WorldWideScience

Sample records for metallurgical silicon feedstock

  1. Multicrystalline silicon wafers prepared from upgraded metallurgical feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Degoulange, J.; Trassy, C. [SIMAP UMR CNRS, INP Grenoble (France); Perichaud, I.; Martinuzzi, S. [TECSEN UMR CNRS-University Paul Cezanne-Aix, Marseille III (France)

    2008-10-15

    A solution to the problem of the shortage of silicon feedstock used to grow multicrystalline ingots can be the production of a feedstock obtained by the direct purification of upgraded metallurgical silicon by means of a plasma torch. It is found that the dopant concentrations in the material manufactured following this metallurgical route are in the 10{sup 17} cm{sup -3} range. Minority carrier diffusion lengths L{sub n} are close to 35 {mu}m in the raw wafers and increases up to 120 {mu}m after the wafers go through the standard processing steps needed to make solar cells: phosphorus diffusion, aluminium-silicon alloying and hydrogenation by deposition of a hydrogen-rich silicon nitride layer followed by an annealing. L{sub n} values are limited by the presence of residual metallic impurities, mainly slow diffusers like aluminium, and also by the high doping level. (author)

  2. Growth of silicon sheets from metallurgical-grade silicon

    Science.gov (United States)

    Ciszek, T.; Schietzelt, M.; Kazmerski, L. L.; Hurd, J. L.; Fernelius, B.

    1981-05-01

    Impure silicon is difficult to solidify in sheet form because of morphological proturberances which may result from constitutional supercooling. Sheet growth methods which require a specific crystallographic orientation or which are characterized by a narrow melt meniscus are most affected by this problem. The edge-supported pulling technique was applied to sheet growth of metallurgical grade silicon and DAR (Direct Arc Reactor) silicon. The 7 mm meniscus height associated with this technique allowed the growth of 5 cm wide sheets from both materials. In each case, the sheets were p-type.

  3. Elaboration and characterization of metallurgical silicon for photovoltaic applications

    Science.gov (United States)

    Barbouche, M.; Hajji, M.; Krout, F.; Ezzaouia, H.

    2015-04-01

    There is a small quantity of participants in the global market of silicon, mainly from the developed countries. It should be noticed also that production of metallurgical silicon Mg-Si is among the most important steps to produce solar grade silicon and photovoltaic panels. Therefore, in this paper we focused on the growth of Mg-Si by carbothermal reduction of silica. An investigation was made using FT-IR characterization to study the effect of process conditions (temperature, atmosphere, duration) in Mg-Si production. Raman spectroscopy was used to investigate the produced Mg-Si. Based on these results, we established a pilot line production of metallurgical silicon at the "CRTEn" in Tunisia.

  4. The impact of silicon feedstock on the PV module cost

    NARCIS (Netherlands)

    del Coso, G.; del Cañizo, C.; Sinke, W.C.

    2010-01-01

    The impact of the use of new (solar grade) silicon feedstock materials on the manufacturing cost of wafer-based crystalline silicon photovoltaic modules is analyzed considering effects of material cost, efficiency of utilisation, and quality. Calculations based on data provided by European industry

  5. The impact of silicon feedstock on the PV module cost

    NARCIS (Netherlands)

    del Coso, G.; del Cañizo, C.; Sinke, W.C.

    2010-01-01

    The impact of the use of new (solar grade) silicon feedstock materials on the manufacturing cost of wafer-based crystalline silicon photovoltaic modules is analyzed considering effects of material cost, efficiency of utilisation, and quality. Calculations based on data provided by European industry

  6. NMR investigation of boron impurities in refined metallurgical grade silicon

    Energy Technology Data Exchange (ETDEWEB)

    Grafe, Hans-Joachim; Loeser, Wolfgang; Schmitz, Steffen; Sakaliyska, Miroslava [Leibniz Institute for Solid State and Materials Research (IFW), Dresden (Germany); Wurmehl, Sabine [Leibniz Institute for Solid State and Materials Research (IFW), Dresden (Germany); Institute for Solid State Physics, Technische Universitaet Dresden (Germany); Eisert, Stefan; Reichenbach, Birk; Mueller, Tim [Adensis GmbH, Dresden (Germany); Acker, Joerg; Rietig, Anja; Ducke, Jana [Department of Chemistry, Faculty for Natural Sciences, Brandenburg Technical University Cottbus-Senftenberg, Senftenberg (Germany)

    2015-09-15

    The nuclear magnetic resonance (NMR) method was applied for tracking boron impurities in the refining process of metallurgical grade (MG) silicon. From the NMR signal of the {sup 11}B isotope at an operating temperature 4.2 K, the boron concentration can be estimated down to the order of 1-10 wppm B. After melting and resolidification of MG-Si alloyed with Ca and Ti, a major fraction of B impurities remains in the Si solid solution as inferred from the characteristic NMR frequency. The alloying element Ti does not form substantial fractions of TiB{sub 2}. Acid leaching of crushed powders of MG-Si alloyed with Ca and Ti can diminish the initial impurity content of B suggesting its accumulation in the grain boundary phases. NMR signals of TiB{sub 2} at 4.2 K and room temperature (RT), and of poly-Si with different B doping at 4.2 K. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Fast determination of impurities in metallurgical grade silicon for photovoltaics by instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hampel, J., E-mail: jonathan.hampel@ise.fraunhofer.de [Fraunhofer Institute for Solar Energy Systems, Heidenhofstrasse 2, D-79110 Freiburg (Germany); Boldt, F.M. [Fraunhofer Institute for Solar Energy Systems, Heidenhofstrasse 2, D-79110 Freiburg (Germany); Gerstenberg, H. [ZWE FRM-II der Technischen Universitaet Muenchen, D-85748 Garching (Germany); Hampel, G.; Kratz, J.V. [Institute of Nuclear Chemistry, Johannes Gutenberg-University of Mainz, Fritz-Strassmann-Weg 2, D-55128 Mainz (Germany); Reber, S. [Fraunhofer Institute for Solar Energy Systems, Heidenhofstrasse 2, D-79110 Freiburg (Germany); Wiehl, N. [Institute of Nuclear Chemistry, Johannes Gutenberg-University of Mainz, Fritz-Strassmann-Weg 2, D-55128 Mainz (Germany)

    2011-10-15

    Standard wafer solar cells are made of near-semiconductor quality silicon. This high quality material makes up a significant part of the total costs of a solar module. Therefore, new concepts with less expensive so called solar grade silicon directly based on physiochemically upgraded metallurgical grade silicon are investigated. Metallurgical grade silicon contains large amounts of impurities, mainly transition metals like Fe, Cr, Mn, and Co, which degrade the minority carrier lifetime and thus the solar cell efficiency. A major reduction of the transition metal content occurs during the unidirectional crystallization due to the low segregation coefficient between the solid and liquid phase. A further reduction of the impurity level has to be done by gettering procedures applied to the silicon wafers. The efficiency of such cleaning procedures of metallurgical grade silicon is studied by instrumental neutron activation analysis (INAA). Small sized silicon wafers of approximately 200 mg with and without gettering step were analyzed. To accelerate the detection of transition metals in a crystallized silicon ingot, experiments of scanning whole vertical silicon columns with a diameter of approximately 1 cm by gamma spectroscopy were carried out. It was demonstrated that impurity profiles can be obtained in a comparably short time. Relatively constant transition metal ratios were found throughout an entire silicon ingot. This led to the conclusion that the determination of several metal profiles might be possible by the detection of only one 'leading element'. As the determination of Mn in silicon can be done quite fast compared to elements like Fe, Cr, and Co, it could be used as a rough marker for the overall metal concentration level. Thus, a fast way to determine impurities in photovoltaic silicon material is demonstrated. - Highlights: > We demonstrate a fast way to determine impurities in photovoltaic silicon by NAA. > We make first experiments of

  8. Effects of heat treatment on epitaxial silicon solar cells on metallurgical silicon substrates

    Science.gov (United States)

    Chu, T. L.; Chu, S. S.; Kazmerski, L. L.; Whitney, R.; Lin, C. L.; Davis, R. M.

    1981-12-01

    A preparation of acid extracted metallurgical grade silicon as a large-grain substrate for solar cells is described. Metallic impurities which normally accumulate on the grain boundaries of pulverized Si were removed by 400 hr of aqua regia refluxing. Secondary ion mass spectrometry (SIMS) revealed that aluminum and iron concentrations were significantly reduced, and the Si was made into sheets by unidirectional solidification on an RF-heated graphite plate. Solidification at 1-2 cm/min yielded a (110) crystallite orientation; SIMS determined that remaining impurities were uniformly diffuse, and heat treatment in He at 700 C resulted in precipitation of metallic impurities onto the grain boundaries. Trichlorosilane was thermally reduced to form an epitaxial film on the Si substrate, and 37 sq cm cells were fabricated with an efficiency of 8.95%.

  9. 11% efficient single-crystal solar cells and 10% efficient polycrystalline cells made from refined metallurgical silicon

    Energy Technology Data Exchange (ETDEWEB)

    Hanoka, J.I.; Strock, H.B.; Kotval, P.S.

    1981-09-01

    Refined metallurgical silicon has been utilized as a feedstock material both for Czochralski-pulled single crystal and for cast polycrystalline silicon solar cells. Using a phosphorous diffused junction for an n on p structure, the single-crystal cells have yielded AM1 efficiencies up to 11.1%, open circuit voltages up to 596 mV, and fill factors as high as 81% (not all on the same cell). The cast polycrystalline substrates have produced cells up to 10.1% efficient (AM1) with fill factors of 79% and V/sub o/c = 585 mV. Properties of the single-crystal and polycrystalline cells are quite similar, with the principal limiting factor being J/sub s/c , which is typically 20--23 mA/cm/sup 2/. Spectral response and EBIC data indicate that a considerable amount of the recombination is due to impurities. For the cast polycrystalline cells, the electron beam induced current data shows that grain boundary recombination is significant.

  10. Method of purifying metallurgical grade silicon employing reduced pressure atmospheric control

    Science.gov (United States)

    Ingle, W. M.; Thompson, S. W.; Chaney, R. E. (Inventor)

    1979-01-01

    A method in which a quartz tube is charged with chunks of metallurgical grade silicon and/or a mixture of such chunks and high purity quartz sand, and impurities from a class including aluminum, boron, as well as certain transition metals including nickel, iron, and manganese is described. The tube is then evacuated and heated to a temperature within a range of 800 C to 1400 C. A stream of gas comprising a reactant, such as silicon tetrafluoride, is continuously delivered at low pressures through the charge for causing a metathetical reaction of impurities of the silicon and the reactant to occur for forming a volatile halide and leaving a residue of silicon of an improved purity. The reactant which included carbon monoxide gas and impurities such as iron and nickel react to form volatile carbonyls.

  11. Assessing the role of iron-acceptor pairs in solar grade multicrystalline silicon wafers from the metallurgical route

    Energy Technology Data Exchange (ETDEWEB)

    Hvidsten Dahl, Espen [Department of Physics and Astronomy/iNANO, Aarhus University, Aarhus (Denmark); Elkem AS Technology, Kristiansand (Norway); Osinniy, Viktor [Department of Physics and Astronomy/iNANO, Aarhus University, Aarhus (Denmark); RACell Solar AS, Fredriksberg (Denmark); Friestad, Kenneth; Soeiland, Anne-Karin [Elkem AS Solar, Kristiansand (Norway); Safir, Yakov [RACell Solar AS, Fredriksberg (Denmark); Skorupa, Wolgang [Institute of Ion Beam Physics and Materials Research, Forschungszentrum Dresden-Rossendorf e.V., Dresden (Germany); Tronstad, Ragnar [Elkem AS Technology, Kristiansand (Norway); Nylandsted Larsen, Arne [Department of Physics and Astronomy/iNANO, Aarhus University, Aarhus (Denmark)

    2012-10-15

    The recombination parameters of iron-boron (FeB), iron-aluminium (FeAl) and iron-gallium (FeGa) pairs in Fe implanted FZ monocrystalline silicon wafers and Fe contaminated multicrystalline silicon (mc-Si) wafers of solar grade feedstock from the metallurgical route have been studied by combining the Deep Level Transient Spectroscopy (DLTS) and Microwave Photoconductive Decay ({mu}-PCD) techniques. Energy levels associated with FeB, FeAl and FeGa pairs were detected in the monocrystalline samples. The activation energy and capture cross section of these levels were determined. FeGa gave the strongest recombination effect, reducing the minority carrier lifetime of the sample from about 39 {mu}s to 0.7 {mu}s at a concentration of 4x10{sup 13} cm{sup -3}. No electrically active iron-acceptor pairs could be detected in the mc-Si wafer. However, it was demonstrated that micrometer-sized clusters, most likely composed of metallic oxides, collect iron from the bulk. This iron collection may reduce the available amount of iron for creating electrically active iron-acceptor pairs below the detection limit of DLTS. The contamination did, however, degrade the lifetime from 40 {mu}s to less than 1 {mu}s in the wafer. This is likely a result of at least three overlapping energy levels believed to be related to iron (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. New Metallization Technique Suitable for 6-MW Pilot Production of Efficient Multicrystalline Solar Cells Using Upgraded Metallurgical Silicon: Final Technical Progress Report, December 17, 2007 -- June 16, 2009

    Energy Technology Data Exchange (ETDEWEB)

    Ounadjela, K.; Blosse, A.

    2010-08-01

    This report describes CaliSolar's work as a Photovoltaic Technology Incubator awardee within the U.S. Department of Energy's Solar Energy Technologies Program. The term of this subcontract with the National Renewable Energy Laboratory was two years. During this time, CaliSolar evolved from a handful of employees to over 100 scientists, engineers, technicians, and operators. On the technical side, the company transitioned from a proof-of-concept through pilot-scale to large-scale industrial production. A fully automated 60-megawatt manufacturing line was commissioned in Sunnyvale, California. The facility converts upgraded metallurgical-grade silicon feedstock to ingots, wafers, and high-efficiency multicrystalline solar cells.

  13. Acceptable contamination levels in solar grade silicon: From feedstock to solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Hofstetter, J. [Instituto de Energia Solar, Avd. Complutense s/n, 28040 Madrid (Spain)], E-mail: jasmin.hofstetter@ies-def.upm.es; Lelievre, J.F.; Canizo, C.; Luque, A. del [Instituto de Energia Solar, Avd. Complutense s/n, 28040 Madrid (Spain)

    2009-03-15

    Ultimately, alternative ways of silicon purification for photovoltaic applications are developed and applied. There is an ongoing debate about what are the acceptable contamination levels within the purified silicon feedstock to specify the material as solar grade silicon. Applying a simple model and making some additional assumptions, we calculate the acceptable contamination levels of different characteristic impurities for each fabrication step of a typical industrial mc-Si solar cell. The acceptable impurity concentrations within the finished solar cell are calculated for SRH recombination exclusively and under low injection conditions. It is assumed that during solar cell fabrication impurity concentrations are only altered by a gettering step. During the crystallization process, impurity segregation at the solid-liquid interface and at extended defects are taken into account. Finally, the initial contamination levels allowed within the feedstock are deduced. The acceptable concentration of iron in the finished solar cell is determined to be 9.7x10{sup -3} ppma whereas the concentration in the silicon feedstock can be as high as 12.5 ppma. In comparison, the titanium concentration admitted in the solar cell is calculated to be 2.7x10{sup -4} ppma and the allowed concentration of 2.2x10{sup -2} ppma in the feedstock is only two orders of magnitude higher. Finally, it is shown theoretically and experimentally that slow cooling rates can lead to a decrease of the interstitial Fe concentration and thus relax the purity requirements in the feedstock.

  14. Application of Electron Beam Melting to the Removal of Phosphorus from Silicon: Toward Production of Solar-Grade Silicon by Metallurgical Processes

    Directory of Open Access Journals (Sweden)

    Hideaki Sasaki

    2013-01-01

    Full Text Available Removal methods of impurity from metallurgical-grade silicon (Si are intensively studied to produce solar-grade silicon (SoG-Si with a smaller economical load and lower cost. Removal of phosphorus (P has been an important issue because of difficulties in application of conventional metallurgical methods such as solidification refining. Because P evaporates preferentially from molten Si due to its high vapor pressure, electron beam (EB melting has been applied to the purification of Si. The evaporation of impurity P from Si is considered based on previous thermodynamic investigations here, and several research reports on EB melting of Si are reviewed.

  15. Natural sedimentation of insoluble particles during directional solidification of upgraded metallurgical-grade silicon

    Science.gov (United States)

    Gan, C. H.; Xiong, H. P.; Fang, M.; Qiu, S.; Xing, P. F.; Luo, X. T.

    2016-04-01

    Upgraded metallurgical-grade silicon is used to cast an ingot by directional solidification. Black shadows are randomly distributed in the ingot, and the shadows are caused by natural sedimentation of insoluble particles. The insoluble particles mainly consist of SiC and Si3N4. SiC and Si3N4 exist as foreign particles and mainly sedimentate at the bottom of the ingot, not generating during directional solidification. Melt convection performs an important role in the sedimentation, resulting in the insoluble particles in the ingot center more than the nearby. Interestingly, since SiC and Si3N4 will not be the recombination center of the minority carrier, the insoluble particles do not have a significant influence on the minority carrier lifetime. In particular, the sedimentation is discussed according to the thermodynamics and kinetics in detail.

  16. Performance Analysis of a Grid-Connected Upgraded Metallurgical Grade Silicon Photovoltaic System

    Directory of Open Access Journals (Sweden)

    Chao Huang

    2016-05-01

    Full Text Available Because of their low cost, photovoltaic (PV cells made from upgraded metallurgical grade silicon (UMG-Si are a promising alternative to conventional solar grade silicon-based PV cells. This study investigates the outdoor performance of a 1.26 kW grid-connected UMG-Si PV system over five years, reporting the energy yields and performance ratio and estimating the long-term performance degradation rate. To make this investigation more meaningful, the performance of a mono-Si PV system installed at the same place and studied during the same period of time is presented for reference. Furthermore, this study systematizes and rationalizes the necessity of a data selection and filtering process to improve the accuracy of degradation rate estimation. The impact of plane-of-array irradiation threshold for data filtering on performance ratio and degradation rate is also studied. The UMG-Si PV system’s monthly performance ratio after data filtering ranged from 84% to 93% over the observation period. The annual degradation rate was 0.44% derived from time series of monthly performance ratio using the classical decomposition method. A comparison of performance ratio and degradation rate to conventional crystalline silicon-based PV systems suggests that performance of the UMG-Si PV system is comparable to that of conventional systems.

  17. A 12%-efficient upgraded metallurgical grade silicon-organic heterojunction solar cell achieved by a self-purifying process.

    Science.gov (United States)

    Zhang, Jie; Song, Tao; Shen, Xinlei; Yu, Xuegong; Lee, Shuit-Tong; Sun, Baoquan

    2014-11-25

    Low-quality silicon such as upgraded metallurgical-grade (UMG) silicon promises to reduce the material requirements for high-performance cost-effective photovoltaics. So far, however, UMG silicon currently exhibits the short diffusion length and serious charge recombination associated with high impurity levels, which hinders the performance of solar cells. Here, we used a metal-assisted chemical etching (MACE) method to partially upgrade the UMG silicon surface. The silicon was etched into a nanostructured one by the MACE process, associated with removing impurities on the surface. Meanwhile, nanostructured forms of UMG silicon can benefit improved light harvesting with thin substrates, which can relax the requirement of material purity for high photovoltaic performance. In order to suppress the large surface recombination due to increased surface area of nanostructured UMG silicon, a post chemical treatment was used to decrease the surface area. A solution-processed conjugated polymer of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) was deposited on UMG silicon at low temperature (silicon substrate. By optimizing the thickness of silicon and suppressing the charge recombination at the interface between thin UMG silicon/PEDOT:PSS, we are able to achieve 12.0%-efficient organic-inorganic hybrid solar cells, which are higher than analogous UMG silicon devices. We show that the modified UMG silicon surface can increase the minority carrier lifetime because of reduced impurity and surface area. Our results suggest a design rule for an efficient silicon solar cell with low-quality silicon absorbers.

  18. 11% efficient single-crystal solar cells and 10% efficient polycrystalline cells made from refined metallurgical silicon

    Science.gov (United States)

    Hanoka, J. I.; Strock, H. B.; Kotval, P. S.

    1981-09-01

    The performances of single-crystal and polycrystalline solar cells fabricated from a refined form of low-cost metallurgical silicon are presented. Czochralski-pulled single crystal and cast polycrystalline silicon solar cells with an n on p structure were made from metallurgical silicon processed by Al dissolution followed by Al removal through slagging and directional solidification to obtain material purities in the fractional ppm by weight range. For the single-crystal cells, measurements reveal AM1 efficiencies up to 11.1%, open circuit voltages up to 596 mV and fill factors up to 81%. The cast polycrystalline substrates have yielded cells with efficiencies up to 10.1%, fill factors of 79% and open circuit voltages of 585 mV. The low short circuit current densities are attributed to impurities in the base region in the single-crystal cell, and to grain boundary segregation of impurities and grain boundary recombination in the polycrystalline cells.

  19. Dislocation formation in seed crystals induced by feedstock indentation during growth of quasimono crystalline silicon ingots

    Science.gov (United States)

    Trempa, M.; Beier, M.; Reimann, C.; Roßhirth, K.; Friedrich, J.; Löbel, C.; Sylla, L.; Richter, T.

    2016-11-01

    In this work the dislocation formation in the seed crystal induced by feedstock indentation during the growth of quasimono (QM) silicon ingots for photovoltaic application was investigated. It could be shown by special laboratory indentation experiments that the formed dislocations propagate up to several millimeters deep into the volume of the seed crystal in dependence on the applied pressure of the feedstock particles on the surface of the seed crystal. Further, it was demonstrated that these dislocations if they were not back-melted during the seeding process grow further into the silicon ingot and drastically reduce its material quality. An estimation of the apparent pressure values in a G5 industrial crucible/feedstock setup reveals that the indentation phenomenon is a critical issue for the industrial production of QM silicon ingots. Therefore, some approaches to avoid/reduce the indentation events were tested with the result, that the most promising solution should be the usage of suitable feedstock particles as coverage of the seed.

  20. Study on Phosphorus Removal from Metallurgical Grade Silicon by Vacuum Distillation%冶金级硅真空蒸馏除磷研究

    Institute of Scientific and Technical Information of China (English)

    魏奎先; 马文会; 戴永年; 杨斌; 刘大春

    2007-01-01

    There was a dramatic increament about 30% per year in photovoltaic industry in recent years. And the raw material of photovoltaic industry is impossible to increase markedly within next 10~15 years. Therefore, it is inevitable to establish an independent feedstock system of solar grade silicon (SOG-Si) material. In this paper, a theoretical analysis about the feasibility of phosphorus removal in metallurgical grade silicon with vacuum distillation, then an experiment was conducted.%近几年,光伏产业以30%的速度持续强劲增长.作为原料的半导体工业副产品供应的不足并且在未来10~15年内也不能显著增加的情况下,建立独立的太阳能级高纯硅原料供应体系是不可避免的.从理论上分析了利用真空蒸馏的方法除磷提纯冶金级硅的可行性,并进行了真空条件下脱磷的实验研究.

  1. 熔盐电解精炼提纯金属硅%Purification of metallurgical grade silicon by electrorefining in molten salts

    Institute of Scientific and Technical Information of China (English)

    蔡靖; 罗学涛; 卢成浩; Geir Martin HAARBERG; Annabelle LAURENT; Ole Edvard KONGSTEIN; 王淑兰

    2012-01-01

    对熔盐电解质中硅的沉积过程进行电化学研究.在973~223 K,在硅-氯化物熔盐中采用电解精炼提纯金属硅.结果表明,液态硅铜合金阳极有利于CaCl2-NaCl-CaO-Si熔盐体系的电解精炼.ICP-AES分析结果显示,通过电解精炼可有效去除原料中大量的钛、铝、铁等金属杂质,硅中的硼和磷含量分别由36×10-6和25×10-6降低至4.6×10-6和2.8×10-6,电解能耗约为9.3 kW·h/kg.%Electrochemical studies on silicon deposition were performed in molten salt electrolytes.Purification of metallurgical grade silicon by electrorefining was carried out in molten Si-chloride salts at temperatures from 973 K to 1223 K.It was found that the use of a liquid alloy anode of silicon and copper was beneficial in molten CaCl2 with NaCl,CaO and dissolved Si.ICP-AES analysis results showed efficient removal of metal impurities,such as titanium,aluminum and iron,which are present in significant quantities in the feedstock.The contents of boron and phosphorus in the silicon after electrorefining were reduced from 36× 10-6 and 25 × 10-6 to 4.6× 10-6 and 2.8 × 10-6,respectively.The energy consumption of electrorefining was estimated to be about 9.3 kW·h/kg.

  2. Synergistic Separation Behavior of Boron in Metallurgical Grade Silicon Using a Combined Slagging and Gas Blowing Refining Technique

    Science.gov (United States)

    Wu, Jijun; Zhou, Yeqiang; Ma, Wenhui; Xu, Min; Yang, Bin

    2017-02-01

    A combined slagging and gas blowing refining technique for boron removal from metallurgical grade silicon using the CaO-SiO2-CaCl2 slag and the mixed Ar-O2-H2O gas is investigated. The oxygen gas blowing in combination with water vapor shows a wonderful removal efficiency of boron compared with the single oxygen or the single water vapor blowing. It is analyzed from the thermodynamics that a synergistic separation behavior of boron is resulted from CaCl2 and O2. Boron is removed and reduced from 22 to 0.75 ppmw with a removal efficiency of 96.6 pct.

  3. Synergistic Separation Behavior of Boron in Metallurgical Grade Silicon Using a Combined Slagging and Gas Blowing Refining Technique

    Science.gov (United States)

    Wu, Jijun; Zhou, Yeqiang; Ma, Wenhui; Xu, Min; Yang, Bin

    2016-11-01

    A combined slagging and gas blowing refining technique for boron removal from metallurgical grade silicon using the CaO-SiO2-CaCl2 slag and the mixed Ar-O2-H2O gas is investigated. The oxygen gas blowing in combination with water vapor shows a wonderful removal efficiency of boron compared with the single oxygen or the single water vapor blowing. It is analyzed from the thermodynamics that a synergistic separation behavior of boron is resulted from CaCl2 and O2. Boron is removed and reduced from 22 to 0.75 ppmw with a removal efficiency of 96.6 pct.

  4. Preservation of Seed Crystals in Feedstock Melting for Cast Quasi-Single Crystalline Silicon Ingots

    Directory of Open Access Journals (Sweden)

    Zaoyang Li

    2013-01-01

    Full Text Available The preservation of seed crystals is important for the casting of quasi-single crystalline (QSC silicon ingots. We carried out transient global simulations of the feedstock melting process in an industrial-sized directional solidification (DS furnace to investigate key factors influencing seed preservation. The power distribution between the top and side heaters is adjusted in the conventional furnace for multicrystalline silicon ingots and in the evolved furnace with a partition block for QSC silicon ingots. The evolution of the solid-liquid interface for melting and the temperature distribution in the furnace core area are analyzed. The power distribution can influence the temperature gradient in the silicon domain significantly. However, its effect on seed preservation is limited in both furnaces. Seed crystals can be preserved in the evolved furnace, as the partition block reduces the radiant heat flux from the insulation walls to the heat exchange block and prevents the heat flowing upwards under the crucible. Therefore, the key to seed preservation is to control radiant heat transfer in the DS furnace and guarantee downward heat flux under the crucible.

  5. Project to ferro solar: solar silicon manufacture quality by the metallurgical way; Proyecto ferrosolar: fabricacion de silicio calidad solar por la via metalurgica

    Energy Technology Data Exchange (ETDEWEB)

    Buyon, C. J.; Miranda, V. A.; Souto, S. a.; Miguez, N. J. M.; Perez, V. A.

    2008-07-01

    The spectacular development in the last years of the photovoltaic industry has generated big tension on the market of his principal raw material: the silicon. In Galicia is located the unique factory of metallurgical silicon of the Iberian Peninsular and quartz mines of great quality that are a property of the Group Ferro atlantica I+D is the company that concentrates the activities of R and D inside the above mentioned Group and is developing, from 9 years ago, the project Ferro Solar that consists of the purification for the metallurgical route of the silicon. The success in this project would give to the photovoltaic industry a much more abundant, new and cheap source of silicon that the current route across the polysilicon. The project is developing in the Factory of Sabon - Arteixo- Corunna and already there are obtained very encouraging results, which are an object of this first public presentation. (Author)

  6. X-ray Microprobe Investigation of Iron During a Simulated Silicon Feedstock Extraction Process

    Science.gov (United States)

    Bernardis, Sarah; Fakra, Sirine C.; Dal Martello, Elena; Larsen, Rune B.; Newman, Bonna K.; Fenning, David P.; Di Sabatino, Marisa; Buonassisi, Tonio

    2016-12-01

    Elemental silicon is extracted through carbothermic reduction from silicon-bearing raw feedstock materials such as quartz and quartzites. We investigate the micron-scale distribution and valence state of iron, a deleterious impurity in several iron-sensitive applications, in hydrothermal quartz samples of industrial relevance during a laboratory-scale simulated reduction process. We use X-ray diffraction to inspect the quartz structural change and synchrotron-based microprobe techniques to monitor spatial distribution and oxidation state of iron. In the untreated quartz, most of the iron is embedded in foreign minerals, both as ferric (Fe3+, e.g., in muscovite) and ferrous (Fe2+, e.g., as in biotite) iron. Upon heating the quartz to 1273 K (1000 °C) under industrial-like conditions in a CO(g) environment, iron is found in ferrous (Fe2+) particles. At this temperature, its chemical state is influenced by mineral decomposition and melting processes, whereas at higher temperatures it is influenced by the silicate melts. As the quartz grains partially transform to cristobalite 1873 K (1600 °C), iron diffuses towards liquid-solid interfaces forming ferrous clusters. Silica is liquid at 2173 K (1900 °C) and the iron migrates towards the interfaces between gas phases and the silicate liquid.

  7. Silicon Purification by a New Type of Solar Furnace

    Institute of Scientific and Technical Information of China (English)

    CHEN Ying-Tian; LIM Chern-Sing; HO Tso-Hsiu; LIM Boon-Han; WANG Yi-Nan

    2009-01-01

    We propose a new method to reveal a direct transformation from solar energy to solar electricity. Instead of using electricity in the process, we use concentrated solar rays with a crucibleless process to upgrade metallurgical silicon into solar-grade silicon feedstock.

  8. Temperature-dependent Hall effect measurements on Cz-grown silicon pulled from compensated and recycled feedstock materials

    Science.gov (United States)

    Zhang, Song; Modanese, Chiara; Di Sabatino, Marisa; Tranell, Gabriella

    2015-11-01

    In this work, temperature-dependent Hall effect measurements in the temperature range 88-350 K were carried out to investigate the electrical properties of three solar grade p-type Czochralski (Cz) silicon ingots, pulled from recycled p-type multi-crystalline silicon top cuts and compensated solar grade (SoG) feedstock. Material bulk properties including Hall mobility, carrier density and resistivity as functions of temperature were studied to evaluate the influence of compensation and impurities. Recycled top cut replacing poly-silicon as feedstock leads to a more uniform resistivity. In addition, higher concentrations of O and C, give rise to oxygen related defects, which act as neutral scattering centers displaying only a slight influence on the electrical properties at low temperature compared to the dominant compensation effect. The electrical performances of all samples are shown to be strongly dependent on compensation level, especially at the lowest temperature (~88 K). A significant presence of incompletely ionized phosphorus was deduced through the measured carrier density. The temperature-dependent Hall effect measurements fit Klaassen's mobility model very well at low temperatures (silicon, while the deviation at the high temperature probably may be accounted for by the presence of as-grown defects, such as oxygen related defects and phosphorus clusters, which are usually neglected in most mobility models.

  9. A bioactive metallurgical grade porous silicon-polytetrafluoroethylene sheet for guided bone regeneration applications.

    Science.gov (United States)

    Chadwick, E G; Clarkin, O M; Raghavendra, R; Tanner, D A

    2014-01-01

    The properties of porous silicon make it a promising material for a host of applications including drug delivery, molecular and cell-based biosensing, and tissue engineering. Porous silicon has previously shown its potential for the controlled release of pharmacological agents and in assisting bone healing. Hydroxyapatite, the principle constituent of bone, allows osteointegration in vivo, due to its chemical and physical similarities to bone. Synthetic hydroxyapatite is currently applied as a surface coating to medical devices and prosthetics, encouraging bone in-growth at their surface and improving osseointegration. This paper examines the potential for the use of an economically produced porous silicon particulate-polytetrafluoroethylene sheet for use as a guided bone regeneration device in periodontal and orthopaedic applications. The particulate sheet is comprised of a series of microparticles in a polytetrafluoroethylene matrix and is shown to produce a stable hydroxyapatite on its surface under simulated physiological conditions. The microstructure of the material is examined both before and after simulated body fluid experiments for a period of 1, 7, 14 and 30 days using Scanning Electron Microscopy. The composition is examined using a combination of Energy Dispersive X-ray Spectroscopy, Thin film X-ray diffraction, Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy and the uptake/release of constituents at the fluid-solid interface is explored using Inductively Coupled Plasma-Optical Emission Spectroscopy. Microstructural and compositional analysis reveals progressive growth of crystalline, 'bone-like' apatite on the surface of the material, indicating the likelihood of close bony apposition in vivo.

  10. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Silicon Purification by a New Type of Solar Furnace

    Science.gov (United States)

    Chen, Ying-Tian; Lim, Chern-Sing; Ho, Tso-Hsiu; Lim, Boon-Han; Wang, Yi-Nan

    2009-07-01

    We propose a new method to reveal a direct transformation from solar energy to solar electricity. Instead of using electricity in the process, we use concentrated solar rays with a crucibleless process to upgrade metallurgical silicon into solar-grade silicon feedstock.

  11. Metallurgical Parameters Controlling the Eutectic Silicon Charateristics in Be-Treated Al-Si-Mg Alloys

    Directory of Open Access Journals (Sweden)

    Mohamed F. Ibrahim

    2016-01-01

    Full Text Available The present work was carried out on Al-7%Si-0.4%Mg-X alloy (where X = Mg, Fe, Sr or Be, where the effect of solidification rate on the eutectic silicon characteristics was investigated. Two solidification rates corresponding to dendrite arm spacings (DAS of 24 and 65 μm were employed. Samples with 24 μm DAS were solution heat-treated at 540 °C for 5 and 12 h prior to quenching in warm water at 65 °C. Eutectic Si particle charateristics were measured using an image analyzer. The results show that the addition of 0.05% Be leads to partial modification of the Si particles. Full modification was only obtained when Sr was added in an amount of 150–200 ppm, depending on the applied solidification rate. Increasing the amount of Mg to 0.8% in Sr-modified alloys leads to a reduction in the effectiveness of Sr as the main modifier. Similar observations were made when the Fe content was increased in Be-treated alloys due to the Be-Fe interaction. Over-modification results in the precipitation of hard Sr-rich particles, mainly Al4SrSi2, whereas overheating causes incipient melting of the Al-Cu eutectic and hence the surrounding matrix. Both factors lead to a deterioration in the alloy mechanical properties. Furthermore, the presence of long, acicular Si particles accelerates the occurrence of fracture and, as a result, yields poor ductility. In low iron (less than 0.1 wt% Al-Si-Mg alloys, the mechanical properties in the as cast, as well as heat treated conditions, are mainly controlled by the eutectic Si charatersitics. Increasing the iron content and, hence, the volume fraction of Fe-based intermetallics leads to a complex fracture mode.

  12. Electrically active defects in solar grade multicrystalline silicon

    DEFF Research Database (Denmark)

    Dahl, Espen

    2013-01-01

    that a high density of dislocations provided centres for precipitation of metallic impurities in a substantial part of wafers based on commercially available silicon from the metallurgic route. These precipitates introduce a range of defect levels in the silicon band gap that will degrade the electrical......Shortage in high purity silicon feedstock, as a result of the formidable increased demand for solar cell devices during the last two decades, can be mitigated by the introduction of cheaper feedstock of solar grade (So-G) quality. Silicon produced through the metallurgical process route has shown......-SEM) for structural analysis. Some additional techniques have been implemented in order to fill in missing information. In addition, a part of the study aimed at improving the electrical performance of the material, by removing metallic impurities from active phases, with different gettering techniques. It was found...

  13. Solar silicon from directional solidification of MG silicon produced via the silicon carbide route

    Science.gov (United States)

    Rustioni, M.; Margadonna, D.; Pirazzi, R.; Pizzini, S.

    1986-01-01

    A process of metallurgical grade (MG) silicon production is presented which appears particularly suitable for photovoltaic (PV) applications. The MG silicon is prepared in a 240 KVA, three electrode submerged arc furnace, starting from high grade quartz and high purity silicon carbide. The silicon smelted from the arc furnace was shown to be sufficiently pure to be directionally solidified to 10 to 15 kg. After grinding and acid leaching, had a material yield larger than 90%. With a MG silicon feedstock containing 3 ppmw B, 290 ppmw Fe, 190 ppmw Ti, and 170 ppmw Al, blended with 50% of off grade electronic grade (EG) silicon to reconduct the boron content to a concentration acceptable for solar cell fabrication, the 99% of deep level impurities were concentrated in the last 5% of the ingot. Quite remarkably this material has OCV values higher tham 540 mV and no appreciable shorts due to SiC particles.

  14. Thermodynamics and Kinetics of Boron Removal from Metallurgical Grade Silicon by Addition of High Basic Potassium Carbonate to Calcium Silicate Slag

    Science.gov (United States)

    Wu, Jijun; Wang, Fanmao; Ma, Wenhui; Lei, Yun; Yang, Bin

    2016-06-01

    In this study, we investigated the thermodynamics and kinetics of boron removal from metallurgical grade silicon (MG-Si) using a calcium silicate slag containing a high basic potassium carbonate. The distribution of boron between slag and silicon was theoretically derived and the distribution coefficients ( L B) of boron with different compositions of CaO, SiO2, and K2CO3 in slag reagents were determined. The maximal value of L B reached 2.08 with a high basicity slag of 40 pctCaO-40 pctSiO2-20 pctK2CO3 (Λ = 0.73). The boron removal rates from MG-Si using CaO-SiO2 and CaO-SiO2-K2CO3 slags at 1823 K (1550 °C) were investigated in an electromagnetic induction furnace. The results showed that the boron concentration in MG-Si can be reduced from 22 to 1.8 ppmw at 1823 K (1550 °C) with 20 pct K2CO3 addition to calcium silicate slag, where the removal efficiency of boron reached 91.8 pct. The mass transfer coefficient ( β S) of boron in binary 50 pctCaO-50 pctSiO2 slag was 3.16 × 10-6 m s-1 at 1823 K (1550 °C) and was 2.43 × 10-5 m s-1 in ternary 40 pctCaO-40 pctSiO2-20 pctK2CO3 slag.

  15. New Feedstock for c-Si Photovoltaics

    Science.gov (United States)

    Kravtsov, Alexey; Shagun, Alexander; Kravtsov, Anatoly

    2015-03-01

    Results from functional tests of highly doped silicon purified with electron beam melting, a new feedstock for photovoltaics are presented. Possibility of obtaining dislocation free single crystals from such feedstock in typical industrial processes (CZ and FZ) is shown, crystals' parameters are tested for coherence with requirements for PV silicon.

  16. Metallurgical Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose is to increase basic knowledge of metallurgical processing for controlling the microstructure and mechanical properties of metallic aerospace alloys and...

  17. Metallurgical Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose is to increase basic knowledge of metallurgical processing for controlling the microstructure and mechanical properties of metallic aerospace alloys and...

  18. Metallurgical process engineering

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Ruiyu [Central Iron and Steel Research Institute (CISRI), Beijing (China)

    2011-07-01

    ''Metallurgical Process Engineering'' discusses large-scale integrated theory on the level of manufacturing production processes, putting forward concepts for exploring non-equilibrium and irreversible complex system. It emphasizes the dynamic and orderly operation of the steel plant manufacturing process, the major elements of which are the flow, process network and program. The book aims at establishing a quasi-continuous and continuous process system for improving several techno-economic indices, minimizing dissipation and enhancing the market competitiveness and sustainability of steel plants. The book is intended for engineers, researchers and managers in the fields of metallurgical engineering, industrial design, and process engineering. (orig.)

  19. New Purification Process of Molten Al—Si Alloy Based Metallurgical Grade Silicon%基于Al-Si合金熔体的冶金级硅纯化新工艺

    Institute of Scientific and Technical Information of China (English)

    罗坤; 刘颖; 李军; 高升吉

    2011-01-01

    为了提高冶金级硅的纯度,本文研究了A1对去除冶金级硅中金属杂质的作用.结果表明,以工业Si和工业Al为原料,通过Al-Si合金化和酸浸除杂相结合制备Si材料,将A1-Si合金破碎成一定尺寸的颗粒,然后采用氢氧化钠溶液、氢氟酸和盐酸溶液顺序腐蚀去除Al和其他杂质,最终获得纯度为99.91%的Si颗粒.结合扫描电镜(SEM)、能谱仪(EDS)以及X射线荧光光谱(XRF)等分析手段,对腐蚀前后材料的微观结构和杂质含量的变化进行研究,初步探讨了冶金级Si经过Al-Si合金熔炼更有利于除杂的原理.%In order to improve purity of metallurgical grade silicon (MG-Si), this paper has researched the effects of Al on the removal of metal impurities. The results indicated that the Al-Si alloy has been synthetized by Al-Si alloying and acid leaching using industrial-grade silicon and industrial aluminum as the raw materials, which then broke into particles. In order to removal Al and other impurities , the particles are corroded by sodium hydroxide solution, hydrofluoric acid and hydrochloric acid in turn. Finally, silicon particles with a purity of 99. 91% were obtained. The changes of microstructure and content of impurities have been investigated by means of scanning electron microscope, energy dispersive spectroscopy and X - ray fluorescence spectrometry. The principle of the impurities removed more completely by Al-Si alloy was discussed.

  20. Lignocellulosic feedstock resource assessment

    Energy Technology Data Exchange (ETDEWEB)

    Rooney, T.

    1998-09-01

    This report provides overall state and national information on the quantity, availability, and costs of current and potential feedstocks for ethanol production in the United States. It characterizes end uses and physical characteristics of feedstocks, and presents relevant information that affects the economic and technical feasibility of ethanol production from these feedstocks. The data can help researchers focus ethanol conversion research efforts on feedstocks that are compatible with the resource base.

  1. Crisis management in metallurgical enterprises

    Directory of Open Access Journals (Sweden)

    B. Gajdzik

    2014-07-01

    Full Text Available On the basis of report analysis which presents situation in metallurgical sector after 2008 the range of changes implemented in management of metallurgical enterprises was characterised. A definition approach to crisis management was suggested as the process when the enterprise is managed during the breakdown period in market condition of the economy in the way directed towards preventing the negative effects of crisis inside enterprises. The publication presents the key aspects of enterprise management in the period of collapse of the balance between the supply and demand on the metallurgical market.

  2. Computer Applications in Metallurgical Research

    Directory of Open Access Journals (Sweden)

    V. Madhu

    1994-04-01

    Full Text Available This paper outlines the current efforts in computer applications in metallurgical research at the Defence Metallurgical Research Laboratory, Hyderabad. Work being done on armour penetration studies, optimization of armour profiles for fighting vehicles, computer control of multifunction 2000 tonne forge press, drawing of processing mechanism maps, process modelling of titanium sponge production and methods of curve fitting to experimental data, is described and briefly discussed.

  3. Cermet crucible for metallurgical processing

    Science.gov (United States)

    Boring, Christopher P.

    1995-01-01

    A cermet crucible for metallurgically processing metals having high melting points comprising a body consisting essentially of a mixture of calcium oxide and erbium metal, the mixture comprising calcium oxide in a range between about 50 and 90% by weight and erbium metal in a range between about 10 and 50% by weight.

  4. 冶金硅定向凝固法制备太阳能级多晶硅及其微观组织与位错%Preparation, microstructure and dislocation of solar-grade multicrystalline silicon by directional solidification from metallurgical-grade silicon

    Institute of Scientific and Technical Information of China (English)

    苏海军; 张军; 刘林; 傅恒志

    2012-01-01

    以冶金硅为原料,探索采用具有高温度梯度的真空定向凝固技术制备低成本太阳能级多晶硅,并研究其在不同生长条件下的微观组织特征、晶界与晶粒大小、固液界面形貌以及位错结构.结果表明,当凝固速率低于60 μm/s时,能获得具有高密度和良好取向的定向凝固多晶硅棒状试样,硅晶粒大小随凝固速率的增大而减小;在控制凝固过程,获得平的固液界面形貌是获得沿凝固方向排列柱状晶的关键;由于硅的小平面生长特性,微观组织中出现了位错生长台阶和孪晶结构;在晶粒中,位错分布呈现不均匀性,并且位错密度随凝固速率的增加而增加;在此基础上,讨论了多晶硅的生长行为以及位错形成机制.%A vacuum directional solidification with high temperature gradient was performed to prepare low cost solar-grade multicrystalline silicon (mc-Si) directly from metallurgical-grade mc-Si.The microstructure characteristic,grain size,boundary,solid-liquid growth interface,and dislocation structure under different growth conditions were studied.The results show that directionally solidified multicrystalline silicon rods with high density and orientation can be obtained when the solidification rate is below 60 μm/s.The grain size gradually decreases with increasing the solidification rate.The control of obtaining planar solid-liquid interface at high temperature gradient is effective to produce well-aligned columnar grains along the solidification direction.The growth step and twin boundaries are preferred to form in the microstructure due to the faceted growth characteristic of mc-Si.The dislocation distribution is inhomogeneous within crystals and the dislocation density increases with the increase of solidification rate.Furthermore,the crystal growth behavior and dislocation formation mechanism of mc-Si were discussed.

  5. Plasma metallurgical production of nanocrystalline borides and carbides

    Science.gov (United States)

    Galevsky, G. V.; Rudneva, V. V.; Cherepanov, A. N.; Galevsky, S. G.; Efimova, K. A.

    2016-09-01

    he experience in production and study of properties of nanocrystalline borides and chromium carbides, titanium, silicon was summarized. The design and features of the vertical three-jet once-through reactor with power 150 kW, used in the plasma metallurgical production, was described. The technological, thermotechnical and resource characteristics of the reactor were identified. The parameters of borides and carbides synthesis, their main characteristics in the nanodispersed state and equipment-technological scheme of production were provided. Evaluation of engineering-and-economical performance of the laboratory and industrial levels of borides and carbides production and the state corresponding to the segment of the world market was carried out.

  6. Simulation model of metallurgical production management

    Directory of Open Access Journals (Sweden)

    P. Šnapka

    2013-07-01

    Full Text Available This article is focused to the problems of the metallurgical production process intensification. The aim is the explaining of simulation model which presents metallurgical production management system adequated to new requirements. The knowledge of a dynamic behavior and features of metallurgical production system and its management are needed to this model creation. Characteristics which determine the dynamics of metallurgical production process are characterized. Simulation model is structured as functional blocks and their linkages with regard to organizational and temporal hierarchy of their actions. The creation of presented simulation model is based on theoretical findings of regulation, hierarchical systems and optimization.

  7. Biomass Feedstock National User Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Bioenergy research at the Biomass Feedstock National User Facility (BFNUF) is focused on creating commodity-scale feed-stocks from native biomass that meet the needs...

  8. Biodiesel from conventional feedstocks.

    Science.gov (United States)

    Du, Wei; Liu, De-Hua

    2012-01-01

    At present, traditional fossil fuels are used predominantly in China, presenting the country with challenges that include sustainable energy supply, energy efficiency improvement, and reduction of greenhouse gas emissions. In 2007, China issued The Strategic Plan of the Mid-and-Long Term Development of Renewable Energy, which aims to increase the share of clean energy in the country's energy consumption to 15% by 2020 from only 7.5% in 2005. Biodiesel, an important renewable fuel with significant advantages over fossil diesel, has attracted great attention in the USA and European countries. However, biodiesel is still in its infancy in China, although its future is promising. This chapter reviews biodiesel production from conventional feedstocks in the country, including feedstock supply and state of the art technologies for the transesterification reaction through which biodiesel is made, particularly the enzymatic catalytic process developed by Chinese scientists. Finally, the constraints and perspectives for China's biodiesel development are highlighted.

  9. Impurity segregation behavior in polycrystalline silicon ingot grown with variation of electron-beam power

    Science.gov (United States)

    Lee, Jun-Kyu; Lee, Jin-Seok; Jang, Bo-Yun; Kim, Joon-Soo; Ahn, Young-Soo; Cho, Churl-Hee

    2014-08-01

    Electron beam melting (EBM) systems have been used to improve the purity of metallurgical grade silicon feedstock for photovoltaic application. Our advanced EBM system is able to effectively remove volatile impurities using a heat source with high energy from an electron gun and to continuously allow impurities to segregate at the top of an ingot solidified in a directional solidification (DS) zone in a vacuum chamber. Heat in the silicon melt should move toward the ingot bottom for the desired DS. However, heat flux though the ingot is changed as the ingot becomes longer due to low thermal conductivity of silicon. This causes a non-uniform microstructure of the ingot, finally leading to impurity segregation at its middle. In this research, EB power irradiated on the silicon melt was controlled during the ingot growth in order to suppress the change of heat flux. EB power was reduced from 12 to 6.6 kW during the growth period of 45 min with a drop rate of 0.125 kW/min. Also, the silicon ingot was grown under a constant EB power of 12 kW to estimate the effect of the drop rate of EB power. When the EB power was reduced, the grains with columnar shape were much larger at the middle of the ingot compared to the case of constant EB power. Also, the present research reports a possible reason for the improvement of ingot purity by considering heat flux behaviors.

  10. Purification and deposition of silicon by an iodide disproportionation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tihu (Littleton, CO); Ciszek, Theodore F. (Evergreen, CO)

    2002-01-01

    Method and apparatus for producing purified bulk silicon from highly impure metallurgical-grade silicon source material at atmospheric pressure. Method involves: (1) initially reacting iodine and metallurgical-grade silicon to create silicon tetraiodide and impurity iodide byproducts in a cold-wall reactor chamber; (2) isolating silicon tetraiodide from the impurity iodide byproducts and purifying it by distillation in a distillation chamber; and (3) transferring the purified silicon tetraiodide back to the cold-wall reactor chamber, reacting it with additional iodine and metallurgical-grade silicon to produce silicon diiodide and depositing the silicon diiodide onto a substrate within the cold-wall reactor chamber. The two chambers are at atmospheric pressure and the system is open to allow the introduction of additional source material and to remove and replace finished substrates.

  11. Biohydrogen production from lignocellulosic feedstock.

    Science.gov (United States)

    Cheng, Chieh-Lun; Lo, Yung-Chung; Lee, Kuo-Shing; Lee, Duu-Jong; Lin, Chiu-Yue; Chang, Jo-Shu

    2011-09-01

    Due to the recent energy crisis and rising concern over climate change, the development of clean alternative energy sources is of significant interest. Biohydrogen produced from cellulosic feedstock, such as second generation feedstock (lignocellulosic biomass) and third generation feedstock (carbohydrate-rich microalgae), is a promising candidate as a clean, CO2-neutral, non-polluting and high efficiency energy carrier to meet the future needs. This article reviews state-of-the-art technology on lignocellulosic biohydrogen production in terms of feedstock pretreatment, saccharification strategy, and fermentation technology. Future developments of integrated biohydrogen processes leading to efficient waste reduction, low CO2 emission and high overall hydrogen yield is discussed.

  12. Mechanical and metallurgical properties of carotid artery clamps.

    Science.gov (United States)

    Dujovny, M; Kossovsky, N; Kossowsky, R; Segal, R; Diaz, F G; Kaufman, H; Perlin, A; Cook, E E

    1985-11-01

    The mechanical and metallurgical properties of carotid artery clamps were evaluated. The pressure plate retreat propensity, metallurgical composition, surface morphology, magnetic properties, and corrosion resistance of the Crutchfield, Selverstone, Salibi, and Kindt clamps were tested. None of the clamps showed evidence of pressure plate retreat. The clamps differed significantly in their composition, surface cleanliness, magnetic properties, and corrosion resistance. The Crutchfield clamp was the only one manufactured from an ASTM-ANSI-approved implantable stainless steel (AISI 316) and the only clamp in which the surfaces were clean and free of debris. The Selverstone clamp was made principally from AISI 304 stainless steel, as was one Salibi clamp. The pressure plate on another Salibi clamp was made from a 1% chromium and 1% manganese steel. Machining and surface debris consisting principally of aluminum, silicon, and sulfur was abundant on the Selverstone and Salibi clamps. The Kindt clamp was manufactured from AISI 301 stainless steel with a silicate-aluminized outer coating. The Crutchfield and Selverstone clamps were essentially nonferromagnetic, whereas the Salibi and Kindt clamps were sensitive to magnetic flux. In the pitting potential corrosion test, the Crutchfield clamp demonstrated good corrosion resistance with a pitting potential of 310 mV and no surface corrosion or pitting by scanning electron microscopy examination. The Selverstone clamp had lower pitting potentials and showed various degrees of corrosion and surface pitting by scanning electron microscopy. The Salibi pressure plate had a very low pitting potential of -525 mV and showed severe corrosion. By metallurgical criteria, only the Crutchfield clamp is suitable for long term implantation.

  13. Silicon solar cells with low-cost substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kotval, P.S.; Strock, H.B.

    1978-11-07

    Epitaxial and diffusion-type planar diodes and solar cells utilize low-cost refined metallurgical silicon substrates having a substantially higher impurity content than conventional high-cost, high purity semiconductor grade silicon. The epitaxial type products have an n-on-p-on-p substrate configuration, while the diffusion-type products have pentavalent impurities diffused therein to form a p-n junction in the low cost silicon substrate. One embodiment employs a multigrained refined metallurgical silicon (RMS) prepared by precipitating essentially iron-free silicon platelets from a solution of metallurgical grade silicon in molten aluminum, melting said refined platelets, in contact with a silica slag and pulling silicon boules from a melt of said refined metallurgical silicon (RMS). By directionally solidifying the refined silicon--slag melt, a multigrained, directionally solidified refined metallurgical silicon (DS/RMS) is obtained, with boules being pulled from a melt thereof for use as said low-cost substrate. The DS/RMS may also be re-melted and directionally solidified a second time with the boules being pulled from said twice directionally solidified material being a desirable, low-cost, single crystal material suitable for use as said substrate for planar diode and solar cell applications.

  14. Diagnosis of employee engagement in metallurgical enterprise

    Directory of Open Access Journals (Sweden)

    B. Gajdzik

    2013-01-01

    Full Text Available In the theoretical part of the publication an overview of the definitions of employee engagement was conducted together with the analysis of the methods and techniques which influence the professional activity of the employees in the metallurgical enterprise. The practical part discusses the results of diagnosis of engagement in steelworks. Presented theories, as well as the research, fill the information gap concerning the engagement of the employees in metallurgical enterprises. This notion is important due to the fact that modern conditions of human resources management require the engagement of the employees as something commonly accepted and a designation of manufacturing enterprises.

  15. Cast iron component failure: A metallurgical investigation

    Directory of Open Access Journals (Sweden)

    K.V. Sudhakar

    2012-12-01

    Full Text Available A fractured nutcracker was examined for determining the root cause/s for premature fracture/failure. This is one of the common tools usedtypically for cracking hard nuts. In this study, metallurgical failure analysis techniques namely, visual inspection, optical microscopy, SEM, and hardness tests were used in investigating the broken product. From the metallurgical analysis, it was determined that the combined effect of low carbon equivalent and presence of inclusions contributed to the sudden fracture of the nut cracking tool.

  16. APPLICATION OF CARBONACEOUS HOUSEHOLD WASTES AS FUEL FEEDSTOCK AT THERMO METALLURGICAL EQUIPMENT AND PROCESSES

    Directory of Open Access Journals (Sweden)

    Aleksei Viktorovich Boikov

    2016-07-01

    Full Text Available The possibility of utilization of municipal solid waste in the conveyor roasting cement production machine along with obtaining secondary thermal energy, what could reach 15-20% of the principal quantity of the heat energy required for the conduct of the process was considered. The inclusion of ash obtained from the incineration of municipal solid waste after preprocessing into the cement clinker composition was proposed. The reduction of the emission of dioxins and furans in the atmosphere and the impact on the environment was achieved as a result.

  17. Porous silicon gettering

    Energy Technology Data Exchange (ETDEWEB)

    Tsuo, Y.S.; Menna, P.; Pitts, J.R. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-05-01

    The authors have studied a novel extrinsic gettering method that uses the large surface areas produced by a porous-silicon etch as gettering sites. The annealing step of the gettering used a high-flux solar furnace. They found that a high density of photons during annealing enhanced the impurity diffusion to the gettering sites. The authors used metallurgical-grade Si (MG-Si) prepared by directional solidification casing as the starting material. They propose to use porous-silicon-gettered MG-Si as a low-cost epitaxial substrate for polycrystalline silicon thin-film growth.

  18. Friction welding thermal and metallurgical characteristics

    CERN Document Server

    Yilbas, Bekir Sami

    2014-01-01

    This book provides insight into the thermal analysis of friction welding incorporating welding parameters such as external, duration, breaking load, and material properties. The morphological and metallurgical changes associated with the resulting weld sites are analysed using characterization methods such as electron scanning microscope, energy dispersive spectroscopy, X-ray Diffraction, and Nuclear reaction analysis.

  19. Solar cells from 120 PPMA carbon-contaminated feedstock without significantly higher reverse current or shunt

    Energy Technology Data Exchange (ETDEWEB)

    Manshanden, P.; Coletti, G. [ECN Solar Energy, Petten (Netherlands)

    2012-09-15

    In a bid to drive down the cost of silicon wafers, several options for solar grade silicon feedstock have been investigated over the years. All methods have in common that the resulting silicon contains higher levels of impurities like dopants, oxygen, carbon or transition metals, the type and level of impurities depending on the raw materials and refining processes. In this work wafers from a p-type mc-Si ingot made with feedstock contaminated with 120 ppma of carbon have been processed into solar cells together with reference uncontaminated feedstock from semiconductor grade polysilicon with <0.4 ppma carbon. The results show that comparable reverse current, shunts, and efficiencies can be reached for both types of wafers. Gettering and defect hydrogenation effectiveness also did not deviate from the reference. Electroluminescence pictures do not show increased hotspot formation, even at -16V.

  20. Innovation of costing system in metallurgical companies

    Directory of Open Access Journals (Sweden)

    J. Kutač

    2014-04-01

    Full Text Available Innovation means creating and implementing new ideas in theory and practice. Generally speaking, companies in the Czech Republic that don’t have a foreign owner behave very conservatively as far as the used costing system is concerned. This also applies to metallurgical companies and foundries. The decision on method of costing calculations should be included in the sphere of strategic decision-making. The strategy must also define how to use method so as to obtain new orders which, as a result, should lead to an increase in production volume, and thereby to higher capacity utilization and also to higher overall sales. The article discusses the innovation of costing system in metallurgical companies.

  1. Mass transfer coefficients in metallurgical reactors

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    An overview on the application and achievements of physico-mathematical modeling of metallurgical processes in Chinais briefly declared. The important role of coefficients in model formulation is shown from our experience. The mass transfer coeffi-cients of the slag-metal reactions and the gas-metal reactions are discussed referring to the flow conditions near the interface. Theinfluence of the surface-active species on the mass transfer and the inteffacial reaction is also discussed briefly.

  2. Modern recycling methods in metallurgical industry

    Directory of Open Access Journals (Sweden)

    M. Maj

    2010-04-01

    Full Text Available The contamination of environment caused by increased industrial activities is the main topic of discussions in Poland and in the world. The possibilities of waste recovery and recycling vary in different sectors of the industry, and the specific methods, developed and improved all the time, depend on the type of the waste. In this study, the attention has been focussed mainly on the waste from metallurgical industry and on the available techniques of its recycling

  3. Qualifications versus useful knowledge in metallurgical enterprise

    Directory of Open Access Journals (Sweden)

    B. Gajdzik

    2014-01-01

    Full Text Available The article presents notions connected with resource structure of useful knowledge packages in metallurgical enterprise. Dependence between building competence of employees and using knowledge for the need of better efficiency of the enterprise was discussed here. ArcelorMittal Poland enterprise served as case study here due to the fact that it strives at World Class Management by putting emphasis on bringing areas of business activity to perfection through participation and involvement of employees.

