WorldWideScience

Sample records for metallurgical laboratory hazardous

  1. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report: Third quarter 1993

    International Nuclear Information System (INIS)

    1993-12-01

    During third quarter 1993, samples from AMB groundwater monitoring wells at the Metallurgical Laboratory Hazardous Waste Management Facility were analyzed for certain heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. Eight parameters exceeded standards during the quarter. As in previous quarters, tetrachloroethylene and trichloroethylene exceeded final Primary Drinking Water Standards; and aluminum, iron, lead, manganese, pH, and total organic halogens exceeded the Savannah River Site Flag 2 criteria in one or more of the wells. Groundwater flow direction and rate in the water-table unit were similar to previous quarters

  2. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report

    International Nuclear Information System (INIS)

    Thompson, C.Y.

    1993-03-01

    During fourth quarter 1992, samples from 18 groundwater monitoring wells of the AMB series at the Metallurgical Laboratory Hazardous Waste Management Facility were analyzed for certain heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. Six parameters exceeded final Primary Drinking Water Standards (PDWS) and the Savannah River Site Flag 2 criteria during the quarter. The results for fourth quarter 1992 are fairly consistent with the rest of the year's data. Tetrachloroethylene exceeded the final PDWS in well AMB 4D only two of the four quarters; in the other three wells in which it was elevated, it was present at similar levels throughout the year. Trichloroethylene consistently exceeded its PDWS in wells AMB 4A, 4B, 4D, 5, and 7A during the year. Trichloroethylene was elevated in well AMB 6 only during third and fourth quarters and in well AMB 7 only during fourth quarter. Total alpha-emitting radium was above the final PDWS for total radium in well AMB 5 at similar levels throughout the year and exceeded the PDWS during one of the three quarters it was analyzed for (third quarter 1992) in well AMB 10B

  3. M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities Groundwater Monitoring and Corrective-Action Report, First and Second Quarters 1999, Volume III

    International Nuclear Information System (INIS)

    Chase, J.

    1999-01-01

    This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River Site (SRS) during the first and second quarters 1999

  4. Metallurgical Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose is to increase basic knowledge of metallurgical processing for controlling the microstructure and mechanical properties of metallic aerospace alloys and...

  5. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report. First quarter 1995

    International Nuclear Information System (INIS)

    1995-06-01

    During first quarter 1995, samples from AMB groundwater monitoring wells at the Metallurgical Laboratory Hazardous Waste Management Facility (Met Lab HWMF) were analyzed for selected heavy metals, field measurements, radionuclides, volatile organic compounds, and other constituents. Six parameters exceeded standards during the quarter. As in previous quarters, tetrachloroethylene and trichloroethylene exceeded final Primary Drinking Water Standards (PDWS). Total organic halogens exceeded its Savannah River Site (SRS) Flag 2 criterion during first quarter 1995 as in fourth quarter 1994. Aluminum, iron, and manganese, which were not analyzed for during fourth quarter 1994, exceeded the Flag 2 criteria in at least two wells each during first quarter 1995. Groundwater flow direction and rate in the M-Area Aquifer Zone were similar to previous quarters. Conditions affecting the determination of groundwater flow directions and rates in the Upper Lost Lake Aquifer Zone, Lower Lost Lake Aquifer Zone, and the Middle Sand Aquifer Zone of the Crouch Branch Confining Unit were also similar to previous quarters

  6. 3Q/4Q98 Annual M-Area and Metallurgical Laboratory Hazardous Waste Management Facility Groundwater Monitoring and Correction-Action Report, Volumes I, II, and III

    International Nuclear Information System (INIS)

    Chase, J.

    1999-01-01

    This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River Site (SRS) during 1998

  7. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report. Third quarter, 1994

    International Nuclear Information System (INIS)

    1994-12-01

    During third quarter 1994, samples from AMB groundwater monitoring wells at the Metallurgical Laboratory Hazardous Waste Management Facility (Met Lab HWMF) were analyzed for selected heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. Eight parameters exceeded standards during the quarter. As in previous quarters, tetrachloroethylene and trichloroethylene exceeded final Primary Drinking Water Standards (PDWS). Bis(2-ethylhexyl) phthalate exceeded final PDWS in one well. Aluminum, iron, manganese, tin, and total organic halogens exceeded the Savannah River Site (SRS) Flag 2 criteria. Groundwater flow direction and rate in the M-Area Aquifer Zone were similar to previous quarters. Conditions affecting determination of groundwater flow directions and rates in the Upper Lost Lake Aquifer Zone, Lower Lost Lake Aquifer Zone, and the Middle Sand Aquifer Zone of the Crouch Branch Confining Unit were also similar to previous quarters. During second quarter 1994, SRS received South Carolina Department of Health and Environmental Control approval for constructing five point-of-compliance wells and two plume definition wells near the Met Lab HWMF. This project began in July 1994 and is complete; however, analytical data from these wells is not available yet

  8. 3Q/4Q99 Annual M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities Groundwater Monitoring and Corrective-Action Report - Third and Fourth Quarters 1999 - Volumes I and II

    International Nuclear Information System (INIS)

    Chase, J.

    2000-01-01

    This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River Site (SRS) during 1999

  9. 1Q/2Q00 M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities Groundwater Monitoring and Corrective-Action Report - First and Second Quarters 2000 - Volumes I, II, and II

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J.

    2000-10-24

    This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River site (SRS) during first and second quarters of 2000.

  10. 1Q/2Q00 M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities Groundwater Monitoring and Corrective-Action Report - First and Second Quarters 2000 - Volumes I, II, and II

    International Nuclear Information System (INIS)

    Chase, J.

    2000-01-01

    This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River site (SRS) during first and second quarters of 2000

  11. New radionuclide specific laboratory detection system for metallurgical industry

    International Nuclear Information System (INIS)

    Burianova, L.; Solc, J.; Dryak, P.; Moser, H.; Branger, T.; Garcia-Torano, E.; Peyres, V.; Capogni, M.; Luca, A.; Vodenik, B.; Oliveira, C.; Portugal, L.; Tzika, F.; Lutter, G.; Szucs, L.; Dziel, T.; Burda, O.; Dirk, A.; Martinkovic, J.; Sliskonen, T.; Mattila, A.

    2014-01-01

    One of the main outputs of the European Metrology Research Programme (EMRP) project 'Ionising radiation metrology for the metallurgical industry' (MetroMetal) was the recommendation on a novel spectrometric detection system optimized for the measurement of radioactivity in metallurgical samples. The recommended system, prototypes of which were constructed at two project partner's laboratories, was characterized by using Monte Carlo (MC) simulations. Six different MC codes were used to model the system and a range of cylindrical samples of cast steel, slag and fume dust. The samples' shape, density, and elemental composition were the same as the ones of the calibration standards developed within the project to provide traceability to end-users. The MC models were used to calculate full-energy peak and total detection efficiencies as well as true coincidence summing correction (TCSC) factors for selected radionuclides of interest in the metallurgical industry: 60 Co, 137 Cs, 192 Ir, 214 Bi, 214 Pb, and 208 Tl. The MC codes were compared to each other on the basis of the calculated detection efficiencies and TCSC factors. In addition, a 'Procedural guide for calculation of TCSC factors for samples in metallurgical industry' was developed for end-users. The TCSC factors reached in certain cases up to 32% showing that the summing effects are of high importance in the close measurement geometries met in routine analysis of metallurgical samples. (authors)

  12. TMI-2 VIP Metallurgical Program

    International Nuclear Information System (INIS)

    Diercks, D.R.; Neimark, L.A.

    1991-01-01

    The objectives of the TMI-2 VIP Metallurgical Program are to conduct metallurgical examinations and mechanical-property tests on samples of material removed from the lower head of the TMI-2 nuclear reactor in order to deduce the temperatures, determine the mechanical properties, and assess the integrity of the TMI-2 lower head during the loss-of-coolant accident. The TMI-2 Vessel Investigation Project Metallurgical Program is a part of the international TMI-2 Vessel Investigation Project being conducted jointly by the US Nuclear Regulatory Commission and the Organization for Economic Co-operation and Development. Participants in the international project include the US, Japan, the Federal Republic of Germany (FRG), Finland, France, Italy, Spain, Sweden, Switzerland, and the United Kingdom (UK). Fifteen samples have been removed from the lower head and are being examined. Mechanical tests will be conducted on specimens cut from these lower head samples. In addition, archive material from the lower head of the Midland nuclear reactor has been procured for conducting supplemental metallurgical evaluations and mechanical-property determinations. The information obtained from these examinations and tests, supplemented by results obtained from parallel examinations of instrument nozzles, guide tubes, and core debris at Argonne National Laboratory and the Idaho National Engineering Laboratory will be used to deduce a scenario for the loss-of-coolant accident and assess the integrity of the lower head during the accident

  13. Municipal solid waste disposal by using metallurgical technologies and equipments

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Jiuju; Sun, Wenqiang [State Environmental Protection Key Laboratory of Eco-industry, Institute of Thermal and Environmental Engineering, Northeastern University, Shenyang 110819 (China)

    2012-07-01

    Pyrolysis of municipal solid waste can take full advantage of energy and resource and avoid producing hazardous material during this period. In combination with mature metallurgical technologies of coking by coke oven, regenerative flame furnace technology and melting by electric arc furnace, technologies of regenerative fixed bed pyrolysis technology for household waste, co-coking technology for waste plastic and blend coal, and incineration ash melting technology by electric arc technology for medical waste were respectively developed to improve current unsatisfied sorting status of waste. The investigation results of laboratory experiments, semi-industrial experiments and industrial experiments as well as their economic benefits and environmental benefits for related technologies were separately presented.

  14. Utilisation of metallurgical by-products in road construction in the Czech Republic

    Science.gov (United States)

    Kresta, František

    2017-09-01

    Metallurgical by-products, primarily blast furnace slag and steel slag, have ranked among important alternative sources of fill as well as of material for the structural layers in highways. Main hazards of metallurgical by-products are closely connected to their chemical and mineralogical composition and they can be resulted in volume changes. Fears from possible deformations similar to the D47 motorway meant that metallurgical by-products were excluded from several public tenders of road construction. Comparison of blast furnace slag, steel slag and other metallurgical by products parameters allow us to define the most hazardous material as steelworks waste. Linear swelling of steelwork waste achieves more than 40% at 75°C and swelling pressure was higher than 1.5 MPa. Compositional heterogeneity of steelworks waste makes it difficult to establish the long-term behaviour of this material. At the present time we cannot ascertain which maximum values can be reached by deformation and what are the swelling pressures acting on the material while the volume changes are in progress.

  15. 222 S Laboratory complex hazards assessment

    International Nuclear Information System (INIS)

    Sutton, L.N.

    1998-01-01

    This report documents the hazards assessment for the 222-S Analytical Laboratory located on the US Department of Energy (DOE) Hanford Site. Operation of the laboratory is the responsibility of Waste Management Federal Services, Inc. (WMFS). This hazards assessment was conducted to provide the emergency planning technical basis for the 222-S Facility. DOE Orders require an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification

  16. Hazardous waste management in research laboratories

    International Nuclear Information System (INIS)

    Sundstrom, G.

    1989-01-01

    Hazardous waste management in research laboratories benefits from a fundamentally different approach to the hazardous waste determination from industry's. This paper introduces new, statue-based criteria for identifying hazardous wastes (such as radiological mixed wastes and waste oils) and links them to a forward-looking compliance of laboratories, the overall system integrates hazardous waste management activities with other environmental and hazard communication initiatives. It is generalizable to other waste generators, including industry. Although only the waste identification and classification aspects of the system are outlined in detail here, four other components are defined or supported, namely: routine and contingency practices; waste treatment/disposal option definition and selection; waste minimization, recycling, reuse, and substitution opportunities; and key interfaces with other systems, including pollution prevention

  17. Hazardous waste systems analysis at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Urioste, J.

    1997-01-01

    Los Alamos National Laboratory produces routine and non-routine hazardous waste as a by-product of mission operations. Hazardous waste commonly generated at the Laboratory includes many types of laboratory research chemicals, solvents, acids, bases, carcinogens, compressed gases, metals, and other solid waste contaminated with hazardous waste. The Los Alamos National Laboratory Environmental Stewardship Office has established a Hazardous Waste Minimization Coordinator to specifically focus on routine and non-routine RCRA, TSCA, and other administratively controlled wastes. In this process, the Waste Minimization Coordinator has developed and implemented a systems approach to define waste streams, estimate waste management costs and develop plans to implement avoidance practices, and develop projects to reduce or eliminate the waste streams at the Laboratory. The paper describes this systems approach

  18. Chemical laboratory hazardous waste management at a DOE multiprogram national laboratory

    International Nuclear Information System (INIS)

    Turner, P.J.

    1990-03-01

    Pacific Northwest Laboratory (PNL), a United States Department of Energy (DOE) Multiprogram Energy Laboratory, is establishing a program for management of diverse small-quantity laboratory waste generated on site. Although the main emphasis of this program is ''cradle-to-grave'' tracking and treatment of hazardous chemical waste and mixed waste, low-level radioactive and transuranic (TRU) waste is also being included. With the program in operation, more than 95% of all regulated waste will be treated or destroyed on site. The cost savings will return the original investment in under six years and decrease the liability to PNL and DOE -- a benefit with a potentially greater economic value. Tracking of hazardous waste will be mediated by a computer-based inventory and tracking system. The system will track all hazardous materials from receipt through final disposition, whether the material is destroyed or treated for disposal. It will allow user access to handling and hazards information as well as provide an updated inventory by location, user, and hazard type. Storage and treatment of waste will be performed by at least four facilities, made operational in three phases. 6 figs

  19. Advanced Manufacturing Processes Laboratory Building 878 hazards assessment document

    Energy Technology Data Exchange (ETDEWEB)

    Wood, C.; Thornton, W.; Swihart, A.; Gilman, T.

    1994-07-01

    The introduction of the hazards assessment process is to document the impact of the release of hazards at the Advanced Manufacturing Processes Laboratory (AMPL) that are significant enough to warrant consideration in Sandia National Laboratories` operational emergency management program. This hazards assessment is prepared in accordance with the Department of Energy Order 5500.3A requirement that facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment provides an analysis of the potential airborne release of chemicals associated with the operations and processes at the AMPL. This research and development laboratory develops advanced manufacturing technologies, practices, and unique equipment and provides the fabrication of prototype hardware to meet the needs of Sandia National Laboratories, Albuquerque, New Mexico (SNL/NM). The focus of the hazards assessment is the airborne release of materials because this requires the most rapid, coordinated emergency response on the part of the AMPL, SNL/NM, collocated facilities, and surrounding jurisdiction to protect workers, the public, and the environment.

  20. Advanced Manufacturing Processes Laboratory Building 878 hazards assessment document

    International Nuclear Information System (INIS)

    Wood, C.; Thornton, W.; Swihart, A.; Gilman, T.

    1994-07-01

    The introduction of the hazards assessment process is to document the impact of the release of hazards at the Advanced Manufacturing Processes Laboratory (AMPL) that are significant enough to warrant consideration in Sandia National Laboratories' operational emergency management program. This hazards assessment is prepared in accordance with the Department of Energy Order 5500.3A requirement that facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment provides an analysis of the potential airborne release of chemicals associated with the operations and processes at the AMPL. This research and development laboratory develops advanced manufacturing technologies, practices, and unique equipment and provides the fabrication of prototype hardware to meet the needs of Sandia National Laboratories, Albuquerque, New Mexico (SNL/NM). The focus of the hazards assessment is the airborne release of materials because this requires the most rapid, coordinated emergency response on the part of the AMPL, SNL/NM, collocated facilities, and surrounding jurisdiction to protect workers, the public, and the environment

  1. Termination of the Special Metallurgical (SM) Building at Mound Laboratory: a final report

    International Nuclear Information System (INIS)

    Harris, W.R.; Kokenge, B.R.; Marsh, G.C.

    1976-01-01

    The report describes and highlights the more important factors associated with the termination of the Special Metallurgical (SM) Building at Mound Laboratory. As a result, a written record of the more important techniques and procedures is now available for reference by others involved in similar termination efforts. Included in this report is a description of the organizational units that were used in this effort along with a description of their responsibilities. A general description of the SM Building and a discussion of the more relevant procedures and equipment that were used are also presented. In addition, pertinent Health Physics information, such as personnel exposure, final wipe levels in the terminated facility, and assays of the structure, are provided. Based on the experience gained from this project, recommendations were made regarding the design of future radioactive material handling facilities so that when they are ultimately terminated the effort can be accomplished more efficiently

  2. 2016 Los Alamos National Laboratory Hazardous Waste Minimization Report

    Energy Technology Data Exchange (ETDEWEB)

    Salzman, Sonja L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); English, Charles Joe [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-12-02

    Waste minimization and pollution prevention are goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE), inclusive of the National Nuclear Security Administration (NNSA) and the Office of Environmental Management, and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program, which is a component of the overall Pollution Prevention (P2) Program, administered by the Environmental Stewardship Group (EPC-ES). This report also supports the waste minimization and P2 goals of the Associate Directorate of Environmental Management (ADEM) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. This report includes data for all waste shipped offsite from LANL during fiscal year (FY) 2016 (October 1, 2015 – September 30, 2016). LANS was active during FY2016 in waste minimization and P2 efforts. Multiple projects were funded that specifically related to reduction of hazardous waste. In FY2016, there was no hazardous, mixed-transuranic (MTRU), or mixed low-level (MLLW) remediation waste shipped offsite from the Laboratory. More non-remediation hazardous waste and MLLW was shipped offsite from the Laboratory in FY2016 compared to FY2015. Non-remediation MTRU waste was not shipped offsite during FY2016. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.

  3. [Hygienic assessment of metal-lurgical slag crushed stone for its use in road-building].

    Science.gov (United States)

    Tikhomirov, Iu P; Ippolitova, V P; Bezrokov, M E

    2010-01-01

    The increasing amount of industrial waste generates a need for its use as recycled materials. The paper presents the results of hygienic assessment of metallurgic slag crushed stone to be added to natural materials in highway building. The research program has included the measurement of content of water-soluble forms of metals, the evaluation of the acute toxicity of waste after oral administration to mice and rats, the study of the toxicity of waste by biotesting and the activity of natural radionuclides. The slag crushed stone virtually lacks water-soluble elements when it contains a high level of bulk forms of metals. According to acute toxicity for warm-blooded animals, the slag crushed stone belongs to Hazard Class IV by GOST 12.1.007-76 (low hazard substances). The biotesting on hydrocoles, the slag crushed stone is also referred to as Class IV (low hazard substances). In terms of the level of natural radionuclides, the slag crushed stone poses no hazard to the environment. The performed studies give grounds to recommend metallurgical slag crushed stone to be added to natural materials for highway building.

  4. 2013 Los Alamos National Laboratory Hazardous Waste Minimization Report

    Energy Technology Data Exchange (ETDEWEB)

    Salzman, Sonja L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); English, Charles J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-24

    Waste minimization and pollution prevention are inherent goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE) and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program (a component of the overall Waste Minimization/Pollution Prevention [WMin/PP] Program) administered by the Environmental Stewardship Group (ENV-ES). This report also supports the waste minimization and pollution prevention goals of the Environmental Programs Directorate (EP) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. LANS was very successful in fiscal year (FY) 2013 (October 1-September 30) in WMin/PP efforts. Staff funded four projects specifically related to reduction of waste with hazardous constituents, and LANS won four national awards for pollution prevention efforts from the National Nuclear Security Administration (NNSA). In FY13, there was no hazardous, mixedtransuranic (MTRU), or mixed low-level (MLLW) remediation waste generated at the Laboratory. More hazardous waste, MTRU waste, and MLLW was generated in FY13 than in FY12, and the majority of the increase was related to MTRU processing or lab cleanouts. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.

  5. Nontyphoidal Salmonella: An Occupational Hazard for Clinical Laboratory Workers

    OpenAIRE

    Barker, Anna; Duster, Megan; Van Hoof, Sarah; Safdar, Nasia

    2015-01-01

    Laboratory-acquired infections due to nontyphoidal Salmonella are rare. Yet, recent outbreaks in microbiology teaching laboratories show that these species are still an appreciable occupational hazard for laboratory employees. This article presents two cases of nontyphoidal Salmonella that occurred at the authors' institution—an infected patient and a clinical laboratory worker who acquired the infection by handling this patient's specimens.

  6. Metallurgical Laboratory and Components Testing

    Data.gov (United States)

    Federal Laboratory Consortium — In the field of metallurgy, TTC is equipped to run laboratory tests on track and rolling stock components and materials. The testing lab contains scanning-electron,...

  7. Evaluation of Hazardous Material Management Safety in the Chemical Laboratory in BATAN

    International Nuclear Information System (INIS)

    Nur-Rahmah-Hidayati

    2005-01-01

    The management safety of the hazardous material (B3) in the chemical laboratory of BATAN was evaluated. The evaluation is necessary to be done because B3 is often used together with radioactive materials in the laboratory, but the attention to the safety aspect of B3 is not paid sufficiently in spite of its big potential hazard. The potential hazard generated from the nature of B3 could be flammable, explosive, oxidative, corrosive and poisonous. The handling of B3 could be conducted by enforcing the labelling and classification in the usage and disposal processes. Some observations of the chemical laboratory of BATAN show that the management safety of hazardous material in compliance with the government regulation no. 74 year 2001 has not been dully conducted. The management safety of B3 could be improved by, designating one who has adequate skill in hazardous material safety specially as the B3 safety officer, providing the Material Safety Data Sheet that is updated periodically to use in the laboratory and storage room, updating periodically the inventory of B3, performing training in work safety periodically, and monitoring the ventilation system intensively in laboratory and storage room. (author)

  8. Plasma technology in metallurgical processing

    Energy Technology Data Exchange (ETDEWEB)

    Haile, O.

    1995-12-31

    This literature work is mainly focusing on the mechanisms of plasma technology and telling about metallurgical processing, particularly iron and steelmaking as well as the advantage of the unique properties of plasma. The main advantages of plasma technology in metallurgical operations is to direct utilization of naturally available raw materials and fuels without costly upgrading andlor beneficiation, improved environmental impact, improve process control, significant amplification of reactor and process equipment utilization and increased efficiency of raw materials, energy and man power. This literature survey is based on the publication `plasma technology in metallurgical processing` presents a comprehensive account of the physical, electrical, and mechanical aspects of plasma production and practical processing. The applications of plasma technology in metallurgical processing are covered in depth with special emphasis on developments in promising early stages. Plasma technology of today is mature in the metallurgical process applications. A few dramatic improvements are expected in the near future this giving an impetus to the technologists for the long range planning. (18 refs.) (author)

  9. TMI-2 Vessel Investigation Project Metallurgical Program

    International Nuclear Information System (INIS)

    Diercks, D.R.; Neimark, L.A.

    1990-01-01

    The TMI-2 [Three Mile Island unit 2] Vessel Investigation Project Metallurgical Program at Argonne National Laboratory is a part of the international TMI-2 Vessel Investigation Project being conducted jointly by the U.S. Nuclear Regulatory Commission and the Organization for Economic Co-operation and Development (OECD). The overall project consists of three phases, namely (1) recovery of material samples from the lower head of the TMI-2 reactor, (2) examination and analysis of the lower head samples and the preparation and testing of archive material subjected to a similar thermal history, and (3) procurement, examination, and analysis of companion core material located adjacent to or near the lower head material. The specific objectives of the ANL Metallurgical Program, which accounts for a major portion of Phase 2, are to prepare metallographic and mechanical test specimen blanks from the TMI-2 lower head material, prepare similar test specimen blanks from suitable archive material subjected to the appropriate thermal processing, determine the mechanical properties of the lower vessel head and archive materials under the conditions of the core-melt accident, and assess the lower head integrity and margin-to-failure during the accident. The ANL work consists of three tasks: (1) archive materials program, (2) fabrication of metallurgical and mechanical test specimens from the TMI-2 pressure vessel samples, and (3) mechanical property characterization of TMI-2 lower pressure vessel head and archive material

  10. Crisis management in metallurgical enterprises

    Directory of Open Access Journals (Sweden)

    B. Gajdzik

    2014-07-01

    Full Text Available On the basis of report analysis which presents situation in metallurgical sector after 2008 the range of changes implemented in management of metallurgical enterprises was characterised. A definition approach to crisis management was suggested as the process when the enterprise is managed during the breakdown period in market condition of the economy in the way directed towards preventing the negative effects of crisis inside enterprises. The publication presents the key aspects of enterprise management in the period of collapse of the balance between the supply and demand on the metallurgical market.

  11. Conceptual design for treatment of mining and metallurgical wastewaters which contains arsenic and antimony

    Directory of Open Access Journals (Sweden)

    Željko Kamberović

    2012-12-01

    Full Text Available This paper presents a preliminary design for treatment of mining and metallurgical wastewaters (MMW from the basin of antimony “Zajača“, which contains high concentrations of arsenic and antimony. MMW have been investigated in laboratory, due to large difference in concentrations of pollutants. Metallurgical wastewaters were treated using iron (II-sulfate and lime milk used to adjust the pH value at 7. After chemical treatment of metallurgical wastewater and its joining with mining wastewater, residual amount of arsenic in water was below maximum allowed concentrations, while the concentration of antimony, remained above the maximum allowed value. The final phase of purification process was performed using ion exchange resin. After treatment of MMW, they can be used as technical water in the smelting process of secondary raw lead materials.

  12. Possibilities of Formation of Dioxins and Furans in Metallurgical Processes as well as Methods of their Reduction

    Directory of Open Access Journals (Sweden)

    Holtzer, M.

    2007-01-01

    Full Text Available The metallurgical industry, among others, generates various kinds of wastes: gaseous, dusts, wastes and sewage. Special attention of the European Union is directed towards the elimination or significant reduction of the gaseous-dust contamination emissions including the most hazardous compounds, such as dioxins and furans. In the article the sources of dioxins and furans in metallurgical industry are described along with the reduction methods of these pollutants. Particularly the activities recommended as the Best Available Techniques (BAT in order to reduce the PCDD/PCDF emission from sintering processes, non-ferrous metallurgy and foundry engineering have been presented.

  13. Occupational health hazards in mining: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Donoghue, A.M. [Alcoa World Alumina Australia, Perth, WA (Australia)

    2004-08-01

    This review article outlines the physical, chemical, biological, ergonomic and psychosocial occupational health hazards of mining and associated metallurgical processes. Mining remains an important industrial sector in many parts of the world and although substantial progress has been made in the control of occupational health hazards, there remains room for further risk reduction. This applies particularly to traumatic injury hazards, ergonomic hazards and noise. Vigilance is also required to ensure exposures to coal dust and crystalline silica remain effectively controlled.

  14. From metallurgical coatings to surface engineering

    International Nuclear Information System (INIS)

    Sproul, William D.

    2003-01-01

    The history of the Vacuum Metallurgy Division (VMD), which is now the Advanced Surface Engineering Division (ASED), of the American Vacuum Society is reviewed briefly. The focus of the VMD moved from vacuum melting of materials to metallurgical coatings. The division sponsored two conferences, the Conference on Vacuum Metallurgy and the International Conference on Metallurgical Coatings. As the interest in vacuum metallurgy eventually subsided, interest grew in the deposition of metallurgical coatings. However, the emphasis at the Metallurgical Coatings conference has changed from just depositing coatings to surface engineering of a component. Today, the challenge is to use the tools of surface engineering with advances in deposition technology such as high-power pulsed sputtering. To align itself with the changing interests of the majority of its members, the VMD changed its name to the ASED

  15. The OSHA hazardous chemical occupational exposure standard for laboratories.

    Science.gov (United States)

    Armbruster, D A

    1991-01-01

    OSHA's chemical occupational exposure standard for laboratories is an outgrowth of the previously issued Hazard Communication Standard. The standard relieves laboratories from complying with general industry standards but does require compliance with specific laboratory guidelines. The heart of the standard is the creation of a Chemical Hygiene Plan (CHP). The CHP addresses major issues such as safety equipment and procedures, work practices, training, the designation of a chemical hygiene officer, and the provision of medical consultation and examination for affected employees. This new standard, in full effect as of January 31, 1991, presents yet another regulatory challenge to laboratory managers but also ensures a safer environment for laboratory workers.

  16. 76 FR 72216 - Occupational Exposure to Hazardous Chemicals in Laboratories Standard; Extension of the Office of...

    Science.gov (United States)

    2011-11-22

    ... accordance with the Standard's definitions for ``laboratory use of hazardous chemicals'' and ``laboratory... using hazardous chemicals; hazard-control techniques; equipment- reliability measures; worker... burden (time and costs) of the information collection requirements, including the validity of the...

  17. An environmentally-friendly vacuum reduction metallurgical process to recover germanium from coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lingen; Xu, Zhenming, E-mail: zmxu@sjtu.edu.cn

    2016-07-15

    Highlights: • An environmental friendly vacuum reduction metallurgical process is proposed. • Rare and valuable metal germanium from coal fly ash is recycled. • Residues are not a hazardous material and can be further recycled. • A germanium recovery ratio of 94.64% is obtained in pilot scale experiments. - Abstract: The demand for germanium in the field of semiconductor, electronics, and optical devices is growing rapidly; however, the resources of germanium are scarce worldwide. As a secondary material, coal fly ash could be further recycled to retrieve germanium. Up to now, the conventional processes to recover germanium have two problems as follows: on the one hand, it is difficult to be satisfactory for its economic and environmental effect; on the other hand, the recovery ratio of germanium is not all that could be desired. In this paper, an environmentally-friendly vacuum reduction metallurgical process (VRMP) was proposed to recover germanium from coal fly ash. The results of the laboratory scale experiments indicated that the appropriate parameters were 1173 K and 10 Pa with 10 wt% coke addition for 40 min, and recovery ratio germanium was 93.96%. On the basis of above condition, the pilot scale experiments were utilized to assess the actual effect of VRMP for recovery of germanium with parameter of 1473 K, 1–10 Pa and heating time 40 min, the recovery ratio of germanium reached 94.64%. This process considerably enhances germanium recovery, meanwhile, eliminates much of the water usage and residue secondary pollution compared with other conventional processes.

  18. Control and metallurgical examination on safety injection piping

    International Nuclear Information System (INIS)

    Thebault, Y.; Grandjean, Y.; Gauthier, V.; Lambert, B.; Debustcher, B.

    1998-01-01

    From 1992 until 1997, cracking phenomena by thermal fatigue regarding safety injection piping were evidenced on several PWR 900 MW reactors. These events led EDF to the implementation of a first maintenance programme. In December 1996, a new leak occurred on an EDF 900 MW PWR in operation and was located on a safety injection pipe. In site inspections and metallurgical examinations carried out in the EDF hot Laboratory evidenced defects inside the pipe, out of the welding areas. These degradations are the consequence of a fatigue cracking phenomenon with thermal cycling linked to permanent tensile stresses. Following this incident, a programme of non destructive testing was implemented on all the EDF 900 MW plants. These inspections exhibited the same defects on other PWR 900 MW units. The results of the metallurgical examinations and also in site inspection results allowed EDF to understand the phenomenon and to validate an inspection programme on the one hand and a modification of the design of the circuits on the other hand. (authors)

  19. Investigations for decision making on an old tailing pond of a former experimental metallurgical plant

    International Nuclear Information System (INIS)

    Razikov, Z.A.; Pavljuk, L.M.; Bezzubov, N.I.

    2002-01-01

    Investigations are described on an abandoned tailing pond of a former experimental metallurgical plant which operated during the period 1945-1950. The aim of these investigations was to explore radiological hazards arising from the tailing pond for the population and to obtain data for decision making on redeployment or dumping of the pond. Methods used, results obtained and conclusions drawn are outlined. (author)

  20. Simulation Technology Laboratory Building 970 hazards assessment document

    International Nuclear Information System (INIS)

    Wood, C.L.; Starr, M.D.

    1994-11-01

    The Department of Energy Order 5500.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Simulation Technology Laboratory, Building 970. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distances at which a postulated facility event will produce consequences exceeding the ERPG-2 and Early Severe Health Effects thresholds are 78 and 46 meters, respectively. The highest emergency classification is a Site Area Emergency. The Emergency Planning Zone is 100 meters

  1. Seismic hazard studies for the high flux beam reactor at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Costantino, C.J.; Heymsfield, E.; Park, Y.J.; Hofmayer, C.H.

    1991-01-01

    This paper presents the results of a calculation to determine the site specific seismic hazard appropriate for the deep soil site at Brookhaven National Laboratory (BNL) which is to be used in the risk assessment studies being conducted for the High Flux Beam Reactor (HFBR). The calculations use as input the seismic hazard defined for the bedrock outcrop by a study conducted at Lawrence Livermore National Laboratory (LLNL). Variability in site soil properties were included in the calculations to obtain the seismic hazard at the ground surface and compare these results with those using the generic amplification factors from the LLNL study

  2. Hazardous Waste Cerification Plan: Hazardous Waste Handling Facility, Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    1992-02-01

    The purpose of this plan is to describe the organization and methodology for the certification of hazardous waste (HW) handled in the Lawrence Berkeley Laboratory (LBL) Hazardous Waste Handling Facility (HWHF). The plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end- product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; and executive summary of the Quality Assurance Program Plan (QAPP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. The plan provides guidance from the HWHF to waste generators, waste handlers, and the Systems Group Manager to enable them to conduct their activities and carry out their responsibilities in a manner that complies with several requirements of the Federal Resource Conservation and Resource Recovery Act (RCRA), the Federal Department of Transportation (DOT), and the State of California, Code of Regulations (CCR), Title 22

  3. Sandia National Laboratories, California Hazardous Materials Management Program annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Brynildson, Mark E.

