WorldWideScience

Sample records for metalorganic vapor phase

  1. Metalorganic vapor phase epitaxy of AlN on sapphire with low etch pit density

    Science.gov (United States)

    Koleske, D. D.; Figiel, J. J.; Alliman, D. L.; Gunning, B. P.; Kempisty, J. M.; Creighton, J. R.; Mishima, A.; Ikenaga, K.

    2017-06-01

    Using metalorganic vapor phase epitaxy, methods were developed to achieve AlN films on sapphire with low etch pit density (EPD). Key to this achievement was using the same AlN growth recipe and only varying the pre-growth conditioning of the quartz-ware. After AlN growth, the quartz-ware was removed from the growth chamber and either exposed to room air or moved into the N2 purged glove box and exposed to H2O vapor. After the quartz-ware was exposed to room air or H2O, the AlN film growth was found to be more reproducible, resulting in films with (0002) and (10-12) x-ray diffraction (XRD) rocking curve linewidths of 200 and 500 arc sec, respectively, and EPDs < 100 cm-2. The EPD was found to correlate with (0002) linewidths, suggesting that the etch pits are associated with open core screw dislocations similar to GaN films. Once reproducible AlN conditions were established using the H2O pre-treatment, it was found that even small doses of trimethylaluminum (TMAl)/NH3 on the quartz-ware surfaces generated AlN films with higher EPDs. The presence of these residual TMAl/NH3-derived coatings in metalorganic vapor phase epitaxy (MOVPE) systems and their impact on the sapphire surface during heating might explain why reproducible growth of AlN on sapphire is difficult.

  2. Interface amorphization in hexagonal boron nitride films on sapphire substrate grown by metalorganic vapor phase epitaxy

    Science.gov (United States)

    Yang, Xu; Nitta, Shugo; Pristovsek, Markus; Liu, Yuhuai; Nagamatsu, Kentaro; Kushimoto, Maki; Honda, Yoshio; Amano, Hiroshi

    2018-05-01

    Hexagonal boron nitride (h-BN) films directly grown on c-plane sapphire substrates by pulsed-mode metalorganic vapor phase epitaxy exhibit an interlayer for growth temperatures above 1200 °C. Cross-sectional transmission electron microscopy shows that this interlayer is amorphous, while the crystalline h-BN layer above has a distinct orientational relationship with the sapphire substrate. Electron energy loss spectroscopy shows the energy-loss peaks of B and N in both the amorphous interlayer and the overlying crystalline h-BN layer, while Al and O signals are also seen in the amorphous interlayer. Thus, the interlayer forms during h-BN growth through the decomposition of the sapphire at elevated temperatures.

  3. Aluminum Gallium Nitride Alloys Grown via Metalorganic Vapor-Phase Epitaxy Using a Digital Growth Technique

    Science.gov (United States)

    Rodak, L. E.; Korakakis, D.

    2011-04-01

    This work investigates the use of a digital growth technique as a viable method for achieving high-quality aluminum gallium nitride (Al x Ga1- x N) films via metalorganic vapor-phase epitaxy. Digital alloys are superlattice structures with period thicknesses of a few monolayers. Alloys with an AlN mole fraction ranging from 0.1 to 0.9 were grown by adjusting the thickness of the AlN layer in the superlattice. High-resolution x-ray diffraction was used to determine the superlattice period and c-lattice parameter of the structure, while reciprocal-space mapping was used to determine the a-lattice parameter and evaluate growth coherency. A comparison of the measured lattice parameter with both the nominal value and also the underlying buffer layer is discussed.

  4. High-quality single crystalline NiO with twin phases grown on sapphire substrate by metalorganic vapor phase epitaxy

    Directory of Open Access Journals (Sweden)

    Kazuo Uchida

    2012-12-01

    Full Text Available High-quality single crystalline twin phase NiO grown on sapphire substrates by metalorganic vapor phase epitaxy is reported. X-ray rocking curve analysis of NiO films grown at different temperatures indicates a minimum full width at half maximum of the cubic (111 diffraction peak of 0.107° for NiO film grown at as low as 550 °C. Detailed microstructural analysis by Φ scan X-ray diffraction and transmission electron microscopy reveal that the NiO film consists of large single crystalline domains with two different crystallographic orientations which are rotated relative to each other along the [111] axis by 60°. These single crystal domains are divided by the twin phase boundaries.

  5. Vapor-Phase Deposition and Modification of Metal-Organic Frameworks: State-of-the-Art and Future Directions.

    Science.gov (United States)

    Stassen, Ivo; De Vos, Dirk; Ameloot, Rob

    2016-10-04

    Materials processing, and thin-film deposition in particular, is decisive in the implementation of functional materials in industry and real-world applications. Vapor processing of materials plays a central role in manufacturing, especially in electronics. Metal-organic frameworks (MOFs) are a class of nanoporous crystalline materials on the brink of breakthrough in many application areas. Vapor deposition of MOF thin films will facilitate their implementation in micro- and nanofabrication research and industries. In addition, vapor-solid modification can be used for postsynthetic tailoring of MOF properties. In this context, we review the recent progress in vapor processing of MOFs, summarize the underpinning chemistry and principles, and highlight promising directions for future research. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Suppression of metastable-phase inclusion in N-polar (0001¯) InGaN/GaN multiple quantum wells grown by metalorganic vapor phase epitaxy

    International Nuclear Information System (INIS)

    Shojiki, Kanako; Iwabuchi, Takuya; Kuboya, Shigeyuki; Choi, Jung-Hun; Tanikawa, Tomoyuki; Hanada, Takashi; Katayama, Ryuji; Matsuoka, Takashi; Usami, Noritaka

    2015-01-01

    The metastable zincblende (ZB) phase in N-polar (0001 ¯ ) (−c-plane) InGaN/GaN multiple quantum wells (MQWs) grown by metalorganic vapor phase epitaxy is elucidated by the electron backscatter diffraction measurements. From the comparison between the −c-plane and Ga-polar (0001) (+c-plane), the −c-plane MQWs were found to be suffered from the severe ZB-phase inclusion, while ZB-inclusion is negligible in the +c-plane MQWs grown under the same growth conditions. The ZB-phase inclusion is a hurdle for fabricating the −c-plane light-emitting diodes because the islands with a triangular shape appeared on a surface in the ZB-phase domains. To improve the purity of stable wurtzite (WZ)-phase, the optimum conditions were investigated. The ZB-phase is dramatically eliminated with decreasing the V/III ratio and increasing the growth temperature. To obtain much-higher-quality MQWs, the thinner InGaN wells and the hydrogen introduction during GaN barriers growth were tried. Consequently, MQWs with almost pure WZ phase and with atomically smooth surface have been demonstrated

  7. Improvement of electrical property of Si-doped GaN grown on r-plane sapphire by metalorganic vapor-phase epitaxy

    International Nuclear Information System (INIS)

    Kusakabe, K.; Furuzuki, T.; Ohkawa, K.

    2006-01-01

    Electrical property of Si-doped GaN layers grown on r-plane sapphire substrates by atmospheric metalorganic vapor-phase epitaxy was investigated. The electron mobility was drastically improved when GaN was grown by means of optimized combinations of growth temperature and low-temperature GaN buffer thickness. The highest room-temperature mobility of 220cm 2 /Vs was recorded at the carrier density of 1.1x10 18 cm -3 . Temperature dependence of electrical property revealed that the peak mobility of 234cm 2 /Vs was obtained at 249K. From the slope of carrier density as a function of inverse temperature, the activation energy of Si-donors was evaluated to be 11meV

  8. Structural and electrical properties of InAs/GaSb superlattices grown by metalorganic vapor phase epitaxy for midwavelength infrared detectors

    Energy Technology Data Exchange (ETDEWEB)

    Arikata, Suguru; Kyono, Takashi [Semiconductor Technologies Laboratory, Sumitomo Electric Industries, LTD., Hyogo (Japan); Miura, Kouhei; Balasekaran, Sundararajan; Inada, Hiroshi; Iguchi, Yasuhiro [Transmission Devices Laboratory, Sumitomo Electric Industries, LTD., Yokohama (Japan); Sakai, Michito [Sensor System Research Group, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Ibaraki (Japan); Katayama, Haruyoshi [Space Technology Directorate I, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Ibaraki (Japan); Kimata, Masafumi [College of Science and Engineering, Ritsumeikan University, Shiga (Japan); Akita, Katsushi [Sumiden Semiconductor Materials, LTD., Hyogo (Japan)

    2017-03-15

    InAs/GaSb superlattice (SL) structures were fabricated on GaSb substrates by metalorganic vapor phase epitaxy (MOVPE) toward midwavelength infrared (MWIR) photodiodes. Almost defect-free 200-period SLs with a strain-compensation interfacial layer were successfully fabricated and demonstrate an intense photoluminescence peak centered at 6.1 μm at 4 K and an external quantum efficiency of 31% at 3.5 μm at 20 K. These results indicate that the high-performance MWIR detectors can be fabricated in application with the InAs/GaSb SLs grown by MOVPE as an attractive method for production. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Controlling the size of InAs quantum dots on Si1-xGex/Si(0 0 1) by metalorganic vapor-phase epitaxy

    International Nuclear Information System (INIS)

    Kawaguchi, Kenichi; Ebe, Hiroji; Ekawa, Mitsuru; Sugama, Akio; Arakawa, Yasuhiko

    2009-01-01

    The formation of III-V InAs quantum dots (QDs) on group-IV Si 1-x Ge x /Si(0 0 1) was investigated by metalorganic vapor-phase epitaxy. Two types of QDs, round-shaped QDs and giant QDs elongated in the [1 1 0] or [1,-1,0] direction, were observed in a growth condition of low V/III ratios. An increase in the V/III ratio and AsH 3 preflow during the cooling process was found to suppress the formation of giant QDs. It was considered that replacing the H-stabilized SiGe surface with the As-stabilized surface was necessary for increasing the QD nucleation. The size and density of InAs QDs on SiGe were controllable as well as that on III-V semiconductor buffer layers, and InAs QDs with a density as high as 5 x 10 10 cm -2 were obtained.

  10. Hall-effect measurements of metalorganic vapor-phase epitaxy-grown p-type homoepitaxial GaN layers with various Mg concentrations

    Science.gov (United States)

    Horita, Masahiro; Takashima, Shinya; Tanaka, Ryo; Matsuyama, Hideaki; Ueno, Katsunori; Edo, Masaharu; Takahashi, Tokio; Shimizu, Mitsuaki; Suda, Jun

    2017-03-01

    Mg-doped p-type gallium nitride (GaN) layers with doping concentrations in the range from 6.5 × 1016 cm-3 (lightly doped) to 3.8 × 1019 cm-3 (heavily doped) were investigated by Hall-effect measurement for the analysis of hole concentration and mobility. p-GaN was homoepitaxially grown on a GaN free-standing substrate by metalorganic vapor-phase epitaxy. The threading dislocation density of p-GaN was 4 × 106 cm-2 measured by cathodoluminescence mapping. Hall-effect measurements of p-GaN were carried out at a temperature in the range from 130 to 450 K. For the lightly doped p-GaN, the acceptor concentration of 7.0 × 1016 cm-3 and the donor concentration of 3.2 × 1016 cm-3 were obtained, where the compensation ratio was 46%. We also obtained the depth of the Mg acceptor level to be 220 meV. The hole mobilities of 86, 31, 14 cm2 V-1 s-1 at 200, 300, 400 K, respectively, were observed in the lightly doped p-GaN.

  11. Influence of incoherent twin boundaries on the electrical properties of β-Ga2O3 layers homoepitaxially grown by metal-organic vapor phase epitaxy

    Science.gov (United States)

    Fiedler, A.; Schewski, R.; Baldini, M.; Galazka, Z.; Wagner, G.; Albrecht, M.; Irmscher, K.

    2017-10-01

    We present a quantitative model that addresses the influence of incoherent twin boundaries on the electrical properties in β-Ga2O3. This model can explain the mobility collapse below a threshold electron concentration of 1 × 1018 cm-3 as well as partly the low doping efficiency in β-Ga2O3 layers grown homoepitaxially by metal-organic vapor phase epitaxy on (100) substrates of only slight off-orientation. A structural analysis by transmission electron microscopy (TEM) reveals a high density of twin lamellae in these layers. In contrast to the coherent twin boundaries parallel to the (100) plane, the lateral incoherent twin boundaries exhibit one dangling bond per unit cell that acts as an acceptor-like electron trap. Since the twin lamellae are thin, we consider the incoherent twin boundaries to be line defects with a density of 1011-1012 cm-2 as determined by TEM. We estimate the influence of the incoherent twin boundaries on the electrical transport properties by adapting Read's model of charged dislocations. Our calculations quantitatively confirm that the mobility reduction and collapse as well as partly the compensation are due to the presence of twin lamellae.

  12. High growth rate GaN on 200 mm silicon by metal-organic vapor phase epitaxy for high electron mobility transistors

    Science.gov (United States)

    Charles, M.; Baines, Y.; Bavard, A.; Bouveyron, R.

    2018-02-01

    It is increasingly important to reduce the cycle time of epitaxial growth, in order to reduce the costs of device fabrication, especially for GaN based structures which typically have growth cycles of several hours. We have performed a comprehensive study using metal-organic vapor phase epitaxy (MOVPE) investigating the effects of changing GaN growth rates from 0.9 to 14.5 μm/h. Although there is no significant effect on the strain incorporated in the layers, we have seen changes in the surface morphology which can be related to the change in dislocation behaviour and surface diffusion effects. At the small scale, as seen by AFM, increased dislocation density for higher growth rates leads to increased pinning of growth terraces, resulting in more closely spaced terraces. At a larger scale of hundreds of μm observed by optical profiling, we have related the formation of grains to the rate of surface diffusion of adatoms using a random walk model, implying diffusion distances from 30 μm for the highest growth rates up to 100 μm for the lowest. The increased growth rate also increases the intrinsic carbon incorporation which can increase the breakdown voltage of GaN films. Despite an increased threading dislocation density, these very high growth rates of 14.5 μm/hr by MOVPE have been shown to be appealing for reducing epitaxial growth cycle times and therefore costs in High Electron Mobility Transistor (HEMT) structures.

  13. Photoreflectance study of strained GaAsN/GaAs T-junction quantum wires grown by metal-organic vapor phase epitaxy.

    Science.gov (United States)

    Klangtakai, Pawinee; Sanorpim, Sakuntam; Onabe, Kentaro

    2011-12-01

    Strained GaAsN T-junction quantum wires (T-QWRs) with different N contents grown on GaAs by two steps metal-organic vapor phase epitaxy in [001] and [110] directions, namely QW1 and QW2 respectively, have been investigated by photoreflectance (PR) spectroscopy. Two GaAsN T-QWRs with different N contents were formed by T-intersection of (i) a 6.4-nm-thick GaAs0.89N0.011 QW1 and a 5.2-nm-thick GaAs0.968N0.032 QW2 and (ii) a 5.0-nm-thick GaAs0.985N0.015 QW1 and a 5.2-nm-thick GaAs0.968N0.032 QW2. An evidence of a one-dimensional structure at T-intersection of the two QWs on the (001) and (110) surfaces was established by PR resonances associated with extended states in all the QW and T-QWR samples. It is found that larger lateral confinement energy than 100 meV in both of [001] and [110] directions were achieved for GaAsN T-QWRs. With increasing temperature, the transition energy of GaAsN T-QWRs decreases with a faster shrinking rate compared to that of bulk GaAs. Optical quality of GaAsN T-QWRs is found to be affected by the N-induced band edge fluctuation, which is the unique characteristic of dilute III-V-nitrides.

  14. Growth of gallium nitride based devices on silicon(001) substrates by metalorganic vapor phase epitaxy; Wachstum von Galliumnitrid-basierten Bauelementen auf Silizium(001)-Substraten mittels metallorganischer Gasphasenepitaxie

    Energy Technology Data Exchange (ETDEWEB)

    Reiher, Fabian

    2009-02-25

    The main topic of this thesis is to investigate GaN-based layer systems grown by metalorganic vapor phase epitaxy on Si(001) substrates. A temperature shift up to 45 K is measured for a complete device structure on a 2-inch silicon substrate. By using a 40 nm thin LT-AlN-seed layer (680 C), the GaN crystallites on Si(001) substrates are almost oriented with their GaN(10 anti 12)-planes parallel to the Si(001)-plane. A four-fold azimuthal symmetry occurs for these layers, with the GaN[10 anti 11]-direction is aligned parallel to one of the four equivalent left angle 110 right angle -directions, respectively. However, a mono-crystalline and fully coalesced GaN-layer with this crystallographic orientation could not yet been obtained. If a deposition temperature of more than 1100 C is used for the AlN-seed layer, solely the GaN[0001]- growth direction of crystallites occurs in the main GaN layer on Si(001) substrates. These c-axis oriented GaN columns feature two opposite azimuthal alignments that are rotated by 90 with respect to each other and with GaN[11 anti 20] parallel Si[110] and GaN[10 anti 10] parallel Si[110], respectively. By using 4 off-oriented substrates towards the Si[110]-direction, one certain azimuthal texture component can be selected. The critical value of the miscut angle corresponds to theoretical calculations predicting the occurrence of atomic double steps on the Si(001) surface. The achieved crystallographic quality of the GaN layers on Si(001) is characterized by having a tilt of FWHM=0.27 and a twist of FWHM=0.8 of the crystallites, determined by X-ray diffraction. A completely crack-free, up to 2.5 {mu}m thick, and mono-crystalline GaN-template can be realized on Si(001), integrating 4 or 5 LT-AlN-interlayers in the GaN buffer structure. Based on this structure, the first successful implementation of an (InGaN/GaN)-LED on Si(001) is achieved. Furthermore, the possible fabrication of GaN-based FET-structures is demonstrated with a fully

  15. Heteroepitaxial growth of 3-5 semiconductor compounds by metal-organic chemical vapor deposition for device applications

    Science.gov (United States)

    Collis, Ward J.; Abul-Fadl, Ali

    1988-01-01

    The purpose of this research is to design, install and operate a metal-organic chemical vapor deposition system which is to be used for the epitaxial growth of 3-5 semiconductor binary compounds, and ternary and quaternary alloys. The long-term goal is to utilize this vapor phase deposition in conjunction with existing current controlled liquid phase epitaxy facilities to perform hybrid growth sequences for fabricating integrated optoelectronic devices.

  16. β-Ga2O3 versus ε-Ga2O3: Control of the crystal phase composition of gallium oxide thin film prepared by metal-organic chemical vapor deposition

    Science.gov (United States)

    Zhuo, Yi; Chen, Zimin; Tu, Wenbin; Ma, Xuejin; Pei, Yanli; Wang, Gang

    2017-10-01

    Gallium oxide thin films of β and ε phase were grown on c-plane sapphire using metal-organic chemical vapor deposition and the phase compositions were analyzed using X-ray diffraction. The epitaxial phase diagram was constructed as a function of the growth temperature and VI/III ratio. A low growth temperature and low VI/III ratio were beneficial for the formation of hexagonal-type ε-Ga2O3. Further structure analysis revealed that the epitaxial relationship between ε-Ga2O3 and c-plane sapphire is ε-Ga2O3 (0001) || Al2O3 (0001) and ε-Ga2O3 || Al2O3 . The structural evolution of the mixed-phase sample during film thickening was investigated. By reducing the growth rate, the film evolved from a mixed phase to the energetically favored ε phase. Based on these results, a Ga2O3 thin film with a phase-pure ε-Ga2O3 upper layer was successfully obtained.

  17. Remote plasma-enhanced metalorganic chemical vapor deposition of aluminum oxide thin films

    NARCIS (Netherlands)

    Volintiru, I.; Creatore, M.; Hemmen, van J.L.; Sanden, van de M.C.M.

    2008-01-01

    Aluminum oxide films were deposited using remote plasma-enhanced metalorganic chemical vapor deposition from oxygen/trimethylaluminum mixtures. Initial studies by in situ spectroscopic ellipsometry demonstrated that the aluminum oxide films deposited at temperatures

  18. Effects of Mg/Ga and V/III source ratios on hole concentration of N-polar (000\\bar{1}) p-type GaN grown by metalorganic vapor phase epitaxy

    Science.gov (United States)

    Nonoda, Ryohei; Shojiki, Kanako; Tanikawa, Tomoyuki; Kuboya, Shigeyuki; Katayama, Ryuji; Matsuoka, Takashi

    2016-05-01

    The effects of growth conditions such as Mg/Ga and V/III ratios on the properties of N-polar (000\\bar{1}) p-type GaN grown by metalorganic vapor phase epitaxy were studied. Photoluminescence spectra from Mg-doped GaN depended on Mg/Ga and V/III ratios. For the lightly doped samples, the band-to-acceptor emission was observed at 3.3 eV and its relative intensity decreased with increasing V/III ratio. For the heavily doped samples, the donor-acceptor pair emission was observed at 2.8 eV and its peak intensity monotonically decreased with V/III ratio. The hole concentration was maximum for the Mg/Ga ratio. This is the same tendency as in group-III polar (0001) growth. The V/III ratio also reduced the hole concentration. The higher V/III ratio reduced the concentration of residual donors such as oxygen by substituting nitrogen atoms. The surface became rougher with increasing V/III ratio and the hillock density increased.

  19. Nanoselective area growth of GaN by metalorganic vapor phase epitaxy on 4H-SiC using epitaxial graphene as a mask

    International Nuclear Information System (INIS)

    Puybaret, Renaud; Jordan, Matthew B.; Voss, Paul L.; Ougazzaden, Abdallah; Patriarche, Gilles; Sundaram, Suresh; El Gmili, Youssef; Salvestrini, Jean-Paul; Heer, Walt A. de; Berger, Claire

    2016-01-01

    We report the growth of high-quality triangular GaN nanomesas, 30-nm thick, on the C-face of 4H-SiC using nanoselective area growth (NSAG) with patterned epitaxial graphene grown on SiC as an embedded mask. NSAG alleviates the problems of defects in heteroepitaxy, and the high mobility graphene film could readily provide the back low-dissipative electrode in GaN-based optoelectronic devices. A 5–8 graphene-layer film is first grown on the C-face of 4H-SiC by confinement-controlled sublimation of silicon carbide. Graphene is then patterned and arrays of 75-nm-wide openings are etched in graphene revealing the SiC substrate. A 30-nm-thick GaN is subsequently grown by metal organic vapor phase epitaxy. GaN nanomesas grow epitaxially with perfect selectivity on SiC, in the openings patterned through graphene. The up-or-down orientation of the mesas on SiC, their triangular faceting, and cross-sectional scanning transmission electron microscopy show that they are biphasic. The core is a zinc blende monocrystal surrounded with single-crystal wurtzite. The GaN crystalline nanomesas have no threading dislocations or V-pits. This NSAG process potentially leads to integration of high-quality III-nitrides on the wafer scalable epitaxial graphene/silicon carbide platform.

  20. Nanoselective area growth of GaN by metalorganic vapor phase epitaxy on 4H-SiC using epitaxial graphene as a mask

    Energy Technology Data Exchange (ETDEWEB)

    Puybaret, Renaud; Jordan, Matthew B.; Voss, Paul L.; Ougazzaden, Abdallah, E-mail: aougazza@georgiatech-metz.fr [School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); CNRS UMI 2958, Georgia Institute of Technology, 2 Rue Marconi, 57070 Metz (France); Patriarche, Gilles [CNRS, Laboratoire de Photonique et de Nanostructures, Route de Nozay, 91460 Marcoussis (France); Sundaram, Suresh; El Gmili, Youssef [CNRS UMI 2958, Georgia Institute of Technology, 2 Rue Marconi, 57070 Metz (France); Salvestrini, Jean-Paul [Université de Lorraine, CentraleSupélec, LMOPS, EA4423, 57070 Metz (France); Heer, Walt A. de [School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Berger, Claire [School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); CNRS, Institut Néel, BP166, 38042 Grenoble Cedex 9 (France)

    2016-03-07

    We report the growth of high-quality triangular GaN nanomesas, 30-nm thick, on the C-face of 4H-SiC using nanoselective area growth (NSAG) with patterned epitaxial graphene grown on SiC as an embedded mask. NSAG alleviates the problems of defects in heteroepitaxy, and the high mobility graphene film could readily provide the back low-dissipative electrode in GaN-based optoelectronic devices. A 5–8 graphene-layer film is first grown on the C-face of 4H-SiC by confinement-controlled sublimation of silicon carbide. Graphene is then patterned and arrays of 75-nm-wide openings are etched in graphene revealing the SiC substrate. A 30-nm-thick GaN is subsequently grown by metal organic vapor phase epitaxy. GaN nanomesas grow epitaxially with perfect selectivity on SiC, in the openings patterned through graphene. The up-or-down orientation of the mesas on SiC, their triangular faceting, and cross-sectional scanning transmission electron microscopy show that they are biphasic. The core is a zinc blende monocrystal surrounded with single-crystal wurtzite. The GaN crystalline nanomesas have no threading dislocations or V-pits. This NSAG process potentially leads to integration of high-quality III-nitrides on the wafer scalable epitaxial graphene/silicon carbide platform.

  1. Metalorganic chemical vapor deposition of gallium nitride on sacrificial substrates

    Science.gov (United States)

    Fenwick, William Edward

    GaN-based light emitting diodes (LEDs) face several challenges if the technology is to continue to make a significant impact in general illumination, and on technology that has become known as solid state lighting (SSL). Two of the most pressing challenges for the continued penetration of SSL into traditional lighting applications are efficacy and total lumens from the device, and their related cost. The development of alternative substrate technologies is a promising avenue toward addressing both of these challenges, as both GaN-based device technology and the associated metalorganic chemical vapor deposition (MOCVD) technology are already relatively mature technologies with a well-understood cost base. Zinc oxide (ZnO) and silicon (Si) are among the most promising alternative substrates for GaN epitaxy. These substrates offer the ability to access both higher efficacy and lumen devices (ZnO) at a much reduced cost. This work focuses on the development of MOCVD growth processes to yield high quality GaN-based materials and devices on both ZnO and Si. ZnO is a promising substrate for growth of low defect-density GaN because of its similar lattice constant and thermal expansion coefficient. The major hurdles for GaN growth on ZnO are the instability of the substrate in a hydrogen atmosphere, which is typical of nitride growth conditions, and the inter-diffusion of zinc and oxygen from the substrate into the GaN-based epitaxial layer. A process was developed for the MOCVD growth of GaN and InxGa 1-xN on ZnO that attempted to address these issues. The structural and optical properties of these films were studied using various techniques. X-ray diffraction (XRD) showed the growth of wurtzite GaN on ZnO, and room-temperature photoluminescence (RT-PL) showed near band-edge luminescence from the GaN and InxGa1-xN layers. However, high zinc and oxygen concentrations due to interdiffusion near the ZnO substrate remained an issue; therefore, the diffusion of zinc and oxygen

  2. Sensing and capture of toxic and hazardous gases and vapors by metal-organic frameworks.

    Science.gov (United States)

    Wang, Hao; Lustig, William P; Li, Jing

    2018-03-13

    Toxic and hazardous chemical species are ubiquitous, predominantly emitted by anthropogenic activities, and pose serious risks to human health and the environment. Thus, the sensing and subsequent capture of these chemicals, especially in the gas or vapor phase, are of extreme importance. To this end, metal-organic frameworks have attracted significant interest, as their high porosity and wide tunability make them ideal for both applications. These tailorable framework materials are particularly promising for the specific sensing and capture of targeted chemicals, as they can be designed to fit a diverse range of required conditions. This review will discuss the advantages of metal-organic frameworks in the sensing and capture of harmful gases and vapors, as well as principles and strategies guiding the design of these materials. Recent progress in the luminescent detection of aromatic and aliphatic volatile organic compounds, toxic gases, and chemical warfare agents will be summarized, and the adsorptive removal of fluorocarbons/chlorofluorocarbons, volatile radioactive species, toxic industrial gases and chemical warfare agents will be discussed.

  3. Growth and coalescence control of inclined c-axis polar and semipolar GaN multilayer structures grown on Si(111), Si(112), and Si(115) by metalorganic vapor phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Szymański, Tomasz, E-mail: tomasz.szymanski@pwr.edu.pl; Wośko, Mateusz; Paszkiewicz, Bartłomiej; Paszkiewicz, Bogdan; Paszkiewicz, Regina [The Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, Janiszewskiego 11/17, 50-372 Wroclaw (Poland); Sankowska, Iwona [The Institute of Electron Technology, Al. Lotnikow 32/46, 02-668 Warszawa (Poland)

    2016-09-15

    Herein, silicon substrates in alternative orientations from the commonly used Si(111) were used to enable the growth of polar and semipolar GaN-based structures by the metalorganic vapor phase epitaxy method. Specifically, Si(112) and Si(115) substrates were used for the epitaxial growth of nitride multilayer structures, while the same layer schemes were also deposited on Si(111) for comparison purposes. Multiple approaches were studied to examine the influence of the seed layers and the growth process conditions upon the final properties of the GaN/Si(11x) templates. Scanning electron microscope images were acquired to examine the topography of the deposited samples. It was observed that the substrate orientation and the process conditions allow control to produce an isolated GaN block growth or a coalesced layer growth, resulting in inclined c-axis GaN structures under various forms. The angles of the GaN c-axis inclination were determined by x-ray diffraction measurements and compared with the results obtained from the analysis of the atomic force microscope (AFM) images. The AFM image analysis method to determine the structure tilt was found to be a viable method to estimate the c-axis inclination angles of the isolated blocks and the not-fully coalesced layers. The quality of the grown samples was characterized by the photoluminescence method conducted at a wide range of temperatures from 77 to 297 K, and was correlated with the sample degree of coalescence. Using the free-excitation peak positions plotted as a function of temperature, analytical Bose-Einstein model parameters were fitted to obtain further information about the grown structures.

  4. Epitaxial Oxide Thin Films Grown by Solid Source Metal-Organic Chemical Vapor Deposition.

    Science.gov (United States)

    Lu, Zihong

    1995-01-01

    The conventional liquid source metal-organic chemical vapor deposition (MOCVD) technique is capable of producing large area, high quality, single crystal semiconductor films. However, the growth of complex oxide films by this method has been hampered by a lack of suitable source materials. While chemists have been actively searching for new source materials, the research work reported here has demonstrated the successful application of solid metal-organic sources (based on tetramethylheptanedionate) to the growth of high quality thin films of binary compound cerium dioxide (CeO_2), and two more complex materials, the ternary compound lithium niobate (LiNbO_3), with two cations, and the quaternary compound strontium barium niobate (SBN), with three cations. The growth of CeO_2 thin films on (1012)Al_2O_3 substrates has been used as a model to study the general growth behavior of oxides. Factors affecting deposition rate, surface morphology, out-of-plane mosaic structure, and film orientation have been carefully investigated. A kinetic model based on gas phase prereaction is proposed to account for the substrate temperature dependence of film orientation found in this system. Atomically smooth, single crystal quality cerium dioxide thin films have been obtained. Superconducting YBCO films sputtered on top of solid source MOCVD grown thin cerium dioxide buffer layers on sapphire have been shown to have physical properties as good as those of YBCO films grown on single crystal MgO substrates. The thin film growth of LiNbO_3 and Sr_{1-x}Ba _{x}Nb_2 O_6 (SBN) was more complex and challenging. Phase purity, transparency, in-plane orientation, and the ferroelectric polarity of LiNbO _3 films grown on sapphire substrates was investigated. The first optical quality, MOCVD grown LiNbO _3 films, having waveguiding losses of less than 2 dB/cm, were prepared. An important aspect of the SBN film growth studies involved finding a suitable single crystal substrate material. Mg

  5. Growth and Characterization of (211)B Cadmium Telluride Buffer Layer Grown by Metal-organic Vapor Phase Epitaxy on Nanopatterned Silicon for Mercury Cadmium Telluride Based Infrared Detector Applications

    Science.gov (United States)

    Shintri, Shashidhar S.

    Mercury cadmium telluride (MCT or Hg1-xCdxTe) grown by molecular beam epitaxy (MBE) is presently the material of choice for fabricating infrared (IR) detectors used in night vision based military applications. The focus of MCT epitaxy has gradually shifted since the last decade to using Si as the starting substrate since it offers several advantages. But the ˜19 % lattice mismatch between MCT and Si generates lots of crystal defects some of which degrade the performance of MCT devices. Hence thick CdTe films are used as buffer layers on Si to accommodate the defects. However, growth of high quality single crystal CdTe on Si is challenging and to date, the best MBE CdTe/Si reportedly has defects in the mid-105 cm -2 range. There is a critical need to reduce the defect levels by at least another order of magnitude, which is the main motivation behind the present work. The use of alternate growth technique called metal-organic vapor phase epitaxy (MOVPE) offers some advantages over MBE and in this work MOVPE has been employed to grow the various epitaxial films. In the first part of this work, conditions for obtaining high quality (211)B CdTe epitaxy on (211)Si were achieved, which also involved studying the effect of having additional intermediate buffer layers such as Ge and ZnTe and incorporation of in-situ thermal cyclic annealing (TCA) to reduce the dislocation density. A critical problem of Si cross-contamination due to 'memory effect' of different reactant species was minimized by introducing tertiarybutylArsine (TBAs) which resulted in As-passivation of (211)Si. The best 8-10 µm thick CdTe films on blanket (non-patterned) Si had dislocations around 3×105 cm-2, which are the best reported by MOVPE till date and comparable to the highest quality films available by MBE. In the second part of the work, nanopatterned (211)Si was used to study the effect of patterning on the crystal quality of epitaxial CdTe. In one such study, patterning of ˜20 nm holes in SiO2

  6. High index of refraction films for dielectric mirrors prepared by metal-organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Brusasco, R.M.

    1989-01-01

    A wide variety of metal oxides with high index of refraction can be prepared by Metal-Organic Chemical Vapor Deposition. We present some recent optical and laser damage results on oxide films prepared by MOCVD which could be used in a multilayer structure for highly reflecting (HR) dielectric mirror applications. The method of preparation affects both optical properties and laser damage threshold. 10 refs., 8 figs., 4 tabs

  7. Metalorganic chemical vapor deposition and characterization of ZnO materials

    Science.gov (United States)

    Sun, Shangzu; Tompa, Gary S.; Hoerman, Brent; Look, David C.; Claflin, Bruce B.; Rice, Catherine E.; Masaun, Puneet

    2006-04-01

    Zinc oxide is attracting growing interest for potential applications in electronics, optoelectronics, photonics, and chemical and biochemical sensing, among other applications. We report herein our efforts in the growth and characterization of p- and n-type ZnO materials by metalorganic chemical vapor deposition (MOCVD), focusing on recent nitrogen-doped films grown using diethyl zinc as the zinc precursor and nitric oxide (NO) as the dopant. Characterization results, including resistivity, Hall measurements, photoluminescence, and SIMS, are reported and discussed. Electrical behavior was observed to be dependent on illumination, atmosphere, and heat treatment, especially for p-type material.

  8. Half-sandwich cobalt complexes in the metal-organic chemical vapor deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Georgi, Colin [Technische Universität Chemnitz, Faculty of Natural Science, Institute of Chemistry, Inorganic Chemistry, Chemnitz 09107 (Germany); Hapke, Marko; Thiel, Indre [Leibniz-Institut für Katalyse e.V. an der Universität Rostock (LIKAT), Albert-Einstein-Straße 29a, Rostock 18059 (Germany); Hildebrandt, Alexander [Technische Universität Chemnitz, Faculty of Natural Science, Institute of Chemistry, Inorganic Chemistry, Chemnitz 09107 (Germany); Waechtler, Thomas; Schulz, Stefan E. [Fraunhofer Institute of Electronic Nano Systems (ENAS), Technologie-Campus 3, Chemnitz 09126 (Germany); Technische Universität Chemnitz, Center for Microtechnologies (ZfM), Chemnitz 09107 (Germany); Lang, Heinrich, E-mail: heinrich.lang@chemie.tu-chemnitz.de [Technische Universität Chemnitz, Faculty of Natural Science, Institute of Chemistry, Inorganic Chemistry, Chemnitz 09107 (Germany)

    2015-03-02

    A series of cobalt half-sandwich complexes of type [Co(η{sup 5}-C{sub 5}H{sub 5})(L)(L′)] (1: L, L′ = 1,5-hexadiene; 2: L = P(OEt){sub 3}, L′ = H{sub 2}C=CHSiMe{sub 3}; 3: L = L′ = P(OEt){sub 3}) has been studied regarding their physical properties such as the vapor pressure, decomposition temperature and applicability within the metal-organic chemical vapor deposition (MOCVD) process, with a focus of the influence of the phosphite ligands. It could be shown that an increasing number of P(OEt){sub 3} ligands increases the vapor pressure and thermal stability of the respective organometallic compound. Complex 3 appeared to be a promising MOCVD precursor with a high vapor pressure and hence was deposited onto Si/SiO{sub 2} (100 nm) substrates. The resulting reflective layer is closed, dense and homogeneous, with a slightly granulated surface morphology. X-ray photoelectron spectroscopy (XPS) studies demonstrated the formation of metallic cobalt, cobalt phosphate, cobalt oxide and cobalt carbide. - Highlights: • Thermal studies and vapor pressure measurements of cobalt half-sandwich complexes was carried out. • Chemical vapor deposition with cobalt half-sandwich complexes is reported. • The use of Co-phosphites results in significant phosphorous-doped metallic layers.

  9. Organometallic vapor-phase epitaxy theory and practice

    CERN Document Server

    Stringfellow, Gerald B

    1989-01-01

    Here is one of the first single-author treatments of organometallic vapor-phase epitaxy (OMVPE)--a leading technique for the fabrication of semiconductor materials and devices. Also included are metal-organic molecular-beam epitaxy (MOMBE) and chemical-beam epitaxy (CBE) ultra-high-vacuum deposition techniques using organometallic source molecules. Of interest to researchers, students, and people in the semiconductor industry, this book provides a basic foundation for understanding the technique and the application of OMVPE for the growth of both III-V and II-VI semiconductor materials and the

  10. Catalyst-free growth of InN nanorods by metal-organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Kim, Min Hwa; Moon, Dae Young; Park, Jinsub; Nanishi, Yasushi; Yi, Gyu-Chul; Yoon, Euijoon

    2012-01-01

    We demonstrated the growth of catalyst-free InN nanostructures including nanorods on (0001) Al 2 O 3 substrates using metal-organic chemical vapor deposition. As the growth time increased, growth rate along c-direction increased superlinearly with decreasing c-plane area fractions and increasing side wall areas. It was also found that desorption from the sidewalls of InN nanostructures during the InN nanorods formation was one of essential key parameters of the growth mechanism. We propose a growth model to explain the InN nanostructure evolution by considering the side wall desorption and re-deposition of indium at top c-plane surfaces. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Liquid- and Gas-Phase Diffusion of Ferrocene in Thin Films of Metal-Organic Frameworks

    Directory of Open Access Journals (Sweden)

    Wencai Zhou

    2015-06-01

    Full Text Available The mass transfer of the guest molecules in nanoporous host materials, in particular in metal-organic frameworks (MOFs, is among the crucial features of their applications. By using thin surface-mounted MOF films in combination with a quartz crystal microbalance (QCM, the diffusion of ferrocene vapor and of ethanolic and hexanic ferrocene solution in HKUST-1 was investigated. For the first time, liquid- and gas-phase diffusion in MOFs was compared directly in the identical sample. The diffusion coefficients are in the same order of magnitude (~10−16 m2·s−1, whereas the diffusion coefficient of ferrocene in the empty framework is roughly 3-times smaller than in the MOF which is filled with ethanol or n-hexane.

  12. Liquid- and Gas-Phase Diffusion of Ferrocene in Thin Films of Metal-Organic Frameworks

    Science.gov (United States)

    Zhou, Wencai; Wöll, Christof; Heinke, Lars

    2015-01-01

    The mass transfer of the guest molecules in nanoporous host materials, in particular in metal-organic frameworks (MOFs), is among the crucial features of their applications. By using thin surface-mounted MOF films in combination with a quartz crystal microbalance (QCM), the diffusion of ferrocene vapor and of ethanolic and hexanic ferrocene solution in HKUST-1 was investigated. For the first time, liquid- and gas-phase diffusion in MOFs was compared directly in the identical sample. The diffusion coefficients are in the same order of magnitude (~10−16 m2·s−1), whereas the diffusion coefficient of ferrocene in the empty framework is roughly 3-times smaller than in the MOF which is filled with ethanol or n-hexane.

  13. Beryllium doped p-type GaN grown by metal-organic chemical vapor depostion

    International Nuclear Information System (INIS)

    Al-Tahtamouni, T.M.; Sedhain, A.; Lin, J.Y.; Jiang, H.X.

    2010-01-01

    The authors report on the growth of Be-doped p-type GaN epilayers by metal-organic chmical vapor deposition (MOCVD). The electrical and optical properties of the Be-doped GaN epilayers were studied by Hall-effect measurements and photoluminescence (PL) spectroscopy. The PL spectra of Be-doped GaN epilayers ethibited two emission lines at 3.36 and 2.71 eV, which were obsent in undoped epilayers. The transition at 3.36 eV was at 3.36 and 2.71eV, which were absent in undoped epilayers. The transition at 3.36 eV was assigned to the transition of free electrons to the neutral Be acceptor Be d eg.. The transition at 2.71 eV was assigned to the transition of electrons bound to deep level donors to the Be d eg. acceptors. Three independent measurements: (a) resistivity vs. temperature, (b) PL peak positions between Be doped and undoped GaN and (c) activation energy of 2.71 eV transition all indicate that the Be energy level is between 120 and 140 meV above the valence band. This is about 20-40 meV shallower than the Mg energy level (160 meV) in GaN. It is thus concluded that Be could be an excellent acceptor dopant in nitride materials. (authors).

  14. Low temperature metalorganic chemical vapor deposition of gallium nitride using dimethylhydrazine as nitrogen source

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Y.J.; Hong, L.S.; Huang, K.F.; Tsay, J.E

    2002-11-01

    Gallium nitride (GaN) films have been homoepitaxially grown by low pressure metalorganic chemical vapor deposition technique using dimethylhydrazine (DMHy) and trimethylgallium (TMG) as the reactants at low temperatures ranging from 873 to 923 K and a constant pressure of 10 Torr. The potential of utilizing DMHy as a nitrogen source is evaluated through understanding the kinetics of GaN film growth. A growth rate dependency study with respect to DMHy and TMG concentrations indicates that Langmuir-Hinshelwood typed reaction dominates the film growth. From a model fitting to the experimental film growth rate, the adsorption equilibrium constant of DMHy is found to be approximately 1/20 that of TMG, indicating that V/III feed ratio can be reduced down to 20 to obtain a stoichiometric GaN film. Based on X-ray photoelectron spectroscope measurement, the films formed by DMHy, however, accompany significant carbon contamination due to the strong C-N bonding in DMHy. The contamination can be relieved effectively by introducing H{sub 2} into the reaction.

  15. Low temperature metalorganic chemical vapor deposition of gallium nitride using dimethylhydrazine as nitrogen source

    International Nuclear Information System (INIS)

    Hsu, Y.J.; Hong, L.S.; Huang, K.F.; Tsay, J.E.

    2002-01-01

    Gallium nitride (GaN) films have been homoepitaxially grown by low pressure metalorganic chemical vapor deposition technique using dimethylhydrazine (DMHy) and trimethylgallium (TMG) as the reactants at low temperatures ranging from 873 to 923 K and a constant pressure of 10 Torr. The potential of utilizing DMHy as a nitrogen source is evaluated through understanding the kinetics of GaN film growth. A growth rate dependency study with respect to DMHy and TMG concentrations indicates that Langmuir-Hinshelwood typed reaction dominates the film growth. From a model fitting to the experimental film growth rate, the adsorption equilibrium constant of DMHy is found to be approximately 1/20 that of TMG, indicating that V/III feed ratio can be reduced down to 20 to obtain a stoichiometric GaN film. Based on X-ray photoelectron spectroscope measurement, the films formed by DMHy, however, accompany significant carbon contamination due to the strong C-N bonding in DMHy. The contamination can be relieved effectively by introducing H 2 into the reaction

  16. Morphological Evolution of a-GaN on r-Sapphire by Metalorganic Chemical Vapor Deposition

    International Nuclear Information System (INIS)

    Sang Ling; Liu Jian-Ming; Xu Xiao-Qing; Wang Jun; Zhao Gui-Juan; Liu Chang-Bo; Gu Cheng-Yan; Liu Gui-Peng; Wei Hong-Yuan; Liu Xiang-Lin; Yang Shao-Yan; Zhu Qin-Sheng; Wang Zhan-Guo

    2012-01-01

    The morphological evolution of a-GaN deposited by metalorganic chemical vapor deposition (MOCVD) on r-sapphire is studied. The influences of V/III ratio and growth temperature on surface morphology are investigated. V-pits and stripes are observed on the surface of a-GaN grown at 1050°C and 1100°C, respectively. The overall orientation and geometry of V-pits are uniform and independent on the V/III molar ratio in the samples grown at 1050°C, while in the samples grown at 1100°C, the areas of stripes decrease with the adding of V/III ratio. We deduce the origin of V-pits and stripes by annealing the buffer layers at different temperatures. Because of the existence of inclined (101-bar1) facets, V-pits are formed at 1050°C. The (101-bar1) plane is an N terminated surface, which is metastable at higher temperature, so stripes instead of V-pits are observed at 1100°C. Raman spectra suggest that the growth temperature of the first layer in the two-step process greatly affects the strain of the films. Hence, to improve the growth temperature of the first layer in the two-step method may be an effective way to obtain high quality a-GaN film on r-sapphire. (condensed matter: structure, mechanical and thermal properties)

  17. Vapor Compressor Driven Hybrid Two-Phase Loop, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will demonstrate a vapor compressor driven hybrid two-phase loop technology. The hybrid two-phase loop...

  18. Raman scattering studies of YBa2Cu3O7-x thin films grown by chemical vapor deposition and metal-organic deposition

    International Nuclear Information System (INIS)

    Lee, E.; Yoon, S.; Um, Y.M.; Jo, W.; Seo, C.W.; Cheong, H.; Kim, B.J.; Lee, H.G.; Hong, G.W.

    2007-01-01

    We present results of Raman scattering studies of superconducting YBa 2 Cu 3 O 7-x (YBCO) films grown by chemical vapor deposition and metal-organic deposition methods. It is shown by X-ray diffraction that all the as-grown YBCO films have a highly c-axis oriented and in-plane aligned texture. Raman scattering measurements were used to investigate optical phonon modes, oxygen contents, structural properties, and second-phases of the YBCO coated conductors. Raman spectra of YBCO films with lower-transport qualities exhibit additional phonon modes at ∼300 cm -1 , ∼600 cm -1 , and ∼630 cm -1 , which are related to second-phases such as Ba 2 Cu 3 O 5.9 and BaCuO 2 . Our results strongly suggest that Raman scattering be useful for optimizing YBCO film growth conditions

  19. Fundamentals of Friction and Vapor Phase Lubrication

    National Research Council Canada - National Science Library

    Gellman, Andrew

    2004-01-01

    This is the final report for the three year research program on "Fundamentals of Friction and Vapor Phase Lubrication" conducted at Carnegie Mellon with support from AFOSR grant number F49630-01-1-0069...

  20. Characterisation of titanium nitride films obtained by metalorganic chemical vapor deposition (MOCVD); Caracterizacao de filmes de nitreto de titanio obtidos por MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Pillis, M.F., E-mail: mfpillis@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (CCTM/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Ciencia e Tecnologia de Materiais; Franco, A.C. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica; Araujo, E.G. de [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Sacilotti, M. [Universidade Federal de Pernambuco (IF/UFPE), Recife, PE (Brazil). Inst. de Fisica; Fundacao de Amparo a Ciencia e Tecnologia de Pernambuco (FACEPE), Recife, PE (Brazil)

    2009-07-01

    Ceramic coatings have been widely used as protective coating to improve the life of cutting tools, for corrosion protection and in microelectronics, optical and medical areas. Transition metals nitrides are of special interest due to its high hardness and thermal stability. In this work thin films of titanium nitride were obtained by MOCVD (metalorganic chemical vapor deposition) process. The tests were carried out for 1h at 700 deg C under 80 and 100 mbar of pressure. The characterization was made by using scanning electron microscopy coupled with dispersive energy analysis, and X-ray diffraction. Preliminary results suggested that Ti{sub 2}N phase was formed and that the growth rate varied between 4 and 13 nm/min according to the process parameter considered. (author)

  1. Laser vapor phase deposition of semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Karlov, N.V.; Luk' ianchuk, B.S.; Sisakian, E.V.; Shafeev, G.A.

    1987-06-01

    The pyrolytic effect of IR laser radiation is investigated with reference to the initiation and control of the vapor phase deposition of semiconductor films. By selecting the gas mixture composition and laser emission parameters, it is possible to control the deposition and crystal formation processes on the surface of semiconductors, with the main control action achieved due to the nonadiabatic kinetics of reactions in the gas phase and high temperatures in the laser heating zone. This control mechanism is demonstrated experimentally during the laser vapor deposition of germanium and silicon films from tetrachlorides on single-crystal Si and Ge substrates. 5 references.

  2. Epitaxial Pb(Mg1/3Nb2/3)O3 thin films synthesized by metal-organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Bai, G. R.; Streiffer, S. K.; Baumann, P. K.; Auciello, O.; Ghosh, K.; Stemmer, S.; Munkholm, A.; Thompson, Carol; Rao, R. A.; Eom, C. B.

    2000-01-01

    Metal-organic chemical vapor deposition was used to prepare Pb(Mg 1/3 Nb 2/3 )O 3 (PMN) thin films on (001) SrTiO 3 and SrRuO 3 /SrTiO 3 substrates, using solid Mg β-diketonate as the Mg precursor. Parameters including the precursor ratio in the vapor phase, growth temperature, growth rate, and reaction pressure in the reactor chamber were varied in order to determine suitable growth conditions for producing phase-pure, epitaxial PMN films. A cube-on-cube orientation relationship between the thin film and the SrTiO 3 substrate was found, with a (001) rocking curve width of 0.1 degree sign , and in-plane rocking-curve width of 0.8 degree sign . The root-mean-square surface roughness of a 200-nm-thick film on SrTiO 3 was 2 to 3 nm as measured by scanning probe microscopy. The zero-bias dielectric constant and loss measured at room temperature and 10 kHz for a 200-nm-thick film on SrRuO 3 /SrTiO 3 were approximately 1100 and 2%, respectively. The remnant polarization for this film was 16 μC/cm 2 . (c) 2000 American Institute of Physics

  3. Micro-light-emitting diodes with III–nitride tunnel junction contacts grown by metalorganic chemical vapor deposition

    KAUST Repository

    Hwang, David

    2017-12-13

    Micro-light-emitting diodes (µLEDs) with tunnel junction (TJ) contacts were grown entirely by metalorganic chemical vapor deposition. A LED structure was grown, treated with UV ozone and hydrofluoric acid, and reloaded into the reactor for TJ regrowth. The silicon doping level of the n++-GaN TJ was varied to examine its effect on voltage. µLEDs from 2.5 × 10−5 to 0.01 mm2 in area were processed, and the voltage penalty of the TJ for the smallest µLED at 20 A/cm2 was 0.60 V relative to that for a standard LED with indium tin oxide. The peak external quantum efficiency of the TJ LED was 34%.

  4. Micro-light-emitting diodes with III–nitride tunnel junction contacts grown by metalorganic chemical vapor deposition

    KAUST Repository

    Hwang, David; Mughal, Asad J.; Wong, Matthew S.; Alhassan, Abdullah I.; Nakamura, Shuji; DenBaars, Steven P.

    2017-01-01

    Micro-light-emitting diodes (µLEDs) with tunnel junction (TJ) contacts were grown entirely by metalorganic chemical vapor deposition. A LED structure was grown, treated with UV ozone and hydrofluoric acid, and reloaded into the reactor for TJ regrowth. The silicon doping level of the n++-GaN TJ was varied to examine its effect on voltage. µLEDs from 2.5 × 10−5 to 0.01 mm2 in area were processed, and the voltage penalty of the TJ for the smallest µLED at 20 A/cm2 was 0.60 V relative to that for a standard LED with indium tin oxide. The peak external quantum efficiency of the TJ LED was 34%.

  5. Curvature evolution of 200 mm diameter GaN-on-insulator wafer fabricated through metalorganic chemical vapor deposition and bonding

    Science.gov (United States)

    Zhang, Li; Lee, Kwang Hong; Kadir, Abdul; Wang, Yue; Lee, Kenneth E.; Tan, Chuan Seng; Chua, Soo Jin; Fitzgerald, Eugene A.

    2018-05-01

    Crack-free 200 mm diameter N-polar GaN-on-insulator (GaN-OI) wafers are demonstrated by the transfer of metalorganic chemical vapor deposition (MOCVD)-grown Ga-polar GaN layers from Si(111) wafers onto SiO2/Si(100) wafers. The wafer curvature of the GaN-OI wafers after the removal of the original Si(111) substrate is correlated with the wafer curvature of the starting GaN-on-Si wafers and the voids on the GaN-on-Si surface that evolve into cracks on the GaN-OI wafers. In crack-free GaN-OI wafers, the wafer curvature during the removal of the AlN nucleation layer, AlGaN strain-compensation buffer layers and GaN layers is correlated with the residual stress distribution within individual layers in the GaN-OI wafer.

  6. Comparison of precursors for pulsed metal-organic chemical vapor deposition of HfO2 high-K dielectric thin films

    International Nuclear Information System (INIS)

    Teren, Andrew R.; Thomas, Reji; He, Jiaqing; Ehrhart, Peter

    2005-01-01

    Hafnium oxide films were deposited on Si(100) substrates using pulsed metal-organic chemical vapor deposition (CVD) and evaluated for high-K dielectric applications. Three types of precursors were tested: two oxygenated ones, Hf butoxide-dmae and Hf butoxide-mmp, and an oxygen-free one, Hf diethyl-amide. Depositions were carried out in the temperature range of 350-650 deg. C, yielding different microstructures ranging from amorphous to crystalline, monoclinic, films. The films were compared on the basis of growth rate, phase development, density, interface characteristics, and electrical properties. Some specific features of the pulsed injection technique are considered. For low deposition temperatures the growth rate for the amide precursor was significantly higher than for the mixed butoxide precursors. A thickness-dependent amorphous to crystalline phase transition temperature was found for all precursors. There is an increase of the film density along with the deposition temperature from values as low as 5 g/cm 3 at 350 deg. C to values close to the bulk value of 9.7 g/cm 3 at 550 deg. C. Crystallization is observed in the same temperature range for films of typically 10-20 nm thickness. However, annealing studies show that this density increase is not simply related to the crystallization of the films. Similar electrical properties could be observed for all precursors and the dielectric constant of the films reaches values similar to the best values reported for bulk crystalline HfO 2

  7. In situ synchrotron X-ray studies during metal-organic chemical vapor deposition of semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Carol [Northern Illinois Univ., DeKalb, IL (United States); Argonne National Lab., Argonne, IL (United States); Highland, Matthew J.; Perret, Edith; Fuoss, Paul H.; Streiffer, Stephen K.; Stephenson, G. Brian [Argonne National Lab., Argonne, IL (United States); Richard, Marie-Ingrid [Universite Paul Cezanne Aix-Marseille, Marseille (France)

    2012-07-01

    In-situ, time-resolved techniques provide valuable insight into the complex interplay of surface structural and chemical evolution occurring during materials synthesis and processing of semiconductors. Our approach is to observe the evolution of surface structure and morphology at the atomic scale in real-time during metal organic vapor phase deposition (MOCVD) by using grazing incidence x-ray scattering and X-ray fluorescence, coupled with visible light scattering. Our vertical-flow MOCVD chamber is mounted on a 'z-axis' surface diffractometer designed specifically for these studies of the film growth, surface evolution and the interactions within a controlled growth environment. These techniques combine the ability of X-rays to penetrate a complex environment for measurements during growth and processing, with the sensitivity of surface scattering techniques to atomic and nanoscale structure. In this talk, we outline our program and discuss examples from our in-situ and real-time X-ray diffraction and fluorescence studies of InN, GaN, and InGaN growth on GaN(0001).

  8. Formation and characterization of the MgO protecting layer deposited by plasma-enhanced metal-organic chemical-vapor deposition

    CERN Document Server

    Kang, M S; Byun, J C; Kim, D S; Choi, C K; Lee, J Y; Kim, K H

    1999-01-01

    MgO films were prepared on Si(100) and soda-lime glass substrates by using plasma-enhanced metal-organic chemical-vapor deposition. Various ratios of the O sub 2 /CH sub 3 MgO sup t Bu gas mixture and various gas flow rates were tested for the film fabrications. Highly (100)-oriented MgO films with good crystallinity were obtained with a 10 sccm CH sub 3 MgO sup t Bu flow without an O sub 2 gas flow. About 5 % carbon was contained in all the MgO films. The refractive index and the secondary electron emission coefficient for the best quality film were 1.43 and 0.45, respectively. The sputtering rate was about 0.2 nm/min for 10 sup 1 sup 1 cm sup - sup 3 Ar sup + ion density. Annealing at 500 .deg. C in an Ar ambient promoted the grain size without inducing a phase transition.

  9. Photoluminescence characteristics of low indium composition InGaN thin films grown on sapphire by metalorganic chemical vapor deposition

    International Nuclear Information System (INIS)

    Feng, Z.C.; Liu, W.; Chua, S.J.; Yu, J.W.; Yang, C.C.; Yang, T.R.; Zhao, J.

    2006-01-01

    The wavelength shifts in the photoluminescence (PL) from low indium composition (∼ 3%) InGaN epitaxial thin films, grown on sapphire substrates by metalorganic chemical vapour deposition, has been studied by a combination of experiment and theory. As temperature increases from 6 K, the PL peak energy red-shifts very slightly first, then blue-shifts to reach a maximum at near 100 K, and red-shifts again till room temperature. This unique PL behaviour, indicating the existence of the phase separation, is interpreted qualitatively from the spatial variation of band structure due to the In-compositional fluctuation. Theoretical calculation, based upon a model involving the band-tail states in the radiative recombination, explains the experimental data successfully

  10. Structural and optical characteristics of InN/GaN multiple quantum wells grown by metalorganic chemical vapor deposition

    International Nuclear Information System (INIS)

    Kim, Je Won; Lee, Kyu Han; Hong, Sangsu

    2007-01-01

    The structural and electrical properties of InN/GaN multiple quantum wells, which were grown by metalorganic chemical vapor deposition, were characterized by transmission electron microscopy (TEM) and electroluminescence measurements. From the TEM micrographs, it was shown that the well layer was grown like a quantum dot. The well layer is expected to be the nano-size structures in the InN multiple quantum well layers. The multi-photon confocal laser scanning microscopy was used to investigate the optical properties of the light emitting diode (LED) structures with InN active layers. It was found that the two-photon excitation was possible in InN system. The pit density was measured by using the far-field optical technique. In the varied current conditions, the blue LED with the InN multiple quantum well structures did not have the wavelength shift. With this result, we can expect that the white LEDs with the InN multiple quantum well structures do not show the color temperature changes with the variations of applied currents

  11. Polarization-induced hole doping in N-polar III-nitride LED grown by metalorganic chemical vapor deposition

    KAUST Repository

    Yan, Long

    2018-05-03

    Polarization-induced doping has been shown to be effective for wide-bandgap III-nitrides. In this work, we demonstrated a significantly enhanced hole concentration via linearly grading an N-polar AlxGa1-xN (x = 0–0.3) layer grown by metal-organic chemical vapor deposition. The hole concentration increased by ∼17 times compared to that of N-polar p-GaN at 300 K. The fitting results of temperature-dependent hole concentration indicated that the holes in the graded p-AlGaN layer comprised both polarization-induced and thermally activated ones. By optimizing the growth conditions, the hole concentration was further increased to 9.0 × 1017 cm−3 in the graded AlGaN layer. The N-polar blue-violet light-emitting device with the graded p-AlGaN shows stronger electroluminescence than the one with the conventional p-GaN. The study indicates the potential of the polarization doping technique in high-performance N-polar light-emitting devices.

  12. Selective epitaxial growth of Ge1-xSnx on Si by using metal-organic chemical vapor deposition

    Science.gov (United States)

    Washizu, Tomoya; Ike, Shinichi; Inuzuka, Yuki; Takeuchi, Wakana; Nakatsuka, Osamu; Zaima, Shigeaki

    2017-06-01

    Selective epitaxial growth of Ge and Ge1-xSnx layers on Si substrates was performed by using metal-organic chemical vapor deposition (MOCVD) with precursors of tertiary-butyl-germane (t-BGe) and tri-butyl-vinyl-tin (TBVSn). We investigated the effects of growth temperature and total pressure during growth on the selectivity and the crystallinity of the Ge and Ge1-xSnx epitaxial layers. Under low total pressure growth conditions, the dominant mechanism of the selective growth of Ge epitaxial layers is the desorption of the Ge precursors. At a high total pressure case, it is needed to control the surface migration of precursors to realize the selectivity because the desorption of Ge precursors was suppressed. The selectivity of Ge growth was improved by diffusion of the Ge precursors on the SiO2 surfaces when patterned substrates were used at a high total pressure. The selective epitaxial growth of Ge1-xSnx layer was also realized using MOCVD. We found that the Sn precursors less likely to desorb from the SiO2 surfaces than the Ge precursors.

  13. Polarization-induced hole doping in N-polar III-nitride LED grown by metalorganic chemical vapor deposition

    KAUST Repository

    Yan, Long; Zhang, Yuantao; Han, Xu; Deng, Gaoqiang; Li, Pengchong; Yu, Ye; Chen, Liang; Li, Xiaohang; Song, Junfeng

    2018-01-01

    Polarization-induced doping has been shown to be effective for wide-bandgap III-nitrides. In this work, we demonstrated a significantly enhanced hole concentration via linearly grading an N-polar AlxGa1-xN (x = 0–0.3) layer grown by metal-organic chemical vapor deposition. The hole concentration increased by ∼17 times compared to that of N-polar p-GaN at 300 K. The fitting results of temperature-dependent hole concentration indicated that the holes in the graded p-AlGaN layer comprised both polarization-induced and thermally activated ones. By optimizing the growth conditions, the hole concentration was further increased to 9.0 × 1017 cm−3 in the graded AlGaN layer. The N-polar blue-violet light-emitting device with the graded p-AlGaN shows stronger electroluminescence than the one with the conventional p-GaN. The study indicates the potential of the polarization doping technique in high-performance N-polar light-emitting devices.

  14. Reduced thermal budget processing of Y--Ba--Cu--O high temperature superconducting thin films by metalorganic chemical vapor deposition

    International Nuclear Information System (INIS)

    Singh, R.; Sinha, S.; Hsu, N.J.; Ng, J.T.C.; Chou, P.; Thakur, R.P.S.; Narayan, J.

    1991-01-01

    Metalorganic chemical vapor deposition (MOCVD) has the potential of emerging as a viable technique to fabricate ribbons, tapes, coated wires, and the deposition of films of high temperature superconductors, and related materials. As a reduced thermal budget processing technique, rapid isothermal processing (RIP) based on incoherent radiation as the source of energy can be usefully coupled to conventional MOCVD. In this paper we report on the deposition and characterization of high quality superconducting thin films of Y--Ba--Cu--O (YBCO) on MgO and SrTiO 3 substrates by RIP assisted MOCVD. By using a mixture of N 2 O and O 2 as the oxygen source films deposited initially at 600 degree C for 1 min and then at 740 degree C for 30 min are primarily c-axis oriented and with zero resistance being observed at 84 and 89 K for MgO and SrTiO 3 substrates, respectively. The zero magnetic field current densities at 77 K for MgO and SrTiO 3 substrates are 1.2x10 6 and 1.5x10 6 A/cm 2 , respectively. It is envisaged that high energy photons from the incoherent light source and the use of a mixture of N 2 O and O 2 as the oxygen source, assist chemical reactions and lower overall thermal budget for processing of these films

  15. Preparation of Hydrophobic Metal-Organic Frameworks via Plasma Enhanced Chemical Vapor Deposition of Perfluoroalkanes for the Removal of Ammonia

    Science.gov (United States)

    DeCoste, Jared B.; Peterson, Gregory W.

    2013-01-01

    Plasma enhanced chemical vapor deposition (PECVD) of perfluoroalkanes has long been studied for tuning the wetting properties of surfaces. For high surface area microporous materials, such as metal-organic frameworks (MOFs), unique challenges present themselves for PECVD treatments. Herein the protocol for development of a MOF that was previously unstable to humid conditions is presented. The protocol describes the synthesis of Cu-BTC (also known as HKUST-1), the treatment of Cu-BTC with PECVD of perfluoroalkanes, the aging of materials under humid conditions, and the subsequent ammonia microbreakthrough experiments on milligram quantities of microporous materials. Cu-BTC has an extremely high surface area (~1,800 m2/g) when compared to most materials or surfaces that have been previously treated by PECVD methods. Parameters such as chamber pressure and treatment time are extremely important to ensure the perfluoroalkane plasma penetrates to and reacts with the inner MOF surfaces. Furthermore, the protocol for ammonia microbreakthrough experiments set forth here can be utilized for a variety of test gases and microporous materials. PMID:24145623

  16. Colorimetric Detection of Water Vapor Using Metal-Organic Framework Composites.

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, Mark D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    Purpose: Water vapor trapped in encapsulation materials or enclosed volumes leads to corrosion issues for critical NW components. Sandia National Laboratories has created a new diagnostic to indicate the presence of water in weapon systems. Impact: Component exposure to water now can be determined instantly, without need for costly, time-consuming analytical methods.

  17. Metal-organic aerogel as a coating for solid-phase microextraction

    Energy Technology Data Exchange (ETDEWEB)

    Saraji, Mohammad, E-mail: saraji@cc.iut.ac.ir; Shahvar, Ali

    2017-06-22

    An iron-based metal-organic aerogel was synthesized using metal-organic framework nanoparticles and applied as a fiber coating for solid-phase microextraction (SPME). Chemical, thermal and morphological characteristics of the material were investigated. Headspace SPME followed by gas chromatography-electron capture detection was used for the determination of chlorobenzenes in the environmental samples. The key experimental factors affecting the extraction efficiency of the analytes, such as ionic strength, extraction and desorption temperature, and extraction time were investigated and optimized. The applicability of the coating for the extraction of chlorobenzenes from the environmental samples including river and tap water, sludge, and coastal soil was evaluated. The detection limits were in the range of 0.1–60 ng L{sup −1}. The relative standard deviations were between 2.0 and 5.0%. The extraction recovery of the analytes was in the range of 88–100%. Compared to the commercial PDMS fiber, the present fiber showed better extraction efficiency. - Highlights: • Metal-organic aerogel was synthesized and used as a novel fiber coating for SPME. • The new coating material showed high surface area and good thermal stability. • GC-ECD was used for determination of chlorobenzenes in environmental samples. • The method showed fast extraction and better efficiency than PDMS commercial fiber.

  18. Monofilament Vaporization Propulsion (MVP) System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Monofilament Vaporization Propulsion (MVP) is a new propulsion technology targeted at secondary payload applications. It does not compromise on performance while...

  19. The liquid to vapor phase transition in excited nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, J.B.; Moretto, L.G.; Phair, L.; Wozniak, G.J.; Beaulieu, L.; Breuer, H.; Korteling, R.G.; Kwiatkowski, K.; Lefort, T.; Pienkowski, L.; Ruangma, A.; Viola, V.E.; Yennello, S.J.

    2001-05-08

    For many years it has been speculated that excited nuclei would undergo a liquid to vapor phase transition. For even longer, it has been known that clusterization in a vapor carries direct information on the liquid-vapor equilibrium according to Fisher's droplet model. Now the thermal component of the 8 GeV/c pion + 197 Au multifragmentation data of the ISiS Collaboration is shown to follow the scaling predicted by Fisher's model, thus providing the strongest evidence yet of the liquid to vapor phase transition.

  20. Characterization of InP/GaAs/Si structures grown by atmospheric pressure metalorganic chemical vapor deposition

    International Nuclear Information System (INIS)

    Pearton, S.J.; Short, K.T.; Macrander, A.T.; Abernathy, C.R.; Mazzi, V.P.; Haegel, N.M.; Al-Jassim, M.M.; Vernon, S.M.; Haven, V.E.

    1989-01-01

    The thickness dependence of material quality of InP-GaAs-Si structures grown by atmospheric pressure metalorganic chemical vapor deposition was investigated. The InP thickness was varied from 1--4 μm, and that of the GaAs from 0.1--4 μm. For a given thickness of InP, its ion channeling yield and x-ray peak width were essentially independent of the GaAs layer thickness. The InP x-ray peak widths were typically 400--440 arcsec for 4-μm-thick layers grown on GaAs. The GaAs x-ray widths in turn varied from 320--1000 arcsec for layer thicknesses from 0.1--4 μm. Cross-sectional transmission electron microscopy showed high defect densities at both the InP-GaAs and GaAs-Si interfaces. In 4-μm-thick InP layers the average threading dislocation density was in the range (3--8) x 10 8 cm -2 with a stacking fault density within the range (0.4--2) x 10 8 cm 2 . The He + ion channeling yield near the InP surface was similar to that of bulk InP (chi/sub min/∼4%), but rose rapidly toward the InP-GaAs heterointerface where it was typically around 50% for 1-μm-thick InP layers. All samples showed room-temperature luminescence, while at 4.4 K, exciton-related transitions, whose intensity was a function of the InP thickness, were observed

  1. Dislocation confinement in the growth of Na flux GaN on metalorganic chemical vapor deposition-GaN

    International Nuclear Information System (INIS)

    Takeuchi, S.; Asazu, H.; Nakamura, Y.; Sakai, A.; Imanishi, M.; Imade, M.; Mori, Y.

    2015-01-01

    We have demonstrated a GaN growth technique in the Na flux method to confine c-, (a+c)-, and a-type dislocations around the interface between a Na flux GaN crystal and a GaN layer grown by metalorganic chemical vapor deposition (MOCVD) on a (0001) sapphire substrate. Transmission electron microscopy (TEM) clearly revealed detailed interface structures and dislocation behaviors that reduced the density of vertically aligned dislocations threading to the Na flux GaN surface. Submicron-scale voids were formed at the interface above the dislocations with a c component in MOCVD-GaN, while no such voids were formed above the a-type dislocations. The penetration of the dislocations with a c component into Na flux GaN was, in most cases, effectively blocked by the presence of the voids. Although some dislocations with a c component in the MOCVD-GaN penetrated into the Na flux GaN, their propagation direction changed laterally through the voids. On the other hand, the a-type dislocations propagated laterally and collectively near the interface, when these dislocations in the MOCVD-GaN penetrated into the Na flux GaN. These results indicated that the dislocation propagation behavior was highly sensitive to the type of dislocation, but all types of dislocations were confined to within several micrometers region of the Na flux GaN from the interface. The cause of void formation, the role of voids in controlling the dislocation behavior, and the mechanism of lateral and collective dislocation propagation are discussed on the basis of TEM results

  2. Metalorganic chemical vapor deposition of ZnO:N using NO as dopant

    International Nuclear Information System (INIS)

    Dangbegnon, J.K.; Talla, K.; Roro, K.T.; Botha, J.R.

    2009-01-01

    Highly c-axis orientated ZnO was grown by metal organic chemical vapor deposition (MOCVD) using NO as both oxidant and nitrogen dopant source. The properties of the deposited material are investigated by X-ray diffraction to study the crystalline quality of the thin films. Photoluminescence measurements are used to determine the optical properties of the material as a function of VI/II ratio and post growth-annealing temperature. Two transitions appear at 3.228 and 3.156 eV and are interpreted as involving active nitrogen acceptors. An increase in the NO flow increases the concentration of nitrogen in the films, which are activated by subsequent annealing at 600 deg. C in an oxygen ambient.

  3. Metalorganic chemical vapor deposition of ZnO:N using NO as dopant

    Energy Technology Data Exchange (ETDEWEB)

    Dangbegnon, J.K., E-mail: JulienKouadio.Dangbegnon@nmmu.ac.z [Department of Physics, PO Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Talla, K.; Roro, K.T.; Botha, J.R. [Department of Physics, PO Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa)

    2009-12-01

    Highly c-axis orientated ZnO was grown by metal organic chemical vapor deposition (MOCVD) using NO as both oxidant and nitrogen dopant source. The properties of the deposited material are investigated by X-ray diffraction to study the crystalline quality of the thin films. Photoluminescence measurements are used to determine the optical properties of the material as a function of VI/II ratio and post growth-annealing temperature. Two transitions appear at 3.228 and 3.156 eV and are interpreted as involving active nitrogen acceptors. An increase in the NO flow increases the concentration of nitrogen in the films, which are activated by subsequent annealing at 600 deg. C in an oxygen ambient.

  4. High-voltage vertical GaN Schottky diode enabled by low-carbon metal-organic chemical vapor deposition growth

    Science.gov (United States)

    Cao, Y.; Chu, R.; Li, R.; Chen, M.; Chang, R.; Hughes, B.

    2016-02-01

    Vertical GaN Schottky barrier diode (SBD) structures were grown by metal-organic chemical vapor deposition on free-standing GaN substrates. The carbon doping effect on SBD performance was studied by adjusting the growth conditions and spanning the carbon doping concentration between ≤3 × 1015 cm-3 and 3 × 1019 cm-3. Using the optimized growth conditions that resulted in the lowest carbon incorporation, a vertical GaN SBD with a 6-μm drift layer was fabricated. A low turn-on voltage of 0.77 V with a breakdown voltage over 800 V was obtained from the device.

  5. Magnetic phase transition induced by electrostatic gating in two-dimensional square metal-organic frameworks

    Science.gov (United States)

    Wang, Yun-Peng; Li, Xiang-Guo; Liu, Shuang-Long; Fry, James N.; Cheng, Hai-Ping

    2018-03-01

    We investigate theoretically magnetism and magnetic phase transitions induced by electrostatic gating of two-dimensional square metal-organic framework compounds. We find that electrostatic gating can induce phase transitions between homogeneous ferromagnetic and various spin-textured antiferromagnetic states. Electronic structure and Wannier function analysis can reveal hybridizations between transition-metal d orbitals and conjugated π orbitals in the organic framework. Mn-containing compounds exhibit a strong d -π hybridization that leads to partially occupied spin-minority bands, in contrast to compounds containing transition-metal ions other than Mn, for which electronic structure around the Fermi energy is only slightly spin split due to weak d -π hybridization and the magnetic interaction is of the Ruderman-Kittel-Kasuya-Yosida type. We use a ferromagnetic Kondo lattice model to understand the phase transition in Mn-containing compounds in terms of carrier density and illuminate the complexity and the potential to control two-dimensional magnetization.

  6. Metal-Organic Framework Thin Films as Stationary Phases in Microfabricated Gas-Chromatography Columns.

    Energy Technology Data Exchange (ETDEWEB)

    Read, Douglas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sillerud, Colin Halliday [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    The overarching goal of this project is to integrate Sandia's microfabricated gas-chromatography ( GC) columns with a stationary phase material that is capable of retaining high-volatility chemicals and permanent gases. The successful integration of such a material with GCs would dramatically expand the repertoire of detectable compounds for Sandia's various microanalysis systems. One such promising class of candidate materials is metal-organic frameworks (MOFs). In this report we detail our methods for controlled deposition of HKUST-1 MOF stationary phases within GC columns. We demonstrate: the chromatographic separation of natural gas; a method for determining MOF film thickness from chromatography alone; and the first-reported GC x GC separation of natural gas -- in general -- let alone for two disparate MOF stationary phases. In addition we determine the fundamental thermodynamic constant for mass sorption, the partition coefficient, for HKUST-1 and several light hydrocarbons and select toxic industrial chemicals.

  7. Synthesis of chiral polyaniline films via chemical vapor phase polymerization

    DEFF Research Database (Denmark)

    Chen, J.; Winther-Jensen, B.; Pornputtkul, Y.

    2006-01-01

    Electrically and optically active polyaniline films doped with (1)-(-)-10- camphorsulfonic acid were successfully deposited on nonconductive substrates via chemical vapor phase polymerization. The above polyaniline/ R- camphorsulfonate films were characterized by electrochemical and physical...

  8. A novel hybrid metal-organic framework-polymeric monolith for solid-phase microextraction.

    Science.gov (United States)

    Lin, Chen-Lan; Lirio, Stephen; Chen, Ya-Ting; Lin, Chia-Her; Huang, Hsi-Ya

    2014-03-17

    This study describes the fabrication of a novel hybrid metal-organic framework- organic polymer (MOF-polymer) for use as a stationary phase in fritless solid-phase microextraction (SPME) for validating analytical methods. The MOF-polymer was prepared by using ethylene dimethacrylate (EDMA), butyl methacrylate (BMA), and an imidazolium-based ionic liquid as porogenic solvent followed by microwave-assisted polymerization with the addition of 25 % MOF. This novel hybrid MOF-polymer was used to extract penicillin (penicillin G, penicillin V, oxacillin, cloxacillin, nafcillin, dicloxacillin) under different conditions. Quantitative analysis of the extracted penicillin samples using the MOF-organic polymer for SPME was conducted by using capillary electrochromatography (CEC) coupled with UV analysis. The penicillin recovery was 63-96.2 % with high reproducibility, sensitivity, and reusability. The extraction time with the proposed fabricated SPME was only 34 min. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Experimental comparison of chiral metal-organic framework used as stationary phase in chromatography.

