scaling (for insulators) DFT code which employs local orbitals that are optimised in situ. By making use of the sparse matrix machinery of ONETEP, our method exploits the sparsity of Hamiltonian and density matrices to perform calculations on metallic systems with computational cost that increases asymptotically linearly with the number of atoms. We demonstrate the linear-scaling computational cost of our method with calculation times on palladium nanoparticles with up to ∼13 000 atoms.

  3. Correlation between phonon anomaly along [211] and the Fermi surface nesting features with associated electron-phonon interactions in Ni2FeGa: A first principles study

    International Nuclear Information System (INIS)

    Chabungbam, Satyananda; Sahariah, Munima B.

    2015-01-01

    First principles calculation reaffirms the presence of phonon anomaly along [211] direction in Ni 2 FeGa shape memory alloy supporting the experimental findings of J. Q. Li et al. Fermi surface scans have been performed in both austenite and martensite phase to see the possible Fermi nesting features in this alloy. The magnitude of observed Fermi surface nesting vectors in (211) plane exactly match the phonon anomaly wavevectors along [211] direction. Electron-phonon calculation in the austenite phase shows that there is significant electron-phonon coupling in this alloy which might arise out of the lattice coupling between lower acoustic modes and higher optical modes combined with the observed strong Fermi nesting features in the system. - Highlights: • Transverse acoustic (TA 2 ) modes show anomaly along [211] direction in Ni 2 FeGa. • The phonon anomaly wavevector has been correlated with the Fermi nesting vectors. • Electron-phonon coupling calculation shows significant coupling in this system. • Max. el-ph coupling occurs in transition frequencies from acoustic to optical modes

  4. Doping Evolution of the Underlying Fermi Surface in La_2−xSr_xCuO_4

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, T.

    2010-05-03

    We have performed a systematic doping dependent study of La{sub 2-x}Sr{sub x}CuO{sub 4} (LSCO) (0.03 {le} x {le} 0.3) by angle-resolved photoemission spectroscopy. In the entire doping range, the underlying 'Fermi surface' determined from the low energy spectral weight approximately satisfies Luttinger's theorem, even down to the lightly-doped region. This is in strong contrast to the result on Ca{sub 2-x}Na{sub x}CuO{sub 2}Cl{sub 2} (Na-CCOC), which shows a strong deviation from Luttinger's theorem. The differences between LSCO and Na-CCOC are correlated with the different behaviors of the chemical potential shift and spectral weight transfer induced by hole doping.

  5. Antiphase Fermi-surface modulations accompanying displacement excitation in a parent compound of iron-based superconductors

    Science.gov (United States)

    Okazaki, Kozo; Suzuki, Hakuto; Suzuki, Takeshi; Yamamoto, Takashi; Someya, Takashi; Ogawa, Yu; Okada, Masaru; Fujisawa, Masami; Kanai, Teruto; Ishii, Nobuhisa; Itatani, Jiro; Nakajima, Masamichi; Eisaki, Hiroshi; Fujimori, Atsushi; Shin, Shik

    2018-03-01

    We investigate the transient electronic structure of BaFe2As2 , a parent compound of iron-based superconductors, by time- and angle-resolved photoemission spectroscopy. In order to probe the entire Brillouin zone, we utilize extreme ultraviolet photons and observe photoemission intensity oscillation with the frequency of the A1 g phonon which is antiphase between the zone-centered hole Fermi surfaces (FSs) and zone-cornered electron FSs. We attribute the antiphase behavior to the warping in one of the zone-centered hole FSs accompanying the displacement of the pnictogen height and find that this displacement is the same direction as that induced by substitution of P for As, where superconductivity is induced by a structural modification without carrier doping in this system.

  6. Excimer laser irradiation of metal surfaces

    Science.gov (United States)

    Kinsman, Grant

    In this work a new method of enhancing CO2 laser processing by modifying the radiative properties of a metal surface is studied. In this procedure, an excimer laser (XeCl) or KrF) exposes the metal surface to overlapping pulses of high intensity, 10(exp 8) - 10(exp 9) W cm(exp -2), and short pulse duration, 30 nsec FWHM (Full Width Half Maximum), to promote structural and chemical change. The major processing effect at these intensities is the production of a surface plasma which can lead to the formation of a laser supported detonation wave (LSD wave). This shock wave can interact with the thin molten layer on the metal surface influencing to a varying degree surface oxidation and roughness features. The possibility of the expulsion, oxidation and redeposition of molten droplets, leading to the formation of micron thick oxide layers, is related to bulk metal properties and the incident laser intensity. A correlation is found between the expulsion of molten droplets and a Reynolds number, showing the interaction is turbulent. The permanent effects of these interactions on metal surfaces are observed through scanning electron microscopy (SEM), transient calorimetric measurements and Fourier transform infrared (FTIR) spectroscopy. Observed surface textures are related to the scanning procedures used to irradiate the metal surface. Fundamental radiative properties of a metal surface, the total hemispherical emissivity, the near-normal spectral absorptivity, and others are examined in this study as they are affected by excimer laser radiation. It is determined that for heavily exposed Al surface, alpha' (10.6 microns) can be increased to values close to unity. Data relating to material removal rates and chemical surface modification for excimer laser radiation is also discussed. The resultant reduction in the near-normal reflectivity solves the fundamental problem of coupling laser radiation into highly reflective and conductive metals such as copper and aluminum. The

  7. Polarizability of a metallic surface

    International Nuclear Information System (INIS)

    Moraga, L.A.; Esparza, C.

    1981-01-01

    The surface dielectric operator for a semi-infinite 'Jellium' in the random phase approximation is calculated in a semi-analytical form, utilizing as zero-order approximation the Green's function for the finite height well potential. From this one, the interaction potential is calculated with different additional approximations. (L.C.) [pt

  8. Nitrogen interactions at metal surfaces

    NARCIS (Netherlands)

    Gleeson, M.A.; Kleijn, A.W.

    2013-01-01

    Molecular beam experiments with specially prepared beams allow the study of the interaction of very reactive species with surfaces. In the present case the interaction of N-atoms with Ag(1 1 1) is studied. The energy of the atoms is around 5 eV, precisely between the classical energy regimes of

  9. Proposal to determine the Fermi-surface topology of a doped iron-based superconductor using bulk-sensitive Fourier-transform Compton scattering

    NARCIS (Netherlands)

    Wang, Y.J.; Lin, H.; Barbiellini, B.; Mijnarends, P.E.; Kaprzyk, S.; Markiewicz, R.S.; Bansil, A.

    2010-01-01

    We have carried out first-principles calculations of the Compton scattering spectra to demonstrate that the filling of the hole Fermi surface in LaO1?xFxFeAs produces a distinct signature in the Fourier-transformed Compton spectrum when the momentum transfer vector lies along the [100] direction. We

  10. Hydrogen dissociation on metal surfaces

    OpenAIRE

    Wijzenbroek, M.

    2016-01-01

    Dissociative chemisorption is an important reaction step in many catalytic reactions. An example of such a reaction is the Haber-Bosch process, which is used commercially to produce ammonia, an important starting material in the production of fertilisers. In theoretical descriptions of such chemical processes often approximations need to be made in order to keep the computational cost feasible, such as fixing the surface atoms in place, rather than allowing them to vibrate. In this work, seve...

  11. Internal and surface phenomena in metal combustion

    Science.gov (United States)

    Dreizin, Edward L.; Molodetsky, Irina E.; Law, Chung K.

    1995-01-01

    Combustion of metals has been widely studied in the past, primarily because of their high oxidation enthalpies. A general understanding of metal combustion has been developed based on the recognition of the existence of both vapor-phase and surface reactions and involvement of the reaction products in the ensuing heterogeneous combustion. However, distinct features often observed in metal particle combustion, such as brightness oscillations and jumps (spearpoints), disruptive burning, and non-symmetric flames are not currently understood. Recent metal combustion experiments using uniform high-temperature metal droplets produced by a novel micro-arc technique have indicated that oxygen dissolves in the interior of burning particles of certain metals and that the subsequent transformations of the metal-oxygen solutions into stoichiometric oxides are accompanied with sufficient heat release to cause observed brightness and temperature jumps. Similar oxygen dissolution has been observed in recent experiments on bulk iron combustion but has not been associated with such dramatic effects. This research addresses heterogeneous metal droplet combustion, specifically focusing on oxygen penetration into the burning metal droplets, and its influence on the metal combustion rate, temperature history, and disruptive burning. A unique feature of the experimental approach is the combination of the microgravity environment with a novel micro-arc Generator of Monodispersed Metal Droplets (GEMMED), ensuring repeatable formation and ignition of uniform metal droplets with controllable initial temperature and velocity. The droplet initial temperatures can be adjusted within a wide range from just above the metal melting point, which provides means to ignite droplets instantly upon entering an oxygen containing environment. Initial droplet velocity will be set equal to zero allowing one to organize metal combustion microgravity experiments in a fashion similar to usual microgravity

  12. Atomic Manipulation on Metal Surfaces

    Science.gov (United States)

    Ternes, Markus; Lutz, Christopher P.; Heinrich, Andreas J.

    Half a century ago, Nobel Laureate Richard Feynman asked in a now-famous lecture what would happen if we could precisely position individual atoms at will [R.P. Feynman, Eng. Sci. 23, 22 (1960)]. This dream became a reality some 30 years later when Eigler and Schweizer were the first to position individual Xe atoms at will with the probe tip of a low-temperature scanning tunneling microscope (STM) on a Ni surface [D.M. Eigler, E.K. Schweizer, Nature 344, 524 (1990)].

  13. Surface effects in metallic iron nanoparticles

    DEFF Research Database (Denmark)

    Bødker, Franz; Mørup, Steen; Linderoth, Søren

    1994-01-01

    Nanoparticles of metallic iron on carbon supports have been studied in situ by use of Mossbauer spectroscopy. The magnetic anisotropy energy constant increases with decreasing particle size, presumably because of the influence of surface anisotropy. Chemisorption of oxygen results in formation...... of a surface layer with magnetic hyperfine fields similar to those of thicker passivation layers, and with a ferromagnetic coupling to the spins in the core of the particles. In contrast, thicker passivation layers have a noncollinear spin structure....

  14. Surface energy of metal alloy nanoparticles

    Science.gov (United States)

    Takrori, Fahed M.; Ayyad, Ahmed

    2017-04-01

    The measurement of surface energy of alloy nanoparticles experimentally is still a challenge therefore theoretical work is necessary to estimate its value. In continuation of our previous work on the calculation of the surface energy of pure metallic nanoparticles we have extended our work to calculate the surface energy of different alloy systems, namely, Co-Ni, Au-Cu, Cu-Al, Cu-Mg and Mo-Cs binary alloys. It is shown that the surface energy of metallic binary alloy decreases with decreasing particle size approaching relatively small values at small sizes. When both metals in the alloy obey the Hume-Rothery rules, the difference in the surface energy is small at the macroscopic as well as in the nano-scale. However when the alloy deviated from these rules the difference in surface energy is large in the macroscopic and in the nano scales. Interestingly when solid solution formation is not possible at the macroscopic scale according to the Hume-Rothery rules, it is shown it may form at the nano-scale. To our knowledge these findings here are presented for the first time and is challenging from fundamental as well as technological point of views.

  15. First principle study of the electronic structure, Fermi surface, electronic charge density and optical properties of ThCu{sub 5}In and ThCu{sub 5}Sn single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Reshak, A.H. [Institute of complex systems, FFPW, CENAKVA-University of South Bohemia in CB, Nove Hrady 37333 (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Azam, Sikander, E-mail: sikander.physicst@gmail.com [Institute of complex systems, FFPW, CENAKVA-University of South Bohemia in CB, Nove Hrady 37333 (Czech Republic)

    2014-02-15

    The electronic structure, Fermi surface, electronic charge density and optical properties of ThCu{sub 5}In and ThCu{sub 5}Sn single crystals are studied. The calculations are based on the full potential-linearized augmented plane wave (FPLAPW) method. The exchange and correlation potential is treated by the local density approximation (LDA) and generalized-gradient approximation (GGA), in addition the Engel–Vosko (EV-GGA) formalism was also applied. The DFT calculations show that these compounds have metallic origin. The contribution of different bands was analyzed from total and partial density of states curves. The values of the density of states at Fermi energy (N(E{sub F})) for ThCu{sub 5}In (ThCu{sub 5}Sn) is 1.75 (1.63) states/eV unit cell. The bare electronic specific heat coefficient (γ) is found to be equal to 0.30 and 0.28 mJ/mol-K{sup 2} for ThCu{sub 5}In and ThCu{sub 5}Sn, respectively. The Fermi surface of ThCu{sub 5}In/ThCu{sub 5}Sn is composed of three/four bands crossing along the R–Γ direction. The bonding features are analyzed by using the electronic charge density contour in the (101) crystallographic plane and it shows the covalent character of Cu–Cu and Sn/In–Cu bonds. The optical properties were also calculated and analyzed. - Highlights: • The DFT-FPLAPW method used for calculating the properties of ThCu{sub 5}In and ThCu{sub 5}Sn compounds. • This study shows that the nature of the two compounds is metallic. • Crystallographic plane and it shows the covalent character of Cu–Cu and Sn/In–Cu bonds. • The optical properties were also calculated and analyzed. • The Fermi surface of ThCu{sub 5}In/ThCu{sub 5}Sn is composed of three/four bands crossing along the R–Γ direction.

  16. Process of treating surfaces of metals

    International Nuclear Information System (INIS)

    Kimura, T.; Murao, A.; Kuwahara, T.

    1975-01-01

    Both higher corrosion resistance and paint adherence are given to films formed on the surfaces of metals by treating the surfaces with aqueous solutions of one or more materials selected from the group consisting of water soluble vinyl monomer or water soluble high polymer and then irradiating with ionizing radioactive rays on the nearly dried surface film. When a water soluble inorganic compound is mixed with the above mentioned aqueous solution, the film properties are greatly improved. The inorganic ionic material should contain a cation from the group consisting of Ca, Mg, Zn, Cr, Al, Fe, and Ni. Electron beams may be used. (U.S.)

  17. Positron study of electron momentum density and Fermi surface in titanium and zirconium

    International Nuclear Information System (INIS)

    Suzuki, Ryoichi; Osawa, Makoto; Tanigawa, Shoichiro; Matsumoto, Makoto; Shiotani, Nobuhiro.

    1989-01-01

    The three dimensional electron-positron momentum densities have been obtained on Ti and Zr from measurements of two dimensional angular correlation of positron annihilation radiation followed by an image reconstruction technique based on direct Fourier transformation. Augmented-plane wave band structure calculations have been carried out and the results are compared with the experiments. Agreement between the experiment and the theory leads to a conclusion that both Ti and Zr have electron surface sheets which are centered at H and hole surface sheets which are running along the Γ-A axis. (author)

  18. CO Chemisorption at Metal Surfaces and Overlayers

    DEFF Research Database (Denmark)

    Hammer, Bjørk; Morikawa, Y.; Nørskov, Jens Kehlet

    1996-01-01

    A database of ab initio calculations of the chemisorption energy of CO over Ni(111), Cu(111), Ru(0001), Pd(111), Ag(111), Pt(111), Au(111), Cu3Pt(111), and some metallic overlayer structures is presented. The trends can be reproduced with a simple model describing the interaction between the meta...... d states and the CO 2 pi* and 5 sigma states, renormalized by the metal sp continuum. Our model rationalizes the results by Rodriguez and Goodman [Science 257, 897 (1992)] showing a strong correlation between the CO chemisorption energy and the surface core level shift....

  19. Universal behavior of strongly correlated Fermi systems

    Energy Technology Data Exchange (ETDEWEB)

    Shaginyan, Vasilii R [B.P. Konstantinov St. Petersburg Institute of Nuclear Physics, Russian Academy of Sciences, Gatchina, Leningrad region, Rusian Federation (Russian Federation); Amusia, M Ya [A.F. Ioffe Physico-Technical Institute, Russian Academy of Sciences, St. Petersburg (Russian Federation); Popov, Konstantin G [Komi Scientific Center, Ural Branch of the Russian Academy of Sciences, Syktyvkar (Russian Federation)

    2007-06-30

    This review discusses the construction of a theory and the analysis of phenomena occurring in strongly correlated Fermi systems such as high-T{sub c} superconductors, heavy-fermion metals, and quasi-two-dimensional Fermi systems. It is shown that the basic properties and the universal behavior of strongly correlated Fermi systems can be described in the framework of the Fermi-condensate quantum phase transition and the well-known Landau paradigm of quasiparticles and the order parameter. The concept of fermion condensation may be fruitful in studying neutron stars, finite Fermi systems, ultra-cold gases in traps, and quark plasma. (reviews of topical problems)

  20. Universal behavior of strongly correlated Fermi systems

    International Nuclear Information System (INIS)

    Shaginyan, Vasilii R; Amusia, M Ya; Popov, Konstantin G

    2007-01-01

    This review discusses the construction of a theory and the analysis of phenomena occurring in strongly correlated Fermi systems such as high-T c superconductors, heavy-fermion metals, and quasi-two-dimensional Fermi systems. It is shown that the basic properties and the universal behavior of strongly correlated Fermi systems can be described in the framework of the Fermi-condensate quantum phase transition and the well-known Landau paradigm of quasiparticles and the order parameter. The concept of fermion condensation may be fruitful in studying neutron stars, finite Fermi systems, ultra-cold gases in traps, and quark plasma. (reviews of topical problems)

  1. Fermi Transport

    Indian Academy of Sciences (India)

    IAS Admin

    geometric and topological aspects of physics including general relativity, the geometric phase in quantum mechanics and optics. Of late he has been pursuing ... Suggested Reading. [1]. E Fermi, Atti. Accad. Naz. Lincei. Cl. Sci. Fis. Mat. & Nat., Vol.31, No.184, p.306, 1922. [2]. S Weinberg, Gravitation and Cosmology, John ...

  2. Surface segregation of the metal impurity to the (1 0 0) surface of fcc metals

    Science.gov (United States)

    Zhang, Jian-Min; Wang, Bo; Xu, Ke-Wei

    2007-10-01

    The surface segregation energies for a single metal impurity to the (100) surface of nine fcc metals (Cu, Ag, Au, Ni, Pd, Pt, Rh, Al and Ir) have been calculated using the MAEAM and molecular dynamics (MD) simulation. The results show that the effect of the surface is down to the fourth-layer and an oscillatory or monotonic damping (|E_1|>|E_2|>|E_3|>|E_4|) phenomenon in segregation energy has been obtained. The absolute value of the segregation energy E_1 for a single impurity in the first atomic layer is much higher than that in the nether layers. Thus, whether the surface segregation will work or not is mainly determined by E_1 which is in good relation to the differences in surface energy between the impurity and host crystals Δ Q=Q_{imp}-Q_{hos}. So we conclude that an impurity with lower surface energy will segregate to the surface of the host with higher surface energy.

  3. Fermi surface of a disordered Cu-Al -alloy single crystal studied by high-resolution Compton scattering and electron diffraction

    Science.gov (United States)

    Kwiatkowska, J.; Maniawski, F.; Matsumoto, I.; Kawata, H.; Shiotani, N.; Lityńska, L.; Kaprzyk, S.; Bansil, A.

    2004-08-01

    We have measured high resolution Compton scattering profiles for momentum transfer along a series of 28 independent directions from Cu0.842Al0.158 disordered alloy single crystals with normals to the surfaces oriented along the [100], [110], and [111] directions. The experimental spectra are interpreted via parallel first-principles KKR-CPA (Korringa-Kohn-Rostoker coherent-potential approximation) computations of these directional profiles. The Fermi surface determined by inverting the Compton data is found to be in good agreement with the KKR-CPA predictions. An electron diffraction study of the present Cu0.842Al0.158 sample is additionally undertaken to gain insight into short-range ordering effects. The scattering pattern displays not only the familiar diffuse scattering peaks, but also shows the presence of weak streaks interconnecting the four diffuse scattering spots around the (110) reciprocal lattice points. This study provides a comprehensive picture of the evolution of the shape of the Fermi surface of Cu with the addition of Al . Our results are consistent with the notion that Fermi surface nesting is an important factor in driving short-range ordering effects in disordered alloys.

  4. Magnetic correlations and quantum criticality in the insulating antiferromagnetic, insulating spin liquid, renormalized Fermi liquid, and metallic antiferromagnetic phases of the Mott system V{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Bao, W. [Physics Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Broholm, C. [Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Maryland 21218 (United States)]|[Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Aeppli, G. [NEC, 4 Independence Way, Princeton, New Jersey 08540 (United States); Carter, S.A. [Department of Physics, University of California, Santa Cruz, California 95064 (United States); Dai, P. [Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Rosenbaum, T.F. [James Franck Institute and Department of Physics, University of Chicago, Chicago, Illinois 60637 (United States); Honig, J.M.; Metcalf, P. [Department of Chemistry, Purdue University, West Lafayette, Indiana 47907 (United States); Trevino, S.F. [United States Army Research Laboratory, Adelphi, Maryland 20783 (United States)]|[Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)

    1998-11-01

    Magnetic correlations in all four phases of pure and doped vanadium sesquioxide (V{sub 2}O{sub 3}) have been examined by magnetic thermal-neutron scattering. Specifically, we have studied the antiferromagnetic and paramagnetic phases of metallic V{sub 2{minus}y}O{sub 3}, the antiferromagnetic insulating and paramagnetic metallic phases of stoichiometric V{sub 2}O{sub 3}, and the antiferromagnetic and paramagnetic phases of insulating V{sub 1.944}Cr{sub 0.056}O{sub 3}. While the antiferromagnetic insulator can be accounted for by a localized Heisenberg spin model, the long-range order in the antiferromagnetic metal is an incommensurate spin-density wave, resulting from a Fermi surface nesting instability. Spin dynamics in the strongly correlated metal are dominated by spin fluctuations with a {open_quotes}single lobe{close_quotes} spectrum in the Stoner electron-hole continuum. Furthermore, our results in metallic V{sub 2}O{sub 3} represent an unprecedentedly complete characterization of the spin fluctuations near a metallic quantum critical point, and provide quantitative support for the self-consistent renormalization theory for itinerant antiferromagnets in the small moment limit. Dynamic magnetic correlations for {h_bar}{omega}{lt}k{sub B}T in the paramagnetic insulator carry substantial magnetic spectral weight. However, they are extremely short-ranged, extending only to the nearest neighbors. The phase transition to the antiferromagnetic insulator, from the paramagnetic metal and the paramagnetic insulator, introduces a sudden switching of magnetic correlations to a different spatial periodicity which indicates a sudden change in the underlying spin Hamiltonian. To describe this phase transition and also the unusual short-range order in the paramagnetic state, it seems necessary to take into account the orbital degrees of freedom associated with the degenerate {ital d} orbitals at the Fermi level in V{sub 2}O{sub 3}. {copyright} {ital 1998} {ital The American

  5. Artificial TE-mode surface waves at metal surfaces mimicking surface plasmons.

    Science.gov (United States)

    Sun, Zhijun; Zuo, Xiaoliu; Guan, Tengpeng; Chen, Wei

    2014-02-24

    Manipulation of light in subwavelength scale can be realized with metallic nanostructures for TM-polarization components due to excitation of surface plasmons. TE-polarization components of light are usually excluded in subwavelength metal structures for mesoscopic optical interactions. Here we show that, by introducing very thin high index dielectric layers on structured metal surfaces, pseudo surface polarization currents can be induced near metal surfaces, which bring to excitation of artificial TE-mode surface waves at the composite meta-surfaces. This provides us a way to manipulate TE-polarized light in subwavelength scale. Typical properties of the artificial surface waves are further demonstrate for their excitation, propagation, optical transmission, and enhancement and resonances of the localized fields, mimicking those of surface plasmon waves.

  6. Positron annihilation study of the electronic structure of URu.sub.2./sub.Si.sub.2./sub.: Fermi surface and hidden order parameter

    Czech Academy of Sciences Publication Activity Database

    Biasini, M.; Rusz, Ján; Mills, A.

    2009-01-01

    Roč. 79, č. 8 (2009), 085115/1-085115/10 ISSN 1098-0121 Institutional research plan: CEZ:AV0Z10100520 Keywords : positron annihilation * 2D-ACAR * URu 2 Si 2 * density functional theory * hidden order * Fermi surface Subject RIV: BE - Theoretical Physics Impact factor: 3.475, year: 2009 http://prb.aps.org/abstract/PRB/v79/i8/e085115

  7. Anisotropy of the Seebeck Coefficient in the Cuprate Superconductor YBa_{2}Cu_{3}O_{y}: Fermi-Surface Reconstruction by Bidirectional Charge Order

    Directory of Open Access Journals (Sweden)

    O. Cyr-Choinière

    2017-09-01

    Full Text Available The Seebeck coefficient S of the cuprate YBa_{2}Cu_{3}O_{y} is measured in magnetic fields large enough to suppress superconductivity, at hole dopings p=0.11 and p=0.12, for heat currents along the a and b directions of the orthorhombic crystal structure. For both directions, S/T decreases and becomes negative at low temperature, a signature that the Fermi surface undergoes a reconstruction due to broken translational symmetry. Above a clear threshold field, a strong new feature appears in S_{b}, for conduction along the b axis only. We attribute this feature to the onset of 3D-coherent unidirectional charge-density-wave modulations seen by x-ray diffraction, also along the b axis only. Because these modulations have a sharp onset temperature well below the temperature where S/T starts to drop towards negative values, we infer that they are not the cause of Fermi-surface reconstruction. Instead, the reconstruction must be caused by the quasi-2D bidirectional modulations that develop at significantly higher temperature. The unidirectional order only confers an additional anisotropy to the already reconstructed Fermi surface, also manifest as an in-plane anisotropy of the resistivity.

  8. Metallic surfaces decontamination by using laser light

    International Nuclear Information System (INIS)

    Moggia, Fabrice; Lecardonnel, Xavier

    2013-01-01

    Metal surface cleaning appears to be one of the major priorities for industries especially for nuclear industries. The research and the development of a new technology that is able to meet the actual requirements (i.e. waste volume minimization, liquid effluents and chemicals free process...) seems to be the main commitment. Currently, a wide panel of technologies already exists (e.g. blasting, disk sander, electro-decontamination...) but for some of them, the efficiency is limited (e.g, Dry Ice blasting) and for others, the wastes production (liquid and/or solid) remains an important issue. One answer could be the use of a LASER light process. Since a couple of years, the Clean- Up Business Unit of the AREVA group investigates this decontamination technology. Many tests have been already performed in inactive (i.e. on simulants such as paints, inks, resins, metallic oxides) or active conditions (i.e. pieces covered with a thick metallic oxide layer and metallic pieces covered with grease). The paper will describe the results obtained in term of decontamination efficiency during all our validation process. Metallographic characterizations (i.e. SEM, X-ray scattering) and radiological analysis will be provided. We will also focus our paper on the future deployment of the LASER technology and its commercial use at La Hague reprocessing facility in 2013. (authors)

  9. Competing interactions of noble metals and fullerenes with the Si(111)7x7 surface

    International Nuclear Information System (INIS)

    O'Shea, J.N.; Phillips, M.A.; Taylor, M.D.R.; Beton, P.H.; Moriarty, P.; Kanai, M.; Dennis, T.S.J.; Dhanak, V.R.

    2004-01-01

    Full text: Synchrotron-based photoelectron spectroscopy (PES) has been used to investigate the interaction of atomic gold and silver with a covalently bound C 60 -monolayer adsorbed on Si(111)7x7. In contrast to the relatively benign interaction of silver with the C 60 /Si(111)7x7 surface, core-level photoemission data reveal a strong interaction of the gold with the underlying silicon despite the presence of a chemisorbed fullerene monolayer. The Si 2p PES data exhibit dramatic changes consistent with the formation of a gold silicide, which is also evident from the corresponding Au 4f spectra. Valence band photoemission also reveals the absence of appreciable density of states at the Fermi level following the adsorption of either metal, indicating a negligible transfer of electrons from the adsorbed metal to the C 60 cage

  10. Electron transport through rectifying self-assembled monolayer diodes on silicon: Fermi-level pinning at the molecule-metal interface.

    Science.gov (United States)

    Lenfant, S; Guerin, D; Tran Van, F; Chevrot, C; Palacin, S; Bourgoin, J P; Bouloussa, O; Rondelez, F; Vuillaume, D

    2006-07-20

    We report the synthesis and characterization of molecular rectifying diodes on silicon using sequential grafting of self-assembled monolayers of alkyl chains bearing a pi group at their outer end (Si/sigma-pi/metal junctions). We investigate the structure-performance relationships of these molecular devices, and we examine the extent to which the nature of the pi end group (change in the energy position of their molecular orbitals) drives the properties of these molecular diodes. Self-assembled monolayers of alkyl chains (different chain lengths from 6 to 15 methylene groups) functionalized by phenyl, anthracene, pyrene, ethylene dioxythiophene, ethylene dioxyphenyl, thiophene, terthiophene, and quaterthiophene were synthesized and characterized by contact angle measurements, ellipsometry, Fourier transform infrared spectroscopy, and atomic force microscopy. We demonstrate that reasonably well-packed monolayers are obtained in all cases. Their electrical properties were assessed by dc current-voltage characteristics and high-frequency (1-MHz) capacitance measurements. For all of the pi groups investigated here, we observed rectification behavior. These results extend our preliminary work using phenyl and thiophene groups (Lenfant et al., Nano Lett. 2003, 3, 741). The experimental current-voltage curves were analyzed with a simple analytical model, from which we extracted the energy position of the molecular orbital of the pi group in resonance with the Fermi energy of the electrodes. We report experimental studies of the band lineup in these silicon/alkyl pi-conjugated molecule/metal junctions. We conclude that Fermi-level pinning at the pi group/metal interface is mainly responsible for the observed absence of a dependence of the rectification effect on the nature of the pi groups, even though the groups examined were selected to have significant variations in their electronic molecular orbitals.

  11. Metal surface nitriding by laser induced plasma

    Science.gov (United States)

    Thomann, A. L.; Boulmer-Leborgne, C.; Andreazza-Vignolle, C.; Andreazza, P.; Hermann, J.; Blondiaux, G.

    1996-10-01

    We study a nitriding technique of metals by means of laser induced plasma. The synthesized layers are composed of a nitrogen concentration gradient over several μm depth, and are expected to be useful for tribological applications with no adhesion problem. The nitriding method is tested on the synthesis of titanium nitride which is a well-known compound, obtained at present by many deposition and diffusion techniques. In the method of interest, a laser beam is focused on a titanium target in a nitrogen atmosphere, leading to the creation of a plasma over the metal surface. In order to understand the layer formation, it is necessary to characterize the plasma as well as the surface that it has been in contact with. Progressive nitrogen incorporation in the titanium lattice and TiN synthesis are studied by characterizing samples prepared with increasing laser shot number (100-4000). The role of the laser wavelength is also inspected by comparing layers obtained with two kinds of pulsed lasers: a transversal-excited-atmospheric-pressure-CO2 laser (λ=10.6 μm) and a XeCl excimer laser (λ=308 nm). Simulations of the target temperature rise under laser irradiation are performed, which evidence differences in the initial laser/material interaction (material heated thickness, heating time duration, etc.) depending on the laser features (wavelength and pulse time duration). Results from plasma characterization also point out that the plasma composition and propagation mode depend on the laser wavelength. Correlation of these results with those obtained from layer analyses shows at first the important role played by the plasma in the nitrogen incorporation. Its presence is necessary and allows N2 dissociation and a better energy coupling with the target. Second, it appears that the nitrogen diffusion governs the nitriding process. The study of the metal nitriding efficiency, depending on the laser used, allows us to explain the differences observed in the layer features

  12. Modification of surface properties of copper-refractory metal alloys

    Science.gov (United States)

    Verhoeven, J.D.; Gibson, E.D.

    1993-10-12

    The surface properties of copper-refractory metal (CU-RF) alloy bodies are modified by heat treatments which cause the refractory metal to form a coating on the exterior surfaces of the alloy body. The alloys have a copper matrix with particles or dendrites of the refractory metal dispersed therein, which may be niobium, vanadium, tantalum, chromium, molybdenum, or tungsten. The surface properties of the bodies are changed from those of copper to that of the refractory metal.

  13. Enrico Fermi

    Science.gov (United States)

    Yang, Chen Ning

    2013-05-01

    Enrico Fermi was, of all the great physicists of the 20th century, among the most respected and admired. He was respected and admired because of his contributions to both theoretical and experimental physics, because of his leadership in discovering for mankind a powerful new source of energy, and above all, because of his personal character. He was always reliable and trustworthy. He had both of his feet on the ground all the time. He had great strength, but never threw his weight around. He did not play to the gallery. He did not practise one-up-manship. He exemplified, I always believe, the perfect Confucian gentleman...

  14. Theory of magnetic transition metal nanoclusters on surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lounis, S.

    2007-04-17

    This thesis is motivated by the quest for the understanding and the exploration of complex magnetism provided by atomic scale magnetic clusters deposited on surfaces or embedded in the bulk. Use is made of the density functional theory (DFT). Acting within this framework, we have developed and implemented the treatment of non-collinear magnetism into the Juelich version of the full-potential Korringa-Kohn-Rostoker Green Function (KKR-GF) method. Firstly, the method was applied to 3d transition-metal clusters on different ferromagnetic surfaces. Different types of magnetic clusters where selected. In order to investigate magnetic frustration due to competing interactions within the ad-cluster we considered a (001) oriented surface of fcc metals, a topology which usually does not lead to non-collinear magnetism. We tuned the strength of the magnetic coupling between the ad-clusters and the ferromagnetic surface by varying the substrate from the case of Ni(001) with a rather weak hybridization of the Ni d-states with the adatom d-states to the case of Fe{sub 3ML}/Cu(001) with a much stronger hybridization due to the larger extend of the Fe wavefunctions. On Ni(001), the interaction between the Cr- as well as the Mn-dimer adatoms is of antiferromagnetic nature, which is in competition with the interaction with the substrate atoms. After performing total energy calculations we find that for Cr-dimer the ground state is collinear whereas the Mn-dimer prefers the non-collinear configuration as ground state. Bigger clusters are found to be magnetically collinear. These calculations were extended to 3d multimers on Fe{sub 3ML}/Cu(001). All neighboring Cr(Mn) moments in the compact tetramer are antiferromagnetically aligned in-plane, with the directions slightly tilted towards (outwards from) the substrate to gain some exchange interaction energy. The second type of frustration was investigated employing a Ni(111) surface, a surface with a triangular lattice of atoms, were

  15. Topological states in a two-dimensional metal alloy in Si surface: BiAg/Si(111)-4 ×4 surface

    Science.gov (United States)

    Zhang, Xiaoming; Cui, Bin; Zhao, Mingwen; Liu, Feng

    2018-02-01

    A bridging topological state with a conventional semiconductor platform offers an attractive route towards future spintronics and quantum device applications. Here, based on first-principles and tight-binding calculations, we demonstrate the existence of topological states hosted by a two-dimensional (2D) metal alloy in a Si surface, the BiAg/Si(111)-4 ×4 surface, which has already been synthesized experimentally. It exhibits a topological insulating state with an energy gap of 71 meV (˜819 K ) above the Fermi level and a topological metallic state with quasiquantized conductance below the Fermi level. The underlying mechanism leading to the formation of such nontrivial states is revealed by analysis of the "charge-transfer" and "orbital-filtering" effect of the Si substrate. A minimal effective tight-binding model is employed to reveal the formation mechanism of the topological states. Our finding opens opportunities to detect topological states and measure its quantized conductance in a large family of 2D surface metal alloys, which have been or are to be grown on semiconductor substrates.

  16. Photocatalysis of Modified Transition Metal Oxide Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Batzill, Matthias

    2018-02-28

    The goal of this project has been to establish a cause-effect relationship for photocatalytic activity variations of different structures of the same material; and furthermore gain fundamental understanding on modification of photocatalysts by compositional or surface modifications. The reasoning is that gaining atomic scale understanding of how surface and bulk modifications alter the photo reactivity will lead to design principles for next generation photocatalysts. As a prototypical photocatalyst the research focused on TiO2 synthesized in well-defined single crystalline form to enable fundamental characterizations.We have obtained results in the following areas: (a) Preparation of epitaxial anataseTiO2 samples by pulsed laser deposition. (b) Comparison of hydrogen diffusion on different crystallographic surface. (c) Determining the stability of the TiO2(011)-2x1 reconstruction upon interactions with adsorbates. (d) Characterization of adsorption and (thermal and photo) reaction of molecules with nitro-endgroups, (e) Exploring the possibility of modifying planar model photocatalyst surfaces with graphene to enable fundamental studies on reported enhanced photocatalytic activities of graphene modified transition metal oxides, (f) gained fundamental understanding on the role of crystallographic polymorphs of the same material for their photocatalytic activities.

  17. The Surface Structure of Ground Metal Crystals

    Science.gov (United States)

    Boas, W.; Schmid, E.

    1944-01-01

    The changes produced on metallic surfaces as a result of grinding and polishing are not as yet fully understood. Undoubtedly there is some more or less marked change in the crystal structure, at least, in the top layer. Hereby a diffusion of separated crystal particles may be involved, or, on plastic material, the formation of a layer in greatly deformed state, with possible recrystallization in certain conditions. Czochralski verified the existence of such a layer on tin micro-sections by successive observations of the texture after repeated etching; while Thomassen established, roentgenographically by means of the Debye-Scherrer method, the existence of diffused crystal fractions on the surface of ground and polished tin bars, which he had already observed after turning (on the lathe). (Thickness of this layer - 0.07 mm). Whether this layer borders direct on the undamaged base material or whether deformed intermediate layers form the transition, nothing is known. One observation ty Sachs and Shoji simply states that after the turning of an alpha-brass crystal the disturbance starting from the surface, penetrates fairly deep (approx. 1 mm) into the crystal (proof by recrystallization at 750 C).

  18. $^{11}$B and $^{27}$Al NMR spin-lattice relaxation and Knight shift study of Mg$_{1-x}$Al$_x$B$_2$. Evidence for anisotropic Fermi surface

    OpenAIRE

    Papavassiliou, G.; Pissas, M.; Karayanni, M.; Fardis, M.; Koutandos, S.; Prassides, K.

    2002-01-01

    We report a detailed study of $^{11}$B and $^{27}$Al NMR spin-lattice relaxation rates ($1/T_1$), as well as of $^{27}$Al Knight shift (K) of Mg$_{1-x}$Al$_x$B$_2$, $0\\leq x\\leq 1$. The obtained ($1/T_1T$) and K vs. x plots are in excellent agreement with ab initio calculations. This asserts experimentally the prediction that the Fermi surface is highly anisotropic, consisting mainly of hole-type 2-D cylindrical sheets from bonding $2p_{x,y}$ boron orbitals. It is also shown that the density ...

  19. Open and closed Fermi surface contributions to the anomalous angular magnetoresistance of α-(BEDT-TTF)2RbHg(SCN)4

    International Nuclear Information System (INIS)

    Athas, G.J.; Klepper, S.J.; Brooks, J.S.; Tokumoto, M.; Kinoshita, N.; Tanaka, Y.

    1994-01-01

    Anomalous angular magnetoresistance (AMR) in the quasi-two dimensional organic conductor α-(BEDT-TTF) 2 RbHg(SCN) 4 is reported. The AMR appears as oscillations with sharp minima below the anitiferromagnetic ordering temperature. The period of these oscillations is anisotropic with respect to the plane of rotation cutting through the conducting layers. Above the ordering temperature, the nature of the AMR changes fundamentally. We propose a model for the AMR that incorporates both open and closed Fermi surfaces, and discuss how temperature and field dependent behaviors of the individual FS contribute to the conductivity. (orig.)

  20. Vibrations of alkali metal overlayers on metal surfaces

    International Nuclear Information System (INIS)

    Rusina, G G; Eremeev, S V; Borisova, S D; Echenique, P M; Chulkov, E V; Benedek, G

    2008-01-01

    We review the current progress in the understanding of vibrations of alkalis adsorbed on metal surfaces. The analysis of alkali vibrations was made on the basis of available theoretical and experimental results. We also include in this discussion our recent calculations of vibrations in K/Pt(111) and Li(Na)/Cu(001) systems. The dependence of alkali adlayer localized modes on atomic mass, adsorption position and coverage as well as the dependence of vertical vibration frequency on the substrate orientation is discussed. The square root of atomic mass dependence of the vertical vibration energy has been confirmed by using computational data for alkalis on the Al(111) and Cu(001) substrates. We have confirmed that in a wide range of submonolayer coverages the stretch mode energy remains nearly constant while the energy of in-plane polarized modes increases with the increase of alkali coverage. It was shown that the spectrum of both stretch and in-plane vibrations can be very sensitive to the adsorption position of alkali atoms and substrate orientation

  1. Photoionization microscopy of hydrogen atom near a metal surface

    International Nuclear Information System (INIS)

    Yang Hai-Feng; Wang Lei; Liu Xiao-Jun; Liu Hong-Ping

    2011-01-01

    We have studied the ionization of Rydberg hydrogen atom near a metal surface with a semiclassical analysis of photoionization microscopy. Interference patterns of the electron radial distribution are calculated at different scaled energies above the classical saddle point and at various atom—surface distances. We find that different types of trajectories contribute predominantly to different manifolds in a certain interference pattern. As the scaled energy increases, the structure of the interference pattern evolves smoothly and more types of trajectories emerge. As the atom approaches the metal surface closer, there are more types of trajectories contributing to the interference pattern as well. When the Rydberg atom comes very close to the metal surface or the scaled energy approaches the zero field ionization energy, the potential induced by the metal surface will make atomic system chaotic. The results also show that atoms near a metal surface exhibit similar properties like the atoms in the parallel electric and magnetic fields. (atomic and molecular physics)

  2. Dependence of metal-enhanced fluorescence on surface roughness

    Science.gov (United States)

    François, Alexandre; Sciacca, Beniamino; Zuber, Agnieszka; Klantsataya, Elizaveta; Monro, Tanya M.

    2014-03-01

    Metal Enhanced Fluorescence (MEF) takes advantage of the coupling between surface plasmons, in either a metallic thin film or metallic nanoparticles, and fluorophores located in proximity of the metal, yielding an increase of the fluorophore emission. While MEF has been widely studied on metallic nanoparticles with the emphasis on creating brighter fluorescent labels, planar surfaces have not benefitted from the same attention. Here we investigate the influence of the surface roughness of a thin metallic film on the fluorescence enhancement. 50nm thick silver films were deposited on glass slides using either thermal evaporation with different evaporation currents or an electroless plating method based on the Tollens reaction to vary the surface roughness. Multiple layers of positively and negatively charged polyelectrolytes were deposited on top of the metallic coating to map out the enhancement factor as function of the gap between the metallic coating and fluorophore molecules covalently bound to the last polyelectrolyte layer. We show that fluorescence is enhanced by the presence of the metallic film, and in particular that the enhancement increases by a factor 3 to 40 for roughness ranging from 3 nm to 8 nm. Although these enhancement factors are modest compared to the enhancement produced by complex metallic nanoparticles or nano-patterned metallic thin films, the thin films used here are capable of supporting a plasmonic wave and offer the possibility of combining different techniques, such as surface plasmon resonance (with its higher refractive index sensitivity compared to localized plasmons) and MEF within a single device.

  3. Effect of CO on surface oxidation of uranium metal

    International Nuclear Information System (INIS)

    Wang, X.; Fu, Y.; Xie, R.

    1997-01-01

    The surface reactions of uranium metal with carbon monoxide at 25 and 200 deg C have been studied by X-ray photoelectron spectroscopy (XPS);respectively. Adsorption of carbon monoxide on the surface layer of uranium metal leads to partial reduction of surface oxide and results in U4f photoelectron peak shifting to the lower binding energy. The content of oxygen in the surface oxide is decreased and O1s/O4f ratio decreases with increasing the exposure of carbon monoxide. The investigation indicates the surface layer of uranium metal has resistance to further oxidation in the atmosphere of carbon monoxide. (author)

  4. Metal-in-metal localized surface plasmon resonance

    International Nuclear Information System (INIS)

    Smith, G B; Earp, A A

    2010-01-01

    Anomalous strong resonances in silver and gold nanoporous thin films which conduct are found to arise from isolated metal nano-islands separated from the surrounding percolating metal network by a thin loop of insulator. This observed resonant optical response is modelled. The observed peak position is in agreement with the observed average dimensions of the silver core and insulator shell. As the insulating ring thickness shrinks, the resonance moves to longer wavelengths and strengthens. This structure is the Babinet's principle counterpart of dielectric core-metal shell nanoparticles embedded in dielectric. Like for the latter, tuning of resonant absorption is possible, but here the matrix reflects rather than transmits, and tuning to longer wavelengths is more practical. A new class of metal mirror occurring as a single thin layer is identified using the same resonances in dense metal mirrors. Narrow band deep localized dips in reflectance result.

  5. Selective Metal-vapor Deposition on Organic Surfaces.

    Science.gov (United States)

    Tsujioka, Tsuyoshi

    2016-02-01

    Selective metal-vapor deposition signifies that metal-vapor atoms are deposited on a hard organic surface, but not on a soft (low glass transition temperature, low Tg ) surface. In this paper, we introduce the origin, extension, and applications of selective metal-vapor deposition. An amorphous photochromic diarylethene film shows light-controlled selective metal-vapor deposition, which is caused by a large Tg change based on photoisomerization, but various organic surfaces, including organic crystal and polymers, can be utilized for achieving selective metal-vapor deposition. Various applications of selective metal-vapor deposition, including cathode patterning of organic light-emitting devices, micro-thin-film fuses, multifunctional diffraction gratings, in-plane electrical bistability for memory devices, and metal-vapor integration, have been demonstrated. © 2015 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Cesium ion bombardment of metal surfaces

    International Nuclear Information System (INIS)

    Tompa, G.S.