    2011-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Hazardous Materials Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This program annual report describes the activities undertaken during the calender past year, and activities planned in future years to implement the Hazardous Materials Management Program, one of six programs that supports environmental management at SNL/CA.

  4. Contingency plan for the Lawrence Livermore National Laboratory's hazardous-waste operations

    International Nuclear Information System (INIS)

    Roberts, R.S.

    1981-01-01

    The Lawrence Livermore National Laboratory (LLNL) has the necessary equipment and trained personnel to respond to a large number of hazardous material spills and fires or other emergencies resulting from these spills including injured personnel. This response capability is further expanded by the agreements that LLNL has with a number of outside response agencies. The Hazards Control Department at LLNL functions as the central point for coordinating the response of the equipment and personnel. Emergencies involving hazardous waste are also coordinated through the Hazards Control Department, but the equipment and personnel in the Toxic Waste Control Group would be activated for large volume waste pumpouts. Descriptions of response equipment, hazardous waste locations communication systems, and procedures for personnel involved in the emergency are provided

  5. Microwave-assisted grinding of metallurgical coke

    International Nuclear Information System (INIS)

    Ruisanchez, E.; Juarez-Perez, E. J.; Arenillas, A.; Bermudez, J. M.; Menendez, J. A.

    2014-01-01

    Metallurgical cokes are composed of graphitic carbon (s2p2) and different inorganic compounds with very different capacities to absorb microwave radiation. Moreover, due to the electric conductivity shown by the metallurgical cokes, microwave radiation produces electric arcs or microplasmas, which gives rise to hot spots. Therefore, when these cokes are irradiated with microwaves some parts of the particle experiment a rapid heating, while some others do not heat at all. As a result of the different expansion and stress caused by thermal the shock, small cracks and micro-fissures are produced in the particle. The weakening of the coke particles, and therefore an improvement of its grind ability, is produced. This paper studies the microwave-assisted grinding of metallurgical coke and evaluates the grinding improvement and energy saving. (Author)

  6. Princeton Plasma Physics Laboratory (PPPL) seismic hazard analysis

    International Nuclear Information System (INIS)

    Savy, J.

    1989-01-01

    New design and evaluation guidelines for department of energy facilities subjected to natural phenomena hazard, are being finalized. Although still in draft form at this time, the document describing those guidelines should be considered to be an update of previously available guidelines. The recommendations in the guidelines document mentioned above, and simply referred to as the ''guidelines'' thereafter, are based on the best information at the time of its development. In particular, the seismic hazard model for the Princeton site was based on a study performed in 1981 for Lawrence Livermore National Laboratory (LLNL), which relied heavily on the results of the NRC's Systematic Evaluation Program and was based on a methodology and data sets developed in 1977 and 1978. Considerable advances have been made in the last ten years in the domain of seismic hazard modeling. Thus, it is recommended to update the estimate of the seismic hazard at the DOE sites whenever possible. The major differences between previous estimates and the ones proposed in this study for the PPPL are in the modeling of the strong ground motion at the site, and the treatment of the total uncertainty in the estimates to include knowledge uncertainty, random uncertainty, and expert opinion diversity as well. 28 refs

  7. Princeton Plasma Physics Laboratory (PPPL) seismic hazard analysis

    Energy Technology Data Exchange (ETDEWEB)

    Savy, J.

    1989-10-01

    New design and evaluation guidelines for department of energy facilities subjected to natural phenomena hazard, are being finalized. Although still in draft form at this time, the document describing those guidelines should be considered to be an update of previously available guidelines. The recommendations in the guidelines document mentioned above, and simply referred to as the guidelines'' thereafter, are based on the best information at the time of its development. In particular, the seismic hazard model for the Princeton site was based on a study performed in 1981 for Lawrence Livermore National Laboratory (LLNL), which relied heavily on the results of the NRC's Systematic Evaluation Program and was based on a methodology and data sets developed in 1977 and 1978. Considerable advances have been made in the last ten years in the domain of seismic hazard modeling. Thus, it is recommended to update the estimate of the seismic hazard at the DOE sites whenever possible. The major differences between previous estimates and the ones proposed in this study for the PPPL are in the modeling of the strong ground motion at the site, and the treatment of the total uncertainty in the estimates to include knowledge uncertainty, random uncertainty, and expert opinion diversity as well. 28 refs.

  8. An Update on the Hazards and Risks of Forensic Anthropology, Part II: Field and Laboratory Considerations.

    Science.gov (United States)

    Roberts, Lindsey G; Dabbs, Gretchen R; Spencer, Jessica R

    2016-01-01

    This paper focuses on potential hazards and risks to forensic anthropologists while working in the field and laboratory in North America. Much has changed since Galloway and Snodgrass published their seminal article addressing these issues. The increased number of forensic practitioners combined with new information about potential hazards calls for an updated review of these pathogens and chemicals. Discussion of pathogen hazards (Brucella, Borrelia burgdorferi, Yersinia pestis, Clostridium tetani and West Nile virus) includes important history, exposure routes, environmental survivability, early symptoms, treatments with corresponding morbidity and mortality rates, and decontamination measures. Additionally, data pertaining to the use of formaldehyde in the laboratory environment have resulted in updated safety regulations, and these are highlighted. These data should inform field and laboratory protocols. The hazards of working directly with human remains are discussed in a companion article, "An Update on the Hazards and Risks of Forensic Anthropology, Part I: Human Remains." © 2015 American Academy of Forensic Sciences.

  9. Analytical study of getting clinker from metallurgical wastes

    Directory of Open Access Journals (Sweden)

    Володимир Петрович Кравченко

    2016-07-01

    Full Text Available The opportunities to get clinker (cement on the basis of 2-component mixtures of raw materials: waste slag + limestone (less than 10mm fraction unsuitable for sinter production and being a technological waste of preparing raw materials for steel production have been investigated. Chemical compositions of waste slag and limestone wastes were investigated in the central laboratory at the Illych plant. The waste slag was got at the «Ilyich» plant while waste limestone - less than 10 mm fraction - was got in the dumps of the mine group in Komsomolsk. Taking into account chemical composition fluctuations of the waste dump slags and limestone within a few percent, the optimal ratio of raw materials is 55-65% limestone waste, while it is 35-45% waste slag. The clinker quality is evaluated by its hydraulic module, which is equal to: m = 2,37 and is determined on the basis of the chemical composition of the 2-component raw material mixture. For this method of clinker production, the value of the hydraulic module is rather high; and the possibility of obtaining high-quality clinker of metallurgical wastes has been confirmed. The offered method for producing clinker makes it possible to utilize metallurgical wastes and to get substantial ecological and economic benefits

  10. Substitutes for metallurgical coke in pyrometallurgical processes

    Energy Technology Data Exchange (ETDEWEB)

    Koshkarov, V.Ya.

    1982-08-01

    A briquetting process using sulphurous petroleum coke and a bituminous binder is described. The characteristics of briquettes made of petroleum coke, blends of coal and petroleum coke, and coal and metallurgical coke are compared. The prospect of replacing 25 to 50% of the metallurgical coke used in lime kilns with non-calcined petroleum coke briquettes is described. (4 refs.)

  11. Glass Formulation and Fabrication Laboratory, Building 864, Hazards assessment document

    Energy Technology Data Exchange (ETDEWEB)

    Banda, Z.; Wood, C.L.

    1995-08-01

    The Department of Energy Order 5500.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Glass Formulation and Fabrication Laboratory, Building 864. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distances at which a postulated facility event will produce consequences exceeding the ERPG-2 threshold is 96 meters. The highest emergency classification is a Site Area Emergency. The Emergency Planning Zone is 100 meters.

  12. Sustainable cost reduction by lean management in metallurgical processes

    Directory of Open Access Journals (Sweden)

    A. V. Todorut

    2016-10-01

    Full Text Available This paper focuses on the need for sustainable cost reduction in the metallurgical industry by applying Lean Management (LM tools and concepts in metallurgical production processes leading to increased competitiveness of corporations in a global market. The paper highlights that Lean Management is a novel way of thinking, adapting to change, reducing waste and continuous improvement, leading to sustainable development of companies in the metallurgical industry. The authors outline the main Lean Management instruments based on recent scientific research and include a comparative analysis of other tools, such as Sort, Straighten, Shine, Standardize, Sustain (5S, Visual Management (VM, Kaizen, Total Productive Maintenance (TPM, Single-Minute Exchange of Dies (SMED, leading to a critical appraisal of their application in the metallurgical industry.

  13. Production of iron from metallurgical waste

    Science.gov (United States)

    Hendrickson, David W; Iwasaki, Iwao

    2013-09-17

    A method of recovering metallic iron from iron-bearing metallurgical waste in steelmaking comprising steps of providing an iron-bearing metallurgical waste containing more than 55% by weight FeO and FeO equivalent and a particle size of at least 80% less than 10 mesh, mixing the iron-bearing metallurgical waste with a carbonaceous material to form a reducible mixture where the carbonaceous material is between 80 and 110% of the stoichiometric amount needed to reduce the iron-bearing waste to metallic iron, and as needed additions to provide a silica content between 0.8 and 8% by weight and a ratio of CaO/SiO.sub.2 between 1.4 and 1.8, forming agglomerates of the reducible mixture over a hearth material layer to protect the hearth, heating the agglomerates to a higher temperature above the melting point of iron to form nodules of metallic iron and slag material from the agglomerates by melting.

  14. Study of ecologo-biological reactions of common flax to finely dispersed metallurgical wastes

    Science.gov (United States)

    Zakharova, O.; Gusev, A.; Skripnikova, E.; Skripnikova, M.; Krutyakov, Yu; Kudrinsky, A.; Mikhailov, I.; Senatova, S.; Chuprunov, C.; Kuznetsov, D.

    2015-11-01

    Study was carried out on the influence of metallurgic industrial sludge on morphometric and biochemical indicators as well as productivity of common flax under laboratory and field conditions. In laboratory settings negative influence on seed germinating ability and positive influence on sprouts biomass production in water medium were observed. In sand medium suppression of biological productivity under the influence of sludge together with photosynthetic system II (FS II) activity stimulation were registered. Biochemical study showed peroxidase activity decrease in laboratory, while activity of polyphenol oxidase, superoxide dismutase and catalase were given a mild boost under the influence of sludge. In the field trial, positive influence of sludge on flax photosynthetic apparatus was shown. Positive influence of sludge on vegetation and yield indicators was observed. The analysis of heavy metals content showed excess over maximum allowable concentration (MAC) of copper and zinc in control plants, it may point to the background soil pollution. In the plants from the trial groups receiving 0.5 and 2 ton/ha heavy metals content below the control values was registered. Application of 4 ton/ha led to the maximum content of copper and zinc in the plants among the trial groups. The analysis of soils from the test plots indicated no excess over maximum allowable concentrations of heavy metals. Thus, further study of possibilities of using metallurgic industrial sludge as a soil stimulator in flax cultivation at the application rate of 0.5 t/ha seems promising.

  15. Sandia National Laboratories, California Hazardous Materials Management Program annual report : February 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Brynildson, Mark E.

    2009-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Hazardous Materials Management Program. It functions as supporting documentation to the SNL/CA Environmental anagement ystem Program Manual. This program annual report describes the activities undertaken during the past year, and activities planned in future years to implement the Hazardous Materials Management Program, one of six programs that supports environmental management at SNL/CA.

  16. Hazardous materials management and control program at Oak Ridge National Laboratory - environmental protection

    International Nuclear Information System (INIS)

    Eisenhower, B.M.; Oakes, T.W.

    1982-01-01

    In the Federal Register of May 19, 1980, the US Environmental Protection Agency promulgated final hazardous waste regulations according to the Resource Conservation and Recovery Act (RCRA) of 1976. The major substantive portions of these regulations went into effect on November 19, 1980, and established a federal program to provide comprehensive regulation of hazardous waste from its generation to its disposal. In an effort to comply with these regulations, a Hazardous Materials Management and Control Program was established at Oak Ridge National Laboratory. The program is administered by two Hazardous Materials Coordinators, who together with various support groups, ensure that all hazardous materials and wastes are handled in such a manner that all personnel, the general public, and the environment are adequately protected

  17. Metallurgical coating system

    International Nuclear Information System (INIS)

    Daniels, L.C.; Whittaker, G.S.

    1984-01-01

    The present invention relates to a novel metallurgical coating system which provides corrosion resistance and non-stick properties to metallic components which are subjected to unusually severe operating conditions. The coating system comprises a first layer comprising tantalum which is deposited upon a substrate and a second layer comprising molybdenum disilicide which is deposited upon the first layer

  18. A multi-level code for metallurgical effects in metal-forming processes

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, P.A.; Silling, S.A. [Sandia National Labs., Albuquerque, NM (United States). Computational Physics and Mechanics Dept.; Hughes, D.A.; Bammann, D.J.; Chiesa, M.L. [Sandia National Labs., Livermore, CA (United States)

    1997-08-01

    The authors present the final report on a Laboratory-Directed Research and Development (LDRD) project, A Multi-level Code for Metallurgical Effects in metal-Forming Processes, performed during the fiscal years 1995 and 1996. The project focused on the development of new modeling capabilities for simulating forging and extrusion processes that typically display phenomenology occurring on two different length scales. In support of model fitting and code validation, ring compression and extrusion experiments were performed on 304L stainless steel, a material of interest in DOE nuclear weapons applications.

  19. Discussion of the Investigation Method on the Reaction Kinetics of Metallurgical Reaction Engineering

    Science.gov (United States)

    Du, Ruiling; Wu, Keng; Zhang, Jiazhi; Zhao, Yong

    Reaction kinetics of metallurgical physical chemistry which was successfully applied in metallurgy (as ferrous metallurgy, non-ferrous metallurgy) became an important theoretical foundation for subject system of traditional metallurgy. Not only the research methods were very perfect, but also the independent structures and systems of it had been formed. One of the important tasks of metallurgical reaction engineering was the simulation of metallurgical process. And then, the mechanism of reaction process and the conversion time points of different control links should be obtained accurately. Therefore, the research methods and results of reaction kinetics in metallurgical physical chemistry were not very suitable for metallurgical reaction engineering. In order to provide the definite conditions of transmission, reaction kinetics parameters and the conversion time points of different control links for solving the transmission and reaction equations in metallurgical reaction engineering, a new method for researching kinetics mechanisms in metallurgical reaction engineering was proposed, which was named stepwise attempt method. Then the comparison of results between the two methods and the further development of stepwise attempt method were discussed in this paper. As a new research method for reaction kinetics in metallurgical reaction engineering, stepwise attempt method could not only satisfy the development of metallurgical reaction engineering, but also provide necessary guarantees for establishing its independent subject system.

  20. Hazards in the chemical laboratory

    International Nuclear Information System (INIS)

    Bretherick, L.

    1987-01-01

    The contents of this book are: Preface; Introduction; Health and Safety at Work Act 1974; Safety Planning and Management; Fire Protection; Reactive Chemical Hazards; Chemical Hazards and Toxicology; Health Care and First Aid; Hazardous Chemicals; Precautions against Radiations; and An American View

  1. FINDING WAYS OF RECYCLING DUST OF ARC STEEL FURNACES AT THE BELARUSIAN METALLURGIC PLANT

    Directory of Open Access Journals (Sweden)

    A. V. Demin

    2015-01-01

    Full Text Available The first part examines the theoretical possibility of recycling dust of arc steel furnaces. The different modes of dust disposal depending on the task of recycling are discussed: recycling at minimal cost; recycling with a maximum extraction of iron; recycling with maximum extraction of zinc. The results of laboratory studies providing information on the technical feasibility of recycling dust formed at the Belarusian metallurgic plant are provided.

  2. HIT Solar Cells with N-Type Low-Cost Metallurgical Si

    Directory of Open Access Journals (Sweden)

    Xing Yang

    2018-01-01

    Full Text Available A conversion efficiency of 20.23% of heterojunction with intrinsic thin layer (HIT solar cell on 156 mm × 156 mm metallurgical Si wafer has been obtained. Applying AFORS-HET software simulation, HIT solar cell with metallurgical Si was investigated with regard to impurity concentration, compensation level, and their impacts on cell performance. It is known that a small amount of impurity in metallurgical Si materials is not harmful to solar cell properties.

  3. Perspectives regarding the use of metallurgical slags as secondary metal resources - A review of bioleaching approaches.

    Science.gov (United States)

    Potysz, Anna; van Hullebusch, Eric D; Kierczak, Jakub

    2018-05-05

    Smelting activity by its very nature produces large amounts of metal-bearing waste, often called metallurgical slag(s). In the past, industry used to dispose of these waste products at dumping sites without the appropriate environmental oversight. Once there, ongoing biogeochemical processes affect the stability of the slags and cause the release of metallic contaminants. Rather than viewing metallurgical slags as waste, however, such deposits should be viewed as secondary metal resources. Metal bioleaching is a "green" treatment route for metallurgical slags, currently being studied under laboratory conditions. Metal-laden leachates obtained at the bioleaching stage have to be subjected to further recovery operations in order to obtain metal(s) of interest to achieve the highest levels of purity possible. This perspective paper considers the feasibility of the reuse of base-metal slags as secondary metal resources. Special focus is given to current laboratory bioleaching approaches and associated processing obstacles. Further directions of research for development of more efficient methods for waste slag treatment are also highlighted. The optimized procedure for slag treatment is defined as the result of this review and should include following steps: i) slag characterization (chemical and phase composition and buffering capacity) following the choice of initial pH, ii) the choice of particle size, iii) the choice of the liquid-to-solid ratio, iv) the choice of microorganisms, v) the choice of optimal nutrient supply (growth medium composition). An optimal combination of all these parameters will lead to efficient extraction and generation of metal-free solid residue. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Management of hazardous wastes in the laboratories of the Instituto Tecnologico de Costa Rica (phase III)

    International Nuclear Information System (INIS)

    Salas Jimenez, Juan Carlos; Quesada Carvajal, Hilda; Harada, Katsuhiro

    2009-01-01

    A scaling at pilot plant level was performanced for the treatment of wastes are stored in significant quantities at the Instituto Tecnologico de Costa Rica (ITCR). These wastes are aqueous of heavy metals from laboratories and of the nitriding process slag. Dr. Katsuhiro Harada, Japanese aid worker, suggested a treatment methodology that was tested and adapted to the characteristics of hazardous wastes generated in the ITCR. In addition, an operating procedure was suggested to centralize the treatment of waste produced in different labs but they have similar chemical characteristics; therefore can be treated with the same chemical method. For these cases it is easier and cheaper to concentrate the treatment in one place, and in the case of extremely hazardous waste, whose treatment and disposal are somewhat complicated to implement, it is advisable to establish a specialized laboratory with trained personnel for management. A hazardous waste laboratory equipped with a reactor, sludge filter and laboratory equipment for analysis. The methods tested in the pilot plant for the treatment of aqueous wastes of heavy metals and cyanide slag were effective. (author) [es

  5. Processing and utilization of metallurgical slag

    Directory of Open Access Journals (Sweden)

    Alena Pribulová

    2016-06-01

    Full Text Available Metallurgy and foundry industry create a huge amount of slags that are by-products in production of pig iron, steel and cast iron. Slag is produced in a very large amount in pyrometallurgical processes, and is a huge source of waste if not properly recycled and utilized. With rapid growth of industrialization, land available for land-filling of large quantity of metallurgical slag is being reduced all over the world and disposal cost is becoming increasingly higher. Metallurgical slag from different metallurgical processes treated and utilized in different ways based on different slag characteristics. The most economic and efficient option for reducing metallurgical waste is through recycling, which is a significant contribution to saving natural resources and reducing CO2 emissions. Characteristic of slags as well as its treatment and utilization are given in the paper. Slag from pig iron and steel production is used most frequently in building industry. From experiments using blast furnace slag and granulated blast furnace slag as gravel, and water glass as binder it can be concluded that that the best results – the best values of compression strength and tensile strength were reached by using of 18% of water glass as a solidification activating agent. According to cubic compression strength, mixture from 50% blast furnace gravel, 50% granulated blast furnace slag and 18% water glass falls into C35/45 class of concrete. Such concrete also fulfils strength requirements for road concrete, moreover, it even exceeds them considerably and, therefore, it can find an application in construction of road communications or in production of concrete slabs.

  6. The use of radioisotope tracers in the metallurgical industries

    International Nuclear Information System (INIS)

    Easey, J.F.

    1987-01-01

    Radioisotope techniques have been widely used in the metallurgical industries for many years. They have been shown to be very suitable for studying large scale plant and, in many cases, they are the most suitable techniques for such investigations. Applications of radioisotope tracers to some specific metallurgical problems are discussed. (author)

  7. Preliminary volcanic hazards evaluation for Los Alamos National Laboratory Facilities and Operations : current state of knowledge and proposed path forward

    Energy Technology Data Exchange (ETDEWEB)

    Keating, Gordon N.; Schultz-Fellenz, Emily S.; Miller, Elizabeth D.

    2010-09-01

    The integration of available information on the volcanic history of the region surrounding Los Alamos National Laboratory indicates that the Laboratory is at risk from volcanic hazards. Volcanism in the vicinity of the Laboratory is unlikely within the lifetime of the facility (ca. 50–100 years) but cannot be ruled out. This evaluation provides a preliminary estimate of recurrence rates for volcanic activity. If further assessment of the hazard is deemed beneficial to reduce risk uncertainty, the next step would be to convene a formal probabilistic volcanic hazards assessment.

  8. IFM – SCIENTIFIC CENTRE OF THE DEVELOPMENT OF THE UKRAINIAN METALLURGICAL INDUSTRY

    Directory of Open Access Journals (Sweden)

    BOLSHAKOV V. I.

    2017-01-01

    K. P. Bunin, S. N. Kozhevnikov. Professor N. O. Voronova. Conclusion. In 1960 the site for the construction of the laboratory base was given to the Institute, It was near the Botanical garden. Academician Z. I. Nekrasov creates the Institute of his dream. After creative rise in 1960s– 1980s the Institute survived during difficult 1990s and remained the leading branch scientific research Institute. IFM has saved high scientific potential and continues to carry out complex scientific research works in the field of the ferrous metallurgy. Academician V. I. Bol’shakov was Director of the Institute for about 20 years (1996–2015. The Institute collaborates with all big metallurgical plants of Ukraine, countries of UIS, China, Japan and other countries.

  9. Volcanic hazards of the Idaho National Engineering Laboratory and adjacent areas

    International Nuclear Information System (INIS)

    Hackett, W.R.; Smith, R.P.

    1994-12-01

    Potential volcanic hazards are assessed, and hazard zone maps are developed for the Idaho National Engineering Laboratory (INEL) and adjacent areas. The basis of the hazards assessment and mapping is the past volcanic history of the INEL region, and the apparent similarity of INEL volcanism with equivalent, well-studied phenomena in other regions of active volcanism, particularly Hawaii and Iceland. The most significant hazards to INEL facilities are associated with basaltic volcanism, chiefly lava flows, which move slowly and mainly threaten property by inundation or burning. Related hazards are volcanic gases and tephra, and ground disturbance associated with the ascent of magma under the volcanic zones. Several volcanic zones are identified in the INEL area. These zones contain most of the volcanic vents and fissures of the region and are inferred to be the most probable sites of future INEL volcanism. Volcanic-recurrence estimates are given for each of the volcanic zones based on geochronology of the lavas, together with the results of field and petrographic investigations concerning the cogenetic relationships of INEL volcanic deposits and associated magma intrusion. Annual probabilities of basaltic volcanism within the INEL volcanic zones range from 6.2 x 10 -5 per year (average 16,000-year interval between eruptions) for the axial volcanic zone near the southern INEL boundary and the Arco volcanic-rift zone near the western INEL boundary, to 1 x 10 -5 per year (average 100,000-year interval between eruptions) for the Howe-East Butte volcanic rift zone, a geologically old and poorly defined feature of the central portion of INEL. Three volcanic hazard zone maps are developed for the INEL area: lava flow hazard zones, a tephra (volcanic ash) and gas hazard zone, and a ground-deformation hazard zone. The maps are useful in land-use planning, site selection, and safety analysis

  10. Soft restructuring process in metallurgical enterprises in Poland

    Directory of Open Access Journals (Sweden)

    B. Gajdzik

    2015-10-01

    Full Text Available This article presents the range and outcomes of soft restructuring in metallurgical enterprises in Poland. The term ‘soft restructuring’ applies to changes in metallurgical enterprises’ employment policy during the period of political transformation in Poland. Steelworks performance under the market economy conditions demanded introducing changes in staff resources. Changes referred both to the staff structure as well as employees’ skills and gradual engaging of the staff in building the steelworks’ competitive advantage.

  11. Energy-dissipation-model for metallurgical multi-phase-systems

    Energy Technology Data Exchange (ETDEWEB)

    Mavrommatis, K.T. [Rheinisch-Westfaelische Technische Hochschule Aachen, Aachen (Germany)

    1996-12-31

    Entropy production in real processes is directly associated with the dissipation of energy. Both are potential measures for the proceed of irreversible processes taking place in metallurgical systems. Many of these processes in multi-phase-systems could then be modelled on the basis of the energy-dissipation associated with. As this entity can often be estimated using very simple assumptions from first principles, the evolution of an overall measure of systems behaviour can be studied constructing an energy-dissipation -based model of the system. In this work a formulation of this concept, the Energy-Dissipation-Model (EDM), for metallurgical multi-phase-systems is given. Special examples are studied to illustrate the concept, and benefits as well as the range of validity are shown. This concept might be understood as complement to usual CFD-modelling of complex systems on a more abstract level but reproducing essential attributes of complex metallurgical systems. (author)

  12. Energy-dissipation-model for metallurgical multi-phase-systems

    Energy Technology Data Exchange (ETDEWEB)

    Mavrommatis, K T [Rheinisch-Westfaelische Technische Hochschule Aachen, Aachen (Germany)

    1997-12-31

    Entropy production in real processes is directly associated with the dissipation of energy. Both are potential measures for the proceed of irreversible processes taking place in metallurgical systems. Many of these processes in multi-phase-systems could then be modelled on the basis of the energy-dissipation associated with. As this entity can often be estimated using very simple assumptions from first principles, the evolution of an overall measure of systems behaviour can be studied constructing an energy-dissipation -based model of the system. In this work a formulation of this concept, the Energy-Dissipation-Model (EDM), for metallurgical multi-phase-systems is given. Special examples are studied to illustrate the concept, and benefits as well as the range of validity are shown. This concept might be understood as complement to usual CFD-modelling of complex systems on a more abstract level but reproducing essential attributes of complex metallurgical systems. (author)

  13. Comparability between NQA-1 and the QA programs for analytical laboratories within the nuclear industry and EPA hazardous waste laboratories

    International Nuclear Information System (INIS)

    English, S.L.; Dahl, D.R.

    1989-01-01

    There is increasing cooperation between the Department of Energy (DOE), Department of Defense (DOD), and the Environmental Protection Agency (EPA) in the activities associated with monitoring and clean-up of hazardous wastes. Pacific Northwest Laboratory (PNL) examined the quality assurance/quality control programs that the EPA requires of the private sector when performing routine analyses of hazardous wastes to confirm how or if the requirements correspond with PNL's QA program based upon NQA-1. This paper presents the similarities and differences between NQA-1 and the QA program identified in ASTM-C1009-83, Establishing a QA Program for Analytical Chemistry Laboratories within the Nuclear Industry; EPA QAMS-005/80, Interim Guidelines and Specifications for Preparing Quality Assurance Project Plans, which is referenced in Statements of Work for CERCLA analytical activities; and Chapter 1 of SW-846, which is used in analyses of RCRA samples. The EPA QA programs for hazardous waste analyses are easily encompassed within an already established NQA-1 QA program. A few new terms are introduced and there is an increased emphasis upon the QC/verification, but there are many of the same basic concepts in all the programs

  14. Oak Ridge National Laboratory program plan for certification of nonradioactive hazardous waste

    International Nuclear Information System (INIS)

    1996-05-01

    This document describes Oak Ridge National Laboratory's (ORNL) Program for Certification of Nonradioactive Hazardous Waste (Program). The Program establishes the criteria that will be used by all ORNL divisions, offices, and programs for unrestricted release of hazardous waste to off-site commercial facilities. The certification process meets the requirements given in the Performance Objective for Certification of Non-Radioactive Hazardous Waste. The Program Plan has two main elements: (A) Establishing Radioactive Materials Management Areas (RMMAs). At ORNL, RMMAs are (1) Contamination Areas, High Contamination Areas, and Airborne Radioactivity Areas, (2) Radiological Buffer Areas established for contamination control, and (3) areas posted to prevent loss of control of activated items. (B) Certifying that hazardous waste originating in an RMMA is suitable for commercial treatment, storage, or disposal by process knowledge, surface contamination surveys, sampling and analysis, or a combination of these techniques. If process knowledge is insufficient, the hazardous waste must undergo sampling and analysis in addition to surface contamination surveys. This Program will reduce the impact to current ORNL operations by using current radiological area boundaries and existing plans and procedures to the greatest extent possible. New or revised procedures will be developed as necessary to implement this Program

  15. Environmental education for hazardous waste management and risk reduction in laboratories

    Directory of Open Access Journals (Sweden)

    Tomas Rafael Pierre Martinez

    2013-10-01

    Full Text Available The University laboratories are places where teaching, extension and research activities are develop, which harmful substances are manipulated and hazardous waste are generated, the lack of information about this makes them an inadequate provision causing human health and environmental risks. This research proposes the implementation of environmental education as an alternative for waste management and safety in the University of Magdalena laboratories. Applying a series of polls showed the effectiveness with efficiency or assertively rises at 30% cognitive level during the process. It recommends to obtain better results is necessary evaluate the ethic component.  

  16. Hazardous waste minimization at Oak Ridge National Laboratory during 1987

    International Nuclear Information System (INIS)

    Kendrick, C.M.

    1988-03-01

    Oak Ridge National Laboratory (ORNL) is a multipurpose research and development facility owned and operated by the Department of Energy (DOE) and managed under subcontract by Martin Marietta Energy Systems, Inc. Its primary role is the support of energy technology through applied research and engineering development and scientific research in basic and physical sciences. ORNL also is a valuable resource in the solution of problems of national importance, such as nuclear and chemical waste management. In addition, useful radioactive and stable isotopes which are unavailable from the private sector are produced at ORNL. A formal hazardous waste minimization program for ORNL was launched in mid-1985 in response to the requirements of Section 3002 of the Resource Conservation and Recovery Act (RCRA). The plan for waste minimization has been modified several times and continues to be dynamic. During 1986, a task plan was developed. The six major tasks include: planning and implementation of a laboratory-wide chemical inventory and the subsequent distribution, treatment, storage, and/or disposal (TSD) of unneeded chemicals; establishment and implementation of a system for distributing surplus chemicals to other (internal and external) organizations; training and communication functions necessary to inform and motivate laboratory personnel; evaluation of current procurement and tracking systems for hazardous materials and recommendation and implementation of improvements; systematic review of applicable current and proposed ORNL procedures and ongoing and proposed activities for waste volume and/or toxicity reduction potential; and establishment of criteria by which to measure progress and reporting of significant achievements. Progress is being made toward completing these tasks and is described in this report. 13 refs., 1 fig., 7 tabs

  17. Cleaner metallurgical industry in Serbia: a road to the sustainable development

    Directory of Open Access Journals (Sweden)

    D. Panias

    2009-01-01

    Full Text Available Since the sustainable development has been a global and fundamental objecttive, a metallurgical industrial sector faces some of the most difficult sustainability challenges of any industrial sector. On the other hand, the metallurgical production in Serbia is a very important part of the economy. Due to present facilities and technologies, metallurgical companies face a great challenge to fulfill the requirements introduced by legislature referring to the cleaner production and sustainable development. The state of art in the production, facilities, pollution with some answers to imposed challenges is presented.

  18. Job Prospects for Metallurgical Engineering.

    Science.gov (United States)

    Basta, Nicholas

    1985-01-01

    Job prospects in mining, metal-extraction, steel, and refining industries are depressed, but technological discoveries are opening up new fields for metallurgical engineers. Enrollment/employment opportunities and salaries in these areas are discussed a well as the roles of foreign competition, plastics applications, and ceramics research and…

  19. Diagnosis of employee engagement in metallurgical enterprise

    Directory of Open Access Journals (Sweden)

    B. Gajdzik

    2013-01-01

    Full Text Available In the theoretical part of the publication an overview of the definitions of employee engagement was conducted together with the analysis of the methods and techniques which influence the professional activity of the employees in the metallurgical enterprise. The practical part discusses the results of diagnosis of engagement in steelworks. Presented theories, as well as the research, fill the information gap concerning the engagement of the employees in metallurgical enterprises. This notion is important due to the fact that modern conditions of human resources management require the engagement of the employees as something commonly accepted and a designation of manufacturing enterprises.