  4. Production of iron from metallurgical waste

    Science.gov (United States)

    Hendrickson, David W; Iwasaki, Iwao

    2013-09-17

    A method of recovering metallic iron from iron-bearing metallurgical waste in steelmaking comprising steps of providing an iron-bearing metallurgical waste containing more than 55% by weight FeO and FeO equivalent and a particle size of at least 80% less than 10 mesh, mixing the iron-bearing metallurgical waste with a carbonaceous material to form a reducible mixture where the carbonaceous material is between 80 and 110% of the stoichiometric amount needed to reduce the iron-bearing waste to metallic iron, and as needed additions to provide a silica content between 0.8 and 8% by weight and a ratio of CaO/SiO.sub.2 between 1.4 and 1.8, forming agglomerates of the reducible mixture over a hearth material layer to protect the hearth, heating the agglomerates to a higher temperature above the melting point of iron to form nodules of metallic iron and slag material from the agglomerates by melting.

  5. Metallurgical modelling of superalloy disc isothermal forgings

    Science.gov (United States)

    Evans, R. W.

    1988-08-01

    The metallurgical structure of superalloy aeroengine disc forgings is a complex function of the forging operation parameters and the post forging heat treatment. It is often desirable to obtain certain specific structures in parts of the disc which are, for instance, resistant to crack propagation and this has traditionally been accomplished by means of a series of production trials. This expensive and time consuming procedure can be considerably shortened if the development of microstructure during the forging can be accurately modelled by a suitable computer code. Described here is such a model and its use in the design of isothermal forged components. The model discribed is a fully thermally coupled viscoplasticity finite element algorithm. It treats nodal velocities as the basic unknowns and both the mesh geometry and the various metallurgical structural terms are updated by a single step Euler scheme. Facilities are available for ensuring that surface nodes follow die shapes after impingement, that flow is incompressible and that suitable surface friction forces are applied. Throughout the whole forging process (which may involve the re-meshing of severely distorted elements), the metallurgical history of elements is retained so that the effects of subsequent heat treatments can be assessed.

  6. 2009 Feedstocks Platform Review Report

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, John [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2009-12-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Program‘s Feedstock platform review meeting, held on April 8–10, 2009, at the Grand Hyatt Washington, Washington, D.C.

  7. Crystal growth and evaluation of silicon for VLSI and ULSI

    CERN Document Server

    Eranna, Golla

    2014-01-01

    PrefaceAbout the AuthorIntroductionSilicon: The SemiconductorWhy Single CrystalsRevolution in Integrated Circuit Fabrication Technology and the Art of Device MiniaturizationUse of Silicon as a SemiconductorSilicon Devices for Boolean ApplicationsIntegration of Silicon Devices and the Art of Circuit MiniaturizationMOS and CMOS Devices for Digital ApplicationsLSI, VLSI, and ULSI Circuits and ApplicationsSilicon for MEMS ApplicationsSummaryReferencesSilicon: The Key Material for Integrated Circuit Fabrication TechnologyIntroductionPreparation of Raw Silicon MaterialMetallurgical-Grade SiliconPuri

  8. Survey of alternative feedstocks for biodiesel production

    Science.gov (United States)

    Summarized will be results obtained from the production of biodiesel from several alternative feedstocks with promising agronomic characteristics. Such feedstocks include camelina (Camelina sativa L.), coriander (Coriandrum sativum L.), field pennycress (Thlaspi arvense L.), and meadowfoam (Limnanth...

  9. Impurity distribution and reduction behaviour of quartz in the production of high purity silicon

    OpenAIRE

    Dal Martello, Elena

    2012-01-01

    The production of solar grade silicon is based on the use of expensive high purity carbon and quartz feedstock as well as various silicon refining techniques. Impurities in the feedstock materials enter the silicon during the carbothermic reduction of quartz. The knowledge of the impurity distribution/removal in the feedstock and in the carbothermic reduction process is necessary for targeting less pure and cheaper raw materials.The aim of the present study is to investigate the impurity dist...

  10. Sustainable cost reduction by lean management in metallurgical processes

    OpenAIRE

    A. V. Todorut; L. Paliu-Popa; V. S. Tselentis; D. Cirnu

    2016-01-01

    This paper focuses on the need for sustainable cost reduction in the metallurgical industry by applying Lean Management (LM) tools and concepts in metallurgical production processes leading to increased competitiveness of corporations in a global market. The paper highlights that Lean Management is a novel way of thinking, adapting to change, reducing waste and continuous improvement, leading to sustainable development of companies in the metallurgical industry. The authors outline the main L...

  11. Investigation of metallurgical coatings for automotive applications

    Science.gov (United States)

    Su, Jun Feng

    Metallurgical coatings have been widely used in the automotive industry from component machining, engine daily running to body decoration due to their high hardness, wear resistance, corrosion resistance and low friction coefficient. With high demands in energy saving, weight reduction and limiting environmental impact, the use of new materials such as light Aluminum/magnesium alloys with high strength-weight ratio for engine block and advanced high-strength steel (AHSS) with better performance in crash energy management for die stamping, are increasing. However, challenges are emerging when these new materials are applied such as the wear of the relative soft light alloys and machining tools for hard AHSS. The protective metallurgical coatings are the best option to profit from these new materials' advantages without altering largely in mass production equipments, machinery, tools and human labor. In this dissertation, a plasma electrolytic oxidation (PEO) coating processing on aluminum alloys was introduced in engine cylinder bores to resist wear and corrosion. The tribological behavior of the PEO coatings under boundary and starve lubrication conditions was studied experimentally and numerically for the first time. Experimental results of the PEO coating demonstrated prominent wear resistance and low friction, taking into account the extreme working conditions. The numerical elastohydrodynamic lubrication (EHL) and asperity contact based tribological study also showed a promising approach on designing low friction and high wear resistant PEO coatings. Other than the fabrication of the new coatings, a novel coating evaluation methodology, namely, inclined impact sliding tester was presented in the second part of this dissertation. This methodology has been developed and applied in testing and analyzing physical vapor deposition (PVD)/ chemical vapor deposition (CVD)/PEO coatings. Failure mechanisms of these common metallurgical hard coatings were systematically

  12. Synthesis of fuels and feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, Andrew D.; Brooks, Ty; Jenkins, Rhodri; Moore, Cameron; Staples, Orion

    2017-10-10

    Disclosed herein are embodiments of a method for making fuels and feedstocks from readily available alcohol starting materials. In some embodiments, the method concerns converting alcohols to carbonyl-containing compounds and then condensing such carbonyl-containing compounds together to form oligomerized species. These oligomerized species can then be reduced using by-products from the conversion of the alcohol. In some embodiments, the method further comprises converting saturated, oligomerized, carbonyl-containing compounds to aliphatic fuels.

  13. 7th european metallurgical conference EMC 2013

    Directory of Open Access Journals (Sweden)

    Srećko R. Stopić

    2014-02-01

    Full Text Available From June 23 – 26, 2013, the GDMB Society for Mining, Metallurgy, Resource and Environmental Technology organized 7th European Metallurgical Conference (EMC 2013 in Weimar, Germany. The previous European metallurgical conferences were organized by  the GDMB in Friedrichshafen (2001, Hanover (2003, Leipzig (2005, Duesseldorf (2007, Innsbruck (2009, and Duesseldorf (2011. The GDMB is a non-profit organization from Clausthal, Germany,,focused on combining science with practical experience in metallurgy, mining, materials engineering, mineral processing, recycling and refining of metals, and  manufacturing of semi- and finishing products. The European Metallurgical conference EMC is one of the most well-known conferences worldwide in the field of non-ferrous metallurgy and is attended regularly by decision makers from industry and universities. The scientific program contained 6 plenary lectures and more than 130 presentations. An extensive poster exhibition was held, during which the authors had an opportunity to introduce their posters to the entire plenum as a part of a brief presentation., The € 500 worth “Poster Award EMC 2011 was awarded to Christoph Pichler from the Montan-University in Leoben, Austria. Not only the most important European countries were represented here, but also more than one third of the lecturers were from countries outside Europe (Canada, Japan, China, USA, South Africa, Australia. The origin of the participants reflects the aim of the organizers: to make this conference a worldwide platform for the scientific exchange of experience and information. The scientific presentations of the conference are presented in Proceedings: Vol. 1: Copper, Precious Metals, Waste effluents Treatment/ Biohydrometallurgical applications; Process Metallurgy, Bridging Non-Ferrous and Ferrous Metallurgy; Vol. 2: Lead and Zinc, Light metals, Sustainable technologies, Sustainable of non-ferrous metals production, Process Control

  14. Greenhouse gases and the metallurgical process industry

    Energy Technology Data Exchange (ETDEWEB)

    Lupis, C.H.P.

    1999-10-01

    The present lecture offers a brief review of the greenhouse effect, the sources of greenhouse gases, the potential effect of these gases on global warming, the response of the international community, and the probable cost of national compliance. The specific emissions of the metallurgical process industry, particularly those of the steel and aluminum sectors, are then examined. The potential applications of life-cycle assessments and of an input-output model in programs of emissions' abatement are investigated, and, finally, a few remarks on some implications for education are presented.

  15. Application of logistic principles in metallurgical production

    Directory of Open Access Journals (Sweden)

    D. Malindžák

    2012-07-01

    Full Text Available Metallurgical production processes (MPP consist of continuous and discrete types of technology operation, transport, manipulation and storing processes regards the flow of material and also the equipment and machines. Other specifics are: long production cycles, great inertia, tree structure of production processes (from roots up to the leaves, high level of investments etc. These characteristics resulted in some specifics of production logistics. This article deals with these specifics and explains it using the conditions of production processes of continuous slab casting, their heating in push furnaces at rolling temperature and rolling itself in hot wideband steel mill.

  16. Laser repairing of parts in metallurgical industries

    Science.gov (United States)

    Yang, Xichen; Wang, Yunshan; Zhao, Xin

    1999-09-01

    A new repair system for hardfacing of parts in metallurgical industries has been developed. The system can produce single pass quenching or cladding width of 10 - 35 mm, thickness of 0.5 - 10 mm. The wide range of powder materials can be deposited to provide hardfacing layers against wear, corrosion and oxidation. Comparing with welding and flame spraying, it presents clear advantages with low distortion, low dilution, low cost and small postclad machining. It has been successfully used to repair some of parts, for example, roll, drawing wire wheel in high speed wire, and so on.

  17. Engineered plant biomass feedstock particles

    Science.gov (United States)

    Dooley, James H.; Lanning, David N.; Broderick, Thomas F.

    2011-10-11

    A novel class of flowable biomass feedstock particles with unusually large surface areas that can be manufactured in remarkably uniform sizes using low-energy comminution techniques. The feedstock particles are roughly parallelepiped in shape and characterized by a length dimension (L) aligned substantially with the grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. The particles exhibit a disrupted grain structure with prominent end and surface checks that greatly enhances their skeletal surface area as compared to their envelope surface area. The L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers. The W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers. The L.times.W dimensions define a pair of substantially parallel top surfaces characterized by some surface checking between longitudinally arrayed fibers. The feedstock particles are manufactured from a variety of plant biomass materials including wood, crop residues, plantation grasses, hemp, bagasse, and bamboo.

  18. Engineered plant biomass feedstock particles

    Science.gov (United States)

    Dooley, James H [Federal Way, WA; Lanning, David N [Federal Way, WA; Broderick, Thomas F [Lake Forest Park, WA

    2011-10-18

    A novel class of flowable biomass feedstock particles with unusually large surface areas that can be manufactured in remarkably uniform sizes using low-energy comminution techniques. The feedstock particles are roughly parallelepiped in shape and characterized by a length dimension (L) aligned substantially with the grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. The particles exhibit a disrupted grain structure with prominent end and surface checks that greatly enhances their skeletal surface area as compared to their envelope surface area. The L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers. The W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers. The L.times.W dimensions define a pair of substantially parallel top surfaces characterized by some surface checking between longitudinally arrayed fibers. At least 80% of the particles pass through a 1/4 inch screen having a 6.3 mm nominal sieve opening but are retained by a No. 10 screen having a 2 mm nominal sieve opening. The feedstock particles are manufactured from a variety of plant biomass materials including wood, crop residues, plantation grasses, hemp, bagasse, and bamboo.

  19. COMPUTATIONAL RESOURCES FOR BIOFUEL FEEDSTOCK SPECIES

    Energy Technology Data Exchange (ETDEWEB)

    Buell, Carol Robin [Michigan State University; Childs, Kevin L [Michigan State University

    2013-05-07

    While current production of ethanol as a biofuel relies on starch and sugar inputs, it is anticipated that sustainable production of ethanol for biofuel use will utilize lignocellulosic feedstocks. Candidate plant species to be used for lignocellulosic ethanol production include a large number of species within the Grass, Pine and Birch plant families. For these biofuel feedstock species, there are variable amounts of genome sequence resources available, ranging from complete genome sequences (e.g. sorghum, poplar) to transcriptome data sets (e.g. switchgrass, pine). These data sets are not only dispersed in location but also disparate in content. It will be essential to leverage and improve these genomic data sets for the improvement of biofuel feedstock production. The objectives of this project were to provide computational tools and resources for data-mining genome sequence/annotation and large-scale functional genomic datasets available for biofuel feedstock species. We have created a Bioenergy Feedstock Genomics Resource that provides a web-based portal or clearing house for genomic data for plant species relevant to biofuel feedstock production. Sequence data from a total of 54 plant species are included in the Bioenergy Feedstock Genomics Resource including model plant species that permit leveraging of knowledge across taxa to biofuel feedstock species.We have generated additional computational analyses of these data, including uniform annotation, to facilitate genomic approaches to improved biofuel feedstock production. These data have been centralized in the publicly available Bioenergy Feedstock Genomics Resource (http://bfgr.plantbiology.msu.edu/).

  20. Feedstock storage, handling and processing

    Energy Technology Data Exchange (ETDEWEB)

    Egg, R.P.; Coble, C.G.; Engler, C.R. (Texas A and M Univ., College Station, TX (United States). Dept. of Agricultural Engineering); Lewis, D.H. (Texas A and M Univ., College Station, TX (United States). Dept. of Veterinary Microbiology and Parasitology)

    1993-01-01

    This paper is a review of the technology and research covering components of a methane from biomass system between the field and the digester. It deals primarily with sorghum as a feedstock and focuses on research conducted by the Texas Agricultural Experiment Station. Subjects included in this paper are harvesting, hay storage, ansiling, materials handling, pumping and hydraulic characteristics, hydraulic conductivity, pressure/density relationship, and biological pretreatment. This paper is not a comprehensive design manual; however, design equations and coefficients for sorghum are presented, where available, along with references describing the development and application of design models. (author)

  1. Metallurgical technologies, energy conversion, and magnetohydrodynamic flows

    Energy Technology Data Exchange (ETDEWEB)

    Branover, H.; Unger, Y.

    1993-01-01

    The present volume discusses metallurgical applications of MHD, R D on MHD devices employing liquid working medium for process applications, electromagnetic (EM) modulation of molten metal flow, EM pump performance of superconducting MHD devices, induction EM alkali-metal pumps, a physical model for EM-driven flow in channel-induction furnaces, grain refinement in Al alloys via EM vibrational method, dendrite growth of solidifying metal in dc magnetic field, MHD for mass and heat transfer in single-crystal melt growth, inverse EM shaping, and liquid-metal MHD development in Israel. Also discussed are the embrittlement of steel by lead, an open cycle MHD disk generator, the acceleration of gas-liquid piston flows for molten-metal MHD generators, MHD flow around a cylinder, new MHD drag coefficients, liquid-metal MHD two-phase flow, and two-phase liquid gas mixers for MHD energy conversion.

  2. Impact of common metallurgical impurities on ms-Si solar cell efficiency. P-type versus n-type doped ingots

    Energy Technology Data Exchange (ETDEWEB)

    Geerligs, L.J.; Manshanden, P. [ECN Solar Energy, Petten (Netherlands); Solheim, I.; Ovrelid, E.J.; Waernes, A.N. [Sintef materials technology, Trondheim (Norway)

    2006-09-15

    Silicon solar cells based on n-type silicon wafers are less sensitive to carrier lifetime degradation due to several common metal impurities than p-base cells. The theoretical and experimental indications for this have recently received considerable attention. This paper compares p-type and n-type cells purposely contaminated with relatively high levels of impurities, processed by industrial techniques. The impurities considered are Al, Ti, and Fe, which are the dominant impurities in metallurgical silicon and natural quartz. The work also preliminary addresses the question whether the optimal wafer resistivity is the same for n-type as for p-type base mc-Si cells.

  3. The Effects of Trace Contaminants on Catalytic Processing of Biomass-Derived Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.; Peterson, Keith L.; Muzatko, Danielle S.; Alderson, Eric V.; Hart, Todd R.; Neuenschwander, Gary G.

    2004-03-25

    Trace components in biomass feedstocks are potential catalyst poisons when catalytically processing these materials to value-added chemical products. Trace components include inorganic elements such as alkali metals and alkaline earths, phosphorus or sulfur, aluminum or silicon, chloride, or transition metals. Protein components in biomass feedstocks can lead to formation of peptide fractions (from hydrolysis) or ammonium ions (from more severe breakdown) both of which might interfere with catalysis. The effects of these components on catalytic hydrogenation processing has been studied in batch reactor processing tests

  4. Evolution and Development of Effective Feedstock Specifications

    Energy Technology Data Exchange (ETDEWEB)

    Garold Gresham; Rachel Emerson; Amber Hoover; Amber Miller; William Bauer; Kevin Kenney

    2013-09-01

    The U.S. Department of Energy promotes the production of a range of liquid fuels and fuel blend stocks from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass collection, conversion, and sustainability. As part of its involvement in this program, the Idaho National Laboratory (INL) investigates the feedstock logistics economics and sustainability of these fuels. The 2012 feedstock logistics milestone demonstrated that for high-yield areas that minimize the transportation distances of a low-density, unstable biomass, we could achieve a delivered cost of $35/ton. Based on current conventional equipment and processes, the 2012 logistics design is able to deliver the volume of biomass needed to fulfill the 2012 Renewable Fuel Standard’s targets for ethanol. However, the Renewable Fuel Standard’s volume targets are continuing to increase and are expected to peak in 2022 at 36 billion gallons. Meeting these volume targets and achieving a national-scale biofuels industry will require expansion of production capacity beyond the 2012 Conventional Feedstock Supply Design Case to access diverse available feedstocks, regardless of their inherent ability to meet preliminary biorefinery quality feedstock specifications. Implementation of quality specifications (specs), as outlined in the 2017 Design Case – “Feedstock Supply System Design and Economics for Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels” (in progress), requires insertion of deliberate, active quality controls into the feedstock supply chain, whereas the 2012 Conventional Design only utilizes passive quality controls.

  5. Area Reports. Advanced materials and devices research area. Silicon materials research task, and advanced silicon sheet task

    Science.gov (United States)

    1986-01-01

    The objectives of the Silicon Materials Task and the Advanced Silicon Sheet Task are to identify the critical technical barriers to low-cost silicon purification and sheet growth that must be overcome to produce a PV cell substrate material at a price consistent with Flat-plate Solar Array (FSA) Project objectives and to overcome these barriers by performing and supporting appropriate R&D. Progress reports are given on silicon refinement using silane, a chemical vapor transport process for purifying metallurgical grade silicon, silicon particle growth research, and modeling of silane pyrolysis in fluidized-bed reactors.

  6. A U.S. view of silicon production processes

    Science.gov (United States)

    Lutwack, R.

    1981-01-01

    One of the objectives of the Low-Cost Solar Array Project is the demonstration of the practicality of processes for producing silicon, suitable for fabricating solar cells for terrestrial applications, at prices less than $14/kg. Approaches being investigated are related to a metallurgical silicon/silane/silicon process, a metallurgical silicon/dichlorosilane/Siemens-type process, and a silicon tetrachloride-zinc reduction process. There is a great probability that the first process will yield semiconductor grade Si at a price less than $14/kg. The second process appears to be capable of providing polysilicon with a purity equivalent to the present commercial semiconductor grade silicon at a price of about $20/kg. An important part of the program is the investigation of the effects of impurities on the performance of solar cells.

  7. The ecological value of metallurgical enterprise after privatization and restructuring

    Directory of Open Access Journals (Sweden)

    B. Gajdzik

    2012-01-01

    Full Text Available The aim of the article was the presentation of the ecological eff ects achieved in the metallurgical company in Poland after privatization and overall, thorough restructuring. For the need to conduct privatization of the state-owned enterprises and their restricting resulted from the transformation of the national economy. The market system forced the introduction of the changes in the functioning of all the enterprises, among them also the metallurgical enterprises. On the basis of the metallurgical company Ferrum SA (joint-stock company, the producer of the pipes, the road of the company towards the competitiveness is presented. The bases for the comparisons were various ecological aspects. Data from the environment reports of the metallurgical company Ferrum SA were used in order to conduct the analysis.

  8. Sustainable cost reduction by lean management in metallurgical processes

    Directory of Open Access Journals (Sweden)

    A. V. Todorut

    2016-10-01

    Full Text Available This paper focuses on the need for sustainable cost reduction in the metallurgical industry by applying Lean Management (LM tools and concepts in metallurgical production processes leading to increased competitiveness of corporations in a global market. The paper highlights that Lean Management is a novel way of thinking, adapting to change, reducing waste and continuous improvement, leading to sustainable development of companies in the metallurgical industry. The authors outline the main Lean Management instruments based on recent scientific research and include a comparative analysis of other tools, such as Sort, Straighten, Shine, Standardize, Sustain (5S, Visual Management (VM, Kaizen, Total Productive Maintenance (TPM, Single-Minute Exchange of Dies (SMED, leading to a critical appraisal of their application in the metallurgical industry.

  9. A survey of metallurgical research on several actinides

    Energy Technology Data Exchange (ETDEWEB)

    Olivas, J.D.; Schonfeld, F.W.

    1993-11-01

    A Los Alamos perspective on metallurgical research on neptunium, plutonium, americium, curium, and californium is presented. Alloying behaviors of these metals are discussed. Metal fabrication technologies, principally for plutonium, are emphasized.

  10. The dimensioning of performance in metallurgical industry from Romania

    Directory of Open Access Journals (Sweden)

    G. Dobrotă

    2015-07-01

    Full Text Available The paper shows the importance of using the indicators for the analysis the financial performance, corresponding with the particularities determined by branch, object of activity or size. Also, our paper aims to identify the state of financial performance in metallurgical industry, taking into account the data recorded at the level of some enterprises in the metallurgical sector in Romania for the period 2009 - 2013 as well as the level of entire branches.

  11. Soft restructuring process in metallurgical enterprises in Poland

    Directory of Open Access Journals (Sweden)

    B. Gajdzik

    2015-10-01

    Full Text Available This article presents the range and outcomes of soft restructuring in metallurgical enterprises in Poland. The term ‘soft restructuring’ applies to changes in metallurgical enterprises’ employment policy during the period of political transformation in Poland. Steelworks performance under the market economy conditions demanded introducing changes in staff resources. Changes referred both to the staff structure as well as employees’ skills and gradual engaging of the staff in building the steelworks’ competitive advantage.

  12. Mercury distribution in an abandoned metallurgical plant

    Directory of Open Access Journals (Sweden)

    Millán R.

    2013-04-01

    Full Text Available The aim of the work is to evaluate the spatial distribution of Hg in the soil-plant system within an area where intense activity of Hg was dominant over a long period. An abandoned metallurgical plant from the 17th-18th centuries was chosen as the study area. It is situated in Almadenejos within the Almadén mining district (Spain that constitutes the largest and most unusual concentration of mercury in the world and has provided a third of the entire world production of mercury (Hg. Nowadays, this study area is covered with cinnabar mine tailings and village habitants use it for livestock. The area has elevated Hg concentrations of natural origin and from human activities. Soil parameters are similar throughout the study area; however, data reveal high variability in total and available Hg concentrations in soils, making it difficult to establish a tendency. Marrubium vulgare L.has been studied due to its high presence in the field plot, and there is no evidence of phenological toxicity. Furthermore, in spite of elevated Hg concentrations, a good biological activity is tested in the soil samples. All these characteristics, spatial variation, high Hg concentration, good biological activity, enhance the peculiarity of the study area for studies involving Hg.

  13. A metallurgical study of some viking swords

    Directory of Open Access Journals (Sweden)

    Williams, Alan

    2009-12-01

    Full Text Available While «pattern-welded» swords have been found all over Europe from sites dating from the Migration Period and into the Early Middle Ages, they were steadily supplanted during the Viking period by swords made out of a few pieces of iron and steel, or even a single piece of steel. Swords with «Ulfberht» or related inscriptions were the most famous of these. The results of the metallurgical study of 44 specimens from «Ulfberht» swords, as well as some other Viking-age swords, together with electron microanalyses carried out on selected examples, are presented here.

    Mientras que se han encontrado en toda Europa espadas forjadas mediante el sistema de ‘pattern welding’ (entrelazado de láminas formando patrones visibles, procedentes de yacimientos que se extienden desde el Periodo de las Migraciones bárbaras hasta la Alta Edad Media, durante el periodo vikingo fueron habitualmente reemplazadas por espadas forjadas a partir de unas pocas piezas de hierro y acero, o incluso de una única pieza de acero. Las más famosas de entre ellas fueron las espadas con la inscripción «Ulfbehrt» u otras relacionadas. Este artículo presenta los resultados del estudio metalúrgico de 44 ejemplares de espadas de «Ulfberht» y otras de época vikinga, así como los microanálisis efectuados sobre algunas muestras seleccionadas.

  14. Engineered plant biomass feedstock particles

    Science.gov (United States)

    Dooley, James H [Federal Way, WA; Lanning, David N [Federal Way, WA; Broderick, Thomas F [Lake Forest Park, WA

    2012-04-17

    A new class of plant biomass feedstock particles characterized by consistent piece size and shape uniformity, high skeletal surface area, and good flow properties. The particles of plant biomass material having fibers aligned in a grain are characterized by a length dimension (L) aligned substantially parallel to the grain and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. In particular, the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces. The L.times.W surfaces of particles with L/H dimension ratios of 4:1 or less are further elaborated by surface checking between longitudinally arrayed fibers. The length dimension L is preferably aligned within 30.degree. parallel to the grain, and more preferably within 10.degree. parallel to the grain. The plant biomass material is preferably selected from among wood, agricultural crop residues, plantation grasses, hemp, bagasse, and bamboo.

  15. Mixed Culture PHA Production With Alternating Feedstocks

    DEFF Research Database (Denmark)

    Oliveira, C.S.S.; Duque, A.F.; Carvalho, Gilda

    Polyhydroxyalkanoates (PHA) are a sustainable alternative to conventional plastics that can be obtained from industrial wastes/by-products using mixed microbial cultures (MMC). MMC PHA production is commonly carried out in a 3-stage process consisting of an acidogenic stage, a PHA producing culture...... selection stage, and a PHA production phase. This work investigated the performance robustness and microbial population dynamics of a PHA producing MMC when subjected to a feedstock shift, mimicking a seasonal feedstock scenario, from cheese whey to sugar cane molasses. Research was focused...... on the possibility of tailoring PHA through the selection of feedstock: either using feedstocks with different compositions or mixing two or more fermented substrates with different organic acid profiles. This knowledge is expected to contribute to the extended application of this promising process for resource...

  16. 2011 Biomass Program Platform Peer Review: Feedstock

    Energy Technology Data Exchange (ETDEWEB)

    McCann, Laura [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Feedstock Platform Review meeting.

  17. CARBONIZER TESTS WITH LAKELAND FEEDSTOCKS

    Energy Technology Data Exchange (ETDEWEB)

    C. Lu; Z. Fan; R. Froehlich; A. Robertson

    2003-09-01

    Research has been conducted under United States Department of Energy Contract (USDOE) DE-AC21-86MC21023 to develop a new type of coal-fired plant for electric power generation. This new type of plant, called a Second Generation Pressurized Fluidized Bed Combustion Plant (2nd Gen PFB), offers the promise of efficiencies greater than 48%, with both emissions and a cost of electricity that are significantly lower than those of conventional pulverized coal-fired (PC) plants with wet flue gas desulfurization/scrubbers. The 2nd Gen PFB plant incorporates the partial gasification of coal in a carbonizer, the combustion of carbonizer char in a pressurized circulating fluidized (PCFB) bed boiler, and the combustion of carbonizer syngas in a topping combustor to achieve gas turbine inlet temperatures of 2700 F and higher. Under the USDOE Clean Coal V Demonstration Plant Program, a nominal 260 MWe plant demonstrating 2nd Gen PFB technology has been proposed for construction at the McIntosh Power Plant of the City of Lakeland, Florida. In the September-December 1997 time period, four test runs were conducted in Foster Wheeler's 12-inch diameter carbonizer pilot plant in Livingston New Jersey to ascertain carbonizer performance characteristics with the Kentucky No. 9 coal and Florida limestone proposed for use in the Lakeland plant. The tests were of a short-term nature exploring carbonizer carbon conversions, sulfur capture efficiencies and syngas alkali levels. The tests were successful; observed carbonizer performance was in agreement with predictions and no operating problems, attributed to the planned feedstocks, were encountered. The results of the four test runs are reported herein.

  18. CARBONIZER TESTS WITH LAKELAND FEEDSTOCKS

    Energy Technology Data Exchange (ETDEWEB)

    C. Lu; Z. Fan; R. Froehlich; A. Robertson

    2003-09-01

    Research has been conducted under United States Department of Energy Contract (USDOE) DE-AC21-86MC21023 to develop a new type of coal-fired plant for electric power generation. This new type of plant, called a Second Generation Pressurized Fluidized Bed Combustion Plant (2nd Gen PFB), offers the promise of efficiencies greater than 48%, with both emissions and a cost of electricity that are significantly lower than those of conventional pulverized coal-fired (PC) plants with wet flue gas desulfurization/scrubbers. The 2nd Gen PFB plant incorporates the partial gasification of coal in a carbonizer, the combustion of carbonizer char in a pressurized circulating fluidized (PCFB) bed boiler, and the combustion of carbonizer syngas in a topping combustor to achieve gas turbine inlet temperatures of 2700 F and higher. Under the USDOE Clean Coal V Demonstration Plant Program, a nominal 260 MWe plant demonstrating 2nd Gen PFB technology has been proposed for construction at the McIntosh Power Plant of the City of Lakeland, Florida. In the September-December 1997 time period, four test runs were conducted in Foster Wheeler's 12-inch diameter carbonizer pilot plant in Livingston New Jersey to ascertain carbonizer performance characteristics with the Kentucky No. 9 coal and Florida limestone proposed for use in the Lakeland plant. The tests were of a short-term nature exploring carbonizer carbon conversions, sulfur capture efficiencies and syngas alkali levels. The tests were successful; observed carbonizer performance was in agreement with predictions and no operating problems, attributed to the planned feedstocks, were encountered. The results of the four test runs are reported herein.

  19. Energy-dissipation-model for metallurgical multi-phase-systems

    Energy Technology Data Exchange (ETDEWEB)

    Mavrommatis, K.T. [Rheinisch-Westfaelische Technische Hochschule Aachen, Aachen (Germany)

    1996-12-31

    Entropy production in real processes is directly associated with the dissipation of energy. Both are potential measures for the proceed of irreversible processes taking place in metallurgical systems. Many of these processes in multi-phase-systems could then be modelled on the basis of the energy-dissipation associated with. As this entity can often be estimated using very simple assumptions from first principles, the evolution of an overall measure of systems behaviour can be studied constructing an energy-dissipation -based model of the system. In this work a formulation of this concept, the Energy-Dissipation-Model (EDM), for metallurgical multi-phase-systems is given. Special examples are studied to illustrate the concept, and benefits as well as the range of validity are shown. This concept might be understood as complement to usual CFD-modelling of complex systems on a more abstract level but reproducing essential attributes of complex metallurgical systems. (author)

  20. New Perspective of High-Pure Silicon

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@The discovery in the middle of 1950s of the semi-con ducting properties of crystalline silicon has led to the impetu ous development of electric power facilities, the sun-power industry, and particularly, the microelectronic industry. The increasing demand for the high-pure silicon requires the production of synthetic crystals. The raw material for the syn thetic crystals, the so-called technical, or metallurgical silicon, is obtained from quartzite and quartz of superior quality by means of carbon-thermal reduction of silicon using an electric arc discharge. The complexity of the technological process, high cost of the related facilities, worsening environmental pollution, and narrow-mindedness of a raw material company are attributed to the rise in price of the final product-silicon plates, resulting in the fall in the production of high-pure silicon, normally used in sun storage batteries.

  1. Metallurgical Evaluation of the Five-Inch Cylindrical Induction Melter

    Energy Technology Data Exchange (ETDEWEB)

    Imrich, K.J.

    2000-08-15

    A metallurgical evaluation of the 5-inch cylindrical induction melter (CIM) vessel was performed by the Materials Technology Section to evaluate the metallurgical condition after operating for approximately 375 hours at 1400 to 1500 Degrees Celsius during a 2 year period. Results indicate that wall thinning and significant grain growth occurred in the lower portion of the conical section and the drain tube. No through-wall penetrations were found in the cylindrical and conical sections of the CIM vessel and only one leak site was identified in the drain tube. Failure of the drain tube was associated with a localized over heating and intercrystalline fracture.

  2. Safety performance indicators in the metallurgical industry using WEB programming

    Directory of Open Access Journals (Sweden)

    M. Cioca

    2017-01-01

    Full Text Available Sustainable development has a significant impact today in Romania and worldwide. In this context, risk assessment becomes mandatory for enterprises. This paper analyzes the situation of occupational risks in the metallurgical industry in the European Union, Romania, and the United States and highlights the main causes for work accidents in Romanian metallurgical industry. The analysis covers the period 2010 - 2016. The data collected from Romania is compared to the data related to the European Union and the United States. Moreover, the paper aims to present an occupational risk assessment tool, which is customizable for each area of activity. The last section of the paper discusses the research results and limitations.

  3. Development of Solar Grade (SoG) Silicon

    Energy Technology Data Exchange (ETDEWEB)

    Joyce, David B; Schmid, Frederick

    2008-01-18

    The rapid growth of the photovoltaics (PV) industry is threatened by the ongoing shortage of suitable solar grade (SoG) silicon. Until 2004, the PV industry relied on the off spec polysilicon from the electronics industry for feedstock. The rapid growth of PV meant that the demand for SoG silicon predictably surpassed this supply. The long-term prospects for PV are very bright as costs have come down, and efficiencies and economies of scale make PV generated electricity ever more competitive with grid electricity. However, the scalability of the current process for producing poly silicon again threatens the future. A less costly, higher volume production technique is needed to supply the long-term growth of the PV industry, and to reduce costs of PV even further. This long-term need was the motivation behind this SBIR proposal. Upgrading metallurgical grade (MG) silicon would fulfill the need for a low-cost, large-scale production. Past attempts to upgrade MG silicon have foundered/failed/had trouble reducing the low segregation coefficient elements, B, P, and Al. Most other elements in MG silicon can be purified very efficiently by directional solidification. Thus, in the Phase I program, Crystal Systems proposed a variety of techniques to reduce B, P, and Al in MG silicon to produce a low cost commercial technique for upgrading MG silicon. Of the variety of techniques tried, vacuum refining and some slagging and additions turned out to be the most promising. These were pursued in the Phase II study. By vacuum refining, the P was reduced from 14 to 0.22 ppmw and the Al was reduced from 370 ppmw to 0.065 ppmw. This process was scaled to 40 kg scale charges, and the results were expressed in terms of half-life, or time to reduce the impurity concentration in half. Best half-lives were 2 hours, typical were 4 hours. Scaling factors were developed to allow prediction of these results to larger scale melts. The vacuum refining required the development of new crucibles

  4. Model of truly closed circuit of waste stream flow in metallurgical enterprise

    Directory of Open Access Journals (Sweden)

    B. Gajdzik

    2014-04-01

    Full Text Available The publication presents flows of metallurgical waste in manufacturing metallurgical enterprise. On the basis of analysis the structure of waste flows and the way of waste management within the enterprise or outside it were described. In the observation of the metallurgical waste flow a universal model of waste flow structure was created. It may be used in waste management of a metallurgical enterprise with full production cycle (from raw materials processes, through steel production up to final products.

  5. Advanced silicon materials for photovoltaic applications

    CERN Document Server

    Pizzini, Sergio

    2012-01-01

    Today, the silicon feedstock for photovoltaic cells comes from processes which were originally developed for the microelectronic industry. It covers almost 90% of the photovoltaic market, with mass production volume at least one order of magnitude larger than those devoted to microelectronics. However, it is hard to imagine that this kind of feedstock (extremely pure but heavily penalized by its high energy cost) could remain the only source of silicon for a photovoltaic market which is in continuous expansion, and which has a cumulative growth rate in excess of 30% in the last few years. Ev

  6. Contemporary elements of quality management system in the metallurgical enterprise

    Directory of Open Access Journals (Sweden)

    Z. Skuza

    2011-04-01

    Full Text Available In this paper authors submit a method of quality estimation for metallurgical products. The method include three aspects: product’s fulfillment of appointed properties (essential sense of quality, product’s fulfillment of requirements of environmental protection (liquidation quality, level of waste management, energetic quality, onerousness of production process for health of workers.

  7. Control of innovation activity in a competitive metallurgical business

    Science.gov (United States)

    Bogdanov, S. V.

    2010-12-01

    Certain competitive advantages of a manufacturer on a goods market can be provided if one creates conditions for bifurcation development of an innovation process in metallurgical business under conditions of market uncertainty of a demand for goods of a specified consumer quality and determines the technical-and-economic versions of stable operation of a production system for performing orders of metal product consumers.

  8. Biofuel Feedstock Assessment for Selected Countries

    Energy Technology Data Exchange (ETDEWEB)

    Kline, K.L.; Oladosu, G.A.; Wolfe, A.K.; Perlack, R.D.; Dale, V.H.

    2008-02-18

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as ‘available’ for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64

  9. Wastepaper as a feedstock for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Bergeron, P.W.; Riley, C.J.

    1991-11-01

    The possibility of using wastepaper as a cheap feedstock for production of ethanol is discussed. As the single largest material category in the municipal solid waste (MSW) stream, wastepaper is the main target of efforts to reduce the volume of MSW. And in the process for producing ethanol from lignocellulosics, the feedstock represents the highest cost. If wastepaper could be obtained cheaply in large enough quantities and if conversion process cost and efficiency prove to be similar to those for wood, the cost of ethanol could be significantly reduced. At the same time, the volume of wastepaper that must be disposed of in landfills could be lessened. 13 refs., 3 figs., 7 tabs.

  10. High quality transportation fuels from renewable feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Lindfors, Lars Peter

    2010-09-15

    Hydrotreating of vegetable oils is novel process for producing high quality renewable diesel. Hydrotreated vegetable oils (HVO) are paraffinic hydrocarbons. They are free of aromatics, have high cetane numbers and reduce emissions. HVO can be used as component or as such. HVO processes can also be modified to produce jet fuel. GHG savings by HVO use are significant compared to fossil fuels. HVO is already in commercial production. Neste Oil is producing its NExBTL diesel in two plants. Production of renewable fuels will be limited by availability of sustainable feedstock. Therefore R and D efforts are made to expand feedstock base further.

  11. Upgrading of petroleum oil feedstocks using alkali metals and hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John Howard

    2014-09-09

    A method of upgrading an oil feedstock by removing heteroatoms and/or one or more heavy metals from the oil feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase separable from the organic oil feedstock material. The upgradant hydrocarbon bonds to the oil feedstock material and increases the number of carbon atoms in the product. This increase in the number of carbon atoms of the product increases the energy value of the resulting oil feedstock.

  12. Upgrading of petroleum oil feedstocks using alkali metals and hydrocarbons

    Science.gov (United States)

    Gordon, John Howard

    2014-09-09

    A method of upgrading an oil feedstock by removing heteroatoms and/or one or more heavy metals from the oil feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase separable from the organic oil feedstock material. The upgradant hydrocarbon bonds to the oil feedstock material and increases the number of carbon atoms in the product. This increase in the number of carbon atoms of the product increases the energy value of the resulting oil feedstock.

  13. Iron-Catalyzed Boron Removal from Molten Silicon in Ammonia

    Science.gov (United States)

    Chen, Zhiyuan; Morita, Kazuki

    2016-12-01

    A high-temperature process of refining metallurgical-grade silicon to solar-grade silicon was developed. In this gas purging treatment, boron impurity in silicon reacts with ammonia and the products are removed as volatiles at high temperature. 1 mass pct metallic iron was added to molten silicon as a catalyst, improving the boron removal ratio from 14 to 80 pct at 1723 K (1450 °C). At 1823 K (1550 °C), this reaction could reduce boron concentration from more than 120 ppmw to activation energy of 329 ± 129 kJ mol-1 was calculated from experimental data.

  14. SILICON REFINING BY VACUUM TREATMENT

    Directory of Open Access Journals (Sweden)

    André Alexandrino Lotto

    2014-12-01

    Full Text Available This work aims to investigate the phosphorus removal by vacuum from metallurgical grade silicon (MGSi (98.5% to 99% Si. Melting experiments were carried out in a vacuum induction furnace, varying parameters such as temperature, time and relation area exposed to the vacuum / volume of molten silicon. The results of chemical analysis were obtained by inductively coupled plasma (ICP, and evaluated based on thermodynamic and kinetic aspects of the reaction of vaporization of the phosphorus in the silicon. The phosphorus was decreased from 33 to approximately 1.5 ppm after three hours of vacuum treatment, concluding that the evaporation step is the controlling step of the process for parameters of temperature, pressure and agitation used and refining by this process is technically feasible.

  15. Halophytes Energy Feedstocks: Back to Our Roots

    Science.gov (United States)

    Hendricks, Robert C.; Bushnell, Dennis M.

    2008-01-01

    Of the Earth s landmass, approx.43% is arid or semi-arid, and 97% of the Earth s water is seawater. Halophytes are salt-tolerant plants (micro and macro) that can prosper in seawater or brackish waters and are common feedstocks for fuel and food (fuel-food feedstocks) in depressed countries. Two types, broadly classed as coastal and desert, can be found in marshes, coastal planes, inland lakes, and deserts. Major arid or semi-arid halophyte agriculture problems include pumping and draining the required high volumes of irrigation water from sea or ocean sources. Also, not all arid or semi-arid lands are suitable for crops. Benefits of halophyte agriculture include freeing up arable land and freshwater resources, cleansing the environment, decontaminating soils, desalinating brackish waters, and carbon sequestration. Sea and ocean halophyte agriculture problems include storms, transport, and diffuse harvesting. Benefits include available nutrients, ample water, and Sun. Careful attention to details and use of saline agriculture fuel feedstocks are required to prevent anthropogenic disasters. It is shown that the potential for fuel-food feedstock halophyte production is high; based on test plot data, it could supply 421.4 Quad, or 94% of the 2004 world energy consumption and sequester carbon, with major impact on the Triangle of Conflicts.

  16. Preprocessing Moist Lignocellulosic Biomass for Biorefinery Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Neal Yancey; Christopher T. Wright; Craig Conner; J. Richard Hess

    2009-06-01

    Biomass preprocessing is one of the primary operations in the feedstock assembly system of a lignocellulosic biorefinery. Preprocessing is generally accomplished using industrial grinders to format biomass materials into a suitable biorefinery feedstock for conversion to ethanol and other bioproducts. Many factors affect machine efficiency and the physical characteristics of preprocessed biomass. For example, moisture content of the biomass as received from the point of production has a significant impact on overall system efficiency and can significantly affect the characteristics (particle size distribution, flowability, storability, etc.) of the size-reduced biomass. Many different grinder configurations are available on the market, each with advantages under specific conditions. Ultimately, the capacity and/or efficiency of the grinding process can be enhanced by selecting the grinder configuration that optimizes grinder performance based on moisture content and screen size. This paper discusses the relationships of biomass moisture with respect to preprocessing system performance and product physical characteristics and compares data obtained on corn stover, switchgrass, and wheat straw as model feedstocks during Vermeer HG 200 grinder testing. During the tests, grinder screen configuration and biomass moisture content were varied and tested to provide a better understanding of their relative impact on machine performance and the resulting feedstock physical characteristics and uniformity relative to each crop tested.

  17. Chemical or feedstock recycling of WEEE products

    NARCIS (Netherlands)

    Tukker, A.

    2012-01-01

    This chapter reviews initiatives with regard to chemical or feedstock recycling of plastics waste from electrical and electronic products. eurostat estimates the amount of waste from electrical and electronic products that is collected is 2.2 million tonnes. Roughly 20% of this waste consists of pla

  18. Preprocessing Moist Lignocellulosic Biomass for Biorefinery Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Neal Yancey; Christopher T. Wright; Craig Conner; J. Richard Hess

    2009-06-01

    Biomass preprocessing is one of the primary operations in the feedstock assembly system of a lignocellulosic biorefinery. Preprocessing is generally accomplished using industrial grinders to format biomass materials into a suitable biorefinery feedstock for conversion to ethanol and other bioproducts. Many factors affect machine efficiency and the physical characteristics of preprocessed biomass. For example, moisture content of the biomass as received from the point of production has a significant impact on overall system efficiency and can significantly affect the characteristics (particle size distribution, flowability, storability, etc.) of the size-reduced biomass. Many different grinder configurations are available on the market, each with advantages under specific conditions. Ultimately, the capacity and/or efficiency of the grinding process can be enhanced by selecting the grinder configuration that optimizes grinder performance based on moisture content and screen size. This paper discusses the relationships of biomass moisture with respect to preprocessing system performance and product physical characteristics and compares data obtained on corn stover, switchgrass, and wheat straw as model feedstocks during Vermeer HG 200 grinder testing. During the tests, grinder screen configuration and biomass moisture content were varied and tested to provide a better understanding of their relative impact on machine performance and the resulting feedstock physical characteristics and uniformity relative to each crop tested.

  19. Sustainable Use of Biotechnology for Bioenergy Feedstocks

    Science.gov (United States)

    Moon, Hong S.; Abercrombie, Jason M.; Kausch, Albert P.; Stewart, C. Neal

    2010-10-01

    Done correctly, cellulosic bioenergy should be both environmentally and economically beneficial. Carbon sequestration and decreased fossil fuel use are both worthy goals in developing next-generation biofuels. We believe that biotechnology will be needed to significantly improve yield and digestibility of dedicated perennial herbaceous biomass feedstocks, such as switchgrass and Miscanthus, which are native to the US and China, respectively. This Forum discusses the sustainability of herbaceous feedstocks relative to the regulation of biotechnology with regards to likely genetically engineered traits. The Forum focuses on two prominent countries wishing to develop their bioeconomies: the US and China. These two countries also share a political desire and regulatory frameworks to enable the commercialization and wide release of transgenic feedstocks with appropriate and safe new genetics. In recent years, regulators in both countries perform regular inspections of transgenic field releases and seriously consider compliance issues, even though the US framework is considered to be more mature and stringent. Transgene flow continues to be a pertinent environmental and regulatory issue with regards to transgenic plants. This concern is largely driven by consumer issues and ecological uncertainties. Regulators are concerned about large-scale releases of transgenic crops that have sexually compatible crops or wild relatives that can stably harbor transgenes via hybridization and introgression. Therefore, prior to the commercialization or extensive field testing of transgenic bioenergy feedstocks, we recommend that mechanisms that ensure biocontainment of transgenes be instituted, especially for perennial grasses. A cautionary case study will be presented in which a plant’s biology and ecology conspired against regulatory constraints in a non-biomass crop perennial grass (creeping bentgrass, Agrostis stolonifera), in which biocontainment was not attained. Appropriate

  20. Supply Deficit of Feedstock Oils for Carbon Black

    Institute of Scientific and Technical Information of China (English)

    Li Bingyan

    2007-01-01

    @@ Feedstock oils used for carbon blackproduction mainly include ethylene tar,anthracene oil and coal tar. With thegrowing output of carbon black in re-cent years, demand for feedstock oilshas increased constantly.

  1. Alternative, Renewable and Novel Feedstocks for Producing Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2007-07-01

    Vision2020 and ITP directed the Alternative, Renewable and Novel Feedstocks project to identify industrial options and to determine the work required to make alternative, renewable and novel feedstock options attractive to the U.S. chemicals industry. This report presents the Alternative, Renewable and Novel Feedstocks project findings which were based on a technology review and industry workshop.

  2. The impact of production capacity utilization on metallurgical companies financing

    Directory of Open Access Journals (Sweden)

    J. Kutáč

    2013-01-01

    Full Text Available The most important and the most problematic in-house sources of financing of metallurgical companies are profit and depreciations. In the event that the aggregate value of the economic result and depreciations goes over to negative values, then this kind of in-house financing ceases to increase Cash Flow of the company but, on the contrary, it will cause its reduction. It means that this type of financing is to some extent uncertain, particularly in times of crisis, when there are noticeable fluctuations in sales volumes, leading to a significant influence of the volume of production on the amount of profit. The article discusses the impact of production capacity utilization on metallurgical companies financing.

  3. Efficiency of Polish metallurgical industry based on data envelopment analysis

    Directory of Open Access Journals (Sweden)

    J. Baran

    2016-04-01

    Full Text Available The main purpose of this paper is to compare the technical efficiency of 12 sectors manufacturing basic metals and metal products in Poland. This article presents the use of Data Envelopment Analysis models, to determine overall technical efficiency, pure technical efficiency and scale efficiency of metallurgical branches in Poland. The average technical efficiency of metallurgical industry in Poland was quite high. The analysis gives a possibility to create a ranking of sectors. Three branches were found to be fully efficient: manufacture of basic iron and steel and of ferroalloys, manufacture of basic precious and other non - ferrous metals and manufacture of tubes, pipes, hollow profiles and related fittings, of steel. The results point out the reasons of the inefficiency and provide improving directions for the inefficient sectors.

  4. Bankruptcy risk forecasting for the metallurgical branch in Romania

    Directory of Open Access Journals (Sweden)

    P. R. Răchişan

    2014-07-01

    Full Text Available All investment decisions require a thorough analysis of the retrospective evolution of the entities from the concerned area, in order to estimate the long-term evolution perspectives. In this context, the present study analyzes the evolution of the entities from the Romanian metallurgical sector based on the accounting and financial information published for the period 2008 - 2012 and, in fact, it justifies the situation from the perspective of users (managers, investors, auditors and of the economic environment specific to Romania. Starting from this premise we created a regression model particularly useful in forecasting the evolution of the ability to deal with debt for the entities from the Romanian metallurgical sector.

  5. Prediction of Metallurgic Quality of ICDP Material before Tapping

    Science.gov (United States)

    Valek, Tomas; Hampl, Jiri

    ICDP (Indefinite Child Double Pour) irons designated for working layer of centrifugal rolls of rolling mill must have precisely defined properties. The monitored parameters of the ICDP irons are: chemical composition, the amount of graphite in a microstructure and hardness of base metal material. Precipitation of graphite in ICDP iron with ledeburitic basic metal compound is a complex process that can be controlled and managed with the usage of thermal analysis. On the basis of the evaluation of cooling curve parameters of ICDP iron there is performed metallurgical adjustment of melting by adding elements supporting graphite or carbide formation into ICDP iron. The identified structural and mechanical properties of ICDP irons were correlated with recorded cooling curve. Subsequently, a methodology for control of the metallurgical adjustment of ICDP iron before tapping and pouring was proposed to ensure the desired microstructure and properties the ICDP iron

  6. Biofuel Feedstock Assessment For Selected Countries

    Energy Technology Data Exchange (ETDEWEB)

    Kline, Keith L [ORNL; Oladosu, Gbadebo A [ORNL; Wolfe, Amy K [ORNL; Perlack, Robert D [ORNL; Dale, Virginia H [ORNL

    2008-02-01

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as 'available' for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply

  7. Calculations of the thermodynamic properties of metallurgical solutions

    Science.gov (United States)

    Blander, Milton

    Predictive theories for metallurgical solutions are important precursors for computer software in chemical and extractive metallurgy. A limited selection of concepts useful for slags and other ionic systems will be discussed, and include the quasichemical theory, the conformal ionic solution theory, and polymer theory. We emphasize theories which usefully predict solution properties of multicomponent ionic systems, such as silicates and molten salts, to illustrate the range of possible uses.

  8. Thermo-ecological cost (TEC evaluation of metallurgical processes

    Directory of Open Access Journals (Sweden)

    W. Stanek

    2015-01-01

    Full Text Available Metallurgy represents a complex production system of fuel and mineral non-renewable resources transformation. The effectiveness of resource management in metallurgical chains depends on the applied ore grade and on the irreversibility of components of the system. TEC can be applied to measure the influence of metallurgy on the depletion of natural resources. The paper discusses the possibility of application of TEC in metallurgy and presents illustrative example concerning blast-furnace process.

  9. Environment-friendly management of iron-bearing metallurgical waste

    OpenAIRE

    K. Nowacki; T. Lis; Kania, H.

    2017-01-01

    The main purpose of waste management should be reclamation of valuable raw materials and, consequently, protection of natural environment by reducing consumption of deposits and energy. The metallurgical industry generates considerable quantities of waste containing iron. This article addresses environment-friendly solutions for utilisation of such waste in the form of slime, sludge and dust. What has been discussed is the impact of the technologies proposed on natural environment.

  10. Inventory management in a metallurgical of the automotive industry

    OpenAIRE

    Marcos Antonio Maia de Oliveira; Maiara Maria da Silva; Winston Aparecido Andrade; Alexandre Formigoni

    2015-01-01

    This article aims to analyze the importance of inventory management in a metallurgical company, located in Santo André city, in Grande São Paulo, since the inventory management is crucial within a company that wants to survive nowadays, by studying the main features and trends in the methods used for inventory control. In this case study the basic concepts for good control were considered, showing tools currently used in the market, providing data for material purchase, sales control, parts i...

  11. SECI model and facilitation in change management in metallurgical enterprise

    Directory of Open Access Journals (Sweden)

    K. Grzybowska

    2013-04-01

    Full Text Available Organisational change management is not efficient without gaining and sharing knowledge by the members of the enterprise. Both in the conditions of relative organisational stability and in organisational chaos resulting from dynamic introduction and management of changes there is a constant need of improvement and of shaping competences and distribution of knowledge in the enterprise. The publication presents key programs of building knowledge conducted in a metallurgical enterprise.

  12. Concentration on knowledge and change management at metallurgical company

    Directory of Open Access Journals (Sweden)

    Gajdzik, B.

    2008-04-01

    Full Text Available The subject of this paper is an analysis of one of the most crucial aspects of the contemporary business, which is knowledge and change management. Competition on the market is more and more stronger. Knowledge is one of the most precious business resources, it lets companies be more competitive because knowledge inspires to changes. The paper contains examples of knowledge and change management, faced by the largest metallurgical company on the Polish market – Arcelor Mittal.

  13. Management of corrective and preventive actions at a metallurgical enterprise

    Directory of Open Access Journals (Sweden)

    O. R. Zuboyarov

    2010-12-01

    Full Text Available By the example of the Nizhny Novgorod enterprise Spetsstal, LLC, the process of planning and taking corrective and preventive actions to eliminate and prevent irrelevance of the metallurgical production and the processes of the quality management system of the enterprise is considered in the paper. Scientific novelty is in the mentioned stages of organization and implementation of the corrective actions and stages of analysis of the considered potential irrelevance.

  14. Processing Cost Analysis for Biomass Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Badger, P.C.

    2002-11-20

    The receiving, handling, storing, and processing of woody biomass feedstocks is an overlooked component of biopower systems. The purpose of this study was twofold: (1) to identify and characterize all the receiving, handling, storing, and processing steps required to make woody biomass feedstocks suitable for use in direct combustion and gasification applications, including small modular biopower (SMB) systems, and (2) to estimate the capital and operating costs at each step. Since biopower applications can be varied, a number of conversion systems and feedstocks required evaluation. In addition to limiting this study to woody biomass feedstocks, the boundaries of this study were from the power plant gate to the feedstock entry point into the conversion device. Although some power plants are sited at a source of wood waste fuel, it was assumed for this study that all wood waste would be brought to the power plant site. This study was also confined to the following three feedstocks (1) forest residues, (2) industrial mill residues, and (3) urban wood residues. Additionally, the study was confined to grate, suspension, and fluidized bed direct combustion systems; gasification systems; and SMB conversion systems. Since scale can play an important role in types of equipment, operational requirements, and capital and operational costs, this study examined these factors for the following direct combustion and gasification system size ranges: 50, 20, 5, and 1 MWe. The scope of the study also included: Specific operational issues associated with specific feedstocks (e.g., bark and problems with bridging); Opportunities for reducing handling, storage, and processing costs; How environmental restrictions can affect handling and processing costs (e.g., noise, commingling of treated wood or non-wood materials, emissions, and runoff); and Feedstock quality issues and/or requirements (e.g., moisture, particle size, presence of non-wood materials). The study found that over the

  15. Thoughts on Optimization of Aromatic Feedstock

    Institute of Scientific and Technical Information of China (English)

    Cao Jian

    2002-01-01

    This article refers to four cases of process unit combinations with different throughputs of aromatics unit for production of 450 kt/a paraxylene at a certain petrochemical complex in order to against a representative case (provided with an 800-kt/a CCR unit and a 600-kt/a disproportionation unit) and the feasibility and advantage of using prolysis gasoline as aromatic feedstock is studied.

  16. Bioenergy Feedstock Development Program Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Kszos, L.A.

    2001-02-09

    The U.S. Department of Energy's (DOE's) Bioenergy Feedstock Development Program (BFDP) at Oak Ridge National Laboratory (ORNL) is a mission-oriented program of research and analysis whose goal is to develop and demonstrate cropping systems for producing large quantities of low-cost, high-quality biomass feedstocks for use as liquid biofuels, biomass electric power, and/or bioproducts. The program specifically supports the missions and goals of DOE's Office of Fuels Development and DOE's Office of Power Technologies. ORNL has provided technical leadership and field management for the BFDP since DOE began energy crop research in 1978. The major components of the BFDP include energy crop selection and breeding; crop management research; environmental assessment and monitoring; crop production and supply logistics operational research; integrated resource analysis and assessment; and communications and outreach. Research into feedstock supply logistics has recently been added and will become an integral component of the program.

  17. Markets for Canadian bitumen-based feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Lauerman, V. [Canadian Energy Research Inst., Calgary, AB (Canada)

    2001-07-01

    The best types of refineries for processing western Canadian bitumen-based feedstock (BBF) were identified and a potential market for these feedstock for year 2007 was calculated. In addition, this power point presentation provided an estimation of potential regional and total demand for BBF. BBF included Athabasca bitumen blend, de-asphalted blend, coked sour crude oil (SCO), coked sweet SCO, hydrocracked SCO and hydrocracked/aromatic saturated SCO (HAS). Refinery prototypes included light and mixed prototypes for primary cracking units, light and heavy prototypes for primary coking units, as well as no coking, coking severe and residuum prototypes for primary hydrocracking units. The presentation included graphs depicting the natural market for Western Canadian crudes as well as U.S. crude oil production forecasts by PADD districts. It was forecasted that the market for bitumen-based feedstock in 2007 will be tight and that the potential demand for bitumen-based blends would be similar to expected production. It was also forecasted that the potential demand for SCO is not as promising relative to the expected production, unless price discounting or HAS will be available. 11 figs.

  18. Solar Grade Silicon from Agricultural By-products

    Energy Technology Data Exchange (ETDEWEB)

    Richard M. Laine

    2012-08-20

    starts one step upstream from all other Sipv production efforts. Our process starts by producing high purity SiO2/C feedstocks from which Sipv can be produced in a single, chlorine free, final EAF step. Specifically, our unique technology, and the resultant SiO2/C product can serve as high purity feedstocks to existing metallurgical silicon (Simet) producers, allowing them to generate Sipv with existing US manufacturing infrastructure, reducing the overall capital and commissioning schedule. Our low energy, low CAPEX and OPEX process purifies the silica and carbon present in rice hull ash (RHA) at low temperatures (< 200C) to produce high purity (5-6 Ns) feedstock for production of Sipv using furnaces similar to those used to produce Simet. During the course of this project we partnered with Wadham Energy LP (Wadham), who burns 220k ton of rice hulls (RH)/yr generating 200 GWh of electricity/yr and >30k ton/yr RHA. The power generation step produces much more energy (42 kWh/kg of final silicon produced) than required to purify the RHA (5 kWh/kg of Sipv, compared to 65 kWh/kg noted above. Biogenic silica offers three very important foundations for producing high purity silicon. First, wastes from silica accumulating plants, such as rice, corn, many grasses, algae and grains, contain very reactive, amorphous silica from which impurities are easily removed. Second, plants take up only a limited set of, and minimal quantities of the heavy metals present in nature, meaning fewer minerals must be removed. Third, biomass combustion generates a product with intrinsic residual carbon, mixed at nanometer length scales with the SiO2. RHA is 80-90 wt% high surface area (20 m2/g), amorphous SiO2 with some simple mineral content mixed intimately with 5-15 wt% carbon. The mineral content is easily removed by low cost, acid washes using Mayaterials IP, leading to purified rice hull ash (RHAclean) at up to 6N purity. This highly reactive silica is partially extracted from RHAclean at 200

  19. An analysis of the causes of complaintsabout steel sheets in metallurgical product quality management systems

    Directory of Open Access Journals (Sweden)

    B. Gajdzik

    2014-01-01

    Full Text Available The publication presents the causes of complaints about metallurgical products, illustrated with an example of steel sheets, with a particular focus on the reasons having their source in the human factor. The publication has been based on direct research and analysis of complaints made available by a metallurgical plant. The obtained results have been enriched with theoretical considerations on quality management systems for metallurgical products.