    1986-01-01

    The steady state cesium coverage due to cesium ion bombardment of molybdenum and tungsten was studied for the incident energy range below 500 eV. When a sample is exposed to a positive ion beam, the work function decreases until steady state is reached with a total dose of less than ≅10 16 ions/cm 2 , for both tungsten and molybdenum. A steady state minimum work function surface is produced at an incident energy of ≅100 eV for molybdenum and at an incident energy of ≅45 eV for tungsten. Increasing the incident energy results in an increase in the work function corresponding to a decrease in the surface coverage of cesium. At incident energies less than that giving the minimum work function, the work function approaches that of cesium metal. At a given bombarding energy the cesium coverage of tungsten is uniformly less than that of molybdenum. Effects of hydrogen gas coadsorption were also examined. Hydrogen coadsorption does not have a large effect on the steady state work functions. The largest shifts in the work function due to the coadsorption of hydrogen occur on the samples when there is no cesium present. A theory describing the steady-state coverage was developed is used to make predictions for other materials. A simple sticking and sputtering relationship, not including implantation, cannot account for the steady state coverage. At low concentrations, cesium coverage of a target is proportional to the ratio of (1 - β)/γ where β is the reflection coefficient and γ is the sputter yield. High coverages are produced on molybdenum due to implantation and low backscattering, because molybdenum is lighter than cesium. For tungsten the high backscattering and low implantation result in low coverages

  7. Dynamic interactions of Leidenfrost droplets on liquid metal surface

    Science.gov (United States)

    Ding, Yujie; Liu, Jing

    2016-09-01

    Leidenfrost dynamic interaction effects of the isopentane droplets on the surface of heated liquid metal were disclosed. Unlike conventional rigid metal, such conductive and deformable liquid metal surface enables the levitating droplets to demonstrate rather abundant and complex dynamics. The Leidenfrost droplets at different diameters present diverse morphologies and behaviors like rotation and oscillation. Depending on the distance between the evaporating droplets, they attract and repulse each other through the curved surfaces beneath them and their vapor flows. With high boiling point up to 2000 °C, liquid metal offers a unique platform for testing the evaporating properties of a wide variety of liquid even solid.

  8. Backscattering of light ions from metal surfaces

    International Nuclear Information System (INIS)

    Verbeek, H.

    1975-07-01

    When a metal target is bombarded with light ions some are implanted and some are reflected from the surface or backscattered from deeper layers. This results in an energy distribution of the backscattered particles which reaches from zero to almost the primary energy. The number of the backscattered particles and their energy, angular, and charge distributions depends largely on the energy and the ion target combination. For high energies (i.e., greater than50 keV for protons) particles are backscattered in a single collision governed by the Rutherford cross section. Protons and He-ions with energies of 100 keV to several MeV are widely used for thin film analysis. For lower energies multiple collisions and the screening of the Coulomb potential have to be taken into account, which makes the theoretical treatment more difficult. This energy region is, however, of special interest in the field of nuclear fusion research. Some recent results for energies below 20 keV are discussed in some detail. (auth)

  9. Phase diagram of strongly correlated Fermi systems

    International Nuclear Information System (INIS)

    Zverev, M.V.; Khodel', V.A.; Baldo, M.

    2000-01-01

    Phase transitions in uniform Fermi systems with repulsive forces between the particles caused by restructuring of quasiparticle filling n(p) are analyzed. It is found that in terms of variables, i.e. density ρ, nondimensional binding constant η, phase diagram of a strongly correlated Fermi system for rather a wide class of interactions reminds of a puff-pastry pie. Its upper part is filled with fermion condensate, the lower one - with normal Fermi-liquid. They are separated by a narrow interlayer - the Lifshits phase, characterized by the Fermi multibound surface [ru

  10. An alternative treatment of occlusal wear: Cast metal occlusal surface

    OpenAIRE

    Sandeep Kumar; Aman Arora; Reena Yadav

    2012-01-01

    Acrylic resin denture teeth often exhibit rapid occlusal wear, which may lead to decrease in the chewing efficiency, loss of vertical dimension of occlusion, denture instability, temporomandibular joint disturbances, etc. There are various treatment options available like, use of highly cross linked acrylic teeth, amalgam or metal inserts on occlusal surface, use of composite, gold or metal occlusal surface, etc. Several articles have described methods to construct gold and metal occlusal sur...

  11. Surface Structures of Model Metal Catalysts in Reactant Gases.

    Science.gov (United States)

    Tao, Franklin Feng; Ralston, Walter T; Liu, Huimin; Somorjai, Gabor A

    2018-01-18

    Atomic scale knowledge of the surface structure of a metal catalyst is essential for fundamentally understanding the catalytic reactions performed on it. A correlation between the true atomic surface structure of a metal catalyst under reaction conditions and the corresponding catalytic performance is the key in pursuing mechanistic insight at a molecular level. Here the surface structures of model, metal catalysts in both ultrahigh vacuum (UHV) and gaseous environments of CO at a wide range of pressures are discussed. The complexity of observed surface structures in CO is illustrated, driving the necessity for visualization of the catalytic metals under realistic reaction conditions. Technical barriers for visualization of metal surfaces in situ at high temperature and high pressure are discussed.

  12. Systems and methods for producing metal clusters; functionalized surfaces; and droplets including solvated metal ions

    Science.gov (United States)

    Cooks, Robert Graham; Li, Anyin; Luo, Qingjie

    2017-08-01

    The invention generally relates to systems and methods for producing metal clusters; functionalized surfaces; and droplets including solvated metal ions. In certain aspects, the invention provides methods that involve providing a metal and a solvent. The methods additionally involve applying voltage to the solvated metal to thereby produce solvent droplets including ions of the metal containing compound, and directing the solvent droplets including the metal ions to a target. In certain embodiments, once at the target, the metal ions can react directly or catalyze reactions.

  13. Observation of Dirac-like energy band and ring-torus Fermi surface associated with the nodal line in topological insulator CaAgAs

    Science.gov (United States)

    Takane, Daichi; Nakayama, Kosuke; Souma, Seigo; Wada, Taichi; Okamoto, Yoshihiko; Takenaka, Koshi; Yamakawa, Youichi; Yamakage, Ai; Mitsuhashi, Taichi; Horiba, Koji; Kumigashira, Hiroshi; Takahashi, Takashi; Sato, Takafumi

    2018-01-01

    One of key challenges in current material research is to search for new topological materials with inverted bulk-band structure. In topological insulators, the band inversion caused by strong spin-orbit coupling leads to opening of a band gap in the entire Brillouin zone, whereas an additional crystal symmetry such as point-group and nonsymmorphic symmetries sometimes prohibits the gap opening at/on specific points or line in momentum space, giving rise to topological semimetals. Despite many theoretical predictions of topological insulators/semimetals associated with such crystal symmetries, the experimental realization is still relatively scarce. Here, using angle-resolved photoemission spectroscopy with bulk-sensitive soft-x-ray photons, we experimentally demonstrate that hexagonal pnictide CaAgAs belongs to a new family of topological insulators characterized by the inverted band structure and the mirror reflection symmetry of crystal. We have established the bulk valence-band structure in three-dimensional Brillouin zone, and observed the Dirac-like energy band and ring-torus Fermi surface associated with the line node, where bulk valence and conducting bands cross on a line in the momentum space under negligible spin-orbit coupling. Intriguingly, we found that no other bands cross the Fermi level and therefore the low-energy excitations are solely characterized by the Dirac-like band. CaAgAs provides an excellent platform to study the interplay among low-energy electron dynamics, crystal symmetry, and exotic topological properties.

  14. Triple Point Topological Metals

    Directory of Open Access Journals (Sweden)

    Ziming Zhu

    2016-07-01

    Full Text Available Topologically protected fermionic quasiparticles appear in metals, where band degeneracies occur at the Fermi level, dictated by the band structure topology. While in some metals these quasiparticles are direct analogues of elementary fermionic particles of the relativistic quantum field theory, other metals can have symmetries that give rise to quasiparticles, fundamentally different from those known in high-energy physics. Here, we report on a new type of topological quasiparticles—triple point fermions—realized in metals with symmorphic crystal structure, which host crossings of three bands in the vicinity of the Fermi level protected by point group symmetries. We find two topologically different types of triple point fermions, both distinct from any other topological quasiparticles reported to date. We provide examples of existing materials that host triple point fermions of both types and discuss a variety of physical phenomena associated with these quasiparticles, such as the occurrence of topological surface Fermi arcs, transport anomalies, and topological Lifshitz transitions.

  15. Study of surface modifications for improved selected metal (II-VI) semiconductor based devices

    Science.gov (United States)

    Blomfield, Christopher James

    Metal-semiconductor contacts are of fundamental importance to the operation of all semiconductor devices. There are many competing theories of Schottky barrier formation but as yet no quantitative predictive model exists to adequately explain metal-semiconductor interfaces. The II-VI compound semiconductors CdTe, CdS and ZnSe have recently come to the fore with the advent of high efficiency photovoltaic cells and short wavelength light emitters. Major problems still exist however in forming metal contacts to these materials with the desired properties. This work presents results which make a significant contribution to the theory of metal/II-VI interface behaviour in terms of Schottky barriers to n-type CdTe, CdS and ZnSe.Predominantly aqueous based wet chemical etchants were applied to the surfaces of CdTe, CdS and ZnSe which were subsequently characterised by X-ray photoelectron spectroscopy. The ionic nature of these II-VI compounds meant that they behaved as insoluble salts of strong bases and weak acids. Acid etchants induced a stoichiometric excess of semiconductor anion at the surface which appeared to be predominantly in the elemental or hydrogenated state. Alkaline etchants conversely induced a stoichiometric excess of semiconductor cation at the surface which appeared to be in an oxidised state.Metal contacts were vacuum-evaporated onto these etched surfaces and characterised by current-voltage and capacitance-voltage techniques. The surface preparation was found to have a clear influence upon the electrical properties of Schottky barriers formed to etched surfaces. Reducing the native surface oxide produced near ideal Schottky diodes. An extended study of Au, Ag and Sb contacts to [mathematical formula] substrates again revealed the formation of several discrete Schottky barriers largely independent of the metal used; for [mathematical formula]. Deep levels measured within this study and those reported in the literature led to the conclusion that Fermi

  16. ELECTROCATALYSIS ON SURFACES MODIFIED BY METAL MONOLAYERS DEPOSITED AT UNDERPOTENTIALS.

    Energy Technology Data Exchange (ETDEWEB)

    ADZIC,R.

    2000-12-01

    The remarkable catalytic properties of electrode surfaces modified by monolayer amounts of metal adatoms obtained by underpotential deposition (UPD) have been the subject of a large number of studies during the last couple of decades. This interest stems from the possibility of implementing strictly surface modifications of electrocatalysts in an elegant, well-controlled way, and these bi-metallic surfaces can serve as models for the design of new catalysts. In addition, some of these systems may have potential for practical applications. The UPD of metals, which in general involves the deposition of up to a monolayer of metal on a foreign substrate at potentials positive to the reversible thermodynamic potential, facilitates this type of surface modification, which can be performed repeatedly by potential control. Recent studies of these surfaces and their catalytic properties by new in situ surface structure sensitive techniques have greatly improved the understanding of these systems.

  17. Subwavelength metal nanogap surface for surface-enhanced Raman spectroscopy

    NARCIS (Netherlands)

    Le Thi Ngoc, Loan

    2015-01-01

    In this dissertation, a new top-down nanofabrication echnology is presented to realize large area metal nanowire rrays with tunable sub-20 nm separation nanogaps without the use of chemical etching or milling of the metal layer. Gold and silver nanowire arrays are presented with high-density on the

  18. Metal-organic framework materials with ultrahigh surface areas

    Science.gov (United States)

    Farha, Omar K.; Hupp, Joseph T.; Wilmer, Christopher E.; Eryazici, Ibrahim; Snurr, Randall Q.; Gomez-Gualdron, Diego A.; Borah, Bhaskarjyoti

    2015-12-22

    A metal organic framework (MOF) material including a Brunauer-Emmett-Teller (BET) surface area greater than 7,010 m.sup.2/g. Also a metal organic framework (MOF) material including hexa-carboxylated linkers including alkyne bond. Also a metal organic framework (MOF) material including three types of cuboctahedron cages fused to provide continuous channels. Also a method of making a metal organic framework (MOF) material including saponifying hexaester precursors having alkyne bonds to form a plurality of hexa-carboxylated linkers including alkyne bonds and performing a solvothermal reaction with the plurality of hexa-carboxylated linkers and one or more metal containing compounds to form the MOF material.

  19. Fermi surface studies of the pressure induced organic superconductor (ET){sub 3}Cl{sub 2}.2H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Lubczynski, W. [Physics Dept., Clarendon Lab., Univ. of Oxford (United Kingdom); Caulfield, J. [Physics Dept., Clarendon Lab., Univ. of Oxford (United Kingdom); Singleton, J. [Physics Dept., Clarendon Lab., Univ. of Oxford (United Kingdom); Hayes, W. [Physics Dept., Clarendon Lab., Univ. of Oxford (United Kingdom); Kurmoo, M. [Royal Institution, London (United Kingdom); Day, P. [Royal Institution, London (United Kingdom)

    1995-03-15

    The effects of temperature, pressure and magnetic field on the electrical transport of single crystal of (ET){sub 3}Cl{sub 2}.2H{sub 2}O are reported. Increasing pressure gradually reduces the ordering temperature of a charge density wave ground state from {approx}160 K at 1 bar to 6 K at 10.2 kbar. A superconducting state with T{sub c}>4 K is stabilised between 10.2 kbar and 13.5 kbar. Above 12.5 kbar, the observation of Shubnikov-de Haas oscillations allows the pressure dependences of the area of a closed Fermi surface pocket and the associated carrier effective mass to be deduced. (orig.)

  20. Local Oxidation Nanolithography on Metallic Transition Metal Dichalcogenides Surfaces

    Directory of Open Access Journals (Sweden)

    Elena Pinilla-Cienfuegos

    2016-09-01

    Full Text Available The integration of atomically-thin layers of two dimensional (2D materials in nanodevices demands for precise techniques at the nanoscale permitting their local modification, structuration or resettlement. Here, we present the use of Local Oxidation Nanolithography (LON performed with an Atomic Force Microscope (AFM for the patterning of nanometric motifs on different metallic Transition Metal Dichalcogenides (TMDCs. We show the results of a systematic study of the parameters that affect the LON process as well as the use of two different modes of lithographic operation: dynamic and static. The application of this kind of lithography in different types of TMDCs demonstrates the versatility of the LON for the creation of accurate and reproducible nanopatterns in exfoliated 2D-crystals and reveals the influence of the chemical composition and crystalline structure of the systems on the morphology of the resultant oxide motifs.

  1. Determination of Surface Properties of Liquid Transition Metals

    International Nuclear Information System (INIS)

    Korkmaz, S. D.

    2008-01-01

    Certain surface properties of liquid simple metals are reported. Using the expression derived by Gosh and coworkers we investigated the surface entropy of liquid transition metals namely Fe, Co and Ni. We have also computed surface tensions of the metals concerned. The pair distribution functions are calculated from the solution of Ornstein-Zernike integral equation with Rogers-Young closure using the individual version of the electron-ion potential proposed by Fioalhais and coworkers which was originally developed for solid state. The predicted values of surface tension and surface entropy are in very good agreement with available experimental data. The present study results show that the expression derived by Gosh and coworkers is very useful for the surface entropy by using Fioalhais pseudopotential and Rogers-Young closure

  2. heavy metals pollution on surface water sources in kaduna

    African Journals Online (AJOL)

    ABSTRACT. This study examine the effects of heavy metal pollutants to aquatic ecosystems and the environment by considering the role of urban, municipal, agricultural, industrial and other anthropogenic processes as sources of heavy metal pollution in surface water sources of Kaduna metropolis. Samples of the polluted ...

  3. Assessment of heavy metals pollution in sediments and surface ...

    African Journals Online (AJOL)

    Samples were analyzed for their concentrations of these metals, using the atomic absorption spectrophotometer (AAS). The results of heavy metals show that the average contents of Fe (5.3%), Cr (70 ppm), Cd (0.4ppm) and Co (40ppm) in surface sediments are only slightly higher than corresponding contents in body core ...

  4. Surface segregation energies in transition-metal alloys

    DEFF Research Database (Denmark)

    Ruban, Andrei; Skriver, Hans Lomholt; Nørskov, Jens Kehlet

    1999-01-01

    We present a database of 24 x 24 surface segregation energies of single transition metal impurities in transition-metal hosts obtained by a Green's-function linear-muffin-tin-orbitals method in conjunction with the coherent potential and atomic sphere approximations including a multipole correction...

  5. Heavy Metals Pollution on Surface Water Sources in Kaduna ...

    African Journals Online (AJOL)

    This study examine the effects of heavy metal pollutants to aquatic ecosystems and the environment by considering the role of urban, municipal, agricultural, industrial and other anthropogenic processes as sources of heavy metal pollution in surface water sources of Kaduna metropolis. Samples of the polluted water were ...

  6. Laser-assisted surface cleaning of metallic components

    Indian Academy of Sciences (India)

    2014-02-09

    Feb 9, 2014 ... for effective utilization of uranium and thorium reserves to fulfill the ever growing need of energy [3]. ... nism of laser-assisted removal of ThO2 particulates off the metal surface and present here results of some ... samples (tungsten ribbon, thoria-contaminated zircaloy metal) were irradiated inside a chamber ...

  7. Local Chemical Reactivity of a Metal Alloy Surface

    DEFF Research Database (Denmark)

    Hammer, Bjørk; Scheffler, Matthias

    1995-01-01

    The chemical reactivity of a metal alloy surface is studied by density functional theory investigating the interaction of H2 with NiAl(110). The energy barrier for H2 dissociation is largely different over the Al and Ni sites without, however, reflecting the barriers over the single component metal...

  8. An alternative treatment of occlusal wear: cast metal occlusal surface.

    Science.gov (United States)

    Kumar, Sandeep; Arora, Aman; Yadav, Reena

    2012-01-01

    Acrylic resin denture teeth often exhibit rapid occlusal wear, which may lead to decrease in the chewing efficiency, loss of vertical dimension of occlusion, denture instability, temporomandibular joint disturbances, etc. There are various treatment options available like, use of highly cross linked acrylic teeth, amalgam or metal inserts on occlusal surface, use of composite, gold or metal occlusal surface, etc. Several articles have described methods to construct gold and metal occlusal surfaces, however, these methods are time-consuming, expensive and requires many cumbersome steps. These methods also requires the patient to be without the prosthesis for the time during which the laboratory procedures are performed. This article presents a quick, simple and relatively inexpensive procedure for construction of metal occlusal surfaces on complete dentures.

  9. Analysis of Terminal Metallic Armor Plate Free-Surface Bulging

    National Research Council Canada - National Science Library

    Rapacki, Jr, E. J

    2008-01-01

    An analysis of the bulge formed on the free-surface of the terminal metallic plate of an armor array is shown to lead to reasonable estimates of the armor array's remaining penetration/perforation resistance...

  10. A simple technique to assess bacterial attachment to metal surfaces

    Digital Repository Service at National Institute of Oceanography (India)

    Sonak, S.; Bhosle, N.B.

    There are several methods to assess bacterial adhesion to metal surfaces. Although these methods are sensitive, they are time consuming and need expensive chemicals and instruments. Hence, their use in assessing bacterial adhesion is limited...

  11. An alternative treatment of occlusal wear: Cast metal occlusal surface

    Directory of Open Access Journals (Sweden)

    Sandeep Kumar

    2012-01-01

    Full Text Available Acrylic resin denture teeth often exhibit rapid occlusal wear, which may lead to decrease in the chewing efficiency, loss of vertical dimension of occlusion, denture instability, temporomandibular joint disturbances, etc. There are various treatment options available like, use of highly cross linked acrylic teeth, amalgam or metal inserts on occlusal surface, use of composite, gold or metal occlusal surface, etc. Several articles have described methods to construct gold and metal occlusal surfaces, however, these methods are time-consuming, expensive and requires many cumbersome steps. These methods also requires the patient to be without the prosthesis for the time during which the laboratory procedures are performed. This article presents a quick, simple and relatively inexpensive procedure for construction of metal occlusal surfaces on complete dentures.

  12. Surface Embedded Metal Oxide Sensors (SEMOS)

    DEFF Research Database (Denmark)

    Jespersen, Jesper Lebæk; Talat Ali, Syed; Pleth Nielsen, Lars

    is the second and main part of the project. The main challenges in developing metal oxide sensors are proper choice of the material, sensor location and fabrication technique due to lifetime and cross sensitivity issues in harsh environment where the problems like de-bonding or some kind of diffusion......SEMOS is a joint project between Aalborg University, Danish Technological Institute and Danish Technical University in which micro temperature sensors and metal oxide-based gas sensors are developed and tested in a simulated fuel cell environment as well as in actual working fuel cells. Initially...... complex and sensors are not easily implemented in the construction. Hence sensor interface and sensor position must therefore be chosen carefully in order to make the sensors as non-intrusive as possible. Metal Oxide Sensors (MOX) for measuring H2, O2 and CO concentration in a fuel cell environment...

  13. 4f-derived Fermi surfaces of CeRu2(Si1-xGex)2 near the quantum critical point: resonant soft-X-ray ARPES study.

    Science.gov (United States)

    Okane, T; Ohkochi, T; Takeda, Y; Fujimori, S-i; Yasui, A; Saitoh, Y; Yamagami, H; Fujimori, A; Matsumoto, Y; Sugi, M; Kimura, N; Komatsubara, T; Aoki, H

    2009-05-29

    Angle-resolved photoelectron spectroscopy in the Ce 3d-->4f excitation region was measured for the paramagnetic state of CeRu2Si2, CeRu2(Si0.82Ge0.18)2, and LaRu2Si2 to investigate the changes of the 4f electron Fermi surfaces around the quantum critical point. While the difference of the Fermi surfaces between CeRu2Si2 and LaRu2Si2 was experimentally confirmed, a strong 4f-electron character was observed in the band structures and the Fermi surfaces of CeRu2Si2 and CeRu2(Si0.82Ge0.18)2, consequently indicating a delocalized nature of the 4f electrons in both compounds. The absence of Fermi surface reconstruction across the critical composition suggests that SDW quantum criticality is more appropriate than local quantum criticality in CeRu2(Si1-xGex)2.

  14. Surface waves on metal-dielectric metamaterials

    DEFF Research Database (Denmark)

    Takayama, Osamu; Shkondin, Evgeniy; Panah, Mohammad Esmail Aryaee

    2016-01-01

    of surface waves and, therefore, can serve as a platform allowing many applications for surface photonics. Most of these surface waves are directional and their propagation direction is sensitive to permittivities of the media forming the interface. Hence, their propagation can be effectively controlled...... by changing a wavelength or material parameters. We discover that two new types of surface waves with complex dispersion exist for a uniaxial medium with both negative ordinary and extraordinary permittivities. Such new surface wave solutions originate from the anisotropic permittivities of the uniaxial media...

  15. The constitution and microstructure of laser surface-modified metals

    Science.gov (United States)

    Singh, Jogender

    1992-09-01

    The applications oflasers in the processing of metals, ceramics, and semiconductors range from surface glazing of thin films on semiconductors to thick surface cladding on metals. Lasers have the unique capability of rapid heating, melting, and quenching of the substrate, which results in the formation of new engineering materials with metastable microstructures. This article describes the microstructural evolution of laser-glazed and laser-clad alloys treated with a pulse or continuous-wave CO2 laser.

  16. Calculated surface-energy anomaly in the 3d metals

    DEFF Research Database (Denmark)

    Aldén, M.; Skriver, Hans Lomholt; Mirbt, S.

    1992-01-01

    Local-spin-density theory and a Green’s-function technique based on the linear muffin-tin orbitals method have been used to calculate the surface energy of the 3d metals. The theory explains the variation of the values derived from measurements of the surface tension of liquid metals including...... the pronounced anomaly occurring between vanadium and nickel in terms of a decrease in the d contribution caused by spin polarization....

  17. Surface energies of metals in both liquid and solid states

    International Nuclear Information System (INIS)

    Aqra, Fathi; Ayyad, Ahmed

    2011-01-01

    Although during the last years one has seen a number of systematic studies of the surface energies of metals, the aim and the scientific meaning of this research is to establish a simple and a straightforward theoretical model to calculate accurately the mechanical and the thermodynamic properties of metal surfaces due to their important application in materials processes and in the understanding of a wide range of surface phenomena. Through extensive theoretical calculations of the surface tension of most of the liquid metals, we found that the fraction of broken bonds in liquid metals (f) is constant which is equal to 0.287. Using our estimated f value, the surface tension (γ m ), surface energy (γ SV ), surface excess entropy (-dγ/dT), surface excess enthalpy (H s ), coefficient of thermal expansion (α m and α b ), sound velocity (c m ) and its temperature coefficient (-dc/dT) have been calculated for more than sixty metals. The results of the calculated quantities agree well with available experimental data.

  18. Surface energies of metals in both liquid and solid states

    Energy Technology Data Exchange (ETDEWEB)

    Aqra, Fathi, E-mail: fathiaqra2009@hotmail.com [Department of Chemistry, Faculty of Science and Technology, Hebron University, P.O. Box 40, Hebron, West Bank, Palestine (Country Unknown); Ayyad, Ahmed [Department of Chemistry, Faculty of Science and Technology, Hebron University, P.O. Box 40, Hebron, West Bank, Palestine (Country Unknown)

    2011-05-15

    Although during the last years one has seen a number of systematic studies of the surface energies of metals, the aim and the scientific meaning of this research is to establish a simple and a straightforward theoretical model to calculate accurately the mechanical and the thermodynamic properties of metal surfaces due to their important application in materials processes and in the understanding of a wide range of surface phenomena. Through extensive theoretical calculations of the surface tension of most of the liquid metals, we found that the fraction of broken bonds in liquid metals (f) is constant which is equal to 0.287. Using our estimated f value, the surface tension ({gamma}{sub m}), surface energy ({gamma}{sub SV}), surface excess entropy (-d{gamma}/dT), surface excess enthalpy (H{sub s}), coefficient of thermal expansion ({alpha}{sub m} and {alpha}{sub b}), sound velocity (c{sub m}) and its temperature coefficient (-dc/dT) have been calculated for more than sixty metals. The results of the calculated quantities agree well with available experimental data.

  19. Surface energy and work function of elemental metals

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Rosengaard, N. M.

    1992-01-01

    We have performed an ab initio study of the surface energy and the work function for six close-packed surfaces of 40 elemental metals by means of a Green’s-function technique, based on the linear-muffin-tin-orbitals method within the tight-binding and atomic-sphere approximations. The results...... are in excellent agreement with a recent full-potential, all-electron, slab-supercell calculation of surface energies and work functions for the 4d metals. The present calculations explain the trend exhibited by the surface energies of the alkali, alkaline earth, divalent rare-earth, 3d, 4d, and 5d transition...

  20. Absence of a holelike fermi surface for the iron-based K0.8F1.7Se2 superconductor revealed by angle-resolved photoemission spectroscopy.

    Science.gov (United States)

    Qian, T; Wang, X-P; Jin, W-C; Zhang, P; Richard, P; Xu, G; Dai, X; Fang, Z; Guo, J-G; Chen, X-L; Ding, H

    2011-05-06

    We have performed an angle-resolved photoemission spectroscopy study of the new iron-based superconductor K(0.8)Fe(1.7)Se(2) (T(c)∼30 K). Clear band dispersion is observed with the overall bandwidth renormalized by a factor of 2.5 compared to our local density approximation calculations, indicating relatively strong correlation effects. Only an electronlike band crosses the Fermi energy, forming a nearly circular Fermi surface (FS) at M (π, 0). The holelike band at Γ sinks ∼90 meV below the Fermi energy, with an indirect band gap of 30 meV, to the bottom of the electronlike band. The observed FS topology in this superconductor favors (π, π) inter-FS scattering between the electronlike FSs at the M points, in sharp contrast to other iron-based superconductors which favor (π, 0) inter-FS scattering between holelike and electronlike FSs.

  1. Surface energy and surface tension of liquid metal nanodrops

    Directory of Open Access Journals (Sweden)

    Shebzukhov A.A.

    2011-05-01

    Full Text Available A unitary approach has been proposed for the calculation of surface energy and surface tension of nanoparticle being in equilibrium with its saturated vapor on both flat and curved surfaces at given temperature. The final equations involve parameters dependent on the type of premelting structure: bcc, fcc or hcp.

  2. Surface energy and surface tension of liquid metal nanodrops

    Science.gov (United States)

    Shebzukhova, M. A.; Shebzukhov, A. A.

    2011-05-01

    A unitary approach has been proposed for the calculation of surface energy and surface tension of nanoparticle being in equilibrium with its saturated vapor on both flat and curved surfaces at given temperature. The final equations involve parameters dependent on the type of premelting structure: bcc, fcc or hcp.

  3. Surface energy and surface tension of liquid metal nanodrops

    OpenAIRE

    Shebzukhov A.A.; Shebzukhova M.A.

    2011-01-01

    A unitary approach has been proposed for the calculation of surface energy and surface tension of nanoparticle being in equilibrium with its saturated vapor on both flat and curved surfaces at given temperature. The final equations involve parameters dependent on the type of premelting structure: bcc, fcc or hcp.

  4. Surface free energy of alkali and transition metal nanoparticles

    International Nuclear Information System (INIS)

    Aqra, Fathi; Ayyad, Ahmed

    2014-01-01

    Graphical abstract: Size dependent surface free energy of spherical, cubic and disk Au nanoparticles. - Highlights: • A model to account for the surface free energy of metallic nanoparticles is described. • The model requires only the cohesive energy of the nanoparticle. • The surface free energy of a number of metallic nanoparticles has been calculated, and the obtained values agree well with existing data. • Surface energy falls down very fast when the number of atoms is less than hundred. • The model is applicable to any metallic nanoparticle. - Abstract: This paper addresses an interesting issue on the surface free energy of metallic nanoparticles as compared to the bulk material. Starting from a previously reported equation, a theoretical model, that involves a specific term for calculating the cohesive energy of nanoparticle, is established in a view to describe the behavior of surface free energy of metallic nanoparticles (using different shapes of particle: sphere, cube and disc). The results indicate that the behavior of surface energy is very appropriate for spherical nanoparticle, and thus, it is the most realistic shape of a nanoparticle. The surface energy of copper, silver, gold, platinum, tungsten, molybdenum, tantalum, paladium and alkali metallic nanoparticles is only prominent in the nanoscale size, and it decreases with the decrease of nanoparticle size. Thus, the surface free energy plays a more important role in determining the properties of nanoparticles than in bulk materials. It differs from shape to another, and falls down as the number of atoms (nanoparticle size) decreases. In the case of spherical nanoparticles, the onset of the sharp decrease in surface energy is observed at about 110 atom. A decrease of 16% and 45% in surface energy is found by moving from bulk to 110 atom and from bulk to 5 atom, respectively. The predictions are consistent with the reported data

  5. Surface-Controlled Metal Oxide Resistive Memory

    KAUST Repository

    Ke, Jr-Jian

    2015-10-28

    To explore the surface effect on resistive random-access memory (ReRAM), the impact of surface roughness on the characteristics of ZnO ReRAM were studied. The thickness-independent resistance and the higher switching probability of ZnO ReRAM with rough surfaces indicate the importance of surface oxygen chemisorption on the switching process. Furthermore, the improvements in switching probability, switching voltage and resistance distribution observed for ReRAM with rough surfaces can be attributed to the stable oxygen adatoms under various ambience conditions. The findings validate the surface-controlled stability and uniformity of ReRAM and can serve as the guideline for developing practical device applications.

  6. Methanol Oxidation on Model Elemental and Bimetallic Transition Metal Surfaces

    DEFF Research Database (Denmark)

    Tritsaris, G. A.; Rossmeisl, J.

    2012-01-01

    Direct methanol fuel cells are a key enabling technology for clean energy conversion. Using density functional theory calculations, we study the methanol oxidation reaction on model electrodes. We discuss trends in reactivity for a set of monometallic and bimetallic transition metal surfaces, flat...... sites on the surface and to screen for novel bimetallic surfaces of enhanced activity. We suggest platinum copper surfaces as promising anode catalysts for direct methanol fuel cells....

  7. Surface segregation of the metal impurity to the (1 0 0) surface of fcc ...

    Indian Academy of Sciences (India)

    The surface segregation energies for a single metal impurity to the (100) surface of nine fcc metals (Cu, Ag, Au, Ni, Pd, Pt, Rh, Al and Ir) have been calculated using the MAEAM and molecular dynamics .... function (termed as a cut-off potential) while the separated distance between atoms varies in the range r2e to rc [33]:.

  8. Surface and subsurface hydrogen: adsorption properties on transition metals and near-surface alloys.

    Science.gov (United States)

    Greeley, Jeff; Mavrikakis, Manos

    2005-03-03

    Periodic, self-consistent DFT-GGA calculations are used to study the thermochemical properties of both surface and subsurface atomic hydrogen on a variety of pure metals and near-surface alloys (NSAs). For surface hydrogen on pure metals, calculated site preferences, adsorption geometries, vibrational frequencies, and binding energies are reported and are found to be in good agreement with available experimental data. On NSAs, defined as alloys wherein a solute is present near the surface of a host metal in a composition different from the bulk composition, surface hydrogen generally binds more weakly than it binds to the pure-metal components composing the alloys. Some of the NSAs even possess the unusual property of binding hydrogen as weakly as the noble metals while, at the same time, dissociating H(2) much more easily. On both NSAs and pure metals, formation of surface hydrogen is generally exothermic with respect to H(2)(g). In contrast, formation of subsurface hydrogen is typically endothermic with respect to gas-phase H(2) (the only exception to this general statement is found for pure Pd). As with surface H, subsurface H typically binds more weakly to NSAs than to the corresponding pure-metal components of the alloys. The diffusion barrier for hydrogen from surface to subsurface sites, however, is usually lower on NSAs compared to the pure-metal components, suggesting that population of subsurface sites may occur more rapidly on NSAs.

  9. Nonperturbative effects and indirect exchange interaction between quantum impurities on metallic (111) surfaces

    Science.gov (United States)

    Allerdt, A.; Žitko, R.; Feiguin, A. E.

    2017-06-01

    The (111) surface of noble metals is usually treated as an isolated two-dimensional (2D) triangular lattice completely decoupled from the bulk. However, unlike in topological insulators, bulk bands also cross the Fermi level. We here introduce an effective tight-binding model that accurately reproduces results from first-principles calculations, accounting for both surface and bulk states. We numerically solve the many-body problem of two quantum impurities sitting on the surface by means of the density matrix renormalization group. By performing simulations in a star geometry, we are able to study the nonperturbative problem in the thermodynamic limit with machine precision accuracy. We find that there is a nontrivial competition between Kondo and RKKY physics and as a consequence, ferromagnetism is never developed, except at short distances. The bulk introduces a variation in the period of the RKKY interactions, and therefore the problem departs considerably from the simpler 2D case. In addition, screening and the magnitude of the effective indirect exchange are enhanced by the contributions from the bulk states.

  10. A comparison of surface properties of metallic thin film photocathodes

    CERN Document Server

    Mistry, Sonal; Valizadeh, Reza; Jones, L.B; Middleman, Keith; Hannah, Adrian; Militsyn, B.L; Noakes, Tim

    2017-01-01

    In this work the preparation of metal photocathodes by physical vapour deposition magnetron sputtering has been employed to deposit metallic thin films onto Cu, Mo and Si substrates. The use of metallic cathodes offers several advantages: (i) metal photocathodes present a fast response time and a relative insensitivity to the vacuum environment (ii) metallic thin films when prepared and transferred in vacuum can offer smoother and cleaner emitting surfaces. The photocathodes developed here will ultimately be used in S-band Normal Conducting RF (NCRF) guns such as that used in VELA (Versatile Electron Linear Accelerator) and the proposed CLARA (Compact Linear Accelerator for Research and Applications) Free Electron Laser test facility. The samples grown on Si substrates were used to investigate the morphology and thickness of the film. The samples grown onto Cu and Mo substrates were analysed and tested as photocathodes in a surface characterisation chamber, where X-Ray Photoelectron spectroscopy (XPS) was emp...

  11. Bosonic Analogue of Dirac Composite Fermi Liquid

    Science.gov (United States)

    Mross, David; Alicea, Jason; Motrunich, Olexei

    The status of particle-hole symmetry has long posed a challenge to the theory of the quantum Hall effect. It is expected to be present in the half-filled Landau level, but is absent in the conventional field theory, i.e., the composite Fermi liquid. Recently, Son proposed an alternative, explicitly particle-hole symmetric theory which features composite fermions that exhibit a Dirac dispersion. In my talk, I will introduce an analogous particle-hole-symmetric metallic state of bosons at odd-integer filling. This state hosts composite fermions whose energy dispersion features a quadratic band touching and corresponding 2 Ï Berry flux, protected by particle-hole and discrete rotation symmetries. As in the Dirac composite Fermi liquid introduced by Son, breaking particle-hole symmetry recovers the familiar Chern-Simons theory. I will discuss realizations of this phase both in 2D and on bosonic topological insulator surfaces, as well as its signatures in experiments and simulations.

  12. Direct NO decomposition over stepped transition-metal surfaces

    DEFF Research Database (Denmark)

    Falsig, Hanne; Bligaard, Thomas; Christensen, Claus H.

    2007-01-01

    We establish the full potential energy diagram for the direct NO decomposition reaction over stepped transition-metal surfaces by combining a database of adsorption energies on stepped metal surfaces with known Bronsted-Evans-Polanyi (BEP) relations for the activation barriers of dissociation...... of diatomic molecules over stepped transition- and noble-metal surfaces. The potential energy diagram directly points to why Pd and Pt are the best direct NO decomposition catalysts among the 3d, 4d, and 5d metals. We analyze the NO decomposition reaction in terms of a Sabatier-Gibbs-type analysis, and we...... demonstrate that this type of analysis yields results that to within a surprisingly small margin of error are directly proportional to the measured direct NO decomposition over Ru, Rh, Pt, Pd, Ag, and An. We suggest that Pd, which is a better catalyst than Pt under the employed reaction conditions...

  13. Realization of N-Type Semiconducting of Phosphorene through Surface Metal Doping and Work Function Study

    Directory of Open Access Journals (Sweden)

    Haocheng Sun

    2018-01-01

    Full Text Available Phosphorene becomes an important member of the layered nanomaterials since its discovery for the fabrication of nanodevices. In the experiments, pristine phosphorene shows p-type semiconducting with no exception. To reach its full capability, n-type semiconducting is a necessity. Here, we report the electronic structure engineering of phosphorene by surface metal atom doping. Five metal elements, Cu, Ag, Au, Li, and Na, have been considered which could form stable adsorption on phosphorene. These elements show patterns in their electron configuration with one valence electron in their outermost s-orbital. Among three group 11 elements, Cu can induce n-type degenerate semiconducting, while Ag and Au can only introduce localized impurity states. The distinct ability of Cu, compared to Ag and Au, is mainly attributed to the electronegativity. Cu has smaller electronegativity and thus denotes its electron to phosphorene, upshifting the Fermi level towards conduction band, resulting in n-type semiconducting. Ag and Au have larger electronegativity and hardly transfer electrons to phosphorene. Parallel studies of Li and Na doping support these findings. In addition, Cu doping effectively regulates the work function of phosphorene, which gradually decreases upon increasing Cu concentration. It is also interesting that Au can hardly change the work function of phosphorene.

  14. Leidenfrost point reduction on micropatterned metallic surfaces.

    Science.gov (United States)

    del Cerro, Daniel Arnaldo; Marín, Alvaro G; Römer, Gertwillem R B E; Pathiraj, B; Lohse, Detlef; Huis in 't Veld, Albertus J

    2012-10-23

    Droplets are able to levitate when deposited over a hot surface exceeding a critical temperature. This is known as the Leidenfrost effect. This phenomenon occurs when the surface is heated above the so-called Leidenfrost point (LFP), above which the vapor film between the droplet and hot surface is able to levitate the droplet. Such a critical temperature depends on several factors. One of the most studied parameters has been the surface roughness. Almost all of the experimental studies in the literature have concluded that the LFP increases with the roughness. According to these results, it seems that the roughness is detrimental for the stability of the vapor film. In contrast with these results, we present here a micropatterned surface that significantly reduces the LFP. The temperature increase, relative to the boiling point, required to reach the LFP is 70% lower than that on the flat surface. The reasons for such an effect are qualitatively and quantitatively discussed with a simple semiempirical model. This result can be relevant to save energy in applications that take advantage of the Leidenfrost effect for drop control or drag reduction.

  15. Self-excitation of Rydberg atoms at a metal surface

    DEFF Research Database (Denmark)

    Bordo, Vladimir

    2017-01-01

    field of the metal surface acts as an active device that supports sustained atomic dipole oscillations, which generate, in their turn, an electromagnetic field. This phenomenon does not exploit stimulated emission and therefore does not require population inversion in atoms. An experiment with Rydberg......The novel effect of self-excitation of an atomic beam propagating above a metal surface is predicted and a theory is developed. Its underlying mechanism is positive feedback provided by the reflective surface for the atomic polarization. Under certain conditions the atomic beam flying in the near...... atoms in which this effect should be most pronounced is proposed and the necessary estimates are given....

  16. The nature of transition-metal-oxide surfaces

    Science.gov (United States)

    Henrich, V. E.

    The surfaces of the 3d-transition-metal oxides form a rich and important system in which to study the effects of atomic geometry, ligand coordination and d-orbital population on surface electronic structure and chemisorption. This article considers the properties of those surfaces in terms of the types of surface structures that can exist, including steps and point defects, and their relation to the experimental data that is available for well characterized, single-crystal surfaces. The electronic structure of nearly perfect surfaces is very similar to that of the bulk for many of the oxides that have been studied; atoms at step sites also appear to have properties similar to those of atoms on terraces. Point defects are often associated with surfaces 0 vacancies and attendant transfer of electrons to adjacent metal cations. Those cations are poorly screened from each other, and the excess charge is presumably shared between two or more cations having reduced ligand coordination. Point defects are generally more active for chemisorption than are perfect surfaces, however for Ti 2O 3 and V 2O 3, whose cations have 3d 1 and 3d 2 electronic configurations respectively, the cleaved (047) surface is more active than are surfaces having a high density of defects. The chemisorption behavior of both nearly perfect and defect surfaces of 3d-transition-metal oxides varies widely from one material to another, and it is suggestive to correlate this with cation d-orbital population. However, too few oxides have yet been studied to draw any firm conclusions. Additional theoretical work on perfect surfaces, defects and chemisorption is also necessary in order to gain a more complete understanding of transition-metal-oxide surfaces.

  17. Stimulated emission of surface plasmons by electron tunneling in metal-barrier-metal structures

    Science.gov (United States)

    Siu, D. P.; Gustafson, T. K.

    1978-01-01

    It is shown that correlation currents arising from the superposition of pairs of states on distinct sides of a potential barrier in metal-barrier-metal structures can result in inelastic tunneling through the emission of surface plasmons. Net gain of an externally excited plasmon field is possible.

  18. Corrosion and surface modification on biocompatible metals: A review.

    Science.gov (United States)

    Asri, R I M; Harun, W S W; Samykano, M; Lah, N A C; Ghani, S A C; Tarlochan, F; Raza, M R

    2017-08-01

    Corrosion prevention in biomaterials has become crucial particularly to overcome inflammation and allergic reactions caused by the biomaterials' implants towards the human body. When these metal implants contacted with fluidic environments such as bloodstream and tissue of the body, most of them became mutually highly antagonistic and subsequently promotes corrosion. Biocompatible implants are typically made up of metallic, ceramic, composite and polymers. The present paper specifically focuses on biocompatible metals which favorably used as implants such as 316L stainless steel, cobalt-chromium-molybdenum, pure titanium and titanium-based alloys. This article also takes a close look at the effect of corrosion towards the implant and human body and the mechanism to improve it. Due to this corrosion delinquent, several surface modification techniques have been used to improve the corrosion behavior of biocompatible metals such as deposition of the coating, development of passivation oxide layer and ion beam surface modification. Apart from that, surface texturing methods such as plasma spraying, chemical etching, blasting, electropolishing, and laser treatment which used to improve corrosion behavior are also discussed in detail. Introduction of surface modifications to biocompatible metals is considered as a "best solution" so far to enhanced corrosion resistance performance; besides achieving superior biocompatibility and promoting osseointegration of biocompatible metals and alloys. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Surface Complexation Modelling in Metal-Mineral-Bacteria Systems

    Science.gov (United States)

    Johnson, K. J.; Fein, J. B.

    2002-12-01

    The reactive surfaces of bacteria and minerals can determine the fate, transport, and bioavailability of aqueous heavy metal cations. Geochemical models are instrumental in accurately accounting for the partitioning of the metals between mineral surfaces and bacteria cell walls. Previous research has shown that surface complexation modelling (SCM) is accurate in two-component systems (metal:mineral and metal:bacteria); however, the ability of SCMs to account for metal distribution in mixed metal-mineral-bacteria systems has not been tested. In this study, we measure aqueous Cd distributions in water-bacteria-mineral systems, and compare these observations with predicted distributions based on a surface complexation modelling approach. We measured Cd adsorption in 2- and 3-component batch adsorption experiments. In the 2-component experiments, we measured the extent of adsorption of 10 ppm aqueous Cd onto either a bacterial or hydrous ferric oxide sorbent. The metal:bacteria experiments contained 1 g/L (wet wt.) of B. subtilis, and were conducted as a function of pH; the metal:mineral experiments were conducted as a function of both pH and HFO content. Two types of 3-component Cd adsorption experiments were also conducted in which both mineral powder and bacteria were present as sorbents: 1) one in which the HFO was physically but not chemically isolated from the system using sealed dialysis tubing, and 2) others where the HFO, Cd and B. subtilis were all in physical contact. The dialysis tubing approach enabled the direct determination of the concentration of Cd on each sorbing surface, after separation and acidification of each sorbent. The experiments indicate that both bacteria and mineral surfaces can dominate adsorption in the system, depending on pH and bacteria:mineral ratio. The stability constants, determined using the data from the 2-component systems, along with those for other surface and aqueous species in the systems, were used with FITEQL to

  20. Resonant Excitation of Terahertz Surface Plasmons in Subwavelength Metal Holes

    Directory of Open Access Journals (Sweden)

    Weili Zhang

    2007-01-01

    Full Text Available We present a review of experimental studies of resonant excitation of terahertz surface plasmons in two-dimensional arrays of subwavelength metal holes. Resonant transmission efficiency higher than unity was recently achieved when normalized to the area occupied by the holes. The effects of hole shape, hole dimensions, dielectric function of metals, polarization dependence, and array film thickness on resonant terahertz transmission in metal arrays were investigated by the state-of-the-art terahertz time-domain spectroscopy. In particular, extraordinary terahertz transmission was demonstrated in arrays of subwavelength holes made even from Pb, a generally poor metal, and having thickness of only one-third of skin depth. Terahertz surface plasmons have potential applications in terahertz imaging, biosensing, interconnects, and development of integrated plasmonic components for terahertz generation and detection.