  20. Effect of metallurgical variables on environmental fracture of steels

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, I M; Thompson, A W

    1976-12-01

    The susceptibility of iron alloys, in particular, steels, to hydrogen embrittlement is examined. It is demonstrated by a review of available data on metallurgically well-characterized alloys that the nature and extent of hydrogen susceptibility are sensitive and often predictable functions of such metallurgical variables as composition, grain size, texture, microstructure, and thermal treatment. Specifically, solutes such as carbon and manganese are shown to be capable of leading to a degradation of performance in hydrogen, whereas silicon and titanium are often beneficial additions. Microstructures at equivalent strength levels are ranked in order of susceptibility; generally, a refined substructure gives the best results. The role of heat treatment in controlling the hydrogen-induced crack path and its relationship to thermal embrittlement phenomena are stressed. Finally, possible hydrogen embrittlement mechanisms are assessed in terms of the critical roles of metallurgical variables in the embrittlement.

  1. Occupational health hazards in the interventional laboratory: Time for a safer environment.

    Science.gov (United States)

    Klein, Lloyd W; Miller, Donald L; Balter, Stephen; Laskey, Warren; Naito, Neil; Haines, David; Ross, Allan; Mauro, Matthew A; Goldstein, James A

    2018-01-04

    Over the past 30 years, the advent of fluoroscopically guided interventional procedures has resulted in dramatic increments in both X-ray exposure and physical demands that predispose interventionists to distinct occupational health hazards. The hazards of accumulated radiation exposure have been known for years, but until recently the other potential risks have been ill-defined and under-appreciated. The physical stresses inherent in this career choice appear to be associated with a predilection to orthopedic injuries, attributable in great part to the cumulative adverse effects of bearing the weight and design of personal protective apparel worn to reduce radiation risk and to the poor ergonomic design of interventional suites. These occupational health concerns pertain to cardiologists, radiologists and surgeons working with fluoroscopy, pain management specialists performing nonvascular fluoroscopic procedures, and the many support personnel working in these environments. This position paper is the work of representatives of the major societies of physicians who work in the interventional laboratory environment, and has been formally endorsed by all. In this paper, the available data delineating the prevalence of these occupational health risks is reviewed and ongoing epidemiological studies designed to further elucidate these risks are summarized. The main purpose is to publicly state speaking with a single voice that the interventional laboratory poses workplace hazards that must be acknowledged, better understood and mitigated to the greatest extent possible, and to advocate vigorously on behalf of efforts to reduce these hazards. Interventional physicians and their professional societies, working together with industry, should strive toward the ultimate zero radiation exposure work environment that would eliminate the need for personal protective apparel and prevent its orthopedic and ergonomic consequences. © 2008 Wiley-Liss, Inc. Copyright © 2008 Wiley

  2. Argonne National Laboratory, east hazardous waste shipment data validation

    International Nuclear Information System (INIS)

    Casey, C.; Graden, C.; Coveleskie, A.

    1995-09-01

    At the request of EM-331, the Radioactive Waste Technical Support Program (TSP) is conducting an evaluation of data regarding past hazardous waste shipments from DOE sites to commercial TSDFs. The intent of the evaluation is to find out if, from 1984 to 1991, DOE sites could have shipped hazardous waste contaminated with DOE-added radioactivity to commercial TSDFs not licensed to receive radioactive material. A team visited Argonne National Laboratory, East (ANL-E) to find out if any data existed that would help to make such a determination at ANL-E. The team was unable to find any relevant data. The team interviewed personnel who worked in waste management at the time. All stated that ANL-E did not sample and analyze hazardous waste shipments for radioactivity. Waste generators at ANL-E relied on process knowledge to decide that their waste was not radioactive. Also, any item leaving a building where radioisotopes were used was surveyed using hand-held instrumentation. If radioactivity above the criteria in DOE Order 5400.5 was found, the item was considered radioactive. The only documentation still available is the paperwork filled out by the waste generator and initialed by a health physics technician to show no contamination was found. The team concludes that, since all waste shipped offsite was subjected at least once to health physics instrumentation scans, the waste shipped from ANL-E from 1984 to 1991 may be considered clean

  3. Cermet crucible for metallurgical processing

    Science.gov (United States)

    Boring, Christopher P.

    1995-01-01

    A cermet crucible for metallurgically processing metals having high melting points comprising a body consisting essentially of a mixture of calcium oxide and erbium metal, the mixture comprising calcium oxide in a range between about 50 and 90% by weight and erbium metal in a range between about 10 and 50% by weight.

  4. Reassessment of seismic hazards at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Wong, I.G.; Hemphill-Haley, M.A.; Kelson, K.I.; Gardner, J.N.; House, L.S.

    1991-01-01

    A comprehensive seismic hazards evaluation program has been initiated at the Los Alamos National Laboratory (LANL) to update the current seismic design criteria. In part, this program has been motivated by recent studies which suggest that faults of the nearby Pajarito fault system may be capable of generating a large magnitude earthquake (M > 7). The specific objectives of this program are to: (1) characterize the tectonic setting of the LANL area; (2) characterize the nature, amount, and timing of late Quaternary fault displacements; (3) reevaluate the recorded seismicity in the LANL region to allow for the evaluation of seismogenic faults and the tectonic state of stress; (4) characterize the subsurface geologic conditions beneath the LANL required for the estimation of strong ground motions and site response; (5) estimate potential strong ground shaking both deterministically and probabilistically; and (6) develop the appropriate seismic design criteria. The approach and initial results of this seismic hazards program are described in this paper

  5. Estimation of metallurgical parameters of flotation process from froth visual features

    Directory of Open Access Journals (Sweden)

    Mohammad Massinaei

    2015-06-01

    Full Text Available The estimation of metallurgical parameters of flotation process from froth visual features is the ultimate goal of a machine vision based control system. In this study, a batch flotation system was operated under different process conditions and metallurgical parameters and froth image data were determined simultaneously. Algorithms have been developed for measuring textural and physical froth features from the captured images. The correlation between the froth features and metallurgical parameters was successfully modeled, using artificial neural networks. It has been shown that the performance parameters of flotation process can be accurately estimated from the extracted image features, which is of great importance for developing automatic control systems.

  6. Some relevant parameters for assessing fire hazards of combustible mine materials using laboratory scale experiments.

    Science.gov (United States)

    Litton, Charles D; Perera, Inoka E; Harteis, Samuel P; Teacoach, Kara A; DeRosa, Maria I; Thomas, Richard A; Smith, Alex C

    2018-04-15

    When combustible materials ignite and burn, the potential for fire growth and flame spread represents an obvious hazard, but during these processes of ignition and flaming, other life hazards present themselves and should be included to ensure an effective overall analysis of the relevant fire hazards. In particular, the gases and smoke produced both during the smoldering stages of fires leading to ignition and during the advanced flaming stages of a developing fire serve to contaminate the surrounding atmosphere, potentially producing elevated levels of toxicity and high levels of smoke obscuration that render the environment untenable. In underground mines, these hazards may be exacerbated by the existing forced ventilation that can carry the gases and smoke to locations far-removed from the fire location. Clearly, materials that require high temperatures (above 1400 K) and that exhibit low mass loss during thermal decomposition, or that require high heat fluxes or heat transfer rates to ignite represent less of a hazard than materials that decompose at low temperatures or ignite at low levels of heat flux. In order to define and quantify some possible parameters that can be used to assess these hazards, small-scale laboratory experiments were conducted in a number of configurations to measure: 1) the toxic gases and smoke produced both during non-flaming and flaming combustion; 2) mass loss rates as a function of temperature to determine ease of thermal decomposition; and 3) mass loss rates and times to ignition as a function of incident heat flux. This paper describes the experiments that were conducted, their results, and the development of a set of parameters that could possibly be used to assess the overall fire hazard of combustible materials using small scale laboratory experiments.

  7. 78 FR 4324 - Occupational Exposure to Hazardous Chemicals in Laboratories (Non-Mandatory Appendix); Technical...

    Science.gov (United States)

    2013-01-22

    ... variety of physical and chemical reasons, reaction scale-ups pose special risks, which merit additional.... Engineering controls, such as chemical hoods, physically separate the employee from the hazard. Administrative..., engineering controls and apparel; (d) Laboratory equipment; (e) Safety equipment; (f) Chemical management; (g...

  8. Study of a metallurgical site in Tuscany (Italy) by radiocarbon dating

    International Nuclear Information System (INIS)

    Cartocci, A.; Fedi, M.E.; Taccetti, F.; Benvenuti, M.; Chiarantini, L.; Guideri, S.

    2007-01-01

    Tuscany represents one of the most important ancient mining districts of Italy. Metalworking activities have been present in the area since ancient times and several mining centres have been active in the region since the Etruscan period. Two of the more notable mining locations are the island of Elba and the towns of Populonia and Massa Marittima. In order to reconstruct the development of metallurgical techniques in the past, a multi-disciplinary approach is required, involving both archaeological study and archaeometric analysis of the sites of interest. One of the most complex problems is establishing the chronological history of metallurgical exploitation in ancient sites: archaeological remains are sometimes incomplete and the stratigraphy of archaeological horizons might have been deeply altered. Thus, direct dating of metallurgical slags and other remains of mining and metalworking activities using radiocarbon measurements is particularly useful for developing site chronologies. Charcoal samples from a recent excavation in Populonia were dated by AMS radiocarbon in order to reconstruct the chronological evolution of ancient metallurgical production; results reported here are consistent with archaeological observations

  9. Study of a metallurgical site in Tuscany (Italy) by radiocarbon dating

    Energy Technology Data Exchange (ETDEWEB)

    Cartocci, A. [Dipartimento di Fisica dell' Universita e I.N.F.N. Sezione di Firenze, via Sansone 1, 50019 Sesto Fiorentino, Florence (Italy); Fedi, M.E. [Dipartimento di Fisica dell' Universita e I.N.F.N. Sezione di Firenze, via Sansone 1, 50019 Sesto Fiorentino, Florence (Italy)]. E-mail: fedi@fi.infn.it; Taccetti, F. [Dipartimento di Fisica dell' Universita e I.N.F.N. Sezione di Firenze, via Sansone 1, 50019 Sesto Fiorentino, Florence (Italy); Benvenuti, M. [Dipartimento di Scienze della Terra dell' Universita di Firenze, via La Pira 4, 50121 Florence (Italy); Chiarantini, L. [Dipartimento di Scienze della Terra dell' Universita di Firenze, via La Pira 4, 50121 Florence (Italy); Guideri, S. [Societa Parchi Val di Cornia S.p.a., via G. Lerario, Piombino, Livorno (Italy)

    2007-06-15

    Tuscany represents one of the most important ancient mining districts of Italy. Metalworking activities have been present in the area since ancient times and several mining centres have been active in the region since the Etruscan period. Two of the more notable mining locations are the island of Elba and the towns of Populonia and Massa Marittima. In order to reconstruct the development of metallurgical techniques in the past, a multi-disciplinary approach is required, involving both archaeological study and archaeometric analysis of the sites of interest. One of the most complex problems is establishing the chronological history of metallurgical exploitation in ancient sites: archaeological remains are sometimes incomplete and the stratigraphy of archaeological horizons might have been deeply altered. Thus, direct dating of metallurgical slags and other remains of mining and metalworking activities using radiocarbon measurements is particularly useful for developing site chronologies. Charcoal samples from a recent excavation in Populonia were dated by AMS radiocarbon in order to reconstruct the chronological evolution of ancient metallurgical production; results reported here are consistent with archaeological observations.

  10. Hazards and accident analyses, an integrated approach, for the Plutonium Facility at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Pan, P.Y.; Goen, L.K.; Letellier, B.C.; Sasser, M.K.

    1995-01-01

    This paper describes an integrated approach to perform hazards and accident analyses for the Plutonium Facility at Los Alamos National Laboratory. A comprehensive hazards analysis methodology was developed that extends the scope of the preliminary/process hazard analysis methods described in the AIChE Guidelines for Hazard Evaluations. Results fro the semi-quantitative approach constitute a full spectrum of hazards. For each accident scenario identified, there is a binning assigned for the event likelihood and consequence severity. In addition, each accident scenario is analyzed for four possible sectors (workers, on-site personnel, public, and environment). A screening process was developed to link the hazard analysis to the accident analysis. Specifically the 840 accident scenarios were screened down to about 15 accident scenarios for a more through deterministic analysis to define the operational safety envelope. The mechanics of the screening process in the selection of final scenarios for each representative accident category, i.e., fire, explosion, criticality, and spill, is described

  11. Site-specific probabilistic seismic hazard analyses for the Idaho National Engineering Laboratory. Volume 1: Final report

    International Nuclear Information System (INIS)

    1996-05-01

    This report describes and summarizes a probabilistic evaluation of ground motions for the Idaho National Engineering Laboratory (INEL). The purpose of this evaluation is to provide a basis for updating the seismic design criteria for the INEL. In this study, site-specific seismic hazard curves were developed for seven facility sites as prescribed by DOE Standards 1022-93 and 1023-96. These sites include the: Advanced Test Reactor (ATR); Argonne National Laboratory West (ANL); Idaho Chemical Processing Plant (ICPP or CPP); Power Burst Facility (PBF); Radioactive Waste Management Complex (RWMC); Naval Reactor Facility (NRF); and Test Area North (TAN). The results, probabilistic peak ground accelerations and uniform hazard spectra, contained in this report are not to be used for purposes of seismic design at INEL. A subsequent study will be performed to translate the results of this probabilistic seismic hazard analysis to site-specific seismic design values for the INEL as per the requirements of DOE Standard 1020-94. These site-specific seismic design values will be incorporated into the INEL Architectural and Engineering Standards

  12. ORNL evaluation of the ORR-PSF metallurgical experiment and blind test

    International Nuclear Information System (INIS)

    Stallmann, F.W.

    1984-01-01

    A methodology is described to evaluate the dosimetry and metallurgical data from the two-year ORR-PSF metallurgical irradiation experiment. The first step is to obtain a three-dimensional map of damage exposure parameter values based on neutron transport calculations and dosimetry measurements which are obtained by means of the LSL-M2 adjustment procedure. Metallurgical test data are then combined with damage parameter, temperature, and chemistry information to determine the correlation between radiation and steel embrittlement in reactor pressure vessels including estimates for the uncertainties. Statistical procedures for the evaluation of Charpy data, developed earlier, are used for this investigation. The data obtained in this investigation provide a benchmark against which the predictions of the PSF Blind Test can be compared. The results of this investigation and the Blind Test comparison are discussed

  13. The Hazardous-Drums Project: A Multiweek Laboratory Exercise for General Chemistry Involving Environmental, Quality Control, and Cost Evaluation

    Science.gov (United States)

    Hayes, David; Widanski, Bozena

    2013-01-01

    A laboratory experiment is described that introduces students to "real-world" hazardous waste management issues chemists face. The students are required to define an analytical problem, choose a laboratory analysis method, investigate cost factors, consider quality-control issues, interpret the meaning of results, and provide management…

  14. Risk assessment and optimization (ALARA) analysis for the environmental remediation of Brookhaven National Laboratory`s hazardous waste management facility

    Energy Technology Data Exchange (ETDEWEB)

    Dionne, B.J.; Morris, S. III; Baum, J.W. [and others

    1998-03-01

    The Department of Energy`s (DOE) Office of Environment, Safety, and Health (EH) sought examples of risk-based approaches to environmental restoration to include in their guidance for DOE nuclear facilities. Extensive measurements of radiological contamination in soil and ground water have been made at Brookhaven National Laboratory`s Hazardous Waste Management Facility (HWMF) as part of a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation process. This provided an ideal opportunity for a case study. This report provides a risk assessment and an {open_quotes}As Low as Reasonably Achievable{close_quotes} (ALARA) analysis for use at other DOE nuclear facilities as an example of a risk-based decision technique.

  15. Energy conservation and efficiency in Giprokoks designs at Ukrainian ferrous-metallurgical enterprises

    Energy Technology Data Exchange (ETDEWEB)

    M.I. Fal' kov [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

    2009-07-15

    Energy conditions at Ukrainian ferrous-metallurgical enterprises are analyzed. Measures to boost energy conservation and energy efficiency are proposed: specifically, the introduction of systems for dry slaking of coke; and steam-gas turbines that employ coke-oven gas or a mixture of gases produced at metallurgical enterprises. Such turbines may be built from Ukrainian components.

  16. Manual on laboratory testing for uranium ore processing

    International Nuclear Information System (INIS)

    1990-01-01

    Laboratory testing of uranium ores is an essential step in the economic evaluation of uranium occurrences and in the development of a project for the production of uranium concentrates. Although these tests represent only a small proportion of the total cost of a project, their proper planning, execution and interpretation are of crucial importance. The main purposes of this manual are to discuss the objectives of metallurgical laboratory ore testing, to show the specific role of these tests in the development of a project, and to provide practical instructions for performing the tests and for interpreting their results. Guidelines on the design of a metallurgical laboratory, on the equipment required to perform the tests and on laboratory safety are also given. This manual is part of a series of Technical Reports on uranium ore processing being prepared by the IAEA's Division of Nuclear Fuel Cycle and Waste Management. A report on the Significance of Mineralogy in the Development of Flowsheets for Processing Uranium Ores (Technical Reports Series No. 196, 1980) and an instruction manual on Methods for the Estimation of Uranium Ore Reserves (No. 255, 1985) have already been published. 17 refs, 40 figs, 17 tabs

  17. Cyril Stanley Smith's Translations of Metallurgical Classics

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 6. Cyril Stanley Smith's Translations of Metallurgical Classics. Martha Goodway. General Article Volume 11 Issue 6 June 2006 pp 63-66. Fulltext. Click here to view fulltext PDF. Permanent link:

  18. Perigos e riscos na medicina laboratorial: identificação e avaliação Hazards and risks in laboratory medicine: identification and evaluation

    Directory of Open Access Journals (Sweden)

    Valéria Aparecida Faria

    2011-06-01

    Full Text Available Os perigos no ambiente de trabalho estão relacionados com qualquer tipo de fonte potencialmente danosa, em termos de lesões, ferimentos ou danos para a saúde ou uma combinação desses fatores. Os riscos são consequências dos perigos existentes no laboratório. Os laboratórios clínicos apresentam múltiplos riscos ocupacionais aos trabalhadores, categorizados como riscos biológicos, físicos, químicos, ergonômicos e para ocorrência de acidentes. É importante o laboratório identificar os riscos, avaliar os impactos que podem afetar o negócio e estabelecer critérios de priorização para a tomada de decisões, implementando estratégias e ações preventivas, a fim de evitar a instalação de falhas ou danos potenciais. Este artigo propõe uma sistemática de identificação e avaliação dos perigos e riscos em saúde e segurança ocupacional no laboratório clínico e discute suas aplicações na prática operacional.Workplace hazards are related to any potentially harmful source in terms of lesions, injuries and health damage or a combination of these factors. The risks are consequences of laboratory hazards. Clinical laboratories pose multiple occupational hazards, which are categorized as biological, physical, chemical, ergonomic and accident prone. It is important to identify risks, assess the impacts that may affect the enterprise and establish prioritization criteria for making decisions. Furthermore, it is essential to implement strategies and preventive actions in order to avoid flaws or potential damage. Not only does this article propose a systematic identification and assessment of hazards, health risks and occupational safety within clinical laboratories, but it also discusses their applications in operational practice.

  19. 7th european metallurgical conference EMC 2013

    Directory of Open Access Journals (Sweden)

    Srećko R. Stopić

    2014-02-01

    Full Text Available From June 23 – 26, 2013, the GDMB Society for Mining, Metallurgy, Resource and Environmental Technology organized 7th European Metallurgical Conference (EMC 2013 in Weimar, Germany. The previous European metallurgical conferences were organized by  the GDMB in Friedrichshafen (2001, Hanover (2003, Leipzig (2005, Duesseldorf (2007, Innsbruck (2009, and Duesseldorf (2011. The GDMB is a non-profit organization from Clausthal, Germany,,focused on combining science with practical experience in metallurgy, mining, materials engineering, mineral processing, recycling and refining of metals, and  manufacturing of semi- and finishing products. The European Metallurgical conference EMC is one of the most well-known conferences worldwide in the field of non-ferrous metallurgy and is attended regularly by decision makers from industry and universities. The scientific program contained 6 plenary lectures and more than 130 presentations. An extensive poster exhibition was held, during which the authors had an opportunity to introduce their posters to the entire plenum as a part of a brief presentation., The € 500 worth “Poster Award EMC 2011 was awarded to Christoph Pichler from the Montan-University in Leoben, Austria. Not only the most important European countries were represented here, but also more than one third of the lecturers were from countries outside Europe (Canada, Japan, China, USA, South Africa, Australia. The origin of the participants reflects the aim of the organizers: to make this conference a worldwide platform for the scientific exchange of experience and information. The scientific presentations of the conference are presented in Proceedings: Vol. 1: Copper, Precious Metals, Waste effluents Treatment/ Biohydrometallurgical applications; Process Metallurgy, Bridging Non-Ferrous and Ferrous Metallurgy; Vol. 2: Lead and Zinc, Light metals, Sustainable technologies, Sustainable of non-ferrous metals production, Process Control

  20. Lawrence Livermore National Laboratory Probabilistic Seismic Hazard Codes Validation

    International Nuclear Information System (INIS)

    Savy, J B

    2003-01-01

    Probabilistic Seismic Hazard Analysis (PSHA) is a methodology that estimates the likelihood that various levels of earthquake-caused ground motion will be exceeded at a given location in a given future time-period. LLNL has been developing the methodology and codes in support of the Nuclear Regulatory Commission (NRC) needs for reviews of site licensing of nuclear power plants, since 1978. A number of existing computer codes have been validated and still can lead to ranges of hazard estimates in some cases. Until now, the seismic hazard community had not agreed on any specific method for evaluation of these codes. The Earthquake Engineering Research Institute (EERI) and the Pacific Engineering Earthquake Research (PEER) center organized an exercise in testing of existing codes with the aim of developing a series of standard tests that future developers could use to evaluate and calibrate their own codes. Seven code developers participated in the exercise, on a voluntary basis. Lawrence Livermore National laboratory participated with some support from the NRC. The final product of the study will include a series of criteria for judging of the validity of the results provided by a computer code. This EERI/PEER project was first planned to be completed by June of 2003. As the group neared completion of the tests, the managing team decided that new tests were necessary. As a result, the present report documents only the work performed to this point. It demonstrates that the computer codes developed by LLNL perform all calculations correctly and as intended. Differences exist between the results of the codes tested, that are attributed to a series of assumptions, on the parameters and models, that the developers had to make. The managing team is planning a new series of tests to help in reaching a consensus on these assumptions

  1. Metallurgical Evaluation of the Five-Inch Cylindrical Induction Melter

    International Nuclear Information System (INIS)

    Imrich, K.J.

    2000-01-01

    A metallurgical evaluation of the 5-inch cylindrical induction melter (CIM) vessel was performed by the Materials Technology Section to evaluate the metallurgical condition after operating for approximately 375 hours at 1400 to 1500 Degrees Celsius during a 2 year period. Results indicate that wall thinning and significant grain growth occurred in the lower portion of the conical section and the drain tube. No through-wall penetrations were found in the cylindrical and conical sections of the CIM vessel and only one leak site was identified in the drain tube. Failure of the drain tube was associated with a localized over heating and intercrystalline fracture

  2. Argonne National Laboratory as an interface between physics and industry

    International Nuclear Information System (INIS)

    Sachs, R.G.

    1976-01-01

    Application of physics to industry requires the involvement of many other disciplines, including chemistry, material sciences, and many other fields of engineering; and the national laboratories in the United States have a mix of such disciplines particularly conducive to such transfer. They have participated in one of the most striking transfers of physics to industry in history, namely, the development of the nuclear power industry. Scientific feasibility of nuclear power was established when the first chain reaction was demonstrated at the Metallurgical Laboratory. Argonne National Laboratory as the successor to the Metallurgical Laboratory has played a major role in transferring the results of this physics experiment to industry, especially in demonstrating engineering feasibility of nuclear power. Major developments in industrial instrumentation have taken place in parallel with the development of nuclear energy, and many of these developments are applicable to other industrial systems as well. The responsibilities of the national laboratories have recently been extended into many energy technologies other than nuclear, offering them the opportunity to serve as an interface for transfer of physics into many new industries. A number of examples are cited. (author)

  3. Metallurgical Laboratory (HWMF) Groundwater Monitoring Report, Fourth Quarter 1994

    International Nuclear Information System (INIS)

    Chase, J.A.

    1995-03-01

    Groundwater flow direction and rate in the M-Area Aquifer Zone were similar to previous quarters. Conditions affecting determination of groundwater flow directions and rates in the Upper Lost Lake Aquifer Zone, Lower Lost Lake Aquifer Zone, and the Middle Sand Aquifer Zone of the Crouch Branch Confining Units were also similar to previous quarters. During second quarter 1994, SRS received South Carolina Department of Health and Environmental Control approval for constructing five point-of-compliance wells and two plume definition wells near the Met Lab Hazardous Waste Management Facility. This project began in July 1994 and is complete; however, analytical data from these wells are not yet available

  4. TMI-2 Vessel Investigation Project (VIP) Metallurgical Program

    International Nuclear Information System (INIS)

    Diercks, D.R.; Neimark, L.A.

    1990-06-01

    The TMI-2 Vessel Investigation Project (VIP) Metallurgical Program is a part of the international TMI-2 Vessel Investigation Project being conducting jointly by the US Nuclear Regulatory Commission and the Organization for Economic Co-operation and Development (OECD). The overall project consists of three phases, namely (1) recovery of material samples from the lower head of the TMI-2 reactor, (2) examination and analysis of the lower head samples and the preparation and testing of archive material subjected to a similar thermal history, and (3) procurement, examination, and analysis of companion core material located adjacent to or near the lower head material. The specific objectives of the ANL Metallurgical Program, which comprises a major portion of Phase 2, are to prepare metallographic and mechanical test specimen blanks from the TMI-2 lower head material, prepare similar test specimen blanks from suitable archive material subjected to the appropriate thermal processing, determine the mechanical properties of the lower vessel head and archive materials under the conditions of the core-melt accident, and assess the lower head integrity and margin-to-failure during the accident. The ANL work consists of three tasks: (1) archive materials program, (2) fabrication of metallurgical and mechanical test specimens from the TMI-2 pressure vessel samples, and (3) mechanical property characterization of TMI-2 lower pressure vessel head and archive material

  5. Risk assessment and optimization (ALARA) analysis for the environmental remediation of Brookhaven National Laboratory`s hazardous waste management facility

    Energy Technology Data Exchange (ETDEWEB)

    Dionne, B.J.; Morris, S.C. III; Baum, J.W. [and others

    1998-01-01

    The Department of Energy`s (DOE) Office of Environment, Safety, and Health (EH) sought examples of risk-based approaches to environmental restoration to include in their guidance for DOE nuclear facilities. Extensive measurements of radiological contamination in soil and ground water have been made at Brookhaven National Laboratory`s Hazardous Waste Management Facility (HWMF) as part of a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation process. This provided an ideal opportunity for a case study. This report provides a risk assessment and an {open_quotes}As Low as Reasonably Achievable{close_quotes} (ALARA) analysis for use at other DOE nuclear facilities as an example of a risk-based decision technique. This document contains the Appendices for the report.

  6. Metallurgical plasma torches

    International Nuclear Information System (INIS)

    Shapovalov, V.A.; Latash, Yu.V.

    2000-01-01

    The technological equipment for the plasma heating of metals, plasma melting and plasma treatment of the surface is usually developed on the basis of are plasma torches using direct or alternating current. The reasons which partly restrict the industrial application of the plasma torches are the relatively short service life of the electrode (cathode) on which the arc is supported, and the contamination of the treated metal with the products of failure of the electrode. The aim of this work was to determine the reasons for the occurrence of negative phenomena observed in the process of service of plasma torches, and propose suitable approaches to the design of metallurgical plasma torches characterised by a long service life

  7. Supercritical water oxidation benchscale testing metallurgical analysis report

    International Nuclear Information System (INIS)

    Norby, B.C.

    1993-02-01

    This report describes metallurgical evaluation of witness wires from a series of tests using supercritical water oxidation (SCWO) to process cutting oil containing a simulated radionuclide. The goal of the tests was to evaluate the technology's ability to process a highly chlorinated waste representative of many mixed waste streams generated in the DOE complex. The testing was conducted with a bench-scale SCWO system developed by the Modell Development Corporation. Significant test objectives included process optimization for adequate destruction efficiency, tracking the radionuclide simulant and certain metals in the effluent streams, and assessment of reactor material degradation resulting from processing a highly chlorinated waste. The metallurgical evaluation described herein includes results of metallographic analysis and Scanning Electron Microscopy analysis of witness wires exposed to the SCWO environment for one test series

  8. Towards Representative Metallurgical Sampling and Gold Recovery Testwork Programmes

    Directory of Open Access Journals (Sweden)

    Simon C. Dominy

    2018-05-01

    Full Text Available When developing a process flowsheet, the risks in achieving positive financial outcomes are minimised by ensuring representative metallurgical samples and high quality testwork. The quality and type of samples used are as important as the testwork itself. The key characteristic required of any set of samples is that they represent a given domain and quantify its variability. There are those who think that stating a sample(s is representative makes it representative without justification. There is a need to consider both (1 in-situ and (2 testwork sub-sample representativity. Early ore/waste characterisation and domain definition are required, so that sampling and testwork protocols can be designed to suit the style of mineralisation in question. The Theory of Sampling (TOS provides an insight into the causes and magnitude of errors that may occur during the sampling of particulate materials (e.g., broken rock and is wholly applicable to metallurgical sampling. Quality assurance/quality control (QAQC is critical throughout all programmes. Metallurgical sampling and testwork should be fully integrated into geometallurgical studies. Traditional metallurgical testwork is critical for plant design and is an inherent part of geometallurgy. In a geometallurgical study, multiple spatially distributed small-scale tests are used as proxies for process parameters. These will be validated against traditional testwork results. This paper focusses on sampling and testwork for gold recovery determination. It aims to provide the reader with the background to move towards the design, implementation and reporting of representative and fit-for-purpose sampling and testwork programmes. While the paper does not intend to provide a definitive commentary, it critically assesses the hard-rock sampling methods used and their optimal collection and preparation. The need for representative sampling and quality testwork to avoid financial and intangible losses is

  9. Advanced Materials Laboratory hazards assessment document

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, B.; Banda, Z.

    1995-10-01

    The Department of Energy Order 55OO.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the AML. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distance at which a postulated facility event will produce consequences exceeding the Early Severe Health Effects threshold is 23 meters. The highest emergency classification is a General Emergency. The Emergency Planning Zone is a nominal area that conforms to DOE boundaries and physical/jurisdictional boundaries such as fence lines and streets.

  10. LWR surveillance dosimetry improvement program: PSF metallurgical blind test results

    International Nuclear Information System (INIS)

    Kam, F.B.K.; Maerker, R.E.; Stallmann, F.W.

    1984-01-01

    The metallurgical irradiation experiment at the Oak Ridge Research Reactor Poolside Facility (ORR-PSF) was designed as a benchmark to test the accuracy of radiation embrittlement predictions in the pressure vessel wall of light water reactors on the basis of results from surveillance capsules. The PSF metallurgical Blind Test is concerned with the simulated surveillance capsule (SSC) and the simulated pressure vessel capsule (SPVC). The data from the ORR-PSF benchmark experiment are the basis for comparison with the predictions made by participants of the metallurgical ''Blind Test''. The Blind Test required the participants to predict the embrittlement of the irradiated specimen based only on dosimetry and metallurgical data from the SSC1 capsule. This exercise included both the prediction of damage fluence and the prediction of embrittlement based on the predicted fluence. A variety of prediction methodologies was used by the participants. No glaring biases or other deficiencies were found, but neither were any of the methods clearly superior to the others. Closer analysis shows a rather complex and poorly understood relation between fluence and material damage. Many prediction formulas can give an adequate approximation, but further improvement of the prediction methodology is unlikely at this time given the many unknown factors. Instead, attention should be focused on determining realistic uncertainties for the predicted material changes. The Blind Test comparisons provide some clues for the size of these uncertainties. In particular, higher uncertainties must be assigned to materials whose chemical composition lies outside the data set for which the prediction formula was obtained. 16 references, 14 figures, 5 tables

  11. 76 FR 25376 - Occupational Exposure to Hazardous Chemicals in Laboratories Standard; Extension of the Office of...

    Science.gov (United States)

    2011-05-04

    ...'') applies to laboratories that use hazardous chemicals in accordance with the Standard's definitions for...-reliability measures; worker information-and-training programs; conditions under which the employer must... validity of the methodology and assumptions used; The quality, utility, and clarity of the information...

  12. Bankruptcy risk forecasting for the metallurgical branch in Romania

    Directory of Open Access Journals (Sweden)

    P. R. Răchişan

    2014-07-01

    Full Text Available All investment decisions require a thorough analysis of the retrospective evolution of the entities from the concerned area, in order to estimate the long-term evolution perspectives. In this context, the present study analyzes the evolution of the entities from the Romanian metallurgical sector based on the accounting and financial information published for the period 2008 - 2012 and, in fact, it justifies the situation from the perspective of users (managers, investors, auditors and of the economic environment specific to Romania. Starting from this premise we created a regression model particularly useful in forecasting the evolution of the ability to deal with debt for the entities from the Romanian metallurgical sector.