  20. Survey of Alternative Feedstocks for Commodity Chemical Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    McFarlane, Joanna [ORNL; Robinson, Sharon M [ORNL

    2008-02-01

    The current high prices for petroleum and natural gas have spurred the chemical industry to examine alternative feedstocks for the production of commodity chemicals. High feedstock prices have driven methanol and ammonia production offshore. The U.S. Chemical Industry is the largest user of natural gas in the country. Over the last 30 years, alternatives to conventional petroleum and natural gas feedstocks have been developed, but have limited, if any, commercial implementation in the United States. Alternative feedstocks under consideration include coal from unconventional processing technologies, such as gasification and liquefaction, novel resources such as biomass, stranded natural gas from unconventional reserves, and heavy oil from tar sands or oil shale. These feedstock sources have been evaluated with respect to the feasibility and readiness for production of the highest volume commodity chemicals in the United States. Sources of organic compounds, such as ethanol from sugar fermentation and bitumen-derived heavy crude are now being primarily exploited for fuels, rather than for chemical feedstocks. Overall, government-sponsored research into the use of alternatives to petroleum feedstocks focuses on use for power and transportation fuels rather than for chemical feedstocks. Research is needed to reduce cost and technical risk. Use of alternative feedstocks is more common outside the United States R&D efforts are needed to make these processes more efficient and less risky before becoming more common domestically. The status of alternative feedstock technology is summarized.

  1. Boron removal from molten silicon using sodium-based slags

    Institute of Scientific and Technical Information of China (English)

    Yin Changhao; Hu Bingfeng; Huang Xinming

    2011-01-01

    Slag refining,as an important option for boron removal to produce solar grade silicon (SOG-Si) from metallurgical grade silicon (MG-Si),has attracted increasing attention.In this paper,Na2CO3-SiO2 systems were chosen as the sodium-based refining slag materials for boron removal from molten silicon.Furthermore,the effect of Al2O3 addition for boron removal was studied in detail,which showed that an appropriate amount of Al2O3 can help retention of the basicity of the slags,hence improving the boron removal rate.

  2. Some results of medical researches at Ulba Metallurgical Plant

    Energy Technology Data Exchange (ETDEWEB)

    Artemieva, G.I.; Novikov, V.G.; Savchuk, V.V. [Ulba Metallurgical Plant, Ust-Kamenogorsk (Kazakhstan)

    1998-01-01

    The results of 45-years medical researches at beryllium production of Ulba Metallurgical Plant are summarized in this report. Statistic data on different kinds of occupational diseases, related to beryllium production and the dynamics of changing occupational diseases with the development of beryllium production, are given there. Data on average duration of life of occupational disease patients are presented in the report. It includes the description of problems, related to berylliosis diagnosis. Issues, connected to beryllium production effect on health of man, located nearby beryllium production are also discussed there as well. (author)

  3. Assessment of environmental aspects in a metallurgical enterprise

    Directory of Open Access Journals (Sweden)

    B. Gajdzik

    2012-10-01

    Full Text Available The publication characterises the quantity and quality methods applied in the assessment of the environmental aspects. The method of cumulated environmental loads is particularly interesting, where the network of process connections within an enterprise and between it and the surrounding (the co-operation of the enterprise with the suppliers of resources and materials, the networks of energy resources and distributors of products or other contributors in the chain of added value. The paper finishes with an example presenting the methodological assessment of the environmental aspects in the metallurgical enterprise.

  4. ECONOMIC POLICY OF METALLURGICAL ENTERPRISE IN THE FIELD OF CONSERVANCY

    Directory of Open Access Journals (Sweden)

    A.G. Rudoy

    2009-06-01

    Full Text Available Ecological situation about one of leading enterprises of Russia - “Sredneuralsk copper-smelting works» joint-stock company as a member of Urals mining-metallurgical holding company is considered. Man-caused bursts and pollutions from enterprise functioning extend for long distances and cause global environment damages. Yielding to pressure of public opinion the leadership of holding company come to determination of forming a new culture of management based on principles of reduction and prevention of negative influence of the enterprise on the environment.

  5. The 6th European metallurgical conference EMC 2011: Proceedings review

    Directory of Open Access Journals (Sweden)

    Srećko R. Stopić

    2011-10-01

    Full Text Available The GDMB Society for Mining, Metallurgy, Resource and Environmental Technology organized the 6th European Metallurgical Conference (2011 in Duesseldorf from June 26 to 29, 2011. The same venue hosted the most important international metallurgical trade fairs for metallurgy of iron and steel, new casting and thermochemical processes METEC, GIFA, THERMOPROCESS and NEWCAST. The previous European metallurgical conferences were organized by GDMB in Friedrichshafen (2001, Hanover (2003, Leipzig (2005, Duesseldorf (2007, Innsbruck (2009. The GDMB is a non-profit organization situated in Clausthal in Germany, which is related to combining science with the practical experience in metallurgy, mining, materials engineering, mineral processing, recycling and refining of metals, and manufacturing of semi- and finishing products. The European Metallurgical conference EMC is one of the most known conferences worldwide in the field of non-ferrous metallurgy and is attended regularly by the decision makers from the industry and universities. The scientific program contained 6 plenary lectures and more than 160 presentations from 40 countries in 5 parallel series. An extensive poster exhibition was held, during which the authors had an opportunity to introduce their posters to the entire plenum as a part of a brief presentation. The best poster from the Montan-University in Leoben, Austria, was awarded the € 500 'Poster Award EMC 2011'. Not only were the most important European countries represented here, more than one third of the lecturers were from the non-European countries (Canada, Japan, China, USA, South Africa, Australia. The origin of the participants reflects the aim of the organizers: to make this conference a worldwide platform for the scientific exchange of experience and information. More than 400 participants from all over the world participated at this conference. The scientific presentations of the conference are presented in five Proceedings

  6. Invasive plants as feedstock for biochar and bioenergy production.

    Science.gov (United States)

    Liao, Rui; Gao, Bin; Fang, June

    2013-07-01

    In this work, the potential of invasive plant species as feedstock for value-added products (biochar and bioenergy) through pyrolysis was investigated. The product yield rates of two major invasive species in the US, Brazilian Pepper (BP) and Air Potato (AP), were compared to that of two traditional feedstock materials, water oak and energy cane. Three pyrolysis temperatures (300, 450, and 600°C) and four feedstock masses (10, 15, 20, and 25 g) were tested for a total of 12 experimental conditions. AP had high biochar and low oil yields, while BP had a high oil yield. At lower temperatures, the minimum feedstock residence time for biochar and bioenergy production increased at a faster rate as feedstock weight increased than it did at higher temperatures. A simple mathematical model was successfully developed to describe the relationship between feedstock weight and the minimum residence time.

  7. CBTL Design Case Summary Conventional Feedstock Supply System - Herbaceous

    Energy Technology Data Exchange (ETDEWEB)

    Christopher T. Wright; Erin M. Searcy

    2012-02-01

    A conventional bale feedstock design has been established that represents supply system technologies, costs, and logistics that are achievable today for supplying herbaceous feedstocks as a blendstock with coal for energy production. Efforts are made to identify bottlenecks and optimize the efficiency and capacities of this supply system, within the constraints of existing local feedstock supplies, equipment, and permitting requirements. The feedstock supply system logistics operations encompass all of the activities necessary to move herbaceous biomass feedstock from the production location to the conversion reactor ready for blending and insertion. This supply system includes operations that are currently available such that costs and logistics are reasonable and reliable. The system modeled for this research project includes the uses of field-dried corn stover or switchgrass as a feedstock to annually supply an 800,000 DM ton conversion facility.

  8. Preparation of gasification feedstock from leafy biomass.

    Science.gov (United States)

    Shone, C M; Jothi, T J S

    2016-05-01

    Dried leaves are a potential source of energy although these are not commonly used beside to satisfy daily energy demands in rural areas. This paper aims at preparing a leafy biomass feedstock in the form of briquettes which can be directly used for combustion or to extract the combustible gas using a gasifier. Teak (Tectona grandis) and rubber (Hevea brasiliensis) leaves are considered for the present study. A binder-assisted briquetting technique with tapioca starch as binder is adopted. Properties of these leafy biomass briquettes such as moisture content, calorific value, compressive strength, and shatter index are determined. From the study, briquettes with biomass-to-binder ratio of 3:5 are found to be stable. Higher mass percentage of binder is considered for preparation of briquettes due to the fact that leafy biomasses do not adhere well on densification with lower binder content. Ultimate analysis test is conducted to analyze the gasification potential of the briquettes. Results show that the leafy biomass prepared from teak and rubber leaves has calorific values of 17.5 and 17.8 MJ/kg, respectively, which are comparable with those of existing biomass feedstock made of sawdust, rice husk, and rice straw.

  9. Influence of feedstock sulfur content on cat cracking results

    Energy Technology Data Exchange (ETDEWEB)

    Manovyan, A.K.; Pivovarova, N.A.; Tarakanov, G.V. [and others

    1995-11-01

    In the interest of expanding the resources for cat cracking feedstocks, blends of vacuum distillate and resids are being used. The feedstock components are usually subjected to hydrotreating or deasphalting in order to lower the contents of resins and sulfur. However, there has been very little study of the question of how the cracking results are influenced by resins and sulfur remaining in the feedstock after hydrotreating or deasphalting. Here, the authors are reporting on a study of the influence of feedstock sulfur content on the content of olefins in the products from cracking.

  10. Socio-economic impact of biofuel feedstock production on local ...

    African Journals Online (AJOL)

    Keywords: Biofuel feedstock plantations; Jatropha curcas; land grabbing; local livelihoods; ... Consequently, many European and American governments, international ...... Biofuel biomass crop farm/plantation initiatives in the Northern Region.

  11. Market Structure Differences Impacting Australian Iron Ore and Metallurgical Coal Industries

    Directory of Open Access Journals (Sweden)

    Kurt Lawrence

    2015-07-01

    Full Text Available Steelmaking relies on iron ore and metallurgical coal as main ingredients, the trade of which is hypothesized to theoretically change in tandem. However, strong correlation is not evident in historical trade prices of steelmaking inputs. To determine causes to this occurrence, the market factors that influence the Australian iron ore and metallurgical coal industries were studied. Data was collected over the past decade for worldwide resource production and trade quantities of crude steel, iron ore, and metallurgical coal. The data was analysed to reveal trends, allowing examination of the macroeconomic trade of metallurgical coal and iron ore with relation to worldwide and country specific steel production. It was determined that the influential growth of China’s steel production has spurred the growth of worldwide iron ore demand, which was met with increased production and supply, from Australia. The increased metallurgical coal demand has been met with increased production within China locally. Measures of supply elasticity were created for worldwide iron ore and metallurgical coal trade, where comparisons between Australia’s industries to the relevant greatest competitor were examined. The results, along with respective resource production data, highlighted the elevated competitive position that Australian iron ore producers enjoy compared to metallurgical coal producers. Trade characteristics revealed the different market structures that iron ore and metallurgical coal industries operate in, prompting a discussion of the effects these markets have on the two Australian industries.

  12. Solar Grade Silicon from Agricultural By-products

    Energy Technology Data Exchange (ETDEWEB)

    Richard M. Laine

    2012-08-20

    starts one step upstream from all other Sipv production efforts. Our process starts by producing high purity SiO2/C feedstocks from which Sipv can be produced in a single, chlorine free, final EAF step. Specifically, our unique technology, and the resultant SiO2/C product can serve as high purity feedstocks to existing metallurgical silicon (Simet) producers, allowing them to generate Sipv with existing US manufacturing infrastructure, reducing the overall capital and commissioning schedule. Our low energy, low CAPEX and OPEX process purifies the silica and carbon present in rice hull ash (RHA) at low temperatures (< 200C) to produce high purity (5-6 Ns) feedstock for production of Sipv using furnaces similar to those used to produce Simet. During the course of this project we partnered with Wadham Energy LP (Wadham), who burns 220k ton of rice hulls (RH)/yr generating 200 GWh of electricity/yr and >30k ton/yr RHA. The power generation step produces much more energy (42 kWh/kg of final silicon produced) than required to purify the RHA (5 kWh/kg of Sipv, compared to 65 kWh/kg noted above. Biogenic silica offers three very important foundations for producing high purity silicon. First, wastes from silica accumulating plants, such as rice, corn, many grasses, algae and grains, contain very reactive, amorphous silica from which impurities are easily removed. Second, plants take up only a limited set of, and minimal quantities of the heavy metals present in nature, meaning fewer minerals must be removed. Third, biomass combustion generates a product with intrinsic residual carbon, mixed at nanometer length scales with the SiO2. RHA is 80-90 wt% high surface area (20 m2/g), amorphous SiO2 with some simple mineral content mixed intimately with 5-15 wt% carbon. The mineral content is easily removed by low cost, acid washes using Mayaterials IP, leading to purified rice hull ash (RHAclean) at up to 6N purity. This highly reactive silica is partially extracted from RHAclean at 200

  13. Interfacing feedstock logistics with bioenergy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Sokhansanj, S. [British Columbia Univ., Vancouver, BC (Canada). Oak Ridge National Lab

    2010-07-01

    The interface between biomass production and biomass conversion platforms was investigated. Functional relationships were assembled in a modeling platform to simulate the flow of biomass feedstock from farm and forest to a densification plant. The model considers key properties of biomass for downstream pre-processing and conversion. These properties include moisture content, cellulose, hemicelluloses, lignin, ash, particle size, specific density and bulk density. The model simulates logistical operations such as grinding to convert biomass to pellets that are supplied to a biorefinery for conversion to heat, power, or biofuels. Equations were developed to describe the physical aspects of each unit operation. The effect that each of the process variables has on the efficiency of the conversion processes was described.

  14. Biodiesel from non-food alternative feed-stock

    Science.gov (United States)

    As a potential feedstock for biodiesel (BD) production, Jojoba oil was extracted from Jojoba (Simmondsia chinensis L.) plant seeds that contained around 50-60 wt.%, which were explored as non-food alternative feedstocks. Interestingly, Jojoba oil has long-chain wax esters and is not a typical trigly...

  15. Best practices guidelines for managing water in bioenergy feedstock production

    Science.gov (United States)

    Daniel G. Neary

    2015-01-01

    In the quest to develop renewable energy sources, woody and agricultural crops are being viewed as an important source of low environmental impact feedstocks for electrical generation and biofuels production (Hall and Scrase 1998, Eriksson et al. 2002, Somerville et al. 2010, Berndes and Smith 2013). In countries like the USA, the bioenergy feedstock potential is...

  16. Silicon-Film{trademark} Solar Cells by a Flexible Manufacturing System

    Energy Technology Data Exchange (ETDEWEB)

    Culik, J. S.; Rand, J. A.; Bai, Y.; Bower, J. R.; Cummings, J. R.; Goncharovsky, I.; Jonczyk, R.; Sims, P. E.; Hall, R. B.; Barnett, A. M.

    1999-09-13

    AstroPower is developing a manufacturing process for Silicon-Film{trademark} solar cell production under the Photovoltaic Manufacturing Technology (PVMaT) cost-share program. This document reports on results from the first phase of a three-phase effort. Progress is reported on developing new procedures and equipment for in-line wet-chemical processes, metallization processes, sheet fabrication, solar cell processing, module assembly, solar cell testing, metallurgical-grade silicon purification, and recycling of Silicon-Film{trademark} sheet materials. Future concepts and goals for the Silicon-Film{trademark} process are also discussed.

  17. Solidification and properties of photovoltaic silicon; Solidification et proprietes du silicium photovoltaique

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2007-07-15

    Strenuous efforts are being made to develop an economical process for purifying liquid metallurgical-grade silicon, in response to the growing shortages in high-purity silicon for use in manufacturing photovoltaic cells. A research project is studying this issue at C.E. Saclay, Gif-sur-Yvette, France, co-funded by ADEME (the French Environment and Energy Management Agency) and CEA-INSTN (French Atomic Energy Commission National Institute for Nuclear Science and Technology). (authors)

  18. Analysis of the silicon market: Will thin films profit?

    Energy Technology Data Exchange (ETDEWEB)

    Sark, W.G.J.H.M. van; Brandsen, G.W. [Copernicus Institute for Sustainable Development and Innovation, Utrecht University, Utrecht (Netherlands). Department of Science, Technology and Society; Fleuster, M. [Solland Solar Energy, Heerlen (Netherlands); Hekkert, M.P. [Copernicus Institute for Sustainable Development and Innovation, Utrecht University, Utrecht (Netherlands). Department of Innovation Studies

    2007-06-15

    The photovoltaic industry has been growing with astonishing rates over the past years. The supply of silicon to the wafer-based industry has recently become a problem. This paper presents a thorough analysis of the PV industry and quantifies the silicon shortage. It is expected that this leads to a decrease in production in 2006 rather than the usual increase. Due to a mismatch in expansion plans of silicon feedstock manufacturers and solar cell manufacturers, a large cell overcapacity will persist up to 2010. The thin-film PV market is expected to profit from the silicon shortage problem; its market share may substantially increase to about 25% in 2010. (author)

  19. Feedstock Quality Factor Calibration and Data Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Richard D. Boardman; Tyler L. Westover; Garold L. Gresham

    2010-05-01

    The goal of the feedstock assembly operation is to deliver uniform, quality-assured feedstock materials that will enhance downstream system performance by avoiding problems in the conversion equipment. In order to achieve this goal, there is a need for rapid screening tools and methodologies for assessing the thermochemical quality characteristics of biomass feedstock through the assembly process. Laser-induced breakdown spectroscopy (LIBS) has been identified as potential technique that could allow rapid elemental analyses of the inorganic content of biomass feedstocks; and consequently, would complement the carbohydrate data provided by near-infrared spectrometry (NIRS). These constituents, including Si, K, Ca, Na, S, P, Cl, Mg, Fe and Al, create a number of downstream problems in thermochemical processes. In particular, they reduce the energy content of the feedstock, influence reaction pathways, contribute to fouling and corrosion within systems, poison catalysts, and impact waste streams.

  20. C4 Plants as Biofuel Feedstocks: Optimising Biomass Production and Feedstock Quality from a Lignocellulosic Perspective

    Institute of Scientific and Technical Information of China (English)

    Caitlin S.Byrt; Christopher P.L.Grof; Robert T.Furbank

    2011-01-01

    The main feedstocks for bioethanol are sugarcane (Saccharum offic-inarum) and maize (Zea mays), both of which are C4 grasses, highly efficient at converting solar energy into chemical energy, and both are food crops. As the systems for lignocellulosic bioethanol production become more efficient and cost effective, plant biomass from any source may be used as a feedstock for bioethanol production. Thus, a move away from using food plants to make fuel is possible, and sources of biomass such as wood from forestry and plant waste from cropping may be used. However, the bioethanol industry will need a continuous and reliable supply of biomass that can be produced at a low cost and with minimal use of water, fertilizer and arable land. As many C4 plants have high light, water and nitrogen use efficiency, as compared with C3 species, they are ideal as feedstock crops. We consider the productivity and resource use of a number of candidate plant species, and discuss biomass 'quality', that is, the composition of the plant cell wall.

  1. Metallurgical Investigation of HSLA Steel Subjected to Underwater Explosion

    Directory of Open Access Journals (Sweden)

    V. Bhujanga Rao

    1994-01-01

    Full Text Available The metallurgical behaviour of HSLA steel subjected to underwater explosion is of prime importance because of its structural applications in underwater vehicles. HSLA steel plates 300 × 250 × 4 mm were subjected to single and repetitive shock loadings and the point of rupture was identified. Test plates exhibited mode-I (large ductile deformation and mode-II (tensile tearing macroscopic failures. Electron micrographic and fractographic examination showed that the initiation of fracture was due to adiabatic shearing and the microscopic mode of failure was ductile. Plates subjected to single shock showed an increase in residual hardness and at the point of rupture it was approximately one-third higher than the initial residual hardness.

  2. Carbonization behaviour of woody biomass and resulting metallurgical coke properties

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, T.; Ichida, M.; Nagasaka, T.; Kato, K. [Tohoku University, Miyagi (Japan). Graduate School for Environmental Studies

    2008-07-01

    The technology using waste wood from construction and thinned wood that are not recycled in the woody biomass as one of raw materials for producing metallurgical coke was examined in detail by adding them to coal and carbonizing them. In the carbonization tests, four types of woody biomasses showed substantially almost the same results in respect to material balance and composition of carbonized products. Compared with raw woods, woody biomasses compressively formed to not smaller than 10 mm permit an increase in the addition rate to 1.5% while inhibiting the lowering of coke strength. Hot compressive forming at 200-350 degrees C where pyrolysis of woody biomass occurs inhibits the lowering of coke strength and will therefore permit an increase in the use of woody biomasses. As a result, the possibility to use as a raw material for the coke manufacturing by adding the compressively formed woody biomass was found.

  3. Inventory management in a metallurgical of the automotive industry

    Directory of Open Access Journals (Sweden)

    Marcos Antonio Maia de Oliveira

    2015-12-01

    Full Text Available This article aims to analyze the importance of inventory management in a metallurgical company, located in Santo André city, in Grande São Paulo, since the inventory management is crucial within a company that wants to survive nowadays, by studying the main features and trends in the methods used for inventory control. In this case study the basic concepts for good control were considered, showing tools currently used in the market, providing data for material purchase, sales control, parts in stock, future orders, MRP, storage space, among others once many companies have high and unnecessary cost of stock for not being aware of the real importance of this control. It is felt that the logistics of the company should invest in technology by purchasing the MRP system, visiting fairs and attending seminars. This way, the company will have better inventory control thus consequently decrease the purchase of materials.

  4. Municipal solid waste disposal by using metallurgical technologies and equipments

    Directory of Open Access Journals (Sweden)

    Jiuju Cai, Wenqiang Sun

    2012-01-01

    Full Text Available Pyrolysis of municipal solid waste can take full advantage of energy and resource and avoid producing hazardous material during this period. In combination with mature metallurgical technologies of coking by coke oven, regenerative flame furnace technology and melting by electric arc furnace, technologies of regenerative fixed bed pyrolysis technology for household waste, co-coking technology for waste plastic and blend coal, and incineration ash melting technology by electric arc technology for medical waste were respectively developed to improve current unsatisfied sorting status of waste. The investigation results of laboratory experiments, semi-industrial experiments and industrial experiments as well as their economic benefits and environmental benefits for related technologies were separately presented.

  5. Textural changes in metallurgical coke prepared with polyethylene

    Institute of Scientific and Technical Information of China (English)

    Stanislav S.Gornostayev; Jyrki J.Heino; Tommi M.T.Kokkonen; Hannu T.Makkonen; Satu M.M.Huttunen; Timo M.J.Fabritius

    2014-01-01

    The effect of high-density polyethylene (HDPE) on the textural features of experimental coke was investigated using polar-ized-light optical microscopy and wavelet-based image analysis. Metallurgical coke samples were prepared in a laboratory-scale furnace with 2.5%, 5.0%, 7.5%, 10.0%, and 12.5%HDPE by mass, and one sample was prepared by 100%coal. The amounts and distribution of textures (isotropic, mosaic and banded) and pores were obtained. The calculations reveal that the addition of HDPE results in a decrease of mosaic texture and an increase of isotropic texture. Ethylene formed from the decomposition of HDPE is considered as a probable reason for the texture modifications. The approach used in this study can be applied to indirect evaluation for the reactivity and strength of coke.

  6. Cleaner metallurgical industry in Serbia: a road to the sustainable development

    Directory of Open Access Journals (Sweden)

    D. Panias

    2009-01-01

    Full Text Available Since the sustainable development has been a global and fundamental objecttive, a metallurgical industrial sector faces some of the most difficult sustainability challenges of any industrial sector. On the other hand, the metallurgical production in Serbia is a very important part of the economy. Due to present facilities and technologies, metallurgical companies face a great challenge to fulfill the requirements introduced by legislature referring to the cleaner production and sustainable development. The state of art in the production, facilities, pollution with some answers to imposed challenges is presented.

  7. Environmental aspects, strategies and waste logistic system based on the example of metallurgical company

    Directory of Open Access Journals (Sweden)

    Božena Gajdzik

    2009-01-01

    Full Text Available The aim of this article is to present the key elements of environmental management system in metallurgical companies. This companies in use the Cleaner Production Strategy. All modern strategies are based on dynamic environmental model. Production processes still create waste and pollution although a significant amount is now recycled. For example in metallurgical companies located in the Polish market about 80% of solid waste is recycled. The minimization or complete removal of damages caused by metallurgical production are a necessary and important aspect of maintaining a competitive edge.

  8. Who manages financial risk? An empirical examination of risk management practices in the romanian metallurgical industry

    Directory of Open Access Journals (Sweden)

    S. G. Anton

    2013-10-01

    Full Text Available The aim of the paper is to analyze risk management practice adopted by the Romanian metallurgical enterprises and to identify new tools for hedging price risk. Romanian metallurgical companies recognize the main risks that their businesses are facing: increased prices of raw materials and energy, foreign exchange risk, and lower (domestic demand for company’s products. Another important finding is that the perception of financial risks has improved in the last years and the companies started to use financial derivatives in order to hedge some financial risks. Nevertheless, Romanian metallurgical companies have proved to be reluctant to fully implement and adhere to suffi cient risk management practices.

  9. ASSERT FY16 Analysis of Feedstock Companion Markets

    Energy Technology Data Exchange (ETDEWEB)

    Lamers, Patrick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hansen, Jason [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jacobson, Jacob J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nguyen, Thuy [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nair, Shyam [Idaho National Lab. (INL), Idaho Falls, ID (United States); Searcy, Erin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hess, J. Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    Meeting Co-Optima biofuel production targets will require large quantities of mobilized biomass feedstock. Mobilization is of key importance as there is an abundance of biomass resources, yet little is available for purchase, let alone at desired quantity and quality levels needed for a continuous operation, e.g., a biorefinery. Therefore Co-Optima research includes outlining a path towards feedstock production at scale by understanding routes to mobilizing large quantities of biomass feedstock. Continuing along the vertically-integrated path that pioneer cellulosic biorefineries have taken will constrain the bioenergy industry to high biomass yield areas, limiting its ability to reach biofuel production at scale. To advance the cellulosic biofuels industry, a separation between feedstock supply and conversion is necessary. Thus, in contrast to the vertically integrated supply chain, two industries are required: a feedstock industry and a conversion industry. The split is beneficial for growers and feedstock processers as they are able to sell into multiple markets. That is, depots that produce value-add feedstock intermediates that are fully fungible in both the biofuels refining and other, so-called companion markets. As the biofuel industry is currently too small to leverage significant investment in up-stream infrastructure build-up, it requires an established (companion) market to secure demand, which de-risks potential investments and makes a build-up of processing and other logistics infrastructure more likely. A common concern to this theory however is that more demand by other markets could present a disadvantage for biofuels production as resource competition may increase prices leading to reduced availability of low-cost feedstock for biorefineries. To analyze the dynamics across multiple markets vying for the same resources, particularly the potential effects on resource price and distribution, the Companion Market Model (CMM) has been developed in this

  10. Purification of metallurgical silicon by horizontal zone melting in an electron beam furnace

    OpenAIRE

    Simone de Paula Moreira

    2009-01-01

    Resumo: A busca por fontes renováveis de energia fez com que a produção de células solares apresentasse um crescimento explosivo nesta década, passando de 0,3 GW em 2002 para 6,0 GW em 2008, envolvendo em 2008 a cifra de 37 bilhões de dólares. A produção de Silício Grau Eletrônico (SiGE) aumentou 127% de 2007 para 2008, sendo que cerca de 90% das células solares produzidas atualmente utiliza o SiGE, que é responsável por 1/4 do custo total da instalação de um painel solar. O processo de purif...

  11. Method for determining processability of a hydrocarbon containing feedstock

    Science.gov (United States)

    Schabron, John F.; Rovani, Jr., Joseph F.

    2013-09-10

    Disclosed herein is a method involving the steps of (a) precipitating an amount of asphaltenes from a liquid sample of a first hydrocarbon-containing feedstock having solvated asphaltenes therein with one or more first solvents in a column; (b) determining one or more solubility characteristics of the precipitated asphaltenes; (c) analyzing the one or more solubility characteristics of the precipitated asphaltenes; and (d) correlating a measurement of feedstock reactivity for the first hydrocarbon-containing feedstock sample with a mathematical parameter derived from the results of analyzing the one or more solubility characteristics of the precipitated asphaltenes.

  12. Effect of Blended Feedstock on Pyrolysis Oil Composition

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kristin M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gaston, Katherine R [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-28

    Current techno-economic analysis results indicate biomass feedstock cost represents 27% of the overall minimum fuel selling price for biofuels produced from fast pyrolysis followed by hydrotreating (hydro-deoxygenation, HDO). As a result, blended feedstocks have been proposed as a way to both reduce cost as well as tailor key chemistry for improved fuel quality. For this study, two feedstocks were provided by Idaho National Laboratory (INL). Both were pyrolyzed and collected under the same conditions in the National Renewable Energy Laboratory's (NREL) Thermochemical Process Development Unit (TCPDU). The resulting oil properties were then analyzed and characterized for statistical differences.

  13. Development of Oilfield Chemicals Based on Advantages in Petrochemical Feedstocks

    Institute of Scientific and Technical Information of China (English)

    Wang Xieqing; Peng Pu

    2002-01-01

    This article focuses on the routes for development of oilfield chemicals by making use of the feedstock advantages of the petrochemical industry. The diversification of oilfield chemicals has re sulted in thousand product grades. Because there are hundred domestic producers of oilfield chemicals,mostly medium and small producers, the fluctuations of feedstock prices and product quality cannot be conducive to the application and development of oilfield chemicals. This article illustrates the feasibility of oilfield chemical production by state-run medium and large petrochemical enterprises by allowing full play to their own advantages in petrochemical feedstocks.

  14. Geoffroea decorticans for Biofuels: A Promising Feedstock

    Directory of Open Access Journals (Sweden)

    Claudia Santibáñez

    2017-01-01

    Full Text Available In this work, chañar (Geoffroea decorticans fruit is evaluated as a potential feedstock for biodiesel and biomass pellets production with reference to some relevant properties. The fatty acid profile of this oil (83% unsaturated acids is found to be comparable to similar seed oils which have been attempted for biodiesel production. As a result, the methyl esters (biodiesel obtained from this oil exhibits high quality properties. Chañar biodiesel quality meets all other biodiesel international standards (ASTM D6751 and EN 14214. Moreover, the husk that surrounds the kernel showed a high potential for usage as densified solid fuels. The results demonstrate that chañar husks pellets have a higher calorific value when compared with other biomass pellets, typically, approximately 21 MJ kg−1 with 1.8% of ashes (which is equivalent to that obtained from the combustion of pellets produced from forest wastes. This study indicates that chañar can be used as a multipurpose energy crop in semiarid regions for biodiesel and densified solid fuels (pellets production.

  15. Butter as a feedstock for biodiesel production.

    Science.gov (United States)

    Haas, Michael J; Adawi, Nadia; Berry, William W; Feldman, Elaine; Kasprzyk, Stephen; Ratigan, Brian; Scott, Karen; Landsburg, Emily Bockian

    2010-07-14

    Fatty acid methyl esters (FAME) were produced from cow's milk (Bostaurus) butter by esterification/transesterification in the presence of methanol. The product was assayed according to the Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels (ASTM D 6751). The preparation failed to meet the specifications for flash point, free and total glycerin contents, total sulfur, and oxidation stability. Failures to meet the flash point and free/total glycerin specifications were determined to be due to interference with standard assays for these parameters by short-chain-length fatty acid esters. The oxidation stability of the butterfat FAME was improved by supplementation with a commercial antioxidant formulation. Approximately 725 ppm of antioxidant was required to meet the ASTM-specified stability value for biodiesel. This work indicates that, without further purification to reduce a slightly excessive sulfur content, fatty acid ester preparations produced from butter are unacceptable as sole components of a biodiesel fuel. However, it is possible that even without further purification a butter-based ester preparation could be mixed with biodiesel from other feedstocks to produce a blend that meets the current quality standards for biodiesel. The results presented here also illustrate some potential weaknesses in the accepted methods for biodiesel characterization when employed in the analysis of FAME preparations containing mid- and short-chain fatty acid esters.

  16. Biomass Feedstock and Conversion Supply System Design and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, Jacob J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Roni, Mohammad S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lamers, Patrick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cafferty, Kara G. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    Idaho National Laboratory (INL) supports the U.S. Department of Energy’s bioenergy research program. As part of the research program INL investigates the feedstock logistics economics and sustainability of these fuels. A series of reports were published between 2000 and 2013 to demonstrate the feedstock logistics cost. Those reports were tailored to specific feedstock and conversion process. Although those reports are different in terms of conversion, some of the process in the feedstock logistic are same for each conversion process. As a result, each report has similar information. A single report can be designed that could bring all commonality occurred in the feedstock logistics process while discussing the feedstock logistics cost for different conversion process. Therefore, this report is designed in such a way that it can capture different feedstock logistics cost while eliminating the need of writing a conversion specific design report. Previous work established the current costs based on conventional equipment and processes. The 2012 programmatic target was to demonstrate a delivered biomass logistics cost of $55/dry ton for woody biomass delivered to fast pyrolysis conversion facility. The goal was achieved by applying field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model. The goal of the 2017 Design Case is to enable expansion of biofuels production beyond highly productive resource areas by breaking the reliance of cost-competitive biofuel production on a single, low-cost feedstock. The 2017 programmatic target is to supply feedstock to the conversion facility that meets the in-feed conversion process quality specifications at a total logistics cost of $80/dry T. The $80/dry T. target encompasses total delivered feedstock cost, including both grower payment and logistics costs, while meeting all conversion in-feed quality targets

  17. PECULIARITIES OF CHOICE OF BURNER DEVICES FOR HEATING FURNACES OF MACHINE-BUILDING AND METALLURGICAL PRODUCTIONS

    Directory of Open Access Journals (Sweden)

    S. V. Korneev

    2010-01-01

    Full Text Available It is shown that the choice of recuperative burners is more reasonable for different types of heating furnaces of machine-building and metallurgical productions of little efficiency.

  18. Modeling and Simulation of Metallurgical Process Based on Hybrid Petri Net

    Science.gov (United States)

    Ren, Yujuan; Bao, Hong

    2016-11-01

    In order to achieve the goals of energy saving and emission reduction of iron and steel enterprises, an increasing number of modeling and simulation technologies are used to research and analyse metallurgical production process. In this paper, the basic principle of Hybrid Petri net is used to model and analyse the Metallurgical Process. Firstly, the definition of Hybrid Petri Net System of Metallurgical Process (MPHPNS) and its modeling theory are proposed. Secondly, the model of MPHPNS based on material flow is constructed. The dynamic flow of materials and the real-time change of each technological state in metallurgical process are simulated vividly by using this model. The simulation process can implement interaction between the continuous event dynamic system and the discrete event dynamic system at the same level, and play a positive role in the production decision.

  19. Correlations between indebtness grade and the value of companies in metallurgical industry of Romania

    Directory of Open Access Journals (Sweden)

    C. Oprean

    2015-07-01

    Full Text Available The purpose of this paper is to identify the influence of degree of indebtedness, the level of equity capital and the net result on the value of metallurgical companies, represented by their market value. The paper presents a model developed based on data of 10 companies listed on the Bucharest Stock Exchange (BSE in the period 2004-2013, which operates in the metallurgical industry in Romania.

  20. Autonomous and professional maintenance in metallurgical enterprise as activities within total productive maintenance

    OpenAIRE

    2014-01-01

    The content of this publication consists of notions connected with Total Productive Maintenance (TPM) in metallurgical enterprise. The basic areas of devices condition management through Autonomous and Professional Maintenance are described here. Mentioned areas of activities are performed in metallurgical enterprise ArcelorMittal Poland within pillars of World Class Manufacturing (WCM). The aims of UR programs are to maintain the basic functionality of the devices and decrease the number of ...

  1. Autonomous and professional maintenance in metallurgical enterprise as activities within total productive maintenance

    Directory of Open Access Journals (Sweden)

    B. Gajdzik

    2014-04-01

    Full Text Available The content of this publication consists of notions connected with Total Productive Maintenance (TPM in metallurgical enterprise. The basic areas of devices condition management through Autonomous and Professional Maintenance are described here. Mentioned areas of activities are performed in metallurgical enterprise ArcelorMittal Poland within pillars of World Class Manufacturing (WCM. The aims of UR programs are to maintain the basic functionality of the devices and decrease the number of failures in order to reach improvement of production efficiency.

  2. Development of market strategies of metallurgical enterrprises after restructuring of steel industry

    Directory of Open Access Journals (Sweden)

    B. Gajdzik

    2014-01-01

    Full Text Available Before metallurgical enterprises started implementation of marketing activities they had to go through restructuring processes which included all areas of their market activities. Privatised metallurgical enterprises after economic transformation gradually implemented marketing to their business activities. The article presents notions connected with development of marketing strategies from the period of last 20 years. The range of analysis includes categories corresponding with instruments of mix marketing (4P − product, price, place, promotion.

  3. Feedstock and Conversion Supply System Design and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mohammad, R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cafferty, K. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kenney, K. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Searcy, E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hansen, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    The success of the earlier logistic pathway designs (Biochemical and Thermochemical) from a feedstock perspective was that it demonstrated that through proper equipment selection and best management practices, conventional supply systems (referred to in this report as “conventional designs,” or specifically the 2012 Conventional Design) can be successfully implemented to address dry matter loss, quality issues, and enable feedstock cost reductions that help to reduce feedstock risk of variable supply and quality and enable industry to commercialize biomass feedstock supply chains. The caveat of this success is that conventional designs depend on high density, low-cost biomass with no disruption from incremental weather. In this respect, the success of conventional designs is tied to specific, highly productive regions such as the southeastern U.S. which has traditionally supported numerous pulp and paper industries or the Midwest U.S for corn stover.

  4. Feedstock Supply and Logistics: Biomass as a Commodity

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-05-06

    The Bioenergy Technologies Office and its partners are developing the technologies and systems needed to sustainably and economically deliver a broad range of biomass in formats that enable their efficient use as feedstocks for biorefineries.

  5. Biodiesel production from low cost and renewable feedstock

    Science.gov (United States)

    Gude, Veera; Grant, Georgene; Patil, Prafulla; Deng, Shuguang

    2013-12-01

    Sustainable biodiesel production should: a) utilize low cost renewable feedstock; b) utilize energy-efficient, nonconventional heating and mixing techniques; c) increase net energy benefit of the process; and d) utilize renewable feedstock/energy sources where possible. In this paper, we discuss the merits of biodiesel production following these criteria supported by the experimental results obtained from the process optimization studies. Waste cooking oil, non-edible (low-cost) oils (Jatropha curcas and Camelina Sativa) and algae were used as feedstock for biodiesel process optimization. A comparison between conventional and non-conventional methods such as microwaves and ultrasound was reported. Finally, net energy scenarios for different biodiesel feedstock options and algae are presented.

  6. Bibliography on Biomass Feedstock Research: 1978-2002

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, J.H.

    2003-05-01

    This report provides bibliographic citations for more than 1400 reports on biomass feedstock development published by Oak Ridge National Laboratory and its collaborators from 1978 through 2002. Oak Ridge National Laboratory is engaged in analysis of biomass resource supplies, research on the sustainability of feedstock resources, and research on feedstock engineering and infrastructure. From 1978 until 2002, Oak Ridge National Laboratory also provided technical leadership for the U.S. Department of Energy's Bioenergy Feedstock Development Program (BFDP), which supported research to identify and develop promising energy crops. This bibliography lists reports published by Oak Ridge National Laboratory and by its collaborators in the BFDP, including graduate student theses and dissertations.

  7. Biodiesel From Alternative Oilseed Feedstocks: Production and Properties

    Science.gov (United States)

    Fatty acid methyl esters were prepared and evaluated as potential biodiesel fuels from several alternative oilseed feedstocks, which included camelina (Camelina sativa L.), coriander (Coriandrum sativum L.), field mustard (Brassica juncea L.), field pennycress (Thlaspi arvense L.), and meadowfoam (L...

  8. Microbial renewable feedstock utilization: A substrate-oriented approach

    NARCIS (Netherlands)

    Rumbold, K.; Buijsen, H.J.J. van; Gray, V.M.; Groenestijn, J.W. van; Overkamp, K.M.; Slomp, R.S.; Werf, M.J. van der; Punt, P.J.

    2010-01-01

    Increasingly lignocellulosic biomass hydrolysates are used as the feedstock for industrial fermentations. These biomass hydrolysates consist of complex mixtures of different fermentable sugars, but also contain inhibitors and salts that affect the performance of the productgenerating microbes. The p

  9. Horse manure as feedstock for anaerobic digestion.

    Science.gov (United States)

    Hadin, Sa; Eriksson, Ola

    2016-10-01

    Horse keeping is of great economic, social and environmental benefit for society, but causes environmental impacts throughout the whole chain from feed production to manure treatment. According to national statistics, the number of horses in Sweden is continually increasing and is currently approximately 360,000. This in turn leads to increasing amounts of horse manure that have to be managed and treated. Current practices could cause local and global environmental impacts due to poor performance or lack of proper management. Horse manure with its content of nutrients and organic material can however contribute to fertilisation of arable land and recovery of renewable energy following anaerobic digestion. At present anaerobic digestion of horse manure is not a common treatment. In this paper the potential for producing biogas and biofertiliser from horse manure is analysed based on a thorough literature review in combination with mathematical modelling and simulations. Anaerobic digestion was chosen as it has a high degree of resource conservation, both in terms of energy (biogas) and nutrients (digestate). Important factors regarding manure characteristics and operating factors in the biogas plant are identified. Two crucial factors are the type and amount of bedding material used, which has strong implications for feedstock characteristics, and the type of digestion method applied (dry or wet process). Straw and waste paper are identified as the best materials in an energy point of view. While the specific methane yield decreases with a high amount of bedding, the bedding material still makes a positive contribution to the energy balance. Thermophilic digestion increases the methane generation rate and yield, compared with mesophilic digestion, but the total effect is negligible.

  10. Recent advances in understanding physical properties of metallurgical slags

    Science.gov (United States)

    Min, Dong Joon; Tsukihashi, Fumitaka

    2017-01-01

    Present-day knowledge of the structure and physical properties of metallurgical slags is summarized to address structure-property and inter-property relationships. Physical properties of slags including viscosity, electrical conductivity, and surface tension is reviewed focusing on the effect of slag structure, which is comprehensively evaluated using FT-IT, Raman, and MAS-NMR spectroscopy. The effect of the slag composition on slag structure and property is reviewed in detail: Compositional effect encompasses traditional concepts of basicity, network-forming behaviors of anions, and secondary impact of network-modifying cations. Secondary objective of this review is elucidating the mutual relationship between physical properties of slags. For instance, the relationship between slag viscosity and electrical conductivity is suggested by Walden's rule and discussed based on the experimental results. Slag foaming index is also introduced as a comprehensive understanding method of physical properties of slags. The dimensional analysis was made to address the effect of viscosity, density, and surface tension on the foaming index of slags.

  11. Metallurgical analysis of lithium test assembly operated for 1200 h

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, Tomohiro, E-mail: furukawa.tomohiro@jaea.go.jp [Japan Atomic Energy Agency, 4002 Narita, O-arai, Ibaraki 311-1393 (Japan); Kondo, Hiroo; Kanemura, Takuji; Hirakawa, Yasuhi [Japan Atomic Energy Agency, 4002 Narita, O-arai, Ibaraki 311-1393 (Japan); Yamaoka, Nobuo; Hoashi, Eiji; Suzuki-Yoshihashi, Sachiko; Horiike, Hiroshi [Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2014-10-15

    Highlights: • The assembly was used for the lithium free-surface flow experiments at 300 °C. • The integrity of steel was decreased due to carburizing from lithium. • It was proven that carbon control in lithium is important for corrosion protection. - Abstract: A lithium test assembly used for lithium-free surface flow experiments at 300 °C for 1200 h at Osaka University was analyzed metallographically to verify the design of the lithium target of the International Fusion Materials Irradiation Facility (IFMIF). Certain irregularities such as traces of high-speed lithium flow at a maximum velocity of 15 m/s were observed at the tip of the nozzle. Mottled unevenness with numerous microcracks a few microns deep was detected at the inlet of the nozzle, the velocity ratio of which was 0.1–0.4 as compared with the nozzle tip. A thin, altered layer developed on the surface of these regions because of carbide formation. It is believed that the microcracks were nucleated by thermal transients at the start or stop of operations of the lithium loop. These slight irregularities could be the result of exfoliation of the altered layer because of the high-speed lithium flow caused by the increased hardness of the altered layer as compared with that of the base metal. The metallurgical analysis proved for the first time that carbon control in lithium is also important for corrosion and erosion protection of the IFMIF components.

  12. Sophorolipid production from lignocellulosic biomass feedstocks

    Science.gov (United States)

    Samad, Abdul

    The present study investigated the feasibility of production of sophorolipids (SLs) using yeast Candida bombicola grown on hydrolysates derived lignocellulosic feedstock either with or without supplementing oil as extra carbon source. Several researchers have reported using pure sugars and various oil sources for producing SLs which makes them expensive for scale-up and commercial production. In order to make the production process truly sustainable and renewable, we used feedstocks such as sweet sorghum bagasse, corn fiber and corn stover. Without oil supplementation, the cell densities at the end of day-8 was recorded as 9.2, 9.8 and 10.8 g/L for hydrolysate derived from sorghum bagasse, corn fiber, and corn fiber with the addition of yeast extract (YE) during fermentation, respectively. At the end of fermentation, the SL concentration was 3.6 g/L for bagasse and 1.0 g/L for corn fiber hydrolysate. Among the three major sugars utilized by C. bombicola in the bagasse cultures, glucose was consumed at a rate of 9.1 g/L-day; xylose at 1.8 g/L-day; and arabinose at 0.98 g/L-day. With the addition of soybean oil at 100 g/L, cultures with bagasse hydrolysates, corn fiber hydrolysates and standard medium had a cell content of 7.7 g/L; 7.9 g/L; and 8.9 g/L, respectively after 10 days. The yield of SLs from bagasse hydrolysate was 84.6 g/L and corn fiber hydrolysate was15.6 g/L. In the same order, the residual oil in cultures with these two hydrolysates was 52.3 g/L and 41.0 g/L. For this set of experiment; in the cultures with bagasse hydrolysate; utilization rates for glucose, xylose and arabinose was recorded as 9.5, 1.04 and 0.08 g/L-day respectively. Surprisingly, C. bombicola consumed all monomeric sugars and non-sugar compounds in the hydrolysates and cultures with bagasse hydrolysates had higher yield of SLs than those from a standard medium which contained pure glucose at the same concentration. Based on the SL concentrations and considering all sugars consumed

  13. Recycling of Al-Si die casting scraps for solar Si feedstock

    Science.gov (United States)

    Seo, Kum-Hee; Jeon, Je-Beom; Youn, Ji-Won; Kim, Suk Jun; Kim, Ki-Young

    2016-05-01

    Recycling of aluminum die-casting scraps for solar-grade silicon (SOG-Si) feedstock was performed successfully. 3 N purity Si was extracted from A383 die-casting scrap by using the combined process of solvent refining and an advanced centrifugal separation technique. The efficiency of separating Si from scrap alloys depended on both impurity level of scraps and the starting temperature of centrifugation. Impurities in melt and processing temperature governed the microstructure of the primary Si. The purity of Si extracted from the scrap melt was 99.963%, which was comparable to that of Si extracted from a commercial Al-30 wt% Si alloy, 99.980%. The initial purity of the scrap was 2.2% lower than that of the commercial alloy. This result confirmed that die-casting scrap is a potential source of high-purity Si for solar cells.

  14. Silicon purification using a Cu-Si alloy source

    Science.gov (United States)

    Powell, R. C.; Tejedor, P.; Olson, J. M.

    1986-01-01

    Production of 99.9999% pure silicon from 98% pure metallurgical grade (MG) silicon by a vapor transport filtration process (VTP) is described. The VTF process is a cold wall version of an HCl chemical vapor transport technique using a Si:Cu3Si alloy as the silicon source. The concentration, origin, and behavior of the various impurities involved in the process were determined by chemically analyzing alloys of different purity, the slag formed during the alloying process, and the purified silicon. Atomic absorption, emission spectrometry, inductively coupled plasma, spark source mass spectrometry, and secondary ion mass spectroscopy were used for these analyses. The influence of the Cl/H ratio and the deposition temperature on the transport rate was also investigated.

  15. Establishing the archaeo-metallurgic ornamentation process of an axe from the bronze age by OM, SEM-EDX, and micro-FTIR.

    Science.gov (United States)

    Sandu, Ioan Gabriel; Tencariu, Felix-Adrian; Vornicu, Diana-Măriuca; Sandu, Andrei Victor; Vornicu, Andreea; Vasilache, Viorica; Sandu, Ion

    2014-11-01

    Our article presents the results of the analyses we performed by corroborating the Optical Microscopy, Scanning Electron Microscopy, Energy Dispersive Xray Analysis and micro Fourier Transformed InfraRed Analysis techniques to identify the archaeo-metallurgic casting and ornamentation procedure of a decorated disk-butted axe, which was discovered recently east of the Carpathian mountains, in the Moldavian Plateau. There are few known axes of that type found (A1, according to the usual typologies), as they are specific to the Middle Bronze Age period west of the Carpathians-the Wietenberg, Suciu de Sus, and Otomani-Füzesabony cultures. The experimental data on the item under study revealed the fact that after casting it in molds made from porous silicone-based stone, the object was coated with a thin layer, by immersing it in a lightly fusible tin alloy, whose main alloy component was copper and arsenic and iron as secondary components. After refining the shiny white layer, they applied a beautiful decoration pattern made by incision and engraving. This battle axe was an indication of higher status, such items usually being owned by community leaders. This important fact proves that the ancient metallurgic craftsmen were able to elaborate and manufacture various alloys from which they made beautiful objects and it also offers a new insight into the social and symbolic function of certain antique bronze items.

  16. Roadmap for Agriculture Biomass Feedstock Supply in the United States

    Energy Technology Data Exchange (ETDEWEB)

    J. Richard Hess; Thomas D. Foust; Reed Hoskinson; David Thompson

    2003-11-01

    The Biomass Research and Development Technical Advisory Committee established a goal that biomass will supply 5% of the nation’s power, 20% of its transportation fuels, and 25% of its chemicals by 2030. These combined goals are approximately equivalent to 30% of the country’s current petroleum consumption. The benefits of a robust biorefinery industry supplying this amount of domestically produced power, fuels, and products are considerable, including decreased demand for imported oil, revenue to the depressed agricultural industry, and revitalized rural economies. A consistent supply of highquality, low-cost feedstock is vital to achieving this goal. This biomass roadmap defines the research and development (R&D) path to supplying the feedstock needs of the biorefinery and to achieving the important national goals set for biomass. To meet these goals, the biorefinery industry must be more sustainable than the systems it will replace. Sustainability hinges on the economic profitability of all participants, on environmental impact of every step in the process, and on social impact of the product and its production. In early 2003, a series of colloquies were held to define and prioritize the R&D needs for supplying feedstock to the biorefinery in a sustainable manner. These colloquies involved participants and stakeholders in the feedstock supply chain, including growers, transporters, equipment manufacturers, and processors as well as environmental groups and others with a vested interest in ensuring the sustainability of the biorefinery. From this series of colloquies, four high-level strategic goals were set for the feedstock area: • Biomass Availability – By 2030, 1 billion dry tons of lignocellulosic feedstock is needed annually to achieve the power, fuel, and chemical production goals set by the Biomass Research and Development Technology Advisory Production Committee • Sustainability – Production and use of the 1 billion dry tons annually must be

  17. Effect of silicon content and defects on the lifetime of ductile cast iron

    Directory of Open Access Journals (Sweden)

    Alhussein Akram

    2014-06-01

    Full Text Available In this work, the influence of microstructure on the mechanical properties has been studied for different grades of ferritic ductile cast iron. Mechanical tests were carried out and the effect of silicon on the resistance of material was well noticed. An increasing silicon content increases the strength and decreases the ductility of material. The lifetime and endurance limit of material were affected by the presence of defects in material and microstructure heterogeneity. Metallurgical characterizations showed that the silicon was highly segregated around graphite nodules which leads to the initiation of cracks. The presence of defects causes the stress concentration and leads to the initiation and propagation of cracks.

  18. Soluble phosphate fertilizer production using acid effluent from metallurgical industry.

    Science.gov (United States)

    Mattiello, Edson M; Resende Filho, Itamar D P; Barreto, Matheus S; Soares, Aline R; Silva, Ivo R da; Vergütz, Leonardus; Melo, Leônidas C A; Soares, Emanuelle M B

    2016-01-15

    Preventive and effective waste management requires cleaner production strategies and technologies for recycling and reuse. Metallurgical industries produce a great amount of acid effluent that must be discarded in a responsible manner, protecting the environment. The focus of this study was to examine the use of this effluent to increase reactivity of some phosphate rocks, thus enabling soluble phosphate fertilizer production. The effluent was diluted in deionized water with the following concentrations 0; 12.5; 25; 50; 75% (v v(-1)), which were added to four natural phosphate rocks: Araxá, Patos, Bayovar and Catalão and then left to react for 1 h and 24 h. There was an increase in water (PW), neutral ammonium citrate (PNAC) and citric acid (PCA) soluble phosphorus fractions. Such increases were dependent of rock type while the reaction time had no significant effect (p < 0.05) on the chemical and mineralogical phosphate characteristics. Phosphate fertilizers with low toxic metal concentrations and a high level of micronutrients were produced compared to the original natural rocks. The minimum amount of total P2O5, PNAC and PW, required for national legislation for phosphate partially acidulated fertilizer, were met when using Catalão and the effluent at the concentration of 55% (v v(-1)). Fertilizer similar to partially acidulated phosphate was obtained when Bayovar with effluent at 37.5% (v v(-1)) was used. Even though fertilizers obtained from Araxá and Patos did not contain the minimum levels of total P2O5 required by legislation, they can be used as a nutrient source and for acid effluent recycling and reuse. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Thermal treatment of dusts from non ferrous metallurgical industries

    Directory of Open Access Journals (Sweden)

    Menad, Noureddine

    2000-06-01

    Full Text Available Three samples of dusts generated by the non ferrous metallurgical industries are treated between 200 and 800 °C in controlled oxidizing and reducing atmospheres. The objective of this study is to recover the valuable metals from these wastes. The treatments of these solids under oxidizing conditions at 700 °C are well adapted for two samples. The totality of valuable elements are concentrated in the treatments' residues. The use of hydrogen at 600 °C, permits the removal of up to 100 % of valuable metals contained in the treated industrial wastes. The recovery rate of valuable metals (Pb, Zn, Cu as well as the Global Decontamination Factor are reported.

    Se han tratado tres muestras procedentes de la industria metalúrgica no férrea entre 200 y 800 °C, en atmósferas oxidantes o reductoras controladas. El objetivo de este estudio es recuperar cuanto sea posible de los elementos valiosos de estos residuos. Los tratamientos bajo condiciones oxidantes a 700 °C han dado buenos resultados en dos muestras, en donde la totalidad de los elementos valiosos se concentraba en los residuos de tratamiento. El uso del hidrógeno a 600 °C permite la separación de hasta el 100 % de los metales valiosos contenidos en los residuos industriales tratados. Finalmente, se detallan las tasas de recuperación de los metales plomo, zinc y cobre así como el factor de descontaminación global (GDF.

  20. Metallurgical recovery of metals from electronic waste: a review.

    Science.gov (United States)

    Cui, Jirang; Zhang, Lifeng

    2008-10-30

    Waste electric and electronic equipment, or electronic waste, has been taken into consideration not only by the government but also by the public due to their hazardous material contents. In the detailed literature survey, value distributions for different electronic waste samples were calculated. It is showed that the major economic driver for recycling of electronic waste is from the recovery of precious metals. The state of the art in recovery of precious metals from electronic waste by pyrometallurgical processing, hydrometallurgical processing, and biometallurgical processing are highlighted in the paper. Pyrometallurgical processing has been a traditional technology for recovery of precious metals from waste electronic equipment. However, state-of-the-art smelters are highly depended on investments. Recent research on recovery of energy from PC waste gives an example for using plastics in this waste stream. It indicates that thermal processing provides a feasible approach for recovery of energy from electronic waste if a comprehensive emission control system is installed. In the last decade, attentions have been removed from pyrometallurgical process to hydrometallurgical process for recovery of metals from electronic waste. In the paper, hydrometallurgical processing techniques including cyanide leaching, halide leaching, thiourea leaching, and thiosulfate leaching of precious metals are detailed. In order to develop an environmentally friendly technique for recovery of precious metals from electronic scrap, a critical comparison of main leaching methods is analyzed for both economic feasibility and environmental impact. It is believed that biotechnology has been one of the most promising technologies in metallurgical processing. Bioleaching has been used for recovery of precious metals and copper from ores for many years. However, limited research was carried out on the bioleaching of metals from electronic waste. In the review, initial researches on the

  1. Soil contamination with emissions of non-ferrous metallurgical plants

    Science.gov (United States)

    Vodyanitskii, Yu. N.; Plekhanova, I. O.; Prokopovich, E. V.; Savichev, A. T.

    2011-02-01

    The upper soil horizons are strongly contaminated in the area influenced by the Mid-Urals copper smelter. In the technogenic desert and impact zones, the contents of a number of elements (Cu, Zn, As, Pb, P, and S) by many times exceed their clarke values and the maximum permissible concentrations (or provisional permissible concentrations). The degree of technogeneity (Tg) for these elements is very high in these zones. In the far buffer zone, Tg is about zero for many elements and increases up to Tg = 27-42% for four heavy elements (Cu, Zn, Pb, and As) and up to 81-98% for P and S. The buffer capacity of the humus horizon depends on the soil's location within the technogeochemical anomaly and also on the particular pollutant. In the impact zone, it is equal to 70-77% for lead and arsenic, although other technogenic elements (Zn, Cr, S, and P) are poorly retained and readily migrate into the deeper horizons (the buffer capacity is equal to 14-25%). Nearly all the heavy metals enter the soil in the form of sulfides. The soils in the area affected by the Noril'sk mining and smelting metallurgical enterprise are subdivided into two groups according to the degree of their contamination, i.e., the soils within Noril'sk proper and the soils in its suburbs to a distance of 4-15 km. The strongest soil contamination is recorded in the city: the clarke values are exceeded by 287, 78, 16, 4.1, and 3.5 times for Cu, Ni, Cr, Fe, and S, respectively. The major pollutants enter the soil from the ferruginous slag. The soil's contamination degree is lower in the suburbs, where heavy metal sulfides reach the soils with the aerial emission from the enterprise.

  2. Effect of hydrotreating FCC feedstock on product distribution

    Energy Technology Data Exchange (ETDEWEB)

    Salazar-Sotelo, D.; Maya-Yescas, R.; Mariaca-Dominguez, E.; Rodriguez-Salomon, S.; Aguilera-Lopez, M. [Programa de Tratamiento de Crudo Maya, Instituto Mexicano del Petroleo, Lazaro Cardenas 152, San Bartolo Atepehuacan, 07730 Mexico, D.F. (Mexico)

    2004-11-24

    The demand of low-sulfur fuels has been increasing during the last 20 years due to environmental concerns about SO{sub x} emissions from processing plants and engines. Due to its high contribution to the gasoline pool, hydrotreating fluid catalytic cracking (FCC) feedstock offers several advantages, such as the increase of conversion and yields of gasoline and liquid-phase gas, meanwhile sulfur content in fuels is diminished. However, there are more important factors to be considered when hydrotreating FCC feedstock.In this work, two FCC feedstocks, typical and hydrotreated, were converted in a microactivity test (MAT) reactor, as described by ASTM D-3907-92, at different severities and using two commercial catalysts. Feedstock conversion, product yields and selectivity to valuable products were compared against industrial-scale results predicted by using commercial FCC simulation software. Expected increment in conversion and yield to profitable products was observed when hydrotreated feedstock was used; simulation results follow acceptably MAT results. Some recommendations are given for looking closely at the overall behavior (riser-regenerator), using reliable kinetic models and simulation programs.