  1. Designing porous metallic glass compact enclosed with surface iron oxides

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jae Young; Park, Hae Jin; Hong, Sung Hwan; Kim, Jeong Tae; Kim, Young Seok; Park, Jun-Young; Lee, Naesung [Hybrid Materials Center (HMC), Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 143-747 (Korea, Republic of); Seo, Yongho [Graphene Research Institute (GRI) & HMC, Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 143-747 (Korea, Republic of); Park, Jin Man, E-mail: jinman_park@hotmail.com [Global Technology Center, Samsung Electronics Co., Ltd, 129 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-742 (Korea, Republic of); Kim, Ki Buem, E-mail: kbkim@sejong.ac.kr [Hybrid Materials Center (HMC), Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 143-747 (Korea, Republic of)

    2015-06-25

    Highlights: • Porous metallic glass compact was developed using electro-discharge sintering process. • Uniform PMGC can only be achieved when low electrical input energy was applied. • Functional iron-oxides were formed on the surface of PMGCs by hydrothermal technique. - Abstract: Porous metallic glass compact (PMGC) using electro-discharge sintering (EDS) process of gas atomized Zr{sub 41.2}Ti{sub 13.8}Cu{sub 12.5}Ni{sub 10}Be{sub 22.5} metallic glass powder was developed. The formation of uniform PMGC can only be achieved when low electrical input energy was applied. Functional iron-oxides were formed on the surface of PMGCs by hydrothermal technique. This finding suggests that PMGC can be applied in the new area such as catalyst via hydrothermal technique and offer a promising guideline for using the metallic glasses as a potential functional application.

  2. Polishing Metal Mirrors to 0,025 Micron Surface Finish

    DEFF Research Database (Denmark)

    Pedersen, P. E.

    1978-01-01

    A research program undertaken by the Danish Atomic Energy Commission required the fabrication of metal mirrors measuring 1 m long by 53 mm wide, which had to be finished to extremely tight tolerances on thickness, plane-parallelism and surface characteristics. Progressively finer diamond compounds...... are employed to achieve a high gloss finish on the metal mirrors, which are used in polarized neutron experiments. This article describes the fabrication techniques developed at the Commission's Ris phi Central Workshop....

  3. Trends in catalytic NO decomposition over transition metal surfaces

    DEFF Research Database (Denmark)

    Falsig, Hanne; Bligaard, Thomas; Rass-Hansen, Jeppe

    2007-01-01

    The formation of NOx from combustion of fossil and renewable fuels continues to be a dominant environmental issue. We take one step towards rationalizing trends in catalytic activity of transition metal catalysts for NO decomposition by combining microkinetic modelling with density functional...... theory calculations. We show specifically why the key problem in using transition metal surfaces to catalyze direct NO decomposition is their significant relative overbinding of atomic oxygen compared to atomic nitrogen....

  4. A Novel Heat Treatment Process for Surface Hardening of Steel: Metal Melt Surface Hardening

    Science.gov (United States)

    Fu, Yong-sheng; Zhang, Wei; Xu, Xiaowei; Li, Jiehua; Li, Jun; Xia, Mingxu; Li, Jianguo

    2017-09-01

    A novel heat treatment process for surface hardening of steel has been demonstrated and named as "metal melt surface hardening (MMSH)." A surface layer with a thickness of about 400 μm and a hardness of about 700 HV has been achieved by ejecting AISI 304 stainless steel melt at a temperature of about 1783 K (1510 °C) onto the 40Cr steel surface. This proposed MMSH provides a very promising application for surface hardening of steel.

  5. Knocking on surfaces : interactions of hyperthermal particles with metal surfaces

    NARCIS (Netherlands)

    Ueta, Hirokazu

    2010-01-01

    The study of gas-surface interaction dynamics is important both for the fundamental knowledge it provides and also to aid the development of applications involving processes such as sputtering, plasma etching and heterogeneous catalysis. Elementary steps in the interactions, such as chemical

  6. On-Surface Synthesis and Reactivity of Functional Organic and Metal-Organic Adsorbates at Metal Surfaces by Vibrational Spectroscopy

    Science.gov (United States)

    Williams, Christopher Glen

    Surface self-assembly is a promising way to introduce functionality to a surface through design at the molecular level. These self-assembled species allow for new on-surface type reactions to be observed and studied. The experiments described in this thesis demonstrate that the molecules used in self-assembly can potentially lead to interesting synthesis pathways and can be used to explore previously under-researched reaction pathways and surface molecular architecture activity or stability. Alkanes are an unreactive species typically used for driving molecular assembly in surface structures. However, with molecular design, alkanes are capable of reacting on surfaces not typically associated with alkane reactivity. Utilizing high-resolution electron energy loss spectroscopy (HREELS) and octaethylporphyrin, we could observe that dehydrogenation is possible on Cu(100) and Ag(111) surfaces at 500 and 610 K respectively. HREELS revealed that after the dehydrogenation, the molecule undergoes an intramolecular C-C bond formation leading to a tetrabenzo-porphyrin structure. Controls with deposited tetrabenzo-porphyrin were performed to verify the structure. This work provides the first example of dehydrocyclization on Cu(100) and Ag(111) to be analyzed by vibrational spectroscopy. Alkyl species in the 1,3,5-tris-(3,5-diethylphenyl)benzene molecule also undergo a dehydrogenation on Cu(100) and Au(111) at 450 and 500 K. The design of this molecule does not let the intramolecular dehydrocyclization reaction take place, but instead the dehydrogenation leads to intermolecular C-C bond formation between molecular species as noted by the formation of extended structure across the surface. Controls with triphenyl-benzene were done to help characterize the peaks in the spectra and observe varying reactivity when the ethyl groups are absent. The fabrication of uniform single-site metal centers at surfaces is important for higher selectivity in next-generation heterogeneous

  7. Trends in Metal Oxide Stability for Nanorods, Nanotubes, and Surfaces

    DEFF Research Database (Denmark)

    Mowbray, Duncan; Martinez, Jose Ignacio; Vallejo, Federico Calle

    2011-01-01

    ,2) nanorods, (3,3) nanotubes, and the (110) and (100) surfaces. These formation energies can be described semiquantitatively (mean absolute error ≈ 0.12 eV) by the fraction of metal−oxygen bonds broken and the metal d-band and p-band centers in the bulk metal oxide.......The formation energies of nanostructures play an important role in determining their properties, including their catalytic activity. For the case of 15 different rutile and 8 different perovskite metal oxides, we used density functional theory (DFT) to calculate the formation energies of (2...

  8. Diffusion and surface alloying of gradient nanostructured metals

    Directory of Open Access Journals (Sweden)

    Zhenbo Wang

    2017-03-01

    Full Text Available Gradient nanostructures (GNSs have been optimized in recent years for desired performance. The diffusion behavior in GNS metals is crucial for understanding the diffusion mechanism and relative characteristics of different interfaces that provide fundamental understanding for advancing the traditional surface alloying processes. In this paper, atomic diffusion, reactive diffusion, and surface alloying processes are reviewed for various metals with a preformed GNS surface layer. We emphasize the promoted atomic diffusion and reactive diffusion in the GNS surface layer that are related to a higher interfacial energy state with respect to those in relaxed coarse-grained samples. Accordingly, different surface alloying processes, such as nitriding and chromizing, have been modified significantly, and some diffusion-related properties have been enhanced. Finally, the perspectives on current research in this field are discussed.

  9. Surface passivation of high purity granular metals: zinc, cadmium, lead

    Directory of Open Access Journals (Sweden)

    Pirozhenko L. A.

    2017-10-01

    Full Text Available For the high purity metals (99.9999%, such as zinc, cadmium, and lead, which are widely used as initial components in growing semiconductor and scintillation crystals (CdTe, CdZnTe, ZnSe, (Cd, Zn, Pb WO4, (Cd, Zn, Pb MoO4 et al., it is very important to ensure reliable protection of the surface from oxidation and adsorption of impurities from the atmosphere. The specific features of surface passivation of high purity cadmium, lead and zinc are not sufficiently studied and require specific methodologies for further studies. The use of organic solutions in the schemes of chemical passivation of the investigated metals avoids hydrolysis of the obtained protective films. The use of organic solvents with pure cation and anion composition as the washing liquid prevents chemisorption of ions present in the conventionally used distilled water. This keeps the original purity of the granular metals. Novel compositions of etchants and etching scheme providing simultaneous polishing and passivation of high purity granular Zn, Cd and Pb are developed. Chemical passivation allows storing metals in the normal atmospheric conditions for more than half a year for Zn and Cd and up to 30 days for Pb without changing the state of the surface. The use of the glycerol-DMF solution in the processes for obtaining Pb granules provides self-passivation of metal surfaces and eliminates the additional chemical processing while maintaining the quality of corrosion protection.

  10. Metallic nanostructure formation limited by the surface hydrogen on silicon.

    Science.gov (United States)

    Perrine, Kathryn A; Teplyakov, Andrew V

    2010-08-03

    Constant miniaturization of electronic devices and interfaces needed to make them functional requires an understanding of the initial stages of metal growth at the molecular level. The use of metal-organic precursors for metal deposition allows for some control of the deposition process, but the ligands of these precursor molecules often pose substantial contamination problems. One of the ways to alleviate the contamination problem with common copper deposition precursors, such as copper(I) (hexafluoroacetylacetonato) vinyltrimethylsilane, Cu(hfac)VTMS, is a gas-phase reduction with molecular hydrogen. Here we present an alternative method to copper film and nanostructure growth using the well-defined silicon surface. Nearly ideal hydrogen termination of silicon single-crystalline substrates achievable by modern surface modification methods provides a limited supply of a reducing agent at the surface during the initial stages of metal deposition. Spectroscopic evidence shows that the Cu(hfac) fragment is present upon room-temperature adsorption and reacts with H-terminated Si(100) and Si(111) surfaces to deposit metallic copper. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) are used to follow the initial stages of copper nucleation and the formation of copper nanoparticles, and X-ray energy dispersive spectroscopy (XEDS) confirms the presence of hfac fragments on the surfaces of nanoparticles. As the surface hydrogen is consumed, copper nanoparticles are formed; however, this growth stops as the accessible hydrogen is reacted away at room temperature. This reaction sets a reference for using other solid substrates that can act as reducing agents in nanoparticle growth and metal deposition.

  11. Angle-dependent magnetoresistance oscillations and Fermi surface reordering at high magnetic fields in {alpha}-(ET){sub 2}KHg(SCN){sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Caulfield, J. [Clarendon Lab. (United Kingdom); Blundell, S.J. [Clarendon Lab. (United Kingdom); Singleton, J. [Clarendon Lab. (United Kingdom); House, A. [Clarendon Lab. (United Kingdom); Du Croo de Jongh, M.S.L. [Clarendon Lab. (United Kingdom); Hendriks, P.T.J. [High Field Magnet Lab. and Research Inst. for Materials, Univ. of Nijmegen (Netherlands); Perenboom, J.A.A.J. [High Field Magnet Lab. and Research Inst. for Materials, Univ. of Nijmegen (Netherlands); Hayes, W. [Clarendon Lab. (United Kingdom); Kurmoo, M. [Clarendon Lab. (United Kingdom)]|[Royal Institution, London (United Kingdom); Day, P. [Royal Institution, London (United Kingdom)

    1995-03-15

    Angle dependent magnetoresistance oscillations (AMRO) have been studied in the charge transfer salt {alpha}-(ET){sub 2}KHg(SCN){sub 4} for magnetic fields in the range 0 - 30 T. This salt exhibits the onset of antiferromagnetic order at temperatures T{sub N} {approx}8-10 K and the presence below this temperature of a region of sharp negative magnetoresistance at a field around 22 T known as the ``kink``. AMRO have been measured in this salt for a wide range of applied fields since the period, amplitude, and nature of the oscillations can be used to directly infer the character of the Fermi surface (FS) as a function of field. The data indicate that a profound change in the band structure occurs at this kink transition; the high field phase is characterised by quasi-2D oscillations from a closed cylindrical FS which is elongated in the c direction; the low field phase appears to be a spin density wave groundstate, with a FS consisting of a sheet (which is quasi-1D in character and tilted at an angle of {approx}21 to the b{sup *}c plane) and small closed 2D pockets. It is suggested that the breakdown orbits between the pockets and the 1D sheets are able to account for the various Shubnikov-de Haas frequencies observed below the kink. (orig.)

  12. Geometrically induced surface polaritons in planar nanostructured metallic cavities

    Energy Technology Data Exchange (ETDEWEB)

    Davids, P. S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Intravia, F [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalvit, Diego A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-14

    We examine the modal structure and dispersion of periodically nanostructured planar metallic cavities within the scattering matrix formulation. By nanostructuring a metallic grating in a planar cavity, artificial surface excitations or spoof plasmon modes are induced with dispersion determined by the periodicity and geometric characteristics of the grating. These spoof surface plasmon modes are shown to give rise to new cavity polaritonic modes at short mirror separations that modify the density of modes in nanostructured cavities. The increased modal density of states form cavity polarirons have a large impact on the fluctuation induced electromagnetic forces and enhanced hear transfer at short separations.

  13. Giant and switchable surface activity of liquid metal via surface oxidation

    OpenAIRE

    Khan, Mohammad Rashed; Eaker, Collin B.; Bowden, Edmond F.; Dickey, Michael D.

    2014-01-01

    We present a method to control the interfacial energy of a liquid metal via electrochemical deposition (or removal) of an oxide layer on its surface. Unlike conventional surfactants, this approach can tune the interfacial tension of a metal significantly (from ∼7× that of water to near zero), rapidly, and reversibly using only modest voltages. These properties can be harnessed to induce previously unidentified electrohydrodynamic phenomena for manipulating liquid metal alloys based on gallium...

  14. Factors influencing graphene growth on metal surfaces

    International Nuclear Information System (INIS)

    Loginova, E; Bartelt, N C; McCarty, K F; Feibelman, P J

    2009-01-01

    Graphene forms from a relatively dense, tightly bound C-adatom gas when elemental C is deposited on or segregates to the Ru(0001) surface. Nonlinearity of the graphene growth rate with C-adatom density suggests that growth proceeds by addition of C atom clusters to the graphene edge. The generality of this picture has now been studied by use of low-energy electron microscopy (LEEM) to observe graphene formation when Ru(0001) and Ir(111) surfaces are exposed to ethylene. The finding that graphene growth velocities and nucleation rates on Ru have precisely the same dependence on adatom concentration as for elemental C deposition implies that hydrocarbon decomposition only affects graphene growth through the rate of adatom formation. For ethylene, that rate decreases with increasing adatom concentration and graphene coverage. Initially, graphene growth on Ir(111) is like that on Ru: the growth velocity is the same nonlinear function of adatom concentration (albeit with much smaller equilibrium adatom concentrations, as we explain with DFT calculations of adatom formation energies). In the later stages of growth, graphene crystals that are rotated relative to the initial nuclei nucleate and grow. The rotated nuclei grow much faster. This difference suggests firstly, that the edge-orientation of the graphene sheets relative to the substrate plays an important role in the growth mechanism, and secondly, that attachment of the clusters to the graphene is the slowest step in cluster addition, rather than formation of clusters on the terraces.

  15. Evaluation of Metal-Fueled Surface Reactor Concepts

    International Nuclear Information System (INIS)

    Poston, David I.; Marcille, Thomas F.; Kapernick, Richard J.; Hiatt, Matthew T.; Amiri, Benjamin W.

    2007-01-01

    Surface fission power systems for use on the Moon and Mars may provide the first use of near-term reactor technology in space. Most near-term surface reactor concepts specify reactor temperatures <1000 K to allow the use of established material and power conversion technology and minimize the impact of the in-situ environment. Metal alloy fuels (e.g. U-10Zr and U-10Mo) have not traditionally been considered for space reactors because of high-temperature requirements, but they might be an attractive option for these lower temperature surface power missions. In addition to temperature limitations, metal fuels are also known to swell significantly at rather low fuel burnups (∼1 a/o), but near-term surface missions can mitigate this concern as well, because power and lifetime requirements generally keep fuel burnups <1 a/o. If temperature and swelling issues are not a concern, then a surface reactor concept may be able to benefit from the high uranium density and relative ease of manufacture of metal fuels. This paper investigates two reactor concepts that utilize metal fuels. It is found that these concepts compare very well to concepts that utilize other fuels (UN, UO2, UZrH) on a mass basis, while also providing the potential to simplify material safeguards issues

  16. Helium atmospheric pressure plasma jets touching dielectric and metal surfaces

    Science.gov (United States)

    Norberg, Seth A.; Johnsen, Eric; Kushner, Mark J.

    2015-07-01

    Atmospheric pressure plasma jets (APPJs) are being investigated in the context plasma medicine and biotechnology applications, and surface functionalization. The composition of the surface being treated ranges from plastics, liquids, and biological tissue, to metals. The dielectric constant of these materials ranges from as low as 1.5 for plastics to near 80 for liquids, and essentially infinite for metals. The electrical properties of the surface are not independent variables as the permittivity of the material being treated has an effect on the dynamics of the incident APPJ. In this paper, results are discussed from a computational investigation of the interaction of an APPJ incident onto materials of varying permittivity, and their impact on the discharge dynamics of the plasma jet. The computer model used in this investigation solves Poisson's equation, transport equations for charged and neutral species, the electron energy equation, and the Navier-Stokes equations for the neutral gas flow. The APPJ is sustained in He/O2 = 99.8/0.2 flowing into humid air, and is directed onto dielectric surfaces in contact with ground with dielectric constants ranging from 2 to 80, and a grounded metal surface. Low values of relative permittivity encourage propagation of the electric field into the treated material and formation and propagation of a surface ionization wave. High values of relative permittivity promote the restrike of the ionization wave and the formation of a conduction channel between the plasma discharge and the treated surface. The distribution of space charge surrounding the APPJ is discussed.

  17. Multipactor Discharge on Metal and Dielectric Surfaces

    Science.gov (United States)

    Kishek, R. A.

    1997-11-01

    Multipactor is a recurrent rf breakdown phenomenon based on secondary electron emission. It occurs in a wide range of devices when the electron trajectories due to the applied rf are resonant with structures such as accelerators, coherent radiation sources, satellites, and ECRH/ICRH antennas. A simple model is used to study the temporal evolution of a first-order, two-surface multipactor discharge and its interaction with the surrounding rf structure. The loading of the structure by the changing multipactor current, a combination of de-tuning and of reducing the quality factor of the resonant structure, is found to cause saturation. A novel phase focusing mechanism is discovered in which the electrostatic repulsion among the space charge may result in the multipactor electrons being very tightly bunched. The theory predicts the parameter range over which a steady-state, 2-surface multipactor may occur, linking material properties to the dynamics of the discharge(R. A. Kishek, Y. Y. Lau, and D. Chernin, Phys. Plasmas 4, 863 (1997).). The analytic theory is in excellent agreement with the computational results of the model and is applied to documented experimental observations of multipactor. On a dielectric (such as an rf window), multipactor poses a different kind of problem. Charge accumulation on the dielectric sets up a DC electric field which affects the dynamics of the discharge. Monte Carlo simulations are used to construct susceptibility diagrams for a wide range of materials that will allow an immediate assessment of the range of rf power over which multipactor may be expected to occur.

  18. Heavy metal concentration of settled surface dust in residential building

    International Nuclear Information System (INIS)

    Nor Aimi abdul Wahab; Fairus Muhamad Darus; Norain Isa; Siti Mariam Sumari; Nur Fatihah Muhamad Hanafi

    2012-01-01

    The concentrations of heavy metals (Cu, Ni, Pb and Zn) in settled surface dust were collected from nine residential buildings in different areas in Seberang Prai Tengah District, Pulau Pinang. The samples of settled surface dust were collected in 1 m 2 area by using a polyethylene brush and placed in the dust pan by sweeping the living room floor most accessible to the occupants. Heavy metals concentrations were determined by using inductively coupled plasma optical emission spectrometer (ICP-OES) after digestion with nitric acid and sulphuric acid. The results show that the range of heavy metals observed in residential buildings at Seberang Prai Tengah were in the range of 2.20-14.00 mg/ kg, 1.50-32.70 mg/ kg, 1.50-76.80 mg/ kg and 14.60-54.40 mg/ kg for Cu, Ni, Pb and Zn respectively. The heavy metal concentration in the investigated areas followed the order: Pb > Zn > Ni > Cu. Statistical analysis indicates significant correlation between all the possible pairs of heavy metal. The results suggest a likely common source for the heavy metal contamination, which could be traced most probably to vehicular emissions, street dust and other related activities. (author)

  19. The Impact of Road Maintenance Substances on Metals Surface Corrosion

    Directory of Open Access Journals (Sweden)

    Jolita Petkuvienė

    2011-04-01

    Full Text Available The purpose of research is to assess changes in the visual metal surface due to the exposure of road maintenance salts and molasses (‘Safecote’. Chlorides of deicing salts (NaCl, CaCl2 are the main agents affecting soil and water resources as well as causing the corrosion of roadside metallic elements. Molasses (‘Safecote’ is offered as an alternative to deice road pavement by minimizing the corrosion of metal elements near the road. A laboratory experiment was carried out to immerse and spray metals with NaCl, CaCl2, NaCl:CaCl2 and NaCl:Safecote solutions. The obtained results showed that NaCl:Safecote solution had the lowest coating with corrosion products (the average 17±4 % of the surface. The solutions of NaCl, CaCl2 and NaCl:CaCl2 had the highest percentage rate of the corrosion product on the metal surface reaching an average of 33±5 %. Article in English

  20. Fermi liquid theory

    CERN Document Server

    Apostol, M

    2001-01-01

    sup 3 He liquefies at 3.2 K under normal pressure, where its mean inter-particle separation of a few angstroms, is comparable with the range of the interaction potential (and with the mean inter-particle separation in the corresponding ideal gas); its thermal wavelength is about 8 A, so that, under this conditions, sup 3 He is a quantum liquid of fermions, or a Fermi liquid (sometimes called a normal Fermi liquid too). The motion of the sup 3 He atoms in the (repulsive) self-consistent, meanfield potential is affected by inertial effects, i.e. the particles possess an effective mass, and consequently they obey the Fermi distribution, like an ideal Fermi gas. In this paper the Landau's theory of the Fermi liquid is reviewed. (author)

  1. A highly efficient surface plasmon polaritons excitation achieved with a metal-coupled metal-insulator-metal waveguide

    Directory of Open Access Journals (Sweden)

    Hongyan Yang

    2014-12-01

    Full Text Available We propose a novel metal-coupled metal-insulator-metal (MC-MIM waveguide which can achieve a highly efficient surface plasmon polaritons (SPPs excitation. The MC-MIM waveguide is formed by inserting a thin metal film in the insulator of an MIM. The introduction of the metal film, functioning as an SPPs coupler, provides a space for the interaction between SPPs and a confined electromagnetic field of the intermediate metal surface, which makes energy change and phase transfer in the metal-dielectric interface, due to the joint action of incomplete electrostatic shielding effect and SPPs coupling. Impacts of the metal film with different materials and various thickness on SPPs excitation are investigated. It is shown that the highest efficient SPPs excitation is obtained when the gold film thickness is 60 nm. The effect of refractive index of upper and lower symmetric dielectric layer on SPPs excitation is also discussed. The result shows that the decay value of refractive index is 0.3. Our results indicate that this proposed MC-MIM waveguide may offer great potential in designing a new SPPs source.

  2. Adhesion of streptococcus rattus and streptococcus mutans to metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Branting, C.; Linder, L.E.; Sund, M.-L.; Oden, A.; Wiatr-Adamczak, E.

    1988-01-01

    The adhesion of Streptococcus rattus BHT and Streptococcus mutans IB to metal specimens of amalgam, silver, tin and copper was studied using (6-/sup 3/H) thymidine labeled cells. In the standard assay the metal specimens were suspended by a nylon thread in an adhesion solution containing a chemically defined bacterial growth medium (FMC), sucrose, and radiolabeled bacteria. Maximum amounts of adhering bacteria were obtained after about 100 min of incubation. Saturation of the metal specimens with bacteria was not observed. Both strains also adhered in the absence of sucrose, indicating that glucan formation was not necessary for adhesion. However, in the presence of glucose, adhesion was only 26-45% of that observed in the presence of equimolar sucrose. Sucrose-dependent stimulation of adhesion seemed to be due to increased cell-to-cell adhesion capacity. Isolated radiolabeled water-insoluble and water-soluble polysaccharides produced from sucrose by S. rattus BHT were not adsorbed to the metal surfaces.

  3. Adhesion of streptococcus rattus and streptococcus mutans to metal surfaces

    International Nuclear Information System (INIS)

    Branting, C.; Linder, L.E.; Sund, M.-L.; Oden, A.; Wiatr-Adamczak, E.

    1988-01-01

    The adhesion of Streptococcus rattus BHT and Streptococcus mutans IB to metal specimens of amalgam, silver, tin and copper was studied using (6- 3 H) thymidine labeled cells. In the standard assay the metal specimens were suspended by a nylon thread in an adhesion solution containing a chemically defined bacterial growth medium (FMC), sucrose, and radiolabeled bacteria. Maximum amounts of adhering bacteria were obtained after about 100 min of incubation. Saturation of the metal specimens with bacteria was not observed. Both strains also adhered in the absence of sucrose, indicating that glucan formation was not necessary for adhesion. However, in the presence of glucose, adhesion was only 26-45% of that observed in the presence of equimolar sucrose. Sucrose-dependent stimulation of adhesion seemed to be due to increased cell-to-cell adhesion capacity. Isolated radiolabeled water-insoluble and water-soluble polysaccharides produced from sucrose by S. rattus BHT were not adsorbed to the metal surfaces. (author)

  4. The radiologic decontamination of metal surfaces with new emulsion system

    International Nuclear Information System (INIS)

    Stjepanovic, N.; Mladenovic, V.; Lukovic, Z.; Ivkovic, S.

    1999-01-01

    The efficiencies of the emulsion FN-10 and FN-6 and detergent DV-60 in the radiological decontamination were investigated. The metal surfaces, clean and dirty, were contaminated with Cs-137, and decontaminated with water and appropriate solution. The most efficiency of DV-60 in both cases, was obtained. (author)

  5. Origin of metallic surface core-level shifts

    DEFF Research Database (Denmark)

    Aldén, Magnus; Skriver, Hans Lomholt; Abrikosov, I. A.

    1995-01-01

    The unique property of the open 4f energy shell in the lanthanide metals is used to show that the initial-state energy shift gives an insufficient description of surface core-level shifts. Instead a treatment, which fully includes the final-state screening, account for the experimentally observed...

  6. Hydrobiological constraints of trace metals in surface water, coastal ...

    African Journals Online (AJOL)

    SERVER

    2007-10-18

    Oct 18, 2007 ... of Calabar River are presented in Tables 1, 2 and 3. Table 4, 5 and 6 present the correlation matrices for sediment, surface water and N. lotus samples respec- tively, showing values of Pearson's correlation coefficient. (p<0.05, n=4) for pairs of heavy metals at the four locations. The concentrations of As, Cd, ...

  7. evaluation of metal contaminants of surface water sources in an ...

    African Journals Online (AJOL)

    SAMSUNG

    This study evaluated the potential health risks associated with domestic use of surface water from an active Pb-Zn mine pit, compared to a ... about the health and environmental risks associated with high levels of metal ... S. O. Ngele, Department of Industrial Chemistry, Ebonyi State University Abakaliki, Nigeria. E. J. Itumoh ...

  8. Graphene on metal surfaces and its hydrogen adsorption

    DEFF Research Database (Denmark)

    Andersen, Mie; Hornekær, L.; Hammer, B.

    2012-01-01

    The interaction of graphene with various metal surfaces is investigated using density functional theory and the meta-generalized gradient approximation (MGGA) M06-L functional. We demonstrate that this method is of comparable accuracy to the random-phase approximation (RPA). With M06-L we study l...

  9. Selective Surface Charge Sign Reversal on Metallic Carbon Nanotubes for Facile Ultrahigh Purity Nanotube Sorting.

    Science.gov (United States)

    Wang, Jing; Nguyen, Tuan Dat; Cao, Qing; Wang, Yilei; Tan, Marcus Y C; Chan-Park, Mary B

    2016-03-22

    Semiconducting (semi-) single-walled carbon nanotubes (SWNTs) must be purified of their metallic (met-) counterparts for most applications including nanoelectronics, solar cells, chemical sensors, and artificial skins. Previous bulk sorting techniques are based on subtle contrasts between properties of different nanotube/dispersing agent complexes. We report here a method which directly exploits the nanotube band structure differences. For the heterogeneous redox reaction of SWNTs with oxygen/water couple, the aqueous pH can be tuned so that the redox kinetics is determined by the availability of nanotube electrons only at/near the Fermi level, as predicted quantitatively by the Marcus-Gerischer (MG) theory. Consequently, met-SWNTs oxidize much faster than semi-SWNTs and only met-SWNTs selectively reverse the sign of their measured surface zeta potential from negative to positive at the optimized acidic pH when suspended with nonionic surfactants. By passing the redox-reacted nanotubes through anionic hydrogel beads, we isolate semi-SWNTs to record high electrically verified purity above 99.94% ± 0.04%. This facile charge sign reversal (CSR)-based sorting technique is robust and can sort SWNTs with a broad diameter range.

  10. Cooperativity in Surface Bonding and Hydrogen Bonding of Water and Hydroxyl at Metal Surfaces

    DEFF Research Database (Denmark)

    Schiros, T.; Ogasawara, H.; Naslund, L. A.

    2010-01-01

    of the mixed phase at metal surfaces. The surface bonding can be considered to be similar to accepting a hydrogen bond, and we can thereby apply general cooperativity rules developed for hydrogen-bonded systems. This provides a simple understanding of why water molecules become more strongly bonded...... to the surface upon hydrogen bonding to OH and why the OH surface bonding is instead weakened through hydrogen bonding to water. We extend the application of this simple model to other observed cooperativity effects for pure water adsorption systems and H3O+ on metal surfaces.......We examine the balance of surface bonding and hydrogen bonding in the mixed OH + H2O overlayer on Pt(111), Cu(111), and Cu(110) via density functional theory calculations. We find that there is a cooperativity effect between surface bonding and hydrogen bonding that underlies the stability...

  11. Fermi surface and effective masses in photoemission response of the (Ba1-xKx)Fe2As2superconductor.

    Science.gov (United States)

    Derondeau, Gerald; Bisti, Federico; Kobayashi, Masaki; Braun, Jürgen; Ebert, Hubert; Rogalev, Victor A; Shi, Ming; Schmitt, Thorsten; Ma, Junzhang; Ding, Hong; Strocov, Vladimir N; Minár, Ján

    2017-08-18

    The angle-resolved photoemission spectra of the superconductor (Ba 1-x K x )Fe 2 As 2 have been investigated accounting coherently for spin-orbit coupling, disorder and electron correlation effects in the valence bands combined with final state, matrix element and surface effects. Our results explain the previously obscured origins of all salient features of the ARPES response of this paradigm pnictide compound and reveal the origin of the Lifshitz transition. Comparison of calculated ARPES spectra with the underlying DMFT band structure shows an important impact of final state effects, which result for three-dimensional states in a deviation of the ARPES spectra from the true spectral function. In particular, the apparent effective mass enhancement seen in the ARPES response is not an entirely intrinsic property of the quasiparticle valence bands but may have a significant extrinsic contribution from the photoemission process and thus differ from its true value. Because this effect is more pronounced for low photoexcitation energies, soft-X-ray ARPES delivers more accurate values of the mass enhancement due to a sharp definition of the 3D electron momentum. To demonstrate this effect in addition to the theoretical study, we show here new state of the art soft-X-ray and polarisation dependent ARPES measurments.

  12. Voltammetric determination of metal impurities on semiconductor surface

    International Nuclear Information System (INIS)

    Knyazeva, E.P.; Mokrousov, G.M.; Volkova, V.N.

    1995-01-01

    A modification of voltamperometric method used for analysis of semiconductor surfaces which make it possible to exclude a contact between surface and background solution. This technique is based on solubility of elemental metal forms in low melting electroconductor systems (e.g., in mercury. The voltampere characteristics of amalgams formed are then studied. The suggested method is simple, rapid, and makes it possible to perform a nondestructive qualitative analysis of the sample surface area measuring about 10 -3 cm -2 and more. 4 refs.; 2 figs

  13. Radionuclides and trace metals in surface air. Appendix C

    International Nuclear Information System (INIS)

    Feely, H.W.; Toonkel, L.E.; Larsen, R.J.

    1981-01-01

    Since January 1963, the Environmental Measurements Laboratory (EML), formerly the Health and Safety Laboratory (HASL), has been conducting the Surface Air Sampling Program. This study is a direct outgrowth of a program initiated by the US Naval Research Laboratory (NRL) in 1957 and continued through 1962. The primary objective of this program is to study the spatial and temporal distribution of specific natural and man-made radioisotopes, and of trace metals in the surface air. Other special studies of surface air contamination have been performed during the course of the program

  14. Asperity interaction in adhesive contact of metallic rough surfaces

    International Nuclear Information System (INIS)

    Sahoo, Prasanta; Banerjee, Atanu

    2005-01-01

    The analysis of adhesive contact of metallic rough surfaces considering the effect of asperity interaction is the subject of this investigation. The micro-contact model of asperity interactions developed by Zhao and Chang (2001 Trans. ASME: J. Tribol. 123 857-64) is combined with the elastic plastic adhesive contact model developed by Chang et al (1988 Trans. ASME: J. Tribol. 110 50-6) to consider the asperity interaction and elastic-plastic deformation in the presence of surface forces simultaneously. The well-established elastic adhesion index and plasticity index are used to consider the different contact conditions. Results show that asperity interaction influences the load-separation behaviour in elastic-plastic adhesive contact of metallic rough surfaces significantly and, in general, adhesion is reduced due to asperity interactions

  15. Recommended values of clean metal surface work functions

    International Nuclear Information System (INIS)

    Derry, Gregory N.; Kern, Megan E.; Worth, Eli H.

    2015-01-01

    A critical review of the experimental literature for measurements of the work functions of clean metal surfaces of single-crystals is presented. The tables presented include all results found for low-index crystal faces except cases that were known to be contaminated surfaces. These results are used to construct a recommended value of the work function for each surface examined, along with an uncertainty estimate for that value. The uncertainties are based in part on the error distribution for all measured work functions in the literature, which is included here. The metals included in this review are silver (Ag), aluminum (Al), gold (Au), copper (Cu), iron (Fe), iridium (Ir), molybdenum (Mo), niobium (Nb), nickel (Ni), palladium (Pd), platinum (Pt), rhodium (Rh), ruthenium (Ru), tantalum (Ta), and tungsten (W)

  16. Surface cleaning of metal wire by atmospheric pressure plasma

    International Nuclear Information System (INIS)

    Nakamura, T.; Buttapeng, C.; Furuya, S.; Harada, N.

    2009-01-01

    In this study, the possible application of atmospheric pressure dielectric barrier discharge plasma for the annealing of metallic wire is examined and presented. The main purpose of the current study is to examine the surface cleaning effect for a cylindrical object by atmospheric pressure plasma. The experimental setup consists of a gas tank, plasma reactor, and power supply with control panel. The gas assists in the generation of plasma. Copper wire was used as an experimental cylindrical object. This copper wire was irradiated with the plasma, and the cleaning effect was confirmed. The result showed that it is possible to remove the tarnish which exists on the copper wire surface. The experiment reveals that atmospheric pressure plasma is usable for the surface cleaning of metal wire. However, it is necessary to examine the method for preventing oxidization of the copper wire.

  17. Understanding the biological responses of nanostructured metals and surfaces

    Science.gov (United States)

    Lowe, Terry C.; Reiss, Rebecca A.

    2014-08-01

    Metals produced by Severe Plastic Deformation (SPD) offer distinct advantages for medical applications such as orthopedic devices, in part because of their nanostructured surfaces. We examine the current theoretical foundations and state of knowledge for nanostructured biomaterials surface optimization within the contexts that apply to bulk nanostructured metals, differentiating how their microstructures impact osteogenesis, in particular, for Ultrafine Grained (UFG) titanium. Then we identify key gaps in the research to date, pointing out areas which merit additional focus within the scientific community. For example, we highlight the potential of next-generation DNA sequencing techniques (NGS) to reveal gene and non-coding RNA (ncRNA) expression changes induced by nanostructured metals. While our understanding of bio-nano interactions is in its infancy, nanostructured metals are already being marketed or developed for medical devices such as dental implants, spinal devices, and coronary stents. Our ability to characterize and optimize the biological response of cells to SPD metals will have synergistic effects on advances in materials, biological, and medical science.

  18. Fermi comes to CERN

    CERN Multimedia

    NASA

    2009-01-01

    1. This view from NASA's Fermi Gamma-ray Space Telescope is the deepest and best-resolved portrait of the gamma-ray sky to date. The image shows how the sky appears at energies more than 150 million times greater than that of visible light. Among the signatures of bright pulsars and active galaxies is something familiar -- a faint path traced by the sun. (Credit: NASA/DOE/Fermi LAT Collaboration) 2. The Large Area Telescope (LAT) on Fermi detects gamma-rays through matter (electrons) and antimatter (positrons) they produce after striking layers of tungsten. (Credit: NASA/Goddard Space Flight Center Conceptual Image Lab)

  19. Surface core-level shifts for simple metals

    DEFF Research Database (Denmark)

    Aldén, Magnus; Skriver, Hans Lomholt; Johansson, Börje

    1994-01-01

    We have performed an ab initio study of the surface core-level binding energy shift (SCLS) for 11 of the simple metals by means of a Green’s-function technique within the tight-binding linear-muffin-tin-orbitals method. Initial- and final-state effects are included within the concept of complete....... We furthermore conclude that the unexpected negative sign of the SCLS in beryllium is predominantly an initial-state effect and is caused by the high electron density in this metal....

  20. Hydrogen collisions with transition metal surfaces: Universal electronically nonadiabatic adsorption

    Science.gov (United States)

    Dorenkamp, Yvonne; Jiang, Hongyan; Köckert, Hansjochen; Hertl, Nils; Kammler, Marvin; Janke, Svenja M.; Kandratsenka, Alexander; Wodtke, Alec M.; Bünermann, Oliver

    2018-01-01

    Inelastic scattering of H and D atoms from the (111) surfaces of six fcc transition metals (Au, Pt, Ag, Pd, Cu, and Ni) was investigated, and in each case, excitation of electron-hole pairs dominates the inelasticity. The results are very similar for all six metals. Differences in the average kinetic energy losses between metals can mainly be attributed to different efficiencies in the coupling to phonons due to the different masses of the metal atoms. The experimental observations can be reproduced by molecular dynamics simulations based on full-dimensional potential energy surfaces and including electronic excitations by using electronic friction in the local density friction approximation. The determining factors for the energy loss are the electron density at the surface, which is similar for all six metals, and the mass ratio between the impinging atoms and the surface atoms. Details of the electronic structure of the metal do not play a significant role. The experimentally validated simulations are used to explore sticking over a wide range of incidence conditions. We find that the sticking probability increases for H and D collisions near normal incidence—consistent with a previously reported penetration-resurfacing mechanism. The sticking probability for H or D on any of these metals may be represented as a simple function of the incidence energy, Ein, metal atom mass, M, and incidence angle, 𝜗i n. S =(S0+a ṡEi n+b ṡM ) *(1 -h (𝜗i n-c ) (1 -cos(𝜗 i n-c ) d ṡh (Ei n-e ) (Ei n-e ) ) ) , where h is the Heaviside step function and for H, S0 = 1.081, a = -0.125 eV-1, b =-8.40 ṡ1 0-4 u-1, c = 28.88°, d = 1.166 eV-1, and e = 0.442 eV; whereas for D, S0 = 1.120, a = -0.124 eV-1, b =-1.20 ṡ1 0-3 u-1, c = 28.62°, d = 1.196 eV-1, and e = 0.474 eV.

  1. Corrected electrostatic model for dipoles adsorbed on a metal surface

    Energy Technology Data Exchange (ETDEWEB)

    Maschhoff, B.L.; Cowin, J.P. (Enviornmental and Molecular Science Laboratory, Pacific Northwest Laboratories Box 999 MS K2-14, Richland, Washington 99352 (United States))

    1994-11-01

    We present a dipole--dipole interaction model for polar molecules vertically adsorbed on a idealized metal surface in an approximate analytic form suitable for estimating the coverage dependence of the work function, binding energies, and thermal desorption activation energies. In contrast to previous treatments, we have included all contributions to the interaction energy within the dipole model, such as the internal polarization energy and the coverage dependence of the self-image interaction with the metal. We show that these can contribute significantly to the total interaction energy. We present formulae for both point and extended dipole cases.

  2. Surface plasmons in metallic nanoparticles: fundamentals and applications

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M A, E-mail: magarcia@icv.csic.es [Department of Electroceramics, Institute for Ceramic and Glass, CSIC, C/Kelsen 5, 28049 Madrid (Spain) and IMDEA Nanociencia, Madrid 28049 (Spain)

    2011-07-20

    The excitation of surface plasmons (SPs) in metallic nanoparticles (NPs) induces optical properties hardly achievable in other optical materials, yielding a wide range of applications in many fields. This review presents an overview of SPs in metallic NPs. The concept of SPs in NPs is qualitatively described using a comparison with simple linear oscillators. The mathematical models to carry on calculations on SPs are presented as well as the most common approximations. The different parameters governing the features of SPs and their effect on the optical properties of the materials are reviewed. Finally, applications of SPs in different fields such as biomedicine, energy, environment protection and information technology are revised. (topical review)

  3. Surface modes at metallic an photonic crystal interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Weitao [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    A surface mode is an electromagnetic field distribution bounded at a surface. It decays exponentially with the distance from the surface on both sides of the surface and propagates at the surface. The surface mode exists at a metal-dielectric interface as surface plasmon (1) or at a photonic crystal surface terminated properly (34; 35; 36). Besides its prominent near-filed properties, it can connect structures at its propagation surface and results in far-field effects. Extraordinary transmission (EOT) and beaming are two examples and they are the subjects I am studying in this thesis. EOT means the transmission through holes in an opaque screen can be much larger than the geometrical optics limitation. Based on our everyday experience about shadows, the transmission equals the filling ratio of the holes in geometrical optics. The conventional diffraction theory also proved that the transmission through a subwavelength circular hole in an infinitely thin perfect electric conductor (PEC) film converges to zero when the hole's dimension is much smaller than the wavelength (40). Recently it is discovered that the transmission can be much larger than the the filling ratio of the holes at some special wavelengths (41). This cannot be explained by conventional theories, so it is called extraordinary transmission. It is generally believed that surface plasmons play an important role (43; 44) in the EOT through a periodic subwavelength hole array in a metallic film. The common theories in literatures are based on these arguments. The surface plasmons cannot be excited by incident plane waves directly because of momentum mismatch. The periodicity of the hole arrays will provide addition momentum. When the momentum-matching condition of surface plasmons is satisfied, the surface plasmons will be excited. Then these surface plasmons will collect the energy along the input surface and carry them to the holes. So the transmission can be bigger than the filling ratio. Based

  4. HEAVY METALS IN SURFACE MUD SEDIMENT IN EKATERINBURG (RUSSIA

    Directory of Open Access Journals (Sweden)

    A. A. Seleznev

    2018-03-01

    Full Text Available Problem Statement. Now the most part of the world’s population lives in cities, thus, it is relevant the search for universal, low-cost and express methods for environmental geochemical investigations of an urban environment. The objective of the study is the assessment of content and properties of surface mud sediment at the urban territory (on the example of Ekaterinburg, Russia. Methods of the study. The 30 samples of surface mud sediment, soils and ground were collected in the residential area of the city. Particle size composition, measurements of heavy metals content, correlation analysis was conducted for the samples. Results. Surface mud sediment at the residential territories can be classified as surface facie of the recent anthropogenic sediment. Samples of the environmental compartments were collected at the territories of six blocks of houses of various years of construction, located in various parts of the city and at the various geological units. Five samples were collected in each block: 3 samples within the block and 2 samples – outside. The content of Pb, Zn, Cu, Ni, Co, and Mn was measured in particle size fractions of the samples. Particle size composition of the surface mud sediment in Ekaterinburg is similar to the particle size composition of the grounds formed on the sediments of Holocene age in Urals region. The positive statistically significant correlation was found between the couples of metals: Zn and Pb, Zn and Cu, Co and Ni. The distribution of concentrations of Pb, Zn and Cu over particle size fractions of surface mud sediment is heterogeneous. Pollution of the ground and soil in urban areas is due to the transition of heavy metals with particles of dust and fine sand. Typical geochemical association of metals for particle size fraction of surface mud sediment 0.002–0.01 mm – Mn-Zn-Ni-Cu-Pb-Co, that is similar to the association for sediments of surface puddles in local zones of relief, soils and bottom

  5. Wireless Metal Detection and Surface Coverage Sensing for All-Surface Induction Heating

    Directory of Open Access Journals (Sweden)

    Veli Tayfun Kilic

    2016-03-01

    Full Text Available All-surface induction heating systems, typically comprising small-area coils, face a major challenge in detecting the presence of a metallic vessel and identifying its partial surface coverage over the coils to determine which of the coils to power up. The difficulty arises due to the fact that the user can heat vessels made of a wide variety of metals (and their alloys. To address this problem, we propose and demonstrate a new wireless detection methodology that allows for detecting the presence of metallic vessels together with uniquely sensing their surface coverages while also identifying their effective material type in all-surface induction heating systems. The proposed method is based on telemetrically measuring simultaneously inductance and resistance of the induction coil coupled with the vessel in the heating system. Here, variations in the inductance and resistance values for an all-surface heating coil loaded by vessels (made of stainless steel and aluminum at different positions were systematically investigated at different frequencies. Results show that, independent of the metal material type, unique identification of the surface coverage is possible at all freqeuncies. Additionally, using the magnitude and phase information extracted from the coupled coil impedance, unique identification of the vessel effective material is also achievable, this time independent of its surface coverage.