    Science.gov (United States)

    Xie, Sheng-Ming; Zhang, Mei; Fei, Zhi-Xin; Yuan, Li-Ming

    2014-10-10

    Chiral metal-organic frameworks (MOFs) are a new class of multifunctional material, which possess diverse structures and unusual properties such as high surface area, uniform and permanent cavities, as well as good chemical and thermal stability. Their chiral functionality makes them attractive as novel enantioselective adsorbents and stationary phases in separation science. In this paper, the experimental comparison of a chiral MOF [In₃O(obb)₃(HCO₂)(H₂O)] solvent used as a stationary phase was investigated in gas chromatography (GC), high-performance liquid chromatography (HPLC) and capillary electrochromatography (CEC). The potential relationship between the structure and components of chiral MOFs with their chiral recognition ability and selectivity are presented. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Control of a metalorganic chemical vapor deposition process for improved composition and thickness precision in compound semiconductors

    Science.gov (United States)

    Gaffney, Monique Suzanne

    1998-11-01

    Metalorganic chemical vapor deposition (MOCVD) is a process used to manufacture electronic and optoelectronic devices that has traditionally lacked real-time growth monitoring and control. Controlling the growth rate and composition using the existing sensors, as well as advanced monitoring systems developed in-house, is shown to improve device quality. Specific MOCVD growth objectives are transformed into controller performance goals. Group III bubbler concentration variations, which perturb both growth rate and composition precision, are identified to be the primary disturbances. First a feed forward control system was investigated, which used an ultrasonic concentration monitor, located upstream in the process. This control strategy resulted in improved regulation of the gallium delivery rate by cancelling the sensed gallium bubbler concentration disturbances via the injection mass flow controller. The controller performance is investigated by growing GaInAs/InP superlattices. Results of growths performed under normal operating conditions and also under large perturbations include X-ray diffraction from the samples as well as real-time sensor signal data. High quality superlattices that display up to eight orders of satellite peaks are obtained under the feed forward compensation scheme, demonstrating improved layer-to-layer reproducibility of thickness and composition. The success of the feed forward control demonstration led to the development of a more complex downstream feedback control system. An ultraviolet absorption monitor was fabricated and retrofitted as a feedback control signal. A control-oriented model of the downstream process was developed for the feedback controller synthesis. Although challenged with both the photolysis and multi-gas detection issues common to UV absorption monitors, closed loop control with the UV sensor was performed and proved to be an effective method of disturbance rejection. An InP/GaInAs test structure was grown under

  11. Reduced thermal budget processing of Y-Ba-Cu-O films by rapid isothermal processing assisted metalorganic chemical vapor deposition

    International Nuclear Information System (INIS)

    Singh, R.; Sinha, S.; Hsu, N.J.; Ng, J.T.C.; Chou, P.; Thakur, R.P.S.; Narayan, J.

    1991-01-01

    Metalorganic chemical vapor deposition (MOCVD) has the potential of emerging as a viable technique to fabricate ribbons, tapes, coated wires, and the deposition of films of high-temperature superconductors, and related materials. As a reduced thermal budget processing technique, rapid isothermal processing (RIP) based on incoherent radiation as the source of energy can be usefully coupled to conventional MOCVD. In this paper we report on the deposition and characterization of high quality superconducting thin films of Y-Ba-Cu-O (YBCO) on yttrium stabilized zirconia substrates by RIP assisted MOCVD. Using O 2 gas as the source of oxygen, YBCO films deposited initially at 600 degree C for 1 min and at 745 degree C for 25 min followed by deposition at 780 degree C for 45 s are primarily c-axis oriented and zero resistance is observed at 89--90 K. The zero magnetic field current density at 53 and 77 K are 1.2x10 6 and 3x10 5 A/cm 2 , respectively. By using a mixture of N 2 O and O 2 as the oxygen source substrate temperature was further reduced in the deposition of YBCO films. The films deposited initially at 600 degree C for 1 min and than at 720 degree C for 30 min are c-axis oriented and with zero resistance being observed at 91 K. The zero magnetic field current densities at 53 and 77 K are 3.4x10 6 and 1.2x10 6 A/cm 2 , respectively. To the best of our knowledge this is the highest value of critical current density, J c for films deposited by MOCVD at a substrate temperature as low as 720 degree C. It is envisioned that high energy photons from the incoherent light source and the use of a mixture of N 2 O and O 2 as the oxygen source, assist chemical reactions and lower overall thermal budget for processing of these films

  12. Characterizations of arsenic-doped zinc oxide films produced by atmospheric metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Weng, Li-Wei, E-mail: onlyway54@hotmail.com [Department of Electronic Engineering, College of Electrical Engineering and Computer Science, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Uen, Wu-Yih, E-mail: uenwuyih@ms37.hinet.net [Department of Electronic Engineering, College of Electrical Engineering and Computer Science, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Lan, Shan-Ming; Liao, Sen-Mao [Department of Electronic Engineering, College of Electrical Engineering and Computer Science, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Yang, Tsun-Neng; Wu, Chih-Hung; Hong, Hwe-Fen; Ma, Wei-Yang [Institute of Nuclear Energy Research, P.O. Box 3-11, Lungtan 32500, Taiwan (China); Shen, Chin-Chang [Chemical Engineering Division, Institute of Nuclear Energy Research, Longtan Township, Taoyuan 32546, Taiwan (China)

    2013-07-15

    p-type ZnO films were prepared by atmospheric metal-organic chemical vapor deposition technique using arsine (AsH{sub 3}) as the doping source. The electrical and optical properties of arsenic-doped ZnO (ZnO:As) films fabricated at 450–600 °C with various AsH{sub 3} flow rates ranging from 8 to 21.34 μmol/min were analyzed and compared. Hall measurements indicate that stable p-type ZnO films with hole concentrations varying from 7.2 × 10{sup 15} to 5.8 × 10{sup 18} cm{sup −3} could be obtained. Besides, low temperature (17 K) photoluminescence spectra of all ZnO:As films also demonstrate the dominance of the line related to the neutral acceptor-bound exciton. Moreover, the elemental identity and chemical bonding information for ZnO:As films were examined by X-ray photoelectron spectroscopy. Based on the results obtained, the effects of doping conditions on the mechanism responsible for the p-type conduction were studied. Conclusively, a simple technique to fabricate good-quality p-type ZnO films has been recognized in this work. Depositing the film at 550 °C with an AsH{sub 3} flow rate of 13.72 μmol/min is appropriate for producing hole concentrations on the order of 10{sup 17} cm{sup −3} for it. Ultimately, by increasing the AsH{sub 3} flow rate to 21.34 μmol/min for doping and depositing the film at 600 °C, ZnO:As films with a hole concentration over 5 × 10{sup 18} cm{sup −3} together with a mobility of 1.93 cm{sup 2}V{sup −1} s{sup −1} and a resistivity of 0.494 ohm-cm can be achieved.

  13. Low temperature vapor phase digestion of graphite

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Robert A.

    2017-04-18

    A method for digestion and gasification of graphite for removal from an underlying surface is described. The method can be utilized to remove graphite remnants of a formation process from the formed metal piece in a cleaning process. The method can be particularly beneficial in cleaning castings formed with graphite molding materials. The method can utilize vaporous nitric acid (HNO.sub.3) or vaporous HNO.sub.3 with air/oxygen to digest the graphite at conditions that can avoid damage to the underlying surface.

  14. Shock wave of vapor-liquid two-phase flow

    Institute of Scientific and Technical Information of China (English)

    Liangju ZHAO; Fei WANG; Hong GAO; Jingwen TANG; Yuexiang YUAN

    2008-01-01

    The shock wave of vapor-liquid two-phase flow in a pressure-gain steam injector is studied by build-ing a mathematic model and making calculations. The results show that after the shock, the vapor is nearly com-pletely condensed. The upstream Mach number and the volume ratio of vapor have a great effect on the shock. The pressure and Mach number of two-phase shock con-form to the shock of ideal gas. The analysis of available energy shows that the shock is an irreversible process with entropy increase.

  15. Metalorganic chemical vapor deposition of iron disulfide and its use for solar energy conversion

    Science.gov (United States)

    Ennaoui, Ahmed; Fiechter, Sebastian; Vogel, Ralf; Giersig, M.; Weller, Horst; Tributsch, Helmut

    1992-12-01

    Thin polycrystalline films of iron disulfide have been grown on different substrates by chemical vapour deposition. The films were characterized using optical absorption and TEM. RBS and EDAX analysis has been used to explore the chemical stoichiometry. XRD and FTIR allowed the identification of both FeS2 phases pyrite and marcasite. A novel method for sensitization of highly porous Ti02 elecrodes with ultra thin (10-20 nm) polycrystalline films of FeS2 (pyrite) is presented. Photoelectrochemical solar cell using the above electrode generated high photovoltage of up to 600mV compared with single crystalline electrode (200 mV). In this device the semiconductor with a small band gap and high absorption coefficient (FeS2 pyrite; EG = 0.9 eV; a = 6 x 105 cm-1) absorbs the light and injects electrons into the conduction band the wide band gap semiconductor (Ti02 anatase; EG = 3.2 eV). Regeneration of holes is taking place by electron transfer from redox system in the electrolyte.

  16. External fuel vaporization study, phase 2

    Science.gov (United States)

    Szetela, E. J.; Chiappetta, L.

    1981-01-01

    An analytical study was conducted to evaluate the effect of variations in fuel properties on the design of an external fuel vaporizaton system. The fuel properties that were considered included thermal stability, critical temperature, enthalpy a critical conditions, volatility, and viscosity. The design parameters that were evaluated included vaporizer weight and the impact on engine requirement such as maintenance, transient response, performance, and altitude relight. The baseline fuel properties were those of Jet A. The variation in thermal stability was taken as the thermal stability variation for Experimental Referee Broad Specification (ERBS) fuel. The results of the analysis indicate that a change in thermal stability equivalent to that of ERBS would increase the vaporization system weight by 20 percent, decrease oprating time between cleaning by 40 percent and make altitude relight more difficult. An increase in fuel critical temperature of 39 K would require a 40 percent increase in vaporization system weight. The assumed increase in enthalpy and volatility would also increase vaporizer weight by 40 percent and make altitude relight extremely difficult. The variation in fuel viscosity would have a negligible effect on the design parameters.

  17. Toxicity of vapor phase petroleum contaminants to microbial degrader communities

    International Nuclear Information System (INIS)

    Long, S.C.; Davey, C.A.

    1994-01-01

    Petroleum products constitute the largest quantity of synthetic organic chemical products produced in the US. They are comprised of mostly hydrocarbon constituents from many different chemical classes including alkenes, cycloalkanes, aromatic compounds, and polyaromatic hydrocarbons. Many petroleum constituents are classified as volatile organic compounds or VOCs. Petroleum products also constitute a major portion of environmental pollution. One emerging technology, with promise for applications to VOCs in subsurface soil environments, is bioventing coupled with soil vapor extraction. These technologies involve volatilization of contaminants into the soil gas phase by injection and withdrawal of air. This air movement causes enhancement of the aerobic microbial degradation of the mobilized vapors by the indigenous populations. This study investigated the effects of exposure of mixed, subsurface microbial communities to vapor phase petroleum constituents or vapors of petroleum mixtures. Soil slurries were prepared and plated onto mineral salts agar plates and exposed to vapor phase contaminants at equilibrium with pure product. Representative n-alkane, branched alkane, cycloalkane, and aromatic compounds were tested as well as petroleum product mixtures. Vapor exposure altered the numbers and morphologies of the colonies enumerated when compared to controls. However, even at high, equilibrium vapor concentrations, microbial degrader populations were not completely inhibited

  18. Microstructural and superconducting properties of high current metal-organic chemical vapor deposition YBa2Cu3O7-δ coated conductor wires

    International Nuclear Information System (INIS)

    Holesinger, T G; Maiorov, B; Ugurlu, O; Civale, L; Chen, Y; Xiong, X; Xie, Y; Selvamanickam, V

    2009-01-01

    Metal-organic chemical vapor deposition (MOCVD) on flexible, ion beam assisted deposition MgO templates has been used to produce high critical current density (J c ) (Y,Sm) 1 Ba 2 Cu 3 O y (REBCO) films suitable for use in producing practical high temperature superconducting (HTS) coated conductor wires. Thick films on tape were produced with sequential additions of 0.7 μm of REBCO via a reel-to-reel progression through a custom-designed MOCVD reactor. Multi-pass processing for thick film deposition is critically dependent upon minimizing surface secondary phase formation. Critical currents (I c s) of up to 600 A/cm width (t = 2.8 μm, J c = 2.6 MA cm -2 , 77 K, self-field) were obtained in short lengths of HTS wires. These high performance MOCVD films are characterized by closely spaced (Y,Sm) 2 O 3 nanoparticle layers that may be tilted relative to the film normal and REBCO orientation. Small shifts in the angular dependence of J c in low and intermediate applied magnetic fields can be associated with the tilted nanoparticle layers. Also present in these films were YCuO 2 nanoplates aligned with the YBCO matrix (short dimension perpendicular to the film normal), threading dislocations, and oriented composite defects (OCDs). The latter structures consist of single or multiple a-axis oriented grains coated on each side with insulating (Y,Sm) 2 O 3 or CuO. The OCDs formed a connected network of insulating phases by the end of the fourth pass. Subsequent attempts at adding additional layers did not increase I c . There is an inconsistency between the measured J c and the observed microstructural degradation that occurs with each additional layer, suggesting that previously deposited layers are improving with each repeated reactor pass. These dynamic changes suggest a role for post-processing to optimize superconducting properties of as-deposited films, addressing issues associated with reproducibility and manufacturing yield.

  19. Issues associated with the metalorganic chemical vapor deposition of ScGaN and YGaN alloys.

    Energy Technology Data Exchange (ETDEWEB)

    Koleske, Daniel David; Knapp, James Arthur; Lee, Stephen Roger; Crawford, Mary Hagerott; Creighton, James Randall; Cross, Karen Charlene; Thaler, Gerald

    2009-07-01

    The most energy efficient solid state white light source will likely be a combination of individually efficient red, green, and blue LED. For any multi-color approach to be successful the efficiency of deep green LEDs must be significantly improved. While traditional approaches to improve InGaN materials have yielded incremental success, we proposed a novel approach using group IIIA and IIIB nitride semiconductors to produce efficient green and high wavelength LEDs. To obtain longer wavelength LEDs in the nitrides, we attempted to combine scandium (Sc) and yttrium (Y) with gallium (Ga) to produce ScGaN and YGaN for the quantum well (QW) active regions. Based on linear extrapolation of the proposed bandgaps of ScN (2.15 eV), YN (0.8 eV) and GaN (3.4 eV), we expected that LEDs could be fabricated from the UV (410 nm) to the IR (1600 nm), and therefore cover all visible wavelengths. The growth of these novel alloys potentially provided several advantages over the more traditional InGaN QW regions including: higher growth temperatures more compatible with GaN growth, closer lattice matching to GaN, and reduced phase separation than is commonly observed in InGaN growth. One drawback to using ScGaN and YGaN films as the active regions in LEDs is that little research has been conducted on their growth, specifically, are there metalorganic precursors that are suitable for growth, are the bandgaps direct or indirect, can the materials be grown directly on GaN with a minimal defect formation, as well as other issues related to growth. The major impediment to the growth of ScGaN and YGaN alloys was the low volatility of metalorganic precursors. Despite this impediment some progress was made in incorporation of Sc and Y into GaN which is detailed in this report. Primarily, we were able to incorporate up to 5 x 10{sup 18} cm{sup -3} Y atoms into a GaN film, which are far below the alloy concentrations needed to evaluate the YGaN optical properties. After a no-cost extension was

  20. Effect of the substrate on the properties of ZnO-MgO thin films grown by atmospheric pressure metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Huerta, A.M., E-mail: atohuer@hotmail.com [Instituto Politecnico Nacional, Grupo de Ingenieria en Procesamiento de Materiales CICATA-IPN, Unidad Altamira, km 14.5, Carretera Tampico-Puerto Industrial Altamira. C. P. 89600, Altamira, Tamps (Mexico); Dominguez-Crespo, M.A. [Instituto Politecnico Nacional, Grupo de Ingenieria en Procesamiento de Materiales CICATA-IPN, Unidad Altamira, km 14.5, Carretera Tampico-Puerto Industrial Altamira. C. P. 89600, Altamira, Tamps (Mexico); Brachetti-Sibaja, S.B. [Alumna del postgrado en Tecnologia Avanzada del CICATA-IPN, Unidad Altamira IPN, km 14.5, Carretera Tampico-Puerto Industrial Altamira. C. P. 89600, Altamira, Tamps (Mexico); Arenas-Alatorre, J. [Instituto de Fisica, UNAM, Apartado Postal 20-364, 01000, D.F. (Mexico); Rodriguez-Pulido, A. [Unidad Profesional Adolfo Lopez Mateos, Luis Enrique Erro s/n, 07738, D. F. (Mexico)

    2011-07-01

    The ZnO-MgO alloys possess attractive properties for possible applications in optoelectronic and display devices; however, the optical properties are strongly dependent on the deposition parameters. In this work, the effect of the glassy and metallic substrates on the structural, morphological and optical properties of ZnO-MgO thin films using atmospheric pressure metal-organic chemical vapor deposition was investigated at relatively low deposition temperature, 500 deg. C. Magnesium and zinc acetylacetonates were used as the metal-organic source. X-ray diffraction experiments provided evidence that the kind of substrates cause a deviation of c-axis lattice constant due to the constitution of a oxide mixture (ZnO and MgO) in combination with different intermetallic compounds(Mg{sub 2}Zn{sub 11} and Mg{sub 4}Zn{sub 7}) in the growth films. The substitutional and interstitial sites of Mg{sup 2+} instead of Zn{sup 2+} ions in the lattice are the most probable mechanism to form intermetallic compounds. The optical parameters as well as thickness of the films were calculated by Spectroscopic Ellipsometry using the classical dispersion model based on the sum of the single and double Lorentz and Drude oscillators in combination with Kato-Adachi equations, as well as X-ray reflectivity.

  1. Qualification of a sublimation tool applied to the case of metalorganic chemical vapor deposition of In{sub 2}O{sub 3} from In(tmhd){sub 3} as a solid precursor

    Energy Technology Data Exchange (ETDEWEB)

    Szkutnik, P. D., E-mail: pierre.szkutnik@cea.fr; Jiménez, C. [Université Grenoble Alpes, CNRS, LMGP, 3 Parvis Louis Néel, Minatec CS 50257, 38016 Grenoble Cedex 1 (France); Angélidès, L.; Todorova, V. [Air Liquide Electronics Systems, 8 rue des Méridiens–Sud Galaxie BP 228, 38433 Échirolles Cedex (France)

    2016-02-15

    A solid delivery system consisting of a source canister, a gas management, and temperature controlled enclosure designed and manufactured by Air Liquide Electronics Systems was tested in the context of gas-phase delivery of the In(tmhd){sub 3} solid precursor. The precursor stream was delivered to a thermal metalorganic chemical vapor deposition reactor to quantify deposition yield under various conditions of carrier gas flow and sublimation temperature. The data collected allowed the determination of characteristic parameters such as the maximum precursor flow rate (18.2 mg min{sup −1} in specified conditions) and the critical mass (defined as the minimum amount of precursor able to attain the maximum flow rate) found to be about 2.4 g, as well as an understanding of the influence of powder distribution inside the canister. Furthermore, this qualification enabled the determination of optimal delivery conditions which allowed for stable and reproducible precursor flow rates over long deposition times (equivalent to more than 47 h of experiment). The resulting In{sub 2}O{sub 3} layers was compared with those elaborated via pulsed liquid injection obtained in the same chemical vapor deposition chamber and under the same deposition conditions.

  2. High mobility single-crystalline-like GaAs thin films on inexpensive flexible metal substrates by metal-organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Dutta, P.; Rathi, M.; Gao, Y.; Yao, Y.; Selvamanickam, V.; Zheng, N.; Ahrenkiel, P.; Martinez, J.

    2014-01-01

    We demonstrate heteroepitaxial growth of single-crystalline-like n and p-type doped GaAs thin films on inexpensive, flexible, and light-weight metal foils by metal-organic chemical vapor deposition. Single-crystalline-like Ge thin film on biaxially textured templates made by ion beam assisted deposition on metal foil served as the epitaxy enabling substrate for GaAs growth. The GaAs films exhibited strong (004) preferred orientation, sharp in-plane texture, low grain misorientation, strong photoluminescence, and a defect density of ∼10 7  cm −2 . Furthermore, the GaAs films exhibited hole and electron mobilities as high as 66 and 300 cm 2 /V-s, respectively. High mobility single-crystalline-like GaAs thin films on inexpensive metal substrates can pave the path for roll-to-roll manufacturing of flexible III-V solar cells for the mainstream photovoltaics market.

  3. Effects of As/P exchange on InAs/lnP (100) quantum dots formation by metalorganic chemical vapor Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Barik, S; Tan, H H; Jagadish, C [The Australian National University, ACT (Australia). Research School of Physical Sciences and Engineering, Department of Electronic Materials Engineering

    2005-07-01

    Full text: Self-assembled InAs/lnP quantum dots (QDs) are very promising active materials for QD lasers and semiconductor amplifiers for optical fiber communications (1.3-1.55 mm). However the main challenge associated with this material system is the As/P exchange reaction which degrades the structural and optical properties of the QDs. In this talk, we will show the effect of growing a thin spacer layer of GaAs or InGaAs prior to the deposition of the InAs QDs by metalorganic chemical vapor deposition. Not only the effect of As/P exchange is suppressed or minimized but the bandgap of the QDs could be tuned too. Copyright (2005) Australian Institute of Physics.

  4. The growth of mid-infrared emitting InAsSb/InAsP strained-layer superlattices using metal-organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Biefeld, R.M.; Allerman, A.A.; Kurtz, S.R.; Burkhart, J.H.

    1997-01-01

    We describe the metal-organic chemical vapor deposition os InAsSb/InAsP strained-layer superlattice (SLS) active regions for use in mid-infrared emitters. These SLSs were grown at 500 degrees C, and 200 torr in a horizontal quartz reactor using trimethylindium, triethylantimony, AsH 3 , and PH 3 . By changing the layer thickness and composition we have prepared structures with low temperature (≤20K) photoluminescence wavelengths ranging from 3.2 to 5.0 μm. Excellent performance was observed for an SLS light emitting diode (LED) and both optically pumped and electrically injected SLS layers. An InAsSb/InAsP SLS injection laser emitted at 3.3 μm at 80 K with peak power of 100 mW

  5. Characterization of Pb(Zr, Ti)O sub 3 thin films prepared by metal-organic chemical-vapor deposition using a solid delivery system

    CERN Document Server

    Shin, J C; Hwang, C S; Kim, H J; Lee, J M

    1999-01-01

    Pb(Zr, Ti)O sub 3 (PZT) thin films were deposited on Pt/SiO sub 2 /Si substrates by metal-organic chemical-vapor deposition technique using a solid delivery system to improve the reproducibility of the deposition. The self-regulation mechanism, controlling the Pb-content of the film, was observed to work above a substrate temperature of 620 .deg. C. Even with the self-regulation mechanism, PZT films having low leakage current were obtained only when the molar mixing ratio of the input precursors was 1

  6. Comparing electrical characteristics of in situ and ex situ Al2O3/GaN interfaces formed by metalorganic chemical vapor deposition

    Science.gov (United States)

    Chan, Silvia H.; Bisi, Davide; Tahhan, Maher; Gupta, Chirag; DenBaars, Steven P.; Keller, Stacia; Zanoni, Enrico; Mishra, Umesh K.

    2018-04-01

    Al2O3/n-GaN MOS-capacitors grown by metalorganic chemical vapor deposition with in-situ- and ex-situ-formed Al2O3/GaN interfaces were characterized. Capacitors grown entirely in situ exhibited ˜4 × 1012 cm-2 fewer positive fixed charges and up to ˜1 × 1013 cm-2 eV-1 lower interface-state density near the band-edge than did capacitors with ex situ oxides. When in situ Al2O3/GaN interfaces were reformed via the insertion of a 10-nm-thick GaN layer, devices exhibited behavior between the in situ and ex situ limits. These results illustrate the extent to which an in-situ-formed dielectric/GaN gate stack improves the interface quality and breakdown performance.

  7. Characterization of N-polar AlN in GaN/AlN/(Al,Ga)N heterostructures grown by metal-organic chemical vapor deposition

    Science.gov (United States)

    Li, Haoran; Mazumder, Baishakhi; Bonef, Bastien; Keller, Stacia; Wienecke, Steven; Speck, James S.; Denbaars, Steven P.; Mishra, Umesh K.

    2017-11-01

    In GaN/(Al,Ga)N high-electron-mobility transistors (HEMT), AlN interlayer between GaN channel and AlGaN barrier suppresses alloy scattering and significantly improves the electron mobility of the two-dimensional electron gas. While high concentrations of gallium were previously observed in Al-polar AlN interlayers grown by metal-organic chemical vapor deposition, the N-polar AlN (Al x Ga1-x N) films examined by atom probe tomography in this study exhibited aluminum compositions (x) equal to or higher than 95% over a wide range of growth conditions. The also investigated AlN interlayer in a N-polar GaN/AlN/AlGaN/ S.I. GaN HEMT structure possessed a similarly high x content.

  8. Effect of vapor-phase oxygen on chemical vapor deposition growth of graphene

    Science.gov (United States)

    Terasawa, Tomo-o.; Saiki, Koichiro

    2015-03-01

    To obtain a large-area single-crystal graphene, chemical vapor deposition (CVD) growth on Cu is considered the most promising. Recently, the surface oxygen on Cu has been found to suppress the nucleation of graphene. However, the effect of oxygen in the vapor phase was not elucidated sufficiently. Here, we investigate the effect of O2 partial pressure (PO2) on the CVD growth of graphene using radiation-mode optical microscopy. The nucleation density of graphene decreases monotonically with PO2, while its growth rate reaches a maximum at a certain pressure. Our results indicate that PO2 is an important parameter to optimize in the CVD growth of graphene.

  9. electrocatalytic reduction of oxygen at vapor phase polymerized poly ...

    African Journals Online (AJOL)

    Preferred Customer

    ABSTRACT. We successfully polymerized poly(3,4-ethylenedioxidethiophene) by vapor phase polymerization technique on rotating glassy carbon disk electrode. The catalytic activity of this electrode towards oxygen reduction reaction was investigated and showed remarkable activity. Rotating disk voltammetry was used to ...

  10. Electrocatalytic reduction of oxygen at vapor phase polymerized ...

    African Journals Online (AJOL)

    We successfully polymerized poly(3,4-ethylenedioxidethiophene) by vapor phase polymerization technique on rotating glassy carbon disk electrode. The catalytic activity of this electrode towards oxygen reduction reaction was investigated and showed remarkable activity. Rotating disk voltammetry was used to study the ...

  11. Liquid-phase extraction coupled with metal-organic frameworks-based dispersive solid phase extraction of herbicides in peanuts.

    Science.gov (United States)

    Li, Na; Wang, Zhibing; Zhang, Liyuan; Nian, Li; Lei, Lei; Yang, Xiao; Zhang, Hanqi; Yu, Aimin

    2014-10-01

    Liquid-phase extraction coupled with metal-organic frameworks-based dispersive solid phase extraction was developed and applied to the extraction of pesticides in high fatty matrices. The herbicides were ultrasonically extracted from peanut using ethyl acetate as extraction solvent. The separation of the analytes from a large amount of co-extractive fat was achieved by dispersive solid-phase extraction using MIL-101(Cr) as sorbent. In this step, the analytes were adsorbed on MIL-101(Cr) and the fat remained in bulk. The herbicides were separated and determined by high-performance liquid chromatography. The experimental parameters, including type and volume of extraction solvent, ultrasonication time, volume of hexane and eluting solvent, amount of MIL-101(Cr) and dispersive solid phase extraction time, were optimized. The limits of detection for herbicides range from 0.98 to 1.9 μg/kg. The recoveries of the herbicides are in the range of 89.5-102.7% and relative standard deviations are equal or lower than 7.0%. The proposed method is simple, effective and suitable for treatment of the samples containing high content of fat. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Metal-Organic Frameworks for Sensing Applications in the Gas Phase

    Directory of Open Access Journals (Sweden)

    Sabine Achmann

    2009-03-01

    Full Text Available Several metal-organic framework (MOF materials were under investigated to test their applicability as sensor materials for impedimetric gas sensors. The materials were tested in a temperature range of 120 °C - 240 °C with varying concentrations of O2, CO2, C3H8, NO, H2, ethanol and methanol in the gas atmosphere and under different test gas humidity conditions. Different sensor configurations were studied in a frequency range of 1 Hz -1 MHz and time-continuous measurements were performed at 1 Hz. The materials did not show any impedance response to O2, CO2, C3H8, NO, or H2 in the gas atmospheres, although for some materials a significant impedance decrease was induced by a change of the ethanol or methanol concentration in the gas phase. Moreover, pronounced promising and reversible changes in the electric properties of a special MOF material were monitored under varying humidity, with a linear response curve at 120 °C. Further investigations were carried out with differently doped MOF materials of this class, to evaluate the influence of special dopants on the sensor effect.

  13. Self-Catalyzed Growth and Characterization of In(As)P Nanowires on InP(111)B Using Metal-Organic Chemical Vapor Deposition.

    Science.gov (United States)

    Park, Jeung Hun; Pozuelo, Marta; Setiawan, Bunga P D; Chung, Choong-Heui

    2016-12-01

    We report the growth of vertical -oriented InAs x P1-x (0.11 ≤ x ≤ 0.27) nanowires via metal-organic chemical vapor deposition in the presence of indium droplets as catalysts on InP(111)B substrates at 375 °C. Trimethylindium, tertiarybutylphosphine, and tertiarybutylarsine are used as the precursors, corresponding to P/In and As/In molar ratios of 29 and 0.01, respectively. The as-grown nanowire growth morphologies, crystallinity, composition, and optical characteristics are determined using a combination of scanning and transmission electron microscopies, electron diffraction, and X-ray photoelectron, energy dispersive X-ray, and Raman spectroscopies. We find that the InAs x P1-x nanowires are tapered with narrow tops, wider bases, and In-rich In-As alloy tips, characteristic of vapor-liquid-solid process. The wires exhibit a mixture of zinc blende and wurtzite crystal structures and a high density of structural defects such as stacking faults and twins. Our results suggest that the incorporation of As into InP wires decreases with increasing substrate temperature. The Raman spectra obtained from the In(As)P nanowires reveal a red-shift and lower intensity of longitudinal optical mode relative to both InP nanowires and InP(111)B bulk, due to the incorporation of As into the InP matrix.

  14. Island dynamics and anisotropy during vapor phase epitaxy of m-plane GaN

    Energy Technology Data Exchange (ETDEWEB)

    Perret, Edith [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; University of Fribourg, Department of Physics and Fribourg Center for Nanomaterials, Chemin du Musée 3, CH-1700 Fribourg, Switzerland; Xu, Dongwei [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Highland, M. J. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Stephenson, G. B. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Zapol, P. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Fuoss, P. H. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Munkholm, A. [Munkholm Consulting, Mountain View, California 94043, USA; Thompson, Carol [Department of Physics, Northern Illinois University, DeKalb, Illinois 60115, USA

    2017-12-04

    Using in situ grazing-incidence x-ray scattering, we have measured the diffuse scattering from islands that form during layer-by-layer growth of GaN by metal-organic vapor phase epitaxy on the (1010) m-plane surface. The diffuse scattering is extended in the (0001) in-plane direction in reciprocal space, indicating a strong anisotropy with islands elongated along [1210] and closely spaced along [0001]. This is confirmed by atomic force microscopy of a quenched sample. Islands were characterized as a function of growth rate F and temperature. The island spacing along [0001] observed during the growth of the first monolayer obeys a power-law dependence on growth rate F-n, with an exponent n = 0:25 + 0.02. The results are in agreement with recent kinetic Monte Carlo simulations, indicating that elongated islands result from the dominant anisotropy in step edge energy and not from surface diffusion anisotropy. The observed power-law exponent can be explained using a simple steady-state model, which gives n = 1/4.

  15. Direct Vapor-Phase Bromination of Multiwall Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Ilya Mazov

    2012-01-01

    Full Text Available We present the simple procedure of the vapor-phase bromination of multiwall carbon nanotubes (MWNTs at moderate temperatures. MWNTs with average diameter 9±3 nm were treated with Br2 vapors at 250°C to produce Br-functionalized product. Transmission electron microscopy analysis was used to prove low damage of MWNT walls during bromination. X-ray photoelectron spectroscopy (XPS and differential thermal analysis (DTA were used to investigate chemical composition of the surface of initial and brominated nanotubes. The experimental results show that the structure of MWNTs is not affected by the bromination process and the total amount of Br-containing surface functions reaches 2.5 wt. %. Electrophysical properties of initial and brominated MWNTs were investigated showing decrease of conductivity for functionalized sample. Possible mechanism of the vapor-phase bromination via surface defects and oxygen-containing functional groups was proposed according to data obtained. Additional experiments with bromination of annealed low-defected MWNTs were performed giving Br content a low as 0.75 wt. % proving this hypothesis.

  16. Doping characteristics of Si-doped n-GaN Epilayers grown by low-pressure metal-organic chemical-vapor deposition

    CERN Document Server

    Noh, S K; Park, S E; Lee, I H; Choi, I H; Son, S J; Lim, K Y; Lee, H J

    1998-01-01

    We studied doping behaviors through analysis of the electronic properties of a series of undoped and Si-doped GaN epilayers grown on (0001) sapphire substrates by the low-pressure metal-organic chemical-vapor deposition (LP-MOCVD) technique. The doping efficiency was in the range of 0.4 - 0.8, and an empirical relation expressed as eta = 0.45 log[Si] - 8.1 was obtained. The temperature dependence of carrier concentration showed that the donor activation energy monotonically decreased from 17.6 meV to almost zero as the doping level increased. We suggest that the reduction in the activation energy is related not to autodoped defect centers but to doped Si donors and that the behavior originates from the formation of an impurity band. On the basis of an abrupt change in the compensation ratio from 0.9 to 0.5 by Si-doping, an exceptional difference in the Hall mobility between the undoped and the Si-doped films is explained by a mixed conduction mechanism of electrons and holes.

  17. Enhanced and uniform in-field performance in long (Gd, Y)-Ba-Cu-O tapes with zirconium doping fabricated by metal-organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Selvamanickam, V; Guevara, A; Zhang, Y; Kesgin, I; Xie, Y; Carota, G; Chen, Y; Dackow, J; Zhang, Y; Zuev, Y; Cantoni, C; Goyal, A; Coulter, J; Civale, L

    2010-01-01

    The influence of Zr doping in (Gd, Y)-Ba-Cu-O ((Gd, Y)BCO) tapes made by metal-organic chemical vapor deposition has been studied with a specific objective of uniform and reproducible enhancement in in-field critical current (I c ) over long lengths. 50 m long tapes with 7.5 and 10 at.% Zr doping in 1 μm thick (Gd, Y)BCO films have been found to exhibit a sharply enhanced peak in I c in the orientation of field parallel to the c-axis and retain 28% of their self-field I c value at 77 K and 1 T. BaZrO 3 (BZO) nanocolumn density in the cross-sectional microstructure was found to increase with increasing Zr addition. The end segments of the 50 m long tapes were found to display nearly identical angular dependence of critical current at 77 K and 1 T, indicative of the uniformity in in-field performance over this length. A 610 m long tape was fabricated with 10% Zr doping and a 130 m segment showed a 3.2% uniformity in critical current measured every meter in the orientation of B || c-axis. A retention factor of 36% of the zero-field I c value measured at 0.52 T over the 130 m is consistent with that obtained in short samples.

  18. Enhanced and uniform in-field performance in long (Gd, Y)-Ba-Cu-O tapes with zirconium doping fabricated by metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Selvamanickam, V; Guevara, A; Zhang, Y; Kesgin, I [Texas Center for Superconductivity and Department of Mechanical Engineering, University of Houston, Houston, TX 77059 (United States); Xie, Y; Carota, G; Chen, Y; Dackow, J [SuperPower Incorporated, 450 Duane Avenue Schenectady, NY 12304 (United States); Zhang, Y; Zuev, Y; Cantoni, C; Goyal, A [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Coulter, J; Civale, L [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2010-01-15

    The influence of Zr doping in (Gd, Y)-Ba-Cu-O ((Gd, Y)BCO) tapes made by metal-organic chemical vapor deposition has been studied with a specific objective of uniform and reproducible enhancement in in-field critical current (I{sub c}) over long lengths. 50 m long tapes with 7.5 and 10 at.% Zr doping in 1 {mu}m thick (Gd, Y)BCO films have been found to exhibit a sharply enhanced peak in I{sub c} in the orientation of field parallel to the c-axis and retain 28% of their self-field I{sub c} value at 77 K and 1 T. BaZrO{sub 3} (BZO) nanocolumn density in the cross-sectional microstructure was found to increase with increasing Zr addition. The end segments of the 50 m long tapes were found to display nearly identical angular dependence of critical current at 77 K and 1 T, indicative of the uniformity in in-field performance over this length. A 610 m long tape was fabricated with 10% Zr doping and a 130 m segment showed a 3.2% uniformity in critical current measured every meter in the orientation of B || c-axis. A retention factor of 36% of the zero-field I{sub c} value measured at 0.52 T over the 130 m is consistent with that obtained in short samples.

  19. High mobility single-crystalline-like GaAs thin films on inexpensive flexible metal substrates by metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, P., E-mail: pdutta2@central.uh.edu; Rathi, M.; Gao, Y.; Yao, Y.; Selvamanickam, V. [Department of Mechanical Engineering, University of Houston, Houston, Texas 77204 (United States); Zheng, N.; Ahrenkiel, P. [Department of Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701 (United States); Martinez, J. [Materials Evaluation Laboratory, NASA Johnson Space Center, Houston, Texas 77085 (United States)

    2014-09-01

    We demonstrate heteroepitaxial growth of single-crystalline-like n and p-type doped GaAs thin films on inexpensive, flexible, and light-weight metal foils by metal-organic chemical vapor deposition. Single-crystalline-like Ge thin film on biaxially textured templates made by ion beam assisted deposition on metal foil served as the epitaxy enabling substrate for GaAs growth. The GaAs films exhibited strong (004) preferred orientation, sharp in-plane texture, low grain misorientation, strong photoluminescence, and a defect density of ∼10{sup 7 }cm{sup −2}. Furthermore, the GaAs films exhibited hole and electron mobilities as high as 66 and 300 cm{sup 2}/V-s, respectively. High mobility single-crystalline-like GaAs thin films on inexpensive metal substrates can pave the path for roll-to-roll manufacturing of flexible III-V solar cells for the mainstream photovoltaics market.

  20. Metal-organic chemical vapor deposition of high quality, high indium composition N-polar InGaN layers for tunnel devices

    Science.gov (United States)

    Lund, Cory; Romanczyk, Brian; Catalano, Massimo; Wang, Qingxiao; Li, Wenjun; DiGiovanni, Domenic; Kim, Moon J.; Fay, Patrick; Nakamura, Shuji; DenBaars, Steven P.; Mishra, Umesh K.; Keller, Stacia

    2017-05-01

    In this study, the growth of high quality N-polar InGaN films by metalorganic chemical vapor deposition is presented with a focus on growth process optimization for high indium compositions and the structural and tunneling properties of such films. Uniform InGaN/GaN multiple quantum well stacks with indium compositions up to 0.46 were grown with local compositional analysis performed by energy-dispersive X-ray spectroscopy within a scanning transmission electron microscope. Bright room-temperature photoluminescence up to 600 nm was observed for films with indium compositions up to 0.35. To study the tunneling behavior of the InGaN layers, N-polar GaN/In0.35Ga0.65N/GaN tunnel diodes were fabricated which reached a maximum current density of 1.7 kA/cm2 at 5 V reverse bias. Temperature-dependent measurements are presented and confirm tunneling behavior under reverse bias.

  1. High-resistivity unintentionally carbon-doped GaN layers with nitrogen as nucleation layer carrier gas grown by metal-organic chemical vapor deposition

    Directory of Open Access Journals (Sweden)

    Fu Chen

    2017-12-01

    Full Text Available In this letter, high-resistivity unintentionally carbon-doped GaN layers with sheet resistivity greater than 106 Ω/□ have been grown on c-plane sapphire substrates by metal-organic chemical vapor deposition (MOCVD. We have observed that the growth of GaN nucleation layers (NLs under N2 ambient leads to a large full width at half maximum (FWHM of (102 X-ray diffraction (XRD line in the rocking curve about 1576 arc sec. Unintentional carbon incorporation can be observed in the secondary ion mass spectroscopy (SIMS measurements. The results demonstrate the self-compensation mechanism is attributed to the increased density of edge-type threading dislocations and carbon impurities. The AlGaN/GaN HEMT grown on the high-resistivity GaN template has also been fabricated, exhibiting a maximum drain current of 478 mA/mm, a peak transconductance of 60.0 mS/mm, an ON/OFF ratio of 0.96×108 and a breakdown voltage of 621 V.

  2. Self-assembled growth and structural analysis of inclined GaN nanorods on nanoimprinted m-sapphire using catalyst-free metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyuseung; Chae, Sooryong; Jang, Jongjin; Min, Daehong; Kim, Jaehwan; Nam, Okhyun, E-mail: ohnam@kpu.ac.kr [Convergence Center for Advanced Nano Semiconductor (CANS), Department of Nano-Optical Engineering, Korea Polytechnic University, Siheung, 15073 (Korea, Republic of)

    2016-04-15

    In this study, self-assembled inclined (1-10-3)-oriented GaN nanorods (NRs) were grown on nanoimprinted (10-10) m-sapphire substrates using catalyst-free metal-organic chemical vapor deposition. According to X-ray phi-scans, the inclined GaN NRs were tilted at an angle of ∼57.5° to the [10-10]{sub sapp} direction. Specifically, the GaN NRs grew in a single inclined direction to the [11-20]{sub sapp}. Uni-directionally inclined NRs were formed through the one-sided (10-11)-faceted growth of the interfacial a-GaN plane layer. It was confirmed that a thin layer of a-GaN was formed on r-facet nanogrooves of the m-sapphire substrate by nitridation. The interfacial a-GaN nucleation affected both the inclined angle and the growth direction of the inclined GaN NRs. Using X-ray diffraction and selective area electron diffraction, the epitaxial relationship between the inclined (1-10-3) GaN NRs and interfacial a-GaN layer on m-sapphire substrates was systematically investigated. Moreover, the inclined GaN NRs were observed to be mostly free of stacking fault-related defects using high-resolution transmission electron microscopy.

  3. Heteroepitaxial growth of Ba1 - xSrxTiO3/YBa2Cu3O7 - x by plasma-enhanced metalorganic chemical vapor deposition

    Science.gov (United States)

    Chern, C. S.; Liang, S.; Shi, Z. Q.; Yoon, S.; Safari, A.; Lu, P.; Kear, B. H.; Goodreau, B. H.; Marks, T. J.; Hou, S. Y.

    1994-06-01

    Epitaxial Ba1-xSrxTiO3(BST)/YBa2Cu3O7-x heterostructures with superior electrical and dielectric properties have been fabricated by plasma-enhanced metalorganic chemical vapor deposition (PE-MOCVD). Data of x-ray diffraction and high resolution transmission electron microscopy showed that oriented Ba1-xSrxTiO3 layers were epitaxially deposited on epitaxial (001) YBa2Cu3O7-x layers. The leakage current density through the Ba1-xSrxTiO3 films was about 10-7 A/cm2 at 2 V (about 2×105 V/cm) operation. Moreover, the results of capacitance-temperature measurements showed that the PE-MOCVD Ba1-xSrxTiO3 films had Curie temperatures of about 30 °C and a peak dielectric constant of 600 at zero bias voltage. The Rutherford backscattering spectrometry and x-ray diffraction results showed that the BST film composition was controlled between Ba0.75Sr0.25TiO3 and Ba0.8Sr0.2TiO3. The structural and electrical properties of the Ba1-xSrxTiO3/YBa2Cu3O7-x heterostructure indicated that conductive oxide materials with close lattice to Ba1-xSrxTiO3 can be good candidates for the bottom electrode.

  4. Selective growth of Ge1- x Sn x epitaxial layer on patterned SiO2/Si substrate by metal-organic chemical vapor deposition

    Science.gov (United States)

    Takeuchi, Wakana; Washizu, Tomoya; Ike, Shinichi; Nakatsuka, Osamu; Zaima, Shigeaki

    2018-01-01

    We have investigated the selective growth of a Ge1- x Sn x epitaxial layer on a line/space-patterned SiO2/Si substrate by metal-organic chemical vapor deposition. We examined the behavior of a Sn precursor of tributyl(vinyl)tin (TBVSn) during the growth on Si and SiO2 substrates and investigated the effect of the Sn precursor on the selective growth. The selective growth of the Ge1- x Sn x epitaxial layer was performed under various total pressures and growth temperatures of 300 and 350 °C. The selective growth of the Ge1- x Sn x epitaxial layer on the patterned Si region is achieved at a low total pressure without Ge1- x Sn x growth on the SiO2 region. In addition, we found that the Sn content in the Ge1- x Sn x epitaxial layer increases with width of the SiO2 region for a fixed Si width even with low total pressure. To control the Sn content in the selective growth of the Ge1- x Sn x epitaxial layer, it is important to suppress the decomposition and migration of Sn and Ge precursors.

  5. As-grown deep-level defects in n-GaN grown by metal-organic chemical vapor deposition on freestanding GaN

    International Nuclear Information System (INIS)

    Chen Shang; Ishikawa, Kenji; Hori, Masaru; Honda, Unhi; Shibata, Tatsunari; Matsumura, Toshiya; Tokuda, Yutaka; Ueda, Hiroyuki; Uesugi, Tsutomu; Kachi, Tetsu

    2012-01-01

    Traps of energy levels E c -0.26 and E c -0.61 eV have been identified as as-grown traps in n-GaN grown by metal-organic chemical vapor deposition by using deep level transient spectroscopy of the Schottky contacts fabricated by resistive evaporation. The additional traps of E c -0.13 and E c -0.65 eV have been observed in samples whose contacts are deposited by electron-beam evaporation. An increase in concentration of the E c -0.13 and E c -0.65 eV traps when approaching the interface between the contact and the GaN film supports our argument that these traps are induced by electron-beam irradiation. Conversely, the depth profiles of as-grown traps show different profiles between several samples with increased or uniform distribution in the near surface below 50 nm. Similar profiles are observed in GaN grown on a sapphire substrate. We conclude that the growth process causes these large concentrations of as-grown traps in the near-surface region. It is speculated that the finishing step in the growth process should be an essential issue in the investigation of the surface state of GaN.

  6. Self-assembled GaN nano-column grown on Si(111) substrate using Au+Ga alloy seeding method by metalorganic chemical vapor deposition

    International Nuclear Information System (INIS)

    Shim, Byung-Young; Ko, Eun-A; Song, Jae-Chul; Kang, Dong-Hun; Kim, Dong-Wook; Lee, In-Hwan; Kannappan, Santhakumar; Lee, Cheul-Ro

    2007-01-01

    Single-crystal GaN nano-column arrays were grown on Au-coated silicon (111) substrate by Au-Ga alloy seeding method using metalorganic chemical vapor deposition (MOCVD). The nano-column arrays were studied as a function of growth parameters and Au thin film thickness. The diameter and length of the as-grown nano-column vary from 100 to 500 nm and 4 to 6 μm, respectively. The surface morphology and optical properties of the nano-columns were investigated using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), cathodoluminescence (CL) and photoluminescence (PL). The Au+Ga alloy droplets were found to be uniformly distributed on silicon surface. Further, SEM image reveals a vertical growth and cylindrical in shape GaN nano-column. The chemical composition of the nano-column, which composed of gallium and nitrogen ions, was estimated by EDX. CL reveals a strong band edge emission from the GaN nano-column. PL spectra show a peak at 365.7 nm with a full-width half maximum (FWHM) of 65 meV which indicates good optical quality GaN nano-column with low dislocation density. Our results suggest that single crystal GaN nano-column can be grown on Au+Ga alloy on silicon substrate with a low dislocation density for better device performances. (author)

  7. High-resistivity unintentionally carbon-doped GaN layers with nitrogen as nucleation layer carrier gas grown by metal-organic chemical vapor deposition

    Science.gov (United States)

    Chen, Fu; Sun, Shichuang; Deng, Xuguang; Fu, Kai; Yu, Guohao; Song, Liang; Hao, Ronghui; Fan, Yaming; Cai, Yong; Zhang, Baoshun

    2017-12-01

    In this letter, high-resistivity unintentionally carbon-doped GaN layers with sheet resistivity greater than 106 Ω/□ have been grown on c-plane sapphire substrates by metal-organic chemical vapor deposition (MOCVD). We have observed that the growth of GaN nucleation layers (NLs) under N2 ambient leads to a large full width at half maximum (FWHM) of (102) X-ray diffraction (XRD) line in the rocking curve about 1576 arc sec. Unintentional carbon incorporation can be observed in the secondary ion mass spectroscopy (SIMS) measurements. The results demonstrate the self-compensation mechanism is attributed to the increased density of edge-type threading dislocations and carbon impurities. The AlGaN/GaN HEMT grown on the high-resistivity GaN template has also been fabricated, exhibiting a maximum drain current of 478 mA/mm, a peak transconductance of 60.0 mS/mm, an ON/OFF ratio of 0.96×108 and a breakdown voltage of 621 V.

  8. Analysis of Vegard’s law for lattice matching In x Al 1−x N to GaN by metalorganic chemical vapor deposition

    KAUST Repository

    Foronda, Humberto M.

    2017-06-19

    Coherent InxAl1−xN (x = 0.15 to x = 0.28) films were grown by metalorganic chemical vapor deposition on GaN templates to investigate if the films obey Vegard’s Law by comparing the film stress-thickness product from wafer curvature before and after InxAl1−xN deposition. The In composition and film thickness were verified using atom probe tomography and high resolution X-ray diffraction, respectively. Ex-situ curvature measurements were performed to analyze the curvature before and after the InxAl1−xN deposition. At ∼In0.18Al0.82N, no change in curvature was observed following InAlN deposition; confirming that films of this composition are latticed matched to GaN, obeying Vegard’s law. The relaxed a0- and c0- lattice parameters of InxAl1−xN were experimentally determined and in agreement with lattice parameters predicted by Vegard’s law.

  9. Analysis of Vegard’s law for lattice matching In x Al 1−x N to GaN by metalorganic chemical vapor deposition

    KAUST Repository

    Foronda, Humberto M.; Mazumder, Baishakhi; Young, Erin C.; Laurent, Matthew A.; Li, Youli; DenBaars, Steven P.; Speck, James S.

    2017-01-01

    Coherent InxAl1−xN (x = 0.15 to x = 0.28) films were grown by metalorganic chemical vapor deposition on GaN templates to investigate if the films obey Vegard’s Law by comparing the film stress-thickness product from wafer curvature before and after InxAl1−xN deposition. The In composition and film thickness were verified using atom probe tomography and high resolution X-ray diffraction, respectively. Ex-situ curvature measurements were performed to analyze the curvature before and after the InxAl1−xN deposition. At ∼In0.18Al0.82N, no change in curvature was observed following InAlN deposition; confirming that films of this composition are latticed matched to GaN, obeying Vegard’s law. The relaxed a0- and c0- lattice parameters of InxAl1−xN were experimentally determined and in agreement with lattice parameters predicted by Vegard’s law.

  10. Metalorganic chemical vapor deposition of Er{sub 2}O{sub 3} thin films: Correlation between growth process and film properties

    Energy Technology Data Exchange (ETDEWEB)

    Giangregorio, Maria M. [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR and INSTM sez. Bari, Via Orabona 4, 70125 Bari (Italy)], E-mail: michelaria.giangregorio@ba.imip.cnr.it; Losurdo, Maria; Sacchetti, Alberto; Capezzuto, Pio; Bruno, Giovanni [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR and INSTM sez. Bari, Via Orabona 4, 70125 Bari (Italy)

    2009-02-27

    Er{sub 2}O{sub 3} thin films have been grown by metalorganic chemical vapor deposition (MOCVD) at 600 deg. C on different substrates, including glass, Si (100) and sapphire (0001) using tris(isopropylcyclopentadienyl)erbium and O{sub 2}. The effects of growth parameters such as the substrate, the O{sub 2} plasma activation and the temperature of organometallic precursor injection, on the nucleation/growth kinetics and, consequently, on film properties have been investigated. Specifically, very smooth (111)-oriented Er{sub 2}O{sub 3} thin films (the root mean square roughness is 0.3 nm) are achieved on Si (100), {alpha}-Al{sub 2}O{sub 3} (0001) and amorphous glass by MOCVD. Growth under O{sub 2} remote plasma activation results in an increase in growth rate and in (100)-oriented Er{sub 2}O{sub 3} films with high refractive index and transparency in the visible photon energy range.

  11. Strain management of AlGaN-based distributed Bragg reflectors with GaN interlayer grown by metalorganic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yuh-Shiuan; Kao, Tsung-Ting; Mehta, Karan; Jia, Xiao Jia; Shen, Shyh-Chiang; Yoder, P. Douglas; Detchprohm, Theeradetch; Dupuis, Russell D., E-mail: dupuis@gatech.edu [Center for Compound Semiconductors and School of Electrical and Computer Engineering, Georgia Institute of Technology, 777 Atlantic Dr. NW, Atlanta, Georgia 30332-0250 (United States); Wang, Shuo; Xie, Hongen; Ponce, Fernando A. [Department of Physics, Arizona State University, Tempe, Arizona 85287-1504 (United States)

    2016-08-22

    We report the crack-free growth of a 45-pair Al{sub 0.30}Ga{sub 0.70}N/Al{sub 0.04}Ga{sub 0.96}N distributed Bragg reflector (DBR) on 2 in. diameter AlN/sapphire template by metalorganic chemical vapor deposition. To mitigate the cracking issue originating from the tensile strain of Al{sub 0.30}Ga{sub 0.70}N on GaN, an AlN template was employed in this work. On the other hand, strong compressive strain experienced by Al{sub 0.04}Ga{sub 0.96}N favors 3D island growth, which is undesired. We found that inserting an 11 nm thick GaN interlayer upon the completion of AlN template layer properly managed the strain such that the Al{sub 0.30}Ga{sub 0.70}N/Al{sub 0.04}Ga{sub 0.96}N DBR was able to be grown with an atomically smooth surface morphology. Smooth surfaces and sharp interfaces were observed throughout the structure using high-angle annular dark-field imaging in the STEM. The 45-pair AlGaN-based DBR provided a peak reflectivity of 95.4% at λ = 368 nm with a bandwidth of 15 nm.

  12. Vapor-phase biofiltration: Laboratory and field experience

    International Nuclear Information System (INIS)

    Evans, P.J.; Bourbonais, K.A.; Peterson, L.E.; Lee, J.H.; Laakso, G.L.

    1995-01-01

    Application of vapor-phase bioreactors (VPBs) to petroleum hydrocarbons is complicated by the different mass transfer characteristics of aliphatics and aromatics. Laboratory- and pilot-scale VPB studies were conducted to evaluate treatment of soil vapor extraction (SVE) off-gas. A mixture of compost, perlite, and activated carbon was the selected medium based on pressure drop, microbial colonization, and adsorption properties. Two different pilot-scale reactors were built with a difference of 70:1 in scale. The smaller VPB's maximum effective elimination capacity (EC) was determined to be 7.2 g m -3 h -1 ; the larger unit's EC was 70% to 80% of this value. Low EC values may be attributable to a combination of mass-transfer and kinetic limitations

  13. Modelling and numerical simulation of liquid-vapor phase transitions

    International Nuclear Information System (INIS)

    Caro, F.

    2004-11-01

    This work deals with the modelling and numerical simulation of liquid-vapor phase transition phenomena. The study is divided into two part: first we investigate phase transition phenomena with a Van Der Waals equation of state (non monotonic equation of state), then we adopt an alternative approach with two equations of state. In the first part, we study the classical viscous criteria for selecting weak solutions of the system used when the equation of state is non monotonic. Those criteria do not select physical solutions and therefore we focus a more recent criterion: the visco-capillary criterion. We use this criterion to exactly solve the Riemann problem (which imposes solving an algebraic scalar non linear equation). Unfortunately, this step is quite costly in term of CPU which prevent from using this method as a ground for building Godunov solvers. That is why we propose an alternative approach two equations of state. Using the least action principle, we propose a phase changing two-phase flow model which is based on the second thermodynamic principle. We shall then describe two equilibrium submodels issued from the relaxations processes when instantaneous equilibrium is assumed. Despite the weak hyperbolicity of the last sub-model, we propose stable numerical schemes based on a two-step strategy involving a convective step followed by a relaxation step. We show the ability of the system to simulate vapor bubbles nucleation. (author)

  14. Vapor phase versus liquid phase grafting of meso-porous alumina

    NARCIS (Netherlands)

    Sripathi, V.G.P.; Mojet, Barbara; Nijmeijer, Arian; Benes, Nieck Edwin

    2013-01-01

    Functionalization of meso-porous c-alumina has been performed by grafting of 3-Aminopropyltrimethoxysilane (3APTMS) simultaneously from either the liquid phase or from the vapor phase. In both cases, after grafting nitrogen physisorption indicates that the materials remain meso-porous with

  15. Metal-Organic Vapor Phase Epitaxial Reactor for the Deposition of Infrared Detector Materials

    Science.gov (United States)

    2015-04-09

    researchers from First Solar in depositing single crystal solar cell materials. A research contract worth over $150K was awarded to RPI b First Solar based on...list is included in Appendix A. All the items listed in the Appendix A was purchased, and in addition to the items, a spare heater and the reaction...and the uniformity of the growth is also significantly improved. For the FirstSolar-funded project on solar cells, a p-type CdTe layer was grown

  16. Epitaxial growth of SrTiO3/YBa2Cu3O7 - x heterostructures by plasma-enhanced metalorganic chemical vapor deposition

    Science.gov (United States)

    Liang, S.; Chern, C. S.; Shi, Z. Q.; Lu, P.; Safari, A.; Lu, Y.; Kear, B. H.; Hou, S. Y.

    1994-06-01

    We report heteroepitaxial growth of SrTiO3 on YBa2Cu3O7-x/LaAlO3 substrates by plasma-enhanced metalorganic chemical vapor deposition. X-ray diffraction results indicated that SrTiO3 films were epitaxially grown on a (001) YBa2Cu3O7-x surface with [100] orientation perpendicular to the surface. The film composition, with Sr/Ti molar ratio in the range of 0.9 to 1.1, was determined by Rutherford backscattering spectrometry and energy dispersive spectroscopy. The thickness of the SrTiO3 films is 0.1-0.2 μm. The epitaxial growth was further evidenced by high-resolution transmission electron microscopy and selected area diffraction. Atomically abrupt SrTiO3/YBa2Cu3O7-x interface and epitaxial growth with [100]SrTiO3∥[001]YBa2Cu3O7-x were observed in this study. The superconducting transition temperature of the bottom YBa2Cu3O7-x layer, as measured by ac susceptometer, did not significantly degrade after the growth of overlayer SrTiO3. The capacitance-voltage measurements showed that the dielectric constant of the SrTiO3 films was as high as 315 at a signal frequency of 100 KHz. The leakage current density through the SrTiO3 films is about 1×10-6 A/cm2 at 2-V operation. Data analysis on the current-voltage characteristic indicated that the conduction process is related to bulk-limited Poole-Frenkel emission.

  17. Lipon thin films grown by plasma-enhanced metalorganic chemical vapor deposition in a N{sub 2}-H{sub 2}-Ar gas mixture

    Energy Technology Data Exchange (ETDEWEB)

    Meda, Lamartine, E-mail: LMeda@xula.edu [Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA, 70125 (United States); Maxie, Eleston E. [Excellatron Solid State LLC, 263 Decatur Street, Atlanta, GA 30312 (United States)

    2012-01-01

    Lithium phosphorus oxynitride (Lipon) thin films have been deposited by a plasma-enhanced metalorganic chemical vapor deposition method. Lipon thin films were deposited on approximately 0.2 {mu}m thick Au-coated alumina substrates in a N{sub 2}-H{sub 2}-Ar plasma at 13.56 MHz, a power of 150 W, and at 180 Degree-Sign C using triethyl phosphate [(CH{sub 2}CH{sub 3}){sub 3}PO{sub 4}] and lithium tert-butoxide [(LiOC(CH{sub 3}){sub 3}] precursors. Lipon growth rates ranged from 10 to 42 nm/min and thicknesses varied from 1 to 2.5 {mu}m. X-ray powder diffraction showed that the films were amorphous, and X-ray photoelectron spectroscopy (XPS) revealed approximately 4 at.% N in the films. The ionic conductivity of Lipon was measured by electrochemical impedance spectroscopy to be approximately 1.02 {mu}S/cm, which is consistent with the ionic conductivity of Lipon deposited by radio frequency magnetron sputtering of Li{sub 3}PO{sub 4} targets in either mixed Ar-N{sub 2} or pure N{sub 2} atmosphere. Attempts to deposit Lipon in a N{sub 2}-O{sub 2}-Ar plasma resulted in the growth of Li{sub 3}PO{sub 4} thin films. The XPS analysis shows no C and N atom peaks. Due to the high impedance of these films, reliable conductivity measurements could not be obtained for films grown in N{sub 2}-O{sub 2}-Ar plasma.

  18. Fast Growth of GaN Epilayers via Laser-Assisted Metal-Organic Chemical Vapor Deposition for Ultraviolet Photodetector Applications.

    Science.gov (United States)

    Rabiee Golgir, Hossein; Li, Da Wei; Keramatnejad, Kamran; Zou, Qi Ming; Xiao, Jun; Wang, Fei; Jiang, Lan; Silvain, Jean-François; Lu, Yong Feng

    2017-06-28

    In this study, we successfully developed a carbon dioxide (CO 2 )-laser-assisted metal-organic chemical vapor deposition (LMOCVD) approach to fast synthesis of high-quality gallium nitride (GaN) epilayers on Al 2 O 3 [sapphire(0001)] substrates. By employing a two-step growth procedure, high crystallinity and smooth GaN epilayers with a fast growth rate of 25.8 μm/h were obtained. The high crystallinity was confirmed by a combination of techniques, including X-ray diffraction, Raman spectroscopy, transmission electron microscopy, and atomic force microscopy. By optimizing growth parameters, the ∼4.3-μm-thick GaN films grown at 990 °C for 10 min showed a smooth surface with a root-mean-square surface roughness of ∼1.9 nm and excellent thickness uniformity with sharp GaN/substrate interfaces. The full-width at half-maximum values of the GaN(0002) X-ray rocking curve of 313 arcsec and the GaN(101̅2) X-ray rocking curve of 390 arcsec further confirmed the high crystallinity of the GaN epilayers. We also fabricated ultraviolet (UV) photodetectors based on the as-grown GaN layers, which exhibited a high responsivity of 0.108 A W -1 at 367 nm and a fast response time of ∼125 ns, demonstrating its high optical quality with potential in optoelectronic applications. Our strategy thus provides a simple and cost-effective means toward fast and high-quality GaN heteroepitaxy growth suitable for fabricating high-performance GaN-based UV detectors.

  19. Metalorganic chemical vapor deposition growth and thermal stability of the AlInN/GaN high electron mobility transistor structure

    International Nuclear Information System (INIS)

    Yu, Hongbo; Ozturk, Mustafa; Demirel, Pakize; Cakmak, Huseyin; Bolukbas, Basar; Caliskan, Deniz; Ozbay, Ekmel

    2011-01-01

    The Al x In 1−x N barrier high electron mobility transistor (HEMT) structure has been optimized with varied barrier composition and thickness grown by metalorganic chemical vapor deposition. After optimization, a transistor structure comprising a 7 nm thick nearly lattice-matched Al 0.83 In 0.17 N barrier exhibits a sheet electron density of 2.0 × 10 13 cm −2 with a high electron mobility of 1540 cm 2 V −1 s −1 . An Al 0.83 In 0.17 N barrier HEMT device with 1 µm gate length provides a current density of 1.0 A mm −1 at V GS = 0 V and an extrinsic transconductance of 242 mS mm −1 , which are remarkably improved compared to that of a conventional Al 0.3 Ga 0.7 N barrier HEMT. To investigate the thermal stability of the HEMT epi-structures, post-growth annealing experiments up to 800 °C have been applied to Al 0.83 In 0.17 N and Al 0.3 Ga 0.7 N barrier heterostructures. As expected, the electrical properties of an Al 0.83 In 0.17 N barrier HEMT structure showed less stability than that of an Al 0.3 Ga 0.7 N barrier HEMT to the thermal annealing. The structural properties of Al 0.83 In 0.17 N/GaN also showed more evidence for decomposition than that of the Al 0.3 Ga 0.7 N/GaN structure after 800 °C post-annealing

  20. Thermal stability of an InAlN/GaN heterostructure grown on silicon by metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Arata, E-mail: a.watanabe.106@nitech.jp; Freedsman, Joseph J.; Urayama, Yuya; Christy, Dennis [Research Center for Nano Devices and Advanced Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466 8555 (Japan); Egawa, Takashi, E-mail: egawa.takashi@nitech.ac.jp [Research Center for Nano Devices and Advanced Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466 8555 (Japan); Innovation Center for Multi-Business of Nitride Semiconductors, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466 8555 (Japan)

    2015-12-21

    The thermal stabilities of metal-organic chemical vapor deposition-grown lattice-matched InAlN/GaN/Si heterostructures have been reported by using slower and faster growth rates for the InAlN barrier layer in particular. The temperature-dependent surface and two-dimensional electron gas (2-DEG) properties of these heterostructures were investigated by means of atomic force microscopy, photoluminescence excitation spectroscopy, and electrical characterization. Even at the annealing temperature of 850 °C, the InAlN layer grown with a slower growth rate exhibited a smooth surface morphology that resulted in excellent 2-DEG properties for the InAlN/GaN heterostructure. As a result, maximum values for the drain current density (I{sub DS,max}) and transconductance (g{sub m,max}) of 1.5 A/mm and 346 mS/mm, respectively, were achieved for the high-electron-mobility transistor (HEMT) fabricated on this heterostructure. The InAlN layer grown with a faster growth rate, however, exhibited degradation of the surface morphology at an annealing temperature of 850 °C, which caused compositional in-homogeneities and impacted the 2-DEG properties of the InAlN/GaN heterostructure. Additionally, an HEMT fabricated on this heterostructure yielded lower I{sub DS,max} and g{sub m,max} values of 1 A/mm and 210 mS/mm, respectively.

  1. Nonpolar a-plane GaN grown on r-plane sapphire using multilayer AlN buffer by metalorganic chemical vapor deposition

    International Nuclear Information System (INIS)

    Chiang, C.H.; Chen, K.M.; Wu, Y.H.; Yeh, Y.S.; Lee, W.I.; Chen, J.F.; Lin, K.L.; Hsiao, Y.L.; Huang, W.C.; Chang, E.Y.

    2011-01-01

    Mirror-like and pit-free non-polar a-plane (1 1 -2 0) GaN films are grown on r-plane (1 -1 0 2) sapphire substrates using metalorganic chemical vapor deposition (MOCVD) with multilayer high-low-high temperature AlN buffer layers. The buffer layer structure and film quality are essential to the growth of a flat, crack-free and pit-free a-plane GaN film. The multilayer AlN buffer structure includes a thin low-temperature-deposited AlN (LT-AlN) layer inserted into the high-temperature-deposited AlN (HT-AlN) layer. The results demonstrate that the multilayer AlN buffer structure can improve the surface morphology of the upper a-plane GaN film. The grown multilayer AlN buffer structure reduced the tensile stress on the AlN buffer layers and increased the compressive stress on the a-plane GaN film. The multilayer AlN buffer structure markedly improves the surface morphology of the a-plane GaN film, as revealed by scanning electron microscopy. The effects of various growth V/III ratios was investigated to obtain a-plane GaN films with better surface morphology. The mean roughness of the surface was 1.02 nm, as revealed by atomic force microscopy. Accordingly, the multilayer AlN buffer structure improves the surface morphology and facilitates the complete coalescence of the a-plane GaN layer.

  2. Phase transition and luminescence properties from vapor etched silicon

    International Nuclear Information System (INIS)

    Aouida, S.; Saadoun, M.; Ben Saad, K.; Bessais, B.

    2006-01-01

    In this work, we present a study on the structure and photoluminescence (PL) properties of a non-conventional ammonium hexafluorosilicate (NH 4 ) 2 SiF 6 (white powder) obtained from HNO 3 /HF chemical vapor etching (CVE) of silicon wafers. The CVE method leads either to the formation of luminescent Porous Silicon (PS) or SiO x /Si-containing (NH 4 ) 2 SiF 6 depending on the experimental conditions. At specific conditions (i.e., HNO 3 / HF volume ratio > 1 / 4), the CVE technique can generate instead of PS, a (NH 4 ) 2 SiF 6 phase where SiO x /Si particles are embedded. The (NH 4 ) 2 SiF 6 marketed powder is not luminescent, while that obtained from silicon vapor-etching presents a noticeable intense and stable photoluminescence (PL), which was found to have mainly two shoulders at 1.98 and 2.1 eV. Two processes have been proposed to explain this PL property. First, the visible luminescence around 1.98 eV would come from silicon nanoparticles embedded in the powder, having a distribution size that does not allow SiO x species to influence their own PL. Second, the PL shoulder around 2.1 eV would originate from small silicon nanoparticles trapped in SiO x features, leading to oxide related states that may trap electrons or excitons, depending on the silicon nanoparticle size, wherein radiative recombination occurs. The PL shoulder could become broader at low temperatures suggesting the existence of radiative recombination in SiO x related defects

  3. Design of a safe facility for the metalorganic chemical vapor deposition of high-purity GaAs and AlGaAs

    Science.gov (United States)

    Messham, R. L.; Tucker, W. K.

    1986-09-01

    A metalorganic chemical vapor deposition (MOCVD) facility designed to safely handle highly toxic and pyrophoric growth materials is described. The system concept is based on remote operation, passive flow restriction, and forced air dilution to maintain safe gas concentrations under normal running and catastrophic system failure conditions. MOCVD is a key materials technology for advanced high-frequency optical and microwave devices. At this time, the use of highly toxic arsine as an arsenic source is dictated by critical device purity, reproducibility, and doping control requirements. The handling and use of this gas is a primary feature in the design of any safe facility for MOCVD growth of high-quality GaAs/AlGaAs. After a critical review of presently available effluent treatment techniques, it was concluded that a combination of flow restriction and dilution presented the most reliable treatment. Measured flow rates through orifices from 0.002 to 0.005 inch in diameter were compared to calculated values. A 0.002 inch orifice located in the cylinder valve or CGA fitting, combined with a cylinder of pure liquid arsine (205 psi), limits the maximum gas flow to ≪1 lpm. Such a flow can then be vented through a dedicated exhaust system where an additional forced injection of diluting air reduces the gas concentration to acceptable levels. In the final Westinghouse R&D Center design, the use of low-pressure pure arsine, flow restriction, and stack air injection has reduced the maximum stack exist gas concentration to below 25% of the IDLH level for arsine under total and catastrophic MOCVD facility equipment failure conditions. The elimination of potential problems with purging behind such orifices using carefully designed purging procedures and a microprocessor-controlled purging system are described. The IDLH level is defined by the OSHA and NIOSH standards completion program and represents the maximum level from which one could escape within 30 min without any

  4. Effect of band alignment on photoluminescence and carrier escape from InP surface quantum dots grown by metalorganic chemical vapor deposition on Si

    Energy Technology Data Exchange (ETDEWEB)

    Halder, Nripendra N. [Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur 721 302 (India); Biswas, Pranab; Banerji, P., E-mail: pallab@matsc.iitkgp.ernet.in [Materials Science Centre, Indian Institute of Technology, Kharagpur 721 302 (India); Dhabal Das, Tushar; Das, Sanat Kr.; Chattopadhyay, S. [Department of Electronic Science, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700 009 (India); Biswas, D. [Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology, Kharagpur 721 302 (India)

    2014-01-28

    A detailed analysis of photoluminescence (PL) from InP quantum dots (QDs) grown on Si has been carried out to understand the effect of substrate/host material in the luminescence and carrier escape process from the surface quantum dots. Such studies are required for the development of monolithically integrated next generation III-V QD based optoelectronics with fully developed Si microelectronics. The samples were grown by atmospheric pressure metalorganic chemical vapor deposition technique, and the PL measurements were made in the temperature range 10–80 K. The distribution of the dot diameter as well as the dot height has been investigated from atomic force microscopy. The origin of the photoluminescence has been explained theoretically. The band alignment of InP/Si heterostructure has been determined, and it is found be type II in nature. The positions of the conduction band minimum of Si and the 1st excited state in the conduction band of InP QDs have been estimated to understand the carrier escape phenomenon. A blue shift with a temperature co-efficient of 0.19 meV/K of the PL emission peak has been found as a result of competitive effect of different physical processes like quantum confinement, strain, and surface states. The corresponding effect of blue shift by quantum confinement and strain as well as the red shift by the surface states in the PL peaks has been studied. The origin of the luminescence in this heterojunction is found to be due to the recombination of free excitons, bound excitons, and a transition from the 1st electron excited state in the conduction band (e{sub 1}) to the heavy hole band (hh{sub 1}). Monotonic decrease in the PL intensity due to increase of thermally escaped carriers with temperature has been observed. The change in barrier height by the photogenerated electric-field enhanced the capture of the carriers by the surface states rather than their accumulation in the QD excited state. From an analysis of the dependence of

  5. Characterization of crystallinity of Ge{sub 1−x}Sn{sub x} epitaxial layers grown using metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Inuzuka, Yuki [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Ike, Shinichi; Asano, Takanori [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo 102-8472 (Japan); Takeuchi, Wakana [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Nakatsuka, Osamu, E-mail: nakatuka@alice.xtal.nagoya-u.ac.jp [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Zaima, Shigeaki [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2016-03-01

    The epitaxial growth of a Ge{sub 1−x}Sn{sub x} layer was examined using metal-organic chemical vapor deposition (MOCVD) with two types of Ge precursors; tetra-ethyl-germane (TEGe) and tertiary-butyl-germane (TBGe); and the Sn precursor tri-butyl-vinyl-tin (TBVSn). Though the growth of a Ge{sub 1−x}Sn{sub x} layer on a Ge(001) substrate by MOCVD has been reported, a high-Sn-content Ge{sub 1−x}Sn{sub x} layer and the exploration of MO material combinations for Ge{sub 1−x}Sn{sub x} growth have not been reported. Therefore, the epitaxial growth of a Ge{sub 1−x}Sn{sub x} layer on Ge(001) and Si(001) substrates was examined using these precursors. The Ge{sub 1−x}Sn{sub x} layers were pseudomorphically grown on a Ge(001) substrate, while the Ge{sub 1−x}Sn{sub x} layer with a high degree of strain relaxation was obtained on a Si(001) substrate. Additionally, it was found that the two Ge precursors have different growth temperature ranges, where the TBGe could realize a higher growth rate at a lower growth temperature than the TEGe. The Ge{sub 1−x}Sn{sub x} layers grown using a combination of TBGe and TBVSn exhibited a higher crystalline quality and a smoother surface compared with the Ge{sub 1−x}Sn{sub x} layer prepared by low-temperature molecular beam epitaxy. In this study, a Ge{sub 1−x}Sn{sub x} epitaxial layer with a Sn content as high as 5.1% on a Ge(001) substrate was achieved by MOCVD at 300 °C. - Highlights: • Tertiary-butyl-germane and tri-butyl-vinyl-tin are suitable for Ge{sub 1−x}Sn{sub x} MOCVD growth. • We achieved a Sn content of 5.1% in Ge{sub 1−x}Sn{sub x} epitaxial layer on Ge(001). • The Ge{sub 1−x}Sn{sub x} layers grown on Ge and Si by MOCVD have high crystalline quality.

  6. Vapor phase elemental sulfur amendment for sequestering mercury in contaminated soil

    Science.gov (United States)

    Looney, Brian B.; Denham, Miles E.; Jackson, Dennis G.

    2014-07-08

    The process of treating elemental mercury within the soil is provided by introducing into the soil a heated vapor phase of elemental sulfur. As the vapor phase of elemental sulfur cools, sulfur is precipitated within the soil and then reacts with any elemental mercury thereby producing a reaction product that is less hazardous than elemental mercury.

  7. The nuclear liquid-vapor phase transition: Equilibrium between phases or free decay in vacuum?

    International Nuclear Information System (INIS)

    Phair, L.; Moretto, L.G.; Elliott, J.B.; Wozniak, G.J.

    2002-01-01

    Recent analyses of multifragmentation in terms of Fisher's model and the related construction of a phase diagram brings forth the problem of the true existence of the vapor phase and the meaning of its associated pressure. Our analysis shows that a thermal emission picture is equivalent to a Fisher-like equilibrium description which avoids the problem of the vapor and explains the recently observed Boltzmann-like distribution of the emission times. In this picture a simple Fermi gas thermometric relation is naturally justified. Low energy compound nucleus emission of intermediate mass fragments is shown to scale according to Fisher's formula and can be simultaneously fit with the much higher energy ISiS multifragmentation data

  8. The effect of vadose zone heterogeneities on vapor phase migration and aquifer contamination by volatile organics

    Energy Technology Data Exchange (ETDEWEB)

    Seneviratne, A.; Findikakis, A.N. [Bechtel Corporation, San Francisco, CA (United States)

    1995-03-01

    Organic vapors migrating through the vadose zone and inter-phase transfer can contribute to the contamination of larger portions of aquifers than estimated by accounting only for dissolved phase transport through the saturated zone. Proper understanding of vapor phase migration pathways is important for the characterization of the extent of both vadose zone and the saturated zone contamination. The multiphase simulation code T2VOC is used to numerically investigate the effect of heterogeneties on the vapor phase migration of chlorobenzene at a hypothetical site where a vapor extraction system is used to remove contaminants. Different stratigraphies consisting of alternate layers of high and low permeability materials with soil properties representative of gravel, sandy silt and clays are evaluated. The effect of the extent and continuity of low permeability zones on vapor migration is evaluated. Numerical simulations are carried out for different soil properties and different boundary conditions. T2VOC simulations with zones of higher permeability were made to assess the role of how such zones in providing enhanced migration pathways for organic vapors. Similarly, the effect of the degree of saturation of the porous medium on vapor migration was for a range of saturation values. Increased saturation reduces the pore volume of the medium available for vapor diffusion. Stratigraphic units with higher aqueous saturation can retard the vapor phase migration significantly.