  13. Elaboration and characterization of metallurgical silicon for photovoltaic applications

    International Nuclear Information System (INIS)

    Barbouche, M; Hajji, M; Krout, F; Ezzaouia, H

    2015-01-01

    There is a small quantity of participants in the global market of silicon, mainly from the developed countries. It should be noticed also that production of metallurgical silicon Mg-Si is among the most important steps to produce solar grade silicon and photovoltaic panels. Therefore, in this paper we focused on the growth of Mg-Si by carbothermal reduction of silica. An investigation was made using FT-IR characterization to study the effect of process conditions (temperature, atmosphere, duration) in Mg-Si production. Raman spectroscopy was used to investigate the produced Mg-Si. Based on these results, we established a pilot line production of metallurgical silicon at the 'CRTEn' in Tunisia

  14. TMI-2 Vessel Investigation Project (VIP) Metallurgical Program

    International Nuclear Information System (INIS)

    Diercks, D.R.; Neimark, L.A.

    1991-01-01

    The Three Mile Island Unite 2 (TMI-2) Vessel Investigation Project Metallurgical Program is a part of the international TMI-2 Vessel Investigation Project being conducted jointly by the U.S. Nuclear Regulatory Commission and the Organization for Economic Cooperation and Development. The objectives of the metallurgical program are to deduce the temperatures of, determine the mechanical properties of, and assess the integrity of the TMI-2 lower head during the loss-of-coolant accident. Fifteen samples have been removed from the lower head and are being examined. In addition, archive material from the lower head of the Midland nuclear reactor has been procured for conducting supplemental metallurgical evaluations and mechanical property determinations. Evaluations of the microstructure and mechanical properties of the as-received archive material have been completed, and a series of heat treatment experiments has been conducted to develop standard microstructures to be compared with those present in the TMI-2 samples. Results have been obtained from examinations of two of the fifteen TMI-2 lower head samples. These results indicate that one of these two samples, which contained cracks in the weld cladding extending ∼3 mm into the underlying base metal, apparently reached temperatures on the order of 1000 to 1100C during the accident. A preliminary examination of the core debris deposited on this sample has been performed. The other sample, from an area away from the region of core relocation, did not exceed 727C during the accident

  15. Metallurgical applications: fractography

    International Nuclear Information System (INIS)

    Meny, L.

    1978-01-01

    The principal metallurgical uses of the scanning electron microscope and the microprobe described here employ images obtained on a CRT from an electron signal or X rays. The various electron signals are the back scattered electrons, secondary electrons and absorbed electrons. The differences in the intensity of thee signals with the acceleration tension E 0 , the inclination angle β, the atomic number Z of the target and any potential applied to the sample give rise to contrasts: atomic number contrast, given by the sample current or the back scattered electrons; topographical contrast, given by the emission of the secondary electrons Δ that vary with α (the angle between the normal to the surface and the direction of the incident beam) [fr

  16. Peer review of the Three Mile Island Unit 2 Vessel Investigation Project metallurgical examinations

    Energy Technology Data Exchange (ETDEWEB)

    Bohl, R.W.; Gaydos, R.G.; Vander Voort, G.F.; Diercks, D.R. [Argonne National Lab., IL (United States)

    1994-07-01

    Fifteen samples recovered from the lower head of the Three Mile Island (TMI) Unit 2 nuclear reactor pressure vessel were subjected to detailed metallurgical examinations by the Idaho National Engineering Laboratory (INEL), with supporting work carried out by Argonne National Laboratory (ANL) and several of the European participants. These examinations determined that a portion of the lower head, a so-called elliptical ``hot spot`` measuring {approx}0.8 {times} 1 m, reached temperatures as high as 1100{degrees}C during the accident and cooled from these temperatures at {approx}10--100{degrees}C/min. The remainder of the lower head was found to have remained below the ferrite-toaustenite transformation temperature of 727{degrees}C during the accident. Because of the significance of these results and their importance to the overall analysis of the TMI accident, a panel of three outside peer reviewers, Dr. Robert W. Bohl, Mr. Richard G. Gaydos, and Mr. George F. Vander Voort, was formed to conduct an independent review of the metallurgical analyses. After a thorough review of the previous analyses and examination of photo-micrographs and actual lower head specimens, the panel determined that the conclusions resulting from the INEL study were fundamentally correct. In particular, the panel reaffirmed that four lower head samples attained temperatures as high as 1100{degrees}C, and perhaps as high as 1150--1200{degrees}C in one case, during the accident. They concluded that these samples subsequently cooled at a rate of {approx}50--125{degrees}C/min in the temperature range of 600--400{degrees}C, in good agreement with the original analysis. The reviewers also agreed that the remainder of the lower head samples had not exceeded the ferrite-to-austenite transformation temperature during the accident and suggested several refinements and alternative procedures that could have been employed in the original analysis.

  17. Peer review of the Three Mile Island Unit 2 Vessel Investigation Project metallurgical examinations

    International Nuclear Information System (INIS)

    Bohl, R.W.; Gaydos, R.G.; Vander Voort, G.F.; Diercks, D.R.

    1994-07-01

    Fifteen samples recovered from the lower head of the Three Mile Island (TMI) Unit 2 nuclear reactor pressure vessel were subjected to detailed metallurgical examinations by the Idaho National Engineering Laboratory (INEL), with supporting work carried out by Argonne National Laboratory (ANL) and several of the European participants. These examinations determined that a portion of the lower head, a so-called elliptical ''hot spot'' measuring ∼0.8 x 1 m, reached temperatures as high as 1100 degrees C during the accident and cooled from these temperatures at ∼10--100 degrees C/min. The remainder of the lower head was found to have remained below the ferrite-toaustenite transformation temperature of 727 degrees C during the accident. Because of the significance of these results and their importance to the overall analysis of the TMI accident, a panel of three outside peer reviewers, Dr. Robert W. Bohl, Mr. Richard G. Gaydos, and Mr. George F. Vander Voort, was formed to conduct an independent review of the metallurgical analyses. After a thorough review of the previous analyses and examination of photo-micrographs and actual lower head specimens, the panel determined that the conclusions resulting from the INEL study were fundamentally correct. In particular, the panel reaffirmed that four lower head samples attained temperatures as high as 1100 degrees C, and perhaps as high as 1150--1200 degrees C in one case, during the accident. They concluded that these samples subsequently cooled at a rate of ∼50--125 degrees C/min in the temperature range of 600--400 degrees C, in good agreement with the original analysis. The reviewers also agreed that the remainder of the lower head samples had not exceeded the ferrite-to-austenite transformation temperature during the accident and suggested several refinements and alternative procedures that could have been employed in the original analysis

  18. Fuel for domestic and metallurgical uses

    Energy Technology Data Exchange (ETDEWEB)

    Basu, D.; Chakrabarti, R.K.

    1981-02-01

    To meet the energy requirements in the domestic and metallurgical sectors CMPDI have taken in hand some developmental projects using coal as a feedback. 4 projects are described - mechanized conversion of coal to domestic coke, formed coke making by Didier-Keihan-Sumitomo process, domestic briquette making based on non-copking coal resources, and smokeless coal blocks utilising inferior grade raw coal and washery by-products.

  19. Development of market strategies of metallurgical enterrprises after restructuring of steel industry

    Directory of Open Access Journals (Sweden)

    B. Gajdzik

    2014-01-01

    Full Text Available Before metallurgical enterprises started implementation of marketing activities they had to go through restructuring processes which included all areas of their market activities. Privatised metallurgical enterprises after economic transformation gradually implemented marketing to their business activities. The article presents notions connected with development of marketing strategies from the period of last 20 years. The range of analysis includes categories corresponding with instruments of mix marketing (4P − product, price, place, promotion.

  20. Investigation of metallurgical coatings for automotive applications

    Science.gov (United States)

    Su, Jun Feng

    Metallurgical coatings have been widely used in the automotive industry from component machining, engine daily running to body decoration due to their high hardness, wear resistance, corrosion resistance and low friction coefficient. With high demands in energy saving, weight reduction and limiting environmental impact, the use of new materials such as light Aluminum/magnesium alloys with high strength-weight ratio for engine block and advanced high-strength steel (AHSS) with better performance in crash energy management for die stamping, are increasing. However, challenges are emerging when these new materials are applied such as the wear of the relative soft light alloys and machining tools for hard AHSS. The protective metallurgical coatings are the best option to profit from these new materials' advantages without altering largely in mass production equipments, machinery, tools and human labor. In this dissertation, a plasma electrolytic oxidation (PEO) coating processing on aluminum alloys was introduced in engine cylinder bores to resist wear and corrosion. The tribological behavior of the PEO coatings under boundary and starve lubrication conditions was studied experimentally and numerically for the first time. Experimental results of the PEO coating demonstrated prominent wear resistance and low friction, taking into account the extreme working conditions. The numerical elastohydrodynamic lubrication (EHL) and asperity contact based tribological study also showed a promising approach on designing low friction and high wear resistant PEO coatings. Other than the fabrication of the new coatings, a novel coating evaluation methodology, namely, inclined impact sliding tester was presented in the second part of this dissertation. This methodology has been developed and applied in testing and analyzing physical vapor deposition (PVD)/ chemical vapor deposition (CVD)/PEO coatings. Failure mechanisms of these common metallurgical hard coatings were systematically

  1. A consideration of hazards, earthquakes, aircraft crashes, explosions and fires in the safety of laboratories and plants

    International Nuclear Information System (INIS)

    Doumenc, A.; Faure, J.; Mohammadioun, B.; Jacquet, P.

    1987-03-01

    Although laboratories and plants differ from nuclear reactors both in their characteristics and sitings, safety measures developed for the hazards of earthquakes, aircraft crashes, explosions and fires are very similar. These measures provide a satisfactory level of safety for these installations [fr

  2. Utilization of secondary energy resources of metallurgical ...

    African Journals Online (AJOL)

    ... with a heat output of 4200 kW, a working agent R 600, a source of low-potential heat-circulating water: a 460 kW gas engine. The proposed scheme showed high efficiency of power supply of the town in comparison with the gas boiler. Keywords: heat pump; internal combustion engine metallurgical plant; energy efficiency ...

  3. Application of the VAW tube digester for metallurgical pressure-leaching processes

    International Nuclear Information System (INIS)

    Kaempf, F.; Pietsch, H.B.

    1978-01-01

    Problems associated with the treatment of complex and refractory ores or concentrates, as well as those related to environmental factors, have led to increased interest in hydrometallurgy under elevated temperatures and pressures. Pressure leaching can be carried out in vertical, horizontal or spherical autoclaves equipped with mechanical agitators. If high throughput capacities are catered for, the division of a conventional plant into several units is inevitable. By contrast, the VAW (Vereinigte Aluminium-Werke Aktiengesellschaft) tube digester enables hydrometallurgical processes to be carried out under pressure and at a high temperature with the use of a basically simple technology, extremely high specific throughput and improved thermal economics being achieved. The advantages of the tube digester over vessel autoclaves are described, and details of laboratory investigations into the applicability of tube digesters to various metallurgical applications are given. Test results are given for the leaching of refractory uranium ores. (author)

  4. Safety performance indicators in the metallurgical industry using WEB programming

    Directory of Open Access Journals (Sweden)

    M. Cioca

    2017-01-01

    Full Text Available Sustainable development has a significant impact today in Romania and worldwide. In this context, risk assessment becomes mandatory for enterprises. This paper analyzes the situation of occupational risks in the metallurgical industry in the European Union, Romania, and the United States and highlights the main causes for work accidents in Romanian metallurgical industry. The analysis covers the period 2010 - 2016. The data collected from Romania is compared to the data related to the European Union and the United States. Moreover, the paper aims to present an occupational risk assessment tool, which is customizable for each area of activity. The last section of the paper discusses the research results and limitations.

  5. The impact of production capacity utilization on metallurgical companies financing

    Directory of Open Access Journals (Sweden)

    J. Kutáč

    2013-01-01

    Full Text Available The most important and the most problematic in-house sources of financing of metallurgical companies are profit and depreciations. In the event that the aggregate value of the economic result and depreciations goes over to negative values, then this kind of in-house financing ceases to increase Cash Flow of the company but, on the contrary, it will cause its reduction. It means that this type of financing is to some extent uncertain, particularly in times of crisis, when there are noticeable fluctuations in sales volumes, leading to a significant influence of the volume of production on the amount of profit. The article discusses the impact of production capacity utilization on metallurgical companies financing.

  6. Solidification of hazardous and mixed radioactive waste at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Boehmer, A.M.; Larsen, M.M.

    1986-01-01

    EG and G Idaho has initiated a program to develop treatment options for the hazardous and mixed wastes generated at the Idaho National Engineering Laboratory (INEL). This program includes development of solidification methods for some of these wastes. Testing has shown that toxic wastes can be successfully solidified using cement, cement-silicate, or ENVIROSTONE binders to produce nontoxic stable waste forms for safe, long term disposal. This paper presents the results of the solidification development program conducted at the INEL by EG and G Idaho

  7. Solidification of hazardous and mixed radioactive waste at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Boehmer, A.M.; Larsen, M.M.

    1986-03-01

    EG and G Idaho has initiated a program to develop treatment options for the hazardous and mixed wastes generated at the Idaho National Engineering Laboratory (INEL). This program includes development of solidification methods for some of these wastes. Testing has shown that toxic wastes can be successfully solidified using cement, cement-silicate, or ENVIROSTONE binders to produce nontoxic stable waste forms for safe, long term disposal. This paper presents the results of the solidification development program conducted at the INEL by EG and G Idaho

  8. Comparison of Metallurgical and Ultrasonic Inspections of Galvanized Steel Resistance Spot Welds

    International Nuclear Information System (INIS)

    Potter, Timothy J.; Ghaffari, Bita; Mozurkewich, George; Reverdy, Frederic; Hopkins, Deborah

    2006-01-01

    Metallurgical examination of galvanized steel resistance spot welds was used to gauge the capabilities of two ultrasonic, non-destructive, scanning techniques. One method utilized the amplitude of the echo from the weld faying surface, while the other used the spectral content of the echo train to map the fused area. The specimens were subsequently sectioned and etched, to distinguish the fused, zinc-brazed, and non-fused areas. The spectral maps better matched the metallurgical maps, while the interface-amplitude method consistently overestimated the weld size

  9. Retail optimization in Romanian metallurgical industry by applying of fuzzy networks concept

    Directory of Open Access Journals (Sweden)

    Ioana Adrian

    2017-01-01

    Full Text Available Our article presents possibilities of applying the concept Fuzzy Networks for an efficient metallurgical industry in Romania. We also present and analyze Fuzzy Networks complementary concepts, such as Expert Systems (ES, Enterprise Resource Planning (ERP, Analytics and Intelligent Strategies (SAI. The main results of our article are based on a case study of the possibilities of applying these concepts in metallurgy through Fuzzy Networks. Also, it is presented a case study on the application of the FUZZY concept on the Romanian metallurgical industry.

  10. Radioactive and mixed waste management plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility

    International Nuclear Information System (INIS)

    1995-01-01

    This Radioactive and Mixed Waste Management Plan for the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory is written to meet the requirements for an annual report of radioactive and mixed waste management activities outlined in DOE Order 5820.2A. Radioactive and mixed waste management activities during FY 1994 listed here include principal regulatory and environmental issues and the degree to which planned activities were accomplished

  11. Modern recycling methods in metallurgical industry

    Directory of Open Access Journals (Sweden)

    M. Maj

    2010-04-01

    Full Text Available The contamination of environment caused by increased industrial activities is the main topic of discussions in Poland and in the world. The possibilities of waste recovery and recycling vary in different sectors of the industry, and the specific methods, developed and improved all the time, depend on the type of the waste. In this study, the attention has been focussed mainly on the waste from metallurgical industry and on the available techniques of its recycling

  12. SSHAC Level 1 Probabilistic Seismic Hazard Analysis for the Idaho National Laboratory

    International Nuclear Information System (INIS)

    Payne, Suzette; Coppersmith, Ryan; Coppersmith, Kevin; Rodriguez-Marek, Adrian; Falero, Valentina Montaldo; Youngs, Robert

    2016-01-01

    A Probabilistic Seismic Hazard Analysis (PSHA) was completed for the Materials and Fuels Complex (MFC), Naval Reactors Facility (NRF), and the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) (Figure 1-1). The PSHA followed the approaches and procedures appropriate for a Study Level 1 provided in the guidance advanced by the Senior Seismic Hazard Analysis Committee (SSHAC) in U.S. Nuclear Regulatory Commission (NRC) NUREG/CR-6372 and NUREG-2117 (NRC, 1997; 2012a). The SSHAC Level 1 PSHAs for MFC and ATR were conducted as part of the Seismic Risk Assessment (SRA) project (INL Project number 31287) to develop and apply a new-risk informed methodology, respectively. The SSHAC Level 1 PSHA was conducted for NRF to provide guidance on the potential use of a design margin above rock hazard levels. The SRA project is developing a new risk-informed methodology that will provide a systematic approach for evaluating the need for an update of an existing PSHA. The new methodology proposes criteria to be employed at specific analysis, decision, or comparison points in its evaluation process. The first four of seven criteria address changes in inputs and results of the PSHA and are given in U.S. Department of Energy (DOE) Standard, DOE-STD-1020-2012 (DOE, 2012a) and American National Standards Institute/American Nuclear Society (ANSI/ANS) 2.29 (ANS, 2008a). The last three criteria address evaluation of quantitative hazard and risk-focused information of an existing nuclear facility. The seven criteria and decision points are applied to Seismic Design Category (SDC) 3, 4, and 5, which are defined in American Society of Civil Engineers/Structural Engineers Institute (ASCE/SEI) 43-05 (ASCE, 2005). The application of the criteria and decision points could lead to an update or could determine that such update is not necessary.

  13. SSHAC Level 1 Probabilistic Seismic Hazard Analysis for the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Payne, Suzette [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coppersmith, Ryan [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coppersmith, Kevin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rodriguez-Marek, Adrian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Falero, Valentina Montaldo [Idaho National Lab. (INL), Idaho Falls, ID (United States); Youngs, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    A Probabilistic Seismic Hazard Analysis (PSHA) was completed for the Materials and Fuels Complex (MFC), Naval Reactors Facility (NRF), and the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) (Figure 1-1). The PSHA followed the approaches and procedures appropriate for a Study Level 1 provided in the guidance advanced by the Senior Seismic Hazard Analysis Committee (SSHAC) in U.S. Nuclear Regulatory Commission (NRC) NUREG/CR-6372 and NUREG-2117 (NRC, 1997; 2012a). The SSHAC Level 1 PSHAs for MFC and ATR were conducted as part of the Seismic Risk Assessment (SRA) project (INL Project number 31287) to develop and apply a new-risk informed methodology, respectively. The SSHAC Level 1 PSHA was conducted for NRF to provide guidance on the potential use of a design margin above rock hazard levels. The SRA project is developing a new risk-informed methodology that will provide a systematic approach for evaluating the need for an update of an existing PSHA. The new methodology proposes criteria to be employed at specific analysis, decision, or comparison points in its evaluation process. The first four of seven criteria address changes in inputs and results of the PSHA and are given in U.S. Department of Energy (DOE) Standard, DOE-STD-1020-2012 (DOE, 2012a) and American National Standards Institute/American Nuclear Society (ANSI/ANS) 2.29 (ANS, 2008a). The last three criteria address evaluation of quantitative hazard and risk-focused information of an existing nuclear facility. The seven criteria and decision points are applied to Seismic Design Category (SDC) 3, 4, and 5, which are defined in American Society of Civil Engineers/Structural Engineers Institute (ASCE/SEI) 43-05 (ASCE, 2005). The application of the criteria and decision points could lead to an update or could determine that such update is not necessary.

  14. Hazardous and mixed waste solidification development conducted at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Boehmer, A.M.; Larsen, M.M.

    1986-04-01

    EG and G Idaho, Inc., has initiated a program to develop safe, efficient, cost-effective solidification treatment methods for the disposal of some of the hazardous and mixed wastes generated at the Idaho National Engineering Laboratory (INEL). Testing has shown that Extraction Procedure (EP) toxic wastes can be successfully solidified using cement, cement-silicate, or ENVIROSTONE binders to produce nontoxic stable waste forms for safe, long-term disposal as general or low-level waste, depending upon the radioactivity. The results of the solidification development program are presented in this report

  15. The beryllium production at Ulba metallurgical plant (Ust-Kamenogrsk, Kazakhstan)

    Energy Technology Data Exchange (ETDEWEB)

    Dvinskykh, E.M.; Savchuk, V.V.; Tuzov, Y.V. [Ulba Metallurgical Plant (Zavod), Ust-Kamenogorsk, Abay prospect 102 (Kazakhstan)

    1998-01-01

    The Report includes data on beryllium production of Ulba metallurgical plant, located in Ust-Kamenogorsk (Kazakhstan). Beryllium production is showed to have extended technological opportunities in manufacturing semi-products (beryllium ingots, master alloys, metallic beryllium powders, beryllium oxide) and in production of structural beryllium and its parts. Ulba metallurgical plant owns a unique technology of beryllium vacuum distillation, which allows to produce reactor grades of beryllium with a low content of metallic impurities. At present Ulba plant does not depend on raw materials suppliers. The quantity of stored raw materials and semi-products will allow to provide a 25-years work of beryllium production at a full capacity. The plant has a satisfactory experience in solving ecological problems, which could be useful in ITER program. (author)

  16. Microwave-assisted grinding of metallurgical coke; Molienda asistida con microondas de un coque metalurgico

    Energy Technology Data Exchange (ETDEWEB)

    Ruisanchez, E.; Juarez-Perez, E. J.; Arenillas, A.; Bermudez, J. M.; Menendez, J. A.

    2014-10-01

    Metallurgical cokes are composed of graphitic carbon (s2p2) and different inorganic compounds with very different capacities to absorb microwave radiation. Moreover, due to the electric conductivity shown by the metallurgical cokes, microwave radiation produces electric arcs or microplasmas, which gives rise to hot spots. Therefore, when these cokes are irradiated with microwaves some parts of the particle experiment a rapid heating, while some others do not heat at all. As a result of the different expansion and stress caused by thermal the shock, small cracks and micro-fissures are produced in the particle. The weakening of the coke particles, and therefore an improvement of its grind ability, is produced. This paper studies the microwave-assisted grinding of metallurgical coke and evaluates the grinding improvement and energy saving. (Author)

  17. Proceedings of the 48. conference of metallurgists : international symposium on process control applications in mining and metallurgical plants

    Energy Technology Data Exchange (ETDEWEB)

    Shang, H. [Laurentian Univ., Sudbury, ON (Canada). School of Engineering; Ryan, L. [Barrick Gold Corp., Toronto, ON (Canada); Kennedy, S. [Barrick Gold Corp., Dar Es Salaam (Tanzania, United Republic of)] (eds.)

    2009-07-01

    This international symposium on process control applications in mining and metallurgical plants was held to promote economic and sustainable production practices in Canadian industry applications. Topics related to process control in mining and metallurgical plants included expert systems, model-based control technology, as well as recent advances in simulation, monitoring, and optimization techniques. Methods of improving the process and energy efficiency of mining and metallurgical plants were discussed along with technologies designed to improve monitoring accuracy. The symposium was divided into the following 5 sessions: (1) expert system, control, and performance monitoring, (2) flotation, (3) metallurgical processes, modelling, (4) mining applications, and (5) monitoring, analysis. The symposium featured 23 presentations, of which 2 have been catalogued separately for inclusion in this database. refs., tabs., figs.

  18. Autonomous and professional maintenance in metallurgical enterprise as activities within total productive maintenance

    Directory of Open Access Journals (Sweden)

    B. Gajdzik

    2014-04-01

    Full Text Available The content of this publication consists of notions connected with Total Productive Maintenance (TPM in metallurgical enterprise. The basic areas of devices condition management through Autonomous and Professional Maintenance are described here. Mentioned areas of activities are performed in metallurgical enterprise ArcelorMittal Poland within pillars of World Class Manufacturing (WCM. The aims of UR programs are to maintain the basic functionality of the devices and decrease the number of failures in order to reach improvement of production efficiency.

  19. Mining-metallurgical projects for the production of uranium concentrates

    International Nuclear Information System (INIS)

    Ajuria-Garza, S.

    1983-01-01

    This report presents an overall view of a complete project for a mining-metallurgical complex for the production of uranium concentrates. Relevant aspects of each important topic are discussed as parts of an integrated methodology. The principal project activities are analyzed and the relationships among the various factors affecting the design are indicated. A list of 96 principal activities is proposed as an example. These activities are distributed in eight groups: initial evaluations preliminary feasibility studies, project engineering, construction, industrial operation, decommissioning and post-decommissioning activities. The environmental impact and the radiological risks due to the construction and operation of the mining metallurgical complex are analyzed. The principles of radiological protection and the regulations, standards and recommendations for radiological protection in uranium mines and mills are discussed. This report is also a guide to the specialized literature: a bibliography with 765 references is included. (author)

  20. Efficiency of Polish metallurgical industry based on data envelopment analysis

    Directory of Open Access Journals (Sweden)

    J. Baran

    2016-04-01

    Full Text Available The main purpose of this paper is to compare the technical efficiency of 12 sectors manufacturing basic metals and metal products in Poland. This article presents the use of Data Envelopment Analysis models, to determine overall technical efficiency, pure technical efficiency and scale efficiency of metallurgical branches in Poland. The average technical efficiency of metallurgical industry in Poland was quite high. The analysis gives a possibility to create a ranking of sectors. Three branches were found to be fully efficient: manufacture of basic iron and steel and of ferroalloys, manufacture of basic precious and other non - ferrous metals and manufacture of tubes, pipes, hollow profiles and related fittings, of steel. The results point out the reasons of the inefficiency and provide improving directions for the inefficient sectors.

  1. SSHAC Level 1 Probabilistic Seismic Hazard Analysis for the Idaho National Laboratory

    International Nuclear Information System (INIS)

    Payne, Suzette Jackson; Coppersmith, Ryan; Coppersmith, Kevin; Rodriguez-Marek, Adrian; Falero, Valentina Montaldo; Youngs, Robert

    2016-01-01

    A Probabilistic Seismic Hazard Analysis (PSHA) was completed for the Materials and Fuels Complex (MFC), Advanced Test Reactor (ATR), and Naval Reactors Facility (NRF) at the Idaho National Laboratory (INL). The PSHA followed the approaches and procedures for Senior Seismic Hazard Analysis Committee (SSHAC) Level 1 study and included a Participatory Peer Review Panel (PPRP) to provide the confident technical basis and mean-centered estimates of the ground motions. A new risk-informed methodology for evaluating the need for an update of an existing PSHA was developed as part of the Seismic Risk Assessment (SRA) project. To develop and implement the new methodology, the SRA project elected to perform two SSHAC Level 1 PSHAs. The first was for the Fuel Manufacturing Facility (FMF), which is classified as a Seismic Design Category (SDC) 3 nuclear facility. The second was for the ATR Complex, which has facilities classified as SDC-4. The new methodology requires defensible estimates of ground motion levels (mean and full distribution of uncertainty) for its criteria and evaluation process. The INL SSHAC Level 1 PSHA demonstrates the use of the PPRP, evaluation and integration through utilization of a small team with multiple roles and responsibilities (four team members and one specialty contractor), and the feasibility of a short duration schedule (10 months). Additionally, a SSHAC Level 1 PSHA was conducted for NRF to provide guidance on the potential use of a design margin above rock hazard levels for the Spent Fuel Handling Recapitalization Project (SFHP) process facility.

  2. SSHAC Level 1 Probabilistic Seismic Hazard Analysis for the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Payne, Suzette Jackson [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coppersmith, Ryan [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coppersmith, Kevin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rodriguez-Marek, Adrian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Falero, Valentina Montaldo [Idaho National Lab. (INL), Idaho Falls, ID (United States); Youngs, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    A Probabilistic Seismic Hazard Analysis (PSHA) was completed for the Materials and Fuels Complex (MFC), Advanced Test Reactor (ATR), and Naval Reactors Facility (NRF) at the Idaho National Laboratory (INL). The PSHA followed the approaches and procedures for Senior Seismic Hazard Analysis Committee (SSHAC) Level 1 study and included a Participatory Peer Review Panel (PPRP) to provide the confident technical basis and mean-centered estimates of the ground motions. A new risk-informed methodology for evaluating the need for an update of an existing PSHA was developed as part of the Seismic Risk Assessment (SRA) project. To develop and implement the new methodology, the SRA project elected to perform two SSHAC Level 1 PSHAs. The first was for the Fuel Manufacturing Facility (FMF), which is classified as a Seismic Design Category (SDC) 3 nuclear facility. The second was for the ATR Complex, which has facilities classified as SDC-4. The new methodology requires defensible estimates of ground motion levels (mean and full distribution of uncertainty) for its criteria and evaluation process. The INL SSHAC Level 1 PSHA demonstrates the use of the PPRP, evaluation and integration through utilization of a small team with multiple roles and responsibilities (four team members and one specialty contractor), and the feasibility of a short duration schedule (10 months). Additionally, a SSHAC Level 1 PSHA was conducted for NRF to provide guidance on the potential use of a design margin above rock hazard levels for the Spent Fuel Handling Recapitalization Project (SFHP) process facility.

  3. Economic statistics for the extractive and metallurgical industries for 1974/1975

    Energy Technology Data Exchange (ETDEWEB)

    Medaets, J

    1977-11-01

    Statistical data are presented for the extractive industries (coal, ore, quarries etc); coke and agglomerates manufacture; metallurgical industries; and the related hydrology. (In French and in Dutch)

  4. Electric arc spraying for restoration and repair of metallurgical equipment parts

    Directory of Open Access Journals (Sweden)

    В’ячеслав Олександрович Роянов

    2016-07-01

    Full Text Available It has been shown that the electric arc spraying with the use of powder wires can be used to repair and restore parts of metallurgical equipment. The technology of spraying parts by means of the cored wire Steelcored M8TUV; T462MMIN5 and combinations of steel and aluminum wires to restore shaft-gears, shaft-beams, cranes axles for the foundry of the Moldavian Metallurgical Plant has been introduced. The composition of the flux-cored wires MMP-2,3 developed at the Department of Equipment and welding production technology of PSTU that provides the required hardness and adhesion of the coating and the substrate have been shown and the results of the coatings properties studies have been published. Studies have shown matching properties of the coatings to be used for details of the metallurgical equipment working under difficult conditions, including the rolls of rolling mills. Cored wire was used for pilot plating of the rolls surface of the skin-rolling stand at the cold-rolling mill at Illich Steel and Iron Works, Mariupol. Residual coating thickness ranged from 15 to 25 microns. Strip sized 0,9 × 1025 mm has been rolled, the squeezing is equal to 0,8...1,0%.

  5. Proceedings of papers. 3. Balkan Metallurgical Conference

    International Nuclear Information System (INIS)

    Mickovski, Jovan

    2003-01-01

    This Conference aims to be a central event in the metallurgy research of Balkan, fulfilling the goals to present the most outstanding relevant developments in modern metallurgy; to inspire high standards of excellence in pure and applied metallurgy research; to attract outstanding scientists to present central lectures on modem metallurgical research, and on the challenges imposed by the needs of society; to inspire the young generation of metallurgists in Balkan and other countries. Following these lines, the 3. Balkan Conference on Metallurgy will provide a unique opportunity for academic and industrial metallurgists from the Balkan countries and wider, to exchange ideas, expertise, and experience on topics related to the theme of the Conference - Balkan Metallurgy in Search for New Ways of Development. The aim of the organizers was to bring together distinguished experts, not only to present their work, but also to discuss the major scientific and technological challenges facing metallurgy in this millennium.The 6 sections of the conference were entitled: Section A: Extractive metallurgy; Section B: Physical metallurgy and materials science - ferrous metals and non ferrous metals; Section C: Management, maintenance control and optimization of metallurgical processes; Section D: New technologies and techniques; Section E: Refractory and powder; Section F: Corrosion and protection of metals. Papers relevant to INIS are indexed separately

  6. Waste minimization via destruction of hazardous organics

    International Nuclear Information System (INIS)

    Austin, L.R.

    1991-01-01

    Los Alamos National Laboratory is developing technologies that are capable of destroying hazardous organics, that is, converting them basically to water and carbon dioxide. If these technologies were incorporated into the main processing operation where the waste is produced, then the volume and toxicity of the hazardous or mix hazardous waste generated would be significantly reduced. This presentation will briefly discuss some of the waste treatment technologies under development at Los Alamos National Laboratory focused on destroying hazardous organics

  7. Upgraded metallurgical-grade silicon solar cells with efficiency above 20%

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, P.; Rougieux, F. E.; Samundsett, C.; Yang, Xinbo; Wan, Yimao; Macdonald, D. [Research School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Terrritory 2601 (Australia); Degoulange, J.; Einhaus, R. [Apollon Solar, 66 Cours Charlemagne, Lyon 69002 (France); Rivat, P. [FerroPem, 517 Avenue de la Boisse, Chambery Cedex 73025 (France)

    2016-03-21

    We present solar cells fabricated with n-type Czochralski–silicon wafers grown with strongly compensated 100% upgraded metallurgical-grade feedstock, with efficiencies above 20%. The cells have a passivated boron-diffused front surface, and a rear locally phosphorus-diffused structure fabricated using an etch-back process. The local heavy phosphorus diffusion on the rear helps to maintain a high bulk lifetime in the substrates via phosphorus gettering, whilst also reducing recombination under the rear-side metal contacts. The independently measured results yield a peak efficiency of 20.9% for the best upgraded metallurgical-grade silicon cell and 21.9% for a control device made with electronic-grade float-zone silicon. The presence of boron-oxygen related defects in the cells is also investigated, and we confirm that these defects can be partially deactivated permanently by annealing under illumination.