  6. Formation of nanocrystalline surface layers in various metallic materials by near surface severe plastic deformation

    Directory of Open Access Journals (Sweden)

    Masahide Sato, Nobuhiro Tsuji, Yoritoshi Minamino and Yuichiro Koizumi

    2004-01-01

    Full Text Available The surface of the various kinds of metallic materials sheets were severely deformed by wire-brushing at ambient temperature to achieve nanocrystalline surface layer. The surface layers of the metallic materials developed by the near surface severe plastic deformation (NS-SPD were characterized by means of TEM. Nearly equiaxed nanocrystals with grain sizes ranging from 30 to 200 nm were observed in the near surface regions of all the severely scratched metallic materials, which are Ti-added ultra-low carbon interstitial free steel, austenitic stainless steel (SUS304, 99.99 wt.%Al, commercial purity aluminum (A1050 and A1100, Al–Mg alloy (A5083, Al-4 wt.%Cu alloy, OFHC-Cu (C1020, Cu–Zn alloy (C2600 and Pb-1.5%Sn alloy. In case of the 1050-H24 aluminum, the depth of the surface nanocrystalline layer was about 15 μm. It was clarified that wire-brushing is an effective way of NS-SPD, and surface nanocrystallization can be easily achieved in most of metallic materials.

  7. Encapsulant Adhesion to Surface Metallization on Photovoltaic Cells

    Energy Technology Data Exchange (ETDEWEB)

    Tracy, Jared; Bosco, Nick; Dauskardt, Reinhold

    2017-11-01

    Delamination of encapsulant materials from PV cell surfaces often appears to originate at regions with metallization. Using a fracture mechanics based metrology, the adhesion of ethylene vinyl acetate (EVA) encapsulant to screen-printed silver metallization was evaluated. At room temperature, the fracture energy Gc [J/m2] of the EVA/silver interface (952 J/m2) was ~70% lower than that of the EVA/antireflective (AR) coating (>2900 J/m2) and ~60% lower than that of the EVA to the surface of cell (2265 J/m2). After only 300 h of damp heat aging, the adhesion energy of the silver interface dropped to and plateaued at ~50-60 J/m2 while that of the EVA/AR coating and EVA/cell remained mostly unchanged. Elemental surface analysis showed that the EVA separates from the silver in a purely adhesive manner, indicating that bonds at the interface were likely displaced in the presence of humidity and chemical byproducts at elevated temperature, which in part accounts for the propensity of metalized surfaces to delaminate in the field.

  8. Structural and vibrational studies of clean and chemisorbed metal surfaces

    International Nuclear Information System (INIS)

    Jiang, Qing-Tang.

    1992-01-01

    Using Medium Energy Ion Scattering, we have studied the structural and vibrational properties of a number of clean and chemisorbed metal surfaces. The work presented in this thesis is mainly of a fundamental nature. However, it is believed that an atomistic understanding of the forces that affect surface structural and vibrational properties can have a beneficial impact on a large number of areas of applied nature. We find that the surface structure of Cu(001) follows the common trend for metal surfaces, where a small oscillatory relaxation exists beginning with a slight contraction in the top layer. In addition, the surface vibrational amplitude is enhanced (as s usually the case) by ∼80%. A detailed analysis of our data shows an unexpected anisotropy of the vibrational amplitude, such that the out-of-plane vibrational amplitude is 30% smaller than the in-plane vibrational amplitude. The unexpected results may imply a large tensile stress on Cu(001). Upon adsorption of 1/4 of a monolayer of S, a p(2 x 2)-S/Cu(001) surface is created. This submonolayer amount of S atoms makes the surface bulk-like, in which the anisotropy of the surface vibrations is removed and the first interlayer contraction is lifted. By comparing our model to earlier contradictory results on this controversial system. We find excellent agreement with a recent LEED study. The presence of 0.1 monolayer of Ca atoms on the Au(113) surface induces a drastic atomic rearrangements, in which half of the top layer Au atoms are missing and a (1 x 2) symmetry results. In addition, the first interlayer spacing of Au(113) is significantly reduced. Our results are discussed in terms of the energy balance between competing surface electronic charge densities

  9. Multifunctional methacrylate-based coatings for glass and metal surfaces

    Science.gov (United States)

    Pospiech, Doris; Jehnichen, Dieter; Starke, Sandra; Müller, Felix; Bünker, Tobias; Wollenberg, Anne; Häußler, Liane; Simon, Frank; Grundke, Karina; Oertel, Ulrich; Opitz, Michael; Kruspe, Rainer

    2017-03-01

    In order to prevent freshwater biofouling glass and metal surfaces were coated with novel transparent methacrylate-based copolymers. The multifunctionality of the copolymers, such as adhesion to the substrate, surface polarity, mechanical long-term stability in water, and ability to form metal complexes was inserted by the choice of suitable comonomers. The monomer 2-acetoacetoxy ethyl methacrylate (AAMA) was used as complexing unit to produce copper(II) complexes in the coating's upper surface layer. The semifluorinated monomer 1H,1H,2H,2H-perfluorodecyl methacrylate was employed to adjust the surface polarity and wettability. Comprehensive surface characterization techniques, such as X-ray photoelectron spectroscopy (XPS) and contact angle measurements showed that surface compositions and properties can be easily adjusted by varying the concentrations of the comonomers. The formation of copper(II) complexes along the copolymer chains and their stability against washing out with plenty of water was proven by XPS. Copolymers containing semifluorinated comonomers significantly inhibited the growth of Achnanthidium species. Copolymers with copper-loaded AAMA-sequences were able to reduce both the growth of Achnanthidium spec. and Staphylococcus aureus.

  10. Multifunctional methacrylate-based coatings for glass and metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Pospiech, Doris, E-mail: pospiech@ipfdd.de [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Jehnichen, Dieter [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Starke, Sandra; Müller, Felix [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Technische Universität Dresden, Organic Chemistry of Polymers, Dresden (Germany); Bünker, Tobias [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Wollenberg, Anne [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Technische Universität Dresden, Organic Chemistry of Polymers, Dresden (Germany); Häußler, Liane; Simon, Frank; Grundke, Karina; Oertel, Ulrich [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Opitz, Michael; Kruspe, Rainer [IDUS Biologisch Analytisches Umweltlabor GmbH, Ottendorf-Okrilla (Germany)

    2017-03-31

    Highlights: • New methacrylate-based copolymers synthesized by free radical polymerization. • Comonomer AAMA was able to complex Cu (II) ions in solvent annealing procedure. • Coatings had efficient anti-biofouling efficacy. - Abstract: In order to prevent freshwater biofouling glass and metal surfaces were coated with novel transparent methacrylate-based copolymers. The multifunctionality of the copolymers, such as adhesion to the substrate, surface polarity, mechanical long-term stability in water, and ability to form metal complexes was inserted by the choice of suitable comonomers. The monomer 2-acetoacetoxy ethyl methacrylate (AAMA) was used as complexing unit to produce copper(II) complexes in the coating’s upper surface layer. The semifluorinated monomer 1H,1H,2H,2H-perfluorodecyl methacrylate was employed to adjust the surface polarity and wettability. Comprehensive surface characterization techniques, such as X-ray photoelectron spectroscopy (XPS) and contact angle measurements showed that surface compositions and properties can be easily adjusted by varying the concentrations of the comonomers. The formation of copper(II) complexes along the copolymer chains and their stability against washing out with plenty of water was proven by XPS. Copolymers containing semifluorinated comonomers significantly inhibited the growth of Achnanthidium species. Copolymers with copper-loaded AAMA-sequences were able to reduce both the growth of Achnanthidium spec. and Staphylococcus aureus.

  11. Multifunctional methacrylate-based coatings for glass and metal surfaces

    International Nuclear Information System (INIS)

    Pospiech, Doris; Jehnichen, Dieter; Starke, Sandra; Müller, Felix; Bünker, Tobias; Wollenberg, Anne; Häußler, Liane; Simon, Frank; Grundke, Karina; Oertel, Ulrich; Opitz, Michael; Kruspe, Rainer

    2017-01-01

    Highlights: • New methacrylate-based copolymers synthesized by free radical polymerization. • Comonomer AAMA was able to complex Cu (II) ions in solvent annealing procedure. • Coatings had efficient anti-biofouling efficacy. - Abstract: In order to prevent freshwater biofouling glass and metal surfaces were coated with novel transparent methacrylate-based copolymers. The multifunctionality of the copolymers, such as adhesion to the substrate, surface polarity, mechanical long-term stability in water, and ability to form metal complexes was inserted by the choice of suitable comonomers. The monomer 2-acetoacetoxy ethyl methacrylate (AAMA) was used as complexing unit to produce copper(II) complexes in the coating’s upper surface layer. The semifluorinated monomer 1H,1H,2H,2H-perfluorodecyl methacrylate was employed to adjust the surface polarity and wettability. Comprehensive surface characterization techniques, such as X-ray photoelectron spectroscopy (XPS) and contact angle measurements showed that surface compositions and properties can be easily adjusted by varying the concentrations of the comonomers. The formation of copper(II) complexes along the copolymer chains and their stability against washing out with plenty of water was proven by XPS. Copolymers containing semifluorinated comonomers significantly inhibited the growth of Achnanthidium species. Copolymers with copper-loaded AAMA-sequences were able to reduce both the growth of Achnanthidium spec. and Staphylococcus aureus.

  12. Nanostructure formation on refractory metal surfaces irradiated by helium plasmas

    International Nuclear Information System (INIS)

    Takamura, Shuichi; Kajita, Shin; Ohno, Noriyasu

    2013-01-01

    Helium defects on plasma-facing refractory metals like tungsten have been studied in fusion sciences from the view point of the effects on metal surface properties, concentrating on the bubble formation. However, the surface morphology over the lower surface temperature range was found recently to be changed drastically, something like cotton down or arborescence, sometimes called as “fuzz”. The formation process, although still open problem, would be discussed in terms of viscoelastic model with the effect of surface tension, taking account of its thermal properties and nano-bubbles inside the thin fibers. Some physical surface characteristics like electron emission, radiation emissivity and sputtering are quite influenced by its forest-like structure. Unipolar arcing has been newly studied by using such a surface structure which makes its initiation controllable. In the present report, other examples of nanostructure formation in a variety of particle incident conditions have been introduced as well as the possibility of its industrial applications to enhance interdisciplinary interests. (author)

  13. Fermi GBM Trigger Catalog

    Data.gov (United States)

    National Aeronautics and Space Administration — Fermi is a powerful space observatory that will open a wide window on the universe. Gamma rays are the highest-energy form of light, and the gamma-ray sky is...

  14. Fermi LAT GRBs

    Data.gov (United States)

    National Aeronautics and Space Administration — All analysis results presented here are preliminary and are not intended as an official catalog of Fermi-LAT detected GRBs. Please consult the table's caveat page...

  15. Worker exposures from recycling surface contaminated radioactive scrap metal

    Energy Technology Data Exchange (ETDEWEB)

    Kluk, A. [Dept. of Energy, Germantown, MD (United States); Phillips, J.W.; Culp, J. [Analytical Services, Inc., Columbia, MD (United States)

    1996-12-31

    Current DOE policy permits release from DOE control of real property with residual levels of surficial radioactive contamination if the contamination is below approved guidelines. If the material contains contamination that is evenly distributed throughout its volume (referred to as volumetric contamination), then Departmental approval for release must be obtained in advance. Several DOE sites presently recycle surface contaminated metal, although the quantities are small relative to the quantities of metal processed by typical mini-mills, hence the potential radiation exposures to mill workers from processing DOE metals and the public from the processed metal are at present also a very small fraction of their potential value. The exposures calculated in this analysis are based on 100% of the scrap metal being processed at the maximum contamination levels and are therefore assumed to be maximum values and not likely to occur in actual practice. This paper examines the relationship between the surface contamination limits established under DOE Order 5400.5, {open_quotes}Radiation Protection of the Public and the Environment,{close_quotes} and radiation exposures to workers involved in the scrap metal recycling process. The analysis is limited to surficial contamination at or below the guideline levels established in DOE Order 5400.5 at the time of release. Workers involved in the melting and subsequent fabrication of products are not considered radiation workers (no requirements for monitoring) and must be considered members of the public. The majority of the exposures calculated in this analysis range from tenths of a millirem per year (mrem/yr) to less than 5 mrem/yr. The incremental risk of cancer associated with these exposures ranges from 10{sup -8} cancers per year to 10{sup -6} cancers per year.

  16. Worker exposures from recycling surface contaminated radioactive scrap metal

    International Nuclear Information System (INIS)

    Kluk, A.; Phillips, J.W.; Culp, J.

    1996-01-01

    Current DOE policy permits release from DOE control of real property with residual levels of surficial radioactive contamination if the contamination is below approved guidelines. If the material contains contamination that is evenly distributed throughout its volume (referred to as volumetric contamination), then Departmental approval for release must be obtained in advance. Several DOE sites presently recycle surface contaminated metal, although the quantities are small relative to the quantities of metal processed by typical mini-mills, hence the potential radiation exposures to mill workers from processing DOE metals and the public from the processed metal are at present also a very small fraction of their potential value. The exposures calculated in this analysis are based on 100% of the scrap metal being processed at the maximum contamination levels and are therefore assumed to be maximum values and not likely to occur in actual practice. This paper examines the relationship between the surface contamination limits established under DOE Order 5400.5, open-quotes Radiation Protection of the Public and the Environment,close quotes and radiation exposures to workers involved in the scrap metal recycling process. The analysis is limited to surficial contamination at or below the guideline levels established in DOE Order 5400.5 at the time of release. Workers involved in the melting and subsequent fabrication of products are not considered radiation workers (no requirements for monitoring) and must be considered members of the public. The majority of the exposures calculated in this analysis range from tenths of a millirem per year (mrem/yr) to less than 5 mrem/yr. The incremental risk of cancer associated with these exposures ranges from 10 -8 cancers per year to 10 -6 cancers per year

  17. Method for Reduction of Silver Biocide Plating on Metal Surfaces

    Science.gov (United States)

    Steele, John; Nalette, Timothy; Beringer, Durwood

    2013-01-01

    Silver ions in aqueous solutions (0.05 to 1 ppm) are used for microbial control in water systems. The silver ions remain in solution when stored in plastic containers, but the concentration rapidly decreases to non-biocidal levels when stored in metal containers. The silver deposits onto the surface and is reduced to non-biocidal silver metal when it contacts less noble metal surfaces, including stainless steel, titanium, and nickel-based alloys. Five methods of treatment of contact metal surfaces to deter silver deposition and reduction are proposed: (1) High-temperature oxidation of the metal surface; (2) High-concentration silver solution pre-treatment; (3) Silver plating; (4) Teflon coat by vapor deposition (titanium only); and (5) A combination of methods (1) and (2), which proved to be the best method for the nickel-based alloy application. The mechanism associated with surface treatments (1), (2), and (5) is thought to be the development of a less active oxide layer that deters ionic silver deposition. Mechanism (3) is an attempt to develop an equilibrium ionic silver concentration via dissolution of metallic silver. Mechanism (4) provides a non-reactive barrier to deter ionic silver plating. Development testing has shown that ionic silver in aqueous solution was maintained at essentially the same level of addition (0.4 ppm) for up to 15 months with method (5) (a combination of methods (1) and (2)), before the test was discontinued for nickel-based alloys. Method (1) resulted in the maintenance of a biocidal level (approximately 0.05 ppm) for up to 10 months before that test was discontinued for nickel-based alloys. Methods (1) and (2) used separately were able to maintain ionic silver in aqueous solution at essentially the same level of addition (0.4 ppm) for up to 10 months before the test was discontinued for stainless steel alloys. Method (3) was only utilized for titanium alloys, and was successful at maintaining ionic silver in aqueous solution at

  18. A Liquid Metal Flume for Free Surface Magnetohydrodynamic Experiments

    International Nuclear Information System (INIS)

    Nornberg, M.D.; Ji, H.; Peterson, J.L.; Rhoads, J.R.

    2008-01-01

    We present an experiment designed to study magnetohydrodynamic effects in free-surface channel flow. The wide aspect ratio channel (the width to height ratio is about 15) is completely enclosed in an inert atmosphere to prevent oxidization of the liquid metal. A custom-designed pump reduces entrainment of oxygen, which was found to be a problem with standard centrifugal and gear pumps. Laser Doppler Velocimetry experiments characterize velocity profiles of the flow. Various flow constraints mitigate secondary circulation and end effects on the flow. Measurements of the wave propagation characteristics in the liquid metal demonstrate the surfactant effect of surface oxides and the damping of fluctuations by a cross-channel magnetic field

  19. Adventitious Carbon on Primary Sample Containment Metal Surfaces

    Science.gov (United States)

    Calaway, M. J.; Fries, M. D.

    2015-01-01

    Future missions that return astromaterials with trace carbonaceous signatures will require strict protocols for reducing and controlling terrestrial carbon contamination. Adventitious carbon (AC) on primary sample containers and related hardware is an important source of that contamination. AC is a thin film layer or heterogeneously dispersed carbonaceous material that naturally accrues from the environment on the surface of atmospheric exposed metal parts. To test basic cleaning techniques for AC control, metal surfaces commonly used for flight hardware and curating astromaterials at JSC were cleaned using a basic cleaning protocol and characterized for AC residue. Two electropolished stainless steel 316L (SS- 316L) and two Al 6061 (Al-6061) test coupons (2.5 cm diameter by 0.3 cm thick) were subjected to precision cleaning in the JSC Genesis ISO class 4 cleanroom Precision Cleaning Laboratory. Afterwards, the samples were analyzed by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy.

  20. Enrico Fermi centenary exhibition seminar

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    Photo 01: Dr. Juan Antonio Rubio, Leader of the Education and Technology Transfer Division and CERN Director General, Prof. Luciano Maiani. Photo 03: Luciano Maiani, Welcome and Introduction Photo 09: Antonino Zichichi, The New 'Centro Enrico Fermi' at Via Panisperna Photos 10, 13: Ugo Amaldi, Fermi at Via Panisperna and the birth of Nuclear Medicine Photo 14: Jack Steinberger, Fermi in Chicago Photo 18: Valentin Telegdi, A close-up of Fermi Photo 21: Arnaldo Stefanini, Celebrating Fermi's Centenary in Documents and Pictures.

  1. Molecular metal catalysts on supports: organometallic chemistry meets surface science.

    Science.gov (United States)

    Serna, Pedro; Gates, Bruce C

    2014-08-19

    Recent advances in the synthesis and characterization of small, essentially molecular metal complexes and metal clusters on support surfaces have brought new insights to catalysis and point the way to systematic catalyst design. We summarize recent work unraveling effects of key design variables of site-isolated catalysts: the metal, metal nuclearity, support, and other ligands on the metals, also considering catalysts with separate, complementary functions on supports. The catalysts were synthesized with the goal of structural simplicity and uniformity to facilitate incisive characterization. Thus, they are essentially molecular species bonded to porous supports chosen for their high degree of uniformity; the supports are crystalline aluminosilicates (zeolites) and MgO. The catalytic species are synthesized in reactions of organometallic precursors with the support surfaces; the precursors include M(L)2(acetylacetonate)1-2, with M = Ru, Rh, Ir, or Au and the ligands L = C2H4, CO, or CH3. Os3(CO)12 and Ir4(CO)12 are used as precursors of supported metal clusters, and some such catalysts are made by ship-in-a-bottle syntheses to trap the clusters in zeolite cages. The simplicity and uniformity of the supported catalysts facilitate precise structure determinations, even in reactive atmospheres and during catalysis. The methods of characterizing catalysts in reactive atmospheres include infrared (IR), extended X-ray absorption fine structure (EXAFS), X-ray absorption near edge structure (XANES), and nuclear magnetic resonance (NMR) spectroscopies, and complementary methods include density functional theory and atomic-resolution aberration-corrected scanning transmission electron microscopy for imaging of individual metal atoms. IR, NMR, XANES, and microscopy data demonstrate the high degrees of uniformity of well-prepared supported species. The characterizations determine the compositions of surface metal complexes and clusters, including the ligands and the metal

  2. Metal substrates with nanometer scale surface roughness for flexible electronics

    Science.gov (United States)

    Lee, Jong-Lam; Kim, Kisoo

    2012-09-01

    In this work, we present a novel way in fabricating a metal substrate with nanometer scale in surface roughness (Ra INVAR (Invariable alloy) one (20 cm × 20 cm, Ra = 1.40 nm) were demonstrated. The INVAR film was used as a substrate for fabricating organic light emitting diodes (OLED) and organic photovoltaic (OPV). The optical and electrical characteristics of OLEDs and OPVs using the INVAR were comparable to those using a conventional ITO glass substrate.

  3. Electron emission during multicharged ion-metal surface interactions

    International Nuclear Information System (INIS)

    Zeijlmans van Emmichoven, P.A.; Havener, C.C.; Hughes, I.G.; Overbury, S.H.; Robinson, M.T.; Zehner, D.M.; Meyer, F.W.

    1992-01-01

    The electron emission during multicharged ion-metal surface interactions will be discussed. The interactions lead to the emission of a significant number of electrons. Most of these electrons have energies below 30 eV. For incident ions with innershell vacancies the emission of Auger electrons that fill these vacancies has been found to occur mainly below the surface. We will present recently measured electron energy distributions which will be used to discuss the mechanisms that lead to the emission of Auger and of low-energy electrons

  4. Exchange energy of inhomogenous electron gas near a metal surface

    International Nuclear Information System (INIS)

    Miglio, L.; Tosi, M.P.; March, N.H.

    1980-12-01

    Using the first-order density matrix of an infinite-barrier model of a metal surface, the exchange energy density can be evaluated exactly as a function of distance z from the barrier. This result is compared with the local approximation -3/4e 2 (3/π)sup(1/3) rhosup(4/3)(z) where rho is the electron density in the model. The local approximation is demonstrated to be quantitatively accurate at all z. The integrated surface exchange energy is given to within 3% by the local theory. (author)

  5. Renormalization of Optical Excitations in Molecules near a Metal Surface

    DEFF Research Database (Denmark)

    García Lastra, Juan Maria; Thygesen, Kristian Sommer

    2011-01-01

    The lowest electronic excitations of benzene and a set of donor-acceptor molecular complexes are calculated for the gas phase and on the Al(111) surface using the many-body Bethe-Salpeter equation. The energy of the charge-transfer excitations obtained for the gas phase complexes are found...... consequence we find that close to the metal surface the optical gap of benzene can exceed its quasiparticle gap. A classical image charge model for the screened Coulomb interaction can account for all these effects which, on the other hand, are completely missed by standard time-dependent density functional...

  6. Protective coatings of metal surfaces by cold plasma treatment

    Science.gov (United States)

    Manory, R.; Grill, A.

    1985-01-01

    The cold plasma techniques for deposition of various types of protective coatings are reviewed. The main advantage of these techniques for deposition of ceramic films is the lower process temperature, which enables heat treating of the metal prior to deposition. In the field of surface hardening of steel, significant reduction of treatment time and energy consumption were obtained. A simple model for the plasma - surface reactions in a cold plasma system is presented, and the plasma deposition techniques are discussed in view of this model.

  7. Ion beam analysis of metal ion implanted surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Evans, P.J.; Chu, J.W.; Johnson, E.P.; Noorman, J.T. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Sood, D.K. [Royal Melbourne Inst. of Tech., VIC (Australia)

    1993-12-31

    Ion implantation is an established method for altering the surface properties of many materials. While a variety of analytical techniques are available for the characterisation of implanted surfaces, those based on particle accelerators such as Rutherford backscattering (RBS) and nuclear reaction analysis (NRA) provide some of the most useful and powerful for this purpose. Application of the latter techniques to metal ion implantation research at ANSTO will be described with particular reference to specific examples from recent studies. Where possible, the information obtained from ion beam analysis will be compared with that derived from other techniques such as Energy Dispersive X-ray (EDX) and Auger spectroscopies. 4 refs., 5 figs.

  8. The powerful pulsed electron beam effect on the metallic surfaces

    International Nuclear Information System (INIS)

    Neklyudov, I.M.; Yuferov, V.B.; Kosik, N.A.; Druj, O.S.; Skibenko, E.I.

    2001-01-01

    Experimental results of the influence of powerful pulsed electron beams on the surface structure,hardness and corrosion resistance of the Cr18ni10ti steel are presented. The experiments were carried out in the powerful electron accelerators of directional effect VGIK-1 and DIN-2K with an energy up to approx 300 KeV and a power density of 10 9 - 10 11 W/cm 2 for micro- and nanosecond range. The essential influence of the irradiation power density on the material structure was established. Pulsed powerful beam action on metallic surface leads to surface melting,modification of the structure and structure-dependent material properties. The gas emission and mass-spectrometer analysis of the beam-surface interaction were defined

  9. Mathematical model of the metal mould surface temperature optimization

    International Nuclear Information System (INIS)

    Mlynek, Jaroslav; Knobloch, Roman; Srb, Radek

    2015-01-01

    The article is focused on the problem of generating a uniform temperature field on the inner surface of shell metal moulds. Such moulds are used e.g. in the automotive industry for artificial leather production. To produce artificial leather with uniform surface structure and colour shade the temperature on the inner surface of the mould has to be as homogeneous as possible. The heating of the mould is realized by infrared heaters located above the outer mould surface. The conceived mathematical model allows us to optimize the locations of infrared heaters over the mould, so that approximately uniform heat radiation intensity is generated. A version of differential evolution algorithm programmed in Matlab development environment was created by the authors for the optimization process. For temperate calculations software system ANSYS was used. A practical example of optimization of heaters locations and calculation of the temperature of the mould is included at the end of the article

  10. Energy Exchange between Weakly Ionized Gas and a Metal Surface

    Science.gov (United States)

    Polikarpov, A. Ph.; Polikarpov, Ph. J.; Borisov, S. F.

    2008-12-01

    An attempt to describe heat exchange of low ionized gas with a metal surface has been made with the use of DSMC approach and kinetic Monte-Carlo method. Modeling is adhered to concrete experimental conditions at which thin tungsten wire is placed in plasma and dependence of a heat flow on wire surface temperature, gas pressure, gas nature and a degree of ionization is investigated. As a result of simulation temperature profiles near the wire surface for nitrogen and argon as well as dependence of relative heat flow in a gas/surface system on temperature and degree of ionization with consideration of energy accommodation have been obtained. In the case of nitrogen the chemical charge-transfer reaction is taken into account.

  11. COATING OF POLYMERIC SUBSTRATE CATALYSTS ON METALLIC SURFACES

    Directory of Open Access Journals (Sweden)

    H. HOSSEINI

    2010-12-01

    Full Text Available This article presents results of a study on coating of a polymeric substrate ca-talyst on metallic surface. Stability of coating on metallic surfaces is a proper specification. Sol-gel technology was used to synthesize adhesion promoters of polysilane compounds that act as a mediator. The intermediate layer was coated by synthesized sulfonated polystyrene-divinylbenzene as a catalyst for production of MTBE in catalytic distillation process. Swelling of catalyst and its separation from the metal surface was improved by i increasing the quantity of divinylbenzene in the resin’s production process and ii applying adhesion pro¬moters based on the sol-gel process. The rate of ethyl silicate hydrolysis was intensified by increasing the concentration of utilized acid while the conden¬sation polymerization was enhanced in the presence of OH–. Sol was formed at pH 2, while the pH should be 8 for the formation of gel. By setting the ratio of the initial concentrations of water to ethyl silicate to 8, the gel formation time was minimized.

  12. Adatom surface diffusion of catalytic metals on the anatase TiO2(101) surface.

    Science.gov (United States)

    Alghannam, Afnan; Muhich, Christopher L; Musgrave, Charles B

    2017-02-08

    Titanium oxide is often decorated with metal nano-particles and either serves as a catalyst support or enables photocatalytic activity. The activity of these systems degrades over time due to catalytic particle agglomeration and growth by Ostwald ripening where adatoms dissociate from metal particles, diffuse across the surface and add to other metal particles. In this work, we use density functional theory calculations to study the diffusion mechanisms of select group VIII and 1B late-transition metal adatoms commonly used in catalysis and photocatalysis (Au, Ag, Cu, Pt, Rh, Ni, Co and Fe) on the anatase TiO 2 (101) surface. All metal adatoms preferentially occupy the bridge site between two 2-fold-coordinated oxygen anions (O 2c ). Surface migration was investigated by calculating the minimum energy pathway from one bridge site to another along three pathways: two in the [010] direction along a row of surface O 2c anions and one in the [101[combining macron

  13. Metal on metal surface replacement of the hip. Experience of the McMinn prothesis.

    Science.gov (United States)

    McMinn, D; Treacy, R; Lin, K; Pynsent, P

    1996-08-01

    The historical failure of surface replacement has been due to the production of wear debris with subsequent bone resorption, loosening, and failure. To avoid these problems, a surface replacement using a metal on metal bearing allowing thin components and femoral design and instrumentation to avoid varus alignment has been designed. Two hundred thirty-five joints have been resurfaced with this prosthesis in almost 5 years. There have been no femoral neck fractures and no dislocations. There have been 4 designs differing in the method of fixation. In the press fit group, 6 of 70 hips had to be revised for aseptic loosening. In the cemented group, debonding of the cup occurred in 3 of 43 cases. Six patients had hydroxyapatite coated components and have had excellent clinical outcomes. The current design uses a peripherally expanded hydroxyapatite coated cup and a cemented metal head; 116 of this design have been implanted during a 19-month period with excellent outcome. Despite short followup the authors are hopeful that the combination of a polar metal on metal bearing with appropriate fixation will yield a method of preserving bone stock in the younger patient requiring arthroplasty.

  14. Surface modification by metal ion implantation forming metallic nanoparticles in an insulating matrix

    International Nuclear Information System (INIS)

    Salvadori, M.C.; Teixeira, F.S.; Sgubin, L.G.; Cattani, M.; Brown, I.G.

    2014-01-01

    Highlights: • Metal nanoparticles can be produced through metallic ion implantation in insulating substrate, where the implanted metal self-assembles into nanoparticles. • The nanoparticles nucleate near the maximum of the implantation depth profile, that can be estimated by computer simulation using the TRIDYN. • Nanocomposites, obtained by this way, can be produced in different insulator materials. More specifically we have studied Au/PMMA (polymethylmethacrylate), Pt/PMMA, Ti/alumina and Au/alumina systems. • The nanocomposites were characterized by measuring the resistivity of the composite layer as function of the dose implanted, reaching the percolation threshold. • Excellent agreement was found between the experimental results and the predictions of the theory. - Abstract: There is special interest in the incorporation of metallic nanoparticles in a surrounding dielectric matrix for obtaining composites with desirable characteristics such as for surface plasmon resonance, which can be used in photonics and sensing, and controlled surface electrical conductivity. We have investigated nanocomposites produced by metal ion implantation into insulating substrates, where the implanted metal self-assembles into nanoparticles. The nanoparticles nucleate near the maximum of the implantation depth profile (projected range), which can be estimated by computer simulation using the TRIDYN code. TRIDYN is a Monte Carlo simulation program based on the TRIM (Transport and Range of Ions in Matter) code that takes into account compositional changes in the substrate due to two factors: previously implanted dopant atoms, and sputtering of the substrate surface. Our study show that the nanoparticles form a bidimentional array buried a few nanometers below the substrate surface. We have studied Au/PMMA (polymethylmethacrylate), Pt/PMMA, Ti/alumina and Au/alumina systems. Transmission electron microscopy of the implanted samples show that metallic nanoparticles form in

  15. Strongly correlated Fermi-systems: Non-Fermi liquid behavior, quasiparticle effective mass and their interplay

    Energy Technology Data Exchange (ETDEWEB)

    Shaginyan, V.R. [Petersburg Nuclear Physics Institute, RAS, Gatchina 188300 (Russian Federation); Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)], E-mail: vrshag@thd.pnpi.spb.ru; Amusia, M.Ya. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Popov, K.G. [Komi Science Center, Ural Division, RAS, Syktyvkar 167982 (Russian Federation)

    2009-06-15

    Basing on the density functional theory of fermion condensation, we analyze the non-Fermi liquid behavior of strongly correlated Fermi-systems such as heavy-fermion metals. When deriving equations for the effective mass of quasiparticles, we consider solids with a lattice and homogeneous systems. We show that the low-temperature thermodynamic and transport properties are formed by quasiparticles, while the dependence of the effective mass on temperature, number density, magnetic fields, etc., gives rise to the non-Fermi liquid behavior. Our theoretical study of the heat capacity, magnetization, energy scales, the longitudinal magnetoresistance and magnetic entropy are in good agreement with the remarkable recent facts collected on the heavy-fermion metal YbRh{sub 2}Si{sub 2}.

  16. Strongly correlated Fermi-systems: Non-Fermi liquid behavior, quasiparticle effective mass and their interplay

    International Nuclear Information System (INIS)

    Shaginyan, V.R.; Amusia, M.Ya.; Popov, K.G.

    2009-01-01

    Basing on the density functional theory of fermion condensation, we analyze the non-Fermi liquid behavior of strongly correlated Fermi-systems such as heavy-fermion metals. When deriving equations for the effective mass of quasiparticles, we consider solids with a lattice and homogeneous systems. We show that the low-temperature thermodynamic and transport properties are formed by quasiparticles, while the dependence of the effective mass on temperature, number density, magnetic fields, etc., gives rise to the non-Fermi liquid behavior. Our theoretical study of the heat capacity, magnetization, energy scales, the longitudinal magnetoresistance and magnetic entropy are in good agreement with the remarkable recent facts collected on the heavy-fermion metal YbRh 2 Si 2 .

  17. Enrico Fermi exhibition at CERN

    CERN Multimedia

    2002-01-01

    A touring exhibition celebrating the centenary of Enrico Fermi's birth in 1901 will be on display at CERN (Main Building, Mezzanine) from 12-27 September. You are cordially invited to the opening celebration on Thursday 12 September at 16:00 (Main Building, Council Chamber), which will include speechs from: Luciano Maiani Welcome and Introduction Arnaldo Stefanini Celebrating Fermi's Centenary in Documents and Pictures Antonino Zichichi The New 'Centro Enrico Fermi' at Via Panisperna Ugo Amaldi Fermi at Via Panisperna and the birth of Nuclear Medicine Jack Steinberger Fermi in Chicago Valentin Telegdi A Close-up of Fermi and the screening of a documentary video about Fermi: Scienziati a Pisa: Enrico Fermi (Scientists at Pisa: Enrico Fermi) created by Francesco Andreotti for La Limonaia from early film, photographs and sound recordings (In Italian, with English subtitles - c. 30 mins). This will be followed by an aperitif on the Mezz...

  18. Laser surface alloying of aluminium-transition metal alloys

    International Nuclear Information System (INIS)

    Almeida, A.; Vilar, R.

    1998-01-01

    Laser surface alloying has been used as a tool to produce hard and corrosion resistant Al-transition metal (TM) alloys. Cr and Mo are particularly interesting alloying elements to produce stable high-strength alloys because they present low diffusion coefficients and solid solubility in Al. To produce Al-TM surface alloys a two-step laser process was developed: firstly, the material is alloyed using low scanning speed and secondly, the microstructure is modified by a refinement step. This process was used in the production of Al-Cr, Al-Mo and Al-Mo and Al-Nb surface alloys by alloying Cr, Mo or Nb powder into an Al and 7175 Al alloy substrate using a CO 2 laser . This paper presents a review of the work that has been developed at Instituto Superior Tecnico on laser alloying of Al-TM alloy, over the last years. (Author) 16 refs

  19. Influence of Surface Morphology on the Antimicrobial Effect of Transition Metal Oxides in Polymer Surface.

    Science.gov (United States)

    Oh, Yoo Jin; Hubauer-Brenner, Michael; Hinterdorfer, Peter

    2015-10-01

    In this study, the physical properties of transition metal oxide surfaces were examined using scanning probe microscopic (SPM) techniques for elucidating the antimicrobial activity of molybdenum trioxide (MoO3), tungsten trioxide (WO3), and zinc oxide (ZnO) embedded into the polymers thermoplastic polyurethane (TPU) and polypropylene (PP). We utilized atomic force microscopy (AFM) in the contact imaging mode and its derivative single-pass Kelvin probe force microscopy for investigating samples that were presumably identical in their compositions, but showed different antimicrobial activity in bacterial adhesion tests. Our results revealed that surfaces with larger roughness and higher surface potential variation showed stronger antimicrobial activities compared to smoother and homogeneously charge-distributed surfaces. In addition, capacitance gradient (dC/dZ) measurements were performed to elucidate the antimicrobial activity arising from the different dielectric behavior of the transition metal oxides in this heterogeneous polymer surface. We found that the nano-scale exposure of transition metal oxides on polymer surfaces provided strong antimicrobial effects. Applications arising from our studies will be useful for public and healthcare environments.

  20. Metal-insulator-metal diodes with sub-nanometre surface roughness for energy-harvesting applications

    KAUST Repository

    Khan, A.A.

    2017-07-27

    For ambient radio-frequency (RF) energy harvesting, the available power levels are quite low, and it is highly desirable that the rectifying diodes do not consume any power at all. Contrary to semiconducting diodes, a tunnelling diode – also known as a metal-insulator-metal (MIM) diode – can provide zero-bias rectification, provided the two metals have different work functions. This could result in a complete passive rectenna system. Despite great potential, MIM diodes have not been investigated much in the GHz-frequency regime due to challenging nano-fabrication requirements. In this work, we investigate zero-bias MIM diodes for RF energy-harvesting applications. We studied the surface roughness issue for the bottom metal of the MIM diode for various deposition techniques such as sputtering, atomic layer deposition (ALD) and electron-beam (e-beam) evaporation for crystalline metals as well as for an amorphous alloy, namely ZrCuAlNi. A surface roughness of sub-1nm has been achieved for both the crystalline metals as well as the amorphous alloy, which is vital for the reliable operation of the MIM diode. An MIM diode comprising of a Ti-ZnO-Pt combination yields a zero-bias responsivity of 0.25V−1 and a dynamic resistance of 1200Ω. Complete RF characterisation has been performed by integrating the MIM diode with a coplanar waveguide transmission line. The input impedance varies from 100Ω to 50Ω in the frequency range of between 2GHz and 10GHz, which can be easily matched to typical antenna impedances in this frequency range. Finally, a rectified DC voltage of 4.7mV is obtained for an incoming RF power of 0.4W at zero bias. These preliminary results of zero-bias rectification indicate that complete, passive rectennas (a rectifier and antenna combination) are feasible with further optimisation of MIM devices.

  1. Time-resolved two-photon photoemission from metal surfaces

    CERN Document Server

    Weinelt, M

    2002-01-01

    The Rydberg-like series of image-potential states is a prototype system for loosely bound electrons at a metal surface. The electronic structure and the femtosecond dynamics of these states is studied by high-resolution energy-and time-resolved two-photon photoemission spectroscopy. The electron trapped in the image potential moves virtually freely laterally to the surface where it is subject to inelastic and quasielastic scattering processes which cause decay of population and phase relaxation. The influence of surface corrugation on these processes has been investigated for adsorbates on Cu(001) and stepped Cu(117) and Cu(119) surfaces which are vicinal to Cu(001). The dynamics depend on both the distance of the electron in front of the surface and the parallel momentum. For CO molecules on Cu(001) inelastic scattering into bulk states and adsorbate-induced resonances determine the decay rate. For small numbers of Cu adatoms on Cu(001) and the vicinal surfaces the decay rate of image-potential states is sig...

  2. Metal matrix composites for sustainable lotus-effect surfaces.

    Science.gov (United States)

    Nosonovsky, Michael; Hejazi, Vahid; Nyong, Aniedi E; Rohatgi, Pradeep K

    2011-12-06

    The lotus effect involving roughness-induced superhydrophobicity is a way to design nonwetting, self-cleaning, omniphobic, icephobic, and antifouling surfaces. However, such surfaces require micropatterning, which is extremely vulnerable to even small wear rates. This limits the applicability of the lotus effects to situations when wear is practically absent. To design sustainable superhydrophobic surfaces, we suggest using metal matrix composites (MMCs) with hydrophobic reinforcement in the bulk of the material, rather than only at its surface. Such surfaces, if properly designed, provide roughness and heterogeneity needed for superhydrophobicity. In addition, they are sustainable, since when the surface layer is deteriorated and removed due to wear, hydrophobic reinforcement and roughness remains. We present a model and experimental data on wetting of MMCs. We also conducted selected experiments with graphite-reinforced MMCs and showed that the contact angle can be determined from the model. In order to decouple the effects of reinforcement and roughness, the experiments were conducted for initially smooth and etched matrix and composite materials. © 2011 American Chemical Society

  3. Shape effects on localized surface plasmon resonances in metallic nanoparticles

    International Nuclear Information System (INIS)

    Sandu, Titus

    2012-01-01

    The effect of smooth shape changes of metallic nanoparticles on localized surface plasmon resonances is assessed with a boundary integral equation method. The boundary integral equation method allows compact expressions of nanoparticle polarizability which is expressed as an eigenmode sum of terms that depends on the eigenvalues and eigenfunctions of the integral operator associated to the boundary integral equation method. Shape variations change not only the eigenvalues but also their coupling weights to the electromagnetic field. Thus, rather small changes in the shape may induce large variations of the coupling weights. It has been found that shape changes that bring volume variations >12 % induce structural changes in the extinction spectrum of metallic nanoparticles. Also, the largest variations in eigenvalues and their coupling weights are encountered by shape changes along the smallest cross-sections of nanoparticles. These results are useful as guiding rules in the process of designing plasmonic nanostrucrures.

  4. Surface Plasmon Resonance Evaluation of Colloidal Metal Aerogel Filters

    Science.gov (United States)

    Smith, David D.; Sibille, Laurent; Cronise, Raymond J.; Noever, David A.

    1997-01-01

    We have fabricated aerogels containing gold, silver, and platinum nanoparticles for gas catalysis applications. By applying the concept of an average or effective dielectric constant to the heterogeneous interlayer surrounding each particle, we extend the technique of immersion spectroscopy to porous or heterogeneous media. Specifically, we apply the predominant effective medium theories for the determination of the average fractional composition of each component in this inhomogeneous layer. Hence, the surface area of metal available for catalytic gas reaction is determined. The technique is satisfactory for statistically random metal particle distributions but needs further modification for aggregated or surfactant modified systems. Additionally, the kinetics suggest that collective particle interactions in coagulated clusters are perturbed during silica gelation resulting in a change in the aggregate geometry.

  5. INTERACTION OF IMPULSE ELECTROMAGNETIC FIELDS WITH SURFACES OF METAL SAMPLES

    Directory of Open Access Journals (Sweden)

    V. V. Pavliouchenko

    2006-01-01

    Full Text Available Measurements of maximum tangential component of magnetic intensity Hτm have been carried out in the paper. The measurements have been taken on the surface of metal samples according to time of single current pulse rise in the form of semi-sinusoid of a linear current wire. Measurements have been made with the purpose to determine a value of the component according to thickness of samples made of aluminium.Temporary resolution ranges of electric and magnetic properties and defects of sample continuity along the depth have been found.Empirical formulae of dependence Hτm on sample thickness have been derived and their relation with efficient depth penetration of magnetic field into metal has been found.

  6. Strategy to prevent surface deflections for automotive sheet metal parts

    Science.gov (United States)

    Weinschenk, A.; Volk, W.

    2017-09-01

    Surface deflections are undesirable in automotive outer panels because they disturb their visual appearance. As a consequence, the geometry of the deep drawing tool is manually adjusted during tryout until the produced parts do not display any surface deflections. The aim of this paper is to reduce this time-consuming and cost-intensive tryout by slightly changing the geometry of the tool in an early state of the product development process to lower the risk of surface deflections. Therefore, this paper shows the influence of geometrical parameters of the deep drawing tool on the occurrence of surface deflections. A multiple curved outer panel with a door handle depression is chosen for the investigation. Typically, so-called “teddy bear ears” occur around the depression. The sheet metal material AA6016 with a sheet thickness of 1.0 mm is used. Numerical simulations of the draw operation and springback are performed in AutoForm. An analysis of the curvature before and after springback is used to detect surface deflections. The influence of the stresses and curvatures on the appearance of surface deflections is analyzed. For the experimental validation, stoning is used to detect surface deflections on a physical part. A very good agreement between the numerical and experimental results was obtained. The results show that the existence of surface deflections strongly depends on the initial curvature of the part and the appearance depends on the distribution of minor stresses. It is possible to reduce the risk of surface deflections during the design phase by changing the geometry.

  7. Surface-enhanced Raman scattering from metal and transition metal nano-caped arrays

    Science.gov (United States)

    Sun, Huanhuan; Gao, Renxian; Zhu, Aonan; Hua, Zhong; Chen, Lei; Wang, Yaxin; Zhang, Yongjun

    2018-03-01

    The metal and transition metal cap-shaped arrays on polystyrene colloidal particle (PSCP) templates were fabricated to study the surface-enhanced Raman scattering (SERS) effect. We obtained the Ag and Fe complex film by a co-sputtering deposition method. The size of the deposited Fe particle was changed by the sputtering power. We also study the SERS enhancement mechanism by decorating the PATP probe molecule on the different films. The SERS signals increased firstly, and then decreased as the size of Fe particles grows gradually. The finite-difference time domain (FDTD) simulation and experimental Raman results manifest that SERS enhancement was mainly attributed to surface plasma resonance (SPR) between Ag and Ag nanoparticles. The SERS signals of PATP molecule were enhanced to reach a lowest detectable concentration of 10-8 mol/L. The research demonstrates that the SERS substrates with Ag-Fe cap-shaped arrays have a high sensitivity.

  8. Sharper Fermi LAT Images

    Science.gov (United States)

    Portillo, Stephen; Finkbeiner, Douglas P.

    2015-01-01

    The Large Area Telescope on the Fermi Gamma-ray Space Telescope has a point spread function with large tails, consisting of events affected by tracker ineffiencies, inactive volumes, and hard scattering; these tails can make source confusion a limiting factor. The parameter CTBCORE, available in the publicly available Extended Fermi LAT data, estimates the quality of each event's direction reconstruction; by implementing a cut in this parameter, the tails of the point spread function can be suppressed at the cost of losing effective area. We implement cuts on CTBCORE and present updated instrument response functions derived from the Fermi LAT data itself, along with all-sky maps generated with these cuts. Having shown the effectiveness of these cuts, especially at low energies, we encourage their use in analyses where angular resolution is more important than Poisson noise.