  9. Microstructural and superconducting properties of high current metal-organic chemical vapor deposition YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} coated conductor wires

    Energy Technology Data Exchange (ETDEWEB)

    Holesinger, T G; Maiorov, B; Ugurlu, O; Civale, L [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Chen, Y; Xiong, X; Xie, Y; Selvamanickam, V [SuperPower, Inc., Schenectady, NY 12304 (United States)

    2009-04-15

    Metal-organic chemical vapor deposition (MOCVD) on flexible, ion beam assisted deposition MgO templates has been used to produce high critical current density (J{sub c}) (Y,Sm){sub 1}Ba{sub 2}Cu{sub 3}O{sub y} (REBCO) films suitable for use in producing practical high temperature superconducting (HTS) coated conductor wires. Thick films on tape were produced with sequential additions of 0.7 {mu}m of REBCO via a reel-to-reel progression through a custom-designed MOCVD reactor. Multi-pass processing for thick film deposition is critically dependent upon minimizing surface secondary phase formation. Critical currents (I{sub c}s) of up to 600 A/cm width (t = 2.8 {mu}m, J{sub c} = 2.6 MA cm{sup -2}, 77 K, self-field) were obtained in short lengths of HTS wires. These high performance MOCVD films are characterized by closely spaced (Y,Sm){sub 2}O{sub 3} nanoparticle layers that may be tilted relative to the film normal and REBCO orientation. Small shifts in the angular dependence of J{sub c} in low and intermediate applied magnetic fields can be associated with the tilted nanoparticle layers. Also present in these films were YCuO{sub 2} nanoplates aligned with the YBCO matrix (short dimension perpendicular to the film normal), threading dislocations, and oriented composite defects (OCDs). The latter structures consist of single or multiple a-axis oriented grains coated on each side with insulating (Y,Sm){sub 2}O{sub 3} or CuO. The OCDs formed a connected network of insulating phases by the end of the fourth pass. Subsequent attempts at adding additional layers did not increase I{sub c}. There is an inconsistency between the measured J{sub c} and the observed microstructural degradation that occurs with each additional layer, suggesting that previously deposited layers are improving with each repeated reactor pass. These dynamic changes suggest a role for post-processing to optimize superconducting properties of as-deposited films, addressing issues associated with

  10. Semiconductor light sources fabricated by vapor phase epitaxial regrowth

    International Nuclear Information System (INIS)

    Powazinik, W.; Olshansky, R.; Meland, E.; Lauer, R.B.

    1986-01-01

    An extremely versatile technique for the fabrication of semiconductor light sources is described. The technique which is based on the halide vapor phase regrowth (VPR) of InP on channeled and selectively etched InGaAsP/InP double heterostructure material, results in a buried heterostructure (BH) index-guided VPR-BH diode laser structure which can be optimized for a number of different types of semiconductor light sources. The conditions and parameters associated with the halide VPR process are given, and the properties of the regrown InP are reported. The processing and characterization of high-frequency lasers with 18-GHz bandwidths and high-power lasers with cw single-spatial-mode powers of 60 mW are described. Additionally, the fabrication and characterization of superluminescent LEDs based on the this basic VPR-BH structure are described. These LEDs are capable of coupling more than 80 μW of optical power into a single-mode fiber at 100 mA, and can couple as much as 8 μW of optical power into a single-mode fiber at drive currents as low as 20 mA

  11. Thin film solar cells grown by organic vapor phase deposition

    Science.gov (United States)

    Yang, Fan

    Organic solar cells have the potential to provide low-cost photovoltaic devices as a clean and renewable energy resource. In this thesis, we focus on understanding the energy conversion process in organic solar cells, and improving the power conversion efficiencies via controlled growth of organic nanostructures. First, we explain the unique optical and electrical properties of organic materials used for photovoltaics, and the excitonic energy conversion process in donor-acceptor heterojunction solar cells that place several limiting factors of their power conversion efficiency. Then, strategies for improving exciton diffusion and carrier collection are analyzed using dynamical Monte Carlo models for several nanostructure morphologies. Organic vapor phase deposition is used for controlling materials crystallization and film morphology. We improve the exciton diffusion efficiency while maintaining good carrier conduction in a bulk heterojunction solar cell. Further efficiency improvement is obtained in a novel nanocrystalline network structure with a thick absorbing layer, leading to the demonstration of an organic solar cell with 4.6% efficiency. In addition, solar cells using simultaneously active heterojunctions with broad spectral response are presented. We also analyze the efficiency limits of single and multiple junction organic solar cells, and discuss the challenges facing their practical implementations.

  12. Magnetic metal-organic frameworks for fast and efficient solid-phase extraction of six Sudan dyes in tomato sauce.

    Science.gov (United States)

    Shi, Xin-Ran; Chen, Xue-Lei; Hao, Yu-Lan; Li, Li; Xu, Hou-Jun; Wang, Man-Man

    2018-06-01

    Magnetic solid-phase extraction is an effective and useful technique to preconcentrate trace analytes from food samples. In this study, a magnetic trimeric chromium octahedral metal-organic framework (Fe 3 O 4 -NH 2 @MIL-101) was fabricated and characterized. Fe 3 O 4 -NH 2 @MIL-101 was applied as an adsorbent of magnetic solid-phase extraction combined with high performance liquid chromatography to effectively isolate and simultaneously determine six Sudan dyes (Para Red, Sudan I-IV, and Sudan Red 7B) from tomato sauce. Potential factors affecting the MSPE were investigated in detail, and adsorption efficiency of Fe 3 O 4 -NH 2 @MIL-101 was compared with those of conventional adsorbents, such as neutral alumina, HLB, and C 18 . The developed method facilitated the extraction with using only 3 mg of adsorbent in 2 min. In addition, enhancement factors of 50, linear range of 0.01-25 μg/mL, and detection limit (S/N = 3) of 0.5-2.5 μg/kg were obtained. The intra-day and inter-day recoveries for spiked Sudan dyes were in the range of 72.6%-92.9% and 69.6%-91.6%, respectively, with relative standard deviations of ≤9.2%. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Pyrolytic in situ magnetization of metal-organic framework MIL-100 for magnetic solid-phase extraction.

    Science.gov (United States)

    Huo, Shu-Hui; An, Hai-Yan; Yu, Jing; Mao, Xue-Feng; Zhang, Zhe; Bai, Lei; Huang, Yan-Feng; Zhou, Peng-Xin

    2017-09-29

    In this study, we report a facile, environmental friendly fabrication of a type of magnetic metal-organic framework (MOF) MIL-100 that can be used for magnetic solid-phase extraction (MSPE). The magnetic MOF composites were fabricated using in situ calcination method. The as-synthesized materials exhibited both high porosity and magnetic characteristics. They used for the MSPE of polycyclic aromatic hydrocarbons (PAHs) from water samples. Such MOF-based magnetic solid-phase extraction in combination with gas chromatography equipped with a flame ionization detector (GC-FID), exhibited wide linearity (0.02-250μgL -1 ), low detection limits (4.6-8.9ngL -1 ), and high enrichment factors (452-907) for PAHs. The relative standard deviations (RSDs) for intra- and inter-day extractions of PAHs were ranging from 1.7% to 9.8% and 3.8% to 9.2%, respectively. The recoveries for spiked PAHs (1μgL -1 ) in water samples were in the range of 88.5% to 106.6%. The results showed that the special anion-π orbital (electron donor-acceptor) interaction and π-π stacking between magnetic MIL-100 and PAHs play an important role in the adsorption of PAHs. Copyright © 2017. Published by Elsevier B.V.

  14. Comparative study of polar and semipolar (112¯2) InGaN layers grown by metalorganic vapour phase epitaxy

    International Nuclear Information System (INIS)

    Dinh, Duc V.; Zubialevich, V. Z.; Oehler, F.; Kappers, M. J.; Humphreys, C. J.; Alam, S. N.; Parbrook, P. J.; Caliebe, M.; Scholtz, F.

    2014-01-01

    InGaN layers were grown simultaneously on (112 ¯ 2) GaN and (0001) GaN templates by metalorganic vapour phase epitaxy. At higher growth temperature (≥750 °C), the indium content ( ¯ 2) and (0001) InGaN layers was similar. However, for temperatures less than 750 °C, the indium content of the (112 ¯ 2) InGaN layers (15%–26%) were generally lower than those with (0001) orientation (15%–32%). The compositional deviation was attributed to the different strain relaxations between the (112 ¯ 2) and (0001) InGaN layers. Room temperature photoluminescence measurements of the (112 ¯ 2) InGaN layers showed an emission wavelength that shifts gradually from 380 nm to 580 nm with decreasing growth temperature (or increasing indium composition). The peak emission wavelength of the (112 ¯ 2) InGaN layers with an indium content of more than 10% blue-shifted a constant value of ≈(50–60) nm when using higher excitation power densities. This blue-shift was attributed to band filling effects in the layers.

  15. Flows of a Vapor due to Phase Change Processes at the Condensed Phases with Temperature Fields as their Internal Structures

    National Research Council Canada - National Science Library

    Onishi, Yoshimoto; Ooshida, Takeshi

    2005-01-01

    Transient to steady motions of a vapor caused by the evaporation and condensation processes occurring at the condensed phases placed in parallel have been studied based on the Boltzmann equation of BGK type...

  16. Low-Temperature Preparation of (111)-oriented Pb(Zr,Ti)O3 Films Using Lattice-Matched (111)SrRuO3/Pt Bottom Electrode by Metal-Organic Chemical Vapor Deposition

    Science.gov (United States)

    Kuwabara, Hiroki; Sumi, Akihiro; Okamoto, Shoji; Hoko, Hiromasa; Cross, Jeffrey S.; Funakubo, Hiroshi

    2009-04-01

    Pb(Zr0.35Ti0.65)O3 (PZT) films 170 nm thick were prepared at 415 °C by pulsed metal-organic chemical vapor deposition. The (111)-oriented PZT films with local epitaxial growth were obtained on (111)SrRuO3/(111)Pt/TiO2/SiO2/Si substrates and their ferroelectricities were ascertained. Ferroelectricity was improved by postannealing under O2 gas flow up to 550 °C. Larger remanent polarization and better fatigue endurance were obtained using a SrRuO3 top electrode compared to a Pt top electrode for PZT films after annealing at 500 °C.

  17. Improved crystal quality of a-plane GaN with high- temperature 3-dimensional GaN buffer layers deposited by using metal-organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Park, Sung Hyun; Moon, Dae Young; Kim, Bum Ho; Kim, Dong Uk; Chang, Ho Jun; Jeon, Heon Su; Yoon, Eui Joon; Joo, Ki Su; You, Duck Jae; Nanishi, Yasushi

    2012-01-01

    a-plane GaN on r-plane sapphire substrates suffers from high density defects and rough surfaces. To obtain pit-free a-plane GaN by metal-organic chemical vapor deposition, we intentionally grew high-temperature (HT) 3-dimensional (3D) GaN buffer layers on a GaN nucleation layer. The effects of the HT 3D GaN buffer layers on crystal quality and the surface morphology of a-plane GaN were studied. The insertion of a 3D GaN buffer layer with an optimum thickness was found to be an effective method to obtain pit-free a-plane GaN with improved crystalline quality on r-plane sapphire substrates. An a-plane GaN light emitting diode (LED) at an emission wavelength around 480 nm with negligible peak shift was successfully fabricated.

  18. Solid State Transmitters for Water Vapor and Ozone DIAL Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The focus of this Select Phase II program is to build and deliver laser components both for airborne water vapor and ozone DIAL systems. Specifically, Fibertek...

  19. Liquid-Vapor Phase Transition: Thermomechanical Theory, Entropy Stable Numerical Formulation, and Boiling Simulations

    Science.gov (United States)

    2015-05-01

    vapor bubbles may generate near blades [40]. This is the phenomenon of cavitation and it is still a limiting factor for ship propeller design. Phase...van der Waals theory with hydrodynamics [39]. The fluid equations based on the van der Waals theory are called the Navier-Stokes-Korteweg equations... cavitating flows, the liquid- vapor phase transition induced by pressure variations. A potential challenge for such a simulation is a proper design of open

  20. DETERMINING HOW VAPOR PHASE MTBE REACHES GROUND WATER

    Science.gov (United States)

    EPA Region 2 and ORD have funded a RARE project for FY 2005/2006 to evaluate the prospects that MTBE (and other fuel components) in vapors that escape from an underground storage tank (UST) can find its way to ground water produced by monitoring wells at a gasoline filling statio...

  1. Student Understanding of Liquid-Vapor Phase Equilibrium

    Science.gov (United States)

    Boudreaux, Andrew; Campbell, Craig

    2012-01-01

    Student understanding of the equilibrium coexistence of a liquid and its vapor was the subject of an extended investigation. Written assessment questions were administered to undergraduates enrolled in introductory physics and chemistry courses. Responses have been analyzed to document conceptual and reasoning difficulties in sufficient detail to…

  2. Influence of soil properties on vapor-phase sorption of trichloroethylene

    International Nuclear Information System (INIS)

    Bekele, Dawit N.; Naidu, Ravi; Chadalavada, Sreenivasulu

    2016-01-01

    Highlights: • Vapor intrusion is a major exposure pathway for volatile hydrocarbons. • Certainty in transport processes enhances vapor intrusion model precision. • Detailed understanding of vadose zone vapor transport processes save resources. • Vapor sorption near-steady-state conditions at sites may take months or years. • Type of clay fractions equitably affects sorption of trichloroethylene vapor. - Abstract: Current practices in health risk assessment from vapor intrusion (VI) using mathematical models are based on assumptions that the subsurface sorption equilibrium is attained. The time required for sorption to reach near-steady-state conditions at sites may take months or years to achieve. This study investigated the vapor phase attenuation of trichloroethylene (TCE) in five soils varying widely in clay and organic matter content using repacked columns. The primary indicators of TCE sorption were vapor retardation rate (R_t), the time required for the TCE vapor to pass through the soil column, and specific volume of retention (V_R), and total volume of TCE retained in soil. Results show TCE vapor retardation is mainly due to the rapid partitioning of the compound to SOM. However, the specific volume of retention of clayey soils with secondary mineral particles was higher. Linear regression analyses of the SOM and clay fraction with V_R show that a unit increase in clay fraction results in higher sorption of TCE (V_R) than the SOM. However, partitioning of TCE vapor was not consistent with the samples' surface areas but was mainly a function of the type of secondary minerals present in soils.

  3. Influence of soil properties on vapor-phase sorption of trichloroethylene

    Energy Technology Data Exchange (ETDEWEB)

    Bekele, Dawit N. [Global Center for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308 (Australia); CRC for Contamination Assessment & Remediation of the Environment, Building X (Environmental Sciences Building), University of South Australia, Mawson Lakes, SA 5095 (Australia); Naidu, Ravi, E-mail: Ravi.Naidu@newcastle.edu.au [Global Center for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308 (Australia); CRC for Contamination Assessment & Remediation of the Environment, Building X (Environmental Sciences Building), University of South Australia, Mawson Lakes, SA 5095 (Australia); Chadalavada, Sreenivasulu [Global Center for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308 (Australia); CRC for Contamination Assessment & Remediation of the Environment, Building X (Environmental Sciences Building), University of South Australia, Mawson Lakes, SA 5095 (Australia)

    2016-04-05

    Highlights: • Vapor intrusion is a major exposure pathway for volatile hydrocarbons. • Certainty in transport processes enhances vapor intrusion model precision. • Detailed understanding of vadose zone vapor transport processes save resources. • Vapor sorption near-steady-state conditions at sites may take months or years. • Type of clay fractions equitably affects sorption of trichloroethylene vapor. - Abstract: Current practices in health risk assessment from vapor intrusion (VI) using mathematical models are based on assumptions that the subsurface sorption equilibrium is attained. The time required for sorption to reach near-steady-state conditions at sites may take months or years to achieve. This study investigated the vapor phase attenuation of trichloroethylene (TCE) in five soils varying widely in clay and organic matter content using repacked columns. The primary indicators of TCE sorption were vapor retardation rate (R{sub t}), the time required for the TCE vapor to pass through the soil column, and specific volume of retention (V{sub R}), and total volume of TCE retained in soil. Results show TCE vapor retardation is mainly due to the rapid partitioning of the compound to SOM. However, the specific volume of retention of clayey soils with secondary mineral particles was higher. Linear regression analyses of the SOM and clay fraction with V{sub R} show that a unit increase in clay fraction results in higher sorption of TCE (V{sub R}) than the SOM. However, partitioning of TCE vapor was not consistent with the samples' surface areas but was mainly a function of the type of secondary minerals present in soils.

  4. Metal-organic framework based in-syringe solid-phase extraction for the on-site sampling of polycyclic aromatic hydrocarbons from environmental water samples.

    Science.gov (United States)

    Zhang, Xiaoqiong; Wang, Peiyi; Han, Qiang; Li, Hengzhen; Wang, Tong; Ding, Mingyu

    2018-04-01

    In-syringe solid-phase extraction is a promising sample pretreatment method for the on-site sampling of water samples because of its outstanding advantages of portability, simple operation, short extraction time, and low cost. In this work, a novel in-syringe solid-phase extraction device using metal-organic frameworks as the adsorbent was fabricated for the on-site sampling of polycyclic aromatic hydrocarbons from environmental waters. Trace polycyclic aromatic hydrocarbons were effectively extracted through the self-made device followed by gas chromatography with mass spectrometry analysis. Owing to the excellent adsorption performance of metal-organic frameworks, the analytes could be completely adsorbed during one adsorption cycle, thus effectively shortening the extraction time. Moreover, the adsorbed analytes could remain stable on the device for at least 7 days, revealing the potential of the self-made device for on-site sampling of degradable compounds in remote regions. The limit of detection ranged from 0.20 to 1.9 ng/L under the optimum conditions. Satisfactory recoveries varying from 84.4 to 104.5% and relative standard deviations below 9.7% were obtained in real samples analysis. The results of this study promote the application of metal-organic frameworks in sample preparation and demonstrate the great potential of in-syringe solid-phase extraction for the on-site sampling of trace contaminants in environmental waters. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Evidence for extreme partitioning of copper into a magmatic vapor phase

    International Nuclear Information System (INIS)

    Lowenstern, J.B.; Mahood, G.A.; Rivers, M.L.; Sutton, S.R.

    1991-01-01

    The discovery of copper sulfides in carbon dioxide- and chlorine-bearing bubbles in phenocryst-hosted melt inclusions shows that copper resides in a vapor phase in some shallow magma chambers. Copper is several hundred times more concentrated in magmatic vapor than in coexisting pantellerite melt. The volatile behavior of copper should be considered when modeling the volcanogenic contribution of metals to the atmosphere and may be important in the formation of copper porphyry ore deposits

  6. Phase relationship, vaporization, and thermodynamic properties of the lanthanum--boron system

    International Nuclear Information System (INIS)

    Storms, E.; Mueller, B.

    1978-01-01

    The La-B system was studied between LaB/sub 4.24/ and LaB/sub 29.2/, and between 1400 and 2100 K to determine the phase relationship, the chemical activity of the components, the vaporization rate, and the vapor composition. A blue colored phase near LaB 9 was found to exist between purple colored LaB 6 and elemental boron. Diffusion is so much slower than vaporization that large composition differences can exist between the surface and the interior which, nevertheless, produce a steady state loss rate from freely vaporizing material. The flux at 1700 K is 6 x 10 -10 g/cm 2 s for LaB 4 +LaB 6 and 7 x 10 -11 g/cm 2 s for LaB 6 + LaB 9 . There is an activation energy which lowers the vaporization rate of boron from LaB 6 . Freely vaporizing material will have a steady state surface composition between LaB/sub 6.04/ and LaB/sub 6.07/, depending on temperature, purity, and interior composition. The free energy of formation of LaB 6 is (0.07lT - 351)kJ/mol between 1700 and 2100 K

  7. MEMS Lubrication by In-Situ Tribochemical Reactions From the Vapor Phase.

    Energy Technology Data Exchange (ETDEWEB)

    Dugger, Michael Thomas; Asay, David B.; Kim, Seong H.

    2008-01-01

    Vapor Phase Lubrication (VPL) of silicon surfaces with pentanol has been demonstrated. Two potential show stoppers with respect to application of this approach to real MEMS devices have been investigated. Water vapor was found to reduce the effectiveness of VPL with alcohol for a given alcohol concentration, but the basic reaction mechanism observed in water-free environments is still active, and devices operated much longer in mixed alcohol and water vapor environments than with chemisorbed monolayer lubricants alone. Complex MEMS gear trains were successfully lubricated with alcohol vapors, resulting in a factor of 104 improvement in operating life without failure. Complex devices could be made to fail if operated at much higher frequencies than previously used, and there is some evidence that the observed failure is due to accumulation of reaction products at deeply buried interfaces. However, if hypothetical reaction mechanisms involving heated surfaces are valid, then the failures observed at high frequency may not be relevant to operation at normal frequencies. Therefore, this work demonstrates that VPL is a viable approach for complex MEMS devices in conventional packages. Further study of the VPL reaction mechanisms are recommended so that the vapor composition may be optimized for low friction and for different substrate materials with potential application to conventionally fabricated, metal alloy parts in weapons systems. Reaction kinetics should be studied to define effective lubrication regimes as a function of the partial pressure of the vapor phase constituent, interfacial shear rate, substrate composition, and temperature.

  8. Irradiation of fish fillets: Relation of vapor phase reactions to storage quality

    Science.gov (United States)

    Spinelli, J.; Dollar, A.M.; Wedemeyer, G.A.; Gallagher, E.C.

    1969-01-01

    Fish fillets irradiated under air, nitrogen, oxygen, or carbon dioxide atmospheres developed rancidlike flavors when they were stored at refrigerated temperatures. Packing and irradiating under vacuum or helium prevented development of off-flavors during storage.Significant quantities of nitrate and oxidizing substances were formed when oxygen, nitrogen, or air were present in the vapor or liquid phases contained in a Pyrex glass model system exposed to ionizing radiation supplied by a 60Co source. It was demonstrated that the delayed flavor changes that occur in stored fish fillets result from the reaction of vapor phase radiolysis products and the fish tissue substrates.

  9. Liquid-vapor phase transition upon pressure decrease in the lead-bismuth system

    Science.gov (United States)

    Volodin, V. N.

    2009-11-01

    The liquid-vapor phase transitions boundaries were calculated on the basis of the values of vapor pressure of the components in the lead-bismuth system during the stepwise pressure decrease by one order of magnitude from 105 down to 1 Pa. The emergence of azeotropic liquid under pressure lower than 19.3 kPa was ascertained. The emergence of azeotropic mixture near the lead edge of the phase diagram was concluded to be the reason for technological difficulties in the distillation separation of the system into the components in a vacuum.

  10. Raman scattering temperature measurements for water vapor in nonequilibrium dispersed two-phase flow

    International Nuclear Information System (INIS)

    Anastasia, C.M.; Neti, S.; Smith, W.R.; Chen, J.C.

    1982-09-01

    The objective of this investigation was to determine the feasibility of using Raman scattering as a nonintrusive technique to measure vapor temperatures in dispersed two-phase flow. The Raman system developed for this investigation is described, including alignment of optics and optimization of the photodetector for photon pulse counting. Experimentally obtained Raman spectra are presented for the following single- and two-phase samples: liquid water, atmospheric nitrogen, superheated steam, nitrogen and water droplets in a high void fraction air/water mist, and superheated water vapor in nonequilibrium dispersed flow

  11. Photo-induced current and its degradation in Al{sub 4}C{sub 3}/Al{sub 2}O{sub 3} (0001) grown by metalorganic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dohyung, E-mail: kim@ee.tokushima-u.ac.jp [Graduate School of Advanced Technology and Science, The University of Tokushima, 2-1 Minami-josanjima, Tokushima 770-8506 (Japan); Onishi, Yuya; Oki, Ryuji [Graduate School of Advanced Technology and Science, The University of Tokushima, 2-1 Minami-josanjima, Tokushima 770-8506 (Japan); Sakai, Shiro [Institute of Technology Science, The University of Tokushima, 2-1 Minami-josanjima, Tokushima 770-8506 (Japan)

    2014-04-30

    Al{sub 4}C{sub 3} layers have been grown on Al{sub 2}O{sub 3} (0001) by metalorganic chemical vapor deposition. Trimethylaluminum and methane were used as source materials for aluminum and carbon, respectively. Depending on the growth conditions, the growth rate was significantly changed. The most suitable growth temperature was 1150 °C. Fresh samples had a yellowish color. Peaks at 32 and 35° observed by 2θ–ω mode X-ray diffraction scans confirmed the presence of hexagonal Al{sub 4}C{sub 3}. Experiments detected photo-induced current (PIC). PIC measured at 30 V dc was observed at Al{sub 4}C{sub 3}/Al{sub 2}O{sub 3} (0001) at the 10 nA scale. PIC in Al{sub 4}C{sub 3} increased with a decrease in the irradiated wavelength. This phenomenon was also observed in absorption coefficient experiments. It was also verified that the electrical conductivity of Al{sub 4}C{sub 3} significantly deteriorated due to oxidation. PIC was also continuously reduced during Al{sub 4}C{sub 3} oxidation. After a certain period of time, it was observed that the Al{sub 4}C{sub 3} layer separated from the Al{sub 2}O{sub 3} (0001) substrate. These results suggest that PIC can be useful in photodetectors that can be used in vacuum or in other gases that do not contain oxygen. - Highlights: • Al{sub 4}C{sub 3} layers had been grown on Al{sub 2}O{sub 3} (0001) by metalorganic chemical vapor deposition. • The growth rate abruptly increased above the temperature of 1100 °C. • Photo-induced current (PIC) was observed when the light was incident of the devices. • PIC was unrelated to the presence of a metal–semiconductor junction. • PIC was decreased during Al{sub 4}C{sub 3} oxidation process.

  12. Printing of small molecular medicines from the vapor phase.

    Science.gov (United States)

    Shalev, Olga; Raghavan, Shreya; Mazzara, J Maxwell; Senabulya, Nancy; Sinko, Patrick D; Fleck, Elyse; Rockwell, Christopher; Simopoulos, Nicholas; Jones, Christina M; Schwendeman, Anna; Mehta, Geeta; Clarke, Roy; Amidon, Gregory E; Shtein, Max

    2017-09-27

    There is growing need to develop efficient methods for early-stage drug discovery, continuous manufacturing of drug delivery vehicles, and ultra-precise dosing of high potency drugs. Here we demonstrate the use of solvent-free organic vapor jet printing to deposit nanostructured films of small molecular pharmaceutical ingredients, including caffeine, paracetamol, ibuprofen, tamoxifen, BAY 11-7082 and fluorescein, with accuracy on the scale of micrograms per square centimeter, onto glass, Tegaderm, Listerine tabs, and stainless steel microneedles. The printed films exhibit similar crystallographic order and chemistry as the original powders; controlled, order-of-magnitude enhancements of dissolution rate are observed relative to powder-form particles. In vitro treatment of breast and ovarian cancer cell cultures in aqueous media by tamoxifen and BAY 11-7082 films shows similar behavior to drugs pre-dissolved in dimethyl sulfoxide. The demonstrated precise printing of medicines as films, without the use of solvents, can accelerate drug screening and enable continuous manufacturing, while enhancing dosage accuracy.Traditional approaches used in the pharmaceutical industry are not precise or versatile enough for customized medicine formulation and manufacture. Here the authors produce a method to form coatings, with accurate dosages, as well as a means of closely controlling dissolution kinetics.

  13. Biodegradation of vapor-phase toluene in unsaturated porous media: Column experiments

    International Nuclear Information System (INIS)

    Khan, Ali M.; Wick, Lukas Y.; Harms, Hauke; Thullner, Martin

    2016-01-01

    Biodegradation of organic chemicals in the vapor phase of soils and vertical flow filters has gained attention as promising approach to clean up volatile organic compounds (VOC). The drivers of VOC biodegradation in unsaturated systems however still remain poorly understood. Here, we analyzed the processes controlling aerobic VOC biodegradation in a laboratory setup mimicking the unsaturated zone above a shallow aquifer. The setup allowed for diffusive vapor-phase transport and biodegradation of three VOC: non-deuterated and deuterated toluene as two compounds of highly differing biodegradability but (nearly) identical physical and chemical properties, and MTBE as (at the applied experimental conditions) non-biodegradable tracer and internal control. Our results showed for toluene an effective microbial degradation within centimeter VOC transport distances despite high gas-phase diffusivity. Degradation rates were controlled by the reactivity of the compounds while oxic conditions were found everywhere in the system. This confirms hypotheses that vadose zone biodegradation rates can be extremely high and are able to prevent the outgassing of VOC to the atmosphere within a centimeter range if compound properties and site conditions allow for sufficiently high degradation rates. - Highlights: • The column setup allows resolving vapor-phase VOC concentration gradients at cm scale resolution. • Vapor-phase and liquid-phase concentrations are measured simultaneously. • Isotopically labelled VOC was used as reference species of low biodegradability. • Biodegradation rates in the unsaturated zone can be very high and act at a cm scale. • Unsaturated material can be an effective bio-barrier avoiding biodegradable VOC emissions. - Microbial degradation activity can be sufficient to remove VOC from unsaturated porous media after a few centimeter of vapor-phase diffusive transport and mayeffectively avoid atmospheric emissions.

  14. Influence of vapor phase turbulent stress to the onset of slugging in a horizontal pipe

    International Nuclear Information System (INIS)

    Park, Jee Won

    1995-01-01

    An influence of the vapor phase turbulent stress(i, e., the two-phase Reynolds stress)to the characteristics of two-phase system in a horizontal pipe has been theoretically investigated. The average two-fluid model has been constituted with closure relations for stratified flow in a horizontal pipe. A vapor phase turbulent stress model for the regular interface geometry has been included. It is found that the second order waves propagate in opposite direction with almost the same speed in the moving frame of reference of the liquid phase velocity. Using the well-posedness limit of the two-phase system, the dispersed-stratified flow regime boundary has been modeled. Two-phase Froude number has been found to be a convenient parameter in quantifying the onset of slugging as a function of the global void fraction. The influence of the vapor phase turbulent stress was found to stabilize the flow stratification. 4 figs., 12 refs. (Author)

  15. Valorization of GaN based metal-organic chemical vapor deposition dust a semiconductor power device industry waste through mechanochemical oxidation and leaching: A sustainable green process

    Energy Technology Data Exchange (ETDEWEB)

    Swain, Basudev, E-mail: Swain@iae.re.kr [Institute for Advanced Engineering (IAE), Advanced Materials & Processing Center, Yongin-Si 449-863 (Korea, Republic of); Mishra, Chinmayee; Lee, Chan Gi; Park, Kyung-Soo [Institute for Advanced Engineering (IAE), Advanced Materials & Processing Center, Yongin-Si 449-863 (Korea, Republic of); Lee, Kun-Jae [Department of Energy Engineering, Dankook University, Cheonan 330-714 (Korea, Republic of)

    2015-07-15

    Dust generated during metal organic vapor deposition (MOCVD) process of GaN based semiconductor power device industry contains significant amounts of gallium and indium. These semiconductor power device industry wastes contain gallium as GaN and Ga{sub 0.97}N{sub 0.9}O{sub 0.09} is a concern for the environment which can add value through recycling. In the present study, this waste is recycled through mechanochemical oxidation and leaching. For quantitative recovery of gallium, two different mechanochemical oxidation leaching process flow sheets are proposed. In one process, first the Ga{sub 0.97}N{sub 0.9}O{sub 0.09} of the MOCVD dust is leached at the optimum condition. Subsequently, the leach residue is mechanochemically treated, followed by oxidative annealing and finally re-leached. In the second process, the MOCVD waste dust is mechanochemically treated, followed by oxidative annealing and finally leached. Both of these treatment processes are competitive with each other, appropriate for gallium leaching and treatment of the waste MOCVD dust. Without mechanochemical oxidation, 40.11 and 1.86 w/w% of gallium and Indium are leached using 4 M HCl, 100 °C and pulp density of 100 kg/m{sup 3,} respectively. After mechanochemical oxidation, both these processes achieved 90 w/w% of gallium and 1.86 w/w% of indium leaching at their optimum condition. - Highlights: • Waste MOCVD dust is treated through mechanochemical leaching. • GaN is hardly leached, and converted to NaGaO{sub 2} through ball milling and annealing. • Process for gallium recovery from waste MOCVD dust has been developed. • Thermal analysis and phase properties of GaN to Ga{sub 2}O{sub 3} and GaN to NaGaO{sub 2} is revealed. • Solid-state chemistry involved in this process is reported.

  16. Hybrid vapor phase-solution phase growth techniques for improved CZT(S,Se) photovoltaic device performance

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Liang-Yi; Gershon, Talia S.; Haight, Richard A.; Lee, Yun Seog

    2016-12-27

    A hybrid vapor phase-solution phase CZT(S,Se) growth technique is provided. In one aspect, a method of forming a kesterite absorber material on a substrate includes the steps of: depositing a layer of a first kesterite material on the substrate using a vapor phase deposition process, wherein the first kesterite material includes Cu, Zn, Sn, and at least one of S and Se; annealing the first kesterite material to crystallize the first kesterite material; and depositing a layer of a second kesterite material on a side of the first kesterite material opposite the substrate using a solution phase deposition process, wherein the second kesterite material includes Cu, Zn, Sn, and at least one of S and Se, wherein the first kesterite material and the second kesterite material form a multi-layer stack of the absorber material on the substrate. A photovoltaic device and method of formation thereof are also provided.

  17. Improved thermal lattice Boltzmann model for simulation of liquid-vapor phase change

    Science.gov (United States)

    Li, Qing; Zhou, P.; Yan, H. J.

    2017-12-01

    In this paper, an improved thermal lattice Boltzmann (LB) model is proposed for simulating liquid-vapor phase change, which is aimed at improving an existing thermal LB model for liquid-vapor phase change [S. Gong and P. Cheng, Int. J. Heat Mass Transfer 55, 4923 (2012), 10.1016/j.ijheatmasstransfer.2012.04.037]. First, we emphasize that the replacement of ∇ .(λ ∇ T ) /∇.(λ ∇ T ) ρ cV ρ cV with ∇ .(χ ∇ T ) is an inappropriate treatment for diffuse interface modeling of liquid-vapor phase change. Furthermore, the error terms ∂t 0(T v ) +∇ .(T vv ) , which exist in the macroscopic temperature equation recovered from the previous model, are eliminated in the present model through a way that is consistent with the philosophy of the LB method. Moreover, the discrete effect of the source term is also eliminated in the present model. Numerical simulations are performed for droplet evaporation and bubble nucleation to validate the capability of the model for simulating liquid-vapor phase change. It is shown that the numerical results of the improved model agree well with those of a finite-difference scheme. Meanwhile, it is found that the replacement of ∇ .(λ ∇ T ) /∇ .(λ ∇ T ) ρ cV ρ cV with ∇ .(χ ∇ T ) leads to significant numerical errors and the error terms in the recovered macroscopic temperature equation also result in considerable errors.

  18. Recent Advances in Atmospheric Vapor-Phase Deposition of Transparent and Conductive Zinc Oxide

    NARCIS (Netherlands)

    Illiberi, A.; Poodt, P.; Roozeboom, F.

    2014-01-01

    The industrial need for high-throughput and low-cost ZnO deposition processes has triggered the development of atmospheric vapor-phase deposition techniques which can be easily applied to continuous, in-line manufacturing. While atmospheric CVD is a mature technology, new processes for the growth of

  19. Epitaxial growth of GaN by radical-enhanced metalorganic chemical vapor deposition (REMOCVD) in the downflow of a very high frequency (VHF) N2/H2 excited plasma - effect of TMG flow rate and VHF power

    Science.gov (United States)

    Lu, Yi; Kondo, Hiroki; Ishikawa, Kenji; Oda, Osamu; Takeda, Keigo; Sekine, Makoto; Amano, Hiroshi; Hori, Masaru

    2014-04-01

    Gallium nitride (GaN) films have been grown by using our newly developed Radical-Enhanced Metalorganic Chemical Vapor Deposition (REMOCVD) system. This system has three features: (1) application of very high frequency (60 MHz) power in order to increase the plasma density, (2) introduction of H2 gas together with N2 gas in the plasma discharge region to generate not only nitrogen radicals but also active NHx molecules, and (3) radical supply under remote plasma arrangement with suppression of charged ions and photons by employing a Faraday cage. Using this new system, we have studied the effect of the trimethylgallium (TMG) source flow rate and of the plasma generation power on the GaN crystal quality by using scanning electron microscopy (SEM) and double crystal X-ray diffraction (XRD). We found that this REMOCVD allowed the growth of epitaxial GaN films of the wurtzite structure of (0001) orientation on sapphire substrates with a high growth rate of 0.42 μm/h at a low temperature of 800 °C. The present REMOCVD is a promising method for GaN growth at relatively low temperature and without using costly ammonia gas.

  20. Characterization of RuO sub 2 electrodes for ferroelectric thin films prepared by metal-organic chemical-vapor deposition using Ru(C sub 1 sub 1 H sub 1 sub 9 O sub 2) sub 3

    CERN Document Server

    Lee, J M; Shin, J C; Hwang, C S; Kim, H J; Suk, C G

    1999-01-01

    Pure and conducting RuO sub 2 thin films were deposited on Si substrates at 250 approx 450 .deg. C using Ru(C sub 1 sub 1 H sub 1 sub 9 O sub 2) sub 3 as a precursor by low-pressure metal-organic chemical-vapor deposition (LP-MOCVD). At a lower deposition temperature,smoother and denser RuO sub 2 thin films were deposited. The RuO sub 2 thin films, which were crack free, adhered well onto the substrates and showed very low resistivities around 45 approx 60 mu OMEGA cm. RuO sub 2 thin films on (Ba, Sr)/TiO sub 3 /Pt/SiO sub 2 /Si showed good properties, indicating that MOCVD RuO sub 2 thin films from Ru(C sub 1 sub 1 H sub 1 sub 9 O sub 2) sub 3 can be applied as electrodes of high-dielectric thin films for capacitors in ultra-large-scale DRAMs.

  1. Control of residual carbon concentration in GaN high electron mobility transistor and realization of high-resistance GaN grown by metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    He, X.G. [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China); Zhao, D.G., E-mail: dgzhao@red.semi.ac.cn [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China); Jiang, D.S.; Liu, Z.S.; Chen, P.; Le, L.C.; Yang, J.; Li, X.J. [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China); Zhang, S.M.; Zhu, J.J.; Wang, H.; Yang, H. [Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215125 (China)

    2014-08-01

    GaN films were grown by metal-organic chemical vapor deposition (MOCVD) under various growth conditions. The influences of MOCVD growth parameters, i.e., growth pressure, ammonia (NH{sub 3}) flux, growth temperature, trimethyl-gallium flux and H{sub 2} flux, on residual carbon concentration ([C]) were systematically investigated. Secondary ion mass spectroscopy measurements show that [C] can be effectively modulated by growth conditions. Especially, it can increase by reducing growth pressure up to two orders of magnitude. High-resistance (HR) GaN epilayer with a resistivity over 1.0 × 10{sup 9} Ω·cm is achieved by reducing growth pressure. The mechanism of the formation of HR GaN epilayer is discussed. An Al{sub x}Ga{sub 1−x}N/GaN high electron mobility transistor structure with a HR GaN buffer layer and an additional low-carbon GaN channel layer is presented, exhibiting a high two dimensional electron gas mobility of 1815 cm{sup 2}/Vs. - Highlights: • Influence of MOCVD parameters on residual carbon concentration in GaN is studied. • GaN layer with a resistivity over 1 × 10{sup 9} Ω·cm is achieved by reducing growth pressure. • High electron mobility transistor (HEMT) structures were prepared. • Control of residual carbon content results in HEMT with high 2-D electron gas mobility.

  2. Effect of AlN growth temperature on trap densities of in-situ metal-organic chemical vapor deposition grown AlN/AlGaN/GaN metal-insulator-semiconductor heterostructure field-effect transistors

    Directory of Open Access Journals (Sweden)

    Joseph J. Freedsman

    2012-06-01

    Full Text Available The trapping properties of in-situ metal-organic chemical vapor deposition (MOCVD grown AlN/AlGaN/GaN metal-insulator-semiconductor heterostructure field-effect transistors (MIS-HFETs with AlN layers grown at 600 and 700 °C has been quantitatively analyzed by frequency dependent parallel conductance technique. Both the devices exhibited two kinds of traps densities, due to AlN (DT-AlN and AlGaN layers (DT-AlGaN respectively. The MIS-HFET grown at 600 °C showed a minimum DT-AlN and DT-AlGaN of 1.1 x 1011 and 1.2 x 1010 cm-2eV-1 at energy levels (ET -0.47 and -0.36 eV. Further, the gate-lag measurements on these devices revealed less degradation ∼ ≤ 5% in drain current density (Ids-max. Meanwhile, MIS-HFET grown at 700 °C had more degradation in Ids-max ∼26 %, due to high DT-AlN and DT-AlGaN of 3.4 x 1012 and 5 x 1011 cm-2eV-1 positioned around similar ET. The results shows MIS-HFET grown at 600 °C had better device characteristics with trap densities one order of magnitude lower than MIS-HFET grown at 700 °C.

  3. Compact Raman Lidar Measurement of Liquid and Vapor Phase Water Under the Influence of Ionizing Radiation

    Directory of Open Access Journals (Sweden)

    Shiina Tatsuo

    2016-01-01

    Full Text Available A compact Raman lidar has been developed for studying phase changes of water in the atmosphere under the influence of ionization radiation. The Raman lidar is operated at the wavelength of 349 nm and backscattered Raman signals of liquid and vapor phase water are detected at 396 and 400 nm, respectively. Alpha particles emitted from 241Am of 9 MBq ionize air molecules in a scattering chamber, and the resulting ions lead to the formation of liquid water droplets. From the analysis of Raman signal intensities, it has been found that the increase in the liquid water Raman channel is approximately 3 times as much as the decrease in the vapor phase water Raman channel, which is consistent with the theoretical prediction based on the Raman cross-sections. In addition, the radius of the water droplet is estimated to be 0.2 μm.

  4. Liquid-phase and vapor-phase dehydration of organic/water solutions

    Science.gov (United States)

    Huang, Yu [Palo Alto, CA; Ly, Jennifer [San Jose, CA; Aldajani, Tiem [San Jose, CA; Baker, Richard W [Palo Alto, CA

    2011-08-23

    Processes for dehydrating an organic/water solution by pervaporation or vapor separation using fluorinated membranes. The processes are particularly useful for treating mixtures containing light organic components, such as ethanol, isopropanol or acetic acid.

  5. Finite size and Coulomb corrections: from nuclei to nuclear liquid vapor phase diagram

    International Nuclear Information System (INIS)

    Moretto, L.G.; Elliott, J.B.; Phair, L.

    2003-01-01

    In this paper we consider the problem of obtaining the infinite symmetric uncharged nuclear matter phase diagram from a thermal nuclear reaction. In the first part we shall consider the Coulomb interaction which, because of its long range makes the definition of phases problematic. This Coulomb effect seems truly devastating since it does not allow one to define nuclear phase transitions much above A ∼ 30. However there may be a solution to this difficulty. If we consider the emission of particles with a sizable charge, we notice that a large Coulomb barrier Bc is present. For T << Bc these channels may be considered effectively closed. Consequently the unbound channels may not play a role on a suitably short time scale. Then a phase transition may still be definable in an approximate way. In the second part of the article we shall deal with the finite size problem by means of a new method, the complement method, which shall permit a straightforward extrapolation to the infinite system. The complement approach consists of evaluating the change in free energy occurring when a particle or cluster is moved from one (finite) phase to another. In the case of a liquid drop in equilibrium with its vapor, this is done by extracting a vapor particle of any given size from the drop and evaluating the energy and entropy changes associated with both the vapor particle and the residual liquid drop (complement)

  6. Generalized modeling of multi-component vaporization/condensation phenomena for multi-phase-flow analysis

    International Nuclear Information System (INIS)

    Morita, K.; Fukuda, K.; Tobita, Y.; Kondo, Sa.; Suzuki, T.; Maschek, W.

    2003-01-01

    A new multi-component vaporization/condensation (V/C) model was developed to provide a generalized model for safety analysis codes of liquid metal cooled reactors (LMRs). These codes simulate thermal-hydraulic phenomena of multi-phase, multi-component flows, which is essential to investigate core disruptive accidents of LMRs such as fast breeder reactors and accelerator driven systems. The developed model characterizes the V/C processes associated with phase transition by employing heat transfer and mass-diffusion limited models for analyses of relatively short-time-scale multi-phase, multi-component hydraulic problems, among which vaporization and condensation, or simultaneous heat and mass transfer, play an important role. The heat transfer limited model describes the non-equilibrium phase transition processes occurring at interfaces, while the mass-diffusion limited model is employed to represent effects of non-condensable gases and multi-component mixture on V/C processes. Verification of the model and method employed in the multi-component V/C model of a multi-phase flow code was performed successfully by analyzing a series of multi-bubble condensation experiments. The applicability of the model to the accident analysis of LMRs is also discussed by comparison between steam and metallic vapor systems. (orig.)

  7. The influence of liquid/vapor phase change onto the Nusselt number

    Science.gov (United States)

    Popescu, Elena-Roxana; Colin, Catherine; Tanguy, Sebastien

    2017-11-01

    In spite of its significant interest in various fields, there is currently a very few information on how an external flow will modify the evaporation or the condensation of a liquid surface. Although most applications involve turbulent flows, the simpler configuration where a laminar superheated or subcooled vapor flow is shearing a saturated liquid interface has still never been solved. Based on a numerical approach, we propose to characterize the interaction between a laminar boundary layer of a superheated or subcooled vapor flow and a static liquid pool at saturation temperature. By performing a full set of simulations sweeping the parameters space, correlations are proposed for the first time on the Nusselt number depending on the dimensionless numbers that characterize both vaporization and condensation. As attended, the Nusselt number decreases or increases in the configurations involving respectively vaporization or condensation. More unexpected is the behaviour of the friction of the vapor flow on the liquid pool, for which we report that it is weakly affected by the phase change, despite the important variation of the local flow structure due to evaporation or condensation.

  8. Catalyst-free vapor-phase transport growth of vertically aligned ZnO nanorods on 6H-SiC and (11-20)Al{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Mofor, A.C.; Bakin, A.S.; Elshaer, A.; Waag, A. [Inst. of Semiconductor Technology, Technical Univ. Braunschweig (Germany); Fuhrmann, D.; Hangleiter, A. [Inst. of Applied Physics, Technical Univ. Braunschweig (Germany); Bertram, F.; Christen, J. [Dept. of Solid State Physics, Univ. of Magdeburg (Germany)

    2006-03-15

    ZnO nanostructures are expected to pave the way for many interesting applications in optoelectronics, spin electronics gas sensor technology and biomedicine. Fabrication methods, especially for nanorods have been based mostly on catalyst-assisted growth methods that employ metal-organic sources and other contaminating agents like graphite to grow ZnO nanorods at relatively high temperatures. We report on the growth of ZnO nanorods on 6H-SiC and (11-20)Al{sub 2}O{sub 3} using purely elemental sources, without catalysis and at relatively low temperatures and growth pressure in a specially designed vapor-phase transport system. ZnO nanorods with widths of 80-900 nm and lengths of 4-12 {mu}m were obtained. Nanorod concentrations of up to 10{sup 9} cm{sup -2} with homogenous luminescence and high purity were noted. (orig.)

  9. Deposition of metal-organic frameworks by liquid-phase epitaxy: The influence of substrate functional group density on film orientation

    KAUST Repository

    Liu, J.

    2012-09-05

    The liquid phase epitaxy (LPE) of the metal-organic framework (MOF) HKUST-1 has been studied for three different COOH-terminated templating organic surfaces prepared by the adsorption of self-assembled monolayers (SAMs) on gold substrates. Three different SAMs were used, mercaptohexadecanoic acid (MHDA), 4\\'-carboxyterphenyl-4-methanethiol (TPMTA) and 9-carboxy-10-(mercaptomethyl)triptycene (CMMT). The XRD data demonstrate that highly oriented HKUST-1 SURMOFs with an orientation along the (100) direction was obtained on MHDA-SAMs. In the case of the TPMTA-SAM, the quality of the deposited SURMOF films was found to be substantially inferior. Surprisingly, for the CMMT-SAMs, a different growth direction was obtained; XRD data reveal the deposition of highly oriented HKUST-1 SURMOFs grown along the (111) direction.

  10. Magneto-ionic phase control in a quasi-layered donor/acceptor metal-organic framework by means of a Li-ion battery system

    Science.gov (United States)

    Taniguchi, Kouji; Narushima, Keisuke; Yamagishi, Kayo; Shito, Nanami; Kosaka, Wataru; Miyasaka, Hitoshi

    2017-06-01

    Electrical magnetism control is realized in a Li-ion battery system through a redox reaction involving ion migrations; “magneto-ionic control”. A quasi-layered metal-organic framework compound with a cross-linked π-conjugated/unconjugated one-dimensional chain motifs composed of electron-donor/acceptor units is developed as the cathode material. A change in magnetic phase from paramagnetic to ferrimagnetic is demonstrated by means of electron-filling control for the acceptor units via insertion of Li+-ions into pores in the material. The transition temperature is as high as that expected for highly π-conjugated layered systems, indicating an extension of π-conjugated exchange paths by rearranging coordination bonds in the first discharge process.

  11. Deposition of metal-organic frameworks by liquid-phase epitaxy: The influence of substrate functional group density on film orientation

    KAUST Repository

    Liu, J.; Shekhah, O.; Stammer, X.; Arslan, H.K.; Liu, B.; Schupbach, B.; Terfort, A.; Woll, C.

    2012-01-01

    The liquid phase epitaxy (LPE) of the metal-organic framework (MOF) HKUST-1 has been studied for three different COOH-terminated templating organic surfaces prepared by the adsorption of self-assembled monolayers (SAMs) on gold substrates. Three different SAMs were used, mercaptohexadecanoic acid (MHDA), 4'-carboxyterphenyl-4-methanethiol (TPMTA) and 9-carboxy-10-(mercaptomethyl)triptycene (CMMT). The XRD data demonstrate that highly oriented HKUST-1 SURMOFs with an orientation along the (100) direction was obtained on MHDA-SAMs. In the case of the TPMTA-SAM, the quality of the deposited SURMOF films was found to be substantially inferior. Surprisingly, for the CMMT-SAMs, a different growth direction was obtained; XRD data reveal the deposition of highly oriented HKUST-1 SURMOFs grown along the (111) direction.

  12. Deposition of Metal-Organic Frameworks by Liquid-Phase Epitaxy: The Influence of Substrate Functional Group Density on Film Orientation

    Science.gov (United States)

    Liu, Jinxuan; Shekhah, Osama; Stammer, Xia; Arslan, Hasan K.; Liu, Bo; Schüpbach, Björn; Terfort, Andreas; Wöll, Christof

    2012-01-01

    The liquid phase epitaxy (LPE) of the metal-organic framework (MOF) HKUST-1 has been studied for three different COOH-terminated templating organic surfaces prepared by the adsorption of self-assembled monolayers (SAMs) on gold substrates. Three different SAMs were used, mercaptohexadecanoic acid (MHDA), 4’-carboxyterphenyl-4-methanethiol (TPMTA) and 9-carboxy-10-(mercaptomethyl)triptycene (CMMT). The XRD data demonstrate that highly oriented HKUST-1 SURMOFs with an orientation along the (100) direction was obtained on MHDA-SAMs. In the case of the TPMTA-SAM, the quality of the deposited SURMOF films was found to be substantially inferior. Surprisingly, for the CMMT-SAMs, a different growth direction was obtained; XRD data reveal the deposition of highly oriented HKUST-1 SURMOFs grown along the (111) direction.

  13. Deposition of Metal-Organic Frameworks by Liquid-Phase Epitaxy: The Influence of Substrate Functional Group Density on Film Orientation

    Directory of Open Access Journals (Sweden)

    Christof Wöll

    2012-09-01

    Full Text Available The liquid phase epitaxy (LPE of the metal-organic framework (MOF HKUST-1 has been studied for three different COOH-terminated templating organic surfaces prepared by the adsorption of self-assembled monolayers (SAMs on gold substrates. Three different SAMs were used, mercaptohexadecanoic acid (MHDA, 4’-carboxyterphenyl-4-methanethiol (TPMTA and 9-carboxy-10-(mercaptomethyltriptycene (CMMT. The XRD data demonstrate that highly oriented HKUST-1 SURMOFs with an orientation along the (100 direction was obtained on MHDA-SAMs. In the case of the TPMTA-SAM, the quality of the deposited SURMOF films was found to be substantially inferior. Surprisingly, for the CMMT-SAMs, a different growth direction was obtained; XRD data reveal the deposition of highly oriented HKUST-1 SURMOFs grown along the (111 direction.

  14. Oxygen and minority carrier lifetimes in N-and P-type AL0.2GA0.8AS grown by metal organics vapor phase epitaxy

    International Nuclear Information System (INIS)

    Zahraman, Khaled; Leroux, M.; Gibart, P.; Zaidi, M.A.; Bremond, G.; Guillot, G.

    2000-01-01

    author.The minority carrier lifetimes in Al x Ga 1-x As grown by Metal-Organics Vapor Phase Epitaxy (MOVPE) is generally lower than in GaAs. This is believed to be due to oxygen incorporation in the layers. We describe a study of radiative and non radiative minority carriers lifetimes in n-and p-type Al 0.2 Ga 0.8 As as a function of growth parameters, in correlation with oxygen concentration measurements and deep level transient spectroscopy (DLTS) studies. Long non radiative lifetimes and low oxygen contents are achieved using temperature growth. A main minority hole lifetime killer appears to be 0.4 eV deep O related electron trap detected by DLTS at concentrations three orders of magnitude lower than the atomic oxygen one. Record lifetimes in MOVPE grown n-and p-type Al 0.2 Ga 0.8 As are obtained. An Al 0.85 Ga 0.15 As/Al 0.2 Ga 0.8 As surface recombination velocity lower than 4.5x10 3 cm.s -1 is measured

  15. Phase diagram of nanoscale alloy particles used for vapor-liquid-solid growth of semiconductor nanowires.

    Science.gov (United States)

    Sutter, Eli; Sutter, Peter

    2008-02-01

    We use transmission electron microscopy observations to establish the parts of the phase diagram of nanometer sized Au-Ge alloy drops at the tips of Ge nanowires (NWs) that determine their temperature-dependent equilibrium composition and, hence, their exchange of semiconductor material with the NWs. We find that the phase diagram of the nanoscale drop deviates significantly from that of the bulk alloy, which explains discrepancies between actual growth results and predictions on the basis of the bulk-phase equilibria. Our findings provide the basis for tailoring vapor-liquid-solid growth to achieve complex one-dimensional materials geometries.

  16. Vapor phase carbonylation of dimethyl ether and methyl acetate with supported transition metal catalysts

    International Nuclear Information System (INIS)

    Shikada, T.; Fujimoto, K.; Tominaga, H.O.

    1986-01-01

    The synthesis of acetic acid (AcOH) from methanol (MeOH) and carbon monoxide has been performed industrially in the liquid phase using a rhodium complex catalyst and an iodide promoter. The selectivity to AcOH is more than 99% under mild conditions (175 0 C, 28 atm). The homogeneous rhodium catalyst has been also effective for the synthesis of acetic anhydride (Ac 2 O) by carbonylation of dimethyl ether (DME) or methyl acetate (AcOMe). However, rhodium is one of the most expensive metals and its proved reserves are quite limited. It is highly desired, therefore, to develop a new catalyst as a substitute for rhodium. The authors have already reported that nickel supported on active carbon exhibits an excellent activity for the vapor phase carbonylation of MeOh in the presence of iodide promoter and under moderately pressurized conditions. In addition, corrosive attack on reactors by iodide compounds is expected to be negligible in the vapor phase system. In the present work, vapor phase carbonylation of DME and AcOMe on nickel-active carbon (Ni/A.C.) and molybdenum-active carbon (Mo/A.C.) catalysts was studied

  17. A tri-metal centered metal-organic framework for solid-phase microextraction of environmental contaminants with enhanced extraction efficiency

    International Nuclear Information System (INIS)

    Liu, Shuqin; Xie, Lijun; Hu, Qingkun; Yang, Huangsheng; Pan, Guanrui; Zhu, Fang; Yang, Shenghong; Ouyang, Gangfeng

    2017-01-01

    This study presents the preparation and the characterizations of six tri-metal centered metal-organic frameworks (tM-MOFs) as solid-phase microextraction (SPME) adsorbents. Possessing different proportions of Al, Ga and In atoms in their frameworks, the tM-MOF-based SPME coatings exhibited different extraction performance towards the organic pollutants. Extraction results showed that the M4 (Al 0.593 Ga 0.167 In 0.240 (O 2 C 2 H 4 )(h 2 fipbb)) coating exhibited the best enrichment ability among six tM-MOFs. In addition, it showed better extraction efficiency towards the analytes than three single-metal centered MOFs coatings and a commercial polydimethylsiloxane (PDMS) coating. The adsorption process of the M4 coating was physical adsorption and it was mainly affected by the diffusion process of the compound from the sample to the material, which is the same with the adsorption processes of the single-metal centered MOFs coatings. Under optimal conditions (extraction time, 3 min; NaCl concentration, 25% (w/v); desorption temperature, 270 °C; extraction temperature, 30 °C), the M4 coating achieved low detection limits (0.13–0.88 ng L −1 ) and good linearity (5–2000 and 5–5000 ng L −1 ) for benzene series compounds. The repeatabilities (n = 5) for single fiber were between 4.3 and 8.1%, while the reproducibilities (n = 3) of fiber-to-fiber were in the range of 7.9–12.7%. Finally, a M4 coated SPME fiber was successfully applied to the analysis of environmental water samples with satisfactory recoveries (80.8%–119.5%). - Highlights: • Six tri-metal centered metal-organic frameworks were synthesized and characterized. • Novel SPME fibers were fabricated with silicone sealant film and tri-metal centered metal-organic frameworks crystals. • The self-made fiber exhibited excellent extraction performance to organic pollutants. • The self-made fiber was used for analysis of benzene series compounds in environmental water samples.

  18. In situ, subsurface monitoring of vapor-phase TCE using fiber optics

    International Nuclear Information System (INIS)

    Rossabi, J.; Colston, B. Jr.; Brown, S.; Milanovich, F.; Lee, L.T. Jr.

    1993-01-01

    A vapor-phase, reagent-based, fiber optic trichloroethylene (TCE) sensor developed by Lawrence Livermore National Laboratory (LLNL) was demonstrated at the Savannah River Site (SRS) in two configurations. The first incorporated the sensor into a down-well instrument bounded by two inflatable packers capable of sealing an area for discrete depth analysis. The second involved an integration of the sensor into the probe tip of the Army Corps of Engineers Waterways Experiment Station (WES) cone penetrometry system. Discrete depth measurements of vapor-phase concentrations of TCE in the vadose zone were successfully made using both configurations. These measurements demonstrate the first successful in situ sensing (as opposed to sampling) of TCE at a field site

  19. Structural and morphological characterization of fullerite crystals prepared from the vapor phase

    International Nuclear Information System (INIS)

    Haluska, M.; Fejdi, P.; Vybornov, M.; Kuzmany, H.

    1993-01-01

    Crystal structure, habits and surface structures of fullerite crystals prepared from vapor phase were characterized by X-ray analysis, interfacial angle measurements and optical and scanning electron microscopy (SEM). The study of selected C 60 crystals confirmed the fcc structure at room temperature. The crystal habit is determined by two types of morphological faces, namely {100} and {111}. SEM was used for the observation of thermal etched surfaces. (orig.)

  20. High-quality uniaxial In(x)Ga(1-x)N/GaN multiple quantum well (MQW) nanowires (NWs) on Si(111) grown by metal-organic chemical vapor deposition (MOCVD) and light-emitting diode (LED) fabrication.

    Science.gov (United States)

    Ra, Yong-Ho; Navamathavan, R; Park, Ji-Hyeon; Lee, Cheul-Ro

    2013-03-01

    This article describes the growth and device characteristics of vertically aligned high-quality uniaxial p-GaN/InxGa1-xN/GaN multiple quantum wells (MQW)/n-GaN nanowires (NWs) on Si(111) substrates grown by metal-organic chemical vapor deposition (MOCVD) technique. The resultant nanowires (NWs), with a diameter of 200-250 nm, have an average length of 2 μm. The feasibility of growing high-quality NWs with well-controlled indium composition MQW structure is demonstrated. These resultant NWs grown on Si(111) substrates were utilized for fabricating vertical-type light-emitting diodes (LEDs). The steep and intense photoluminescence (PL) and cathodoluminescence (CL) spectra are observed, based on the strain-free NWs on Si(111) substrates. High-resolution transmission electron microscopy (HR-TEM) analysis revealed that the MQW NWs are grown along the c-plane with uniform thickness. The current-voltage (I-V) characteristics of these NWs exhibited typical p-n junction LEDs and showed a sharp onset voltage at 2.75 V in the forward bias. The output power is linearly increased with increasing current. The result indicates that the pulsed MOCVD technique is an effective method to grow uniaxial p-GaN/InxGa1-xN/GaN MQW/n-GaN NWs on Si(111), which is more advantageous than other growth techniques, such as molecular beam epitaxy. These results suggest the uniaxial NWs are promising to allow flat-band quantum structures, which can enhance the efficiency of LEDs.

  1. Metalorganic chemical vapor deposition growth of high-mobility AlGaN/AlN/GaN heterostructures on GaN templates and native GaN substrates

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jr-Tai, E-mail: jrche@ifm.liu.se; Hsu, Chih-Wei; Forsberg, Urban; Janzén, Erik [Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE 581 83 Linköping (Sweden)

    2015-02-28

    Severe surface decomposition of semi-insulating (SI) GaN templates occurred in high-temperature H{sub 2} atmosphere prior to epitaxial growth in a metalorganic chemical vapor deposition system. A two-step heating process with a surface stabilization technique was developed to preserve the GaN template surface. Utilizing the optimized heating process, a high two-dimensional electron gas mobility ∼2000 cm{sup 2}/V·s was obtained in a thin AlGaN/AlN/GaN heterostructure with an only 100-nm-thick GaN spacer layer homoepitaxially grown on the GaN template. This technique was also demonstrated viable for native GaN substrates to stabilize the surface facilitating two-dimensional growth of GaN layers. Very high residual silicon and oxygen concentrations were found up to ∼1 × 10{sup 20 }cm{sup −3} at the interface between the GaN epilayer and the native GaN substrate. Capacitance-voltage measurements confirmed that the residual carbon doping controlled by growth conditions of the GaN epilayer can be used to successfully compensate the donor-like impurities. State-of-the-art structural properties of a high-mobility AlGaN/AlN/GaN heterostructure was then realized on a 1 × 1 cm{sup 2} SI native GaN substrate; the full width at half maximum of the X-ray rocking curves of the GaN (002) and (102) peaks are only 21 and 14 arc sec, respectively. The surface morphology of the heterostructure shows uniform parallel bilayer steps, and no morphological defects were noticeable over the entire epi-wafer.

  2. Hydride vapor phase epitaxy growth of GaN, InGaN, ScN, and ScAIN

    NARCIS (Netherlands)

    Bohnen, T.

    2010-01-01

    Chemical vapor deposition (CVD); hydride vapor phase epitaxy (HVPE); gallium nitride (GaN); indium gallium nitride (InGaN); scandium nitride (ScN); scandium aluminum nitride (ScAlN); semiconductors; thin films; nanowires; III nitrides; crystal growth - We studied the HVPE growth of different III

  3. GaN-based vertical-cavity surface-emitting lasers with tunnel junction contacts grown by metal-organic chemical vapor deposition

    Science.gov (United States)

    Lee, SeungGeun; Forman, Charles A.; Lee, Changmin; Kearns, Jared; Young, Erin C.; Leonard, John T.; Cohen, Daniel A.; Speck, James S.; Nakamura, Shuji; DenBaars, Steven P.

    2018-06-01

    We report the first demonstration of III–nitride vertical-cavity surface-emitting lasers (VCSELs) with tunnel junction (TJ) intracavity contacts grown completely by metal–organic chemical vapor deposition (MOCVD). For the TJs, n++-GaN was grown on in-situ activated p++-GaN after buffered HF surface treatment. The electrical properties and epitaxial morphologies of the TJs were first investigated on TJ LED test samples. A VCSEL with a TJ intracavity contact showed a lasing wavelength of 408 nm, a threshold current of ∼15 mA (10 kA/cm2), a threshold voltage of 7.8 V, a maximum output power of 319 µW, and a differential efficiency of 0.28%.

  4. Parameters study on the growth of GaAs nanowires on indium tin oxide by metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Dan; Tang, Xiaohong, E-mail: exhtang@ntu.edu.sg, E-mail: wangk@sustc.edu.cn; Li, Xianqiang [OPTIMUS, Photonics Centre of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); Wang, Kai, E-mail: exhtang@ntu.edu.sg, E-mail: wangk@sustc.edu.cn [Department of Electrical & Electronic Engineering, South University of Science and Technology of China, 1088 Xueyuan Avenue, Shenzhen 518055 (China); Olivier, Aurelien [CINTRA UMI 3288, School of Electrical and Electronic Engineering, Nanyang Technological University, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, 637553 Singapore (Singapore)

    2016-03-07

    After successful demonstration of GaAs nanowire (NW) epitaxial growth on indium tin oxide (ITO) by metal organic chemical vapor deposition, we systematically investigate the effect of growth parameters' effect on the GaAs NW, including temperature, precursor molar flow rates, growth time, and Au catalyst size. 40 nm induced GaAs NWs are observed with zinc-blende structure. Based on vapor-liquid-solid mechanism, a kinetic model is used to deepen our understanding of the incorporation of growth species and the role of various growth parameters in tuning the GaAs NW growth rate. Thermally activated behavior has been investigated by variation of growth temperature. Activation energies of 40 nm Au catalyst induced NWs are calculated at different trimethylgallium (TMGa) molar flow rates about 65 kJ/mol. The GaAs NWs growth rates increase with TMGa molar flow rates whereas the growth rates are almost independent of growth time. Due to Gibbs-Thomson effect, the GaAs NW growth rates increase with Au nanoparticle size at different temperatures. Critical radius is calculated as 2.14 nm at the growth condition of 430 °C and 1.36 μmol/s TMGa flow rate. It is also proved experimentally that Au nanoparticle below the critical radius such as 2 nm cannot initiate the growth of NWs on ITO. This theoretical and experimental growth parameters investigation enables great controllability over GaAs NWs grown on transparent conductive substrate where the methodology can be expanded to other III–V material NWs and is critical for potential hybrid solar cell application.

  5. High flux diode packaging using passive microscale liquid-vapor phase change

    Science.gov (United States)

    Bandhauer, Todd; Deri, Robert J.; Elmer, John W.; Kotovsky, Jack; Patra, Susant

    2017-09-19

    A laser diode package includes a heat pipe having a fluid chamber enclosed in part by a heat exchange wall for containing a fluid. Wicking channels in the fluid chamber is adapted to wick a liquid phase of the fluid from a condensing section of the heat pipe to an evaporating section of the heat exchanger, and a laser diode is connected to the heat exchange wall at the evaporating section of the heat exchanger so that heat produced by the laser diode is removed isothermally from the evaporating section to the condensing section by a liquid-to-vapor phase change of the fluid.

  6. Vaporization thermodynamics of Pd-rich intermediate phases in the Pd–Yb system

    Energy Technology Data Exchange (ETDEWEB)

    Ciccioli, A., E-mail: andrea.ciccioli@uniroma1.it [Dipartimento di Chimica, Sapienza Università di Roma, p.le Aldo Moro 5, 00185 Roma (Italy); Balducci, G.; Gigli, G. [Dipartimento di Chimica, Sapienza Università di Roma, p.le Aldo Moro 5, 00185 Roma (Italy); Provino, A. [Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, via Dodecaneso 31, 16146 Genova (Italy); Istituto SPIN-CNR, Corso Perrone 24, 16152 Genova (Italy); Palenzona, A. [Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, via Dodecaneso 31, 16146 Genova (Italy); Manfrinetti, P. [Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, via Dodecaneso 31, 16146 Genova (Italy); Istituto SPIN-CNR, Corso Perrone 24, 16152 Genova (Italy)

    2016-02-20

    Highlights: • Vaporization equilibria of Pd–Yb intermediate phases investigated by effusion techniques. • Heats of formation of Pd–Yb compounds determined from decomposition/atomization enthalpies. • Phase diagram of the Pd–Yb system re-drawn. • Influence of the Yb valence state on the thermodynamic properties observed. - Abstract: The vaporization thermodynamics of several intermediate phases in the Pd–Yb system was investigated by means of vaporization experiments performed under Knudsen conditions (KEML, Knudsen Effusion Mass Loss). The following thermal decomposition processes were studied in the overall temperature range 819–1240 K and their enthalpy changes determined: 4 PdYb(s) = Pd{sub 4}Yb{sub 3}(s) + Yb(g); 5/3 Pd{sub 4}Yb{sub 3}(s) = 4/3 Pd{sub 5}Yb{sub 3}(s) + Yb(g); 21/13 Pd{sub 5}Yb{sub 3}(s) = 5/13 Pd{sub 21}Yb{sub 10}(s) + Yb(g); 1/3 Pd{sub 21}Yb{sub 10}(s) = 21/9 Pd{sub 3}Yb(s) + Yb(g). Additional measurements were performed by KEMS (Knudsen Effusion Mass Spectrometry) on a Pd-rich two-phase sample, which allowed to detect both Yb(g) and Pd(g) in the vapor phase and to determine the atomization enthalpy of the Pd{sub 3}Yb phase (Pd-rich composition boundary, Pd{sub 3.08}Yb{sub 0.92}): Pd{sub 3.08}Yb{sub 0.92}(s) = 0.92 Yb(g) + 3.08 Pd(g). The enthalpy of formation of this compound was thereafter determined as −68 ± 2 kJ/mol at. and, by combining this value with the decomposition enthalpies derived by KEML, the enthalpies of formation of the studied Pd–Yb intermediate phases were evaluated (kJ/mol at.): −75 ± 4 (Pd{sub 21}Yb{sub 10}), −75 ± 3 (Pd{sub 5}Yb{sub 3}), −73 ± 3 (Pd{sub 4}Yb{sub 3}), and −66 ± 3 (PdYb). A modified version of the Pd–Yb phase diagram is also reported, re-drawn on the basis of literature data and of new experimental information recently become available.

  7. The mechanism of vapor phase hydration of calcium oxide: implications for CO2 capture.

    Science.gov (United States)

    Kudłacz, Krzysztof; Rodriguez-Navarro, Carlos

    2014-10-21

    Lime-based sorbents are used for fuel- and flue-gas capture, thereby representing an economic and effective way to reduce CO2 emissions. Their use involves cyclic carbonation/calcination which results in a significant conversion reduction with increasing number of cycles. To reactivate spent CaO, vapor phase hydration is typically performed. However, little is known about the ultimate mechanism of such a hydration process. Here, we show that the vapor phase hydration of CaO formed after calcination of calcite (CaCO3) single crystals is a pseudomorphic, topotactic process, which progresses via an intermediate disordered phase prior to the final formation of oriented Ca(OH)2 nanocrystals. The strong structural control during this solid-state phase transition implies that the microstructural features of the CaO parent phase predetermine the final structural and physicochemical (reactivity and attrition) features of the product hydroxide. The higher molar volume of the product can create an impervious shell around unreacted CaO, thereby limiting the efficiency of the reactivation process. However, in the case of compact, sintered CaO structures, volume expansion cannot be accommodated in the reduced pore volume, and stress generation leads to pervasive cracking. This favors complete hydration but also detrimental attrition. Implications of these results in carbon capture and storage (CCS) are discussed.

  8. Growth of metal-organic framework HKUST-1 in capillary using liquid-phase epitaxy for open-tubular capillary electrochromatography and capillary liquid chromatography.

    Science.gov (United States)

    Bao, Tao; Zhang, Juan; Zhang, Wenpeng; Chen, Zilin

    2015-02-13

    Much attention is being paid to applying metal-organic frameworks (MOFs) as stationary phases in chromatography because of their fascinating properties, such as large surface-to-volume ratios, high levels of porosity, and selective adsorption. HKUST-1 is one of the best-studied face-centered-cubic MOF containing nano-sized channels and side pockets for film growth. However, growth of HKUST-1 framework inside capillary column as stationary phase for capillary electrochromatography is a challenge work. In this work, we carry out the growth of HKUST-1 on the inner wall of capillary by using liquid-phase epitaxy process at room temperature. The fabricated HKUST-1@capillary can be successfully used for the separation of substituted benzene including methylbenzene, ethylbenzene, styrene, chlorobenzene, bromobenzene, o-dichlorobenzene, benzene series, phenolic acids, and benzoic acids derivates. High column efficiency of 1.5×10(5) N/m for methylbenzene was achieved. The formation of HKUST-1 grown in the capillary was confirmed and characterized by scanning electron microscopy images, Fourier transform infrared spectra and X-ray diffraction. The column showed long lifetime and excellent stability. The relative standard deviations for intra-day and inter-day repeatability of the HKUST-1@capillary were lower than 7%. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Vaporization study on vanadium monoxide and two-phase mixture of vanadium and vanadium monoxide by mass-spectrometric method

    International Nuclear Information System (INIS)

    Banchorndhevakul, W.; Matsui, Tsuneo; Naito, Keiji

    1986-01-01

    The vapor pressures over single phase vanadium monoxide VO 1.022 (s) and the two-phase mixture of vanadium metal (β phase) and vanadium monoxide were measured by mass-spectrometric method in the temperature range of 1,803 ∼ 1,990 and 1,703 ∼ 1,884 K, respectively. The main gas species over both systems were found to be VO(g) and V(g). The vapor pressure of VO(g) over the two-phase mixture of V(s) and VO(s) was a little lower than that over single phase VO(s). The vapor pressure of V(g) over the two-phase mixture was nearly equal to that over single phase. From the vapor pressure data, the enthalpies of vaporization, the enthalpies of formation for VO(g) and V(g) and the dissociation energy of VO(g) were determined. The oxygen partial pressure was calculated as a function of temperature from the vapor pressures of VO(g) and V(g), from which the partial molar enthalpies and entropies of oxygen in both systems were obtained. (author)

  10. Evaporation and Condensation Flows of a Vapor-Gas Mixture from or onto the Condensed Phase with an Internal Structure

    National Research Council Canada - National Science Library

    Onishi, Yoshimoto; Yamada, Ken

    2005-01-01

    Transient motions of a vapor-gas mixture due to the evaporation and condensation processes from or onto the plane condensed phase, with a temperature field as its internal structure, have been studied...

  11. Vapor-phase infrared laser spectroscopy: from gas sensing to forensic urinalysis.

    Science.gov (United States)

    Bartlome, Richard; Rey, Julien M; Sigrist, Markus W

    2008-07-15

    Numerous gas-sensing devices are based on infrared laser spectroscopy. In this paper, the technique is further developed and, for the first time, applied to forensic urinalysis. For this purpose, a difference frequency generation laser was coupled to an in-house-built, high-temperature multipass cell (HTMC). The continuous tuning range of the laser was extended to 329 cm(-1) in the fingerprint C-H stretching region between 3 and 4 microm. The HTMC is a long-path absorption cell designed to withstand organic samples in the vapor phase (Bartlome, R.; Baer, M.; Sigrist, M. W. Rev. Sci. Instrum. 2007, 78, 013110). Quantitative measurements were taken on pure ephedrine and pseudoephedrine vapors. Despite featuring similarities, the vapor-phase infrared spectra of these diastereoisomers are clearly distinguishable with respect to a vibrational band centered at 2970.5 and 2980.1 cm(-1), respectively. Ephedrine-positive and pseudoephedrine-positive urine samples were prepared by means of liquid-liquid extraction and directly evaporated in the HTMC without any preliminary chromatographic separation. When 10 or 20 mL of ephedrine-positive human urine is prepared, the detection limit of ephedrine, prohibited in sports as of 10 microg/mL, is 50 or 25 microg/mL, respectively. The laser spectrometer has room for much improvement; its potential is discussed with respect to doping agents detection.

  12. Valorization of GaN based metal-organic chemical vapor deposition dust a semiconductor power device industry waste through mechanochemical oxidation and leaching: A sustainable green process.

    Science.gov (United States)

    Swain, Basudev; Mishra, Chinmayee; Lee, Chan Gi; Park, Kyung-Soo; Lee, Kun-Jae

    2015-07-01

    Dust generated during metal organic vapor deposition (MOCVD) process of GaN based semiconductor power device industry contains significant amounts of gallium and indium. These semiconductor power device industry wastes contain gallium as GaN and Ga0.97N0.9O0.09 is a concern for the environment which can add value through recycling. In the present study, this waste is recycled through mechanochemical oxidation and leaching. For quantitative recovery of gallium, two different mechanochemical oxidation leaching process flow sheets are proposed. In one process, first the Ga0.97N0.9O0.09 of the MOCVD dust is leached at the optimum condition. Subsequently, the leach residue is mechanochemically treated, followed by oxidative annealing and finally re-leached. In the second process, the MOCVD waste dust is mechanochemically treated, followed by oxidative annealing and finally leached. Both of these treatment processes are competitive with each other, appropriate for gallium leaching and treatment of the waste MOCVD dust. Without mechanochemical oxidation, 40.11 and 1.86 w/w% of gallium and Indium are leached using 4M HCl, 100°C and pulp density of 100 kg/m(3,) respectively. After mechanochemical oxidation, both these processes achieved 90 w/w% of gallium and 1.86 w/w% of indium leaching at their optimum condition. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Overview: Homogeneous nucleation from the vapor phase-The experimental science.

    Science.gov (United States)

    Wyslouzil, Barbara E; Wölk, Judith

    2016-12-07

    Homogeneous nucleation from the vapor phase has been a well-defined area of research for ∼120 yr. In this paper, we present an overview of the key experimental and theoretical developments that have made it possible to address some of the fundamental questions first delineated and investigated in C. T. R. Wilson's pioneering paper of 1897 [C. T. R. Wilson, Philos. Trans. R. Soc., A 189, 265-307 (1897)]. We review the principles behind the standard experimental techniques currently used to measure isothermal nucleation rates, and discuss the molecular level information that can be extracted from these measurements. We then highlight recent approaches that interrogate the vapor and intermediate clusters leading to particle formation, more directly.