  8. Post-failure metallurgical investigation of KNK steam generator tube damage

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, H; Herberg, G

    1975-07-01

    In September 1973 the sodium-cooled reactor KNK was shut down due to a steam generator tube damage. Failure location and results of the metallurgical examination of the damage are described. The cause of the damage is discussed. (author)

  9. Chemistry laboratory safety manual available

    Science.gov (United States)

    Elsbrock, R. G.

    1968-01-01

    Chemistry laboratory safety manual outlines safe practices for handling hazardous chemicals and chemistry laboratory equipment. Included are discussions of chemical hazards relating to fire, health, explosion, safety equipment and procedures for certain laboratory techniques and manipulations involving glassware, vacuum equipment, acids, bases, and volatile solvents.

  10. Qualifications versus useful knowledge in metallurgical enterprise

    Directory of Open Access Journals (Sweden)

    B. Gajdzik

    2014-01-01

    Full Text Available The article presents notions connected with resource structure of useful knowledge packages in metallurgical enterprise. Dependence between building competence of employees and using knowledge for the need of better efficiency of the enterprise was discussed here. ArcelorMittal Poland enterprise served as case study here due to the fact that it strives at World Class Management by putting emphasis on bringing areas of business activity to perfection through participation and involvement of employees.

  11. The 6th European metallurgical conference EMC 2011: Proceedings review

    Directory of Open Access Journals (Sweden)

    Srećko R. Stopić

    2011-10-01

    Full Text Available The GDMB Society for Mining, Metallurgy, Resource and Environmental Technology organized the 6th European Metallurgical Conference (2011 in Duesseldorf from June 26 to 29, 2011. The same venue hosted the most important international metallurgical trade fairs for metallurgy of iron and steel, new casting and thermochemical processes METEC, GIFA, THERMOPROCESS and NEWCAST. The previous European metallurgical conferences were organized by GDMB in Friedrichshafen (2001, Hanover (2003, Leipzig (2005, Duesseldorf (2007, Innsbruck (2009. The GDMB is a non-profit organization situated in Clausthal in Germany, which is related to combining science with the practical experience in metallurgy, mining, materials engineering, mineral processing, recycling and refining of metals, and manufacturing of semi- and finishing products. The European Metallurgical conference EMC is one of the most known conferences worldwide in the field of non-ferrous metallurgy and is attended regularly by the decision makers from the industry and universities. The scientific program contained 6 plenary lectures and more than 160 presentations from 40 countries in 5 parallel series. An extensive poster exhibition was held, during which the authors had an opportunity to introduce their posters to the entire plenum as a part of a brief presentation. The best poster from the Montan-University in Leoben, Austria, was awarded the € 500 'Poster Award EMC 2011'. Not only were the most important European countries represented here, more than one third of the lecturers were from the non-European countries (Canada, Japan, China, USA, South Africa, Australia. The origin of the participants reflects the aim of the organizers: to make this conference a worldwide platform for the scientific exchange of experience and information. More than 400 participants from all over the world participated at this conference. The scientific presentations of the conference are presented in five Proceedings

  12. Effects of mechanical activation on the carbothermal reduction of chromite with metallurgical coke

    Directory of Open Access Journals (Sweden)

    Kenan Yıldız

    2010-06-01

    Full Text Available The carbothermal reduction of mechanically activated chromite with metallurgical coke under an argon atmosphere was investigated at temperatures between 1100 and 1400°C and the effects of the mechanical activation on chromite structure were analyzed by x-ray diffraction (XRD and scanning electron microscopy (SEM. An increase in specific surface area resulted in more contact points. The activation procedure led to amorphization and structural disordering in chromite and accelerated the degree of reduction and metalization in the mixture of chromite and metallurgical coke. Carbothermal reduction products were analzed by using scanning electron microscopy (SEM/EDS.

  13. Radioactivity of raw materials, metallurgical and casting products

    International Nuclear Information System (INIS)

    Hons, J.

    2000-01-01

    At present, the radioactive contamination of metallurgical products and initial materials represent a potential obstacle in foreign and domestic trade. It is of course an undesirable threat o the living environment on the one side and, at the same time, a new incorrectly used means for suppressing competition and forming a protection 'umbrella' of the national market to desirable imports on the other hand

  14. Radiation protection aspects in the metallurgical examination of irradiated fuel elements

    International Nuclear Information System (INIS)

    Janardhanan, S.; Pillai, P.M.B.; Jacob, John; Kutty, K.N.; Wattamwar, S.B.; Mehta, S.K.

    1981-01-01

    The operational safety requirements of hot cell facilities for metallurgical examination of irradiated natural and enriched uranium fuel elements are highlighted. The cell shielding is designed for handling activities equivalent of 10 2 to 10 5 curies of gamma energy of 1.3 Mev. A brief outline of the built-in design features relevant to safety assessment is also incorporated. Reference is made to some salient features of Radiometallurgy Cells at Trombay. Metallurgical operations include investigations on cladding failure of irradiated material structure and specimen preparation from hot fuel element. The radiation protection aspects presented in this paper show that handling low irradiated fuel elements in these beta-gamma cells do not cause serious operational safety problems. The procedures followed and the containment provided would adequately restrict exposure of operational staff to acceptable limits. (author)

  15. Methodological Approaches to Ensuring Innovative Development of Metallurgical Enterprises on the Basis of Principles of Economic Nationalism

    Directory of Open Access Journals (Sweden)

    Denysov Kostyantyn V.

    2017-01-01

    Full Text Available The economic, energy and environmental aspects of the activities of metallurgical enterprises are analyzed in the context of the need to ensure their sustainable development. The high energy intensity of the production process, the low efficiency and irrational structure of capital expenditures for environmental protection, the dominance of material costs in the final cost of finished products at the expense of labor and social contributions are indicated. There proved the low effectiveness of the previous measures of the industrial policy of the metallurgical industry innovative development that were not in compliance with the requirements of the WTO and led to taking compensatory measures against the Ukrainian steel on world markets. The potential of economic nationalism as a system for ensuring the innovative development of the metallurgical industry is considered. There determined the priorities of the industrial policy for the development of metallurgical enterprises based on the principles of economic nationalism and taking into account the global trends in the development of trade and economic relations and Ukraine’s commitments to the WTO.

  16. Laboratory safety handbook

    Science.gov (United States)

    Skinner, E.L.; Watterson, C.A.; Chemerys, J.C.

    1983-01-01

    Safety, defined as 'freedom from danger, risk, or injury,' is difficult to achieve in a laboratory environment. Inherent dangers, associated with water analysis and research laboratories where hazardous samples, materials, and equipment are used, must be minimized to protect workers, buildings, and equipment. Managers, supervisors, analysts, and laboratory support personnel each have specific responsibilities to reduce hazards by maintaining a safe work environment. General rules of conduct and safety practices that involve personal protection, laboratory practices, chemical handling, compressed gases handling, use of equipment, and overall security must be practiced by everyone at all levels. Routine and extensive inspections of all laboratories must be made regularly by qualified people. Personnel should be trained thoroughly and repetitively. Special hazards that may involve exposure to carcinogens, cryogenics, or radiation must be given special attention, and specific rules and operational procedures must be established to deal with them. Safety data, reference materials, and texts must be kept available if prudent safety is to be practiced and accidents prevented or minimized.

  17. Hazards analysis for the E.O. Lawrence Berkeley National Laboratory x-ray absorption experiments to be performed at Stanford Synchrotron Radiation Laboratory

    International Nuclear Information System (INIS)

    Edelstein, N.M.; Shuh, D.K.; Bucher, J.B.

    1995-04-01

    The objective of this experiment is to determine the oxidation state(s) of neptunium (Np) in mouse skeleton and in soft tissue by X-ray Absorption Near Edge Structure (XANES). If Np is present in sufficient concentration, X-ray Absorption Fine Structure (XAFS) data will be obtained in order to further identify the Np species present. These data will be crucial in understanding the metabolic pathway of Np in mammals which will help in the design of reagents which can eliminate Np from mammals in the event of accidental exposure. It is proposed to run these experiments at the Standard Synchrotron Radiation Laboratory (SSRL). This laboratory is a DOE national user facility located at the Stanford Linear Accelerator Center (SLAC). The 237 Np nucleus decays by the emission of an alpha particle and this particle emission is the principal hazard in handling Np samples. This hazard is mitigated by physical containment of the sample which stops the alpha particles within the containment. The total amount of Np material that will be shipped to and be at SSRL at any one time will be less than 1 gram. This limit on the amount of Np will ensure that SLAC remains a low hazard, non-nuclear facility. The Np samples will be solids or Np ions in aqueous solution. The Np samples will be shipped to SSRL/SLAC OHP. SLAC OHP will inventory the samples and swipe the containers holding the triply contained samples, and then bring them to the SSRL Actinide trailer located outside building 131. The QA counting records from the samples, as measured at LBNL, will be provided to SSRL and SLAC OHP prior to the arrival of the samples at SLAC OHP. In addition, strict monitoring of the storage and experimental areas will be performed in accordance with SLAC/OHP radiation protection procedures to ensure against the release of contamination

  18. Phosphorus Diffusion Gettering Efficacy in Upgraded Metallurgical-Grade Solar Silicon

    Science.gov (United States)

    Jiménez, A.; del Cañizo, C.; Cid, C.; Peral, A.

    2018-05-01

    In the context of the continuous price reduction in photovoltaics (PV) in recent years, Si feedstock continues to be a relevant component in the cost breakdown of a PV module, highlighting the need for low-cost, low-capital expenditure (CAPEX) silicon technologies to further reduce this cost component. Upgraded metallurgical-grade silicon (UMG Si) has recently received much attention, improving its quality and even attaining, in some cases, solar cell efficiencies similar to those of conventional material. However, some technical challenges still have to be addressed when processing this material to compensate efficiently for the high content of impurities and contaminants. Adaptation of a conventional solar cell process to monocrystalline UMG Si wafers has been studied in this work. In particular, a tailored phosphorus diffusion gettering step followed by a low-temperature anneal at 700°C was implemented, resulting in enhanced bulk lifetime and emitter recombination properties. In spite of the need for further research and material optimization, UMG Si wafers were successfully processed, achieving efficiencies in the range of 15% for a standard laboratory solar cell process with aluminum back surface field.

  19. Powder metallurgy at Savannah River Laboratory

    International Nuclear Information System (INIS)

    Peacock, H.B.

    1978-12-01

    Development of a powder metallurgical process for the manufacture of reactor grade fuel tubes is being carried out at the Savannah River Laboratory (SRL). Using the P/M technology, cores were isostatically compacted with 100 wt % U 3 O 8 and coextruded tubes fabricated which contain up to approx. 80% cores clad with aluminum. Irradiation tests were completed for tubes with up to 59 wt % oxide. Post-irradiation inspection showed no significant swelling for 40% burnup. Thermal testing of sections from irradiated tubes showed that the threshold temperature for blister formation increased as the fission density of oxide decreased. Procedures are discussed for making PM cores and extruded tubes at SRL. Both laboratory and full-scale tests are presented

  20. The R85m President Brand joint metallurgical complex

    International Nuclear Information System (INIS)

    Payne, Adam.

    1977-01-01

    The uranium plant at President Brand, which was built in 1971 and opened last year, is now being extended. The plant forms only part of the extensive joint metallurgical complex being developed by Anglo American Corp. in the Free State, costing a total R85million. This article examines technical details of the recovery processes involved

  1. Hazards assessment for the Hazardous Waste Storage Facility

    International Nuclear Information System (INIS)

    Knudsen, J.K.; Calley, M.B.

    1994-04-01

    This report documents the hazards assessment for the Hazardous Waste Storage Facility (HWSF) located at the Idaho National Engineering Laboratory. The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. The hazards assessment identifies and analyzes hazards that are significant enough to warrant consideration in a facility's operational emergency management program. The area surrounding HWSF, the buildings and structures at HWSF, and the processes used at HWSF are described in this report. All nonradiological hazardous materials at the HWSF were identified (radiological hazardous materials are not stored at HWSF) and screened against threshold quantities according to DOE Order 5500.3A guidance. Two of the identified hazardous materials exceeded their specified threshold quantity. This report discusses the potential release scenarios and consequences associated with an accidental release for each of the two identified hazardous materials, lead and mercury. Emergency considerations, such as emergency planning zones, emergency classes, protective actions, and emergency action levels, are also discussed based on the analysis of potential consequences. Evaluation of the potential consequences indicated that the highest emergency class for operational emergencies at the HWSF would be a Site Area Emergency

  2. Radiation protection aspects in the metallurgical examination of irradiated fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Janardhanan, S.; Pillai, P.M.B.; Jacob, J.; Kutty, K.N.; Wattamwar, S.B.; Mehta, S.K. (Bhabha Atomic Research Centre, Bombay (India). Health Physics Div.)

    The operational safety requirements of hot cell facilities for metallurgical examination of irradiated natural and enriched uranium fuel elements are highlighted. The cell shielding is designed for handling activities equivalent of 10/sup 2/ to 10/sup 5/ curies of gamma energy of 1.3 Mev. A brief outline of the built-in design features relevant to safety assessment is also incorporated. Reference is made to some salient features of Radiometallurgy Cells at Trombay. Metallurgical operations include investigations on cladding failure of irradiated material structure and specimen preparation from hot fuel element. The radiation protection aspects presented in this paper show that handling low irradiated fuel elements in these beta-gamma cells do not cause serious operational safety problems. The procedures followed and the containment provided would adequately restrict exposure of operational staff to acceptable limits.

  3. Arsenic precipitation from metallurgical effluents

    International Nuclear Information System (INIS)

    Navarro, P.; Vargas, C.; Araya, E.; Martin, I.; Alguacil, F. J.

    2004-01-01

    In the mining-metallurgical companies different liquid effluents are produced, which can contain a series of dissolved elements that are considered dangerous from an environmental point of view. One of these elements is the arsenic, especially in the state of oxidation +5 that can be precipitated as calcium or iron arsenate. To fulfil the environmental requests it should have in solution a content of arsenic lower than 0,5 mg/l and the obtained solid product should be very stable under the condition in which it will be stored. this work looks for the best conditions of arsenic precipitation, until achieving contents in solution lower than such mentioned concentration. Also, the stability of the precipitates was studied. (Author) 7 refs

  4. Analytical control in metallurgical processes

    International Nuclear Information System (INIS)

    Coedo, A.G.; Dorado, M.T.; Padilla, I.

    1998-01-01

    This paper illustrates the role of analysis in enabling metallurgical industry to meet quality demands. For example, for the steel industry the demands by the automotive, aerospace, power generation, tinplate packaging industries and issue of environment near steel plants. Although chemical analysis technology continues to advance, achieving improved speed, precision and accuracy at lower levels of detection, the competitiveness of manufacturing industry continues to drive property demands at least at the same rate. Narrower specification ranges, lower levels of residual elements and economic pressures prescribe faster process routes, all of which lead to increased demands on the analytical function. These damands are illustrated by examples from several market sectors in which customer issues are considered together with ther analytical implications. (Author) 5 refs

  5. Nuclear methods on service of mountain manufacture Navoi Mining-Metallurgical complex

    International Nuclear Information System (INIS)

    Kucherskiy, N.I.

    2004-01-01

    Full text: On a number of the major minerals, such as gold, uranium, copper, tungsten, potash salts, phosphorites, caolines, etc. Uzbekistan on the confirmed stocks and predicted resources occupies leading places among the states of the world. The basic deposits of gold and uranium are concentrated in Central-Kysylkum region, which is field of activity of Navoi mining-metallurgical combine. In industrial divisions of the combine, located in five areas of republic about 60000 persons are engaged. At all stages of manufacture of gold (since investigation) analytical maintenance has extremely important role. In NMMC radioanalytical methods are widely used, in particular, on mine 'Muruntau' the unique gamma-activation analysis laboratory has been constructed and entered into operation. For the period of operation of laboratory, i.e. since 1977, it is executed more than nine millions analyses of geological tests with extremely high expressness (about tens seconds). It is used x-ray-radiometric method for large-portion (by dumper) sortings and on lumpy separation of ores. With the help of high-sensitivity radiometric means of measurements it is possible to develop phosphorites for reception of phosphoric fertilizers. Nuclear-physical methods are applied to the decision of other problems. Thus, due to application of nuclear-physical methods of the operative control of technological processes of mining manufacture, quality management of ores, the account of quantity of products of extraction and their preliminary enrichment, the actual problem - increase in profitability of all mining manufacture NMMC is solved

  6. Mixed waste certification plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility. Revision 1

    International Nuclear Information System (INIS)

    1995-01-01

    The purpose of this plan is to describe the organization and methodology for the certification of mixed waste handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan is composed to meet the requirements found in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and follows the suggested outline provided by WHC in the letter of April 26, 1990, to Dr. R.H. Thomas, Occupational Health Division, LBL. Mixed waste is to be transferred to the WHC Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington

  7. Geologic aspects of seismic hazards assessment at the Idaho National Engineering Laboratory, southeastern Idaho

    International Nuclear Information System (INIS)

    Smith, R.P.; Hackett, W.R.; Rodgers, D.W.

    1989-01-01

    The Idaho National Engineering Laboratory (INEL), located on the northwestern side of the Eastern Snake River Plain (ESRP), lies in an area influenced by two distinct geologic provinces. The ESRP province is a northeast-trending zone of late Tertiary and Quaternary volcanism which transects the northwest-trending, block-fault mountain ranges of the Basin and Range province. An understanding of the interaction of these two provinces is important for realistic geologic hazards assessment. Of particular importance for seismic hazards analysis is the relationship of volcanic rift zones on the ESRP to basin-and-range faults north of the plain. The Arco Rift Zone, a 20-km-long belt of deformation and volcanism on the plain just west of the INEL, is colinear with the basin-and-range Lost River fault. Recent field studies have demonstrated that Arco Rift Zone deformation is typical of that induced by dike injection in other volcanic rift zones. The deformation is characterized by a predominance of dilational fissuring with less extensive development of faults and grabens. Cumulative vertical displacements over the past 0.6 Ma are an order of magnitude lower than those associated with the Arco Segment of the Lost River fault to the northwest. The evidence suggests that the northeast-directed extension that produces the block fault mountains of the Basin and Range is expressed by dike injection and volcanic rift zone development in the ESRP. Seismicity associated with dike injection during rift zone development is typically of low magnitude and would represent only minor hazard compared to that associated with the block faulting. Since the ESRP responds to extension in a manner distinct from basin-and-range faulting, it is not appropriate to consider the volcanic rift zones as extensions of basin-and-range faults for seismic hazard analysis

  8. Thermo-ecological cost (TEC evaluation of metallurgical processes

    Directory of Open Access Journals (Sweden)

    W. Stanek

    2015-01-01

    Full Text Available Metallurgy represents a complex production system of fuel and mineral non-renewable resources transformation. The effectiveness of resource management in metallurgical chains depends on the applied ore grade and on the irreversibility of components of the system. TEC can be applied to measure the influence of metallurgy on the depletion of natural resources. The paper discusses the possibility of application of TEC in metallurgy and presents illustrative example concerning blast-furnace process.

  9. Control of innovation activity in a competitive metallurgical business

    Science.gov (United States)

    Bogdanov, S. V.

    2010-12-01

    Certain competitive advantages of a manufacturer on a goods market can be provided if one creates conditions for bifurcation development of an innovation process in metallurgical business under conditions of market uncertainty of a demand for goods of a specified consumer quality and determines the technical-and-economic versions of stable operation of a production system for performing orders of metal product consumers.

  10. Relationship between turbine rotor and disk metallurgical characteristics and stress corrosion cracking behavior. Final report

    International Nuclear Information System (INIS)

    Gayley, H.B.

    1986-09-01

    This report describes stress corrosion test results in which several heats of turbine rotor steels specially prepared to achieve different degrees of segregation to the grain boundaries were tested in concentrated laboratory and actual steam turbine environments. Grain boundary characteristics are considered important because turbine rotor failures in field service have been of an intergranular nature and because grain boundary segregation is known to affect the impact toughness of rotor steels (''temper embrittlement''). The laboratory stress corrosion testing results showed no differences between heavily and lightly segregated test pieces which differed greatly in impact toughness. All test specimens cracked, indicating the laboratory environments may have been too severe to allow differentiation between the various metallurgical conditions, if any differences exist. Test loops and autoclaves for chemical analysis and mechanical testing were designed, installed and are operating in the field testing portion of this program. No intergranular cracking has occurred to date; hence, no differentiation between heavily and lightly segregated test pieces has been possible in field testing. Instrumented crack propagation specimens, which permit measurement of cracking as it occurs, have been installed for the continuing field testing program. Correlation of such cracking with the continuously monitored chemical composition of the environment will increase understanding of the cracking process and may give the possibility of providing an early warning of the existence of conditions which might cause turbine rotor cracking

  11. Stochastic optimization of laboratory test workflow at metallurgical testing centers

    Directory of Open Access Journals (Sweden)

    F. Tošenovský

    2016-10-01

    Full Text Available The objective of the paper is to present a way to shorten the time required to perform laboratory tests of materials in metallurgy. The paper finds a relation between the time to perform a test of materials and the number of technicians carrying out the test. The relation can be used to optimize the number of technicians. The approach is based on probability theory, as the amount of material to be tested is unknown in advance, and uses powerful modelling techniques involving the generalized estimating equations.

  12. Cost estimation and management over the life cycle of metallurgical ...

    African Journals Online (AJOL)

    This study investigates whether all expected costs over the life cycle of metallurgical research projects are included in initial, normal and fi nal cost estimates, and whether these costs are managed throughout a project's life cycle since there is not enough emphasis on the accurate estimation of costs and their management ...

  13. Highlights of the metallurgical behaviour of CANDU pressure tubes

    International Nuclear Information System (INIS)

    Price, E.G.

    1984-10-01

    This paper is an overview of the service induced metallurgical changes that take place in Zircaloy-2 and Zr-2.5 wt. percent Nb pressure tubes in CANDU reactors. It incorporates the findings of an evaluation program, that followed a significant pressure tube failure at Ontario Hydro's Pickering Nuclear Generating Station, and also provides valid reasons for continued confidence in the current CANDU design

  14. Simulation model for planning metallurgical treatment of large-size billets

    International Nuclear Information System (INIS)

    Timofeev, M.A.; Echeistova, L.A.; Kuznetsov, V.G.; Semakin, S.V.; Krivonogov, A.B.

    1989-01-01

    The computerized simulation system ''Ritm'' for planning metallurgical treatment of billets is developed. Three principles, specifying the organization structure of the treatment cycle are formulated as follows: a cycling principle, a priority principle and a principle of group treatment. The ''Ritm'' software consists of three independent operating systems: preparation of source data, simulation, data output

  15. Real time information management for improving productivity in metallurgical complexes

    International Nuclear Information System (INIS)

    Bascur, O.A.; Kennedy, J.P.

    1999-01-01

    Applying the latest information technologies in industrial plants has become a serious challenge to management and technical teams. The availability of real time and historical operations information to identify the most critical part of the processing system from mechanical integrity is a must for global plant optimization. Expanded use of plant information on the desktop is a standard tool for revenue improvement, cost reduction, and adherence to production constraints. The industrial component desktop supports access to information for process troubleshooting, continuous improvement and innovation by plant and staff personnel. Collaboration between groups enables the implementation of an overall process effectiveness index based on losses due to equipment availability, production and product quality. The key to designing technology is to use the Internet based technologies created by Microsoft for its marketplace-office automation and the Web. Time derived variables are used for process analysis, troubleshooting and performance assessment. Connectivity between metallurgical complexes, research centers and their business system has become a reality. Two case studies of large integrated mining/metallurgical complexes are highlighted. (author)

  16. LWR surveillance dosimetry improvement program: PSF metallurgical blind test results

    International Nuclear Information System (INIS)

    Kam, F.B.K.; Stallmann, F.W.; Guthrie, G.; McElroy, W.N.

    1985-01-01

    The ORR-PSF benchmark experiment was designed to simulate the surveillance capsule-pressure vessel configuration in power reactors and to test the validity of procedures which determine the radiation damage in the vessel from test results in the surveillance capsule. The PSF metallurgical blind test was initiated to give participants an opportunity to test their current embrittlement prediction methodologies. Experimental results were withheld from the participants except for the type of information which is normally contained in surveillance reports. Preliminary analysis of the PSF metallurgical blind test results shows that: (1) current prediction methodologies, as used by the PSF Blind Test participants, are adequate, falling within +- 20 0 C of the measured values for Δ NDT. None of the different methods is clearly superior; (2) the proposed revision of Reg. Guide 1.99 (Rev. 2) gives a better representation of the fluence and chemistry dependency of Δ NDT than the current version (Rev. 1); and (3) fluence rate effects can be seen but not quantified. Fluence spectral effects are too small to be detectable in this experiment. (orig.)

  17. Undergraduate Organic Chemistry Laboratory Safety

    Science.gov (United States)

    Luckenbaugh, Raymond W.

    1996-11-01

    Each organic chemistry student should become familiar with the educational and governmental laboratory safety requirements. One method for teaching laboratory safety is to assign each student to locate safety resources for a specific class laboratory experiment. The student should obtain toxicity and hazardous information for all chemicals used or produced during the assigned experiment. For example, what is the LD50 or LC50 for each chemical? Are there any specific hazards for these chemicals, carcinogen, mutagen, teratogen, neurotixin, chronic toxin, corrosive, flammable, or explosive agent? The school's "Chemical Hygiene Plan", "Prudent Practices for Handling Hazardous Chemicals in the Laboratory" (National Academy Press), and "Laboratory Standards, Part 1910 - Occupational Safety and Health Standards" (Fed. Register 1/31/90, 55, 3227-3335) should be reviewed for laboratory safety requirements for the assigned experiment. For example, what are the procedures for safe handling of vacuum systems, if a vacuum distillation is used in the assigned experiment? The literature survey must be submitted to the laboratory instructor one week prior to the laboratory session for review and approval. The student should then give a short presentation to the class on the chemicals' toxicity and hazards and describe the safety precautions that must be followed. This procedure gives the student first-hand knowledge on how to find and evaluate information to meet laboartory safety requirements.

  18. 40 CFR 262.213 - Laboratory clean-outs.

    Science.gov (United States)

    2010-07-01

    ... eligible academic entity is not required to count a hazardous waste that is an unused commercial chemical..., subpart C) generated solely during the laboratory clean-out toward its hazardous waste generator status... out, the date the laboratory clean-out begins and ends, and the volume of hazardous waste generated...

  19. Continuous moisture measurement in metallurgical coke with automatic charge correction

    International Nuclear Information System (INIS)

    Watzke, H.; Mehlhose, D.

    1981-01-01

    A process control system has been developed for automatic batching of the coke amount necessary for metallurgical processes taking into account the moisture content. The measurement is performed with a neutron moisture gage consisting of an Am-Be neutron source and a BF 3 counter. The output information of the counter is used for computer-controlled batching

  20. Production capacity of metallurgical enterprises in modular structure of management accounting

    Directory of Open Access Journals (Sweden)

    Zambrzhitskaia E.S.

    2017-01-01

    Full Text Available This article is the result of constant research in development of management accounting at modern Russian metallurgical works. The required steps of renovation are presented for the modernization of management accounting system in the case of production capacity. The necessary factors with defined values are systematized for modern enterprises. The main ones are those which are regulate the measure of the payload of production capacity. For the purposes of effective management accounting at metallurgical enterprises it is suggested to use the system of controlling parameters which were formulated for the enterprise for production of rolls. Later in the article the necessary changes to the modular structure of management accounting business are described and expanded with new structural element – “Management of production capacity”. The suggested methodical approach will allow the company management to respond quickly to rapidly changing external environment and, as a consequence, to make effective management decisions.

  1. Application of logistic principles in metallurgical production

    Directory of Open Access Journals (Sweden)

    D. Malindžák

    2012-07-01

    Full Text Available Metallurgical production processes (MPP consist of continuous and discrete types of technology operation, transport, manipulation and storing processes regards the flow of material and also the equipment and machines. Other specifics are: long production cycles, great inertia, tree structure of production processes (from roots up to the leaves, high level of investments etc. These characteristics resulted in some specifics of production logistics. This article deals with these specifics and explains it using the conditions of production processes of continuous slab casting, their heating in push furnaces at rolling temperature and rolling itself in hot wideband steel mill.

  2. Quality of some Nigerian coals as a blending stock in metallurgical ...

    African Journals Online (AJOL)

    Lafia- Obi/foreign coals blends possess lower ash and better rheological properties compared to Chikila/foreign coal composites which have high ash and poor rheological properties. These together suggest that amongst the two Nigerian coals, Lafia-Obi is superior for blending with the foreign ones in metallurgical coke ...

  3. Process for converting coal into liquid fuel and metallurgical coke

    Science.gov (United States)

    Wolfe, Richard A.; Im, Chang J.; Wright, Robert E.

    1994-01-01

    A method of recovering coal liquids and producing metallurgical coke utilizes low ash, low sulfur coal as a parent for a coal char formed by pyrolysis with a volatile content of less than 8%. The char is briquetted and heated in an inert gas over a prescribed heat history to yield a high strength briquette with less than 2% volatile content.

  4. Centralised process control of the metallurgical operation at Roessing, South West Africa/Namibia

    International Nuclear Information System (INIS)

    Thomas, R.; Erlank, B.

    1987-01-01

    A Honeywell TDC 2000 central process control system was installed at Roessing in 1984. The system controls the metallurgical operations from crushing to the finished product of uranium oxide and manufacture of sulphuric acid. The operation was previously controlled from nine separate local control rooms. The paper briefly reviews the design and commissioning of the control system on an operating plant and discusses the impact on manpower organisation and training needs. Development of the process control system during its first two years of operation is reviewed and a summary is given of the current status of computer control at Roessing. The impact of the new system on overall plant operation and performance efficiency is also briefly described. In conclusion, future developments of computer control and overall optimisation of metallurgical operations are reviewed

  5. A thermo-metallurgical constitutive law of steels for structural mechanics

    International Nuclear Information System (INIS)

    Waeckel, Francois

    1994-01-01

    The aim of this work is to include the metallurgical behaviour of steels (and specifically their phases transformations) into thermo-mechanical studies. For this, a new model of aniso-thermal phase transformations during the cooling stage is proposed. Developed in the thermodynamics framework of simple materials with memory variables, its originality lies in the choice of the temperature time derivative T as independent variable. The identification and the transformation rates computation use the C.C.T. diagrams which are considered as families of particular solutions of evolution equations. The validation shows ability of the model to simulate all C.C.T. deductible tests. Furthermore, for some tests not included into the C.C.T., the numerical results remain good and the model, from which evolution equation form has been let free, allows to incorporate them to the identification data without modifying the C.C.T. simulation accuracy. Lastly, to take into account structural transformations mechanical effects, some currently used models have been introduced, together with the metallurgical model, in a finite element code. They allow whole quenching or welding simulations (up to residual stresses) as demonstrated by application examples. (author) [fr

  6. Metallurgical behavior of fine fractions of copper sulfide minerals in a combined process of modified flotation and agitated bio leaching

    International Nuclear Information System (INIS)

    Ibanez, J. P.; Ipinza, J.; Collao, N.; Ahlborn, G.

    2007-01-01

    The metallurgical behaviour of fine fraction of copper sulfide minerals of Compania Minera Quebrada Blanca S. A. was studied by concentration through flotation in aqueous media modified by alcohol followed by bio leaching of the concentrates. By using a 1% v/v of methanol, the metallurgical recovery of copper reaches 88%, while the iron recovery was 43%, the weight recovery was 18%, which indicates a high selectivity. these concentrates were then bio leached with and without nutrient medium, reaching 80% of copper recovery after 10 and 17 days, respectively. then, it is possible to conclude that this concentration-bio leaching metallurgical process is a promising route for copper recovery from the fine fraction of sulfide minerals. (Author) 24 refs

  7. The handling, hazards, and maintenance of heavy liquids in the geologic laboratory

    Science.gov (United States)

    Hauff, Phoebe L.; Airey, Joseph

    1980-01-01

    In geologic laboratories the organic heavy liquids bromoform, methylene iodide, tetrabromoethane, and clerici compounds have been used for years in mineral separation processes. Because the volume of use of these compounds is low, insufficient data is available on their toxic properties. This report is an attempt to summarize the known data from published and industry sources. The physical properties, hazards of handling,proper storage facilities, and adequate protective Clothing are discussed for each compound as well as for their common and less-common solvents. Toxicity data for these materials is listed along with exposure symptoms and suggested first aid treatments. Safety for the worker is emphasized. Three reclamation methods which recover the solvent used as a dilutant and purify the heavy liquid are discussed and illustrated. These include: the water cascade, re fluxing-distillation-condensation, and flash evaporation methods. Various techniques for restoration and stabilization of these heavy liquids are also included.