  3. Vermicompost derived from different feedstocks as a plant growth medium.

    Science.gov (United States)

    Warman, P R; Anglopez, M J

    2010-06-01

    This study determined feedstock effects on earthworm populations and the quality of resulting vermicomposts produced from different types of feedstocks using different vermicomposting durations. Feedstock combinations (Kitchen Paper Waste (KPW), Kitchen Yard Waste (KYW), Cattle Manure Yard Waste (CMY)), three durations of vermicomposting (45, 68 or 90 days), and two seed germination methods (with two concentrations of vermicompost) for radish, marigold and upland cress, served as the independent variables. The worms (Eisenia fetida) doubled their weight by day 68 in KPW and CMY vermicomposts and day 90 KPW vermicompost produced the greatest weight of worms. The direct seed germination method (seeding into soil or vermicompost-soil mixtures) indicated that KPW and KYW feedstocks decreased germination compared to the control, even in mature vermicompost. Seed germination was greater in the water extract method; however, most of the vermicompost extracts suppressed germination of the three seed species compared to the water controls. Vermicomposts from all three feedstocks increased leaf area and biomass compared to the control, especially in the 10% vermicompost:soil mix. Thus, seed germination and leaf area or plant biomass for these three species are contrasting vermicompost quality indicators.

  4. ANALYSIS OF INNOVATIVE ACTIVITY OF METALLURGICAL COMPANIES USING MONTE-CARLO MATHEMATICAL MODEL-ING METHOD

    Directory of Open Access Journals (Sweden)

    Shchekoturova S. D.

    2015-04-01

    Full Text Available The article presents an analysis of an innovative activity of four Russian metallurgical enterprises: "Ruspolimet", JSC "Ural Smithy", JSC "Stupino Metallurgical Company", JSC "VSMPO" via mathematical modeling using Monte Carlo method. The results of the assessment of innovative activity of Russian metallurgical companies were identified in five years dynamics. An assessment of the current innovative activity was made by the calculation of an integral index of the innovative activity. The calculation was based on such six indicators as the proportion of staff employed in R & D; the level of development of new technology; the degree of development of new products; share of material resources for R & D; degree of security of enterprise intellectual property; the share of investment in innovative projects and it was analyzed from 2007 to 2011. On the basis of this data the integral indicator of the innovative activity of metallurgical companies was calculated by well-known method of weighting coefficients. The comparative analysis of integral indicators of the innovative activity of considered companies made it possible to range their level of the innovative activity and to characterize the current state of their business. Based on Monte Carlo method a variation interval of the integral indicator was obtained and detailed instructions to choose the strategy of the innovative development of metallurgical enterprises were given as well

  5. An Overview of Composting Based on Variable Feedstock Material

    Directory of Open Access Journals (Sweden)

    Kadir Aeslina Abdul

    2016-01-01

    Full Text Available Composting is a biological treatment method that provides a potential sustainable way to convert food waste into organic compost. In composting, the feedstock material is an important item to ensure the success of the composting process. This paper reviewed the process of composting based on implementation different types of feedstock, namely: 1 animal waste such as cow dung, poultry litter, swine manure and chicken manure; and 2 agricultural waste such as sawdust, rice straw, bran, bagasse, banana waste and pine chip. The result for poultry litter, cow manure, swine manure, sawdust and rice straw has C/N ratio lower than 20 at final composting process which is considered as satisfactory level for compost maturity. As a conclusion, the selection of the feedstock material is based on the characteristics of the material itself and the selection of materials is important for the quality of compost.

  6. Bioprocessing of bio-based chemicals produced from lignocellulosic feedstocks.

    Science.gov (United States)

    Kawaguchi, Hideo; Hasunuma, Tomohisa; Ogino, Chiaki; Kondo, Akihiko

    2016-12-01

    The feedstocks used for the production of bio-based chemicals have recently expanded from edible sugars to inedible and more recalcitrant forms of lignocellulosic biomass. To produce bio-based chemicals from renewable polysaccharides, several bioprocessing approaches have been developed and include separate hydrolysis and fermentation (SHF), simultaneous saccharification and fermentation (SSF), and consolidated bioprocessing (CBP). In the last decade, SHF, SSF, and CBP have been used to generate macromolecules and aliphatic and aromatic compounds that are capable of serving as sustainable, drop-in substitutes for petroleum-based chemicals. The present review focuses on recent progress in the bioprocessing of microbially produced chemicals from renewable feedstocks, including starch and lignocellulosic biomass. In particular, the technological feasibility of bio-based chemical production is discussed in terms of the feedstocks and different bioprocessing approaches, including the consolidation of enzyme production, enzymatic hydrolysis of biomass, and fermentation.

  7. Cost Methodology for Biomass Feedstocks: Herbaceous Crops and Agricultural Residues

    Energy Technology Data Exchange (ETDEWEB)

    Turhollow Jr, Anthony F [ORNL; Webb, Erin [ORNL; Sokhansanj, Shahabaddine [ORNL

    2009-12-01

    This report describes a set of procedures and assumptions used to estimate production and logistics costs of bioenergy feedstocks from herbaceous crops and agricultural residues. The engineering-economic analysis discussed here is based on methodologies developed by the American Society of Agricultural and Biological Engineers (ASABE) and the American Agricultural Economics Association (AAEA). An engineering-economic analysis approach was chosen due to lack of historical cost data for bioenergy feedstocks. Instead, costs are calculated using assumptions for equipment performance, input prices, and yield data derived from equipment manufacturers, research literature, and/or standards. Cost estimates account for fixed and variable costs. Several examples of this costing methodology used to estimate feedstock logistics costs are included at the end of this report.

  8. New catalysts improves heavy feedstock hydro-cracking

    Energy Technology Data Exchange (ETDEWEB)

    Hoek, A.; Huizinga, T.; Esener, A.A.; Maxwell, I.E.; Stork, W. (Koninklijke/Shell Laboratorium, Amsterdam (NL)); van de Meerakker, F.J. (Shell Internationale Petroleum Maatschappij BV, The Hauge (NL)); Sy, O. (Shell Canada Ltd., Oakville, Ontario (CA))

    1991-04-22

    A new zeolite-Y-based second-stage hydrocracking catalyst, designated S-703, has been developed by Shell. Laboratory testing and commercial use show it has significantly improved performance with respect to gas make and middle-distillate selectivity in processing heavy feedstocks when compared to a Shell catalyst, S-753, developed earlier. Further, the new catalyst exhibits enhanced stability. Extensive laboratory testing of the S-703 catalyst has been carried out under single-stage, stacked- bed, two-stage-flow, and series-flow conditions. Commercial experience with the new catalyst has now been obtained in several units. To date, the commercial results have confirmed the laboratory results in terms of the superior, heavy- feedstock processing performance of the new catalyst in all respects. Because the trend toward heavier feedstocks is expected to continue, it is likely that catalysts such as S- 703 will find increasing applications in hydrocrackers in the future.

  9. Ensiling corn stover: effect of feedstock preservation on particleboard performance.

    Science.gov (United States)

    Ren, Haiyu; Richard, Tom L; Chen, Zhilin; Kuo, Monlin; Bian, Yilin; Moore, Kenneth J; Patrick, Patricia

    2006-01-01

    Ensilage is a truncated solid-state fermentation in which anaerobically produced organic acids accumulate to reduce pH and limit microbial activity. Ensilage can be used to both preserve and pretreat biomass feedstock for further downstream conversion into chemicals, fuels, and/or fiber products. This study examined the ensilage of enzyme-treated corn stover as a feedstock for particleboard manufacturing. Corn stover at three different particle size ranges (ensilage process, as indicated by sustained lower pH (P ensilage process. Compared with fresh stover, the ensilage process did increase IB of stover particleboard by 33% (P ensilage can be used as a long-term feedstock preservation method for particleboard production from corn stover. Enzyme-amended ensilage not only improved stover preservation but also enhanced the properties of particleboard products.

  10. CBTL Design Case Summary Conventional Feedstock Supply System - Woody

    Energy Technology Data Exchange (ETDEWEB)

    Christopher T. Wright; Erin M. Searcy

    2012-02-01

    A conventional woody feedstock design has been developed that represents supply system technologies, costs, and logistics that are achievable today for supplying woody biomass as a blendstock with coal for energy production. Efforts are made to identify bottlenecks and optimize the efficiency and capacities of this supply system, within the constraints and consideration of existing local feedstock supplies, equipment, and permitting requirements. The feedstock supply system logistics operations encompass all of the activities necessary to move woody biomass from the production location to the conversion reactor ready for blending and insertion. This supply system includes operations that are currently available such that costs and logistics are reasonable and reliable. The system modeled for this research project includes the use of the slash stream since it is a more conservative analysis and represents the material actually used in the experimental part of the project.

  11. Effects of milling and active surfactants on rheological behavior of powder injection molding feedstock

    Institute of Scientific and Technical Information of China (English)

    范景莲; 黄伯云; 曲选辉

    2001-01-01

    The effects of milling and active surfactants on the rheological behavior of powder injection molding feedstock were discussed. The feedstock consists of traditional compositional 90W-7Ni-3Fe powder mixture and a wax based polymer binder. Before mixing feedstock, the powder mixture was milled for different times in a QM-1 high-energy ball mill. The viscosity of the feedstock was examined in a capillary rheometer. The rheological behavior was evaluated from viscosity data. The results show that the feedstock belongs to a pseudoplastic fluid, milling decreases viscosity of the feedstock and the sensitivity of viscosity to shear strain rate. The flowability, rheology and powder loading of this feedstock are improved by milling. Active surfactants such as stearic acid (SA) and di-n-octyl-o-phthalate (DOP) have great influences on the rheological properties of the feedstock. DOP improves the flowability and rheological stability of the feedstock further.

  12. Nematode community structure in the vicinity of a metallurgical factory.

    Science.gov (United States)

    Salamún, Peter; Renčo, Marek; Miklisová, Dana; Hanzelová, Vladimíra

    2011-12-01

    Soil nematode communities (taxa composition, trophic structure, ecological indices) in the area of metallurgical factory (Oravské ferozliatinárske závody) in Široká, Northern Slovakia were investigated in 2009. The factory belongs to main sources of emissions originated by ferroalloy production in this region. Four sites (meadows) were selected in a downwind direction from the factory: site A was located 0.85 km far from the factory, and the other sites were maintained in approximately 2-km intervals from each other. Chemical analysis of soil samples showed low concentrations of heavy metals (As, Cd, Cr, Cu, Ni, Pb and Zn), with all values being under Slovak limit concentrations of heavy metals in soils. Only the Cd content in the soil sample from site A slightly exceeded the allowable threshold, but it was decreasing with the distance from the factory, similarly as remaining metals except Cr, with slightly increasing trend of concentration. Within 64 identified nematode genera, the Helicotylenchus, Paratylenchus, Pratylenchus, Acrobeloides, Cephalobus and Rhabditis were most common and eudominant. This was clearly reflected on the trophic structure of nematode communities, where plant feeding nematodes and bacteriovorous prevailed. Significant negative correlation (P < 0.05) was observed between the abundance of bacteriovores and the concentration of Cu in the soil. On the other hand, fungivores showed significant correlation with Ni and Cr (P < 0.05) as well as predators with Cd, Pb and Zn contents in the soil (P < 0.01). The highly significant correlation (P < 0.05; P < 0.01) was found between As, Cd, Ni, Pb and Zn and Maturity Index 2-5. A negative relationship was detected between Maturity Index and the concentration of Cr in the soil (P < 0.01). On the other hand, Cu was in positive correlation with MI values. The MI, reflecting the degree of disturbances and changes in the structure and function of the soil ecosystem, was found

  13. Application of transformational roasting to the treatment of metallurgical wastes

    Science.gov (United States)

    Holloway, Preston Carl

    Transformational roasting involves the heating of a material along with specific additives to induce mineralogical changes in the starting material. By controlling the chemical composition, roasting atmosphere, temperature and time of reaction, the mineral transformations induced during roasting can be engineered to control the distribution of valuable or harmful metals and to produce new mineral assemblages that are more amenable to conventional methods of metals recovery or to environmentally safe disposal. However, to date, transformational roasting processes have only been applied to the recovery of a limited number of metals from a limited number of materials. A generalized procedure for the application of transformational roasting techniques to the treatment of new materials was proposed that utilized a combination of thermodynamic analysis, scoping tests, Design of Experiments (DOE) testing, mineralogical studies, process optimization and analysis of the deportment of minor elements to identify promising roasting systems for further study. This procedure was developed, tested and refined through the application of these techniques to four different industrial metallurgical wastes, including oil sands fly ash from Suncor in northern Alberta, zinc ferrite residue from Doe Run Peru, electric are furnace (EAF) dust from Altasteel's operations in Edmonton, Alberta, and copper-nickel-arsenic sulphide residue from Inco's refinery in Thompson, Manitoba. A large number of potential reagents were identified and tested for the latter three materials and transformational roasting was effectively used to induce mineral transformations during the roasting of these wastes which increased the solubility of valuable elements, decreased the solubility of major impurities, produced a differential solubility between valuable and harmful elements or controlled the volatilization of harmful elements. Comprehensive studies of these mineralogical transformations and the solubility

  14. Metallurgical Evaluations of Depainting Processes on Aluminum Substrate

    Science.gov (United States)

    McGill, Preston

    1999-01-01

    In December 1993, the Environmental Protection Agency (EPA) Emission Standards Division and the National Aeronautics and Space Administration's (NASA's) Marshall Space Flight Center (MSFC) signed an Interagency Agreement (IA) initiating a task force for the technical assessment of alternative technologies for aerospace depainting operations. The United States Air Force (USAF) joined the task force in 1994. The mandates of the task force were: (1) To identify available alternative depainting systems that do not rely on methylene chloride or other ozone-depleting, chlorinated, and volatile organic carbon solvents. (2) To determine the viability, applicability, and pollution prevention potential of each identified alternative. (3) To address issues of safety, environmental impact, reliability, and maintainability. Through a Technical Implementation Committee (TIC), the task force selected and evaluated eight alternative paint stripping technologies: chemical stripping, carbon dioxide (CO2) blasting, xenon flashlamp and CO2 coatings removal (FLASHJET(R)), CO2 laser stripping, plastic media blasting (PMB), sodium bicarbonate wet stripping, high-pressure water blasting (WaterJet), and wheat starch abrasive blasting (Enviro-Strip(R)). (The CO2 blasting study was discontinued after the first depainting sequence.) This final report presents the results of the Joint EPA/NASA/USAF Interagency Depainting Study. Significant topics include: (1) Final depainting sequence data for the chemical stripping, PMB, sodium bicarbonate wet stripping, and WaterJet processes. (2) Strip rates for all eight technologies. (3) Sequential comparisons of surface roughness measurements for the seven viable depainting technologies. (4) Chronological reviews of and lessons learned in the conduct of all eight technologies. (5) An analysis of the surface roughness trends for each of the seven technologies. (6) Metallurgic evaluations of panels Summaries of corrosion and hydrogen embrittlement

  15. Anaerobic microbiological method of cleaning water contaminated by metallurgical slags

    Directory of Open Access Journals (Sweden)

    Олена Леонідівна Дан

    2015-11-01

    Full Text Available The problem of environmental protection and rational use of water resources is one of the most important problems of environmental policy in Ukraine. This problem in Mariupol is particularly acute as metallurgical and coke industries cause significant damage to adjacent water bodies (the Kalchyk, the Kalmius and coastal zone of the Sea of Azov. One of the most harmful components of wastewater of these enterprises are sulfide-containing compounds. These compounds in water can cause great harm to both human health and the environment. For example, in 1999 the main city enterprises (AZOVSTAL IRON & STEEL WORKS and ILYICH IRON AND STEEL WORKS discharged 885,0 million m³ of wastewater (including 403,9 million m³ of polluted waste water into water bodies. The slag dumps and landfills in close proximity to the sea form a source of dangerous pollution, because contaminated water infiltration washed out here in the groundwater and surface water, get into the Sea of Azov later on. There are 97 mg/l of sulfides in the protective dam of AZOVSTAL IRON & STEEL WORKS, what exceeds the standards (MPC = 10 mg/l. It makes it possible for us to put forward biochemical purification processes. Anaerobic microbiological method proposed in the article has several advantages (compact hardware design, a minimum amount of activated sludge and lack of energy consumption for aeration over the existing wastewater treatment (chemical, mechanical, biological. The experimental procedure consisted in introducing the medium to be purified purified into microbial communities of high concentration (Thiobacillus «X», Thiobacillus concretivorus, which assimilated organic substances of the medium as a primary energy source. The kinetics of sulfide compounds removal by means of anaerobic microbiological method was considered. The effectiveness of wastewater treatment with changing purification process conditions has been also assessed (concentration of sulfides, reactor type, p

  16. Biaxial fatigue behavior of a powder metallurgical TRIP steel

    Directory of Open Access Journals (Sweden)

    S. Ackermann

    2015-10-01

    Full Text Available Multiaxial fatigue behavior is an important topic in critical structural components. In the present study the biaxial-planar fatigue behavior of a powder metallurgical TRIP steel (Transformation Induced Plasticity was studied by taking into account martensitic phase transformation and crack growth behavior. Biaxial cyclic deformation tests were carried out on a servo hydraulic biaxial tension-compression test rig using cruciform specimens. Different states of strain were studied by varying the strain ratio between the axial strain amplitudes in the range of -1 (shear loading to 1 (equibiaxial loading. The investigated loading conditions were proportional due to fixed directions of principal strains. The studied TRIP steel exhibits martensitic phase transformation from -austenite via ε-martensite into α‘- martensite which causes pronounced cyclic hardening. The α‘-martensite formation increased with increasing plastic strain amplitude. Shear loading promoted martensite formation and caused the highest α‘-martensite volume fractions at fatigue failure in comparison to uniaxial and other biaxial states of strain. Moreover, the fatigue lives of shear tests were higher than those of uniaxial and other biaxial tests. The von Mises equivalent strain hypothesis was found to be appropriate for uniaxial and biaxial fatigue, but too conservative for shear fatigue, according to literature for torsional fatigue. The COD strain amplitude which is based on crack opening displacement gave a better correlation of the investigated fatigue lives, especially those for shear loading. Different types of major cracks were observed on the sample surfaces after biaxial cyclic deformation by using electron monitoring in an electron beam universal system and scanning electron microscopy (SEM. Specimens with strain ratios of 1, 0.5, -0.1 and -0.5 showed mode I major cracks (perpendicular to the axis of maximum principal strain. Major cracks after shear fatigue

  17. Macroalgae as a Biomass Feedstock: A Preliminary Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Roesijadi, Guritno; Jones, Susanne B.; Snowden-Swan, Lesley J.; Zhu, Yunhua

    2010-09-26

    A thorough of macroalgae analysis as a biofuels feedstock is warranted due to the size of this biomass resource and the need to consider all potential sources of feedstock to meet current biomass production goals. Understanding how to harness this untapped biomass resource will require additional research and development. A detailed assessment of environmental resources, cultivation and harvesting technology, conversion to fuels, connectivity with existing energy supply chains, and the associated economic and life cycle analyses will facilitate evaluation of this potentially important biomass resource.

  18. THE MATHEMATICS STATISTICAL ANALYSIS PRODUCTIVE AND ECONOMIC PARAMETERS METALLURGICAL COMPLEX OF URAL

    Directory of Open Access Journals (Sweden)

    H.N. Gizatullin

    2008-12-01

    Full Text Available For economic rating of efficiency of a metallurgical complex of Ural the algorithm in which basis performance about structure and echelon the device of evaluation object lays is offered. With the help of multivariate methods of the analysis are selected the big system of industrial-financial parameters and its subsystems which final elements determine problems of development of a metallurgical complex. Its decision is possible by the received actual and best models. The found out structures, supervising education and the order of an arrangement of elements in subsystems, subsystems in echelons and echelons in the big system, supporting synergetic relations at all levels, provide economic stability of a complex. It has allowed to reveal not only the typical, but also the specific characteristics of a metallurgical business, both in some regions of Ural, and at possible integration of all the Urals region.

  19. Conceptual design for treatment of mining and metallurgical wastewaters which contains arsenic and antimony

    Directory of Open Access Journals (Sweden)

    Željko Kamberović

    2012-12-01

    Full Text Available This paper presents a preliminary design for treatment of mining and metallurgical wastewaters (MMW from the basin of antimony “Zajača“, which contains high concentrations of arsenic and antimony. MMW have been investigated in laboratory, due to large difference in concentrations of pollutants. Metallurgical wastewaters were treated using iron (II-sulfate and lime milk used to adjust the pH value at 7. After chemical treatment of metallurgical wastewater and its joining with mining wastewater, residual amount of arsenic in water was below maximum allowed concentrations, while the concentration of antimony, remained above the maximum allowed value. The final phase of purification process was performed using ion exchange resin. After treatment of MMW, they can be used as technical water in the smelting process of secondary raw lead materials.

  20. Measuring the metallurgical supply chain resilience using fuzzy analytic network process

    Directory of Open Access Journals (Sweden)

    P. Wicher

    2016-10-01

    Full Text Available The article presents a methodology for measuring the metallurgical supply chain resilience, which enables the ascertainment of key resilience capabilities and measurable criteria, and determining a level of the resilience. The methodology is based on Analytic Network Process (ANP, which is used to solve the complex decision-making problems, whose structures can be mapped as non-linear networks. Since ambiguous pairwise comparisons expressed by fuzzy sets are considered, the Fuzzy Analytic Network Process (FANP is applied. The methodology is verified on the generalised model of a metallurgical supply chain. The SuperDecisions software was used for the application. The experiments performed demonstrate the high level of suitability of the FANP approach for measuring metallurgical supply chain resilience.

  1. Microwave-assisted grinding of metallurgical coke; Molienda asistida con microondas de un coque metalurgico

    Energy Technology Data Exchange (ETDEWEB)

    Ruisanchez, E.; Juarez-Perez, E. J.; Arenillas, A.; Bermudez, J. M.; Menendez, J. A.

    2014-10-01

    Metallurgical cokes are composed of graphitic carbon (s2p2) and different inorganic compounds with very different capacities to absorb microwave radiation. Moreover, due to the electric conductivity shown by the metallurgical cokes, microwave radiation produces electric arcs or microplasmas, which gives rise to hot spots. Therefore, when these cokes are irradiated with microwaves some parts of the particle experiment a rapid heating, while some others do not heat at all. As a result of the different expansion and stress caused by thermal the shock, small cracks and micro-fissures are produced in the particle. The weakening of the coke particles, and therefore an improvement of its grind ability, is produced. This paper studies the microwave-assisted grinding of metallurgical coke and evaluates the grinding improvement and energy saving. (Author)

  2. Methods for Increasing Power Efficiency of Heating Furnaces Applied in Metallurgical and Mechanical Engineering Industries

    Directory of Open Access Journals (Sweden)

    M. L. German

    2011-01-01

    Full Text Available  The paper analyzes experimental data and results of balance tests of two continuous heating furnaces applied in mechanical engineering and metallurgical industries. Furnace power technological characteristics  and dependences of these characteristics on equipment productivity have been determined in the paper. The analysis has made it possible to reveal reasons of higher efficiency of a heating furnace used at BSW Rolling Mill-320 and formulate recommendations on reduction of fuel consumption in operating and designed combustion furnaces applied in mechanical engineering and metallurgical industries.

  3. An assessment of financial audit practices in the Romanian metallurgical industry

    Directory of Open Access Journals (Sweden)

    C. Boţa-Avram

    2014-07-01

    Full Text Available The goal of this paper is to provide an assessment of financial audit practices of the largest metallurgical companies trading on Romanian capital market. Metallurgical industry represents a significant sector in the Romanian economy as a whole; therefore an evaluation of audit practices used by these companies could provide relevant information. Based on a well-documented literature review, with a focus on main findings concerning audit practices, especially in the context of corporate governance, there was selected a set of certain criteria that should be taken into consideration when referring to the best practices in the audit area.

  4. Changes of action strategies in metallurgical enterprises in time of economic crisis

    Directory of Open Access Journals (Sweden)

    Božena Gajdzik

    2013-10-01

    Full Text Available The topic of the article is the change in action strategy of metallurgical enterprises in time of economic slowdown. The first part of article presents results of literature analyses, opinions of scientists concerning changes in behaviours of enterprises in time of bad conjuncture. In next part of the article the author concentrates on verification of argument concerning the changes in action strategies of enterprises in Polish metallurgical sector. Shown examples of changes are confronted with literature studies presented in the first part of the article.

  5. Effects of mechanical activation on the carbothermal reduction of chromite with metallurgical coke

    Directory of Open Access Journals (Sweden)

    Kenan Yıldız

    2010-06-01

    Full Text Available The carbothermal reduction of mechanically activated chromite with metallurgical coke under an argon atmosphere was investigated at temperatures between 1100 and 1400°C and the effects of the mechanical activation on chromite structure were analyzed by x-ray diffraction (XRD and scanning electron microscopy (SEM. An increase in specific surface area resulted in more contact points. The activation procedure led to amorphization and structural disordering in chromite and accelerated the degree of reduction and metalization in the mixture of chromite and metallurgical coke. Carbothermal reduction products were analzed by using scanning electron microscopy (SEM/EDS.

  6. An Overview of Manganese Recovery by Hydro and Pyro-Metallurgical Routes

    Science.gov (United States)

    Dwivedi, Deepak; Randhawa, Navneet Singh; Saroj, Sanjay; Jana, Ranjeet Kumar

    2017-04-01

    This review comprises of information about the recovery of manganese through leaching and carbothermic reduction routes. In industrial processes, various critical parameters such as ore size, temperature, pressure, gas atmosphere and ore composition etc. affect the reduction or recovery of Mn from ores. Authors have tried to bring those critical parameters in this review which is currently being considered as important industrial parameters for Mn ore processing. This paper deals with both pyro-metallurgical and hydro-metallurgical routes for Mn ore reduction and gives brief summary about the critical parameters.

  7. Elemental concentrations in Triticale straw, a potential bioenergy feedstock

    Science.gov (United States)

    Triticale (X Triticosecale Wittmack) is produced on more than three million ha world wide including 344,000 ha in the USA. Straw resulting from triticale production could provide feedstock for bioenergy production in many regions of the world, but high concentrations of certain elements, including s...

  8. Assessing hydrological impacts of tree-based bioenergy feedstock

    CSIR Research Space (South Africa)

    Gush, Mark B

    2010-01-01

    Full Text Available This chapter provides a methodology for assessing the hydrological impacts of tree-based bioenergy feedstock. Based on experience gained in South Africa, it discusses the tasks required to reach an understanding of the likely water resource impacts...

  9. A Landscape Vision for Sustainable Bioenergy Feedstock Production

    Science.gov (United States)

    Feedstock production for biofuel and other bioproducts is poised to rejuvenate rural economies, but may lead to long-term degradation of soil resources or other adverse and unintended environmental consequences if the practices are not developed in a sustainable manner. This presentation will examin...

  10. Maximum fossil fuel feedstock replacement potential of petrochemicals via biorefineries

    NARCIS (Netherlands)

    Brehmer, B.; Boom, R.M.; Sanders, J.P.M.

    2009-01-01

    The search for feedstock replacement options within the petrochemical industry should logically be based upon non-fossil resources. Retaining the functionality of the biochemicals in biomass for use as chemical products and precursors can lead to a sizeable reduction of fossil fuel consumption. This

  11. Biomass Program 2007 Program Peer Review - Feedstock Platform Summary

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-10-27

    This document discloses the comments provided by a review panel at the U.S. Department of Energy Office of the Biomass Program Peer Review held on November 15-16, 2007 in Baltimore, MD and the Feedstock Platform Portfolio Peer Review held on August 21st through 23rd in Washington D.C.

  12. Maximum fossil fuel feedstock replacement potential of petrochemicals via biorefineries

    NARCIS (Netherlands)

    Brehmer, B.; Boom, R.M.; Sanders, J.P.M.

    2009-01-01

    The search for feedstock replacement options within the petrochemical industry should logically be based upon non-fossil resources. Retaining the functionality of the biochemicals in biomass for use as chemical products and precursors can lead to a sizeable reduction of fossil fuel consumption. This

  13. Fatty acid profile of 25 alternative lipid feedstocks

    Science.gov (United States)

    This study reports the fatty acid profiles of 25 alternative lipid feedstocks for the production of bio-based fuels and chemicals. Lipids were extracted using hexane from oil-bearing seeds using a standard Soxhlet apparatus. Fatty acid profiles were measured using gas chromatography-flame ionization...

  14. Lignocellulosic feedstock supply systems with intermodal and overseas transportation

    NARCIS (Netherlands)

    Hoefnagels, Ric; Searcy, E.; Kafferty, K.; Cornelissen, T.; Junginger, Martin; Jacobson, J.; Faaij, André

    2014-01-01

    With growing demand for internationally traded biomass, the logistic operations required to economically move biomass from the field or forest to end- users have become increasingly complex. To design cost effective and sustainable feedstock supply chains, it is important to understand the economics

  15. Removal of SiC particles from solar grade silicon melts by imposition of high frequency magnetic field%采用高频磁场去除太阳能级硅熔体中的SiC粒子

    Institute of Scientific and Technical Information of China (English)

    Mehdi KADKHODABEIGI; Jafar SAFARIAN; Halvard TVEIT; Merete TANGSTAD; Stein Tore JOHANSEN

    2012-01-01

    Non-metallic particles and metallic impurities present in the feedstock affect the electrical and mechanical properties of high quality silicon which is used in critical applications such as photovoltaic solar cells and electronic devices.SiC particles strongly deteriorate the mechanical properties of photovoltaic cells and cause shunting problem.Therefore,these particles should be removed from silicon before solar cells are fabricated from this material.Separation of non-metallic particles from liquid metals by imposing an electromagnetic field was identified as an enhanced technology to produce ultra pure metals.Application of this method for removal of SiC particles from metallurgical grade silicon (MG-Si) was presented.Numerical methods based on a combination of classical models for inclusion removal and computational fluid dynamics (CFD) were developed to calculate the particle concentration and separation efficiency from the melt.In order to check efficiency of the method,several experiments were done using an induction furnace.The experimental results show that this method can be effectively applied to purifying silicon melts from the non-metallic inclusions.The results are in a good agreement with the predictions made by the model.%高质量硅材料在光伏太阳能和电子设备中具有重要应用,然而原料中的非金属颗粒和金属杂质严重影响其电学性能和力学性能.由于SiC粒子会降低光伏电池的力学性能并导致分流问题,因此在制备太阳能电池之前必须将这些杂质从硅材料中去除.利用磁场去除液态金属中的非金属杂质是制备高纯金属的一项尖端技术.利用该方法去除冶金级硅材料中的SiC粒子,并结合杂质去除经典模型和计算流体力学对熔体中粒子浓度和分离效率进行计算.为检验该方法的有效性,采用感应炉进行多次实验.结果表明:该方法能有效去除非金属杂质,提纯硅熔体,且实验结果与模型的预测结果相符.

  16. a Novel Framework for Incorporating Sustainability Into Biomass Feedstock Design

    Science.gov (United States)

    Gopalakrishnan, G.; Negri, C.

    2012-12-01

    There is a strong society need to evaluate and understand the sustainability of biofuels, especially due to the significant increases in production mandated by many countries, including the United States. Biomass feedstock production is an important contributor to environmental, social and economic impacts from biofuels. We present a systems approach where the agricultural, urban, energy and environmental sectors are considered as components of a single system and environmental liabilities are used as recoverable resources for biomass feedstock production. A geospatial analysis evaluating marginal land and degraded water resources to improve feedstock productivity with concomitant environmental restoration was conducted for the major corn producing states in the US. The extent and availability of these resources was assessed and geospatial techniques used to identify promising opportunities to implement this approach. Utilizing different sources of marginal land (roadway buffers, contaminated land) could result in a 7-fold increase in land availability for feedstock production and provide ecosystem services such as water quality improvement and carbon sequestration. Spatial overlap between degraded water and marginal land resources was found to be as high as 98% and could maintain sustainable feedstock production on marginal lands through the supply of water and nutrients. Multi-objective optimization was used to quantify the tradeoffs between net revenue, improvements in water quality and carbon sequestration at the farm scale using this design. Results indicated that there is an initial opportunity where land that is marginally productive for row crops and of marginal value for conservation purposes could be used to grow bioenergy crops such that that water quality and carbon sequestration benefits are obtained.

  17. Fatty acid composition as a tool for screening alternative feedstocks for production of biodiesel

    Science.gov (United States)

    Fatty acid (FA) composition was used as a screening tool for the selection of feedstocks high in monounsaturated content for evaluation as biodiesel. The feedstocks were ailanthus (Ailanthus altissima), anise (Pimpinella anisum), arugula (Eruca vesicaria), camelina (Camelina sativa), coriander (Cori...

  18. Fatty acid profile as a basis for screening feedstocks for biodiesel production

    Science.gov (United States)

    Fatty acid (FA) profile was used as a screening tool for the selection of feedstocks high in monounsaturated content for evaluation as biodiesel. The feedstocks were ailanthus (Ailanthus altissima), anise (Pimpinella anisum), arugula (Eruca vesicaria), camelina (Camelina sativa), coriander (Coriandr...

  19. Soil C storage and greenhouse gas emission perennial grasses managed for bio energy feedstock

    Science.gov (United States)

    Perennial grasses like switchgrass or big bluestem when managed as bioenergy feedstock require nitrogenous inputs. Nitrogen fertilizer frequently cause nitrous oxide emission. Therefore, managing grasses as feedstock may reduce the greenhouse gas (GHG) mitigation potential expected from perennial. ...

  20. Feedstock and technology options for Bioethanol production in South Africa: Technoeconomic prefeasibility study

    CSIR Research Space (South Africa)

    Amigun, B

    2013-09-01

    Full Text Available profitable operation during times with high feedstock prices would be possible. A sensitivity analysis of the economic assumptions of the base-case model demonstrated that feedstock price is the most important determinant of production costs...

  1. Silicon spintronics.

    Science.gov (United States)

    Jansen, Ron

    2012-04-23

    Worldwide efforts are underway to integrate semiconductors and magnetic materials, aiming to create a revolutionary and energy-efficient information technology in which digital data are encoded in the spin of electrons. Implementing spin functionality in silicon, the mainstream semiconductor, is vital to establish a spin-based electronics with potential to change information technology beyond imagination. Can silicon spintronics live up to the expectation? Remarkable advances in the creation and control of spin polarization in silicon suggest so. Here, I review the key developments and achievements, and describe the building blocks of silicon spintronics. Unexpected and puzzling results are discussed, and open issues and challenges identified. More surprises lie ahead as silicon spintronics comes of age.

  2. [Using the evaluation of carcinogenic risk in the mining and metallurgical enterprises of the Arctic].

    Science.gov (United States)

    Serebriakov, P V

    2012-01-01

    The aim of this study--hygienic assessment of the contribution of factors of working environment) in the formation of carcinogenic risk to the mining and metallurgical enterprises of the Far North, the establishment of the structural features of cancer pathology among workers of these enterprises, quantitative evaluation of individual professional cancer risk in different nosological forms and morphological variants of malignant neoplasms.

  3. Comparison of metallurgical coke and lignite coke for power generation in Thailand

    Science.gov (United States)

    Ratanakuakangwan, Sudlop; Tangjitsitcharoen, Somkiat

    2017-04-01

    This paper presents and compares two alternatives of cokes in power generation which are the metallurgical coke with coke oven gas and the coke from lignite under the consideration of the energy and the environment. These alternatives not only consume less fuel due to their higher heat content than conventional coal but also has less SO2 emission. The metallurgical coke and its by-product which is coke oven gas can be obtained from the carbonization process of coking coal. According to high grade coking coal, the result in the energy attitude is not profitable but its sulfur content that directly affects the emission of SO2 is considered to be very low. On the other hand, the coke produced from lignite is known as it is the lowest grade from coal and it causes the high pollution. Regarding to energy profitability, the lignite coke is considered to be much more beneficial than the metallurgical coke in contrast to the environmental concerns. However, the metallurgical coke has the highest heating value. Therefore, a decision making between those choices must be referred to the surrounding circumstances based on energy and environment as well as economic consideration in the further research.

  4. Advanced numerical models for the thermo-mechanical-metallurgical analysis in hot forging processes

    Science.gov (United States)

    Ducato, Antonino; Fratini, Livan; Micari, Fabrizio

    2013-05-01

    In the paper a literature review of the numerical modeling of thermo-mechanical-metallurgical evolutions of a metal in hot forging operations is presented. In particular models of multiaxial loading tests are considered for carbon steels. The collected examples from literature regard phases transformations, also martensitic transformations, morphologies evolutions and transformation plasticity phenomena. The purpose of the tests is to show the correlation between the mechanical and the metallurgical behavior of a carbon steel during a combination of several types of loads. In particular a few mechanical tests with heat treatment are analyzed. Furthermore, Ti-6Al-4V titanium alloy is considered. Such material is a multi-phasic alloy, at room temperature made of two main different phases, namely Alpha and Beta, which evolve during both cooling and heating stages. Several numerical applications, conducted using a commercial implicit lagrangian FEM code are presented too. This code can conduct tri-coupled thermo-mechanical-metallurgical simulations of forming processes. The numerical model has been used to carry out a 3D simulation of a forging process of a complex shape part. The model is able to take into account the effects of all the phenomena resulting from the coupling of thermal, mechanical and metallurgical events. As simulation results strongly depend on the accuracy of input data, physical simulation experiments on real-material samples are carried out to characterize material behavior during phase transformation.

  5. Casting larger polycrystalline silicon ingots

    Energy Technology Data Exchange (ETDEWEB)

    Wohlgemuth, J.; Tomlinson, T.; Cliber, J.; Shea, S.; Narayanan, M.

    1995-08-01

    Solarex has developed and patented a directional solidification casting process specifically designed for photovoltaics. In this process, silicon feedstock is melted in a ceramic crucible and solidified into a large grained semicrystalline silicon ingot. In-house manufacture of low cost, high purity ceramics is a key to the low cost fabrication of Solarex polycrystalline wafers. The casting process is performed in Solarex designed casting stations. The casting operation is computer controlled. There are no moving parts (except for the loading and unloading) so the growth process proceeds with virtually no operator intervention Today Solarex casting stations are used to produce ingots from which 4 bricks, each 11.4 cm by 11.4 cm in cross section, are cut. The stations themselves are physically capable of holding larger ingots, that would yield either: 4 bricks, 15 cm by 15 an; or 9 bricks, 11.4 cm by 11.4 an in cross-section. One of the tasks in the Solarex Cast Polycrystalline Silicon PVMaT Program is to design and modify one of the castings stations to cast these larger ingots. If successful, this effort will increase the production capacity of Solarex`s casting stations by 73% and reduce the labor content for casting by an equivalent percentage.

  6. A comparison of used cooking oils: a very heterogeneous feedstock for biodiesel

    Science.gov (United States)

    The increased interest in and use of biodiesel renders the availability of a sufficient supply of feedstock ever more urgent. While commodity vegetable oils such as soybean, rapeseed (canola), palm and sunflower may be seen as "classical" biodiesel feedstocks, additional feedstocks are needed to me...

  7. Modeling Sustainable Bioenergy Feedstock Production in the Alps

    Science.gov (United States)

    Kraxner, Florian; Leduc, Sylvain; Kindermann, Georg; Fuss, Sabine; Pietsch, Stephan; Lakyda, Ivan; Serrano Leon, Hernan; Shchepashchenko, Dmitry; Shvidenko, Anatoly

    2016-04-01

    Sustainability of bioenergy is often indicated by the neutrality of emissions at the conversion site while the feedstock production site is assumed to be carbon neutral. Recent research shows that sustainability of bioenergy systems starts with feedstock management. Even if sustainable forest management is applied, different management types can impact ecosystem services substantially. This study examines different sustainable forest management systems together with an optimal planning of green-field bioenergy plants in the Alps. Two models - the biophysical global forest model (G4M) and a techno-economic engineering model for optimizing renewable energy systems (BeWhere) are implemented. G4M is applied in a forward looking manner in order to provide information on the forest under different management scenarios: (1) managing the forest for maximizing the carbon sequestration; or (2) managing the forest for maximizing the harvestable wood amount for bioenergy production. The results from the forest modelling are then picked up by the engineering model BeWhere, which optimizes the bioenergy production in terms of energy demand (power and heat demand by population) and supply (wood harvesting potentials), feedstock harvesting and transport costs, the location and capacity of the bioenergy plant as well as the energy distribution logistics with respect to heat and electricity (e.g. considering existing grids for electricity or district heating etc.). First results highlight the importance of considering ecosystem services under different scenarios and in a geographically explicit manner. While aiming at producing the same amount of bioenergy under both forest management scenarios, it turns out that in scenario (1) a substantially larger area (distributed across the Alps) will need to be used for producing (and harvesting) the necessary amount of feedstock than under scenario (2). This result clearly shows that scenario (2) has to be seen as an "intensification

  8. Demand and supply of hydrogen as chemical feedstock in USA

    Science.gov (United States)

    Huang, C. J.; Tang, K.; Kelley, J. H.; Berger, B. J.

    1979-01-01

    Projections are made for the demand and supply of hydrogen as chemical feedstock in USA. Industrial sectors considered are petroleum refining, ammonia synthesis, methanol production, isocyanate manufacture, edible oil processing, coal liquefaction, fuel cell electricity generation, and direct iron reduction. Presently, almost all the hydrogen required is produced by reforming of natural gas or petroleum fractions. Specific needs and emphases are recommended for future research and development to produce hydrogen from other sources to meet the requirements of these industrial sectors. The data and the recommendations summarized in this paper are based on the Workshop 'Supply and Demand of Hydrogen as Chemical Feedstock' held at the University of Houston on December 12-14, 1977.

  9. Hydrogen production via catalytic processing of renewable feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Nazim Muradov; Franklyn Smith; Ali T-Raissi [Florida Solar Energy Center, University of Central Florida, Cocoa, Florida, (United States)

    2006-07-01

    Landfill gas (LFG) and biogas can potentially become important feedstocks for renewable hydrogen production. The objectives of this work were: (1) to develop a catalytic process for direct reforming of CH{sub 4}-CO{sub 2} gaseous mixture mimicking LFG, (2) perform thermodynamic analysis of the reforming process using AspenPlus chemical process simulator, (3) determine operational conditions for auto-thermal (or thermo-neutral) reforming of a model CH{sub 4}-CO{sub 2} feedstock, and (4) fabricate and test a bench-scale hydrogen production unit. Experimental data obtained from catalytic reformation of the CH{sub 4}-CO{sub 2} and CH{sub 4}-CO{sub 2}-O{sub 2} gaseous mixtures using Ni-catalyst were in a good agreement with the simulation results. It was demonstrated that catalytic reforming of LFG-mimicking gas produced hydrogen with the purity of 99.9 vol.%. (authors)

  10. Pyrolysis of biomass to produce fuels and chemical feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Yaman, Serdar E-mail: yamans@itu.edu.tr

    2004-03-01

    This review presents the summary of new studies on pyrolysis of biomass to produce fuels and chemical feedstocks. A number of biomass species, varying from woody and herbaceous biomass to municipal solid waste, food processing residues and industrial wastes, were subjected to different pyrolysis conditions to obtain liquid, gas and solid products. The results of various biomass pyrolysis investigations connected with the chemical composition and some properties of the pyrolysis products as a result of the applied pyrolysis conditions were combined. The characteristics of the liquid products from pyrolysis were examined, and some methods, such as catalytic upgrading or steam reforming, were considered to improve the physical and chemical properties of the liquids to convert them to economic and environmentally acceptable liquid fuels or chemical feedstocks. Outcomes from the kinetic studies performed by applying thermogravimetric analysis were also presented.

  11. Pyrolysis of biomass to produce fuels and chemical feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Serdar Yaman [Istanbul Technical University (Turkey). Chemical Engineering Dept.

    2004-03-01

    This review presents the summary of new studies on pyrolysis of biomass to produce fuels and chemical feedstocks. A number of biomass species, varying from woody and herbaceous biomass to municipal solid waste, food processing residues and industrial wastes, were subjected to different pyrolysis conditions to obtain liquid, gas and solid products. The results of various biomass pyrolysis investigations connected with the chemical composition and some properties of the pyrolysis products as a result of the applied pyrolysis conditions were combined. The characteristics of the liquid products from pyrolysis were examined, and some methods, such as catalytic upgrading or steam reforming, were considered to improve the physical and chemical properties of the liquids to convert them to economic and environmentally acceptable liquid fuels or chemical feedstocks. Outcomes from the kinetic studies performed by applying thermogravimetric analysis were also presented. (author)

  12. Effects of feedstocks on the process integration of biohydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Foglia, Domenico; Wukovits, Walter; Friedl, Anton [Vienna University of Technology, Vienna (Austria); Ljunggren, Mattias; Zacchi, Guido [Lund University, P. O. Box 124, Lund (Sweden); Urbaniec, Krzysztof; Markowski, Mariusz [Warsaw University of Technology, Plock (Poland)

    2011-08-15

    Future production of hydrogen must be sustainable. To obtain it, renewable resources have to be employed for its production. Fermentation of biomasses could be a viable way. The process evaluated is a two-step fermentation to produce hydrogen from biomass. Process options with barley straws, PSP, and thick juice as feedstocks have been compared on the basis of process balances. Aspen Plus has been used to calculate mass and energy balances taking into account the integration of the process. Results show that the production of hydrogen as energy carrier is technically feasible with all the considered feedstocks and thanks to heat integration, second generation biomass (PSP and barley straws) are competitive with food crops (thick juice). (orig.)

  13. Effects of surfactant on properties of MIM feedstock

    Institute of Scientific and Technical Information of China (English)

    LI Yi-min; LIU Xiang-quan; LUO Feng-hua; YUE Jian-ling

    2007-01-01

    Effects of the surfactant for improving the properties of MIM feedstock were investigated. Feedstocks were prepared by 17-4PH stainless steel(SS) powder and paraffin wax-based binder containing different contents of stearic acid(SA) as the surfactant. The viscosity of the feedstock decreases significantly when the SA is added. Besides, the wetting angle of the binder against the 17-4PH SS powder decreases greatly and the critical solid loading increases with the adding of the SA. Fourier transformation infrared spectroscopy(FTIR) analysis was used to prove the interaction between the SA and the 17-4PH SS powder. Chemical bonding is found on the surface of 17-4PH SS powder after mixing and it helps a lot to enhance the interacting force between the binder and the powder. Then an adsorbing model was adopted to estimate the least content of the surfactant that formed a monolayer adsorption on the mono-sized spherical powder (with smooth surface). The least content of the surfactant is calculated to be 0.19%. Whereas, the experiments indicate that about 5% is the optimal value to improve the properties of the feedstock. The reason may come from two aspects: firstly, the powders used in current experiment are not all mono-sized spheres and the coarse surface of the powder has a great effect on the adsorptive capacity of the powder; secondly, multilayer adsorption is likely to occur on the powder surface, which will also increase the adsorptive capacity.

  14. Kurdistan crude oils as feedstock for production of aromatics

    Directory of Open Access Journals (Sweden)

    Abdulsalam R. Karim

    2017-05-01

    Full Text Available Crude oils from various locations in Iraqi Kurdistan were fully evaluated, so that enables refiners to improve their operation by selecting the best crude oil that yields high naphtha content to be used as a catalytic reforming feedstock after determination of total sulfur content and then de sulfurizing them, then cyclizing or reforming these sweet naphtha cuts to produce aromatic fractions which can be split into benzene, toluene, and xylenes.

  15. LIGNOCELLULOSIC BIOMASS: A POTENTIAL FEEDSTOCK TO REPLACE PETROLEUM

    OpenAIRE

    Lucian A. Lucia

    2008-01-01

    Sustainability considerations for product and energy production in a future US economy can be met with lignocellulosic biomass. The age of petroleum as the key resource to meet the US economy requirements is rapidly dwindling, given the limited resources of petroleum, the growing global population, and concurrent detrimental effects on environmental safety. The use of natural and renewable feedstocks such as trees and switchgrass is becoming more attractive; indeed, lignocellulosic biomass i...

  16. Processes for liquefying carbonaceous feedstocks and related compositions

    Energy Technology Data Exchange (ETDEWEB)

    MacDonnell, Frederick M.; Dennis, Brian H.; Billo, Richard E.; Priest, John W.

    2017-02-28

    Methods for the conversion of lignites, subbituminous coals and other carbonaceous feedstocks into synthetic oils, including oils with properties similar to light weight sweet crude oil using a solvent derived from hydrogenating oil produced by pyrolyzing lignite are set forth herein. Such methods may be conducted, for example, under mild operating conditions with a low cost stoichiometric co-reagent and/or a disposable conversion agent.

  17. Digitalizing the Circular Economy - Circular Economy Engineering Defined by the Metallurgical Internet of Things

    Science.gov (United States)

    Reuter, Markus A.

    2016-09-01

    Metallurgy is a key enabler of a circular economy (CE), its digitalization is the metallurgical Internet of Things (m-IoT). In short: Metallurgy is at the heart of a CE, as metals all have strong intrinsic recycling potentials. Process metallurgy, as a key enabler for a CE, will help much to deliver its goals. The first-principles models of process engineering help quantify the resource efficiency (RE) of the CE system, connecting all stakeholders via digitalization. This provides well-argued and first-principles environmental information to empower a tax paying consumer society, policy, legislators, and environmentalists. It provides the details of capital expenditure and operational expenditure estimates. Through this path, the opportunities and limits of a CE, recycling, and its technology can be estimated. The true boundaries of sustainability can be determined in addition to the techno-economic evaluation of RE. The integration of metallurgical reactor technology and systems digitally, not only on one site but linking different sites globally via hardware, is the basis for describing CE systems as dynamic feedback control loops, i.e., the m-IoT. It is the linkage of the global carrier metallurgical processing system infrastructure that maximizes the recovery of all minor and technology elements in its associated refining metallurgical infrastructure. This will be illustrated through the following: (1) System optimization models for multimetal metallurgical processing. These map large-scale m-IoT systems linked to computer-aided design tools of the original equipment manufacturers and then establish a recycling index through the quantification of RE. (2) Reactor optimization and industrial system solutions to realize the "CE (within a) Corporation—CEC," realizing the CE of society. (3) Real-time measurement of ore and scrap properties in intelligent plant structures, linked to the modeling, simulation, and optimization of industrial extractive process

  18. Silicon as anode for high-energy lithium ion batteries: From molten ingot to nanoparticles

    Science.gov (United States)

    Leblanc, Dominic; Hovington, Pierre; Kim, Chisu; Guerfi, Abdelbast; Bélanger, Daniel; Zaghib, Karim

    2015-12-01

    In this work, we demonstrate that a new mechanical attrition process can be used to prepare nanosilicon powder from metallurgical grade silicon lumps. Composite Li-ion anode made from this nanometer-size powder was found to have a high reversible capacity of 2400 mAh g-1 and an improved cycling stability compared to micrometer-sized powder. It is proposed that improved battery cycling performance is ascribed to the nanoscale silicon particles which supresses the volume expansion owing to its superplasticity.

  19. High-flux solar furnace processing of crystalline silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Tsuo, Y.S.; Pitts, J.R. [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Menna, P. [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States)]|[ENEA-Centro Ricerche Fotovoltaiche, Portici 80055 (Italy); Landry, M.D. [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Gee, J.M. [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States)]|[Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Ciszek, T.F. [National Renewable Energy Laboratory, Golden, Colorado, 80401 (United States)

    1997-02-01

    We studied the processing of crystalline-silicon solar cells using a 10-kW, high-flux solar furnace (HFSF). Major findings of this study include: (1) hydrogenated amorphous silicon films deposited on glass substrates can be converted to microcrystalline silicon by solid-phase crystallization in 5 seconds or less in the HFSF; (2) the presence of concentrated sunlight enhances the diffusion of phosphorus into silicon from a spin-on dopant source; (3) the combination of a porous-silicon surface layer and photo-enhanced impurity diffusion is very effective in gettering impurities from a metallurgical-grade silicon wafer or thin-layer silicon deposited using liquid-phase epitaxy; (4) a 14.1{percent}-efficient crystalline-silicon solar cell with an area of 4.6cm{sup 2} was fabricated using the HFSF for simultaneous diffusion of front n{sup +}-p and back p-p{sup +} junctions; and (5) we have shown that the HFSF can be used to texture crystalline-silicon surfaces and to anneal metal contacts printed on a silicon solar cell. {copyright} {ital 1997 American Institute of Physics.}

  20. High-flux solar furnace processing of crystalline silicon solar cells

    Science.gov (United States)

    Tsuo, Y. S.; Pitts, J. R.; Menna, P.; Landry, M. D.; Gee, J. M.; Ciszek, T. F.

    1997-02-01

    We studied the processing of crystalline-silicon solar cells using a 10-kW, high-flux solar furnace (HFSF). Major findings of this study include: (1) hydrogenated amorphous silicon films deposited on glass substrates can be converted to microcrystalline silicon by solid-phase crystallization in 5 seconds or less in the HFSF; (2) the presence of concentrated sunlight enhances the diffusion of phosphorus into silicon from a spin-on dopant source; (3) the combination of a porous-silicon surface layer and photo-enhanced impurity diffusion is very effective in gettering impurities from a metallurgical-grade silicon wafer or thin-layer silicon deposited using liquid-phase epitaxy; (4) a 14.1%-efficient crystalline-silicon solar cell with an area of 4.6 cm2 was fabricated using the HFSF for simultaneous diffusion of front n+-p and back p-p+ junctions; and (5) we have shown that the HFSF can be used to texture crystalline-silicon surfaces and to anneal metal contacts printed on a silicon solar cell.

  1. Expected international demand for woody and herbaceous feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Lamers, Patrick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jacobson, Jacob [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mohammad, Roni [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wright, Christopher [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    The development of a U.S. bioenergy market and ultimately ‘bioeconomy’ has primarily been investigated with a national focus. Limited attention has been given to the potential impacts of international market developments. The goal of this project is to advance the current State of Technology of a single biorefinery to the global level providing quantitative estimates on how international markets may influence the domestic feedstock supply costs. The scope of the project is limited to feedstock that is currently available and new crops being developed to be used in a future U.S. bioeconomy including herbaceous residues (e.g., corn stover), woody biomass (e.g., pulpwood), and energy crops (e.g., switchgrass). The timeframe is set to the periods of 2022, 2030, and 2040 to align with current policy targets (e.g., the RFS2) and future updates of the Billion Ton data. This particular milestone delivers demand volumes for generic woody and herbaceous feedstocks for the main (net) importing regions along the above timeframes. The regional focus of the study is the European Union (EU), currently the largest demand region for U.S. pellets made from pulpwood and forest residues. The pellets are predominantly used in large-scale power plants (>5MWel) in the United Kingdom (UK), the Netherlands (NL), Belgium (BE), and Denmark (DK).

  2. Physiochemical Characterization of Briquettes Made from Different Feedstocks

    Directory of Open Access Journals (Sweden)

    C. Karunanithy

    2012-01-01

    Full Text Available Densification of biomass can address handling, transportation, and storage problems and also lend itself to an automated loading and unloading of transport vehicles and storage systems. The purpose of this study is to compare the physicochemical properties of briquettes made from different feedstocks. Feedstocks such as corn stover, switchgrass, prairie cord grass, sawdust, pigeon pea grass, and cotton stalk were densified using a briquetting system. Physical characterization includes particle size distribution, geometrical mean diameter (GMD, densities (bulk and true, porosity, and glass transition temperature. The compositional analysis of control and briquettes was also performed. Statistical analyses confirmed the existence of significant differences in these physical properties and chemical composition of control and briquettes. Correlation analysis confirms the contribution of lignin to bulk density and durability. Among the feedstocks tested, cotton stalk had the highest bulk density of 964 kg/m3 which is an elevenfold increase compared to control cotton stalk. Corn stover and pigeon pea grass had the highest (96.6% and lowest (61% durability.

  3. Using Populus as a lignocellulosic feedstock for bioethanol.

    Science.gov (United States)

    Porth, Ilga; El-Kassaby, Yousry A

    2015-04-01

    Populus species along with species from the sister genus Salix will provide valuable feedstock resources for advanced second-generation biofuels. Their inherent fast growth characteristics can particularly be exploited for short rotation management, a time and energy saving cultivation alternative for lignocellulosic feedstock supply. Salicaceae possess inherent cell wall characteristics with favorable cellulose to lignin ratios for utilization as bioethanol crop. We review economically important traits relevant for intensively managed biofuel crop plantations, genomic and phenotypic resources available for Populus, breeding strategies for forest trees dedicated to bioenergy provision, and bioprocesses and downstream applications related to opportunities using Salicaceae as a renewable resource. Challenges need to be resolved for every single step of the conversion process chain, i.e., starting from tree domestication for improved performance as a bioenergy crop, bioconversion process, policy development for land use changes associated with advanced biofuels, and harvest and supply logistics associated with industrial-scale biorefinery plants using Populus as feedstock. Significant hurdles towards cost and energy efficiency, environmental friendliness, and yield maximization with regards to biomass pretreatment, saccharification, and fermentation of celluloses and the sustainability of biorefineries as a whole still need to be overcome.

  4. How non-conventional feedstocks will affect aromatics technologies

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, E. [Clariant Produkte (Deutschland) GmbH, Muenchen (Germany)

    2013-11-01

    The abundance of non-conventional feedstocks such as coal and shale gas has begun to affect the availability of traditional base chemicals such as propylene and BTX aromatics. Although this trend is primarily fueled by the fast growing shale gas economy in the US and the abundance of coal in China, it will cause the global supply and demand situation to equilibrate across the regions. Lower demand for gasoline and consequently less aromatics rich reformate from refineries will further tighten the aromatics markets that are expected to grow at healthy rates, however. Refiners can benefit from this trend by abandoning their traditional fuel-oriented business model and becoming producers of petrochemical intermediates, with special focus on paraxylene (PX). Cheap gas from coal (via gasification) or shale reserves is an advantaged feedstock that offers a great platform to make aromatics in a cost-competitive manner, especially in regions where naphtha is in short supply. Gas condensates (LPG and naphtha) are good feedstocks for paraffin aromatization, and methanol from coal or (shale) gas can be directly converted to BTX aromatics (MTA) or alkylated with benzene or toluene to make paraxylene. Most of today's technologies for the production and upgrading of BTX aromatics and their derivatives make use of the unique properties of zeolites. (orig.)

  5. Feeding a sustainable chemical industry: do we have the bioproducts cart before the feedstocks horse?

    Science.gov (United States)

    Dale, Bruce E

    2017-07-20

    A sustainable chemical industry cannot exist at scale without both sustainable feedstocks and feedstock supply chains to provide the raw materials. However, most current research focus is on producing the sustainable chemicals and materials. Little attention is given to how and by whom sustainable feedstocks will be supplied. In effect, we have put the bioproducts cart before the sustainable feedstocks horse. For example, bulky, unstable, non-commodity feedstocks such as crop residues probably cannot supply a large-scale sustainable industry. Likewise, those who manage land to produce feedstocks must benefit significantly from feedstock production, otherwise they will not participate in this industry and it will never grow. However, given real markets that properly reward farmers, demand for sustainable bioproducts and bioenergy can drive the adoption of more sustainable agricultural and forestry practices, providing many societal "win-win" opportunities. Three case studies are presented to show how this "win-win" process might unfold.

  6. IFM – SCIENTIFIC CENTRE OF THE DEVELOPMENT OF THE UKRAINIAN METALLURGICAL INDUSTRY

    Directory of Open Access Journals (Sweden)

    BOLSHAKOV V. I.