  9. Fermi comes to CERN

    CERN Document Server

    2009-01-01

    In only 10 months of scientific activity, the Fermi space observatory has already collected an unprecedented wealth of information on some of the most amazing objects in the sky. In a recent talk at CERN, Luca Latronico, a member of the Fermi collaboration, explained some of their findings and emphasized the strong links between High Energy Physics (HEP) and High Energy Astrophysics (HEA). The Fermi gamma-ray telescope was launched by NASA in June 2008. After about two months of commissioning it started sending significant data back to the Earth. Since then, it has made observations that are changing our view of the sky: from discovering a whole new set of pulsars, the greatest total energy gamma-ray burst ever, to detecting an unexplained abundance of high-energy electrons that could be a signature of dark matter, to producing a uniquely rich and high definition sky map in gamma-rays. The high performance of the instrument comes as ...

  10. A Safe Solution to Dopant Gas Desorption from Metal Surfaces

    Science.gov (United States)

    Nakanoya, Tsutomu; Egami, Maki

    2006-11-01

    TOXICAPTURE™ is used to further minimize trace toxic dopant gas inside cylinder valve outlets, which, over time, may desorb from metal surfaces. When outlet caps or connections to ion source gas cylinders are disconnected in order to perform installations or bottle changes, there always is some risk that toxic fumes resulting from desorption of the metal surface in contact with dopant gas are released in air and inhaled by the operator. TOXICAPTURE™ is a simple and easy solution to reduce this risk that may damage human health or may pollute clean room environment. TOXICAPTURE™ will react with the poison gas vapor to form nontoxic and solid material through irreversible chemical reactions. TOXICAPTURE™ prevents contamination and corrosion on gas contact surfaces of gas pipings, pressure regulators, pneumatic valves, mass flow controllers, and other parts in a gas box. TOXICAPTURE™ is highly effective in shortening the time to achieve high vacuum and in extending the lifetime of devices in the gas box. In this paper, we introduce the structure, functions, reactivity, applications, and effectivity of TOXICAPTURE™.

  11. Modeling adsorption and reactions of organic molecules at metal surfaces.

    Science.gov (United States)

    Liu, Wei; Tkatchenko, Alexandre; Scheffler, Matthias

    2014-11-18

    CONSPECTUS: The understanding of adsorption and reactions of (large) organic molecules at metal surfaces plays an increasingly important role in modern surface science and technology. Such hybrid inorganic/organic systems (HIOS) are relevant for many applications in catalysis, light-emitting diodes, single-molecule junctions, molecular sensors and switches, and photovoltaics. Obviously, the predictive modeling and understanding of the structure and stability of such hybrid systems is an essential prerequisite for tuning their electronic properties and functions. At present, density-functional theory (DFT) is the most promising approach to study the structure, stability, and electronic properties of complex systems, because it can be applied to both molecules and solids comprising thousands of atoms. However, state-of-the-art approximations to DFT do not provide a consistent and reliable description for HIOS, which is largely due to two issues: (i) the self-interaction of the electrons with themselves arising from the Hartree term of the total energy that is not fully compensated in approximate exchange-correlation functionals, and (ii) the lack of long-range part of the ubiquitous van der Waals (vdW) interactions. The self-interaction errors sometimes lead to incorrect description of charge transfer and electronic level alignment in HIOS, although for molecules adsorbed on metals these effects will often cancel out in total energy differences. Regarding vdW interactions, several promising vdW-inclusive DFT-based methods have been recently demonstrated to yield remarkable accuracy for intermolecular interactions in the gas phase. However, the majority of these approaches neglect the nonlocal collective electron response in the vdW energy tail, an effect that is particularly strong in condensed phases and at interfaces between different materials. Here we show that the recently developed DFT+vdW(surf) method that accurately accounts for the collective electronic

  12. An AES Study of the Room Temperature Surface Conditioning of Technological Metal Surfaces by Electron Irradiation

    OpenAIRE

    Scheuerlein, C; Hilleret, Noël; Taborelli, M; Brown, A; Baker, M A

    2002-01-01

    The modifications to technological copper and niobium surfaces induced by 2.5 keV electron irradiation have been investigated in the context of the conditioning process occurring in particle accelerator ultra high vacuum systems. Changes in the elemental surface composition have been found using Scanning Auger Microscopy (SAM) by monitoring the carbon, oxygen and metal Auger peak intensities as a function of electron irradiation in the dose range 10-6 to 10-2 C mm-2. The surface analysis resu...

  13. Fermi and nuclear security

    International Nuclear Information System (INIS)

    Alcober Bosch, V.

    2003-01-01

    Following the scientific life of Fermi the article reviews the historical evolution of nuclear security from the base of the first system foreseen for the CP-1 critical pile, which made it possible to demonstrate self-sustaining fission reaction, until the mid-fifties by which time the subsequent importance of this concept was perceived. Technological advances have gone hand in hand with the development of the concept of security, and have become a further point to be taken into account in any nuclear installation, and which Fermi always kept in mind during his professional life. (Author) 12 refs

  14. Memory effects in nonadiabatic molecular dynamics at metal surfaces

    DEFF Research Database (Denmark)

    Olsen, Thomas; Schiøtz, Jakob

    2010-01-01

    We study the effect of temporal correlation in a Langevin equation describing nonadiabatic dynamics at metal surfaces. For a harmonic oscillator, the Langevin equation preserves the quantum dynamics exactly and it is demonstrated that memory effects are needed in order to conserve the ground state......, this approach is readily extended to anharmonic potentials. Using density functional theory, we calculate representative Langevin trajectories for associative desorption of N-2 from Ru(0001) and find that memory effects lower the dissipation of energy. Finally, we propose an ab initio scheme to calculate...

  15. Chemical and Molecular Characterization of Biofilm on Metal Surfaces

    Digital Repository Service at National Institute of Oceanography (India)

    Bhosle, N.B.

    in seawater. Biofouling 17, 129 145. Cowie, G.L., Hedges, J.I., 1984. Carbohydrates sources in a coastal marine environment. Geochimica et Cosmochimica Acta 48, 2075 2087. Cowie, G.L., Hedges, J.I., Prahl, F.G., deLange, G.J., 1995. Elemental... to assess development of conditioning film and biofilm on metal surfaces (Bhosle et al., 1989; Bhosle et al., 1990; Sonak and Bhosle, 1995; Bhosle and Wagh, 1997, D?Souza and Bhosle, 2003). This chapter is a compilation of relevant information...

  16. Surface structure determinations of crystalline ionic thin films grown on transition metal single crystal surfaces by low energy electron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Joel Glenn [Univ. of California, Berkeley, CA (United States)

    2000-05-01

    The surface structures of NaCl(100), LiF(100) and alpha-MgCl2(0001) adsorbed on various metal single crystals have been determined by low energy electron diffraction (LEED). Thin films of these salts were grown on metal substrates by exposing the heated metal surface to a molecular flux of salt emitted from a Knudsen cell. This method of investigating thin films of insulators (ionic salts) on a conducting substrate (metal) circumvents surface charging problems that plagued bulk studies, thereby allowing the use of electron-based techniques to characterize the surface.

  17. Formation of negative ions on a metal surface

    International Nuclear Information System (INIS)

    Amersfoort, P.W. van.

    1987-01-01

    In this thesis a fundamental study of the charge exchange process of positive ions on the converter surface is presented. Beams of hydrogen ad cesium ions are scattered from a thoroughly cleaned W(110) surface, under ultra-high vacuum conditions. The cesium coverage of the surface is a controlled parameter. Ch. 2 deals with the negative-ion formation probability for hydrogen atoms. The influence of coabsorption of hydrogen is studied in Ch. 3. These measurements are important for understanding the formation process in plasma sources, because the converter surface is expected to be strongly contaminated with hydrogen. The charge state of scattered cesium particles is investigated in Ch. 4. Knowledge of this parameter is essential for Ch. 5, in which a model study of adsorption of cesium on a metal surface in contact with a plasma is presented. Finally, the negative-ion formation process in a plasma environment is studied in Ch. 6. Measurements done on a hollow-cathode discharge equipped with a novel type of converter, a porous tungsten button, are discussed. Liquid cesium diffuses through this button towards the side in contact with the plasma. (Auth.)

  18. Analysis of surface bond lengths reported for chemisorption on metal surfaces

    Science.gov (United States)

    Mitchell, K. A. R.

    1985-01-01

    A review is given of bond length information available from the techniques of surface crystallography (particularly with LEED, SEXAFS and photoelectron diffraction) for chemisorption on well-defined surfaces of metals (M). For adsorbed main-group atoms (X), measured X-M interatomic distances for 38 combinations of X and M have been assessed with a bond order-bond length relation in combination with the Schomaker-Stevenson approach for determining single-bond lengths. When the surface bond orders are fixed primarily by the valency of X, this approach appears to provide a simple framework for predicing X-M surface bond lengths. Further, in cases where agreement has been reached from different surface crystallographic techniques, this framework has the potential for assessing refinements to the surface bonding model (e.g. in determining the roles of the effective surface valency of M, and of coordinate bonding and supplementary π bonding between X and M). Preliminary comparisons of structural data are also given for molecular adsorption (CO and ethylidyne) and for the chemisorption of other metal atoms.

  19. Kinetics of excitations on the Fermi arcs in underdoped cuprates at low temperatures

    Science.gov (United States)

    Gor'kov, Lev P.

    2013-07-01

    The Fermi-liquid-like (FL) resistivity recently observed in clean Hg1201 below the pseudogap temperature was related to carriers at the nodal points on the Fermi surface (FS) (N. Barišić , arXiv:1207.1504, doi:10.1073/pnas.13019891109). We show that this has important implications for the electronic spectrum of underdoped (UD) cuprates as a whole. Photoemission experiments (angle-resolved photoemission spectroscopy) in other cuprates picture the spectrum as “metallic arcs” separated from each other by regions with large energy gaps. We rigorously solve the kinetic equation in such a model. The Fermi arcs' carriers contribute to the FL resistivity, if scattering between the opposite nodal points admits the umklapp processes. The Hall coefficient defines the effective number of carriers on the arcs and at weak magnetic fields it has a positive sign. All parameters that determine the arcs' widths are measurable experimentally. We conclude that the T2 resistivity gives support to the Fermi arcs' concept and argue that the idea of a reconstructed FS in UD cuprates is not consistent with the latter.

  20. The 3-Dimensional Fermi Liquid Description for the Iron-Based Superconductors

    Science.gov (United States)

    Misawa, Setsuo

    2018-01-01

    The quasiparticles in the normal state of iron-based superconductors have been shown to behave universally as a 3-dimensional Fermi liquid. Because of interactions and the presence of sharp Fermi surfaces, the quasiparticle energy contains, as a function of the momentum \\varvec{p}, a term of the form ( p - p_0)^3 ln {( |p-p_0|/p_0)} , where p = | \\varvec{p} | and p_0 is the Fermi momentum. The electronic specific heat coefficient, magnetic susceptibility (Knight shift), electrical resistivity, Hall coefficient and thermoelectric power divided by temperature follow, as functions of temperature T, the logarithmic formula a-b T^2 ln {(T/T^*)}, a, b and T^* being constant; these formulae have been shown to explain the observed data for all iron-based superconductors. It is shown that the concept of non-Fermi liquids or anomalous metals which appears in the literature is not needed for descriptions of the present systems. When the superconducting transition temperature TC and the b / a value for the resistivity are plotted as functions of the doping content x, there appear various characteristic diagrams in which regions of positive correlation and those of negative correlation between TC and b / a are interconnected; from these diagrams, we may make speculations about the types of superconductivity and the crossover between them.

  1. The Impedance Due to the Roughness of Metallic Surface

    Energy Technology Data Exchange (ETDEWEB)

    Bane, Karl L.F.; Chao, Alex W.; Ng, Cho-K.; /SLAC

    2011-08-26

    In some future accelerator designs, such as that of the Linear Coherent Light Source (LCLS), the bunch is very short, with an rms length on the order of 10's of microns, and the effective skin depth of the vacuum chamber walls can be very small compared to 1 micron. If the skin depth is small compared to the scale of the surface roughness then the wakefield due to the walls will be dominated by the roughness, and not by the wall resistance. To estimate the wakefields of a rough, metallic surface we begin with a simple, analytical model. Then we apply the MAFIA 3-dimensional, time-domain computer module, T3 to check and find the correct coefficient for the model.

  2. Visualization of terahertz surface waves propagation on metal foils

    Science.gov (United States)

    Wang, Xinke; Wang, Sen; Sun, Wenfeng; Feng, Shengfei; Han, Peng; Yan, Haitao; Ye, Jiasheng; Zhang, Yan

    2016-01-01

    Exploitation of surface plasmonic devices (SPDs) in the terahertz (THz) band is always beneficial for broadening the application potential of THz technologies. To clarify features of SPDs, a practical characterization means is essential for accurately observing the complex field distribution of a THz surface wave (TSW). Here, a THz digital holographic imaging system is employed to coherently exhibit temporal variations and spectral properties of TSWs activated by a rectangular or semicircular slit structure on metal foils. Advantages of the imaging system are comprehensively elucidated, including the exclusive measurement of TSWs and fall-off of the time consumption. Numerical simulations of experimental procedures further verify the imaging measurement accuracy. It can be anticipated that this imaging system will provide a versatile tool for analyzing the performance and principle of SPDs. PMID:26729652

  3. Energetic Surface Smoothing of Complex Metal-Oxide Thin Films

    International Nuclear Information System (INIS)

    Willmott, P.R.; Herger, R.; Schlepuetz, C.M.; Martoccia, D.; Patterson, B.D.

    2006-01-01

    A novel energetic smoothing mechanism in the growth of complex metal-oxide thin films is reported from in situ kinetic studies of pulsed laser deposition of La 1-x Sr x MnO 3 on SrTiO 3 , using x-ray reflectivity. Below 50% monolayer coverage, prompt insertion of energetic impinging species into small-diameter islands causes them to break up to form daughter islands. This smoothing mechanism therefore inhibits the formation of large-diameter 2D islands and the seeding of 3D growth. Above 50% coverage, islands begin to coalesce and their breakup is thereby suppressed. The energy of the incident flux is instead rechanneled into enhanced surface diffusion, which leads to an increase in the effective surface temperature of ΔT≅500 K. These results have important implications on optimal conditions for nanoscale device fabrication using these materials

  4. Composite Fermions with Tunable Fermi Contour Anisotropy

    Science.gov (United States)

    Kamburov, D.; Liu, Yang; Shayegan, M.; Pfeiffer, L. N.; West, K. W.; Baldwin, K. W.

    2013-05-01

    The composite fermion formalism elegantly describes some of the most fascinating behaviors of interacting two-dimensional carriers at low temperatures and in strong perpendicular magnetic fields. In this framework, carriers minimize their energy by attaching two flux quanta and forming new quasiparticles, the so-called composite fermions. Thanks to the flux attachment, when a Landau level is half-filled, the composite fermions feel a vanishing effective magnetic field and possess a Fermi surface with a well-defined Fermi contour. Our measurements in a high-quality two-dimensional hole system confined to a GaAs quantum well demonstrate that a parallel magnetic field can significantly distort the hole-flux composite fermion Fermi contour.

  5. Surface nano-architecture of a metal-organic framework.

    Science.gov (United States)

    Makiura, Rie; Motoyama, Soichiro; Umemura, Yasushi; Yamanaka, Hiroaki; Sakata, Osami; Kitagawa, Hiroshi

    2010-07-01

    The rational assembly of ultrathin films of metal-organic frameworks (MOFs)--highly ordered microporous materials--with well-controlled growth direction and film thickness is a critical and as yet unrealized issue for enabling the use of MOFs in nanotechnological devices, such as sensors, catalysts and electrodes for fuel cells. Here we report the facile bottom-up fabrication at ambient temperature of such a perfect preferentially oriented MOF nanofilm on a solid surface (NAFS-1), consisting of metalloporphyrin building units. The construction of NAFS-1 was achieved by the unconventional integration in a modular fashion of a layer-by-layer growth technique coupled with the Langmuir-Blodgett method. NAFS-1 is endowed with highly crystalline order both in the out-of-plane and in-plane orientations to the substrate, as demonstrated by synchrotron X-ray surface crystallography. The proposed structural model incorporates metal-coordinated pyridine molecules projected from the two-dimensional sheets that allow each further layer to dock in a highly ordered interdigitated manner in the growth of NAFS-1. We expect that the versatility of the solution-based growth strategy presented here will allow the fabrication of various well-ordered MOF nanofilms, opening the way for their use in a range of important applications.

  6. The secondary electron yield of noble metal surfaces

    Science.gov (United States)

    Gonzalez, L. A.; Angelucci, M.; Larciprete, R.; Cimino, R.

    2017-11-01

    Secondary electron yield (SEY) curves in the 0-1000 eV range were measured on polycrystalline Ag, Au and Cu samples. The metals were examined as introduced in the ultra-high vacuum chamber and after having been cleaned by Ar+ ion sputtering. The comparison between the curves measured on the clean samples and in the presence of contaminants, due to the permanence in atmosphere, confirmed that the SEY behavior is strongly influenced by the chemical state of the metal surface. We show that when using very slow primary electrons the sample work function can be determined with high accuracy from the SEY curves. Moreover we prove that SEY is highly sensitive to the presence of adsorbates even at submonolayer coverage. Results showing the effect of small quantities of CO adsorbed on copper are presented. Our findings demonstrate that SEY, besides being an indispensable mean to qualify technical materials in many technological fields, can be also used as a flexible and advantageous diagnostics to probe surfaces and interfaces.

  7. The secondary electron yield of noble metal surfaces

    Directory of Open Access Journals (Sweden)

    L. A. Gonzalez

    2017-11-01

    Full Text Available Secondary electron yield (SEY curves in the 0-1000 eV range were measured on polycrystalline Ag, Au and Cu samples. The metals were examined as introduced in the ultra-high vacuum chamber and after having been cleaned by Ar+ ion sputtering. The comparison between the curves measured on the clean samples and in the presence of contaminants, due to the permanence in atmosphere, confirmed that the SEY behavior is strongly influenced by the chemical state of the metal surface. We show that when using very slow primary electrons the sample work function can be determined with high accuracy from the SEY curves. Moreover we prove that SEY is highly sensitive to the presence of adsorbates even at submonolayer coverage. Results showing the effect of small quantities of CO adsorbed on copper are presented. Our findings demonstrate that SEY, besides being an indispensable mean to qualify technical materials in many technological fields, can be also used as a flexible and advantageous diagnostics to probe surfaces and interfaces.

  8. Electronic properties of semiconductor surfaces and metal/semiconductor interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Tallarida, M.

    2005-05-15

    This thesis reports investigations of the electronic properties of a semiconductor surface (silicon carbide), a reactive metal/semiconductor interface (manganese/silicon) and a non-reactive metal/semiconductor interface (aluminum-magnesium alloy/silicon). The (2 x 1) reconstruction of the 6H-SiC(0001) surface has been obtained by cleaving the sample along the (0001) direction. This reconstruction has not been observed up to now for this compound, and has been compared with those of similar elemental semiconductors of the fourth group of the periodic table. This comparison has been carried out by making use of photoemission spectroscopy, analyzing the core level shifts of both Si 2p and C 1s core levels in terms of charge transfer between atoms of both elements and in different chemical environments. From this comparison, a difference between the reconstruction on the Si-terminated and the C-terminated surface was established, due to the ionic nature of the Si-C bond. The growth of manganese films on Si(111) in the 1-5 ML thickness range has been studied by means of LEED, STM and photoemission spectroscopy. By the complementary use of these surface science techniques, two different phases have been observed for two thickness regimes (<1 ML and >1 ML), which exhibit a different electronic character. The two reconstructions, the (1 x 1)-phase and the ({radical}3 x {radical}3)R30 -phase, are due to silicide formation, as observed in core level spectroscopy. The growth proceeds via island formation in the monolayer regime, while the thicker films show flat layers interrupted by deep holes. On the basis of STM investigations, this growth mode has been attributed to strain due to lattice mismatch between the substrate and the silicide. Co-deposition of Al and Mg onto a Si(111) substrate at low temperature (100K) resulted in the formation of thin alloy films. By varying the relative content of both elements, the thin films exhibited different electronic properties

  9. Critical Doping for the Onset of Fermi-Surface Reconstruction by Charge-Density-Wave Order in the Cuprate Superconductor La_{2-x}Sr_{x}CuO_{4}

    Directory of Open Access Journals (Sweden)

    S. Badoux

    2016-04-01

    Full Text Available The Seebeck coefficient S of the cuprate superconductor La_{2-x}Sr_{x}CuO_{4} (LSCO was measured in magnetic fields large enough to access the normal state at low temperatures, for a range of Sr concentrations from x=0.07 to x=0.15. For x=0.11, 0.12, 0.125, and 0.13, S/T decreases upon cooling to become negative at low temperatures. The same behavior is observed in the Hall coefficient R_{H}(T. In analogy with other hole-doped cuprates at similar hole concentrations p, the negative S and R_{H} show that the Fermi surface of LSCO undergoes a reconstruction caused by the onset of charge-density-wave modulations. Such modulations have indeed been detected in LSCO by x-ray diffraction in precisely the same doping range. Our data show that in LSCO this Fermi-surface reconstruction is confined to 0.085

  10. Quantum nonlocal theory of topological Fermi arc plasmons in Weyl semimetals

    Science.gov (United States)

    Andolina, Gian Marcello; Pellegrino, Francesco M. D.; Koppens, Frank H. L.; Polini, Marco

    2018-03-01

    The surface of a Weyl semimetal (WSM) displays Fermi arcs, i.e., disjoint segments of a two-dimensional Fermi contour. We present a quantum-mechanical nonlocal theory of chiral Fermi arc plasmons in WSMs with broken time-reversal symmetry. These are collective excitations constructed from topological Fermi arc and bulk electron states and arising from electron-electron interactions, which are treated in the realm of the random phase approximation. Our theory includes quantum effects associated with the penetration of the Fermi arc surface states into the bulk and dissipation, which is intrinsically nonlocal in nature and arises from decay processes mainly involving bulk electron-hole pair excitations.

  11. An AES Study of the Room Temperature Surface Conditioning of Technological Metal Surfaces by Electron Irradiation

    CERN Document Server

    Scheuerlein, C; Taborelli, M; Brown, A; Baker, M A

    2002-01-01

    The modifications to technological copper and niobium surfaces induced by 2.5 keV electron irradiation have been investigated in the context of the conditioning process occurring in particle accelerator ultra high vacuum systems. Changes in the elemental surface composition have been found using Scanning Auger Microscopy (SAM) by monitoring the carbon, oxygen and metal Auger peak intensities as a function of electron irradiation in the dose range 10-6 to 10-2 C mm-2. The surface analysis results are compared with electron dose dependent secondary electron and electron stimulated desorption yield measurements. Initially the electron irradiation causes a surface cleaning through electron stimulated desorption, in particular of hydrogen. During this period both the electron stimulated desorption and secondary electron yield decrease as a function of electron dose. When the electron dose exceeds 10-4 C mm-2 electron stimulated desorption yields are reduced by several orders of magnitude and the electron beam indu...

  12. Corrugated metal surface with pillars for terahertz surface plasmon polariton waveguide components

    KAUST Repository

    Yuehong, Xu

    2018-01-12

    In the terahertz regime, due to perfect conductivity of most metals, it is hard to realize a strong confinement of Surface plasmon polaritons (SPPs) although a propagation loss could be sufficiently low. We experimentally demonstrated a structure with periodic pillars arranged on a thin metal surface that supports bound modes of spoof SPPs at terahertz (THz) frequencies. By using scanning near-field THz microscopy, the electric field distribution above the metal surface within a distance of 130 μm was mapped. The results proved that this structure could guide spoof SPPs propagating along subwavelength waveguides, and at the same time reduce field expansion into free space. Further, for the development of integrated optical circuits, several components including straight waveguide, S-bend, Y-splitter and directional couplers were designed and characterized by the same method. We believe that the waveguide components proposed here will pave a new way for the development of flexible, wideband and compact photonic circuits operating at THz frequencies.

  13. Observation of Fermi Arc Surface States Induced by Organic Memristive/Memcapacitive Devices with a Double-Helical Polarized Single-Wall Nanotube Membrane for Direct Chelating with Matrix Matelloproteinase-2

    Directory of Open Access Journals (Sweden)

    E. T. CHEN

    2017-07-01

    Full Text Available Matrix Matelloproteinase-2 (MMP-2 plays a key role in many diseases. A new type of dual-functioning device was developed for fast, direct ultrasensitive detection of MMP-2. We report a memristive/memcapacitive device with vertex double-helical polarized biomimetic protein nanotubules forming double membranes with potential gradient mimicking mitochondria’s inner double membrane has developed. We also report Fermi arcs with nodes on the surface of the nanostructured membrane was observed at the first time by using a 3D real-time - energy-current dynamic mapping method based on data obtained from the Cyclic Voltammetry (CV method. The memristive/memcapacitive device comprises a cross- linked organic polymer having single-wall cross-bar polarized nanotube self-assembling membrane (SAM on a gold chip, under an applied potential, a pair of vertex double- helical circular current flow induced the Fermi arcs states occurrence and these Fermi arcs promoted a direct chelating with zinc ions of the MMP-2 to become possible without any antibody, tracer, or reagent used at room temperature was accomplished. We observed the pair of Dirac Cones became alignment and strengthened with each other in the presence of MMP-2 compared without MMP-2. The MMP-2 can be detected with ag/mL level sensitivity and the value of Detection of Limits (DOL reached orders of magnitude lower than published reports with simplified procedures by a Chronoamperometry (CA method and a Double Step Chronopotentiometry (DSCPO method using NIST SRM 965A standard human serum, respectively. The results show a feasible application for developing the commercial fast and real-time MMP monitoring devices for various diseases.

  14. Urbanization increased metal levels in lake surface sediment and catchment topsoil of waterscape parks

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hong-Bo [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Yu, Shen, E-mail: syu@iue.ac.cn [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Li, Gui-Lin [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Liu, Yi; Yu, Guang-Bin [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Deng, Hong [Department of Environmental Sciences, Tiantong National Station of Forest Ecosystem, Key Laboratory of Urbanization and Ecological Restoration, East China Normal University, Shanghai 200062 (China); Wu, Sheng-Chun [State Key Laboratory in Marine Pollution, Biology and Chemistry Department, City University of Hong Kong, Hong Kong (China); Wong, Ming-Hung [Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Hong Kong (China)

    2012-08-15

    Lake surface sediment is mainly derived from topsoil in its catchment. We hypothesized that distribution of anthropogenic metals would be homogenous in lake surface sediment and the lake's catchment topsoil. Anthropogenic metal distributions (cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn)) in fourteen waterscape parks were investigated in surface sediments and catchment topsoils and possible source homogeneity was tested using stable Pb isotopic ratio analysis. The parks were located along an urbanization gradient consisting of suburban (SU), developing urban (DIU), developed urban (DDU), and central urban core (CUC) areas in Shanghai, China. Results indicated that surface lake sediments and catchment topsoils in the CUC parks were highly contaminated by the investigated anthropogenic metals. Total metal contents in surface sediment and topsoil gradually increased along the urbanization gradient from the SU to CUC areas. Generally, the surface sediments had greater total metal contents than their catchment topsoils. These results suggest that urbanization drives the anthropogenic metal enrichment in both surface sediment and its catchment topsoil in the waterscape parks. Soil fine particles (< 63 {mu}m) and surface sediments had similar enrichment ratios of metals, suggesting that surface runoff might act as a carrier for metals transporting from catchment to lake. Stable Pb isotope ratio analysis revealed that the major anthropogenic Pb source in surface sediment was coal combustion as in the catchment topsoil. Urbanization also correlated with chemical fractionation of metals in both surface sediment and catchment topsoil. From the SU to the CUC parks, amounts of labile metal fractions increased while the residual fraction of those metals remained rather constant. In short, urbanization in Shanghai drives anthropogenic metal distribution in environmental matrices and the sources were homogenous. -- Highlights: Black-Right-Pointing-Pointer Obvious

  15. Urbanization increased metal levels in lake surface sediment and catchment topsoil of waterscape parks

    International Nuclear Information System (INIS)

    Li, Hong-Bo; Yu, Shen; Li, Gui-Lin; Liu, Yi; Yu, Guang-Bin; Deng, Hong; Wu, Sheng-Chun; Wong, Ming-Hung

    2012-01-01

    Lake surface sediment is mainly derived from topsoil in its catchment. We hypothesized that distribution of anthropogenic metals would be homogenous in lake surface sediment and the lake's catchment topsoil. Anthropogenic metal distributions (cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn)) in fourteen waterscape parks were investigated in surface sediments and catchment topsoils and possible source homogeneity was tested using stable Pb isotopic ratio analysis. The parks were located along an urbanization gradient consisting of suburban (SU), developing urban (DIU), developed urban (DDU), and central urban core (CUC) areas in Shanghai, China. Results indicated that surface lake sediments and catchment topsoils in the CUC parks were highly contaminated by the investigated anthropogenic metals. Total metal contents in surface sediment and topsoil gradually increased along the urbanization gradient from the SU to CUC areas. Generally, the surface sediments had greater total metal contents than their catchment topsoils. These results suggest that urbanization drives the anthropogenic metal enrichment in both surface sediment and its catchment topsoil in the waterscape parks. Soil fine particles (< 63 μm) and surface sediments had similar enrichment ratios of metals, suggesting that surface runoff might act as a carrier for metals transporting from catchment to lake. Stable Pb isotope ratio analysis revealed that the major anthropogenic Pb source in surface sediment was coal combustion as in the catchment topsoil. Urbanization also correlated with chemical fractionation of metals in both surface sediment and catchment topsoil. From the SU to the CUC parks, amounts of labile metal fractions increased while the residual fraction of those metals remained rather constant. In short, urbanization in Shanghai drives anthropogenic metal distribution in environmental matrices and the sources were homogenous. -- Highlights: ► Obvious urbanization effect on metal

  16. Functionalization of silicon nanowire surfaces with metal-organic frameworks

    KAUST Repository

    Liu, Nian

    2011-12-28

    Metal-organic frameworks (MOFs) and silicon nanowires (SiNWs) have been extensively studied due to their unique properties; MOFs have high porosity and specific surface area with well-defined nanoporous structure, while SiNWs have valuable one-dimensional electronic properties. Integration of the two materials into one composite could synergistically combine the advantages of both materials and lead to new applications. We report the first example of a MOF synthesized on surface-modified SiNWs. The synthesis of polycrystalline MOF-199 (also known as HKUST-1) on SiNWs was performed at room temperature using a step-by-step (SBS) approach, and X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and energy dispersive spectroscopy elemental mapping were used to characterize the material. Matching of the SiNW surface functional groups with the MOF organic linker coordinating groups was found to be critical for the growth. Additionally, the MOF morphology can by tuned by changing the soaking time, synthesis temperature and precursor solution concentration. This SiNW/MOF hybrid structure opens new avenues for rational design of materials with novel functionalities. © 2011 Tsinghua University Press and Springer-Verlag Berlin Heidelberg.

  17. Electron Scattering at Surfaces of Epitaxial Metal Layers

    Science.gov (United States)

    Chawla, Jasmeet Singh

    In the field of electron transport in metal films and wires, the 'size effect' refers to the increase in the resistivity of the films and wires as their critical dimensions (thickness of film, width and height of wires) approach or become less than the electron mean free path lambda, which is, for example, 39 nm for bulk copper at room temperature. This size-effect is currently of great concern to the semiconductor industry because the continued downscaling of feature sizes has already lead to Cu interconnect wires in this size effect regime, with a reported 2.5 times higher resistivity for 40 nm wide Cu wires than for bulk Cu. Silver is a possible alternate material for interconnect wires and titanium nitride is proposed as a gate metal in novel field-effect-transistors. Therefore, it is important to develop an understanding of how the growth, the surface morphology, and the microstructure of ultrathin (few nanometers) Cu, Ag and TiN layers affect their electrical properties. This dissertation aims to advance the scientific knowledge of electron scattering at surfaces (external surfaces and grain boundaries), that are, the primary reasons for the size-effect in metal conductors. The effect of surface and grain boundary scattering on the resistivity of Cu thin films and nanowires is separately quantified using (i) in situ transport measurements on single-crystal, atomically smooth Cu(001) layers, (ii) textured polycrystalline Cu(111) layers and patterned wires with independently varying grain size, thickness and line width, and (iii) in situ grown interfaces including Cu-Ta, Cu-MgO, Cu-vacuum and Cu-oxygen. In addition, the electron surface scattering is also measured in situ for single-crystal Ag(001), (111) twinned epitaxial Ag(001), and single-crystal TiN(001) layers. Cu(001), Ag(001), and TiN(001) layers with a minimum continuous thickness of 4, 3.5 and 1.8 nm, respectively, are grown by ultra-high vacuum magnetron sputter deposition on MgO(001) substrates with

  18. Enhanced Electron-Phonon Coupling at Metal Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Plummer, Ward E.

    2010-08-04

    The Born-Oppenheimer approximation (BOA) decouples electronic from nuclear motion, providing a focal point for most quantum mechanics textbooks. However, a multitude of important chemical, physical and biological phenomena are driven by violations of this approximation. Vibronic interactions are a necessary ingredient in any process that makes or breaks a covalent bond, for example, conventional catalysis or enzymatically delivered biological reactions. Metastable phenomena associated with defects and dopants in semiconductors, oxides, and glasses entail violation of the BOA. Charge exchange in inorganic polymers, organic slats and biological systems involves charge- induced distortions of the local structure. A classic example is conventional superconductivity, which is driven by the electron-lattice interaction. High-resolution angle-resolved photoemission experiments are yielding new insight into the microscopic origin of electron-phonon coupling (EPC) in anisotropic two-dimensional systems. Our recent surface phonon measurement on the surface of a high-Tc material clearly indicates an important momentum dependent EPC in these materials. In the last few years we have shifted our research focus from solely looking at electron phonon coupling to examining the structure/functionality relationship at the surface of complex transition metal compounds. The investigation on electron phonon coupling has allowed us to move to systems where there is coupling between the lattice, the electrons and the spin.

  19. The assessment of metal surface cleanliness by XPS

    CERN Document Server

    Scheuerlein, C

    2006-01-01

    The most commonly used quantity to characterize surface cleanliness through X-ray photoemission spectroscopy (XPS) measurements is the so-called relative atomic surface concentration of carbon (at.% C). We have investigated the relationship between at.% C values and the C 1s peak area on Cu and we find a nearly linear behaviour in the range 15–80 at.% C. Correction factors for the measured at.% C values that enable a comparison of the cleanliness level of different materials, notably Cu, Al and stainless steel, have been determined experimentally. The influence of the storage time and method on the degree of re-contamination of initially clean Cu has been examined. The carbon contamination on clean metallic Cu increases abruptly to some 20 at.% C upon air exposure and continues to increase with storage time in air. Storage in polymer bags can lead to up to 70 at.% C after 1 month, whereas storage in aluminium foil can preserve an acceptable surface cleanliness for a similar storage time.

  20. Metal thin film growth on multimetallic surfaces: From quaternary metallic glass to binary crystal

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Dapeng [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    The work presented in this thesis mainly focuses on the nucleation and growth of metal thin films on multimetallic surfaces. First, we have investigated the Ag film growth on a bulk metallic glass surface. Next, we have examined the coarsening and decay of bilayer Ag islands on NiAl(110) surface. Third, we have investigated the Ag film growth on NiAl(110) surface using low-energy electron diffraction (LEED). At last, we have reported our investigation on the epitaxial growth of Ni on NiAl(110) surface. Some general conclusions can be drawn as follows. First, Ag, a bulk-crystalline material, initially forms a disordered wetting layer up to 4-5 monolayers on Zr-Ni-Cu-Al metallic glass. Above this coverage, crystalline 3D clusters grow, in parallel with the flatter regions. The cluster density increases with decreasing temperature, indicating that the conditions of island nucleation are far-from-equilibrium. Within a simple model where clusters nucleate whenever two mobile Ag adatoms meet, the temperature-dependence of cluster density yields a (reasonable) upper limit for the value of the Ag diffusion barrier on top of the Ag wetting layer of 0.32 eV. Overall, this prototypical study suggests that it is possible to grow films of a bulk-crystalline metal that adopt the amorphous character of a glassy metal substrate, if film thickness is sufficiently low. Next, the first study of coarsening and decay of bilayer islands has been presented. The system was Ag on NiAl(110) in the temperature range from 185 K to 250 K. The coarsening behavior, has some similarities to that seen in the Ag(110) homoepitaxial system studied by Morgenstern and co-workers. At 185 K and 205 K, coarsening of Ag islands follows a Smoluchowski ripening pathway. At 205 K and 250 K, the terrace diffusion limited Ostwald ripening dominants. The experimental observed temperature for the transition from SR to OR is 205 K. The SR exhibits anisotropic island diffusion and the OR exhibits 1D decay of island

  1. Homogeneity of Surface Sites in Supported Single-Site Metal Catalysts: Assessment with Band Widths of Metal Carbonyl Infrared Spectra.

    Science.gov (United States)

    Hoffman, Adam S; Fang, Chia-Yu; Gates, Bruce C

    2016-10-06

    Determining and controlling the uniformity of isolated metal sites on surfaces of supports are central goals in investigations of single-site catalysts because well-defined species provide opportunities for fundamental understanding of the surface sites. CO is a useful probe of surface metal sites, often reacting with them to form metal carbonyls, the infrared spectra of which provide insights into the nature of the sites and the metal-support interface. Metals bonded to various support surface sites give broad bands in the spectra, and when narrow bands are observed, they indicate a high degree of uniformity of the metal sites. Much recent work on single-site catalysts has been done with supports that are inherently nonuniform, giving supported metal species that are therefore nonuniform. Herein we summarize values of ν CO data characterizing supported iridium gem-dicarbonyls, showing that the most nearly uniform of them are those supported on zeolites and the least uniform are those supported on metal oxides. Guided by ν CO data of supported iridium gem-dicarbonyls, we have determined new, general synthesis methods to maximize the degree of uniformity of iridium species on zeolites and on MgO. We report results for a zeolite HY-supported iridium gem-dicarbonyl with full width at half-maximum values of only 4.6 and 5.2 cm -1 characterizing the symmetric and asymmetric CO stretches and implying that this is the most nearly uniform supported single-site metal catalyst.

  2. Ozone Decomposition on the Surface of Metal Oxide Catalyst

    Directory of Open Access Journals (Sweden)

    Batakliev Todor Todorov

    2014-12-01

    Full Text Available The catalytic decomposition of ozone to molecular oxygen over catalytic mixture containing manganese, copper and nickel oxides was investigated in the present work. The catalytic activity was evaluated on the basis of the decomposition coefficient which is proportional to ozone decomposition rate, and it has been already used in other studies for catalytic activity estimation. The reaction was studied in the presence of thermally modified catalytic samples operating at different temperatures and ozone flow rates. The catalyst changes were followed by kinetic methods, surface measurements, temperature programmed reduction and IR-spectroscopy. The phase composition of the metal oxide catalyst was determined by X-ray diffraction. The catalyst mixture has shown high activity in ozone decomposition at wet and dry O3/O2 gas mixtures. The mechanism of catalytic ozone degradation was suggested.

  3. The Fermi Bubbles

    Science.gov (United States)

    Finkbeiner, Douglas P.

    2015-01-01

    The Fermi Bubbles are a pair of giant lobes at the heart of the Milky Way, extending roughly 50 degrees north and south of the Galactic Center, and emitting photons with energies up to 100 GeV. This previously unknown structure could be evidence for past activity of the central supermassive black hole, or enhanced star formation towards the inner Galaxy. We will describe the path to discovery of the Bubbles in multiwavelength data, from the first hints in microwave radiation measured by WMAP and X-rays from ROSAT, to the unveiling of their shape and spectrum using public gamma-ray data from the Fermi Gamma-ray Space Telescope, to more recent measurements by Planck and XMM-Newton. We will outline the current state of knowledge of the Bubbles' spectrum, morphology and internal structure, and discuss theoretical proposals and numerical simulations for their nature and origin.

  4. Surface coating for prevention of metallic seed migration in tissues

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyunseok; Park, Jong In [Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, Won Seok; Park, Min [Interdisciplinary Program in Bioengineering, Seoul National University College of Engineering, Seoul 151-742 (Korea, Republic of); Son, Kwang-Jae [Hanaro Applications Research, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Bang, Young-bong [Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270 (Korea, Republic of); Choy, Young Bin, E-mail: ybchoy@snu.ac.kr, E-mail: sye@snu.ac.kr [Interdisciplinary Program in Bioengineering, Seoul National University College of Engineering, Seoul 110-744 (Korea, Republic of); Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University, Seoul 110-744 (Korea, Republic of); Ye, Sung-Joon, E-mail: ybchoy@snu.ac.kr, E-mail: sye@snu.ac.kr [Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742 (Korea, Republic of); Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270 (Korea, Republic of); Department of Radiation Oncology, Seoul National University Hospital, Seoul 110-744 (Korea, Republic of)

    2015-06-15

    Purpose: In radiotherapy, metallic implants often detach from their deposited sites and migrate to other locations. This undesirable migration could cause inadequate dose coverage for permanent brachytherapy and difficulties in image-guided radiation delivery for patients. To prevent migration of implanted seeds, the authors propose a potential strategy to use a biocompatible and tissue-adhesive material called polydopamine. Methods: In this study, nonradioactive dummy seeds that have the same geometry and composition as commercial I-125 seeds were coated in polydopamine. Using scanning electron microscopy and x-ray photoelectron spectroscopy, the surface of the polydopamine-coated and noncoated seeds was characterized. The detachment stress between the two types of seeds and the tissue was measured. The efficacy of polydopamine-coated seed was investigated through in vitro migration tests by tracing the seed location after tissue implantation and shaking for given times. The cytotoxicity of the polydopamine coating was also evaluated. Results: The results of the coating characterization have shown that polydopamine was successfully coated on the surface of the seeds. In the adhesion test, the polydopamine-coated seeds had 2.1-fold greater detachment stress than noncoated seeds. From the in vitro test, it was determined that the polydopamine-coated seed migrated shorter distances than the noncoated seed. This difference was increased with a greater length of time after implantation. Conclusions: The authors suggest that polydopamine coating is an effective technique to prevent migration of implanted seeds, especially for permanent prostate brachytherapy.

  5. Characterization of metallic surfaces in phosphorous-bronze ordered packings

    International Nuclear Information System (INIS)

    Sandru, Claudia; Titescu, Gh.

    1997-01-01

    Copper and its alloys, particularly the phosphorous bronze, are characterized by a high water wettability as compared with other materials. This feature led to utilization of phosphorous bronze in fabrication of contact elements, a packing type equipping the distillation columns. For heavy water separation by isotopic distillation under vacuum, ordered packings of phosphorous bronze networks were fabricated. The superior performances of these packings are determined by the material and also by the geometrical form and the state of the metallic surface. Thus, a procedure of evaluating the wettability has been developed, based on tests of the network material. The results of the tests constitute a criterion of rating the functional performances of packings, particularly of their efficiencies. Also, investigation techniques of the chemical composition and of the thickness of superficial layer on the packing were developed. It was found that the packing surface presents a layer of about 5-20 μm formed mainly by oxides of copper, tin, and, depending on the packing treatment, of oxides of other elements coming from the treatment agent. The paper presents characterization of phosphorous bronze treated with potassium permanganate, a specific treatment for improving the functional performances of the packings used in the heavy water concentration and re-concentration installations

  6. Trends in the chemical properties in early transition metal carbide surfaces: A density functional study

    DEFF Research Database (Denmark)

    Kitchin, J.R.; Nørskov, Jens Kehlet; Barteau, M.A.

    2005-01-01

    In this paper we present density functional theory (DFT) investigations of the physical, chemical and electronic structure properties of several close-packed surfaces of early transition metal carbides, including beta-Mo2C(0 0 0 1), and the (1 1 1) surfaces of TiC, VC, NbC, and TaC. The results...... are in excellent agreement with experimental values of lattice constants and bulk moduli. The adsorption of atomic hydrogen is used as a probe to compare the chemical properties of various carbide surfaces. Hydrogen adsorbs more strongly to the metal-terminated carbide surfaces than to the corresponding closest......-packed pure metal surfaces, due to the tensile strain induced in the carbide surfaces upon incorporation of carbon into the lattice. Hydrogen atoms were found to adsorb more weakly on carbide surfaces than on the corresponding closest-packed pure metal surfaces only when there were surface carbon atoms...

  7. DFT studies of hydrocarbon combustion on metal surfaces.

    Science.gov (United States)

    Arya, Mina; Mirzaei, Ali Akbar; Davarpanah, Abdol Mahmood; Barakati, Seyed Masoud; Atashi, Hossein; Mohsenzadeh, Abas; Bolton, Kim

    2018-02-02

    Catalytic combustion of hydrocarbons is an important technology to produce energy. Compared to conventional flame combustion, the catalyst enables this process to operate at lower temperatures; hence, reducing the energy required for efficient combustion. The reaction and activation energies of direct combustion of hydrocarbons (CH → C + H) on a series of metal surfaces were investigated using density functional theory (DFT). The data obtained for the Ag, Au, Al, Cu, Rh, Pt, and Pd surfaces were used to investigate the validity of the Brønsted-Evans-Polanyi (BEP) and transition state scaling (TSS) relations for this reaction on these surfaces. These relations were found to be valid (R 2  = 0.94 for the BEP correlation and R 2  = 1.0 for the TSS correlation) and were therefore used to estimate the energetics of the combustion reaction on Ni, Co, and Fe surfaces. It was found that the estimated transition state and activation energies (E TS  = -69.70 eV and E a  = 1.20 eV for Ni, E TS  = -87.93 eV and E a  = 1.08 eV for Co and E TS  = -92.45 eV and E a  = 0.83 eV for Fe) are in agreement with those obtained by DFT calculations (E TS  = -69.98 eV and E a  = 1.23 eV for Ni, E TS  = -87.88 eV and E a  = 1.08 eV for Co and E TS  = -92.57 eV and E a  = 0.79 eV for Fe). Therefore, these relations can be used to predict energetics of this reaction on these surfaces without doing the time consuming transition state calculations. Also, the calculations show that the activation barrier for CH dissociation decreases in the order Ag ˃ Au ˃ Al ˃ Cu ˃ Pt ˃ Pd ˃ Ni > Co > Rh > Fe.