  14. Direct Adsorption and Molecular Self-Assembly of Octylthioacetates on Au(111) in the Vapor Phase

    International Nuclear Information System (INIS)

    Park, Tae Sung; Kang, Hun Gu; Kim, You Young; Lee, Seong Keun; Noh, Jae Geun

    2011-01-01

    We demonstrate that the direct adsorption of OTA on Au(111) in ethanol solution led to the formation of a disordered phase, whereas OTA SAMs grown from the vapor phase have an ordered 5 Χ √3 striped phase. Thus, vapor deposition was found to be a more effective technique, as compared to solution deposition, for improving the structural order of SAMs by direct adsorption of thioacetates on gold. Organic thiols are prone to easily oxidize to disulfides or other oxidized species that can affect the formation and structure of SAMs. The presence of disulfides or oxidized compounds in thiol samples often yields poorly ordered SAMs containing a high defect density and disordered phases. An approach that minimizes undesirable thiol oxidation is the use of a protected thiol that is deprotected in situ before or during SAM formation. The protection of thiol groups can be readily accomplished by acetylation. SAMs derived from acetyl protected thiols (thioacetates) on gold have usually been formed via an in situ deprotection process of the acetyl group in strong acidic or basic solutions. Other deprotection techniques have also been developed that use organic compounds such as triethylamine, tetrabutylammonium cyanide, and 1,8-diazabicyclo[5.4.0]undec-7-ene, and organic SAMs with a high degree of structural order have been successfully constructed in solutions containing these deprotection reagents

  15. Phase Equilibrium of TiO2 Nanocrystals in Flame-Assisted Chemical Vapor Deposition.

    Science.gov (United States)

    Liu, Changran; Camacho, Joaquin; Wang, Hai

    2018-01-19

    Nano-scale titanium oxide (TiO 2 ) is a material useful for a wide range of applications. In a previous study, we showed that TiO 2 nanoparticles of both rutile and anatase crystal phases could be synthesized over the size range of 5 to 20 nm in flame-assisted chemical vapor deposition. Rutile was unexpectedly dominant in oxygen-lean synthesis conditions, whereas anatase is the preferred phase in oxygen-rich gases. The observation is in contrast to the 14 nm rutile-anatase crossover size derived from the existing crystal-phase equilibrium model. In the present work, we made additional measurements over a wider range of synthesis conditions; the results confirm the earlier observations. We propose an improved model for the surface energy that considers the role of oxygen desorption at high temperatures. The model successfully explains the observations made in the current and previous work. The current results provide a useful path to designing flame-assisted chemical vapor deposition of TiO 2 nanocrystals with controllable crystal phases. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Driving CO2 to a Quasi-Condensed Phase at the Interface between a Nanoparticle Surface and a Metal-Organic Framework at 1 bar and 298 K.

    Science.gov (United States)

    Lee, Hiang Kwee; Lee, Yih Hong; Morabito, Joseph V; Liu, Yejing; Koh, Charlynn Sher Lin; Phang, In Yee; Pedireddy, Srikanth; Han, Xuemei; Chou, Lien-Yang; Tsung, Chia-Kuang; Ling, Xing Yi

    2017-08-23

    We demonstrate a molecular-level observation of driving CO 2 molecules into a quasi-condensed phase on the solid surface of metal nanoparticles (NP) under ambient conditions of 1 bar and 298 K. This is achieved via a CO 2 accumulation in the interface between a metal-organic framework (MOF) and a metal NP surface formed by coating NPs with a MOF. Using real-time surface-enhanced Raman scattering spectroscopy, a >18-fold enhancement of surface coverage of CO 2 is observed at the interface. The high surface concentration leads CO 2 molecules to be in close proximity with the probe molecules on the metal surface (4-methylbenzenethiol), and transforms CO 2 molecules into a bent conformation without the formation of chemical bonds. Such linear-to-bent transition of CO 2 is unprecedented at ambient conditions in the absence of chemical bond formation, and is commonly observed only in pressurized systems (>10 5 bar). The molecular-level observation of a quasi-condensed phase induced by MOF coating could impact the future design of hybrid materials in diverse applications, including catalytic CO 2 conversion and ambient solid-gas operation.

  17. Field-induced phase transition in a metalorganic spin-dimer system-a potential model system to study Bose-Einstein condensation of magnons

    International Nuclear Information System (INIS)

    Tsui, Y.; Bruehl, A.; Removic-Langer, K.; Pashchenko, V.; Wolf, B.; Donath, G.; Pikul, A.; Kretz, T.; Lerner, H.-W.; Wagner, M.; Salguero, A.; Saha-Dasgupta, T.; Rahaman, B.; Valenti, R.; Lang, M.

    2007-01-01

    We report on the results obtained from studying electron spin resonance, magnetic susceptibility, specific heat and thermal expansion experiments on a metalorganic spin-dimer system, C 36 H 48 Cu 2 F 6 N 8 O 12 S 2 (TK91). According to the first principle Density Functional Theory calculations, the compound represents a 3D-coupled dimer system with intradimer coupling J 1 /k B ∼ 10K and interdimer couplings J 2 /k B ∼J 3 /k B ∼ 1K. The measurements have been performed on both pressed powder and single-crystal samples in external magnetic fields up to 12T and at low temperatures down to ∼ 0.2K. Susceptibility measurements reveal a spin-gap behavior consistent with the theoretical results. Furthermore, clear indications of a field-induced phase transition have been observed. A similar field-induced phase transition was also detected in an inorganic compound TlCuCl 3 and was interpreted as Bose-Einstein condensation (BEC) of magnons. The possibility of changing both the intradimer and interdimer couplings in TK91 by chemical substitutions makes the system a potentially good system to study BEC of magnons

  18. Phase-field model of vapor-liquid-solid nanowire growth

    Science.gov (United States)

    Wang, Nan; Upmanyu, Moneesh; Karma, Alain

    2018-03-01

    We present a multiphase-field model to describe quantitatively nanowire growth by the vapor-liquid-solid (VLS) process. The free-energy functional of this model depends on three nonconserved order parameters that distinguish the vapor, liquid, and solid phases and describe the energetic properties of various interfaces, including arbitrary forms of anisotropic γ plots for the solid-vapor and solid-liquid interfaces. The evolution equations for those order parameters describe basic kinetic processes including the rapid (quasi-instantaneous) equilibration of the liquid catalyst to a droplet shape with constant mean curvature, the slow incorporation of growth atoms at the droplet surface, and crystallization within the droplet. The standard constraint that the sum of the phase fields equals unity and the conservation of the number of catalyst atoms, which relates the catalyst volume to the concentration of growth atoms inside the droplet, are handled via separate Lagrange multipliers. An analysis of the model is presented that rigorously maps the phase-field equations to a desired set of sharp-interface equations for the evolution of the phase boundaries under the constraint of force balance at three-phase junctions (triple points) given by the Young-Herring relation that includes torque term related to the anisotropy of the solid-liquid and solid-vapor interface excess free energies. Numerical examples of growth in two dimensions are presented for the simplest case of vanishing crystalline anisotropy and the more realistic case of a solid-liquid γ plot with cusped minima corresponding to two sets of (10 ) and (11 ) facets. The simulations reproduce many of the salient features of nanowire growth observed experimentally, including growth normal to the substrate with tapering of the side walls, transitions between different growth orientations, and crawling growth along the substrate. They also reproduce different observed relationships between the nanowire growth

  19. Vapor-liquid Phase Equilibria for CO2+Tertpentanol Binary System at Elevated Pressures

    Institute of Scientific and Technical Information of China (English)

    WANG Lin; LUO Jian-cheng; YANG Hao; CHEN Kai-xun

    2011-01-01

    Vapor-liquid phase equilibrium data of tertpentanol in carbon dioxide were measured at temperatures of 313.4,323.4,333.5 and 343.5 K and in the pressure range of 4.56-11.44 MPa.The phase equilibium apparatus used in the work was a variable-volume high-pressure cell.The experimental data were reasonably correlated with Peng-Robinson equation of state(PR-EOS) together with van der Waals-2 two-parameter mixing rules.Henry's Law constants and partial molar volumes of CO2 at infinite dilution were estimated with Krichevsky-Kasarnovsky equation,and Henry's Law constants increase with increasing temperature,however,partial molar volumes of CO2 at infinite dilution are negative whose magnitudes decrease with temperature.Partial molar volumes of CO2 and tertpentanol in liquid phase at equilibrium were calculated.

  20. New mechanism for autocatalytic decomposition of H2CO3 in the vapor phase.

    Science.gov (United States)

    Ghoshal, Sourav; Hazra, Montu K

    2014-04-03

    In this article, we present high level ab initio calculations investigating the energetics of a new autocatalytic decomposition mechanism for carbonic acid (H2CO3) in the vapor phase. The calculation have been performed at the MP2 level of theory in conjunction with aug-cc-pVDZ, aug-cc-pVTZ, and 6-311++G(3df,3pd) basis sets as well as at the CCSD(T)/aug-cc-pVTZ level. The present study suggests that this new decomposition mechanism is effectively a near-barrierless process at room temperature and makes vapor phase of H2CO3 unstable even in the absence of water molecules. Our calculation at the MP2/aug-cc-pVTZ level predicts that the effective barrier, defined as the difference between the zero-point vibrational energy (ZPE) corrected energy of the transition state and the total energy of the isolated starting reactants in terms of bimolecular encounters, is nearly zero for the autocatalytic decomposition mechanism. The results at the CCSD(T)/aug-cc-pVTZ level of calculations suggest that the effective barrier, as defined above, is sensitive to some extent to the levels of calculations used, nevertheless, we find that the effective barrier height predicted at the CCSD(T)/aug-cc-pVTZ level is very small or in other words the autocatalytic decomposition mechanism presented in this work is a near-barrierless process as mentioned above. Thus, we suggest that this new autocatalytic decomposition mechanism has to be considered as the primary mechanism for the decomposition of carbonic acid, especially at its source, where the vapor phase concentration of H2CO3 molecules reaches its highest levels.

  1. Organic vapor phase composition of sidestream and environmental tobacco smoke from cigarettes

    International Nuclear Information System (INIS)

    Higgins, C.E.; Jenkins, R.A.; Guerin, M.R.

    1987-01-01

    Environmental tobacco smoke (ETS) has received considerable attention because of its contribution to indoor air pollution. While some studies have attempted to estimate the exposure of humans to ETS constituents by extrapolating from information gleaned from investigations of sidestream smoke (SS), few studies have reported a direct comparison between the composition of SS and that of ETS. In the study reported here, the authors describe the relative compositional similarities and differences between the vapor phase of SS and that of ETS. SS was generated under different conditions. Both a new laminar flow chamber, which prevents significant alteration of the near-cigarette environment, and a modified Neurath chamber were used for SS generation. ETS samples were collected from an office environment. Vapor phase samples were collected on multi-media resin sorbent traps and analyzed using thermal desorption gas/liquid chromatography employing flame ionization, nitrogen-specific, and mass selective detection. Influences on the compositional profiles by the manner in which the SS is generated are described, as well as the differences between SS and ETS composition resulting from phase transition

  2. System Model of Heat and Mass Transfer Process for Mobile Solvent Vapor Phase Drying Equipment

    Directory of Open Access Journals (Sweden)

    Shiwei Zhang

    2014-01-01

    Full Text Available The solvent vapor phase drying process is one of the most important processes during the production and maintenance for large oil-immersed power transformer. In this paper, the working principle, system composition, and technological process of mobile solvent vapor phase drying (MVPD equipment for transformer are introduced in detail. On the basis of necessary simplification and assumption for MVPD equipment and process, a heat and mass transfer mathematical model including 40 mathematical equations is established, which represents completely thermodynamics laws of phase change and transport process of solvent, water, and air in MVPD technological processes and describes in detail the quantitative relationship among important physical quantities such as temperature, pressure, and flux in key equipment units and process. Taking a practical field drying process of 500 KV/750 MVA power transformer as an example, the simulation calculation of a complete technological process is carried out by programming with MATLAB software and some relation curves of key process parameters changing with time are obtained such as body temperature, tank pressure, and water yield. The change trend of theoretical simulation results is very consistent with the actual production record data which verifies the correctness of mathematical model established.

  3. Liquid and vapor phase fluids visualization using an exciplex chemical sensor

    International Nuclear Information System (INIS)

    Kim, Jong Uk; Kim, Guang Hoon; Kim, Chang Bum; Suk, Hyyong

    2001-01-01

    Two dimensional slices of the cross-sectional distributions of fuel images in the combustion chamber were visualized quantitatively using a laser-induced exciplex (excited state complex) fluorescence technique. A new exciplex visualization system consisting of 5%DMA (N, N-dimethylaniline) · 5%1, 4,6-TMN (trimethylnaphthalene) in 90% isooctane (2,2,4-trimethylpentane) fuel was employed. In this method, the vapor phase was tagged by the monomer fluorescence while the liquid phase was tracked by the red-shifted exciplex fluorescence with good spectral and spatial resolution. The direct calibration of the fluorescence intensity as a function of the fluorescing dopant concentrations then permitted the determination of quantitative concentration maps of liquid and vapor phases in the fuel. The 308 nm (XeCl) line of the excimer laser was used to excite the doped molecules in the fuel and the resulting fluorescence images were obtained with an ICCD detector as a function time. In this paper, the spectroscopy of the exciplex chemical sensors as well as the optical diagnostic method of the fluid distribution is discussed in detail.

  4. Vapor-phase synthesis and characterization of ZnSe nanoparticles

    Science.gov (United States)

    Sarigiannis, D.; Pawlowski, R. P.; Peck, J. D.; Mountziaris, T. J.; Kioseoglou, G.; Petrou, A.

    2002-06-01

    Compound semiconductor nanoparticles are an exciting class of materials whose unique optical and electronic properties can be exploited in a variety of applications, including optoelectronics, photovoltaics, and biophotonics. The most common route for synthesizing such nanoparticles has been via liquid-phase chemistry in reverse micelles. This paper discusses a flexible vapor-phase technique for synthesis of crystalline compound semiconductor nanoparticles using gas-phase condensation reactions near the stagnation point of a counterflow jet reactor. ZnSe nanoparticles were formed by reacting vapors of dimethylzinc: triethylamine adduct and hydrogen selenide at 120Torr and room temperature (28°C). No attempt was made to passivate the surface of the particles, which were collected as random aggregates on silicon wafers or TEM grids placed downstream of the reaction zone. Particle characterization using TEM, electron diffraction, Raman and EDAX revealed that the aggregates consisted of polycrystalline ZnSe nanoparticles, almost monodisperse in size (with diameters of ~40nm). The polycrystalline nanoparticles appear to have been formed by coagulation of smaller single-crystalline nanoparticles with characteristic size of 3-5 run.

  5. Structural, electrical and luminescent characteristics of ultraviolet light emitting structures grown by hydride vapor phase epitaxy

    Directory of Open Access Journals (Sweden)

    A.Y. Polyakov

    2017-03-01

    Full Text Available Electrical and luminescent properties of near-UV light emitting diode structures (LEDs prepared by hydride vapor phase epitaxy (HVPE were studied. Variations in photoluminescence and electroluminescence efficiency observed for LEDs grown under nominally similar conditions could be attributed to the difference in the structural quality (dislocation density, density of dislocations agglomerates of the GaN active layers, to the difference in strain relaxation achieved by growth of AlGaN/AlGaN superlattice and to the presence of current leakage channels in current confining AlGaN layers of the double heterostructure.

  6. Nitrogen doping efficiency during vapor phase epitaxy of 4H-SiC

    Energy Technology Data Exchange (ETDEWEB)

    Rowland, L.B.; Brandt, C.D. [Northrop Grumman Science and Technology Center, Pittsburgh, PA (United States); Burk, A.A. Jr. [Northrop Grumman Advanced Technology Lab., Baltimore, MD (United States)

    1998-06-01

    This work examines the interrelationships among doping efficiency, mole fraction, and Si/C ratio for intentional doping of 4H-SiC during vapor phase epitaxy using N{sub 2}. For four Si/C ratios, the doping concentration increased linearly as a function of increasing N{sub 2} partial pressure with a slope of 1.0 {+-} 0.03. Variation of propane mole fraction while the SiH{sub 4} and N{sub 2} mole fractions were kept constant revealed two different modes of nitrogen incorporation, corresponding to carbon-rich and silicon-rich conditions. (orig.) 14 refs.

  7. A sharp interface method for compressible liquid–vapor flow with phase transition and surface tension

    Energy Technology Data Exchange (ETDEWEB)

    Fechter, Stefan, E-mail: stefan.fechter@iag.uni-stuttgart.de [Institut für Aerodynamik und Gasdynamik, Universität Stuttgart, Pfaffenwaldring 21, 70569 Stuttgart (Germany); Munz, Claus-Dieter, E-mail: munz@iag.uni-stuttgart.de [Institut für Aerodynamik und Gasdynamik, Universität Stuttgart, Pfaffenwaldring 21, 70569 Stuttgart (Germany); Rohde, Christian, E-mail: Christian.Rohde@mathematik.uni-stuttgart.de [Institut für Angewandte Analysis und Numerische Simulation, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart (Germany); Zeiler, Christoph, E-mail: Christoph.Zeiler@mathematik.uni-stuttgart.de [Institut für Angewandte Analysis und Numerische Simulation, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart (Germany)

    2017-05-01

    The numerical approximation of non-isothermal liquid–vapor flow within the compressible regime is a difficult task because complex physical effects at the phase interfaces can govern the global flow behavior. We present a sharp interface approach which treats the interface as a shock-wave like discontinuity. Any mixing of fluid phases is avoided by using the flow solver in the bulk regions only, and a ghost-fluid approach close to the interface. The coupling states for the numerical solution in the bulk regions are determined by the solution of local two-phase Riemann problems across the interface. The Riemann solution accounts for the relevant physics by enforcing appropriate jump conditions at the phase boundary. A wide variety of interface effects can be handled in a thermodynamically consistent way. This includes surface tension or mass/energy transfer by phase transition. Moreover, the local normal speed of the interface, which is needed to calculate the time evolution of the interface, is given by the Riemann solution. The interface tracking itself is based on a level-set method. The focus in this paper is the description of the two-phase Riemann solver and its usage within the sharp interface approach. One-dimensional problems are selected to validate the approach. Finally, the three-dimensional simulation of a wobbling droplet and a shock droplet interaction in two dimensions are shown. In both problems phase transition and surface tension determine the global bulk behavior.

  8. The compositional, structural, and magnetic properties of a Fe{sub 3}O{sub 4}/Ga{sub 2}O{sub 3}/GaN spin injecting hetero-structure grown by metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhonghua; Huang, Shimin [Nanjing National Laboratory of Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210023 (China); Tang, Kun, E-mail: ktang@nju.edu.cn [Nanjing National Laboratory of Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210023 (China); Gu, Shulin, E-mail: slgu@nju.edu.cn [Nanjing National Laboratory of Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210023 (China); Zhu, Shunming [Nanjing National Laboratory of Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210023 (China); Ye, Jiandong [Nanjing National Laboratory of Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210023 (China); Nanjing University Institute of Optoelectronics at Yangzhou, Yangzhou 225009 (China); Xu, Mingxiang [Department of Physics, Southeast University, Nanjing 210096 (China); Wang, Wei; Zheng, Youdou [Nanjing National Laboratory of Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210023 (China)

    2016-12-01

    Highlights: • The Fe{sub 3}O{sub 4}/Ga{sub 2}O{sub 3}/GaN hetero-structure has been fabricated by MOCVD successfully. • The formation mechanism of different layers in sample was revealed in details. • The properties of the hetero-structure have been presented and discussed extensively. • The effect of Ga diffusion on the magnetic properties of Fe{sub 3}O{sub 4} film has been shown. - Abstract: In this article, the authors have designed and fabricated a Fe{sub 3}O{sub 4}/Ga{sub 2}O{sub 3}/GaN spin injecting hetero-structure by metal-organic chemical vapor deposition. The compositional, structural, and magnetic properties of the hetero-structure have been characterized and discussed. From the characterizations, the hetero-structure has been successfully grown generally. However, due to the unintentional diffusion of Ga ions from Ga{sub 2}O{sub 3}/GaN layers, the most part of the nominal Fe{sub 3}O{sub 4} layer is actually in the form of Ga{sub x}Fe{sub 3−x}O{sub 4} with gradually decreased x values from the Fe{sub 3}O{sub 4}/Ga{sub 2}O{sub 3} interface to the Fe{sub 3}O{sub 4} surface. Post-annealing process can further aggravate the diffusion. Due to the similar ionic radius of Ga and Fe, the structural configuration of the Ga{sub x}Fe{sub 3−x}O{sub 4} does not differ from that of pure Fe{sub 3}O{sub 4}. However, the ferromagnetism has been reduced with the incorporation of Ga into Fe{sub 3}O{sub 4}, which has been explained by the increased Yafet-Kittel angles in presence of considerable amount of Ga incorporation. A different behavior of the magnetoresistance has been found on the as-grown and annealed samples, which could be modelled and explained by the competition between the spin-dependent and spin-independent conduction channels. This work has provided detailed information on the interfacial properties of the Fe{sub 3}O{sub 4}/Ga{sub 2}O{sub 3}/GaN spin injecting hetero-structure, which is the solid basis for further improvement and application of

  9. Metal-organic chemical vapor deposition of ultra-thin photovoltaic devices using a pyrite based p-i-n structure

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, A.J., E-mail: andy.clayton@optictechnium.com [CSER, Glyndwr University, OpTIC Technium, St Asaph, LL17 0JD (United Kingdom); Irvine, S.J.C.; Barrioz, V.; Brooks, W.S.M. [CSER, Glyndwr University, OpTIC Technium, St Asaph, LL17 0JD (United Kingdom); Zoppi, G.; Forbes, I. [NPAC, Northumbria University, Newcastle upon Tyne, NE1 8ST (United Kingdom); Rogers, K.D.; Lane, D.W.; Hutchings, K.; Roncallo, S. [Centre for Material Science and Engineering, Cranfield University, Swindon, SN6 8LA (United Kingdom)

    2011-08-31

    Ultra-thin photovoltaic (PV) devices were produced by atmospheric pressure metal organic chemical vapour deposition (AP-MOCVD) incorporating a highly absorbing intermediate sulphurised FeS{sub x} layer into a CdS/CdTe structure. X-ray diffraction (XRD) confirmed a transitional phase change to pyrite FeS{sub 2} after post growth sulphur (S) annealing of the FeS{sub x} layer between 400 deg. C and 500 deg. C. Devices using a superstrate configuration incorporating a sulphurised or non-sulphurised FeS{sub x} layer were compared to p-n devices with only a CdS/CdTe structure. Devices with sulphurised FeS{sub x} layers performed least efficiently, even though pyrite fractions were present. Rutherford back scattering (RBS) confirmed deterioration of the CdS/FeS{sub x} interface due to S inter-diffusion during the annealing process.

  10. X-ray characterization of CdO thin films grown on a-, c-, r- and m-plane sapphire by metalorganic vapour phase-epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Zuniga-Perez, J.; Martinez-Tomas, C.; Munoz-Sanjose, V. [Departamento de Fisica Aplicada y Electromagnetismo, Universitat de Valencia, C/Dr. Moliner 50, 46100 Burjassot (Spain)

    2005-02-01

    CdO thin films have been grown on a-plane (11 anti 20), c-plane (0001), r-plane (01 anti 12) and m-plane (10 anti 10) sapphire substrates by metalorganic vapour-phase epitaxy (MOVPE). The effects of different substrate orientations on the structural properties of the films have been analyzed by means of X-ray diffraction, including {theta}-2{theta} scans, pole figures and rocking curves. (111), (001) and (110) orientations are found on a-, r-, and m-sapphire respectively, while films deposited on c-plane exhibit an orientation in which no low-index crystal plane is parallel to the sample surface. The recorded pole figures have allowed determining the epitaxial relationships between films and substrates, as well as the presence or absence of extended defects. The rocking curves indicate that high quality thin films, in terms of tilt and twist, can be obtained on r-, c- and m-plane sapphire, while further improvement is needed over the a-orientation. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. X-ray characterization of CdO thin films grown on a-, c-, r- and m-plane sapphire by metalorganic vapour phase-epitaxy

    International Nuclear Information System (INIS)

    Zuniga-Perez, J.; Martinez-Tomas, C.; Munoz-Sanjose, V.

    2005-01-01

    CdO thin films have been grown on a-plane (11 anti 20), c-plane (0001), r-plane (01 anti 12) and m-plane (10 anti 10) sapphire substrates by metalorganic vapour-phase epitaxy (MOVPE). The effects of different substrate orientations on the structural properties of the films have been analyzed by means of X-ray diffraction, including θ-2θ scans, pole figures and rocking curves. (111), (001) and (110) orientations are found on a-, r-, and m-sapphire respectively, while films deposited on c-plane exhibit an orientation in which no low-index crystal plane is parallel to the sample surface. The recorded pole figures have allowed determining the epitaxial relationships between films and substrates, as well as the presence or absence of extended defects. The rocking curves indicate that high quality thin films, in terms of tilt and twist, can be obtained on r-, c- and m-plane sapphire, while further improvement is needed over the a-orientation. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Magnetic solid-phase extraction of triazine herbicides from rice using metal-organic framework MIL-101(Cr) functionalized magnetic particles.

    Science.gov (United States)

    Liang, Li; Wang, Xinghua; Sun, Ying; Ma, Pinyi; Li, Xinpei; Piao, Huilan; Jiang, Yanxiao; Song, Daqian

    2018-03-01

    The metal-organic framework (MOF) functionalized magnetic graphene oxide/mesoporous silica composites (Fe 3 O 4 @SiO 2 -GO/MIL-101(Cr)) were synthesized and utilized as magnetic solid-phase extraction (MSPE) adsorbent for the extraction of seven triazine herbicides (terbuthylazine, secbumeton, terbumeton, atraton, atrazine, prometon and trietazine) in rice samples. Several experimental parameters, including type and volume of extraction solvent, amount of MIL-101(Cr), extraction time, volume of desorption solvent and desorption time were investigated and optimized. The limits of detection (LODs) of seven triazine herbicides obtained by using the proposed MSPE method combined with high performance liquid chromatography (HPLC) were in the range of 0.010-0.080µgkg -1 . The recoveries of the triazine herbicides in spiked rice samples ranged from of 83.9-103.5% with the relative standard deviations lower than 8.7%. The intra and inter-day (n = 6) precisions for all triazine herbicides at the spiked level of 100.0µgkg -1 were 1.4-5.9% and 2.6-7.8%, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Oriented circular dichroism analysis of chiral surface-anchored metal-organic frameworks grown by liquid-phase epitaxy and upon loading with chiral guest compounds

    KAUST Repository

    Gu, Zhigang

    2014-06-17

    Oriented circular dichroism (OCD) is explored and successfully applied to investigate chiral surface-anchored metal-organic frameworks (SURMOFs) based on camphoric acid (D- and Lcam) with the composition [Cu2(Dcam) 2x(Lcam)2-2x(dabco)]n (dabco=1,4-diazabicyclo- [2.2.2]-octane). The three-dimensional chiral SURMOFs with high-quality orientation were grown on quartz glass plates by using a layer-by-layer liquid-phase epitaxy method. The growth orientation, as determined by X-ray diffraction (XRD), could be switched between the [001] and [110] direction by using either OH- or COOH-terminated substrates. These SURMOFs were characterized by using OCD, which confirmed the ratio as well as the orientation of the enantiomeric linker molecules. Theoretical computations demonstrate that the OCD band intensities of the enantiopure [Cu2(Dcam)2(dabco)] n grown in different orientations are a direct result of the anisotropic nature of the chiral SURMOFs. Finally, the enantiopure [Cu 2(Dcam)2(dabco)]n and [Cu2(Lcam) 2(dabco)]n SURMOFs were loaded with the two chiral forms of ethyl lactate [(+)-ethyl-D-lactate and (-)-ethyl-L-lactate)]. An enantioselective enrichment of >60 % was observed by OCD when the chiral host scaffold was loaded from the racemic mixture. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Oriented circular dichroism analysis of chiral surface-anchored metal-organic frameworks grown by liquid-phase epitaxy and upon loading with chiral guest compounds

    KAUST Repository

    Gu, Zhigang; Bü rck, Jochen; Bihlmeier, Angela; Liu, Jinxuan; Shekhah, Osama; Weidler, Peter G.; Azucena, Carlos; Wang, Zhengbang; Heiß ler, Stefan; Gliemann, Hartmut; Klopper, Wim; Ulrich, Anne S.; Wö ll, Christof H.

    2014-01-01

    Oriented circular dichroism (OCD) is explored and successfully applied to investigate chiral surface-anchored metal-organic frameworks (SURMOFs) based on camphoric acid (D- and Lcam) with the composition [Cu2(Dcam) 2x(Lcam)2-2x(dabco)]n (dabco=1,4-diazabicyclo- [2.2.2]-octane). The three-dimensional chiral SURMOFs with high-quality orientation were grown on quartz glass plates by using a layer-by-layer liquid-phase epitaxy method. The growth orientation, as determined by X-ray diffraction (XRD), could be switched between the [001] and [110] direction by using either OH- or COOH-terminated substrates. These SURMOFs were characterized by using OCD, which confirmed the ratio as well as the orientation of the enantiomeric linker molecules. Theoretical computations demonstrate that the OCD band intensities of the enantiopure [Cu2(Dcam)2(dabco)] n grown in different orientations are a direct result of the anisotropic nature of the chiral SURMOFs. Finally, the enantiopure [Cu 2(Dcam)2(dabco)]n and [Cu2(Lcam) 2(dabco)]n SURMOFs were loaded with the two chiral forms of ethyl lactate [(+)-ethyl-D-lactate and (-)-ethyl-L-lactate)]. An enantioselective enrichment of >60 % was observed by OCD when the chiral host scaffold was loaded from the racemic mixture. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Fabrication of metal-organic framework MIL-88B films on stainless steel fibers for solid-phase microextraction of polychlorinated biphenyls.

    Science.gov (United States)

    Wu, Ye-Yu; Yang, Cheng-Xiong; Yan, Xiu-Ping

    2014-03-21

    Metal-organic frameworks (MOFs) have received considerable attention as novel sorbents for sample preparation due to their fascinating structures and functionalities such as large surface area, good thermal stability, and uniform structured nanoscale cavities. Here, we report the application of a thermal and solvent stable MOF MIL-88B with nanosized bipyramidal cages and large surface area for solid-phase microextraction (SPME) of polychlorinated biphenyls (PCBs). Novel MIL-88B coated fiber was fabricated via an in situ hydrothermal growth of MIL-88B film on etched stainless steel fiber. The MIL-88B coated fiber gave large enhancement factors (757-2243), low detection limits (0.45-1.32ngL(-1)), and good linearity (5-200ngL(-1)) for PCBs. The relative standard deviation (RSD) for six replicate extractions of PCBs at 100ngL(-1) on MIL-88B coated fiber ranged from 4.2% to 8.7%. The recoveries for spiked PCBs (10ngL(-1)) in water and soil samples were in the range of 79.7-103.2%. Besides, the MIL-88B coated fiber was stable enough for 150 extraction cycles without significant loss of extraction efficiency. The developed method was successfully applied to the determination of PCBs in water samples and soil samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Monitoring and understanding the paraelectric-ferroelectric phase transition in the metal-organic framework [NH4 ][M(HCOO)3 ] by solid-state NMR spectroscopy.

    Science.gov (United States)

    Xu, Jun; Lucier, Bryan E G; Sinelnikov, Regina; Terskikh, Victor V; Staroverov, Viktor N; Huang, Yining

    2015-10-05

    The paraelectric-ferroelectric phase transition in two isostructural metal-organic frameworks (MOFs) [NH4 ][M(HCOO)3 ] (M=Mg, Zn) was investigated by in situ variable-temperature (25) Mg, (67) Zn, (14) N, and (13) C solid-state NMR (SSNMR) spectroscopy. With decreasing temperature, a disorder-order transition of NH4 (+) cations causes a change in dielectric properties. It is thought that [NH4 ][Mg(HCOO)3 ] exhibits a higher transition temperature than [NH4 ][Zn(HCOO)3 ] due to stronger hydrogen-bonding interactions between NH4 (+) ions and framework oxygen atoms. (25) Mg and (67) Zn NMR parameters are very sensitive to temperature-induced changes in structure, dynamics, and dielectric behavior; stark spectral differences across the paraelectric-ferroelectric phase transition are intimately related to subtle changes in the local environment of the metal center. Although (25) Mg and (67) Zn are challenging nuclei for SSNMR experiments, the highly spherically symmetric metal-atom environments in [NH4 ][M(HCOO)3 ] give rise to relatively narrow spectra that can be acquired in 30-60 min at a low magnetic field of 9.4 T. Complementary (14) N and (13) C SSNMR experiments were performed to probe the role of NH4 (+) -framework hydrogen bonding in the paraelectric-ferroelectric phase transition. This multinuclear SSNMR approach yields new physical insights into the [NH4 ][M(HCOO)3 ] system and shows great potential for molecular-level studies on electric phenomena in a wide variety of MOFs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The influence of temperature on the polymerization of ethyl cyanoacrylate from the vapor phase

    Energy Technology Data Exchange (ETDEWEB)

    Dadmun, Mark D [ORNL; Algaier, Dana [University of Tennessee, Knoxville (UTK); Baskaran, Durairaj [University of Tennessee, Knoxville (UTK)

    2011-01-01

    The polymerization of ethyl cyanoacrylate fumes from surface bound initiators is an important step in many novel and mature technologies. Understanding the effect of temperature on the rate of poly(ethyl cyanoacrylate) (PECA) growth and its molecular weight during its polymerization from the vapor phase from surface bound initiators provides insight into the important mechanistic aspects that impact the polymerizations success. In these studies, it is shown that the amount of PECA formed during the polymerization of ECA from a latent fingerprint increases with decreasing temperature, while the polymer molecular weight varies little. This is interpreted to be the result of the loosening of the ion pair that initiates the polymer chain growth and resides on the end of the growing polymer chain with decreasing temperature. Comparison of temperature effects and counter-ion studies show that in both cases loosening the ion pair results in the formation of more polymer with similar molecular weight, verifying this interpretation. These results further suggest that lowering the temperature may be an effective method to optimize anionic vapor phase polymerizations, including the improvement of the quality of aged latent prints and preliminary results are presented that substantiate this prediction.

  18. Uptake rate constants and partition coefficients for vapor phase organic chemicals using semipermeable membrane devices (SPMDs)

    Science.gov (United States)

    Cranor, W.L.; Alvarez, D.A.; Huckins, J.N.; Petty, J.D.

    2009-01-01

    To fully utilize semipermeable membrane devices (SPMDs) as passive samplers in air monitoring, data are required to accurately estimate airborne concentrations of environmental contaminants. Limited uptake rate constants (kua) and no SPMD air partitioning coefficient (Ksa) existed for vapor-phase contaminants. This research was conducted to expand the existing body of kinetic data for SPMD air sampling by determining kua and Ksa for a number of airborne contaminants including the chemical classes: polycyclic aromatic hydrocarbons, organochlorine pesticides, brominated diphenyl ethers, phthalate esters, synthetic pyrethroids, and organophosphate/organosulfur pesticides. The kuas were obtained for 48 of 50 chemicals investigated and ranged from 0.03 to 3.07??m3??g-1??d-1. In cases where uptake was approaching equilibrium, Ksas were approximated. Ksa values (no units) were determined or estimated for 48 of the chemicals investigated and ranging from 3.84E+5 to 7.34E+7. This research utilized a test system (United States Patent 6,877,724 B1) which afforded the capability to generate and maintain constant concentrations of vapor-phase chemical mixtures. The test system and experimental design employed gave reproducible results during experimental runs spanning more than two years. This reproducibility was shown by obtaining mean kua values (n??=??3) of anthracene and p,p???-DDE at 0.96 and 1.57??m3??g-1??d-1 with relative standard deviations of 8.4% and 8.6% respectively.

  19. Fiber Optic Microcantilever Sensor Coupled with Reactive Polymers for Vapor Phase Detection of Ammonia, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna Innovations proposes to adapt its current aqueous-based, fiber-optic microcantilever sensor technology for real-time, monitoring of ammonia in air. Phase I...

  20. Penicillium expansum Inhibition on Bread by Lemongrass Essential Oil in Vapor Phase.

    Science.gov (United States)

    Mani López, Emma; Valle Vargas, Georgina P; Palou, Enrique; López Malo, Aurelio

    2018-02-23

    The antimicrobial activity of lemongrass ( Cymbopogon citratus) essential oil (EO) in the vapor phase on the growth of Penicillium expansum inoculated on bread was evaluated, followed by a sensory evaluation of the bread's attributes after EO exposure. The lemongrass EO was extracted from dry leaves of lemongrass by microwave-assisted steam distillation. The chemical composition of the lemongrass EO was determined using a gas chromatograph coupled to a mass spectrometer. The refractive index and specific gravity of the EO were also determined. Bread was prepared and baked to reach two water activity levels, 0.86 or 0.94, and then 10 μL of P. expansum spore (10 6 spores per mL) suspension was inoculated on the bread surface. Concentrations of lemongrass EO were tested from 125 to 4,000 μL/L air , whereas mold radial growth was measured for 21 days. For sensory evaluation, breads were treated with lemongrass EO vapor at 0, 500, or 1,000 μL/L air for 48 h and tested by 25 untrained panelists. The EO yield was 1.8%, with similar physical properties to those reported previously. Thirteen compounds were the main components in the EO, with citral being the major compound. P. expansum was inhibited for 21 days at 20°C with 750 μL of EO/L air , and its inhibition increased with increasing concentrations of EO. Sensory acceptance of bread exposed to vapor concentrations of 500 or 1,000 μL of EO/L air or without EO was favorable; similar and no significant differences ( P > 0.05) were observed among them.

  1. Triple sorbent thermal desorption/gas chromatography/mass spectrometry determination of vapor phase organic contaminants

    International Nuclear Information System (INIS)

    Ma, C.Y.; Skeen, J.T.; Dindal, A.B.; Higgins, C.E.; Jenkins, R.A.

    1994-05-01

    A thermal desorption/ps chromatography/mass spectrometry (TD/GC/MS) has been evaluated for the determination of volatile organic compounds (VOCS) in vapor phase samples using Carbosieve S-III/Carbotrap/Carotrap C triple sorbent traps (TST) similar to those available from a commercial source. The analysis was carried out with a Hewlett-Packard 5985A or 5995 GC/MS system with a modified injector to adapt an inhouse manufactured short-path desorber for transferring desorbate directly onto a cryofocusing loop for subsequent GC/MS analysis. Vapor phase standards generated from twenty six compounds were used for method validation, including alkanes, alkyl alcohols, alkyl ketones, and alkyl nitrites, a group of representative compounds that have previously been identified in a target airborne matrix. The method was validated based on the satisfactory results in terms of reproducibility, recovery rate, stability, and linearity. A relative, standard deviation of 0.55 to 24.3 % was obtained for the entire TD process (generation of gas phase standards, spiking the standards on and desorbing from TST) over a concentration range of 20 to 500 ng/trap. Linear correlation coefficients for the calibration curves as determined ranged from 0.81 to 0.99 and limits of detection ranged from 3 to 76 ng. For a majority of standards, recoveries of greater than 90% were observed. For three selected standards spiked on TSTS, minimal loss (10 to 22%) was observed after storing the spiked in, a 4 degree C refrigerator for 29 days. The only chromatographable artifact observed was a 5% conversion of isopropanol to acetone. The validated method been successfully applied, to the determination of VOCs collected from various emission sources in a diversified concentration range

  2. Vapor-deposited non-crystalline phase vs ordinary glasses and supercooled liquids: Subtle thermodynamic and kinetic differences

    International Nuclear Information System (INIS)

    Bhattacharya, Deepanjan; Sadtchenko, Vlad

    2015-01-01

    Vapor deposition of molecules on a substrate often results in glassy materials of high kinetic stability and low enthalpy. The extraordinary properties of such glasses are attributed to high rates of surface diffusion during sample deposition, which makes it possible for constituents to find a configuration of much lower energy on a typical laboratory time scale. However, the exact nature of the resulting phase and the mechanism of its formation are not completely understood. Using fast scanning calorimetry technique, we show that out-of-equilibrium relaxation kinetics and possibly the enthalpy of vapor-deposited films of toluene and ethylbenzene, archetypical fragile glass formers, are distinct from those of ordinary supercooled phase even when the deposition takes place at temperatures above the ordinary glass softening transition temperatures. These observations along with the absolute enthalpy dependences on deposition temperatures support the conjecture that the vapor-deposition may result in formation of non-crystalline phase of unique structural, thermodynamic, and kinetic properties

  3. Tank vapor sampling and analysis data package for tank 241-C-106 waste retrieval sluicing system process test phase III

    Energy Technology Data Exchange (ETDEWEB)

    LOCKREM, L.L.

    1999-08-13

    This data package presents sampling data and analytical results from the March 28, 1999, vapor sampling of Hanford Site single-shell tank 241-C-106 during active sluicing. Samples were obtained from the 296-C-006 ventilation system stack and ambient air at several locations. Characterization Project Operations (CPO) was responsible for the collection of all SUMMATM canister samples. The Special Analytical Support (SAS) vapor team was responsible for the collection of all triple sorbent trap (TST), sorbent tube train (STT), polyurethane foam (PUF), and particulate filter samples collected at the 296-C-006 stack. The SAS vapor team used the non-electrical vapor sampling (NEVS) system to collect samples of the air, gases, and vapors from the 296-C-006 stack. The SAS vapor team collected and analyzed these samples for Lockheed Martin Hanford Corporation (LMHC) and Tank Waste Remediation System (TWRS) in accordance with the sampling and analytical requirements specified in the Waste Retrieval Sluicing System Vapor Sampling and Analysis Plan (SAP) for Evaluation of Organic Emissions, Process Test Phase III, HNF-4212, Rev. 0-A, (LMHC, 1999). All samples were stored in a secured Radioactive Materials Area (RMA) until the samples were radiologically released and received by SAS for analysis. The Waste Sampling and Characterization Facility (WSCF) performed the radiological analyses. The samples were received on April 5, 1999.

  4. Growth of NH4Cl Single Crystal from Vapor Phase in Vertical Furnace

    Science.gov (United States)

    Nigara, Yutaka; Yoshizawa, Masahito; Fujimura, Tadao

    1983-02-01

    A pure and internally stress-free single crystal of NH4Cl was grown successfully from the vapor phase. The crystal measured 1.6 cmφ× 2 cm and had the disordered CsCl structure, which was stable below 184°C. The crystal was grown in an ampoule in a vertical furnace, in which the vapor was efficiently transported both by diffusion and convection. In line with the growth mechanism of a single crystal, the temperature fluctuation (°C/min) on the growth interface was kept smaller than the product of the temperature gradient (°C/cm) and the growth rate (cm/min). The specific heat of the crystal was measured around -31°C (242 K) during cooling and heating cycles by AC calorimetry. The thermal hysteresis (0.4 K) obtained here was smaller than that (0.89 K) of an NH4Cl crystal grown from its aqueous solution with urea added as a habit modifier.

  5. Development of an acoustic wave based biosensor for vapor phase detection of small molecules

    Science.gov (United States)

    Stubbs, Desmond

    For centuries scientific ingenuity and innovation have been influenced by Mother Nature's perfect design. One of her more elusive designs is that of the sensory olfactory system, an array of highly sensitive receptors responsible for chemical vapor recognition. In the animal kingdom this ability is magnified among canines where ppt (parts per trillion) sensitivity values have been reported. Today, detection dogs are considered an essential part of the US drug and explosives detection schemes. However, growing concerns about their susceptibility to extraneous odors have inspired the development of highly sensitive analytical detection tools or biosensors known as "electronic noses". In general, biosensors are distinguished from chemical sensors in that they use an entity of biological origin (e.g. antibody, cell, enzyme) immobilized onto a surface as the chemically-sensitive film on the device. The colloquial view is that the term "biosensors" refers to devices which detect the presence of entities of biological origin, such as proteins or single-stranded DNA and that this detection must take place in a liquid. Our biosensor utilizes biomolecules, specifically IgG monoclonal antibodies, to achieve molecular recognition of relatively small molecules in the vapor phase.

  6. ZnO Nanowires Synthesized by Vapor Phase Transport Deposition on Transparent Oxide Substrates

    Directory of Open Access Journals (Sweden)

    Taylor Curtis

    2010-01-01

    Full Text Available Abstract Zinc oxide nanowires have been synthesized without using metal catalyst seed layers on fluorine-doped tin oxide (FTO substrates by a modified vapor phase transport deposition process using a double-tube reactor. The unique reactor configuration creates a Zn-rich vapor environment that facilitates formation and growth of zinc oxide nanoparticles and wires (20–80 nm in diameter, up to 6 μm in length, density <40 nm apart at substrate temperatures down to 300°C. Electron microscopy and other characterization techniques show nanowires with distinct morphologies when grown under different conditions. The effect of reaction parameters including reaction time, temperature, and carrier gas flow rate on the size, morphology, crystalline structure, and density of ZnO nanowires has been investigated. The nanowires grown by this method have a diameter, length, and density appropriate for use in fabricating hybrid polymer/metal oxide nanostructure solar cells. For example, it is preferable to have nanowires no more than 40 nm apart to minimize exciton recombination in polymer solar cells.

  7. Characterization of TiO{sub 2} thin films obtained by metal-organic chemical vapour deposition; Caracterizacao de filmes finos de TiO{sub 2} obtidos por deposicao quimica em fase vapor

    Energy Technology Data Exchange (ETDEWEB)

    Carriel, Rodrigo Crociati

    2015-07-01

    Titanium dioxide (TiO{sub 2}) thin films were grown on silicon substrate (100) by MOCVD process (chemical deposition of organometallic vapor phase). The films were grown at 400, 500, 600 and 700 ° C in a conventional horizontal equipment. Titanium tetraisopropoxide was used as source of both oxygen and titanium. Nitrogen was used as carrier and purge gas. X-ray diffraction technique was used for the characterization of the crystalline structure. Scanning electron microscopy with field emission gun was used to evaluate the morphology and thickness of the films. The films grown at 400 and 500°C presented anatase phase. The film grown at 600ºC presented rutile besides anatase phase, while the film grown at 700°C showed, in addition to anatase and rutile, brookite phase. In order to evaluate the electrochemical behavior of the films cyclic voltammetry technique was used. The tests revealed that the TiO2 films formed exclusively by the anatase phase exhibit strong capacitive character. The anodic current peak is directly proportional to the square root of the scanning rate for films grown at 500ºC, suggesting that linear diffusion is the predominant mechanism of cations transport. It was observed that in the film grown during 60 minutes the Na+ ions intercalation and deintercalation easily. The films grown in the other conditions did not present the anodic current peak, although charge was accumulated in the film. (author)

  8. An Assessment of the Technical Readiness of the Vapor Phase Catalytic Ammonia Removal Process (VPCAR) Technology

    Science.gov (United States)

    Flynn, Michael

    2000-01-01

    This poster provides an assessment of the technical readiness of the Vapor Phase Catalytic Ammonia Removal Process (VPCAR). The VPCAR technology is a fully regenerative water recycling technology designed specifically for applications such as a near term Mars exploration mission. The VPCAR technology is a highly integrated distillation/catalytic oxidation based water processor. It is designed to accept a combined wastewater stream (urine, condensate, and hygiene) and produces potable water in a single process step which requires -no regularly scheduled re-supply or maintenance for a 3 year mission. The technology is designed to be modular and to fit into a volume comparable to a single International Space Station Rack (when sized for a crew of 6). This poster provides a description of the VPCAR technology and a summary of the current performance of the technology. Also provided are the results of two separate NASA sponsored system trade studies which investigated the potential payback of further development of the VPCAR technology.

  9. Hydride vapor phase GaN films with reduced density of residual electrons and deep traps

    International Nuclear Information System (INIS)

    Polyakov, A. Y.; Smirnov, N. B.; Govorkov, A. V.; Yugova, T. G.; Cox, H.; Helava, H.; Makarov, Yu.; Usikov, A. S.

    2014-01-01

    Electrical properties and deep electron and hole traps spectra are compared for undoped n-GaN films grown by hydride vapor phase epitaxy (HVPE) in the regular process (standard HVPE samples) and in HVPE process optimized for decreasing the concentration of residual donor impurities (improved HVPE samples). It is shown that the residual donor density can be reduced by optimization from ∼10 17  cm −3 to (2–5) × 10 14  cm −3 . The density of deep hole traps and deep electron traps decreases with decreased donor density, so that the concentration of deep hole traps in the improved samples is reduced to ∼5 × 10 13  cm −3 versus 2.9 × 10 16  cm −3 in the standard samples, with a similar decrease in the electron traps concentration

  10. A quantitative infrared spectral library of vapor phase chemicals: applications to environmental monitoring and homeland defense

    Science.gov (United States)

    Sharpe, Steven W.; Johnson, Timothy J.; Sams, Robert L.

    2004-12-01

    The utility of infrared spectroscopy for monitoring and early warning of accidental or deliberate chemical releases to the atmosphere is well documented. Regardless of the monitoring technique (open-path or extractive) or weather the spectrometer is passive or active (Fourier transform or lidar) a high quality, quantitative reference library is essential for meaningful interpretation of the data. Pacific Northwest National Laboratory through the support of the Department of Energy has been building a library of pure, vapor phase chemical species for the last 4 years. This infrared spectral library currently contains over 300 chemicals and is expected to grow to over 400 chemicals before completion. The library spectra are based on a statistical fit to many spectra at different concentrations, allowing for rigorous error analysis. The contents of the library are focused on atmospheric pollutants, naturally occurring chemicals, toxic industrial chemicals and chemicals specifically designed to do damage. Applications, limitations and technical details of the spectral library will be discussed.

  11. Study of near-critical states of liquid-vapor phase transition of magnesium

    International Nuclear Information System (INIS)

    Emelyanov, A N; Shakhray, D V; Golyshev, A A

    2015-01-01

    Study of thermodynamic parameters of magnesium in the near-critical point region of the liquid-vapor phase transition and in the region of metal-nonmetal transition was carried out. Measurements of the electrical resistance of magnesium after shock compression and expansion into gas (helium) environment in the process of isobaric heating was carried out. Heating of the magnesium surface by heat transfer with hot helium was performed. The registered electrical resistance of expanded magnesium was about 10 4 -10 5 times lower than the electrical resistance of the magnesium under normal condition at the density less than the density of the critical point. Thus, metal-nonmetal transition was found in magnesium. (paper)

  12. InAs film grown on Si(111) by metal organic vapor phase epitaxy

    International Nuclear Information System (INIS)

    Caroff, P; Jeppsson, M; Mandl, B; Wernersson, L-E; Wheeler, D; Seabaugh, A; Keplinger, M; Stangl, J; Bauer, G

    2008-01-01

    We report the successful growth of high quality InAs films directly on Si(111) by Metal Organic Vapor Phase Epitaxy. A nearly mirror-like and uniform InAs film is obtained at 580 0 C for a thickness of 2 μm. We measured a high value of the electron mobility of 5100 cm 2 /Vs at room temperature. The growth is performed using a standard two-step procedure. The influence of the nucleation layer, group V flow rate, and layer thickness on the electrical and morphological properties of the InAs film have been investigated. We present results of our studies by Atomic Force Microscopy, Scanning Electron Microscopy, electrical Hall/van der Pauw and structural X-Ray Diffraction characterization

  13. Thermodynamic analysis of trimethylgallium decomposition during GaN metal organic vapor phase epitaxy

    Science.gov (United States)

    Sekiguchi, Kazuki; Shirakawa, Hiroki; Chokawa, Kenta; Araidai, Masaaki; Kangawa, Yoshihiro; Kakimoto, Koichi; Shiraishi, Kenji

    2018-04-01

    We analyzed the decomposition of Ga(CH3)3 (TMG) during the metal organic vapor phase epitaxy (MOVPE) of GaN on the basis of first-principles calculations and thermodynamic analysis. We performed activation energy calculations of TMG decomposition and determined the main reaction processes of TMG during GaN MOVPE. We found that TMG reacts with the H2 carrier gas and that (CH3)2GaH is generated after the desorption of the methyl group. Next, (CH3)2GaH decomposes into (CH3)GaH2 and this decomposes into GaH3. Finally, GaH3 becomes GaH. In the MOVPE growth of GaN, TMG decomposes into GaH by the successive desorption of its methyl groups. The results presented here concur with recent high-resolution mass spectroscopy results.

  14. Preparation of freestanding GaN wafer by hydride vapor phase epitaxy on porous silicon

    Science.gov (United States)

    Wu, Xian; Li, Peng; Liang, Renrong; Xiao, Lei; Xu, Jun; Wang, Jing

    2018-05-01

    A freestanding GaN wafer was prepared on porous Si (111) substrate using hydride vapor phase epitaxy (HVPE). To avoid undesirable effects of the porous surface on the crystallinity of the GaN, a GaN seed layer was first grown on the Si (111) bare wafer. A pattern with many apertures was fabricated in the GaN seed layer using lithography and etching processes. A porous layer was formed in the Si substrate immediately adjacent to the GaN seed layer by an anodic etching process. A 500-μm-thick GaN film was then grown on the patterned GaN seed layer using HVPE. The GaN film was separated from the Si substrate through the formation of cracks in the porous layer caused by thermal mismatch stress during the cooling stage of the HVPE. Finally, the GaN film was polished to obtain a freestanding GaN wafer.

  15. Managing amalgam phase down: An evaluation of mercury vapor levels in a dental center in Lagos, Nigeria

    Directory of Open Access Journals (Sweden)

    Adolphous Odofin Loto

    2017-01-01

    Full Text Available Background: Occupational exposure to elemental mercury vapor in a dental setting is mainly through inhalation exposure during preparation, insertion, polishing, and removal of amalgam fillings including storage of amalgam waste before disposal. This study aims to determine the indoor air levels of elemental mercury vapor in the dental operatories and ancillary sites at the Lagos State University Teaching Hospital (LASUTH. Materials and Methods: Samples of the ambient air were taken at seven locations the Dental Center of LASUTH by a trained technician between 9:00 and 11:00 a.m. This was done at a predetermined height (41/2feet above the floor for mercury vapor concentration using Lumex 915 light data logger mercury vapor analyzer manufactured by Ohio Lumex Company Incorporation, USA®. Results: The highest level of 1434 ng/m3 of mercury vapor in the air was found in the restorative clinic while the lowest of 23 ng Hg/m3 was found in the ambient air at the entrance of the dental Center. The Oral Surgery clinic had mercury vapor level of 318 ng/m3 which was slightly higher than Environmental Protection Agency recommended value of 0.3 μg/m3. Conclusion: An unacceptably high level of mercury vapor was detected, especially in the restorative clinic. Every dental clinic should have its ambient air evaluated for mercury vapor level for the purpose of forming a baseline data for monitoring purposes during the period of phase down of amalgam use. Best practices should also be instituted to reduce the level of exposure of patients and dental care workers to mercury vapor.

  16. Migration of carbon nanotubes from liquid phase to vapor phase in the refrigerant-based nanofluid pool boiling

    Directory of Open Access Journals (Sweden)

    Peng Hao

    2011-01-01

    Full Text Available Abstract The migration characteristics of carbon nanotubes from liquid phase to vapor phase in the refrigerant-based nanofluid pool boiling were investigated experimentally. Four types of carbon nanotubes with the outside diameters from 15 to 80 nm and the lengths from 1.5 to 10 μm were used in the experiments. The refrigerants include R113, R141b and n-pentane. The oil concentration is from 0 to 10 wt.%, the heat flux is from 10 to 100 kW·m-2, and the initial liquid-level height is from 1.3 to 3.4 cm. The experimental results indicate that the migration ratio of carbon nanotube increases with the increase of the outside diameter or the length of carbon nanotube. For the fixed type of carbon nanotube, the migration ratio decreases with the increase of the oil concentration or the heat flux, and increases with the increase of the initial liquid-level height. The migration ratio of carbon nanotube increases with the decrease of dynamic viscosity of refrigerant or the increase of liquid phase density of refrigerant. A model for predicting the migration ratio of carbon nanotubes in the refrigerant-based nanofluid pool boiling is proposed, and the predictions agree with 92% of the experimental data within a deviation of ±20%.

  17. Treatment of Produced Waters Using a Surfactant Modified Zeolite/Vapor Phase Bioreactor System

    Energy Technology Data Exchange (ETDEWEB)

    Lynn E. Katz; Kerry A. Kinney; R. S. Bowman; E. J. Sullivan

    2004-03-11

    This report summarizes work of this project from October 2003 through March 2004. The major focus of the research was to further investigate BTEX removal from produced water, to quantify metal ion removal from produced water, and to evaluate a lab-scale vapor phase bioreactor (VPB) for BTEX destruction in off-gases produced during SMZ regeneration. Batch equilibrium sorption studies were conducted to evaluate the effect of semi-volatile organic compounds commonly found in produced water on the sorption of benzene, toluene, ethylbenzene, and xylene (BTEX) onto surfactant-modified zeolite (SMZ) and to examine selected metal ion sorption onto SMZ. The sorption of polar semi-volatile organic compounds and metals commonly found in produced water onto SMZ was also investigated. Batch experiments were performed in a synthetic saline solution that mimicked water from a produced water collection facility in Wyoming. Results indicated that increasing concentrations of semi-volatile organic compounds increased BTEX sorption. The sorption of phenol compounds could be described by linear isotherms, but the linear partitioning coefficients decreased with increasing pH, especially above the pKa's of the compounds. Linear correlations relating partitioning coefficients of phenol compounds with their respective solubilities and octanol-water partitioning coefficients were developed for data collected at pH 7.2. The sorption of chromate, selenate, and barium in synthetic produced water were also described by Langmuir isotherms. Experiments conducted with a lab-scale vapor phase bioreactor (VPB) packed with foam indicated that this system could achieve high BTEX removal efficiencies once the nutrient delivery system was optimized. The xylene isomers and benzene were found to require the greatest biofilter bed depth for removal. This result suggested that these VOCs would ultimately control the size of the biofilter required for the produced water application. The biofilter

  18. Fabrication of a polymeric composite incorporating metal-organic framework nanosheets for solid-phase microextraction of polycyclic aromatic hydrocarbons from water samples

    International Nuclear Information System (INIS)

    Wei, Songbo; Lin, Wei; Xu, Jianqiao; Wang, Ying; Liu, Shuqin; Zhu, Fang; Liu, Yuan; Ouyang, Gangfeng

    2017-01-01

    In this contribution, it was discovered that even distribution of a metal-organic framework (MOF) [e.g. copper 1,4-benzenedicarboxylate (CBDC)] within polymeric matrixes (e.g. polyimide) resulted in a high-efficient coating material on the surface of a stainless steel wire (SSW). Consequently, a home-made solid phase microextraction (SPME) fiber was fabricated for fast determination of target analytes in real water samples. Scanning electron microscope images indicated that the coating possessed homogenously porous surface. Coupled with gas chromatography-mass spectrometry (GC-MS) and direct immersion SPME (DI-SPME) technique, the fiber was evaluated through the analysis of five polycyclic aromatic hydrocarbons (PAHs) in aqueous samples. Under optimized extraction and desorption conditions, the established method based on the home-made fiber exhibited good repeatability (4.2–12.7%, n = 6) and reproducibility (0.9–11.7%, n = 3), low limits of detection (LODs, 0.11–2.10 ng L"−"1), low limits of quantification (LOQs, 0.36–6.99 ng L"−"1) and wide linear ranges (20–5000 ng L"−"1). Eventually, the method was proven applicable in the determination of PAHs in real samples, as the recoveries were in a satisfactory range (81.7–116%). - Highlights: • A homogenously porous CBDC@polyimide-coated fiber was fabricated and characterized. • The fiber exhibited highly desired extraction performance towards PAHs. • The fiber was employed for the determination of PAHs in real aqueous samples.

  19. Magnetic solid-phase extraction of heterocyclic pesticides in environmental water samples using metal-organic frameworks coupled to high performance liquid chromatography determination.

    Science.gov (United States)

    Ma, Jiping; Wu, Gege; Li, Shuang; Tan, Weiqiang; Wang, Xiaoyan; Li, Jinhua; Chen, Lingxin

    2018-06-08

    A simple method of magnetic solid-phase extraction (MSPE) coupled to high performance liquid chromatography (HPLC) was developed for the simultaneous extraction and determination of four kinds of heterocyclic pesticides (carbendazim, triadimefon, chlorfenapyr and fenpyroximate) in environmental water samples. Magnetic metal-organic frameworks (MOFs) of type MOF-5 were prepared and used as adsorbents of MSPE. Several main parameters influencing MSPE efficiency were investigated, including amount of magnetic MOF-5, sample solution pH, extraction time, salt concentration, type and volume of desorption solvents and desorption time. Under optimal conditions, the MSPE-HPLC method presented fast simple separation and analysis, and excellent linearity in the range of 0.3-500.0 μg/L for carbendazim and triadimefon, and 0.1-500.0 μg/L for chlorfenapyr and fenpyroximate, with correlation coefficients (r) higher than 0.9992. High sensitivity with limits of detection and quantification ranging from 0.04-0.11 μg/L and 0.13-0.35 μg/L, respectively, were achieved, as well as good precision with relative standard deviations of 2.98-7.11% (intra-day) and 3.31-7.12% (inter-day). Furthermore, the method was successfully applied to reservoir and Yellow River water samples, and satisfactory recoveries at three spiked concentration levels were between 80.20% and 108.33%.The magnetic MOF-5 composites based MSPE followed by HPLC proved promising for convenient and efficient determination of heterocyclic pesticides in environmental water samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Fabrication of a polymeric composite incorporating metal-organic framework nanosheets for solid-phase microextraction of polycyclic aromatic hydrocarbons from water samples

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Songbo; Lin, Wei; Xu, Jianqiao [MOE Key Laboratory of Aquatic Product of Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275 (China); Wang, Ying [School of Pharmacy, Guiyang Medical University, Guiyang 550004 (China); Liu, Shuqin; Zhu, Fang [MOE Key Laboratory of Aquatic Product of Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275 (China); Liu, Yuan, E-mail: yliu@shou.edu.cn [College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306 (China); Ouyang, Gangfeng, E-mail: cesoygf@mail.sysu.edu.cn [MOE Key Laboratory of Aquatic Product of Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275 (China)

    2017-06-08

    In this contribution, it was discovered that even distribution of a metal-organic framework (MOF) [e.g. copper 1,4-benzenedicarboxylate (CBDC)] within polymeric matrixes (e.g. polyimide) resulted in a high-efficient coating material on the surface of a stainless steel wire (SSW). Consequently, a home-made solid phase microextraction (SPME) fiber was fabricated for fast determination of target analytes in real water samples. Scanning electron microscope images indicated that the coating possessed homogenously porous surface. Coupled with gas chromatography-mass spectrometry (GC-MS) and direct immersion SPME (DI-SPME) technique, the fiber was evaluated through the analysis of five polycyclic aromatic hydrocarbons (PAHs) in aqueous samples. Under optimized extraction and desorption conditions, the established method based on the home-made fiber exhibited good repeatability (4.2–12.7%, n = 6) and reproducibility (0.9–11.7%, n = 3), low limits of detection (LODs, 0.11–2.10 ng L{sup −1}), low limits of quantification (LOQs, 0.36–6.99 ng L{sup −1}) and wide linear ranges (20–5000 ng L{sup −1}). Eventually, the method was proven applicable in the determination of PAHs in real samples, as the recoveries were in a satisfactory range (81.7–116%). - Highlights: • A homogenously porous CBDC@polyimide-coated fiber was fabricated and characterized. • The fiber exhibited highly desired extraction performance towards PAHs. • The fiber was employed for the determination of PAHs in real aqueous samples.

  1. Waste retrieval sluicing system vapor sampling and analysis plan for evaluation of organic emissions, process test phase III

    International Nuclear Information System (INIS)

    SASAKI, L.M.

    1999-01-01

    This sampling and analysis plan identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for vapor samples obtained to address vapor issues related to the sluicing of tank 241-C-106. Sampling will be performed in accordance with Waste Retrieval Sluicing System Emissions Collection Phase III (Jones 1999) and Process Test Plan Phase III, Waste Retrieval Sluicing System Emissions Collection (Powers 1999). Analytical requirements include those specified in Request for Ecology Concurrence on Draft Strategy/Path Forward to Address Concerns Regarding Organic Emissions from C-106 Sluicing Activities (Peterson 1998). The Waste Retrieval Sluicing System was installed to retrieve and transfer high-heat sludge from tank 241-C-106 to tank 241-AY-102, which is designed for high-heat waste storage. During initial sluicing of tank 241-C-106 in November 1998, operations were halted due to detection of unexpected high volatile organic compounds in emissions that exceeded regulatory permit limits. Several workers also reported smelling sharp odors and throat irritation. Vapor grab samples from the 296-C-006 ventilation system were taken as soon as possible after detection; the analyses indicated that volatile and semi-volatile organic compounds were present. In December 1998, a process test (phase I) was conducted in which the pumps in tanks 241-C-106 and 241-AY-102 were operated and vapor samples obtained to determine constituents that may be present during active sluicing of tank 241-C-106. The process test was suspended when a jumper leak was detected. On March 7, 1999, phase I1 of the process test was performed; the sluicing system was operated for approximately 7 hours and was ended using the controlled shutdown method when the allowable amount of solids were transferred to 241-AY-102. The phase II test was successful, however, further testing is required to obtain vapor samples at higher emission levels

  2. The effect of fuel and chlorinated hydrocarbons on a vapor phase carbon adsorption system

    International Nuclear Information System (INIS)

    Crawford, W.J.; Cheney, J.L.; Taggart, D.B.

    1995-01-01

    A soil vapor extraction (SVE) system installed at the South Tacoma Well 12A Superfund Site was designed to recover 1,2-dichloroethylene (DCE), trichloroethylene (TCE), tetrachloroethylene (PCE), and 1,1,2,2-tetrachloroethane (1,1,2,2-TCA) from the vadose zone. The basic system consisted of twenty-two extraction wells, three centrifugal blowers, and three carbon adsorbers. The carbon adsorbers were regenerated on site by steam stripping. The mixture of steam and stripped organics was condensed and then decanted to separate the water from the organic phase. The recovered water was air stripped to remove the dissolved organics prior to discharge to the city storm sewer. The recovered organic phase was then shipped off site for thermal destruction. Previous reports described operating difficulties with the decanter, and air strippers. Sampling and analyses were performed which identified the problem as the simultaneous recovery of unexpected fuel hydrocarbons in addition to the solvents. Recovery of fuels resulted in a light phase in the decanter in addition to the water and heavy solvent phases. This required redesign of the decanter to handle the third phase. The effectiveness of desorption of the carbon beds by steam stripping gradually decreased as the remediation progressed into the second year of operation. Samples were collected from the carbon beds to evaluate the effect of the fuel and chlorinated hydrocarbons on the activated carbon. This report describes the results of these analyses. The data indicated that both 1,1,2,2-TCA and fuel hydrocarbons in the C-9 to C-24 range remained in the carbon beds after steam regeneration in sufficient quantities to require replacing the carbon

  3. Method for the generation of variable density metal vapors which bypasses the liquidus phase

    Science.gov (United States)

    Kunnmann, Walter; Larese, John Z.

    2001-01-01

    The present invention provides a method for producing a metal vapor that includes the steps of combining a metal and graphite in a vessel to form a mixture; heating the mixture to a first temperature in an argon gas atmosphere to form a metal carbide; maintaining the first temperature for a period of time; heating the metal carbide to a second temperature to form a metal vapor; withdrawing the metal vapor and the argon gas from the vessel; and separating the metal vapor from the argon gas. Metal vapors made using this method can be used to produce uniform powders of the metal oxide that have narrow size distribution and high purity.

  4. Effect of growth conditions on the biodegradation kinetics of toluene by P. putida 54G in a vapor phase bioreactor

    International Nuclear Information System (INIS)

    Mirpuri, R.; Jones, W.; Krieger, E.; McFeters, G.

    1994-01-01

    Biodegradation of volatile organic compounds such as petroleum hydrocarbons and xenobiotic agents in the vapor phase is a promising new concept in well-head and end-of-pipe treatment which may have wide application where in-situ approaches are not feasible. The microbial degradation of the volatile organics can be carried out in vapor phase bioreactors which contain inert packing materials. Scale-up of these reactors from a bench scale to a pilot plant can best be achieved by the use of a predictive model, the success of which depends on accurate estimates of parameters defined in the model such as biodegradation kinetic and stoichiometric coefficients. The phenomena of hydrocarbon stress and injury may also affect performance of a vapor phase bioreactor. Batch kinetic studies on the biodegradation of toluene by P. Putida 54G will be compared to those obtained from continuous culture studies for both suspended and biofilm cultures of the same microorganism. These results will be compared to the activity of the P. putida 54G biofilm in a vapor phase bioreactor to evaluate the impact of hydrocarbon stress and injury on biodegradative processes

  5. THE EFFECT OF WATER (VAPOR-PHASE) AND CARBON ON ELEMENTAL MERCURY REMOVAL IN A FLOW REACTOR

    Science.gov (United States)

    The paper gives results of studying the effect of vapor-phase moisture on elemental mercury (Hgo) removal by activated carbon (AC) in a flow reactor. tests involved injecting AC into both a dry and a 4% moisture nitrogen (N2) /Hgo gas stream. A bituminous-coal-based AC (Calgon WP...

  6. Solid-phase extraction with the metal-organic framework MIL-101(Cr) combined with direct analysis in real time mass spectrometry for the fast analysis of triazine herbicides.

    Science.gov (United States)

    Li, Xianjiang; Xing, Jiawei; Chang, Cuilan; Wang, Xin; Bai, Yu; Yan, Xiuping; Liu, Huwei

    2014-06-01

    MIL-101(Cr) is an excellent metal-organic framework with high surface area and nanoscale cavities, making it promising in solid-phase extraction. Herein, we used MIL-101(Cr) as a solid-phase extraction packing material combined with fast detection of direct analysis in real time mass spectrometry (DART-MS) for the analysis of triazine herbicides. After systematic optimization of the operation parameters, including the gas temperature of DART, the moving speed of the 1D platform, solvent for desorption, amount of MIL-101(Cr) extraction time, eluent volume and salt concentration, this method can realize the simultaneous detection of five kinds of triazine herbicides. The limits of detection were 0.1∼0.2 ng/mL and the linear ranges covered more than two orders of magnitude with the quantitation limits of 0.5∼1 ng/mL. Moreover, the developed method has been applied for the analysis of lake water samples and the recoveries for spiked analytes were in the range of 85∼110%. These results showed that solid-phase extraction with metal-organic frameworks is an efficient sample preparation approach for DART-MS analysis and could find more applications in environmental analysis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Electrical, optical, and structural properties of GaN films prepared by hydride vapor phase epitaxy

    International Nuclear Information System (INIS)

    Polyakov, A.Y.; Smirnov, N.B.; Yakimov, E.B.; Usikov, A.S.; Helava, H.; Shcherbachev, K.D.; Govorkov, A.V.; Makarov, Yu N.; Lee, In-Hwan

    2014-01-01

    Highlights: • GaN films are prepared by hydride vapor phase epitaxy (HVPE). • Residual donors and deep traps show a minimum density versus growth temperature. • This minimum is located close to the HVPE growth temperature of 950 °C. • Good crystalline GaN with residual donor density < 10 16 cm −3 can be grown at 950 °C. - Abstract: Two sets of undoped GaN films with the thickness of 10–20 μm were prepared by hydride vapor phase epitaxy (HVPE) and characterized by capacitance–voltage (C–V) profiling, microcathodoluminescence (MCL) spectra measurements, MCL imaging, electron beam induced current (EBIC) imaging, EBIC dependence on accelerating voltage, deep levels transient spectroscopy, high resolution X-ray diffraction measurements. The difference in growth conditions was mainly related to the lower (850 °C, group 1) or higher (950 °C, group 2) growth temperature. Both groups of samples showed similar crystalline quality with the dislocation density close to 10 8 cm −2 , but very different electrical and optical properties. In group 1 samples the residual donors concentration was ∼10 17 cm −3 or higher, the MCL spectra were dominated by the band-edge luminescence, and the diffusion length of charge carriers was close to 0.1 μm. Group 2 samples had a 2–4.5 μm thick highly resistive layer on top, for which MCL spectra were determined by green, yellow and red defect bands, and the diffusion length was 1.5 times higher than in group 1. We also present brief results of growth at the “standard” HVPE growth temperature of 1050 °C that show the presence of a minimum in the net donor concentration and deep traps density as a function of the growth temperature. Possible reasons for the observed results are discussed in terms of the electrical compensation of residual donors by deep traps

  8. Phase transformation during simultaneous chalcogenization of CuIn(S,Se){sub 2} thin films using metalorganic sources

    Energy Technology Data Exchange (ETDEWEB)

    Shoji, Ryuki; Kayama, Yoshiki; Sugiyama, Mutsumi [Department of Electrical Engineering, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510 (Japan); Chichibu, Shigefusa F. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577 (Japan)

    2017-06-15

    Simultaneous chalcogenization of CuIn(S{sub y},Se{sub 1-y}){sub 2} (CISSe) thin films has been demonstrated using organometallic sources such as diethylselenide [(C{sub 2}H{sub 5}){sub 2}Se] and ditertiarybutylsulfide [(t-C{sub 4}H{sub 9}){sub 2}S] to obtain homogeneous CISSe pseudobinary alloys with controlled amounts of Se and S species. Low-temperature chalcogenization at 300 C resulted in the formation of Cu-SSe and In-SSe alloys diffused into the Cu{sub 11}In{sub 9} metallic precursor. On the other hand, high-temperature chalcogenization produced CISSe thin films without additional phases. The obtained results can be used for elucidating the mechanism of simultaneous chalcogenization and development of high-performance and cost-effective commercial applications. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Role of hydrogen in Sb film deposition and characterization of Sb and GexSby films deposited by cyclic plasma enhanced chemical vapor deposition using metal-organic precursors

    International Nuclear Information System (INIS)

    Kim, Hyung Keun; Jung, Jin Hwan; Choi, Doo Jin

    2012-01-01

    To meet increasing demands for chemical vapor deposition methods for high performance phase-change memory, cyclic plasma enhanced chemical vapor deposition of Sb and Ge x Sb y phase-change films and characterization of their properties were performed. Two cycle sequences were designed to investigate the role of hydrogen gas as a reduction gas during Sb film deposition. Hydrogen gas was not introduced into the reaction chamber during the purge step in cycle sequence A and was introduced during the purge step for cycle sequence B. The role of hydrogen gas was investigated by comparing the results obtained from these two cycle sequences and was concluded to exert an effect by a combination of precursor decomposition, surface maintenance as a hydrogen termination agent, and surface etching. These roles of hydrogen gas are discussed through consideration of changes in deposition rates, the oxygen concentration on the surface of the Sb film, and observations of film surface morphology. Based on these results, Ge x Sb y phase-change films were deposited with an adequate flow rate of hydrogen gas. The Ge and Sb composition of the film was controlled with the designed cycle sequences. A strong oxygen affinity for Ge was observed during the X-ray photoelectron spectroscopy analysis of Sb 3d, Sb 4d, and Ge 3d orbitals. Based on the XPS results, the ratios of Ge to Sb were calculated to be Ge 0.32 Sb 0.68 , Ge 0.38 Sb 0.62 , Ge 0.44 Sb 0.56 , Ge 0.51 Sb 0.49 and Ge 0.67 Sb 0.33 for the G1S7, G1S3, G1S2, G1S1, and G2S1 cycles, respectively. Crystal structures of Sb, Ge, and the GeSb metastable phase were observed with various Ge x Sb y film compositions. Sb crystallinity decreased with respect to Ge crystallinity by increasing the Ge fraction. A current–voltage curve was introduced, and an electro-switching phenomenon was clearly generated at a typical voltage, V th . V th values increased in conjunction with an increased proportion of Ge. The Sb crystallinity decrease and V

  10. Comparison of cryopreserved human sperm in vapor and liquid phases of liquid nitrogen: effect on motility parameters, morphology, and sperm function.

    Science.gov (United States)

    Punyatanasakchai, Piyaphan; Sophonsritsuk, Areephan; Weerakiet, Sawaek; Wansumrit, Surapee; Chompurat, Deonthip

    2008-11-01

    To compare the effects of cryopreserved sperm in vapor and liquid phases of liquid nitrogen on sperm motility, morphology, and sperm function. Experimental study. Andrology laboratory at Ramathibodi Hospital, Thailand. Thirty-eight semen samples with normal motility and sperm count were collected from 38 men who were either patients of an infertility clinic or had donated sperm for research. Each semen sample was divided into two aliquots. Samples were frozen with static-phase vapor cooling. One aliquot was plunged into liquid nitrogen (-196 degrees C), and the other was stored in vapor-phase nitrogen (-179 degrees C) for 3 days. Thawing was performed at room temperature. Motility was determined by using computer-assisted semen analysis, sperm morphology was determined by using eosin-methylene blue staining, and sperm function was determined by using a hemizona binding test. Most of the motility parameters of sperm stored in the vapor phase were not significantly different from those stored in the liquid phase of liquid nitrogen, except in amplitude of lateral head displacement. The percentages of normal sperm morphology in both vapor and liquid phases also were not significantly different. There was no significant difference in the number of bound sperm in hemizona between sperm cryopreserved in both vapor and liquid phases of liquid nitrogen. Cryopreservation of human sperm in a vapor phase of liquid nitrogen was comparable to cryopreservation in a liquid phase of liquid nitrogen.