    2017-01-01

    Full Text Available The history of creation and development of the Institute of ferrous metallurgy of the Ukrainian Academy of Sciences named after Z. I. Nekrasov is regarded in the article. IFM has become the scientific centre of the development of the metallurgical industry of Ukraine. Researches of the outstanding scientists show their significant contribution in the development of the metallurgical science and implementation of their achievements in the production of the metallurgical industry of Ukraine. Analysis of publications. History of the Institute of the ferrous metallurgy is regarded in the fundamental works devoted to the development of the metallurgical industry in Ukraine and in the works published to the jubilee dates of the prominent scientists academicians Z. I. Nekrasov, V. I. Bol’shakov and others. The purpose of the article is to analyze the process of the creation of the Institute and the stages of its development in the 20th and 21st centuries and to define the influence of the economic and political situation in the country upon this process? To regard the role of the outstanding scientists and influence of their achievements on the development of the metallurgical industry of Ukraine. The history of IFM began in 1939 when it was organized in Kharkiv as a part of the Academy of Sciences of Ukraine. At the beginning of the Great Patriotic war the Institute was moved to Ufa – the capital of Bashkiria. During the war the scientists of the Institute tried to increase the output of metal and special steels for the defence industry. In 1943 the Institute moved to Moscow and then to Kiev. In 1952 it was decided to move the Institute to Dnepropetrovsk. In order to combine the scientific researches and production of metal. Z. I. Nekrasov was elected Director of the Institute. The departments of the Indtitute were headed by academicians Z. I. Nekrasov, A. P. Chekmariov, K. F. Starodubov, Correspondence Members of the Ukrainian Academy of Sciences

  7. Oxidation Refinement of Crude Silicon%粗硅的氧化精炼

    Institute of Scientific and Technical Information of China (English)

    戴永年; 马文会; 杨斌; 刘大春; 栗曼; 魏钦帅

    2012-01-01

    The metallurgical method to refine silicon for making multi - crystalline silicon can meet the need of solar cell production. The method has drawn people's attention due to its low production cost. As an important part of the metallurgical method to refine silicon, oxidation method makes many impurities of crude silicon that has low oxidized free energy (△G) level be oxides to leave silicon, such as Al, Ca, Ti, B and C. Its apparatus includes furnaces with plasma jet over the surface of the silicon melt, and blowing gas from the furnace's bottom pipe. The reacting gases can be Ar, N2, O2, air, H2O, CO2 and H2. In this paper the research works and plant production practices of refining silicon are collected to find the law of oxidation refining silicon for advanced research and production of 6N silicon.%冶金法精炼硅制多晶硅(6N),供太阳能电池使用,其成本可能较低而受到关注.冶金法中重要的一步是氧化法,它将粗硅中的杂质氧化成化合物的自由能(△G)位低的全部或部分除去,如Al、Ca、Ti、B、C等.氧化精炼硅用的方法有炉中吹炼、等离子吹炼;吹的气体有氩气、氮气、氧气、空气、H2O、CO2和氢气等.本文将研究工作和工厂实践集中归纳,力图明晰氧化法精炼硅的规律,以利于进一步深入研究和生产实践.

  8. Manufacturing metrology for c-Si photovoltaic module reliability and durability, Part I: Feedstock, crystallization and wafering

    Energy Technology Data Exchange (ETDEWEB)

    Seigneur, Hubert; Mohajeri, Nahid; Brooker, R. Paul; Davis, Kristopher O.; Schneller, Eric J.; Dhere, Neelkanth G.; Rodgers, Marianne P.; Wohlgemuth, John; Shiradkar, Narendra S.; Scardera, Giuseppe; Rudack, Andrew C.; Schoenfeld, Winston V.

    2016-06-01

    This article is the first in a three-part series of manufacturing metrology for c-Si photovoltaic (PV) module reliability and durability. Here in Part 1 we focus on the three primary process steps for making silicon substrates for PV cells: (1) feedstock production; (2) ingot and brick production; and (3) wafer production. Each of these steps can affect the final reliability/durability of PV modules in the field with manufacturing metrology potentially playing a significant role. This article provides a comprehensive overview of historical and current processes in each of these three steps, followed by a discussion of associated reliability challenges and metrology strategies that can be employed for increased reliability and durability in resultant modules. Gaps in the current state of understanding in connective metrology data during processing to reliability/durability in the field are then identified along with suggested improvements that should be considered by the PV community.

  9. The beryllium production at Ulba metallurgical plant (Ust-Kamenogrsk, Kazakhstan)

    Energy Technology Data Exchange (ETDEWEB)

    Dvinskykh, E.M.; Savchuk, V.V.; Tuzov, Y.V. [Ulba Metallurgical Plant (Zavod), Ust-Kamenogorsk, Abay prospect 102 (Kazakhstan)

    1998-01-01

    The Report includes data on beryllium production of Ulba metallurgical plant, located in Ust-Kamenogorsk (Kazakhstan). Beryllium production is showed to have extended technological opportunities in manufacturing semi-products (beryllium ingots, master alloys, metallic beryllium powders, beryllium oxide) and in production of structural beryllium and its parts. Ulba metallurgical plant owns a unique technology of beryllium vacuum distillation, which allows to produce reactor grades of beryllium with a low content of metallic impurities. At present Ulba plant does not depend on raw materials suppliers. The quantity of stored raw materials and semi-products will allow to provide a 25-years work of beryllium production at a full capacity. The plant has a satisfactory experience in solving ecological problems, which could be useful in ITER program. (author)

  10. Measurements of the communication noise level on the internal roads of the manufacturing metallurgical enterprise

    Directory of Open Access Journals (Sweden)

    B. Gajdzik

    2012-07-01

    Full Text Available This publication shows the results of measurements of the noise level emitted by the motor trucks on the internal roads of the steelworks. The distribution of the metallurgical products with the use of trucks is, next to the rail transport, one of the main logistic forms of products delivery to the customer. The research was conducted on one of the busiest internal roads of metallurgical enterprise ArcelorMittal Poland in Dąbrowa Górnicza. The enterprise conducts the whole production cycle and is the biggest steel producer in Poland. On the premises of the steelworks there were five points of measurements marked where the noise level is measured and the results were compared with the acceptable noise levels defined in the norms.

  11. Powder metallurgical processing of a SiC particle reinforced Al-6wt.%Fe alloy

    OpenAIRE

    Staniek, G.; Lehnert, F.; Peters, M; Bunk, W.; Kaysser, W.

    1993-01-01

    Discontinuously reinforced aluminum alloys for elevated temperatures with a matrix hardened by intermetallic phases generally have to be produced by powder metallurgy because of their high content of alloying elements. The objective of this investigation was the evaluation of powder metallurgical processing for an A16Fe powder alloy containing various fractions and volume contents of SiC particles. During processing, the effect of powder mixing on SiC particle distribution in the extruded pro...

  12. Background and principles of self-organizing jet-emulsion metallurgical unit

    Science.gov (United States)

    Tsymbal, V. P.; Kozhemyachenko, V. I.; Rybenko, I. A.; Mochalov, S. P.; Padalko, A. G.; Kalashnikov, S. N.; Krasnoperov, S. Yu; Ermakova, L. A.; Olennikov, A. A.

    2016-09-01

    The basic principles laid in the creation of a new jet-emulsion process and metallurgical unit were considered. Development of self-organizing oscillator reactor, bottom feed of the prepared in it combustible mixture to the column reactor and a large deviation from the thermodynamic equilibrium allow dissipative structure to be created, and thus control the ratio of reducing and oxidizing processes, the carbon content in the metal.

  13. China Metallurgical Group and Jiangxi Copper Having Signed Agreement on Copper Mines with Afghanistan

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>On May 25,the joint investment combo formed by China Metallurgical Group Corp.(MCC) and Jiangxi Copper Co.has formally signed agreement with Afghan government in Kabul on the exploitation of Aynak copper mine.The mine is situated in the north of Loghar in the middle east of Afghanistan,which is about 35km from the Capital City of Kabul.The ex- tra-large copper mine was found at the begin-

  14. FINDING WAYS OF RECYCLING DUST OF ARC STEEL FURNACES AT THE BELARUSIAN METALLURGIC PLANT

    Directory of Open Access Journals (Sweden)

    A. V. Demin

    2015-01-01

    Full Text Available The first part examines the theoretical possibility of recycling dust of arc steel furnaces. The different modes of dust disposal depending on the task of recycling are discussed: recycling at minimal cost; recycling with a maximum extraction of iron; recycling with maximum extraction of zinc. The results of laboratory studies providing information on the technical feasibility of recycling dust formed at the Belarusian metallurgic plant are provided.

  15. Applications of optimal mathematic-physical models in metallurgical manufacture scheduling system at Baosteel

    Institute of Scientific and Technical Information of China (English)

    Jian Qiu; Naiyuan Tian; Zhixin Lu; Guowei Sun

    2003-01-01

    The transfer of mass flow between ironmaking and steelmaking process at Baoshan Iron and Steel Co. Ltd. has been analyzed. The mathematic-physical models of transport scheduling for hot metal manufacturing have been researched combined with the practical problem in the metallurgical manufacture procedure. Taking into account these models, the scheduling software has been designed, programmed and tested on-line. The new automation system of production scheduling has been implemented successfully at Baosteel, which produces a great economic benefit.

  16. Software for simulation of utilization schemes of secondary energy from the exhaust gases of metallurgical units

    Science.gov (United States)

    Olennikov, A. A.; Tsymbal, V. P.

    2016-09-01

    The work is devoted to the program complex intended for designing schemes of secondary energy utilization from metallurgical units. The structure of the software system is based on three levels of complex systems assembled from subsystems. The mathematical models of a complex process of heat transfer and gas dynamics occurring in the energy utilization units and gas cleaning devices. We describe the user interaction with the software package, and show the calculation results in the form of plots.

  17. The identification of zones of amplification of disruptions in network supply chains of metallurgic products

    Directory of Open Access Journals (Sweden)

    M. Kramarz

    2015-01-01

    Full Text Available An increase in the number of participants in a supply chain and network relations results in an increase in the complexity of the entire logistic and production system. Consequently, there appear additional potential sources of disruptions in material flows. The aim of the research presented in the article is to identify the zones of amplification of disruptions in network supply chains of metallurgic products.

  18. Evaluation of professional risk of malignant new tumors in workers of mining metallurgical plant

    OpenAIRE

    Igor Kudryavcev

    2010-01-01

    The study has showed the existence of high professional risk(standardized relative risk) of malignant new tumors (MNT)development in major productions of Navoi Mining andMetallurgical Combine (NMMC) in not less than 60% of populationinvolved in working environment and labor process. Less than high,but statistically significant professional risk exists for employees ofsubsidiary industries, who periodically are exposed to complexproduction-professional factors. This necessitates the developmen...

  19. Study of Recycled and Virgin Compounded Metal Injection Moulded Feedstock for Stainless Steel 630

    Science.gov (United States)

    Manonukul, Anchalee; Likityingwara, Warakij; Rungkiatnawin, Phataraporn; Muenya, Nattapol; Amoranan, Suttha; Kittinantapol, Witoo; Surapunt, Suphachai

    Fine rounded powders preferable for metal injection moulding (MIM) are expensive. This forces MIM makers to recycle green scraps, for example, the runner system and defected green parts. This is particularly necessary for injection moulded small parts where parts are only a small portion of the injection short size. There is very little published data, although recycling feedstock has been practise throughout the industry. This work aims at investigating the effects of recycled stainless steel 630 feedstock content on the density, mechanical properties, dimensional changes and microstructure. Five batches of compounded virgin and recycled feedstock were studies from 0% to 100% recycled feedstock with the increment of 25%. Homogenously compounded feedstock was injected using the same injection condition. Subsequently, green parts were debinded and sintered at 1325°C for 2 hours in argon atmosphere. The results suggest that the green density increases linearly with increasing percentage of recycled feedstock because the polymeric binder was broken down during previous process. However, the sintered density remains nominally constant. As a result, the mechanical properties and microstructure of sintered parts are independent of recycled feedstock content. However, the volumetric and linear shrinkage decreases linearly with the increase in percentage of recycled feedstock. The difference in shrinkage is vital to dimensional control during commercial production. For example, only 4.5% of recycled feedstock can be added to virgin feedstock if a tolerance of ±0.3 mm is required for a 25 mm MIM part.

  20. The two faces of coal : uncertainty the common prospect for metallurgical and thermal coal

    Energy Technology Data Exchange (ETDEWEB)

    Zlotnikov, D.

    2010-09-15

    Although the methods of producing thermal and metallurgical coal are the same, metallurgical coal is destined to cross the world for steel manufacturing and thermal coal is destined for power plants close to where it was mined. This article discussed the factors influencing the price of these 2 coals. The production of thermal coal can remain steady during an economic crisis because coal-fired power plants generally provide low-cost-base-load electricity that remains stable during economic cycles. However, the demand for metallurgical coal is more volatile during an economic crisis because it is directly related to the demand for steel products in the construction and automotive industry, which are very sensitive to the state of the economy. There have been recent indications that Canada's export market for thermal coal is on the rise. In 2008, China became a net importer of coking coal. China's need for more coal to fuel its growing economy despite the global economic slowdown has meant that producers are diverting excess supply from European markets to China. Higher-end thermal coal offers low sulphur content and higher energy content, both desirable traits for power utilities facing strict emissions control. In addition to having huge reserves of very high-quality coal that is becoming increasingly important to China, Canada has the advantage of having the available transportation capacity in its west coast terminals and on its rail network. 3 figs.

  1. Relationship between metallurgical works and the budget: debt increases, taxes decline

    Directory of Open Access Journals (Sweden)

    Anna Ivanovna Povarova

    2015-01-01

    Full Text Available Large enterprises of ferrous metallurgy consolidate a significant share of cash flows and are important taxpayers for the budget. In 2008–2013 two-thirds of the aggregate profit tax from the ferrous metallurgical industry were provided by seven largest plants: Novolipetsk Steel (NLMK; Cherepovets Steel Mill (CherMK; Nizhniy Tagil Iron and Steel Works (NTMK; Magnitogorsk Iron and Steel Works (MMK; Oskol Electrometallurgical Plant (OEMK; West-Siberian Metallurgical Plant (ZSMK and Chelyabinsk Metallurgical Plant (ChMK. All these plants are the key assets of the largest multinational corporations; therefore, the analysis of their statements makes it possible to assess the financial condition not only of individual corporations, but also of the whole ferrous metallurgy. The article presents the results of the analysis of the financial statements of the leading domestic enterprises of ferrous metallurgy for 2008–2013. Particular emphasis is placed on their relations with the budget in the field of profit tax administration. The author investigates the factors in the formation of profit before tax and reveals the destructive impact of the existing tax legislation on the mobilization of budget revenues. The article draws a conclusion about the role of large enterprises in the economic development of the country and its regions. The author proposes several options to change the tax policy in relation to large taxpayers

  2. Electric arc spraying for restoration and repair of metallurgical equipment parts

    Directory of Open Access Journals (Sweden)

    В’ячеслав Олександрович Роянов

    2016-07-01

    Full Text Available It has been shown that the electric arc spraying with the use of powder wires can be used to repair and restore parts of metallurgical equipment. The technology of spraying parts by means of the cored wire Steelcored M8TUV; T462MMIN5 and combinations of steel and aluminum wires to restore shaft-gears, shaft-beams, cranes axles for the foundry of the Moldavian Metallurgical Plant has been introduced. The composition of the flux-cored wires MMP-2,3 developed at the Department of Equipment and welding production technology of PSTU that provides the required hardness and adhesion of the coating and the substrate have been shown and the results of the coatings properties studies have been published. Studies have shown matching properties of the coatings to be used for details of the metallurgical equipment working under difficult conditions, including the rolls of rolling mills. Cored wire was used for pilot plating of the rolls surface of the skin-rolling stand at the cold-rolling mill at Illich Steel and Iron Works, Mariupol. Residual coating thickness ranged from 15 to 25 microns. Strip sized 0,9 × 1025 mm has been rolled, the squeezing is equal to 0,8...1,0%.

  3. Low resistance silver contacts to indium phosphide - Electrical and metallurgical considerations

    Science.gov (United States)

    Weizer, Victor G.; Fatemi, Navid S.

    1993-03-01

    The electrical and metallurgical behavior of the Ag-InP contact system has been investigated. Specific contact resistivity (Rc) values in the low 10 exp -6 Ohm sq cm range are readily achieved on n-InP (Si: 1.7 x 10 exp 18/cu cm) after sintering at 400 C for several minutes. The low Rc values, however, are shown to be accompanied by dissolution of InP into the metallization, resulting in device degradation. An analysis of the sinter-induced metallurgical interactions shows this system to be similar to the well-characterized Au-InP system, albeit with fundamental differences. The similarities include the dissociative diffusion of In, the reaction-suppressing effect of SiO2 capping, and especially, the formation of a phosphide layer at the metal-InP interface. The low post-sinter Rc values in the Ag-InP system may be due to the presence of a AgP2 layer at the metal-InP interface; low values of Rc can be achieved without incurring device degrading metallurgical interactions by introducing a thin AgP2 layer between the InP and the current carrying metallization.

  4. Renewable Enhanced Feedstocks for Advanced Biofuels and Bioproducts (REFABB)

    Energy Technology Data Exchange (ETDEWEB)

    Peoples, Oliver [Metabolix Inc., Cambridge, MA (United States); Snell, Kristi [Metabolix Inc., Cambridge, MA (United States)

    2016-06-09

    The basic concept of the REFABB project was that by genetically engineering the biomass crop switchgrass to produce a natural polymer PHB, which is readily broken down by heating (thermolysis) into the chemical building block crotonic acid, sufficient additional economic value would be added for the grower and processor to make it an attractive business at small scale. Processes for using thermolysis to upgrade biomass to densified pellets (char) or bio-oil are well known and require low capital investment similar to a corn ethanol facility. Several smaller thermolysis plants would then supply the densified biomass, which is easier to handle and transport to a centralized biorefinery where it would be used as the feedstock. Crotonic acid is not by itself a large volume commodity chemical, however, the project demonstrated that it can be used as a feedstock to produce a number of large volume chemicals including butanol which itself is a biofuel target. In effect the project would try to address three key technology barriers, feedstock logistics, feedstock supply and cost effective biomass conversion. This project adds to our understanding of the potential for future biomass biorefineries in two main areas. The first addressed in Task A was the importance and potential of developing an advanced value added biomass feedstock crop. In this Task several novel genetic engineering technologies were demonstrated for the first time. One important outcome was the identification of three novel genes which when re-introduced into the switchgrass plants had a remarkable impact on increasing the biomass yield based on dramatically increasing photosynthesis. These genes also turned out to be critical to increasing the levels of PHB in switchgrass by enabling the plants to fix carbon fast enough to support both plant growth and higher levels of the polymer. Challenges in the critical objective of Task B, demonstrating conversion of the PHB in biomass to crotonic acid at over 90

  5. The influence of microstructure on the mechanical properties of metallurgical rolls made of G200CrMoNi4-3-3 cast steel

    Directory of Open Access Journals (Sweden)

    A. Brodziak

    2009-07-01

    Full Text Available The subject of the study is the high-carbon tool cast steel G200CrMoNi4-3-3 used for metallurgical rolls, especially in section rolling mills. The test material was derived from a roll damaged in production; therefore, the authors had the material in a raw state at their disposal, on which they were able to carry out additional heat treatment operations. The pearlitic matrix of casting steel G200CrMoNi4-3-3 allows machining to be done to modify the pass or to remove any defects, and the primary and secondary precipitates of carbides enhance the tribological properties. The authors have been for years involved in the optimization of the structure of this material by slight correction to its chemical composition and/or the modification of heat treatment. The presented principles of heat treatment modifications will lead to considerable economic and ecologic profits. It has also been demonstrated that raising slightly the contents of carbide-forming elements, which markedly increases the quantity of transformed ledeburite, results in an enhancement of tribological properties. The analysis of a dozen or so rolls exploited down to the dead roll diameter has shown that roll of cast steel with increased contents of carbon and carbide-forming elements exhibit better service properties, as characterized by the amount of feedstock rolled. Such a method of enhancing the service properties required the assessment of fracture toughness, which was verified using the linear-elastic methods of fracture mechanics.

  6. Forest feedstocks : systems for recovery of residual biomass

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, J. [FP Innovations, Vancouver, BC (Canada). FERIC Div.

    2007-07-01

    Interest in forest feedstock is growing due to high energy costs, the need for energy self-sufficiency and climate change issues. The Mountain Pine Beetle (MPB) epidemic in British Columbia has also contributed to the growing interest in forest feedstock. This presentation discussed the potential for wood to be used for liquid fuels conversion, pellets and biorefineries. The extraction of energy from residue biomass was reviewed with reference to traditional sources such as hog fuel and black liquor, as well as new sources that consider the changing landscape. These include harvest residues, MPB-killed stands, burned stands, non-merchantable stands, and stumps. Early thinning and FireSmart treatments were outlined along with the value of purpose-grown energy plantations. The variety of available recovery methods and equipment was demonstrated, including whole-tree chippers; disc and drum chippers; grinders and shredders; overhead conveyor systems; blower attachments; and, wheel-mounted equipment. The performance of each method and equipment was reviewed along with challenges regarding the transportation of a low-value, low bulk-density material over long distances. Although residue bundlers have been developed, it was suggested that it may be more cost effective to convert the feedstock in the field using a mobile biorefinery, and then transport the denser fuel. It was shown that although a range of equipment is available, nothing has been designed specifically for full-tree residue. It was noted that coordination with conventional harvesting is desirable, but may not be possible in all cases. Lessons from studies have indicated that the distance from the mill is a major cost factor and that the debris should be prepared in advance to shipping. tabs., figs.

  7. Estimating Biofuel Feedstock Water Footprints Using System Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Inman, Daniel; Warner, Ethan; Stright, Dana; Macknick, Jordan; Peck, Corey

    2016-07-01

    Increased biofuel production has prompted concerns about the environmental tradeoffs of biofuels compared to petroleum-based fuels. Biofuel production in general, and feedstock production in particular, is under increased scrutiny. Water footprinting (measuring direct and indirect water use) has been proposed as one measure to evaluate water use in the context of concerns about depleting rural water supplies through activities such as irrigation for large-scale agriculture. Water footprinting literature has often been limited in one or more key aspects: complete assessment across multiple water stocks (e.g., vadose zone, surface, and ground water stocks), geographical resolution of data, consistent representation of many feedstocks, and flexibility to perform scenario analysis. We developed a model called BioSpatial H2O using a system dynamics modeling and database framework. BioSpatial H2O could be used to consistently evaluate the complete water footprints of multiple biomass feedstocks at high geospatial resolutions. BioSpatial H2O has the flexibility to perform simultaneous scenario analysis of current and potential future crops under alternative yield and climate conditions. In this proof-of-concept paper, we modeled corn grain (Zea mays L.) and soybeans (Glycine max) under current conditions as illustrative results. BioSpatial H2O links to a unique database that houses annual spatially explicit climate, soil, and plant physiological data. Parameters from the database are used as inputs to our system dynamics model for estimating annual crop water requirements using daily time steps. Based on our review of the literature, estimated green water footprints are comparable to other modeled results, suggesting that BioSpatial H2O is computationally sound for future scenario analysis. Our modeling framework builds on previous water use analyses to provide a platform for scenario-based assessment. BioSpatial H2O's system dynamics is a flexible and user

  8. Biofuel production from microalgae as feedstock: current status and potential.

    Science.gov (United States)

    Han, Song-Fang; Jin, Wen-Biao; Tu, Ren-Jie; Wu, Wei-Min

    2015-06-01

    Algal biofuel has become an attractive alternative of petroleum-based fuels in the past decade. Microalgae have been proposed as a feedstock to produce biodiesel, since they are capable of mitigating CO2 emission and accumulating lipids with high productivity. This article is an overview of the updated status of biofuels, especially biodiesel production from microalgae including fundamental research, culture selection and engineering process development; it summarizes research on mathematical and life cycle modeling on algae growth and biomass production; and it updates global efforts of research and development and commercialization attempts. The major challenges are also discussed.

  9. Biofuels Feedstock Development Program annual progress report for 1991

    Energy Technology Data Exchange (ETDEWEB)

    Wright, L.L.; Cushman, J.H.; Ehrenshaft, A.R.; McLaughlin, S.B.; McNabb, W.A.; Ranney, J.W.; Tuskan, G.A.; Turhollow, A.F.

    1992-12-01

    This report provides an overview of the ongoing research funded in 1991 by the Department of Energy's Biofuels Feedstock Development Program (BFDP). The BFDP is managed by the Environmental Sciences Division of the Oak Ridge National Laboratory and encompasses the work formerly funded by the Short Rotation Woody Crops Program and the Herbaceous Energy Crops Program. The combined program includes crop development research on both woody and herbaceous energy crop species, cross-cutting energy and environmental analysis and integration, and information management activities. Brief summaries of 26 different program activities are included in the report.

  10. Biofuels Feedstock Development Program annual progress report for 1991

    Energy Technology Data Exchange (ETDEWEB)

    Wright, L.L.; Cushman, J.H.; Ehrenshaft, A.R.; McLaughlin, S.B.; McNabb, W.A.; Ranney, J.W.; Tuskan, G.A.; Turhollow, A.F.

    1992-12-01

    This report provides an overview of the ongoing research funded in 1991 by the Department of Energy`s Biofuels Feedstock Development Program (BFDP). The BFDP is managed by the Environmental Sciences Division of the Oak Ridge National Laboratory and encompasses the work formerly funded by the Short Rotation Woody Crops Program and the Herbaceous Energy Crops Program. The combined program includes crop development research on both woody and herbaceous energy crop species, cross-cutting energy and environmental analysis and integration, and information management activities. Brief summaries of 26 different program activities are included in the report.

  11. Energy supply chain optimization of hybrid feedstock processes: a review.

    Science.gov (United States)

    Elia, Josephine A; Floudas, Christodoulos A

    2014-01-01

    The economic, environmental, and social performances of energy systems depend on their geographical locations and the surrounding market infrastructure for feedstocks and energy products. Strategic decisions to locate energy conversion facilities must take all upstream and downstream operations into account, prompting the development of supply chain modeling and optimization methods. This article reviews the contributions of energy supply chain studies that include heat, power, and liquid fuels production. Studies are categorized based on specific features of the mathematical model, highlighting those that address energy supply chain models with and without considerations of multiperiod decisions. Studies that incorporate uncertainties are discussed, and opportunities for future research developments are outlined.

  12. Remelting of metallurgical fines using thermal plasma; Refusao de finos metalurgicos via plasma termico

    Energy Technology Data Exchange (ETDEWEB)

    Vicente, L.C.; Neto F, J.B.F.; Bender, O.W.; Collares, M.P

    1992-12-31

    A plasma furnace was developed for remelting of ferro alloys and silicon fines. The furnace capacity was about 4 Kg of silicon and power about 50 kW. The fine (20 to 100 mesh) was fed into the furnace directly at the high temperature zone. This system was tested for remelting silicon fines and the results in the recovery of silicon was about 95% and it took place a refine of aluminium and calcium. (author) 10 refs., 4 figs., 2 tabs.

  13. Development of feedstock of tungsten-nickel-iron- polyformaldehyde for MIM technology

    Science.gov (United States)

    Kostin, D. V.; Parkhomenko, A. V.; Amosov, A. P.; Samboruk, A. R.; Chemashkin, A. V.

    2016-11-01

    The article presents the results of the research and development of technology and formulation of the feedstock from domestic metal powders and polymers to fabricate complexshaped components from heavy alloy of VNZh 7-3 brand (90 wt. % tungsten - 7% nickel - 3% iron) by Metal Injection Molding (MIM technology). The metal part of the feedstock is composed of powders of tungsten, nickel and iron, and the polymer part is composed of polyformaldehyde with the addition of low-density polyethylene and beeswax. The modes of mixing the components and the influence of the composition of the feedstock on the melt flow rate and the homogeneity of the feedstock were investigated. The optimal formulation of the feedstock was determined. Microstructure, density and hardness of control samples fabricated by MIM technology from the developed feedstock, correspond to, and in some respects are superior to the samples of VNZh 7-3 alloy fabricated by technology of traditional powder metallurgy.

  14. Silicon Spintronics

    NARCIS (Netherlands)

    Jansen, R.

    2008-01-01

    Integration of magnetism and mainstream semiconductor electronics could impact information technology in ways beyond imagination. A pivotal step is implementation of spin-based electronic functionality in silicon devices. Remarkable progress made during the last two years gives confidence that this

  15. Improved multicrystalline silicon ingot quality using single layer silicon beads coated with silicon nitride as seed layer

    Science.gov (United States)

    babu, G. Anandha; Takahashi, Isao; Matsushima, Satoru; Usami, Noritaka

    2016-05-01

    We propose to utilize single layer silicon beads (SLSB) coated with silicon nitride as cost-effective seed layer to grow high-quality multicrystalline silicon (mc-Si) ingot. The texture structure of silicon nitride provides a large number of nucleation sites for the fine grain formation at the bottom of the crucible. No special care is needed to prevent seed melting, which would lead to decrease of red zone owing to decrease of feedstock melting time. As we expected, mc-Si ingot seeded with SLSB was found to consist of small, different grain orientations, more uniform grain distribution, high percentage of random grain boundaries, less twin boundaries, and low density of dislocation clusters compared with conventional mc-Si ingot grown under identical growth conditions. These results show that the SLSB seeded mc-Si ingot has enhanced ingot quality. The correlation between grain boundary structure and defect structure as well as the reason responsible for dislocation clusters reduction in SLSB seeded mc-Si wafer are also discussed.

  16. Increasing Feedstock Production for Biofuels: Economic Drivers, Environmental Implications, and the Role of Research

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-10-27

    The Biomass Research and Development Board (Board) commissioned an economic analysis of feedstocks to produce biofuels. The Board seeks to inform investments in research and development needed to expand biofuel production. This analysis focuses on feedstocks; other interagency teams have projects underway for other parts of the biofuel sector (e.g., logistics). The analysis encompasses feedstocks for both conventional and advanced biofuels from agriculture and forestry sources.

  17. Alternative Feedstocks Program Technical and Economic Assessment: Thermal/Chemical and Bioprocessing Components

    Energy Technology Data Exchange (ETDEWEB)

    Bozell, J. J.; Landucci, R.

    1993-07-01

    This resource document on biomass to chemicals opportunities describes the development of a technical and market rationale for incorporating renewable feedstocks into the chemical industry in both a qualitative and quantitative sense. The term "renewable feedstock?s" can be defined to include a huge number of materials such as agricultural crops rich in starch, lignocellulosic materials (biomass), or biomass material recovered from a variety of processing wastes.

  18. High-flux solar furnace processing of silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Tsuo, Y.S.; Pitts, J.R.; Landry, M.D.; Menna, P.; Bingham, C.E.; Lewandowski, A.; Ciszek, T.F. [National Renewable Energy Laboratory, Golden, CO (United States)

    1996-06-10

    We used a 10-kW, high-flux solar furnace (HFSF) to diffuse the front-surface n{sup +}-p junction and the back-surface p-p{sup +} junction of single-crystal silicon solar cells in one processing step. We found that all of these HFSF-processed cells have better conversion efficiencies than control cells of identical structures fabricated by conventional furnace diffusion methods. We also used the HFSF to crystallize a-Si:H thin films on glass, to texture crystalline silicon surfaces, to deposit gold contacts on silicon wafers, and to getter impurities from metallurgical grade silicon. HFSF processing offers several advantages over conventional furnace processing: (1) it provides a cold-wall process, which reduces contamination; (2) temperature versus time profiles can be precisely controlled; (3) wavelength, intensity, and spatial distribution of the incident solar flux can be controlled and changed rapidly; (4) a number of high-temperature processing steps can be performed simultaneously; and (5) combined quantum and thermal effects may benefit overall cell performance. We conclude that HFSF processing of silicon solar cells has the potential to improve cell efficiency, reduce cell fabrication costs, and also be an environmentally friendly manufacturing method. We have also demonstrated that the HFSF can be used to achieve solid-phase crystallization of a-Si:H at very high speed

  19. Large-Scale PV Module Manufacturing Using Ultra-Thin Polycrystalline Silicon Solar Cells: Final Subcontract Report, 1 April 2002--28 February 2006

    Energy Technology Data Exchange (ETDEWEB)

    Wohlgemuth, J.; Narayanan, M.

    2006-07-01

    The major objectives of this program were to continue advances of BP Solar polycrystalline silicon manufacturing technology. The Program included work in the following areas. (1) Efforts in the casting area to increase ingot size, improve ingot material quality, and improve handling of silicon feedstock as it is loaded into the casting stations. (2) Developing wire saws to slice 100-..mu..m-thick silicon wafers on 290-..mu..m-centers. (3) Developing equipment for demounting and subsequent handling of very thin silicon wafers. (4) Developing cell processes using 100-..mu..m-thick silicon wafers that produce encapsulated cells with efficiencies of at least 15.4% at an overall yield exceeding 95%. (5) Expanding existing in-line manufacturing data reporting systems to provide active process control. (6) Establishing a 50-MW (annual nominal capacity) green-field Mega-plant factory model template based on this new thin polycrystalline silicon technology. (7) Facilitating an increase in the silicon feedstock industry's production capacity for lower-cost solar-grade silicon feedstock..

  20. Ligncellulosic feedstock supply systems with intermodal and overseas transportation

    Energy Technology Data Exchange (ETDEWEB)

    Ric Hoefnagels; Kara Cafferty; Erin Searcy; Jacob J. Jacobson; Martin Junginger; Thijs Cornelissen; Andre Faaij

    2014-12-01

    With growing demand for biomass from industrial uses and international trade, the logistic operations required to economically move the biomass from the field or forest to the end users have become increasingly complex. In addition to economics, understanding energy and GHG emissions is required to design cost effective, sustainable logistic process operations; in order to improve international supply chains it is also important to understate their interdependencies and related uncertainties. This article presents an approach to assess lignocellulosic feedstock supply systems at the operational level. For this purpose, the Biomass Logistic Model (BLM) has been linked with the Geographic Information Systems based Biomass Intermodal Transportation model (BIT-UU) and extended with inter-continental transport routes. Case studies of herbaceous and woody biomass, produced in the U.S. Midwest and U.S. Southeast, respectively, and shipped to Europe for conversion to Fischer-Tropsch (FT) diesel are included to demonstrate how intermodal transportation and, in particular, overseas shipping integrates with the bioenergy supply chains. For the cases demonstrated, biomass can be supplied at 99 € Mg-1 to 117 € Mg-1 (dry) and converted to FT-diesel at 19 € GJ-1 to 24 € GJ-1 depending on the feedstock type and location, intermediate (chips or pellets) and size of the FT-diesel production plant. With the flexibility to change the design of supply chains as well as input variables, many alternative supply chain cases can be assessed.

  1. Evaluation of attached periphytical algal communities for biofuel feedstock generation

    Energy Technology Data Exchange (ETDEWEB)

    Sandefur, H.N.; Matlock, M.D.; Costello, T.A. [Arkansas Univ., Division of Agriculture, Fayetteville, AR (United States). Dept. of Biological and Agricultural Engineering, Center for Agricultural and Rural Sustainability

    2010-07-01

    This paper reported on a study that investigated the feasibility of using algal biomass as a feedstock for biofuel production. Algae has a high lipid content, and with its high rate of production, it can produce more oil on less land than traditional bioenergy crops. In addition, algal communities can remove nutrients from wastewater. Enclosed photobioreactors and open pond systems are among the many different algal growth systems that can be highly productive. However, they can also be difficult to maintain. The objective of this study was to demonstrate the ability of a pilot scale algal turf scrubber (ATS) to facilitate the growth of attached periphytic algal communities for the production of biomass feedstock and the removal of nutrients from a local stream in Springdale, Arizona. The ATS operated for a 9 month sampling period, during which time the system productivity averaged 26 g per m{sup 2} per day. The removal of total phosphorus and total nitrogen averaged 48 and 13 per cent, respectively.

  2. Biodiesel production with microalgae as feedstock: from strains to biodiesel.

    Science.gov (United States)

    Gong, Yangmin; Jiang, Mulan

    2011-07-01

    Due to negative environmental influence and limited availability, petroleum-derived fuels need to be replaced by renewable biofuels. Biodiesel has attracted intensive attention as an important biofuel. Microalgae have numerous advantages for biodiesel production over many terrestrial plants. There are a series of consecutive processes for biodiesel production with microalgae as feedstock, including selection of adequate microalgal strains, mass culture, cell harvesting, oil extraction and transesterification. To reduce the overall production cost, technology development and process optimization are necessary. Genetic engineering also plays an important role in manipulating lipid biosynthesis in microalgae. Many approaches, such as sequestering carbon dioxide from industrial plants for the carbon source, using wastewater for the nutrient supply, and maximizing the values of by-products, have shown a potential for cost reduction. This review provides a brief overview of the process of biodiesel production with microalgae as feedstock. The methods associated with this process (e.g. lipid determination, mass culture, oil extraction) are also compared and discussed.

  3. Biofuels feedstock development program. Annual progress report for 1992

    Energy Technology Data Exchange (ETDEWEB)

    Wright, L.L.; Cushman, J.H.; Ehrenshaft, A.R.; McLaughlin, S.B.; McNabb, W.A.; Martin, S.A.; Ranney, J.W.; Tuskan, G.A.; Turhollow, A.F.

    1993-11-01

    The Department of Energy`s (DOE`s) Biofuels Feedstock Development Program (BFDP) leads the nation in the research, development, and demonstration of environmentally acceptable and commercially viable dedicated feedstock supply systems (DFSS). The purpose of this report is to highlight the status and accomplishments of the research that is currently being funded by the BFDP. Highlights summarized here and additional accomplishments are described in more detail in the sections associated with each major program task. A few key accomplishments include (1) development of a methodology for doing a cost-supply analysis for energy crops and the application of that methodology to looking at possible land use changes around a specific energy facility in East Tennessee; (2) preliminary documentation of the relationship between woody crop plantation locations and bird diversity at sites in the Midwest, Canada, and the pacific Northwest supplied indications that woody crop plantations could be beneficial to biodiversity; (3) the initiation of integrated switchgrass variety trials, breeding research, and biotechnology research for the south/southeast region; (4) development of a data base management system for documenting the results of herbaceous energy crop field trials; (5) publication of three issues of Energy Crops Forum and development of a readership of over 2,300 individuals or organizations as determined by positive responses on questionnaires.

  4. Security of feedstocks supply for future bio-ethanol production in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Silalertruksa, Thapat; Gheewala, Shabbir H. [The Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi, 126 Prachauthit Road, Bangkok 10140 (Thailand)

    2010-11-15

    This study assesses the security of feedstock supply to satisfy the increased demand for bio-ethanol production based on the recent 15 years biofuels development plan and target (year 2008-2022) of the Thai government. Future bio-ethanol systems are modeled and the feedstock supply potentials analyzed based on three scenarios including low-, moderate- and high-yields improvement. The three scenarios are modeled and key dimensions including availability; diversity; and environmental acceptability of feedstocks supply in terms of GHG reduction are evaluated through indicators such as net feedstock balances, Shannon index and net life cycle GHG emissions. The results show that only the case of high yields improvement scenario can result in a reliable and sufficient supply of feedstocks to satisfy the long-term demands for bio-ethanol and other related industries. Cassava is identified as the critical feedstock and a reduction in cassava export is necessary. The study concludes that to enhance long-term security of feedstocks supply for sustainable bio-ethanol production in Thailand, increasing use of sugarcane juice as feedstock, improved yields of existing feedstocks and promoting production of bio-ethanol derived from agricultural residues are three key recommendations that need to be urgently implemented by the policy makers. (author)

  5. Lithographically patterned silicon nanostructures on silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Megouda, Nacera [Institut de Recherche Interdisciplinaire (IRI, USR 3078), Universite Lille1, Parc de la Haute Borne, 50 Avenue de Halley-BP 70478, 59658 Villeneuve d' Ascq and Institut d' Electronique, de Microelectronique et de Nanotechnologie (IEMN, CNRS-8520), Cite Scientifique, Avenue Poincare-B.P. 60069, 59652 Villeneuve d' Ascq (France); Faculte des Sciences, Universite Mouloud Mammeri, Tizi-Ouzou (Algeria); Unite de Developpement de la Technologie du Silicium (UDTS), 2 Bd. Frantz Fanon, B.P. 140 Alger-7 merveilles, Alger (Algeria); Piret, Gaeelle; Galopin, Elisabeth; Coffinier, Yannick [Institut de Recherche Interdisciplinaire (IRI, USR 3078), Universite Lille1, Parc de la Haute Borne, 50 Avenue de Halley-BP 70478, 59658 Villeneuve d' Ascq and Institut d' Electronique, de Microelectronique et de Nanotechnologie (IEMN, CNRS-8520), Cite Scientifique, Avenue Poincare-B.P. 60069, 59652 Villeneuve d' Ascq (France); Hadjersi, Toufik, E-mail: hadjersi@yahoo.com [Unite de Developpement de la Technologie du Silicium (UDTS), 2 Bd. Frantz Fanon, B.P. 140 Alger-7 merveilles, Alger (Algeria); Elkechai, Omar [Faculte des Sciences, Universite Mouloud Mammeri, Tizi-Ouzou (Algeria); and others

    2012-06-01

    The paper reports on controlled formation of silicon nanostructures patterns by the combination of optical lithography and metal-assisted chemical dissolution of crystalline silicon. First, a 20 nm-thick gold film was deposited onto hydrogen-terminated silicon substrate by thermal evaporation. Gold patterns (50 {mu}m Multiplication-Sign 50 {mu}m spaced by 20 {mu}m) were transferred onto the silicon wafer by means of photolithography. The etching process of crystalline silicon in HF/AgNO{sub 3} aqueous solution was studied as a function of the silicon resistivity, etching time and temperature. Controlled formation of silicon nanowire arrays in the unprotected areas was demonstrated for highly resistive silicon substrate, while silicon etching was observed on both gold protected and unprotected areas for moderately doped silicon. The resulting layers were characterized using scanning electron microscopy (SEM).

  6. Device and method for upgrading petroleum feedstocks and petroleum refinery streams using an alkali metal conductive membrane

    Science.gov (United States)

    Gordon, John Howard; Alvare, Javier

    2016-09-13

    A reactor has two chambers, namely an oil feedstock chamber and a source chamber. An ion separator separates the oil feedstock chamber from the source chamber, wherein the ion separator allows alkali metal ions to pass from the source chamber, through the ion separator, and into the oil feedstock chamber. A cathode is at least partially housed within the oil feedstock chamber and an anode is at least partially housed within the source chamber. A quantity of an oil feedstock is within the oil feedstock chamber, the oil feedstock comprising at least one carbon atom and a heteroatom and/or one or more heavy metals, the oil feedstock further comprising naphthenic acid. When the alkali metal ion enters the oil feedstock chamber, the alkali metal reacts with the heteroatom, the heavy metals and/or the naphthenic acid, wherein the reaction with the alkali metal forms inorganic products.

  7. Device and method for upgrading petroleum feedstocks and petroleum refinery streams using an alkali metal conductive membrane

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John Howard; Alvare, Javier

    2016-09-13

    A reactor has two chambers, namely an oil feedstock chamber and a source chamber. An ion separator separates the oil feedstock chamber from the source chamber, wherein the ion separator allows alkali metal ions to pass from the source chamber, through the ion separator, and into the oil feedstock chamber. A cathode is at least partially housed within the oil feedstock chamber and an anode is at least partially housed within the source chamber. A quantity of an oil feedstock is within the oil feedstock chamber, the oil feedstock comprising at least one carbon atom and a heteroatom and/or one or more heavy metals, the oil feedstock further comprising naphthenic acid. When the alkali metal ion enters the oil feedstock chamber, the alkali metal reacts with the heteroatom, the heavy metals and/or the naphthenic acid, wherein the reaction with the alkali metal forms inorganic products.

  8. Renewable fuels as feedstocks in industrial organic chemistry; Nachwachsende Rohstoffe als Feedstock in der industriellen organischen Chemie

    Energy Technology Data Exchange (ETDEWEB)

    Marquardt, J.

    1995-10-01

    Fossil fuels are used in the chemical industry for providing process energy but primarily as chemical feedstocks. In view of the necessity ofsaving fossil resources and reducing anthropogenic greenhouse gas emissions, the author investigates inhowfar renewable fuels may serve as substitutes for the fossil carbon carriers now used in the chemical industry. He starts with a bibliographic research which also takes account of studies on the uses of biomass for power generation. On this basis, an outline of current production processes (including specific data for cultivation and processing), production volumes and consumption structures is given for the main types of renewable raw materials (sugar, starch, cellulose and vegetable fats and oils). (orig./SR) [Deutsch] Fossile Energietraeger werden in der chemischen Industrie ausser zur Bereitstellung von Prozessenergie vor allem nichtenergetisch, d.h. als chemische Rohstoffe (sog. Feedstock), eingesetzt. Angesichts der Notwendigkeit, die fossilen Rohstoffvorraete zu schonen und die anthropogenen Klimagasemissionen zu vermindern, stellt sich die Frage, inwieweit nachwachsende Rohstoffe die im Chemiesektor fuer nichtenergetische Zwecke eingesetzten fossilen Kohlenstofftraeger ersetzen koennen. Im Rahmen der Studienarbeit soll zunaechst eine Literaturrecherche zu diesem Themenkomplex durchgefuehrt werden, wobei auch Untersuchungen zur energetischen Nutzung von Biomasse zu beruecksichtigen sind. Auf dieser Basis soll fuer die Haupttypen nachwachsender Rohstoffe (Zucker, Staerke, Cellulose und pflanzliche Fette/Oele) ein Ueberblick zu den heutigen Produktionsverfahren (inkl. Anbau- und verarbeitungsspezifischer Daten), Produktionsmengen und Verbrauchsstrukturen gegeben werden. (orig./SR)

  9. Effect of the packing structure of silicon chunks on the melting process and carbon reduction in Czochralski silicon crystal growth

    Science.gov (United States)

    Liu, Xin; Nakano, Satoshi; Kakimoto, Koichi

    2017-06-01

    Carbon (C) contamination in Czochralski silicon (CZ-Si) crystal growth mainly originates from carbon monoxide (CO) generation on the graphite components, which reaches a maximum during the melting stage. Loading a crucible with poly-Si feedstock includes many technical details for optimization of the melting and growth processes. To investigate the effect of the packing structure of Si chunks on C accumulation in CZ-Si crystal growth, transient global simulations of heat and mass transport were performed for the melting process with different packing structures of poly-Si. The heat transport modeling took into account the effective thermal conductivity (ETC) of the Si feedstock, which is affected by the packing structure. The effect of the chunk size on the melting process and C accumulation were investigated by parametric studies of different packing structures. The heat transport and melting process in the crucible were affected by the ETC and the emissivity of the Si feedstock. It was found that smaller Si chunks packed in the upper part could speed up the melting process and smooth the power profile. Decreasing the duration of the melting process is favorable for reduction of C contamination in the Si feedstock. Parametric studies indicated that optimization of the melting process by the packing structure is possible and essential for C reduction in CZ-Si crystal growth.

  10. Climatic impacts of managed landscapes for sustainable biofuel feedstocks production.

    Science.gov (United States)

    Gelfand, I.; Kravchenko, A. N.; Hamilton, S. K.; Jackson, R. D.; Thelen, K.; Robertson, G. P.

    2016-12-01

    Sustainable production of biofuels cannot be achieved without multiple-use landscapes where food, feed, and fuel can be co-produced without environmental harm. Here we use field level measurements in seven biofuel feedstock production systems grown under similar climatic conditions, but on different soils in two Midwestern (USA) states to understand their relative climatic impacts. We studied annual corn stover, and 6 perennial ecosystems including three polycultures: successional vegetation, restored prairie and a 3-species grass mix; and 3 monocultures: poplar, switchgrass, and miscanthus. All studied ecosystems were grown in replicated plots on moderately fertile soils of SW Michigan and highly fertile soils of central Wisconsin. We measured components of greenhouse gas (GHG) balances over 6 years. On the fertile soil perennial monocultures had GHG emission reductions potentials of 53% relative to fossil fuels, while polycultures had 64% reduction; corn stover had an 84% emissions reduction. Net sequestration ranged from 0.6 MgCO2e ha-1yr-1 (successional vegetation) to 3.1 MgCO2e ha-1yr-1, (corn stover). Among feedstocks produced on less fertile soils, perennial monocultures had GHG emissions reduction of 80%, and polycultures had emission reduction of 54%; miscanthus and poplar exhibited the largest sequestration potentials of 5.9 and 3.9 MgCO2e ha-1yr-1 respectively, while polycultures sequestered less then 1.0 MgCO2e ha-1yr-1 on average and corn stover was intermediate with 1.4 MgCO2e ha-1yr-1. All studied systems averaged energy production of 30 GJ ha-1 yr-1, except miscanthus (71 GJ ha-1 yr-1) and successional vegetation (20 GJ ha-1 yr-1). Our results inform the design of multiple-use landscapes: more fertile soils could produce food and feed with residuals collected for bioethanol production and more marginal soils could be used for various poly- or mono-cultures of purpose grown biofuel feedstocks but with differential climate benefits.

  11. Applications of computational fluid dynamics in optimisation and design of metallurgical processes

    Directory of Open Access Journals (Sweden)

    Stein T. Johansen

    1997-04-01

    Full Text Available During the last two decades computational fluid dynamics (CFD has become a powerful tool for analysing and designing metallurgical processes. In this paper we give examples on how these techniques can be applied to a large variety of processes and also how CFD can be used to predict heat and mass transfer from fundamental principles. The paper is restricted to the applications of CFD at SINTEF Materials Technology. The examples given in the paper will range from treatment of raw materials, environmental issues, furnace processes and combustion, magnetohydrodynamics, melt treatment to casting.

  12. Influence of material and gear parameters on the safety of gearing in metallurgical industry

    Directory of Open Access Journals (Sweden)

    S. Medvecká - Beňová

    2015-01-01

    Full Text Available This paper deals with the appropriate choice of parameters to obtain the desired level of safety of gears in a gearbox to drive the conveyor in the metallurgical industry under increased load. Steel with surface hardness up to 350 HBW, or heat treated steel with hardness of 500 - 650 HBW are used. As a final heat treatment are used surface hardening, cementation and hardening, nitridation. Good properties of heat-treated steels are at the correct thickness of the heat-treated layer of the tooth. Results are presented for dual-ratio gearbox with spur gears from operation of an integrated steel company.

  13. Powder metallurgical processing of magnetostrictive materials based on rare earth-iron intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Malekzadeh, M.

    1978-01-01

    Procedures are described for fabrication of high density rare earth-iron magnetostrictive compounds by powder metallurgical techniques. The fabrication involves a sequence of steps which includes preparing the pre-alloyed compounds, pulverizing them into a fine powder, compacting in suitable sizes and shapes, and sintering. Samples prepared by these procedures are carefully characterized by scanning electron microscopy, x-ray diffraction, dilatometry, and magnetic measurements. Process steps are found to exert important influences upon densities, microstructure and magnetic properties attained after densification. Investigations on a number of these process steps, including milling time and medium, sintering, and magnetic powder alignment are described.

  14. Metallurgical Characterization of the Interfaces and the Damping Mechanisms in Metal Matrix Composites.

    Science.gov (United States)

    2014-09-26

    intrinsic damping behavior needs to be clearly understood and improved if necessary, through metallurgical modifications . In the presnt--tw 4 aa, a graphite...34" * (iv) Recommend microstructural modific ,-..ions to enhance damping in metal matrix composites. - - 4.0 TECHNICAL APPROACH 4.1 Specimen Design A...0.038"xl/0"x4.9 S ecimen; 0.011 Face Sheet Thickness ** Damping Factor _=Ap~g ( log d ec reme n t)L1% ’~A" *1% 5.2.1 Composite Panels (A) Pitch 55 Gr

  15. Behavioural determinants of work accidents and absenteeism in a metallurgical enterprise

    Directory of Open Access Journals (Sweden)

    B. Gajdzik

    2015-10-01

    Full Text Available The purpose of this study is to offer an interpretation of the relationship between accidents and employee absenteeism in terms of quantitative (statistical data on accidents and absenteeism and qualitative (study of employee attitudes evaluation. It has been assumed that the description using the results obtained from one group only is incomplete, because the rate of accidents is affected by the attitude of the staff, and in describing the behaviour of employees, the indicators of quality play an important role. The growing popularity of studies on employee behaviour results from the growing importance of human resources in companies. A metallurgical enterprise was selected for the case study.

  16. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report: Third quarter 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    During third quarter 1993, samples from AMB groundwater monitoring wells at the Metallurgical Laboratory Hazardous Waste Management Facility were analyzed for certain heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. Eight parameters exceeded standards during the quarter. As in previous quarters, tetrachloroethylene and trichloroethylene exceeded final Primary Drinking Water Standards; and aluminum, iron, lead, manganese, pH, and total organic halogens exceeded the Savannah River Site Flag 2 criteria in one or more of the wells. Groundwater flow direction and rate in the water-table unit were similar to previous quarters.

  17. Future Resources for Eco-building Materials: I.Metallurgical Slag

    Institute of Scientific and Technical Information of China (English)

    XU Delong; LI Hui

    2009-01-01

    In order to make an effectivily recycle use of iron and steel slags that are main industrial wastes generated in Chinese metallurgical industry,the current technologies for reprocessing and recycling these wastes into eco-building materials were reviewed,such as preparing cement-steel slag blended cement with steel slag after metal recovery,using the fine powder of blast furnace slag (BFS)for manufacturing slag cement and high performance concrete.A further research on using these available resources more efficiently were discussed.

  18. Seed production of woody plants in conditions of environment pollution by metallurgical industry emissions

    Directory of Open Access Journals (Sweden)

    Z. V. Gritzay

    2011-10-01

    Full Text Available The influence of environment pollution by metallurgical industry emissions on woody plants bearing parameters was examined. The results obtained show the decrease of bearing rate, diminution of seeds, fruits and seed cells sizes in woody plants affected by technogenic emissions. Attenuation of the 1000 seeds’ weight was established. Incresing the amount of fruits with development deviations was ascertained. It was found aplasia and abnormal form of the samara fruit of ash and ailanthus trees, arcuation and narrowing of some parts of the catalpa fruitcases. Practical recommendations on using seeds’ sensitive parameters in biomonitoring of woody phytocenoses under technogenic stressful conditions are proposed.

  19. Reviews of Metallurgical Technology to Recovery Platinum Group Metals from Secondary Resource in China

    Institute of Scientific and Technical Information of China (English)

    GUO Junmei; HE Xiaotang; WANG Huan; WU Xilong; ZHAO Yu; LI Yong; LI Kun; HAN Shouli

    2012-01-01

    China is extremely poor in mineral resources of Platinum Group Metals (PGMs),productive output of PGMs from mineral resource is 2.5 tons per year.At the same time,China is the biggest PGMs consumption country in the world,the mineral resource of PGMs is critical shortage,it shows the importance of recycling the secondary resource of PGMs.Sino-Platinum Metals Resource (Yimen) Co.,Ltd.is the leader in recycling of PGMs from secondary resource,and has made outstanding contributions to China PGMs secondary resources recycling.This article elucidates the current situation of secondary resources recovery and development of metallurgical technology for PGMs.

  20. [Preparation of Copper and Nickel from Metallurgical Waste Products with the Use of Acidophilic Chemolithotrophic Microorganisms].

    Science.gov (United States)

    Fomchenko, N V; Murav'ev, M I

    2015-01-01

    The study concerns the leaching of copper, nickel, and cobalt from metallurgical production slag with trivalent iron sulphates prepared in the process of oxidation of bivalent iron ions with the use of associations of acidophilic chemolithotrophic microorganisms. At the same time, copper extraction in the solution reached 91.2%, nickel reached 74.9%, and cobalt reached 90.1%. Copper was extracted by cementation, and nickel as sulphate was extracted by electrolysis. Associations of microorganisms can then completely bioregenerate the solution obtained after leaching.

  1. The nature and types of network relations in distribution of metallurgical products

    Directory of Open Access Journals (Sweden)

    2010-12-01

    Full Text Available The article analyses the motives for establishing cooperation within a company supply network as division points in a supplies chain of metallurgical products. The division points were defined and identified at the level of service centres in the investigated chain. The analysis took into consideration various types of inter-organisational bonds, which are placed in the network relations classification matrix. The study concerns a complex distribution system. The analysed distribution network combines flows characteristic for both flexible and narrow supply chains.

  2. Metallurgical investigation of the Egyptian Research Reactor-1 (ET-RR-1) fuel casing aluminium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Taha, A.S. (Atomic Energy Authority, Cairo (Egypt)); Soliman, S.E. (Atomic Energy Authority, Cairo (Egypt)); Hammad, F.H. (Atomic Energy Authority, Cairo (Egypt))

    1994-03-01

    The mechanical and metallurgical properties of the ET-RR-1 fuel casing (assembly) material were investigated since there are no available data about this material. Samples were taken from the top and the middle of the casing; the samples were then heat-treated at different conditions. The mechanical properties of the as-received and heat-treated samples were compared. Scanning electron microscopy (SEM) was used to investigate the microstructure of the tested samples and the fracture surface of the tensile specimens. All samples showed ductile fracture. Details of the results and the discussions are reported. (orig.)

  3. Metallurgical investigation of the Egyptian Research Reactor-1 (ET-RR-1) fuel casing aluminium alloy

    Science.gov (United States)

    Taha, A. S.; Soliman, S. E.; Hammad, F. H.

    1994-03-01

    The mechanical and metallurgical properties of the ET-RR-1 fuel casing (assembly) material were investigated since there are no available data about this material. Samples were taken from the top and the middle of the casing; the samples were then heat-treated at different conditions. The mechanical properties of the as-received and heat-treated samples were compared. Scanning electron microscopy (SEM) was used to investigate the microstructure of the tested samples and the fracture surface of the tensile specimens. All samples showed ductile fracture. Details of the results and the discussions are reported.

  4. Effective recruitment method for the marketing department of a metallurgical enterprise

    Directory of Open Access Journals (Sweden)

    E. Jaba

    2014-04-01

    Full Text Available This paper presents some solutions to recruit staff for the Marketing Department of a metallurgical enterprise. Our goal is to present the psychological characteristics of a certain category of employees on a sample of 107 employees and to evaluate the relationship between the motivation to work and those characteristics. In order to realize such evaluation we used the linear mixed effects model in the statistical software program R. The results showed that a significant effect on work motivation have factors like work climate and the employee agreeability.

  5. ON DEVELOPMENT OF OPTIMAL METALLURGICAL PROCESS FOR PREPARATION OF A NEW GENERATION OF INTERMETALLIC ALLOYS

    Directory of Open Access Journals (Sweden)

    Viliam Hrnčiar

    2009-06-01

    Full Text Available Intermetallic TiAl based alloys are used in extreme conditions, e.g. high temperature, aggressive atmosphere and combined high temperature mechanical loading. The contribution deals with development and optimization of plasma melting metallurgical process in new developed crystallizer with rotational and axial movement of melt, for preparation of new intermetallic alloys based on Ti-(45-48Al-(1-10Ta (at.%. The melting process parameters and their influence to final microstructure and properties of alloys are discussed. The aim of this work is to produce alloys with lower number of technological steps necessary to achieve chemical composition, homogeneity and purity as well.

  6. Coffee oil as a potential feedstock for biodiesel production.

    Science.gov (United States)

    Oliveira, Leandro S; Franca, Adriana S; Camargos, Rodrigo R S; Ferraz, Vany P

    2008-05-01

    A preliminary evaluation of the feasibility of producing biodiesel using oil extracted from defective coffee beans was conducted as an alternative means of utilizing these beans instead of roasting for consumption of beverage with depreciated quality. Direct transesterifications of triglycerides from refined soybean oil (reference) and from oils extracted from healthy and defective coffee beans were performed. Type of alcohol employed and time were the reaction parameters studied. Sodium methoxide was used as alkaline catalyst. There was optimal phase separation after reactions using both soybean and healthy coffee beans oils when methanol was used. This was not observed when using the oil from defective beans which required further processing to obtain purified alkyl esters. Nevertheless, coffee oil was demonstrated to be a potential feedstock for biodiesel production, both from healthy and defective beans, since the corresponding oils were successfully converted to fatty acid methyl and ethyl esters.

  7. Arid lands plants as feedstocks for fuels and chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, J.J.

    1983-01-01

    The purpose of this paper is to review the recent research on arid-adapted plants that have potential as producers of fuels or chemicals. The major focus will be on plant species that appear to have commercial value. Research on guayule (Parthenium argentatum) and jojoba (Simmondsia chinensis) will be mentioned only briefly, since these plants have been discussed extensively in the literature, and excellent reviews are already in existence. In this review the literature on arid-adapted plants that have potential uses for solid fuels, liquid fuels, and chemical feedstocks is summarized, followed by an overview of the research directions and types of development that are needed in order for bio-energy production systems to reach the commercial stage. 127 references.

  8. Study on the Adaptability of Etheriifcation Feedstock to Reactor Type

    Institute of Scientific and Technical Information of China (English)

    Mao Junyi; Yuan Qing; Wang Lei; Huang Tao

    2016-01-01

    A reactive C5 oleifns and methanol etheriifcation kinetic model based on E-R mechanism was established and three different types of reactors including the adiabatic ifxed-bed liquid reactor, the external loop reactor and the mixed-phase reactor were constructed by Aspen Plus. The adaptability of reactive C5 oleifns to these reactors was studied and simulated using various gasoline fractions with different oleifns content. After the theoretical model was validated by the experimental data of the etheriifcation of three C5 light cut fractions from different gasoline sources in different reactors, the simulated isoamylene conversion with reactive C5 olefin contents increasing from 10% to 60% was studied in the three different types of reactors for etheriifcation with methanol, respectively. Test results show that there is an obvious adaptability of the feedstock composition to the reactor type to achieve a high conversion.