  8. Chemical health risk assessment for hazardous and mixed waste management units at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    1992-09-01

    The Lawrence Livermore National Laboratory (LLNL) operates three Hazardous Waste Management Facilities with 24 associated waste management units for the treatment and storage of hazardous and mixed wastes. These wastes are generated by research programs and support operations. The storage and treatment units are presently operated under interim status in accordance with the requirements of the US Envirorunental Protection Agency (US EPA) and the Department of Toxic Substances Control (DTSC), a division of the California Envirorunental Protection Agency (Cal/EPA). As required by the California Hazardous Waste Control Act and the Resource Conservation and Recovery Act (RCRA), LLNL ha s applied for a Part B permit to continue operating the storage and waste treatment facilities. As part of this permitting process, LLNL is required to conduct a health risk assessment (HRA) to examine the potential health impacts to the surrounding community from continued storage and treatment of hazardous and mixed wastes. analysis document presents the results of this risk assessment. An analysis of maximum credible chemical accidents is also included in Section 7.0. This HRA was prepared in accordance with procedures set forth by the California Air Pollution Control Officers Association (CAPCOA) ''Air Toxics Assessment Manual,'' CAPCOA guidelines for preparing risk assessments under the Air Toxic ''Hot Spots'' Act (AB 2588) and requirements of the US EPA. By following these procedures, this risk assessment presents a conservative analysis of a hypothetical Maximally Exposed Individual (MEI) using many worst-case assumptions that will not apply to an actual individual. As such, the risk estimates presented should be regarded as a worst-case estimate of any actual risk that may be present

  9. Metallurgical examination of, and resin transfer from, Three Mile Island prefilter liners

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, Jr, J W; Spaletta, H W

    1984-08-01

    Metallurgical examinations were performed on two EPICOR-II prefilter liners at the Idaho National Engineering Laboratory (INEL) to determine conditions of the liners and identify the minimum expected lifetime of those and other liners stored at INEL. The research work was accomplished by EG and G Idaho, Inc. for the EPICOR-II Research and Disposition Program, which is funded by the US Department of Energy. The EPICOR-II prefilter liners were used to filter radionuclides from contaminated water during cleanup of Three Mile Island Unit 2 (TMI-2). The liners were constructed of carbon steel with a phenolic protective coating and contained organic and inorganic ion-exchange filtration media. Program plans call for interim storage of EPICOR-II prefilters at INEL for up to ten years, before final disposal in high integrity containers at the Hanford, Washington commercial disposal site. This report describes the (a) resin transfer process used to empty liners for examination, (b) removal of metallographic sections from those liners, (c) specimen preparation, and (d) findings from metallographic examination of those specimens. A minimum lifetime for the liners is determined and recommendations are given for storage of wastes from future TMI-2 activities.

  10. Metallurgical examination of, and resin transfer from, Three Mile Island prefilter liners

    International Nuclear Information System (INIS)

    McConnell, J.W. Jr.; Spaletta, H.W.

    1984-08-01

    Metallurgical examinations were performed on two EPICOR-II prefilter liners at the Idaho National Engineering Laboratory (INEL) to determine conditions of the liners and identify the minimum expected lifetime of those and other liners stored at INEL. The research work was accomplished by EG and G Idaho, Inc. for the EPICOR-II Research and Disposition Program, which is funded by the US Department of Energy. The EPICOR-II prefilter liners were used to filter radionuclides from contaminated water during cleanup of Three Mile Island Unit 2 (TMI-2). The liners were constructed of carbon steel with a phenolic protective coating and contained organic and inorganic ion-exchange filtration media. Program plans call for interim storage of EPICOR-II prefilters at INEL for up to ten years, before final disposal in high integrity containers at the Hanford, Washington commercial disposal site. This report describes the (a) resin transfer process used to empty liners for examination, (b) removal of metallographic sections from those liners, (c) specimen preparation, and (d) findings from metallographic examination of those specimens. A minimum lifetime for the liners is determined and recommendations are given for storage of wastes from future TMI-2 activities

  11. Low-level waste certification plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility. Revision 1

    International Nuclear Information System (INIS)

    1995-01-01

    The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan is composed to meet the requirements found in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and follows the suggested outline provided by WHC in the letter of April 26, 1990, to Dr. R.H. Thomas, Occupational Health Division, LBL. LLW is to be transferred to the WHC Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington

  12. Low-level waste certification plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-10

    The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan is composed to meet the requirements found in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and follows the suggested outline provided by WHC in the letter of April 26, 1990, to Dr. R.H. Thomas, Occupational Health Division, LBL. LLW is to be transferred to the WHC Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington.

  13. The results of the toxicity and hazard studies of isopropyl meta-carborane with single administration to laboratory animals

    Directory of Open Access Journals (Sweden)

    Yushkov G.G.

    2018-04-01

    Full Text Available Intensive research on the chemistry of borohydrides and the creation of high-energy fuels led to the discovery of a completely new type of organoboron compounds, which were collectively called carboranes. Taking into account the scope of application of organoboron compounds in various branches of human economic activity, we present for publication the quantitative data of a toxicological study of the higher isomer of carboranes of isopropyl meta-carborane at the level of a single injection into the laboratory animals through the mouth and lungs. Background. Supplementing data on toxicity and the hazard of organoboron compounds requires the study of the response of the organism to the action of isopropyl meta-carborane. The purpose of the study: identification of possible features and specificity of the toxic effect of carboranes on the example of isopropyl meta-carborane. Methods. The object of the study is nonlinear laboratory animals: rats, mice and rabbits contained in standard vivarium conditions, with observance of the rules of humane treatment of animals. Traditional methods of research (physiological, hematological, morphological have been used. Statistical processing of data was carried out using the programs «Microsoft Office Excel 2007» and «Biostat». Differences were considered statistically significant at p ≤ 0.05, using a parametric test. Results. Acute toxicity parameters were obtained, which allowed the substance to be classified as moderately hazardous (3rd hazard class according to GOST 12.1.007, which does not have selective irritant, pneumotoxic and fibrogenic effects. Conclusion. Thus, the predominant influence of the substance is established objectively with a single exposure to the blood system as its toxicological feature, and its effect on spermatozoa is a specificity of the action, which stimulates the study of this carborane under conditions of chronic administration to the animals.

  14. Preliminary assessment of laboratory techniques for measurement of volatiles through soils at hazardous waste sites

    International Nuclear Information System (INIS)

    Breckenridge, R.P.; Case, J.T.

    1985-01-01

    This study was conducted to determine if an inexpensive laboratory screening technique could be developed to detect the presence of hazardous volatile compounds without disturbing the soil over buried waste. A laboratory investigation was designed to evaluate the movement of two volatile organics through packed soil columns. Six soil columns were filled with three different soils. Two volatile organics, trichloroethylene (TCE) and dichloroethylene (1, 2 DCE), were placed at the base of the columns as a saturated water solution. Column headspace analysis was performed by purging the top of the columns with nitrogen gas and bubbling this gas through a pentane trap. Samples in the air space were also collected using 25 and 100 microliter gas tight syringes. All samples were analyzed using Electron Capture Detector (ECD) by gas chromatography. Results indicate that the volatile organic compounds can be detected through a five foot column of soil in concentrations down to parts-per-billion (ppb) for both TCE and DCE. Distribution coefficients (Kd) experiments were also conducted to assess breakthrough time and related concentration with soil type

  15. Safety and health: Principles and practices in the laboratory

    International Nuclear Information System (INIS)

    Fakhrul Razi Ahmadun; Guan, Chuan Teong; Mohd Halim Shah Ismail

    2005-01-01

    Ignorance, carelessness or improper practices in the laboratory or the improper handling of hazardous or toxic materials may lead to work accidents and work-related ill-health. Laboratory users and administrators cannot afford to overlook these possible consequences due to the misconduct of laboratory practices and should decide how best to manage the health and safety aspects in the laboratory. This book has been written for safety representatives of colleges and universities, for lectures, teachers and students, and for researchers working in laboratories. It is also for everyone responsible for laboratory safety, laboratory accidents and their consequences. The emphasis is on hazards to health and safety, with the focus on the general hazards in the laboratory, how they arise and how to prevent, how to eliminate and control them. Special hazards will also be discussed such as radiation hazards and human factors. This book also provides information on governmental and non-governmental agencies and authorities, emergency contact numbers of relevant authorities, a list of Malaysia occupational safety and health related legislation and some useful occupational safety and health web sites. Readers will find that the information contained in this book will serve as the foundation for laboratory users safety policy. A set of Laboratory Safety Forms for a typical laboratory is also available in the appendix for reference. Laboratory users can use and adapt these forms for their own laboratory requirements. (author)

  16. Magnetic spherules from the soils near the slag dump of the Nizhniy Tagil metallurgical plant

    Directory of Open Access Journals (Sweden)

    A. B. Makarov

    2017-12-01

    Full Text Available Magnetic spherules, which are widespread in soils, can have different origins, but spherules with cosmic origin are the most studied. At that, functioning of numerous industrial enterprises of metallurgical profile, thermal power stations, and motor transport can be their origin. According to the data of previous researchers, spherical magnetic particles in soils can serve as an indicator for quantitative assessment of erosion-accumulative phenomena. The authors studied magnetic spherules, isolated from soil samples taken near the dump of blast furnace and metallurgical slags of a large Nizhny Tagil metallurgical plant located on the left bank of the Olkhovka river, functioning since 1949. The way the dump forms is by draining slag along the slope. Consequently, adjacent territories are exposed to a significant dust load, associated with increased concentrations of a number of heavy metals: chromium, iron, manganese, vanadium, copper and zinc. The study of magnetic spherules performed for samples of soils taken at a distance of 50 and 100 m to the west of the dump showed that the content of magnetic fraction in them was 15.1 and 11.7% respectively, of the mineral part of the samples. The authors studied magnetic spherules on a scanning microscope JEOL JSM 6390LV, an at that provide their morphology and the chemical composition of magnetic spherules (18 analyzes and aggregates on their surface (5 analyzes. Based on the presence of characteristic impurity elements, there are the following varieties: zinc, manganese, vanadium, determined by the peculiarities of metallurgical processes. Low concentrations of spherules in soils do not allow considering them as a significant source of pollution of natural environment, only a slight increase in the content of heavy metals characteristic for them is possible.

  17. Safety in the Chemical Laboratory: Contracts to Dispose of Laboratory Waste.

    Science.gov (United States)

    Fischer, Kenneth E.

    1985-01-01

    Presents a sample contract for disposing of hazardous wastes in an environmentally sound, timely manner in accordance with all federal, state, and local requirements. Addresses situations where hazardous waste must be disposed of outside the laboratory and where alternate disposal methods are not feasible. (JN)

  18. QEM*SEM: a necessary tool in the metallurgical evaluation of ore bodies

    International Nuclear Information System (INIS)

    Creelman, R.A.; Gottlieb, P.; Sutherland, D.; Jackson, R.

    1989-01-01

    The QEM*SEM system for automated image analysis of mineral samples is described. Details of the equipment are given together with information on the methods of measurement. Finally some practical applications are described where QEM*SEM has been used for the solution of metallurgical problems. 14 refs., 1 fig

  19. Characterization, minimization and disposal of radioactive, hazardous, and mixed wastes during cleanup and rransition of the Tritium Research Laboratory (TRL) at Sandia National Laboratories/California (SNL/CA)

    International Nuclear Information System (INIS)

    Garcia, T.B.; Gorman, T.P.

    1996-12-01

    This document provides an outline of waste handling practices used during the Sandia National Laboratory/California (SNL/CA), Tritium Research Laboratory (TRL) Cleanup and Transition project. Here we provide background information concerning the history of the TRL and the types of operations that generated the waste. Listed are applicable SNL/CA site-wide and TRL local waste handling related procedures. We describe personnel training practices and outline methods of handling and disposal of compactible and non-compactible low level waste, solidified waste water, hazardous wastes and mixed wastes. Waste minimization, reapplication and recycling practices are discussed. Finally, we provide a description of the process followed to remove the highly contaminated decontamination systems. This document is intended as both a historical record and as a reference to other facilities who may be involved in similar work

  20. SECI model and facilitation in change management in metallurgical enterprise

    Directory of Open Access Journals (Sweden)

    K. Grzybowska

    2013-04-01

    Full Text Available Organisational change management is not efficient without gaining and sharing knowledge by the members of the enterprise. Both in the conditions of relative organisational stability and in organisational chaos resulting from dynamic introduction and management of changes there is a constant need of improvement and of shaping competences and distribution of knowledge in the enterprise. The publication presents key programs of building knowledge conducted in a metallurgical enterprise.

  1. Dog and Cat Exposures to Hazardous Substances Reported to the Kansas State Veterinary Diagnostic Laboratory: 2009–2012

    OpenAIRE

    Mahdi, Ali; Van der Merwe, Deon

    2013-01-01

    Pet dogs and cats in the USA are commonly exposed to potentially hazardous substances found in domestic environments. Requests for assistance and advice received by the Kansas State Veterinary Diagnostic Laboratory regarding exposures in dogs and cats to substances perceived by their caretakers to be potentially harmful included 1,616 phone calls, over a 3-year period covering 2009–2012. Enquiries occurred more often during summer. Dogs were involved in 84.7 % of calls and cats in 15.3 %. Ora...

  2. Effect of metallurgical variables on void swelling

    International Nuclear Information System (INIS)

    Johnston, W.G.; Lauritzen, T.; Rosolowski, J.H.; Turkalo, A.M.

    1976-01-01

    The mechanism of void swelling is reviewed briefly and the anticipated effects of metallurgical variables are described. Experimental results showing the effects of metallurgical variables are reviewed, most of the work being done by simulation methods employing charged particle bombardments to simulate reactor damage. Although the early emphasis was on structural variables such as grain size, cold work and precipitates to control swelling, it now seems that the practical reduction of swelling will be achieved by modifying alloy composition. Void swelling is strongly influenced by the relative amounts of Fe, Cr, and Ni in an alloy; the amount of swelling can be varied by three orders of magnitude by changing the relative amounts of the three elements in an austenitic ternary alloy. The effect of composition on swelling of a simple ferritic alloy will also be described. The swelling of a simple austenitic alloy of Fe, Cr, and Ni can be reduced by certain minor element additions. The most effective swelling inhibitors are Si, Ti, Zr, and Nb, and combinations of Si and Ti are synergetic. Swelling reductions of two orders of magnitude have been achieved with combined additions. Predictions of swelling in commercial solid solution alloys are made on the basis of the present knowledge of the effects of major composition and minor element additions. The predictions agree with experimental results. For more complex commercial alloys, predictions are made for the effects on swelling of heat treatments that cause changes in matrix composition. In some cases, heat treatment is expected to change the peak swelling by more than a factor of ten, and to shift the peak swelling temperature by almost 100 0 C. Sensitivity of swelling to detailed matrix composition places emphasis on the need for developing understanding of the stability of structure and local composition in an irradiation environment

  3. Construction and operation of replacement hazardous waste handling facility at Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    1992-09-01

    The US Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0423, for the construction and operation of a replacement hazardous waste handling facility (HWHF) and decontamination of the existing HWHF at Lawrence Berkeley Laboratory (LBL), Berkeley, California. The proposed facility would replace several older buildings and cargo containers currently being used for waste handling activities and consolidate the LBL's existing waste handling activities in one location. The nature of the waste handling activities and the waste volume and characteristics would not change as a result of construction of the new facility. Based on the analysis in the EA, DOE has determined that the proposed action would not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969, 42 USC. 4321 et seq. Therefore, an environmental impact statement is not required

  4. Test and Analysis of Metallurgical Converter Equipment

    Directory of Open Access Journals (Sweden)

    Shan Pang

    2013-05-01

    Full Text Available Oxygen top-blow converter is the main equipment in steel making, and its work reliability decides the security and economy of steel production. Therefore, how to design and test analysis of convertor has been an important subject of industry research. Geometric modelling and structure analysis of converter tilting device by using Pro/E program .The design Principle, basic design structure were analyzed in detail. The computer simulation software of metallurgical converter equipment and how to use it were introduced .It developed by VC++ software. The position of barycentre and moment curve in No.3 and No.4 are calculated. The converter acceleration down dip can be resolved by comparing the moment curve and center curve.

  5. A comparison of the metallurgical behaviour of dispersion fuels with uranium silicides and U6Fe as dispersants

    International Nuclear Information System (INIS)

    Nazare, S.

    1984-01-01

    In the past few years metallurgical studies have been carried out to develop fuel dispersions with U-densities up to 7.0 Mg U m -3 . Uranium silicides have been considered to be the prime candidates as dispersants; U 6 Fe being a potential alternative on account of its higher U-density. The objective of this paper is to compare the metallurgical behaviour of these two material combinations with regard to the following aspects: (1) preparation of the compounds U 3 Si, U 3 Si 2 and U 6 Fe; (2) powder metallurgical processing to miniature fuel element plates; (3) reaction behaviour under equilibrium conditions in the relevant portions of the ternary U-Si-Al and U-Fe-Al systems; (4) dimensional stability of the fuel plates after prolonged thermal treatment; (5) thermochemical behaviour of fuel plates at temperatures near the melting point of the cladding. Based on this data, the possible advantages of each fuel combination are discussed. (author)

  6. Hazardous Waste Research Center

    Data.gov (United States)

    Federal Laboratory Consortium — The U.S. Army Engineer Waterways Experiment Station (WES) is playing a major role in development of technologies for cleanup of toxic and hazardous waste in military...

  7. Project development for mining-metallurgical complexes for production of uranium concentrates - an analysis and a methodology

    International Nuclear Information System (INIS)

    Ajuria G, S.; Blanco P, B.; Pena A, J.; Manzanera Q, C.

    1978-10-01

    Activities comprising the development of a project for a mining-metallurgical complex for production of uranium concentrates, from sampling and evaluation of an orebody until plant start-up, are analyzed. The analysis of the orebody, characterization of the ore, bench scale and pilot plant metallurgical studies, environmental studies and economic analyses of the project are described. The mining project and mine preparation and engineering and construction of the plant are reviewed in less detail. The estimated time lapse for the development of a typical project under ideal conditions is 66 months. A bar diagram is included showing an approximate timetable for each activity. (author)

  8. Correlation Between the Efficiency of Machinery and Equipment and the Productivity of Workers and its Effect on the Performance of a Metallurgical Undertaking

    Directory of Open Access Journals (Sweden)

    Kulawik, A.

    2007-01-01

    Full Text Available In this paper the example of procedure of life and objectify work effectiveness analysis in metallurgical enterprise were presented. Besides, on the example of chosen units of metallurgical enterprise, results of analysis - based on methodic proposed in the article - were discussed.

  9. Nutrient and dissolved organic carbon removal from water using mining and metallurgical by-products.

    Science.gov (United States)

    Wendling, Laura A; Douglas, Grant B; Coleman, Shandel; Yuan, Zheng

    2012-05-15

    Excess nutrient input to water bodies frequently results in algal blooms and development of oxygen deficient conditions. Mining or metallurgical by-products can potentially be utilised as filtration media within water treatment systems such as constructed wetlands, permeable reactive barriers, or drain liners. These materials may offer a cost-effective solution for the removal of nutrients and dissolved organic carbon (DOC) from natural waters. This study investigated steel-making, alumina refining (red mud and red sand) and heavy mineral processing by-products, as well as the low-cost mineral-based material calcined magnesia, in laboratory column trials. Influent water and column effluents were analysed for pH and flow rate, alkalinity, nutrient species and DOC, and a range of major cations and anions. In general, by-products with high Ca or Mg, and to a lesser extent those with high Fe content, were well-suited to nutrient and DOC removal from water. Of the individual materials examined, the heavy mineral processing residue neutralised used acid (NUA) exhibited the highest sorption capacity for P, and removed the greatest proportions of all N species and DOC from influent water. In general, NUA and mixtures containing NUA, particularly those with calcined magnesia or red mud/red sand were the most effective in removing nutrients and DOC from influent water. Post-treatment effluents from columns containing NUA and NUA/steel-making by-product, NUA/red sand and NUA/calcined magnesia mixtures exhibited large reductions in DOC, P and N concentrations and exhibited a shift in nutrient ratios away from potential N- and Si-limitation and towards potential P-limitation. If employed as part of a large-scale water treatment scheme, use of these mining and metallurgical by-products for nutrient removal could result in reduced algal biomass and improved water quality. Identification and effective implementation of mining by-products or blends thereof in constructed wetlands

  10. Metallurgical recovery of metals from electronic waste: A review

    International Nuclear Information System (INIS)

    Cui Jirang; Zhang Lifeng

    2008-01-01

    Waste electric and electronic equipment, or electronic waste, has been taken into consideration not only by the government but also by the public due to their hazardous material contents. In the detailed literature survey, value distributions for different electronic waste samples were calculated. It is showed that the major economic driver for recycling of electronic waste is from the recovery of precious metals. The state of the art in recovery of precious metals from electronic waste by pyrometallurgical processing, hydrometallurgical processing, and biometallurgical processing are highlighted in the paper. Pyrometallurgical processing has been a traditional technology for recovery of precious metals from waste electronic equipment. However, state-of-the-art smelters are highly depended on investments. Recent research on recovery of energy from PC waste gives an example for using plastics in this waste stream. It indicates that thermal processing provides a feasible approach for recovery of energy from electronic waste if a comprehensive emission control system is installed. In the last decade, attentions have been removed from pyrometallurgical process to hydrometallurgical process for recovery of metals from electronic waste. In the paper, hydrometallurgical processing techniques including cyanide leaching, halide leaching, thiourea leaching, and thiosulfate leaching of precious metals are detailed. In order to develop an environmentally friendly technique for recovery of precious metals from electronic scrap, a critical comparison of main leaching methods is analyzed for both economic feasibility and environmental impact. It is believed that biotechnology has been one of the most promising technologies in metallurgical processing. Bioleaching has been used for recovery of precious metals and copper from ores for many years. However, limited research was carried out on the bioleaching of metals from electronic waste. In the review, initial researches on the

  11. Metallurgical recovery of metals from electronic waste: A review

    Energy Technology Data Exchange (ETDEWEB)

    Cui Jirang [Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU), Alfred Getz vei 2, N-7491 Trondheim (Norway)], E-mail: Jirang.Cui@material.ntnu.no; Zhang Lifeng [Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU), Alfred Getz vei 2, N-7491 Trondheim (Norway)], E-mail: zhanglife@mst.edu

    2008-10-30

    Waste electric and electronic equipment, or electronic waste, has been taken into consideration not only by the government but also by the public due to their hazardous material contents. In the detailed literature survey, value distributions for different electronic waste samples were calculated. It is showed that the major economic driver for recycling of electronic waste is from the recovery of precious metals. The state of the art in recovery of precious metals from electronic waste by pyrometallurgical processing, hydrometallurgical processing, and biometallurgical processing are highlighted in the paper. Pyrometallurgical processing has been a traditional technology for recovery of precious metals from waste electronic equipment. However, state-of-the-art smelters are highly depended on investments. Recent research on recovery of energy from PC waste gives an example for using plastics in this waste stream. It indicates that thermal processing provides a feasible approach for recovery of energy from electronic waste if a comprehensive emission control system is installed. In the last decade, attentions have been removed from pyrometallurgical process to hydrometallurgical process for recovery of metals from electronic waste. In the paper, hydrometallurgical processing techniques including cyanide leaching, halide leaching, thiourea leaching, and thiosulfate leaching of precious metals are detailed. In order to develop an environmentally friendly technique for recovery of precious metals from electronic scrap, a critical comparison of main leaching methods is analyzed for both economic feasibility and environmental impact. It is believed that biotechnology has been one of the most promising technologies in metallurgical processing. Bioleaching has been used for recovery of precious metals and copper from ores for many years. However, limited research was carried out on the bioleaching of metals from electronic waste. In the review, initial researches on the

  12. Comparative metallurgical study of thick hard coatings without cobalt

    International Nuclear Information System (INIS)

    Clemendot, F.; Van Duysen, J.C.; Champredonde, J.

    1992-07-01

    Wear and corrosion of stellite type hard coatings for valves of the PWR primary system raise important problems of contamination. Substitution of these alloys by cobalt-free hard coatings (Colmonoy 4 and 4.26, Cenium 36) should allow to reduce this contamination. A comparative study (chemical, mechanical, thermal, metallurgical), as well as a corrosion study of these coatings were carried out. The results of this characterization show that none of the studied products has globally characteristics as good as those of grade 6 Stellite currently in service

  13. Metallurgical sessions. Second ALAMET congress (held in) Buenos Aires, Argentina, 6-10 May 1991

    International Nuclear Information System (INIS)

    1991-01-01

    This congress was held in Buenos Aires, Argentine Republic, on May 6-10, 1991, gathering experts from all over the world. The present volume includes the papers presented at the Metallurgical Sessions - II. ALAMET Congress [es

  14. SRL process hazards review manual

    International Nuclear Information System (INIS)

    1980-08-01

    The principal objective of the Process Hazards Management Program is to provide a regular, systematic review of each process at the Savannah River Laboratory (SRL) to eliminate injuries and to minimize property damage resulting from process hazards of catastrophic potential. Management effort is directed, through the Du Pont Safety Program, toward those controls and practices that ensure this objective. The Process Hazards Management Program provides an additional dimension to further ensure the health and safety of employees and the public. Du Pont has concluded that an organized approach is essential to obtain an effective and efficient process hazards review. The intent of this manual is to provide guidance in creating such an organized approach to performing process hazards reviews on a continuing basis

  15. The evolution of a LIMS [laboratory information management system

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Changes in the world and United Kingdom markets for nuclear fuels during the 1990s have prompted British Nuclear Fuels (BNFL) to maximise cost effectiveness in its Chemical and Metallurgical Services department. A laboratory information management system (LIMS) was introduced in order to keep records of analytical techniques and equipment up to date by coordinating various computer systems. Wherever possible automated systems have replaced traditional, labour intensive techniques. So successful has the LIMS system been, that the team now hopes to expand into expert systems. (UK)

  16. The two faces of coal : uncertainty the common prospect for metallurgical and thermal coal

    International Nuclear Information System (INIS)

    Zlotnikov, D.

    2010-01-01

    Although the methods of producing thermal and metallurgical coal are the same, metallurgical coal is destined to cross the world for steel manufacturing and thermal coal is destined for power plants close to where it was mined. This article discussed the factors influencing the price of these 2 coals. The production of thermal coal can remain steady during an economic crisis because coal-fired power plants generally provide low-cost-base-load electricity that remains stable during economic cycles. However, the demand for metallurgical coal is more volatile during an economic crisis because it is directly related to the demand for steel products in the construction and automotive industry, which are very sensitive to the state of the economy. There have been recent indications that Canada's export market for thermal coal is on the rise. In 2008, China became a net importer of coking coal. China's need for more coal to fuel its growing economy despite the global economic slowdown has meant that producers are diverting excess supply from European markets to China. Higher-end thermal coal offers low sulphur content and higher energy content, both desirable traits for power utilities facing strict emissions control. In addition to having huge reserves of very high-quality coal that is becoming increasingly important to China, Canada has the advantage of having the available transportation capacity in its west coast terminals and on its rail network. 3 figs.

  17. Some results of medical researches at Ulba Metallurgical Plant

    Energy Technology Data Exchange (ETDEWEB)

    Artemieva, G.I.; Novikov, V.G.; Savchuk, V.V. [Ulba Metallurgical Plant, Ust-Kamenogorsk (Kazakhstan)

    1998-01-01

    The results of 45-years medical researches at beryllium production of Ulba Metallurgical Plant are summarized in this report. Statistic data on different kinds of occupational diseases, related to beryllium production and the dynamics of changing occupational diseases with the development of beryllium production, are given there. Data on average duration of life of occupational disease patients are presented in the report. It includes the description of problems, related to berylliosis diagnosis. Issues, connected to beryllium production effect on health of man, located nearby beryllium production are also discussed there as well. (author)

  18. Regional distribution of the metallurgical industry in the Czech Republic

    OpenAIRE

    T. Sadilek

    2017-01-01

    The aim of the article is to present the regional distribution of the metallurgical industry in the Czech Republic and to describe the specific factors which determine the localization of the industry in Czech regions. In order to achieve that goal, traditional tools of regional analysis are used, such as concentration analysis, used in business-to-business marketing, which does not describe the absolute size of the industry, but its relative size, focusing on the relation between the employe...

  19. 222-S Laboratory complex hazards assessment

    International Nuclear Information System (INIS)

    Sutton, L.N.

    1996-01-01

    This document establishes the technical basis in support of Emergency Planning activities for the 222-S Laboratory Complex on the Hanford Site. Through this document, the technical basis for the development of facility specific Emergency Action Levels and Emergency Planning Zone is demonstrated

  20. Safety, health and environmental committee (JKSHE): Establishing chemical hazard management

    International Nuclear Information System (INIS)

    Shyen, A.K.S.; Noriah Mod Ali; Sangau, J.K.

    2012-01-01

    Most of the laboratories in Malaysian Nuclear Agency are using chemicals in their research activities. However, it is known that using of chemicals without proper knowledge especially on the material characteristics as well as safe handling procedure may cause great harm to the workers. Therefore, Safety, Health and Environmental Committee (JKSHE) sees the need to establish a good chemical hazard management to ensure that a safe and healthy workplace and environment is provided. One of the elements in chemical hazard management is to carry out Chemical Hazard Risk Assessment (CHRA). The assessment was done so that decision can be made on suitable control measures upon use of such chemicals, such as induction and training courses to be given to the workers and health surveillance activities that may be needed to protect the workers. For this, JKSHE has recommended to conduct CHRA for one of the laboratories at Secondary Standard Dosimetry Laboratory (SSDL) namely Film Dosimeter Processing Room (dark room) as the initial effort towards a better chemical hazard management. This paper presents the case study where CHRA was conducted to identify the chemical hazards at the selected laboratory, the adequacy of existing control measures and finally the recommendation for more effective control measures. (author)

  1. AUTOMATION OF OPERATIONAL CONTROL OF DATA FLOWS OF THE METALLURGICAL ENTERPRISE ORGANIZATIONAL STRUCTURE

    Directory of Open Access Journals (Sweden)

    A. N. Chichko

    2006-01-01

    Full Text Available New method for creation of models of operative control of enterprise is offered. The computer variant of the organizational structure, based on analysis of the charging dynamics of control units, is offered and illustrated at the example of one of organizational structures of Belorussian metallurgical works.

  2. Modeling of the Sedimentary Interbedded Basalt Stratigraphy for the Idaho National Laboratory Probabilistic Seismic Hazard Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Suzette Payne

    2006-04-01

    This report summarizes how the effects of the sedimentary interbedded basalt stratigraphy were modeled in the probabilistic seismic hazard analysis (PSHA) of the Idaho National Laboratory (INL). Drill holes indicate the bedrock beneath INL facilities is composed of about 1.1 km of alternating layers of basalt rock and loosely consolidated sediments. Alternating layers of hard rock and “soft” loose sediments tend to attenuate seismic energy greater than uniform rock due to scattering and damping. The INL PSHA incorporated the effects of the sedimentary interbedded basalt stratigraphy by developing site-specific shear (S) wave velocity profiles. The profiles were used in the PSHA to model the near-surface site response by developing site-specific stochastic attenuation relationships.

  3. Modeling of the Sedimentary Interbedded Basalt Stratigraphy for the Idaho National Laboratory Probabilistic Seismic Hazard Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Suzette Payne

    2007-08-01

    This report summarizes how the effects of the sedimentary interbedded basalt stratigraphy were modeled in the probabilistic seismic hazard analysis (PSHA) of the Idaho National Laboratory (INL). Drill holes indicate the bedrock beneath INL facilities is composed of about 1.1 km of alternating layers of basalt rock and loosely consolidated sediments. Alternating layers of hard rock and “soft” loose sediments tend to attenuate seismic energy greater than uniform rock due to scattering and damping. The INL PSHA incorporated the effects of the sedimentary interbedded basalt stratigraphy by developing site-specific shear (S) wave velocity profiles. The profiles were used in the PSHA to model the near-surface site response by developing site-specific stochastic attenuation relationships.

  4. Risk assessment for safety laboratories in Politeknik Negeri Medan

    Science.gov (United States)

    Viyata Sundawa, Bakti; Hutajulu, Elferida; Sirait, Regina; Banurea, Waldemar; Indrayadi; Mulyadi, Sangap

    2017-09-01

    International Labour Organization (ILO) estimated 2.34 million people die each year because accidents and diseases in workplace. It also impact to economic losses in some countries. It need to do safety and healthy in working environment especially in laboratory. Identification of potential hazards and risks must be done in Telecommunication Laboratory Politeknik Negeri Medan. Therefore, this study was assessed 5 of potential hazards and risks in our laboratory by Likert Scale. This object was divided into 2 assessment namely likelihood of hazards and severity of consequences. Collecting data is taken from questionnaire who involved 100 students at random academic level. The result showed The highest score is chemical hazards 73.2% in likelihood of hazards and electrical hazards 85% in severity of consequences. This condition is classified as “high” state. Big attention must be given to “high” state because it can help us to determine mitigate action.

  5. Metallurgical flow recognition by random signal analysis of stress wave emissions

    International Nuclear Information System (INIS)

    Woodward, B.

    1973-01-01

    The present study involves detailed random signal analysis of individual 'bursts' of emission with objective of 'reading' their frequency spectra to identify specific metallurgical mechanisms. Mild steel unnotched testpieces were used in the early stages of development of this research. From a fracture mechanics point of view this research could lead to a powerful nondestructive testing device allowing identification of interior, instead of only surface, deformation mechanisms. (author)

  6. Measures to restore metallurgical mine wasteland using ecological restoration technologies: A case study at Longnan Rare Earth Mine

    Science.gov (United States)

    Rao, Yunzhang; Gu, Ruizhi; Guo, Ruikai; Zhang, Xueyan

    2017-01-01

    Whereas mining activities produce the raw materials that are crucial to economic growth, such activities leave extensive scarring on the land, contributing to the waste of valuable land resources and upsetting the ecological environment. The aim of this study is therefore to investigate various ecological technologies to restore metallurgical mine wastelands. These technologies include measures such as soil amelioration, vegetation restoration, different vegetation planting patterns, and engineering technologies. The Longnan Rare Earth Mine in the Jiangxi Province of China is used as the case study. The ecological restoration process provides a favourable reference for the restoration of a metallurgical mine wasteland.