  8. Metal redistribution by surface casting of four earthworm species in sandy and loamy clay soils.

    NARCIS (Netherlands)

    Zorn, M.I.; van Gestel, C.A.M.; Eijsackers, H.J.P.

    2008-01-01

    Bioturbation of metal contaminated soils contributes considerably to redistribution and surfacing of contaminated soil from deeper layers. To experimentally measure the contribution of Allolobophora chlorotica, Aporrectodea caliginosa, Lumbricus rubellus and L. terrestris to soil surface casting, a

  9. Tuning apparent friction coefficient by controlled patterning bulk metallic glasses surfaces

    Science.gov (United States)

    Li, Ning; Xu, Erjiang; Liu, Ze; Wang, Xinyun; Liu, Lin

    2016-12-01

    Micro-honeycomb structures with various pitches between adjacent cells were hot-embossed on Zr35Ti30Cu8.25Be26.75 bulk metallic glass surface. The effect of pitch geometry on the frictional behavior of metallic glass surface was systematically investigated. The results revealed that all textured metallic glass surfaces show a reduction in friction coefficient compared to smooth surface. More intriguingly, the friction coefficient first decreased and then increased gradually with increasing pitches. Such unique behavior can be understood fundamentally from the perspective of competing effects between contact area and local stress level with increasing pitches. This finding not only enhance the in-depth understanding of the mechanism of the significant role of surface topography on the frictional behavior of metallic glass surface, but also opens a new route towards other functional applications for bulk metallic glasses.

  10. Study on the surface oxidation resistance of uranium metal in the atmosphere of carbon monoxide

    International Nuclear Information System (INIS)

    Wang Xiaolin; Fu Yibei; Xie Renshou

    1999-01-01

    The surface reactions of different layers on uranium metal with carbon monoxide at 25, 80 and 200 degree C are studied by X-ray photoelectron spectroscopy (XPS). The experimental results show that the carbon monoxide is adsorbed on the surface oxide layer of uranium and interacted each other. The content of oxygen in the surface oxide and O/U ratio are decreased with increasing the exposure of carbon monoxide to the surface layer. The effect of reduction on the metal surface is more obviously with a higher temperature and increasing of layer thickness. The investigation indicates the uranium metal has resistance to further oxidation in the atmosphere of carbon monoxide

  11. The dynamics of molecular interactions and chemical reactions at metal surfaces: testing the foundations of theory.

    Science.gov (United States)

    Golibrzuch, Kai; Bartels, Nils; Auerbach, Daniel J; Wodtke, Alec M

    2015-04-01

    We review studies of molecular interactions and chemical reactions at metal surfaces, emphasizing progress toward a predictive theory of surface chemistry and catalysis. For chemistry at metal surfaces, a small number of central approximations are typically made: (a) the Born-Oppenheimer approximation of electronic adiabaticity, (b) the use of density functional theory at the generalized gradient approximation level, (c) the classical approximation for nuclear motion, and (d) various reduced-dimensionality approximations. Together, these approximations constitute a provisional model for surface chemical reactivity. We review work on some carefully studied examples of molecules interacting at metal surfaces that probe the validity of various aspects of the provisional model.

  12. Magnetic moments and non-Fermi-liquid behavior in quasicrystals

    Science.gov (United States)

    Andrade, Eric

    Motivated by the intrinsic non-Fermi-liquid behavior observed in the heavy-fermion quasicrystal Au51Al34Yb15, we study the low-temperature behavior of dilute magnetic impurities placed in metallic quasicrystals. We find that a large fraction of the magnetic moments are not quenched down to very low temperatures, leading to a power-law distribution of Kondo temperatures, accompanied by a non-Fermi-liquid behavior, in a remarkable similarity to the Kondo-disorder scenario found in disordered heavy-fermion metals. This work was supported by FAPESP (Brazil) Grant No. 2013/00681-8.

  13. Fermi Surface of Three-Dimensional La(1-x)Sr(x)MnO3 Explored by Soft-X-Ray ARPES: Rhombohedral Lattice Distortion and its Effect on Magnetoresistance.

    Science.gov (United States)

    Lev, L L; Krempaský, J; Staub, U; Rogalev, V A; Schmitt, T; Shi, M; Blaha, P; Mishchenko, A S; Veligzhanin, A A; Zubavichus, Y V; Tsetlin, M B; Volfová, H; Braun, J; Minár, J; Strocov, V N

    2015-06-12

    Electronic structure of the three-dimensional colossal magnetoresistive perovskite La(1-x)Sr(x)MnO3 has been established using soft-x-ray angle-resolved photoemission spectroscopy with its intrinsically sharp definition of three-dimensional electron momentum. The experimental results show much weaker polaronic coupling compared to the bilayer manganites and are consistent with the theoretical band structure including the empirical Hubbard parameter U. The experimental Fermi surface unveils the canonical topology of alternating three-dimensional electron spheres and hole cubes, with their shadow contours manifesting the rhombohedral lattice distortion. This picture has been confirmed by one-step photoemission calculations including displacement of the apical oxygen atoms. The rhombohedral distortion is neutral to the Jahn-Teller effect and thus polaronic coupling, but affects the double-exchange electron hopping and thus the colossal magnetoresistance effect.

  14. Insights into the superhydrophobicity of metallic surfaces prepared by electrodeposition involving spontaneous adsorption of airborne hydrocarbons

    International Nuclear Information System (INIS)

    Liu, Peng; Cao, Ling; Zhao, Wei; Xia, Yue; Huang, Wei; Li, Zelin

    2015-01-01

    Graphical abstract: - Highlights: • Several superhydrophobic metallic surfaces were fabricated by fast electrodeposition. • Both micro/nanostructures and adsorption of airborne hydrocarbons make contributions. • XPS analyses confirm presence of airborne hydrocarbons on these metallic surfaces. • The adsorption of airborne hydrocarbons on the clean metal Au surface was very quick. • UV-O 3 treatment oxidized the hydrocarbons to hydrophilic oxygen-containing organics. - Abstract: Electrochemical fabrication of micro/nanostructured metallic surfaces with superhydrophobicity has recently aroused great attention. However, the origin still remains unclear why smooth hydrophilic metal surfaces become superhydrophobic by making micro/nanostructures without additional surface modifications. In this work, several superhydrophobic micro/nanostructured metal surfaces were prepared by a facile one-step electrodeposition process, including non-noble and noble metals such as copper, nickel, cadmium, zinc, gold, and palladium with (e.g. Cu) or without (e.g. Au) surface oxide films. We demonstrated by SEM and XPS that both hierarchical micro/nanostructures and spontaneous adsorption of airborne hydrocarbons endowed these surfaces with excellent superhydrophobicity. We revealed by XPS that the adsorption of airborne hydrocarbons at the Ar + -etched clean Au surface was rather quick, such that organic contamination can hardly be prevented in practical operation of surface wetting investigation. We also confirmed by XPS that ultraviolet-O 3 treatment of the superhydrophobic metal surfaces did not remove the adsorbed hydrocarbons completely, but mainly oxidized them into hydrophilic oxygen-containing organic substances. We hope our findings here shed new light on deeper understanding of superhydrophobicity for micro/nanostructured metal surfaces with and without surface oxide films

  15. Effects of surface preparation on the properties of metal/CdTe junctions

    International Nuclear Information System (INIS)

    Werthen, J.G.; Haering, J.; Fahrenbruch, A.L.; Bube, R.H.

    1983-01-01

    The effects of surface preparation on the properties of single crystal CdTe junctions have been investigated through characterization of metal/CdTe junctions. Oriented surfaces include air-cleaved (110) surfaces, bromine-in-methanol etched (110) and (111) surfaces, and bromine-in-methanol etched surfaces subjected to a hydrogen heat treatment. Surface photovoltage measurements of the surfaces indicate larger band bending on the etched surfaces than on the cleaved and heat treated surfaces. X-ray photoelectron spectroscopy analysis verifies that excess Te remains after bromine-in-methanol etching and that cleaving leaves a stoichiometric surface. Hydrogen heat treatment of an etched CdTe surface restores a stoichiometric cleaved-like surface from that altered by the etching process. The barrier height for metal/CdTe junctions formed on cleaved surfaces depends on metal work function and reaches 0.99 V in an Al/CdTe junction and 0.87 V in a Cr/CdTe junction. Junctions formed with different metals on etched (110) surfaces result in barrier heights of 0.55--0.65 V with no dependence of the barrier height on the metal work function being observed, due to the presence of an etch-induced layer that partially governs the properties the surface. Heat treatment of an etched surface results in metal/CdTe junctions with characteristics similar to those of junctions formed on cleaved surfaces, and dependence of barrier height on metal work function is again observed, indicating the removal of an etch-induced layer by the heat treatment and the production of a junction similar to that on the cleaved surface

  16. Noncollinear magnetism in surfaces and interfaces of transition metals

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Huahai

    2009-09-15

    Noncollinear (NC) magnetism is common in nature, especially when there exist geometrical frustration and chemical imparity in the system. In this work we studied the NC magnetism and the response to external magnetic fields in surfaces and interfaces of transition metals by using an semi-empirical tight-binding (TB) method that parameterized to the ab initio TB-LMTO calculations. We implemented this method to study two systems. The first one is the system of 6 Mn monolayers on Fe(001) substrate. Due to the complex structure and magnetic properties of Mn, we found 23 collinear magnetic configurations but only one NC configuration. The collinear ground state has a layered antiferromagnetic (AFM) coupling which agrees with previous experiments and calculations. In the NC configuration the local AFM coupling in the Mn layers is preserved, but the surface is 90 degree coupled to the substrate. Similar to the experiment in CdCr{sub 2}O{sub 4}, we obtained a collinear plateau in the NC evolution of the average magnetic moment in Mn slab under external magnetic fields. Another is the system of a Cr monolayer on a stepped Fe(001) substrate. As expected, the local AFM coupling in the interface of Cr and Fe are preserved. However, the edge Cr atoms is about 90 coupled to their nearest Fe neighbors. We also simulated the procedure of adding more Cr coverages gradually to a Cr bilayer coverage. As coverages increase, the magnetic moments in the Cr interface reduce, and the collinear plateau becomes wider as coverages increase. However, the saturation fields in both the two systems are extremely high, around 10 kT.We expect that when the effect of temperature is taken into account, and in some proper systems, the saturation fields could be largely reduced to the scale that can be implemented in experiment, and our study may shed light on information storage devices with ultrahigh storage density. (orig.)

  17. Wear and roughness of the metal surface at polishing by bound abrasive

    International Nuclear Information System (INIS)

    Spasskij, M.R.; Lokhov, Yu.N.; Ashkerov, Yu.V.

    1987-01-01

    The model is proposed of the process of polishing of plastic metals by a resin polisher with the surface-saturated layer of abrasive. The model is based on the idea about a net independent effect of individual grains on the metal surface. A linear dependence of the wear rate on the applied pressure is substantiated. It is shown that a determining characteristic of metal in the process of polishing is elastic modulus rather than hardness or yield point. The dependence of a maximally attainable roughness of the metal surface on its plasticity, pressure, concentration and dimension of the abrasive is found

  18. Contribution of Heavy Metal Leaching from Agricultural Soils to Surface Water Loads

    NARCIS (Netherlands)

    Bonten, L.T.C.; Romkens, P.F.A.M.; Brus, D.J.

    2008-01-01

    Point sources for surface water contamination have been reduced by 50 to 90% during the past decades in The Netherlands. However, quality guidelines for heavy metals are still exceeded in many surface waters. It has been suggested that leaching of heavy metals from (diffusively polluted) soils can

  19. Contact mechanics and elastohydrodynamic lubrication in a novel metal-on-metal hip implant with an aspherical bearing surface.

    Science.gov (United States)

    Meng, Qingen; Gao, Leiming; Liu, Feng; Yang, Peiran; Fisher, John; Jin, Zhongmin

    2010-03-22

    Diameter and diametral clearance of the bearing surfaces of metal-on-metal hip implants and structural supports have been recognised as key factors to reduce the dry contact and hydrodynamic pressures and improve lubrication performance. On the other hand, application of aspherical bearing surfaces can also significantly affect the contact mechanics and lubrication performance by changing the radius of the curvature of a bearing surface and consequently improving the conformity between the head and the cup. In this study, a novel metal-on-metal hip implant employing a specific aspherical bearing surface, Alpharabola, as the acetabular surface was investigated for both contact mechanics and elastohydrodynamic lubrication under steady-state conditions. When compared with conventional spherical bearing surfaces, a more uniform pressure distribution and a thicker lubricant film thickness within the loaded conjunction were predicted for this novel Alpharabola hip implant. The effects of the geometric parameters of this novel acetabular surface on the pressure distribution and lubricant thickness were investigated. A significant increase in the predicted lubricant film thickness and a significant decrease in the dry contact and hydrodynamic pressures were found with appropriate combinations of these geometric parameters, compared with the spherical bearing surface. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  20. Some characteristics of metal migration in or on the surface of insulators

    International Nuclear Information System (INIS)

    Shields, R.B.

    1978-03-01

    This report reviews the migration of metals, principally silver, in or on the surface of insulating materials, by electrolytic processes. These processes are described for various metals, insulating materials and physical conditions, with numerous examples from the literature. While it is concluded that the only sure way to prevent degradation of insulation due to metal migration is to avoid the use of migration-prone metals, some other measures are mentioned which have been reported to reduce the extent of the growth. (author)

  1. Fermi centenary exhibition comes to CERN

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    A touring exhibition, "Enrico Fermi - immagini e documenti inediti" (Enrico Fermi - unpublished images and documents), celebrating the centenary of Enrico Fermi's birth in 1901 was on display at CERN from 12 to 27 September 2002.

  2. The many faces of Fermi

    Science.gov (United States)

    Delmastro, Marco

    2017-12-01

    When I settled down to read The Last Man Who Knew Everything by Davis Schwartz, I was asking myself whether there was any need for yet another Enrico Fermi biography. While navigating this ambitious book, I realized that maybe I knew less than I thought about Fermi, and that maybe there was still a lot I could learn.

  3. FERMI multi-chip module

    CERN Multimedia

    This FERMI multi-chip module contains five million transistors. 25 000 of these modules will handle the flood of information through parts of the ATLAS and CMS detectors at the LHC. To select interesting events for recording, crucial decisions are taken before the data leaves the detector. FERMI modules are being developed at CERN in partnership with European industry.

  4. Interaction of hydrogen and oxygen with bulk defects and surfaces of metals

    International Nuclear Information System (INIS)

    Besenbacher, F.

    1994-05-01

    The thesis deals with the interaction of hydrogen with defects in metals and the interaction of hydrogen and oxygen with metal surfaces studied by ion-beam techniques and scanning tunneling microscopy (STM), respectively. The first part of the thesis discusses the interaction of hydrogen with simple defects in transition metals. The trap-binding enthalpies and the lattice location of hydrogen trapped to vacancies have been determined, and an extremely simple and versatile picture of the hydrogen-metal interaction has evolved, in which the trap strength is mainly determined by the local electron density. Any dilution of the lattice will lead to a trap, vacancies and voids being the strongest trap. It is found that hydrogen trapped to vacancies in fcc metals is quantum-mechanically delocalized, and the excitation energies for the hydrogen in the vacancy potential are a few MeV only. The interaction of hydrogen with metal surfaces is studied by the transmission channeling (TC) technique. It is found that hydrogen chemisorbs in the highest-coordinated sites on the surfaces, and that there is a direct relationship between the hydrogen-metal bond length and the coordination number for the hydrogen. In the final part of the thesis the dynamics of the chemisorption process for oxygen and hydrogen on metal surfaces is studied by STM, a fascinating and powerful technique for exploring the atomic-scale realm of surfaces. It is found that there is a strong coupling between the chemisorption process and the distortion of the metal surface. The adsorbates induce a surface reconstruction, i.e. metal-metal bond breaks and metal-adsorbate bounds form. Whereas hydrogen interacts weakly with the metals and induces reconstructions where only nnn metals bonds are broken, oxygen interacts strongly with the metal, and the driving force for the O-induced reconstructions appears to be the formation of low-coordinated metal-O rows, formed by breaking of nn metal bonds. Finally it is shown

  5. Study of highly functionalized metal surface treated by plasma ion implantation

    International Nuclear Information System (INIS)

    Ikeyama, Masami; Miyagawa, Soji; Miyagawa, Yoshiko; Nakao, Setsuo; Masuda, Haruho; Saito, Kazuo; Ono, Taizou; Hayashi, Eiji

    2004-01-01

    Technology for processing metal surfaces with hardness, low friction and free from foreign substances was developed with plasma ion implantation. Diamond-like carbon (DLC) coating is a most promising method for realization of hard and smooth metal surface. DLC coating was tested in a metal pipe with 10 mm diameter and 10 cm length by a newly developed plasma ion implantation instrument. The surface coated by DLC was proved to have characteristics equivalent to those prepared with other methods. A computer program simulating a formation process of DLC coating was developed. Experiments for fluorinating the DLC coating surface was performed. (Y. Kazumata)

  6. Influence of carbon monoxide to the surface layer of uranium metal and its oxides

    International Nuclear Information System (INIS)

    Wang Xiaoling; Fu Yibei; Xie Renshou; Huang Ruiliang

    1996-09-01

    The surface structures of uranium metal and triuranium octaoxide (U 3 O 8 ) and the influence of carbon monoxide to the surface layers have been studied by X-ray photoelectron spectroscopy (XPS). After exposure to carbon monoxide, contents of oxygen in the surface oxides of uranium metal and U 3 O 8 are decreased and O/U ratios decrease 7.2%, 8.0% respectively. The investigation indicated the surface layers of uranium metal and its oxides were forbidden to further oxidation in the atmosphere of carbon monoxide. (11 refs., 9 figs., 2 tabs.)

  7. Surface plasma wave assisted second harmonic generation of laser over a metal film

    International Nuclear Information System (INIS)

    Chauhan, Santosh; Parashar, J.

    2015-01-01

    Second harmonic generation of laser mode converted surface plasma wave (SPW) over a corrugated metal film is studied. The laser, impinged on the metal film, under attenuated total reflection configuration, excites SPW over the metal–vacuum interface. The excited SPW extends over a much wider surface area than the laser spot cross-section. It exerts a second harmonic ponderomotive force on metal electrons, imparting them velocity that beats with the surface ripple to produce a nonlinear current, driving resonant second harmonic surface plasma wave

  8. Kondo Hybridization and the Origin of Metallic States at the (001 Surface of SmB_{6}

    Directory of Open Access Journals (Sweden)

    E. Frantzeskakis

    2013-12-01

    Full Text Available SmB_{6}, a well-known Kondo insulator, has been proposed to be an ideal topological insulator with states of topological character located in a clean, bulk electronic gap, namely, the Kondo-hybridization gap. Since the Kondo gap arises from many-body electronic correlations, SmB_{6} would be placed at the head of a new material class: topological Kondo insulators. Here, for the first time, we show that the k-space characteristics of the Kondo-hybridization process is the key to unraveling the origin of the two types of metallic states experimentally observed by angle-resolved photoelectron spectroscopy (ARPES in the electronic band structure of SmB_{6}(001. One group of these states is essentially of bulk origin and cuts the Fermi level due to the position of the chemical potential 20 meV above the lowest-lying 5d-4f hybridization zone. The other metallic state is more enigmatic, being weak in intensity, but represents a good candidate for a topological surface state. However, before this claim can be substantiated by an unequivocal measurement of its massless dispersion relation, our data raise the bar in terms of the ARPES resolution required, as we show there to be a strong renormalization of the hybridization gaps by a factor 2–3 compared to theory, following from the knowledge of the true position of the chemical potential and a careful comparison with the predictions from recent local-density-approximation (LDA+Gutzwiller calculations. All in all, these key pieces of evidence act as triangulation markers, providing a detailed description of the electronic landscape in SmB_{6} and pointing the way for future, ultrahigh-resolution ARPES experiments to achieve a direct measurement of the Dirac cones in the first topological Kondo insulator.

  9. Internal and Surface Phenomena in Heterogenous Metal Combustion

    Science.gov (United States)

    Dreizin, Edward L.

    1997-01-01

    The phenomenon of gas dissolution in burning metals was observed in recent metal combustion studies, but it could not be adequately explained by the traditional metal combustion models. The research reported here addresses heterogeneous metal combustion with emphasis on the processes of oxygen penetration inside burning metal and its influence on the metal combustion rate, temperature history, and disruptive burning. The unique feature of this work is the combination of the microgravity environment with a novel micro-arc generator of monodispersed metal droplets, ensuring repeatable formation and ignition of uniform metal droplets with a controllable initial temperature and velocity. Burning droplet temperature is measured in real time with a three wavelength pyrometer. In addition, particles are rapidly quenched at different combustion times, cross-sectioned, and examined using SEM-based techniques to retrieve the internal composition history of burning metal particles. When the initial velocity of a spherical particle is nearly zero, the microgravity environment makes it possible to study the flame structure, the development of flame nonsymmetry, and correlation of the flame shape with the heterogeneous combustion processes.

  10. Replication of surface features from a master model to an amorphous metallic article

    Science.gov (United States)

    Johnson, William L.; Bakke, Eric; Peker, Atakan

    1999-01-01

    The surface features of an article are replicated by preparing a master model having a preselected surface feature thereon which is to be replicated, and replicating the preselected surface feature of the master model. The replication is accomplished by providing a piece of a bulk-solidifying amorphous metallic alloy, contacting the piece of the bulk-solidifying amorphous metallic alloy to the surface of the master model at an elevated replication temperature to transfer a negative copy of the preselected surface feature of the master model to the piece, and separating the piece having the negative copy of the preselected surface feature from the master model.

  11. Enrico Fermi Symposium at CERN : opening celebration

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit

    2002-01-01

    You are cordially invited to the opening celebration on Thursday 12 September at 16:00 (Main Building, Council Chamber), which will include speechs from: Luciano Maiani - Welcome and Introduction Antonino Zichichi - The New 'Centro Enrico Fermi' at Via Panisperna Ugo Amaldi - Fermi at Via Panisperna and the birth of Nuclear Medicine Jack Steinberger - Fermi in Chicago Valentin Telegdi - A Close-up of Fermi Arnaldo Stefanini - Celebrating Fermi's Centenary in Documents and Pictures and the screening of a documentary video about Fermi: Scienziati a Pisa: Enrico Fermi (Scientists at Pisa: Enrico Fermi) created by Francesco Andreotti for La Limonaia from early film, photographs and sound recordings (English version - c. 30 mins).

  12. Testing of Liquid Metal Components for Nuclear Surface Power Systems

    Science.gov (United States)

    Polzin, K. A.; Pearson, J. B.; Godfroy, T. J.; Schoenfeld, M.; Webster, K.; Briggs, M. H.; Geng, S. M.; Adkins, H. E.; Werner, J. E.

    2010-01-01

    The capability to perform testing at both the module/component level and in near prototypic reactor configurations using a non-nuclear test methodology allowed for evaluation of two components critical to the development of a potential nuclear fission power system for the lunar surface. A pair of 1 kW Stirling power convertors, similar to the type that would be used in a reactor system to convert heat to electricity, were integrated into a reactor simulator system to determine their performance using pumped NaK as the hot side working fluid. The performance in the pumped-NaK system met or exceed the baseline performance measurements where the converters were electrically heated. At the maximum hot-side temperature of 550 C the maximum output power was 2375 watts. A specially-designed test apparatus was fabricated and used to quantify the performance of an annular linear induction pump that is similar to the type that could be used to circulate liquid metal through the core of a space reactor system. The errors on the measurements were generally much smaller than the magnitude of the measurements, permitting accurate performance evaluation over a wide range of operating conditions. The pump produced flow rates spanning roughly 0.16 to 5.7 l/s (2.5 to 90 GPM), and delta p levels from less than 1 kPa to 90 kPa (greater than 0.145 psi to roughly 13 psi). At the nominal FSP system operating temperature of 525 C the maximum efficiency was just over 4%.

  13. Ion bombardment effect on surface state of metal

    International Nuclear Information System (INIS)

    Vaulin, E.P.; Georgieva, N.E.; Martynenko, T.P.

    1990-01-01

    The effect of slow argon ion bombardment on the surface microstructure of polycrystalline copper as well as the effect of surface state on sputtering of D-16 polycrystalline alloy are experimentally studied. Reduction of copper surface roughness is observed. It is shown that the D-16 alloy sputtering coefficient is sensitive to the surface state within the limits of the destructed surface layer

  14. Surface analysis of transition metal oxalates: Damage aspects

    Energy Technology Data Exchange (ETDEWEB)

    Chenakin, S.P., E-mail: chenakin@imp.kiev.ua [Université Libre de Bruxelles (ULB), Chimie-Physique des Matériaux, B-1050 Bruxelles (Belgium); Institute of Metal Physics, Nat. Acad. Sci. of Ukraine, Akad. Vernadsky Blvd. 36, 03680 Kiev (Ukraine); Szukiewicz, R. [Université Libre de Bruxelles (ULB), Chimie-Physique des Matériaux, B-1050 Bruxelles (Belgium); Barbosa, R.; Kruse, N. [Université Libre de Bruxelles (ULB), Chimie-Physique des Matériaux, B-1050 Bruxelles (Belgium); Voiland School of Chemical Engineering and Bioengineering, Washington State University, 155 Wegner Hall, Pullman, WA 99164-6515 (United States)

    2016-05-15

    Highlights: • Gas evolution from the Mn, Co, Ni and Cu oxalate hydrates in vacuum, during exposure to X-rays and after termination of X-ray irradiation is studied. • A comparative study of the damage caused by X-rays in NiC{sub 2}O{sub 4} and CuC{sub 2}O{sub 4} is carried out. • Effect of Ar{sup +} bombardment on the structure and composition of CoC{sub 2}O{sub 4} is studied. - Abstract: The behavior of transition metal oxalates in vacuum, under X-ray irradiation and low-energy Ar{sup +} ion bombardment was studied. A comparative mass-spectrometric analysis was carried out of gas evolution from the surface of Mn, Co, Ni and Cu oxalate hydrates in vacuum, during exposure to X-rays and after termination of X-ray irradiation. The rates of H{sub 2}O and CO{sub 2} liberation from the oxalates were found to be in an inverse correlation with the temperatures of dehydration and decomposition, respectively. X-ray photoelectron spectroscopy (XPS) was employed to study the X-ray induced damage in NiC{sub 2}O{sub 4} and CuC{sub 2}O{sub 4} by measuring the various XP spectral characteristics and surface composition of the oxalates as a function of time of exposure to X-rays. It was shown that Cu oxalate underwent a significantly faster degradation than Ni oxalate and demonstrated a high degree of X-ray induced reduction from the Cu{sup 2+} to the Cu{sup 1+} chemical state. 500 eV Ar{sup +} sputter cleaning of CoC{sub 2}O{sub 4} for 10 min was found to cause a strong transformation of the oxalate structure which manifested itself in an appreciable alteration of the XP core-level and valence band spectra. The analysis of changes in stoichiometry and comparison of XP spectra of bombarded oxalate with respective spectra of a reference carbonate CoCO{sub 3} implied that the bombardment-induced decomposition of CoC{sub 2}O{sub 4} gave rise to the formation of CoO-like and disordered CoCO{sub 3}-like phases.

  15. Metal Hydride assited contamination on Ru/Si surfaces

    NARCIS (Netherlands)

    Pachecka, Malgorzata; Lee, Christopher James; Sturm, Jacobus Marinus; Bijkerk, Frederik

    2013-01-01

    In extreme ultraviolet lithography (EUVL) residual tin, in the form of particles, ions, and atoms, can be deposited on nearby EUV optics. During the EUV pulse, a reactive hydrogen plasma is formed, which may be able to react with metal contaminants, creating volatile and unstable metal hydrides that

  16. Universality in Oxygen Reduction Electrocatalysis on Metal Surfaces

    DEFF Research Database (Denmark)

    Viswanathan, Venkatasubramanian; Hansen, Heine Anton; Rossmeisl, Jan

    2012-01-01

    In this work, we extend the activity volcano for oxygen reduction from the face-centered cubic (fcc) metal (111) facet to the (100) facet. Using density functional theory calculations, we show that the recent findings of constant scaling between OOH* and OH* holds on the fcc metal (100) facet, as...

  17. Evaluation of metal contaminants of surface water sources in an ...

    African Journals Online (AJOL)

    The concentrations of Pb, Zn, Mn, Co, Cu, Ni and Cr were quantitatively determined in water samples collected from Enyigba Pb-Zn mine and a nearby Uruva pond using atomic absorption spectrophotometer. The results showed varying concentrations of these metals in the samples. The mean values of the metals (mg/L) in ...

  18. Metal pollution determined by pollution indices for sea grass P. oceanica and surface sediments

    Directory of Open Access Journals (Sweden)

    Stanković Slavka

    2015-01-01

    Full Text Available Concentrations of Fe, Mn, Cu, Zn, Pb, Ni, Co, As, Co, and Hg in the sea grass Posidonia oceanica and surface sediment samples were determined. Together with P. oceanica, surface sediment samples were collected at eight locations in the major demographic, tourist and port areas along the Montenegrin coast to assess metal pollution. The metal pollution index (MPI and metal enrichment factor (EF were calculated and used to evaluate the impact of heavy metals in the surface sediment on P. oceanica. The sediment MPI and EF values were lower than these values in P. oceanica at the same locations. Since the surface sediment contained lower mean concentrations of Zn, Ni, Pb, Cd and Hg, than the sea grass P. oceanic, we concluded that the sea grass absorbed some metals from the seawater column. [Projekat Ministarstva nauke Republike Srbije, br. III 43009

  19. Fermi, Heisenberg y Lawrence

    Directory of Open Access Journals (Sweden)

    Ynduráin, Francisco J.

    2002-01-01

    Full Text Available Not available

    Los azares de las onomásticas hacen coincidir en este año el centenario del nacimiento de tres de los más grandes físicos del siglo XX. Dos de ellos, Fermi y Heisenberg, dejaron una marca fundamental en la ciencia (ambos, pero sobre todo el segundo y, el primero, también en la tecnología. Lawrence, indudablemente de un nivel inferior al de los otros dos, estuvo sin embargo en el origen de uno de los desarrollos tecnológicos que han sido básicos para la exploración del universo subnuclear en la segunda mitad del siglo que ha terminado hace poco, el de los aceleradores de partículas.

  20. Relationship between metal speciation in soil solution and metal adsorption at the root surface of ryegrass

    NARCIS (Netherlands)

    Kalis, E.J.J.; Temminghoff, E.J.M.; Town, R.M.; Unsworth, E.R.; Riemsdijk, van W.H.

    2008-01-01

    Received for publication October 12, 2007. The total metal content of the soil or total metal concentration in the soil solution is not always a good indicator for metal availability to plants. Therefore, several speciation techniques have been developed that measure a defined fraction of the total

  1. Metals on graphene and carbon nanotube surfaces: From mobile atoms to atomtronics to bulk metals to clusters and catalysts

    KAUST Repository

    Sarkar, Santanu C.

    2014-01-14

    In this Perspective, we present an overview of recent fundamental studies on the nature of the interaction between individual metal atoms and metal clusters and the conjugated surfaces of graphene and carbon nanotube with a particular focus on the electronic structure and chemical bonding at the metal-graphene interface. We discuss the relevance of organometallic complexes of graphitic materials to the development of a fundamental understanding of these interactions and their application in atomtronics as atomic interconnects, high mobility organometallic transistor devices, high-frequency electronic devices, organometallic catalysis (hydrogen fuel generation by photocatalytic water splitting, fuel cells, hydrogenation), spintronics, memory devices, and the next generation energy devices. We touch on chemical vapor deposition (CVD) graphene grown on metals, the reactivity of its surface, and its use as a template for asymmetric graphene functionalization chemistry (ultrathin Janus discs). We highlight some of the latest advances in understanding the nature of interactions between metals and graphene surfaces from the standpoint of metal overlayers deposited on graphene and SWNT thin films. Finally, we comment on the major challenges facing the field and the opportunities for technological applications. © 2013 American Chemical Society.

  2. Investigations of thin p-GaN light-emitting diodes with surface plasmon compatible metallization

    DEFF Research Database (Denmark)

    Fadil, Ahmed; Ou, Yiyu; Iida, Daisuke

    2016-01-01

    We investigate device performance of InGaN light-emitting diodes with a 30-nm p-GaN layer. The metallization used to separate the p-contact from plasmonic metals, reveals limitations on current spreading which reduces surface plasmonic enhancement.......We investigate device performance of InGaN light-emitting diodes with a 30-nm p-GaN layer. The metallization used to separate the p-contact from plasmonic metals, reveals limitations on current spreading which reduces surface plasmonic enhancement....

  3. Influence of various surface-conditioning methods on the bond strength of metal brackets to ceramic surfaces

    NARCIS (Netherlands)

    Schmage, P; Nergiz, [No Value; Herrmann, W; Ozcan, M; Nergiz, Ibrahim; �zcan, Mutlu

    With the increase in adult orthodontic treatment comes the need to find a reliable method for bonding orthodontic brackets onto metal or ceramic crowns and fixed partial dentures. In this study, shear bond strength and surface roughness tests were used to examine the effect of 4 different surface

  4. Surface structures from low energy electron diffraction: Atoms, small molecules and an ordered ice film on metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Materer, Nicholas F. [Univ. of California, Berkeley, CA (United States)

    1995-09-01

    We investigated the surface bonding of various adsorbates (0, S, C2H3 and NO) along with the resulting relaxation of the Pt(111) surface using low energy electron diffiraction (LEED). LEED experiments have been performed on these ordered overlayers along with theoretical structural analysis using automated tensor LEED (ATLEED). The resulting surface structures of these ordered overlayers exhibit similar adsorbate-induced relaxations. In all cases the adsorbate occupies the fcc hollow site and induces an approximately 0.1 A buckling of the metal surface. The three metal atoms directly bonded to the adsorbate are ``pulled`` out of the surface and the metal atom that is not bound to the adsorbate is `pushed`` inward. In order to understand the reliability of such details, we have carried out a comprehensive study of various non-structural parameters used in a LEED computation. We also studied the adsorption of water on the Pt(lll) surface. We ordered an ultra thin ice film on this surface. The film`s surface is found to be the (0001) face of hexagonal ice. This surface is apparently terminated by a full-bilayer, in which the uppermost water molecules have large vibrational amplitudes even at temperatures as low as 90 K. We examined two other metal surfaces besides Pt(111): Ni(111) and Fe(lll). On Ni(111), we have studied the surface under a high coverage of NO. On both Ni(111) and Pt(111) NO molecules occupy the hollow sites and the N-0 bond distances are practically identical. The challenging sample preparation of an Fe(111) surface has been investigated and a successful procedure has been obtained. The small interlayer spacing found on Fe(111) required special treatment in the LEED calculations. A new ATLEED program has been developed to handle this surface.

  5. Photodetachment of negative ion in a gradient electric field near a metal surface

    International Nuclear Information System (INIS)

    Liu Tian-Qi; Wang De-Hua; Han Cai; Liu Jiang; Liang Dong-Qi; Xie Si-Cheng

    2012-01-01

    Based on closed-orbit theory, the photodetachment of H − in a gradient electric field near a metal surface is studied. It is demonstrated that the gradient electric field has a significant influence on the photodetachment of negative ions near a metal surface. With the increase of the gradient of the electric field, the oscillation in the photodetachment cross section becomes strengthened. Besides, in contrast to the photodetachment of H − near a metal surface in a uniform electric field, the oscillating amplitude and the oscillating region in the cross section of a gradient electric field also become enlarged. Therefore, we can use the gradient electric field to control the photodetachment of negative ions near a metal surface. We hope that our results will be useful for understanding the photodetachment of negative ions in the vicinity of surfaces, cavities, and ion traps. (atomic and molecular physics)

  6. Influence of refraction of p-polarized light on photoemission from metallic surface states

    International Nuclear Information System (INIS)

    Bagchi, A.; Barrera, R.G.

    1979-01-01

    The refraction of p-polarized light at a metal surface leads, under certain circumstances, to a large peak in the spatial distribution of the normal component of the electric field near the surface. The origin of this peak is explained both in terms of a classical correspondence and in terms of a theory based on the non-local dielectric response of the metal surface. The significance of the large magnitude and rapid variation of the surface electric field in exciting photoelectrons from surface states is discussed [pt

  7. Preparation of surface conductive and highly reflective silvered polyimide films by surface modification and in situ self-metallization technique

    International Nuclear Information System (INIS)

    Wu Zhanpeng; Wu Dezhen; Qi Shengli; Zhang Teng; Jin Riguang

    2005-01-01

    Double surface conductive and reflective flexible silvered polyimide films have been prepared by alkali hydroxylation of polyimide film surface and incorporation of silver ions through subsequent ion exchange. Thermal curing of silver(I) polyamate precursor leads to re-cycloimidization of modified surface with concomitant silver reduction, yielding a reflective and conductive silver surface approaching that of native metal. The reflective and conductive surface evolves only when the cure temperature rises to 300 deg. C. The metallized films usually retain the essential mechanical properties of the parent films. Films were characterized by transmission electron microscopy (TEM), scanning electron microscopy and tapping mode atomic force microscopy (AFM). AFM demonstrates that the diameter of close-packed silver particles of the silver layers was about 50-150 nm. TEM shows that thickness of silver layer on the polyimide film surface is about 400-600 nm

  8. The role of substrate electrons in the wetting of a metal surface

    DEFF Research Database (Denmark)

    Schiros, T.; Takahashi, O.; Andersson, Klas Jerker

    2010-01-01

    We address how the electronic and geometric structures of metal surfaces determine water-metal bonding by affecting the balance between Pauli repulsion and electrostatic attraction. We show how the rigid d-electrons and the softer s-electrons utilize different mechanisms for the redistribution...... of charge that enables surface wetting. On open d-shell Pt(111), the ligand field of water alters the distribution of metal d-electrons to reduce the repulsion. The closed-shell Cu d(10) configuration of isostructural Cu(111), however, does not afford this mechanism, resulting in a hydrophobic surface...

  9. Surface treatment of nanoporous silicon with noble metal ions and characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Kanungo, J.; Maji, S. [IC Design and Fabrication Centre, Dept. of Electronics and Tele-comm. Engineering, Jadavpur University, Kolkata 700032 (India); Mandal, A.K.; Sen, S. [Central Glass and Ceramic Research Institute, CSIR, Kolkata (India); Bontempi, E. [INSTM and Laboratorio di Chimica per le Tecnologie, Universita di Brescia, via Branze 38, 25123 Brescia (Italy); Balamurugan, A.K.; Tyagi, A.K. [Materials Science Division, Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam 603102 (India); Uvdal, K. [Division of Molecular Surface Physics and Nanoscience, Department of Physics, Chemistry and Biology (IFM), Linkoeping University, SE-581 83 Linkoeping (Sweden); Sinha, S. [Department of Physics, University of New Haven (United States); Saha, H. [IC Design and Fabrication Centre, Dept. of Electronics and Tele-comm. Engineering, Jadavpur University, Kolkata 700032 (India); Basu, S., E-mail: sukumar_basu@yahoo.co.uk [IC Design and Fabrication Centre, Dept. of Electronics and Tele-comm. Engineering, Jadavpur University, Kolkata 700032 (India)

    2010-04-15

    A very large surface to volume ratio of nanoporous silicon (PS) produces a high density of surface states, which are responsible for uncontrolled oxidation of the PS surface. Hence it disturbs the stability of the material and also creates difficulties in the formation of a reliable electrical contact. To passivate the surface states of the nanoporous silicon, noble metals (Pd, Ru, and Pt) were dispersed on the PS surface by an electroless chemical method. GIXRD (glancing incidence X-ray diffraction) proved the crystallinity of PS and the presence of noble metals on its surface. While FESEM (field emission scanning electron microscopy) showed the morphology, the EDX (energy dispersive X-ray) line scans and digital X-ray image mapping indicated the formation of the noble metal islands on the PS surface. Dynamic SIMS (secondary ion mass spectroscopy) further confirmed the presence of noble metals and other impurities near the surface of the modified PS. The variation of the surface roughness after the noble metal modification was exhibited by AFM (atomic force microscopy). The formation of a thin oxide layer on the modified PS surface was verified by XPS (X-ray photoelectron spectroscopy).

  10. Tensile bond strength of metal bracket bonding to glazed ceramic surfaces with different surface conditionings.

    Science.gov (United States)

    Akhoundi, Ms Ahmad; Kamel, M Rahmati; Hashemi, Sh Mahmood; Imani, M

    2011-01-01

    The objective of this study was to compare the tensile bond strength of metal brackets bonding to glazed ceramic surfaces using three various surface treatments. Forty two glazed ceramic disks were assigned to three groups. In the first and second groups the specimens were etched with 9.5% hydrofluoric acid (HFA). Subsequently in first group, ceramic primer and adhesive were applied, but in second group a bonding agent alone was used. In third group, specimens were treated with 35% phosphoric acid followed by ceramic primer and adhesive application. Brackets were bonded with light cure composites. The specimens were stored in distilled water in the room temperature for 24 hours and thermocycled 500 times between 5°C and 55°C. The universal testing machine was used to test the tensile bond strength and the adhesive remenant index scores between three groups was evaluated. The data were subjected to one-way ANOVA, Tukey and Kruskal-Wallis tests respectively. The tensile bond strength was 3.69±0.52 MPa forfirst group, 2.69±0.91 MPa for second group and 3.60±0.41 MPa for third group. Group II specimens showed tensile strength values significantly different from other groups (Ptensile bond strength.

  11. Controlling the growth of epitaxial graphene on metalized diamond (111) surface

    International Nuclear Information System (INIS)

    Cooil, S. P.; Wells, J. W.; Hu, D.; Evans, D. A.; Niu, Y. R.; Zakharov, A. A.; Bianchi, M.

    2015-01-01

    The 2-dimensional transformation of the diamond (111) surface to graphene has been demonstrated using ultrathin Fe films that catalytically reduce the reaction temperature needed for the conversion of sp 3 to sp 2 carbon. An epitaxial system is formed, which involves the re-crystallization of carbon at the Fe/vacuum interface and that enables the controlled growth of monolayer and multilayer graphene films. In order to study the initial stages of single and multilayer graphene growth, real time monitoring of the system was preformed within a photoemission and low energy electron microscope. It was found that the initial graphene growth occurred at temperatures as low as 500 °C, whilst increasing the temperature to 560 °C was required to produce multi-layer graphene of high structural quality. Angle resolved photoelectron spectroscopy was used to study the electronic properties of the grown material, where a graphene-like energy momentum dispersion was observed. The Dirac point for the first layer is located at 2.5 eV below the Fermi level, indicating an n-type doping of the graphene due to substrate interactions, while that of the second graphene layer lies close to the Fermi level

  12. Surface effects in metal oxide-based nanodevices

    KAUST Repository

    Lien, Der Hsien

    2015-10-29

    As devices shrink to the nanoscale, surface-to-volume ratio increases and the surface-environment interaction becomes a major factor for affecting device performance. The variation of electronic properties, including the surface band bending, gas chemisorption or photodesorption, native surface defects, and surface roughness, is called "surface effects". Such effects are ambiguous because they can be either negative or beneficial effects, depending on the environmental conditions and device application. This review provides an introduction to the surface effects on different types of nanodevices, offering the solutions to respond to their benefits and negative effects and provides an outlook on further applications regarding the surface effect. This review is beneficial for designing nano-enabled photodetectors, harsh electronics, memories, sensors and transistors via surface engineering.

  13. Surface properties of ceramic/metal composite materials for thermionic converter applications

    International Nuclear Information System (INIS)

    Davis, P.R.; Bozack, M.J.; Swanson, L.W.

    1983-01-01

    Ceramic/metal composite electrode materials are of interest for thermionic energy conversion (TEC) applications for several reasons. These materials consist of submicron metal fibers or islands in an oxide matrix and therefore provide a basis for fabricating finely structured electrodes, with projecting or recessed metallic regions for more efficient electron emission or collection. Furthermore, evaporation and surface diffusion of matrix oxides may provide oxygen enhancement of cesium adsorption and work function lowering at both the collecting and emitting electrode surfaces of the TEC. Finally, the high work function oxide matrix or oxide-metal interfaces may provide efficient surface ionization of cesium for space-charge reduction in the device. The authors are investigating two types of ceramic/metal composite materials. One type is a directionally solidified eutectic consisting of a bulk oxide matrix such as UO 2 or stabilized ZrO 2 with parallel metal fibers (W) running through the oxide being exposed at the surface by cutting perpendicular to the fiber direction. The second type of material, called a surface eutectic, consists of a refractory substrate (Mo) with a thin layer of deposited and segregated material (Mo-Cr 2 O 3 -A1 2 O 3 ) on the surface. The final configuration of this layer is an oxide matrix with metallic islands scattered throughout

  14. Mechanism of metal nanostructure self-ordering during oblique deposition on pre-patterned surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Numazawa, Satoshi; Heinig, Karl-Heinz [Forschungszentrum Dresden-Rossendorf, Dresden (Germany)

    2010-07-01

    During oblique metal vapor deposition perpendicular to ripples of pre-patterned surfaces, a chain-like formation of metal nanoclusters along the ripples has been observed. The metal nanoclusters are located on the slopes which point towards the evaporation source. The self-ordering of metal nanoclusters has not been observed for normal deposition and for low-angle deposition parallel to the ripple direction. The features of the metal nanostructure depend strongly on the evaporation angle. Here, by means of 3D lattice kinetic Monte Carlo simulations, we studied the process of silver deposition on pre-patterned, oxidized Si surfaces. The experimentally observed Ag nanostructures could be reproduced. It was shown that the extremely low sticking probability of deposited Ag together with a slope-dependent deposition rate leads to a strongly selective Ag nanocluster nucleation on the surface because the nucleation rate depends on the square of the adatom concentration.

  15. The passivation of uranium metal surfaces by nitrogen bombardment — the formation of uranium nitride

    Science.gov (United States)

    Allen, Geoffrey C.; Holmes, Nigel R.