  9. New Zealand Coals - A Potential Feedstock for Deep Microbial Life

    DEFF Research Database (Denmark)

    Glombitza, Clemens

    2010-01-01

    a broad and almost continuous maturity range representing diagenetic to catagenetic coalification levels were investigated to estimate their feedstock potential for deep microbial life using a novel developed analytical procedure to analyse kerogen-bound LMWOAs liberated by selective chemical degradation...... maturation leading to more sterically protected kerogen-bound LMWOAs and, therefore, to a slower substrate release with ongoing maturation. Additional information about the structure of the macromolecular network were obtained by selective ether-cleavage procedure revealing that aliphatic alcohols with more...... than one hydroxy groups represent important cross-linkage structures. In contrast to the terminal ether-bound monoalcohols which show a rapid decrease during diagenetic alteration, these compounds show relatively high concentrations even in the more mature coals suggesting that these cross-link bridges...

  10. Biorefining of lignocellulosic feedstock--Technical, economic and environmental considerations.

    Science.gov (United States)

    Luo, Lin; van der Voet, Ester; Huppes, Gjalt

    2010-07-01

    Biorefinery, an example of a multiple products system, integrates biomass conversion processes and equipment to produce fuels, power and chemicals from biomass. This study focuses on technical design, economic and environmental analysis of a lignocellulosic feedstock (LCF) biorefinery producing ethanol, succinic acid, acetic acid and electricity. As the potential worldwide demand of succinic acid and its derivatives can reach 30 million tons per year, succinic acid is a promising high-value product if production cost and market price are substantially lowered. The results of the economic analysis show that the designed refinery has great potentials compared to the single-output ethanol plant; even when the price of succinic acid is lowered or the capital investment doubled. In terms of eco-efficiency, the LCF biorefinery shows better environmental performances mainly in global warming potential due to CO(2) fixation during acid fermentation. The overall evaluation of the eco-efficiency depends on the importance attached to each impact category.

  11. Sweet sorghum as biofuel feedstock: recent advances and available resources.

    Science.gov (United States)

    Mathur, Supriya; Umakanth, A V; Tonapi, V A; Sharma, Rita; Sharma, Manoj K

    2017-01-01

    Sweet sorghum is a promising target for biofuel production. It is a C4 crop with low input requirements and accumulates high levels of sugars in its stalks. However, large-scale planting on marginal lands would require improved varieties with optimized biofuel-related traits and tolerance to biotic and abiotic stresses. Considering this, many studies have been carried out to generate genetic and genomic resources for sweet sorghum. In this review, we discuss various attributes of sweet sorghum that make it an ideal candidate for biofuel feedstock, and provide an overview of genetic diversity, tools, and resources available for engineering and/or marker-assisting breeding of sweet sorghum. Finally, the progress made so far, in identification of genes/quantitative trait loci (QTLs) important for agronomic traits and ongoing molecular breeding efforts to generate improved varieties, has been discussed.

  12. Development of a lactic acid production process using lignocellulosic biomass as feedstock

    NARCIS (Netherlands)

    Pol, van der E.C.

    2016-01-01

    The availability of crude oil is finite. Therefore, an alternative feedstock has to be found for the production of fuels and plastics. Lignocellulose is such an alternative feedstock. It is present in large quantities in agricultural waste material such as sugarcane bagasse. In this PhD thesis, lign

  13. The effect of aqueous ammonia soaking pretreatment on methane generation uing different lignocellulosic feedstocks

    DEFF Research Database (Denmark)

    Antonopoulou, Georgia; Jonuzaj, Suela; Gavala, Hariklia N.

    2014-01-01

    Lignocellulosic biomass including agricultural and forestry residues, perennial crops, softwoods and hardwoods, can be used as feedstock for methane production. Although being abundant and almost zero cost feedstocks, the main obstacles of their use are the low efficiencies and yields attained, due...

  14. Thermo-chemical and biological conversion potential of various biomass feedstocks to ethanol

    Science.gov (United States)

    The goal of this study is to evaluate the potential and the economy of producing ethanol from gasification-fermentation of various biomass feedstocks. The biomass feedstocks include winter cover crops (wheat, rye, clover, hairy betch), summer cover crop (sunhemp), chicken litter, and woody biomass. ...

  15. Systems and processes for conversion of ethylene feedstocks to hydrocarbon fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lilga, Michael A.; Hallen, Richard T.; Albrecht, Karl O.; Cooper, Alan R.; Frye, John G.; Ramasamy, Karthikeyan Kallupalayam

    2017-05-30

    Systems, processes, and catalysts are disclosed for obtaining fuel and fuel blends containing selected ratios of open-chain and closed-chain fuel-range hydrocarbons suitable for production of alternate fuels including gasolines, jet fuels, and diesel fuels. Fuel-range hydrocarbons may be derived from ethylene-containing feedstocks and ethanol-containing feedstocks.

  16. Technology for biomass feedstock production in southern forests and GHG implications

    Science.gov (United States)

    Bob Rummer; John Klepac; Jason Thompson

    2012-01-01

    Woody biomass production in the South can come from four distinct feedstocks - logging residues, thinnings, understory harvesting, or energywood plantations. A range of new technology has been developed to collect, process and transport biomass and a key element of technology development has been to reduce energy consumption. We examined three different woody feedstock...

  17. Nitrous oxide emission and soil carbon sequestration from herbaceous perennial biofuel feedstocks

    Science.gov (United States)

    Greenhouse gas (GHG) mitigation and renewable, domestic fuels are needed in the United States. Switchgrass (Panicum virgatum L.) and big bluestem (Andropogon gerdardii Vitman) are potential bioenergy feedstocks that may meet this need. However, managing perennial grasses for feedstock requires nitro...

  18. Methods for determination of biomethane potential of feedstocks: a review

    Directory of Open Access Journals (Sweden)

    Raphael Muzondiwa Jingura

    2017-06-01

    Full Text Available Biogas produced during anaerobic digestion (AD of biodegradable organic materials. AD is a series of biochemical reactions in which microorganisms degrade organic matter under anaerobic conditions. There are many biomass resources that can be degraded by AD to produce biogas. Biogas consists of methane, carbon dioxide, and trace amounts of other gases. The gamut of feedstocks used in AD includes animal manure, municipal solid waste, sewage sludge, and various crops. Several factors affect the potential of feedstocks for biomethane production. The factors include nutrient content, total and volatile solids (VS content, chemical and biological oxygen demand, carbon/nitrogen ratio, and presence of inhibitory substances. The biochemical methane potential (BMP, often defined as the maximum volume of methane produced per g of VS substrate provides an indication of the biodegradability of a substrate and its potential to produce methane via AD. The BMP test is a method of establishing a baseline for performance of AD. BMP data are useful for designing AD parameters in order to optimise methane production. Several methods which include experimental and theoretical methods can be used to determine BMP. The objective of this paper is to review several methods with a special focus on their advantages and disadvantages. The review shows that experimental methods, mainly the BMP test are widely used. The BMP test is credited for its reliability and validity. There are variants of BMP assays as well. Theoretical models are alternative methods to estimate BMP. They are credited for being fast and easy to use. Spectroscopy has emerged as a new experimental tool to determine BMP. Each method has its own advantages and disadvantages with reference to efficacy, time, and ease of use. Choosing a method to use depends on various exigencies. More work needs to be continuously done in order to improve the various methods used to determine BMP.

  19. Sorghum as Dry Land Feedstock for Fuel Ethanol Production

    Institute of Scientific and Technical Information of China (English)

    WANG Donghai; WU Xiaorong

    2010-01-01

    Dry land crops such as sorghums(grain sorghum,sweet sorghum and forage sorghum)have been identified aspromising feedstocks for fuel ethanol production.The major issue for using the sweet sorghum as feedstock is its stability at room temperature.At room temperature,the sweet sorghum juice could lose from 40%to50%of its fermentable sugars from 7to14 days.No significant sugar content and profile changes were observed in juice stored at refrigerator temperature in two weeks.Ethanolfermentation efficiencies of fresh and frozen juice were high(-93%).Concentrated juice(≥25%sugar)had significantly lower efficiencies and large amounts of fructose left in finished beer; however,winery yeast strains and novel fermentation techniques maysolve these problems.The ethanol yield from sorghum grain increased as starch content increased.No linear relationship betweenstarch content and fermentation efficiency was found.Key factors affecting the ethanol fermentation efficiency of sorghum includestarches and protein digestibility,amylose-lipid complexes,tannin content,and mash viscosity.Life cycle analysis showed a positivenet energy value(NEV)=25 500 Btu/gal ethanol.Fourier transform infrared(FTIR)spectroscopy and X-ray diffraction(XRD)were used to determine changes in the structure and chemical composition of sorghum biomasses.Dilute sulfuric acid pretreatment waseffective in removing the hemicellulose from biomasses and exposing the cellulose for enzymatic hydrolysis.Forage sorghum ligninhad a lower syringyl/guaiacyl ratio and its pretreated biomass was easier to hydrolyze.Up to 72% hexose yield and 94% pentoseyield were obtained by using a modified steam explosion with 2% sulfuric acid at 140"C for 30 min and enzymatic hydrolysis withcellulase.

  20. An alternative feedstock of corn meal for industrial fuel ethanol production: delignified corncob residue.

    Science.gov (United States)

    Lei, Cheng; Zhang, Jian; Xiao, Lin; Bao, Jie

    2014-09-01

    Delignified corncob residue is an industrial solid waste from xylose production using corncob as feedstock. In this study, delignified corncob residue was used as the feedstock of ethanol production by simultaneous saccharification and fermentation (SSF) and the optimal fermentation performance was investigated under various operation conditions. The ethanol titer and yield reached 75.07 g/L and 89.38%, respectively, using a regular industrial yeast strain at moderate cellulase dosage and high solids loading. A uniform SSF temperature of 37°C at both prehydrolysis and SSF stages was tested. The fermentation performance and cost of delignified corncob residue and corn meal was compared as feedstock of ethanol fermentation. The result shows that the delignified corncob residue is competitive to corn meal as ethanol production feedstock. The study gives a typical case to demonstrate the potential of intensively processed lignocellulose as the alternative feedstock of corn meal for industrial fuel ethanol production.

  1. Method for estimating processability of a hydrocarbon-containing feedstock for hydroprocessing

    Science.gov (United States)

    Schabron, John F; Rovani, Jr., Joseph F

    2014-01-14

    Disclosed herein is a method involving the steps of (a) precipitating an amount of asphaltenes from a liquid sample of a first hydrocarbon-containing feedstock having solvated asphaltenes therein with one or more first solvents in a column; (b) determining one or more solubility characteristics of the precipitated asphaltenes; (c) analyzing the one or more solubility characteristics of the precipitated asphaltenes; and (d) correlating a measurement of feedstock reactivity for the first hydrocarbon-containing feedstock sample with a mathematical parameter derived from the results of analyzing the one or more solubility characteristics of the precipitates asphaltenes. Determined parameters and processabilities for a plurality of feedstocks can be used to generate a mathematical relationship between parameter and processability; this relationship can be used to estimate the processability for hydroprocessing for a feedstock of unknown processability.

  2. Chemical Preconversion: Application of Low-Severity Pretreatment Chemistries for Commoditization of Lignocellulosic Feedstock

    Energy Technology Data Exchange (ETDEWEB)

    David N. Thompson; Timothy Campbell; Bryan Bals; Troy Runge; Farzaneh Teymouri

    2013-05-01

    Securing biofuels project financing is challenging, in part because of risks in feedstock supply. Commoditization of the feedstock and decoupling its supply from the biorefinery will promote greater economies of scale, reduce feedstock supply risk and reduce the need for overdesign of biorefinery pretreatment technologies. We present benefits and detractions of applying low-severity chemical treatments or ‘chemical preconversion treatments’ to enable this approach through feedstock modification and densification early in the supply chain. General structural modifications to biomass that support cost-effective densification and transportation are presented, followed by available chemistries to achieve these modifications with minimal yield loss and the potential for harvesting value in local economies. A brief review of existing biomass pretreatment technologies for cellulolytic hydrolysis at biorefineries is presented, followed by a discussion toward economically applying the underlying chemistries at reduced severity in light of capital and operational limitations of small-scale feedstock depots.

  3. Characterization of Tool Wear in High-Speed Milling of Hardened Powder Metallurgical Steels

    Directory of Open Access Journals (Sweden)

    Fritz Klocke

    2011-01-01

    Full Text Available In this experimental study, the cutting performance of ball-end mills in high-speed dry-hard milling of powder metallurgical steels was investigated. The cutting performance of the milling tools was mainly evaluated in terms of cutting length, tool wear, and cutting forces. Two different types of hardened steels were machined, the cold working steel HS 4-2-4 PM (K490 Microclean/66 HRC and the high speed steel HS 6-5-3 PM (S790 Microclean/64 HRC. The milling tests were performed at effective cutting speeds of 225, 300, and 400 m/min with a four fluted solid carbide ball-end mill (0 = 6, TiAlN coating. It was observed that by means of analytically optimised chipping parameters and increased cutting speed, the tool life can be drastically enhanced. Further, in machining the harder material HS 4-2-4 PM, the tool life is up to three times in regard to the less harder material HS 6-5-3 PM. Thus, it can be assumed that not only the hardness of the material to be machined plays a vital role for the high-speed dry-hard cutting performance, but also the microstructure and thermal characteristics of the investigated powder metallurgical steels in their hardened state.

  4. Metallurgical coke quality depending on the variability of properties of coking coal mixes components

    Energy Technology Data Exchange (ETDEWEB)

    M. Kaloc; S. Bartusek; S. Czudek [VSB-TU Ostrava (Czech Republic)

    2005-07-01

    The main sources for this report are the experiences acquired by the long lasting practice of the coking coal mixes preparing and tuning them in accordance with the variable qualitative properties of the coals mined in the coalfields of the OKD Company Ostrava. The systematic database, made by summarizing the values of measured indexes, became a very useful instrument for the coal mixes composing with regard on the two today very important points of view, namely: Contemporary presence and the long lasting availability of the definite coal type from any local source. Price basis influencing strongly the economics of the coke production. The method of prognostic estimating of the metallurgical coke quality dependence on the coking mixes composition, developed some time ago by authors of presented paper, was published in the Cokemaking International Vol. 13, 2/2001 (Czudek S. and al.: Simulation of Carbonization Process under Laboratory Conditions). The original procedure was newly accomplished by implementing a special method of the multi criteria evaluation of the definite coal components. New method is based on special processing of the technologic significant qualitative properties of the mined coal brands enabling deeply estimate the impacts of their application in metallurgical coke production. The importance of this evaluating system exceeds largely the well known method that is incorporated in the international coal classification. The main advantage of the new method is the fully respecting of the specialties marking the geographic different coalfields. (Abstract only)

  5. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report. Fourth quarter 1993 and 1993 summary

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    The AMB wells at the Metallurgical Laboratory Hazardous Waste Management Facility (Met Lab HWMF) are monitored for selected constituents to comply with the Natural Resources Defense council et al. Consent Decree of May 1988 that identifies the Met Lab HWMF as subject to the Resource Conservation and Recovery Act. In addition, the wells are monitored, as requested, for other constituents as part of the Savannah River Site (SRS) Groundwater Monitoring Program. During the fourth quarter 1993, samples from AMB groundwater monitoring wells at the Metallurgical Laboratory Hazardous Waste Management Facility were analyzed for selected heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. Six parameters exceeded standards during the quarter. As in previous quarters, dichloromethane (methylene chloride), tetrachloroethylene, and trichloroethylene exceeded final Primary Drinking Water Standards; pH, specific conductance, and total organic halogens exceeded the Savannah River Site Flag 2 criteria in one or more of the wells. Groundwater flow direction and rate in the water-table unit were similar to previous quarters.

  6. Ecological Risk Assessment of Lead (Pb after Waste Disposal from Metallurgical Industries

    Directory of Open Access Journals (Sweden)

    Jahangir Jafari

    2010-07-01

    Full Text Available Not being available sufficient information about ERA of lead, this paper provides a brief critical review to the mentioned concept. Being presented in soils, heavy metals constitute serious environmental hazards from the point of view of polluting the soils and adjoining streams and rivers. Pb is generally the metal of great concern as well as being phytotoxic. Ecological risk assessment is a process that evaluates the likelihood that adverse ecological effects may occur or are occurring as a result of exposure to one or more stressors. Metallurgical waste like other waste materials consists not only of Pb, but also consists in large quantities relatively. The ubiquitous distribution and known toxicity of lead pollution in urban environment are posing great concern, in term of human health and environment. According to the importance and criticality of this issue, a holistic risk-based approach is inevitable at least for environmental health and monitoring (EHM. Reviewing literature, it is found that approximately most of the researches have been carried out in aquatic environments. From the other side, those carried out in terrestrial environment, are non-Pb focusing. Considering the researches pertaining to ERA, however few researches have been carried out in the field of metallurgical industries, none of them has addressed the Pb ERA in a holistic approach.

  7. Study of the Metallurgical Aspects of Steel Micro-Alloying by Titan

    Directory of Open Access Journals (Sweden)

    Kijac, J.

    2006-01-01

    Full Text Available The metal properties upgrading applying it’s alloying with the simultaneous limitation of the impurities represents a prospective possibility of the metallurgical production further development. The interaction of the alloying substance active element with oxygen in metal and adjacent multiphase environment occurs under the actual conditions. Present paper is oriented particularly to the thermodynamic aspects of deoxygenation by titan in process of production of micro alloyed low carbon steel in two plants (oxygen converter 1-OC1 and 2-OC2 with the different effect of micro-alloy exploitation. Analysis of the effect of the metallurgical factors on the titan smelting loss in micro-alloyed steel production points at the need to master the metal preparation for the alloying and especially has got the decisive effect upon the oxidizing ability and rate of the slag phase availability. When comparing the micro-alloying matter yield among the individual production units, disclosed have been better results obtained in plant OC 2. Confirmed has been the effect of the slag amount (average amount of 7,3 t at OC 1 and 5,83 t at OC 2 and its quality during the steel tapping as one among the most significant factors affecting the alloying process and which also represent its oxidizing potential.

  8. Possibilities of Formation of Dioxins and Furans in Metallurgical Processes as well as Methods of their Reduction

    Directory of Open Access Journals (Sweden)

    Holtzer, M.

    2007-01-01

    Full Text Available The metallurgical industry, among others, generates various kinds of wastes: gaseous, dusts, wastes and sewage. Special attention of the European Union is directed towards the elimination or significant reduction of the gaseous-dust contamination emissions including the most hazardous compounds, such as dioxins and furans. In the article the sources of dioxins and furans in metallurgical industry are described along with the reduction methods of these pollutants. Particularly the activities recommended as the Best Available Techniques (BAT in order to reduce the PCDD/PCDF emission from sintering processes, non-ferrous metallurgy and foundry engineering have been presented.

  9. Measures to restore metallurgical mine wasteland using ecological restoration technologies: A case study at Longnan Rare Earth Mine

    Science.gov (United States)

    Rao, Yunzhang; Gu, Ruizhi; Guo, Ruikai; Zhang, Xueyan

    2017-01-01

    Whereas mining activities produce the raw materials that are crucial to economic growth, such activities leave extensive scarring on the land, contributing to the waste of valuable land resources and upsetting the ecological environment. The aim of this study is therefore to investigate various ecological technologies to restore metallurgical mine wastelands. These technologies include measures such as soil amelioration, vegetation restoration, different vegetation planting patterns, and engineering technologies. The Longnan Rare Earth Mine in the Jiangxi Province of China is used as the case study. The ecological restoration process provides a favourable reference for the restoration of a metallurgical mine wasteland.

  10. Correlation Between the Efficiency of Machinery and Equipment and the Productivity of Workers and its Effect on the Performance of a Metallurgical Undertaking

    Directory of Open Access Journals (Sweden)

    Kulawik, A.

    2007-01-01

    Full Text Available In this paper the example of procedure of life and objectify work effectiveness analysis in metallurgical enterprise were presented. Besides, on the example of chosen units of metallurgical enterprise, results of analysis - based on methodic proposed in the article - were discussed.

  11. Nanostructured Silicon Photocathodes for Solar Water Splitting Patterned by the Self-Assembly of Lamellar Block Copolymers.

    Science.gov (United States)

    Shen, Lang; He, Chunlin; Qiu, Jing; Lee, Sung-Min; Kalita, Abinasha; Cronin, Stephen B; Stoykovich, Mark P; Yoon, Jongseung

    2015-12-02

    We studied a type of nanostructured silicon photocathode for solar water splitting, where one-dimensionally periodic lamellar nanopatterns derived from the self-assembly of symmetric poly(styrene-block-methyl methacrylate) block copolymers were incorporated on the surface of single-crystalline silicon in configurations with and without a buried metallurgical junction. The resulting nanostructured silicon photocathodes with the characteristic lamellar morphology provided suppressed front-surface reflection and increased surface area, which collectively contributed to the enhanced photocatalytic performance in the hydrogen evolution reaction. The augmented light absorption in the nanostructured silicon directly translated to the increase of the saturation current density, while the onset potential decreased with the etching depth because of the increased levels of surface recombination. The pp(+)-silicon photocathodes, compared to the n(+)pp(+)-silicon with a buried solid-state junction, exhibited a more pronounced shift of the current density-potential curves upon the introduction of the nanostructured surface owing to the corresponding increase in the liquid/silicon junction area. Systematic studies on the morphology, optical properties, and photoelectrochemical characteristics of nanostructured silicon photocathodes, in conjunction with optical modeling based on the finite-difference time-domain method, provide quantitative description and optimal design rules of lamellar-patterned silicon photocathodes for solar water splitting.

  12. Process feasibility study in support of silicon material Task I. Quarterly technical progress report (VI)

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, K.C.; Miller, J.W. Jr.; Yaws, C.L.

    1977-03-01

    During this reporting period, major effects were expended on process system properties, chemical engineering and economic analyses. Major activities were continued on process system properties of silicon source materials under consideration for solar cell grade silicon production. In property correlation efforts, property data results are presented for heat of vaporization, gas heat capacity, liquid heat capacity, liquid density, surface tension and gas viscosity of silane (SiH/sub 4/) as a function of temperature. Major chemical engineering analysis activities are being devoted to preliminary process design for a silane (SiH/sub 4/) plant that will produce 1000 metric tons/year of solar cell grade silicon. The technology developed by Union Carbide for the production of silane uses hydrogen and metallurgical grade silicon as raw materials. Preliminary process flow diagram and base conditions are reported. Preliminary process design was initiated for the conventional polysilicon process now used in the United States to produce semiconductor grade silicon from TCS (trichlorosilane, SiHCl/sub 3/). Economic analysis activities in Task 3 focused on development of a computer model to aid in estimation of product and plant investment costs for the alternate solar cell grade silicon processes. Application of the computer model to the Battelle process (Zn/SiCl/sub 4/) indicated $10,510,000 fixed capital investment and $9.63/KG of silicon for a 1000 metric ton/yr. plant. Economic analysis activities also centered on developing cost standardization techniques for application to the alternate processes.

  13. Gasification reactivity and ash sintering behaviour of biomass feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Moilanen, A.; Nasrullah, M.

    2011-12-15

    Char gasification reactivity and ash sintering properties of forestry biomass feedstocks selected for large-scale gasification process was characterised. The study was divided into two parts: (1) Internal variation of the reactivity and the ash sintering of feedstocks. (2) Measurement of kinetic parameters of char gasification reactions to be used in the modelling of a gasifier. The tests were carried out in gases relevant to pressurized oxygen gasification, i.e. steam and carbon dioxide, as well as their mixtures with the product gases H{sub 2} and CO. The work was based on experimental measurements using pressurized thermobalance. In the tests, the temperatures were below 1000 deg C, and the pressure range was between 1 and 20 bar. In the first part, it was tested the effect of growing location, storage, plant parts and debarking method. The following biomass types were tested: spruce bark, pine bark, aspen bark, birch bark, forestry residue, bark feedstock mixture, stump chips and hemp. Thick pine bark had the lowest reactivity (instantaneous reaction rate 14%/min) and hemp the highest (250%/min); all other biomasses laid between these values. There was practically no difference in the reactivities among the spruce barks collected from the different locations. For pine bark, the differences were greater, but they were probably due to the thickness of the bark rather than to the growth location. For the spruce barks, the instantaneous reaction rate measured at 90% fuel conversion was 100%/min, for pine barks it varied between 14 and 75%/min. During storage, quite large local differences in reactivity seem to develop. Stump had significantly lower reactivity compared with the others. No clear difference in the reactivity was observed between barks obtained with the wet and dry debarking, but, the sintering of the ash was more enhanced for the bark from dry debarking. Char gasification rate could not be modelled in the gas mixture of H{sub 2}O + CO{sub 2} + H{sub 2

  14. Regional Feedstock Partnership Summary Report: Enabling the Billion-Ton Vision

    Energy Technology Data Exchange (ETDEWEB)

    Owens, Vance N. [South Dakota State Univ., Brookings, SD (United States). North Central Sun Grant Center; Karlen, Douglas L. [Dept. of Agriculture Agricultural Research Service, Ames, IA (United States). National Lab. for Agriculture and the Environment; Lacey, Jeffrey A. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Process Science and Technology Division

    2016-07-12

    The U.S. Department of Energy (DOE) and the Sun Grant Initiative established the Regional Feedstock Partnership (referred to as the Partnership) to address information gaps associated with enabling the vision of a sustainable, reliable, billion-ton U.S. bioenergy industry by the year 2030 (i.e., the Billion-Ton Vision). Over the past 7 years (2008–2014), the Partnership has been successful at advancing the biomass feedstock production industry in the United States, with notable accomplishments. The Billion-Ton Study identifies the technical potential to expand domestic biomass production to offset up to 30% of U.S. petroleum consumption, while continuing to meet demands for food, feed, fiber, and export. This study verifies for the biofuels and chemical industries that a real and substantial resource base could justify the significant investment needed to develop robust conversion technologies and commercial-scale facilities. DOE and the Sun Grant Initiative established the Partnership to demonstrate and validate the underlying assumptions underpinning the Billion-Ton Vision to supply a sustainable and reliable source of lignocellulosic feedstock to a large-scale bioenergy industry. This report discusses the accomplishments of the Partnership, with references to accompanying scientific publications. These accomplishments include advances in sustainable feedstock production, feedstock yield, yield stability and stand persistence, energy crop commercialization readiness, information transfer, assessment of the economic impacts of achieving the Billion-Ton Vision, and the impact of feedstock species and environment conditions on feedstock quality characteristics.

  15. Molding Properties of Inconel 718 Feedstocks Used in Low-Pressure Powder Injection Molding

    Directory of Open Access Journals (Sweden)

    Fouad Fareh

    2016-01-01

    Full Text Available The impact of binders and temperature on the rheological properties of feedstocks used in low-pressure powder injection molding was investigated. Experiments were conducted on different feedstock formulations obtained by mixing Inconel 718 powder with wax-based binder systems. The shear rate sensitivity index and the activation energy were used to study the degree of dependence of shear rate and temperature on the viscosity of the feedstocks. The injection performance of feedstocks was then evaluated using an analytical moldability model. The results indicated that the viscosity profiles of feedstocks depend significantly on the binder constituents, and the secondary binder constituents play an important role in the rheological behavior (pseudoplastic or near-Newtonian exhibited by the feedstock formulations. Viscosity values as low as 0.06 to 2.9 Pa·s were measured at high shear rates and high temperatures. The results indicate that a feedstock containing a surfactant agent exhibits the best moldability characteristics.

  16. Control of metal impurities in 'dirty' multicrystalline silicon for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Istratov, A.A. [Department of Materials Science, University of California, Berkeley, CA 94720 (United States) and Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)]. E-mail: istratov@berkeley.edu; Buonassisi, T. [Department of Materials Science, University of California, Berkeley, CA 94720 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Pickett, M.D. [Department of Materials Science, University of California, Berkeley, CA 94720 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Heuer, M. [Department of Materials Science, University of California, Berkeley, CA 94720 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Weber, E.R. [Department of Materials Science, University of California, Berkeley, CA 94720 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2006-10-15

    The rapid growth of the global photovoltaics (PV) industry is increasingly limited by the availability of suitable Si feedstock material. Therefore, it is very important to explore new approaches that might allow processing of solar cells with satisfactory energy conversion efficiency based on inexpensive feedstock material with less stringent impurity control, i.e., 'dirty' silicon. Our detailed studies of the distribution of metal impurity clusters in multicrystalline Si have demonstrated that cells with the same total impurity content can have widely different minority carrier diffusion lengths based on the distribution of the metals, i.e., whether they are dispersed throughout the material or concentrated in a few, large clusters. Possible approaches to defect engineering of metal clusters in silicon are discussed.

  17. Metallurgical Design and Development of NASA Crawler/Transporter Tread Belt Shoe Castings

    Science.gov (United States)

    Parker, Donald S.

    2006-01-01

    The NASA Crawler/Transporters (CT-1 and CT-2) used to transport the Space Shuffles are one of the largest tracked vehicles in existence today. Two of these machines have been used to move space flight vehicles at Kennedy Space Center since the Apollo missions of the 1960's and relatively few modifications have been made to keep them operational. In September of 2003 during normal Crawler/Transporter operations cracks were observed along the roller pad surfaces of several tread belt shoes. Further examination showed 20 cracked shoes on CT-1 and 40 cracked shoes on CT-2 and a formal failure analysis investigation was undertaken while the cracked shoes were replaced. Six shoes were cross-sectioned with the fracture surfaces exposed and it was determined that the cracks were due to fatigue that initiated on the internal casting web channels at pre-existing casting defects and propagated through thickness both transgranularly and intergranularly between internal shrinkage cavities, porosity, and along austenitic and ferritic grain boundaries. The original shoes were cast during the 1960's using a modified 861330 steel with slightly higher levels of chromium, nickel and molybdenum followed by heat treatment to achieve a minimum tensile strength of 11 Oksi. Subsequent metallurgical analysis of the tread belt shoes after multiple failures showed excessive internal defects, alloy segregation, a nonuniform ferritic/ bainitic/martensitic microstructure, and low average tensile properties indicative of poor casting and poor heat-treatment. As a result, NASA funded an initiative to replace all of the tread belt shoes on both crawler/transporters along with a redesign of the alloy, manufacturing, and heat-treatment to create a homogeneous cast structure with uniform mechanical and metallurgical properties. ME Global, a wholly owned subsidiary of ME Elecmetal based in Minneapolis, MN was selected as manufacturing and design partner to develop the new shoes and this paper

  18. Methods of refining and producing dibasic esters and acids from natural oil feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Snead, Thomas E.; Cohen, Steven A.; Gildon, Demond L.

    2016-06-14

    Methods and systems for making dibasic esters and/or dibasic acids using metathesis are generally disclosed. In some embodiments, the methods comprise reacting a terminal olefin ester with an internal olefin ester in the presence of a metathesis catalyst to form a dibasic ester and/or dibasic acid. In some embodiments, the terminal olefin ester or the internal olefin ester are derived from a renewable feedstock, such as a natural oil feedstock. In some such embodiments, the natural oil feedstock, or a transesterified derivative thereof, is metathesized to make the terminal olefin ester or the internal olefin ester.

  19. Method for predicting fouling tendency of a hydrocarbon-containing feedstock

    Science.gov (United States)

    Schabron, John F; Rovani, Jr., Joseph F

    2013-07-23

    Disclosed herein is a method involving the steps of (a) precipitating an amount of asphaltenes from a liquid sample of a first hydrocarbon-containing feedstock having solvated asphaltenes therein with one or more first solvents in a column; (b) determining one or more solubility characteristics of the precipitated asphaltenes; (c) analyzing the one or more solubility characteristics of the precipitated asphaltenes; and (d) correlating a measurement of feedstock fouling tendency for the first hydrocarbon-containing feedstock sample with a mathematical parameter derived from the results of analyzing the one or more solubility characteristics of the precipitated asphaltenes.

  20. Two Types of Novel Feedstock Injection Structures of the FCC Riser Reactor

    Institute of Scientific and Technical Information of China (English)

    范怡平; 蔡飞鹏; 时铭显; 徐春明

    2004-01-01

    Based on the analysis of flow characteristics of the FCC riser feedstock injection zone, two novel feedstock injection structures are put forward. By investigating three flow parameters in the feedstock injection zone under the three different structures (the traditional and the novel No. 1, No. 2 structures): the local density, the particle backmixng ratio, and the jet eigen-concentration, the flow feature under three structures were obtained. The experimental results demonstrate that the flow features under both proposed structures are obviously improved comparing with those under the traditional structure. Especially, the performance of the deflector-structured No. 2 is more desirable than that of No. 1.

  1. Low-Cost Feedstock Conversion to Biodiesel via Ultrasound Technology

    Directory of Open Access Journals (Sweden)

    Farouk Ameer

    2010-10-01

    Full Text Available Biodiesel has attracted increasing interest and has proved to be a good substitute for fossil-based fuels due to its environmental advantages and availability from renewable resources such as refined and waste vegetable oils. Several studies have shown that biodiesel is a better fuel than the fossil-derived diesel in terms of engine performance, emissions reduction, lubricity and environmental benefits. The increasing popularity of biodiesel has generated great demand for its commercial production methods, which in turn calls for the development of technically and economically sound process technologies. This paper explores the applicability of ultrasound in the optimization of low-cost feedstock – in this case waste cooking oil – in the transesterification conversion to biodiesel. It was found that the conversion efficiency of the waste oil using ultrasound was higher than with the mechanical stirring method. The optimized variables of 6:1 methanol/oil ratio at a reaction temperature of 30 °C and a reaction time of 30 min and 0.75% KOH (wt/wt catalyst concentration was obtained for the transesterification of the waste oil via the use of ultrasound.

  2. Rheological assessment of titanium MIM feedstocks [Conference paper

    CSIR Research Space (South Africa)

    Benson, JM

    2010-10-01

    Full Text Available � ������������������������������������������������������������������������������ � Page 348� � 2. Experimental Procedure A binder system, based on EVA and a wax, was used to prepare feedstock with varying powder loadings. In all three cases the total mass of the binder components were kept constant, while only the mass... ivit ric s In nfe ic �� IC eri e cu ess ap e se e ent y r mo fr ill ed e me ati an ibe n t u t ies an iti ren hte ��� A J al xc rre th art tot re tal ial e-m uld om in bi mo nt ve d m s t he...

  3. Evaluation of filamentous green algae as feedstocks for biofuel production.

    Science.gov (United States)

    Zhang, Wei; Zhao, Yonggang; Cui, Binjie; Wang, Hui; Liu, Tianzhong

    2016-11-01

    Compared with unicellular microalgae, filamentous algae have high resistance to grazer-predation and low-cost recovery in large-scale production. Green algae, as the most diverse group of algae, included numerous filamentous genera and species. In this study, records of filamentous genera and species in green algae were firstly censused and classified. Then, seven filamentous strains subordinated in different genera were cultivated in bubbled-column to investigate their growth rate and energy molecular (lipid and starch) capacity. Four strains including Stigeoclonium sp., Oedogonium nodulosum, Hormidium sp. and Zygnema extenue were screened out due to their robust growth. And they all could accumulate triacylglycerols and starch in their biomass, but with different capacity. After nitrogen starvation, Hormidium sp. and Oedogonium nodulosum respectively exhibited high capacity of lipid (45.38% in dry weight) and starch (46.19% in dry weight) accumulation, which could be of high potential as feedstocks for biodiesel and bioethanol production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Practical Considerations of Moisture in Baled Biomass Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    William A. Smith; Ian J. Bonner; Kevin L. Kenney; Lynn M. Wendt

    2013-01-01

    Agricultural residues make up a large portion of the immediately available biomass feedstock for renewable energy markets. Current collection and storage methods rely on existing feed and forage practices designed to preserve nutrients and properties of digestibility. Low-cost collection and storage practices that preserve carbohydrates across a range of inbound moisture contents are needed to assure the economic and technical success of the emerging biomass industry. This study examines the movement of moisture in storage and identifies patterns of migration resulting from several on-farm storage systems and their impacts on moisture measurement and dry matter recovery. Baled corn stover and energy sorghum were stored outdoors in uncovered, tarp-covered, or wrapped stacks and sampled periodically to measure moisture and dry matter losses. Interpolation between discrete sampling locations in the stack improved bulk moisture content estimates and showed clear patterns of accumulation and re-deposition. Atmospheric exposure, orientation, and contact with barriers (i.e., soil, tarp, and wrap surfaces) were found to cause the greatest amount of moisture heterogeneity within stacks. Although the bulk moisture content of many stacks remained in the range suitable for aerobic stability, regions of high moisture were sufficient to support microbial activity, thus support dry matter loss. Stack configuration, orientation, and coverage methods are discussed relative to impact on moisture management and dry matter preservation. Additionally, sample collection and data analysis are discussed relative to assessment at the biorefinery as it pertains to stability in storage, queuing, and moisture carried into processing.

  5. Bioplastic production using wood mill effluents as feedstock.

    Science.gov (United States)

    Ben, M; Mato, T; Lopez, A; Vila, M; Kennes, C; Veiga, M C

    2011-01-01

    Fibreboard production is one of the most important industrial activities in Galicia (Spain). Great amounts of wastewater are generated, with properties depending on the type of wood, treatment process, final product and water reusing, among others. These effluents are characterized by a high chemical oxygen demand, low pH and nutrients limitation. Although anaerobic digestion is one of the most suitable processes for the treatment, lately bioplastics production (mainly polyhydroxyalkanoates) from wastewaters with mixed cultures is being evaluated. Substrate requirements for these processes consist of high organic matter content and low nutrient concentration. Therefore, wood mill effluents could be a suitable feedstock. In this work, the possibility of producing bioplastics from to wood mill effluents is evaluated. First, wood mill effluent was converted to volatile fatty acids in an acidogenic reactor operated at two different hydraulic retention times of 1 and 1.5 d. The acidification percentage obtained was 37% and 42%, respectively. Then, aerobic batch assays were performed using fermented wood mill effluents obtained at different hydraulic retention times. Assays were developed using different cultures as inoculums. The maximum storage yield of 0.57 Cmmol/Cmmol was obtained when when the culture was enriched on a synthetic media.

  6. Design, modeling, and analysis of a feedstock logistics system.

    Science.gov (United States)

    Judd, Jason D; Sarin, Subhash C; Cundiff, John S

    2012-01-01

    Given the location of a bio-energy plant for the conversion of biomass to bio-energy, a feedstock logistics system that relies on the use of satellite storage locations (SSLs) for temporary storage and loading of round bales is proposed. Three equipment systems are considered for handling biomass at the SSLs, and they are either placed permanently or are mobile and thereby travel from one SSL to another. A mathematical programming-based approach is utilized to determine SSLs and equipment routes in order to minimize the total cost. The use of a Side-loading Rack System results in average savings of 21.3% over a Densification System while a Rear-loading Rack System is more expensive to operate than either of the other equipment systems. The utilization of mobile equipment results in average savings of 14.8% over the equipment placed permanently. Furthermore, the Densification System is not justifiable for transportation distances less than 81 km. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Plant triacylglycerols as feedstocks for the production of biofuels.

    Science.gov (United States)

    Durrett, Timothy P; Benning, Christoph; Ohlrogge, John

    2008-05-01

    Triacylglycerols produced by plants are one of the most energy-rich and abundant forms of reduced carbon available from nature. Given their chemical similarities, plant oils represent a logical substitute for conventional diesel, a non-renewable energy source. However, as plant oils are too viscous for use in modern diesel engines, they are converted to fatty acid esters. The resulting fuel is commonly referred to as biodiesel, and offers many advantages over conventional diesel. Chief among these is that biodiesel is derived from renewable sources. In addition, the production and subsequent consumption of biodiesel results in less greenhouse gas emission compared to conventional diesel. However, the widespread adoption of biodiesel faces a number of challenges. The biggest of these is a limited supply of biodiesel feedstocks. Thus, plant oil production needs to be greatly increased for biodiesel to replace a major proportion of the current and future fuel needs of the world. An increased understanding of how plants synthesize fatty acids and triacylglycerols will ultimately allow the development of novel energy crops. For example, knowledge of the regulation of oil synthesis has suggested ways to produce triacylglycerols in abundant non-seed tissues. Additionally, biodiesel has poor cold-temperature performance and low oxidative stability. Improving the fuel characteristics of biodiesel can be achieved by altering the fatty acid composition. In this regard, the generation of transgenic soybean lines with high oleic acid content represents one way in which plant biotechnology has already contributed to the improvement of biodiesel.

  8. Crop residues as soil amendments and feedstock for bioethanol production.

    Science.gov (United States)

    Lal, R

    2008-01-01

    Traditional solid fuels account for more than 90% of the energy supply for 3 billion people in developing countries. However, liquid biofuels (e.g., ethanol) are perceived as an important alternative to fossil fuel. Global crop residue production is estimated at about 4 billion Mg for all crops and 3 billion Mg per annum for lignocellulosic residues of cereals. One Mg of corn stover can produce 280L of ethanol, compared with 400L from 1Mg of corn grains; 1Mg of biomass is also equivalent to 18.5GJ of energy. Thus, 3 billion Mg of residues are equivalent to 840 billion L of ethanol or 56x10(9)GJ of energy. However, removal of crop residues exacerbates soil degradation, increases net emission of CO2, and aggravates food insecurity. Increasing the SOC pool by 1 Mg C ha(-1)yr(-1) through residue retention on soil can increase world food grain production by 24-40 million Mg yr(-1), and root/tuber production by 6-11 million Mg yr(-1). Thus, identifying alternate sources of biofuel feedstock (e.g., biofuel plantations, animal waste, municipal sold waste) is a high priority. Establishing biofuel plantations on agriculturally marginal or degraded lands can off-set 3.5-4 Pg Cyr(-1).

  9. Assessing Pinyon Juniper Feedstock Properties and Utilization Options

    Energy Technology Data Exchange (ETDEWEB)

    Gresham, Garold Linn [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kenney, Kevin Louis [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-08-01

    Pinyon-juniper woodlands are a major ecosystem type found in the Southwest and the Intermountain West regions of the United States. These ecosystems are characterized by the presence of several different species of pinyon pine and juniper as the dominant plant cover. Since the 1800s, pinyon-juniper woodlands have rapidly expanded their range at the expense of existing ecosystems. Additionally, existing woodlands have become more dense, potentially increasing fire hazards. Land managers responsible for these areas often desire to reduce pinyonjuniper coverage on their lands for a variety of reasons, including restoration to previous vegetative cover, mitigation of fire risk, and improvement in wildlife habitat. However, the cost of clearing or thinning pinyon-juniper stands can be prohibitive. One reason for this is the lack of utilization options for the resulting biomass that could help recover some of the cost of pinyonjuniper stand management. The goal of this project was to assess the feedstock characteristics of biomass from a pinyon-juniper harvest so that potential applications for the biomass may be evaluated.

  10. Metallurgical source-contribution analysis of PM10 annual average concentration: A dispersion modeling approach in moravian-silesian region

    Directory of Open Access Journals (Sweden)

    P. Jančík

    2013-10-01

    Full Text Available The goal of the article is to present analysis of metallurgical industry contribution to annual average PM10 concentrations in Moravian-Silesian based on means of the air pollution modelling in accord with the Czech reference methodology SYMOS´97.

  11. Morphology, chemistry and distribution of neoformed spherulites in agricultural land affected by metallurgical point-source pollution

    NARCIS (Netherlands)

    Leguedois, S.; Oort, van F.; Jongmans, A.G.; Chevalier, P.

    2004-01-01

    Metal distribution patterns in superficial soil horizons of agricultural land affected by metallurgical point-source pollution were studied using optical and electron microscopy, synchrotron radiation and spectroscopy analyses. The site is located in northern France, at the center of a former entry

  12. Silver-cadmium alloys: Physical and metallurgical properties. (Latest citations from the EI Compendex*plus database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    The bibliography contains citations concerning the metallurgical and physical properties of silver-cadmium alloys, oxides, and sulfides. The phase relationships and crystal structure of this alloy system are presented. Applications for electrical contact devices are discussed extensively. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  13. Pulsed Nd:YAG laser cladding of high silicon content coating on low silicon steel

    Institute of Scientific and Technical Information of China (English)

    Danyang Dong; Changsheng Liu; Bin Zhang; Jun Miao

    2007-01-01

    A pulsed Nd:YAG (yttrium aluminum garnet) laser-based technique was employed to clad low silicon steel with preplaced Si and Fe mixed powders for high Si content. The surface morphology, microstructural evolution, phase composition, and Si distribution,within the obtained cladding coatings, were characterized by optical microscopy (OM), field emission scanning electron microscopy (FE-SEM), with associated energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The microhardness was also measured along the depth direction of the specimens. A crack- and pore-free cladding coating through excellent metallurgical bonding with the substrate was successfully prepared on low silicon steel by means of optimized single-track and multi-track laser cladding. The phases of the coating are α-Fe, γ-Fe, and FeSi. The high microhardness of the lasercladding zone is considered as an increase in Si content and as the refined microstructure produced by the laser treatment. The Si contents of the cladding coatings were about 5.8wt% in the single-track cladding and 6.5wt% in the multi-track cladding, respectively.

  14. Arsenic precipitation from metallurgical effluents; Precipitacion de arsenico desde efluentes metalurgicos

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, P.; Vargas, C.; Araya, E.; Martin, I.; Alguacil, F. J.

    2004-07-01

    In the mining-metallurgical companies different liquid effluents are produced, which can contain a series of dissolved elements that are considered dangerous from an environmental point of view. One of these elements is the arsenic, especially in the state of oxidation +5 that can be precipitated as calcium or iron arsenate. To fulfil the environmental requests it should have in solution a content of arsenic lower than 0,5 mg/l and the obtained solid product should be very stable under the condition in which it will be stored. this work looks for the best conditions of arsenic precipitation, until achieving contents in solution lower than such mentioned concentration. Also, the stability of the precipitates was studied. (Author) 7 refs.

  15. Determinant factors for the growing of shareholders’ equity in the metallurgical sector in Romania

    Directory of Open Access Journals (Sweden)

    R. S. Berinde

    2014-07-01

    Full Text Available The article provides a statistical monograph of the financial position and performance for the period 2008 – 2012 of the entities from the Romanian metallurgical sector whose financial statements in the period 2004 – 2012 have become the object of the financial audit. There are tested five types of regression models in order to separately determine the evolution of equity in accordance with the variation of turnover, total assets, average number of employees and net result. After determining the most appropriate simple regression model, one proceeds at establishing a multiple regression model which would simultaneously reflect the evolution of equity in accordance with the above mentioned variables. The study’s importance is enhanced by certain statistically-based concrete measures which management should consider in order to increase the shareholders’ equity.

  16. Influence of flow control devices on metallurgical effects in a large-capacity tundish

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The influence of flow control devices on metallurgical effects in a large-capacity tundish has been studied carefully with elements tracing, sampling and theoretical prospecting. The results from the studies are (1) in the continuous casting of clean steel, bad control of tundish operation may deteriorate the cleanliness of steel; (2) the cleanliness of steel is deteriorated mainly at the unsteady state; (3) large amount of macro inclusions come from the top slag and the refractory of tundish; (4) installing dam and weir can improve the cleanliness of steel and lighten the influence of steel fluctuation; and (5) the result of theoretical calculation suggests that the inclusions larger than the critical size of 92.6 μm can be floated out from the tundish bath completely.

  17. Utilizing of the metallurgical slag for production of cementless concrete mixtures

    Directory of Open Access Journals (Sweden)

    D. Baricová

    2012-10-01

    Full Text Available In process of pig iron, steel and cast iron production besides main product, also secondary products are formed, that have character of secondary raw materials and industrial wastes. The most abundant secondary product originating in the metallurgical process is furnace slag. Total amount of accured slag, also its chemical, mineralogical, physical – chemical properties and similarity with natural stones predestinate its utilisation in different fields of industry. The contribution deals with production of cementless concrete mixtures, where the main parts were formed by blast furnace granulated slag grinded and different gravel slag from blast furnace, oxygen converter and electric arc furnace. As activators of solidification different kinds of water glass were tested.

  18. Using SPL (Spent Pot-Lining) as an Alternative Fuel in Metallurgical Furnaces

    Science.gov (United States)

    Gao, Lei; Mostaghel, Sina; Ray, Shamik; Chattopadyay, Kinnor

    2016-09-01

    Replacing coke (coal) in a metallurgical furnace with other alternative fuels is beneficial for process economics and environmental friendliness. Coal injection is a common practice in blast furnace ironmaking, and spent pot-lining (SPL) was conceptualized as an alternative to coal. SPL is a resourceful waste from primary Aluminum production, with high carbon value. Equilibrium thermodynamics was used to calculate the energy content of SPL, and the compositional changes during SPL combustion. In order to capture the kinetics and mass transfer aspects, a blast furnace tuyere region CFD model was developed. The results of SPL combustion were compared with standard PCI coals, which are commonly used in blast furnaces. The CFD model was validated with experimental results for standard high volatile coals.

  19. GEOLOGY OF THE FLORENCIA GOLD – TELLURIDE DEPOSIT (CAMAGÜEY, CUBA AND SOME METALLURGICAL CONSIDERATIONS

    Directory of Open Access Journals (Sweden)

    López K Jesús M.

    2006-12-01

    Full Text Available This paper describes the results from a study of the Florencia gold-telluride deposit in Central Cuba, including mineralogical, petrographical, microprobe and chemical analysis. Valuable information is provided for the exploration, mining and processing of gold ores from other nearby deposits with similar characteristics. Results highlight changes in the mineralogical composition of the ores between the north and south sectors of the deposit, as reflected in metallurgical concentrates after beneficiation and flotation of samples from these sectors.
    It is shown that gold deposits of the Cretaceous Volcanic Arc of Cuba largely consist of native gold, telluride and pyrite, where arsenopyrite is almost absent. Traces of lead, zinc and cadmium are present in the periphery of the main ore zones.

  20. Determination of Japanese buyer valuation of metallurgical coal characteristics by hedonic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Koerner, R.J. [Griffith University, Brisbane, Qld. (Australia). Graduate School of Management

    2001-09-01

    Considerable efforts have been devoted by econometric researchers to understanding Japanese steel mill (JSM) metallurgical coal valuation policies, and whether such policies disadvantage coal exporters. Much of this research has employed the hedonic regression modeling technique of Rosen and examines the significance of coal quality in establishing market price. This article discusses shortcomings in some such modeling studies, and presents results of additional hedonic modeling to buttress findings of previous work suggesting that cross-cultural bargaining factors rather than coal quality explain lower prices for Australian coals in Japanese market settlements. Policy changes that might be effective in ameliorating bilateral market distortions arising from oligopsony characteristics exhibited in JSM contract settlements are then explored. 29 refs., 2 figs., 2 tabs.

  1. Value added statement (VAS of mining and metallurgical companies in Poland

    Directory of Open Access Journals (Sweden)

    A. Kijewska

    2015-10-01

    Full Text Available The article presents the concept of value added and value added statement. That report may provide an additional source of information for the company’s stakeholders such as employees, capital donors, State Budget and the company itself. According to the theory of stakeholders and corporate social responsibility the objective of the company is to deliver value to all stakeholders, not just shareholders. Hence the need for disclosure of information about the value added generated for all stakeholders. For internal analysis and for comparison purposes, several indicators based on value added should be elaborated. Calculations were carried out on the example of two Polish companies of the metallurgical and mining sectors for the years 2011-2013. This allowed for the evaluation of these two companies, to show the differences in the distribution of value added for stakeholders and evaluation of selected indicators.

  2. Effect of heavy metals on soil nematode communities in the vicinity of a metallurgical factory

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The influence of Cu and Zn on soil nematode communities was examined along a pollution gradient with increasing distance from a metallurgical factory. Total and available heavy metal contents were used to study the effects of heavy metals on nematode abundance, trophic groups and ecological indices. The results demonstrated significant correlations between the number of total nematodes, bacterivores, plant-parasites and the total and available heavy metals. Bacterivores and plant-parasites were the dominant trophic groups. Significant differences in different sampling sites were found only in the number of bacterivores(P<0.0l).The Shannon-Weaver diversity index(H'), trophic diversity index(TD), evenness index(J ') and dominance index(X) were found to be sensitive to soil pH and C/N ratios. Significant correlations were found between the total nematodes (TNEM), some genera (A crobeloides, A phelenchoides, Cephalobus, Ditylenchus, Mesorhabditis, Tetylenchus and Tylenchus ) and distance from the factory.

  3. Coated graphite articles useful in metallurgical processes and method for making same

    Science.gov (United States)

    Holcombe, Cressie E.; Bird, Eugene L.

    1995-01-01

    Graphite articles including crucibles and molds used in metallurgical processes involving the melting and the handling of molten metals and alloys that are reactive with carbon when in a molten state and at process temperatures up to about 2000.degree. C. are provided with a multiple-layer coating for inhibiting carbon diffusion from the graphite into the molten metal or alloys. The coating is provided by a first coating increment of a carbide-forming metal on selected surfaces of the graphite, a second coating increment of a carbide forming metal and a refractory metal oxide, and a third coating increment of a refractory metal oxide. The second coating increment provides thermal shock absorbing characteristics to prevent delamination of the coating during temperature cycling. A wash coat of unstabilized zirconia or titanium nitride can be applied onto the third coating increment to facilitate release of melts from the coating.

  4. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report. Second quarter 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    During second quarter 1994, samples from AMB groundwater monitoring wells at the Metallurgical Laboratory Hazardous Waste Management Facility were analyzed for selected heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. Three parameters exceeded standards during the quarter. As in previous quarters, tetrachloroethylene and trichloroethylene exceeded final Primary Drinking Water Standards. Total organic halogens exceeded the Savannah River Site (SRS) Flag 2 criteria in two of the wells. Groundwater flow direction and rate in the M-Area Aquifer Zone were similar to previous quarters. Conditions affecting determination of groundwater flow directions and rates in the Upper Lost Lake Aquifer Zone, Lower Lost Lake Aquifer Zone, and the Middle Sand Aquifer Zone of the Crouch Branch Confining Unit were also similar to previous quarters. During second quarter 1994, SRS received SCDHEC approval for five point-of-compliance wells and two plume definition wells near the Met Lab HWMF. Field work has begun on this project.

  5. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report. First quarter 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    During first quarter 1995, samples from AMB groundwater monitoring wells at the Metallurgical Laboratory Hazardous Waste Management Facility (Met Lab HWMF) were analyzed for selected heavy metals, field measurements, radionuclides, volatile organic compounds, and other constituents. Six parameters exceeded standards during the quarter. As in previous quarters, tetrachloroethylene and trichloroethylene exceeded final Primary Drinking Water Standards (PDWS). Total organic halogens exceeded its Savannah River Site (SRS) Flag 2 criterion during first quarter 1995 as in fourth quarter 1994. Aluminum, iron, and manganese, which were not analyzed for during fourth quarter 1994, exceeded the Flag 2 criteria in at least two wells each during first quarter 1995. Groundwater flow direction and rate in the M-Area Aquifer Zone were similar to previous quarters. Conditions affecting the determination of groundwater flow directions and rates in the Upper Lost Lake Aquifer Zone, Lower Lost Lake Aquifer Zone, and the Middle Sand Aquifer Zone of the Crouch Branch Confining Unit were also similar to previous quarters.

  6. Evaluation of professional risk of malignant new tumors in workers of mining metallurgical plant

    Directory of Open Access Journals (Sweden)

    Igor Kudryavcev

    2010-07-01

    Full Text Available The study has showed the existence of high professional risk(standardized relative risk of malignant new tumors (MNTdevelopment in major productions of Navoi Mining andMetallurgical Combine (NMMC in not less than 60% of populationinvolved in working environment and labor process. Less than high,but statistically significant professional risk exists for employees ofsubsidiary industries, who periodically are exposed to complexproduction-professional factors. This necessitates the developmentand implementation for these groups of workers a special system ofpreventive measures aimed both at primary prevention of cancerpathology, i.e. reduction in intensity of effecting production factorsor reduction of affected groups, and to improve and increase theefficiency of secondary prevention, i.e. early diagnosis and efficienttreatment of cancer patients.

  7. Employment and other selected personnel attributes in metallurgical and industrial enterprises of different size - research results

    Directory of Open Access Journals (Sweden)

    A. Pawliczek

    2015-10-01

    Full Text Available The presented paper deals with the issue of employment and other selected personnel attributes as employees’ affiliations, employees’ benefits, monitoring of employees’ satisfaction, monitoring of work productivity, investments into employees education and obstacles in hiring qualified human resources. The characteristics are benchmarked on the background of enterprise size based on the employees count in the year 2013. The relevant data were collected in Czech industrial enterprises, including metallurgical companies, with the help of university questionnaire research in order to induce synergy effect arising from mutual communication of academy-students-industry. The most important results are presented later in the paper, complemented with discussion based on relevant professional literature sources. The findings suggest that bigger companies check productivity and satisfaction and dismiss employees more frequently, unlike medium companies which do not reduce their workforce and solve the impact of crisis by decreased affiliations, reduced benefits and similar savings.

  8. Metallurgical and Mechanical Evaluation of 4340 Steel Produced by Direct Metal Laser Sintering

    Science.gov (United States)

    Jelis, Elias; Clemente, Matthew; Kerwien, Stacey; Ravindra, Nuggehalli M.; Hespos, Michael R.

    2015-03-01

    Direct metal laser sintering (DMLS) was used to produce high-strength low-alloy 4340 steel specimens. Mechanical and metallurgical analyses were performed on the specimens to determine the samples with the highest strengths and the least porosity. The optimal process parameters were thus defined based on the corresponding experimental conditions. Additionally, the effects of fabricating specimens with both virgin and recycled powders were studied. Scanning electron microscopy and electron-dispersive spectroscopy were performed on both types of powders to determine the starting morphology and composition. The initial tensile results are promising, suggesting that DMLS can produce specimens equal in strength to wrought materials. However, there is evidence of cracking on several of the heat-treated tensile specimens that is unexplained. Several theories point to disturbances in the build chamber environment that went undetected while the specimens were being fabricated.

  9. Termination of the Special Metallurgical (SM) Building at Mound Laboratory: a final report

    Energy Technology Data Exchange (ETDEWEB)

    Harris, W.R.; Kokenge, B.R.; Marsh, G.C.

    1976-12-22

    The report describes and highlights the more important factors associated with the termination of the Special Metallurgical (SM) Building at Mound Laboratory. As a result, a written record of the more important techniques and procedures is now available for reference by others involved in similar termination efforts. Included in this report is a description of the organizational units that were used in this effort along with a description of their responsibilities. A general description of the SM Building and a discussion of the more relevant procedures and equipment that were used are also presented. In addition, pertinent Health Physics information, such as personnel exposure, final wipe levels in the terminated facility, and assays of the structure, are provided. Based on the experience gained from this project, recommendations were made regarding the design of future radioactive material handling facilities so that when they are ultimately terminated the effort can be accomplished more efficiently.

  10. INVENTORY MANAGEMENT AND LEAN MANUFACTURING: A CASE STUDY IN A METALLURGICAL COMPANY

    Directory of Open Access Journals (Sweden)

    Ricardo Aurélio Quinhões Pinto

    2015-04-01

    Full Text Available This research aims to analyze the impact of the lean philosophy applied to inventory management as differential competitive performance in a metallurgical company and at the same time, establish parameters for comparison with the old management model, the Theory of Constraints. This is a descriptive case study, ex-post facto and sectional time. The first stage consisted of an exploratory survey and questionnaires. To collect data, personal interviews with managers in the areas of logistics, operations and employees on the shop floor were performed. As a result, it was observed that after the implementation of lean philosophy, the company achieved greater interactivity in information management between internal and external factors, which allowed the reduction of production costs, improved product quality disposing of large stocks security without compromising the level of service offered to the customer.

  11. Metallurgical challenges in microelectronic 3D IC packaging technology for future consumer electronic products

    Institute of Scientific and Technical Information of China (English)

    K.; N.; TU; TIAN; Tian

    2013-01-01

    Metallurgical challenges in controlling the microstructural stability of Cu and solder microbumps in 3D IC packaging technol-ogy are discussed. Using uni-directional <111> oriented nanotwinned Cu, the controlled growth of oriented Cu6Sn5 on the nanotwinned Cu and its transformation to Cu3Sn without Kirkendall voids have been achieved. In order to join a stack of Si chips into a 3D device, multiple reflows of solder microbumps may be required; we consider localized heating to do so by the use of self-sustained explosive reaction in multi-layered Al/Ni thin films of nano thickness. It avoids re-melting of those solder joints which have been formed already in the 3D stacking structure.