  7. Radiation chemistry at the Metallurgical Laboratory, Manhattan Project, University of Chicago (1942-1947) and the Argonne National Laboratory, Argonne, IL (1947-1984)

    International Nuclear Information System (INIS)

    Gordon, S.

    1989-01-01

    The events in radiation chemistry which occurred in the Manhattan Project Laboratory and Argonne National Laboratory during World War II are reviewed. Research programmes from then until the present day are presented, with emphasis on pulse radiolysis studies. (UK)

  8. Explosion bonding of dissimilar materials for fabricating APS front end components: Analysis of metallurgical and mechanical properties and UHV applications

    International Nuclear Information System (INIS)

    Li, Yuheng; Shu, Deming; Kuzay, T.M.

    1994-01-01

    The front end beamline section contains photon shutters and fixed masks. These components are made of OFHC copper and GlidCOP AL-15. Stainless steels (304 or 316) are also used for connecting photon shutters and fixed masks to other components that operate in the ultrahigh vacuum system. All these dissimilar materials need to be joined together. However, bonding these dissimilar materials is very difficult because of their different mechanical and thermal properties and incompatible metallurgical properties. Explosion bonding is a bonding method in which the controlled energy of a detonating explosive is used to create a metallurgical bond between two or more similar or dissimilar materials. No intermediate filler metal, for example, a brazing compound or soldering alloy, is needed to promote bonding, and no external heat need be applied. A study of the metallurgical and mechanical properties and YGV applications of GlidCop AL-15, OFHC copper, and 304 stainless steel explosion-bonded joints has been done. This report contains five parts: an ultrasonic examination of explosion-bonded joints and a standard setup; mechanical-property and thermal-cycle tests of GlidCop AL-15/304 stainless steel explosion-bonded joints; leak tests of a GlidCop AL-15/304 stainless steel explosion-bonded interfaces for UHV application; metallurgical examination of explosion-bonded interfaces and failure analysis, and discussion and conclusion

  9. Metallurgical bond between magnesium AZ91 alloy and aluminium plasma sprayed coatings

    Czech Academy of Sciences Publication Activity Database

    Kubatík, Tomáš František; Pala, Zdeněk; Neufuss, Karel; Vilémová, Monika; Mušálek, Radek; Stoulil, J.; Slepička, P.; Chráska, Tomáš

    2015-01-01

    Roč. 282, November (2015), s. 163-170 ISSN 0257-8972 R&D Projects: GA ČR(CZ) GP14-31538P Institutional support: RVO:61389021 Keywords : Plasma spraying * AZ91 magnesium alloy * Aluminium * Metallurgical bond * X-ray diffraction Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 2.139, year: 2015 http://www.sciencedirect.com/science/article/pii/S0257897215303297

  10. Study of the Metallurgical Aspects of Steel Micro-Alloying by Titan

    Directory of Open Access Journals (Sweden)

    Kijac, J.

    2006-01-01

    Full Text Available The metal properties upgrading applying it’s alloying with the simultaneous limitation of the impurities represents a prospective possibility of the metallurgical production further development. The interaction of the alloying substance active element with oxygen in metal and adjacent multiphase environment occurs under the actual conditions. Present paper is oriented particularly to the thermodynamic aspects of deoxygenation by titan in process of production of micro alloyed low carbon steel in two plants (oxygen converter 1-OC1 and 2-OC2 with the different effect of micro-alloy exploitation. Analysis of the effect of the metallurgical factors on the titan smelting loss in micro-alloyed steel production points at the need to master the metal preparation for the alloying and especially has got the decisive effect upon the oxidizing ability and rate of the slag phase availability. When comparing the micro-alloying matter yield among the individual production units, disclosed have been better results obtained in plant OC 2. Confirmed has been the effect of the slag amount (average amount of 7,3 t at OC 1 and 5,83 t at OC 2 and its quality during the steel tapping as one among the most significant factors affecting the alloying process and which also represent its oxidizing potential.

  11. Conservation of mining and metallurgic arachaeologic wooden objects by impregnation and radiation curing

    International Nuclear Information System (INIS)

    Schaudy, R.; Slais, E.; Eibner, C.

    1983-05-01

    The conservation of mining and metallurgic archaeologic wooden objects of different grade of destruction by impregnation with radiation-curable impregnating agents followed by in-situ-curing with gamma rays is described. Dry objects have been consolidated after cautious cleaning, whereas wet findings had to be freezedried first. The results are discussed. (Author) [de

  12. Centrifugal Casting Features/Metallurgical Characterization of Aluminum Alloys

    International Nuclear Information System (INIS)

    Chirita, G.; Soares, D.; Cruz, D.; Silva, F. S.; Stefanescu, I.

    2008-01-01

    This paper deals with the study of centrifugal effects on aluminium castings under high G values. Most of the studies in this domain (FGMs obtained by centrifugal casting) deal with functionally graded composites reinforced with a solid phase such as silicon particles or others. However, in this study it will be shown that unreinforced aluminium alloys may be significantly influenced by the centrifugal effect and that functionally graded castings are also obtained. It has been observed that the centrifugal effect may increase in some alloys, depending on the relative position in the castings, the rupture strength by approx. 50%, and rupture strain by about 300%, as compared to the gravity casting technique. The Young's modulus may also increase by about 20%. It has also been reported that in vertical centrifugal castings there are mainly three aspects that affect the components thus obtained, namely: fluid dynamics; vibration (inherent to the system); and centrifugal force. These features have a different effect on the castings depending on the aluminium alloy. In this paper, an analysis of the most important effects of the centrifugal casting process on metallurgical features is conducted. A solidification characterization at several points along the mould will be made in order to have an accurate idea of both the fluid dynamics inside the mould during the casting and the solidification behavior in different parts of the component. These two analyses will be related to the metallurgical properties (phase distribution; SDAS; eutectic silicon content and shape, pores density and shape) along the component and mainly along the direction of the centrifugal pressure. A comparison between castings obtained by both centrifugal casting technique and gravity casting technique is made for reference (gravity casting)

  13. Health and safety training for hazardous waste site activities at Oak Ridge National Laboratory: Implementation of OSHA 29 CFR 1910.120(e)

    International Nuclear Information System (INIS)

    White, D.A.

    1988-01-01

    Among the requirements set forth by the interim final rule, 29 CFR Part 1910.120, promulgated by the Occupational Safety and Health Administration (OSHA) in response to the Superfund Amendments and Reauthorization Act of 1986 (SARA), are specific provisions for health and safety training of employees involved in hazardous waste operations. These training provisions require a minimum of 40 hours of initial instruction off the site for employees involved in corrective operations and cleanup activities at hazardous waste sites. A less detailed training requirement of 24 hours is specified for employees working in more routine treatment, storage, and disposal activities. Managers and supervisors who are directly responsible for or who supervise employees engaged in hazardous waste operations must complete 8 additional hours of training related to management of hazardous waste site activities. Consistent with the intent of 29 CFR 1910.120, a training program has been developed at Oak Ridge National Laboratory (ORNL) to comply with the need to protect the safety and health of hazardous waste workers. All hourly requirements specified in the interim final rule are met by a comprehensive program structure involving three stages of training. This paper will outline and discuss the content of each of these stages of the program. The involvement of various ORNL organizations in facilitating the training will be highlighted. Implementation strategies will be discussed as well as progress made to date

  14. Wear and corrosion performance of metallurgical coatings in sodium

    International Nuclear Information System (INIS)

    Johnson, R.N.; Farwick, D.G.

    1980-01-01

    The friction, wear, and corrosion performance of several metallurgical coatings in 200 to 650 0 C sodium are reviewed. Emphasis is placed on those coatings which have successfully passed the qualification tests necessary for acceptance in breeder reactor environments. Tests include friction, wear, corrosion, thermal cycling, self-welding, and irradiation exposure under as-prototypic-as-possible service conditions. Materials tested were coatings of various refractory metal carbides in metallic binders, nickel-base and cobalt-base alloys and intermetallic compounds such as the aluminides and borides. Coating processes evaluated included plasma spray, detonation gun, sputtering, spark-deposition, and solid-state diffusion

  15. Survey of safety practices among hospital laboratories in Oromia Regional State, Ethiopia.

    Science.gov (United States)

    Sewunet, Tsegaye; Kebede, Wakjira; Wondafrash, Beyene; Workalemau, Bereket; Abebe, Gemeda

    2014-10-01

    Unsafe working practices, working environments, disposable waste products, and chemicals in clinical laboratories contribute to infectious and non-infectious hazards. Staffs, the community, and patients are less safe. Furthermore, such practices compromise the quality of laboratory services. We conducted a study to describe safety practices in public hospital laboratories of Oromia Regional State, Ethiopia. Randomly selected ten public hospital laboratories in Oromia Regional State were studied from Oct 2011- Feb 2012. Self-administered structured questionnaire and observation checklists were used for data collection. The respondents were heads of the laboratories, senior technicians, and safety officers. The questionnaire addressed biosafety label, microbial hazards, chemical hazards, physical/mechanical hazards, personal protective equipment, first aid kits and waste disposal system. The data was analyzed using descriptive analysis with SPSS version16 statistical software. All of the respondents reported none of the hospital laboratories were labeled with the appropriate safety label and safety symbols. These respondents also reported they may contain organisms grouped under risk group IV in the absence of microbiological safety cabinets. Overall, the respondents reported that there were poor safety regulations or standards in their laboratories. There were higher risks of microbial, chemical and physical/mechanical hazards. Laboratory safety in public hospitals of Oromia Regional State is below the standard. The laboratory workers are at high risk of combined physical, chemical and microbial hazards. Prompt recognition of the problem and immediate action is mandatory to ensure safe working environment in health laboratories.

  16. Metallurgical aspects of corrosion resistance of aluminium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Reboul, M.C. [Pechiney Voreppe Research Centre France (France); CNRS-INP Grenoble, SIMAP-INP Grenoble, Universite France, Saint Martin d' Heres Cedex (France); Baroux, B. [SIMAP-INP, Grenoble University, 1130 rue de la piscine, Saint Martin d' Heres Cedex (France)

    2011-03-15

    Aluminium is the second most often used metal after steel. In this paper, the most current uses of aluminium alloys are first summarised. Then, their different corrosion modes, i.e. pitting, crevice, filiform, galvanic and structural corrosion (including inter-granular, exfoliation and stress corrosion cracking) are reviewed, with particular attention paid to metallurgical factors controlling the corrosion process. For each mode, some instances of possible in-service failure are given, followed by the discussion of the involved mechanisms and the presentation of appropriate solutions to prevent corrosion. Last, passivity and polarisation behaviour are discussed with reference to stainless steels. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Mechanical and Metallurgical Properties of Various Nickel-Titanium Rotary Instruments

    OpenAIRE

    Shim, Kyu-Sang; Oh, Soram; Kum, KeeYeon; Kim, Yu-Chan; Jee, Kwang-Koo; Chang, Seok Woo

    2017-01-01

    The aim of this study was to investigate the effect of thermomechanical treatment on mechanical and metallurgical properties of nickel-titanium (NiTi) rotary instruments. Eight kinds of NiTi rotary instruments with sizes of ISO #25 were selected: ProFile, K3, and One Shape for the conventional alloy; ProTaper NEXT, Reciproc, and WaveOne for the M-wire alloy; HyFlex CM for the controlled memory- (CM-) wire; and TF for the R-phase alloy. Torsional fracture and cyclic fatigue fracture tests were...

  18. Key Lake Mining Corporation metallurgical complex

    International Nuclear Information System (INIS)

    Lendrum, F.C.

    1984-02-01

    The Key Lake uranium mine is located in Saskatchewan, 550 km northeast of Saskatoon. It began operations in 1983, and is licensed and regulated by both Saskatchewan government agencies and the Canadian Atomic Energy Control Board. This report examines the metallurgical processes used at the mill and discusses the spills that occurred in the first four months the mine was in operation. It finds that all spills of an acidic nature in the mill were small amounts in the CCD or solution pretreatment sections. Contingency procedures are in place and sumps are capable of handling spills. The only major change in design contemplated will be converting the secondary crushing from the use of an impact crusher to the use of a semi-autogeneous grinding mill. The monitoring program set out by the AECB and Saskatchewan Environment is thorough. It monitors effluents and water pathways, and includes aquatic biota and sediments. Air monitoring is also required by Saskatchewan Environment

  19. Highly sensitive luminescence method of scandium determination in the products of metallurgical reprocessing

    International Nuclear Information System (INIS)

    Matveets, M.A.; Akhmetova, S.D.

    1988-01-01

    Highly sensitive reaction of scandium with 1,10-phenanthroline and eosin is used for the development of luminescence method of its determination in metallurgical products. The effect of interfering elements is eliminated by scandium extraction with monocarboxylic acids. The method permits to determine scandium content from 5 x 10 -5 % (Sr 0.15 - 0.25)

  20. Automatic Processing of Metallurgical Abstracts for the Purpose of Information Retrieval. Final Report.

    Science.gov (United States)

    Melton, Jessica S.

    Objectives of this project were to develop and test a method for automatically processing the text of abstracts for a document retrieval system. The test corpus consisted of 768 abstracts from the metallurgical section of Chemical Abstracts (CA). The system, based on a subject indexing rational, had two components: (1) a stored dictionary of words…

  1. Review Article: Hazards of Chaotic Importation, Certification ...

    African Journals Online (AJOL)

    Review Article: Hazards of Chaotic Importation, Certification, Distribution and Marketing of Medical Laboratory Consumables in Nigeria. BC Nlemadim. Abstract. No abstract. Journal of Medical Laboratory Science Vol.12(2) 2003: 25 - 27. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT ...

  2. Safety in laboratories: Indian scenario.

    Science.gov (United States)

    Mustafa, Ajaz; Farooq, A Jan; Qadri, Gj; S A, Tabish

    2008-07-01

    Health and safety in clinical laboratories is becoming an increasingly important subject as a result of emergence of highly infectious diseases such as Hepatitis and HIV. A cross sectional study was carried out to study the safety measures being adopted in clinical laboratories of India. Heads of laboratories of teaching hospitals of India were subjected to a standardized, pretested questionnaire. Response rate was 44.8%. only 60% of laboratories had person in-charge of safety in laboratory. Seventy three percent of laboratories had safety education program regarding hazards. In 91% of laboratories staff is using protective clothing while working in laboratories. Hazardous material regulations are followed in 78% of laboratories. Regular health check ups are carried among laboratory staff in 43.4% of laboratories.Safety manual is available in 56.5% of laboratories. 73.9% of laboratories are equipped with fire extinguishers. Fume cupboards are provided in 34.7% of laboratories and they are regularly checked in 87.5% of these laboratories. In 78.26% of laboratories suitable measures are taken to minimize formation of aerosols.In 95.6% of laboratories waste is disposed off as per bio-medical waste management handling rules. Laboratory of one private medical college was accredited with NABL and safety parameters were better in that laboratory. Installing safety engineered devices apparently contributes to significant decrease in injuries in laboratories; laboratory safety has to be a part of overall quality assurance programme in hospitals. Accreditation has to be made necessary for all laboratories.

  3. The Alcohol Use Disorders Identification Test for Consumption (AUDIT-C is more useful than pre-existing laboratory tests for predicting hazardous drinking: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Hideki Fujii

    2016-05-01

    Full Text Available Abstract Background It is important to screen for alcohol consumption and drinking customs in a standardized manner. The aim of this study was 1 to investigate whether the AUDIT score is useful for predicting hazardous drinking using optimal cutoff scores and 2 to use multivariate analysis to evaluate whether the AUDIT score was more useful than pre-existing laboratory tests for predicting hazardous drinking. Methods A cross-sectional study using the Alcohol Use Disorders Identification Test (AUDIT was conducted in 334 outpatients who consulted our internal medicine department. The patients completed self-reported questionnaires and underwent a diagnostic interview, physical examination, and laboratory testing. Results Forty (23 % male patients reported daily alcohol consumption ≥ 40 g, and 16 (10 % female patients reported consumption ≥ 20 g. The optimal cutoff values of hazardous drinking were calculated using a 10-fold cross validation, resulting in an optimal AUDIT score cutoff of 8.2, with a sensitivity of 95.5 %, specificity of 87.0 %, false positive rate of 13.0 %, false negative rate of 4.5 %, and area under the receiver operating characteristic curve of 0.97. Multivariate analysis revealed that the most popular short version of the AUDIT consisting solely of its three consumption items (AUDIT-C and patient sex were significantly associated with hazardous drinking. The aspartate transaminase (AST/alanine transaminase (ALT ratio and mean corpuscular volume (MCV were weakly significant. Conclusions This study showed that the AUDIT score and particularly the AUDIT-C score were more useful than the AST/ALT ratio and MCV for predicting hazardous drinking.

  4. Potential laboratory health hazard of /sup 210/Pb and a simple procedure for separation of /sup 210/Pb from the daughters /sup 210/Bi and /sup 210/Po

    Energy Technology Data Exchange (ETDEWEB)

    Pounds, J G [Arkansas Univ., Little Rock (USA). Medical Center; Blakemore, W M [The National Center for Toxicological Research, Department of Health and Human Services, Food and Drug Administration, Jefferson, AR, USA

    1981-12-01

    Lead 210 (Radium D) is a naturally occurring radionuclide which is frequently used in toxicological studies due to its long half-life. The use of /sup 210/Pb in tracer studies poses two problems. First /sup 210/Pb, along with its daughters /sup 210/Bi and /sup 210/Po, presents a significant health hazard to laboratory personnel. Second, the presence of the daughter products may interfere with the detection of /sup 210/Pb, particularly by techniques which discriminate poorly between different radioactive emissions, e.g. autoradiography. The potential laboratory health hazards of /sup 210/Pb and its daughters are briefly reviewed and a simple dithiozone extraction procedure which allows quantitative separation of /sup 210/Pb from the daughters /sup 210/Po and /sup 210/Bi is described. The purified /sup 210/Pb may then be utilized to reduce the health hazard from the daughter products and to construct calibration curves for the quantitation of /sup 210/Pb in the presence of /sup 210/Bi and /sup 210/Po by liquid scintillation counting.

  5. Results of Testing the Relative Oxidizing Hazard of Wipes and KMI Zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Ams, Bridget Elaine [Los Alamos National Laboratory

    2017-05-09

    This report includes the results from testing performed on the relative oxidizing hazard of a number of organic sorbing wipe materials, as well as KMI zeolite. These studies were undertaken to address a need by the Los Alamos National Laboratory (LANL) Hazardous Materials Management group, which requires a material that can sorb small spills in a glovebox without creating a disposal hazard due to the potential for oxidation reactions, as requested in Request for Testing of Wipes and Zeolite for Los Alamos National Laboratory Hazardous Materials Group (NPl-7) (NPl-7-17-002) and Request for Testing of Chamois Material for Los Alamos National Laboratory Hazardous Materials Group (NPl-7) (NPl-7-17-005). This set oftests is a continuation of previous testing described in Results from Preparation and Testing of Sorbents Mixed with (DWT-RPT-003), which provided data for the Waste Isolation Pilot Plant's Basis of Knowledge. The Basis of Knowledge establishes criteria for evaluating transuranic (TRU) waste that contains oxidizing chemicals.

  6. Contingency plan for the Lawrence Livermore National Laboratory, Site 300, hazardous waste operations

    International Nuclear Information System (INIS)

    Gonzalez, M.A.

    1983-01-01

    This contingency plan for hazardous waste release provides guidance for coordinating response efforts. With a goal to minimize hazards to human health and life; and protect livestock, wildlife, the environment, and property in the event of a fire, explosion, or any unplanned release of hazardous substances or mixtures to the air, water, or soil. In this document, hazardous waste includes all waste substances or mixtures that: contain any of the hazardous substances listed in the Resource Conservation and Recovery Act; have the characteristic of being toxic, flammable, reactive, corrosive, an irritant, and/or a strong sensitizer; are radioactive and are used in experiments at Site 300; or could have a significant effect on the environment. This Plan includes an overview of emergency response capabilities; and responsibilities assigned to both LLNL and non-LLNL emergency response personel

  7. Occupational safety and health status of medical laboratories in Kajiado County, Kenya.

    Science.gov (United States)

    Tait, Fridah Ntinyari; Mburu, Charles; Gikunju, Joseph

    2018-01-01

    Despite the increasing interest in Occupational Safety and Health (OSH), seldom studies are available on OSH in medical laboratories from developing countries in general although a high number of injuries occur without proper documentation. It is estimated that every day 6,300 people die as a result of occupational accidents or work-related diseases resulting in over 2.3 million deaths per year. Medical laboratories handle a wide range of materials, potentially dangerous pathogenic agents and exposes health workers to numerous potential hazards. This study evaluated the status of OSH in medical laboratories in Kajiado County, Kenya. The objectives included establishment of biological, chemical and physical hazards; reviewing medical laboratories control measures; and enumerating factors hindering implementation of good practices in OSH. This was a cross-sectional descriptive study research design. Observation check lists, interview schedules and structured questionnaires were used. The study was carried out in 108 medical laboratories among 204 sampled respondents. Data was analysed using statistical package for social science (SPSS) 20 software. The commonest type of hazards in medical laboratories include; bacteria (80%) for Biological hazards; handling un-labelled and un-marked chemicals (38.2%) for chemical hazards; and laboratory equipment's dangerously placed (49.5%) for Physical hazards. According to Pearson's Product Moment Correlation analysis, not-wearing personal protective equipment's was statistically associated with exposure to hazards. Individual control measures were statistically significant at 0.01 significance level. Only 65.1% of the factors influencing implementation of OSH in medical laboratories were identified. Training has the highest contribution to good OSH practices.

  8. Flood-hazard analysis of four headwater streams draining the Argonne National Laboratory property, DuPage County, Illinois

    Science.gov (United States)

    Soong, David T.; Murphy, Elizabeth A.; Straub, Timothy D.; Zeeb, Hannah L.

    2016-11-22

    Results of a flood-hazard analysis conducted by the U.S. Geological Survey, in cooperation with the Argonne National Laboratory, for four headwater streams within the Argonne National Laboratory property indicate that the 1-percent and 0.2-percent annual exceedance probability floods would cause multiple roads to be overtopped. Results indicate that most of the effects on the infrastructure would be from flooding of Freund Brook. Flooding on the Northeast and Southeast Drainage Ways would be limited to overtopping of one road crossing for each of those streams. The Northwest Drainage Way would be the least affected with flooding expected to occur in open grass or forested areas.The Argonne Site Sustainability Plan outlined the development of hydrologic and hydraulic models and the creation of flood-plain maps of the existing site conditions as a first step in addressing resiliency to possible climate change impacts as required by Executive Order 13653 “Preparing the United States for the Impacts of Climate Change.” The Hydrological Simulation Program-FORTRAN is the hydrologic model used in the study, and the Hydrologic Engineering Center‒River Analysis System (HEC–RAS) is the hydraulic model. The model results were verified by comparing simulated water-surface elevations to observed water-surface elevations measured at a network of five crest-stage gages on the four study streams. The comparison between crest-stage gage and simulated elevations resulted in an average absolute difference of 0.06 feet and a maximum difference of 0.19 feet.In addition to the flood-hazard model development and mapping, a qualitative stream assessment was conducted to evaluate stream channel and substrate conditions in the study reaches. This information can be used to evaluate erosion potential.

  9. Metallurgical Characterization of Reduced Activation Martensitic Steel F-82H Modified

    International Nuclear Information System (INIS)

    Fernandez, P.; Lapena, J.; Lancha, A.M.; Gomez-Briceno, D.; Schirra, M.

    1999-12-01

    During 1995-1998 within of research and development programs on reduced ferritic/martensitic steels for fusion, metallurgical characterization of 8Cr-2WVTa steel, denominated F-28H modified, have been carried out. The work has focused on studying the microstructural and mechanical (tensile, creep, low cycle fatigue and charpy) characteristics of as-received state and aged material in the temperature range 300 degree centigrade to 600 degree centigrade for periods up to 5000 h. (Author) 45 refs

  10. Fatigue analysis of a structure with welds considering metallurgical discontinuities

    International Nuclear Information System (INIS)

    Cabrillat, M.T.; Lejeail, Y.

    1995-01-01

    Within the frameworks of a creep-fatigue experimental program, called EVASION, thermo-mechanical tests were conducted on two mock-ups, the first one was fully machined and the second one welded and then machined (in order to eliminate geometrical discontinuities, thus only leaving metallurgical discontinuities). These two mock-ups were submitted to exactly the same loading history. Plastic analyses with a correct description of mechanical properties and fatigue strength of materials are conducted and compared with experimental results in order to highlight the influence of the weld. (author). 3 refs., 4 figs., 3 tabs

  11. Natural hazard management high education: laboratory of hydrologic and hydraulic risk management and applied geomorphology

    Science.gov (United States)

    Giosa, L.; Margiotta, M. R.; Sdao, F.; Sole, A.; Albano, R.; Cappa, G.; Giammatteo, C.; Pagliuca, R.; Piccolo, G.; Statuto, D.

    2009-04-01

    The Environmental Engineering Faculty of University of Basilicata have higher-level course for students in the field of natural hazard. The curriculum provides expertise in the field of prediction, prevention and management of earthquake risk, hydrologic-hydraulic risk, and geomorphological risk. These skills will contribute to the training of specialists, as well as having a thorough knowledge of the genesis and the phenomenology of natural risks, know how to interpret, evaluate and monitor the dynamic of environment and of territory. In addition to basic training in the fields of mathematics and physics, the course of study provides specific lessons relating to seismic and structural dynamics of land, environmental and computational hydraulics, hydrology and applied hydrogeology. In particular in this course there are organized two connected examination arguments: Laboratory of hydrologic and hydraulic risk management and Applied geomorphology. These course foresee the development and resolution of natural hazard problems through the study of a real natural disaster. In the last year, the work project has regarded the collapse of two decantation basins of fluorspar, extracted from some mines in Stava Valley, 19 July 1985, northern Italy. During the development of the course, data and event information has been collected, a guided tour to the places of the disaster has been organized, and finally the application of mathematical models to simulate the disaster and analysis of the results has been carried out. The student work has been presented in a public workshop.

  12. Some Recent Technology Developments From The Uk's National Nuclear Laboratory To Enable Hazard Characterisation For Nuclear Decommissioning Applications

    International Nuclear Information System (INIS)

    Farfan, E.; Foley, T.

    2010-01-01

    Under its programme of self investment Internal Research and Development (IR and D), the UK's National Nuclear Laboratory (NNL) is addressing the requirement for development in technology to enable hazard characterisation for nuclear decommissioning applications. Three such examples are described here: (1) RadBall developed by the NNL (patent pending) is a deployable baseball-sized radiation mapping device which can, from a single location, locate and quantify radiation hazards. RadBall offers a means to collect information regarding the magnitude and distribution of radiation in a given cell, glovebox or room to support the development of a safe, cost effective decontamination strategy. RadBall requires no electrical supplies and is relatively small, making it easy to be deployed and used to map radiation hazards in hard to reach areas. Recent work conducted in partnership with the Savannah River National Laboratory (SRNL) is presented. (2) HiRAD (patent pending) has been developed by the NNL in partnership with Tracerco Ltd (UK). HiRAD is a real-time, remotely deployed, radiation detection device designed to operate in elevated levels of radiation (i.e. thousands and tens of thousands of Gray) as seen in parts of the nuclear industry. Like the RadBall technology, the HiRAD system does not require any electrical components, the small dimensions and flexibility of the device allow it to be positioned in difficult to access areas (such as pipe work). HiRAD can be deployed as a single detector, a chain, or as an array giving the ability to monitor large process areas. Results during the development and deployment of the technology are presented. (3) Wireless Sensor Network is a NNL supported development project led by the University of Manchester (UK) in partnership with Oxford University (UK). The project is concerned with the development of wireless sensor network technology to enable the underwater deployment and communication of miniaturised probes allowing pond

  13. Magnetohydrodynamic research in fusion blanket engineering and metallurgical processing

    International Nuclear Information System (INIS)

    Tokuhiro, A.

    1991-11-01

    A review of recent research activities in liquid metal magnetohydrodynamics (LM-MHDs) is presented in this article. Two major reserach areas are discussed. The first topic involves the thermomechanical design issues in a proposed tokamak fusion reactor. The primary concerns are in the magneto-thermal-hydraulic performance of a self-cooled liquid metal blanket. The second topic involves the application of MHD in material processing in the metallurgical and semiconductor industries. The two representative applications are electromagnetic stirring (EMS) of continuously cast steel and the Czochralski (CZ) method of crystal growth in the presence of a magnetic field. (author) 24 figs., 10 tabs., 136 refs

  14. Environmental assessment for the proposed CMR Building upgrades at the Los Alamos National Laboratory, Los Alamos, New Mexico. Final document

    International Nuclear Information System (INIS)

    1997-01-01

    In order to maintain its ability to continue to conduct uninterrupted radioactive and metallurgical research in a safe, secure, and environmentally sound manner, the US Department of Energy (DOE) proposes to upgrade the Los Alamos National Laboratory (LANL) Chemistry and Metallurgy Research (CMR) Building. The building was built in the early 1950s to provide a research and experimental facility for analytical chemistry, plutonium and uranium chemistry, and metallurgy. Today, research and development activities are performed involving nuclear materials. A variety of radioactive and chemical hazards are present. The CMR Building is nearing the end of its original design life and does not meet many of today's design codes and standards. The Proposed Action for this Environmental Assessment (EA) includes structural modifications to some portions of the CMR Building which do not meet current seismic criteria for a Hazard Category 2 Facility. Also included are upgrades and improvements in building ventilation, communications, monitoring, and fire protection systems. This EA analyzes the environmental effects of construction of the proposed upgrades. The Proposed Action will have no adverse effects upon agricultural and cultural resources, wetlands and floodplains, endangered and threatened species, recreational resources, or water resources. The Proposed Action would have negligible effects on human health and transportation, and would not pose a disproportionate adverse health or environmental impact on minority or low-income populations within an 80 kilometer (50 mile) radius of the CMR Building

  15. Environmental assessment for the proposed CMR Building upgrades at the Los Alamos National Laboratory, Los Alamos, New Mexico. Final document

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-04

    In order to maintain its ability to continue to conduct uninterrupted radioactive and metallurgical research in a safe, secure, and environmentally sound manner, the US Department of Energy (DOE) proposes to upgrade the Los Alamos National Laboratory (LANL) Chemistry and Metallurgy Research (CMR) Building. The building was built in the early 1950s to provide a research and experimental facility for analytical chemistry, plutonium and uranium chemistry, and metallurgy. Today, research and development activities are performed involving nuclear materials. A variety of radioactive and chemical hazards are present. The CMR Building is nearing the end of its original design life and does not meet many of today`s design codes and standards. The Proposed Action for this Environmental Assessment (EA) includes structural modifications to some portions of the CMR Building which do not meet current seismic criteria for a Hazard Category 2 Facility. Also included are upgrades and improvements in building ventilation, communications, monitoring, and fire protection systems. This EA analyzes the environmental effects of construction of the proposed upgrades. The Proposed Action will have no adverse effects upon agricultural and cultural resources, wetlands and floodplains, endangered and threatened species, recreational resources, or water resources. The Proposed Action would have negligible effects on human health and transportation, and would not pose a disproportionate adverse health or environmental impact on minority or low-income populations within an 80 kilometer (50 mile) radius of the CMR Building.

  16. Risk assessment and optimization (ALARA) analysis for the environmental remediation of Brookhaven National Laboratory's hazardous waste management facility

    International Nuclear Information System (INIS)

    Dionne, B.J.; Morris, S. III; Baum, J.W.

    1998-03-01

    The Department of Energy's (DOE) Office of Environment, Safety, and Health (EH) sought examples of risk-based approaches to environmental restoration to include in their guidance for DOE nuclear facilities. Extensive measurements of radiological contamination in soil and ground water have been made at Brookhaven National Laboratory's Hazardous Waste Management Facility (HWMF) as part of a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation process. This provided an ideal opportunity for a case study. This report provides a risk assessment and an open-quotes As Low as Reasonably Achievableclose quotes (ALARA) analysis for use at other DOE nuclear facilities as an example of a risk-based decision technique

  17. Obtaining of dense and highly porous ceramic materials from metallurgical slag

    OpenAIRE

    Fidancevska E.; Mangutova B.; Milosevski D.; Milosevski M.; Bossert J.

    2003-01-01

    Glass-ceramics in a dense and highly porous form can be obtained from metallurgical slag and waste glass of TV monitors. Using polyurethane foam as pore creator, a highly porous system with porosity of 65 ± 5 %, E-modulus and flexural strength of 8 ± 3 GPa and 13 ± 3.5 MPa respectively can be obtained. This porous material had durability (mass loss) of 0.03 % in 0.1 M HCl that is identical with the durability of a dense composite.

  18. Effect of glass-ceramic-processing cycle on the metallurgical properties of candidate alloys for actuator housings

    Energy Technology Data Exchange (ETDEWEB)

    Weirick, L.J.

    1982-01-01

    This report summarizes the results from an investigation on the effect of a glass ceramic processing cycle on the metallurgical properties of metal candidates for actuator housings. The cycle consists of a 980/sup 0/C sealing step, a 650/sup 0/C crystallization step and a 475/sup 0/C annealing step. These temperatue excursions are within the same temperature regime as annealing and heat treating processes normally employed for metals. Therefore, the effect of the processing cycle on metallurgical properties of microstructure, strength, hardness and ductility were examined. It was found that metal candidates which are single phase or solid solution alloys (such as 21-6-9, Hastelloy C-276 and Inconel 625) were not affected whereas multiphase or precipitation hardened alloys (such as Inconel 718 and Titanium ..beta..-C) were changed by the processing cycle for the glass ceramic.