    1988-05-01

    As part of a detailed investigation of the behaviour of metallic uranium in various atmospheres, we have examined the reaction between nitrogen gas and uranium metal. At room temperature there was no evidence of reaction between nitrogen gas and a clean metal surface; the only changes observed could be attributed to reaction between the metal and traces of oxygen (less than 0.1 ppm) in the nitrogen gas. Reaction between the metal and nitrogen was induced, however, by accelerating nitrogen towards the surface using a fast atom gun. The resulting nitrided surface was characterized by X-ray photoelectron spectroscopy, and its oxidation behaviour was monitored over an extended period in UHV and in air.

  16. The passivation of uranium metal surfaces by nitrogen bombardment - the formation of uranium nitride

    International Nuclear Information System (INIS)

    Allen, G.C.; Holmes, N.R.

    1988-01-01

    As part of a detailed investigation of the behaviour of metallic uranium in various atmospheres, we have examined the reaction between nitrogen gas and uranium metal. At room temperature there was no evidence of reaction between nitrogen gas and a clean metal surface; the only changes observed could be attributed to reaction between the metal and traces of oxygen (less than 0.1 ppm) in the nitrogen gas. Reaction between the metal and nitrogen was induced, however, by accelerating nitrogen towards the surface using a fast atom gun. The resulting nitrided surface was characterized by X-ray photoelectron spectroscopy, and its oxidation behaviour was monitored over an extended period in UHV and in air. (orig.)

  17. Theory of Bose-Fermi Quantum Liquids

    International Nuclear Information System (INIS)

    Khalatnikov, I.M.

    1969-01-01

    A phenomenological theory of a mixture of Fermi and Bose liquids is presented here, similarly to Landau's procedure for Fermi liquids. We give a definition of the Fermi excitation energy in a superfluid liquid. An exact set of equations has been obtained which describes the properties of a Fermi-Bose liquid; the solutions in the acoustic range are discussed. (author)

  18. Study of structure and surface morphology of two-layer contact Ti/Al metallization

    Directory of Open Access Journals (Sweden)

    Kirill D. Vanyukhin

    2016-06-01

    Full Text Available Ti/Al/Ni/Au metallization widely used in the technology of GaN base devices have a very important imperfection i.e. rough surface. There are different opinions about the causes of this imperfection: balling-up of molten aluminum or the appearance of intermetallic melt phases in the Au–Al system. To check the effect of the former cause, we have studied the formation of rough surface after annealing of Ti/Al metallization which is used as a basis of many metallization systems for GaN. The substrates were made from silicon wafers covered with Si3N4 films (0.15 μm. On these substrates we deposited the Ti(12 nm/Al(135 nm metallization system. After the deposition the substrates were annealed in nitrogen for 30 s at 850 °С. The as-annealed specimens were tested for metallization sheet resistivity, appearance and surface morphology. We have shown that during annealing of the Ti/Al metallization system, mutual diffusion of the metals and their active interaction with the formation of intermetallic phases occur. This makes the metallization system more resistant to subsequent annealing, oxidation and chemical etching. After annealing the surface of the Ti/Al metallization system becomes gently matted. However, large hemispherical convex areas (as in the Ti/Al/Ni/Au metallization system do not form. Thus, the hypothesis on the balling-up of molten aluminum on the surface of the Ti/Al metallization system has not been confirmed.

  19. Annotated bibliography for liquid metal surface tensions of groups III-A, IV-A, and V-A metals

    International Nuclear Information System (INIS)

    Murtha, M.J.; Burnet, G.

    1976-04-01

    An annotated bibliography has been prepared which includes summaries of 82 publications dating from 1920 and dealing with the measurement of the surface tensions of Groups III-A, IV-A, and V-A metals in the liquid state. The bibliography is organized by key element investigated, and contains a tabulation of correlations for surface tension as a function of temperature. A brief discussion dealing with variables and methods has been included

  20. Biofilm development on metal surfaces in tropical marine waters

    Digital Repository Service at National Institute of Oceanography (India)

    De; Bhosle, N.B.

    The immersion of solid surfaces in aquatic environment results in the rapid adsorption of dissolved organic matter, thereby conditioning the surfaces. A number of compounds including glycoproteins humic material and / or unspecified macromolecules...

  1. Propagative Landau states and Fermi level pinning in carbon nanotubes.

    Science.gov (United States)

    Nanot, Sébastien; Avriller, Rémi; Escoffier, Walter; Broto, Jean-Marc; Roche, Stephan; Raquet, Bertrand

    2009-12-18

    We present strong evidence of Landau states formation in multiwalled carbon nanotubes with metallic or semiconducting outer shells, under magnetic fields as high as 60 T. Magnetoconductance data are found to converge to a gate-independent value for semiconducting shells, whereas for metallic shells, the Landau states introduce a strong reintroduction of backscattering and Fermi level pinning close to the charge neutrality point. Electronic band structure and transport calculations provide a consistent interpretation of the experimental data.

  2. Localization of interacting Fermi gases in quasiperiodic potentials

    OpenAIRE

    Pilati, Sebastiano; Varma, Vipin Kerala

    2016-01-01

    We investigate the zero-temperature metal-insulator transition in a one-dimensional two-component Fermi gas in the presence of a quasi-periodic potential resulting from the superposition of two optical lattices of equal intensity but incommensurate periods. A mobility edge separating (low energy) Anderson localized and (high energy) extended single-particle states appears in this continuous-space model beyond a critical intensity of the quasi-periodic potential. In order to discern the metall...

  3. Leidenfrost point reduction on micro-patterned metallic surface

    NARCIS (Netherlands)

    Arnaldo del Cerro, D.; Gomez Marin, Alvaro; Römer, Gerardus Richardus, Bernardus, Engelina; Pathiraj, B.; Lohse, Detlef; Huis in 't Veld, Bert

    2012-01-01

    Droplets are able to levitate when deposited over a hot surface exceeding a critical temperature. This is known as the Leidenfrost effect. This phenomenon occurs when the surface is heated above the so-called Leidenfrost point (LFP), above which the vapor film between the droplet and hot surface is

  4. Enrico Fermi the obedient genius

    CERN Document Server

    Bruzzaniti, Giuseppe

    2016-01-01

    This biography explores the life and career of the Italian physicist Enrico Fermi, which is also the story of thirty years that transformed physics and forever changed our understanding of matter and the universe: nuclear physics and elementary particle physics were born, nuclear fission was discovered, the Manhattan Project was developed, the atomic bombs were dropped, and the era of “big science” began. It would be impossible to capture the full essence of this revolutionary period without first understanding Fermi, without whom it would not have been possible. Enrico Fermi: The Obedient Genius attempts to shed light on all aspects of Fermi’s life - his work, motivation, influences, achievements, and personal thoughts - beginning with the publication of his first paper in 1921 through his death in 1954. During this time, Fermi demonstrated that he was indeed following in the footsteps of Galileo, excelling in his work both theoretically and experimentally by deepening our understanding of the Pauli e...

  5. Measures to diminish leaching of heavy metals to surface waters from agricultural soils

    NARCIS (Netherlands)

    Schipper, P.N.M.; Bonten, L.T.C.; Plette, A.C.C.; Moolenaar, S.W.

    2008-01-01

    Historical accumulation of heavy metals in agricultural soils has caused an increased leaching to shallow groundwater in the Netherlands. The elevated concentrations of metals like copper and zinc in shallow groundwater, causes problems to meet target levels in surface waters. Important sources for

  6. Effect of surface-breakdown plasma on metal drilling by pulsed CO2-laser radiation

    Science.gov (United States)

    Arutiunian, P. V.; Baranov, V. Iu.; Bobkov, I. V.; Bol'Shakov, L. A.; Dolgov, V. A.

    1988-03-01

    The effect of low-threshold surface breakdown produced by short (5-microsec) CO2-laser pulses on the metal drilling process is investigated. Data on the interaction of metals with laser pulses having the same duration but different shape are shown to be different. The effect of the ambient atmospheric pressure on the laser drilling process is investigated.

  7. Structural coloration of metallic surfaces with micro/nano-structures induced by elliptical vibration texturing

    Science.gov (United States)

    Yang, Yang; Pan, Yayue; Guo, Ping

    2017-04-01

    Creating orderly periodic micro/nano-structures on metallic surfaces, or structural coloration, for control of surface apparent color and optical reflectivity has been an exciting research topic over the years. The direct applications of structural coloration include color marking, display devices, and invisibility cloak. This paper presents an efficient method to colorize metallic surfaces with periodic micro/nano-gratings using elliptical vibration texturing. When the tool vibration is coupled with a constant cutting velocity, controlled periodic ripples can be generated due to the overlapping tool trajectory. These periodic ripples with a wavelength near visible spectrum can act as micro-gratings to introduce iridescent colors. The proposed technique also provides a flexible method for color marking of metallic surfaces with arbitrary patterns and images by precise control of the spacing distance and orientation of induced micro/nano-ripples. Theoretical analysis and experimental results are given to demonstrate structural coloration of metals by a direct mechanical machining technique.

  8. Surface chemistry of metals and their oxides in high temperature water

    International Nuclear Information System (INIS)

    Tomlinson, M.

    1975-01-01

    Examination of oxide and metal surfaces in water at high temperature by a broad spectrum of techniques is bringing understanding of corrosion product movement and alleviation of activity transport in CANDU-type reactor primary coolant circuits. (Author)

  9. The surface chemistry of metal-oxygen interactions

    DEFF Research Database (Denmark)

    Stokbro, Kurt; Baroni, Stefano

    1997-01-01

    We report on a computational study of the clean and oxygen-covered Rh(110) surface, based on density-functional theory within the local-density approximation. We have used plane-wave basis sets and Vanderbilt ultra-soft pseudopotentials. For the clean surface, we present results for the equilibrium...... structure, surface energy and surface stress of the unreconstructed and (1 x 2) reconstructed structures. For the oxygen-covered surface we have performed a geometry optimization at 0.5, 1, and 2 monolayer oxygen coverages, and we present results for the equilibrium configurations, workfunctions and oxygen...

  10. Fermi acceleration in astrophysical jets

    OpenAIRE

    Rieger, Frank M.; Bosch-Ramon, Valenti; Duffy, Peter

    2006-01-01

    We consider the acceleration of energetic particles by Fermi processes (i.e., diffusive shock acceleration, second order Fermi acceleration, and gradual shear acceleration) in relativistic astrophysical jets, with particular attention given to recent progress in the field of viscous shear acceleration. We analyze the associated acceleration timescales and the resulting particle distributions, and discuss the relevance of these processes for the acceleration of charged particles in the jets of...

  11. Modifying the photodetachment near a metal surface by a weak electric field

    OpenAIRE

    Yang, B. C.; Du, M. L.

    2009-01-01

    We show the photodetachment cross sections of H near a metal surface can be modified using a weak static electric field. The modification is possible because the oscillatory part of the cross section near a metal surface is directly connected with the transit-time and the action of the detached-electron closed-orbit which can be changed systematically by varying the static electric field strength. Photodetachment cross sections for various photon energies and electric field values are calcula...

  12. Chemical bonding of water to metal surfaces studied with core-level spectroscopies

    DEFF Research Database (Denmark)

    Schiros, T.; Andersson, Klas Jerker; Pettersson, L.G.M.

    2010-01-01

    The nature of the contact layer of water on surfaces is of relevance for many practical fields, including corrosion, electrochemistry, environmental science and heterogeneous catalysis. Here we focus on the geometric and electronic structure of the water contact layer on transition metal surfaces......-specific information on the partial local density of states, local atomic structure, geometrical parameters and molecular orientation, allowing general principles for water-metal interaction to be derived....

  13. Effect of electric arc cutting procedures on the properties of processed metal surface

    International Nuclear Information System (INIS)

    Gutman, L.M.; Novikova, D.P.; Struina, T.A.

    1980-01-01

    Presented are the data of comparative studies of the cutting surface, made by the electrodes of the ANR-2 type and by the coal electrode by the method of air-arc cutting. Absence of carbonization of cutting surface, minimum structural changes in metal and a considerably high productivity permit to recommend the ANR-2 and ANR-2M electrodes for separation metal cutting, weld root and defect area cut without further stripping by the grinding stone

  14. Potentialities inherent in high-energy surface treatment for corrosion protection of metals

    International Nuclear Information System (INIS)

    Kolotyrkin, V.I.; Knyazheva, V.M.

    1991-01-01

    Natural resources of alloying elements are limited. Application of protective coatings, surface alloying, modification of its structure make up one of the most important problems, successful solution of which will permit a sharp reduction of metal consumption, increase in the quality and service time of equipment and machines, increase in output per man - hour. Four high-energy methods of anticorrosion treatment of metal surface: gas-plasma, detonation, laser and electron-beam ones, are assessed in the review

  15. XPS study on the surface reaction of uranium metal with carbon monoxide at 200 degree C

    International Nuclear Information System (INIS)

    Wang Xiaoling; Fu Yibei; Xie Renshou; Huang Ruiliang

    1996-12-01

    The surface reaction of uranium metal with carbon monoxide at 200 degree C has been studied by X-ray photoelectron spectroscopy (XPS). The carbon monoxide adsorption on the surface oxide layer resulted in U4f peak shifting to the lower binding energy and the content of oxygen in the oxide is decreased. O/U radio decreases with increasing the exposure of carbon monoxide to the surface layer. The investigation indicated the surface layer of uranium metal was further reduced in the atmosphere of carbon monoxide at high temperature. (3 refs., 5 figs.)

  16. Friction and surface chemistry of some ferrous-base metallic glasses

    Science.gov (United States)

    Miyoshi, K.; Buckley, D. H.

    1982-01-01

    The friction properties of some ferrous-base metallic glasses were measured both in argon and in vacuum to a temperature of 350 C. The alloy surfaces were also analyzed with X-ray photoelectron spectroscopy to identify the compounds and elements present on the surface. The results of the investigation indicate that even when the surfaces of the amorphous alloys, or metallic glasses, are atomically clean, bulk contaminants such as boric oxide and silicon dioxide diffuse to the surfaces. Friction measurements in both argon and vacuum indicate that the alloys exhibit higher coefficients of friction in the crystalline state than they do in the amorphous state.

  17. Facile creation of bio-inspired superhydrophobic Ce-based metallic glass surfaces

    Science.gov (United States)

    Liu, Kesong; Li, Zhou; Wang, Weihua; Jiang, Lei

    2011-12-01

    A bio-inspired synthesis strategy was conducted to fabricate superhydrophobic Ce-based bulk metallic glass (BMG) surfaces with self-cleaning properties. Micro-nanoscale hierarchical structures were first constructed on BMG surfaces and then modified with the low surface energy coating. Surface structures, surface chemical compositions, and wettability were characterized by combining scanning electron microscopy, atomic force microscopy, x-ray photoelectron spectroscopy, and contact angle measurements. Research indicated that both surface multiscale structures and the low surface free energy coating result in the final formation of superhydrophobicity.

  18. Metal concentration at surface water using multivariate analysis and ...

    African Journals Online (AJOL)

    This study defined the concentration of metals in Kerteh and Paka River water and their potential health risk towards human. 54 water samples were collected and analyzed using ICP-OES. Results revealed that most of the stations in Kerteh River gave the higher concentration of Cd, Cu, Zn, Co, Ni, As, Cr and Pb compared ...

  19. Assessment of Heavy Metals Concentrations in the Surface Water of ...

    African Journals Online (AJOL)

    The digested samples were analyzed for Fe, Cr, Cu, Zn and Pb using Atomic Absorption Spectrophotometer (Model IL250). The seasonal sequence of heavy metals concentrations showed Zn>Fe>Cr>Cu>Pb and Fe>Zn>Cr>Cu>Pb in dry and wet seasons respectively, while that of annual was Cr>Fe>Zn>Cu>Pb. The results ...

  20. Surface modification of nanodiamond through metal free atom transfer radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Guangjian; Liu, Meiying; Shi, Kexin; Heng, Chunning; Mao, Liucheng; Wan, Qing; Huang, Hongye [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Deng, Fengjie, E-mail: fengjiedeng@aliyun.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Zhang, Xiaoyong, E-mail: xiaoyongzhang1980@gmail.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wei, Yen, E-mail: weiyen@tsinghua.edu.cn [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084 (China)

    2016-12-30

    Highlights: • Surface modification of ND with water soluble and biocompatible polymers. • Functionalized ND through metal free surface initiated ATRP. • The metal free surface initiated ATRP is rather simple and effective. • The ND-poly(MPC) showed high dispersibility and desirable biocompatibility. - Abstract: Surface modification of nanodiamond (ND) with poly(2-methacryloyloxyethyl phosphorylcholine) [poly(MPC)] has been achieved by using metal free surface initiated atom transfer radical polymerization (SI-ATRP). The ATRP initiator was first immobilized on the surface of ND through direct esterification reaction between hydroxyl group of ND and 2-bromoisobutyryl bromide. The initiator could be employed to obtain ND-poly(MPC) nanocomposites through SI-ATRP using an organic catalyst. The final functional materials were characterized by {sup 1}H nuclear magnetic resonance, transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and thermo gravimetric analysis in detailed. All of these characterization results demonstrated that ND-poly(MPC) have been successfully obtained via metal free photo-initiated SI-ATRP. The ND-poly(MPC) nanocomposites shown enhanced dispersibility in various solvents as well as excellent biocompatibility. As compared with traditional ATRP, the metal free ATRP is rather simple and effective. More importantly, this preparation method avoided the negative influence of metal catalysts. Therefore, the method described in this work should be a promising strategy for fabrication of polymeric nanocomposites with great potential for different applications especially in biomedical fields.

  1. Tensile Bond Strength of Metal Bracket Bonding to Glazed Ceramic Surfaces With Different Surface Conditionings

    Directory of Open Access Journals (Sweden)

    M. Imani

    2011-12-01

    Full Text Available Objective: The objective of this study was to compare the tensile bond strength of metal brackets bonding to glazed ceramic surfaces using three various surface treatments.Materials and Methods: Forty two glazed ceramic disks were assigned to three groups. In the first and second groups the specimens were etched with 9.5% hydrofluoric acid (HFA. Subsequently in first group, ceramic primer and adhesive were applied, but in second group a bonding agent alone was used. In third group, specimens were treated with 35% phosphoric acid followed by ceramic primerand adhesive application. Brackets were bonded with light cure composites. The specimens were stored in distilled water in the room temperature for 24 hours and thermocycled 500 times between 5°C and 55°C. The universal testing machine was used to test the tensile bond strength and the adhesive remenant index scores between three groups was evaluated. The data were subjected to one-way ANOVA, Tukey and Kruskal-Wallis tests respectively.Results: The tensile bond strength was 3.69±0.52 MPa forfirst group, 2.69±0.91 MPa for second group and 3.60±0.41 MPa for third group. Group II specimens showed tensile strength values significantly different from other groups (P<0.01.Conclusion: In spite of limitations in laboratory studies it may be concluded that in application of Scotch bond multipurpose plus adhesive, phosphoric acid can be used instead of HFA for bonding brackets to the glazed ceramic restorations with enough tensile bond strength.

  2. Relaxation between electrons and surface phonons of a ...

    Indian Academy of Sciences (India)

    Abstract. The energy relaxation between the hot degenerate electrons of a homoge- neously photoexcited metal film and the surface phonons (phonon wave vectors in two dimensions) is considered under Debye approximation. The state of electrons and phonons is described by equilibrium Fermi and Bose functions with ...

  3. Relaxation between electrons and surface phonons of a ...

    Indian Academy of Sciences (India)

    The energy relaxation between the hot degenerate electrons of a homogeneously photoexcited metal film and the surface phonons (phonon wave vectors in two dimensions) is considered under Debye approximation. The state of electrons and phonons is described by equilibrium Fermi and Bose functions with different ...

  4. Laser activation of diamond surface for electroless metal plating

    Science.gov (United States)

    Pimenov, S. M.; Shafeev, G. A.; Laptev, V. A.; Loubnin, E. N.

    1994-04-01

    Selective area electroless nickel and copper deposition onto the surface of diamond single crystals and polycrystalline diamond films has been realized. Three methods of laser-assisted activation of diamond surface were applied: (i) prenucleation of diamond surface with a thin layer of palladium catalyst via laser-induced decomposition of a palladium acetyl-acetonate [Pd(acac)2] solid film; (ii) deposition of palladium by means of the decomposition of Pd(acac)2 dissolved in dimethylformamide; (iii) laser-induced damage of diamond surface.

  5. Removal of 222Rn daughters from metal surfaces

    Science.gov (United States)

    Zuzel, G.; Pelczar, K.; Wójcik, M.

    2018-01-01

    Removal of 210Po from copper, stainless steel and germanium was studied by using a standard, semiconductor-based- and a large-surface, low-background alpha spectrometer. Electropolishing and etching were applied as the surface cleaning techniques. Application of a "dynamical" process resulted for the first time in an effective 210Po removal from copper surface by etching. According to the performed measurements weak (natural) specific activities of polonium were also reduced after electropolishing of copper and stainless steel samples. An example of a bulk 210Po measurement in Titanium and deconvolution of the bulk and surface contributions to the registered spectrum is also discussed.

  6. Laser spectroscopy and photochemistry on metal surfaces, pt.2

    CERN Document Server

    Dai, HL

    1995-01-01

    Using lasers to induce and probe surface processes has the advantages of quantum state specificity, species selectivity, surface sensitivity, fast time-resolution, high frequency resolution, and accessibility to full pressure ranges. These advantages make it highly desirable to use light to induce, control, or monitor surface chemical and physical processes. Recent applications of laser based techniques in studying surface processes have stimulated new developments and enabled the understanding of fundamental problems in energy transfer and reactions. This volume will include discussions on sp

  7. Laser spectroscopy and photochemistry on metal surfaces, pt.1

    CERN Document Server

    Dai, HL

    1995-01-01

    Using lasers to induce and probe surface processes has the advantages of quantum state specificity, species selectivity, surface sensitivity, fast time-resolution, high frequency resolution, and accessibility to full pressure ranges. These advantages make it highly desirable to use light to induce, control, or monitor surface chemical and physical processes. Recent applications of laser based techniques in studying surface processes have stimulated new developments and enabled the understanding of fundamental problems in energy transfer and reactions. This volume will include discussions on sp

  8. Phase transitions and adsorbate restructuring at metal surface

    CERN Document Server

    King, DA

    1994-01-01

    The objective in initiating this series in 1980 was to provide an in-depth review of advances made in the understanding key aspects of surface chemistry and physics through the application of new techniques to the study of well-defined surfaces. Since then the field of surface science has greatly matured, and further important techniques, particularly scanning probe microscopies, have been successfully assimilated into the applications armoury of the surface scientist. The present volume is a series of timely reviews by many of the current experts in the field of phase transitions an

  9. 3D Quantum Hall Effect of Fermi Arc in Topological Semimetals

    Science.gov (United States)

    Wang, C. M.; Sun, Hai-Peng; Lu, Hai-Zhou; Xie, X. C.

    2017-09-01

    The quantum Hall effect is usually observed in 2D systems. We show that the Fermi arcs can give rise to a distinctive 3D quantum Hall effect in topological semimetals. Because of the topological constraint, the Fermi arc at a single surface has an open Fermi surface, which cannot host the quantum Hall effect. Via a "wormhole" tunneling assisted by the Weyl nodes, the Fermi arcs at opposite surfaces can form a complete Fermi loop and support the quantum Hall effect. The edge states of the Fermi arcs show a unique 3D distribution, giving an example of (d -2 )-dimensional boundary states. This is distinctly different from the surface-state quantum Hall effect from a single surface of topological insulator. As the Fermi energy sweeps through the Weyl nodes, the sheet Hall conductivity evolves from the 1 /B dependence to quantized plateaus at the Weyl nodes. This behavior can be realized by tuning gate voltages in a slab of topological semimetal, such as the TaAs family, Cd3 As2 , or Na3Bi . This work will be instructive not only for searching transport signatures of the Fermi arcs but also for exploring novel electron gases in other topological phases of matter.

  10. 3D Quantum Hall Effect of Fermi Arcs in Topological Semimetals.

    Science.gov (United States)

    Wang, C M; Sun, Hai-Peng; Lu, Hai-Zhou; Xie, X C

    2017-09-29

    The quantum Hall effect is usually observed in 2D systems. We show that the Fermi arcs can give rise to a distinctive 3D quantum Hall effect in topological semimetals. Because of the topological constraint, the Fermi arc at a single surface has an open Fermi surface, which cannot host the quantum Hall effect. Via a "wormhole" tunneling assisted by the Weyl nodes, the Fermi arcs at opposite surfaces can form a complete Fermi loop and support the quantum Hall effect. The edge states of the Fermi arcs show a unique 3D distribution, giving an example of (d-2)-dimensional boundary states. This is distinctly different from the surface-state quantum Hall effect from a single surface of topological insulator. As the Fermi energy sweeps through the Weyl nodes, the sheet Hall conductivity evolves from the 1/B dependence to quantized plateaus at the Weyl nodes. This behavior can be realized by tuning gate voltages in a slab of topological semimetal, such as the TaAs family, Cd_{3}As_{2}, or Na_{3}Bi. This work will be instructive not only for searching transport signatures of the Fermi arcs but also for exploring novel electron gases in other topological phases of matter.

  11. Heavy metals in surface sediments of the Jialu River, China: Their relations to environmental factors

    International Nuclear Information System (INIS)

    Fu, Jie; Zhao, Changpo; Luo, Yupeng; Liu, Chunsheng; Kyzas, George Z.; Luo, Yin; Zhao, Dongye; An, Shuqing; Zhu, Hailiang

    2014-01-01

    Highlights: • Zhengzhou City had major effect on the pollution of the Jialu River. • TN, OP, TP and COD Mn in water drove heavy metals to deposit in sediments. • B-IBI was sensitive to the adverse effect of heavy metals in sediments. - Abstract: This work investigated heavy metal pollution in surface sediments of the Jialu River, China. Sediment samples were collected at 19 sites along the river in connection with field surveys and the total concentrations were determined using atomic fluorescence spectrometer and inductively coupled plasma optical emission spectrometer. Sediment samples with higher metal concentrations were collected from the upper reach of the river, while sediments in the middle and lower reaches had relatively lower metal concentrations. Multivariate techniques including Pearson correlation, hierarchical cluster and principal components analysis were used to evaluate the metal sources. The ecological risk associated with the heavy metals in sediments was rated as moderate based on the assessments using methods of consensus-based Sediment Quality Guidelines, Potential Ecological Risk Index and Geo-accumulation Index. The relations between heavy metals and various environmental factors (i.e., chemical properties of sediments, water quality indices and aquatic organism indices) were also studied. Nitrate nitrogen, total nitrogen, and total polycyclic aromatic hydrocarbons concentrations in sediments showed a co-release behavior with heavy metals. Ammonia nitrogen, total nitrogen, orthophosphate, total phosphate and permanganate index in water were found to be related to metal sedimentation. Heavy metals in sediments posed a potential impact on the benthos community

  12. Guiding spoof surface plasmon polaritons by infinitely thin grooved metal strip

    Directory of Open Access Journals (Sweden)

    Xiang Wan

    2014-04-01

    Full Text Available In this paper, the propagation characteristics of spoof surface plasmon polaritons (SPPs on infinitely thin corrugated metal strips are theoretically analyzed. Compared with the situations of infinitely thick lateral thickness, the infinitely thin lateral thickness leads to lower plasma frequency according to the analyses. The propagation lengths and the binding capacity of the spoof SPPs are evaluated based on the derived dispersion equation. The effects of different lateral thicknesses are also investigated. At the end, a surface wave splitter is presented using infinitely thin corrugated metal strip. Other functional planar or flexible devices can also be designed using these metal strips in microwave or terahertz regimes.

  13. Scaling Relationships for Adsorption Energies of C2 Hydrocarbons on Transition Metal Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Jones, G

    2011-08-18

    Using density functional theory calculations we show that the adsorption energies for C{sub 2}H{sub x}-type adsorbates on transition metal surfaces scale with each other according to a simple bond order conservation model. This observation generalizes some recently recognized adsorption energy scaling laws for AH{sub x}-type adsorbates to unsaturated hydrocarbons and establishes a coherent simplified description of saturated as well as unsaturated hydrocarbons adsorbed on transition metal surfaces. A number of potential applications are discussed. We apply the model to the dehydrogenation of ethane over pure transition metal catalysts. Comparison with the corresponding full density functional theory calculations shows excellent agreement.

  14. Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions

    DEFF Research Database (Denmark)

    Ni, X.; Naik, G. V.; Kildishev, A. V.

    2011-01-01

    Spontaneous emission patterns of electric and magnetic dipoles on different metallic surfaces and a hyperbolic metamaterial (HMM) surface were simulated using the dyadic Green’s function technique. The theoretical approach was verified by experimental results obtained by measuring angular-depende......-dependent emission spectra of europium ions on top of different films. The results show the modified behavior of electric and magnetic dipoles on metallic and HMM surfaces. The results of numerical calculations agree well with experimental data.......Spontaneous emission patterns of electric and magnetic dipoles on different metallic surfaces and a hyperbolic metamaterial (HMM) surface were simulated using the dyadic Green’s function technique. The theoretical approach was verified by experimental results obtained by measuring angular...

  15. Off-line testing of multifunctional surfaces for metal forming applications

    DEFF Research Database (Denmark)

    Godi, A.; Grønbæk, J.; De Chiffre, L.

    2015-01-01

    In this paper, Bending-Under-Tension, an off-line test method simulating deep-drawing, is chosen for investigating the effectiveness of multifunctional (MUFU) surfaces in metal forming operations. Four different MUFU surfaces, characterized by a plateau bearing area and grooves for lubricant...... retention, are manufactured, together with two polished references. During the tests, surface texture is the only variable. The results show how MUFU surfaces perform better than the polished references, which produce severe galling, while MUFU surfaces with low bearing area display no clear evidence...... of galling. Metal-to-metal contact occurs anyway, but the strip material is pulverized and deposited onto the tool instead of cold-welding to it. The pockets create a discontinuity on the texture hindering pick-up propagation....

  16. Stripping scattering of fast atoms on surfaces of metal-oxide crystals and ultrathin films

    International Nuclear Information System (INIS)

    Blauth, David

    2010-01-01

    In the framework of the present dissertation the interactions of fast atoms with surfaces of bulk oxides, metals and thin films on metals were studied. The experiments were performed in the regime of grazing incidence of atoms with energies of some keV. The advantage of this scattering geometry is the high surface sensibility and thus the possibility to determine the crystallographic and electronic characteristics of the topmost surface layer. In addition to these experiments, the energy loss and the electron emission induced by scattered projectiles was investigated. The energy for electron emission and exciton excitation on Alumina/NiAl(110) and SiO 2 /Mo(112) are determined. By detection of the number of projectile induced emitted electrons as function of azimuthal angle for the rotation of the target surface, the geometrical structure of atoms forming the topmost layer of different adsorbate films on metal surfaces where determined via ion beam triangulation. (orig.)

  17. Viscous surface flow induced on Ti-based bulk metallic glass by heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kun [Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Hu, Zheng [Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Science and Technology on Vehicle Transmission Laboratory, China North Vehicle Research Institute, Beijing 100072 (China); Li, Fengjiang [Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Wei, Bingchen, E-mail: weibc@imech.ac.cn [Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China)

    2016-12-30

    Highlights: • Obvious smoothing and roughening phases on the Ti-based MG surface resulted, which correspond respectively to the normal and off-normal incidence angles. • Atomic force microscopy confirms two types of periodic ripples distributed evenly over the rough surface. • The irradiation-induced viscosity of MG is about 4×10{sup 12} Pa·s, which accords with the theoretical prediction for metallic glasses close to glass transition temperature. • Surface-confined viscous flow plays a dominant quantitative role, which is due to radiation-induced softening of the low-viscosity surface layer. - Abstract: Ti-based bulk metallic glass was irradiated by a 20 MeV Cl{sup 4+} ion beam under liquid-nitrogen cooling, which produced remarkable surface smoothing and roughening that respectively correspond to normal and off-normal incidence angles of irradiation. Atomic force microscopy confirms two types of periodic ripples distributed evenly over the rough glass surface. In terms of mechanism, irradiation-induced viscosity agrees with the theoretical prediction for metallic glasses near glass transition temperature. Here, a model is introduced, based on relaxation of confined viscous flow with a thin liquid-like layer, that explains both surface smoothing and ripple formation. This study demonstrates that bulk metallic glass has high morphological instability and low viscosity under ion irradiation, which assets can pave new paths for metallic glass applications.

  18. Surface/structure functionalization of copper-based catalysts by metal-support and/or metal-metal interactions

    Science.gov (United States)

    Konsolakis, Michalis; Ioakeimidis, Zisis

    2014-11-01

    Cu-based catalysts have recently attracted great attention both in catalysis and electro-catalysis fields due to their excellent catalytic performance and low cost. Given that their performance is determined, to a great extent, by Cu sites local environment, considerable efforts have been devoted on the strategic modifications of the electronic and structural properties of Cu sites. In this regard, the feasibility of tuning the local structure of Cu entities by means of metal-support or metal-metal interactions is investigated. More specifically, the physicochemical properties of Cu entities are modified by employing: (i) different oxides (CeO2, La2O3, Sm2O3), or (ii) ceria-based mixed oxides (Ce1-xSmxOδ) as supporting carriers, and (iii) a second metal (Cobalt) adjacent to Cu (bimetallic Cu-Co/CeO2). A characterization study, involving BET, XRD, TPR, and XPS, reveal that significant modifications on structural, redox and electronic properties of Cu sites can be induced by adopting either different oxide carriers or bimetallic complexes. Fundamental insights into the tuning of Cu local environment by metal-support or metal-metal interactions are provided, paving the way for real-life industrial applications.

  19. Surface analysis applied to metal-ceramic and bioceramic interfacial bonding

    International Nuclear Information System (INIS)

    Smart, R.St.C.; Arora, P.S.; Steveson, M.; Kawashima, N.; Cavallaro, G.P.; Ming, H.; Skinner, W.M.

    1999-01-01

    Full text: Low temperature plasma reactions, combined with sol-gel coatings, have been used to produce a variety of ceramic surface layers on metal substrates and interfacial layers between metals and oxides or other ceramics. These layers can be designed to be compositionally and functionally graded from the metal to bulk ceramic material, eg. silica, alumina, hydroxyapatite. The graded layers are generally <50nm thick, continuous, fully bonded to the substrate and deformable without disbonding. The objectives in design of these layers have been to produce: metal surfaces protected from oxidation, corrosion and acid attack; improved metal-ceramic bonding; and bioceramic titanium-based interfaces to bioactive hydroxyapatite for improved dental and medical implants. Modified Auger parameter studies for Si in XPS spectra show that the structure on the metal surfaces grades from amorphous, dehydroxylated silica on the outer surface through layer silicates, chain silicates, pyrosilicates to orthosilicates close to the metal interface. At the metal interface, detached grains of the metal are imaged with interpenetration of the oxide and silicate species linking the layer to the oxidised metal surface. The ∼30nm layer has a substantially increased frictional load compared with the untreated oxidised metal, i.e. behaviour consistent with either stronger adhesion of the coating to the substrate or a harder surface. The composition, structure and thickness of these layers can be controlled by the duration of each plasma reaction and the choice of the final reagent. The mechanisms of reaction in each process step have been elucidated with a combination of XPS, TOF-SIMS, TEM, SEM and FTIR. Similar, graded titanium/oxide/silicate/silica ceramic surface layers have been shown to form using the low temperature plasma reactions on titanium alloys used in medical and dental implants. Thicker (i.e. μm) overlayers of ceramic materials can be added to the graded surface layers

  20. Versatile Surface Functionalization of Metal-Organic Frameworks through Direct Metal Coordination with a Phenolic Lipid Enables Diverse Applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wei [Univ. of New Mexico, Albuquerque, NM (United States); Xiang, Guolei [Univ. of Cambridge (United Kingdom); Shang, Jin [Univ. of Hong Kong (China); Guo, Jimin [Univ. of New Mexico, Albuquerque, NM (United States); Motevalli, Benyamin [Monash Univ., Clayton, VIC (Australia); Durfee, Paul [Univ. of New Mexico, Albuquerque, NM (United States); Agola, Jacob Ongudi [Univ. of New Mexico, Albuquerque, NM (United States); Coker, Eric N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brinker, C. Jeffrey [Univ. of New Mexico, Albuquerque, NM (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-22

    Here, a novel strategy for the versatile functionalization of the external surface of metal-organic frameworks (MOFs) has been developed based on the direct coordination of a phenolic-inspired lipid molecule DPGG (1,2-dipalmitoyl-sn-glycero-3-galloyl) with metal nodes/sites surrounding MOF surface. X-ray diffraction and Argon sorption analysis prove that the modified MOF particles retain their structural integrity and porosity after surface modification. Density functional theory calculations reveal that strong chelation strength between the metal sites and the galloyl head group of DPGG is the basic prerequisite for successful coating. Due to the pH-responsive nature of metal-phenol complexation, the modification process is reversible by simple washing in weak acidic water, showing an excellent regeneration ability for water-stable MOFs. Moreover, the colloidal stability of the modified MOFs in the nonpolar solvent allows them to be further organized into 2 dimensional MOF or MOF/polymer monolayers by evaporation-induced interfacial assembly conducted on an air/water interface. Lastly, the easy fusion of a second functional layer onto DPGG-modified MOF cores, enabled a series of MOF-based functional nanoarchitectures, such as MOFs encapsulated within hybrid supported lipid bilayers (so-called protocells), polyhedral core-shell structures, hybrid lipid-modified-plasmonic vesicles and multicomponent supraparticles with target functionalities, to be generated. for a wide range of applications.

  1. Critical capture distances for highly charged ions above dielectric covered metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lake, R.E., E-mail: russell.lake@nist.gov [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634 (United States); Pomeroy, J.M. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Sosolik, C.E. [Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634 (United States)

    2011-06-01

    We model the first stage of the electronic interaction between an ion and a metal surface covered with a thin dielectric layer. Specifically, we seek to answer two questions. (i) As an ion approaches the surface from far away, does the first electron that it captures originate from the exposed dielectric layer or the metal underneath it? (ii) What is the ion's distance from the metal when the first electron is captured? To answer these questions, the classical potential that an electron is subject to during the interaction is calculated. The dielectric film is treated as a continuum with simple band structure. We input the parameters from recent experiments (Co with 1.5 nm thick Al{sub 2}O{sub 3} film) and found that (i) the first capture proceeds from the metal, and (ii) the dielectric film extends the distance threshold for first capture compared to a metal with no film.

  2. Anti-corrosion treatment of metal surfaces based on photonics methods

    Science.gov (United States)

    Ruzankina, J. S.; Vasiliev, O. S.; Parfenov, V. A.

    2017-11-01

    Metal corrosion protection is the main problem of all metal structures. Estimated to NASA, the loss of metal around the world is about of 2.5 trillion dollars, equivalent to 3.4% of global GDP. In our work we used a CW fiber laser with the wavelength of 1064 nm and a power up to 18, 4 W for laser irradiation of metal surfaces. We report on the optimal treatment of the metal corrosion with laser power density in the range from 7*104 to 9*104 W/cm2. After the process of laser treatment of steel surface we observe decreased roughness of steel and a small change in its chemical composition.

  3. Characterizing heavy metal build-up on urban road surfaces: Implication for stormwater reuse

    Energy Technology Data Exchange (ETDEWEB)

    Liu, An [Research Centre of Environmental Engineering and Management, Graduate School at Shenzhen, Tsinghua University, 518055 Shenzhen (China); Cooperative Research and Education Centre for Environmental Technology, Kyoto University–Tsinghua University, 518055 Shenzhen (China); Liu, Liang; Li, Dunzhu [Research Centre of Environmental Engineering and Management, Graduate School at Shenzhen, Tsinghua University, 518055 Shenzhen (China); Guan, Yuntao, E-mail: guanyt@tsinghua.edu.cn [Research Centre of Environmental Engineering and Management, Graduate School at Shenzhen, Tsinghua University, 518055 Shenzhen (China); School of Environment, Tsinghua University, Beijing 100084 (China)

    2015-05-15

    Stormwater reuse is increasingly popular in the worldwide. In terms of urban road stormwater, it commonly contains toxic pollutants such as heavy metals, which could undermine the reuse safety. The research study investigated heavy metal build-up characteristics on urban roads in a typical megacity of South China. The research outcomes show the high variability in heavy metal build-up loads among different urban road sites. The degree of traffic congestion and road surface roughness was found to exert a more significant influence on heavy metal build-up rather than traffic volume. Due to relatively higher heavy metal loads, stormwater from roads with more congested traffic conditions or rougher surfaces might be suitable for low-water-quality required activities while the stormwater from by-pass road sections could be appropriate for relatively high-water-quality required purposes since the stormwater could be relatively less polluted. Based on the research outcomes, a decision-making process for heavy metals based urban road stormwater reuse was proposed. The new finding highlights the importance to undertaking a “fit-for-purpose” road stormwater reuse strategy. Additionally, the research results can also contribute to enhancing stormwater reuse safety. - Highlights: • Heavy metal (HM) build-up varies with traffic and road surface conditions. • Traffic congestion and surface roughness exert a higher impact on HM build-up. • A “fit-for-purpose” strategy could suit urban road stormwater reuse.

  4. Characterizing heavy metal build-up on urban road surfaces: Implication for stormwater reuse

    International Nuclear Information System (INIS)

    Liu, An; Liu, Liang; Li, Dunzhu; Guan, Yuntao

    2015-01-01

    Stormwater reuse is increasingly popular in the worldwide. In terms of urban road stormwater, it commonly contains toxic pollutants such as heavy metals, which could undermine the reuse safety. The research study investigated heavy metal build-up characteristics on urban roads in a typical megacity of South China. The research outcomes show the high variability in heavy metal build-up loads among different urban road sites. The degree of traffic congestion and road surface roughness was found to exert a more significant influence on heavy metal build-up rather than traffic volume. Due to relatively higher heavy metal loads, stormwater from roads with more congested traffic conditions or rougher surfaces might be suitable for low-water-quality required activities while the stormwater from by-pass road sections could be appropriate for relatively high-water-quality required purposes since the stormwater could be relatively less polluted. Based on the research outcomes, a decision-making process for heavy metals based urban road stormwater reuse was proposed. The new finding highlights the importance to undertaking a “fit-for-purpose” road stormwater reuse strategy. Additionally, the research results can also contribute to enhancing stormwater reuse safety. - Highlights: • Heavy metal (HM) build-up varies with traffic and road surface conditions. • Traffic congestion and surface roughness exert a higher impact on HM build-up. • A “fit-for-purpose” strategy could suit urban road stormwater reuse

  5. Laser-induced nanoscale superhydrophobic structures on metal surfaces

    NARCIS (Netherlands)

    Radhakrishnan, J.; Pathiraj, B.; Karatay, Elif; Römer, Gerardus Richardus, Bernardus, Engelina; Huis in 't Veld, Bert

    2011-01-01

    The combination of a dual-scale (nano and micro) roughness with an inherent low-surface energy coating material is an essential factor for the development of superhydrophobic surfaces. Ultrashort pulse laser (USPL) machining/structuring is a promising technique for obtaining the dual-scale

  6. Using public participation to sample trace metals in lake surface sediments: the OPAL Metals Survey.

    Science.gov (United States)

    Turner, S D; Rose, N L; Goldsmith, B; Bearcock, J M; Scheib, C; Yang, H

    2017-05-01

    Members of the public in England were invited in 2010 to take part in a national metals survey, by collecting samples of littoral sediment from a standing water body for geochemical analysis. To our knowledge, this is the first national sediment metals survey using public participation and reveals a snapshot of the extent of metals contamination in ponds and lakes across England. Hg, Ni, Cu, Zn and Pb concentrations exceeding sediment quality guidelines for the health of aquatic biota are ubiquitous in ponds and lakes, not just in areas with a legacy of industrial activity. To validate the public sampling approach, a calibration exercise was conducted at ten water bodies selected to represent a range of lakes found across England. Sediment concentrations of Hg, Ni, Cu, Zn and Pb were measured in samples of soil, stream and littoral and deep water sediment to assess inputs. Significant differences between littoral sediment metal concentrations occur due to local variability, but also organic content, especially in upland, peat soil catchments. Variability of metal concentrations between littoral samples is shown to be low in small (complex inputs and variation in organic content of littoral samples have a greater variability. Collection of littoral sediments in small lakes and ponds, with or without voluntary participation, can provide a reliable sampling technique for the preliminary assessment of metal contamination in standing waters. However, the heterogeneity of geology, soils and history/extent of metal contamination in the English landscape, combined with the random nature of sample collection, shows that systematic sampling for evaluating the full extent of metal contamination in lakes is still required.

  7. Contamination by urban superficial runoff: accumulated heavy metals on a road surface

    Directory of Open Access Journals (Sweden)

    Carlos Alfonso Zafra Mejía

    2007-01-01

    Full Text Available Studying the behaviour of accumulated contamination on urban surfaces is important in designing control methods minimising the impacts of surface runoff on the environment. This paper presents data regarding the sediment collected on the surface of an urban road in the city of Torrelavega in northern Spain during a period of 65 days during which 132 samples were collected. Two types of sediment collection samples were obtained: vacuumed dry samples (free load and those swept up following vacuuming (fixed load. The results showed that heavy metal concentration in the collected sediment (Pb, Zn, Cu and Cd was inversely proportional to particle diameter. High heavy metal concentrations were found in the smaller fraction (63 pm. Regression equations were calculated for heavy metal concentration regarding particle diameter. Large heavy metal loads were found in the larger fraction (125 pm. The results provide information for analysing runoff water quality in urban areas and designing treatment strategies.

  8. The interaction of H2O with strained uranium metal surfaces

    International Nuclear Information System (INIS)

    Tiferet, E.; Mintz, M. H.; Zalkind, S.; Jacob, I.; Shamir, N.