  12. Change of the layout of an office of a metallurgical company: simple projects, big solutions.

    Science.gov (United States)

    Duarte, Luiz Carlos da Silva; Eckhardt, Moacir; da Motta, Giordano Paulo

    2012-01-01

    The posture, a good organization and the proper layout of the environment and workplaces have a positive influence on the income of an employee. To develop the work it is used a methodology that addressed the study phases of the theory involving the subject, description of the current situation, preparation of conceptions, choice of design, implementation and reporting of results. Through the project of "Change of the layout of an office of a metallurgical company" there was an intervention in these reported aspects providing improvements in the office, regarding ergonomic, layout, workplace and lighting issues, bringing welfare to the official, with the intent to improve its performance within the company and facilitating its actions, as the company's customer service. The results provided improvements in layout, in the workplace and especially in comfort for the human resources that perform their activities.

  13. Potential Applications of Concentrated Solar Thermal Technologies in the Australian Minerals Processing and Extractive Metallurgical Industry

    Science.gov (United States)

    Eglinton, Thomas; Hinkley, Jim; Beath, Andrew; Dell'Amico, Mark

    2013-12-01

    The Australian minerals processing and extractive metallurgy industries are responsible for about 20% of Australia's total greenhouse gas (GHG) emissions. This article reviews the potential applications of concentrated solar thermal (CST) energy in the Australian minerals processing industry to reduce this impact. Integrating CST energy into these industries would reduce their reliance upon conventional fossil fuels and reduce GHG emissions. As CST technologies become more widely deployed and cheaper, and as fuel prices rise, CST energy will progressively become more competitive with conventional energy sources. Some of the applications identified in this article are expected to become commercially competitive provided the costs for pollution abatement and GHG mitigation are internalized. The areas of potential for CST integration identified in this study can be classed as either medium/low-temperature or high-temperature applications. The most promising medium/low-grade applications are electricity generation and low grade heating of liquids. Electricity generation with CST energy—also known as concentrated solar power—has the greatest potential to reduce GHG emissions out of all the potential applications identified because of the 24/7 dispatchability when integrated with thermal storage. High-temperature applications identified include the thermal decomposition of alumina and the calcination of limestone to lime in solar kilns, as well as the production of syngas from natural gas and carbonaceous materials for various metallurgical processes including nickel and direct reduced iron production. Hybridization and integration with thermal storage could enable CST to sustain these energy-intensive metallurgical processes continuously. High-temperature applications are the focus of this paper.

  14. ALTERNATIVE BINDERS TO BENTONITE FOR IRON ORE PELLETIZING : PART II : EFFECTS ON METALLURGICAL AND CHEMICAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    Osman Sivrikaya

    2014-07-01

    Full Text Available This study was started to find alternative binders to bentonite and to recover the low preheated and fired pellet mechanical strengths of organic binders-bonded pellets. Bentonite is considered as a chemical impurity for pellet chemistry due to acid constituents (SiO2 and Al2O3. Especially addition of silica-alumina bearing binders is detrimental for iron ore concentrate with high acidic content. Organic binders are the most studied binders since they are free in silica. Although they yield pellets with good wet strength; they have found limited application in industry since they fail to give sufficient physical and mechanical strength to preheated and fired pellets. It is investigated that how insufficient preheated and fired pellet strengths can be improved when organic binders are used as binder. The addition of a slag bonding/strength increasing constituent (free in acidic contents into pellet feed to provide pellet strength with the use of organic binders was proposed. Addition of boron compounds such as colemanite, tincal, borax pentahydrate, boric acid together with organic binders such as CMC, starch, dextrin and some organic based binders, into magnetite and hematite pellet mixture was tested. After determining the addition of boron compounds is beneficial to recover the low pellet physical and mechanical qualities in the first part of this study, in this second part, metallurgical and chemical properties (reducibility - swelling index – microstructure – mineralogy - chemical content of pellets produced with combined binders (an organic binder plus a boron compound were presented. The metallurgical and chemical tests results showed that good quality product pellets can be produced with combined binders when compared with the bentonite-bonded pellets. Hence, the suggested combined binders can be used as binder in place of bentonite in iron ore pelletizing without compromising the pellet chemistry.

  15. Mechanical and Metallurgical Evaluation of Carburized, Conventionally and Intensively Quenched Steels

    Science.gov (United States)

    Giordani, T.; Clarke, T. R.; Kwietniewski, C. E. F.; Aronov, M. A.; Kobasko, N. I.; Totten, G. E.

    2013-08-01

    Steels subjected to carburizing, quenching, and tempering are widely used for components that require hardness and superficial mechanical resistance together with good core toughness. Intensive quenching is a method that includes advantages including crack prevention, increased mechanical resistance, and improvement in fatigue performance when subjected to very fast (intensive) cooling. However, achieving these advantages requires the formation of sufficiently high surface compressive residual stresses and fine grains at the core of steel components. If the cooling rate is sufficiently high after intensive quenching, then low-hardenability, killed plain carbon steels may be used instead of higher-cost, low alloy steels because compressive residual stresses are formed at the surface of steel parts. The objective of this study was to compare between carburized non-killed AISI 1020 steel samples, which were not modified by Al that were subsequently conventionally and also intensively quenched to determine the effect of quenching on achieving the necessary formation of fine grain size. For comparison, carburized AISI 8620 steel test specimens were conventionally quenched. After quenching, all test specimens were characterized by metallurgical and mechanical analyses. The results of this study showed that when the two quenching methods were compared for carburized non-killed AISI 1020 steel, intensive quenching method was found to be superior with respect to mechanical and metallurgical properties. When comparing the different steels, it was found that intensively quenched, non-killed, AISI 1020 steel yielded grain sizes which were three times greater than those obtained with conventionally quenched, carburized AISI 8620 steel. Therefore, the benefits of intensive quenching were negated. These results show that plain carbon steels must be modified by Al to make fine grains if intensively quenched plain-carbon steel is to replace alloyed AISI 8620 steel.

  16. Peer review of the Three Mile Island Unit 2 Vessel Investigation Project metallurgical examinations

    Energy Technology Data Exchange (ETDEWEB)

    Bohl, R.W.; Gaydos, R.G.; Vander Voort, G.F.; Diercks, D.R. [Argonne National Lab., IL (United States)

    1994-07-01

    Fifteen samples recovered from the lower head of the Three Mile Island (TMI) Unit 2 nuclear reactor pressure vessel were subjected to detailed metallurgical examinations by the Idaho National Engineering Laboratory (INEL), with supporting work carried out by Argonne National Laboratory (ANL) and several of the European participants. These examinations determined that a portion of the lower head, a so-called elliptical ``hot spot`` measuring {approx}0.8 {times} 1 m, reached temperatures as high as 1100{degrees}C during the accident and cooled from these temperatures at {approx}10--100{degrees}C/min. The remainder of the lower head was found to have remained below the ferrite-toaustenite transformation temperature of 727{degrees}C during the accident. Because of the significance of these results and their importance to the overall analysis of the TMI accident, a panel of three outside peer reviewers, Dr. Robert W. Bohl, Mr. Richard G. Gaydos, and Mr. George F. Vander Voort, was formed to conduct an independent review of the metallurgical analyses. After a thorough review of the previous analyses and examination of photo-micrographs and actual lower head specimens, the panel determined that the conclusions resulting from the INEL study were fundamentally correct. In particular, the panel reaffirmed that four lower head samples attained temperatures as high as 1100{degrees}C, and perhaps as high as 1150--1200{degrees}C in one case, during the accident. They concluded that these samples subsequently cooled at a rate of {approx}50--125{degrees}C/min in the temperature range of 600--400{degrees}C, in good agreement with the original analysis. The reviewers also agreed that the remainder of the lower head samples had not exceeded the ferrite-to-austenite transformation temperature during the accident and suggested several refinements and alternative procedures that could have been employed in the original analysis.

  17. Metallurgical Slags as Traces of a 15th century Copper Smelter

    Directory of Open Access Journals (Sweden)

    Garbacz-Klempka A.

    2017-06-01

    Full Text Available The research focuses on assessing the metal content, mainly copper, lead, iron and also silver in metallurgical slag samples from the area where historical metallurgical industry functioned. In the smelter located in Mogiła, near Krakow (southern Poland, whose operation is confirmed in sources from 1469, copper was probably refined as well as silver was separated from copper. Based on the change of chemical and soil phase content and also taking cartographic and historical data into account, considering the restrictions resulting from the modern land use the area was determined whose geochemical mapping can point to the location of the 15th century Jan Thurzo’s smelter in Mogiła near Krakow. Moreover, using the same approach with the samples of this kind here as with hazardous waste, an attempt has been made to assess their impact on the environment. Thereby, taking the geoenvironmental conditions into account, potential impact of the industrial activity has been assessed, which probably left large scale changes in the substratum, manifested in the structure, chemical content and soil phase changes. Discovering areas which are contaminated above the standard value can help to identify historical human activities, and finding the context in artefacts allows to treat geochemical anomalies as a geochronological marker. For this purpose the best are bed sediments, at present buried in the ground, of historical ditches draining the area of the supposed smelter. Correlating their qualities with analogical research of archeologically identified slags and other waste material allows for reconstructing the anthropopressure stages and the evaluation of their effects. The operation of Jan Thurzo’s smelter is significant for the history of mining and metallurgy of Poland and Central and Eastern Europe.

  18. An environmentally-friendly vacuum reduction metallurgical process to recover germanium from coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lingen; Xu, Zhenming, E-mail: zmxu@sjtu.edu.cn

    2016-07-15

    Highlights: • An environmental friendly vacuum reduction metallurgical process is proposed. • Rare and valuable metal germanium from coal fly ash is recycled. • Residues are not a hazardous material and can be further recycled. • A germanium recovery ratio of 94.64% is obtained in pilot scale experiments. - Abstract: The demand for germanium in the field of semiconductor, electronics, and optical devices is growing rapidly; however, the resources of germanium are scarce worldwide. As a secondary material, coal fly ash could be further recycled to retrieve germanium. Up to now, the conventional processes to recover germanium have two problems as follows: on the one hand, it is difficult to be satisfactory for its economic and environmental effect; on the other hand, the recovery ratio of germanium is not all that could be desired. In this paper, an environmentally-friendly vacuum reduction metallurgical process (VRMP) was proposed to recover germanium from coal fly ash. The results of the laboratory scale experiments indicated that the appropriate parameters were 1173 K and 10 Pa with 10 wt% coke addition for 40 min, and recovery ratio germanium was 93.96%. On the basis of above condition, the pilot scale experiments were utilized to assess the actual effect of VRMP for recovery of germanium with parameter of 1473 K, 1–10 Pa and heating time 40 min, the recovery ratio of germanium reached 94.64%. This process considerably enhances germanium recovery, meanwhile, eliminates much of the water usage and residue secondary pollution compared with other conventional processes.

  19. Heavy Metals and Ni Phytoextractionin in the Metallurgical Area Soils in Elbasan

    Directory of Open Access Journals (Sweden)

    MARILDA OSMANI

    2015-12-01

    Full Text Available The metallurgical complex of Elbasan represents a potential source of the heavy metal pollution, due to the industrial activity conducted before years 1990s. The study focuses in the metallurgical area “Ish-Uzina 12”, which today is used as agricultural land. The aim of this study was to determine the degree of soil contamination by Ni, Co, Pb, Cr and Zn, and to evaluate the phytoextraction potential of nickel hyperaccumulator Alyssum murale. The phytoextraction potential of A. murale is studied through its cultivation in different conditions. The experimental area is divided into three plots; the first in natural conditions, the second with chemical fertilizer Diammonium phosphate and the third with manure. This work showed that the concentrations of heavy metals in plots were respectively: in the first plot, the concentration of Ni was 610 mg/kg, Co 75 mg/kg, Cr 370 mg/kg and Zn 80 mg/kg; in the second Ni was 440 mg/kg, Co 120 mg/kg, Pb 165 mg/kg, Cr 310 mg/kg and Zn 75 mg/kg and in the third Ni was 410 mg/kg, Co 115 mg/kg, Pb 10 mg/kg, Cr 380 mg/kg and Zn 90 mg/kg. Phytoextracted Ni in total harvest reached respectively 1280.9 mg/kg on the first plot, 513.4 mg/kg on the second and 69.1 mg/kg on the third. Based on the results obtained it can be concluded that the soils of this area are contaminated by Nickel and A. murale is a candidate for phytoextraction.

  20. Evaluation of the Fractured Surface of Five Endodontic Rotary Instruments: A Metallurgical Study

    Science.gov (United States)

    Aminsobhani, Mohsen; Khalatbari, Mohamad Saleh; Meraji, Naghmeh; Ghorbanzadeh, Abdollah; Sadri, Ehsan

    2016-01-01

    Introduction: The aim of this study was to compare several metallurgic properties of Neoniti instrument with four other commonly used endodontic rotary files. Methods and Materials: Neoniti A1 (25/0.08), RaCe (25/0.06), Mtwo (25/0.06), Twisted file (25/0.06) and ProTaper Next X2 (25/0.06) were examined by differential scanning calorimetry (DSC) before and after heat treatment at 500°C. X-ray diffraction (XRD) was also performed on the specimens. Furthermore, scanning electron microscopy (SEM) and x-ray energy-dispersive spectrometric (EDS) analyses were carried out on randomly selected fractured files. Results: In SEM tests, dimpled ruptures, characteristic of ductile fracture, were seen in all evaluated cross sections of all files. The SEM results of all evaluated files were alike. EDS results revealed higher proportions of Nickel (Ni) rich intermetallic compounds in Neoniti; whereas, in all the other files the proportion of Titanium (Ti) rich precipitates was higher. DSC results indicated that the temperature present in the oral environment, the austenite phase existed in all files. Mtwo and RaCe files did not show austenite transformation in the temperature range evaluated in this study. Only Neoniti revealed rhombohedal phase (R-phase) transformation. After heat treatment. No significant difference was seen in the transformation temperatures of all evaluated files. XRD evaluations revealed that Neoniti contained both Ni-rich and Ti-rich precipitates. The amount of the martensite phase was higher in ProTaper Next. Conclusion: The metallurgic properties of Neoniti files were different from other evaluated rotary files. This file contained higher proportions of Ni-rich precipitates. PMID:27790257

  1. Microbial production host selection for converting second-generation feedstocks into bioproducts

    NARCIS (Netherlands)

    Rumbold, K.; Buijsen, H.J.J. van; Overkamp, K.M.; Groenestijn, J.W. van; Punt, P.J.; Werf, M.J.V.D.

    2009-01-01

    Increasingly lignocellulosic biomass hydrolysates are used as the feedstock for industrial fermentations. These biomass hydrolysates are complex mixtures of different fermentable sugars, but also inhibitors and salts that affect the performance of the microbial production host. The performance of si

  2. Mechanical behaviour study on SBR/EVA composite for FDM feedstock fabrication

    Science.gov (United States)

    Raveverma, P.; Ibrahim, M.; Sa'ude, N.; Yarwindran, M.; Nasharuddin, M.

    2017-04-01

    This paper presents the research development of a new SBR/EVA composite flexible feedstock material by the injection moulding machine. The material consists of poly (ethylene-co-vinyl acetate) in styrene butadiene rubber cross-linked by Dicumyl Peroxide. In this study, the mechanical behaviour of injection moulded SBR/EVA composite with different blend ratio investigated experimentally. The formulations of blend ratio with several combinations of a new SBR/EVA flexible feedstock was done by volume percentage (vol. %). Based on the result obtained from the mechanical testing done which is tensile and hardness the composite of SBR/EVA has the high potency to be fabricated as the flexible filament feedstock. The ratio of 80:20 which as an average hardness and tensile strength proved to be the suitable choice to be fabricated as the flexible filament feedstock. The study has reached its goals on the fabricating and testing a new PMC which is flexible.

  3. State of the art on reactor designs for solar gasification of carbonaceous feedstock

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; Tora, E.A.; Bruno, J.C.

    2013-01-01

    to produce high quality synthesis gas with a higher output per unit of feedstock and that allows for the chemical storage of solar energy in the form of a readily transportable fuel, among other advantages. The present paper describes the latest advances in solar thermochemical reactors for gasification...... of carbonaceous feedstocks. This work is categorized in this paper into patents and research/journal papers. © 2013 Elsevier Ltd....

  4. Process for Generation of Hydrogen Gas from Various Feedstocks Using Thermophilic Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Ooteghem Van, Suellen

    2005-09-13

    A method for producing hydrogen gas is provided comprising selecting a bacteria from the Order Thermotogales, subjecting the bacteria to a feedstock and to a suitable growth environment having an oxygen concentration below the oxygen concentration of water in equilibrium with air; and maintaining the environment at a predetermined pH and at a temperature of at least approximately 45 degrees C. for a time sufficient to allow the bacteria to metabolize the feedstock.

  5. Pectin-rich biomass as feedstock for fuel ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Meredith C.; Doran-Peterson, Joy [Georgia Univ., Athens, GA (United States). Dept. of Microbiology

    2012-08-15

    The USA has proposed that 30 % of liquid transportation fuel be produced from renewable resources by 2030 (Perlack and Stokes 2011). It will be impossible to reach this goal using corn kernel-based ethanol alone. Pectin-rich biomass, an under-utilized waste product of the sugar and juice industry, can augment US ethanol supplies by capitalizing on this already established feedstock. Currently, pectin-rich biomass is sold (at low value) as animal feed. This review focuses on the three most studied types of pectin-rich biomass: sugar beet pulp, citrus waste and apple pomace. Fermentations of these materials have been conducted with a variety of ethanologens, including yeasts and bacteria. Escherichia coli can ferment a wide range of sugars including galacturonic acid, the primary component of pectin. However, the mixed acid metabolism of E. coli can produce unwanted side products. Saccharomyces cerevisiae cannot naturally ferment galacturonic acid nor pentose sugars but has a homoethanol pathway. Erwinia chrysanthemi is capable of degrading many of the cell wall components of pectin-rich materials, including pectin. Klebsiella oxytoca can metabolize a diverse array of sugars including cellobiose, one degradation product of cellulose. However, both E. chrysanthemi and K. oxytoca produce side products during fermentation, similar to E. coli. Using pectin-rich residues from industrial processes is beneficial because the material is already collected and partially pretreated to facilitate enzymatic deconstruction of the plant cell walls. Using biomass already produced for other purposes is an attractive practice because fewer greenhouse gases (GHG) will be anticipated from land-use changes. (orig.)

  6. The Use of Artificial Neural Networks for Identifying Sustainable Biodiesel Feedstocks

    Directory of Open Access Journals (Sweden)

    Zoran D. Ristovski

    2013-07-01

    Full Text Available Over the past few decades, biodiesel produced from oilseed crops and animal fat is receiving much attention as a renewable and sustainable alternative for automobile engine fuels, and particularly petroleum diesel. However, current biodiesel production is heavily dependent on edible oil feedstocks which are unlikely to be sustainable in the longer term due to the rising food prices and the concerns about automobile engine durability. Therefore, there is an urgent need for researchers to identify and develop sustainable biodiesel feedstocks which overcome the disadvantages of current ones. On the other hand, artificial neural network (ANN modeling has been successfully used in recent years to gain new knowledge in various disciplines. The main goal of this article is to review recent literatures and assess the state of the art on the use of ANN as a modeling tool for future generation biodiesel feedstocks. Biodiesel feedstocks, production processes, chemical compositions, standards, physio-chemical properties and in-use performance are discussed. Limitations of current biodiesel feedstocks over future generation biodiesel feedstock have been identified. The application of ANN in modeling key biodiesel quality parameters and combustion performance in automobile engines is also discussed. This review has determined that ANN modeling has a high potential to contribute to the development of renewable energy systems by accelerating biodiesel research.

  7. Plasma-Powder Feedstock Interaction During Plasma Spray-Physical Vapor Deposition

    Science.gov (United States)

    Anwaar, Aleem; Wei, Lianglinag; Guo, Hongbo; Zhang, Baopeng

    2017-02-01

    Plasma spray-physical vapor deposition is a new process developed to produce coatings from the vapor phase. To achieve deposition from the vapor phase, the plasma-feedstock interaction inside the plasma torch, i.e., from the powder injection point to the nozzle exit, is critical. In this work, the plasma characteristics and the momentum and heat transfer between the plasma and powder feedstock at different torch input power levels were investigated theoretically to optimize the net plasma torch power, among other important factors such as the plasma gas composition, powder feed rate, and carrier gas. The plasma characteristics were calculated using the CEA2 code, and the plasma-feedstock interaction was studied inside the torch nozzle at low-pressure (20-25 kPa) conditions. A particle dynamics model was introduced to compute the particle velocity, coupled with Xi Chen's drag model for nonevaporating particles. The results show that the energy transferred to the particles and the coating morphology are greatly influenced by the plasma gas characteristics and the particle dynamics inside the nozzle. The heat transfer between the plasma gas and feedstock material increased with the net torch power up to an optimum at 64 kW, at which a maximum of 3.4% of the available plasma energy was absorbed by the feedstock powder. Experimental results using agglomerated 7-8 wt.% yttria-stabilized zirconia (YSZ) powder as feedstock material confirmed the theoretical predictions.

  8. Plasma-Powder Feedstock Interaction During Plasma Spray-Physical Vapor Deposition

    Science.gov (United States)

    Anwaar, Aleem; Wei, Lianglinag; Guo, Hongbo; Zhang, Baopeng

    2017-01-01

    Plasma spray-physical vapor deposition is a new process developed to produce coatings from the vapor phase. To achieve deposition from the vapor phase, the plasma-feedstock interaction inside the plasma torch, i.e., from the powder injection point to the nozzle exit, is critical. In this work, the plasma characteristics and the momentum and heat transfer between the plasma and powder feedstock at different torch input power levels were investigated theoretically to optimize the net plasma torch power, among other important factors such as the plasma gas composition, powder feed rate, and carrier gas. The plasma characteristics were calculated using the CEA2 code, and the plasma-feedstock interaction was studied inside the torch nozzle at low-pressure (20-25 kPa) conditions. A particle dynamics model was introduced to compute the particle velocity, coupled with Xi Chen's drag model for nonevaporating particles. The results show that the energy transferred to the particles and the coating morphology are greatly influenced by the plasma gas characteristics and the particle dynamics inside the nozzle. The heat transfer between the plasma gas and feedstock material increased with the net torch power up to an optimum at 64 kW, at which a maximum of 3.4% of the available plasma energy was absorbed by the feedstock powder. Experimental results using agglomerated 7-8 wt.% yttria-stabilized zirconia (YSZ) powder as feedstock material confirmed the theoretical predictions.

  9. A Review on Biomass Densification Systems to Develop Uniform Feedstock Commodities for Bioenergy Application

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Shankar Tumuluru; Christopher T. Wright; J. Richard Hess; Kevin L. Kenney

    2011-11-01

    Developing uniformly formatted, densified feedstock from lignocellulosic biomass is of interest to achieve consistent physical properties like size and shape, bulk and unit density, and durability, which significantly influence storage, transportation and handling characteristics, and, by extension, feedstock cost and quality. A variety of densification systems are considered for producing a uniform format feedstock commodity for bioenergy applications, including (a) baler, (b) pellet mill, (c) cuber, (d) screw extruder, (e) briquette press, (f) roller press, (g) tablet press, and (g) agglomerator. Each of these systems has varying impacts on feedstock chemical and physical properties, and energy consumption. This review discusses the suitability of these densification systems for biomass feedstocks and the impact these systems have on specific energy consumption and end product quality. For example, a briquette press is more flexible in terms of feedstock variables where higher moisture content and larger particles are acceptable for making good quality briquettes; or among different densification systems, a screw press consumes the most energy because it not only compresses but also shears and mixes the material. Pretreatment options like preheating, grinding, steam explosion, torrefaction, and ammonia fiber explosion (AFEX) can also help to reduce specific energy consumption during densification and improve binding characteristics. Binding behavior can also be improved by adding natural binders, such as proteins, or commercial binders, such as lignosulphonates. The quality of the densified biomass for both domestic and international markets is evaluated using PFI (United States Standard) or CEN (European Standard).

  10. Integration of Feedstock Assembly System and Cellulosic Ethanol Conversion Models to Analyze Bioenergy System Performance

    Energy Technology Data Exchange (ETDEWEB)

    Jared M. Abodeely; Douglas S. McCorkle; Kenneth M. Bryden; David J. Muth; Daniel Wendt; Kevin Kenney

    2010-09-01

    Research barriers continue to exist in all phases of the emerging cellulosic ethanol biorefining industry. These barriers include the identification and development of a sustainable and abundant biomass feedstock, the assembly of viable assembly systems formatting the feedstock and moving it from the field (e.g., the forest) to the biorefinery, and improving conversion technologies. Each of these phases of cellulosic ethanol production are fundamentally connected, but computational tools used to support and inform analysis within each phase remain largely disparate. This paper discusses the integration of a feedstock assembly system modeling toolkit and an Aspen Plus® conversion process model. Many important biomass feedstock characteristics, such as composition, moisture, particle size and distribution, ash content, etc. are impacted and most effectively managed within the assembly system, but generally come at an economic cost. This integration of the assembly system and the conversion process modeling tools will facilitate a seamless investigation of the assembly system conversion process interface. Through the integrated framework, the user can design the assembly system for a particular biorefinery by specifying location, feedstock, equipment, and unit operation specifications. The assembly system modeling toolkit then provides economic valuation, and detailed biomass feedstock composition and formatting information. This data is seamlessly and dynamically used to run the Aspen Plus® conversion process model. The model can then be used to investigate the design of systems for cellulosic ethanol production from field to final product.

  11. Effect of biomass feedstock chemical and physical properties on energy conversion processes: Volume 2, Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Butner, R.S.; Elliott, D.C.; Sealock, L.J., Jr.; Pyne, J.W.

    1988-12-01

    This report presents an exploration of the relationships between biomass feedstocks and the conversion processes that utilize them. Specifically, it discusses the effect of the physical and chemical structure of biomass on conversion yields, rates, and efficiencies in a wide variety of available or experimental conversion processes. A greater understanding of the complex relationships between these conversion systems and the production of biomass for energy uses is required to help optimize the complex network of biomass production, collection, transportation, and conversion to useful energy products. The review of the literature confirmed the scarcity of research aimed specifically at identifying the effect of feedstock properties on conversion. In most cases, any mention of feedstock-related effects was limited to a few brief remarks (usually in qualitative terms) in the conclusions, or as a topic for further research. Attempts to determine the importance of feedstock parameters from published data were further hampered by the lack of consistent feedstock characterization and the difficulty of comparing results between different experimental systems. Further research will be required to establish quantitative relationships between feedstocks and performance criteria in conversion. 127 refs., 4 figs., 7 tabs.

  12. Selective synthesis and device applications of semiconducting single-walled carbon nanotubes using isopropyl alcohol as feedstock.

    Science.gov (United States)

    Che, Yuchi; Wang, Chuan; Liu, Jia; Liu, Bilu; Lin, Xue; Parker, Jason; Beasley, Cara; Wong, H-S Philip; Zhou, Chongwu

    2012-08-28

    The development of guided chemical vapor deposition (CVD) growth of single-walled carbon nanotubes provides a great platform for wafer-scale integration of aligned nanotubes into circuits and functional electronic systems. However, the coexistence of metallic and semiconducting nanotubes is still a major obstacle for the development of carbon-nanotube-based nanoelectronics. To address this problem, we have developed a method to obtain predominantly semiconducting nanotubes from direct CVD growth. By using isopropyl alcohol (IPA) as the carbon feedstock, a semiconducting nanotube purity of above 90% is achieved, which is unambiguously confirmed by both electrical and micro-Raman measurements. Mass spectrometric study was performed to elucidate the underlying chemical mechanism. Furthermore, high performance thin-film transistors with an on/off ratio above 10(4) and mobility up to 116 cm(2)/(V·s) have been achieved using the IPA-synthesized nanotube networks grown on silicon substrate. The method reported in this contribution is easy to operate and the results are highly reproducible. Therefore, such semiconducting predominated single-walled carbon nanotubes could serve as an important building block for future practical and scalable carbon nanotube electronics.

  13. Evaluation of shredder residue as cement manufacturing feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Boughton, Bob [California Environmental Protection Agency, Department of Toxic Substances Control, Office of Pollution Prevention and Technology Development, 1001 I Street, P.O. Box 806, Sacramento, CA 95812 (United States)

    2007-09-15

    Metal recycling from automobiles, appliances and scrap steel occurs at over 200 dedicated metal shredding operations in the US. Shredder residue (SR) consists of glass, rubber, plastics, fibers, dirt, and fines that remain after ferrous and non-ferrous metals have been removed. Over 3 million tonnes of SR generated in the US each year are landfilled. The results of a previous end-of-life impact assessment showed that use of SR as a fuel supplement for cement manufacturing was environmentally beneficial to the current practice of landfilling and appears better in comparison to the other management methods studied. However, because many reuse and recycling options may not be cost effective, there is a need for further study. Simplistic methods to separate SR into energy and mineral rich streams may facilitate the use of a sizable fraction of SR. Due to the large scale of the cement industry in the US, a significant amount of SR is recoverable. The goal of this study was to identify the feedstock quality parameters needed to satisfy kiln operators and then to assess the mechanical means necessary to process SR into material acceptable as coal and mineral substitutes. Field tests were conducted to separate and beneficiate the coarse SR waste stream. Density separation techniques commonly used by shredders in the past were tested to separate rubber and plastics from non-combustibles and contaminants (e.g., PVC and copper wire). A fraction constituting about 30 wt% of the total SR had fuel characteristics mirroring those of coal. However, remaining levels of potentially problematic constituents (e.g., total chlorine and heavy metals) may limit use to a low relative addition rate at some kilns. An economic review of a full-scale separation system showed that processing SR appears to be economically marginal considering avoided landfilling costs alone. However, significant economic benefits would result from additional non-ferrous metals recovery (namely copper). The

  14. Designing biochar properties through pre-pyrolysis feedstock metal blending

    Science.gov (United States)

    Anca-Couce, Andrés; Dieguez-Alonso, Alba; Moreno, Eduardo; Fristak, Vladimir; Soja, Gerhard; Husson, Olivier; Conte, Pellegrino; Kienzl, Norbert; Hagemann, Nikolas; Bucheli, Thomas; Hilber, Isabel; Schmidt, Hans-Peter

    2017-04-01

    Metal enhanced biochars have been produced by pyrolysis of wood chips previously blended with different metal-containing compounds: Cu(OH)2, Mg(OH)2, MgCl2, FeSO4, KCl and AlCl3; under an inert gas at 400 and 700°C. The obtained metal-enriched biochars have an organic and inorganic fraction, each accounting approximately to 50% of the mass, and they have been characterized in detail and compared to control samples produced without previous metal blending. The characterization at different European laboratories includes elemental analysis, surface area, pore size distribution, thermo-gravimetric analysis (TGA), sorption isotherms with P and As, pH, Eh, nuclear magnetic resonance (NMR), and zeta potential. It is shown that the presence of metals during pyrolysis affects to a great extent the structure and functionality of the obtained chars. The biochars have a high concentration (>15% in mass for almost all cases) of elemental metals introduced before pyrolysis. These metals strongly affect the development of char internal surface area and pore structure. The total surface area and pore volume increase while porosity decreases, and the pore size distribution and pore network are significantly modified. At high temperatures (700°C), some metals enhance char graphitization and its thermal stability. Mg(OH)2 produces the highest impact on physical structure. Furthermore, the blending with Mg, Al and Fe increased the sorption capacities for anionic forms of As and P by more than 800% compared to control biochar. Depending on the blended metal species and pyrolysis temperature, the pH of the biochar blends varied between 2.7 (Fe) and 10.8 (Cu) while Eh varied between 228 mV (Mg(OH)2 at 400°C) and 504 mV (MgCl2 at 700°C). The promising results obtained with pre-pyrolysis feedstock metal blending open the possibility towards designing biochars for special functions and purposes.

  15. Criminalistic identification of PGM-containing products of mining and metallurgical companies.

    Science.gov (United States)

    Perelygin, Alexander; Kuchkin, Alexander; Kharkov, Nikolay; Moskvina, Tatyana

    2008-01-15

    In early 1990 s some organized criminal groups started to develop a new field of illegal business, which involved thefts of intermediary products from mining and metal-producing plants in Russia and in the south of Africa. Since local sulfide copper/nickel ores contain certain concentrations of precious and platinum group metals (PGMs), the intermediary products recovered at different stages of metallurgical transformation of these ores are materials of high commercial value. Illicit transportation and refining of these materials in Western Europe and North America has evolved into a large-scale business, where a lot of unlawful revenues are being laundered. The most important tasks in combating this organized crime are as follows: to establish the facts when some PGM-containing semi-products had been received at certain refineries; to carry out the identification of these semi-products; and to prove that these semi-products had been produced by a certain company. As a rule, it is not difficult to establish the identity of a "clean product". However, when a material is a mix of several semi-products or a mix of some semi-product with masking substances, the identification of individual components becomes an extremely complicated task. The purpose of developing the "complex procedure for establishing the nature and source of origin of precious metal-bearing products of mining and metallurgical operations" was to make possible the identification of complex mixes comprised of various metallurgical semi-products. In the complex procedure that we have developed to characterize dispersed materials, distribution of particles by their elemental composition (the so-called "pseudophase" composition) was used instead of mineralogical composition. To determine the "pseudophase" composition by the method of scanning electron microscopy with X-ray spectral microanalysis (SEM-EDX), a representative sample of material containing not less than 1000 particles was analyzed. All

  16. Doping Silicon Wafers with Boron by Use of Silicon Paste

    Institute of Scientific and Technical Information of China (English)

    Yu Gao; Shu Zhou; Yunfan Zhang; Chen Dong; Xiaodong Pi; Deren Yang

    2013-01-01

    In this work we introduce recently developed silicon-paste-enabled p-type doping for silicon.Boron-doped silicon nanoparticles are synthesized by a plasma approach.They are then dispersed in solvents to form silicon paste.Silicon paste is screen-printed at the surface of silicon wafers.By annealing,boron atoms in silicon paste diffuse into silicon wafers.Chemical analysis is employed to obtain the concentrations of boron in silicon nanoparticles.The successful doping of silicon wafers with boron is evidenced by secondary ion mass spectroscopy (SIMS) and sheet resistance measurements.

  17. Value of Distributed Preprocessing of Biomass Feedstocks to a Bioenergy Industry

    Energy Technology Data Exchange (ETDEWEB)

    Christopher T Wright

    2006-07-01

    Biomass preprocessing is one of the primary operations in the feedstock assembly system and the front-end of a biorefinery. Its purpose is to chop, grind, or otherwise format the biomass into a suitable feedstock for conversion to ethanol and other bioproducts. Many variables such as equipment cost and efficiency, and feedstock moisture content, particle size, bulk density, compressibility, and flowability affect the location and implementation of this unit operation. Previous conceptual designs show this operation to be located at the front-end of the biorefinery. However, data are presented that show distributed preprocessing at the field-side or in a fixed preprocessing facility can provide significant cost benefits by producing a higher value feedstock with improved handling, transporting, and merchandising potential. In addition, data supporting the preferential deconstruction of feedstock materials due to their bio-composite structure identifies the potential for significant improvements in equipment efficiencies and compositional quality upgrades. Theses data are collected from full-scale low and high capacity hammermill grinders with various screen sizes. Multiple feedstock varieties with a range of moisture values were used in the preprocessing tests. The comparative values of the different grinding configurations, feedstock varieties, and moisture levels are assessed through post-grinding analysis of the different particle fractions separated with a medium-scale forage particle separator and a Rototap separator. The results show that distributed preprocessing produces a material that has bulk flowable properties and fractionation benefits that can improve the ease of transporting, handling and conveying the material to the biorefinery and improve the biochemical and thermochemical conversion processes.

  18. M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities groundwater monitoring and corrective-action report (U). Third and fourth quarters 1996, Vol. I

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River Site (SRS) during 1996.

  19. Silicon: electrochemistry and luminescence

    NARCIS (Netherlands)

    Kooij, Ernst Stefan

    1997-01-01

    The electrochemistry of crystalline and porous silicon and the luminescence from porous silicon has been studied. One chapter deals with a model for the anodic dissolution of silicon in HF solution. In following chapters both the electrochemistry and various ways of generating visible luminescenc

  20. Silicon: electrochemistry and luminescence

    NARCIS (Netherlands)

    Kooij, Ernst Stefan

    1997-01-01

    The electrochemistry of crystalline and porous silicon and the luminescence from porous silicon has been studied. One chapter deals with a model for the anodic dissolution of silicon in HF solution. In following chapters both the electrochemistry and various ways of generating visible

  1. Silicon: electrochemistry and luminescence

    NARCIS (Netherlands)

    Kooij, Ernst Stefan

    2001-01-01

    The electrochemistry of crystalline and porous silicon and the luminescence from porous silicon has been studied. One chapter deals with a model for the anodic dissolution of silicon in HF solution. In following chapters both the electrochemistry and various ways of generating visible luminescenc

  2. THE PROFITABILITY AND LIQUIDITY UNDER THE INFLUENCE OF THE FINANCING POLICY IN THE METALLURGICAL INDUSTRY OF EU 28

    Directory of Open Access Journals (Sweden)

    DOBROTĂ GABRIELA

    2014-12-01

    Full Text Available In the context of the problems of the economic system, the use of the capital and his structure represent important elements in the process of the financial decisions. The aim of this paper is to identify the influence of funding policy on rentability in metallurgical industry, dimensioned with the help of a set of relevant indicators, determined on the base of some aggregated data for a significant sample of very large firms from EU 28. Also, the paper present the situation of liquidity, reflected through the cash- flow and liquidity ratio, in the metallurgical industry of EU 28, being used dates for the period 2004 – 2013, for the mentioned sample. The conclusion of the realised study is that a funding policy well-founded, correlated with the efficient management of expenses and proactive risk management can positively influence the profitability and liquidity.

  3. Influence of metallurgical parameters on the electrochemical behavior of electrodeposited Ni and Ni–W nanocrystalline alloys

    Energy Technology Data Exchange (ETDEWEB)

    Shakibi Nia, N.; Creus, J.; Feaugas, X.; Savall, C., E-mail: csavall@univ-lr.fr

    2016-05-01

    Highlights: • Corrosion behavior of nickel and Ni–W coatings is studied in an acidic medium. • W addition implies grain refinement and other metallurgical parameters variation. • Annealing permitted to separate the W content influence from the grain size. • The W incorporation has an unfavorable effect on the passive film stability. - Abstract: The electrochemical behavior of electrodeposited nickel and Ni–W nanostructured alloys is discussed by studying the polarization curves in acidic medium. As tungsten content varies, several metallurgical parameters that can influence the electrochemical behavior are also modified, namely grain size, nature of grain boundaries, crystallographic texture and light element contamination. Comparing the behavior of Ni–W coatings with that of pure nickel and annealed coatings highlights that tungsten incorporation enhances anodic dissolution and has a detrimental influence on passive film, whereas grain size and grain boundary character behave as second-order parameters.

  4. Effect of glass-ceramic-processing cycle on the metallurgical properties of candidate alloys for actuator housings

    Energy Technology Data Exchange (ETDEWEB)

    Weirick, L.J.

    1982-01-01

    This report summarizes the results from an investigation on the effect of a glass ceramic processing cycle on the metallurgical properties of metal candidates for actuator housings. The cycle consists of a 980/sup 0/C sealing step, a 650/sup 0/C crystallization step and a 475/sup 0/C annealing step. These temperatue excursions are within the same temperature regime as annealing and heat treating processes normally employed for metals. Therefore, the effect of the processing cycle on metallurgical properties of microstructure, strength, hardness and ductility were examined. It was found that metal candidates which are single phase or solid solution alloys (such as 21-6-9, Hastelloy C-276 and Inconel 625) were not affected whereas multiphase or precipitation hardened alloys (such as Inconel 718 and Titanium ..beta..-C) were changed by the processing cycle for the glass ceramic.

  5. Management of Oversea Metallurgical Engineering Project%海外冶金工程项目管理

    Institute of Scientific and Technical Information of China (English)

    王维国; 贾占友

    2013-01-01

      以尼日利亚900 mm 冷连轧生产线安装调试阶段现场管理实践为例,介绍海外冶金工程项目管理中常见问题及解决方法,指出今后在类似国家或地区开展冶金工程项目时应注意的事项。%Taking the management of the erection and commissioning of 900 mm tandem cold mill in Nigeria job site as one example, the paper presents the common problems occurred in the management of oversea metallurgical engineering project and offers the solution, meantime, points out the matters need attention for the management of oversea metallurgical engineering project in analog oversea nation and region for the future.

  6. Correlation of mechanical properties with metallurgical structure for 18Ni 200 grade maraging steel at room and cryogenic temperatures

    Science.gov (United States)

    Wagner, J. A.

    1991-01-01

    An extensive metallurgical study is presented which is intended to explain variations in the mechanical properties of Ni18 200 grade maraging steel in various product forms and orientations. Fracture toughness and Charpy impact values are found to decrease with decreasing temperature and be dependent on product form, specimen orientation, and metallurgical condition. Fatigue crack growth rates are dependent on temperature only. Fractographic analysis reveals that the decrease in toughness at -170 C is not associated with cleavage-type fracture morphology. Those specimens exhibiting low fracture toughness at room temperature or -170 C are found to have a significantly larger number of titanium-rich particles associated with dimple formation on the fracture surface.

  7. On the Schedule Control of Large Metallurgical Construction Engineering Projects%大型冶金建设工程项目进度控制研究

    Institute of Scientific and Technical Information of China (English)

    孙忠林

    2015-01-01

    It has important practical significance for improving the metallurgical construction quality level and controlling construction investment to research the schedule control of large metallurgical construction engineering projects.%研究大型冶金建设工程项目进度控制对提高冶金建设质量水平、控制建设投资具有重要的现实意义。

  8. Three-Layer Electrorefining of Silicon

    Science.gov (United States)

    Olsen, Espen; Rolseth, Sverre

    2010-04-01

    To make electrical energy from photovoltaic (PV) silicon (Si) solar cells competitive, the cost in each of the PV manufacturing process steps has to be diminished. Today, high-purity Si is produced by an energy-intensive process exhibiting high irreversible thermodynamic losses. The purity of the product from this process (99,9999999 pct [9 N]) far exceeds what generally is accepted to be the requirements for PV purposes (4 to 6 N). Here we show a novel method for the purification of Si based on the principle of electrochemical refining in a molten high-melting-point fluoride electrolyte at temperatures above the melting point of silicon 1685 K (1412 °C). The method comprised a vertical stack of three molten layers with a metal alloy at the bottom, an intermediate electrolyte layer, and purified metal at the top. The integrity of the layers being secured was through the immiscibility of the liquids and the careful tailoring of the individual densities. Boron (B), exhibiting similar thermodynamic properties to Si, effectively was not removed. A suitable low-B feedstock may be identified in kerf from the sawing of mono- or multicrystalline Si blocks into wafers. To produce purified metal in the 6 N range, practice from electrorefining of aluminum shows that long-term, stable operation in large-scale industrial reactors is needed. The trends and mechanisms observed in the laboratory scale indicate that high purity also can be achieved for Si provided that these criteria can be met.

  9. Cellulose solvent- and organic solvent-based lignocellulose fractionation enabled efficient sugar release from a variety of lignocellulosic feedstocks.

    Science.gov (United States)

    Sathitsuksanoh, Noppadon; Zhu, Zhiguang; Zhang, Y-H Percival

    2012-08-01

    Developing feedstock-independent biomass pretreatment would be vital to second generation biorefineries that would fully utilize diverse non-food lignocellulosic biomass resources, decrease transportation costs of low energy density feedstock, and conserve natural biodiversity. Cellulose solvent- and organic solvent-based lignocellulose fractionation (COSLIF) was applied to a variety of feedstocks, including Miscanthus, poplar, their mixture, bagasse, wheat straw, and rice straw. Although non-pretreated biomass samples exhibited a large variation in enzymatic digestibility, the COSLIF-pretreated biomass samples exhibited similar high enzymatic glucan digestibilities and fast hydrolysis rates. Glucan digestibilities of most pretreated feedstocks were ∼93% at five filter paper units per gram of glucan. The overall glucose and xylose yields for the Miscanthus:poplar mixture at a weight ratio of 1:2 were 93% and 85%, respectively. These results suggested that COSLIF could be regarded as a feedstock-independent pretreatment suitable for processing diverse feedstocks by adjusting pretreatment residence time only.

  10. Geology of the florencia gold – telluride deposit (camagüey, cuba) and some metallurgical considerations

    OpenAIRE

    López K Jesús M.; Moreira Jesús; Gandarillas José

    2011-01-01

    This paper describes the results from a study of the Florencia gold-telluride deposit in Central Cuba, including mineralogical, petrographical, microprobe and chemical analysis. Valuable information is provided for the exploration, mining and processing of gold ores from other nearby deposits with similar characteristics. Results highlight changes in the mineralogical composition of the ores between the north and south sectors of the deposit, as reflected in metallurgical concentrates after b...

  11. Semi-solid metal processing of aluminum alloy A356 and magnesium alloy AZ91: Comparison based on metallurgical consideration

    Energy Technology Data Exchange (ETDEWEB)

    Kleiner, S.; Beffort, O. [Swiss Federal Laboratories for Materials Testing and Research, EMPA Thun, CH-3602 Thun (Switzerland); Ogris, E.; Uggowitzer, P.J. [Institute of Metallurgy, ETH Swiss Federal Institute of Technology, CH-8092 Zuerich (Switzerland)

    2003-09-01

    Thixocasting or rheocasting of AZ and AM magnesium alloys continues to be a problematic case in semi-solid processing. The comparison with the aluminum thixo alloy A356 shows that the metallurgical and physical properties of the Mg alloy AZ91 are little compatible with this technology: The conclusions from this study are of fundamental importance for future developments in this field of research. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  12. Evaluation of powder metallurgical processing routes for multi-component niobium silicide-based high-temperature alloys

    Energy Technology Data Exchange (ETDEWEB)

    Seemueller, Hans Christoph Maximilian

    2016-03-22

    Niobium silicide-based composites are potential candidates to replace nickel-base superalloys for turbine applications. The goal of this work was to evaluate the feasibility and differences in ensuing properties of various powder metallurgical processing techniques that are capable of manufacturing net-shape turbine components. Two routes for powder production, mechanical alloying and gas atomization were combined with compaction via hot isostatic pressing and powder injection molding.

  13. Stress release phenomena in chromia scales formed on NiCr-30 alloys: Influence of metallurgical parameters

    Science.gov (United States)

    Guerain, M.; Goudeau, P.; Grosseau-Poussard, J. L.

    2011-11-01

    Stress release phenomena are studied for α-Cr2O3 thermal oxide films grown on NiCr-30 alloys. The influence of specific metallurgical parameters, such as cooling rate and initial surface roughness, is investigated thanks to Raman spectroscopy. Systematic correlations are established between the residual stress level in the scales and the damage rate resulting from a delamination process by buckling. Different buckling morphologies are characterized mainly according to the cooling rate range.

  14. Rheological study of copper and copper grapheme feedstock for powder injection molding

    Science.gov (United States)

    Azaman, N. Emira Binti; Rafi Raza, M.; Muhamad, N.; Niaz Akhtar, M.; Bakar Sulong, A.

    2017-01-01

    Heatsink is one of the solution to optimize the performance of smart electronic devices. Copper and its composites are helping the electronic industry to solve the heating problem. Copper-graphene heat sink material with enhanced thermal conductivity is the ultimate goal.Powder injection molding (PIM) has advantages of high precision and production rate, complex shape, low cost and suitabality for metal and cremics.PIM consists of four sub sequential steps; feedstock preparation, molding, debinding and sintering. Feedstock preparation is a critical step in PIM process. Any deficiency at this stage cannot be recovered at latter stages. Therefore, this research was carried out to investigate the injectability of copper and copper graphene composite using PIM. PEG based multicomponent binder system was used and the powder loading was upto 7vol.% less than the critical powder loading was used to provide the wettability of the copper powder and graphene nanoplatelets (GNps). Corpper-graphene feedstock contained 0.5vol.% of GNps . To ensure the homogeneity of GNps within feedstock a unique technique was addopted. The microscopic results showed that the feedstock is homogeneous and ready for injection. The viscosity-shear rate relationship was determined and results showed that the addition of 0.5vol.% of GNps in copper has increased the viscosity upto 64.9% at 140˚C than that of pure copper feedstock. This attribute may be due to the large surface area of GNps. On the other hand, by increasing the temperature, viscosity of the feedstock was decreased, which was recommended for PIM. The overall viscosity and share rate lies within the range recommended for PIM process. It is clear that both feedstocks showed pseudo plastic behaviour which is suitable for PIM process. In the pseudo plastic behaviour, the viscosity decreases with the shear rate. It may be due to change in the structure of the solid particles or the binder. The molding results showed that both copper

  15. Effects of Torrefaction Temperature on Pyrolysis Vapor Products of Woody and Herbaceous Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Starace, Anne K.; Evans, Robert J.; Lee, David D.; Carpenter, Daniel L.

    2016-07-21

    A variety of hardwood, softwood, and herbaceous feedstocks (oak, southern yellow pine mix, loblolly pine, pinyon-juniper mix, and switchgrass) were each torrefied at 200, 250, and 300 degrees C. Each of the feedstocks was pyrolyzed and the resulting vapors were analyzed with a molecular beam mass spectrometer (py-MBMS). Compositional analysis was used to measure the total lignin content of three of the feedstocks (southern yellow pine, softwood; oak, hardwood; and switchgrass, herbaceous) before and after torrefaction at 300 degrees C, and large differences in the fraction of lignin lost during torrefaction were found between feedstocks, with oak having the largest decrease in lignin during torrefaction and switchgrass having the least. It is hypothesized that these differences in the thermal degradation are due to, in part, the different ratios of S, G, and H lignins in the feedstocks. Additionally, the torrefaction of kraft lignin was studied using thermogravimetric analysis coupled with Fourier transform infrared spectroscopy (TGA-FTIR) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR).

  16. The use of co-digested solid fraction as feedstock for biogas plants

    Directory of Open Access Journals (Sweden)

    Elio Dinuccio

    2014-02-01

    Full Text Available A comparative study was set up in order to assess the technical feasibility of the long-term reuse of the mechanically separated co-digested solid fraction as a feedstock for anaerobic digestion plants (ADP. The biogas yields of two feedstock mixtures (A and B were assessed in mesophilic conditions (40°C±2°C using 6 lab-scale continuous stirredtank reactors. Feedstock mixture A (control consisted of pig slurry (70%, farmyard manure (4%, sorghum silage (12% and maize silage (14%. Feedstock mixture B was the same as the control plus the solid fraction derived from the mechanical separation of the output raw codigestate collected from the reactors. All reactors were fed simultaneously, three times a week, over a period of nine month. According to the study results, the reuse of the co-digested solid fraction as feedstock for ADP could increase the methane yield by approximately 4%. However, ADP efficiency evaluation (e.g., daily yield of methane per m3 of digester suggests limiting this practice to a maximum time period of 120 days.

  17. The use of co-digested solid fraction as feedstock for biogas plants

    Directory of Open Access Journals (Sweden)

    E. Dinuccio

    2013-09-01

    Full Text Available A comparative study was set up in order to assess the technical feasibility of the long-term reuse of the mechanically separated co-digested solid fraction as a feedstock for anaerobic digestion plants (ADP. The biogas yields of two feedstock mixtures (A and B were assessed in mesophilic conditions (40 °C ± 2 °C using 8 lab-scale continuous stirred-tank reactors (CSRT. Feedstock mixture A (control consisted of pig slurry (70%, farmyard manure (4%, sorghum silage (12% and maize silage (14%. Feedstock mixture B was the same as the control plus the solid fraction derived from the mechanical separation of the output raw co-digestate collected on daily basis from the reactors. All reactors were fed simultaneously, three times a week, over a period of nine month. According to the study results, the reuse of the co-digested solid fraction as feedstock for ADP could increase the methane yield by approximately 4%. However, ADP efficiency evaluation (e.g., daily yield of methane per m3 of digester suggest to limit this practice to a maximum time period of 120 days.

  18. The chemistry of silicon

    CERN Document Server

    Rochow, E G; Emeléus, H J; Nyholm, Ronald

    1975-01-01

    Pergamon Texts in Organic Chemistry, Volume 9: The Chemistry of Silicon presents information essential in understanding the chemical properties of silicon. The book first covers the fundamental aspects of silicon, such as its nuclear, physical, and chemical properties. The text also details the history of silicon, its occurrence and distribution, and applications. Next, the selection enumerates the compounds and complexes of silicon, along with organosilicon compounds. The text will be of great interest to chemists and chemical engineers. Other researchers working on research study involving s

  19. Effect of Hydrogen Addition on Low Temperature Metallurgical Property of Sinter

    Institute of Scientific and Technical Information of China (English)

    MU Lin; JIANG Xin; GAO Qiang-jian; WEI Guo; SHEN Feng-man

    2012-01-01

    Hydrogen-enrich iron making process is certainly to be an effective method to reduce greenhouse gases emission.However,the effect of hydrogen addition on the low temperature metallurgical property of sinter is still unclear.A detailed investigation was performed on the above topic.The results are as follows.When CO is partially replaced by H2,the RDI〈3.15(RDI〈2.8) of sinter decreases with the increase of the H2 content;when the content of H2 increases,the CO,CO2 and N2 decrease proportionally,in this case,RDI〈3.15(RDI〈2.8) of sinter increases with the increase of H2 content;the value of RDI〈3.15(RDI〈2.8) basically depends on the reduction index(Ri).The experimental data of RDI〈2.8 based on Japanese industrial standard(JIS) are a little higher than the data of RDI〈3.15 based on Chinese industrial standard(CIS) in the same condition.In addition,for part of CO is replaced by H2:RDI〈2.8=3.38394+1.1585 RDI〈3.15;for other gases,except H2,are decreased proportionally:RDI〈2.8=17.39678+0.42922 RDI〈3.15

  20. Pyrolysis of chromium rich tanning industrial wastes and utilization of carbonized wastes in metallurgical process.

    Science.gov (United States)

    Tôrres Filho, Artur; Lange, Liséte Celina; de Melo, Gilberto Caldeira Bandeira; Praes, Gustavo Eduardo

    2016-02-01

    Pyrolysis is the thermal degradation of organic material in oxygen-free or very lean oxygen atmosphere. This study evaluates the use of pyrolysis for conversion of leather wastes from chromium tanning processes into Carbonized Leather Residues (CLR), and the utilization of CLR in metallurgical processes through the production of iron ore pellets. CLR was used to replace mineral coal in proportions of 10% and 25% on fixed carbon basis content in the mixtures for pellets preparation. Experimental conversions were performed on a pilot scale pyrolysis plant and a pelletizing reactor of the "pot grate" type. The results demonstrated the technical feasibility of using the charcoal product from animal origin as an energy source, with recovery of up to 76.47% of chromium contained in CLR in the final produced of iron ore pellets. Pellets with 25% replacement of fixed carbon in the coal showed an enhanced compressive strength, with an average value of 344kgfpellet(-1), compared to 300kgfpellet(-1) for standard produced pellets.

  1. The Effects of High Al2O3 on the Metallurgical Properties of Sinter

    Science.gov (United States)

    Yu, Wen-tao; Zuo, Hai-bin; Zhang, Jian-liang; Zhang, Tao

    Sintering-pot tests and metallurgical performances of sinter with 4 kind of different Al2O3 contents are experimented in this paper. Results show: when the Al2O3 contents increase from 2.0% to 3.5%, acicular calcium ferrites in mine phase will be gradually replaced by plate-like iron calcium. The increase of Al2O3 contents will lead to the addition of liquid viscosity and the reduction of permeability of sinter bed. Sintering time will be prolonged. The rate of yield is stable basically but production is low; besides, the increase of liquid viscosity will decrease of drum strength. The change of permeability of the material layer will make RDI+3.15 decrease first and then increase when Al2O3 contents changed from 2.0% to 3.5%. RI of sinter shows a contrary trend because many open voids are formed by deterioration of liquidity first and then pores closed.

  2. Evaluation of Metallurgical Quality of Master Heat IN-713C Nickel Alloy Ingots

    Directory of Open Access Journals (Sweden)

    F. Binczyk

    2012-12-01

    Full Text Available The paper presents the results of evaluation of the metallurgical quality of master heat ingots and of the identification of non-metallic inclusions (oxides of Al., Zr, Hf, Cr, etc., which have been found in the shrinkage cavities formed in these ingots. The inclusions penetrate into the liquid alloy, and on pouring of mould are transferred to the casting, especially when the filtering system is not sufficiently effective. The specific nature of the melting process of nickel and cobalt alloys, carried out in vacuum induction furnaces,excludes the possibility of alloy refining and slag removal from the melt surface. Therefore, to improve the quality of castings (parts of aircraft engines, it is so important to evaluate the quality of ingots before charging them into the crucible of an induction furnace. It has been proved that one of the methods for rapid quality evaluation is an ATD analysis of the sample solidification process, where samples are taken from different areas of the master heat ingot. The evaluation is based on a set of parameters plotted on the graph of the dT/dt derivative curve during the last stage of the solidification process in a range from TEut to Tsol.

  3. Determination of nanoscale particles in the air of working zone at the metallurgical production

    Directory of Open Access Journals (Sweden)

    Т.S. Ulanova

    2015-03-01

    Full Text Available The results of studies of the air of working zone at the metallurgical production on the example of Avisma OJSC (Berezniki, the Perm Territory for the content of nanoscale particles are specified. The maximum nanoparticles concentration in the range of 13523–28609 mln./m3 is determined at the working place of the titanium production smelter with the maximum size of particles of 10–15 nm. At the working place in the administrative building (reference working place the maximum concentration is determined within the range of 524–1000 mln./m3; the maximum size of nanoparticles is 20 nm. It was established that the number concentration of nanoparticles at the reference working places (administration of Avisma OJSC is significantly lower than at the working places of main production processes. The presented studies can be used as the additional factors in the assessment of labor conditions and occupational risk during the manufacture and use of materials containing nanoparticles as well as the production processes with the nanoparticles formation.

  4. The composition and temperature dependence of the sulfide capacity of metallurgical slags

    Science.gov (United States)

    Sosinsky, Nd. J.; Sommerville, I. D.

    1986-06-01

    The concept of optical basicity and its applicability as a means of correlating the available data on the sulfide capacity of metallurgical slags has been reviewed. An excellent correlation based on very extensive data at 1500 °C, which was discussed in a previous paper, is combined with good correlations based on considerably less data at 1550 °C and 1650 °C to quantify the effect of temperature on the sulfide capacity of slags. The combined effects of slag composition and temperature have been expressed in the equation, log C s = [(22690 - 54640A)/7] + 43.6A - 25.2. Use of this equation permits the calculation of the sulfide capacity of a slag at any temperature between 1400 °C and 1700 °C simply from a knowledge of its chemical composition, and can be employed for virtually any oxide slag of interest in the field of iron and steelmaking. This, in turn, permits calculation of the equilibrium distribution of sulfur between this slag and iron or steel, provided that the oxygen potential is known or can be calculated from the degree of deoxidation applied.

  5. Comparative assessment of metallurgical recovery of metals from electronic waste with special emphasis on bioleaching.

    Science.gov (United States)

    Priya, Anshu; Hait, Subrata

    2017-01-14

    Waste electrical and electronic equipment (WEEE) or electronic waste (e-waste) is one of the fastest growing waste streams in the urban environment worldwide. The core component of printed circuit board (PCB) in e-waste contains a complex array of metals in rich quantity, some of which are toxic to the environment and all of which are valuable resources. Therefore, the recycling of e-waste is an important aspect not only from the point of waste treatment but also from the recovery of metals for economic growth. Conventional approaches for recovery of metals from e-waste, viz. pyrometallurgical and hydrometallurgical techniques, are rapid and efficient, but cause secondary pollution and economically unviable. Limitations of the conventional techniques have led to a shift towards biometallurgical technique involving microbiological leaching of metals from e-waste in eco-friendly manner. However, optimization of certain biotic and abiotic factors such as microbial species, pH, temperature, nutrients, and aeration rate affect the bioleaching process and can lead to profitable recovery of metals from e-waste. The present review provides a comprehensive assessment on the metallurgical techniques for recovery of metals from e-waste with special emphasis on bioleaching process and the associated factors.