  11. Lanthanide metal-organic frameworks

    International Nuclear Information System (INIS)

    Cheng, Peng

    2015-01-01

    This book contains the following nine chapters: lanthanide metal-organic frameworks: syntheses, properties, and potential applications (Stephen Fordham, Xuan Wang, Mathieu Bosch, Hong-Cai Zhou); 2. chiral lanthanide metal-organic frameworks (Weisheng Liu, Xiaoliang Tang); 3. Porous lanthanide metal-organic frameworks for gas storage and separation (Bin Li, Banglin Chen); 4. Luminescent lanthanide metal-organic frameworks (Xue-Zhi Song, Shu-Yan Song, Hong-Jie Zhang); 5. Metal-organic frameworks based on lanthanide clusters (Lian Chen, Feilong Jiang, Kang Zhou, Mingyan Wu, Maochun Hong); 6. metal-organic frameworks with d-f cyanide bridges: structural diversity, bonding regime, and magnetism (Marilena Ferbinteanu, Fanica Cimpoesu, Stefania Tanase); 7. transition-lanthanide heterometal-organic frameworks: synthesis, structures, and properties (Wei Shi, Ke Liu, Peng Cheng); 8: MOFs of uranium and the actinides (Juan Su, Jiesheng Chen); 9. Nanostructured and/or nanoscale lanthanide metal-organic frameworks (Zhonghao Zhang, Zhiping Zheng).

  12. Lanthanide metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Peng (ed.) [Nankai Univ., Tianjin (China). Dept. of Chemistry

    2015-03-01

    This book contains the following nine chapters: lanthanide metal-organic frameworks: syntheses, properties, and potential applications (Stephen Fordham, Xuan Wang, Mathieu Bosch, Hong-Cai Zhou); 2. chiral lanthanide metal-organic frameworks (Weisheng Liu, Xiaoliang Tang); 3. Porous lanthanide metal-organic frameworks for gas storage and separation (Bin Li, Banglin Chen); 4. Luminescent lanthanide metal-organic frameworks (Xue-Zhi Song, Shu-Yan Song, Hong-Jie Zhang); 5. Metal-organic frameworks based on lanthanide clusters (Lian Chen, Feilong Jiang, Kang Zhou, Mingyan Wu, Maochun Hong); 6. metal-organic frameworks with d-f cyanide bridges: structural diversity, bonding regime, and magnetism (Marilena Ferbinteanu, Fanica Cimpoesu, Stefania Tanase); 7. transition-lanthanide heterometal-organic frameworks: synthesis, structures, and properties (Wei Shi, Ke Liu, Peng Cheng); 8: MOFs of uranium and the actinides (Juan Su, Jiesheng Chen); 9. Nanostructured and/or nanoscale lanthanide metal-organic frameworks (Zhonghao Zhang, Zhiping Zheng).

  13. Exchange of Na+ and K+ between water vapor and feldspar phases at high temperature and low vapor pressure

    Science.gov (United States)

    Fournier, R.O.

    1976-01-01

    In order to determine whether gas (steam) containing a small amount of dissolved alkali chloride is effective in promoting base exchange of Na+ and K+ among alkali feldspars and coexisting brine or brine plus solid salt, experiments were carried out at 400-700??C and steam densities ranging down to less than 0.05. For bulk compositions rich in potassium, the low pressure results are close to previous high-pressure results in composition of the fluid and coexisting solid phase. However, when the bulk composition is more sodic, alkali feldspars are relatively richer in potassium at low pressure than at high pressure. This behaviour corresponds to enrichment of potassium in the gas phase relative to coexisting brine and precipitation of solid NaCl when the brine plus gas composition becomes moderately sodic. The gas phase is very effective in promoting base exchange between coexisting alkali feldspars at high temperature and low water pressure. This suggests that those igneous rocks which contain coexisting alkali feldspars out of chemical equilibrium either remained very dry during the high-temperature part of their cooling history or that the pore fluid was a gas containing very little potassium relative to sodium. ?? 1976.

  14. Submicrometric Magnetic Nanoporous Carbons Derived from Metal-Organic Frameworks Enabling Automated Electromagnet-Assisted Online Solid-Phase Extraction.

    Science.gov (United States)

    Frizzarin, Rejane M; Palomino Cabello, Carlos; Bauzà, Maria Del Mar; Portugal, Lindomar A; Maya, Fernando; Cerdà, Víctor; Estela, José M; Turnes Palomino, Gemma

    2016-07-19

    We present the first application of submicrometric magnetic nanoporous carbons (μMNPCs) as sorbents for automated solid-phase extraction (SPE). Small zeolitic imidazolate framework-67 crystals are obtained at room temperature and directly carbonized under an inert atmosphere to obtain submicrometric nanoporous carbons containing magnetic cobalt nanoparticles. The μMNPCs have a high contact area, high stability, and their preparation is simple and cost-effective. The prepared μMNPCs are exploited as sorbents in a microcolumn format in a sequential injection analysis (SIA) system with online spectrophotometric detection, which includes a specially designed three-dimensional (3D)-printed holder containing an automatically actuated electromagnet. The combined action of permanent magnets and an automatically actuated electromagnet enabled the movement of the solid bed of particles inside the microcolumn, preventing their aggregation, increasing the versatility of the system, and increasing the preconcentration efficiency. The method was optimized using a full factorial design and Doehlert Matrix. The developed system was applied to the determination of anionic surfactants, exploiting the retention of the ion-pairs formed with Methylene Blue on the μMNPC. Using sodium dodecyl sulfate as a model analyte, quantification was linear from 50 to 1000 μg L(-1), and the detection limit was equal to 17.5 μg L(-1), the coefficient of variation (n = 8; 100 μg L(-1)) was 2.7%, and the analysis throughput was 13 h(-1). The developed approach was applied to the determination of anionic surfactants in water samples (natural water, groundwater, and wastewater), yielding recoveries of 93% to 110% (95% confidence level).

  15. Structural and optical inhomogeneities of Fe doped GaN grown by hydride vapor phase epitaxy

    Science.gov (United States)

    Malguth, E.; Hoffmann, A.; Phillips, M. R.

    2008-12-01

    We present the results of cathodoluminescence experiments on a set of Fe doped GaN samples with Fe concentrations of 5×1017, 1×1018, 1×1019, and 2×1020 cm-3. These specimens were grown by hydride vapor phase epitaxy with different concentrations of Fe. The introduction of Fe is found to promote the formation of structurally inhomogeneous regions of increased donor concentration. We detect a tendency of these regions to form hexagonal pits at the surface. The locally increased carrier concentration leads to enhanced emission from the band edge and the internal T41(G)-A61(S) transition of Fe3+. In these areas, the luminescence forms a finely structured highly symmetric pattern, which is attributed to defect migration along strain-field lines. Fe doping is found to quench the yellow defect luminescence band and to enhance the blue luminescence band due to the lowering of the Fermi level and the formation of point defects, respectively.

  16. Vapor phase reactions in polymerization plasma for divinylsiloxane-bis-benzocyclobutene film deposition

    International Nuclear Information System (INIS)

    Kinoshita, Keizo; Nakano, Akinori; Kawahara, Jun; Kunimi, Nobutaka; Hayashi, Yoshihiro; Kiso, Osamu; Saito, Naoaki; Nakamura, Keiji; Kikkawa, Takamaro

    2006-01-01

    Vapor phase reactions in plasma polymerization of divinylsiloxane-bis-benzocyclobutene (DVS-BCB) low-k film depositions on 300 mm wafers were studied using mass spectrometry, in situ Fourier transform infrared, and a surface wave probe. Polymerization via Diels-Alder cycloaddition reaction was identified by the detection of the benzocyclohexene group. Hydrogen addition and methyl group desorption were also detected in DVS-BCB monomer and related large molecules. The dielectric constant k of plasma polymerized DVS-BCB with a plasma source power range up to 250 W was close to ∼2.7 of thermally polymerized DVS-BCB, and increased gradually over 250 W. The electron density at 250 W was about 1.5x10 10 cm -3 . The increase of the k value at higher power was explained by the decrease of both large molecular species via multistep dissociation and incorporation of silica components into the polymer. It was found that the reduction of electron density as well as precursor residence time is important for the plasma polymerization process to prevent the excess dissociation of the precursor

  17. High quality long-wavelength lasers grown by atmospheric organometallic vapor phase epitaxy using tertiarybutylarsine

    International Nuclear Information System (INIS)

    Miller, B.I.; Young, M.G.; Oron, M.; Koren, U.; Kisker, D.

    1990-01-01

    High quality long-wavelength InGaAsP/InP lasers were grown by atmospheric organometallic vapor phase epitaxy using tertiarybutylarsine (TBA) as a substitute for AsH 3 . Electrical and photoluminescence measurements on InGaAs and InGaAsP showed that TBA-grown material was at least as good as AsH 3 material in terms of suitability for lasers. From two wafers grown by TBA, current thresholds I th as low as 11 mA were obtained for a 2-μm-wide semi-insulating blocking planar buried heterostructure laser lasing near 1.3 μm wavelength. The differential quantum efficiencies η D were as high as 21%/facet with a low internal loss α=21 cm -1 . In addition I th as low as 18 mA and η D as high as 18% have been obtained for multiplequantum well lasers at 1.54 μm wavelength. These results show that TBA might be used to replace AsH 3 without compromising on laser performance

  18. Vapor Phase Synthesis of Organometal Halide Perovskite Nanowires for Tunable Room-Temperature Nanolasers.

    Science.gov (United States)

    Xing, Jun; Liu, Xin Feng; Zhang, Qing; Ha, Son Tung; Yuan, Yan Wen; Shen, Chao; Sum, Tze Chien; Xiong, Qihua

    2015-07-08

    Semiconductor nanowires have received considerable attention in the past decade driven by both unprecedented physics derived from the quantum size effect and strong isotropy and advanced applications as potential building blocks for nanoscale electronics and optoelectronic devices. Recently, organic-inorganic hybrid perovskites have been shown to exhibit high optical absorption coefficient, optimal direct band gap, and long electron/hole diffusion lengths, leading to high-performance photovoltaic devices. Herein, we present the vapor phase synthesis free-standing CH3NH3PbI3, CH3NH3PbBr3, and CH3NH3PbIxCl3(-x) perovskite nanowires with high crystallinity. These rectangular cross-sectional perovskite nanowires have good optical properties and long electron hole diffusion length, which ensure adequate gain and efficient optical feedback. Indeed, we have demonstrated optical-pumped room-temperature CH3NH3PbI3 nanowire lasers with near-infrared wavelength of 777 nm, low threshold of 11 μJ/cm(2), and a quality factor as high as 405. Our research advocates the promise of optoelectronic devices based on organic-inorganic perovskite nanowires.

  19. Vapor Phase Polymerization Deposition Conducting Polymer Nanocomposites on Porous Dielectric Surface as High Performance Electrode Materials

    Institute of Scientific and Technical Information of China (English)

    Ya jie Yang; Luning Zhang; Shibin Li; Zhiming Wang; Jianhua Xu; Wenyao Yang; Yadong Jiang

    2013-01-01

    We report chemical vapor phase polymerization(VPP) deposition of poly(3,4-ethylenedioxythiophene)(PEDOT) and PEDOT/graphene on porous dielectric tantalum pentoxide(Ta2O5) surface as cathode films for solid tantalum electrolyte capacitors. The modified oxidant/oxidant-graphene films were first deposited on Ta2O5 by dip-coating, and VPP process was subsequently utilized to transfer oxidant/oxidant-graphene into PEDOT/PEDOT-graphene films. The SEM images showed PEDOT/PEDOT-graphene films was successfully constructed on porous Ta2O5 surface through VPP deposition, and a solid tantalum electrolyte capacitor with conducting polymer-graphene nano-composites as cathode films was constructed. The high conductivity nature of PEDOT-graphene leads to resistance decrease of cathode films and lower contact resistance between PEDOT/graphene and carbon paste. This nano-composite cathode films based capacitor showed ultralow equivalent series resistance(ESR) ca. 12 m? and exhibited excellent capacitance-frequency performance, which can keep 82% of initial capacitance at 500 KHz. The investigation on leakage current revealed that the device encapsulation process has no influence on capacitor leakage current, indicating the excellent mechanical strength of PEDOT/PEDOT-gaphene films. This high conductivity and mechanical strength of graphene-based polymer films shows promising future for electrode materials such as capacitors, organic solar cells and electrochemical energy storage devices.

  20. Vapor phase polymerization deposition of conducting polymer/graphene nanocomposites as high performance electrode materials.

    Science.gov (United States)

    Yang, Yajie; Li, Shibin; Zhang, Luning; Xu, Jianhua; Yang, Wenyao; Jiang, Yadong

    2013-05-22

    In this paper, we report chemical vapor phase polymerization (VPP) deposition of novel poly(3,4-ethylenedioxythiophene) (PEDOT)/graphene nanocomposites as solid tantalum electrolyte capacitor cathode films. The PEDOT/graphene films were successfully prepared on porous tantalum pentoxide surface as cathode films through the VPP procedure. The results indicated that the high conductivity nature of PEDOT/graphene leads to the decrease of cathode films resistance and contact resistance between PEDOT/graphene and carbon paste. This nanocomposite cathode film based capacitor showed ultralow equivalent series resistance (ESR) ca. 12 mΩ and exhibited better capacitance-frequency performance than the PEDOT based capacitor. The leakage current investigation revealed that the device encapsulation process does not influence capacitor leakage current, indicating the excellent mechanical strength of PEDOT-graphene films. The graphene showed a distinct protection effect on the dielectric layer from possible mechanical damage. This high conductivity and mechanical strength graphene based conducting polymer nanocomposites indicated a promising application future for organic electrode materials.

  1. Vapor pressure, heat capacities, and phase transitions of tetrakis(tert-butoxy)hafnium

    Czech Academy of Sciences Publication Activity Database

    Fulem, Michal; Růžička, K.

    2011-01-01

    Roč. 311, Dec. (2011), s. 25-29 ISSN 0378-3812 Institutional research plan: CEZ:AV0Z10100521 Keywords : tetrakis(tert-butoxy)hafnium * MO precursor * vapor pressure * heat capacity * vaporization enthalpy * enthalpy of fusion Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.139, year: 2011

  2. Field tests of a chemiresistor sensor for in-situ monitoring of vapor-phase contaminants

    Science.gov (United States)

    Ho, C.; McGrath, L.; Wright, J.

    2003-04-01

    An in-situ chemiresistor sensor has been developed that can detect volatile organic compounds in subsurface environmental applications. Several field tests were conducted in 2001 and 2002 to test the reliability, operation, and performance of the in-situ chemiresistor sensor system. The chemiresistor consists of a carbon-loaded polymer deposited onto a microfabricated circuit. The polymer swells reversibly in the presence of volatile organic compounds as vapor-phase molecules absorb into the polymer, causing a change in the electrical resistance of the circuit. The change in resistance can be calibrated to known concentrations of analytes, and arrays of chemiresistors can be used on a single chip to aid in discrimination. A waterproof housing was constructed to allow the chemiresistor to be used in a variety of media including air, soil, and water. The integrated unit, which can be buried in soils or emplaced in wells, is connected via cable to a surface-based solar-powered data logger. A cell-phone modem is used to automatically download the data from the data logger on a periodic basis. The field tests were performed at three locations: (1) Edwards Air Force Base, CA; (2) Nevada Test Site; and (3) Sandia's Chemical Waste Landfill near Albuquerque, NM. The objectives of the tests were to evaluate the ruggedness, longevity, operation, performance, and engineering requirements of these sensors in actual field settings. Results showed that the sensors could be operated continuously for long periods of time (greater than a year) using remote solar-powered data-logging stations with wireless telemetry. The sensor housing, which was constructed of 304 stainless steel, showed some signs of corrosion when placed in contaminated water for several months, but the overall integrity was maintained. The detection limits of the chemiresistors were generally found to be near 0.1% of the saturated vapor pressure of the target analyte in controlled laboratory conditions (e

  3. Phase diagram of interfacial growth modes by vapor deposition and its application for ZnO nanostructures

    Science.gov (United States)

    Shu, Da-Jun; Xiong, Xiang; Liu, Ming; Wang, Mu

    2017-09-01

    Interfacial growth from vapor has been extensively studied. However, a straightforward picture of the growth mode under different growth conditions is still lacking. In this paper, we develop a comprehensive interfacial growth theory based on the stochastic approach. Using a critical interisland separation, we construct a general phase diagram of the growth modes. It has been revealed that if the Ehrlich-Schwoebel barrier EES is smaller than a critical value, the interfacial growth proceeds in a layer-by-layer (LBL) mode at any deposition rate. However, if EES is larger than the critical value, LBL growth occurs only at very small or very large deposition rates relative to the intralayer hopping rate, and multilayer (ML) growth occurs at a moderate deposition rate. Experiments with zinc oxide growth by chemical vapor deposition have been designed to qualitatively demonstrate the theoretical model. By changing the flux of the carrier gas (nitrogen gas) in chemical vapor deposition, we realize LBL, ML, and then reentrance of LBL homoepitaxial growth of ZnO successively. Moreover, we find that surface kinetics of ZnO is suppressed by decreasing oxygen partial pressure by comparing the experimental observations and theoretical models, which is supported by our recent first-principles calculations. Since the influence of the substrate and the growth species on growth can approximately be represented by binding energy and surface kinetics, we suggest that the phase diagram is essential for interfacial growth of different materials by vapor deposition.

  4. Comparisons between a gas-phase model of silane chemical vapor deposition and laser-diagnostic measurements

    International Nuclear Information System (INIS)

    Breiland, W.G.; Coltrin, M.E.; Ho, P.

    1986-01-01

    Theoretical modeling and experimental measurements have been used to study gas-phase chemistry in the chemical vapor deposition (CVD) of silicon from silane. Pulsed laser Raman spectroscopy was used to obtain temperature profiles and to obtain absolute density profiles of silane during deposition at atmospheric and 6-Torr total pressures for temperatures ranging from 500 to 800 0 C. Laser-excited fluorescence was used to obtain relative density profiles of Si 2 during deposition at 740 0 C in helium with 0-12 Torr added hydrogen. These measurements are compared to predictions from the theoretical model of Coltrin, Kee, and Miller. The predictions agree qualitatively with experiment. These studies indicate that fluid mechanics and gas-phase chemical kinetics are important considerations in understanding the chemical vapor deposition process

  5. Chirality-Controlled Growth of Single-Wall Carbon Nanotubes Using Vapor Phase Epitaxy: Mechanistic Understanding and Scalable Production

    Science.gov (United States)

    2016-09-15

    AFRL-AFOSR-VA-TR-2016-0319 Chirality -Controlled Growth of Single-Wall Carbon Nanotubes Using Vapor Phase Epitaxy: Mechanistic Understanding and...TELEPHONE NUMBER (Include area code) DISTRIBUTION A: Distribution approved for public release. 15-06-2016 final Jun 2014 - Jun 2016 Chirality ...for Public Release; Distribution is Unlimited. In this report, we present our efforts in establishing a novel and effective approach for chirality

  6. Molecular dynamics study of kinetic boundary condition at an interface between a polyatomic vapor and its condensed phase

    OpenAIRE

    Ishiyama, Tatsuya; Yano, Takeru; Fujikawa, Shigeo

    2004-01-01

    The kinetic boundary condition for the Boltzmann equation at an interface between a polyatomic vapor and its liquid phase is investigated by the numerical method of molecular dynamics, with particular emphasis on the functional form of the evaporation part of the boundary condition, including the evaporation coefficient. The present study is an extension of a previous one for argon [Ishiyama, Yano, and Fujikawa, Phys. Fluids 16, 2899 (2004)] to water and methanol, typical examples of polyatom...

  7. Aluminum based metal-organic framework-polymer monolith in solid-phase microextraction of penicillins in river water and milk samples.

    Science.gov (United States)

    Lirio, Stephen; Liu, Wan-Ling; Lin, Chen-Lan; Lin, Chia-Her; Huang, Hsi-Ya

    2016-01-08

    In this study, aluminum based metal-organic framework (Al-MOF)-organic polymer monoliths were prepared via microwave-assisted polymerization of ethylene dimethacrylate (EDMA), butyl methacrylate (BMA) with different weight percentages of Al-MOF (MIL-53; 37.5-62.5%) and subsequently utilized as sorbent in solid-phase microextraction (SPME) of penicillins (penicillin G, penicillin V, oxacillin, cloxacillin, dicloxacillin, nafcillin). The Al-MOF-polymer was characterized using Fourier transform infrared (FTIR) spectroscopy, powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and SEM-energy-dispersive X-ray spectroscopy (SEM-EDS) to clarify the retained crystalline structure well as the homogeneous dispersion of Al-MOF (MIL-53) in polymer monolith. The developed Al-MOF-polymer (MIL-53) monolithic column was evaluated according to its extraction recovery of penicillins. Several parameters affecting the extraction recoveries of penicillins using fabricated Al-MOF-polymer (MIL-53) monolithic column including different MIL-53 weight percentages, column length, pH, desorption solvent, and mobile phase flow rate were investigated. For comparison, different Al-based MOFs (MIL-68, CYCU-4 and DUT-5) were fabricated using the optimized condition for MIL-53-polymer (sample matrix at pH 3, 200μL desorption volume using methanol, 37.5% of MOF, 4-cm column length at 0.100mLmin(-1) flow rate). Among all the Al-MOF-polymers, MIL-53(Al)-polymer still afforded the best extraction recovery for penicillins ranging from 90.5 to 95.7% for intra-day with less than 3.5% relative standard deviations (RSDs) and inter-day precision were in the range of 90.7-97.6% with less than 4.2% RSDs. Meanwhile, the recoveries for column-to-column were in the range of 89.5-93.5% (<3.4% RSDs) while 88.5-90.5% (<5.8% RSDs) for batch-to-batch (n=3). Under the optimal conditions, the limit of detections were in the range of 0.06-0.26μgL(-1) and limit of quantifications between 0.20 and 0.87

  8. Dynamic scaling and kinetic roughening of poly(ethylene) islands grown by vapor phase deposition

    Czech Academy of Sciences Publication Activity Database

    Choukourov, A.; Melnichuk, I.; Gordeev, I.; Kylián, O.; Hanuš, J.; Kousal, J.; Solař, P.; Hanyková, L.; Brus, Jiří; Slavínská, D.; Biederman, H.

    2014-01-01

    Roč. 565, 28 August (2014), s. 249-260 ISSN 0040-6090 Institutional support: RVO:61389013 Keywords : poly(ethylene) * physical vapor deposition * island growth Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.759, year: 2014

  9. Solid State Transmitters for Water Vapor and Ozone DIAL Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We have developed a common architecture for laser transmitters that address requirements for water vapor as well as ground and airborne ozone lidar systems. Our...

  10. Correlation of vapor phase infrared spectra and regioisomeric structure in synthetic cannabinoids

    Science.gov (United States)

    Smith, Lewis W.; Thaxton-Weissenfluh, Amber; Abiedalla, Younis; DeRuiter, Jack; Smith, Forrest; Clark, C. Randall

    2018-05-01

    The twelve 1-n-pentyl-2-, 3-, 4-, 5-, 6- and 7-(1- and 2-naphthoyl)-indoles each have the same substituents attached to the indole ring, identical elemental composition (C24H23NO) yielding identical nominal and accurate masses. These twelve isomers cover all possible positions of carbonyl bridge substitution for both indole (positons 2-7) and naphthalene rings (positions 1 and 2). Regioisomeric compounds can represent significant challenges for mass based analytical methods however, infrared spectroscopy is a powerful tool for the identification of positional isomers in organic compounds. The vapor phase infrared spectra of these twelve uniquely similar compounds were evaluated in GC-IR experiments. These spectra show the bridge position on the indole ring is a dominating influence over the carbonyl absorption frequency observed for these compounds. Substitution on the pyrrole moiety of the indole ring yields the lowest Cdbnd O frequency values for position 2 and 3 giving a narrow range from 1656 to 1654 cm-1. Carbonyl absorption frequencies are higher when the naphthoyl group is attached to the benzene portion of the indole ring yielding absorption values from 1674 to 1671 cm-1. The aliphatic stretching bands in the 2900 cm-1 region yield a consistent triplet pattern because the N-alkyl substituent tail group remains unchanged for all twelve regioisomers. The asymmetric CH2 stretch is the most intense of these three bands. Changes in positional bonding for both the indole and naphthalene ring systems results in unique patterns within the 700 wavenumber out-of-plane region and these absorption bands are different for all 12 regioisomers.

  11. Polycrystalline indium phosphide on silicon by indium assisted growth in hydride vapor phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Metaferia, Wondwosen; Sun, Yan-Ting, E-mail: yasun@kth.se; Lourdudoss, Sebastian [Laboratory of Semiconductor Materials, Department of Materials and Nano Physics, KTH—Royal Institute of Technology, Electrum 229, 164 40 Kista (Sweden); Pietralunga, Silvia M. [CNR-Institute for Photonics and Nanotechnologies, P. Leonardo da Vinci, 32 20133 Milano (Italy); Zani, Maurizio; Tagliaferri, Alberto [Department of Physics Politecnico di Milano, P. Leonardo da Vinci, 32 20133 Milano (Italy)

    2014-07-21

    Polycrystalline InP was grown on Si(001) and Si(111) substrates by using indium (In) metal as a starting material in hydride vapor phase epitaxy (HVPE) reactor. In metal was deposited on silicon substrates by thermal evaporation technique. The deposited In resulted in islands of different size and was found to be polycrystalline in nature. Different growth experiments of growing InP were performed, and the growth mechanism was investigated. Atomic force microscopy and scanning electron microscopy for morphological investigation, Scanning Auger microscopy for surface and compositional analyses, powder X-ray diffraction for crystallinity, and micro photoluminescence for optical quality assessment were conducted. It is shown that the growth starts first by phosphidisation of the In islands to InP followed by subsequent selective deposition of InP in HVPE regardless of the Si substrate orientation. Polycrystalline InP of large grain size is achieved and the growth rate as high as 21 μm/h is obtained on both substrates. Sulfur doping of the polycrystalline InP was investigated by growing alternating layers of sulfur doped and unintentionally doped InP for equal interval of time. These layers could be delineated by stain etching showing that enough amount of sulfur can be incorporated. Grains of large lateral dimension up to 3 μm polycrystalline InP on Si with good morphological and optical quality is obtained. The process is generic and it can also be applied for the growth of other polycrystalline III–V semiconductor layers on low cost and flexible substrates for solar cell applications.

  12. Aluminum Nitride Micro-Channels Grown via Metal Organic Vapor Phase Epitaxy for MEMs Applications

    Energy Technology Data Exchange (ETDEWEB)

    Rodak, L.E.; Kuchibhatla, S.; Famouri, P.; Ting, L.; Korakakis, D.

    2008-01-01

    Aluminum nitride (AlN) is a promising material for a number of applications due to its temperature and chemical stability. Furthermore, AlN maintains its piezoelectric properties at higher temperatures than more commonly used materials, such as Lead Zirconate Titanate (PZT) [1, 2], making AlN attractive for high temperature micro and nanoelectromechanical (MEMs and NEMs) applications including, but not limited to, high temperature sensors and actuators, micro-channels for fuel cell applications, and micromechanical resonators. This work presents a novel AlN micro-channel fabrication technique using Metal Organic Vapor Phase Epitaxy (MOVPE). AlN easily nucleates on dielectric surfaces due to the large sticking coefficient and short diffusion length of the aluminum species resulting in a high quality polycrystalline growth on typical mask materials, such as silicon dioxide and silicon nitride [3,4]. The fabrication process introduced involves partially masking a substrate with a silicon dioxide striped pattern and then growing AlN via MOVPE simultaneously on the dielectric mask and exposed substrate. A buffered oxide etch is then used to remove the underlying silicon dioxide and leave a free standing AlN micro-channel. The width of the channel has been varied from 5 ìm to 110 ìm and the height of the air gap from 130 nm to 800 nm indicating the stability of the structure. Furthermore, this versatile process has been performed on (111) silicon, c-plane sapphire, and gallium nitride epilayers on sapphire substrates. Reflection High Energy Electron Diffraction (RHEED), Atomic Force Microscopy (AFM), and Raman measurements have been taken on channels grown on each substrate and indicate that the substrate is influencing the growth of the AlN micro-channels on the SiO2 sacrificial layer.

  13. Availability of MCNP and MATLAB for reconstructing the water-vapor two-phase flow pattern in neutron radiography

    International Nuclear Information System (INIS)

    Feng Qixi; Feng Quanke; Takeshi, K.

    2008-01-01

    The China Advanced Research Reactor (CARR) is scheduled to be operated in the autumn of 2008. In this paper, we report preparations for installing the neutron radiography instrument (NRI) and for utilizing it efficiently. The 2-D relative neutron intensity profiles for the water-vapor two-phase flow inside the tube were obtained using the MCNP code without influence of γ-ray and electronic-noise. The MCNP simulation of the 2-D neutron intensity profile for the water-vapor two-phase flow was demonstrated. The simulated 2-D neutron intensity profiles could be used as the benchmark data base by calibrating part of the data measured by the CARR-NRI. The 3-D objective images allow us to understand the flow pattern more clearly and it is reconstructed using the MATLAB through the threshold transformation techniques. And thus it is concluded that the MCNP code and the MATLAB are very useful for constructing the benchmark data base for the investigation of the water-vapor two-phase flow using the CARR-NRI. (authors)

  14. An Evaluation of the Vapor Phase Catalytic Ammonia Removal Process for Use in a Mars Transit Vehicle

    Science.gov (United States)

    Flynn, Michael; Borchers, Bruce

    1998-01-01

    An experimental program has been developed to evaluate the potential of the Vapor Phase Catalytic Ammonia Reduction (VPCAR) technology for use as a Mars Transit Vehicle water purification system. Design modifications which will be required to ensure proper operation of the VPCAR system in reduced gravity are also evaluated. The VPCAR system is an integrated wastewater treatment technology that combines a distillation process with high temperature catalytic oxidation. The distillation portion of the system utilizes a vapor compression distillation process to provide an energy efficient phase change separation. This portion of the system removes any inorganic salts and large molecular weight, organic contaminates, i.e., non-volatile, from the product water stream and concentrates these contaminates into a byproduct stream. To oxidize the volatile organic compounds and ammonia, a vapor phase, high temperature catalytic oxidizer is used. This catalytic system converts these compounds along with the aqueous product into CO2, H2O, and N2O. A secondary catalytic bed can then be used to reduce the N2O to nitrogen and oxygen (although not evaluated in this study). This paper describes the design specification of the VPCAR process, the relative benefits of its utilization in a Mars Transit Vehicle, and the design modification which will be required to ensure its proper operation in reduced gravity. In addition, the results of an experimental evaluation of the processors is presented. This evaluation presents the processors performance based upon product water purity, water recovery rates, and power.

  15. Vapor phase coatings of metals and organics for laser fusion target applications

    International Nuclear Information System (INIS)

    Simonsic, G.A.; Powell, B.W.

    Techniques for applying a variety of metal and organic coatings to 50- to 500 μm diameter glass micro-balloons are discussed. Coating thicknesses vary from 1- to 10 μm. Physical vapor deposition (PVD), chemical vapor deposition (CVD), and electrolytic and electroless plating are some of the techniques being evaluated for metal deposition. PVD and glow discharge polymerization are being used for the application of organic coatings. (U.S.)

  16. Detection of vapor-phase organophosphate threats using wearable conformable integrated epidermal and textile wireless biosensor systems.

    Science.gov (United States)

    Mishra, Rupesh K; Martín, Aida; Nakagawa, Tatsuo; Barfidokht, Abbas; Lu, Xialong; Sempionatto, Juliane R; Lyu, Kay Mengjia; Karajic, Aleksandar; Musameh, Mustafa M; Kyratzis, Ilias L; Wang, Joseph

    2018-03-15

    Flexible epidermal tattoo and textile-based electrochemical biosensors have been developed for vapor-phase detection of organophosphorus (OP) nerve agents. These new wearable sensors, based on stretchable organophosphorus hydrolase (OPH) enzyme electrodes, are coupled with a fully integrated conformal flexible electronic interface that offers rapid and selective square-wave voltammetric detection of OP vapor threats and wireless data transmission to a mobile device. The epidermal tattoo and textile sensors display a good reproducibility (with RSD of 2.5% and 4.2%, respectively), along with good discrimination against potential interferences and linearity over the 90-300mg/L range, with a sensitivity of 10.7µA∙cm 3 ∙mg -1 (R 2 = 0.983) and detection limit of 12mg/L in terms of OP air density. Stress-enduring inks, used for printing the electrode transducers, ensure resilience against mechanical deformations associated with textile and skin-based on-body sensing operations. Theoretical simulations are used to estimate the OP air density over the sensor surface. These fully integrated wearable wireless tattoo and textile-based nerve-agent vapor biosensor systems offer considerable promise for rapid warning regarding personal exposure to OP nerve-agent vapors in variety of decentralized security applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Liquid metal-organic frameworks

    Science.gov (United States)

    Gaillac, Romain; Pullumbi, Pluton; Beyer, Kevin A.; Chapman, Karena W.; Keen, David A.; Bennett, Thomas D.; Coudert, François-Xavier

    2017-11-01

    Metal-organic frameworks (MOFs) are a family of chemically diverse materials, with applications in a wide range of fields, covering engineering, physics, chemistry, biology and medicine. Until recently, research has focused almost entirely on crystalline structures, yet now a clear trend is emerging, shifting the emphasis onto disordered states, including `defective by design’ crystals, as well as amorphous phases such as glasses and gels. Here we introduce a strongly associated MOF liquid, obtained by melting a zeolitic imidazolate framework. We combine in situ variable temperature X-ray, ex situ neutron pair distribution function experiments, and first-principles molecular dynamics simulations to study the melting phenomenon and the nature of the liquid obtained. We demonstrate from structural, dynamical, and thermodynamical information that the chemical configuration, coordinative bonding, and porosity of the parent crystalline framework survive upon formation of the MOF liquid.

  18. Growth of Cd0.96Zn0.04Te single crystals by vapor phase gas transport method

    Directory of Open Access Journals (Sweden)

    S. H. Tabatabai Yazdi

    2006-03-01

    Full Text Available   Cd0.96Zn0.04Te crystals were grown using vapor phase gas transport method (VPGT. The results show that dendritic crystals with grain size up to 3.5 mm can be grown with this technique. X-ray diffraction and Laue back-reflection patterns show that dendritic crystals are single-phase, whose single crystal grains are randomly oriented with respect to the gas-transport axis. Electrical measurements, carried out using Van der Pauw method, show that the as-grown crystals have resistivity of about 104 Ω cm and n-type conductivity.

  19. New approaches to the study of lanthanide/actinide chloride: aluminum chloride vapor phase complexes

    International Nuclear Information System (INIS)

    Peterson, E.J.; Caird, J.A.; Carnall, W.T.; Hessler, J.P.; Hoekstra, H.R.; Williams, C.W.

    1979-01-01

    The spectrophotometric technique for vapor density measurements of complexed metal ions has been reformulated to account for temperature dependent effects and multi-species systems. Analysis of vapor pressure information indicates that the NdCl 3 --AlCl 3 and HoCl 3 --AlCl 3 systems are adequately explained by the existence of three vapor species. The two higher molecular weight complexes LnAl 4 Cl 15 and LnAl 3 Cl 12 were first proposed by Oeye and Gruen. The newly identified higher temperature species, HoAl 2 Cl 9 , contributes significantly to the vapor density above 750 0 K and below 3 atm of dimer pressure. In view of the consistency of the Nd +3 and Ho +3 chemistry the data for the Sm +3 system should be viewed with reservation. A new method for vapor density measurements involving use of radioactive tracers has been discussed in terms of its applicability to the study of (Ln,An)Cl 3 (AlCl 3 )/sub x/ systems

  20. Sinter-Resistant Platinum Catalyst Supported by Metal-Organic Framework

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Soo [Materials Science Division, Argonne National Lab, 9700 S Cass Ave. Argonne IL 60439 USA; Nanophotonics Center, Korea Institute of Science and Technology, Seoul 02792 South Korea; Li, Zhanyong [Department of Chemistry, Northwestern University, 2145 Sheridan Rd. Evanston IL 60208 USA; Zheng, Jian [Institute for Integrated Catalysis, Pacific Northwest National Lab, P.O. Box 999 Richland WA 99352 USA; Platero-Prats, Ana E. [X-ray Science Division, Argonne National Lab, 9700 S Cass Ave. Argonne IL 60439 USA; Mavrandonakis, Andreas [Department of Chemistry, University of Minnesota, 207 Pleasant St. SE Minneapolis MN 55455 USA; Pellizzeri, Steven [Chemical and Biomolecular Engineering, Clemson University, 205 Earle Hall Clemson SC 29634 USA; Ferrandon, Magali [Chemical Sciences and Engineering Division, Argonne National Lab, 9700 S. Cass Ave. Argonne IL 60439 USA; Vjunov, Aleksei [Institute for Integrated Catalysis, Pacific Northwest National Lab, P.O. Box 999 Richland WA 99352 USA; Gallington, Leighanne C. [X-ray Science Division, Argonne National Lab, 9700 S Cass Ave. Argonne IL 60439 USA; Webber, Thomas E. [Department of Chemistry, University of Minnesota, 207 Pleasant St. SE Minneapolis MN 55455 USA; Vermeulen, Nicolaas A. [Department of Chemistry, Northwestern University, 2145 Sheridan Rd. Evanston IL 60208 USA; Penn, R. Lee [Department of Chemistry, University of Minnesota, 207 Pleasant St. SE Minneapolis MN 55455 USA; Getman, Rachel B. [Chemical and Biomolecular Engineering, Clemson University, 205 Earle Hall Clemson SC 29634 USA; Cramer, Christopher J. [Department of Chemistry, University of Minnesota, 207 Pleasant St. SE Minneapolis MN 55455 USA; Chapman, Karena W. [X-ray Science Division, Argonne National Lab, 9700 S Cass Ave. Argonne IL 60439 USA; Camaioni, Donald M. [Institute for Integrated Catalysis, Pacific Northwest National Lab, P.O. Box 999 Richland WA 99352 USA; Fulton, John L. [Institute for Integrated Catalysis, Pacific Northwest National Lab, P.O. Box 999 Richland WA 99352 USA; Lercher, Johannes A. [Institute for Integrated Catalysis, Pacific Northwest National Lab, P.O. Box 999 Richland WA 99352 USA; Department of Chemistry and Catalysis Research Institute, Technische Universität München, Lichtenbergstrasse 4 85748 Garching Germany; Farha, Omar K. [Department of Chemistry, Northwestern University, 2145 Sheridan Rd. Evanston IL 60208 USA; Hupp, Joseph T. [Materials Science Division, Argonne National Lab, 9700 S Cass Ave. Argonne IL 60439 USA; Department of Chemistry, Northwestern University, 2145 Sheridan Rd. Evanston IL 60208 USA; Martinson, Alex B. F. [Materials Science Division, Argonne National Lab, 9700 S Cass Ave. Argonne IL 60439 USA

    2018-01-02

    Installed on the zirconia nodes of a metal-organic framework (MOF) NU-1000 via targeted vapor-phase synthesis. The catalytic Pt clusters, site-isolated by organic linkers, are shown to exhibit high catalytic activity for ethylene hydrogenation while exhibiting resistance to sintering up to 200 degrees C. In situ IR spectroscopy reveals the presence of both single atoms and few-atom clusters that depend upon synthesis conditions. Operando X-ray absorption spectroscopy and Xray pair distribution analyses reveal unique changes in chemical bonding environment and cluster size stability while on stream. Density functional theory calculations elucidate a favorable reaction pathway for ethylene hydrogenation with the novel catalyst. These results provide evidence that atomic layer deposition (ALD) in MOFs is a versatile approach to the rational synthesis of size-selected clusters, including noble metals, on a high surface area support.

  1. Thermochemistry of methoxythiophenes: Measurement of their enthalpies of vaporization and estimation of their enthalpies of formation in the condensed phase

    International Nuclear Information System (INIS)

    Temprado, Manuel; Notario, Rafael; Roux, María Victoria; Verevkin, Sergey P.

    2014-01-01

    Highlights: • The enthalpies of vaporization of 2- and 3-methoxythiophenes have been measured by the transpiration method. • We have estimated the enthalpies of formation of methoxythiophenes in liquid phase. • The optimized geometries of methoxythiophenes have been tabulated and compared with the experimental crystal structures. - Abstract: Enthalpies of vaporization of 2- and 3-methoxythiophenes (48.32 ± 0.30 and 48.54 ± 0.22 kJ · mol −1 , respectively) have been measured by the transpiration method using nitrogen as the carrying and protecting stream. Combustion experiments leading to enthalpies of formation in the liquid phase, Δ f H 0 m (l), for both isomers failed due to rapid darkening of freshly distilled samples even under a protecting atmosphere. However, combination of experimental vaporization enthalpies with values of the gaseous enthalpies of formation, Δ f H 0 m (g), obtained by quantum-chemical calculations from our previous work Notario et al. (2012) [24] permits establishing estimated Δ f H 0 m (l) values of −(68.3 ± 4.2) and −(80.1 ± 4.2) kJ · mol −1 , for 2- and 3-methoxythiophene, respectively

  2. Modeling of gas-phase chemistry in the chemical vapor deposition of polysilicon in a cold wall system

    Energy Technology Data Exchange (ETDEWEB)

    Toprac, A.J.; Edgar, T.F.; Trachtenberg, I. (Univ. of Texas, Austin, TX (United States). Dept. of Chemical Engineering)

    1993-06-01

    The relative contribution of gas-phase chemistry to deposition processes is an important issue both from the standpoint of operation and modeling of these processes. In polysilicon deposition from thermally activated silane in a cold wall rapid thermal chemical vapor deposition (RTCVD) system, the relative contribution of gas-phase chemistry to the overall deposition rate was examined by a mass-balance model. Evaluating the process at conditions examined experimentally, the model indicated that gas-phase reactions may be neglected to good accuracy in predicting polysilicon deposition rate. The model also provided estimates of the level of gas-phase generated SiH[sub 2] associated with deposition on the cold-process chamber walls.

  3. Tunnel currents produced by defects in p-n junctions of GaAs grown on vapor phase

    International Nuclear Information System (INIS)

    Barrales Guadarrama, V R; Rodríguez Rodriguez, E M; Barrales Guadarrama, R; Reyes Ayala, N

    2017-01-01

    With the purpose of assessing if the epitaxy on vapor phase technique “Close Space Vapor Deposition (CSVT)” is capable of produce thin films with adequate properties in order to manufacture p-n junctions, a study of invert and direct current was developed, in a temperature range of 94K to 293K, to junctions p-n of GaAs grown through the technique CSVT. It is shown that the dominant current, within the range 10 -7 to 10 -2 A, is consistent with a currents model of the type of internal emission form field, which shows these currents are due to the presence of localized states in the band gap. (paper)

  4. Treatment of Produced Water Using a Surfactant Modified Zeolite/Vapor Phase Bioreactor System

    Energy Technology Data Exchange (ETDEWEB)

    Lynn E. Katz; Kerry A. Kinney; Robert S. Bowman; Enid J. Sullivan; Soondong Kwon; Elaine B. Darby; Li-Jung Chen; Craig R. Altare

    2006-01-31

    Co-produced water from the oil and gas industry accounts for a significant waste stream in the United States. Produced waters typically contain a high total dissolved solids content, dissolved organic constituents such as benzene and toluene, an oil and grease component as well as chemicals added during the oil-production process. It has been estimated that a total of 14 billion barrels of produced water were generated in 2002 from onshore operations (Veil, 2004). Although much of this produced water is disposed via reinjection, environmental and cost considerations can make surface discharge of this water a more practical means of disposal. In addition, reinjection is not always a feasible option because of geographic, economic, or regulatory considerations. In these situations, it may be desirable, and often necessary from a regulatory viewpoint, to treat produced water before discharge. It may also be feasible to treat waters that slightly exceed regulatory limits for re-use in arid or drought-prone areas, rather than losing them to reinjection. A previous project conducted under DOE Contract DE-AC26-99BC15221 demonstrated that surfactant modified zeolite (SMZ) represents a potential treatment technology for produced water containing BTEX. Laboratory and field experiments suggest that: (1) sorption of benzene, toluene, ethylbenzene and xylenes (BTEX) to SMZ follows linear isotherms in which sorption increases with increasing solute hydrophobicity; (2) the presence of high salt concentrations substantially increases the capacity of the SMZ for BTEX; (3) competitive sorption among the BTEX compounds is negligible; and, (4) complete recovery of the SMZ sorption capacity for BTEX can be achieved by air sparging the SMZ. This report summarizes research for a follow on project to optimize the regeneration process for multiple sorption/regeneration cycles, and to develop and incorporate a vapor phase bioreactor (VPB) system for treatment of the off-gas generated during

  5. Mw Spectroscopy Coupled with Ultrafast UV Laser Vaporization: {RIBOSE} Found in the Gas Phase

    Science.gov (United States)

    Cocinero, Emilio J.; Ecija, Patricia; Basterretxea, Francisco J.; Fernandez, Jose A.; Castano, Fernando; Lesarri, Alberto; Grabow, Jens-Uwe

    2012-06-01

    Sugars are aldoses or ketoses with multiple hydroxy groups which have been elusive to spectroscopic studies. Here we report a rotational study of the aldopentose ribose. According to any standard textbook aldopentoses can exhibit either linear forms, cyclic five-membered (furanose) structures or six-membered (pyranose) rings, occurring either as α- or β- anomers depending on the orientation of the hydroxy group at C-1 (anomeric carbon). β-Furanose is predominant in ribonucleosides, RNA, ATP and other biochemically relevant derivatives, but is β-furanose the native form also of free ribose? Recent condensed-phase X-ray and older NMR studies delivered conflicting results. In order to solve this question we conducted a microwave study on D-ribose that, owing to ultrafast UV laser vaporization, has become the first C-5 sugar observed with rotational resolution. The spectrum revealed six conformations of free ribose, preferentially adopting β-pyranose chairs as well as higher-energy α-pyranose forms. The method also allowed for unambiguous distinction between different orientations of the hydroxy groups, which stabilize the structures by cooperative hydrogen-bond networks. No evidence was observed of the α-/β-furanoses or linear forms found in the biochemical derivatives. i) D. Šišak, L. B. McCusker, G. Zandomeneghi, B. H. Meier, D. Bläser, R. Boese, W. B. Schweizer, R. Gylmour and J. D. Dunitz Angew. Chem. Int. Ed. 49, 4503, 2010. ii) W. Saenger Angew. Chem. Int. Ed. 49, 6487, 2010. i) M. Rudrum, and D. F. Shaw, J. Chem. Soc. 52, 1965. ii) R. U. Lemieux and J. D. Stevens Can. J. Chem. 44, 249, 1966. iii) E. Breitmaier and U. Hollstein Org. Magn. Reson. 8, 573, 1976. E. J. Cocinero, A. Lesarri, P. Écija, F. J. Basterretxea, J. U. Grabow, J. A. Fernández and F. Castaño Angew. Chem. Int. Ed. in press: DOI: 10.1002/anie.201107973, 2012.

  6. Comparison of the layer structure of vapor phase and leached SRL glass by use of AEM [analytical electron microscopy

    International Nuclear Information System (INIS)

    Biwer, B.M.; Bates, J.K.; Abrajano, T.A. Jr.; Bradley, J.P.

    1989-01-01

    Test samples of 131 type glass that have been reacted for extended time periods in water vapor atmospheres of different relative humidities and in static leaching solution have been examined to characterize the reaction products. Analytical electron microscopy (AEM) was used to characterize the leached samples, and a complicated layer structure was revealed, consisting of phases that precipitate from solution and also form within the residual glass layer. The precipitated phases include birnes-site, saponite, and an iron species, while the intralayer phases include the U-Ti containing phase brannerite distributed within a matrix consisting of bands of an Fe rich montmorillonite clay. Comparison is made between samples leached at 40 degrees C for 4 years with those leached at 90 degrees C for 3-1/2 years. The samples reacted in water vapor were examined with scanning electron microscopy and show increasing reaction as both the relative humidity and time of reaction increases. These samples also contain a layered structure with reaction products on the glass surface. 15 refs., 5 figs

  7. VLE measurements using a static cell vapor phase manual sampling method accompanied with an empirical data consistency test

    International Nuclear Information System (INIS)

    Freitag, Joerg; Kosuge, Hitoshi; Schmelzer, Juergen P.; Kato, Satoru

    2015-01-01

    Highlights: • We use a new, simple static cell vapor phase manual sampling method (SCVMS) for VLE (x, y, T) measurement. • The method is applied to non-azeotropic, asymmetric and two-liquid phase forming azeotropic binaries. • The method is approved by a data consistency test, i.e., a plot of the polarity exclusion factor vs. pressure. • The consistency test reveals that with the new SCVMS method accurate VLE near ambient temperature can be measured. • Moreover, the consistency test approves that the effect of air in the SCVMS system is negligible. - Abstract: A new static cell vapor phase manual sampling (SCVMS) method is used for the simple measurement of constant temperature x, y (vapor + liquid) equilibria (VLE). The method was applied to the VLE measurements of the (methanol + water) binary at T/K = (283.2, 298.2, 308.2 and 322.9), asymmetric (acetone + 1-butanol) binary at T/K = (283.2, 295.2, 308.2 and 324.2) and two-liquid phase forming azeotropic (water + 1-butanol) binary at T/K = (283.2 and 298.2). The accuracy of the experimental data was approved by a data consistency test, that is, an empirical plot of the polarity exclusion factor, β, vs. the system pressure, P. The SCVMS data are accurate, because the VLE data converge to the same lnβ vs. lnP straight line determined from conventional distillation-still method and a headspace gas chromatography method

  8. Substrate-induced phase of a [1]benzothieno[3,2-b]benzothiophene derivative and phase evolution by aging and solvent vapor annealing.

    Science.gov (United States)

    Jones, Andrew O F; Geerts, Yves H; Karpinska, Jolanta; Kennedy, Alan R; Resel, Roland; Röthel, Christian; Ruzié, Christian; Werzer, Oliver; Sferrazza, Michele

    2015-01-28

    Substrate-induced phases (SIPs) are polymorphic phases that are found in thin films of a material and are different from the single crystal or "bulk" structure of a material. In this work, we investigate the presence of a SIP in the family of [1]benzothieno[3,2-b]benzothiophene (BTBT) organic semiconductors and the effect of aging and solvent vapor annealing on the film structure. Through extensive X-ray structural investigations of spin coated films, we find a SIP with a significantly different structure to that found in single crystals of the same material forms; the SIP has a herringbone motif while single crystals display layered π-π stacking. Over time, the structure of the film is found to slowly convert to the single crystal structure. Solvent vapor annealing initiates the same structural evolution process but at a greatly increased rate, and near complete conversion can be achieved in a short period of time. As properties such as charge transport capability are determined by the molecular structure, this work highlights the importance of understanding and controlling the structure of organic semiconductor films and presents a simple method to control the film structure by solvent vapor annealing.

  9. Predicting the growth of S i3N4 nanowires by phase-equilibrium-dominated vapor-liquid-solid mechanism

    Science.gov (United States)

    Zhang, Yongliang; Cai, Jing; Yang, Lijun; Wu, Qiang; Wang, Xizhang; Hu, Zheng

    2017-09-01

    Nanomaterial synthesis is experiencing a profound evolution from empirical science ("cook-and-look") to prediction and design, which depends on the deep insight into the growth mechanism. Herein, we report a generalized prediction of the growth of S i3N4 nanowires by nitriding F e28S i72 alloy particles across different phase regions based on our finding of the phase-equilibrium-dominated vapor-liquid-solid (PED-VLS) mechanism. All the predictions about the growth of S i3N4 nanowires, and the associated evolutions of lattice parameters and geometries of the coexisting Fe -Si alloy phases, are experimentally confirmed quantitatively. This progress corroborates the general validity of the PED-VLS mechanism, which could be applied to the design and controllable synthesis of various one-dimensional nanomaterials.

  10. Hollow nanoporous covalent triazine frameworks via acid vapor-assisted solid phase synthesis for enhanced visible light photoactivity

    KAUST Repository

    Huang, Wei

    2016-04-11

    Herein, we report a novel trifluoromethanesulfonic acid vapor-assisted solid phase synthetic method to construct nanoporous covalent triazine frameworks with highly ordered hollow interconnected pores under mild reaction conditions. This unique solid state synthetic route allows not only the avoidance of undesired side reactions caused by traditional high temperature synthesis, but also the maintaining of defined and precise optical and electronic properties of the nonporous triazine frameworks. Promising photocatalytic activity of the polytriazine networks was demonstrated in the photoreduction reaction of 4-nitrophenol into 4-aminophenol under visible light irradiation.

  11. Identification of vapor-phase chemical warfare agent simulants and rocket fuels using laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Stearns, Jaime A.; McElman, Sarah E.; Dodd, James A.

    2010-01-01

    Application of laser-induced breakdown spectroscopy (LIBS) to the identification of security threats is a growing area of research. This work presents LIBS spectra of vapor-phase chemical warfare agent simulants and typical rocket fuels. A large dataset of spectra was acquired using a variety of gas mixtures and background pressures and processed using partial least squares analysis. The five compounds studied were identified with a 99% success rate by the best method. The temporal behavior of the emission lines as a function of chamber pressure and gas mixture was also investigated, revealing some interesting trends that merit further study.

  12. Identification of vapor-phase chemical warfare agent simulants and rocket fuels using laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stearns, Jaime A.; McElman, Sarah E.; Dodd, James A.

    2010-05-01

    Application of laser-induced breakdown spectroscopy (LIBS) to the identification of security threats is a growing area of research. This work presents LIBS spectra of vapor-phase chemical warfare agent simulants and typical rocket fuels. A large dataset of spectra was acquired using a variety of gas mixtures and background pressures and processed using partial least squares analysis. The five compounds studied were identified with a 99% success rate by the best method. The temporal behavior of the emission lines as a function of chamber pressure and gas mixture was also investigated, revealing some interesting trends that merit further study.

  13. Hollow nanoporous covalent triazine frameworks via acid vapor-assisted solid phase synthesis for enhanced visible light photoactivity

    KAUST Repository

    Huang, Wei; Wang, Zi Jun; Ma, Beatriz Chiyin; Ghasimi, Saman; Gehrig, Dominik; Laquai, Fré dé ric; Landfester, Katharina; Zhang, Kai A. I.

    2016-01-01

    Herein, we report a novel trifluoromethanesulfonic acid vapor-assisted solid phase synthetic method to construct nanoporous covalent triazine frameworks with highly ordered hollow interconnected pores under mild reaction conditions. This unique solid state synthetic route allows not only the avoidance of undesired side reactions caused by traditional high temperature synthesis, but also the maintaining of defined and precise optical and electronic properties of the nonporous triazine frameworks. Promising photocatalytic activity of the polytriazine networks was demonstrated in the photoreduction reaction of 4-nitrophenol into 4-aminophenol under visible light irradiation.

  14. Modelling and numerical simulation of liquid-vapor phase transitions; Modelisation et simulation numerique des transitions de phase liquide-vapeur

    Energy Technology Data Exchange (ETDEWEB)

    Caro, F

    2004-11-15

    This work deals with the modelling and numerical simulation of liquid-vapor phase transition phenomena. The study is divided into two part: first we investigate phase transition phenomena with a Van Der Waals equation of state (non monotonic equation of state), then we adopt an alternative approach with two equations of state. In the first part, we study the classical viscous criteria for selecting weak solutions of the system used when the equation of state is non monotonic. Those criteria do not select physical solutions and therefore we focus a more recent criterion: the visco-capillary criterion. We use this criterion to exactly solve the Riemann problem (which imposes solving an algebraic scalar non linear equation). Unfortunately, this step is quite costly in term of CPU which prevent from using this method as a ground for building Godunov solvers. That is why we propose an alternative approach two equations of state. Using the least action principle, we propose a phase changing two-phase flow model which is based on the second thermodynamic principle. We shall then describe two equilibrium submodels issued from the relaxations processes when instantaneous equilibrium is assumed. Despite the weak hyperbolicity of the last sub-model, we propose stable numerical schemes based on a two-step strategy involving a convective step followed by a relaxation step. We show the ability of the system to simulate vapor bubbles nucleation. (author)

  15. Theoretical approaches and experimental evidence for liquid-vapor phase transitions in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Moretto, L.G.; Elliott, J.B.; Phair, L.; Wozniak, G.J.; Mader, C.M.; Chappars, A.

    2001-01-01

    The leptodermous approximation is applied to nuclear systems for T > 0. The introduction of surface corrections leads to anomalous caloric curves and to negative heat capacities in the liquid-gas coexistence region. Clusterization in the vapor is described by associating surface energy to clusters according to Fisher's formula. The three-dimensional Ising model, a leptodermous system par excellence, does obey rigorously Fisher's scaling up to the critical point. Multifragmentation data from several experiments including the ISiS and EOS Collaborations, as well as compound nucleus fragment emission at much lower energy follow the same scaling, thus providing the strongest evidence yet of liquid-vapor coexistence.

  16. Modeling Two-Phase Flow and Vapor Cycles Using the Generalized Fluid System Simulation Program

    Science.gov (United States)

    Smith, Amanda D.; Majumdar, Alok K.

    2017-01-01

    This work presents three new applications for the general purpose fluid network solver code GFSSP developed at NASA's Marshall Space Flight Center: (1) cooling tower, (2) vapor-compression refrigeration system, and (3) vapor-expansion power generation system. These systems are widely used across engineering disciplines in a variety of energy systems, and these models expand the capabilities and the use of GFSSP to include fluids and features that are not part of its present set of provided examples. GFSSP provides pressure, temperature, and species concentrations at designated locations, or nodes, within a fluid network based on a finite volume formulation of thermodynamics and conservation laws. This paper describes the theoretical basis for the construction of the models, their implementation in the current GFSSP modeling system, and a brief evaluation of the usefulness of the model results, as well as their applicability toward a broader spectrum of analytical problems in both university teaching and engineering research.

  17. Time-Resolved In Situ Liquid-Phase Atomic Force Microscopy and Infrared Nanospectroscopy during the Formation of Metal-Organic Framework Thin Films.

    Science.gov (United States)

    Mandemaker, Laurens D B; Filez, Matthias; Delen, Guusje; Tan, Huanshu; Zhang, Xuehua; Lohse, Detlef; Weckhuysen, Bert M

    2018-04-19

    Metal-organic framework (MOF) thin films show unmatched promise as smart membranes and photocatalytic coatings. However, their nucleation and growth resulting from intricate molecular assembly processes are not well understood yet are crucial to control the thin film properties. Here, we directly observe the nucleation and growth behavior of HKUST-1 thin films by real-time in situ AFM at different temperatures in a Cu-BTC solution. In combination with ex situ infrared (nano)spectroscopy, synthesis at 25 °C reveals initial nucleation of rapidly growing HKUST-1 islands surrounded by a continuously nucleating but slowly growing HKUST-1 carpet. Monitoring at 13 and 50 °C shows the strong impact of temperature on thin film formation, resulting in (partial) nucleation and growth inhibition. The nucleation and growth mechanisms as well as their kinetics provide insights to aid in future rational design of MOF thin films.

  18. Vapor phase modification of sol-gel derived titania (TiO{sub 2}) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Piwonski, Ireneusz [University of Lodz, Department of Chemical Technology and Environmental Protection, Pomorska 163, 90-236 Lodz (Poland)]. E-mail: irek@uni.lodz.pl; Ilik, Aneta [University of Lodz, Department of Chemical Technology and Environmental Protection, Pomorska 163, 90-236 Lodz (Poland)

    2006-12-30

    Chemical vapor deposition (CVD) method was used in titania surface modification. Titania layers were obtained in sol-gel process and prepared as thin films on silicon wafers in dip-coating method. In order to define the influence of modification on titania surface properties (e.g., friction), various types of fluoroalkylsilanes were used. The effectiveness of the modification was monitored by FT-IR spectroscopy. The topography and frictional measurements were investigated with the use of atomic force microscopy (AFM)

  19. Toward a Monte Carlo program for simulating vapor-liquid phase equilibria from first principles

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, M; Siepmann, J I; Kuo, I W; Mundy, C J; Vandevondele, J; Sprik, M; Hutter, J; Mohamed, F; Krack, M; Parrinello, M

    2004-10-20

    Efficient Monte Carlo algorithms are combined with the Quickstep energy routines of CP2K to develop a program that allows for Monte Carlo simulations in the canonical, isobaric-isothermal, and Gibbs ensembles using a first principles description of the physical system. Configurational-bias Monte Carlo techniques and pre-biasing using an inexpensive approximate potential are employed to increase the sampling efficiency and to reduce the frequency of expensive ab initio energy evaluations. The new Monte Carlo program has been validated through extensive comparison with molecular dynamics simulations using the programs CPMD and CP2K. Preliminary results for the vapor-liquid coexistence properties (T = 473 K) of water using the Becke-Lee-Yang-Parr exchange and correlation energy functionals, a triple-zeta valence basis set augmented with two sets of d-type or p-type polarization functions, and Goedecker-Teter-Hutter pseudopotentials are presented. The preliminary results indicate that this description of water leads to an underestimation of the saturated liquid density and heat of vaporization and, correspondingly, an overestimation of the saturated vapor pressure.

  20. Optical properties of metastable shallow acceptors in Mg-doped GaN layers grown by metal-organic vapor phase epitaxy

    OpenAIRE

    Pozina, Galia; Hemmingsson, Carl; Bergman, Peder; Kawashima, T.; Amano, H.; Akasaki, I.; Usui, A.; Monemar, Bo

    2010-01-01

    GaN layers doped by Mg show a metastable behavior of the near-band-gap luminescence caused by electron irradiation or UV excitation. At low temperatures < 30 K the changes in luminescence are permanent. Heating to room temperature recovers the initial low temperature spectrum shape completely. Two acceptors are involved in the recombination process as confirmed by transient PL. In as-grown samples a possible candidate for the metastable acceptor is C-N, while after annealing a second m...

  1. InAs quantum dot growth on AlxGa1−xAs by metalorganic vapor phase epitaxy for intermediate band solar cells

    International Nuclear Information System (INIS)

    Jakomin, R.; Kawabata, R. M. S.; Souza, P. L.; Mourão, R. T.; Pires, M. P.; Micha, D. N.; Xie, H.; Fischer, A. M.; Ponce, F. A.

    2014-01-01

    InAs quantum dot multilayers have been grown using Al x Ga 1−x As spacers with dimensions and compositions near the theoretical values for optimized efficiencies in intermediate band photovoltaic cells. Using an aluminium composition of x = 0.3 and InAs dot vertical dimensions of 5 nm, transitions to an intermediate band with energy close to the ideal theoretical value have been obtained. Optimum size uniformity and density have been achieved by capping the quantum dots with GaAs following the indium-flush method. This approach has also resulted in minimization of crystalline defects in the epilayer structure

  2. Pollution level and distribution of PCDD/PCDF congeners between vapor phase and particulate phase in winter air of Dalian, China.

    Science.gov (United States)

    Wang, Wei; Qin, Songtao; Song, Yu; Xu, Qian; Ni, Yuwen; Chen, Jiping; Zhang, Xueping; Mu, Jim; Zhu, Xiuhua

    2011-06-01

    In December 2009, ambient air was sampled with active high-volume air samplers at two sites: on the roof of the No. l building of Dalian Jiaotong University and on the roof of the building of Dalian Meteorological Observatory. The concentrations and the congeners between vapor phase and particulate phase of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in the air were measured. Sample analysis results showed that the concentrations of PCDD/Fs in particulate phase was higher than that in gaseous phase. The ratio of PCDD to PCDF in gaseous phase and particulate phase was lower than 0.4 in all samples. The total I-TEQ value in gaseous phase and particulate phase was 5.5 and 453.8 fg/m(3) at Dalian Jiaotong University, 16.6 and 462.1 fg/m(3) at Dalian Meteorological Observatory, respectively. The I-TEQ value of Dalian atmosphere was 5.5-462.1 fg/m(3) which was lower than international standard, the atmospheric quality in Dalian is better. Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  3. Theoretical Investigation of the Structural Stabilities of Ceria Surfaces and Supported Metal Nanocluster in Vapor and Aqueous Phases

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhibo [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Liu, Ning [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Chen, Biaohua [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Li, Jianwei [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Mei, Donghai [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States

    2018-01-25

    Understanding the structural stability and dynamics at the interface between the solid metal oxide and aqueous phase is significant in a variety of industrial applications including heterogeneous catalysis and environmental remediation. In the present work, the stabilities of three low-index ceria (CeO2) surfaces, i.e., (111), (110) and (100) in vapor and aqueous phases were studied using ab initio molecular dynamics simulations and density functional theory (DFT) calculations. Gibbs surface free energies as a function of temperature, water partial pressure, and water coverages were calculated using DFT based atomistic thermodynamic approach. On the basis of surface free energies, the morphology and exposed surface structures of the CeO2 nanoparticle were predicted using Wulff construction principle. It is found that the partially hydroxylated (111) and (100) are two major surface structures of CeO2 nanoparticles in vapor phase at ambient temperature (300 K). As the temperature increases, the fully dehydrated (111) surface gradually becomes the most dominant surface structure. While in aqueous phase, the exposed surface of the CeO2 nanoparticle is dominated by the hydroxylated (110) structure at 393 K. Finally, the morphology and stability of a cuboctahedron Pt13 nanocluster supported on CeO2 surfaces in both gas and aqueous phases were investigated. In gas phase, the supported Pt13 nanocluster has the tendency to wetting the CeO2 surface due to the strong metal-support interaction. The calculated interaction energies suggest the CeO2(110) surface provides the best stability for the Pt13 nanocluster. The CeO2 supported Pt13 nanoclusters are oxidized. Compared to the gas phase, the morphology of the CeO2 supported Pt13 nanocluster is less distorted due to the solvation effect provided by surrounding water molecules in aqueous phase. More electrons are transferred from the Pt13 nanocluster to the CeO2 support, implying the supported Pt13 nanocluster is further

  4. Vapor-phase polymerization of poly(3, 4-ethylenedioxythiophene) nanofibers on carbon cloth as electrodes for flexible supercapacitors

    Science.gov (United States)

    Zhao, Xin; Dong, Mengyang; Zhang, Junxian; Li, Yingzhi; Zhang, Qinghua

    2016-09-01

    In this study, an evaporative vapor-phase polymerization approach was employed to fabricate vertically aligned poly(3, 4-ethylenedioxythiophene) (PEDOT) nanofibers on the surface of carbon cloth (CC). Optimized reaction conditions can obtain well distributed and uniform layers of high-aspect-ratio PEDOT nanofibers on CC. The hierarchical PEDOT/CC structure as a freestanding electrode exhibits good electrochemical properties. As a flexible symmetric supercapacitor, the PEDOT/CC hybrid electrode displays a specific areal capacitance of 201.4 mF cm-2 at 1 mA cm-2, good flexibility with a higher value (204.6 mF cm-2) in the bending state, and a good cycling stability of 92.4% after 1000 cycles. Moreover, the device shows a maximum energy density of 4.0 Wh kg-1 (with a power density of 3.2 kW kg-1) and a maximum power density of 4.2 kW kg-1 (with an energy density of 3.1 Wh kg-1). The results demonstrate that PEDOT may be a promising material for storage devices through a simple and efficient vapor-phase polymerization process with precisely controlled reaction conditions.

  5. Growth kinetics and mass transport mechanisms of GaN columns by selective area metal organic vapor phase epitaxy

    Science.gov (United States)

    Wang, Xue; Hartmann, Jana; Mandl, Martin; Sadat Mohajerani, Matin; Wehmann, Hergo-H.; Strassburg, Martin; Waag, Andreas

    2014-04-01

    Three-dimensional GaN columns recently have attracted a lot of attention as the potential basis for core-shell light emitting diodes for future solid state lighting. In this study, the fundamental insights into growth kinetics and mass transport mechanisms of N-polar GaN columns during selective area metal organic vapor phase epitaxy on patterned SiOx/sapphire templates are systematically investigated using various pitch of apertures, growth time, and silane flow. Species impingement fluxes on the top surface of columns Jtop and on their sidewall Jsw, as well as, the diffusion flux from the substrate Jsub contribute to the growth of the GaN columns. The vertical and lateral growth rates devoted by Jtop, Jsw and Jsub are estimated quantitatively. The diffusion length of species on the SiOx mask surface λsub as well as on the sidewall surfaces of the 3D columns λsw are determined. The influences of silane on the growth kinetics are discussed. A growth model is developed for this selective area metal organic vapor phase epitaxy processing.

  6. Vapor-phase hydrothermal transformation of HTiOF3 intermediates into {001} faceted anatase single-crystalline nanosheets.

    Science.gov (United States)

    Liu, Porun; Wang, Yun; Zhang, Haimin; An, Taicheng; Yang, Huagui; Tang, Zhiyong; Cai, Weiping; Zhao, Huijun

    2012-12-07

    For the first time, a facile, one-pot hydrofluoric acid vapor-phase hydrothermal (HF-VPH) method is demonstrated to directly grow single-crystalline anatase TiO(2) nanosheets with 98.2% of exposed {001} faceted surfaces on the Ti substrate via a distinctive two-stage formation mechanism. The first stage produces a new intermediate crystal (orthorhombic HTiOF(3) ) that is transformed into anatase TiO(2) nanosheets during the second stage. The findings reveal that the HF-VPH reaction environment is unique and differs remarkably from that of liquid-phase hydrothermal processes. The uniqueness of the HF-VPH conditions can be readily used to effectively control the nanostructure growth. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Magmatic Vapor Phase Transport of Copper in Reduced Porphyry Copper-Gold Deposits: Evidence From PIXE Microanalysis of Fluid Inclusions

    Science.gov (United States)

    Rowins, S. M.; Yeats, C. J.; Ryan, C. G.

    2002-05-01

    Nondestructive proton-induced X-ray emission (PIXE) studies of magmatic fluid inclusions in granite-related Sn-W deposits [1] reveal that copper transport out of reduced felsic magmas is favored by low-salinity vapor and not co-existing high-salinity liquid (halite-saturated brine). Copper transport by magmatic vapor also has been documented in oxidized porphyry Cu-Au deposits, but the magnitude of Cu partitioning into the vapor compared to the brine generally is less pronounced than in the reduced magmatic Sn-W systems [2]. Consideration of these microanalytical data leads to the hypothesis that Cu and, by inference, Au in the recently established "reduced porphyry copper-gold" (RPCG) subclass should partition preferentially into vapor and not high-salinity liquid exsolving directly from fluid-saturated magmas [3-4]. To test this hypothesis, PIXE microanalysis of primary fluid inclusions in quartz-sulfide (pyrite, pyrrhotite & chalcopyrite) veins from two RPCG deposits was undertaken using the CSIRO-GEMOC nuclear microprobe. PIXE microanalysis for the ~30 Ma San Anton deposit (Mexico) was done on halite-saturated aqueous brine (deposit (W. Australia) was done on halite-saturated "aqueous" inclusions, which contain a small (deposits of the new RPCG subclass demonstrate the greater potential of these systems, compared to the classically oxidized porphyry Cu-Au systems, to transport Cu and probably precious metals in a magmatic aqueous vapor phase. These PIXE data also support the possibility that Cu partitions preferentially into an immiscible CO2-rich magmatic fluid. References: [1] Heinrich, C.A. et al. (1992) Econ. Geol., 87, 1566-1583. [2] Heinrich, C.A. et al. (1999) Geology, 27, 755-758. [3] Rowins, S.M. (2000) Geology, 28, 491-494. [4] Rowins, S.M. (2000) The Gangue, GAC-MDD Newsletter, 67, 1-7 (www.gac.ca). [5] Rowins, S.M. et al. (1993) Geol. Soc. Australia Abs., 34, 68-70.

  8. Thermal ionization and plasma state of high temperature vapor of UO2, Cs, and Na: Effect on the heat and radiation transport properties of the vapor phase

    International Nuclear Information System (INIS)

    Karow, H.U.

    1979-01-01

    The paper deals with the question how far the thermophysical state and the convective and radiative heat transport properties of vaporized reactor core materials are affected by the thermal ionization existing in the actual vapor state. The materials under consideration here are: nuclear oxide fuel (UO 2 ), Na (as the LMFBR coolant material), and Cs (alkaline fission product, partly retained in the fuel of the core zone). (orig./RW) [de

  9. Hydrolytically stable fluorinated metal-organic frameworks for energy-efficient dehydration

    KAUST Repository

    Cadiau, Amandine; Belmabkhout, Youssef; Adil, Karim; Bhatt, Prashant; Pillai, Renjith S.; Shkurenko, Aleksander; Martineau-Corcos, Charlotte; Maurin, Guillaume; Eddaoudi, Mohamed

    2017-01-01

    fluorinated metal-organic framework, AlFFIVE-1-Ni (KAUST-8), with a periodic array of open metal coordination sites and fluorine moieties within the contracted square-shaped one-dimensional channel. This material selectively removed water vapor from gas

  10. Metallated metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Bury, Wojciech; Farha, Omar K.; Hupp, Joseph T.; Mondloch, Joseph E.

    2017-08-22

    Porous metal-organic frameworks (MOFs) and metallated porous MOFs are provided. Also provided are methods of metallating porous MOFs using atomic layer deposition and methods of using the metallated MOFs as catalysts and in remediation applications.

  11. Vapor-Liquid Phase Equilibria for Carbon Dioxide-I- Isopentanol Binary System at Elevated Pressure%Vapor-Liquid Phase Equilibria for Carbon Dioxide-I- Isopentanol Binary System at Elevated Pressure

    Institute of Scientific and Technical Information of China (English)

    王琳; 曹丰璞; 刘珊珊; 杨浩

    2011-01-01

    High-pressure vapor-liquid phase equilibrium data for carbon dioxide+ isopentanol were measured at tempera- tures of 313.2, 323.1, 333.5 and 343.4 K in the pressure range of 4.64 to 12.71 MPa in a variable-volume high-pressure visual cell. The experimental data were well correlated with Peng-Robinson equation of state (PR-EOS) together with van der Waals-2 two-parameter mixing rule, and the binary interaction parameters were obtained. Henry coefficients and partial molar volumes of CO2 at infinite dilution were estimated based on Krichevsky-Kasarnovsky equation, and Henry coefficients increase with increasing temperature, however, partial molar volumes of CO2 at infinite dilution are negative and the magnitudes decrease with temperature.

  12. Solid phase extraction of Cd(II) and Pb(II) using a magnetic metal-organic framework, and their determination by FAAS

    International Nuclear Information System (INIS)

    Sohrabi, Mahmoud Reza; Matbouie, Zahra; Asgharinezhad, Ali Akbar; Dehghani, Ali

    2013-01-01

    We describe a novel magnetic metal-organic framework (MOF) for the preconcentration of Cd(II) and Pb(II) ions. The MOF was prepared from the Fe 3 O 4 -pyridine conjugate and the copper(II) complex of trimesic acid. The MOF was characterized by IR spectroscopy, elemental analysis, SEM and XRD. A Box-Behnken design through response surface methodology and experimental design was used to identify the optimal parameters for preconcentration. Extraction time, amount of magnetic MOF and pH value were found to be critical factors for uptake, while type, volume, concentration of eluent, and elution time are critical in the elution step. The ions were then determined by FAAS. The limits of detection are 0.2 and 1.1 μg L −1 for Cd(II), and Pb(II) ions, respectively, relative standard deviations are −1 of Cd(II) and Pb(II) ions), and the enrichment capacity of the MOF is at around 190 mg g −1 for both ions which is higher than the conventional Fe 3 O 4 -pyridine material. The magnetic MOF was successfully applied to the rapid extraction of trace quantities of Cd(II) and Pb(II) ions in fish, sediment, and water samples. (author)

  13. Preparation of high-pressure phase boron nitride films by physical vapor deposition

    CERN Document Server

    Zhu, P W; Zhao, Y N; Li, D M; Liu, H W; Zou Guang Tian

    2002-01-01

    The high-pressure phases boron nitride films together with cubic, wurtzic, and explosive high-pressure phases, were successfully deposited on the metal alloy substrates by tuned substrate radio frequency magnetron sputtering. The percentage of cubic boron nitride phase in the film was about 50% as calculated by Fourier transform infrared measurements. Infrared peak position of cubic boron nitride at 1006.3 cm sup - sup 1 , which is close to the stressless state, indicates that the film has very low internal stress. Transition electron microscope micrograph shows that pure cubic boron nitride phase exits on the surface of the film. The growth mechanism of the BN films was also discussed.

  14. Vacuum distillation/vapor filtration water recovery, phases 1 and 2

    Science.gov (United States)

    Honegger, R. J.; Remus, G. A.; Krug, E. K.

    1973-01-01

    The research is reported on the development of an evaporator for vacuum distillation/vapor filtration VD/VF water reclamation system for use on manned space flights. The design, fabrication, and tests of a six-man evaporator are described. It is concluded that: (1) A condenser with an internal rotating impeller and coolant surfaces directly opposite the condensing surfaces is an effective condenser. (2) The VD/VF evaporator, catalyst unit and condenser function satisfactorily based on thermal, mechanical and recovery performance during a 145-hour evaluation test. (3) The quality of recovered water, as measured by analyses for total organic carbon, pH, conductivity, turbidity, and viable bacteria density was within established limits for potability.

  15. A low phase noise microwave frequency synthesis for a high-performance cesium vapor cell atomic clock

    Energy Technology Data Exchange (ETDEWEB)

    François, B.; Boudot, R. [FEMTO-ST, CNRS, Université de Franche-Comté, 26 chemin de l' Epitaphe, 25030 Besançon (France); Calosso, C. E. [INRIM, Strada delle Cacce 91, 10135 Torino (Italy); Danet, J. M. [LNE-SYRTE, Observatoire de Paris, CNRS-UPMC, 61 avenue de l' Observatoire, 75014 Paris (France)

    2014-09-15

    We report the development, absolute phase noise, and residual phase noise characterization of a 9.192 GHz microwave frequency synthesis chain devoted to be used as a local oscillator in a high-performance cesium vapor cell atomic clock based on coherent population trapping (CPT). It is based on frequency multiplication of an ultra-low phase noise 100 MHz oven-controlled quartz crystal oscillator using a nonlinear transmission line-based chain. Absolute phase noise performances of the 9.192 GHz output signal are measured to be −42, −100, −117 dB rad{sup 2}/Hz and −129 dB rad{sup 2}/Hz at 1 Hz, 100 Hz, 1 kHz, and 10 kHz offset frequencies, respectively. Compared to current results obtained in a state-of-the-art CPT-based frequency standard developed at LNE-SYRTE, this represents an improvement of 8 dB and 10 dB at f = 166 Hz and f = 10 kHz, respectively. With such performances, the expected Dick effect contribution to the atomic clock short term frequency stability is reported at a level of 6.2 × 10{sup −14} at 1 s integration time, that is a factor 3 higher than the atomic clock shot noise limit. Main limitations are pointed out.