    2014-01-01

    The interaction of water vapor was studied on uranium metal surfaces, with various degrees of strain (relieved by different degrees of heating). The main features of dissociation, adsorption and initial oxidation for the studied surfaces will be presented. Common to all strained surfaces, on the metal surface a full dissociation occurs, while after oxidation only on most of them the water dissociation is full and on one of them, it is only partial. The oxygen dissociation product adsorbs (with sticking coefficient decreasing with strain relief), forming clusters, for all strains, while the hydrogen product clusters only on the strain relieved and recrystallized surface. The most interesting phenomenon, revealed for these surfaces, is the inhibition of hydrogen adsorption by traces of water vapor , changing from 10% for the mostly strained (defected) surface down to 1% for the strain relieved one. The suggested mechanism for this inhibition will be discussed

  9. Molecular modeling of organic corrosion inhibitors: why bare metal cations are not appropriate models of oxidized metal surfaces and solvated metal cations.

    Science.gov (United States)

    Kokalj, Anton

    2014-01-01

    The applicability of various models of oxidized metal surfaces - bare metal cations, clusters of various size, and extended (periodic) slabs - that are used in the field of quantum-chemical modeling of corrosion inhibitors is examined and discussed. As representative model systems imidazole inhibitor, MgO surface, and solvated Mg(2+) ion are considered by means of density-functional-theory calculations. Although the results of cluster models are prone to cluster size and shape effects, the clusters of moderate size seem useful at least for qualitative purposes. In contrast, the bare metal cations are useless not only as models of oxidized surfaces but also as models of solvated cations, because they bind molecules several times stronger than the more appropriate models. In particular, bare Mg(2+) binds imidazole by 5.9 eV, while the slab model of MgO(001) by only 0.35 eV. Such binding is even stronger for 3+ cations, e.g., bare Al(3+) binds imidazole by 17.9 eV. The reasons for these fantastically strong binding energies are discussed and it is shown that the strong bonding is predominantly due to electron charge transfer from molecule to metal cation, which stems from differences between molecular and metal ionization potentials.

  10. Charge transfer and formation of reduced Ce3+ upon adsorption of metal atoms at the ceria (110) surface

    International Nuclear Information System (INIS)

    Nolan, Michael

    2012-01-01

    The modification of cerium dioxide with nanoscale metal clusters is intensely researched for catalysis applications, with gold, silver, and copper having been particularly well studied. The interaction of the metal cluster with ceria is driven principally by a localised interaction between a small number of metal atoms (as small as one) and the surface and understanding the fundamentals of the interaction of metal atoms with ceria surfaces is therefore of great interest. Much attention has been focused on the interaction of metals with the (111) surface of ceria, since this is the most stable surface and can be grown as films, which are probed experimentally. However, nanostructures exposing other surfaces such as (110) show high activity for reactions including CO oxidation and require further study; these nanostructures could be modified by deposition of metal atoms or small clusters, but there is no information to date on the atomic level details of metal-ceria interactions involving the (110) surface. This paper presents the results of density functional theory (DFT) corrected for on-site Coulomb interactions (DFT+U) calculations of the adsorption of a number of different metal atoms at an extended ceria (110) surface; the metals are Au, Ag, Cu, Al, Ga, In, La, Ce, V, Cr, and Fe. Upon adsorption all metals are oxidised, transferring electron(s) to the surface, resulting in localised surface distortions. The precise details depend on the identity of the metal atom. Au, Ag, Cu each transfer one electron to the surface, reducing one Ce ion to Ce 3+ , while of the trivalent metals, Al and La are fully oxidised, but Ga and In are only partially oxidised. Ce and the transition metals are also partially oxidised, with the number of reduced Ce ions possible in this surface no more than three per adsorbed metal atom. The predicted oxidation states of the adsorbed metal atoms should be testable in experiments on ceria nanostructures modified with metal atoms.

  11. Charge transfer and formation of reduced Ce3+ upon adsorption of metal atoms at the ceria (110) surface

    Science.gov (United States)

    Nolan, Michael

    2012-04-01

    The modification of cerium dioxide with nanoscale metal clusters is intensely researched for catalysis applications, with gold, silver, and copper having been particularly well studied. The interaction of the metal cluster with ceria is driven principally by a localised interaction between a small number of metal atoms (as small as one) and the surface and understanding the fundamentals of the interaction of metal atoms with ceria surfaces is therefore of great interest. Much attention has been focused on the interaction of metals with the (111) surface of ceria, since this is the most stable surface and can be grown as films, which are probed experimentally. However, nanostructures exposing other surfaces such as (110) show high activity for reactions including CO oxidation and require further study; these nanostructures could be modified by deposition of metal atoms or small clusters, but there is no information to date on the atomic level details of metal-ceria interactions involving the (110) surface. This paper presents the results of density functional theory (DFT) corrected for on-site Coulomb interactions (DFT+U) calculations of the adsorption of a number of different metal atoms at an extended ceria (110) surface; the metals are Au, Ag, Cu, Al, Ga, In, La, Ce, V, Cr, and Fe. Upon adsorption all metals are oxidised, transferring electron(s) to the surface, resulting in localised surface distortions. The precise details depend on the identity of the metal atom. Au, Ag, Cu each transfer one electron to the surface, reducing one Ce ion to Ce3+, while of the trivalent metals, Al and La are fully oxidised, but Ga and In are only partially oxidised. Ce and the transition metals are also partially oxidised, with the number of reduced Ce ions possible in this surface no more than three per adsorbed metal atom. The predicted oxidation states of the adsorbed metal atoms should be testable in experiments on ceria nanostructures modified with metal atoms.

  12. Pollution distribution of heavy metals in surface soil at an informal electronic-waste recycling site.

    Science.gov (United States)

    Fujimori, Takashi; Takigami, Hidetaka

    2014-02-01

    We studied distribution of heavy metals [lead (Pb), copper (Cu) and zinc (Zn)] in surface soil at an electronic-waste (e-waste) recycling workshop near Metro Manila in the Philippines to evaluate the pollution size (spot size, small area or the entire workshop), as well as to assess heavy metal transport into the surrounding soil environment. On-site length-of-stride-scale (~70 cm) measurements were performed at each surface soil point using field-portable X-ray fluorescence (FP-XRF). The surface soil at the e-waste recycling workshop was polluted with Cu, Zn and Pb, which were distributed discretely in surface soil. The site was divided into five areas based on the distance from an entrance gate (y-axis) of the e-waste recycling workshop. The three heavy metals showed similar concentration gradients in the y-axis direction. Zn, Pb and Cu concentrations were estimated to decrease to half of their maximum concentrations at ~3, 7 and 7 m from the pollution spot, respectively, inside the informal e-waste recycling workshop. Distance from an entrance may play an important role in heavy metal transport at the soil surface. Using on-site FP-XRF, we evaluated the metal ratio to characterise pollution features of the solid surface. Variability analysis of heavy metals revealed vanishing surficial autocorrelation over metre ranges. Also, the possibility of concentration prediction at unmeasured points using geostatistical kriging was evaluated, and heavy metals had a relative "small" pollution scales and remained inside the original workshop compared with toxic organohalogen compounds. Thus, exposure to heavy metals may directly influence the health of e-waste workers at the original site rather than the surrounding habitat and environmental media.

  13. Search for a metallic dangling-bond wire on n-doped H-passivated semiconductor surfaces

    DEFF Research Database (Denmark)

    Engelund, Mads; Papior, Nick Rübner; Brandimarte, Pedro

    2016-01-01

    We have theoretically investigated the electronic properties of neutral and n-doped dangling bond (DB) quasi-one-dimensional structures (lines) in the Si(001):H and Ge(001):H substrates with the aim of identifying atomic-scale interconnects exhibiting metallic conduction for use in on...... band structure which is remarkably insensitive to the doping level, and thus, it is possible to manipulate the position of the Fermi level, moving it away from the gap. Transport calculations demonstrate that the metallic conduction in the DB-dimer line can survive thermally induced disorder...... but is more sensitive to imperfect patterning. In conclusion, the DB-dimer line shows remarkable stability to doping and could serve as a one-dimensional metallic conductor on n-doped samples....

  14. Switching behavior of double-decker single molecule magnets on a metal surface

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yingshuang; Schwoebel, Joerg; Hoffmann, Germar; Brede, Jens; Wiesendanger, Roland [University of Hamburg, Hamburg (Germany); Dillulo, Andrew [Ohio University, Athens (United States); Klyatskaya, Svetlana [Karlsruhe Institute of Technology, Karlsruhe (Germany); Ruben, Mario [Karlsruhe Institute of Technology, Karlsruhe (Germany); Universite de Strasbourg, Strasbourg (France)

    2011-07-01

    Single molecule magnets (SMM) are most promising materials for spin based molecular electronics. Due to their large magnetic anisotropy stabilized by inside chemical bonds, SMM can potentially be used for information storage at the single molecule level. For applications, it is of importance to adsorb the SMM onto surfaces and to study their subsequent conformational, electronic and magnetic properties. We have investigated the adsorption behavior of Tb and Dy based double-decker SMM on an Ir(111) surface with low temperature scanning tunneling microscopy and spectroscopy. It is found that Tb double-decker molecules bind tightly to the Ir(111) surface. By resonantly injecting tunneling electrons into its LUMO or HOMO state, the Tb double-decker molecule can be switched from a four-lobed structure to an eight-lobed structure. After switching, energy positions of the HOMO and LUMO states both shift closer to the Fermi level. Dy double-decker molecules also exhibit the same switching properties on the Ir(111) surface. The switching behavior of the molecules is tentatively attributed to a conformational change of the double-decker molecular frame.

  15. Anisotropic spreading of liquid metal on a rough intermetallic surface

    Directory of Open Access Journals (Sweden)

    Liu Wen

    2011-01-01

    Full Text Available An anisotropic wicking of molten Sn-Pb solder over an intermetallic rough surface has been studied. The phenomenon features preferential spreading and forming of an elliptical spread domain. A theoretically formulated model was established to predict the ratio of the wicking distance along the long axis (rx to that along the short axis (ry of the final wicking pattern. The phenomenon was simultaneously experimentally observed and recorded with a hotstage microscopy technique. The anisotropic wicking is established to be caused by a non-uniform topography of surface micro structures as opposed to an isotropic wicking on an intermetallic surface with uniformly distributed surface micro features. The relative deviation between the theoretically predicted rx/ry ratio and the corresponding average experimental value is 5%. Hence, the small margin of error confirms the validity of the proposed theoretical model of anisotropic wicking.

  16. Investigation of Liquid Metal Heat Exchanger Designs for Fission Surface Power

    Science.gov (United States)

    Dyson, Rodger W.; Penswick, Barry; Robbie, Malcolm; Geng, Steven M.

    2009-01-01

    Fission surface power is an option for future Moon and Mars surface missions. High power nuclear reactor heated Stirling convertors are an option to provide reliable power for long duration outpost operations. This report investigates various design approaches for the liquid metal to acceptor heat exchange and clarifies the details used in the analysis.

  17. Electron density in reasonably real metallic surfaces, including interchange and correlation effects

    International Nuclear Information System (INIS)

    Moraga, L.A.; Martinez, G.

    1981-01-01

    By means of a new method, the electron density in a jellium surface is calculated taking in account interchange and correlation effects; reproducing, in this way, the Lang and Kohn results. The new method is self-consistent but not iterative and hence is possible extend it to the solution of the same problem in more reasonably real metallic surfaces. (L.C.) [pt

  18. Surface functionalization of metal-organic polyhedron for homogeneous cyclopropanation catalysis.

    Science.gov (United States)

    Lu, Weigang; Yuan, Daqiang; Yakovenko, Andrey; Zhou, Hong-Cai

    2011-05-07

    A super-paddlewheel (comprised of two paddlewheels) metal-organic polyhedron (MOP) containing surface hydroxyl groups was synthesized and characterized. Condensation reactions with linear alkyl anhydrides lead to new MOPs with enhanced solubility. As a result, the surface-modified MOP 4 was demonstrated as a homogeneous Lewis-acid catalyst. © The Royal Society of Chemistry 2011

  19. Ab initio molecular dynamics calculations on reactions of molecules with metal surfaces

    NARCIS (Netherlands)

    Nattino, Francesco

    2015-01-01

    Reactions on metal surfaces are of scientific interest due to the tremendous relevance of heterogeneous catalysis. Single crystal surfaces under controlled physical conditions are generally employed as a model for the real catalysts, with the aim of improving the fundamental understanding of the

  20. Direct observation of surface reconstruction and termination on a complex metal oxide catalyst by electron microscopy

    KAUST Repository

    Zhu, Yihan

    2012-03-19

    On the surface: The surface reconstruction of an MoVTeO complex metal oxide catalyst was observed directly by various electron microscopic techniques and the results explain the puzzling catalytic behavior. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Durable hydrophobic coating composition for metallic surfaces and method for the preparation of the composition

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jiong

    2017-02-14

    A durable hydrophobic coating composition containing fluorinated silanes for metallic surfaces, such as stainless steel surfaces. The composition includes at least one fluorine-containing silane compound, at least one phosphorus-containing silane compound, and at least one hydrolysable compound. This coating is suitable for condenser tubes, among other applications, to promote dropwise condensation.

  2. The Sabatier Principle Illustrated by Catalytic H2O2 Decomposition on Metal Surfaces

    DEFF Research Database (Denmark)

    Laursen, Anders Bo; Man, Isabela Costinela; Trinhammer, Ole

    2011-01-01

    -known heterogeneous H2O2 catalytic decomposition reaction on various metal foils. The activity per catalyst surface area versus the computationally calculated binding energy of OH groups on the catalysts is plotted. The OH group is identified as the only surface intermediate in an intuitive reaction mechanism...

  3. Methods for surface treating metals, ceramics, and plastics before adhesive bonding

    International Nuclear Information System (INIS)

    Althouse, L.P.

    1976-01-01

    Methods for pretreating the surfaces of metals, ceramics, and plastics before they are coated with adhesive and used in assembly are described. The treatments recommended have been used successfully in the laboratory at LLL. Many are used in the assembly of nuclear devices. However, an unusual alloy or complex configuration may require trials before a specific surface treatment is chosen

  4. Effect of alloy type and surface conditioning on roughness and bond strength of metal brackets

    NARCIS (Netherlands)

    Nergiz, I.; Schmage, P.; Herrmann, W.; Ozcan, M.; Nergiz, [No Value

    2004-01-01

    The effect of 5 different surface conditioning methods on bonding of metal brackets to cast dental alloys was examined. The surface conditioning methods were fine (30-µm) or rough (125-µm) diamond bur, sandblasting (50-µm or 110-µm aluminum oxide [Al2O3]), and silica coating (30-µm silica). Fifty

  5. Study of plasma formation in CW CO2 laser beam-metal surface interaction

    Science.gov (United States)

    Azharonok, V. V.; Vasilchenko, Zh V.; Golubev, Vladimir S.; Gresev, A. N.; Zabelin, Alexandre M.; Chubrik, N. I.; Shimanovich, V. D.

    1994-04-01

    An interaction of the cw CO2 laser beam and a moving metal surface has been studied. The pulsed and thermodynamical parameters of the surface plasma were investigated by optical and spectroscopical methods. The subsonic radiation wave propagation in the erosion plasma torch has been studied.

  6. Heavy metals levels in surface waters and sediments in an oilfield in ...

    African Journals Online (AJOL)

    Heavy metal levels in the surface waters and sediments from five sampling stations of the Bukuma oilfield, in the Niger Delta, Nigeria were investigated using the AAS technique after standard procedures of storage and extraction. Mean range (mg/l) in the surface waters varied from Zn (0.19 0.64); Pb (ND 0.60); Cd (ND ...

  7. 7th International Fermi Symposium

    Science.gov (United States)

    2017-10-01

    The two Fermi instruments have been surveying the high-energy sky since August 2008. The Large Area Telescope (LAT) has discovered more than three thousand gamma-ray sources and many new source classes, bringing the importance of gamma-ray astrophysics to an ever-broadening community. The LAT catalog includes supernova remnants, pulsar wind nebulae, pulsars, binary systems, novae, several classes of active galaxies, starburst galaxies, normal galaxies, and a large number of unidentified sources. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from a wide range of transients. Fermi LAT's study of diffuse gamma-ray emission in our Galaxy revealed giant bubbles, as well as an excess of gamma-rays from the Galactic center region, both observations have become exciting puzzles for the astrophysics community. The direct measurement of a harder-than- expected cosmic-ray electron spectrum may imply the presence of nearby cosmic-ray accelerators. LAT data have provided stringent constraints on new phenomena such as supersymmetric dark-matter annihilations as well as tests of fundamental physics. The full reprocessing of the entire mission dataset with Pass 8 includes improved event reconstruction, a wider energy range, better energy measurements, and significantly increased effective area, all them boosting the discovery potential and the ability to do precision observations with LAT. The Gamma-ray Burst Monitor (GBM) continues to be a prolific detector of gamma-ray transients: magnetars, solar flares, terrestrial gamma-ray flashes and gamma-ray bursts at keV to MeV energies, complementing the higher energy LAT observations of those sources in addition to providing valuable science return in their own right. All gamma-ray data are made immediately available at the Fermi Science Support Center (http://fermi.gsfc.nasa.gov/ssc). These publicly available data and Fermi analysis tools have enabled a large number of important studies. We

  8. Influence of the Surface Layer on the Electrochemical Deposition of Metals and Semiconductors into Mesoporous Silicon

    Energy Technology Data Exchange (ETDEWEB)

    Chubenko, E. B., E-mail: eugene.chubenko@gmail.com; Redko, S. V.; Sherstnyov, A. I.; Petrovich, V. A.; Kotov, D. A.; Bondarenko, V. P. [Belarusian State University of Information and RadioElectronics (Belarus)

    2016-03-15

    The influence of the surface layer on the process of the electrochemical deposition of metals and semiconductors into porous silicon is studied. It is shown that the surface layer differs in structure and electrical characteristics from the host porous silicon bulk. It is established that a decrease in the conductivity of silicon crystallites that form the surface layer of porous silicon has a positive effect on the process of the filling of porous silicon with metals and semiconductors. This is demonstrated by the example of nickel and zinc oxide. The effect can be used for the formation of nanocomposite materials on the basis of porous silicon and nanostructures with a high aspect ratio.

  9. The formation energy for steps and kinks on cubic transition metal surfaces

    DEFF Research Database (Denmark)

    Vitos, Levente; Skriver, Hans Lomholt; Kollàr, Janos

    1999-01-01

    We have used our first-principles database of surface energies for metals in conjunction with the concept of vicinal surfaces to derive the energies of formation of monoatomic steps and corresponding kinks on close-packed surface facets of bcc and fee transition metals. The entries in the database...... allow for a direct calculation of the energies of a number of important steps. For the remaining steps and for all the kinks the energies of formation have been estimated from pair potential expansions of the entries in the database. (C) 1999 Elsevier Science B.V. All rights reserved....

  10. Superhydrophobic Zr-based metallic glass surface with high adhesive force

    Science.gov (United States)

    Li, Ning; Xia, Ting; Heng, Liping; Liu, Lin

    2013-06-01

    Micro/nano hierarchical structures were constructed on Zr35Ti30Be26.75Cu8.25 metallic glass surface by silicon moulding and subsequently chemical etching. The as-formed surface exhibited both superhydrophobicity and high adhesive force towards water. The superhydrophobicity is rationalized based on the modified Cassie-Baxter model [A. B. D. Cassie and S. Baxter, Trans. Faraday Soc. 40, 546 (1944)]. The origin of the robust adhesion is described in terms of intermolecular capillary forces. The present results not only provide a method to fabricate superhydrophobic metallic glasses surface but also explore an important industrial application as dry adhesives and transport of liquid microdroplets.

  11. Study on the influence of carbon monoxide to the surface oxide layer of uranium metal

    International Nuclear Information System (INIS)

    Wang Xiaolin; Duan Rongliang; Fu Yibei; Xie Renshou; Zuo Changming; Zhao Chunpei; Chen Hong

    1997-01-01

    The influence of carbon monoxide to the surface oxide layer of uranium metal has been studied by X-ray photoelectron spectroscopy (XPS) and gas chromatography (GC). Carbon monoxide adsorption on the oxide layer resulted in U4f peak shifting to the lower binding energy. The content of oxygen in the oxide is decreased and the atomic ratio (O/U) is decreased by 7.2%. The amount of carbon dioxide in the atmosphere after the surface reaction is increased by 11.0%. The investigation indicates that the surface layer can prevent the further oxidation uranium metal in the atmosphere of carbon monoxide

  12. Quantum bus of metal nanoring with surface plasmon polaritons

    International Nuclear Information System (INIS)

    Lin Zhirong; Guo Guoping; Tu Tao; Li Haiou; Zou Changling; Ren Xifeng; Guo Guangcan; Chen Junxue; Lu Yonghua

    2010-01-01

    We develop an architecture for distributed quantum computation using quantum bus of plasmonic circuits and spin qubits in self-assembled quantum dots. Deterministic quantum gates between two distant spin qubits can be reached by using an adiabatic approach in which quantum dots couple with highly detuned plasmon modes in a metallic nanoring. Plasmonic quantum bus offers a robust and scalable platform for quantum optics experiments and the development of on-chip quantum networks composed of various quantum nodes, such as quantum dots, molecules, and nanoparticles.

  13. Dissociation and recombination rate constants for CN on Cu and Ni group transition metal surfaces

    Science.gov (United States)

    Sellers, Harrell

    2000-07-01

    We report dissociation and recombination reaction rate constants for CN on the fcc(111) surfaces of Ni, Pd, Pt, Cu, Ag and Au from molecular dynamics simulations employing our normalized bond index-reactive potential functions (NBI-RPF). The Arrhenius pre-exponentials for recombination of CN on these surfaces are about three orders of magnitude greater than the dissociation pre-exponentials. On the series of metals considered herein, the reaction energetics favor dissociation on the more active metals and favor recombination on the least active metals. However, the differences in the pre-exponentials of nearly a factor of 10 3 express the tendency of the reaction entropy to favor the recombination on the surfaces investigated. We also discuss the implications of these results in terms of the thermodynamics of the surface reactions.

  14. Heavy metals uptake by sonicated activated sludge: Relation with floc surface properties

    International Nuclear Information System (INIS)

    Laurent, Julien; Casellas, Magali; Dagot, Christophe

    2009-01-01

    The effects of sonication of activated sludge on heavy metal uptake were in a first time investigated in respect with potential modifications of floc surface properties. The treatment led to the simultaneous increase of specific surface area and of the availability of negative and/or hydrophilic sites. In parallel, organic matter was released in the soluble fraction. Sorption isotherms of cadmium and copper showed that uptake characteristics and mechanisms were highly dependent on both heavy metal species and specific energy supplied. The increase of both specific surface area and fixation sites availability led to the increase of Cd(II) uptake. For Cu(II), organic matter released in soluble phase during the treatment seemed to act as a ligand and to limit adsorption on flocs surface. Three different heavy metals uptake mechanisms have been identified: proton exchange, ion exchange and (co)precipitation

  15. Fermi Surface and Magnetic Properties in Ferromagnet CoS2 and Paramagnet CoSe2 with the Pyrite-type Cubic Structure

    Science.gov (United States)

    Teruya, A.; Suzuki, F.; Aoki, D.; Honda, F.; Nakamura, A.; Nakashima, M.; Amako, Y.; Harima, H.; Uchima, K.; Hedo, M.; Nakama, T.; Ōnuki, Y.

    2017-02-01

    We succeeded in growing high-quality single crystals of pyrite-type cubic compounds CoSe2 and CoS2 using a transport agent of CoBr2 and measured the electrical resistivity, specific heat, magnetic susceptibility, magnetization, and the de Haas-van Alphen (dHvA) effect. We confirmed that CoSe2 is an exchange-enhanced paramagnet revealing a broad maximum at around 50 K in the temperature dependence of the magnetic susceptibility. The electronic specific heat coefficient is moderately large, γ = 18 mJ/(K2·mol). On the other hand, CoS2 is a ferromagnet with a Curie temperature T C = 122 K and an ordered moment μ s = 0.93 μB/Co. The γ value of 21 mJ/(K2·mol) in CoS2 is slightly larger than that of CoSe2. A large ordered moment, together with a large γ value, is a characteristic feature in CoS2 because CoS2 is a half-metallic spin state in the ferromagnetic state. Correspondingly, we detected a main dHvA branch with a large cyclotron effective mass of 13m 0 in the dHvA experiments. The detected dHvA branches in CoS2 and CoSe2 are discussed on the basis of the results of energy band calculations, revealing a broken four-fold-symmetry in the angular dependence of the dHvA frequency.

  16. Adsorption of lysozyme on base metal surfaces in the presence of an external electric potential.

    Science.gov (United States)

    Ei Ei, Htwe; Nakama, Yuhi; Tanaka, Hiroshi; Imanaka, Hiroyuki; Ishida, Naoyuki; Imamura, Koreyoshi

    2016-11-01

    The impact of external electric potential on the adsorption of a protein to base metal surfaces was examined. Hen egg white lysozyme (LSZ) and six types of base metal plates (stainless steel SUS316L (St), Ti, Ta, Zr, Cr, or Ni) were used as the protein and adsorption surface, respectively. LSZ was allowed to adsorb on the surface under different conditions (surface potential, pH, electrolyte type and concentration, surface material), which was monitored using an ellipsometer. LSZ adsorption was minimized in the potential range above a certain threshold and, in the surface potential range below the threshold, decreasing the surface potential increased the amount of protein adsorbed. The threshold potential for LSZ adsorption was shifted toward a positive value with increasing pH and was lower for Ta and Zr than for the others. A divalent anion salt (K2SO4) as an electrolyte exhibited the adsorption of LSZ in the positive potential range while a monovalent salt (KCl) did not. A comprehensive consideration of the obtained results suggests that two modes of interactions, namely the electric force by an external electric field and electrostatic interactions with ionized surface hydroxyl groups, act on the LSZ molecules and determine the extent of suppression of LSZ adsorption. All these findings appear to support the view that a base metal surface can be controlled for the affinity to a protein by manipulating the surface electric potential as has been reported on some electrode materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Spatial Gradients in Trace Metal Concentrations in the Surface Microlayer of the Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Antonio eTovar-Sanchez

    2014-12-01

    Full Text Available The relationship between dust deposition and surface water metal concentrations is poorly understood. Dissolution, solubility, and partitioning reactions of trace metals from dust particles are governed by complex chemical, biological, and physical processes occurring in the surface ocean. Despite that, the role of the sea surface microlayer (SML, a thin, but fundamental component modulating the air-sea exchange of materials has not been properly evaluated. Our study revealed that the SML of the Mediterranean Sea is enriched with bioactive trace metals (i.e., Cd, Co, Cu and Fe, ranging from 8 (for Cd to 1000 (for Fe times higher than the dissolved metal pool in the underlying water column. The highest enrichments were spatially correlated with the atmospheric deposition of mineral particles. Our mass balance results suggest that the SML in the Mediterranean Sea contains about 2 tonnes of Fe. However, we did not detect any trends between the concentrations of metals in SML with the subsurface water concentrations and biomass distributions. These findings suggest that future studies are needed to quantify the rate of metal exchange between the SML and the bioavailable pool and that the SML should be considered to better understand the effect of atmospheric inputs on the biogeochemistry of trace metals in the ocean.

  18. Demonstrating electromagnetic control of free-surface, liquid-metal flows relevant to fusion reactors

    Science.gov (United States)

    Hvasta, M. G.; Kolemen, E.; Fisher, A. E.; Ji, H.

    2018-01-01

    Plasma-facing components (PFC’s) made from solid materials may not be able to withstand the large heat and particle fluxes that will be produced within next-generation fusion reactors. To address the shortcomings of solid PFC’s, a variety of liquid-metal (LM) PFC concepts have been proposed. Many of the suggested LM-PFC designs rely on electromagnetic restraint (Lorentz force) to keep free-surface, liquid-metal flows adhered to the interior surfaces of a fusion reactor. However, there is very little, if any, experimental data demonstrating that free-surface, LM-PFC’s can actually be electromagnetically controlled. Therefore, in this study, electrical currents were injected into a free-surface liquid-metal that was flowing through a uniform magnetic field. The resultant Lorentz force generated within the liquid-metal affected the velocity and depth of the flow in a controllable manner that closely matched theoretical predictions. These results show the promise of electromagnetic control for LM-PFC’s and suggest that electromagnetic control could be further developed to adjust liquid-metal nozzle output, prevent splashing within a tokamak, and alter heat transfer properties for a wide-range of liquid-metal systems.

  19. Surface science approach to heterogeneous catalysis: CO hydrogenation on transition metals

    Science.gov (United States)

    Bonzel, H. P.; Krebs, H. J.

    1982-05-01

    Modern surface sensitive electron spectroscopies and other surface analytical techniques have in recent years been extensively applied to the study of H 2 and CO adorption on transition metals. This work has now been extended to include the heterogeneous reaction between adsorbed H 2 and CO on these metals. The combination of surface analysis (carried out under ultra-high vacuum conditions) and reaction rate measurements in the range of 100 mbar to 1 bar total pressure is being practiced. This approach yields information on changes of the surface composition of the catalyst as well as data on reaction kinetics and the possible time dependence of the reaction rate. Low surface area samples — either single or polycrystalline - are used for these studies. In the present paper the results obtained by this approach will be reviewed and discussed in the light of the adsorption data. Recent advances in the direction of studying either poisoned or promoted catalytic surfaces will also be mentioned.

  20. Surface Tomonaga-Luttinger-Liquid State on Bi/InSb(001).

    Science.gov (United States)

    Ohtsubo, Yoshiyuki; Kishi, Jun-Ichiro; Hagiwara, Kenta; Le Fèvre, Patrick; Bertran, François; Taleb-Ibrahimi, Amina; Yamane, Hiroyuki; Ideta, Shin-Ichiro; Matsunami, Masaharu; Tanaka, Kiyohisa; Kimura, Shin-Ichi

    2015-12-18

    A 1D metallic surface state was created on an anisotropic InSb(001) surface covered with Bi. Angle-resolved photoelectron spectroscopy (ARPES) showed a 1D Fermi contour with almost no 2D distortion. Close to the Fermi level (E_{F}), the angle-integrated photoelectron spectra showed power-law scaling with the binding energy and temperature. The ARPES plot above E_{F}, obtained thanks to a thermally broadened Fermi edge at room temperature, showed a 1D state with continuous metallic dispersion across E_{F} and power-law intensity suppression around E_{F}. These results strongly suggest a Tomonaga-Luttinger liquid on the Bi/InSb(001) surface.

  1. Multifunctionality of organometallic quinonoid metal complexes: surface chemistry, coordination polymers, and catalysts.

    Science.gov (United States)

    Kim, Sang Bok; Pike, Robert D; Sweigart, Dwight A

    2013-11-19

    Quinonoid metal complexes have potential applications in surface chemistry, coordination polymers, and catalysts. Although quinonoid manganese tricarbonyl complexes have been used as secondary building units (SBUs) in the formation of novel metal-organometallic coordination networks and polymers, the potentially wider applications of these versatile linkers have not yet been recognized. In this Account, we focus on these diverse new applications of quinonoid metal complexes, and report on the variety of quinonoid metal complexes that we have synthesized. Through the use of [(η(6)-hydroquinone)Mn(CO)3](+), we are able to modify the surface of Fe3O4 and FePt nanoparticles (NPs). This process occurs either by the replacement of oleylamine with neutral [(η(5)-semiquinone)Mn(CO)3] at the NP surface, or by the binding of anionic [(η(4)-quinone)Mn(CO)3](-) upon further deprotonation of [(η(5)-semiquinone)Mn(CO)3] at the NP surface. We have demonstrated chemistry at the intersection of surface-modified NPs and coordination polymers through the growth of organometallic coordination polymers onto the surface modified Fe3O4 NPs. The resulting magnetic NP/organometallic coordination polymer hybrid material exhibited both the unique superparamagnetic behavior associated with Fe3O4 NPs and the paramagnetism attributable to the metal nodes, depending upon the magnetic range examined. By the use of functionalized [(η(5)-semiquinone)Mn(CO)3] complexes, we attained the formation of an organometallic monolayer on the surface of highly ordered pyrolitic graphite (HOPG). The resulting organometallic monolayer was not simply a random array of manganese atoms on the surface, but rather consisted of an alternating "up and down" spatial arrangement of Mn atoms extending from the HOPG surface due to hydrogen bonding of the quinonoid complexes. We also showed that the topology of metal atoms on the surface could be controlled through the use of quinonoid metal complexes. A quinonoid

  2. Preparation of Ag superhydrophobic surface on metal substrates

    Science.gov (United States)

    Li, J. Y.; Lu, S. X.; Xu, W. G.; Duan, Y. Q.; Yang, X. C.; Cheng, Y. Y.; He, G.; Cui, S.

    2018-01-01

    In this work, the facile approaches are developed for preparation the Ag superhydrophobic surfaces (SHSs) on zinc (Zn), copper (Cu) and aluminium (Al) substrates. The water contact angles (WCAs) of the Ag SHSs on Zn, Cu and Al substrates are 167°, 165° and 154°, respectively. Furthermore, the water sliding angle (WSA) of each surface is less than 1°. The morphology and chemical composition of the samples are characterized using scanning electron microscopy (SEM) and X-ray diffraction pattern (XRD). The as-prepared three kinds of SHSs possess the self-cleaning performance, which can quickly take the chalk away when the water droplets fall down the SHSs. In addition, the superhydrophobicity of the SHSs can well maintain after exposure to the air for 6 months, indicating that the surfaces can sustain good stability.

  3. Evaluation of the residue from microset on various metal surfaces.

    Energy Technology Data Exchange (ETDEWEB)

    Brumbach, Michael Todd

    2011-04-01

    Fast-curing impression materials are sometimes used to cast negative-mold replications of physical defects on material surfaces. The negative-mold impressions can then be used for further measurements to record the nature of the defect. These impression materials have been designed to cure quickly, and with very low adhesion, so that they can be easily removed from the surface leaving little residual contamination. Unfortunately, some contaminant is retained by the substrate material. This investigation seeks to identify the composition and quantity of the remaining material upon removal of Microset Synthetic Rubber Replicating Compound from several material surfaces. Coe-Flex was used as a relative comparison to Microset. On fifteen different substrate materials the Microset leaves no visible trace of contaminant, however, X-ray photoelectron spectroscopy shows evidence of a thin silicone-based contaminant film of approximately 2 nm thickness.

  4. Transfer of metallic debris from the metal surface of an acetabular cup to artificial femoral heads by scraping: comparison between alumina and cobalt-chrome heads.

    Science.gov (United States)

    Chang, Chong Bum; Yoo, Jeong Joon; Song, Won Seok; Kim, Deug Joong; Koo, Kyung-Hoi; Kim, Hee Joong

    2008-04-01

    We aimed to investigate the transfer of metal to both ceramic (alumina) and metal (cobalt-chrome) heads that were scraped by a titanium alloy surface under different load conditions. The ceramic and metal heads for total hip arthroplasties were scraped by an acetabular metal shell under various loads using a creep tester. Microstructural changes in the scraped area were visualized with a scanning electron microscope, and chemical element changes were assessed using an energy dispersive X-ray spectrometry. Changes in the roughness of the scraped surface were evaluated by a three-dimensional surface profiling system. Metal transfer to the ceramic and metal heads began to be detectable at a 10 kg load, which could be exerted by one-handed force. The surface roughness values significantly increased with increasing test loads in both heads. When the contact force increased, scratching of the head surface occurred in addition to the transfer of metal. The results documented that metallic debris was transferred from the titanium alloy acetabular shell to both ceramic and metal heads by minor scraping. This study suggests that the greatest possible effort should be made to protect femoral heads, regardless of material, from contact with metallic surfaces during total hip arthroplasty.

  5. Terahertz surface plasmon polariton waveguiding with periodic metallic cylinders

    KAUST Repository

    Zhang, Ying

    2017-06-15

    We demonstrated a structure with periodic cylinders arranged bilaterally and a thin dielectric layer covered inside that supports bound modes of surface plasmon polaritons at terahertz frequencies. This structure can confine the surface plasmon polaritons in the lateral direction, and at the same time reduce the field expansion into space. We examined and explored the characteristics of several different structures using scanning near-field terahertz microscopy. The proposed designs pave a novel way to terahertz waveguiding and may have important applications in the development of flexible, wideband and compact photonic circuits operating at terahertz frequencies.

  6. Surface intermediates on metal electrodes at high temperatures

    DEFF Research Database (Denmark)

    Zachau-Christiansen, Birgit; Jacobsen, Torben; Bay, Lasse

    1998-01-01

    The mechanisms widely conceived for the O(2)-reduction or H(2)-oxidation reactions in SOFC's involve intermediate O/H species adsorbed on the electrode surface. The presence of these intermediates is investigated by linear sweep voltammetry. In air at moderate temperatures (500 degrees C) Pt...... in contact with YSZ is covered with adsorbed oxygen which vanishes at high temperature (1000 degrees C). On Ni (YSZ) a specific layer of NiO is observed above the equilibrium potential while no surface species involving hydrogen can be identified at SOFC anode conditions. (C) 1998 Published by Elsevier...... Science B.V. All rights reserved....

  7. Joining of Metal-Plastics-Hybrid Structures Using Laser Radiation by Considering the Surface Structure of the Metal

    Directory of Open Access Journals (Sweden)

    Christian Hopmann

    2016-01-01

    Full Text Available Lightweight construction is a central technology in today’s industrial production. One way to achieve the climate goals is the production of hybrid compounds of metal and plastic. The manufacturing process for these hybrid parts can be divided into in-mold assembly and postmold assembly. The postmold assembly includes thermal joining by laser, which is applied in the context of this paper. For the investigations, four plastics (MABS, PA6.6-GF35, PP, and PC, which differ in their properties, and three metals (unalloyed steel, stainless steel, and aluminum are combined and analyzed. These materials have been used, since they have a huge significance in the automotive industry. Preliminary studies showed that an adhesive bond between the two materials is achieved using metal with a structured surface. According to these studies, three structuring processes for metals (selective laser melting (SLM, NRX, and a welded metallic tissue are tested. The quality of the material/structure combinations is tested in tensile-shear-tests, microscopy images, and alternating climate tests. Compounds with SLM-Structure achieve highest strength, while compounds with aluminum are much more complex to manufacture.

  8. The Fermiac or Fermi's Trolley

    Science.gov (United States)

    Coccetti, F.

    2016-03-01

    The Fermiac, known also as Fermi's trolley or Monte Carlo trolley, is an analog computer used to determine the change in time of the neutron population in a nuclear device, via the Monte Carlo method. It was invented by Enrico Fermi and constructed by Percy King at Los Alamos in 1947, and used for about two years. A replica of the Fermiac was built at INFN mechanical workshops of Bologna in 2015, on behalf of the Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", thanks to the original drawings made available by Los Alamos National Laboratory (LANL). This reproduction of the Fermiac was put in use, and a simulation was developed.

  9. High-pressure catalytic reactions over single-crystal metal surfaces

    Science.gov (United States)

    Rodriguez, JoséA.; Wayne Goodman, D.

    1991-11-01

    Studies dealing with high-pressure catalytic reactions over single-crystal surfaces are reviewed. The coupling of an apparatus for the measurement of reaction kinetics at elevated pressures with an ultrahigh vacuum system for surface analysis allows detailed study of structure sensitivity, the effects of promoters and inhibitors on catalytic activity, and, in certain cases, identification of reaction intermediates by post-reaction surface analysis. Examples are provided which demonstrate the relevance of single-crystal studies for modeling the behaviour of high-surface-area supported catalysts. Studies of CO methanation and CO oxidation over single-crystal surfaces provide convincing evidence that these reactions are structure insensitive. For structure-sensitive reactions (ammonia synthesis, alkane hydrogenolysis, alkane isomerization, water-gas shift reaction, etc.) model single-crystal studies allow correlations to be established between surface structure and catalytic activity. The effects of both electronegative (S and P) and electropositive (alkali metals) impurities upon the catalytic activity of metal single crystals for ammonia synthesis, CO methanation, alkane hydrogenolysis, ethylene epoxidation and water-gas shift are discussed. The roles of "ensemble" and "ligand" effects in bimetallic catalysts are examined in light of data obtained using surfaces prepared by vapor-depositing one metal onto a crystal face of a dissimilar metal.

  10. Graphene nucleation and growth on the transition metal surfaces: the role of pentagon, metal step and magic carbon clusters

    Science.gov (United States)

    Gao, Junfeng; Zhao, Jijun; Ding, Feng

    2012-02-01

    The nucleation behavior of graphene on transition metal surfaces, either on a terrace or near a step edge, is systematically explored using density functional theory calculations. The supported carbon clusters, CN (N=1˜24), on the Ni(111) surface are carefully optimized [1,2]. A structural transformation from a C chain to a sp^2 C network at C12 and the most stable structures of sp^2 graphene islands contain one to three pentagons. In agreement with experimental observations, our calculations show that graphene nucleation near a metal step edge is superior to that on a terrace. Besides, ground state structures of supported CN (N = 16˜26), clusters on four selected transition metal surfaces: (Rh(111), Ru(0001), Ni(111) and Cu(111)) are explored [3]. A core-shell structured of C21 stands out as a magic cluster, which is one of the dominating carbon precursors in graphene CVD growth and has been observed in experimental STM images. The energy barrier of two C21 clusters' coalescence is computed to illustrate their influence on the kinetics of graphene CVD growth at different temperatures. [4pt] [1] J. Gao, et al,. J. Am. Chem. Soc. 133, 5009 (2011). [0pt] [2] J. Gao, et al., J. Phys. Chem. C 115, 17695 (2011). [0pt] [3] Q. Yuan, et al., J. Am. Chem. Soc. (accepted).

  11. Metal-coated magnetic nanoparticles for surface enhanced Raman ...

    Indian Academy of Sciences (India)

    magnetic properties of these nanoparticles combined with SERS provide a wide range of applications. Keywords. Surface-enhanced Raman scattering; magnetic nanoparticles; core-shell nanostructure; bio-diagnosis. 1. Introduction. In recent years, plasmonic nanostructures exhibiting novel optical properties have attracted ...

  12. Performances of different metals in optical fibre-based surface ...

    Indian Academy of Sciences (India)

    For the past few years, intense investigations were done on various sensing techniques, which may be employed for ... vector parallel to the incident plane) coincide with those of the surface plasmon wave, this light resonantly .... critical angle of the fibre and ncl is the refractive index of the cladding of the fibre. 2.6 Sensitivity ...

  13. Metal-coated magnetic nanoparticles for surface enhanced Raman ...

    Indian Academy of Sciences (India)

    We report the optimization and usage of surfactantless, water dispersible Ag and Au-coated γ–Fe2O3 nanoparticles for applications in surface-enhanced .... After the solvent evaporated, 2 μL of analyte of ∼1 μM concentration was ..... dry soil, and comprised of smooth, distinct, rectangular and square shaped islands, whose ...

  14. Dynamic and Impure Perovskite Structured Metal Oxide Surfaces

    DEFF Research Database (Denmark)

    Hansen, Karin Vels; Norrman, Kion; Traulsen, Marie Lund

    2017-01-01

    on the electrode surfaces. An experimental test of the suggestion that the segregation might happen in the vacuum in the analysis equipment gave a negative result. Formation of particles containing significant amounts of S and Cr from segregation of the trace impurities in the acquired powders were observed...

  15. Reaction dynamics of small molecules at metal surfaces

    CERN Document Server

    Samson, P A

    1999-01-01

    directed angular distributions suggest the influence of a trapping mechanism, recombining molecules scattering through a molecularly adsorbed state, with a transition state of large d sub N sub N responsible for the product vibrational excitation. Although N sub 2 dissociation on Fe(100) forms a simple overlayer structure, on Fe(110), molecular chemisorption does not occur at or above room temperature and the sticking is extremely small (approx 10 sup - sup 6 to 10 sup - sup 7). Activated nitrogen bombardment can be used to prepare a 'surface nitride' with a structure related to the geometry of bulk Fe sub 4 N. Scanning tunnelling microscopy yields atomic scale features that cannot be explained by simple overlayers. It is proposed that the uppermost iron layer reconstructs to generate quasi-octahedral sites between the top two layers, with sub-surface nitrogen in these sites forming a model for the 'surface nitride' structure. The dissociation-desorption dynamics of D sub 2 upon the Sn/Pt(111) surface alloy a...

  16. Surface Intermediates on Metal Electrodes at High Temperature

    DEFF Research Database (Denmark)

    Zachau-Christiansen, Birgit; Jacobsen, Torben; Bay, Lasse

    1997-01-01

    The mechanisms widely suggested for the O2-reduc-tion or H2-oxidation SOFC reactions involve inter-mediate O/H species adsorbed on the electrode surface. The presence of these intermediates is investigated by linear sweep voltammetry. In airat moderate temperatures (500øC) Pt in contact with YSZ...

  17. Laser-assisted surface cleaning of metallic components

    Indian Academy of Sciences (India)

    2014-02-09

    Feb 9, 2014 ... Keywords. YAG laser, oxide layer, contamination, cleaning. Abstract. Removal of a thin oxide layer from a tungsten ribbon and ThO2 particulates from zircaloy surface was achieved using a pulsed Nd:YAG laser. The removal mechanism of the oxide layer from the tungsten ribbon was identified as spallation ...

  18. Performances of different metals in optical fibre-based surface ...

    Indian Academy of Sciences (India)

    an angle θ and the right-hand side shows the real part of the propagation constant of the surface plasmon. 2.4 Reflection coefficient. The expression for the amplitude reflection coefficient of the p-polarized incident light can be obtained by using the matrix method for N-layer model [15]. The matrix method is very easy and ...

  19. Laser-assisted surface cleaning of metallic components

    Indian Academy of Sciences (India)

    2014-02-09

    Feb 9, 2014 ... 1Advanced Fuel Fabrication Facility, Bhabha Atomic Research Centre, Tarapur 401 504, India ... taining to nuclear industry in the field of nuclear fuel fabrication and radioactive waste management. As we know .... ThO2 powder taken along with a small quantity of isopropyl alcohol on the surface of. 240.

  20. Additively manufactured metallic porous biomaterials based on minimal surfaces

    DEFF Research Database (Denmark)

    Bobbert, F. S. L.; Lietaert, K.; Eftekhari, Ali Akbar

    2017-01-01

    types of triply periodic minimal surfaces (TPMS) that mimic the properties of bone to an unprecedented level of multi-physics detail. Sixteen different types of porous biomaterials were rationally designed and fabricated using selective laser melting (SLM) from a titanium alloy (Ti-6Al-4V). The topology...