  6. Filamentous fungi isolated from Brazilian semiarid tolerant to metallurgical industry wastes: an ex situ evaluation

    Directory of Open Access Journals (Sweden)

    Flavio Manoel Rodrigues da Silva Júnior

    2014-10-01

    Full Text Available The purpose of this study was to assess the impact of metallurgical industry wastes on the semiarid soil microbiota using physico-chemical and microbiological parameters, highlighting the filamentous fungi assembly. Soil samples were collected in an area of industrial waste deposit contaminated with lead and mixed with natural soil (control soil in seven different concentrations (0, 7.5, 15, 30, 45, 60 and 100%. The results showed alterations on the physico-chemical properties of the soil treated with industrial wastes, with a gradate increase of the soil's pH (5.6-10.4 and electrical conductivity (0.3-14.7 dS m-1 and also reduction of organic matter (7.0-1.8%. The use of microbiological parameters (fungal richness and diversity, CO2emission, and the carbon on the microbial biomass enabled the identification of alterations on the microbial community due to stress caused by the exposure to industrial wastes, despite the presence of Thielavia, Chaetomium and Aspergillus tolerant to high concentrations of the scoria. Therefore, these filamentous fungi could be used in biomonitoring and bioremediation studies in the soils contaminated by industrial wastes.

  7. Production of highly porous glass-ceramics from metallurgical slag, fly ash and waste glass

    Directory of Open Access Journals (Sweden)

    Mangutova Bianka V.

    2004-01-01

    Full Text Available Glass-ceramics composites were produced based on fly-ash obtained from coal power stations, metallurgical slag from ferronickel industry and waste glass from TV monitors, windows and flasks. Using 50% waste flask glass in combination with fly ash and 20% waste glass from TV screens in combination with slag, E-modulus and bending strength values of the designed systems are increased (system based on fly ash: E-modulus from 6 to 29 GPa, and bending strength from 9 to 75 MPa. The polyurethane foam was used as a pore creator which gave the material porosity of 70(5% (fly ash-glass composite and a porosity of 65( 5% (slag-glass composite. E-modulus values of the designed porous systems were 3.5(1.2 GPa and 8.1(3 GPa, while the bending strength values were 6.0(2 MPa and 13.2(3.5 MPa, respectively. These materials could be used for the production of tiles, wall bricks, as well as for the construction of air diffusers for waste water aeration.

  8. Microstructure, cytotoxicity and corrosion of powder-metallurgical iron alloys for biodegradable bone replacement materials

    Energy Technology Data Exchange (ETDEWEB)

    Wegener, Bernd; Sievers, Birte; Utzschneider, Sandra; Mueller, Peter; Jansson, Volkmar [Department of Orthopedic Surgery, Ludwig-Maximilians-University of Munich, Marchioninistrasse 15, 81377 Muenchen (Germany); Roessler, Sophie; Nies, Berthold [InnoTERE GmbH, Tatzberg 47, 01307 Dresden (Germany); Stephani, Guenter; Kieback, Bernd [Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM), Dresden Branch Lab, Winterbergstrasse 28, 01277 Dresden (Germany); Quadbeck, Peter, E-mail: peter.quadbeck@ifam-dd.fraunhofer.de [Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM), Dresden Branch Lab, Winterbergstrasse 28, 01277 Dresden (Germany)

    2011-12-15

    Up to now biodegradable bone implants with the ability of bearing high loads for the temporary replacement of bones or as osteosynthesis material are not available. Iron and iron based alloys have been identified as appropriate materials, since they combine high strength at medium corrosion rates. Thus, the aim of the present study is the development of a degradable iron based alloy with the perspective of using them as matrix material of cellular structures with biomechanical tailored properties. A powder metallurgical approach has been used to manufacture Fe-C, Fe-0.6P, Fe-1.6P, Fe-B and Fe-Ag samples, which have been tested with respect to their microstructure, their cytotoxicity, and their degradation rate. In order to determine the cytotoxicity of the material a monolayer culture of fibroblast and a perfusion chamber system has been chosen, which was recommended by the ISO 10993-5:1999 for biological testing of medical devices. It has been found, that in particular phosphorus features beneficial properties, since density and thus the strength of the material are increased. No corrosion inhibiting effects of phosphorus on the degradation rate have been found.

  9. EDXRF and micro-EDXRF studies of Late Bronze Age metallurgical productions from Canedotes (Portugal)

    Science.gov (United States)

    Valerio, Pedro; Araújo, M. de Fátima; Canha, Alexandre

    2007-10-01

    Metallurgical production in Central Portugal during the Late Bronze Age was primarily based on copper-tin alloys, despite influences from the Atlantic area where copper-tin-lead alloys are common. Metallic artefacts from archaeological site of Canedotes (Central Portugal) were analysed by EDXRF to establish the type of alloys present. Polished spots in selected artefacts were also analysed by micro-EDXRF to determine the major and minor elemental composition of the original alloys. The collection constitutes 18 copper-tin artefacts and one unalloyed copper artefact with tin and arsenic as minor constituents. Artefacts that require a thermomechanical finishing process, such as tools and weapons, seem to have improved control over the tin content. The composition of two buttons, one cramp and one metallic droplet suggest that some of the copper sources were rich in arsenic. Finally, the low iron content of the artefacts seems to agree well with the smelting of copper ores in crucible furnaces, a smelting process used in certain areas of the Iberian Peninsula until pre-Roman times.

  10. Prediction of the ledge thickness inside a high-temperature metallurgical reactor using a virtual sensor

    Science.gov (United States)

    LeBreux, Marc; Désilets, Martin; Lacroix, Marcel

    2012-11-01

    A non-intrusive inverse heat transfer procedure for predicting the time-varying thickness of the phase-change ledge on the inner surface of the walls of a high-temperature metallurgical reactor is presented. An extended Kalman filter with augmented state is coupled with a nonlinear state-space model of the reactor in order to estimate on-line the position of the phase front. The data are collected by a heat flux sensor located inside or outside of the reactor wall. This non-intrusive method can be seen as a virtual sensor which is defined as the combination of an estimation algorithm with measurements for the estimation of 'hard to measure' on-line process variables. The inverse prediction of the ledge thickness with the virtual sensor is thoroughly tested for typical operating conditions that prevail inside an industrial facility. Due to the fact that the melting/solidification process inside the reactor is highly nonlinear, results show that the accuracy of the state-space identification and the virtual sensor estimation is far superior when a nonlinear state-space model and the extended Kalman filter are employed, as opposed to a linear state-space model and the classic Kalman filter. In the former, it is shown that the discrepancy between the exact and the estimated ledge thickness remains smaller than 10% at all times.

  11. Simulation of Tailored Tempering with a Thermo-Mechanical-Metallurgical Model in AutoFormplus

    Science.gov (United States)

    Ertürk, S.; Sester, M.; Selig, M.; Feuser, P.; Roll, K.

    2011-08-01

    For automotive applications, the hot stamping of ultra-high-strength steels such as 22MnB5 is a well-established process providing significant reduction of fuel consumption and improving the component strength and geometrical accuracy due to reduced springback. Tailored tempering is a special type of hot stamping, in which different areas of the component experience different cooling histories leading to different final properties. The potential of manufacturing-optimised components consisting of high-strength and high-ductility regions in harmony with an enhanced crash performance makes tailored tempering very attractive compared with other conventional hot stamping processes. The optimisation of this process, where deformation and cooling take place simultaneously, requires a complete understanding in terms of material behaviour, formability, heat transfer and phase transformation kinetics. To this end, a thermo-mechanical-metallurgical model has been implemented in AutoFormplus in order to capture the material behaviour during the forming and quenching processes. Both radiation and convection are taken into account to describe heat transfer to ambient. Moreover, latent heat is considered and its effect on simulation is discussed. A guideline for parameter identification strategy has been developed and validated by separate experiments. The simulation results of tailored tempering of a B-pillar are presented together with measured tensile strength and elongation at fracture.

  12. Post-hoc Analysis on the R&D Capabilities of Chemical and Metallurgical Manufacturing

    Directory of Open Access Journals (Sweden)

    Herman Shah Anuar

    2013-09-01

    Full Text Available The purpose of this paper is to evaluate how internal R&D, external R&D, and patenting affects the behavior of foreign, local, and joint-venture companies operating in manufacturing companies in Malaysia. Different types of manufacturing companies may have different approach in applying their R&D capabilities and patenting activity. The construct of this paper is based on the post-hoc analysis in evaluating how internal R&D, external R&D, and patenting affects the behavior of foreign, local, and joint-venture companies operating in manufacturing companies. This research was conducted using survey questionnaires. 124 companies in chemical and metallurgical manufacturing companies participated in this survey. It was indicated that these three companies behave differently when dealing with internal R&D, external R&D, and patenting. It can be concluded that these three types of companies have a different perspective on applying internal R&D, external R&D, and patenting which is based on their different business strategic direction. It is suggested that in the near future, researchers should concentrate and other types of manufacturing companies or they can involve more sample size in getting better generalization on the behavior of these companies.

  13. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report. Third quarter, 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    During third quarter 1994, samples from AMB groundwater monitoring wells at the Metallurgical Laboratory Hazardous Waste Management Facility (Met Lab HWMF) were analyzed for selected heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. Eight parameters exceeded standards during the quarter. As in previous quarters, tetrachloroethylene and trichloroethylene exceeded final Primary Drinking Water Standards (PDWS). Bis(2-ethylhexyl) phthalate exceeded final PDWS in one well. Aluminum, iron, manganese, tin, and total organic halogens exceeded the Savannah River Site (SRS) Flag 2 criteria. Groundwater flow direction and rate in the M-Area Aquifer Zone were similar to previous quarters. Conditions affecting determination of groundwater flow directions and rates in the Upper Lost Lake Aquifer Zone, Lower Lost Lake Aquifer Zone, and the Middle Sand Aquifer Zone of the Crouch Branch Confining Unit were also similar to previous quarters. During second quarter 1994, SRS received South Carolina Department of Health and Environmental Control approval for constructing five point-of-compliance wells and two plume definition wells near the Met Lab HWMF. This project began in July 1994 and is complete; however, analytical data from these wells is not available yet.

  14. Alloying effects on mechanical and metallurgical properties of NiAl

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.T.; Horton, J.A.; Lee, E.H.; George, E.P.

    1993-06-01

    Alloying effects were investigated in near-stoichiometric NiAl for improving its mechanical and metallurgical properties. Ternary additions of 19 elements at levels up to 10 at. % were added to NiAl; among them, molybdenum is found to be most effective in improving the room-temperature ductility and high-temperature strength. Alloying with 1.0 {plus_minus} 0.6% molybdenum almost doubles the room-temperature tensile ductility of NiAl and triples its yield strength at 1000C. The creep properties of molybdenum-modified NiAl alloys can be dramatically improved by alloying with up to 1% of niobium or tantalum. Because of the low solubilities of molybdenum and niobium in NiAl, the beneficial effects mainly come from precipitation hardening. Fine and coarse precipitates are revealed by both transmission electron microscopy (TEM) and electron microprobe analyses. Molybdenum-containing alloys possess excellent oxidation resistance and can be fabricated into rod stock by hot extrusion at 900 to 1050C. This study of alloying effects provides a critical input for the alloy design of ductile and strong NiAl aluminide alloys for high-temperature structural applications.

  15. Metallurgical investigation on fourth century BCE silver jewellery of two hoards from Samaria

    Science.gov (United States)

    Ashkenazi, D.; Gitler, H.; Stern, A.; Tal, O.

    2017-01-01

    A fourth century BCE silver jewellery collection, which is part of two hoards of Samarian coins (the Samaria and Nablus Hoards), was studied by non-destructive analyses. The collection, which consists of pendants, rings, beads and earrings, had been examined by visual testing, multi-focal microscopy and SEM-EDS analysis. In order to enhance our knowledge of past technologies of silver jewellery production, we developed a metallurgical methodology based on the chemical composition of the joints and bulk. The results show that all artefacts are made of silver containing a small percentage of copper. Higher copper concentrations were measured in the joining regions. Our research indicates that the manufacturing of the jewellery from both hoards involved similar techniques, including casting, cutting, hammering, bending, granulating and joining methods, indicating that the artefacts were made by trained silversmiths. Although the burial date of the Samaria Hoard – 352 BCE – is some 21 years earlier than that of the Nablus Hoard – circa 331 BCE, a noted continuity in the local production technology is apparent in the analysed items. This information provides better understanding of the technological abilities in the late Persian-period province of Samaria and bears implications on the local silver coins produced in the region.

  16. Evaluation of Metallurgical Quality of Master Heat IN-713C Nickel Alloy Ingots

    Directory of Open Access Journals (Sweden)

    Binczyk F.

    2012-12-01

    Full Text Available The paper presents the results of evaluation of the metallurgical quality of master heat ingots and of the identification of non-metallic inclusions (oxides of Al., Zr, Hf, Cr, etc., which have been found in the shrinkage cavities formed in these ingots. The inclusions penetrate into the liquid alloy, and on pouring of mould are transferred to the casting, especially when the filtering system is not sufficiently effective. The specific nature of the melting process of nickel and cobalt alloys, carried out in vacuum induction furnaces, excludes the possibility of alloy refining and slag removal from the melt surface. Therefore, to improve the quality of castings (parts of aircraft engines, it is so important to evaluate the quality of ingots before charging them into the crucible of an induction furnace. It has been proved that one of the methods for rapid quality evaluation is an ATD analysis of the sample solidification process, where samples are taken from different areas of the master heat ingot. The evaluation is based on a set of parameters plotted on the graph of the dT/dt derivative curve during the last stage of the solidification process in a range from TEut to Tsol.

  17. Technogenic metallurgical resources raw potential usage under conditions of the zinc industry modernization

    Directory of Open Access Journals (Sweden)

    Leopold Igorevich Leontiev

    2016-07-01

    Full Text Available The article deals with the problem of accumulation and usage oftechnogenic metallurgical resources in the regions where the largeststeel plants are accommodated. The features of exploration anddevelopment of the mineral potential of technogenic metallurgicalresources are presented through the introduction of technologies ofdeep complex processing of technogenic raw materials. The topicalityof technogenic raw materials usage to expand the mineral resource baseof zinc producers in Russia is substantiated. The prospects of thezinc industry in terms of development of raw conversion by usingtechnological resources are explored. A methodical approach toevaluating the effectiveness of the usage of technogenic metallurgicalraw materials is developed. Approaches to establish the price oftechnogenic raw materials are determined; the expediency of increasingenvironmental charges for waste disposal is highlighted.Methodological developments are tested to assess the effectiveness of the usage of technogenic waste products made by ferrous metallurgyplants in Russia as a raw material for zinc production. There are set of the prioritiesfor the usage of raw potential of the technogenic resources todevelop the zinc industry.

  18. Mechanical and Metallurgical Evolution of Stainless Steel 321 in a Multi-step Forming Process

    Science.gov (United States)

    Anderson, M.; Bridier, F.; Gholipour, J.; Jahazi, M.; Wanjara, P.; Bocher, P.; Savoie, J.

    2016-04-01

    This paper examines the metallurgical evolution of AISI Stainless Steel 321 (SS 321) during multi-step forming, a process that involves cycles of deformation with intermediate heat treatment steps. The multi-step forming process was simulated by implementing interrupted uniaxial tensile testing experiments. Evolution of the mechanical properties as well as the microstructural features, such as twins and textures of the austenite and martensite phases, was studied as a function of the multi-step forming process. The characteristics of the Strain-Induced Martensite (SIM) were also documented for each deformation step and intermediate stress relief heat treatment. The results indicated that the intermediate heat treatments considerably increased the formability of SS 321. Texture analysis showed that the effect of the intermediate heat treatment on the austenite was minor and led to partial recrystallization, while deformation was observed to reinforce the crystallographic texture of austenite. For the SIM, an Olson-Cohen equation type was identified to analytically predict its formation during the multi-step forming process. The generated SIM was textured and weakened with increasing deformation.

  19. Process of optimization of district heat production by utilizing waste energy from metallurgical processes

    Science.gov (United States)

    Konovšek, Damjan; Fužir, Miran; Slatinek, Matic; Šepul, Tanja; Plesnik, Kristijan; Lečnik, Samo

    2017-07-01

    In a consortium with SIJ (Slovenian Steel Group), Metal Ravne, the local community of Ravne na Koro\\vskem and the public research Institut Jožef Stefan, with its registered office in Slovenia, Petrol Energetika, d.o.o. set up a technical and technological platform of an innovative energy case for a transition of steel industry into circular economy with a complete energy solution called »Utilization of Waste Heat from Metallurgical Processes for District Heating of Ravne na Koro\\vskem. This is the first such project designed for a useful utilization of waste heat in steel industry which uses modern technology and innovative system solutions for an integration of a smart, efficient and sustainable heating and cooling system and which shows a growth potential. This will allow the industry and cities to make energy savings, to improve the quality of air and to increase the benefits for the society we live in. On the basis of circular economy, we designed a target-oriented co-operation of economy, local community and public research institute to produce new business models where end consumers are put into the centre. This innovation opens the door for steel industry and local community to a joint aim that is a transition into efficient low-carbon energy systems which are based on involvement of natural local conditions, renewable energy sources, the use of waste heat and with respect for the principles of sustainable development.

  20. A CFD study on the dust behaviour in a metallurgical waste-heat boiler

    Energy Technology Data Exchange (ETDEWEB)

    Yang Yongxiang; Jokilaakso, A. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Materials Processing and Powder Metallurgy

    1997-12-31

    A waste-heat boiler forms an essential part for the treatment of high temperature flue-gases in most metallurgical processes. Flue-dust carried by the furnace off-gas has to be captured efficiently in the waste-heat boilers before entering the downstream gas purification equipment. Flue dust may accumulate and foul on the heat transfer surfaces such as tube-walls, narrow conjunctions between the boiler and the furnace uptake, and thus may cause smelter shutdown, and interrupt the production. A commercial CFD package is used as the major tool on modelling the dust flow and settling in the waste-heat boiler of an industrial copper flash smelter. In the presentation, dust settling behaviour is illustrated for a wide range of particle sizes, and dust capture efficiency in the radiation section of the boiler for different particle sizes has been shown with the transient simulation. The simulation aims at providing detailed information of dust behaviour in the waste-heat boiler in sulphide smelting. (author) 11 refs.

  1. Proper Assessment of the JFK Assassination Bullet Lead Evidence from Metallurgical and Statistical Perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Randich, E; Grant, P M

    2006-08-29

    The bullet evidence in the JFK assassination investigation was reexamined from metallurgical and statistical standpoints. The questioned specimens are comprised of soft lead, possibly from full-metal-jacketed Mannlicher-Carcano, 6.5-mm ammunition. During lead refining, contaminant elements are removed to specified levels for a desired alloy or composition. Microsegregation of trace and minor elements during lead casting and processing can account for the experimental variabilities measured in various evidentiary and comparison samples by laboratory analysts. Thus, elevated concentrations of antimony and copper at crystallographic grain boundaries, the widely varying sizes of grains in Mannlicher-Carcano bullet lead, and the 5-60 mg bullet samples analyzed for assassination intelligence effectively resulted in operational sampling error for the analyses. This deficiency was not considered in the original data interpretation and resulted in an invalid conclusion in favor of the single-bullet theory of the assassination. Alternate statistical calculations, based on the historic analytical data, incorporating weighted averaging and propagation of experimental uncertainties also considerably weaken support for the single-bullet theory. In effect, this assessment of the material composition of the lead specimens from the assassination concludes that the extant evidence is consistent with any number between two and five rounds fired in Dealey Plaza during the shooting.

  2. Manufacturing of self-passivating tungsten based alloys by different powder metallurgical routes

    Science.gov (United States)

    Calvo, A.; Ordás, N.; Iturriza, I.; Pastor, J. Y.; Tejado, E.; Palacios, T.; García-Rosales, C.

    2016-02-01

    Self-passivating tungsten based alloys will provide a major safety advantage compared to pure tungsten when used as first wall armor of future fusion reactors, due to the formation of a protective oxide layer which prevents the formation of volatile and radioactive WO3 in case of a loss of coolant accident with simultaneous air ingress. Bulk WCr10Ti2 alloys were manufactured by two different powder metallurgical routes: (1) mechanical alloying (MA) followed by hot isostatic pressing (HIP) of metallic capsules, and (2) MA, compaction, pressureless sintering in H2 and subsequent HIPing without encapsulation. Both routes resulted in fully dense materials with homogeneous microstructure and grain sizes of 300 nm and 1 μm, respectively. The content of impurities remained unchanged after HIP, but it increased after sintering due to binder residue. It was not possible to produce large samples by route (2) due to difficulties in the uniaxial compaction stage. Flexural strength and fracture toughness measured on samples produced by route (1) revealed a ductile-to-brittle-transition temperature (DBTT) of about 950 °C. The strength increased from room temperature to 800 °C, decreasing significantly in the plastic region. An increase of fracture toughness is observed around the DBTT.

  3. Proper assessment of the JFK assassination bullet lead evidence from metallurgical and statistical perspectives.

    Science.gov (United States)

    Randich, Erik; Grant, Patrick M

    2006-07-01

    The bullet evidence in the JFK assassination investigation was reexamined from metallurgical and statistical standpoints. The questioned specimens are comprised of soft lead, possibly from full-metal-jacketed Mannlicher-Carcano (MC), 6.5-mm ammunition. During lead refining, contaminant elements are removed to specified levels for a desired alloy or composition. Microsegregation of trace and minor elements during lead casting and processing can account for the experimental variabilities measured in various evidentiary and comparison samples by laboratory analysts. Thus, elevated concentrations of antimony and copper at crystallographic grain boundaries, the widely varying sizes of grains in MC bullet lead, and the 5-60 mg bullet samples analyzed for assassination intelligence effectively resulted in operational sampling error for the analyses. This deficiency was not considered in the original data interpretation and resulted in an invalid conclusion in favor of the single-bullet theory of the assassination. Alternate statistical calculations, based on the historic analytical data, incorporating weighted averaging and propagation of experimental uncertainties also considerably weaken support for the single-bullet theory. In effect, this assessment of the material composition of the lead specimens from the assassination concludes that the extant evidence is consistent with any number between two and five rounds fired in Dealey Plaza during the shooting.

  4. Synergetic use of lignite fly ash and metallurgical converter slag in geopolymer concrete

    Directory of Open Access Journals (Sweden)

    Gábor Mucsi

    2014-08-01

    Full Text Available The application and utilization of the industrial wastes and by-products in the construction industry is a key issue from an environmental and economic point of view. The increased use of lignite has substantially increased the available quantities of lignite fired power plant fly ash, which can be mainly classified as class C fly ash. The utilization of such raw material however has some difficulties. In the present paper lignite fired power station fly ash and metallurgical converter slag were used for the production of geopolymer concrete. The fly ash was used as a geopolymer based binder material, and a converter slag as aggregate, thus created a geopolymer concrete which contains mainly industrial wastes. As preliminary test experimental series were carried out using andesite as aggregate. The optimal aggregate/binder ratio was determined. The effect of the amount of alkaline activator solution in the binder, the aggregate type on the geopolymer concretes’ compressive strength and density was investigated. Furthermore, the physical properties - freeze-thaw resistance and particle size distribution - of the applied aggregates were measured as well. As a result of the experiments it was found that physical properties of the andesite and converter slag aggregate was close. Therefore andesite can be replaced by converter slag in the concrete mixture. Additionally, geopolymer concrete with nearly 20 MPa compressive strength was produced from class C fly ash and converter slag.

  5. Chemical Analysis Methods for Silicon Carbide

    Institute of Scientific and Technical Information of China (English)

    Shen Keyin

    2006-01-01

    @@ 1 General and Scope This Standard specifies the determination method of silicon dioxide, free silicon, free carbon, total carbon, silicon carbide, ferric sesquioxide in silicon carbide abrasive material.

  6. Glass-silicon column

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Conrad M.

    2003-12-30

    A glass-silicon column that can operate in temperature variations between room temperature and about 450.degree. C. The glass-silicon column includes large area glass, such as a thin Corning 7740 boron-silicate glass bonded to a silicon wafer, with an electrode embedded in or mounted on glass of the column, and with a self alignment silicon post/glass hole structure. The glass/silicon components are bonded, for example be anodic bonding. In one embodiment, the column includes two outer layers of silicon each bonded to an inner layer of glass, with an electrode imbedded between the layers of glass, and with at least one self alignment hole and post arrangement. The electrode functions as a column heater, and one glass/silicon component is provided with a number of flow channels adjacent the bonded surfaces.

  7. Porous silicon gettering

    Energy Technology Data Exchange (ETDEWEB)

    Tsuo, Y.S.; Menna, P.; Al-Jassim, M. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1995-08-01

    We have studied a novel extrinsic gettering method that utilizes the very large surface areas, produced by porous silicon etch on both front and back surfaces of the silicon wafer, as gettering sites. In this method, a simple and low-cost chemical etching is used to generate the porous silicon layers. Then, a high-flux solar furnace (HFSF) is used to provide high-temperature annealing and the required injection of silicon interstitials. The gettering sites, along with the gettered impurities, can be easily removed at the end the process. The porous silicon removal process consists of oxidizing the porous silicon near the end the gettering process followed by sample immersion in HF acid. Each porous silicon gettering process removes up to about 10 {mu}m of wafer thickness. This gettering process can be repeated so that the desired purity level is obtained.

  8. Thermodynamic Calculations of Melt in Melt Pool During Laser Cladding High Silicon Coatings

    Institute of Scientific and Technical Information of China (English)

    DONG Dan-yang; LIU Chang-sheng; ZHANG Bin

    2008-01-01

    Based on the Miedema's formation heat model for binary alloys and the Toop's asymmetric model for terna-ry alloys, the formation heat, excess entropy, and activity coefficients of silicon ranging from 1 900 K to 4 100 K in the Fe-Si-C melt formed during the laser cladding high silicon coatings process were calculated. The results indicated that all values of InγOSi, εCSi, ρSiSi and ρCSi are negative in the temperature range and these values increase as the tempera-ture increases. And all values of εSiSi and ρSi-CSi are positive and these values decrease with increasing temperature. The iso-activity lines of silicon are distributed axisymmetrically to the incident laser beam in the melt pool vertical to the laser scanning direction. And the iso-activity lines of silicon in the front of the melt pool along the laser scanning direction are more intensive than those in the back of the melt pool. The activity of silicon on the bottom of the melt pool is lower than that in the effecting center of laser beam on the top surface of the melt pool and it may be the im-portant reason for the formation of the silicides and excellent metallurgical bonding between the laser cladding coating and the substrate.

  9. A Heat and Mass Transfer Model of a Silicon Pilot Furnace

    Science.gov (United States)

    Sloman, Benjamin M.; Please, Colin P.; Van Gorder, Robert A.; Valderhaug, Aasgeir M.; Birkeland, Rolf G.; Wegge, Harald

    2017-10-01

    The most common technological route for metallurgical silicon production is to feed quartz and a carbon source ( e.g., coal, coke, or charcoal) into submerged-arc furnaces, which use electrodes as electrical conductors. We develop a mathematical model of a silicon furnace. A continuum approach is taken, and we derive from first principles the equations governing the time evolution of chemical concentrations, gas partial pressures, velocity, and temperature within a one-dimensional vertical section of a furnace. Numerical simulations are obtained for this model and are shown to compare favorably with experimental results obtained using silicon pilot furnaces. A rising interface is shown to exist at the base of the charge, with motion caused by the heating of the pilot furnace. We find that more reactive carbon reduces the silicon monoxide losses, while reducing the carbon content in the raw material mixture causes greater solid and liquid material to build-up in the charge region, indicative of crust formation (which can be detrimental to the silicon production process). We also comment on how the various findings could be relevant for industrial operations.

  10. Environmental geochemistry on La Nueva Concepción mercury mining area, a comparison with the metallurgical complex of Almadenejos.

    Science.gov (United States)

    Castillo, Washington; Herrera, Edison; Martínez-Coronado, Alba; Oyarzun, Roberto; Higueras, Pablo; María Esbrí, José

    2014-05-01

    Almadenejos is a small town located some 14 km East of Almadén, and was the main mining and metallurgical complex of an area comprising the Vieja Concepción (1699-1800), Nueva Concepción (1794-1965), and El Entredicho (Middle Age s.l., and 1981-1997) mines as well as the old Almadenejos metallurgical precinct (1700?-1860). This combination makes the area one of the most contaminated in the Almadén district. This study covers the Nueva Concepción mine area, a sector that lacked geochemical data before this study. We here present the results of a survey including soils (n = 80), lichens (Evernia prunastri) (n = 73) and total gaseous mercury (n = 61). The analyses of soils and lichens were carried out using an atomic absorption spectrometer AMA254, while total gaseous mercury determinations were in-situ obtained using a portable Lumex RA-915+. We used Surfer 8 for the krigging and subsequent mapping of geochemical data. Mercury contents in soils are in the range of 6 - 721 mg kg-1, clearly higher than critical concentrations in soils by Kabata-Pendias (2001) (0.3 - 5 mg kg-1). This mercury levels are higher in the metallurgical facility of Almadenejos (range = 25 - 15900 mg kg-1), putting forward that the main pollution legacy relates to the metallurgical activities and not to the mining operations. The statistical distribution of data is log-normal and as shown by the krigging Hg shows a remarkable E-W spatial component which closely matches the structural pattern of the main Hg hosting bed: the Criadero Quartzite. On the other hand, total gaseous mercury shows a WNW-ESE tendency most probably controlled by the local main wind direction. A similar spatial trend was found for the lichen's Hg contents. Mercury contents in these lichens are 103 times higher than in pristine areas but lower than those from the abandoned (and highly polluted) Almadenejos metallurgical complex.

  11. Long term storage of dilute acid pretreated corn stover feedstock and ethanol fermentability evaluation.

    Science.gov (United States)

    Zhang, Jian; Shao, Shuai; Bao, Jie

    2016-02-01

    This study reported a new solution of lignocellulose feedstock storage based on the distributed pretreatment concept. The dry dilute sulfuric acid pretreatment (DDAP) was conducted on corn stover feedstock, instead of ammonia fiber explosion pretreatment. Then the dry dilute acid pretreated corn stover was stored for three months during summer season with high temperature and humidity. No negative aspects were found on the physical property, composition, hydrolysis yield and ethanol fermentability of the long term stored pretreated corn stover, plus the additional merits including no chemicals recovery operation, anti-microbial contaminant environment from stronger acid and inhibitor contents, as well as the mild and slow hydrolysis in the storage. The new pretreatment method expanded the distributed pretreatment concept of feedstock storage with potential for practical application.

  12. Biobutanol as a Potential Sustainable Biofuel - Assessment of Lignocellulosic and Waste-based Feedstocks

    Directory of Open Access Journals (Sweden)

    Johanna Niemisto

    2013-06-01

    Full Text Available This paper introduces the production process of an alternative transportation biofuel, biobutanol. European legislation concerning biofuels and their sustainability criteria are also briefly described. The need to develop methods to ensure more sustainable and efficient biofuel production processes is recommended. In addition, the assessment method to evaluate the sustainability of biofuels is considered and sustainability assessment of selected feedstocks for biobutanol production is performed. The benefits and potential of using lignocellulosic and waste materials as feedstocks in the biobutanol production process are also discussed. Sustainability assessment in this paper includes cultivation, harvest/collection and upstream processing (pretreatment of feedstocks, comparing four main biomass sources: food crops, non-food crops, food industry by-product and wood-based biomass. It can be concluded that the highest sustainable potential in Finland is when biobutanol production is integrated into pulp & paper mills.

  13. Economic evaluation of United States ethanol production from ligno-cellulosic feedstocks

    Science.gov (United States)

    Choi, Youn-Sang

    This paper evaluates the economic feasibility and economy-wide impacts of the U. S. ethanol production from lignocellulosic feedstocks (LCF) using Tennessee Valley Authority's (TVA's) dilute acid hydrolysis process. A nonlinear mathematical programming model of a single ethanol producer, whose objective is profit maximization, is developed. Because of differences in their chemical composition and production process, lignocellulosic feedstocks are divided into two groups: Biomass feedstocks, which refer to crop residues, energy crops and woody biomass, and municipal solid waste (MSW). Biomass feedstocks are more productive and less costly in producing ethanol and co-products, while MSW generates an additional income to the producer from a tipping fee and recycling. The analysis suggests that, regardless of types of feedstocks used, TVA's conversion process can enhance the economic viability of ethanol production as long as furfural is produced from the hemicellulose fraction of feedstocks as a co-product. The high price of furfural makes it a major factor in determining the economic feasibility of ethanol production. Along with evaluating economic feasibility of LCF-to-ethanol production, the optimal size of a plant producing ethanol using TVA's conversion process is estimated. The larger plant would have the advantage of economies of scale, but also have a disadvantage of increased collection and transportation costs for bulky biomass from more distant locations. We assume that the plant is located in the state of Missouri and utilizes only feedstocks produced in the state. The results indicate that the size of a plant using Biomass feedstocks is much bigger than one using MSW. The difference of plant sizes results from plant location and feedstock availability. One interesting finding is that energy crops are not feasible feedstocks for LCF-to-ethanol production due to their high price. Next, a static CGE model is developed to estimate the U.S. economy

  14. Effects of feedstock characteristics on microwave-assisted pyrolysis - A review.

    Science.gov (United States)

    Zhang, Yaning; Chen, Paul; Liu, Shiyu; Peng, Peng; Min, Min; Cheng, Yanling; Anderson, Erik; Zhou, Nan; Fan, Liangliang; Liu, Chenghui; Chen, Guo; Liu, Yuhuan; Lei, Hanwu; Li, Bingxi; Ruan, Roger

    2017-04-01

    Microwave-assisted pyrolysis is an important approach to obtain bio-oil from biomass. Similar to conventional electrical heating pyrolysis, microwave-assisted pyrolysis is significantly affected by feedstock characteristics. However, microwave heating has its unique features which strongly depend on the physical and chemical properties of biomass feedstock. In this review, the relationships among heating, bio-oil yield, and feedstock particle size, moisture content, inorganics, and organics in microwave-assisted pyrolysis are discussed and compared with those in conventional electrical heating pyrolysis. The quantitative analysis of data reported in the literature showed a strong contrast between the conventional processes and microwave based processes. Microwave-assisted pyrolysis is a relatively new process with limited research compared with conventional electrical heating pyrolysis. The lack of understanding of some observed results warrant more and in-depth fundamental research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Strategy of changing cracking furnace feedstock based on improved group search optimization

    Institute of Scientific and Technical Information of China (English)

    Xiaoyu Nian; Zhenlei Wang; Feng Qian

    2015-01-01

    The scheduling process of cracking furnace feedstock is important in an ethylene plant. In this paper it is described as a constraint optimization problem. The constraints consist of the cycle of operation, maximum tube metal temperature, process time of each feedstock, and flow rate. A modified group search optimizer is pro-posed to deal with the optimization problem. Double fitness values are defined for every group. First, the factor of penalty function should be changed adaptively by the ratio of feasible and general solutions. Second, the“excel-lent”infeasible solution should be retained to guide the search. Some benchmark functions are used to evaluate the new algorithm. Final y, the proposed algorithm is used to optimize the scheduling process of cracking furnace feedstock. And the optimizing result is obtained.

  16. Efficient process for producing saccharides and ethanol from a biomass feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Okeke, Benedict C.; Nanjundaswamy, Ananda K.

    2017-04-11

    Described herein is a process for producing saccharides and ethanol from biomass feedstock that includes (a) producing an enzyme composition by culturing a fungal strain(s) in the presence of a lignocellulosic medium, (b) using the enzyme composition to saccharify the biomass feedstock, and (c) fermenting the saccharified biomass feedstock to produce ethanol. The process is scalable and, in certain aspects, is capable of being deployed on farms, thereby allowing local production of saccharides and ethanol and resulting in a reduction of energy and other costs for farm operators. Optional steps to improve the biomass-to-fuel conversion efficiency are also contemplated, as are uses for byproducts of the process described herein.

  17. Polyolefin Backbone Substitution in Binders for Low Temperature Powder Injection Moulding Feedstocks

    Directory of Open Access Journals (Sweden)

    Berenika Hausnerova

    2014-02-01

    Full Text Available This paper reports the substitution of polyolefin backbone binder components with low melting temperature carnauba wax for powder injection moulding applications. The effect of various binder compositions of Al2O3 feedstock on thermal degradation parameters is investigated by thermogravimetric analysis. Within the experimental framework 29 original feedstock compositions were prepared and the superiority of carnauba wax over the polyethylene binder backbone was demonstrated in compositions containing polyethylene glycol as the initial opening agent and governing the proper mechanism of the degradation process. Moreover, the replacement of synthetic polymer by the natural wax contributes to an increase of environmental sustainability of modern industrial technologies.

  18. Methods of refining and producing dibasic esters and acids from natural oil feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Snead, Thomas E; Cohen, Steven A; Gildon, Demond L

    2015-04-07

    Methods are provided for refining natural oil feedstocks and producing dibasic esters and/or dibasic acids. The methods comprise reacting a terminal olefin with an internal olefin in the presence of a metathesis catalyst to form a dibasic ester and/or dibasic acid. In certain embodiments, the olefin esters are formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having olefin esters.

  19. Methods of refining and producing dibasic esters and acids from natural oil feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Snead, Thomas E.; Cohen, Steven A.; Gildon, Demond L.

    2016-03-15

    Methods are provided for refining natural oil feedstocks and producing dibasic esters and/or dibasic acids. The methods comprise reacting a terminal olefin with an internal olefin in the presence of a metathesis catalyst to form a dibasic ester and/or dibasic acid. In certain embodiments, the olefin esters are formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having olefin esters.

  20. Low temperature microwave-assisted vs conventional pyrolysis of various biomass feedstocks

    Institute of Scientific and Technical Information of China (English)

    Peter Shuttleworth; Vitaliy Budarin; Mark Gronnow; James H. Clark; Rafael Luque

    2012-01-01

    A comparison between conventional pyrolysis and a novel developed low-temperature microwave-assisted pyrolysis methodology has been performed for the valorisation of a range of biomass feedstocks including waste residues.Microwave pyrolysis was found to efficiently deliver comparable evolution of bio-gases in the system as compared with conventional pyrolysis at significantly reduced temperatures (120-180 ℃ vs 250-400 ℃).The gas obtained from microwave-assistet pyrolysis was found to contain CO2,CH4 and CO as major components as well as other related chemicals (e.g.acids,aldehydes,alkanes) which were obtained in different proportions depending on the selected feedstock.

  1. Catalytic Hydrothermal Conversion of Wet Biomass Feedstocks and Upgrading – Process Design and Optimization

    DEFF Research Database (Denmark)

    Hoffmann, Jessica; Toor, Saqib; Rosendahl, Lasse

    Liquid biofuels will play a major role for a more sustainable energy system of the future. The CatLiq® process is a 2nd generation biomass conversion process that is based on hydrothermal liquefaction. Hydrothermal liquefaction offers a very efficient and feedstock flexible way of converting...... biomass to bio-oil. Bio-oils from hydrothermal liquefaction are characterised by their high feedstock flexibility. Upgrading of complete bio-oils derived from hydrothermal conversion has not yet been extensively studied. Purpose of this work is to reduce the oxygen content of the bio-oil to improve...

  2. Methods of refining and producing dibasic esters and acids from natural oil feedstocks

    Science.gov (United States)

    Snead, Thomas E; Cohen, Steven A; Gildon, Demond L

    2015-04-07

    Methods are provided for refining natural oil feedstocks and producing dibasic esters and/or dibasic acids. The methods comprise reacting a terminal olefin with an internal olefin in the presence of a metathesis catalyst to form a dibasic ester and/or dibasic acid. In certain embodiments, the olefin esters are formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having olefin esters.

  3. Thermal conversion of biomass to valuable fuels, chemical feedstocks and chemicals

    Science.gov (United States)

    Peters, William A.; Howard, Jack B.; Modestino, Anthony J.; Vogel, Fredreric; Steffin, Carsten R.

    2009-02-24

    A continuous process for the conversion of biomass to form a chemical feedstock is described. The biomass and an exogenous metal oxide, preferably calcium oxide, or metal oxide precursor are continuously fed into a reaction chamber that is operated at a temperature of at least 1400.degree. C. to form reaction products including metal carbide. The metal oxide or metal oxide precursor is capable of forming a hydrolizable metal carbide. The reaction products are quenched to a temperature of 800.degree. C. or less. The resulting metal carbide is separated from the reaction products or, alternatively, when quenched with water, hydolyzed to provide a recoverable hydrocarbon gas feedstock.

  4. Bioethanol - Status report on bioethanol production from wood and other lignocellulosic feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Scott-Kerr, Chris; Johnson, Tony; Johnson, Barbara; Kiviaho, Jukka

    2010-09-15

    Lignocellulosic biomass is seen as an attractive feedstock for future supplies of renewable fuels, reducing the dependence on imported petroleum. However, there are technical and economic impediments to the development of commercial processes that utilise biomass feedstocks for the production of liquid fuels such as ethanol. Significant investment into research, pilot and demonstration plants is on-going to develop commercially viable processes utilising the biochemical and thermochemical conversion technologies for ethanol. This paper reviews the current status of commercial lignocellulosic ethanol production and identifies global production facilities.

  5. Process for improving the energy density of feedstocks using formate salts

    Science.gov (United States)

    Wheeler, Marshall Clayton; van Heiningen, Adriaan R.P.; Case, Paige A.

    2015-09-01

    Methods of forming liquid hydrocarbons through thermal deoxygenation of cellulosic compounds are disclosed. Aspects cover methods including the steps of mixing a levulinic acid salt-containing feedstock with a formic acid salt, exposing the mixture to a high temperature condition to form hydrocarbon vapor, and condensing the hydrocarbon vapor to form liquid hydrocarbons, where both the formic acid salt and the levulinic acid salt-containing feedstock decompose at the high temperature condition and wherein one or more of the mixing, exposing, and condensing steps is carried out a pressure between about vacuum and about 10 bar.

  6. Sunflower-based Feedstocks in Nonfood Applications: Perspectives from Olefin Metathesis

    Science.gov (United States)

    Marvey, Bassie B.

    2008-01-01

    Sunflower (Helianthus annuus L.) oil remains under-utilised albeit one of the major seed oils produced world-wide. Moreover, the high oleic sunflower varieties make the oil attractive for applications requiring high temperature processes and those targeting the C=C double bond functionality. Herein an overview of the recent developments in olefin metathesis of sunflower-based feedstocks is presented. The improved performance of olefin metathesis catalysts leading to high turnover numbers, high selectivity and catalyst recyclability, opens new opportunities for tailoring sunflower-based feedstocks into products required for possible new niche market applications. Promising results in biofuel, biopolymers, fragrances and fine chemicals applications have been reported. PMID:19325810

  7. An integrated bioconversion process for the production of L-lactic acid from starchy feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, S.P.; Moon, S.H.

    1997-07-01

    The potential market for lactic acid as the feedstock for biodegradable polymers, oxygenated chemicals, and specialty chemicals is significant. L-lactic acid is often the desired enantiomer for such applications. However, stereospecific lactobacilli do not metabolize starch efficiently. In this work, Argonne researchers have developed a process to convert starchy feedstocks into L-lactic acid. The processing steps include starch recovery, continuous liquefaction, and simultaneous saccharification and fermentation. Over 100 g/L of lactic acid was produced in less than 48 h. The optical purity of the product was greater than 95%. This process has potential economical advantages over the conventional process.

  8. Watermelon juice: a promising feedstock supplement, diluent, and nitrogen supplement for ethanol biofuel production

    Directory of Open Access Journals (Sweden)

    Bruton Benny D

    2009-08-01

    Full Text Available Abstract Background Two economic factors make watermelon worthy of consideration as a feedstock for ethanol biofuel production. First, about 20% of each annual watermelon crop is left in the field because of surface blemishes or because they are misshapen; currently these are lost to growers as a source of revenue. Second, the neutraceutical value of lycopene and L-citrulline obtained from watermelon is at a threshold whereby watermelon could serve as starting material to extract and manufacture these products. Processing of watermelons to produce lycopene and L-citrulline, yields a waste stream of watermelon juice at the rate of over 500 L/t of watermelons. Since watermelon juice contains 7 to 10% (w/v directly fermentable sugars and 15 to 35 μmol/ml of free amino acids, its potential as feedstock, diluent, and nitrogen supplement was investigated in fermentations to produce bioethanol. Results Complete watermelon juice and that which did not contain the chromoplasts (lycopene, but did contain free amino acids, were readily fermentable as the sole feedstock or as diluent, feedstock supplement, and nitrogen supplement to granulated sugar or molasses. A minimum level of ~400 mg N/L (~15 μmol/ml amino nitrogen in watermelon juice was required to achieve maximal fermentation rates when it was employed as the sole nitrogen source for the fermentation. Fermentation at pH 5 produced the highest rate of fermentation for the yeast system that was employed. Utilizing watermelon juice as diluent, supplemental feedstock, and nitrogen source for fermentation of processed sugar or molasses allowed complete fermentation of up to 25% (w/v sugar concentration at pH 3 (0.41 to 0.46 g ethanol per g sugar or up to 35% (w/v sugar concentration at pH 5 with a conversion to 0.36 to 0.41 g ethanol per g sugar. Conclusion Although watermelon juice would have to be concentrated 2.5- to 3-fold to serve as the sole feedstock for ethanol biofuel production, the results

  9. Development of Solar Grade Silicon (SoG-Si) Feedstock by Recycling SoG-Si Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Lifeng Zhang; Anping Dong; Lucas Nana Wiredu Damoah

    2013-01-24

    Experiment results of EM separation show that the non-metallic inclusions were successfully pushed to the boundary layer of the crucible under EM force. Larger frequency and smaller current generate smaller thickness of accumulated inclusions. More detailed EM separation experiments are undergoing to investigate the factors that affect the removal efficient of inclusions from SoG-Si

  10. Nanomechanical responses of intermetallic phase at the solder joint interface - Crystal orientation and metallurgical effects

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jenn-Ming, E-mail: samsong@nchu.edu.tw [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan (China); Huang, Bo-Ron [Department of Materials Science and Engineering, National Dong Hwa University, Hualien 974, Taiwan (China); Liu, Cheng-Yi [Department of Chemical and Materials Engineering, National Central University, Taoyuan 320, Taiwan (China); Lai, Yi-Shao; Chiu, Ying-Ta [Central Labs, Advanced Semiconductor Engineering, Inc., Kaohsiung 811, Taiwan (China); Huang, Tzu-Wen [Laboratory for High Performance Ceramics, EMPA, Swiss Federal Laboratories for Materials Science and Technology (Switzerland)

    2012-02-01

    Highlights: Black-Right-Pointing-Pointer Textural and alloying effects on mechanical behavior of Cu{sub 6}Sn{sub 5} are explored. Black-Right-Pointing-Pointer Orientation dependence on elastic behavior of Cu{sub 6}Sn{sub 5} is verified and explained. Black-Right-Pointing-Pointer Allotropic transition and plastic ability for Cu{sub 6}Sn{sub 5} are linked. Black-Right-Pointing-Pointer How alloying affects the hexagonal to monoclinic transition of Cu{sub 6}Sn{sub 5} is proposed. - Abstract: In this study, the relationships between crystal structures, metallurgical effects, and mechanical properties of the most common intermetallic compound formed at the interface of solder joints, Cu{sub 6}Sn{sub 5}, were investigated using nanoindentation. Experimental results show that the (112{sup Macron }0) oriented hexagonal Cu{sub 6}Sn{sub 5} exhibited anisotropic mechanical behavior compared to those with random growth directions. The closest atomic packing density of the (112{sup Macron }0) plane in hexagonal Cu{sub 6}Sn{sub 5} resulted in higher hardness and notably, greater stiffness. Subjected to long time aging at 150 Degree-Sign C, hexagonal Cu{sub 6}Sn{sub 5} was transformed into the equilibrium monoclinic structure, resulting in a reduced modulus and thus inferior ability for plasticity. Alloying of Ni, Mn and rare earth elements (La and Ce) had various contributions to the allotropic transition and thus nanoindentation responses. It was found that the differences in atomic radius between the solute elements and Cu affected the kinetics of the allotropic transformation and also the mechanical performance of Cu{sub 6}Sn{sub 5}. There exists a critical value for the modulus/hardness ratio (E/H) of about 17.3-17.5, below which the indent morphology showed a brittle characteristic.

  11. Wear Evaluation on Ni3Al/MnS Composite Related to Metallurgical Processes

    Institute of Scientific and Technical Information of China (English)

    Karin Gong; LUO He-li; ZHOU Zhi-feng; TIAN Zhi-ling; Lars Nyborg; LI Chang-hai

    2012-01-01

    Iron alloyed Ni3Al with composition of Ni-18. 8Ab10. 7Fe-0. 5Mn-0. 5Ti-0. 2B in atom percent (NAC alloy) showed attractive tribological properties under unlubrication condition at room temperature. The alloy was prepared by hot isostatic pressing (HIP) process. The wear properties were associated with its intrinsic deformation mechanism. Unfortunately, the single phase NAC-alloy worked inadequately with its counterpart disk, and also showed a poor machinability. In the present work, NAC-alloy matrix composite with 6 % (volume percent) MnS particle addi- tion was studied to improve its wear behaviors and performance on machining. Two metallurgical processes of HIP and vacuum casting were applied to produce the testing materials. Pin-on-disk (POD) measurements were carried out at room temperature. A commercial vermicular graphite cast iron was selected as a reference material. The counter- part disk was made of a grey cast iron as liner material in ship engines. The contact pressures of 2.83 MPa and 5.66 MPa were normally applied in the tests. The investigation indicated that MnS particle addition in the NAC-alloy composites functions as an effective solid lubricant, and improved wear properties and machinability of the materials. Obvi- ously, as-cast NAC-alloy with in-situ formed MnS-phase was working more effectively with the counterpart, compa- ring to the HIPed NAC-alloy composite with MnS particles. At the high contact pressure of 5.66 MPa, the specific wear rate of the as-cast NAC-alloy composite was high. The phenomenon of the negative effect is mostly due to the brittle second NiAl phase as evidenced in the microstructure analysis.

  12. Recycling of the rare earth oxides from spent rechargeable batteries using waste metallurgical slags

    Directory of Open Access Journals (Sweden)

    Tang K.

    2013-01-01

    Full Text Available A high temperature process for recycling spent nickel-metal hydride rechargeable batteries has been recently developed at SINTEF/NTNU. The spent battery modules were first frozen with liquid nitrogen for the de-activation and brittle fracture treatment. The broken steel scraps and plastics were then separated by the mechanical classification and magnetic separation. The remaining positive and negative electrodes, together with the polymer separator, were heated to 600-800oC in order to remove the organic components and further separate the Ni-based negative electrode. XRF analyses indicate that the heat-treated materials consist mainly of nickel, rare earth and cobalt oxides. The valuable rare earth oxides were further recovered by the high-temperature slagging treatment. The waste metallurgical slags, consist mainly of SiO2 and CaO, were used as the rare earth oxide absorbent. After the high temperature slagging treatment, over 98% of nickel and cobalt oxides were reduced to the metal phase; meanwhile almost all rare earth oxides remain in the molten slags. Furthermore, EPMA and XRF analyses of the slag samples indicate that the rare earth oxides selectively precipitate in the forms of solid xSiO2•yCaO•zRe2O3. The matrix of slag phase is Re2O3 deficient, typically being less than 5 wt%. This provides a sound basis to further develop the high-temperature process of concentrating the Re2O3 oxides in slags.

  13. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report. Second quarter 1995

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J.A.

    1995-09-01

    During second quarter 1995, samples from seven new AMB groundwater monitoring wells at the Metallurgical Laboratory Hazardous Waste Management Facility (Met Lab HWMF) were analyzed for a comprehensive list of constituents. Two parameters exceeded standards during the quarter. Lead and nickel appear to exceed final Primary Drinking Water Standards (PDWS) in AMB-18A. These data were suspect and a rerun of the samples showed levels below flagging criteria. This data will be monitored in 3Q95. Aluminum, iron, manganese, boron, silver and total organic halogens exceeded Flag 2 criteria in at least one well each during second quarter 1995. This data, as well, will be confirmed by 3Q95 testing. Groundwater flow directions in the M-Area Aquifer Zone were similar to previous quarters; the flow rate estimate, however, differs because of an error noted in the scales of measurements used for previous estimates. The estimate was 470 ft/year during second quarter 1995. Reliable estimates of flow directions and rates in the Upper Lost Lake Aquifer Zone could not be determined in previous quarters because data were insufficient. The first estimate from second quarter 1995 shows a 530 ft/year rate. Reliable estimates of flow directions and rates in the Lower Lost Lake Aquifer Zone and in the Middle Sand Aquifer Zone of the CBCU could not be calculated because of the low horizontal gradient and the near-linear distribution of the monitoring wells. During second quarter 1994, SRS received South Carolina Department of Health and Environmental Control approval for constructing five point-of-compliance wells and two plume definition wells near the Met Lab HWMF. This project began in July 1994 and was completed in March of this year. Analytical data from these wells are presented in this report for the first time.

  14. Modeling of Thermochemical Behavior in an Industrial-Scale Rotary Hearth Furnace for Metallurgical Dust Recycling

    Science.gov (United States)

    Wu, Yu-Liang; Jiang, Ze-Yi; Zhang, Xin-Xin; Xue, Qing-Guo; Yu, Ai-Bing; Shen, Yan-Song

    2017-10-01

    Metallurgical dusts can be recycled through direct reduction in rotary hearth furnaces (RHFs) via addition into carbon-based composite pellets. While iron in the dust is recycled, several heavy and alkali metal elements harmful for blast furnace operation, including Zn, Pb, K, and Na, can also be separated and then recycled. However, there is a lack of understanding on thermochemical behavior related to direct reduction in an industrial-scale RHF, especially removal behavior of Zn, Pb, K, and Na, leading to technical issues in industrial practice. In this work, an integrated model of the direct reduction process in an industrial-scale RHF is described. The integrated model includes three mathematical submodels and one physical model, specifically, a three-dimensional (3-D) CFD model of gas flow and heat transfer in an RHF chamber, a one-dimensional (1-D) CFD model of direct reduction inside a pellet, an energy/mass equilibrium model, and a reduction physical experiment using a Si-Mo furnace. The model is validated by comparing the simulation results with measurements in terms of furnace temperature, furnace pressure, and pellet indexes. The model is then used for describing in-furnace phenomena and pellet behavior in terms of heat transfer, direct reduction, and removal of a range of heavy and alkali metal elements under industrial-scale RHF conditions. The results show that the furnace temperature in the preheating section should be kept at a higher level in an industrial-scale RHF compared with that in a pilot-scale RHF. The removal rates of heavy and alkali metal elements inside the composite pellet are all faster than iron metallization, specifically in the order of Pb, Zn, K, and Na.

  15. Soil pollution indices conditioned by medieval metallurgical activity - A case study from Krakow (Poland).

    Science.gov (United States)

    Kowalska, Joanna; Mazurek, Ryszard; Gąsiorek, Michał; Setlak, Marcin; Zaleski, Tomasz; Waroszewski, Jaroslaw

    2016-11-01

    The studied soil profile under the Main Market Square (MMS) in Krakow was characterised by the influence of medieval metallurgical activity. In the presented soil section lithological discontinuity (LD) was found, which manifests itself in the form of cultural layers (CLs). Moreover, in this paper LD detection methods based on soil texture are presented. For the first time, three different ways to identify the presence of LD in the urban soils are suggested. The presence of LD had an influence on the content and distribution of heavy metals within the soil profile. The content of heavy metals in the CLs under the MMS in Krakow was significantly higher than the content in natural horizons. In addition, there were distinct differences in the content of heavy metals within CLs. Profile variability and differences in the content of heavy metals and phosphorus within the CLs under the MMS were activity indicators of Krakow inhabitants in the past. This paper presents alternative methods for the assessment of the degree of heavy metal contamination in urban soils using selected pollution indices. On the basis of the studied total concentration of heavy metals (Zn, Pb, Cu, Mn, Cr, Cd, Ni, Sn, Ag) and total phosphorus content, the Geoaccumulation Index (Igeo), Enrichment Factor (EF), Sum of Pollution Index (PIsum), Single Pollution Index (PI), Nemerow Pollution Index (PINemerow) and Potential Ecological Risk (RI) were calculated using different local and reference geochemical backgrounds. The use of various geochemical backgrounds is helpful to evaluate the assessment of soil pollution. The individual CLs differed from each other according to the degree of pollution. The different values of pollution indices within the studied soil profile showed that LDS should not be evaluated in terms of contamination as one, homogeneous soil profile but each separate CL should be treated individually.

  16. Optimizing seeded casting of mono-like silicon crystals through numerical simulation

    Science.gov (United States)

    Black, Andrés; Medina, Juan; Piñeiro, Axa; Dieguez, Ernesto

    2012-08-01

    Recently, silicon ingots produced by typical multicrystalline casting systems but having monocrystalline features are entering the photovoltaic market. In order to look into the particular properties of this novel method, the normal silicon casting process is numerically simulated, and compared to an optimized mono-like casting process, based on the use of oriented monocrystalline silicon seeds. The seeding process was optimized by reducing the time spent in the melt in order to reduce the back diffusion of harmful non-feedstock metal impurities such as iron, reducing the thermomechanical stress to avoid dislocation multiplication, and decreasing the overall interface curvature. Additionally, the growth conditions in the zone just above the seeds were fine-tuned to increase the production of vacancy point defects, in the hope of achieving "vacancy passivation" of harmful interstitial iron by moving it to substitutional position.

  17. Release of Si from silicon, a ferrosilicon (FeSi) alloy and a synthetic silicate mineral in simulated biological media.

    Science.gov (United States)

    Herting, Gunilla; Jiang, Tao; Sjöstedt, Carin; Odnevall Wallinder, Inger

    2014-01-01

    Unique quantitative bioaccessibility data has been generated, and the influence of surface/material and test media characteristics on the elemental release process were assessed for silicon containing materials in specific synthetic body fluids at certain time periods at a fixed loading. The metal release test protocol, elaborated by the KTH team, has previously been used for classification, ranking, and screening of different alloys and metals. Time resolved elemental release of Si, Fe and Al from particles, sized less than 50 µm, of two grades of metallurgical silicon (high purity silicon, SiHG, low purity silicon, SiLG), an alloy (ferrosilicon, FeSi) and a mineral (aluminium silicate, AlSi) has been investigated in synthetic body fluids of varying pH, composition and complexation capacity, simple models of for example dermal contact and digestion scenarios. Individual methods for analysis of released Si (as silicic acid, Si(OH)4) in synthetic body fluids using GF-AAS were developed for each fluid including optimisation of solution pH and graphite furnace parameters. The release of Si from the two metallurgical silicon grades was strongly dependent on both pH and media composition with the highest release in pH neutral media. No similar effect was observed for the FeSi alloy or the aluminium silicate mineral. Surface adsorption of phosphate and lactic acid were believed to hinder the release of Si whereas the presence of citric acid enhanced the release as a result of surface complexation. An increased presence of Al and Fe in the material (low purity metalloid, alloy or mineral) resulted in a reduced release of Si in pH neutral media. The release of Si was enhanced for all materials with Al at their outermost surface in acetic media.

  18. Silicon micro-mold

    Science.gov (United States)

    Morales, Alfredo M.

    2006-10-24

    The present invention describes a method for rapidly fabricating a robust 3-dimensional silicon-mold for use in preparing complex metal micro-components. The process begins by depositing a conductive metal layer onto one surface of a silicon wafer. A thin photoresist and a standard lithographic mask are then used to transfer a trace image pattern onto the opposite surface of the wafer by exposing and developing the resist. The exposed portion of the silicon substrate is anisotropically etched through the wafer thickness down to conductive metal layer to provide an etched pattern consisting of a series of rectilinear channels and recesses in the silicon which serve as the silicon micro-mold. Microcomponents are prepared with this mold by first filling the mold channels and recesses with a metal deposit, typically by electroplating, and then removing the silicon micro-mold by chemical etching.

  19. Environmental and energy system analysis of bio-methane production pathways : A comparison between feedstocks and process optimizations

    NARCIS (Netherlands)

    Pierie, F.; van Someren, C. E. J.; Benders, R. M. J.; Bekkering, J.; van Gemert, W. J. Th; Moll, H. C.

    2015-01-01

    The energy efficiency and sustainability of an anaerobic green gas production pathway was evaluated, taking into account five biomass feedstocks, optimization of the green gas production pathway, replacement of current waste management pathways by mitigation, and transport of the feedstocks. Sustain

  20. 78 FR 49749 - Williams Olefins Feedstock Pipelines, L.L.C.; Notice of Petition for Declaratory Order

    Science.gov (United States)

    2013-08-15

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Williams Olefins Feedstock Pipelines, L.L.C.; Notice of Petition for... Practices and Procedure, 18 CFR 385.207(a)(2)(2012), Williams Olefins Feedstock Pipelines, L.L.C., filed...