  16. Tank vapor sampling and analysis data package for tank 241-C-106 waste retrieval sluicing system process test phase III, sampled March 28, 1999

    International Nuclear Information System (INIS)

    LOCKREM, L.L.

    1999-01-01

    This data package presents sampling data and analytical results from the March 28, 1999, vapor sampling of Hanford Site single-shell tank 241-C-106 during active sluicing. Samples were obtained from the 296-C-006 ventilation system stack and ambient air at several locations. Characterization Project Operations (CPO) was responsible for the collection of all SUMMATM canister samples. The Special Analytical Support (SAS) vapor team was responsible for the collection of all triple sorbent trap (TST), sorbent tube train (STT), polyurethane foam (PUF), and particulate filter samples collected at the 296-C-006 stack. The SAS vapor team used the non-electrical vapor sampling (NEVS) system to collect samples of the air, gases, and vapors from the 296-C-006 stack. The SAS vapor team collected and analyzed these samples for Lockheed Martin Hanford Corporation (LMHC) and Tank Waste Remediation System (TWRS) in accordance with the sampling and analytical requirements specified in the Waste Retrieval Sluicing System Vapor Sampling and Analysis Plan (SAP) for Evaluation of Organic Emissions, Process Test Phase III, HNF-4212, Rev. 0-A, (LMHC, 1999). All samples were stored in a secured Radioactive Materials Area (RMA) until the samples were radiologically released and received by SAS for analysis. The Waste Sampling and Characterization Facility (WSCF) performed the radiological analyses. The samples were received on April 5, 1999

  17. The Validation of Vapor Phase Hydrogen Peroxide Microbial Reduction for Planetary Protection and a Proposed Vacuum Process Specification

    Science.gov (United States)

    Chung, Shirley; Barengoltz, Jack; Kern, Roger; Koukol, Robert; Cash, Howard

    2006-01-01

    The Jet Propulsion Laboratory, in conjunction with the NASA Planetary Protection Officer, has selected the vapor phase hydrogen peroxide sterilization process for continued development as a NASA approved sterilization technique for spacecraft subsystems and systems. The goal is to include this technique, with an appropriate specification, in NPR 8020.12C as a low temperature complementary technique to the dry heat sterilization process.To meet microbial reduction requirements for all Mars in-situ life detection and sample return missions, various planetary spacecraft subsystems will have to be exposed to a qualified sterilization process. This process could be the elevated temperature dry heat sterilization process (115 C for 40 hours) which was used to sterilize the Viking lander spacecraft. However, with utilization of such elements as highly sophisticated electronics and sensors in modern spacecraft, this process presents significant materials challenges and is thus an undesirable bioburden reduction method to design engineers. The objective of this work is to introduce vapor hydrogen peroxide (VHP) as an alternative to dry heat microbial reduction to meet planetary protection requirements.The VHP process is widely used by the medical industry to sterilize surgical instruments and biomedical devices, but high doses of VHP may degrade the performance of flight hardware, or compromise material properties. Our goal for this study was to determine the minimum VHP process conditions to achieve microbial reduction levels acceptable for planetary protection.

  18. Measurement of vapor-liquid-liquid phase equilibrium-Equipment and results

    DEFF Research Database (Denmark)

    Frost, Michael Grynnerup; von Solms, Nicolas; Richon, Dominique

    2015-01-01

    There exists a need for new accurate and reliable experimental data, preferably with full characterization of all the phases present in equilibrium. The need for high-quality experimental phase equilibrium data is the case for the chemical industry in general. All areas deal with processes whose ...

  19. Vapor Chamber with Phase Change Material-Based Wick Structure for Thermal Control of Manned Spacecraft, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — During a NASA Phase I SBIR program, ACT addressed the need for light-weight, non-venting PCM heat storage devices by successfully demonstrating proof-of-concept of a...

  20. Vapor Chamber with Phase Change Material-based Wick Structure for Thermal Control of Manned Spacecraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In response to NASA SBIR solicitation H3.01 "Thermal Control for Future Human Exploration", Advanced Cooling Technologies, Inc. (ACT) is proposing a novel Phase...

  1. Highly resistive C-doped hydride vapor phase epitaxy-GaN grown on ammonothermally crystallized GaN seeds

    Science.gov (United States)

    Iwinska, Malgorzata; Piotrzkowski, Ryszard; Litwin-Staszewska, Elzbieta; Sochacki, Tomasz; Amilusik, Mikolaj; Fijalkowski, Michal; Lucznik, Boleslaw; Bockowski, Michal

    2017-01-01

    GaN crystals were grown by hydride vapor phase epitaxy (HVPE) and doped with C. The seeds were high-structural-quality ammonothermally crystallized GaN. The grown crystals were highly resistive at 296 K and of high structural quality. High-temperature Hall effect measurements revealed p-type conductivity and a deep acceptor level in the material with an activation energy of 1 eV. This is in good agreement with density functional theory calculations based on hybrid functionals as presented by the Van de Walle group. They obtained an ionization energy of 0.9 eV when C was substituted for N in GaN and acted as a deep acceptor.

  2. Vapor-phase etching of InP using anhydrous HCl and PH/sub 3/ gas

    International Nuclear Information System (INIS)

    Pak, K.; Koide, Y.; Imai, K.; Yoshida, A.; Nakamura, T.; Yasuda, Y.; Nishinaga, T.

    1986-01-01

    In situ etching of the substrate surface for vapor-phase epitaxy is a useful technique for obtaining a smooth and damage-free surface prior to the growth. Previous work showed that the incorporation of in situ etching of InP substrate with anhydrous HCl gas resulted in a significant improvement in the surface morphologies for MOVPE-grown InGaAs/InP and InP epitaxial layers. However, the experiment on the HCl etching of the InP substrate for a wide temperature range has not been performed as yet. In this note, the authors describe the effect of the substrate temperature on the etching morphology of InP substrate by using the anhydrous HCl and PH/sub 3/ gases. In the experiment, they used a standard MOVPE horizontal system. A quartz reactor tube in a 60 mm ID, 60 cm long, was employed

  3. Photoluminescence investigation of thick GaN films grown on Si substrates by hydride vapor phase epitaxy

    International Nuclear Information System (INIS)

    Yang, M.; Ahn, H. S.; Chang, J. H.; Yi, S. N.; Kim, K. H.; Kim, H.; Kim, S. W.

    2003-01-01

    The optical properties of thick GaN films grown by hydried vapor phase epitaxy (HVPE) using a low-temperature intermediate GaN buffer layer grown on a (111) Si substrate with a ZnO thin film were investigated by using photoluminescence (PL) measurement at 300 K and 77 K. The strong donor bound exciton (DBE) at 357 nm with a full width at half maximum (FWHM) of 15 meV was observed at 77 K. The value of 15 meV is extremely narrow for GaN grown on Si substrate by HVPE. An impurity-related peak was also observed at 367 nm. The origin of impurity was investigated using Auger spectroscopy.

  4. Preparation of mesoporous nanofibers by vapor phase synthesis: control of mesopore structures with the aid of co-surfactants

    International Nuclear Information System (INIS)

    Min, Sa Hoon; Jang, Jyongsik; Lee, Kyung Jin; Bae, Joonwon

    2013-01-01

    Mesoporous nanofibers (MSNFs) can be fabricated in the pores of anodic aluminum oxide (AAO) membrane using diverse methods. Among them vapor phase synthesis (VPS) provides several advantages over sol–gel or evaporation-induced self-assembly (EISA) based methods. One powerful advantage is that we can employ multiple surfactants as structural directing agents (SDAs) simultaneously. By adopting diverse pairs of SDAs, we can control the mesopore structures, i.e. pore size, surface area, and even the morphology of mesostructures. Here, we used F127 as a main SDA, which is relatively robust (thus, difficult to change the mesopore structures), and added a series of cationic co-surfactants to observe the systematical changes in their mesostructure with respect to the chain length of the co-surfactant. (paper)

  5. Preparation of mesoporous nanofibers by vapor phase synthesis: control of mesopore structures with the aid of co-surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Min, Sa Hoon; Jang, Jyongsik; Lee, Kyung Jin [School of Chemical and Biological Engineering, College of Engineering, Seoul National University, Shinlimdong 56-1, Seoul, 151-742 (Korea, Republic of); Bae, Joonwon [Department of Applied Chemistry, Dongduk Women' s University, Seoul 136-714 (Korea, Republic of)

    2013-06-28

    Mesoporous nanofibers (MSNFs) can be fabricated in the pores of anodic aluminum oxide (AAO) membrane using diverse methods. Among them vapor phase synthesis (VPS) provides several advantages over sol-gel or evaporation-induced self-assembly (EISA) based methods. One powerful advantage is that we can employ multiple surfactants as structural directing agents (SDAs) simultaneously. By adopting diverse pairs of SDAs, we can control the mesopore structures, i.e. pore size, surface area, and even the morphology of mesostructures. Here, we used F127 as a main SDA, which is relatively robust (thus, difficult to change the mesopore structures), and added a series of cationic co-surfactants to observe the systematical changes in their mesostructure with respect to the chain length of the co-surfactant. (paper)

  6. Preparation of mesoporous nanofibers by vapor phase synthesis: control of mesopore structures with the aid of co-surfactants

    Science.gov (United States)

    Min, Sa Hoon; Bae, Joonwon; Jang, Jyongsik; Lee, Kyung Jin

    2013-06-01

    Mesoporous nanofibers (MSNFs) can be fabricated in the pores of anodic aluminum oxide (AAO) membrane using diverse methods. Among them vapor phase synthesis (VPS) provides several advantages over sol-gel or evaporation-induced self-assembly (EISA) based methods. One powerful advantage is that we can employ multiple surfactants as structural directing agents (SDAs) simultaneously. By adopting diverse pairs of SDAs, we can control the mesopore structures, i.e. pore size, surface area, and even the morphology of mesostructures. Here, we used F127 as a main SDA, which is relatively robust (thus, difficult to change the mesopore structures), and added a series of cationic co-surfactants to observe the systematical changes in their mesostructure with respect to the chain length of the co-surfactant.

  7. Preparation of 2-in.-diameter (001) β-Ga2O3 homoepitaxial wafers by halide vapor phase epitaxy

    Science.gov (United States)

    Thieu, Quang Tu; Wakimoto, Daiki; Koishikawa, Yuki; Sasaki, Kohei; Goto, Ken; Konishi, Keita; Murakami, Hisashi; Kuramata, Akito; Kumagai, Yoshinao; Yamakoshi, Shigenobu

    2017-11-01

    The homoepitaxial growth of thick β-Ga2O3 layers on 2-in.-diameter (001) wafers was demonstrated by halide vapor phase epitaxy. Growth rates of 3 to 4 µm/h were confirmed for growing intentionally Si-doped n-type layers. A homoepitaxial layer with an average thickness and carrier concentration of 10.9 µm and 2.7 × 1016 cm-3 showed standard deviations of 1.8 µm (16.5%) and 0.5 × 1016 cm-3 (19.7%), respectively. Ni Schottky barrier diodes fabricated directly on a 5.3-µm-thick homoepitaxial layer with a carrier concentration of 3.4 × 1016 cm-3 showed reasonable reverse and forward characteristics, i.e., breakdown voltages above 200 V and on-resistances of 3.8-7.7 mΩ cm2 at room temperature.

  8. Temperature dependence of InN growth on (0001) sapphire substrates by atmospheric pressure hydride vapor phase epitaxy

    International Nuclear Information System (INIS)

    Kumagai, Yoshinao; Adachi, Hirokazu; Otake, Aya; Higashikawa, Yoshihiro; Togashi, Rie; Murakami, Hisashi; Koukitu, Akinori

    2010-01-01

    The temperature dependence of InN growth on (0001) sapphire substrates by atmospheric pressure hydride vapor phase epitaxy (HVPE) was investigated. N-polarity single-crystal InN layers were successfully grown at temperatures ranging from 400 to 500 C. The a and c lattice constants of InN layers grown at 450 C or below were slightly larger than those of InN layers grown above 450 C due to oxygen incorporation that also increased the carrier concentration. The optical absorption edge of the InN layer decreased from above 2.0 to 0.76 eV when the growth temperature was increased from 450 to 500 C. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. A facile way to control phase of tin selenide flakes by chemical vapor deposition

    Science.gov (United States)

    Wang, Zhigang; Pang, Fei

    2018-06-01

    Although two-dimensional (2D) tin selenides are attracting intense attentions, studies on its phase transition are still relatively few. Here we report a facile way to control the phase growth of tin selenide flakes on mica and SiO2/Si by only adjusting nominal Sn:Se ratio, which refers to the amount of loaded SnO2 and Se precursors. High normal Sn:Se ratio induced SnSe flakes, conversely SnSe2 flakes formed. It could be used as a practical guide to selectively synthesize pure phase of single crystalline 2D layered chalcogenide materials similar to tin selenides.

  10. Metal-boride phase formation on tungsten carbide (WC-Co) during microwave plasma chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Jamin M.; Catledge, Shane A., E-mail: catledge@uab.edu

    2016-02-28

    Graphical abstract: - Highlights: • A detailed phase analysis after PECVD boriding shows WCoB, CoB and/or W{sub 2}CoB{sub 2}. • EDS of PECVD borides shows boron diffusion into the carbide grain structure. • Nanoindentation hardness and modulus of borides is 23–27 GPa and 600–780 GPa. • Scratch testing shows hard coating with cracking at 40N and spallation at 70N. - Abstract: Strengthening of cemented tungsten carbide by boriding is used to improve the wear resistance and lifetime of carbide tools; however, many conventional boriding techniques render the bulk carbide too brittle for extreme conditions, such as hard rock drilling. This research explored the variation in metal-boride phase formation during the microwave plasma enhanced chemical vapor deposition process at surface temperatures from 700 to 1100 °C. We showed several well-adhered metal-boride surface layers consisting of WCoB, CoB and/or W{sub 2}CoB{sub 2} with average hardness from 23 to 27 GPa and average elastic modulus of 600–730 GPa. The metal-boride interlayer was shown to be an effective diffusion barrier against elemental cobalt; migration of elemental cobalt to the surface of the interlayer was significantly reduced. A combination of glancing angle X-ray diffraction, electron dispersive spectroscopy, nanoindentation and scratch testing was used to evaluate the surface composition and material properties. An evaluation of the material properties shows that plasma enhanced chemical vapor deposited borides formed at substrate temperatures of 800 °C, 850 °C, 900 °C and 1000 °C strengthen the material by increasing the hardness and elastic modulus of cemented tungsten carbide. Additionally, these boride surface layers may offer potential for adhesion of ultra-hard carbon coatings.

  11. Synthesis of highly dispersed platinum particles on carbon nanotubes by an in situ vapor-phase method

    Energy Technology Data Exchange (ETDEWEB)

    Mercado-Zúñiga, C. [Depto. Ing. Metalurgia y Materiales, Instituto Politecnico Nacional, Mexico 07300 D.F. (Mexico); Vargas-García, J.R., E-mail: rvargasga@ipn.mx [Depto. Ing. Metalurgia y Materiales, Instituto Politecnico Nacional, Mexico 07300 D.F. (Mexico); Hernández-Pérez, M.A. [Depto. Ing. Metalurgia y Materiales, Instituto Politecnico Nacional, Mexico 07300 D.F. (Mexico); Figueroa-Torres, M.Z. [Depto. Eco-Materiales y Energia, Univ. Autonoma de Nuevo Leon, Nuevo Leon 66450 (Mexico); Cervantes-Sodi, F. [Depto. Fisica y Matematicas, Univ. Iberoamericana, Mexico 01209 D.F. (Mexico); Torres-Martínez, L.M. [Depto. Eco-Materiales y Energia, Univ. Autonoma de Nuevo Leon, Nuevo Leon 66450 (Mexico)

    2014-12-05

    Highlights: • Highly dispersed Pt nanoparticles were prepared on functionalized carbon nanotubes. • A simple and competitive vapor-phase method was employed. • Carbonyl groups were assumed to be responsible for assisted decomposition of Pt-acac. • Pt particles were highly dispersed because carbonyl groups served as reaction sites. • Particles of 2.3 nm in size were highly dispersed even the high loading (27 wt%Pt). - Abstract: Highly dispersed Pt nanoparticles were prepared on functionalized multi-walled carbon nanotubes (f-MWCNTs) using a simple in situ vapor-phase method. The method consisted in two-step procedure in which an initial mixture of Pt precursor (Pt-acac) and f-MWCNTs was heated in a quartz tube reactor, first at 180 °C and then at 400 °C. Fourier transform infrared spectroscopy (FTIR–ATR), thermal gravimetric analysis (TGA) and X-ray diffraction (XRD) were used to follow the chemical and structural transformations of mixture components during heating steps. The functionalization of MWCNTs with HNO{sub 3}/H{sub 2}SO{sub 4} solution resulted in formation of surface carbonyl groups. The FTIR–ATR and XRD results indicated that individual Pt-acac withstood heating at 180 °C, whereas it was dissociated when heated in contact with f-MWCNTs at the same temperature. Thus, the functional carbonyl groups were found to be responsible for assisted decomposition of Pt-acac at 180 °C. Since carbonyl groups served as reaction sites for decomposition of Pt-acac, the resulting particles were highly and homogeneously dispersed on the surface of MWCNTs even the relatively high metallic loading of 27 wt%. TEM observations revealed that crystalline Pt particles exhibit narrow size distribution with a mean size of 2.3 nm.

  12. Synthesis of highly dispersed platinum particles on carbon nanotubes by an in situ vapor-phase method

    International Nuclear Information System (INIS)

    Mercado-Zúñiga, C.; Vargas-García, J.R.; Hernández-Pérez, M.A.; Figueroa-Torres, M.Z.; Cervantes-Sodi, F.; Torres-Martínez, L.M.

    2014-01-01

    Highlights: • Highly dispersed Pt nanoparticles were prepared on functionalized carbon nanotubes. • A simple and competitive vapor-phase method was employed. • Carbonyl groups were assumed to be responsible for assisted decomposition of Pt-acac. • Pt particles were highly dispersed because carbonyl groups served as reaction sites. • Particles of 2.3 nm in size were highly dispersed even the high loading (27 wt%Pt). - Abstract: Highly dispersed Pt nanoparticles were prepared on functionalized multi-walled carbon nanotubes (f-MWCNTs) using a simple in situ vapor-phase method. The method consisted in two-step procedure in which an initial mixture of Pt precursor (Pt-acac) and f-MWCNTs was heated in a quartz tube reactor, first at 180 °C and then at 400 °C. Fourier transform infrared spectroscopy (FTIR–ATR), thermal gravimetric analysis (TGA) and X-ray diffraction (XRD) were used to follow the chemical and structural transformations of mixture components during heating steps. The functionalization of MWCNTs with HNO 3 /H 2 SO 4 solution resulted in formation of surface carbonyl groups. The FTIR–ATR and XRD results indicated that individual Pt-acac withstood heating at 180 °C, whereas it was dissociated when heated in contact with f-MWCNTs at the same temperature. Thus, the functional carbonyl groups were found to be responsible for assisted decomposition of Pt-acac at 180 °C. Since carbonyl groups served as reaction sites for decomposition of Pt-acac, the resulting particles were highly and homogeneously dispersed on the surface of MWCNTs even the relatively high metallic loading of 27 wt%. TEM observations revealed that crystalline Pt particles exhibit narrow size distribution with a mean size of 2.3 nm

  13. Metal-boride phase formation on tungsten carbide (WC-Co) during microwave plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Johnston, Jamin M.; Catledge, Shane A.

    2016-01-01

    Graphical abstract: - Highlights: • A detailed phase analysis after PECVD boriding shows WCoB, CoB and/or W_2CoB_2. • EDS of PECVD borides shows boron diffusion into the carbide grain structure. • Nanoindentation hardness and modulus of borides is 23–27 GPa and 600–780 GPa. • Scratch testing shows hard coating with cracking at 40N and spallation at 70N. - Abstract: Strengthening of cemented tungsten carbide by boriding is used to improve the wear resistance and lifetime of carbide tools; however, many conventional boriding techniques render the bulk carbide too brittle for extreme conditions, such as hard rock drilling. This research explored the variation in metal-boride phase formation during the microwave plasma enhanced chemical vapor deposition process at surface temperatures from 700 to 1100 °C. We showed several well-adhered metal-boride surface layers consisting of WCoB, CoB and/or W_2CoB_2 with average hardness from 23 to 27 GPa and average elastic modulus of 600–730 GPa. The metal-boride interlayer was shown to be an effective diffusion barrier against elemental cobalt; migration of elemental cobalt to the surface of the interlayer was significantly reduced. A combination of glancing angle X-ray diffraction, electron dispersive spectroscopy, nanoindentation and scratch testing was used to evaluate the surface composition and material properties. An evaluation of the material properties shows that plasma enhanced chemical vapor deposited borides formed at substrate temperatures of 800 °C, 850 °C, 900 °C and 1000 °C strengthen the material by increasing the hardness and elastic modulus of cemented tungsten carbide. Additionally, these boride surface layers may offer potential for adhesion of ultra-hard carbon coatings.

  14. Indium tin oxide thin-films prepared by vapor phase pyrolysis for efficient silicon based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Simashkevich, Alexei, E-mail: alexeisimashkevich@hotmail.com [Institute of Applied Physics, 5 Academiei str., Chisinau, MD-2028, Republic of Moldova (Moldova, Republic of); Serban, Dormidont; Bruc, Leonid; Curmei, Nicolai [Institute of Applied Physics, 5 Academiei str., Chisinau, MD-2028, Republic of Moldova (Moldova, Republic of); Hinrichs, Volker [Institut für Heterogene Materialsysteme, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Lise-Meitner Campus, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Rusu, Marin [Institute of Applied Physics, 5 Academiei str., Chisinau, MD-2028, Republic of Moldova (Moldova, Republic of); Institut für Heterogene Materialsysteme, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Lise-Meitner Campus, Hahn-Meitner-Platz 1, 14109 Berlin (Germany)

    2016-07-01

    The vapor phase pyrolysis deposition method was developed for the preparation of indium tin oxide (ITO) thin films with thicknesses ranging between 300 and 400 nm with the sheet resistance of 10–15 Ω/sq. and the transparency in the visible region of the spectrum over 80%. The layers were deposited on the (100) surface of the n-type silicon wafers with the charge carriers concentration of ~ 10{sup 15} cm{sup −3}. The morphology of the ITO layers deposited on Si wafers with different surface morphologies, e.g., smooth (polished), rough (irregularly structured) and textured (by inversed pyramids) was investigated. The as-deposited ITO thin films consist of crystalline columns with the height of 300–400 nm and the width of 50–100 nm. Photovoltaic parameters of mono- and bifacial solar cells of Cu/ITO/SiO{sub 2}/n–n{sup +} Si/Cu prepared on Si (100) wafers with different surface structures were studied and compared. A maximum efficiency of 15.8% was achieved on monofacial solar cell devices with the textured Si surface. Bifacial photovoltaic devices from 100 μm thick Si wafers with the smooth surface have demonstrated efficiencies of 13.0% at frontal illumination and 10% at rear illumination. - Highlights: • ITO thin films prepared by vapor phase pyrolysis on Si (100) wafers with a smooth (polished), rough (irregularly structured) and textured (by inversed pyramids) surface. • Monofacial ITO/SiO2/n-n+Si solar cells with an efficiency of 15.8% prepared and bifacial PV devices with front- and rear-side efficiencies up to 13% demonstrated. • Comparative studies of photovoltaic properties of solar cells with different morphologies of the Si wafer surface presented.

  15. The gas phase emitter effect of lanthanum within ceramic metal halide lamps and its dependence on the La vapor pressure and operating frequency

    Energy Technology Data Exchange (ETDEWEB)

    Ruhrmann, C.; Hoebing, T.; Bergner, A.; Groeger, S.; Awakowicz, P.; Mentel, J. [Electrical Engineering and Plasma Technology, Ruhr University Bochum, D-44780 Bochum (Germany); Denissen, C.; Suijker, J. [Philips Lighting, Category Professional Lamps, P.O. Box 80020, NL-5600JM Eindhoven (Netherlands)

    2015-08-07

    The gas phase emitter effect increases the lamp lifetime by lowering the work function and, with it, the temperature of the tungsten electrodes of metal halide lamps especially for lamps in ceramic vessels due to their high rare earth pressures. It is generated by a monolayer on the electrode surface of electropositive atoms of certain emitter elements, which are inserted into the lamp bulb by metal iodide salts. They are vaporized, dissociated, ionized, and deposited by an emitter ion current onto the electrode surface within the cathodic phase of lamp operation with a switched-dc or ac-current. The gas phase emitter effect of La and the influence of Na on the emitter effect of La are studied by spatially and phase-resolved pyrometric measurements of the electrode tip temperature, La atom, and ion densities by optical emission spectroscopy as well as optical broadband absorption spectroscopy and arc attachment images by short time photography. An addition of Na to the lamp filling increases the La vapor pressure within the lamp considerably, resulting in an improved gas phase emitter effect of La. Furthermore, the La vapor pressure is raised by a heating of the cold spot. In this way, conditions depending on the La vapor pressure and operating frequency are identified, at which the temperature of the electrodes becomes a minimum.

  16. Zirconium-based highly porous metal-organic framework (MOF-545) as an efficient adsorbent for vortex assisted-solid phase extraction of lead from cereal, beverage and water samples.

    Science.gov (United States)

    Tokalıoğlu, Şerife; Yavuz, Emre; Demir, Selçuk; Patat, Şaban

    2017-12-15

    In this study, zirconium-based highly porous metal-organic framework, MOF-545, was synthesized and characterized. The surface area of MOF-545 was found to be 2192m 2 /g. This adsorbent was used for the first time as an adsorbent for the vortex assisted-solid phase extraction of Pb(II) from cereal, beverage and water samples. Lead in solutions was determined by FAAS. The optimal experimental conditions were as follows: the amount of MOF-545, 10mg; pH of sample, 7; adsorption and elution time, 15min; and elution solvent, 2mL of 1molL -1 HCl. Under the optimal conditions of the method, the limit of detection, preconcentration factor and precision as RSD% were found to be 1.78μgL -1 , 125 and 2.6%, respectively. The adsorption capacity of the adsorbent for lead was found to be 73mgg -1 . The method was successfully verified by analyzing two certified reference materials (BCR-482 Lichen and SPS-WW1 Batch 114) and spiked chickpea, bean, wheat, lentil, cherry juice, mineral water, well water and wastewater samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Fast screening method for assessment of antimicrobial activity of essential oils in vapor phase

    Czech Academy of Sciences Publication Activity Database

    Klouček, P.; Šmíd, J.; Franková, A.; Kokoska, L.; Valterová, Irena; Pavela, R.

    2012-01-01

    Roč. 47, č. 2 (2012), s. 161-165 ISSN 0963-9969 Grant - others:GA ČR(CZ) GP525/09/P503 Institutional research plan: CEZ:AV0Z40550506 Keywords : antibacterial * gas phase * antifungal * fumigation Subject RIV: CC - Organic Chemistry Impact factor: 3.005, year: 2012

  18. Calculation of Liquid Water-Hydrate-Methane Vapor Phase Equilibria from Molecular Simulations

    DEFF Research Database (Denmark)

    Jensen, Lars; Thomsen, Kaj; von Solms, Nicolas

    2010-01-01

    using the TIP4P/ice potential and a united-atom Lennard-Jones potential. respectively. The equilibrium calculation method for this system has three components, (i) thermodynamic integration from a supercritical ideal gas to obtain the fluid-phase chemical potentials. (ii) calculation of the chemical...

  19. Metal organic vapor phase epitaxy growth of (Al)GaN heterostructures on SiC/Si(111) templates synthesized by topochemical method of atoms substitution

    DEFF Research Database (Denmark)

    Rozhavskaya, Mariia M.; Kukushkin, Sergey A.; Osipov, Andrey V.

    2017-01-01

    We report a novel approach for metal organic vapor phase epitaxy of (Al)GaN heterostructures on Si substrates. An approximately 90–100 nm thick SiC buffer layer is synthesized using the reaction between Si substrate and CO gas. Highresolution transmission electron microscopy reveals sharp...

  20. Treatment of Produced Waters Using a Surfactant Modified Zeolite/Vapor Phase Bioreactor System

    Energy Technology Data Exchange (ETDEWEB)

    Lynn E. Katz; Kerry A. Kinney; R. S. Bowman; E. J. Sullivan

    2004-09-11

    This report summarizes work performed on this project from April 2004 through September 2004. Our previous work demonstrated that a polyurethane foam biofilter could successfully biodegrade the BTEX contaminants found in the SMZ regeneration waste gas stream. However, establishing the biomass on the polyurethane foam packing was relatively time consuming and daily recirculation of a concentrated nutrient solution was required for efficient operation of the foam biofilter. To simplify the start up and operating requirements of the biofilter system, a simple, compost-based biofilter was investigated for its ability to treat the BTEX contaminants generated during the SMZ regeneration process. The investigation of the compost biofilter was divided into three experimental phases that spanned 180 days of biofilter operation. During Phase 1, the biofilter was continuously supplied a BTEX-contaminated waste gas stream. During Phase 2, a series of periodic shutdown tests were conducted to assess how the biofilter responded when the BTEX feed was discontinued for periods ranging from 1 day to 2.8 days. The Phase 3 experiments focused on determining how the biofilter would handle periodic spikes in inlet BTEX concentration as would be expected when it is coupled with an SMZ column. Results from the continuous feed (Phase 1) experiments demonstrated that the compost biofilter could maintain BTEX removals of greater than 98% within two weeks of startup. Results of the shutdown experiments indicated that benzene removal was the most sensitive to interruptions in the BTEX feed. Nevertheless, the BTEX removal efficiency exceeded 95% within 6 hours of reestablishing the BTEX feed to the biofilter. When the biofilter was subjected to periodic spikes in BTEX concentration (Phase 3), it was found that the total BTEX removal efficiency stabilized at approximately 75% despite the fact that the biofilter was only fed BTEX contaminants 8 hours per day. Finally, the effects of nutrient

  1. Secondary phase formation and the microstructural evolution of surface layers during vapor phase alteration of the French SON 68 nuclear waste glass at 200 degrees C

    International Nuclear Information System (INIS)

    Gong, W.L.; Ewing, R.C.; Wang, L.M.

    1995-01-01

    The SON 68 inactive open-quotes R7T7close quotes composition is the French reference glass for the LWR nuclear waste glass. Vapor phase alteration was used to accelerate the reaction progress of glass corrosion and to develop the characteristic suite of secondary, alteration phases. Extensive solid-state characterization (AEM/SEM/HRTEM) was completed on six inactive R7T7 waste glasses which were altered in the presence of saturated water vapor (200 degrees C) for 91, 241, 908, 1000, 1013, and 1021 days. The AEM samples were examined in cross-section (lattice-fringe imaging, micro-diffraction, and quantitative thin-film EDS analysis). The glass monoliths were invariably covered with a thin altered rind. The layer became thicker with time: 0.5 μm for 22 days; 4 μm for 91 days; 6 μm for 241 days; 10 μm for 908 days; 26 μm for 1013 days; and 2 TeO 3 and (Ca,Sr)Mo 3 O 9 (OH) 2 , were found within the inner zones of surface layers, and they must have nucleated in situ, indicating that Ag, Te, Sr, and Mo can be retained within the surface layer. The majority of the surface layer volume is composed of two morphologically and chemically different structures: one consists of well-crystallized fibrous smectite aggregates occurring along with cavities, the A-domain; and the other consists of poorly-crystallized regions containing needle-like smectite (montmorillonite) crystallites, a silica-rich amorphous matrix, and possibly ZrO 2 particles, the B-domain

  2. Organic-inorganic field effect transistor with SnI-based perovskite channel layer using vapor phase deposition technique

    Science.gov (United States)

    Matsushima, Toshinori; Yasuda, Takeshi; Fujita, Katsuhiko; Tsutsui, Tetsuo

    2003-11-01

    High field-effect hole mobility of (formula available in paper)and threshold voltage is -3.2 V) in organic-inorganic layered perovskite film (formula available in paper)prepared by a vapor phase deposition technique have been demonstrated through the octadecyltrichlorosilane treatment of substrate. Previously, the (formula available in paper)films prepared on the octadecyltrichlorosilane-covered substrates using a vapor evaporation showed not only intense exciton absorption and photoluminescence in the optical spectroscopy but also excellent crystallinity and large grain structure in X-ray and atomic force microscopic studies. Especially, the (formula available in paper)structure in the region below few nm closed to the surface of octadecyltrichlorosilane monolayer was drastically improved in comparison with that on the non-covered substrate. Though our initial (formula available in paper)films via a same sequence of preparation of (formula available in paper)and octadecyltrichlorosilane monolayer did not show the field-effect properties because of a lack of spectral, structural, and morphological features. The unformation of favorable (formula available in paper)structure in the very thin region, that is very important for the field-effect transistors to transport electrons or holes, closed to the surface of non-covered (formula available in paper)dielectric layer was also one of the problems for no observation of them. By adding further optimization and development, such as deposition rate of perovskite, substrate heating during deposition, and tuning device architecture, with hydrophobic treatment, the vacuum-deposited (formula available in paper)have achieved above-described high performance in organic-inorganic hybrid transistors.

  3. Fabrication of single-phase ε-GaSe films on Si(100) substrate by metal organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chia-Chen; Zeng, Jia-Xian; Lan, Shan-Ming [Department of Electronic Engineering, College of Electrical Engineering and Computer Science, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Uen, Wu-Yih, E-mail: uenwuyih@ms37.hinet.net [Department of Electronic Engineering, College of Electrical Engineering and Computer Science, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Liao, Sen-Mao [Department of Electronic Engineering, College of Electrical Engineering and Computer Science, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Yang, Tsun-Neng; Ma, Wei-Yang [Institute of Nuclear Energy Research, P.O. Box 3-11, Lungtan 32500, Taiwan (China); Chang, Kuo-Jen [Chung-Shan Institute of Science and Technology, No.15, Shi Qi Zi, Gaoping Village, Longtan Township, Taoyuan County, Taiwan (China)

    2013-09-02

    Single-phase ε-gallium selenide (GaSe) films were fabricated on Si(100) substrate by metal organic chemical vapor deposition using dual-source precursors: triethylgallium (TEG) and hydrogen selenide (H{sub 2}Se) with the flow ratio of [H{sub 2}Se]/[TEG] being maintained at 1.2. In particular, an arsine (AsH{sub 3}) flow was introduced to the Si substrate before the film deposition to induce an arsenic (As)-passivation effect on the substrate. The crystalline structure of GaSe films prepared was analyzed using X-ray diffraction and the surface morphology of them was characterized by scanning electron microscopy. It was found that the film quality could be improved by the As-passivation effect. The optical properties of the films were studied by temperature dependent photoluminescence (PL) measurements. PL spectra obtained with different distributions and intensities favored for resolving the superior material quality of the films produced on the substrate with As-passivation compared to those produced on the substrate without As-passivation. The former was dominated by the excitonic emissions for the whole temperature range of 20–300 K examined, while the latter was initially dominated by the defect-related emission at 1.907 eV for a low-temperature range ≦ 80 K and then became dominated by the weak excitonic emission band instead. The ε modification of GaSe films prepared was further recognized by the Raman scattering measurements conducted at room temperature. - Highlights: • Gallium selenide (GaSe) layered structures are fabricated on Si(100) substrate. • Metal–organic chemical vapor deposition is used for film fabrication. • Arsenic-passivation effects of Si substrate on the GaSe film quality are analyzed. • Photoluminescence measurements of GaSe polycrystals are reported.

  4. Synthesis of TiO2 Nanoparticles from Ilmenite Through the Mechanism of Vapor-Phase Reaction Process by Thermal Plasma Technology

    Science.gov (United States)

    Samal, Sneha

    2017-11-01

    Synthesis of nanoparticles of TiO2 was carried out by non-transferred arc thermal plasma reactor using ilmenite as the precursor material. The powder ilmenite was vaporized at high temperature in plasma flame and converted to a gaseous state of ions in the metastable phase. On cooling, chamber condensation process takes place on recombination of ions for the formation of nanoparticles. The top-to-bottom approach induces the disintegration of complex ilmenite phases into simpler compounds of iron oxide and titanium dioxide phases. The vapor-phase reaction mechanism was carried out in thermal plasma zone for the synthesis of nanoparticles from ilmenite compound in a plasma reactor. The easy separation of iron particles from TiO2 was taken place in the plasma chamber with deposition of light TiO2 particles at the top of the cooling chamber and iron particles at the bottom. The dissociation and combination process of mechanism and synthesis are studied briefly in this article. The product TiO2 nanoparticle shows the purity with a major phase of rutile content. TiO2 nanoparticles produced in vapor-phase reaction process shows more photo-induced capacity.

  5. An Ising model for metal-organic frameworks

    Science.gov (United States)

    Höft, Nicolas; Horbach, Jürgen; Martín-Mayor, Victor; Seoane, Beatriz

    2017-08-01

    We present a three-dimensional Ising model where lines of equal spins are frozen such that they form an ordered framework structure. The frame spins impose an external field on the rest of the spins (active spins). We demonstrate that this "porous Ising model" can be seen as a minimal model for condensation transitions of gas molecules in metal-organic frameworks. Using Monte Carlo simulation techniques, we compare the phase behavior of a porous Ising model with that of a particle-based model for the condensation of methane (CH4) in the isoreticular metal-organic framework IRMOF-16. For both models, we find a line of first-order phase transitions that end in a critical point. We show that the critical behavior in both cases belongs to the 3D Ising universality class, in contrast to other phase transitions in confinement such as capillary condensation.

  6. A model for arsenic anti-site incorporation in GaAs grown by hydride vapor phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, K. L.; Kuech, T. F. [Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2014-12-28

    GaAs growth by hydride vapor phase epitaxy (HVPE) has regained interest as a potential route to low cost, high efficiency thin film photovoltaics. In order to attain the highest efficiencies, deep level defect incorporation in these materials must be understood and controlled. The arsenic anti-site defect, As{sub Ga} or EL2, is the predominant deep level defect in HVPE-grown GaAs. In the present study, the relationships between HVPE growth conditions and incorporation of EL2 in GaAs epilayers were determined. Epitaxial n-GaAs layers were grown under a wide range of deposition temperatures (T{sub D}) and gallium chloride partial pressures (P{sub GaCl}), and the EL2 concentration, [EL2], was determined by deep level transient spectroscopy. [EL2] agreed with equilibrium thermodynamic predictions in layers grown under conditions in which the growth rate, R{sub G}, was controlled by conditions near thermodynamic equilibrium. [EL2] fell below equilibrium levels when R{sub G} was controlled by surface kinetic processes, with the disparity increasing as R{sub G} decreased. The surface chemical composition during growth was determined to have a strong influence on EL2 incorporation. Under thermodynamically limited growth conditions, e.g., high T{sub D} and/or low P{sub GaCl}, the surface vacancy concentration was high and the bulk crystal was close to equilibrium with the vapor phase. Under kinetically limited growth conditions, e.g., low T{sub D} and/or high P{sub GaCl}, the surface attained a high GaCl coverage, blocking As adsorption. This competitive adsorption process reduced the growth rate and also limited the amount of arsenic that incorporated as As{sub Ga}. A defect incorporation model which accounted for the surface concentration of arsenic as a function of the growth conditions, was developed. This model was used to identify optimal growth parameters for the growth of thin films for photovoltaics, conditions in which a high growth rate and low [EL2] could be

  7. Wave-mixing-induced transparency with zero phase shift in atomic vapors

    Science.gov (United States)

    Zhou, F.; Zhu, C. J.; Li, Y.

    2017-12-01

    We present a wave-mixing induced transparency that can lead to a hyper-Raman gain-clamping effect. This new type of transparency is originated from a dynamic gain cancellation effect in a multiphoton process where a highly efficient light field of new frequency is generated and amplified. We further show that this novel dynamic gain cancellation effect not only makes the medium transparent to a probe light field at appropriate frequency but also eliminates the probe field propagation phase shift. This gain-cancellation-based induced transparency holds for many potential applications on optical communication and may lead to effective suppression of parasitic Raman/hyper-Raman noise field generated in high intensity optical fiber transmissions.

  8. Study of the Vapor Phase Over Fusarium Fungi Cultured on Various Substrates.

    Science.gov (United States)

    Savelieva, Elena I; Gustyleva, Liudmila K; Kessenikh, Elizaveta D; Khlebnikova, Natalya S; Leffingwell, John; Gavrilova, Olga P; Gagkaeva, Tatiana Yu

    2016-07-01

    The compositions of volatile organic compounds (VOCs) emitted by Fusarium fungi (F. langsethiae, F. sibiricum, F. poae, and F. sporotrichioides) grown on two nutritive substrates: potato sucrose agar (PSA) and autoclaved wheat kernels (WK) were investigated. The culturing of fungi and study of their VOC emissions were performed in chromatographic vials at room temperature (23 - 24 °C) and the VOCs were sampled by a solid-phase microextraction on a 85 μm carboxen/polydimethylsiloxane fiber. GC/MS was performed using a 60-m HP-5 capillary column. Components of the VOC mixture were identified by electron impact mass spectra and chromatographic retention indices (RIs). The most abundant components of the VOC mixture emitted by Fusarium fungi are EtOH, AcOH, (i) BuOH, 3-methylbutan-1-ol, 2-methylbutan-1-ol, ethyl 3-methylbutanoate, terpenes with M 136, sesquiterpenes with M 204 (a total of about 25), and trichodiene. It was found that the strains grown on PSA emit a wider spectrum and larger amount of VOCs compared with those grown on wheat kernels. F. langsethiae strain is the most active VOC producer on both substrates. The use of SPME and GC/MS also offers the potential for differentiation of fungal species and strains. © 2016 Wiley-VHCA AG, Zürich.

  9. Phase Transition Enthalpy Measurements of Organic and Organometallic Compounds and Ionic Liquids. Sublimation, Vaporization, and Fusion Enthalpies from 1880 to 2015. Part 2. C11-C192

    Science.gov (United States)

    Acree, William; Chickos, James S.

    2017-03-01

    The second part of this compendium concludes with a collection of phase change enthalpies of organic molecules inclusive of C11-C192 reported over the period 1880-2015. Also included are phase change enthalpies including fusion, vaporization, and sublimation enthalpies for organometallic, ionic liquids, and a few inorganic compounds. Paper I of this compendium, published separately, includes organic compounds from C1 to C10 and describes a group additivity method for evaluating solid, liquid, and gas phase heat capacities as well as temperature adjustments of phase changes. Paper II of this compendium also includes an updated version of a group additivity method for evaluating total phase change entropies which together with the fusion temperature can be useful in estimating total phase change enthalpies. Other uses include application in identifying potential substances that either form liquid or plastic crystals or exhibit additional phase changes such as undetected solid-solid transitions or behave anisotropically in the liquid state.

  10. Germanium diffusion with vapor-phase GeAs and oxygen co-incorporation in GaAs

    Science.gov (United States)

    Wang, Wei-Fu; Cheng, Kai-Yuan; Hsieh, Kuang-Chien

    2018-01-01

    Vapor-phase germanium diffusion has been demonstrated in Zn-doped and semi-insulating GaAs in sealed ampoules with GeAs powders and excess arsenic. Secondary-ion-mass spectroscopy (SIMS) profiles indicate the presence of unintentional co-incorporation of oxygen in high densities (>1017/cm3) along with diffused germanium donors whose concentration (>>1018/cm3) determined by electro-chemical capacitance-voltage (ECV) profiler shows significant compensation near the surface. The source of oxygen mainly originates from the GeAs powder which contains Ge-O surface oxides. Variable-temperature photoluminescence (PL) shows that in GeAs-diffused samples, a broad peak ranging from 0.86-1.38 eV with the peak position around 1.1 eV predominates at low temperatures while the near band-edge luminescence quenches. The broad band is attributed to the GeGa-VGa self-activated (SA) centers possibly associated with nearby oxygen-related defect complex, and its luminescence persists up to 400 K. The configurational-coordinate modeling finds that the SA defect complex has a thermal activation energy of 150-180 meV and a vibrational energy 26.8 meV. The presence of oxygen does not much affect the SA emission intensity but may have influenced the peak position, vibration frequency and activation energy as compared to other common donor-VGa defects in GaAs.

  11. Evaluation of cinnamon essential oil microemulsion and its vapor phase for controlling postharvest gray mold of pears (Pyrus pyrifolia).

    Science.gov (United States)

    Wang, Yifei; Zhao, Ruipeng; Yu, Ling; Zhang, Yunbin; He, Yan; Yao, Jie

    2014-03-30

    Essential oil of cinnamon (CM) is a potential alternative to chemical fungicides. Thus this work aimed to investigate the possible effects of CM microemulsions on decay developments and qualitative properties of pears. The decay incidence of samples treated with 500 µg L⁻¹ microemulsion was significantly reduced by 18.7% in comparison to that of 500 µg L⁻¹ non-microemulsion after 4 days' storage at 20 °C. In the vapor phase, the CM microemulsion with the lowest concentration had the best control for decay incidence and lesion diameter. The interval between inoculations also influenced decay development. Pears treated with Botrytis cinerea and immediately followed by CM microemulsion showed the lowest decay incidence. Moreover, in the natural decay experiment, the percentage of rotted pears was 3.8% in the CM microemulsion treatment and 5.8% in the control. CM microemulsion delayed the loss of ascorbic acid, yet it had no significant influence on pear qualities such as firmness and color. CM microemulsion may be an alternative way to control the gray mold of pears without a negative influence on its qualities. © 2013 Society of Chemical Industry.

  12. Optical properties of C-doped bulk GaN wafers grown by halide vapor phase epitaxy

    International Nuclear Information System (INIS)

    Khromov, S.; Hemmingsson, C.; Monemar, B.; Hultman, L.; Pozina, G.

    2014-01-01

    Freestanding bulk C-doped GaN wafers grown by halide vapor phase epitaxy are studied by optical spectroscopy and electron microscopy. Significant changes of the near band gap (NBG) emission as well as an enhancement of yellow luminescence have been found with increasing C doping from 5 × 10 16 cm −3 to 6 × 10 17 cm −3 . Cathodoluminescence mapping reveals hexagonal domain structures (pits) with high oxygen concentrations formed during the growth. NBG emission within the pits even at high C concentration is dominated by a rather broad line at ∼3.47 eV typical for n-type GaN. In the area without pits, quenching of the donor bound exciton (DBE) spectrum at moderate C doping levels of 1–2 × 10 17 cm −3 is observed along with the appearance of two acceptor bound exciton lines typical for Mg-doped GaN. The DBE ionization due to local electric fields in compensated GaN may explain the transformation of the NBG emission

  13. Investigation of nucleation kinetics in H2SO4 vapor through modeling of gas phase kinetics coupled with particle dynamics

    Science.gov (United States)

    Carlsson, Philip T. M.; Zeuch, Thomas

    2018-03-01

    We have developed a new model utilizing our existing kinetic gas phase models to simulate experimental particle size distributions emerging in dry supersaturated H2SO4 vapor homogeneously produced by rapid oxidation of SO2 through stabilized Criegee-Intermediates from 2-butene ozonolysis. We use a sectional method for simulating the particle dynamics. The particle treatment in the model is based on first principles and takes into account the transition from the kinetic to the diffusion-limited regime. It captures the temporal evolution of size distributions at the end of the ozonolysis experiment well, noting a slight underrepresentation of coagulation effects for larger particle sizes. The model correctly predicts the shape and the modes of the experimentally observed particle size distributions. The predicted modes show an extremely high sensitivity to the H2SO4 evaporation rates of the initially formed H2SO4 clusters (dimer to pentamer), which were arbitrarily restricted to decrease exponentially with increasing cluster size. In future, the analysis presented in this work can be extended to allow a direct validation of quantum chemically predicted stabilities of small H2SO4 clusters, which are believed to initiate a significant fraction of atmospheric new particle formation events. We discuss the prospects and possible limitations of the here presented approach.

  14. Determination of methyl mercury by aqueous phase Eehylation, followed by gas chromatographic separation with cold vapor atomic fluorescence detection

    Science.gov (United States)

    De Wild, John F.; Olsen, Mark L.; Olund, Shane D.

    2002-01-01

    A recent national sampling of streams in the United States revealed low methyl mercury concentrations in surface waters. The resulting median and mean concentrations, calculated from 104 samples, were 0.06 nanograms per liter (ng/L) and 0.15 ng/L, respectively. This level of methyl mercury in surface water in the United States has created a need for analytical techniques capable of detecting sub-nanogram per liter concentrations. In an attempt to create a U.S. Geological Survey approved method, the Wisconsin District Mercury Laboratory has adapted a distillation/ethylation/ gas-phase separation method with cold vapor atomic fluorescence spectroscopy detection for the determination of methyl mercury in filtered and unfiltered waters. This method is described in this report. Based on multiple analyses of surface water and ground-water samples, a method detection limit of 0.04 ng/L was established. Precision and accuracy were evaluated for the method using both spiked and unspiked ground-water and surface-water samples. The percent relative standard deviations ranged from 10.2 to 15.6 for all analyses at all concentrations. Average recoveries obtained for the spiked matrices ranged from 88.8 to 117 percent. The precision and accuracy ranges are within the acceptable method-performance limits. Considering the demonstrated detection limit, precision, and accuracy, the method is an effective means to quantify methyl mercury in waters at or below environmentally relevant concentrations

  15. Germanium diffusion with vapor-phase GeAs and oxygen co-incorporation in GaAs

    Directory of Open Access Journals (Sweden)

    Wei-Fu Wang

    2018-01-01

    Full Text Available Vapor-phase germanium diffusion has been demonstrated in Zn-doped and semi-insulating GaAs in sealed ampoules with GeAs powders and excess arsenic. Secondary-ion-mass spectroscopy (SIMS profiles indicate the presence of unintentional co-incorporation of oxygen in high densities (>1017/cm3 along with diffused germanium donors whose concentration (>>1018/cm3 determined by electro-chemical capacitance-voltage (ECV profiler shows significant compensation near the surface. The source of oxygen mainly originates from the GeAs powder which contains Ge-O surface oxides. Variable-temperature photoluminescence (PL shows that in GeAs-diffused samples, a broad peak ranging from 0.86-1.38 eV with the peak position around 1.1 eV predominates at low temperatures while the near band-edge luminescence quenches. The broad band is attributed to the GeGa-VGa self-activated (SA centers possibly associated with nearby oxygen-related defect complex, and its luminescence persists up to 400 K. The configurational-coordinate modeling finds that the SA defect complex has a thermal activation energy of 150-180 meV and a vibrational energy 26.8 meV. The presence of oxygen does not much affect the SA emission intensity but may have influenced the peak position, vibration frequency and activation energy as compared to other common donor-VGa defects in GaAs.

  16. Growth and optical characteristics of Tm-doped AlGaN layer grown by organometallic vapor phase epitaxy

    Science.gov (United States)

    Takatsu, J.; Fuji, R.; Tatebayashi, J.; Timmerman, D.; Lesage, A.; Gregorkiewicz, T.; Fujiwara, Y.

    2018-04-01

    We report on the growth and optical properties of Tm-doped AlGaN layers by organometallic vapor phase epitaxy (OMVPE). The morphological and optical properties of Tm-doped GaN (GaN:Tm) and Tm-doped AlGaN (AlGaN:Tm) were investigated by Nomarski differential interference contrast microscopy and photoluminescence (PL) characterization. Nomarski images reveal an increase of surface roughness upon doping Tm into both GaN and AlGaN layers. The PL characterization of GaN:Tm shows emission in the near-infrared range originating from intra-4f shell transitions of Tm3+ ions. In contrast, AlGaN:Tm also exhibits blue light emission from Tm3+ ions. In that case, the wider band gap of the AlGaN host allows energy transfer to higher states of the Tm3+ ions. With time-resolved PL measurements, we could distinguish three types of luminescent sites of Tm3+ in the AlGaN:Tm layer, having different decay times. Our results confirm that Tm ions can be doped into GaN and AlGaN by OMVPE, and show potential for the fabrication of novel high-color-purity blue light emitting diodes.

  17. Effect of gas flow on the selective area growth of gallium nitride via metal organic vapor phase epitaxy

    Science.gov (United States)

    Rodak, L. E.; Kasarla, K. R.; Korakakis, D.

    2007-08-01

    The effect of gas flow on the selective area growth (SAG) of gallium nitride (GaN) grown via metal organic vapor phase epitaxy (MOVPE) has been investigated. In this study, the SAG of GaN was carried out on a silicon dioxide striped pattern along the GaN direction. SAG was initiated with the striped pattern oriented parallel and normal to the incoming gas flow in a horizontal reactor. The orientation of the pattern did not impact cross section of the structure after re-growth as both orientations resulted in similar trapezoidal structures bounded by the (0 0 0 1) and {1 1 2¯ n} facets ( n≈1.7-2.2). However, the growth rates were shown to depend on the orientation of the pattern as the normally oriented samples exhibited enhanced vertical and cross-sectional growth rates compared to the parallel oriented samples. All growths occurred under identical conditions and therefore the difference in growth rates must be attributed to a difference in mass transport of species.

  18. Vapor phase epitaxy of silicon on meso porous silicon for deposition on economical substrate and low cost photovoltaic application

    International Nuclear Information System (INIS)

    Quoizola, S.

    2003-01-01

    The silicon is more and more used in the industry. Meanwhile the production cost is a problem to solve to develop the photovoltaic cells production. This thesis presents a new technology based on the use of a meso-porous silicon upper layer,to grow the active silicon layer of 50 μm width. The photovoltaic cell is then realized, the device is removed and placed on a low cost substrate. The silicon substrate of beginning can be used again after cleaning. The first chapter presents the operating and the characteristics of the silicon photovoltaic cell. The second chapter is devoted to the growth technique, the vapor phase epitaxy, and the third chapter to the epitaxy layer. The chapter four deals with the porous silicon and the structure chosen in this study. The chapter five is devoted to the characterization of the epitaxy layer on porous silicon. The photovoltaic cells realized on these layers are presented in the last chapter. (A.L.B.)

  19. A mechanistic study on the reaction pathways leading to benzene and naphthalene in cellulose vapor phase cracking

    International Nuclear Information System (INIS)

    Norinaga, Koyo; Yang, Huamei; Tanaka, Ryota; Appari, Srinivas; Iwanaga, Keita; Takashima, Yuka; Kudo, Shinji; Shoji, Tetsuya; Hayashi, Jun-ichiro

    2014-01-01

    The reaction pathways leading to aromatic hydrocarbons such as benzene and naphthalene in gas-phase reactions of multi-component mixtures derived from cellulose fast pyrolysis were studied both experimentally and numerically. A two-stage tubular reactor was used for evaluating the reaction kinetics of secondary vapor phase cracking of the nascent pyrolysates at temperature ranging from 400 to 900 °C, residence time from 0.2 to 4.3 s, and at 241 kPa. The products of alkyne and diene were identified from the primary pyrolysis of cellulose even at low temperature range 500–600 °C. These products include acetylene, propyne, propadiene, vinylacetylene, and cyclopentadiene. Experiments were also numerically validated by a detailed chemical kinetic model consisting of more than 8000 elementary step-like reactions with over 500 chemical species. Acceptable capabilities of the kinetic model in predicting concentration profiles of the products enabled us to assess reaction pathways leading to benzene and naphthalene via the alkyne and diene from primary pyrolysates of cellulose. C 3 alkyne and diene are primary precursors of benzene at 650 °C, while combination of ethylene and vinylacetylene produces benzene dominantly at 850 °C. Cyclopentadiene is a prominent precursor of naphthalene. Combination of acetylene with propyne or allyl radical leads to the formation of cyclopentadiene. Furan and acrolein are likely important alkyne precursors in cellulose pyrolysis at low temperature, whereas dehydrogenations of olefins are major route to alkyne at high temperatures. - Highlights: • Analytical pyrolysis experiments provided data for kinetic modeling. • Detailed chemical kinetic model was used and evaluated. • Alkyne and diene were important intermediates for aromatic hydrocarbon formation. • Reaction pathways leading to aromatic hydrocarbons were proposed

  20. Controlling the physical parameters of crystalline CIGS nanowires for use in superstrate configuration using vapor phase epitaxy

    Science.gov (United States)

    Lee, Dongjin; Jeon, H. C.; Kang, T. W.; Kumar, Sunil

    2018-03-01

    Indium tin oxide (ITO) is a suitable candidate for smart windows and bifacial semi-transparent solar cell applications. In this study, highly crystalline CuInGaSe2 (CIGS) nanowires were successfully grown by horizontal-type vapor phase epitaxy on an ITO substrate. Length, diameter, and density of the nanowires were studied by varying the growth temperature (500, 520, and 560 °C), time (3.5, 6.5, and 9.5 h), and type of catalyst (In, Au, and Ga). Length, diameter, and density of the nanowires were found to be highly dependent on the growth conditions. At an optimized growth period and temperature of 3.5 h and 520 °C, respectively, the length and diameter of the nanowires were found to increase when grown in a catalyst-free environment. However, the density of the nanowires was found to be higher while using a catalyst during growth. Even in a catalyst-free environment, an Indium cluster formed at the bottom of the nanowires. The source of these nanowires is believed to be Indium from the ITO substrate which was observed in the EDS measurement. TEM-based EDS and line EDS indicated that the nanowires are made up of CIGS material with a very low Gallium content. XRD measurements also show the appearance of wurtzite CIS nanowires grown on ITO in addition to the chalcopyrite phase. PL spectroscopy was done to see the near-band-edge emission for finding band-to-band optical transition in this material. Optical response of the CIGS nanowire network was also studied to see the photovoltaic effect. This work creates opportunities for making real solar cell devices in superstrate configuration.

  1. Metal-organic framework MIL-101(Cr) as a sorbent of porous membrane-protected micro-solid-phase extraction for the analysis of six phthalate esters from drinking water: a combination of experimental and computational study.

    Science.gov (United States)

    Wang, Ting; Wang, Jian; Zhang, Conglu; Yang, Zhao; Dai, Xinpeng; Cheng, Maosheng; Hou, Xiaohong

    2015-08-07

    An attractive metal-organic framework (MOF) MIL-101(Cr) material was synthesized at the nanoscale and applied as a sorbent in the porous membrane-protected micro-solid-phase extraction (μ-SPE) device for the pre-concentration of phthalate esters (PAEs) in drinking water samples for the first time. Parameters influencing the extraction efficiency, such as the selection of sorbent materials, pH adjustment, the effect of salt, magnetic-stirring extraction time, the desorption solvent and the desorption time, were investigated. Under the optimum conditions, the limits of detection from gas chromatography-mass spectrometric analysis for PAEs varied from 0.004 to 0.02 μg L(-1). The linear ranges were from 0.1 to 50 μg L(-1) or from 0.2 to 50 μg L(-1) for the analytes with the relative standard deviations fluctuating from 0.8 to 10.9% (n = 5). The enrichment factors (EFs) for the target PAEs were varied from 143 to 187. MIL-101(Cr) exhibited remarkable advantages compared to activated carbon and MIL-100(Fe). On the other hand, the computational method was first used to predict the adsorption of MIL-101(Cr) towards PAEs. The molecular interactions and the free binding energies between MIL-101(Cr) and PAEs were observed and calculated in terms of the molecular modeling method. MIL-101(Cr) showed high potential in the analysis of PAEs at trace levels in drinking water. The computational result was consistent with the detected enrichment factors. The computational modeling accurately predicted the extraction efficiency of MOF-based material towards the target analytes. Therefore, the combination of experimental and computational study provided a new strategy on the trace contaminant analysis.

  2. A magnetic-based dispersive micro-solid-phase extraction method using the metal-organic framework HKUST-1 and ultra-high-performance liquid chromatography with fluorescence detection for determining polycyclic aromatic hydrocarbons in waters and fruit tea infusions.

    Science.gov (United States)

    Rocío-Bautista, Priscilla; Pino, Verónica; Ayala, Juan H; Pasán, Jorge; Ruiz-Pérez, Catalina; Afonso, Ana M

    2016-03-04

    A hybrid material composed by the metal-organic framework (MOF) HKUST-1 and Fe3O4 magnetic nanoparticles (MNPs) has been synthetized in a quite simple manner, characterized, and used in a magnetic-assisted dispersive micro-solid-phase extraction (M-d-μSPE) method in combination with ultra-high-performance liquid chromatography (UHPLC) and fluorescence detection (FD). The application was devoted to the determination of 8 heavy polycyclic aromatic hydrocarbons (PAHs) in different aqueous samples, specifically tap water, wastewaters, and fruit tea infusion samples. The overall M-d-μSPE-UHPLC-FD method was optimized and validated. The method is characterized by: its simplicity in both the preparation of the hybrid material (simple mixing) and the magnetic-assisted approach (∼10min extraction time), the use of low sorbent amounts (20mg of HKUST-1 and 5mg of Fe3O4 MNPs), and the low organic solvent consumption in the overall M-d-μSPE-UHPLC-FD method (1.5mL of acetonitrile in the M-d-μSPE method and 2.8mL of acetonitrile in the UHPLC-FD run). The resulting method has high sensitivity, with LODs down to 0.8ngL(-1); adequate intermediate precision, with relative standard deviation values (RSD) always lower than 6.3% (being the range 5.9-9.0% in tap water for a spiked level of 45ngL(-1), 6.1-14% in wastewaters for a spiked level of 45ngL(-1), and 7.2-17% in fruit tea infusion samples for a spiked level of 45ngL(-1)); and adequate relative recoveries, with average values of 82% in tap water, and 94% and 75% in wastewater and fruit tea infusion samples, respectively, if using the proper matrix-matched calibration. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. A novel metal-organic framework composite MIL-101(Cr)@GO as an efficient sorbent in dispersive micro-solid phase extraction coupling with UHPLC-MS/MS for the determination of sulfonamides in milk samples.

    Science.gov (United States)

    Jia, Xiuna; Zhao, Pan; Ye, Xiu; Zhang, Lianjun; Wang, Ting; Chen, Qinyu; Hou, Xiaohong

    2017-07-01

    As a novel material, metal-organic framework/graphite oxide (MIL-101(Cr)@GO) has great potential for the pretreatment of trace analytes. In the present study, MIL-101(Cr)@GO was synthesized using a solvothermal synthesis method at the nanoscale and was applied as sorbent in the dispersive micro-solid phase extraction (DMSPE) for the enrichment of the trace sulfonamides (SAs) from milk samples for the first time. Several experimental parameters including kinds of sorbents, the effect of pH, the amount of MIL-101(Cr)@GO, ionic strength, adsorption time, desorption solvent and desorption time were investigated. Under the optimal conditions, the linear ranges were from 0.1 to 10μg/L, 0.2-20μg/L or 0.5-50μg/L for the analytes with regression coefficients (r) from 0.9942 to 0.9999. The limits of detection were between 0.012 and 0.145μg/L. The recoveries ranged from 79.83% to 103.8% with relative standard deviations (RSDs)MIL-101(Cr)@GO exhibited remarkable advantages compared to MIL-101(Cr), MIL-100(Fe), activated carbon and other sorbent materials used in pretreatment methods. A simple, rapid, sensitive, inexpensive and less solvent consuming method of DMSPE-ultra-high performance liquid chromatography-tandem mass spectrometry (DMSPE-UHPLC-MS/MS) was successfully applied to the pre-concentration and determination of twelve SAs in milk samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Li vaporization property of two-phase material of Li{sub 2}TiO{sub 3} and Li{sub 2}SiO{sub 3} for tritium breeder

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Seiya [Course of Mechanical Engineering, Graduate School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Masuko, Yuki; Kato, Hirokazu; Yuyama, Hayato; Sakai, Yutaro [Department of Prime Mover Engineering, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Niwa, Eiki; Hashimoto, Takuya [Department of Physics, College of Humanities and Sciences, Nihon University, 3-8-1 Sakurajousui, Setagaya-ku, Tokyo 156-8550 (Japan); Mukai, Keisuke [Department of Nuclear Engineering and Management, School of Engineering, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 113-8656 (Japan); Hosino, Tsuyoshi [Breeding Functional Materials Development Group, Department of Blanket Systems Research, Rokkasho Fusion Institute, Sector of Fusion Research and Development, Japan Atomic Energy Agency, 2-166 Obuch, Omotedate, Rokkasho-mura, Kamikita-gun, Aomori 039-3212 (Japan); Sasaki, Kazuya, E-mail: k_sasaki@tokai-u.jp [Course of Mechanical Engineering, Graduate School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Department of Prime Mover Engineering, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Course of Mechanical Engineering and Aeronautics and Astronautics, Graduate School of Science and Technology, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan)

    2015-10-15

    Highlights: • We synthesized two phase materials based on Li{sub 2}SiO{sub 3} and Li{sub 2}TiO{sub 3}. • We investigated the Li vaporization property of the two-phase materials. • Li vaporization occurs significantly from only Li{sub 2}SiO{sub 3} grains in the vicinity of the surface of the pellets. • The Li vaporization is remarkable only for an early short time for the vaporization from Li{sub 2}SiO{sub 3} grains at the vicinity of the surface. • The second stable phase added functions effectively for inhibition of the Li vaporization. - Abstract: Li vaporization property of two-phase materials of Li{sub 2}TiO{sub 3} and Li{sub 2}SiO{sub 3} in a working condition for the solid tritium breeder used in the demonstration power plant of fusion reactor was investigated, and the suppression mechanism of the vaporization was considered. The Li vaporization rate from the specimen pellet was measured by gravimetric method, and the change of Li concentration distribution in the pellet was analyzed by time-of-flight secondary ion mass spectrometer. Li was vaporized only from the Li{sub 2}SiO{sub 3} at the vicinity of the surface of the pellet. The remarkable vaporization of Li arose only in an early short time. The inhibition of the vaporization from the Li{sub 2}SiO{sub 3} was successful by adding the small amount of the stable secondary phase of Li{sub 2}TiO{sub 3}.

  5. Synthesis of ZnO Nanowires via Hotwire Thermal Evaporation of Brass (CuZn) Assisted by Vapor Phase Transport of Methanol

    OpenAIRE

    Tamil Many K. Thandavan; Siti Meriam Abdul Gani; Chiow San Wong; Roslan Md Nor

    2014-01-01

    Zinc oxide (ZnO) nanowires (NWs) were synthesized using vapor phase transport (VPT) and thermal evaporation of Zn from CuZn. Time dependence of ZnO NWs growth was investigated for 5, 10, 15, 20, 25, and 30 minutes. Significant changes were observed from the field electron scanning electron microscopy (FESEM) images as well as from the X-ray diffraction (XRD) profile. The photoluminescence (PL) profile was attributed to the contribution of oxygen vacancy, zinc interstitials, and hydrogen defec...

  6. Vapor phase treatment–total reflection X-ray fluorescence for trace elemental analysis of silicon wafer surface

    International Nuclear Information System (INIS)

    Takahara, Hikari; Mori, Yoshihiro; Shibata, Harumi; Shimazaki, Ayako; Shabani, Mohammad B.; Yamagami, Motoyuki; Yabumoto, Norikuni; Nishihagi, Kazuo; Gohshi, Yohichi

    2013-01-01

    Vapor phase treatment (VPT) was under investigation by the International Organization for Standardization/Technical Committee 201/Working Group 2 (ISO/TC201/WG2) to improve the detection limit of total reflection X-ray fluorescence spectroscopy (TXRF) for trace metal analysis of silicon wafers. Round robin test results have confirmed that TXRF intensity increased by VPT for intentional contamination with 5 × 10 9 and 5 × 10 10 atoms/cm 2 Fe and Ni. The magnification of intensity enhancement varied greatly (1.2–4.7 in VPT factor) among the participating laboratories, though reproducible results could be obtained for average of mapping measurement. SEM observation results showed that various features, sizes, and surface densities of particles formed on the wafer after VPT. The particle morphology seems to have some impact on the VPT efficiency. High resolution SEM observation revealed that a certain number of dots with SiO 2 , silicate and/or carbon gathered to form a particle and heavy metals, Ni and Fe in this study were segregated on it. The amount and shape of the residue should be important to control VPT factor. - Highlights: • This paper presents a summary of study results of VPT–TXRF using ISO/TC201/WG2. • Our goal is to analyze the trace metallic contamination on silicon wafer with concentrations below 1 × 10 10 atoms/cm 2 . • The efficiency and mechanism of VPT are discussed under several round robin tests and systematic studies

  7. Effect of Gold Dispersion on the Photocatalytic Activity of Mesoporous Titania for the Vapor-Phase Oxidation of Acetone

    Directory of Open Access Journals (Sweden)

    S. V. Awate

    2008-01-01

    Full Text Available Mesostructured titanium dioxide photocatalyst, having uniform crystallite size (6–12 nm and average pore diameter of ∼4.2 nm, was synthesized by using a low-temperature nonsurfactant hydrothermal route, employing tartaric acid as a templating agent. Gold additions from 0.5 to 2 wt% were incorporated, either during the hydrothermal process or by postsynthesis wet impregnation. Compared to the impregnation-prepared samples, the samples synthesized hydrothermally contained smaller-size (≤1 nm gold clusters occluded in the pores of the host matrix. Whereas CO2 and H2O were the main reaction products in UV-assisted vapor-phase oxidation of acetone using these catalysts, C2H6 and HCO2CH3 were also produced for higher acetone concentrations in air. The conversion of acetone was found to increase with decrease in the size of both TiO2 and gold particles. In situ IR spectroscopy revealed that titania and gold particles serve as independent adsorption and reaction sites for acetone and oxygen molecules. Acetone molecules adsorb exclusively at TiO2 surface, giving rise to a strongly adsorbed (condensed state as well as to the formation of formate- and methyl formate-type surface species. Hydroxyl groups at titania surface participate directly in these adsorption steps. Nanosize gold particles, on the other hand, were primarily responsible for the adsorption and activation of oxygen molecules. Mechanistic aspects of the photochemical processes are discussed on the basis of these observations.

  8. Loading of Two Related Metal-Organic Frameworks (MOFs, [Cu2(bdc2(dabco] and [Cu2(ndc2(dabco], with Ferrocene

    Directory of Open Access Journals (Sweden)

    Wolfgang Wenzel

    2011-09-01

    Full Text Available We have studied the loading of two related, similar porous metal-organic frameworks (MOFs [Cu2(bdc2(dabco] (1, and [Cu2(ndc2(dabco] (2 with ferrocene by exposing bulk powder samples to the corresponding vapor. On the basis of powder X-ray diffraction data and molecular dynamics (MD calculations we propose that each pore can store one ferrocene molecule. Despite the rather pronounced similarity of the two MOFs a quite different behavior is observed, for 1 loading with ferrocene leads to an anisotropic 1% contraction, whereas for 2 no deformation is observed. Mössbauer spectroscopy studies reveal that the Fe oxidation level remains unchanged during the process. Time dependent studies reveal that the diffusion constant governing the loading from the gas-phase for 1 is approximately three times larger than the value for 2.

  9. In situ synthesis of metal-organic frameworks in a porous polymer monolith as the stationary phase for capillary liquid chromatography.

    Science.gov (United States)

    Yang, Shengchao; Ye, Fanggui; Zhang, Cong; Shen, Shufen; Zhao, Shulin

    2015-04-21

    In this study, HKUST-1 was synthesized in situ on the porous polymer monolith as the stationary phase for capillary liquid chromatography (cLC). The unique carboxyl functionalized poly(methacrylic acid-co-ethylene dimethacrylate) (poly(MAA-co-EDMA)) monolith was used as a support to directly grow HKUST-1 by a controlled layer-by-layer self-assembly strategy. X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectrometry, and Fourier transform infrared spectroscopy of the resulting HKUST-1-poly(MAA-co-EDMA) monoliths indicated that HKUST-1 was successfully grafted onto the pore surface of the poly(MAA-co-EDMA) monolith. The column performance of HKUST-1-poly(MAA-co-EDMA) monoliths for the separation of various small molecules, such as benzenediols, xylenes, ethylbenzenes, and styrenes, was evaluated. The chromatographic performance was found to improve with increasing HKUST-1 density, and the column efficiencies and resolutions of HKUST-1-poly(MAA-co-EDMA) monoliths were 18 320-19 890 plates m(-1) and 1.62-6.42, respectively, for benzenediols. The HKUST-1-poly(MAA-co-EDMA) monolith displayed enhanced resolution for the separation of positional isomers when compared to the traditional C18 and HKUST-1 incorporated polymer monoliths. Hydrophobic, π-π, and hydrogen bonding interactions within the HKUST-1-poly(MAA-co-EDMA) monolith were observed in the separation of small molecules. The results showed that the HKUST-1-poly(MAA-co-EDMA) monoliths are promising stationary phases for cLC.

  10. Two-phase flow modelling of a solar concentrator applied as ammonia vapor generator in an absorption refrigerator

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, N. [Posgrado en Ingenieria (Energia), Universidad Nacional Autonoma de Mexico, Privada Xochicalco s/n, Temixco, Morelos 62580 (Mexico); Garcia-Valladares, O.; Best, R.; Gomez, V.H. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Privada Xochicalco s/n, Temixco, Morelos 62580 (Mexico)

    2008-09-15

    A detailed one-dimensional numerical model describing the heat and fluid-dynamic behavior inside a compound parabolic concentrator (CPC) used as an ammonia vapor generator has been developed. The governing equations (continuity, momentum, and energy) inside the CPC absorber tube, together with the energy equation in the tube wall and the thermal analysis in the solar concentrator were solved. The computational method developed is useful for the solar vapor generator design applied to absorption cooling systems. The effect on the outlet temperature and vapor quality of a range of CPC design parameters was analyzed. These parameters were the acceptance half-angle and CPC length, the diameter and coating of the absorber tube, and the manufacture materials of the cover, the reflector, and the absorber tube. It was found that the most important design parameters in order to obtain a higher ammonia-water vapor production are, in order of priority: the reflector material, the absorber tube diameter, the selective surface, and the acceptance half-angle. The direct ammonia-water vapor generation resulting from a 35 m long CPC was coupled to an absorption refrigeration system model in order to determine the solar fraction, cooling capacity, coefficient of performance, and overall efficiency during a typical day of operation. The results show that approximately 3.8 kW of cooling at -10{sup o}C could be produced with solar and overall efficiencies up to 46.3% and 21.2%, respectively. (author)

  11. Flow Characterization of Vapor Phase of Geothermal Fluid in Pipe Using Isotope 85Kr and Residence Time Distribution Modeling

    Directory of Open Access Journals (Sweden)

    S. Sugiharto

    2014-08-01

    Full Text Available Measurement of vapor flow in geothermal pipe faces great challenges due to fast fluids flow in high-temperature and high-pressure environment. In present study the flow rate measurement has been performed to characterization the geothermal vapor flow in a pipe. The experiment was carried out in a pipe which is connected to a geothermal production well, KMJ-14. The pipe has a 10” outside diameter and contains dry vapor at a pressure of 8 kg/cm2 and a temperature of 170 oC. Krypton-85 gas isotope (85Kr has been injected into the pipe. Three collimated radiation detectors positioned respectively at 127, 177 and 227m from injection point were used to obtain experimental data which represent radiotracer residence time distribution (RTD in the pipe. The last detector at the position of 227 m did not respond, which might be due to problems in cable connections. Flow properties calculated using mean residence time (MRT shows that the flow rate of the vapor in pipe is 10.98 m/s, much faster than fluid flow commonly found in various industrial process plants. Best fitting evaluated using dedicated software developed by IAEA expert obtained the Péclet number Pe as 223. This means that the flow of vapor of geothermal fluids in pipe is plug flow in character. The molecular diffusion coefficient is 0.45 m2/s, calculated from the axial dispersion model.

  12. International Conference on Metalorganic Vapor Chase Epitaxy (ICMOVPE) XVIII

    Energy Technology Data Exchange (ETDEWEB)

    Dupuis, Russell D. [Georgia Inst. of Technology, Atlanta, GA (United States)

    2017-05-05

    The ICMOVPE-XVIII conference created meaningful opportunities for intellectual challenge, networking opportunities, and intellectual stimulation for graduate students, Post-Doctoral Fellows and all attendees. This technical and social program further provided many opportunities for communication, brainstorming, and transfer of information as well as the development of collaborations across many institutions and companies. We had a significant number of members of underrepresented groups in STEM attending this conference. We also are publishing the proceedings of this conference with the Journal of Crystal Growth, a journal which receives wide electronic distribution in many academic institutions world-wide, making the technical information presented at ICMOVPE-XVIII have a much broader impact than would otherwise be possible. ICMOVPE XVIII had a total of 216 presentations and of these; there were 70 Student oral or poster presentations. The funds we obtained for student support from the Department of Energy were distributed among the registered students and Post Docs to supplement the full cost of registration of $1,100 each for regular registration to the reduced rate of at $850 each for graduate students and Post Docs.

  13. The metal-organic framework HKUST-1 as efficient sorbent in a vortex-assisted dispersive micro solid-phase extraction of parabens from environmental waters, cosmetic creams, and human urine.

    Science.gov (United States)

    Rocío-Bautista, Priscilla; Martínez-Benito, Carla; Pino, Verónica; Pasán, Jorge; Ayala, Juan H; Ruiz-Pérez, Catalina; Afonso, Ana M

    2015-07-01

    Three metal-organic frameworks (MOFs), specifically HKUST-1, MOF-5, and MIL-53(Al), have been synthetized, characterized, studied and compared in a vortex-assisted dispersive micro-solid-phase extraction (VA-D-µ-SPE) procedure in combination with high-performance liquid chromatography (HPLC) with diode-array detection (DAD) for determining seven parabens in environmental waters (tap water, swimming pool water, and water coming from a spa pool), human urine (from two volunteers), and cosmetic creams (two commercial brands). Experimental parameters, such as nature and amount of MOF, sample volume, nature of elution solvent and its amount, vortex and centrifugation time, among others, were properly optimized. HKUST-1 was the most adequate MOF to work with. Detection limits for the overall method down to 0.1 μgL(-1) for butylparaben (BPB) and benzylparaben (BzPB) were obtained, with determination coefficients (R(2)) higher than 0.9966 for a range of 0.5-147 μgL(-1) (depending on the paraben), average relative recoveries (RR, in %) of 80.3% at the low spiked level (7 μgL(-1)), and relative standard deviation (RSD) values below 10% also at the low spiked level. The strength of the affinity between HKUST-1 and parabens was evaluated, and it ranged from 33.5% for isopropylparaben (iPPB) to 77.0% for isobutylparaben (iBPB). When analyzing complex environmental waters, RR values of 78%, inter-day precision values (as RSD) lower than 15%, and intra-day precision values lower than 7.8% were obtained, despite the observed matrix effect. When analyzing cosmetic creams, parabens were detected, with contents ranging from 0.14 ± 0.01 μgg(-1) for EPB in the healing cream analyzed to 1.12 ± 0.07 mgg(-1) for MPB in the mask cream analyzed, with precision values (RSD) lower than 12% and RR values from 63.7% for propylparaben (PPB) to 121% for iPPB. When analyzing human urine, no parabens were detected but the method could be performed with RSD values lower than 19%. These

  14. Response of Aspergillus niger Inoculated on Tomatoes Exposed to Vapor Phase Mustard Essential Oil for Short or Long Periods and Sensory Evaluation of Treated Tomatoes

    Directory of Open Access Journals (Sweden)

    Ana Elena Aguilar-González

    2017-01-01

    Full Text Available The inhibitory effect of mustard essential oil (EO in vapor phase against Aspergillus niger was evaluated in vitro and in vivo (in tomatoes. Mold response in tomatoes exposed for short or long periods to selected concentrations of mustard EO was also evaluated. Furthermore, a sensory evaluation was also performed among treated tomatoes and compared with nontreated ones. Minimum inhibitory concentration (MIC for the studied EO was determined by the inverted Petri dish method. MIC for the in vitro and in vivo tests for mustard EO was of 3.08 μL/Lair. In vitro and in vivo results demonstrate the effectiveness of vapors of mustard EO against A. niger. The studied EO contains highly volatile organic compounds with strong inhibitory effects, even when applied for short periods, and can consequently be considered a good alternative to traditional synthetic antimicrobials without detriment of selected sensory attributes.

  15. Elimination of macrostep-induced current flow nonuniformity in vertical GaN PN diode using carbon-free drift layer grown by hydride vapor phase epitaxy

    Science.gov (United States)

    Fujikura, Hajime; Hayashi, Kentaro; Horikiri, Fumimasa; Narita, Yoshinobu; Konno, Taichiro; Yoshida, Takehiro; Ohta, Hiroshi; Mishima, Tomoyoshi

    2018-04-01

    In vertical GaN PN diodes (PNDs) grown entirely by metal–organic chemical vapor deposition (MOCVD), large current nonuniformity was observed. This nonuniformity was induced by macrosteps on the GaN surface through modulation of carbon incorporation into the n-GaN crystal. It was eliminated in a hybrid PND consisting of a carbon-free n-GaN layer grown by hydride vapor phase epitaxy (HVPE) and an MOCVD-regrown p-GaN layer. The hybrid PND showed a fairly low on-resistance (2 mΩ cm2) and high breakdown voltage (2 kV) even without a field plate electrode. These results clearly indicated the strong advantages of the HVPE-grown drift layer for improving power device performance, uniformity, and yield.

  16. The effect of carrier gas flow rate and source cell temperature on low pressure organic vapor phase deposition simulation by direct simulation Monte Carlo method

    Science.gov (United States)

    Wada, Takao; Ueda, Noriaki

    2013-01-01

    The process of low pressure organic vapor phase deposition (LP-OVPD) controls the growth of amorphous organic thin films, where the source gases (Alq3 molecule, etc.) are introduced into a hot wall reactor via an injection barrel using an inert carrier gas (N2 molecule). It is possible to control well the following substrate properties such as dopant concentration, deposition rate, and thickness uniformity of the thin film. In this paper, we present LP-OVPD simulation results using direct simulation Monte Carlo-Neutrals (Particle-PLUS neutral module) which is commercial software adopting direct simulation Monte Carlo method. By estimating properly the evaporation rate with experimental vaporization enthalpies, the calculated deposition rates on the substrate agree well with the experimental results that depend on carrier gas flow rate and source cell temperature. PMID:23674843

  17. The effect of carrier gas flow rate and source cell temperature on low pressure organic vapor phase deposition simulation by direct simulation Monte Carlo method

    Science.gov (United States)

    Wada, Takao; Ueda, Noriaki

    2013-04-01

    The process of low pressure organic vapor phase deposition (LP-OVPD) controls the growth of amorphous organic thin films, where the source gases (Alq3 molecule, etc.) are introduced into a hot wall reactor via an injection barrel using an inert carrier gas (N2 molecule). It is possible to control well the following substrate properties such as dopant concentration, deposition rate, and thickness uniformity of the thin film. In this paper, we present LP-OVPD simulation results using direct simulation Monte Carlo-Neutrals (Particle-PLUS neutral module) which is commercial software adopting direct simulation Monte Carlo method. By estimating properly the evaporation rate with experimental vaporization enthalpies, the calculated deposition rates on the substrate agree well with the experimental results that depend on carrier gas flow rate and source cell temperature.

  18. Preparation of ionic liquid modified magnetic metal-organic frameworks composites for the solid-phase extraction of α-chymotrypsin.

    Science.gov (United States)

    Wei, Xiaoxiao; Wang, Yuzhi; Chen, Jing; Xu, Panli; Zhou, Yigang

    2018-05-15

    A novel magnetic solid-phase extraction (MSPE) method based on 1-hexyl-3-methyl imidazolium chloride ionic liquid (IL) modified magnetic Fe 3 O 4 nanoparticles, hydroxylated multiwall carbon nanotubes (MWCNTs-OH) and zeolitic imidazolate frameworks (ZIFs) nanocomposites (Fe 3 O 4 -MWCNTs-OH@ZIF-67@IL) were proposed and applied to extract α-chymotrypsin. The magnetic materials were synthesized successfully and characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), thermal gravimetric analysis (TGA), fourier transform infrared spectrometry (FT-IR), vibrating sample magnetometer (VSM) and zeta potentials. Subsequently, the UV-vis spectrophotometer at about 280 nm was utilized to quantitatively analyze the α-chymotrypsin concentration in the supernatant. Furthermore, single factor experiments revealed that the extraction capacity was influenced by initial α-chymotrypsin concentration, ionic strength, extraction time, extraction temperature and pH value. The extraction capacity could reach up to about 635 mg g -1 under the optimized conditions, absolutely higher than that of extraction for Ovalbumin (OVA), Bovine serum albumin (BSA) and Bovine hemoglobin (BHb). In addition, the regeneration studies showed Fe 3 O 4 -MWCNTs-OH@ZIF-67@IL particles could be reused several times and kept a high extraction capacity. Besides, the study of enzymatic activity also indicated that the activity of the extracted α-chymotrypsin was well maintained 93% of initial activity. What's more, the proposed method was successfully applied to extract α-chymotrypsin in porcine pancreas crude extract with satisfactory results. All of above conclusions highlight the great potential of the proposed Fe 3 O 4 -MWCNTs-OH@ZIF-67@IL-MSPE method in the analysis of biomolecules. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Sinter-Resistant Platinum Catalyst Supported by Metal-Organic Framework.

    Science.gov (United States)

    Kim, In Soo; Li, Zhanyong; Zheng, Jian; Platero-Prats, Ana E; Mavrandonakis, Andreas; Pellizzeri, Steven; Ferrandon, Magali; Vjunov, Aleksei; Gallington, Leighanne C; Webber, Thomas E; Vermeulen, Nicolaas A; Penn, R Lee; Getman, Rachel B; Cramer, Christopher J; Chapman, Karena W; Camaioni, Donald M; Fulton, John L; Lercher, Johannes A; Farha, Omar K; Hupp, Joseph T; Martinson, Alex B F

    2018-01-22

    Single atoms and few-atom clusters of platinum are uniformly installed on the zirconia nodes of a metal-organic framework (MOF) NU-1000 via targeted vapor-phase synthesis. The catalytic Pt clusters, site-isolated by organic linkers, are shown to exhibit high catalytic activity for ethylene hydrogenation while exhibiting resistance to sintering up to 200 °C. In situ IR spectroscopy reveals the presence of both single atoms and few-atom clusters that depend upon synthesis conditions. Operando X-ray absorption spectroscopy and X-ray pair distribution analyses reveal unique changes in chemical bonding environment and cluster size stability while on stream. Density functional theory calculations elucidate a favorable reaction pathway for ethylene hydrogenation with the novel catalyst. These results provide evidence that atomic layer deposition (ALD) in MOFs is a versatile approach to the rational synthesis of size-selected clusters, including noble metals, on a high surface area support. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A critical review of vapor generation laws used for the analysis of two-phase flows in pipes

    International Nuclear Information System (INIS)

    Berne, P.

    1983-05-01

    Some vapor generation laws are reviewed and discussed. They are divided into empirical and analytical laws. Analytical laws are first examined. These laws result from analytical solutions of the local instantaneous equations applied to elementary cases. Empirical laws, i.e. laws that are determined by correlations with experimental data, are then discussed [fr

  1. R-22 vapor explosions

    International Nuclear Information System (INIS)

    Anderson, R.P.; Armstrong, D.R.

    1977-01-01

    Previous experimental and theoretical studies of R-22 vapor explosions are reviewed. Results from two experimental investigations of vapor explosions in a medium scale R-22/water system are reported. Measurements following the drop of an unrestrained mass of R-22 into a water tank demonstrated the existence of two types of interaction behavior. Release of a constrained mass of R-22 beneath the surface of a water tank improved the visual resolution of the system thus allowing identification of two interaction mechansims: at low water temperatures, R-22/water contact would produce immediate violent boiling; at high water temperatures a vapor film formed around its R-22 as it was released, explosions were generated by a surface wave which initiated at a single location and propagated along the vapor film as a shock wave. A new vapor explosion model is proposed, it suggests explosions are the result of a sequence of three independent steps: an initial mixing phase, a trigger and growth phase, and a mature phase where a propagating shock wave accelerates the two liquids into a collapsing vapor layer causing a high velocity impact which finely fragments and intermixes the two liquids

  2. Phase Transition Enthalpy Measurements of Organic and Organometallic Compounds. Sublimation, Vaporization and Fusion Enthalpies From 1880 to 2015. Part 1. C1 - C10

    Science.gov (United States)

    Acree, William; Chickos, James S.

    2016-09-01

    A compendium of phase change enthalpies published in 2010 is updated to include the period 1880-2015. Phase change enthalpies including fusion, vaporization, and sublimation enthalpies are included for organic, organometallic, and a few inorganic compounds. Part 1 of this compendium includes organic compounds from C1 to C10. Part 2 of this compendium, to be published separately, will include organic and organometallic compounds from C11 to C192. Sufficient data are presently available to permit thermodynamic cycles to be constructed as an independent means of evaluating the reliability of the data. Temperature adjustments of phase change enthalpies from the temperature of measurement to the standard reference temperature, T = 298.15 K, and a protocol for doing so are briefly discussed.

  3. Metallic 1T phase source/drain electrodes for field effect transistors from chemical vapor deposited MoS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Kappera, Rajesh; Voiry, Damien; Jen, Wesley; Acerce, Muharrem; Torrel, Sol; Chhowalla, Manish, E-mail: manish1@rci.rutgers.edu [Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, New Jersey 08854 (United States); Yalcin, Sibel Ebru; Branch, Brittany; Gupta, Gautam; Mohite, Aditya D. [MPA-11 Materials Synthesis and Integrated Devices, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Lei, Sidong; Chen, Weibing; Najmaei, Sina; Lou, Jun; Ajayan, Pulickel M. [Mechanical Engineering and Materials Science Department, Rice University, Houston, Texas 77005 (United States)

    2014-09-01

    Two dimensional transition metal dichalcogenides (2D TMDs) offer promise as opto-electronic materials due to their direct band gap and reasonably good mobility values. However, most metals form high resistance contacts on semiconducting TMDs such as MoS{sub 2}. The large contact resistance limits the performance of devices. Unlike bulk materials, low contact resistance cannot be stably achieved in 2D materials by doping. Here we build on our previous work in which we demonstrated that it is possible to achieve low contact resistance electrodes by phase transformation. We show that similar to the previously demonstrated mechanically exfoliated samples, it is possible to decrease the contact resistance and enhance the FET performance by locally inducing and patterning the metallic 1T phase of MoS{sub 2} on chemically vapor deposited material. The device properties are substantially improved with 1T phase source/drain electrodes.

  4. Pb sub(1-x) Sn sub(x) Te monocrystal growth by vapor phase transport, with formation of a liquid/solid growth interphase

    International Nuclear Information System (INIS)

    An, C.Y.; Bandeira, I.N.

    1983-01-01

    Due to segregation effects single-crystals of Pb sub(1-x) Sn sub(x) Te growth by Bridgman techniques have an inhomogenous composition profile. A vapor phase transport growth process has been developed in order to reduce convective flows. This is due to the very thin melt layer in front of the crystal, that makes convective flows small and solute mixing in the melt very low. By this process single-crystals with 60 mm lenght by 15 mm diameter and a high degree of homogeneity have been grown. (Author) [pt

  5. Depletion-mode vertical Ga2O3 trench MOSFETs fabricated using Ga2O3 homoepitaxial films grown by halide vapor phase epitaxy

    Science.gov (United States)

    Sasaki, Kohei; Thieu, Quang Tu; Wakimoto, Daiki; Koishikawa, Yuki; Kuramata, Akito; Yamakoshi, Shigenobu

    2017-12-01

    We developed depletion-mode vertical Ga2O3 trench metal-oxide-semiconductor field-effect transistors by using n+ contact and n- drift layers. These epilayers were grown on an n+ (001) Ga2O3 single-crystal substrate by halide vapor phase epitaxy. Cu and HfO2 were used for the gate metal and dielectric film, respectively. The mesa width and gate length were approximately 2 and 1 µm, respectively. The devices showed good DC characteristics, with a specific on-resistance of 3.7 mΩ cm2 and clear current modulation. An on-off ratio of approximately 103 was obtained.

  6. Incorporating Phase-Dependent Polarizability in Non-Additive Electrostatic Models for Molecular Dynamics Simulations of the Aqueous Liquid-Vapor Interface.

    Science.gov (United States)

    Bauer, Brad A; Warren, G Lee; Patel, Sandeep

    2009-02-10

    We discuss a new classical water force field that explicitly accounts for differences in polarizability between liquid and vapor phases. The TIP4P-QDP (4-point transferable intermolecular potential with charge dependent-polarizability) force field is a modification of the original TIP4P-FQ fluctuating charge water force field of Rick et al.(1) that self-consistently adjusts its atomic hardness parameters via a scaling function dependent on the M-site charge. The electronegativity (χ) parameters are also scaled in order to reproduce condensed-phase dipole moments of comparable magnitude to TIP4P-FQ. TIP4P-QDP is parameterized to reproduce experimental gas-phase and select condensed-phase properties. The TIP4P-QDP water model possesses a gas phase polarizability of 1.40 Å(3) and gas-phase dipole moment of 1.85 Debye, in excellent agreement with experiment and high-level ab initio predictions. The liquid density of TIP4P-QDP is 0.9954(±0.0002) g/cm(3) at 298 K and 1 atmosphere, and the enthalpy of vaporization is 10.55(±0.12) kcal/mol. Other condensed-phase properties such as the isobaric heat capacity, isothermal compressibility, and diffusion constant are also calculated within reasonable accuracy of experiment and consistent with predictions of other current state-of-the-art water force fields. The average molecular dipole moment of TIP4P-QDP in the condensed phase is 2.641(±0.001) Debye, approximately 0.02 Debye higher than TIP4P-FQ and within the range of values currently surmised for the bulk liquid. The dielectric constant, ε = 85.8 ± 1.0, is 10% higher than experiment. This is reasoned to be due to the increase in the condensed phase dipole moment over TIP4P-FQ, which estimates ε remarkably well. Radial distribution functions for TIP4P-QDP and TIP4P-FQ show similar features, with TIP4P-QDP showing slightly reduced peak heights and subtle shifts towards larger distance interactions. Since the greatest effects of the phase-dependent polarizability are

  7. Incorporating Phase-Dependent Polarizability in Non-Additive Electrostatic Models for Molecular Dynamics Simulations of the Aqueous Liquid-Vapor Interface

    Science.gov (United States)

    Bauer, Brad A.; Warren, G. Lee; Patel, Sandeep

    2012-01-01

    We discuss a new classical water force field that explicitly accounts for differences in polarizability between liquid and vapor phases. The TIP4P-QDP (4-point transferable intermolecular potential with charge dependent-polarizability) force field is a modification of the original TIP4P-FQ fluctuating charge water force field of Rick et al.1 that self-consistently adjusts its atomic hardness parameters via a scaling function dependent on the M-site charge. The electronegativity (χ) parameters are also scaled in order to reproduce condensed-phase dipole moments of comparable magnitude to TIP4P-FQ. TIP4P-QDP is parameterized to reproduce experimental gas-phase and select condensed-phase properties. The TIP4P-QDP water model possesses a gas phase polarizability of 1.40 Å3 and gas-phase dipole moment of 1.85 Debye, in excellent agreement with experiment and high-level ab initio predictions. The liquid density of TIP4P-QDP is 0.9954(±0.0002) g/cm3 at 298 K and 1 atmosphere, and the enthalpy of vaporization is 10.55(±0.12) kcal/mol. Other condensed-phase properties such as the isobaric heat capacity, isothermal compressibility, and diffusion constant are also calculated within reasonable accuracy of experiment and consistent with predictions of other current state-of-the-art water force fields. The average molecular dipole moment of TIP4P-QDP in the condensed phase is 2.641(±0.001) Debye, approximately 0.02 Debye higher than TIP4P-FQ and within the range of values currently surmised for the bulk liquid. The dielectric constant, ε = 85.8 ± 1.0, is 10% higher than experiment. This is reasoned to be due to the increase in the condensed phase dipole moment over TIP4P-FQ, which estimates ε remarkably well. Radial distribution functions for TIP4P-QDP and TIP4P-FQ show similar features, with TIP4P-QDP showing slightly reduced peak heights and subtle shifts towards larger distance interactions. Since the greatest effects of the phase-dependent polarizability are

  8. Vapor-Phase Infrared Spectral Study of Weapons-Grade O-Ethyl S-2(diisopropylamino)ethyl methylphosphonothiolate (VX)

    Science.gov (United States)

    2012-05-01

    tank, across an alumina Soxhlet -shaped wick positioned in a glass holder filled with the analyte. This technique yields a saturated vapor-liquid...solutions with only two components, particularly when the two compounds are chemically similar, the use of Raoult’s law can yield predicted pressures...approaches 1, na in the lower part of the fraction in eq 2 can be ignored, and the equation can then be rearranged and combined with eq 1 to yield n

  9. Molecular Simulation of the Vapor-Liquid Phase Behavior of Lennard-Jones Mixtures in Porous Solids

    Science.gov (United States)

    2006-09-01

    sur la Catalyse, Centre National de la Recherche Scientifique, Group de Chimie Theorique, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex, France...and Group de Chimie Theorique, Ecole Normale Superieure de Lyon, 46 Allee d’Italie, 69364 Lyon, Cedex 07, France 14. ABSTRACT We present vapor...Scientifique, Group de Chimie Theorique, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex, France and Group de Chimie Theorique, Ecole Normale

  10. Spray Chemical Vapor Deposition of CulnS2 Thin Films for Application in Solar Cell Devices

    Science.gov (United States)

    Hollingsworth, Jennifer A.; Buhro, William E.; Hepp, Aloysius F.; Jenkins. Philip P.; Stan, Mark A.

    1998-01-01

    Chalcopyrite CuInS2 is a direct band gap semiconductor (1.5 eV) that has potential applications in photovoltaic thin film and photoelectrochemical devices. We have successfully employed spray chemical vapor deposition using the previously known, single-source, metalorganic precursor, (Ph3P)2CuIn(SEt)4, to deposit CuInS2 thin films. Stoichiometric, polycrystalline films were deposited onto fused silica over a range of temperatures (300-400 C). Morphology was observed to vary with temperature: spheroidal features were obtained at lower temperatures and angular features at 400 C. At even higher temperatures (500 C), a Cu-deficient phase, CuIn5S8, was obtained as a single phase. The CuInS2 films were determined to have a direct band gap of ca. 1.4 eV.

  11. Vapor-liquid phase behavior of a size-asymmetric model of ionic fluids confined in a disordered matrix: The collective-variables-based approach

    Science.gov (United States)

    Patsahan, O. V.; Patsahan, T. M.; Holovko, M. F.

    2018-02-01

    We develop a theory based on the method of collective variables to study the vapor-liquid equilibrium of asymmetric ionic fluids confined in a disordered porous matrix. The approach allows us to formulate the perturbation theory using an extension of the scaled particle theory for a description of a reference system presented as a two-component hard-sphere fluid confined in a hard-sphere matrix. Treating an ionic fluid as a size- and charge-asymmetric primitive model (PM) we derive an explicit expression for the relevant chemical potential of a confined ionic system which takes into account the third-order correlations between ions. Using this expression, the phase diagrams for a size-asymmetric PM are calculated for different matrix porosities as well as for different sizes of matrix and fluid particles. It is observed that general trends of the coexistence curves with the matrix porosity are similar to those of simple fluids under disordered confinement, i.e., the coexistence region gets narrower with a decrease of porosity and, simultaneously, the reduced critical temperature Tc* and the critical density ρi,c * become lower. At the same time, our results suggest that an increase in size asymmetry of oppositely charged ions considerably affects the vapor-liquid diagrams leading to a faster decrease of Tc* and ρi,c * and even to a disappearance of the phase transition, especially for the case of small matrix particles.

  12. Evaluation of corrosivity of the vapor-phase environments to sterilized water with chlorine; Enso kei mekkin shorisui no kisho kankyo no fushokusei

    Energy Technology Data Exchange (ETDEWEB)

    Nakata, Michio. [Nippon Steel Corp. Yamaguchi (Japan). Technical Development Bureau

    1999-08-15

    Corrosivity of vapor-phase aenvironments in indoor pool, water thank, and water purification plants was investigated. Sodium hypochlorite (NaClO) was used as a sterilizing agent in indoor pool, while chlorine gas was used in water tank and water purification plants. It was found that Cl{sup -} ion were concentrated in the dew formed in the indoor pool. H{sup +} ions as well as Cl{sup -} ions were accumulated in the dew dormed in the water tank ans water purification plants. Thus, the corrosion condition was varied with the type of sterilizing agents used. Through the investigation of water tanl, the relationship between pH and Cl{sup -} ion concentration was given as follow; pH=-1.09-2.19 log [Cl{sup -}] (mol/L). Corrosivity of vapor-phase enviroments in sterilizing water systems would be characterized by the exstence of oxidizing chemical agents such as ClO{sup -} and HClO, the shift of corrosion potenrial of the thin water film, and the accumulation of H{sup +} and/or Cl{sup -} ions in the dew. (author)

  13. (abstract) Experimental and Modeling Studies of the Exchange Current at the Alkali Beta'-Alumina/Porous Electrode/Alkali Metal Vapor Three Phase Boundary

    Science.gov (United States)

    Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Underwood, M. L.; O'Connor, D.; Kikkert, S.

    1993-01-01

    The microscopic mechanism of the alkali ion-electron recombination reaction at the three phase boundary zone formed by a porous metal electrode in the alkali vapor on the surface of an alkali beta'-alumina solid electrolyte (BASE) ceramic has been studied by comparison of the expected rates for the three simplest reaction mechanisms with known temperature dependent rate data; and the physical parameters of typical porous metal electrode/BASE/alkali metal vapor reaction zones. The three simplest reactions are tunneling of electrons from the alkali coated electrode to a surface bound alkali metal ion; emission of an electron from the electrode with subsequent capture by a surface bound alkali metal ion; and thermal emission of an alkali cation from the BASE and its capture on the porous metal electrode surface where it may recombine with an electron. Only the first reaction adequately accounts for both the high observed rate and its temperature dependence. New results include crude modeling of simple, one step, three phase, solid/solid/gas electrochemical reaction.

  14. Simple-design ultra-low phase noise microwave frequency synthesizers for high-performing Cs and Rb vapor-cell atomic clocks

    Energy Technology Data Exchange (ETDEWEB)

    François, B. [FEMTO-ST, CNRS, Université de Franche-Comté, 26 chemin de l’Epitaphe, 25030 Besançon (France); INRIM, Strada delle Cacce 91, 10135 Torino (Italy); Calosso, C. E.; Micalizio, S. [INRIM, Strada delle Cacce 91, 10135 Torino (Italy); Abdel Hafiz, M.; Boudot, R. [FEMTO-ST, CNRS, Université de Franche-Comté, 26 chemin de l’Epitaphe, 25030 Besançon (France)

    2015-09-15

    We report on the development and characterization of novel 4.596 GHz and 6.834 GHz microwave frequency synthesizers devoted to be used as local oscillators in high-performance Cs and Rb vapor-cell atomic clocks. The key element of the synthesizers is a custom module that integrates a high spectral purity 100 MHz oven controlled quartz crystal oscillator frequency-multiplied to 1.6 GHz with minor excess noise. Frequency multiplication, division, and mixing stages are then implemented to generate the exact output atomic resonance frequencies. Absolute phase noise performances of the output 4.596 GHz signal are measured to be −109 and −141 dB rad{sup 2}/Hz at 100 Hz and 10 kHz Fourier frequencies, respectively. The phase noise of the 6.834 GHz signal is −105 and −138 dB rad{sup 2}/Hz at 100 Hz and 10 kHz offset frequencies, respectively. The performances of the synthesis chains contribute to the atomic clock short term fractional frequency stability at a level of 3.1 × 10{sup −14} for the Cs cell clock and 2 × 10{sup −14} for the Rb clock at 1 s averaging time. This value is comparable with the clock shot noise limit. We describe the residual phase noise measurements of key components and stages to identify the main limitations of the synthesis chains. The residual frequency stability of synthesis chains is measured to be at the 10{sup −15} level for 1 s integration time. Relevant advantages of the synthesis design, using only commercially available components, are to combine excellent phase noise performances, simple-architecture, low-cost, and to be easily customized for signal output generation at 4.596 GHz or 6.834 GHz for applications to Cs or Rb vapor-cell frequency standards.

  15. Research Update: Hybrid organic-inorganic perovskite (HOIP thin films and solar cells by vapor phase reaction

    Directory of Open Access Journals (Sweden)

    Po-Shen Shen

    2016-09-01

    Full Text Available With the rapid progress in deposition techniques for hybrid organic-inorganic perovskite (HOIP thin films, this new class of photovoltaic (PV technology has achieved material quality and power conversion efficiency comparable to those established technologies. Among the various techniques for HOIP thin films preparation, vapor based deposition technique is considered as a promising alternative process to substitute solution spin-coating method for large-area or scale-up preparation. This technique provides some unique benefits for high-quality perovskite crystallization, which are discussed in this research update.

  16. Vapor-droplet flow equations

    International Nuclear Information System (INIS)

    Crowe, C.T.

    1975-01-01

    General features of a vapor-droplet flow are discussed and the equations expressing the conservation of mass, momentum, and energy for the vapor, liquid, and mixture using the control volume approach are derived. The phenomenological laws describing the exchange of mass, momentum, and energy between phases are also reviewed. The results have application to development of water-dominated geothermal resources

  17. Catalyst-Free Vapor-Phase Method for Direct Integration of Gas Sensing Nanostructures with Polymeric Transducing Platforms

    Directory of Open Access Journals (Sweden)

    Stella Vallejos

    2014-01-01

    Full Text Available Tungsten oxide nanoneedles (NNs are grown and integrated directly with polymeric transducing platforms for gas sensors via aerosol-assisted chemical vapor deposition (AACVD method. Material analysis shows the feasibility to grow highly crystalline nanomaterials in the form of NNs with aspect ratios between 80 and 200 and with high concentration of oxygen vacancies at the surface, whereas gas testing demonstrates moderate sensing responses to hydrogen at concentrations between 10 ppm and 50 ppm, which are comparable with results for tungsten oxide NNs grown on silicon transducing platforms. This method is demonstrated to be an attractive route to fabricate next generation of gas sensors devices, provided with flexibility and functionality, with great potential in a cost effective production for large-scale applications.

  18. Zeolite-like metal-organic frameworks with ana topology

    KAUST Repository

    Eddaoudi, Mohamed; Mohideen, Mohamed Infas Haja; Adil, Karim; Belmabkhout, Youssef; Bhatt, Prashant M.; Shekhah, Osama; Chernikova, Valeriya

    2017-01-01

    Embodiments of the present disclosure describe a zeolite-like metal-organic framework composition comprising a metal-organic framework composition with ana topology characterized by the formula [MIII(4, 5-imidazole dicarboxylic acid)2X

  19. Lattice site location of optical centers in GaN:Eu light emitting diode material grown by organometallic vapor phase epitaxy

    KAUST Repository

    Lorenz, K.; Alves, E.; Roqan, Iman S.; O’ Donnell, K. P.; Nishikawa, A.; Fujiwara, Y.; Boćkowski, M.

    2010-01-01

    Eu-doped GaN was grown by organometallic vapor phase epitaxy at temperatures from 900 to 1100 °C. Eu incorporation is influenced by temperature with the highest concentration found for growth at 1000 °C. In all samples, Eu is incorporated entirely on substitutional Ga sites with a slight displacement which is highest (∼0.2 Å) in the sample grown at 900 °C and mainly directed along the c-axis. The major optical Eu3+ centers are identical for in situdoped and ion-implanted samples after high temperature and pressure annealing. The dominant Eu3+luminescence lines are attributed to isolated, substitutional Eu.

  20. Development of a selection support expert system of mathematical models for dynamic simulation of liquid-vapor two-phase flow

    International Nuclear Information System (INIS)

    Gofuku, Akio; Shimizu, Kenji; Sugano, Keiji; Morimoto, Takashi; Yoshikawa, Hidekazu; Wakabayashi, Jiro

    1992-01-01

    This paper deals with computerized supporting techniques of a numerical simulation of complex and large-scale engineering systems like nuclear power plants. As an example of the intelligent support systems of dynamic simulation, a prototype expert system is developed on an expert system development tool to support the selection of mathematical model which is a first step of numerical simulation and is required both wide expert knowledge and high-level decision making. The expert system supports the selection of liquid-vapor two phase flow models (fluid model and constitutive equations) consistent with simulation purpose and condition in the case of thermal-hydraulic simulation of nuclear power plants. The possibility of the expert system is examined for various selection support cases by both investigation of the appropriateness of the selection support logic and comparison between support results and decision results of several experts. (author)

  1. Vapor phase epitaxial growth of FeS sub 2 pyrite and evaluation of the carrier collection in liquid-junction solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Ennaoui, A.; Schlichthoerl, G.; Fiechter, S.; Tributsch, H. (Hahn-Meitner-Inst., Abt. Solare Energetik und Materialforschung, Berlin (Germany))

    1992-01-01

    Photoactive epitaxial layers of FeS{sub 2} were grown using bromine as a transport agent and a simple closed ampoule technique. The substrates used were (100)-oriented slices of natural pyrite 1 mm thick. A vapor-liquid-solid (VLS) growth mechanism was elucidated by means of optical microscopy. Macrosteps, terrace surfaces and protuberances are often accompanied with the presence of liquid FeBr{sub 3} droplets. In the absence of a liquid phase growth hillocks are found. Localized photovoltaic response for the evaluation of carrier collection using a scanning laser spot system has been used to effectively locate and characterize non-uniformities present in the epitaxial thin films. (orig.).

  2. Growth of cubic GaN on a nitrided AlGaAs (001) substrate by using hydried vapor phase epitaxy

    International Nuclear Information System (INIS)

    Lee, H. J.; Yang, M.; Ahn, H. S.; Kim, K. H.; Yi, J. Y.; Jang, K. S.; Chang, J. H.; Kim, H. S.; Cho, C. R.; Kim, S. W.

    2006-01-01

    GaN layers were grown on AlGaAs (001) substrates by using hydride vapor phase epitaxy (HVPE). Growth parameters such as the nitridation temperature of the AlGaAs substrate and the growth rate of the GaN layer were found to be critical determinants for the growth of cubic GaN layer. Nitridation of the AlGaAs surface was performed in a NH 3 atmosphere at a temperature range of 550 - 700 .deg. C. GaN layers were grown at different growth rates on the nitrided AlGaAs substrates. The surface morphologies and the chemical constituents of the nitrided AlGaAs layers were characterized with scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). For the optical and the crystalline characterization of the GaN films, cathodoluminescence (CL) and X-ray diffraction (XRD) were carried out.

  3. Growth of single - crystals of Pb1-x Snx Te by vapor phase transport with the formation of a liquid/solid growth interface

    International Nuclear Information System (INIS)

    An, C.Y.; Bandeira, I.N.

    1985-01-01

    Due to segregation effects single-crystals of Pb 1-x Sn x Te growth by Bridgman techniques have an inhomogeneous composition profile. A vapor phase transport growth process has been developed in order to reduce convective flows. This is due to the very thin melt layer in front of the crystal, that makes convective flows small and solute mixing in the melt very low. By this process single-crystals with 60mm length by 15 mm diameter and a high degree of homogeneity have been grown. A process for determination of the exact composition profile by measurements of the crystal density, for isomorphous alloys of the type A 1-x B x , is also shown. (Author) [pt

  4. Lattice site location of optical centers in GaN:Eu light emitting diode material grown by organometallic vapor phase epitaxy

    KAUST Repository

    Lorenz, K.

    2010-09-16

    Eu-doped GaN was grown by organometallic vapor phase epitaxy at temperatures from 900 to 1100 °C. Eu incorporation is influenced by temperature with the highest concentration found for growth at 1000 °C. In all samples, Eu is incorporated entirely on substitutional Ga sites with a slight displacement which is highest (∼0.2 Å) in the sample grown at 900 °C and mainly directed along the c-axis. The major optical Eu3+ centers are identical for in situdoped and ion-implanted samples after high temperature and pressure annealing. The dominant Eu3+luminescence lines are attributed to isolated, substitutional Eu.

  5. Synthesis of ZnO Nanowires via Hotwire Thermal Evaporation of Brass (CuZn Assisted by Vapor Phase Transport of Methanol

    Directory of Open Access Journals (Sweden)

    Tamil Many K. Thandavan

    2014-01-01

    Full Text Available Zinc oxide (ZnO nanowires (NWs were synthesized using vapor phase transport (VPT and thermal evaporation of Zn from CuZn. Time dependence of ZnO NWs growth was investigated for 5, 10, 15, 20, 25, and 30 minutes. Significant changes were observed from the field electron scanning electron microscopy (FESEM images as well as from the X-ray diffraction (XRD profile. The photoluminescence (PL profile was attributed to the contribution of oxygen vacancy, zinc interstitials, and hydrogen defects in the ZnO NWs. Raman scattering results show a significant peak at 143 cm−1 and possible functionalization on the wall of ZnO NWs. Growth of ZnO NWs in (0002 with an estimated distance between adjacent lattice planes 0.26 nm was determined from transmission electron microscopy (TEM analysis.

  6. Influence of the interface on growth rates in AlN/GaN short period superlattices via metal organic vapor phase epitaxy

    Science.gov (United States)

    Rodak, L. E.; Korakakis, D.

    2011-11-01

    AlN/GaN short period superlattices are well suited for a number of applications including, but not limited to, digital alloys, intersubband devices, and emitters. In this work, AlN/GaN superlattices with periodicities ranging from 10 to 20 Å have been grown via metal organic vapor phase epitaxy in order to investigate the influence of the interface on the binary alloy growth rates. The GaN growth rate at the interface was observed to decrease with increasing GaN thickness while the AlN growth rate remained constant. This has been attributed to a decrease in the decomposition rate of GaN at the hetero-interface as seen in other III-V hetero-structures.

  7. Surfactant effects of indium on cracking in AlN/GaN distributed Bragg reflectors grown via metal organic vapor phase epitaxy

    Science.gov (United States)

    Rodak, L. E.; Miller, C. M.; Korakakis, D.

    2011-01-01

    Aluminum Nitride (AlN) and Gallium Nitride (GaN) superlattice structures are often characterized by a network of cracks resulting from the large lattice mismatch and difference in thermal expansion coefficients, especially as the thickness of the layers increases. This work investigates the influence of indium as a surfactant on strain and cracking in AlN/GaN DBRs grown via Metal Organic Vapor Phase Epitaxy (MOVPE). DBRs with peak reflectivities ranging from 465 nm to 540 nm were grown and indium was introduced during the growth of the AlN layer. Image processing techniques were used to quantify the crack length per square millimeter and it was observed that indium has a significant effect on the crack formation and reduced the total crack length in these structures by a factor of two.

  8. Optimization of total vaporization solid-phase microextraction (TV-SPME) for the determination of lipid profiles of Phormia regina, a forensically important blow fly species.

    Science.gov (United States)

    Kranz, William; Carroll, Clinton; Dixon, Darren; Picard, Christine; Goodpaster, John

    2017-11-01

    A new method has been developed for the determination of fatty acids, sterols, and other lipids which naturally occur within pupae of the blow fly Phormia regina. The method relies upon liquid extraction in non-polar solvent, followed by derivatization using N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) w/ 1% trimethylchlorsilane (TMCS) carried out inside the sample vial. The analysis is facilitated by total vaporization solid-phase microextraction (TV-SPME), with gas chromatography-mass spectrometry (GC-MS) serving as the instrumentation for analysis. The TV-SPME delivery technique is approximately a factor of five more sensitive than traditional liquid injection, which may alleviate the need for rotary evaporation, reconstitution, collection of high performance liquid chromatography fractions, and many of the other pre-concentration steps that are commonplace in the current literature. Furthermore, the ability to derivatize the liquid extract in a single easy step while increasing sensitivity represents an improvement over current derivatization methods. The most common lipids identified in fly pupae were various saturated and unsaturated fatty acids ranging from lauric acid (12:0) to arachinoic acid (20:4), as well as cholesterol. The concentrations of myristic acid (14:0), palmitelaidic acid (16:2), and palmitoleic acid (16:1) were the most reliable indicators of the age of the pupae. Graphical abstract Blow fly pupae were extracted prior to emerging as adults. The extracts were analyzed via total vaporization solid-phase microextraction (TV-SPME), revealing a complex mixture of lipids that could be associated with the age of the insect. This information may assist in determining a post-mortum interval (PMI) in a death investigation.

  9. High-pressure vapor-phase hydrodeoxygenation of lignin-derived oxygenates to hydrocarbons by a PtMo bimetallic catalyst: Product selectivity, reaction pathway, and structural characterization

    Energy Technology Data Exchange (ETDEWEB)

    Yohe, Sara L.; Choudhari, Harshavardhan J.; Mehta, Dhairya D.; Dietrich, Paul J.; Detwiler, Michael D.; Akatay, Cem M.; Stach, Eric A.; Miller, Jeffrey T.; Delgass, W. Nicholas; Agrawal, Rakesh; Ribeiro, Fabio H.

    2016-12-01

    High-pressure, vapor-phase, hydrodeoxygenation (HDO) reactions of dihydroeugenol (2-methoxy-4-propylphenol), as well as other phenolic, lignin-derived compounds, were investigated over a bimetallic platinum and molybdenum catalyst supported on multi-walled carbon nanotubes (5%Pt2.5%Mo/MWCNT). Hydrocarbons were obtained in 100% yield from dihydroeugenol, including 98% yield of the hydrocarbon propylcyclohexane. The final hydrocarbon distribution was shown to be a strong function of hydrogen partial pressure. Kinetic analysis showed three main dihydroeugenol reaction pathways: HDO, hydrogenation, and alkylation. The major pathway occurred via Pt catalyzed hydrogenation of the aromatic ring and methoxy group cleavage to form 4-propylcyclohexanol, then Mo catalyzed removal of the hydroxyl group by dehydration to form propylcyclohexene, followed by hydrogenation of propylcyclohexene on either the Pt or Mo to form the propylcyclohexane. Transalkylation by the methoxy group occurred as a minor side reaction. Catalyst characterization techniques including chemisorption, scanning transmission electron microscopy, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy were employed to characterize the catalyst structure. Catalyst components identified were Pt particles, bimetallic PtMo particles, a Mo carbide-like phase, and Mo oxide phases.

  10. Photoluminescence and surface photovoltage spectroscopy characterization of highly strained InGaAs/GaAs quantum well structures grown by metal organic vapor phase epitaxy

    International Nuclear Information System (INIS)

    Chan, C.H.; Wu, J.D.; Huang, Y.S.; Hsu, H.P.; Tiong, K.K.; Su, Y.K.

    2010-01-01

    Photoluminescence (PL) and surface photovoltage spectroscopy (SPS) are used to characterize a series of highly strained In x Ga 1-x As/GaAs quantum well (QW) structures grown by metal organic vapor phase epitaxy with different indium compositions (0.395 ≤ x ≤ 0.44) in the temperature range of 20 K ≤ T ≤ 300 K. The PL features show redshift in peak positions and broadened lineshape with increasing indium composition. The S-shaped temperature dependent PL spectra have been attributed to carrier localization effect resulting from the presence of indium clusters at QW interfaces. A lineshape fit of features in the differential surface photovoltage (SPV) spectra has been used to determine the transition energies accurately. At temperature below 100 K, the light-hole (LH) related feature shows a significant phase difference as compared to that of heavy-hole (HH) related features. The phase change of the LH feature can be explained by the existence of type-II configuration for the LH valence band and the process of separation of carriers within the QWs together with possible capture by the interface defect traps. A detailed analysis of the observed phenomena enables the identification of spectral features and to evaluate the band lineup of the QWs. The results demonstrate the usefulness of PL and SPS for the contactless and nondestructive characterization of highly strained InGaAs/GaAs QW structures.

  11. Vapor Pressure Plus: An Experiment for Studying Phase Equilibria in Water, with Observation of Supercooling, Spontaneous Freezing, and the Triple Point

    Science.gov (United States)

    Tellinghuisen, Joel

    2010-01-01

    Liquid-vapor, solid-vapor, and solid-liquid-vapor equilibria are studied for the pure substance water, using modern equipment that includes specially fabricated glass cells. Samples are evaporatively frozen initially, during which they typically supercool to -5 to -10 [degrees]C before spontaneously freezing. Vacuum pumping lowers the temperature…

  12. Fast vaporization solid phase microextraction and ion mobility spectrometry: A new approach for determination of creatinine in biological fluids.

    Science.gov (United States)

    Jafari, Mostafa; Ebrahimzadeh, Homeira; Banitaba, Mohamma Hossein

    2015-11-01

    In this work a rapid and simple method for creatinine determination in urine and plasma samples based on aqueous derivatization of creatinine and complete vaporization of sample (as low as 10 µL), followed by ion mobility spectrometry analysis has been proposed. The effect of four important parameters (extraction temperature, total volume of solution, desorption temperature and extraction time) on ion mobility signal has been studied. Under the optimized conditions, the quantitative response of ion mobility spectrometry for creatinine was linear in the range of 0-500 mg L(-1) with a detection limit of 0.6 mg L(-1) in urine and 0-250 mg L(-1) with a detection limit of 2.6 mg L(-1) in plasma sample. The limit of quantitation of creatinine was 2.1 mg L(-1) and 8.7 mg L(-1) in urine and plasma samples, respectively. The relative standard deviation of the method was found to be 13%. The method was successfully applied to the analysis of creatinine in biological samples, showing recoveries from 92% to 104% in urine and 101-110% in plasma samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Detection of ethanol in alcoholic beverages or vapor phase using fluorescent molecules embedded in a nanofibrous polymer.

    Science.gov (United States)

    Akamatsu, Masaaki; Mori, Taizo; Okamoto, Ken; Komatsu, Hirokazu; Kumagai, Ken; Shiratori, Seimei; Yamamura, Masaki; Nabeshima, Tatsuya; Sakai, Hideki; Abe, Masahiko; Hill, Jonathan P; Ariga, Katsuhiko

    2015-03-25

    An alcohol sensor was developed using the solid-state fluorescence emission of terphenyl-ol (TPhOH) derivatives. Admixtures of TPhOH and sodium carbonate exhibited bright sky-blue fluorescence in the solid state upon addition of small quantities of ethanol. A series of terphenol derivatives was synthesized, and the effects of solvent polarities and the structures of these π-conjugated systems on their fluorescence were systematically investigated by using fluorescence spectroscopy. In particular, π-extended TPhOHs and TPhOHs containing electron-withdrawing groups exhibited significant solvatochromism, and fluorescence colors varied from blue to red. Detection of ethanol contents in alcohol beverages (detection limit ∼ 5 v/v %) was demonstrated using different TPhOHs revealing the effect of molecular structure on sensing properties. Ethanol contents in alcoholic beverages could be estimated from the intensity of the fluorescence elicited from the TPhOHs. Moreover, when terphenol and Na2CO3 were combined with a water-absorbent polymer, ethanol could be detected at lower concentrations. Detection of ethanol vapor (8 v/v % in air) was also accomplished using a nanofibrous polymer scaffold as the immobilized sensing film.

  14. Hanford soil partitioning and vapor extraction study

    International Nuclear Information System (INIS)

    Yonge, D.; Hossain, A.; Cameron, R.; Ford, H.; Storey, C.

    1996-07-01

    This report describes the testing and results of laboratory experiments conducted to assist the carbon tetrachloride soil vapor extraction project operating in the 200 West Area of the Hanford Site in Richland, Washington. Vapor-phase adsorption and desorption testing was performed using carbon tetrachloride and Hanford Site soils to estimate vapor-soil partitioning and reasonably achievable carbon tetrachloride soil concentrations during active vapor extractions efforts at the 200 West Area. (CCl 4 is used in Pu recovery from aqueous streams.)

  15. Amorphous and crystalline aerosol particles interacting with water vapor: conceptual framework and experimental evidence for restructuring, phase transitions and kinetic limitations

    Directory of Open Access Journals (Sweden)

    T. Koop

    2009-12-01

    Full Text Available Interactions with water are crucial for the properties, transformation and climate effects of atmospheric aerosols. Here we present a conceptual framework for the interaction of amorphous aerosol particles with water vapor, outlining characteristic features and differences in comparison to crystalline particles. We used a hygroscopicity tandem differential mobility analyzer (H-TDMA to characterize the hydration and dehydration of crystalline ammonium sulfate, amorphous oxalic acid and amorphous levoglucosan particles (diameter ~100 nm, relative humidity 5–95% at 298 K. The experimental data and accompanying Köhler model calculations provide new insights into particle microstructure, surface adsorption, bulk absorption, phase transitions and hygroscopic growth. The results of these and related investigations lead to the following conclusions:

    (1 Many organic substances, including carboxylic acids, carbohydrates and proteins, tend to form amorphous rather than crystalline phases upon drying of aqueous solution droplets. Depending on viscosity and microstructure, the amorphous phases can be classified as glasses, rubbers, gels or viscous liquids.

    (2 Amorphous organic substances tend to absorb water vapor and undergo gradual deliquescence and hygroscopic growth at lower relative humidity than their crystalline counterparts.

    (3 In the course of hydration and dehydration, certain organic substances can form rubber- or gel-like structures (supramolecular networks and undergo transitions between swollen and collapsed network structures.

    (4 Organic gels or (semi-solid amorphous shells (glassy, rubbery, ultra-viscous with low molecular diffusivity can kinetically limit the uptake and release of water and may influence the hygroscopic growth and activation of aerosol particles as cloud condensation nuclei (CCN and ice nuclei (IN. Moreover, (semi-solid amorphous phases may influence the uptake of gaseous photo

  16. Paraffin/expanded graphite phase change composites with enhanced thermal conductivity prepared by implanted β-SiC nanowires with chemical vapor deposition method

    Science.gov (United States)

    Yin, Zhaoyu; Zhang, Xiaoguang; Huang, Zhaohui; Liu, Silin; Zhang, Weiyi; Liu, Yan'gai; Wu, Xiaowen; Fang, Minghao; Min, Xin

    2018-02-01

    Expanded graphite/β-SiC nanowires composites (ESNC) were prepared through chemical vapor deposition, and paraffin/expanded graphite/β-SiC nanowires composites (PESNC) were made through vacuum impregnation to overcome liquid leakage during phase transition and enhance the thermal conductivity of paraffin. Fourier transform infrared spectroscopy showed no chemical interactions between the paraffin and ESNC. Differential scanning calorimetry estimated the temperature and latent heat of PESNC during melting to 45.73 °C and 124.31 J g-1, respectively. The respective values of these quantities during freezing were recorded as 48.93 °C and 124.14 J g-1. The thermal conductivity of PESNC was estimated to 0.75 W mK-1, which was 3.26-folds that of pure paraffin (0.23 W mK-1). PESNC perfectly maintained its phase transition after 200 melting-freezing cycles. The resulting ideal thermal conductivity, good chemical stability, thermal properties and thermal reliability of PESNC are promising for use in energy efficient buildings and solar energy systems.

  17. The effects of processing conditions on the surface morphology and hydrophobicity of polyvinylidene fluoride membranes prepared via vapor-induced phase separation

    Science.gov (United States)

    Peng, Yuelian; Fan, Hongwei; Ge, Ju; Wang, Shaobin; Chen, Ping; Jiang, Qi

    2012-12-01

    The present investigation reveals how the surface morphology and the hydrophobicity of polyvinylidene fluoride (PVDF) membranes, which were prepared via a vapor-induced phase separation method, were affected by the initial PVDF content in the casting solution and the air temperature. The surface morphology was characterized with scanning electron microscopy. A ternary phase diagram of PVDF/N, N-dimethylacetamide/water was constructed to explain the formation mechanism of the different morphologies. The results show that different membrane morphologies and hydrophobicities can be obtained by changing the processing conditions. Low air temperature and high PVDF contents facilitate the crystallization process, resulting in the formation of a porous skin and particle morphology, which increases the hydrophobicity of the surface. High air temperature and low PVDF contents are favorable for the formation of a net-like surface morphology via spinodal decomposition and lead to a superhydrophobic surface. Theoretical calculations were performed to testify that the net-like surface was more favorable for superhydrophobicity than the particle-based surface.

  18. Pressure dependence of morphology and phase composition of SiC films deposited by microwave plasma chemical vapor deposition on cemented carbide substrates

    Energy Technology Data Exchange (ETDEWEB)

    Yu Shengwang, E-mail: bkdysw@yahoo.cn; Fan Pengwei; Tang Weizhong; Li Xiaojing; Hu Haolin; Hei Hongjun; Zhang Sikai; Lu Fanxiu

    2011-11-01

    SiC films were deposited on cemented carbide substrates by employing microwave plasma chemical vapor deposition method using tetramethylsilane (Si(CH{sub 3}){sub 4}) diluted in H{sub 2} as the precursor. Scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction and scratching technique were used to characterize morphology, composition, phases present and adhesion of the films. Experimental results show that the deposition pressure has great influence on morphologies and phase composition of the films. In sequence, SiC films with a cauliflower-like microstructure, granular films with terrace-featured SiC particles coexisting with Co{sub 2}Si compound and clusters of nanometer SiC nanoplatelets appear as a function of the deposition pressure. In terms of plasma density and substrate temperature, this sequential appearance of microstructures of SiC films was explained. Adhesion tests showed that among the three types of films studied, the films with the terrace-featured SiC particles have relatively higher adhesion. Such knowledge will be of importance when the SiC films are used as interlayer between diamond films and cemented carbide substrates.

  19. Pressure dependence of morphology and phase composition of SiC films deposited by microwave plasma chemical vapor deposition on cemented carbide substrates

    International Nuclear Information System (INIS)

    Yu Shengwang; Fan Pengwei; Tang Weizhong; Li Xiaojing; Hu Haolin; Hei Hongjun; Zhang Sikai; Lu Fanxiu

    2011-01-01

    SiC films were deposited on cemented carbide substrates by employing microwave plasma chemical vapor deposition method using tetramethylsilane (Si(CH 3 ) 4 ) diluted in H 2 as the precursor. Scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction and scratching technique were used to characterize morphology, composition, phases present and adhesion of the films. Experimental results show that the deposition pressure has great influence on morphologies and phase composition of the films. In sequence, SiC films with a cauliflower-like microstructure, granular films with terrace-featured SiC particles coexisting with Co 2 Si compound and clusters of nanometer SiC nanoplatelets appear as a function of the deposition pressure. In terms of plasma density and substrate temperature, this sequential appearance of microstructures of SiC films was explained. Adhesion tests showed that among the three types of films studied, the films with the terrace-featured SiC particles have relatively higher adhesion. Such knowledge will be of importance when the SiC films are used as interlayer between diamond films and cemented carbide substrates.

  20. Dual-Phase CsPbBr3 -CsPb2 Br5 Perovskite Thin Films via Vapor Deposition for High-Performance Rigid and Flexible Photodetectors.

    Science.gov (United States)

    Tong, Guoqing; Li, Huan; Li, Danting; Zhu, Zhifeng; Xu, Enze; Li, Guopeng; Yu, Linwei; Xu, Jun; Jiang, Yang

    2018-02-01

    Inorganic perovskites with special semiconducting properties and structures have attracted great attention and are regarded as next generation candidates for optoelectronic devices. Herein, using a physical vapor deposition process with a controlled excess of PbBr 2 , dual-phase all-inorganic perovskite composite CsPbBr 3 -CsPb 2 Br 5 thin films are prepared as light-harvesting layers and incorporated in a photodetector (PD). The PD has a high responsivity and detectivity of 0.375 A W -1 and 10 11 Jones, respectively, and a fast response time (from 10% to 90% of the maximum photocurrent) of ≈280 µs/640 µs. The device also shows an excellent stability in air for more than 65 d without encapsulation. Tetragonal CsPb 2 Br 5 provides satisfactory passivation to reduce the recombination of the charge carriers, and with its lower free energy, it enhances the stability of the inorganic perovskite devices. Remarkably, the same inorganic perovskite photodetector is also highly flexible and exhibits an exceptional bending performance (>1000 cycles). These results highlight the great potential of dual-phase inorganic perovskite films in the development of optoelectronic devices, especially for flexible device applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Water adsorbate phases on ZnO and impact of vapor pressure on the equilibrium shape of nanoparticles

    Science.gov (United States)

    Kenmoe, Stephane; Biedermann, P. Ulrich

    2018-02-01

    ZnO nanoparticles are used as catalysts and have potential applications in gas-sensing and solar energy conversion. A fundamental understanding of the exposed crystal facets, their surface chemistry, and stability as a function of environmental conditions is essential for rational design and improvement of synthesis and properties. We study the stability of water adsorbate phases on the non-polar low-index (10 1 ¯ 0 ) and (11 2 ¯ 0 ) surfaces from low coverage to multilayers using ab initio thermodynamics. We show that phonon contributions and the entropies due to a 2D lattice gas at low coverage and multiple adsorbate configurations at higher coverage have an important impact on the stability range of water adsorbate phases in the (T,p) phase diagram. Based on this insight, we compute and analyze the possible growth mode of water films for pressures ranging from UHV via ambient conditions to high pressures and the impact of water adsorption on the equilibrium shape of nanoparticles in a humid environment. A 2D variant of the Wulff construction shows that the (10 1 ¯ 0 ) and (11 2 ¯ 0 ) surfaces coexist on 12-faceted prismatic ZnO nanoparticles in dry conditions, while in humid environment, the (10 1 ¯ 0 ) surface is selectively stabilized by water adsorption resulting in hexagonal prisms.

  2. Minerals with metal-organic framework structures.

    Science.gov (United States)

    Huskić, Igor; Pekov, Igor V; Krivovichev, Sergey V; Friščić, Tomislav

    2016-08-01

    Metal-organic frameworks (MOFs) are an increasingly important family of advanced materials based on open, nanometer-scale metal-organic architectures, whose design and synthesis are based on the directed assembly of carefully designed subunits. We now demonstrate an unexpected link between mineralogy and MOF chemistry by discovering that the rare organic minerals stepanovite and zhemchuzhnikovite exhibit structures found in well-established magnetic and proton-conducting metal oxalate MOFs. Structures of stepanovite and zhemchuzhnikovite, exhibiting almost nanometer-wide and guest-filled apertures and channels, respectively, change the perspective of MOFs as exclusively artificial materials and represent, so far, unique examples of open framework architectures in organic minerals.

  3. Methane storage in metal-organic frameworks.

    Science.gov (United States)

    He, Yabing; Zhou, Wei; Qian, Guodong; Chen, Banglin

    2014-08-21

    Natural gas (NG), whose main component is methane, is an attractive fuel for vehicular applications. Realization of safe, cheap and convenient means and materials for high-capacity methane storage can significantly facilitate the implementation of natural gas fuelled vehicles. The physisorption based process involving porous materials offers an efficient storage methodology and the emerging porous metal-organic frameworks have been explored as potential candidates because of their extraordinarily high porosities, tunable pore/cage sizes and easily immobilized functional sites. In this view, we provide an overview of the current status of metal-organic frameworks for methane storage.

  4. InAs quantum dot growth on Al{sub x}Ga{sub 1−x}As by metalorganic vapor phase epitaxy for intermediate band solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Jakomin, R., E-mail: robertojakomin@xerem.ufrj.br [Campus de Xerém, Universidade Federal do Rio de Janeiro, UFRJ, Duque de Caxias-RJ (Brazil); Campus de Xerém, Universidade Federal do Rio de Janeiro, UFRJ, Duque de Caxias-RJ (Brazil); Kawabata, R. M. S.; Souza, P. L. [Instituto Nacional de Ciência e Tecnologia de Nanodispositivos Semicondutoires–DISSE–PUC-Rio, RJ (Brazil); Pontificia Universidade Católica do Rio de Janeiro, Marques de São Vicente 225, Rio de Janeiro, 22452-900 RJ (Brazil); Mourão, R. T.; Pires, M. P. [Instituto Nacional de Ciência e Tecnologia de Nanodispositivos Semicondutoires–DISSE–PUC-Rio, RJ (Brazil); Instituto de Física, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro-RJ (Brazil); Micha, D. N. [Instituto Nacional de Ciência e Tecnologia de Nanodispositivos Semicondutoires–DISSE–PUC-Rio, RJ (Brazil); Instituto de Física, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro-RJ (Brazil); Coordenação de Licenciatura em Física, CEFET/RJ, Petrópolis-RJ (Brazil); Xie, H.; Fischer, A. M.; Ponce, F. A. [Department of Physics, Arizona State University, Tempe, Arizona 85287-1504 (United States)

    2014-09-07

    InAs quantum dot multilayers have been grown using Al{sub x}Ga{sub 1−x}As spacers with dimensions and compositions near the theoretical values for optimized efficiencies in intermediate band photovoltaic cells. Using an aluminium composition of x = 0.3 and InAs dot vertical dimensions of 5 nm, transitions to an intermediate band with energy close to the ideal theoretical value have been obtained. Optimum size uniformity and density have been achieved by capping the quantum dots with GaAs following the indium-flush method. This approach has also resulted in minimization of crystalline defects in the epilayer structure.

  5. Spectrally resolved modal characteristics of leaky-wave-coupled quantum cascade phase-locked laser arrays

    Science.gov (United States)

    Sigler, Chris; Gibson, Ricky; Boyle, Colin; Kirch, Jeremy D.; Lindberg, Donald; Earles, Thomas; Botez, Dan; Mawst, Luke J.; Bedford, Robert

    2018-01-01

    The modal characteristics of nonresonant five-element phase-locked arrays of 4.7-μm emitting quantum cascade lasers (QCLs) have been studied using spectrally resolved near- and far-field measurements and correlated with results of device simulation. Devices are fabricated by a two-step metal-organic chemical vapor deposition process and operate predominantly in an in-phase array mode near threshold, although become multimode at higher drive levels. The wide spectral bandwidth of the QCL's core region is found to be a factor in promoting multispatial-mode operation at high drive levels above threshold. An optimized resonant-array design is identified to allow sole in-phase array-mode operation to high drive levels above threshold, and indicates that for phase-locked laser arrays full spatial coherence to high output powers does not require full temporal coherence.

  6. Experimental study of arsenic speciation in vapor phase to 500°C: Implications for As transport and fractionation in low-density crustal fluids and volcanic gases.

    OpenAIRE

    Pokrovski , Gleb S.; Zakirov , Ildar V.; Roux , Jacques; Testemale , Denis; Hazemann , Jean-Louis; Y. U. Bychkov , Andrew; V. Golikova , Galina

    2002-01-01

    The stoichiometry and stability of arsenic gaseous complexes were determined in the system As-H2O ± NaCl ± HCl ± H2S at temperatures up to 500°C and pressures up to 600 bar, from both measurements of As(III) and As(V) vapor-liquid and vapor-solid partitioning, and X-ray absorption fine structure (XAFS) spectroscopic study of As(III)-bearing aqueous fluids. Vapor-aqueous solution partitioning for As(III) was measured from 250 to 450°C at the saturated vapor pressure of the system (Psat) with a...

  7. Magnetic behaviour in metal-organic frameworks

    Indian Academy of Sciences (India)

    The article describes the synthesis, structure and magnetic investigations of a series of metal-organic framework compounds formed with Mn+2 and Ni+2 ions. The structures, determined using the single crystal X-ray diffraction, indicated that the structures possess two- and three-dimensional structures with magnetically ...

  8. Thin films by metal-organic precursor plasma spray

    International Nuclear Information System (INIS)

    Schulz, Douglas L.; Sailer, Robert A.; Payne, Scott; Leach, James; Molz, Ronald J.

    2009-01-01

    While most plasma spray routes to coatings utilize solids as the precursor feedstock, metal-organic precursor plasma spray (MOPPS) is an area that the authors have investigated recently as a novel route to thin film materials. Very thin films are possible via MOPPS and the technology offers the possibility of forming graded structures by metering the liquid feed. The current work employs metal-organic compounds that are liquids at standard temperature-pressure conditions. In addition, these complexes contain chemical functionality that allows straightforward thermolytic transformation to targeted phases of interest. Toward that end, aluminum 3,5-heptanedionate (Al(hd) 3 ), triethylsilane (HSi(C 2 H 5 ) 3 or HSiEt 3 ), and titanium tetrakisdiethylamide (Ti(N(C 2 H 5 ) 2 ) 4 or Ti(NEt 2 ) 4 ) were employed as precursors to aluminum oxide, silicon carbide, and titanium nitride, respectively. In all instances, the liquids contain metal-heteroatom bonds envisioned to provide atomic concentrations of the appropriate reagents at the film growth surface, thus promoting phase formation (e.g., Si-C bond in triethylsilane, Ti-N bond in titanium amide, etc.). Films were deposited using a Sulzer Metco TriplexPro-200 plasma spray system under various experimental conditions using design of experiment principles. Film compositions were analyzed by glazing incidence x-ray diffraction and elemental determination by x-ray spectroscopy. MOPPS films from HSiEt 3 showed the formation of SiC phase but Al(hd) 3 -derived films were amorphous. The Ti(NEt 2 ) 4 precursor gave MOPPS films that appear to consist of nanosized splats of TiOCN with spheres of TiO 2 anatase. While all films in this study suffered from poor adhesion, it is anticipated that the use of heated substrates will aid in the formation of dense, adherent films.

  9. Estimated vapor pressure for WTP process streams

    Energy Technology Data Exchange (ETDEWEB)

    Pike, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Poirier, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-01-01

    Design assumptions during the vacuum refill phase of the Pulsed Jet Mixers (PJMs) in the Hanford Waste Treatment and Immobilization Plant (WTP) equate the vapor pressure of all process streams to that of water when calculating the temperature at which the vacuum refill is reduced or eliminated. WTP design authority asked the authors to assess this assumption by performing calculations on proposed feed slurries to calculate the vapor pressure as a function of temperature. The vapor pressure was estimated for each WTP waste group. The vapor pressure suppression caused by dissolved solids is much greater than the increase caused by organic components such that the vapor pressure for all of the waste group compositions is less than that of pure water. The vapor pressure for each group at 145°F ranges from 81% to 98% of the vapor pressure of water. If desired, the PJM could be operated at higher temperatures for waste groups with high dissolved solids that suppress vapor pressure. The SO4 group with the highest vapor pressure suppression could be operated up to 153°F before reaching the same vapor pressure of water at 145°F. However, most groups would reach equivalent vapor pressure at 147 to 148°F. If any of these waste streams are diluted, the vapor pressure can exceed the vapor pressure of water at mass dilution ratios greater than 10, but the overall effect is less than 0.5%.

  10. Organically bound deuterium in soybean exposed to atmospheric D2O vapor as a substitute for HTO under different growth phase

    International Nuclear Information System (INIS)

    Ichimasa, Michiko; Maejima, Takuya; Seino, Nami; Ara, Tetsuki; Masukura, Akari; Nishihiro, Sayaka; Tauchi, Hiroshi; Ichimasa, Yusuke

    2003-01-01

    Heavy water vapor release experiments were carried out in a greenhouse using deuterium as a substitute for tritium and uptake and loss kinetics of D 2 O in leaves and formation, translocation and retention of organically bound deuterium (OBD) in bean soybean exposed to D 2 O under different growth phase were investigated. Rate constants of D 2 O uptake in leaves of soybean in the daytime release were 0.6 - 6.1 hr -1 and several times higher than those in the nighttime release. Rate constants of D 2 O loss in leaves after daytime release were almost the same as those after the nighttime release. No significant difference in the half time of D 2 O loss was observed between daytime and nighttime releases. After D 2 O release, OBD concentration in bean in daytime experiments increased with time until 3 - 4 days of the experiments and then decreased with time. The OBD concentrations in bean in daytime release were several times higher than those in nighttime release while the extents of decrease of OBD concentration were somewhat lower than those in the daytime experiment. (author)

  11. Vapor-phase polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT) on commercial carbon coated aluminum foil as enhanced electrodes for supercapacitors

    Science.gov (United States)

    Tong, Linyue; Skorenko, Kenneth H.; Faucett, Austin C.; Boyer, Steven M.; Liu, Jian; Mativetsky, Jeffrey M.; Bernier, William E.; Jones, Wayne E.

    2015-11-01

    Laminar composite electrodes are prepared for application in supercapacitors using a catalyzed vapor-phase polymerization (VPP) of 3,4-ethylenedioxythiophene (EDOT) on the surface of commercial carbon coated aluminum foil. These highly electrically conducting polymer films provide for rapid and stable power storage per gram at room temperature. The chemical composition, surface morphology and electrical properties are characterized by Raman spectroscopy, scanning electron microscopy (SEM), and conducting atomic force microscopy (C-AFM). A series of electrical measurements including cyclic voltammetry (CV), charge-discharge (CD) and electrochemical impedance spectroscopy are also used to evaluate electrical performance. The processing temperature of VPP shows a significant effect on PEDOT morphology, the degree of orientation and its electrical properties. The relatively high temperature leads to high specific area and large conductive domains of PEDOT layer which benefits the capacitive behavior greatly according to the data presented. Since the substrate is already highly conductive, the PEDOT based composite can be used as electrode materials directly without adding current collector. By this simple and efficient process, PEDOT based composites exhibit specific capacitance up to 134 F g-1 with the polymerization temperature of 110 °C.

  12. In Vivo Assessment of the Potential for Renal Bio-Effects from the Vaporization of Perfluorocarbon Phase-Change Contrast Agents.

    Science.gov (United States)

    Nyankima, A Gloria; Rojas, Juan D; Cianciolo, Rachel; Johnson, Kennita A; Dayton, Paul A

    2018-02-01

    Low-boiling-point perfluorocarbon phase-change contrast agents (PCCAs) provide an alternative to microbubble contrast agents. Although parameter ranges related to in vivo bio-effects of microbubbles are fairly well characterized, few studies have been done to evaluate the potential of bio-effects related to PCCAs. To bridge this gap, we present an assessment of biological effects (e.g., hemorrhage) related to acoustically excited PCCAs in the rodent kidney. The presence or absence of bio-effects was observed after sonication with various perfluorocarbon core PCCAs (decafluorobutane, octafluoropropane or a 1:1 mixture) and as a function of activation pulse mechanical index (MI; minimum activation threshold, which was a moderate MI of 0.81-1.35 vs. a clinical maximum of 1.9). Bio-effects on renal tissue were assessed through hematology and histology including measurement of blood creatinine levels and the quantity of red blood cell (RBC) casts present in hematoxylin and eosin-stained kidney tissue sections after sonication. Short-term (24 h) and long-term (2 and 4 wk) analyses were performed after treatment. Results indicated that bio-effects from PCCA vaporization were not observed at lower mechanical indices. At higher mechanical indices, bio-effects were observed at 24 h, although these were not observable 2 wk after treatment. Copyright © 2018. Published by Elsevier Inc.

  13. Hydride vapor phase epitaxy of high structural perfection thick AlN layers on off-axis 6H-SiC

    Science.gov (United States)

    Volkova, Anna; Ivantsov, Vladimir; Leung, Larry

    2011-01-01

    The employment of more than 10 μm thick AlN epilayers on SiC substrates for AlGaN/GaN high-electron-mobility transistors (HEMTs) substantially raises their performance in high-power energy-efficient amplifiers for 4G wireless mobile stations. In this paper, structural properties and surface morphology of thick AlN epilayers deposited by hydride vapor phase epitaxy (HVPE) on off-axis conductive 6H-SiC substrates are reported. The epilayers were examined in detail by high-resolution X-ray diffraction (XRD), atomic force microscopy (AFM), Nomarski differential interference contrast (DIC), scanning electron microscopy (SEM), and selective wet chemical etching. At optimal substrate preparation and growth conditions, a full width at half-maximum (FWHM) of the XRD rocking curve (RC) for the symmetric (00.2) reflex was very close to that of the substrate (less than 40 arcsec) suggesting low screw dislocation density in the epilayer (˜10 6 cm -2) and small in-plane tilt misorientation. Reciprocal space mapping around asymmetric reflexes and measured lattice parameters indicated a fully relaxed state of the epilayers. The unit-cell-high stepped areas of the epilayers with 0.5 nm root mean square (RMS) roughness over 1×1 μm 2 scan were alternated with step-bunching instabilities up to 350 nm in height. Low warp of the substrates makes them suitable for precise epitaxy of HEMT structures.

  14. Addition of Sb as a surfactant for the growth of nonpolar a-plane GaN by using mixed-source hydride vapor phase epitaxy

    International Nuclear Information System (INIS)

    Ok, Jin Eun; Jo, Dong Wan; Yun, Wy Il; Han, Young Hun; Jeon, Hun Soo; Lee, Gang Suok; Jung, Se Gyo; Bae, Seon Min; Ahn, Hyung Soo; Yang, Min

    2011-01-01

    The influence of Sb as a surfactant on the morphology and on the structural and the optical characteristics of a-plane GaN grown on r-plane sapphire by using mixed-source hydride vapor phase epitaxy was investigated. The a-plane GaN:Sb layers were grown at various temperatures ranging from 1000 .deg. C to 1100 .deg. C, and the reactor pressure was maintained at 1 atm. The atomic force microscope (AFM), scanning electron microscope (SEM), X-ray diffraction (XRD) and photoluminescence(PL) results indicated that the surface morphologies and the structural and the optical characteristics of a-plane GaN were markedly improved, compared to the a-plane GaN layers grown without Sb, by using Sb as a surfactant. The addition of Sb was found to alter epitaxial lateral overgrowth (ELO) facet formation. The Sb was not detected from the a-plane-GaN epilayers within the detection limit of the energy dispersive spectroscopy (EDS) and x-ray photoelectron spectroscopy (XPS) measurements, suggesting that Sb act as a surfactant during the growth of a-plane GaN by using mixed-source HVPE method.

  15. Stomatal responses to flooding of the intercellular air spaces suggest a vapor-phase signal between the mesophyll and the guard cells.

    Science.gov (United States)

    Sibbernsen, Erik; Mott, Keith A

    2010-07-01

    Flooding the intercellular air spaces of leaves with water was shown to cause rapid closure of stomata in Tradescantia pallida, Lactuca serriola, Helianthus annuus, and Oenothera caespitosa. The response occurred when water was injected into the intercellular spaces, vacuum infiltrated into the intercellular spaces, or forced into the intercellular spaces by pressurizing the xylem. Injecting 50 mm KCl or silicone oil into the intercellular spaces also caused stomata to close, but the response was slower than with distilled water. Epidermis-mesophyll grafts for T. pallida were created by placing the epidermis of one leaf onto the exposed mesophyll of another leaf. Stomata in these grafts opened under light but closed rapidly when water was allowed to wick between epidermis and the mesophyll. When epidermis-mesophyll grafts were constructed with a thin hydrophobic filter between the mesophyll and epidermis stomata responded normally to light and CO(2). These data, when taken together, suggest that the effect of water on stomata is caused partly by dilution of K(+) in the guard cell and partly by the existence of a vapor-phase signal that originates in the mesophyll and causes stomata to open in the light.

  16. Stomatal Responses to Flooding of the Intercellular Air Spaces Suggest a Vapor-Phase Signal Between the Mesophyll and the Guard Cells1[OA

    Science.gov (United States)

    Sibbernsen, Erik; Mott, Keith A.

    2010-01-01

    Flooding the intercellular air spaces of leaves with water was shown to cause rapid closure of stomata in Tradescantia pallida, Lactuca serriola, Helianthus annuus, and Oenothera caespitosa. The response occurred when water was injected into the intercellular spaces, vacuum infiltrated into the intercellular spaces, or forced into the intercellular spaces by pressurizing the xylem. Injecting 50 mm KCl or silicone oil into the intercellular spaces also caused stomata to close, but the response was slower than with distilled water. Epidermis-mesophyll grafts for T. pallida were created by placing the epidermis of one leaf onto the exposed mesophyll of another leaf. Stomata in these grafts opened under light but closed rapidly when water was allowed to wick between epidermis and the mesophyll. When epidermis-mesophyll grafts were constructed with a thin hydrophobic filter between the mesophyll and epidermis stomata responded normally to light and CO2. These data, when taken together, suggest that the effect of water on stomata is caused partly by dilution of K+ in the guard cell and partly by the existence of a vapor-phase signal that originates in the mesophyll and causes stomata to open in the light. PMID:20472750

  17. Use of p- and n-type vapor phase doping and sub-melt laser anneal for extension junctions in sub-32 nm CMOS technology

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, N.D., E-mail: Duy.Nguyen@imec.b [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Rosseel, E. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Takeuchi, S. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Department of Physics and Astronomy, KU Leuven, B-3001 Leuven (Belgium); Everaert, J.-L. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Yang, L. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Department of Chemistry and INPAC Institute, KU Leuven, B-3001 Leuven (Belgium); Goossens, J.; Moussa, A.; Clarysse, T.; Richard, O.; Bender, H. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Zaima, S. [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Nagoya, 464-8603 (Japan); Sakai, A. [Department of System Innovation, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531 (Japan); Loo, R. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Lin, J.C. [TSMC, R and D, 8, Li-Hsin 6th Rd., Hsinchu Science-Based Park, Hsinchu, Taiwan (China); TSMC assignee at IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Vandervorst, W. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Instituut voor Kern- en Stralingsfysika - IKS, KU Leuven, B-3001 Leuven (Belgium); Caymax, M. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium)

    2010-01-01

    We evaluated the combination of vapor phase doping and sub-melt laser anneal as a novel doping strategy for the fabrication of source and drain extension junctions in sub-32 nm CMOS technology, aiming at both planar and non-planar device applications. High quality ultra shallow junctions with abrupt profiles in Si substrates were demonstrated on 300 mm Si substrates. The excellent results obtained for the sheet resistance and the junction depth with boron allowed us to fulfill the requirements for the 32 nm as well as for the 22 nm technology nodes in the PMOS case by choosing appropriate laser anneal conditions. For instance, using 3 laser scans at 1300 {sup o}C, we measured an active dopant concentration of about 2.1 x 10{sup 20} cm{sup -} {sup 3} and a junction depth of 12 nm. With arsenic for NMOS, ultra shallow junctions were achieved as well. However, as also seen for other junction fabrication schemes, low dopant activation level and active dose (in the range of 1-4 x 10{sup 13} cm{sup -} {sup 2}) were observed although dopant concentration versus depth profiles indicate that the dopant atoms were properly driven into the substrate during the anneal step. The electrical deactivation of a large part of the in-diffused dopants was responsible for the high sheet resistance values.

  18. Use of p- and n-type vapor phase doping and sub-melt laser anneal for extension junctions in sub-32 nm CMOS technology

    International Nuclear Information System (INIS)

    Nguyen, N.D.; Rosseel, E.; Takeuchi, S.; Everaert, J.-L.; Yang, L.; Goossens, J.; Moussa, A.; Clarysse, T.; Richard, O.; Bender, H.; Zaima, S.; Sakai, A.; Loo, R.; Lin, J.C.; Vandervorst, W.; Caymax, M.

    2010-01-01

    We evaluated the combination of vapor phase doping and sub-melt laser anneal as a novel doping strategy for the fabrication of source and drain extension junctions in sub-32 nm CMOS technology, aiming at both planar and non-planar device applications. High quality ultra shallow junctions with abrupt profiles in Si substrates were demonstrated on 300 mm Si substrates. The excellent results obtained for the sheet resistance and the junction depth with boron allowed us to fulfill the requirements for the 32 nm as well as for the 22 nm technology nodes in the PMOS case by choosing appropriate laser anneal conditions. For instance, using 3 laser scans at 1300 o C, we measured an active dopant concentration of about 2.1 x 10 20 cm - 3 and a junction depth of 12 nm. With arsenic for NMOS, ultra shallow junctions were achieved as well. However, as also seen for other junction fabrication schemes, low dopant activation level and active dose (in the range of 1-4 x 10 13 cm - 2 ) were observed although dopant concentration versus depth profiles indicate that the dopant atoms were properly driven into the substrate during the anneal step. The electrical deactivation of a large part of the in-diffused dopants was responsible for the high sheet resistance values.

  19. Improving Liquid Entry Pressure of Polyvinylidene Fluoride (PVDF Membranes by Exploiting the Role of Fabrication Parameters in Vapor-Induced Phase Separation VIPS and Non-Solvent-Induced Phase Separation (NIPS Processes

    Directory of Open Access Journals (Sweden)

    Faisal Abdulla AlMarzooqi

    2017-02-01

    Full Text Available Polyvinylidene fluoride (PVDF is a popular polymer material for making membranes for several applications, including membrane distillation (MD, via the phase inversion process. Non-solvent-induced phase separation (NIPS and vapor-induced phase separation (VIPS are applied to achieve a porous PVDF membrane with low mass-transfer resistance and high contact angle (hydrophobicity. In this work, firstly, the impacts of several preparation parameters on membrane properties using VIPS and NIPS were studied. Then, the performance of the selected membrane was assessed in a lab-scale direct-contact MD (DCMD unit. The parametric study shows that decreasing PVDF concentration while increasing both relative humidity (RH and exposure time increased the contact angle and bubble-point pore size (BP. Those trends were investigated further by varying the casting thickness. At higher casting thicknesses and longer exposure time (up to 7.5 min, contact angle (CA increased but BP significantly decreased. The latter showed a dominant trend leading to liquid entry pressure (LEP increase with thickness.

  20. Synthesis of 4-tert-Butyltoluene by Vapor Phase tert-Butylation of Toluene with tert-Butylalcohol over USY Zeolite

    Directory of Open Access Journals (Sweden)

    Yan Ming Shen

    2015-03-01

    Full Text Available Vapour phase tert-butylation of toluene with tert-butylalcohol was studied over ultra-stable Y zeolite (USY catalyst. The effects of reaction temperature, toluene/TBA molar ratio and liquid space velocity on conversion of toluene and selectivity for 4-tert-butyltoluene were studied. The deactivation and regeneration of the catalyst was also investigated. The results showed that the USY zeolite catalyst offered better toluene conversion of about 30 % and 4-tert-butyltoluene selectivity of about 89 % at the suitable reaction condition as follows: reaction temperature of 120 oC, toluene/TBA ratio of 2:1 and liquid space velocity of 2 ml/g·h. The clogging of mocropores by the formed carbon or oligomers was the main reason for the deactivation of the catalyst. By combustion at 550 oC, the catalyst just lost about 5 % in toluene conversion and about 2 % in PTBT selectivity. © 2015 BCREC UNDIP. All rights reservedReceived: 17th July 2014; Revised: 31st August 2014; Accepted: 3rd September 2014How to Cite: Shen, Y.M., Yuan, S., Fan, L., Liu, D.B., Li, S.F. (2015. Synthesis of 4-tert-Butyltoluene by Vapor Phase tert-Butylation of Toluene with tert-Butylalcohol over USY Zeolite. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (1: 1-7. (doi:10.9767/bcrec.10.1.7140.1-7Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.1.7140.1-7

  1. The non-Newtonian heat and mass transport of He 2 in porous media used for vapor-liquid phase separation. Ph.D. Thesis

    Science.gov (United States)

    Yuan, S. W. K.

    1985-01-01

    This investigation of vapor-liquid phase separation (VLPS) of He 2 is related to long-term storage of cryogenic liquid. The VLPS system utilizes porous plugs in order to generate thermomechanical (thermo-osmotic) force which in turn prevents liquid from flowing out of the cryo-vessel (e.g., Infrared Astronomical Satellite). An apparatus was built and VLPS data were collected for a 2 and a 10 micrometer sintered stainless steel plug and a 5 to 15 micrometer sintered bronze plug. The VLPS data obtained at high temperature were in the nonlinear turbulent regime. At low temperature, the Stokes regime was approached. A turbulent flow model was developed, which provides a phenomenological description of the VLPS data. According to the model, most of the phase separation data are in the turbulent regime. The model is based on concepts of the Gorter-Mellink transport involving the mutual friction known from the zero net mass flow (ZNMF) studies. The latter had to be modified to obtain agreement with the present experimental VLPS evidence. In contrast to the well-known ZNMF mode, the VLPS results require a geometry dependent constant (Gorter-Mellink constant). A theoretical interpretation of the phenomenological equation for the VLPS data obtained, is based on modelling of the dynamics of quantized vortices proposed by Vinen. In extending Vinen's model to the VLPS transport of He 2 in porous media, a correlation between the K*(GM) and K(p) was obtained which permits an interpretation of the present findings. As K(p) is crucial, various methods were introduced to measure the permeability of the porous media at low temperatures. Good agreement was found between the room temperature and the low temperature K(p)-value of the plugs.

  2. High temperature vapors science and technology

    CERN Document Server

    Hastie, John

    2012-01-01

    High Temperature Vapors: Science and Technology focuses on the relationship of the basic science of high-temperature vapors to some areas of discernible practical importance in modern science and technology. The major high-temperature problem areas selected for discussion include chemical vapor transport and deposition; the vapor phase aspects of corrosion, combustion, and energy systems; and extraterrestrial high-temperature species. This book is comprised of seven chapters and begins with an introduction to the nature of the high-temperature vapor state, the scope and literature of high-temp

  3. Mobile vapor recovery and vapor scavenging unit

    International Nuclear Information System (INIS)

    Stokes, C.A.; Steppe, D.E.

    1991-01-01

    This patent describes a mobile anti- pollution apparatus, for the recovery of hydrocarbon emissions. It comprises a mobile platform upon which is mounted a vapor recovery unit for recovering vapors including light hydrocarbons, the vapor recovery unit having an inlet and an outlet end, the inlet end adapted for coupling to an external source of hydrocarbon vapor emissions to recover a portion of the vapors including light hydrocarbons emitted therefrom, and the outlet end adapted for connection to a means for conveying unrecovered vapors to a vapor scavenging unit, the vapor scavenging unit comprising an internal combustion engine adapted for utilizing light hydrocarbon in the unrecovered vapors exiting from the vapor recovery unit as supplemental fuel

  4. Vapor Phase Hydrogen Peroxide Sanitization of an Isolator for Aseptic Filling of Monoclonal Antibody Drug Product - Hydrogen Peroxide Uptake and Impact on Protein Quality.

    Science.gov (United States)

    Hubbard, Aaron; Reodl, Thomas; Hui, Ada; Knueppel, Stephanie; Eppler, Kirk; Lehnert, Siegfried; Maa, Yuh-Fun

    2018-03-15

    A monoclonal antibody drug product (DP) manufacturing process was transferred to a different production site, where aseptic filling took place within an isolator that was sanitized using vapor phase hydrogen peroxide (VPHP). A quality-by-design approach was applied for study design to understand the impact of VPHP uptake in the isolator on DP quality. A combination of small-scale and manufacturing-scale studies was performed to evaluate the sensitivity of the monoclonal antibody to hydrogen peroxide (H2O2) as well as VPHP uptake mechanisms during the filling process. The acceptable H2O2 level was determined to be 100 ng/mL for the antibody in the H2O2 spiking study; protein oxidation was observed above this threshold. The most prominent sources of VPHP uptake were identified to be via the silicone tubing assembly (associated with the peristaltic pumps) and open, filled vials. Silicone tubing, an effective depot to H2O2, could absorb VPHP during different stages of the filling process and discharge H2O2 into the DP solution during filling interruptions. A small-scale isolator model, established to simulate manufacturing-scale conditions, was a useful tool in understanding H2O2 uptake in relation to tubing dimensions and VPHP concentration in the isolator air (or atmosphere). Although the tubing assembly had absorbed a substantial amount of VPHP during the decontamination phase, the majority of H2O2 could be removed during tubing cleaning and sterilization in the subsequent isolator aeration phase, demonstrating that H2O2 in the DP solution is taken up primarily via atmospheric VPHP residues in the isolator during filling. Picarro sensor monitoring suggested that the validated VPHP aeration process generates reproducible residual VPHP profiles in isolator air, thus allowing small-scale studies to provide more relevant recommendations on tubing size and interruption time limits for commercial manufacturing. The recommended process parameters were demonstrated to be

  5. Domestic Preparedness: Phase 2 Sarin Vapor Challenge and Corn Oil Protection Factor (PF) Testing of Commercial Powered Air Purifying Respirator (PAPR) Systems and Cartridges

    National Research Council Canada - National Science Library

    Campbell, Lee E; Lins, Ray; Pappas, Alex G

    2002-01-01

    .... Results indicate that cartridges provide complete penetration resistance against 200 mg/m3 GB challenge concentrations for 60 minutes, but that unacceptably high levels of GB vapor and corn oil...

  6. Chlorine isotopic compositions of apatite in Apollo 14 rocks: Evidence for widespread vapor-phase metasomatism on the lunar nearside ∼4 billion years ago

    Science.gov (United States)

    Potts, Nicola J.; Barnes, Jessica J.; Tartèse, Romain; Franchi, Ian A.; Anand, Mahesh

    2018-06-01

    Compared to most other planetary materials in the Solar System, some lunar rocks display high δ37Cl signatures. Loss of Cl in a H ≪ Cl environment has been invoked to explain the heavy signatures observed in lunar samples, either during volcanic eruptions onto the lunar surface or during large scale degassing of the lunar magma ocean. To explore the conditions under which Cl isotope fractionation occurred in lunar basaltic melts, five Apollo 14 crystalline samples were selected (14053,19, 14072,13, 14073,9, 14310,171 along with basaltic clast 14321,1482) for in situ analysis of Cl isotopes using secondary ion mass spectrometry. Cl isotopes were measured within the mineral apatite, with δ37Cl values ranging from +14.6 ± 1.6‰ to +40.0 ± 2.9‰. These values expand the range previously reported for apatite in lunar rocks, and include some of the heaviest Cl isotope compositions measured in lunar samples to date. The data here do not display a trend between increasing rare earth elements contents and δ37Cl values, reported in previous studies. Other processes that can explain the wide inter- and intra-sample variability of δ37Cl values are explored. Magmatic degassing is suggested to have potentially played a role in fractionating Cl isotope in these samples. Degassing alone, however, could not create the wide variability in isotopic signatures. Our favored hypothesis, to explain small scale heterogeneity, is late-stage interaction with a volatile-rich gas phase, originating from devolatilization of lunar surface regolith rocks ∼4 billion years ago. This period coincides with vapor-induced metasomastism recorded in other lunar samples collected at the Apollo 16 and 17 landing sites, pointing to the possibility of widespread volatile-induced metasomatism on the lunar nearside at that time, potentially attributed to the Imbrium formation event.

  7. Mass-Dependent and -Independent Fractionation of Mercury Isotope during Gas-Phase Oxidation of Elemental Mercury Vapor by Atomic Cl and Br.

    Science.gov (United States)

    Sun, Guangyi; Sommar, Jonas; Feng, Xinbin; Lin, Che-Jen; Ge, Maofa; Wang, Weigang; Yin, Runsheng; Fu, Xuewu; Shang, Lihai

    2016-09-06

    This study presents the first measurement of Hg stable isotope fractionation during gas-phase oxidation of Hg(0) vapor by halogen atoms (Cl(•), Br(•)) in the laboratory at 750 ± 1 Torr and 298 ± 3 K. Using a relative rate technique, the rate coefficients for Hg(0)+Cl(•) and Hg(0)+Br(•) reactions are determined to be (1.8 ± 0.5) × 10(-11) and (1.6 ± 0.8) × 10(-12) cm(3) molecule(-1) s(-1), respectively. Results show that heavier isotopes are preferentially enriched in the remaining Hg(0) during Cl(•) initiated oxidation, whereas being enriched in the product during oxidation by Br(•). The fractionation factors for (202)Hg/(198)Hg during the Cl(•) and Br(•) initiated oxidations are α(202/198) = 0.99941 ± 0.00006 (2σ) and 1.00074 ± 0.00014 (2σ), respectively. A Δ(199)Hg/Δ(201)Hg ratio of 1.64 ± 0.30 (2σ) during oxidation of Hg(0) by Br atoms suggests that Hg-MIF is introduced by the nuclear volume effect (NVE). In contrast, the Hg(0) + Cl(•) reaction produces a Δ(199)Hg/Δ(201)Hg-slope of 1.89 ± 0.18 (2σ), which in addition to a high degree of odd-mass-number isotope MIF suggests impacts from MIF effects other than NVE. This reaction also exhibits significant MIF of (200)Hg (Δ(200)Hg, up to -0.17‰ in the reactant) and is the first physicochemical process identified to trigger (200)Hg anomalies that are frequently detected in atmospheric samples.

  8. In situ synthesis of silver nanoparticles on the cotton fabrics modified by plasma induced vapor phase graft polymerization of acrylic acid for durable multifunction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.X., E-mail: cxwang@mail.dhu.edu.cn [College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu, 224003 (China); Collaborative Innovation Center for Ecological Building, Materials and Environmental Protection Equipments, Jiangsu, 224051 (China); Laboratory for Advanced Technology in Environmental Protection, Jiangsu, 224051 (China); School of Textile and Clothing, Nantong University, Jiangsu, 226019 (China); Ren, Y. [School of Textile and Clothing, Nantong University, Jiangsu, 226019 (China); Lv, J.C.; Zhou, Q.Q.; Ma, Z.P.; Qi, Z.M.; Chen, J.Y.; Liu, G.L.; Gao, D.W. [College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu, 224003 (China); Lu, Z.Q. [College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu, 224003 (China); Collaborative Innovation Center for Ecological Building, Materials and Environmental Protection Equipments, Jiangsu, 224051 (China); Laboratory for Advanced Technology in Environmental Protection, Jiangsu, 224051 (China); Zhang, W. [College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu, 224003 (China); Jin, L.M. [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204 (China)

    2017-02-28

    Highlights: • A new means for multifunctional cotton fabrics by PIVPGP of AA and AgNPs synthesis. • Surface modification by PIVPGP of AA had a positive effect on AgNPs loading. • Antibacterial, self-cleaning and thermal stability were greatly improved. • AgNP loaded cotton fabric exhibited excellent laundering durability. • Mechanism of AgNPs in situ synthesis on cotton fabrics by PIVPGP of AA was proposed. - Abstract: A practical and ecological method for preparing the multifunctional cotton fabrics with excellent laundering durability was explored. Cotton fabrics were modified by plasma induced vapor phase graft polymerization (PIVPGP) of acrylic acid (AA) and subsequently silver nanoparticles (AgNPs) were in situ synthesized on the treated cotton fabrics. The AgNP loaded cotton fabrics were characterized by scanning electron microscope (SEM), energy dispersive X-ray (EDX), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), antibacterial activity, self-cleaning activity, thermal stability and laundering durability, respectively. SEM observation and EDX, XPS and XRD analysis demonstrated the much more AgNPs deposition on the cotton fabrics modified by PIVPGP of AA. The AgNP loaded cotton fabrics also exhibited better antibacterial activity, self-cleaning activity, thermal stability and laundering durability. It was concluded that the surface modification of the cotton fabrics by PIVPGP of AA could increase the loading efficiency and binding fastness of AgNPs on the treated cotton fabrics, which could fabricate the cotton fabrics with durable multifunction. In addition, the mechanism of in situ synthesis of AgNPs on the cotton fabrics modified by PIVPGP of AA was proposed.

  9. Separation of the components of the binary mixture ethanol-water by steam flux in solid phase column; Separacao dos componentes da mistura binaria etanol-agua por passagem do vapor em coluna de fase solida

    Energy Technology Data Exchange (ETDEWEB)

    Terrones, M G.H.; Brune, W; Souza Barcellos, E de; Almeida, P G.V. de [Vicosa Univ., MG (Brazil). Dept. de Quimica; Fabris, J D [EMBRAPA, Sete Lagoas, MG (Brazil)

    1988-12-31

    This paper deals with the energy required to separate ethanol from an aqueous solution in a distillation column containing a solid phase. The solid phases evaluated consisted of either an amylatious (ground corn) or a cellulose (sugar cane bagasse) absorber whit particle sizes smaller than 4 mm. The water-retention capacity of each solid phase was measured by passing vapors or ethanol-water mixtures through the solid phase. When starting with initial concentrations bellow the azeotropic point, ethanol concentrations up to 99,5% (on corn) and 97,2% (on sugar cane) were achieved. The water content was evaluated potentiometrically (Karl`Fischer). Regarding the 2-4 mm ground corn solid phase column, the energy consumed was estimated to be reduced by 15,6% and 60% (by weight) ethanol-water mixture respectively. (author) 11 refs., 2 figs., 2 tabs

  10. Synthesis and characterization of a liquid Eu precursor (EuCp{sup pm}{sub 2}) allowing for valence control of Eu ions doped into GaN by organometallic vapor phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Brandon, E-mail: bmitchell@wcupa.edu [Department of Physics, West Chester University, West Chester, PA, 19383 (United States); Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871 (Japan); Koizumi, Atsushi; Nunokawa, Takumi; Wakamatsu, Ryuta; Lee, Dong-gun; Saitoh, Yasuhisa; Timmerman, Dolf [Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871 (Japan); Kuboshima, Yoshinori; Mogi, Takayuki; Higashi, Shintaro; Kikukawa, Kaoru [Kojundo Chemical Laboratory Co., Ltd., 5-1-28 Chiyoda, Sakado, Saitama, 350-0284 (Japan); Ofuchi, Hironori; Honma, Tetsuo [Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198 (Japan); Fujiwara, Yasufumi, E-mail: fujiwara@mat.eng.osaka-u.ac.jp [Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871 (Japan)

    2017-06-01

    A liquid Eu precursor, bis(normal-propyl-tetramethylcyclopentadienyl)europium has been synthesized. This precursor exists as a liquid at temperatures higher than 49 °C, has a moderately high vapor pressure, contains no oxygen in its molecular structure, and can be distilled to high purity. These properties make it ideal for doping using a chemical vapor or atomic layer deposition method, and provide a degree of control previously unavailable. As a precursor the Eu exists in the divalent valance state, however, once doped into GaN by organometallic vapor phase epitaxy, the room-temperature photoluminescence of the Eu-doped GaN exhibited the typical red emission due to the intra-4f shell transition of trivalent Eu. After variation of the growth temperature, it was found that divalent Eu could be stabilized in the GaN matrix. By tuning the Fermi level through donor doping, the ratio of Eu{sup 2+} to Eu{sup 3+} could be controlled. The change in valence state of the Eu ions was confirmed using X-ray absorption near-edge structure. - Highlights: • A liquid Eu precursor was synthesized and its properties were characterized. • Precursor has a low melting point and a moderately high vapor pressure. • Does not contain oxygen in its molecular structure. • Eu can changed its valance state when incorporated into GaN. • Valence state of Eu in GaN can be controlled by donor doping.

  11. Synthesis and characterization of a liquid Eu precursor (EuCppm2) allowing for valence control of Eu ions doped into GaN by organometallic vapor phase epitaxy

    International Nuclear Information System (INIS)

    Mitchell, Brandon; Koizumi, Atsushi; Nunokawa, Takumi; Wakamatsu, Ryuta; Lee, Dong-gun; Saitoh, Yasuhisa; Timmerman, Dolf; Kuboshima, Yoshinori; Mogi, Takayuki; Higashi, Shintaro; Kikukawa, Kaoru; Ofuchi, Hironori; Honma, Tetsuo; Fujiwara, Yasufumi

    2017-01-01

    A liquid Eu precursor, bis(normal-propyl-tetramethylcyclopentadienyl)europium has been synthesized. This precursor exists as a liquid at temperatures higher than 49 °C, has a moderately high vapor pressure, contains no oxygen in its molecular structure, and can be distilled to high purity. These properties make it ideal for doping using a chemical vapor or atomic layer deposition method, and provide a degree of control previously unavailable. As a precursor the Eu exists in the divalent valance state, however, once doped into GaN by organometallic vapor phase epitaxy, the room-temperature photoluminescence of the Eu-doped GaN exhibited the typical red emission due to the intra-4f shell transition of trivalent Eu. After variation of the growth temperature, it was found that divalent Eu could be stabilized in the GaN matrix. By tuning the Fermi level through donor doping, the ratio of Eu 2+ to Eu 3+ could be controlled. The change in valence state of the Eu ions was confirmed using X-ray absorption near-edge structure. - Highlights: • A liquid Eu precursor was synthesized and its properties were characterized. • Precursor has a low melting point and a moderately high vapor pressure. • Does not contain oxygen in its molecular structure. • Eu can changed its valance state when incorporated into GaN. • Valence state of Eu in GaN can be controlled by donor doping.

  12. Metal-organic-vapor-phase-epitaxy and characterization of homoepitaxial ZnO-layers; Metallorganische Gasphasenepitaxie und Charakteriesierung homoepitaktischer ZnO-Schichten

    Energy Technology Data Exchange (ETDEWEB)

    Heinze, Soeren

    2009-03-30

    ZnO is a direct semiconductor with a band gap of 3.37 eV and an exciton binding energy of about 60 meV. By alloying with cadmium or magnesium the band gap can be varied between 2.9 eV and 4 eV, which makes the realization of for instance quantum pot structures. Therefore ZnO is a promising material for optoelectronic applications in the blue and near-ultraviolet spectral range. In spite of world-wide numerous research activities over the last years the realization of p-type ZnO could indeed not sufficiently (i.e. reproduceable and long-time stably) be solved. The ZnO layers of this thesis were fabricated by means of metalorganic gas-phase epitaxy. By means of the studies on heteroepitactically deposed, undoped layers I show the limits of the heteroepitaxy. Although in doping attempts no p-type ZnO could be fabricated. By introduction of a three-stage growth procedure physical properties (morphology, luminescence, crystallographic and electric properties) of the upper ZnO layer could be distinctly improved. On the other hand it was proved that during the fabrication process an electrically high-conductive intermediate layer in the neighbourhood of the substrate/ZnO interface is formed, the formation of which cannot be avoided in the heteroepitaxy. Since about three years ZnO substrates with very good quality are commercially available. Therefore the essential part of this thesis tracts my works on the homoepitaxy of ZnO. For a successful homoepitactical growth a thermal pre-treatment (annealing) of the substrate is necessary. Thereby the substrate is located in a surrounding of ZnO powder and an oxygen atmosphere. The optimal tempering conditions were determined and the influence of these pre-treatment on the physical properties of the substrated were detailedly studied. After the annealing the substrates are suited for the epitaxy. The experiences from the heteroepitaxy could not without more ado be transferred to the homoepitaxy. The quality of the homoepitactical

  13. Petroleum Vapor Intrusion

    Science.gov (United States)

    One type of vapor intrusion is PVI, in which vapors from petroleum hydrocarbons such as gasoline, diesel, or jet fuel enter a building. Intrusion of contaminant vapors into indoor spaces is of concern.

  14. Thin films of metal-organic compounds and metal nanoparticle

    Indian Academy of Sciences (India)

    Thin films of metal-organic compounds and metal nanoparticle-embedded polymers for nonlinear optical applications. S Philip Anthony Shatabdi Porel D ... Thin films based on two very different metal-organic systems are developed and some nonlinear optical applications are explored. A family of zinc complexes which ...

  15. Long Term Field Development of a Surfactant Modified Zeolite/Vapor Phase Bioreactor System for Treatment of Produced Waters for Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Lynn Katz; Kerry Kinney; Robert Bowman; Enid Sullivan; Soondong Kwon; Elaine Darby; Li-Jung Chen; Craig Altare

    2007-12-31

    The main goal of this research was to investigate the feasibility of using a combined physicochemical/biological treatment system to remove the organic constituents present in saline produced water. In order to meet this objective, a physical/chemical adsorption process was developed and two separate biological treatment techniques were investigated. Two previous research projects focused on the development of the surfactant modified zeolite adsorption process (DE-AC26-99BC15221) and development of a vapor phase biofilter (VPB) to treat the regeneration off-gas from the surfactant modified zeolite (SMZ) adsorption system (DE-FC26-02NT15461). In this research, the SMZ/VPB was modified to more effectively attenuate peak loads and to maintain stable biodegradation of the BTEX constituents from the produced water. Specifically, a load equalization system was incorporated into the regeneration flow stream. In addition, a membrane bioreactor (MBR) system was tested for its ability to simultaneously remove the aromatic hydrocarbon and carboxylate components from produced water. The specific objectives related to these efforts included the following: (1) Optimize the performance VPBs treating the transient loading expected during SMZ regeneration: (a) Evaluate the impact of biofilter operating parameters on process performance under stable operating conditions. (b) Investigate how transient loads affect biofilter performance, and identify an appropriate technology to improve biological treatment performance during the transient regeneration period of an SMZ adsorption system. (c) Examine the merits of a load equalization technology to attenuate peak VOC loads prior to a VPB system. (d) Evaluate the capability of an SMZ/VPB to remove BTEX from produced water in a field trial. (2) Investigate the feasibility of MBR treatment of produced water: (a) Evaluate the biodegradation of carboxylates and BTEX constituents from synthetic produced water in a laboratory-scale MBR. (b

  16. Effects of AlN nucleation layers on the growth of AlN films using high temperature hydride vapor phase epitaxy

    International Nuclear Information System (INIS)

    Balaji, M.; Claudel, A.; Fellmann, V.; Gélard, I.; Blanquet, E.; Boichot, R.; Pierret, A.

    2012-01-01

    Highlights: ► Growth of AlN Nucleation layers and its effect on high temperature AlN films quality were investigated. ► AlN nucleation layers stabilizes the epitaxial growth of AlN and improves the surface morphology of AlN films. ► Increasing growth temperature of AlN NLs as well as AlN films improves the structural quality and limits the formation of cracks. - Abstract: AlN layers were grown on c-plane sapphire substrates with AlN nucleation layers (NLs) using high temperature hydride vapor phase epitaxy (HT-HVPE). Insertion of low temperature NLs, as those typically used in MOVPE process, prior to the high temperature AlN (HT-AlN) layers has been investigated. The NLs surface morphology was studied by atomic force microscopy (AFM) and NLs thickness was measured by X-ray reflectivity. Increasing nucleation layer deposition temperature from 650 to 850 °C has been found to promote the growth of c-oriented epitaxial HT-AlN layers instead of polycrystalline layers. The growth of polycrystalline layers has been related to the formation of dis-oriented crystallites. The density of such disoriented crystallites has been found to decrease while increasing NLs deposition temperature. The HT-AlN layers have been characterized by X-ray diffraction θ − 2θ scan and (0 0 0 2) rocking curve measurement, Raman and photoluminescence spectroscopies, AFM and field emission scanning electron microscopy. Increasing the growth temperature of HT-AlN layers from 1200 to 1400 °C using a NL grown at 850 °C improves the structural quality as well as the surface morphology. As a matter of fact, full-width at half-maximum (FWHM) of 0 0 0 2 reflections was improved from 1900 to 864 arcsec for 1200 °C and 1400 °C, respectively. Related RMS roughness also found to decrease from 10 to 5.6 nm.

  17. Formation of gallium nitride templates and freestanding substrates by hydride vapor phase epitaxy for homoepitaxial growth of III-nitride devices

    Science.gov (United States)

    Williams, Adrian Daniel

    Gallium nitride (GaN) is a direct wide band gap semiconductor currently under heavy development worldwide due to interest in its applications in ultra-violet optoelectronics, power electronics, devices operating in harsh environments (high temperature or corrorsive), etc. While a number of devices have been demonstrated with this material and its related alloys, the unavailability of GaN substrates is seen as one of the current major bottlenecks to both material quality and device performance. This dissertation is concerned with the synthesis of high quality GaN substrates by the hydride vapor phase epitaxy method (HVPE). In this work, the flow of growth precursors in a home-built HVPE reactor was modeled by the Navier-Stokes equation and solved by finite element analysis to promote uniformity of GaN on 2'' sapphire substrates. Kinetics of growth was studied and various regimes of growth were identified to establish a methodology for HVPE GaN growth, independent of reactor geometry. GaN templates as well as bulk substrates were fabricated in this work. Realization of freestanding GaN substrates was achieved through discovery of a natural stress-induced method of separating bulk GaN from sapphire via mechanical failure of a low-temperature GaN buffer layer. Such a process eliminates the need for pre- or post-processing of sapphire substrates, as is currently the standard. Stress in GaN-on-sapphire is discussed, with the dominant contributor identified as thermal stress due to thermal expansion coefficient mismatch between the two materials. This thermal stress is analyzed using Stoney's equation and conditions for crack-free growth of thick GaN substrates were identified. An etch-back process for planarizing GaN templates was also developed and successfully applied to rough GaN templates. The planarization of GaN has been mainly addressed by chemo-mechanical polishing (CMP) methods in the literature, with notable shortcomings including the inability to effectively

  18. Design and characterization of thick InxGa1-xAs metamorphic buffer layers grown by hydride vapor phase epitaxy

    Science.gov (United States)

    Schulte, K. L.; Zutter, B. T.; Wood, A. W.; Babcock, S. E.; Kuech, T. F.

    2014-03-01

    Thick InxGa1-xAs metamorphic buffer layers (MBLs) grown by hydride vapor phase epitaxy (HVPE) were studied. Relationships between MBL properties and growth parameters such as grading rate, cap layer thickness, final xInAs, and deposition temperature (TD) were explored. The MBLs were characterized by measurement of in-plane residual strain (ɛ¦¦), surface etch pit density (EPD), and surface roughness. Capping layer thickness had a strong effect on strain relaxation, with thickly capped samples exhibiting the lowest ɛ¦¦. EPD was higher in samples with thicker caps, reflecting their increased relaxation through dislocation generation. ɛ¦¦ and EPD were weakly affected by the grading rate, making capping layer thickness the primary structural parameter which controls these properties. MBLs graded in discrete steps had similar properties to MBLs with continuous grading. In samples with identical thickness and 10-step grading style, ɛ¦¦ increased almost linearly with final xInAs, while total relaxation stayed relatively constant. Relaxation as a function of xInAs could be described by an equilibrium model in which dislocation nucleation is impeded by the energy of the existing dislocation array. EPD was constant from xInAs = 0 to 0.24 then increased exponentially, which is related to the increased dislocation interaction and blocking seen at higher dislocation densities. RMS roughness increased with xInAs above a certain strain rate (0.15%/µm) samples grown below this level possessed large surface hillocks and high roughness values. The elimination of hillocks at higher values of xInAs is attributed to increased density of surface steps and is related to the out-of-plane component of the burgers vector of the dominant type of 60° dislocation. TD did not affect ɛ¦¦ for samples with a given xInAs. EPD tended to increase with TD, indicating dislocation glide likely is impeded at higher temperatures.

  19. A Copper(II)-Paddlewheel Metal-Organic Framework with Exceptional Hydrolytic Stability and Selective Adsorption and Detection Ability of Aniline in Water.

    Science.gov (United States)

    Chen, Ya; Wang, Bin; Wang, Xiaoqing; Xie, Lin-Hua; Li, Jinping; Xie, Yabo; Li, Jian-Rong

    2017-08-16

    Copper(II)-paddlewheel-based metal-organic frameworks (CP-MOFs) represent a unique subclass of MOFs with highly predictable porous structures, facile syntheses, and functional open metal sites. However, the lack of high hydrolytic stability is an obstacle for CP-MOFs in many practical applications. In this work, we report a new CP-MOF, [Cu 4 (tdhb)] (BUT-155), which is constructed from a judiciously designed carboxylate ligand with high coordination connectivity (octatopic), abundant hydrophobic substituents (six methyl groups), and substituent constrained geometry (tetrahedral backbone), tdhb 8- [H 8 tdhb = 3,3',5,5'-tetrakis(3,5-dicarboxyphenyl)-2,2',4,4',6,6'-hexamethylbiphenyl)]. BUT-155 shows high porosity with a Brunauer-Emmett-Teller surface area of 2070 m 2 /g. Quite interestingly, this CP-MOF retains its structural integrity after being treated in water for 10 days at room temperature or in boiling water for 24 h. To the best of our knowledge, BUT-155 represents the first CP-MOF that is demonstrated to retain its structural integrity in boiling water. The high hydrolytic stability of BUT-155 allowed us to carry out adsorption studies of water vapor and aqueous organic pollutants on it. Water-vapor adsorption reveals a sigmoidal isotherm and a high uptake (46.7 wt %), which is highly reversible and regenerable. In addition, because of the availability of soft-acid-type open Cu(II) sites, BUT-155 shows a high performance for selective adsorption of soft-base-type aniline over water or phenol, and a naked-eye detectable color change for the MOF sample accompanies this. The adsorption selectivity and high adsorption capacity of aniline in BUT-155 are also well-interpreted by single-crystal structures of the water- and aniline-included phases of BUT-155.

  20. Séparations par changement de phase. Etude et représentation des équilibres liquide-vapeur Separation by Phase Hange. Study and Computing Liquid-Vapor Equilibria

    Directory of Open Access Journals (Sweden)

    Asselineau L.

    2006-11-01

    Full Text Available Pour concevoir et optimiser les principales opérations de séparation (particulièrement les distillations avec ou sans solvant et l'extraction liquide-liquide on doit disposer de méthodes de corrélation ou, mieux, de prédiction des équilibres entre phases. A basse pression, et pour les mélanges d'hydrocarbures, les résultats présentés permettent la prévision des coefficients d'équilibre, même pour les séparations les plus délicates. En présence de constituants polaires, les données expérimentales d'équilibre liquide-liquide et liquide-vapeur de mélanges binaires et ternaires peuvent être simultanément corrélées dans le but de simuler et d'optimiser les distillations azéotropiques ou extractives. Sous haute pression, et particulièrement aux abords immédiats du point critique, le choix d'une équation d'état conduit à un traitement unitaire des phases en présence et permet, en particulier, la prédiction du lieu des points critiques des mélanges d'hydrocarbures et la corrélation de ce lieu en présence de solvants polaires. To determine and optimize the main separation operations (in particular distillations with or without a solvent, and liquid-liquid extraction correlation methods must be available or, better yet, methods of predicting phase equilibria. At low pressure and for hydrocarbon mixtures, the results described make the prediction of equilibrium coefficients possible, even for the most delicate separation. In the presence of polar constituents, the experimental data for the liquid-liquid and liquid-vapor equilibrium of binary and ternary mixtures can be simultaneously correlaten so as to simulate and optimize azeotropic or extractive distillations. Under high pressure and especially in the immediate vicinityof the critical point, the choice of an equation of state leads ta a unit treatment of the phases present and, in particular, makes it possible to predict the location of critical points in hydrocarbon

  1. Experimental and molecular docking investigation on metal-organic framework MIL-101(Cr) as a sorbent for vortex assisted dispersive micro-solid-phase extraction of trace 5-nitroimidazole residues in environmental water samples prior to UPLC-MS/MS analysis.

    Science.gov (United States)

    Lu, Nan; Wang, Ting; Zhao, Pan; Zhang, Lianjun; Lun, Xiaowen; Zhang, Xueli; Hou, Xiaohong

    2016-11-01

    In the presented work, metal-organic framework (MOF) material MIL-101(Cr) (MIL, Matérial Institute Lavoisier) was used as a sorbent for vortex assisted dispersive micro-solid-phase extraction (VA-D-μ-SPE) of trace amount of metronidazole (MNZ), ronidazole (RNZ), secnidazole (SNZ), dimetridazole (DMZ), tinidazole (TNZ), and ornidazole (ONZ) in different environmental water samples. Ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS) was used to quantify the target analytes. The extraction conditions, including type of sorbents, amount of MIL-101(Cr), solution pH, extraction method, extraction time, effect of salt, and elution conditions were investigated. Upon the optimal conditions, the developed method showed an excellent extraction performance with the average recovery ranging from 75.2 to 98.8 %. Good sensitivity levels were achieved with the detection limits of 0.03∼0.06 μg/L and the quantitation limits of 0.09∼0.20 μg/L. The linear ranges were varied from 0.1 to 20 for SNZ and ONZ and from 0.2 to 40 μg/L for MNZ, RNZ, DMZ, and TNZ (r 2  > 0.992), and repeatability of the method was satisfactory with the relative standard deviations (RSD) extraction and determination of 5-nitroimidazoles (5-NDZs) in 12 real water samples, showing the positive findings of MNZ and TNZ ranging from 0.3 to 1.0 μg/L. Furthermore, molecular docking was applied to explain the molecular interactions and free binding energies between MIL-101(Cr) and 5-NDZs, providing a deep insight into the adsorption mechanism. The proposed method exhibited the advantages of simplicity, rapidly, less solvent consumption, ease of operation, higher sensitivity, and lower matrix effect. Graphical abstract Schematic diagram of the extraction process and molecular docking investigation.

  2. A combination of computational-experimental study on metal-organic frameworks MIL-53(Al) as sorbent for simultaneous determination of estrogens and glucocorticoids in water and urine samples by dispersive micro-solid-phase extraction coupled to UPLC-MS/MS.

    Science.gov (United States)

    Gao, Guihua; Li, Sijia; Li, Shuo; Wang, Yudan; Zhao, Pan; Zhang, Xiangyu; Hou, Xiaohong

    2018-04-01

    In this work, computational and experimental methods were used to study the adsorption of estrogens and glucocorticoids on metal-organic frameworks (MOFs). Computer-aided molecular simulation was applied to predict the adsorption of eight analytes on four MOFs (MIL-101(Cr), MIL-100(Fe), MIL-53(Al), and UiO-66(Zr)) by examining molecular interactions and calculating free binding energies. Subsequently, the four water-stable MOFs were synthesized and evaluated as adsorbents for the target hormones in aqueous solution. As the MOF exhibiting the highest adsorption capacity in both computations and experiments, MIL-53(Al) was chosen as a sorbent to develop a dispersive micro-solid-phase extraction procedure coupled to ultra-performance liquid chromatography tandem mass spectrometry for simultaneous determination of the target analytes in water and human urine samples. Experimental parameters affecting the extraction recoveries, including pH, ionic strength, MIL-53(Al) amount, extraction time, desorption time, and desorption solvent, were optimized. The optimized method provided a linear range of 0.005025-368.6μg/L with good correlation coefficients (0.9982 ≤ r 2 ≤ 0.9992), and limits of detection (S/N = 3) and quantification (S/N = 10) of 0.0015-1.0μg/L and 0.005-1.8μg/L, respectively. The analyte recoveries were in the range of 80.6-98.4% in water samples and 88.4-93.2% in urine samples. Furthermore, MIL-53(Al) showed good stability over 10 extraction cycles (RSD extraction efficiencies for MOFs and targets, providing new directions for the development and utilization of MOFs. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Feasibility of using of the second gradient theory for the direct numerical simulation of liquid-vapor flows with phase-change; Etude des potentialites de la theorie du second gradient pour la simulation numerique directe des ecoulements liquide-vapeur avec changement de phase

    Energy Technology Data Exchange (ETDEWEB)

    Jamet, D. [CEA Grenoble, 38 (France). Dept. de Thermohydraulique et de Physique]|[Ecole Centrale de Paris, 75 (France)

    1998-12-31

    One on the main difficulties encountered in the direct numerical simulation of two-phase flows in general and of liquid-vapor flows with phase-change in particular, is the interface tracking. The idea developed in this work consists in modeling a liquid-vapor interface as a volumetric zone across which physical properties vary continuously instead of a discontinuous surface. The second gradient theory allows to establish the evolution equations of the fluid in the whole system: bulk phases and interfaces. That means that the resolution of a unique system of partial differential equations is necessary to determine the whole two-phase flow, the interfaces and their evolution in time being a part of the solution of this unique system. We show in this work that it is possible to artificially enlarge an interface without changing its surface tension and the latent heat of vaporization. That means than it is possible to track all the interfaces of a liquid-vapor two-phase flow with phase-change on a mesh the size of which is imposed by the smallest Kolmogorov scale of the bulk phases for example. The artificial enlargement of an interfacial zone is obtained by modifying the thermodynamic behavior of the fluid within the binodal. We show that this modification does not change the dynamics of an interface. However, although the thickness of an interface and its surface tension vary with the mass and heat fluxes that go though it, the thermodynamic modification necessary to the artificial enlargement of an interface drastically increases these variations. Consequently, the artificial enlargement of an interface must be made carefully to avoid a too much important variation of its surface tension during dynamic situations. (author) 60 refs.

  4. Physical property, phase equilibrium, distillation. Measurement and prediction of vapor-liquid and liquid-liquid equilibria; Bussei / heiko / joryu. Kieki, ekieki heiko no sokutei to suisan

    Energy Technology Data Exchange (ETDEWEB)

    Tochigi, K. [Nihon Univ., Tokyo (Japan)

    1998-08-05

    The data on vapor-liquid equilibrium are basic data indispensable to the designing of a distillation process. The stage required for separation depends greatly upon the x-y curve, and the existence/nonexistence of an azeotropic point is also an important item to be checked. This paper describes the measurement of vapor-liquid equilibrium and liquid-liquid equilibrium, and then introduces reliable data on vapor-liquid equilibrium and parameters of an activity coefficient formula. For the prediction of vapor-liquid equilibrium, the ASOG, UNIFAC, and modified NIFAC, all being group contributive methods are utilized. The differences between these group contributive methods are based on the differences between the contributive items based on the differences in size of molecules influencing the activity coefficients and the expression of the group activity coefficient formula. The applicable number of groups of the ASOG is 43, while that of groups of the UNIFAC is 50. The modified UNIFAC covers 43 groups. The prediction of liquid-liquid equilibrium by using a group contributive method has little progressed since the of the results of the study of Magnussen et al. using the UNIFAC. 12 refs., 8 figs., 1 tab.

  5. Metal-organic frameworks in chromatography.

    Science.gov (United States)

    Yusuf, Kareem; Aqel, Ahmad; ALOthman, Zeid

    2014-06-27

    Metal-organic frameworks (MOFs) emerged approximately two decades ago and are the youngest class of porous materials. Despite their short existence, MOFs are finding applications in a variety of fields because of their outstanding chemical and physical properties. This review article focuses on the applications of MOFs in chromatography, including high-performance liquid chromatography (HPLC), gas chromatography (GC), and other chromatographic techniques. The use of MOFs in chromatography has already had a significant impact; however, the utilisation of MOFs in chromatography is still less common than other applications, and the number of MOF materials explored in chromatography applications is limited. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Thermal plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Heberlein, J.; Pfender, E.

    1993-01-01

    Thermal plasmas, with temperatures up to and even exceeding 10 4 K, are capable of producing high density vapor phase precursors for the deposition of relatively thick films. Although this technology is still in its infancy, it will fill the void between the relatively slow deposition processes such as physical vapor deposition and the high rate thermal spray deposition processes. In this chapter, the present state-of-the-art of this field is reviewed with emphasis on the various types of reactors proposed for this emerging technology. Only applications which attracted particular attention, namely diamond and high T c superconducting film deposition, are discussed in greater detail. (orig.)

  7. Characterization of Adsorption Enthalpy of Novel Water-Stable Zeolites and Metal-Organic Frameworks

    Science.gov (United States)

    Kim, Hyunho; Cho, H. Jeremy; Narayanan, Shankar; Yang, Sungwoo; Furukawa, Hiroyasu; Schiffres, Scott; Li, Xiansen; Zhang, Yue-Biao; Jiang, Juncong; Yaghi, Omar M.; Wang, Evelyn N.

    2016-01-01

    Water adsorption is becoming increasingly important for many applications including thermal energy storage, desalination, and water harvesting. To develop such applications, it is essential to understand both adsorbent-adsorbate and adsorbate-adsorbate interactions, and also the energy required for adsorption/desorption processes of porous material-adsorbate systems, such as zeolites and metal-organic frameworks (MOFs). In this study, we present a technique to characterize the enthalpy of adsorption/desorption of zeolites and MOF-801 with water as an adsorbate by conducting desorption experiments with conventional differential scanning calorimetry (DSC) and thermogravimetric analyzer (TGA). With this method, the enthalpies of adsorption of previously uncharacterized adsorbents were estimated as a function of both uptake and temperature. Our characterizations indicate that the adsorption enthalpies of type I zeolites can increase to greater than twice the latent heat whereas adsorption enthalpies of MOF-801 are nearly constant for a wide range of vapor uptakes.

  8. Characterization of Adsorption Enthalpy of Novel Water-Stable Zeolites and Metal-Organic Frameworks

    Science.gov (United States)

    Kim, Hyunho; Cho, H. Jeremy; Narayanan, Shankar; Yang, Sungwoo; Furukawa, Hiroyasu; Schiffres, Scott; Li, Xiansen; Zhang, Yue-Biao; Jiang, Juncong; Yaghi, Omar M.; Wang, Evelyn N.

    2016-01-01

    Water adsorption is becoming increasingly important for many applications including thermal energy storage, desalination, and water harvesting. To develop such applications, it is essential to understand both adsorbent-adsorbate and adsorbate-adsorbate interactions, and also the energy required for adsorption/desorption processes of porous material-adsorbate systems, such as zeolites and metal-organic frameworks (MOFs). In this study, we present a technique to characterize the enthalpy of adsorption/desorption of zeolites and MOF-801 with water as an adsorbate by conducting desorption experiments with conventional differential scanning calorimetry (DSC) and thermogravimetric analyzer (TGA). With this method, the enthalpies of adsorption of previously uncharacterized adsorbents were estimated as a function of both uptake and temperature. Our characterizations indicate that the adsorption enthalpies of type I zeolites can increase to greater than twice the latent heat whereas adsorption enthalpies of MOF-801 are nearly constant for a wide range of vapor uptakes. PMID:26796523

  9. Hydrolytically stable fluorinated metal-organic frameworks for energy-efficient dehydration

    KAUST Repository

    Cadiau, Amandine

    2017-05-18

    Natural gas must be dehydrated before it can be transported and used, but conventional drying agents such as activated alumina or inorganic molecular sieves require an energy-intensive desiccant-regeneration step. We report a hydrolytically stable fluorinated metal-organic framework, AlFFIVE-1-Ni (KAUST-8), with a periodic array of open metal coordination sites and fluorine moieties within the contracted square-shaped one-dimensional channel. This material selectively removed water vapor from gas streams containing CO2, N2, CH4, and higher hydrocarbons typical of natural gas, as well as selectively removed both H2O and CO2 in N2-containing streams. The complete desorption of the adsorbed water molecules contained by the AlFFIVE-1-Ni sorbent requires relatively moderate temperature (~105°C) and about half the energy input for commonly used desiccants.

  10. MOFwich: Sandwiched Metal-Organic Framework-Containing Mixed Matrix Composites for Chemical Warfare Agent Removal.

    Science.gov (United States)

    Peterson, Gregory W; Lu, Annie X; Hall, Morgan G; Browe, Matthew A; Tovar, Trenton; Epps, Thomas H

    2018-02-28

    This work describes a new strategy for fabricating mixed matrix composites containing layered metal-organic framework (MOF)/polymer films as functional barriers for chemical warfare agent protection. Through the use of mechanically robust polymers as the top and bottom encasing layers, a high-MOF-loading, high-performance-core layer can be sandwiched within. We term this multifunctional composite "MOFwich". We found that the use of elastomeric encasing layers enabled core layer reformation after breakage, an important feature for composites and membranes alike. The incorporation of MOFs into the core layer led to enhanced removal of chemical warfare agents while simultaneously promoting moisture vapor transport through the composite, showcasing the promise of these composites for protection applications.

  11. Zeolite-like metal-organic frameworks with ana topology

    KAUST Repository

    Eddaoudi, Mohamed

    2017-04-20

    Embodiments of the present disclosure describe a zeolite-like metal-organic framework composition comprising a metal-organic framework composition with ana topology characterized by the formula [MIII(4, 5-imidazole dicarboxylic acid)2X(solvent)a]n wherein MIII comprises a trivalent cation of a rare earth element, X comprises an alkali metal element or alkaline earth metal element, and solvent comprises a guest molecule occupying pores. Embodiments of the present disclosure describe a method of separating paraffins comprising contacting a zeolite-like metal-organic framework with ana topology with a flow of paraffins, and separating the paraffins by size.

  12. Technique for controllable vapor-phase deposition of 1-nitro(14C)pyrene and other polycyclic aromatic hydrocarbons onto environmental particulate matter

    International Nuclear Information System (INIS)

    Lucas, S.V.; Lee, K.W.; Melton, C.W.; Lewtas, J.; Ball, L.M.

    1991-01-01

    To produce environmental particles fortified with a polycyclic aromatic hydrocarbon (PAH) for toxicology studies, an experimental apparatus was devised for deposition of the desired chemical species onto particles in a controlled and reproducible manner. The technique utilized consists of dispersion of the particles on a gaseous stream at a controlled rate, thermal vaporization of a solution of PAH, delivery of the vaporized PAH into the aerosol of particles at a controlled rate, subsequent condensation of the PAH onto the particles, and final recovery of the coated particles. The effectiveness of this approach was demonstrated by vapor-coating a 14 C-labeled PAH (1-nitro( 14 C)-pyrene) onto diesel engine exhaust particles that had previously been collected by tunnel dilution sampling techniques. Using the 14 C label as a tracer, the coated particles were characterized with respect to degree of coating, integrity of particle structure and absence of chemical decomposition of the coating substrate. The study demonstrates that the described method provides a controllable means for depositing a substance uniformly and with a high coating efficiency onto aerosolized particles. The technique was also used to vapor-coat benzo(a)pyrene onto diesel engine exhaust and urban ambient air particulate matter, and 2-nitrofluoranthene onto urban ambient air particulate matter. Coating efficiencies of about 400 micrograms/g particulate matter were routinely obtained on a single coating run, and up to 1200 micrograms/g (1200 ppm) were achieved after a second pass through the process. The coated particles were subsequently utilized in biological fate, distribution and metabolism studies

  13. Bionanomaterials and Bioinspired Nanostructures for Selective Vapor Sensing

    Science.gov (United States)

    2013-04-03

    agricultural crops. To meet the requirements for these and other demanding applications, new sensing approaches with improved sensor selectivity are required...of these vapors with key side- chain amino acids. DNT-binding peptide receptors were further conjugated to an oligo(ethylene glycol) hydrogel for vapor...coefficient for DNT over TNT vapor. Vapor-phase binding performance was attributed to the ability of the oligo(ethylene glycol) hydrogel to maintain the

  14. Solvothermal growth of a ruthenium metal-organic framework featuring HKUST-1 structure type as thin films on oxide surfaces.

    Science.gov (United States)

    Kozachuk, Olesia; Yusenko, Kirill; Noei, Heshmat; Wang, Yuemin; Walleck, Stephan; Glaser, Thorsten; Fischer, Roland A

    2011-08-14

    Phase-pure crystalline thin films of a mixed-valence Ru(2)(II,III) metal-organic framework with 1,3,5-benzenetricarboxylate (btc) as a linker were solvothermally grown on amorphous alumina and silica surfaces. Based on the Rietveld refinement, the structure of Ru-MOF was assigned to be analogous to [Cu(3)(btc)(2)] (HKUST-1). This journal is © The Royal Society of Chemistry 2011

  15. Synthesis and characterization of bimetallic metal-organic framework Cu-Ru-BTC with HKUST-1 structure.

    Science.gov (United States)

    Gotthardt, Meike A; Schoch, Roland; Wolf, Silke; Bauer, Matthias; Kleist, Wolfgang

    2015-02-07

    The bimetallic metal-organic framework Cu-Ru-BTC with the stoichiometric formula Cu2.75Ru0.25(BTC)2·xH2O, which is isoreticular to HKUST-1, was successfully prepared in a direct synthesis using mild reaction conditions. The partial substitution of Cu(2+) by Ru(3+) centers in the paddlewheel structure and the absence of other Ru-containing phases was proven using X-ray absorption spectroscopy.

  16. Metal-organic framework MIL-101 as sorbent based on double-pumps controlled on-line solid-phase extraction coupled with high-performance liquid chromatography for the determination of flavonoids in environmental water samples.

    Science.gov (United States)

    Liu, Yue; Hu, Jia; Li, Yan; Li, Xiao-Shuang; Wang, Zhong-Liang

    2016-10-01

    A novel method with high sensitivity for the rapid determination of chrysin, apigenin and luteolin in environment water samples was developed by double-pumps controlled on-line solid-phase extraction (SPE) coupled with high-performance liquid chromatography (HPLC). In the developed technique, metal organic framework MIL-101 was synthesized and applied as a sorbent for SPE. The as-synthesized MIL-101 was characterized by scanning electron microscope, X-ray diffraction spectrometry, thermal gravimetric analysis and micropore physisorption analysis. The MIL-101 behaved as a fast kinetics in the adsorption of chrysin, apigenin and luteolin. On-line SPE of chrysin, apigenin and luteolin was processed by loading a sample solution at a flow rate of 1.0 mL/min for 10 min. The extracted analytes were subsequently eluted into a ZORBAX Bonus-RP analytical column (25 cm long × 4.6 mm i.d.) for HPLC separation under isocratic condition with a mobile phase (MeOH: ACN: 0.02 M H 3 PO 4 = 35:35:30) at a flow rate of 1.0 mL/min. Experimental conditions, including ionic strength, sample pH, sample loading rates, sample loading time and desorption analytes time, were further optimized to obtain efficient preconcentration and high-precision determination of the analytes mentioned above. The method achieved the merits of simplicity, rapidity, sensitivity, wide linear range and high sample throughput. The possible mechanism for the adsorption of flavonoids on MIL-101 was proposed. The developed method has been applied to determine trace chrysin, apigenin and luteolin in a variety of environmental water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Mechanical properties of metal-organic frameworks: An indentation study on epitaxial thin films

    Science.gov (United States)

    Bundschuh, S.; Kraft, O.; Arslan, H. K.; Gliemann, H.; Weidler, P. G.; Wöll, C.

    2012-09-01

    We have determined the hardness and Young's modulus of a highly porous metal-organic framework (MOF) using a standard nanoindentation technique. Despite the very low density of these films, 1.22 g cm-3, Young's modulus reaches values of almost 10 GPa for HKUST-1, demonstrating that this porous coordination polymer is substantially stiffer than normal polymers. This progress in characterizing mechanical properties of MOFs has been made possible by the use of high quality, oriented thin films grown using liquid phase epitaxy on modified Au substrates.

  18. Solid phase extraction of cadmium on 2-mercaptobenzothiazole loaded on sulfur powder in the medium of ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate and cold vapor generation-atomic absorption spectrometric determination

    International Nuclear Information System (INIS)

    Pourreza, N.; Ghanemi, K.

    2010-01-01

    A novel solid phase extractor for preconcentration of cadmium at ng L -1 levels has been developed. Cadmium ions were retained on a column packed with sulfur powder modified with 2-mercaptobenzothiazole (2-MBT) in the medium of 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim] + PF 6 - ) ionic liquid. The presence of ionic liquid during modification of sulfur enhanced the retention of cadmium ions on the column. The retained cadmium ions were eluted with 2 mol L -1 solution of HCl and measured by cold vapor generation-atomic absorption spectrometry (CVG-AAS). By using reaction cell-gas liquid separator (RC-GLS), gaseous cadmium vapors were produced and reached the atomic absorption spectrometer, instantaneously. The influence of different variables on both processes of solid phase extraction and CVG-AAS determination of cadmium ions was investigated. The calibration curve was linear in the range of 10-200 ng L -1 of cadmium in the initial solution with r = 0.9992 (n = 8) under optimum conditions. The limit of detection based on three times the standard deviation of the blank (3S b , n = 10) was 4.6 ng L -1 . The relative standard deviation (R.S.D.) of 25 and 150 ng L -1 of cadmium was 4.1 and 2.2% (n = 8), respectively. The procedure was validated by the analysis of a certified reference material (DORM-3), water and fish samples.

  19. Empirical model for calculating vapor-liquid equilibrium and associated phase enthalpy for the CO2--O2--Kr--Xe system for application to the KALC process

    International Nuclear Information System (INIS)

    Glass, R.W.; Gilliam, T.M.; Fowler, V.L.

    1976-01-01

    An empirical model is presented for vapor-liquid equilibria and enthalpy for the CO 2 -O 2 system. In the model, krypton and xenon in very low concentrations are combined with the CO 2 -O 2 system, thereby representing the total system of primary interest in the High-Temperature Gas-Cooled Reactor program for removing krypton from off-gas generated during the reprocessing of spent fuel. Selected properties of the individual and combined components being considered are presented in the form of tables and empirical equations

  20. Supercapacitors of nanocrystalline metal-organic frameworks.

    Science.gov (United States)

    Choi, Kyung Min; Jeong, Hyung Mo; Park, Jung Hyo; Zhang, Yue-Biao; Kang, Jeung Ku; Yaghi, Omar M

    2014-07-22

    The high porosity of metal-organic frameworks (MOFs) has been used to achieve exceptional gas adsorptive properties but as yet remains largely unexplored for electrochemical energy storage devices. This study shows that MOFs made as nanocrystals (nMOFs) can be doped with graphene and successfully incorporated into devices to function as supercapacitors. A series of 23 different nMOFs with multiple organic functionalities and metal ions, differing pore sizes and shapes, discrete and infinite metal oxide backbones, large and small nanocrystals, and a variety of structure types have been prepared and examined. Several members of this series give high capacitance; in particular, a zirconium MOF exhibits exceptionally high capacitance. It has the stack and areal capacitance of 0.64 and 5.09 mF cm(-2), about 6 times that of the supercapacitors made from the benchmark commercial activated carbon materials and a performance that is preserved over at least 10000 charge/discharge cycles.

  1. Current at Metal-Organic Interfaces

    Science.gov (United States)

    Kern, Klaus

    2012-02-01

    Charge transport through atomic and molecular constrictions greatly affects the operation and performance of organic electronic devices. Much of our understanding of the charge injection and extraction processes in these systems relays on our knowledge of the electronic structure at the metal-organic interface. Despite significant experimental and theoretical advances in studying charge transport in nanoscale junctions, a microscopic understanding at the single atom/molecule level is missing. In the present talk I will present our recent results to probe directly the nanocontact between single molecules and a metal electrode using scanning probe microscopy and spectroscopy. The experiments provide unprecedented microscopic details of single molecule and atom junctions and open new avenues to study quantum critical and many body phenomena at the atomic scale. Implications for energy conversion devices and carbon based nanoelectronics will also be discussed.

  2. Computational modeling of Metal-Organic Frameworks

    Science.gov (United States)

    Sung, Jeffrey Chuen-Fai

    In this work, the metal-organic frameworks MIL-53(Cr), DMOF-2,3-NH 2Cl, DMOF-2,5-NH2Cl, and HKUST-1 were modeled using molecular mechanics and electronic structure. The effect of electronic polarization on the adsorption of water in MIL-53(Cr) was studied using molecular dynamics simulations of water-loaded MIL-53 systems with both polarizable and non-polarizable force fields. Molecular dynamics simulations of the full systems and DFT calculations on representative framework clusters were utilized to study the difference in nitrogen adsorption between DMOF-2,3-NH2Cl and DMOF-2,5-NH 2Cl. Finally, the control of proton conduction in HKUST-1 by complexation of molecules to the Cu open metal site was investigated using the MS-EVB methodology.

  3. Condensation of Methane in the Metal-Organic Framework IRMOF-1: Evidence for Two Critical Points.

    Science.gov (United States)

    Höft, Nicolas; Horbach, Jürgen

    2015-08-19

    Extensive grand canonical Monte Carlo simulations in combination with successive umbrella sampling are used to investigate the condensation of methane in the nanoporous crystalline material IRMOF-1. Two different types of novel condensation transitions are found, each of them ending in a critical point: (i) a fluid-fluid transition at higher densities (the analog of the liquid-gas transition in the bulk) and (ii) a phase transition at low densities on the surface of the IRMOF-1 structure. The nature of these transitions is different from the usual capillary condensation in thin films and cylindrical pores where the coexisting phases are confined in one or two of the three spatial dimensions. In contrast to that, in IRMOF-1 the different phases can be described as bulk phases that are inhomogeneous due to the presence of the metal-organic framework. As a consequence, the condensation transitions in IRMOF-1 belong to the three-dimensional (3D) Ising universality class.

  4. Cu-Al alloy formation by thermal annealing of Cu/Al multilayer films deposited by cyclic metal organic chemical vapor deposition

    Science.gov (United States)

    Moon, Hock Key; Yoon, Jaehong; Kim, Hyungjun; Lee, Nae-Eung

    2013-05-01

    One of the most important issues in future Cu-based interconnects is to suppress the resistivity increase in the Cu interconnect line while decreasing the line width below 30 nm. For the purpose of mitigating the resistivity increase in the nanoscale Cu line, alloying Cu with traces of other elements is investigated. The formation of a Cu alloy layer using chemical vapor deposition or electroplating has been rarely studied because of the difficulty in forming Cu alloys with elements such as Al. In this work, Cu-Al alloy films were successfully formed after thermal annealing of Cu/Al multilayers deposited by cyclic metal-organic chemical vapor deposition (C-MOCVD). After the C-MOCVD of Cu/Al multilayers without gas phase reaction between the Cu and Al precursors in the reactor, thermal annealing was used to form Cu-Al alloy films with a small Al content fraction. The resistivity of the alloy films was dependent on the Al precursor delivery time and was lower than that of the aluminum-free Cu film. No presence of intermetallic compounds were detected in the alloy films by X-ray diffraction measurements and transmission electron spectroscopy.

  5. Evaluation of a novel metal-organic framework as an adsorbent for the extraction of multiclass pesticides from coconut palm (Cocos nucifera L.): An analytical approach using matrix solid-phase dispersion and liquid chromatography.

    Science.gov (United States)

    de Jesus, Jemmyson Romário; Wanderley, Kaline Amaral; Alves Júnior, Severino; Navickiene, Sandro

    2017-08-01

    We report the synthesis, characterization, and application of [Zn(1,4-benzenedicarboxylate)(H 2 O) 2 ] n , Zn(1,4-benzenedicarboxylate) 0.99 (NH 2 -1,4-benzenedicarboxylate) 0.01 (H 2 O) 2 ] n , [Zn(1,4-benzenedicarboxylate) 0.95 (NH 2 -1,4-benzenedicarboxylate) 0.05 (H 2 O) 2 ] n , and [Zn(1,4-benzenedicarboxylate) 0.9 (NH 2 -1,4-benzenedicarboxylate) 0.1 (H 2 O) 2 ] n as sorbents for the extraction of multiclass pesticides from coconut palm. Liquid chromatography with ultraviolet diode array detection was used as the analysis technique, and the experiments were performed at one fortification level (0.1 μg/g). The recoveries were 47-67, 51-70, 58-72, and 64-76% for [Zn(1,4-benzenedicarboxylate)(H 2 O) 2 ] n , Zn(1,4-benzenedicarboxylate) 0.99 (NH 2 -1,4-benzenedicarboxylate) 0.01 (H 2 O) 2 ] n , [Zn(1,4-benzenedicarboxylate) 0.95 (NH 2 -1,4-benzenedicarboxylate) 0.05 (H 2 O) 2 ] n , and [Zn(1,4-benzenelate) 0.95 (NH 2 -1,4-benzenedicarboxylate) 0.05 (H 2 O) 2 ] n , and [Zn(1,4-benzenedicarboxylate) 0.9 (NH 2 -1,4-benzenedicarboxylate) 0.1 (H 2 O) 2 ] n , respectively, with relative standard deviation ranging from 1 to 7% (n = 3). Detection and quantification limits were 0.01-0.05 and 0.05-0.2 μg/g, respectively, for the different pesticides studied. The method developed was linear over the range tested (0.01-10.0 μg/g) with r 2  > 0.9991. A direct comparison of [Zn(1,4-benzenedicarboxylate) 0.9 (NH 2 -1,4-benzenedicarboxylate) 0.1 (H 2 O) 2 ] n with the commercially available neutral alumina showed that [Zn(1,4-benzenedicarboxylate) 0.9 (NH 2 -1,4-benzenedicarboxylate) 0.1 (H 2 O) 2 ] n was a similar extracting phase for the pesticides investigated. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Calculation of vapor pressure of fission product fluorides and oxyfluorides

    International Nuclear Information System (INIS)

    Roux, J.P.

    1976-03-01

    The equilibrium diagrams of the condensed phases - solid and liquid - and vapor phase are collected for the principal fluorides and oxyfluorides of fission product elements (atomic number from 30 to 66). These diagrams are used more particularly in fuel reprocessing by fluoride volatility process. Calculations and curves (vapor pressure in function of temperature) are processed using a computer program given in this report [fr

  7. Vapor Phase Growth of High-Quality Bi-Te Compounds Using Elemental Bi and Te Sources: A Comparison Between High Vacuum and Atmospheric Pressure

    Science.gov (United States)

    Concepción, O.; Escobosa, A.; de Melo, O.

    2018-03-01

    Bismuth telluride (Bi2Te3), traditionally used in the industry as thermoelectric material, has deserved much attention recently due to its properties as a topological insulator, a kind of material that might have relevant applications in spintronics or quantum computing, among other innovative uses. The preparation of high-quality material has become a very important technological task. Here, we compare the preparation of Bi2Te3 by physical vapor transport from the evaporation of elemental Bi and Te sources, under either low pressure or atmospheric pressure. The layers were characterized by different techniques to evaluate its structural properties. As a result, it is concluded that, as a consequence of the different transport regimes, films grown at atmospheric pressure present better crystal quality.

  8. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 7: Metal vapor Rankine topping-steam bottoming cycles. [energy conversion efficiency in electric power plants

    Science.gov (United States)

    Deegan, P. B.

    1976-01-01

    Adding a metal vapor Rankine topper to a steam cycle was studied as a way to increase the mean temperature at which heat is added to the cycle to raise the efficiency of an electric power plant. Potassium and cesium topping fluids were considered. Pressurized fluidized bed or pressurized (with an integrated low-Btu gasifier) boilers were assumed. Included in the cycles was a pressurizing gas turbine with its associated recuperator, and a gas economizer and feedwater heater. One of the ternary systems studied shows plant efficiency of 42.3% with a plant capitalization of $66.7/kW and a cost of electricity of 8.19 mills/MJ (29.5 mills/kWh).

  9. Waste Tank Vapor Project: Tank vapor database development

    International Nuclear Information System (INIS)

    Seesing, P.R.; Birn, M.B.; Manke, K.L.

    1994-09-01

    The objective of the Tank Vapor Database (TVD) Development task in FY 1994 was to create a database to store, retrieve, and analyze data collected from the vapor phase of Hanford waste tanks. The data needed to be accessible over the Hanford Local Area Network to users at both Westinghouse Hanford Company (WHC) and Pacific Northwest Laboratory (PNL). The data were restricted to results published in cleared reports from the laboratories analyzing vapor samples. Emphasis was placed on ease of access and flexibility of data formatting and reporting mechanisms. Because of time and budget constraints, a Rapid Application Development strategy was adopted by the database development team. An extensive data modeling exercise was conducted to determine the scope of information contained in the database. a A SUN Sparcstation 1000 was procured as the database file server. A multi-user relational database management system, Sybase reg-sign, was chosen to provide the basic data storage and retrieval capabilities. Two packages were chosen for the user interface to the database: DataPrism reg-sign and Business Objects trademark. A prototype database was constructed to provide the Waste Tank Vapor Project's Toxicology task with summarized and detailed information presented at Vapor Conference 4 by WHC, PNL, Oak Ridge National Laboratory, and Oregon Graduate Institute. The prototype was used to develop a list of reported compounds, and the range of values for compounds reported by the analytical laboratories using different sample containers and analysis methodologies. The prototype allowed a panel of toxicology experts to identify carcinogens and compounds whose concentrations were within the reach of regulatory limits. The database and user documentation was made available for general access in September 1994

  10. Hydrogen Storage in Metal-Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Long, Jeffrey R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-04-28

    The design and characterization of new materials for hydrogen storage is an important area of research, as the ability to store hydrogen at lower pressures and higher temperatures than currently feasible would lower operating costs for small hydrogen fuel cell vehicles. In particular, metal-organic frameworks (MOFs) represent promising materials for use in storing hydrogen in this capacity. MOFs are highly porous, three-dimensional crystalline solids that are formed via linkages between metal ions (e.g., iron, nickel, and zinc) and organic molecules. MOFs can store hydrogen via strong adsorptive interactions between the gas molecules and the pores of the framework, providing a high surface area for gas adsorption and thus the opportunity to store hydrogen at significantly lower pressures than with current technologies. By lowering the energy required for hydrogen storage, these materials hold promise in rendering hydrogen a more viable fuel for motor vehicles, which is a highly desirable outcome given the clean nature of hydrogen fuel cells (water is the only byproduct of combustion) and the current state of global climate change resulting from the combustion of fossil fuels. The work presented in this report is the result of collaborative efforts between researchers at Lawrence Berkeley National Lab (LBNL), the National Institute of Standards and Technology (NIST), and General Motors Corporation (GM) to discover novel MOFs promising for H2 storage and characterize their properties. Described herein are several new framework systems with improved gravimetric and volumetric capacity to strongly bind H2 at temperatures relevant for vehicle storage. These materials were rigorously characterized using neutron diffraction, to determine the precise binding locations of hydrogen within the frameworks, and high-pressure H2 adsorption measurements, to provide a comprehensive picture of H2 adsorption at all relevant pressures. A

  11. Copper-Based Metal-Organic Porous Materials for CO2 Electrocatalytic Reduction to Alcohols.

    Science.gov (United States)

    Albo, Jonathan; Vallejo, Daniel; Beobide, Garikoitz; Castillo, Oscar; Castaño, Pedro; Irabien, Angel

    2017-03-22

    The electrocatalytic reduction of CO 2 has been investigated using four Cu-based metal-organic porous materials supported on gas diffusion electrodes, namely, (1) HKUST-1 metal-organic framework (MOF), [Cu 3 (μ 6 -C 9 H 3 O 6 ) 2 ] n ; (2) CuAdeAce MOF, [Cu 3 (μ 3 -C 5 H 4 N 5 ) 2 ] n ; (3) CuDTA mesoporous metal-organic aerogel (MOA), [Cu(μ-C 2 H 2 N 2 S 2 )] n ; and (4) CuZnDTA MOA, [Cu 0.6 Zn 0.4 (μ-C 2 H 2 N 2 S 2 )] n . The electrodes show relatively high surface areas, accessibilities, and exposure of the Cu catalytic centers as well as favorable electrocatalytic CO 2 reduction performance, that is, they have a high efficiency for the production of methanol and ethanol in the liquid phase. The maximum cumulative Faradaic efficiencies for CO 2 conversion at HKUST-1-, CuAdeAce-, CuDTA-, and CuZnDTA-based electrodes are 15.9, 1.2, 6, and 9.9 %, respectively, at a current density of 10 mA cm -2 , an electrolyte-flow/area ratio of 3 mL min cm -2 , and a gas-flow/area ratio of 20 mL min cm -2 . We can correlate these observations with the structural features of the electrodes. Furthermore, HKUST-1- and CuZnDTA-based electrodes show stable electrocatalytic performance for 17 and 12 h, respectively. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Optimization of the freezing process for hematopoietic progenitor cells: effect of precooling, initial dimethyl sulfoxide concentration, freezing program, and storage in vapor-phase or liquid nitrogen on in vitro white blood cell quality.

    Science.gov (United States)

    Dijkstra-Tiekstra, Margriet J; Setroikromo, Airies C; Kraan, Marcha; Gkoumassi, Effimia; de Wildt-Eggen, Janny

    2014-12-01

    Adding dimethyl sulfoxide (DMSO) to hematopoietic progenitor cells (HPCs) causes an exothermic reaction, potentially affecting their viability. The freezing method might also influence this. The aim was to investigate the effect of 1) precooling of DMSO and plasma (D/P) and white blood cell (WBC)-enriched product, 2) DMSO concentration of D/P, 3) freezing program, and 4) storage method on WBC quality. WBC-enriched product without CD34+ cells was used instead of HPCs. This was divided into six or eight portions. D/P (20 or 50%; precooled or room temperature [RT]) was added to the WBC-enriched product (precooled or RT), resulting in 10% DMSO, while monitoring temperature. The product was frozen using controlled-rate freezing ("fast-rate" or "slow-rate") and placed in vapor-phase or liquid nitrogen. After thawing, WBC recovery and viability were determined. Temperature increased most for precooled D/P to precooled WBC-enriched product, without influence of 20 or 50% D/P, but remained for all variations below 30°C. WBC recovery for both freezing programs was more than 95%. Recovery of WBC viability was higher for slow-rate freezing compared to fast-rate freezing (74% vs. 61%; p liquid nitrogen was marginal. Based on these results, precooling is not necessary. Fifty percent D/P is preferred over 20% D/P. Slow-rate freezing is preferred over fast-rate freezing. For safety reasons storage in vapor-phase nitrogen is preferred over storage in liquid nitrogen. Additional testing using real HPCs might be necessary. © 2014 AABB.

  13. Evaluating the efficiency of two phase partitioning stirred tank bio-reactor for treating xylene vapors from the airstreamthrough a bed of Pseudomonas Putida

    Directory of Open Access Journals (Sweden)

    F. Golbabaei

    2015-04-01

    Conclusion: Overall, the results of the present research revealed that the application of two phase stirred tank bioreactors (TPPBs containing pure strains of Pseudomonas putida was successful for treatment of air streams with xylene.

  14. Metalorganic atomic layer deposition of TiN thin films using TDMAT and NH3

    International Nuclear Information System (INIS)

    Kim, Hyo Kyeom; Kim, Ju Youn; Park, Jin Yong; Kim, Yang Do; Kim, Young Do; Jeon, Hyeong Tag; Kim, Won Mok

    2002-01-01

    TiN films were deposited by using the metalorganic atomic layer deposition (MOALD) method using tetrakis-dimethyl-amino-titanium (TDMAT) as the titanium precursor and ammonia (NH 3 ) as the reactant gas. Two saturated TiN film growth regions were observed in the temperature ranges from 175 and 190 .deg. C and from 200 and 210 .deg. C. TiN films deposited by the MOALD technique showed relatively lower carbon content than films deposited by metalorganic chemical vapor deposition (MOCVD) method. TiN films deposited at around 200 .deg. C under standard conditions showed the resistivity values as low as 500 μΩ-cm, which is about one order lower than the values for TiN films deposited by MOCVD using TDMAT or TDMAT with NH 3 . Also, the carbon incorporation and the resistivity were further decreased with increasing Ar purge time and flow rate. TiN films deposited at temperature below 300 .deg. C showed amorphous characteristics. TiN film deposited on contact holes, about 0.4-μm wide and 0.8-μm deep, by using the MOALD method showed excellent conformal deposition with almost 100% step coverage. This study demonstrates that the processing parameters need to be carefully controlled to optimize the film properties that the processing parameters need to be carefully controlled to optimize the film properties when using the ALD technique and that TiN films deposited by using the MOALD method exhibited excellent film properties compared to those of films deposited by using other CVD methods

  15. Fuel vapor pressure (FVAPRS)

    International Nuclear Information System (INIS)

    Mason, R.E.

    1979-04-01

    A subcode (FVAPRS) is described which calculates fuel vapor pressure. This subcode was developed as part of the fuel rod behavior modeling task performed at EG and G Idaho, Inc. The fuel vapor pressure subcode (FVAPRS), is presented and a discussion of literature data, steady state and transient fuel vapor pressure equations and estimates of the standard error of estimate to be expected with the FVAPRS subcode are included

  16. Text Mining Metal-Organic Framework Papers.

    Science.gov (United States)

    Park, Sanghoon; Kim, Baekjun; Choi, Sihoon; Boyd, Peter G; Smit, Berend; Kim, Jihan

    2018-02-26

    We have developed a simple text mining algorithm that allows us to identify surface area and pore volumes of metal-organic frameworks (MOFs) using manuscript html files as inputs. The algorithm searches for common units (e.g., m 2 /g, cm 3 /g) associated with these two quantities to facilitate the search. From the sample set data of over 200 MOFs, the algorithm managed to identify 90% and 88.8% of the correct surface area and pore volume values. Further application to a test set of randomly chosen MOF html files yielded 73.2% and 85.1% accuracies for the two respective quantities. Most of the errors stem from unorthodox sentence structures that made it difficult to identify the correct data as well as bolded notations of MOFs (e.g., 1a) that made it difficult identify its real name. These types of tools will become useful when it comes to discovering structure-property relationships among MOFs as well as collecting a large set of data for references.

  17. Nanomaterials derived from metal-organic frameworks

    Science.gov (United States)

    Dang, Song; Zhu, Qi-Long; Xu, Qiang

    2018-01-01

    The thermal transformation of metal-organic frameworks (MOFs) generates a variety of nanostructured materials, including carbon-based materials, metal oxides, metal chalcogenides, metal phosphides and metal carbides. These derivatives of MOFs have characteristics such as high surface areas, permanent porosities and controllable functionalities that enable their good performance in sensing, gas storage, catalysis and energy-related applications. Although progress has been made to tune the morphologies of MOF-derived structures at the nanometre scale, it remains crucial to further our knowledge of the relationship between morphology and performance. In this Review, we summarize the synthetic strategies and optimized methods that enable control over the size, morphology, composition and structure of the derived nanomaterials. In addition, we compare the performance of materials prepared by the MOF-templated strategy and other synthetic methods. Our aim is to reveal the relationship between the morphology and the physico-chemical properties of MOF-derived nanostructures to optimize their performance for applications such as sensing, catalysis, and energy storage and conversion.

  18. Recent Advances as Materials of Functional Metal-Organic Frameworks

    Directory of Open Access Journals (Sweden)

    Xiao-Lan Tong

    2013-01-01

    Full Text Available Metal-organic frameworks (MOFs, also known as hybrid inorganic-organic materials, represent an emerging class of materials that have attracted the imagination of solid-state chemists because MOFs combine unprecedented levels of porosity with a range of other functional properties that occur through the metal moiety and/or the organic ligand. The purpose of this critical review is to give a representative and comprehensive overview of the arising developments in the field of functional metal-organic frameworks, including luminescence, magnetism, and porosity through presenting examples. This review will be of interest to researchers and synthetic chemists attempting to design multifunctional MOFs.

  19. Applicability of the theory of thermodynamic similarity to predict the enthalpies of vaporization of aliphatic aldehydes

    Science.gov (United States)

    Esina, Z. N.; Korchuganova, M. R.

    2015-06-01

    The theory of thermodynamic similarity is used to predict the enthalpies of vaporization of aliphatic aldehydes. The predicted data allow us to calculate the phase diagrams of liquid-vapor equilibrium in a binary water-aliphatic aldehyde system.

  20. Physical model for vaporization

    OpenAIRE

    Garai, Jozsef

    2006-01-01

    Based on two assumptions, the surface layer is flexible, and the internal energy of the latent heat of vaporization is completely utilized by the atoms for overcoming on the surface resistance of the liquid, the enthalpy of vaporization was calculated for 45 elements. The theoretical values were tested against experiments with positive result.