  19. Construction and operation of replacement hazardous waste handling facility at Lawrence Berkeley Laboratory. Environmental Assessment

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    The US Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0423, for the construction and operation of a replacement hazardous waste handling facility (HWHF) and decontamination of the existing HWHF at Lawrence Berkeley Laboratory (LBL), Berkeley, California. The proposed facility would replace several older buildings and cargo containers currently being used for waste handling activities and consolidate the LBL`s existing waste handling activities in one location. The nature of the waste handling activities and the waste volume and characteristics would not change as a result of construction of the new facility. Based on the analysis in the EA, DOE has determined that the proposed action would not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969, 42 USC. 4321 et seq. Therefore, an environmental impact statement is not required.

  20. Bio-alteration of metallurgical wastes by Pseudomonas aeruginosa in a semi flow-through reactor.

    Science.gov (United States)

    van Hullebusch, Eric D; Yin, Nang-Htay; Seignez, Nicolas; Labanowski, Jérôme; Gauthier, Arnaud; Lens, Piet N L; Avril, Caroline; Sivry, Yann

    2015-01-01

    Metallurgical activities can generate a huge amount of partially vitrified waste products which are either landfilled or recycled. Lead Blast Furnace (LBF) slags are often disposed of in the vicinity of metallurgical plants, and are prone to weathering, releasing potentially toxic chemical components into the local environment. To simulate natural weathering in a slag heap, bioweathering of these LBF slags was studied in the presence of a pure heterotrophic bacterial strain (Pseudomonas aeruginosa) and in a semi-flow through reactor with intermittent leachate renewal. The evolution of water chemistry, slag composition and texture were monitored during the experiments. The cumulative bulk release of dissolved Fe, Si, Ca and Mg doubled in the presence of bacteria, probably due to the release of soluble complexing organic molecules (e.g. siderophores). In addition, bacterial biomass served as the bioadsorbent for Pb, Fe and Zn as 70-80% of Pb and Fe, 40-60% of Zn released are attached to and immobilized by the bacterial biomass. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Metallurgical characterization of pulsed current gas tungsten arc, friction stir and laser beam welded AZ31B magnesium alloy joints

    International Nuclear Information System (INIS)

    Padmanaban, G.; Balasubramanian, V.

    2011-01-01

    This paper reports the influences of welding processes such as friction stir welding (FSW), laser beam welding (LBW) and pulsed current gas tungsten arc welding (PCGTAW) on mechanical and metallurgical properties of AZ31B magnesium alloy. Optical microscopy, scanning electron microscopy, transmission electron microscopy and X-Ray diffraction technique were used to evaluate the metallurgical characteristics of welded joints. LBW joints exhibited superior tensile properties compared to FSW and PCGTAW joints due to the formation of finer grains in weld region, higher fusion zone hardness, the absence of heat affected zone, presence of uniformly distributed finer precipitates in weld region.

  2. HMPT: Hazardous Waste Transportation Live 27928, Test 27929

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Lewis Edward [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-17

    HMPT: Hazardous Waste Transportation (Live 27928, suggested one time and associated Test 27929, required initially and every 36 months) addresses the Department of Transportation (DOT) function-specific training requirements of the hazardous materials packagings and transportation (HMPT) Los Alamos National Laboratory (LANL) lab-wide training. This course addresses the requirements of the DOT that are unique to hazardous waste shipments. Appendix B provides the Title 40 Code of Federal Regulations (CFR) reference material needed for this course.

  3. Safety in the Chemical Laboratory: Certifications for Professional Hazardous Materials and Waste Management.

    Science.gov (United States)

    Fischer, Kenneth E.

    1988-01-01

    Discusses the need for determining a curriculum to provide qualified hazardous waste personnel. Describes the needed role of colleges and universities and current hazardous materials certification requirements. Lists requirements for 18 professional certifications. (MVL)

  4. The Main Biological Hazards in Animal Biosafety Level 2 Facilities and Strategies for Control.

    Science.gov (United States)

    Li, Xiao Yan; Xue, Kang Ning; Jiang, Jin Sheng; Lu, Xuan Cheng

    2016-04-01

    Concern about the biological hazards involved in microbiological research, especially research involving laboratory animals, has increased in recent years. Working in an animal biosafety level 2 facility (ABSL-2), commonly used for research on infectious diseases, poses various biological hazards. Here, the regulations and standards related to laboratory biosafety in China are introduced, the potential biological hazards present in ABSL-2 facilities are analyzed, and a series of strategies to control the hazards are presented. Copyright © 2016 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  5. Mixed waste study, Lawrence Livermore National Laboratory Hazardous Waste Management facilities

    International Nuclear Information System (INIS)

    1990-11-01

    This document addresses the generation and storage of mixed waste at Lawrence Livermore National Laboratory (LLNL) from 1984 to 1990. Additionally, an estimate of remaining storage capacity based on the current inventory of low-level mixed waste and an approximation of current generation rates is provided. Section 2 of this study presents a narrative description of Environmental Protection Agency (EPA) and Department of Energy (DOE) requirements as they apply to mixed waste in storage at LLNL's Hazardous Waste Management (HWM) facilities. Based on information collected from the HWM non-TRU radioactive waste database, Section 3 presents a data consolidation -- by year of storage, location, LLNL generator, EPA code, and DHS code -- of the quantities of low-level mixed waste in storage. Related figures provide the distribution of mixed waste according to each of these variables. A historical review follows in Section 4. The trends in type and quantity of mixed waste managed by HWM during the past five years are delineated and graphically illustrated. Section 5 provides an estimate of remaining low-level mixed waste storage capacity at HWM. The estimate of remaining mixed waste storage capacity is based on operational storage capacity of HWM facilities and the volume of all waste currently in storage. An estimate of the time remaining to reach maximum storage capacity is based on waste generation rates inferred from the HWM database and recent HWM documents. 14 refs., 18 figs., 9 tabs

  6. EXPERIENCE AND PROSPECTS OF MASTER’S DEGREE TRAINING OF ENGINEERING STAFF IN THE FIELD OF METALLURGICAL SCIENCE

    Directory of Open Access Journals (Sweden)

    V. M. Konstantinov

    2016-01-01

    Full Text Available The experience of training for MBA in engineering and technologies for specialties “Materials Science in Mechanical Engineering” at the department was analyzed. Efficiency of the practical-focused Master’s degree program for engineering staff of the machine-building and metallurgical enterprises was emphasized. Some ways to increase efficiency of master training of engineering experts in the field of metallurgical science and heat treatment are offered. Need of more active interaction with engineering services of the production enterprise during implementation of the master thesis was proved. Need of domination of requirements of the production enterprise is highlighted in master preparation program. The algorithm of interaction of department and technical service of the production enterprise during training of the factory expert in the correspondence practical-focused Master’s degree program is offered.

  7. Obtaining of dense and highly porous ceramic materials from metallurgical slag

    Directory of Open Access Journals (Sweden)

    Fidancevska E.

    2003-01-01

    Full Text Available Glass-ceramics in a dense and highly porous form can be obtained from metallurgical slag and waste glass of TV monitors. Using polyurethane foam as pore creator, a highly porous system with porosity of 65 ± 5 %, E-modulus and flexural strength of 8 ± 3 GPa and 13 ± 3.5 MPa respectively can be obtained. This porous material had durability (mass loss of 0.03 % in 0.1 M HCl that is identical with the durability of a dense composite.

  8. Knowledge, attitude and practice of aspects of laboratory safety in ...

    African Journals Online (AJOL)

    Result: Gross deficiencies were found in the knowledge, attitudes and practice of laboratory safety by laboratory staff in areas of use of personal protective equipment, specimen collection and processing, centrifuge – related hazards, infective hazards waste disposal and provision and use of First Aid Kits. Conclusion: ...

  9. Hazardous Materials Management and Emergency Response (HAMMER)

    Data.gov (United States)

    Federal Laboratory Consortium — The Volpentest Hazardous Materials Management and Emergency Response (HAMMER) Federal Training Center is a safety and emergency response training center that offers...

  10. Stabilization of plutonium bearing residues at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Bronson, M.C.; Van Konynenburg, R.A.; Ebbinghaus, B.B.

    1995-01-01

    The US Department of Energy's (US DOE) Lawrence Livermore National Laboratory (LLNL) has plutonium holdings including metal, oxide and residue materials, all of which need stabilization of some type. Residue materials include calcined ash, calcined precipitates, pyrochemical salts, glove box sweepings, metallurgical samples, graphite, and pyrochemical ceramic crucibles. These residues are typical of residues stored throughout the US DOE plutonium sites. The stabilization process selected for each of these residues requires data on chemical impurities, physical attributes, and chemical forms of the plutonium. This paper outlines the characterization and stabilization of LLNL ash residues, pyrochemical salts, and graphite

  11. First Mining workshop of Mining and metallurgical of MERCOSUR

    International Nuclear Information System (INIS)

    1994-01-01

    In the city of Montevideo, capital of the Oriental Republic of Uruguay, at 23 days of September 1994, under the First Meeting of Mercosur Mining Metallurgical, meet representatives of the mining sector in the countries signed the Treaty of Asuncion , attended as observers, authorities of the Republic of Bolivia and Ecuador and representatives of the productive labor, legislative and research. The primary objective is to integrate the mining sectors of those countries, taking into account the specificity of the mining, given by the resource it uses, the need for high-risk investment with slow recoveries of capital and infrastructure problems, taking into account leverage and its remarkable impact on the development of regional economies.

  12. Morphology, chemistry and distribution of neoformed spherulites in agricultural land affected by metallurgical point-source pollution

    NARCIS (Netherlands)

    Leguedois, S.; Oort, van F.; Jongmans, A.G.; Chevalier, P.

    2004-01-01

    Metal distribution patterns in superficial soil horizons of agricultural land affected by metallurgical point-source pollution were studied using optical and electron microscopy, synchrotron radiation and spectroscopy analyses. The site is located in northern France, at the center of a former entry

  13. Metallurgical Design and Development of NASA Crawler/Transporter Tread Belt Shoe Castings

    Science.gov (United States)

    Parker, Donald S.

    2006-01-01

    The NASA Crawler/Transporters (CT-1 and CT-2) used to transport the Space Shuffles are one of the largest tracked vehicles in existence today. Two of these machines have been used to move space flight vehicles at Kennedy Space Center since the Apollo missions of the 1960's and relatively few modifications have been made to keep them operational. In September of 2003 during normal Crawler/Transporter operations cracks were observed along the roller pad surfaces of several tread belt shoes. Further examination showed 20 cracked shoes on CT-1 and 40 cracked shoes on CT-2 and a formal failure analysis investigation was undertaken while the cracked shoes were replaced. Six shoes were cross-sectioned with the fracture surfaces exposed and it was determined that the cracks were due to fatigue that initiated on the internal casting web channels at pre-existing casting defects and propagated through thickness both transgranularly and intergranularly between internal shrinkage cavities, porosity, and along austenitic and ferritic grain boundaries. The original shoes were cast during the 1960's using a modified 861330 steel with slightly higher levels of chromium, nickel and molybdenum followed by heat treatment to achieve a minimum tensile strength of 11 Oksi. Subsequent metallurgical analysis of the tread belt shoes after multiple failures showed excessive internal defects, alloy segregation, a nonuniform ferritic/ bainitic/martensitic microstructure, and low average tensile properties indicative of poor casting and poor heat-treatment. As a result, NASA funded an initiative to replace all of the tread belt shoes on both crawler/transporters along with a redesign of the alloy, manufacturing, and heat-treatment to create a homogeneous cast structure with uniform mechanical and metallurgical properties. ME Global, a wholly owned subsidiary of ME Elecmetal based in Minneapolis, MN was selected as manufacturing and design partner to develop the new shoes and this paper

  14. H. W. Laboratory manual: 100 Area section

    Energy Technology Data Exchange (ETDEWEB)

    1950-07-01

    The purpose of this manual is to present a Hazard Breakdown of all jobs normally encountered in the laboratory work of the three sections comprising the Analytic Section, Metallurgy and Control Division of the Technical Department. A Hazard Breakdown is a careful analysis of any job in which the source of possible dangers is clearly indicated for each particular step. The analysis is prepared by individuals who are thoroughly familiar with the specific job or procedure. It is felt that if the hazards herein outlined are recognized by the Laboratory personnel and the suggested safety cautions followed, the chance for injury will be minimized and the worker will become generally more safety conscious. The manual, which is prefaced by the general safety rules applying to all the laboratories, is divided into three main sections, one for each of the three sections into which the Laboratories Division is divided. These sections are as follows: Section 1 -- 200 Area Control; Section 2 -- 100 Area Control; Section 3 -- 300 Area Control, Essential Materials, and Methods Improvement.

  15. Risk assessment and optimization (ALARA) analysis for the environmental remediation of Brookhaven National Laboratory's hazardous waste management facility

    International Nuclear Information System (INIS)

    Dionne, B.J.; Morris, S.C. III; Baum, J.W.

    1998-01-01

    The Department of Energy's (DOE) Office of Environment, Safety, and Health (EH) sought examples of risk-based approaches to environmental restoration to include in their guidance for DOE nuclear facilities. Extensive measurements of radiological contamination in soil and ground water have been made at Brookhaven National Laboratory's Hazardous Waste Management Facility (HWMF) as part of a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation process. This provided an ideal opportunity for a case study. This report provides a risk assessment and an open-quotes As Low as Reasonably Achievableclose quotes (ALARA) analysis for use at other DOE nuclear facilities as an example of a risk-based decision technique. This document contains the Appendices for the report

  16. Hazards Control Department 1995 annual report

    International Nuclear Information System (INIS)

    Campbell, G.W.

    1996-01-01

    This annual report of the Hazards Control Department activities in 1995 is part of the department's efforts to foster a working environment at Lawrence Livermore National Laboratory (LLNL) where every person desire to work safely

  17. Metallurgical test work to support development of the Kintyre Project

    International Nuclear Information System (INIS)

    Maley, M.; Ring, R.; Paulsen, E.; Maxton, D.

    2014-01-01

    The Kintyre uranium deposit is located in the Pilbara region of Western Australia and is jointly owned by Cameco and Mitsubishi. The current indicated resource estimate is approximately 55 million pounds of U 3 O 8 equivalent [~21,000 t U] at an average grade of 0.58% [0.49% U]. Due to the high levels of carbonate minerals in the deposit, alkaline leaching was strongly considered as an option to the usually preferred acid route. Following a detailed assessment, the acid option was chosen, with the preferred flowsheet involving an acid leach, followed by solvent extraction and precipitation. As part of the Kintyre metallurgical investigations, ANSTO Minerals performed an extensive work program, examining numerous aspects of the proposed flowsheet. This included a leach optimisation program, followed by a study determining the effects of sample variability in leaching. Settling, filtration and rheology work on slurries and tailings was performed, as well as testwork to determine the effect of neutralisation conditions on metal precipitation and radionuclide deportment. In addition, an extensive laboratory and solvent extraction mixer-settler mini-pilot plan campaign was performed to compare the performance of conventional ammonia/ammonium sulphate strip and the non-conventional strong acid strip (400 g/L H 2 SO 4 ) using leach liquor generated from Kintyre ore. The pilot plant involved two campaigns of three days continuous operation using each stripping system, with >99.5% uranium recovery achieved in each campaign. This paper will present an overview of the key results from the Kintyre leaching and neutralisation testwork undertaken at ANSTO Minerals, and will also outline the performance of the solvent extraction mini pilot plant. (author)

  18. The evolution of a LIMS (laboratory information management system). [Chemical analyses at BNFL

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1992-04-01

    Changes in the world and United Kingdom markets for nuclear fuels during the 1990s have prompted British Nuclear Fuels (BNFL) to maximise cost effectiveness in its Chemical and Metallurgical Services department. A laboratory information management system (LIMS) was introduced in order to keep records of analytical techniques and equipment up to date by coordinating various computer systems. Wherever possible automated systems have replaced traditional, labour intensive techniques. So successful has the LIMS system been, that the team now hopes to expand into expert systems. (UK).

  19. Effective recruitment method for the marketing department of a metallurgical enterprise

    Directory of Open Access Journals (Sweden)

    E. Jaba

    2014-04-01

    Full Text Available This paper presents some solutions to recruit staff for the Marketing Department of a metallurgical enterprise. Our goal is to present the psychological characteristics of a certain category of employees on a sample of 107 employees and to evaluate the relationship between the motivation to work and those characteristics. In order to realize such evaluation we used the linear mixed effects model in the statistical software program R. The results showed that a significant effect on work motivation have factors like work climate and the employee agreeability.

  20. Assessment and management of chemical exposure in the Mohs laboratory.

    Science.gov (United States)

    Gunson, Todd H; Smith, Harvey R; Vinciullo, Carl

    2011-01-01

    The correct handling, storage, and disposal of chemicals used in the processing of tissue for Mohs micrographic surgery are essential. To identify the chemicals involved in the preparation of Mohs frozen sections and assess the associated occupational health risks. To quantify exposure levels of hazardous chemicals and ensure that they are minimized. A risk assessment form was completed for each chemical. Atmospheric sampling was performed at our previous laboratory for formaldehyde and volatile organic compounds. These data were used in the design of our new facility, where testing was repeated. Twenty-five chemicals were identified. Ten were classified as hazardous substances, 10 were flammable, six had specific disposal requirements, four were potential carcinogens, and three were potential teratogens. Formaldehyde readings at our previous laboratory were up to eight times the national exposure standard. Testing at the new laboratory produced levels well below the exposure standards. Chemical exposure within the Mohs laboratory can present a significant occupational hazard. Acutely toxic and potentially carcinogenic formaldehyde was found at high levels in a relatively standard laboratory configuration. A laboratory can be designed with a combination of physical environment and operational protocols that minimizes hazards and creates a safe working environment. © 2010 by the American Society for Dermatologic Surgery, Inc.

  1. Hazards Control Department 1995 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, G.W.

    1996-09-19

    This annual report of the Hazards Control Department activities in 1995 is part of the department`s efforts to foster a working environment at Lawrence Livermore National Laboratory (LLNL) where every person desire to work safely.

  2. Hydrotreater/Distillation Column Hazard Analysis Report Rev. 2

    Energy Technology Data Exchange (ETDEWEB)

    Lowry, Peter P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wagner, Katie A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-04-15

    This project Hazard and Risk Analysis Report contains the results of several hazard analyses and risk assessments. An initial assessment was conducted in 2012, which included a multi-step approach ranging from design reviews to a formal What-If hazard analysis. A second What-If hazard analysis was completed during February 2013 to evaluate the operation of the hydrotreater/distillation column processes to be installed in a process enclosure within the Process Development Laboratory West (PDL-West) facility located on the PNNL campus. The qualitative analysis included participation of project and operations personnel and applicable subject matter experts. The analysis identified potential hazardous scenarios, each based on an initiating event coupled with a postulated upset condition. The unmitigated consequences of each hazardous scenario were generally characterized as a process upset; the exposure of personnel to steam, vapors or hazardous material; a spray or spill of hazardous material; the creation of a flammable atmosphere; or an energetic release from a pressure boundary.

  3. Handbook of laboratory health and safety measures

    International Nuclear Information System (INIS)

    Pal, S.B.

    1985-01-01

    Eighteen chapters deal with all kinds of possible health and safety hazards, chemical, physical and biological, arising in laboratories. Two chapters, on X-ray hazards - diagnostic and therapeutic, and radiation protection in radionuclide investigations, respectively are indexed separately. (U.K.)

  4. Evaluation of potential surface rupture and review of current seismic hazards program at the Los Alamos National Laboratory. Final report

    International Nuclear Information System (INIS)

    1991-01-01

    This report summarizes the authors review and evaluation of the existing seismic hazards program at Los Alamos National Laboratory (LANL). The report recommends that the original program be augmented with a probabilistic analysis of seismic hazards involving assignment of weighted probabilities of occurrence to all potential sources. This approach yields a more realistic evaluation of the likelihood of large earthquake occurrence particularly in regions where seismic sources may have recurrent intervals of several thousand years or more. The report reviews the locations and geomorphic expressions of identified fault lines along with the known displacements of these faults and last know occurrence of seismic activity. Faults are mapped and categorized into by their potential for actual movement. Based on geologic site characterization, recommendations are made for increased seismic monitoring; age-dating studies of faults and geomorphic features; increased use of remote sensing and aerial photography for surface mapping of faults; the development of a landslide susceptibility map; and to develop seismic design standards for all existing and proposed facilities at LANL

  5. Radioactive hazards

    International Nuclear Information System (INIS)

    Gill, J.R.

    1980-01-01

    The use of radioactive substances in hospital laboratories is discussed and the attendant hazards and necessary precautions examined. The new legislation under the Health and Safety at Work Act which, it is proposed, will replace existing legal requirements in the field of health and safety at work by a system of regulations and approved codes of practice designed to maintain or improve the standards of health, safety and welfare already established, is considered with particular reference to protection against ionising radiations. (UK)

  6. Knowledge, attitude and practice of aspects of laboratory safety in Pathology Laboratories at the University of Port Harcourt Teaching Hospital, Nigeria.

    Science.gov (United States)

    Ejilemele, A A; Ojule, A C

    2005-12-01

    To assess current knowledge, attitudes and practice of aspects of laboratory safety in pathology laboratories at the University of Port Harcourt Teaching Hospital in view of perceived inadequacies in safety practices in clinical laboratories in developing countries. Sixty (60) self- administered questionnaires were distributed to all cadres of staff in four (4) different laboratories (Chemical Pathology, Haematology, Blood bank and Medical Microbiology) at the Hospital. Gross deficiencies were found in the knowledge, attitudes and practice of laboratory safety by laboratory staff in areas of use of personal protective equipment, specimen collection and processing, centrifuge--related hazards, infective hazards waste disposal and provision and use of First Aid Kits. Issues pertaining to laboratory safety are not yet given adequate attention by both employers and employees in developing countries in this ear of resurgence of diseases such as HIV/AIDS and Hepatitis Band C, is emphasized.

  7. Characterization of Tool Wear in High-Speed Milling of Hardened Powder Metallurgical Steels

    Directory of Open Access Journals (Sweden)

    Fritz Klocke

    2011-01-01

    Full Text Available In this experimental study, the cutting performance of ball-end mills in high-speed dry-hard milling of powder metallurgical steels was investigated. The cutting performance of the milling tools was mainly evaluated in terms of cutting length, tool wear, and cutting forces. Two different types of hardened steels were machined, the cold working steel HS 4-2-4 PM (K490 Microclean/66 HRC and the high speed steel HS 6-5-3 PM (S790 Microclean/64 HRC. The milling tests were performed at effective cutting speeds of 225, 300, and 400 m/min with a four fluted solid carbide ball-end mill (0 = 6, TiAlN coating. It was observed that by means of analytically optimised chipping parameters and increased cutting speed, the tool life can be drastically enhanced. Further, in machining the harder material HS 4-2-4 PM, the tool life is up to three times in regard to the less harder material HS 6-5-3 PM. Thus, it can be assumed that not only the hardness of the material to be machined plays a vital role for the high-speed dry-hard cutting performance, but also the microstructure and thermal characteristics of the investigated powder metallurgical steels in their hardened state.

  8. Hazardous and mixed waste transportation program

    International Nuclear Information System (INIS)

    Hohnstreiter, G.F.; Glass, R.E.; McAllaster, M.E.; Nigrey, P.J.; Trennel, A.J.; Yoshimura, H.R.

    1993-01-01

    Sandia National Laboratories (SNL) has developed a program to address the packaging needs associated with the transport of hazardous and mixed waste during the United States' Department of Energy (DOE) remediation efforts. The program addresses the technology needs associated with the transport of materials which have components that are radioactive and chemically hazardous. The mixed waste transportation activities focus on on-site specific applications of technology to the transport of hazardous and mixed wastes. These activities were identified at a series of DOE-sponsored workshops. These activities will be composed of the following: (1) packaging concepts, (2) chemical compatibility studies, and (3) systems studies. This paper will address activities in each of these areas. (J.P.N.)

  9. Hazardous and Mixed Waste Transportation Program

    International Nuclear Information System (INIS)

    Hohnstreiter, G.F.; Glass, R.E.; McAllaster, M.E.; Nigrey, P.J.; Trennel, A.J.; Yoshimura, H.R.

    1991-01-01

    Sandia National Laboratories (SNL) has developed a program to address the packaging needs associated with the transport of hazardous and mixed waste during the United States' Department of Energy (DOE) remediation efforts. The program addresses the technology needs associated with the transport of materials which have components that are radioactive and chemically hazardous. The mixed waste transportation activities focus on on-site specific applications of technology to the transport of hazardous and mixed wastes. These activities were identified at a series of DOE-sponsored workshops. These activities will be composed of the following: (1) packaging concepts, (2) chemical compatibility studies, and (3) systems studies. This paper will address activities in each of these areas

  10. Supplemental Hazard Analysis and Risk Assessment - Hydrotreater

    Energy Technology Data Exchange (ETDEWEB)

    Lowry, Peter P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wagner, Katie A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-04-01

    A supplemental hazard analysis was conducted and quantitative risk assessment performed in response to an independent review comment received by the Pacific Northwest National Laboratory (PNNL) from the U.S. Department of Energy Pacific Northwest Field Office (PNSO) against the Hydrotreater/Distillation Column Hazard Analysis Report issued in April 2013. The supplemental analysis used the hazardous conditions documented by the previous April 2013 report as a basis. The conditions were screened and grouped for the purpose of identifying whether additional prudent, practical hazard controls could be identified, using a quantitative risk evaluation to assess the adequacy of the controls and establish a lower level of concern for the likelihood of potential serious accidents. Calculations were performed to support conclusions where necessary.

  11. Metals, words and gods. Early knowledge of metallurgical skills in Europe, and reflections in terminology

    Directory of Open Access Journals (Sweden)

    Solin Paliga

    1993-12-01

    Full Text Available How can metallurgical terminology - specifically names of metals - support ar­ chaeological investigation? Can comparative linguistics and archaeology co-operate in order to identify the emergence and development of metallurgical skills? How did Neolithic and Bronze Age man imagine the taming of nature in order to achieve metal artifacts? Such questions -and many others -may arise whenever we try to investigate the beginnings and making of civilization. It is clear that the various aspects connected to archaeometallurgy cannot be analyzed separately from other aspects of human life, like agriculture, trade, urbanization, religious beliefs, early writing systems, pottery techniques, a.o. The earliest known (or identifiable names of metals do reflect a cer­ tain ideology and a certain way of 'seeing' metals as imbued with magic powers. It is certain that colours and reflections - specific to metals - made early man interpret them as divine (Biek and Bayley 1979; Muşu 1981, chapter Symphony of colours, a first attempt in reconstructing pre-Greek names of colours.

  12. Future management of hazardous wastes generated at Brookhaven National Laboratory, Upton, New York. Environmental assessment

    International Nuclear Information System (INIS)

    1994-09-01

    This document assesses the potential environmental impacts of a variety of alternatives which could provide a Resource Conservation and Recovery Act (RCRA) permitted waste packaging and storage facility that would handle all hazardous, radioactive, and mixed wastes generated at Brookhaven National Laboratory (BNL) and would operate in full compliance with all federal, state, and local laws and regulations. Location of the existing Hazardous Waste Management Facility (HWMF) with respect to ground water and the site boundary, technical and capacity limitations, inadequate utilities, and required remediation of the area make the existing facility environmentally unacceptable for long term continued use. This Environmental Assessment (EA) describes the need for action by the Department of Energy (DOE). It evaluates the alternatives for fulfilling that need, including the alternative preferred by DOE, a no-action alternative, and other reasonable alternatives. The EA provides a general description of BNL and the existing environment at the current HWMF and alternative locations considered for a new Waste Management Facility (WMF). Finally, the EA describes the potential environmental impacts of the alternatives considered. The preferred alternative, also identified as Alternative D, would be to construct and operate a new WMF on land formerly occupied by barracks during Camp Upton operations, in an area north of Building 830 and the High Flux Beam Reactor/Alternating Gradient Synchrotron (AGS) recharge basins, east of North Railroad Street, and south of East Fifth Avenue. The purpose of this new facility would be to move all storage and transfer activities inside buildings and on paved and curbed areas, consolidate facilities to improve operations management, and provide improved protection of the environment

  13. Study on the effect of heat treatment and gasification on the carbon structure of coal chars and metallurgical cokes using fourier transform Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    S. Dong; P. Alvarez; N. Paterson; D.R. Dugwell; R. Kandiyoti [Imperial College London, London (United Kingdom). Department of Chemical Engineering

    2009-03-15

    Differences in the development of carbon structures between coal chars and metallurgical cokes during high-temperature reactions have been investigated using Raman spectroscopy. These are important to differentiate between different types of carbons in dust recovered from the top gas of the blast furnace. Coal chars have been prepared from a typical injectant coal under different heat-treatment conditions. These chars reflected the effect of peak temperature, residence time at peak temperature, heating rate and pressure on the evolution of their carbon structures. The independent effect of gasification on the development of the carbon structure of a representative coal char has also been studied. A similar investigation has also been carried out to study the effect of heat-treatment temperature (from 1300 to 2000{sup o}C) and gasification on the carbon structure of a typical metallurgical coke. Two Raman spectral parameters, the intensity ratio of the D band to the G band (I{sub D}/I{sub G}) and the intensity ratio of the valley between D and G bands to the G band (I{sub V}/I{sub G}), have been found useful in assessing changes in carbon structure. An increase in I{sub D}/I{sub G} indicates the growth of basic graphene structural units across the temperature range studied. A decrease in I{sub V}/I{sub G} appears to suggest the elimination of amorphous carbonaceous materials and ordering of the overall carbon structure. The Raman spectral differences observed between coal chars and metallurgical cokes are considered to result from the difference in the time-temperature history between the raw injectant coal and the metallurgical coke and may lay the basis for differentiation between metallurgical coke fines and coal char residues present in the dust carried over the top of the blast furnace. 41 refs., 17 figs., 3 tabs.

  14. Transportation of Hazardous Evidentiary Material.

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, Douglas.

    2005-06-01

    This document describes the specimen and transportation containers currently available for use with hazardous and infectious materials. A detailed comparison of advantages, disadvantages, and costs of the different technologies is included. Short- and long-term recommendations are also provided.3 DraftDraftDraftExecutive SummaryThe Federal Bureau of Investigation's Hazardous Materials Response Unit currently has hazardous material transport containers for shipping 1-quart paint cans and small amounts of contaminated forensic evidence, but the containers may not be able to maintain their integrity under accident conditions or for some types of hazardous materials. This report provides guidance and recommendations on the availability of packages for the safe and secure transport of evidence consisting of or contaminated with hazardous chemicals or infectious materials. Only non-bulk containers were considered because these are appropriate for transport on small aircraft. This report will addresses packaging and transportation concerns for Hazardous Classes 3, 4, 5, 6, 8, and 9 materials. If the evidence is known or suspected of belonging to one of these Hazardous Classes, it must be packaged in accordance with the provisions of 49 CFR Part 173. The anthrax scare of several years ago, and less well publicized incidents involving unknown and uncharacterized substances, has required that suspicious substances be sent to appropriate analytical laboratories for analysis and characterization. Transportation of potentially hazardous or infectious material to an appropriate analytical laboratory requires transport containers that maintain both the biological and chemical integrity of the substance in question. As a rule, only relatively small quantities will be available for analysis. Appropriate transportation packaging is needed that will maintain the integrity of the substance, will not allow biological alteration, will not react chemically with the substance being

  15. Selection of human capital in metallurgical companies using information technology (IT

    Directory of Open Access Journals (Sweden)

    I. Iancu

    2013-10-01

    Full Text Available Personnel selection is a process that takes place in a company in order to have better business performance and competitive advantage. Nowadays, companies have realized the importance of human capital as a necessity for survival in today’s competitive market. There are several methods for selecting staff, but this paper seeks to demonstrate that this selection can be done with the help of an expert system. Metallurgical companies face even greater challenges for managing personnel selection. This research will discover and test the key elements of management personnel selection and implementation of an expert system.

  16. SOME RECENT TECHNOLOGY DEVELOPMENTS FROM THE UK'S NATIONAL NUCLEAR LABORATORY TO ENABLE HAZARD CHARACTERISATION FOR NUCLEAR DECOMMISSIONING APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Farfan, E.; Foley, T.

    2010-02-11

    Under its programme of self investment Internal Research and Development (IR&D), the UK's National Nuclear Laboratory (NNL) is addressing the requirement for development in technology to enable hazard characterisation for nuclear decommissioning applications. Three such examples are described here: (1) RadBall developed by the NNL (patent pending) is a deployable baseball-sized radiation mapping device which can, from a single location, locate and quantify radiation hazards. RadBall offers a means to collect information regarding the magnitude and distribution of radiation in a given cell, glovebox or room to support the development of a safe, cost effective decontamination strategy. RadBall requires no electrical supplies and is relatively small, making it easy to be deployed and used to map radiation hazards in hard to reach areas. Recent work conducted in partnership with the Savannah River National Laboratory (SRNL) is presented. (2) HiRAD (patent pending) has been developed by the NNL in partnership with Tracerco Ltd (UK). HiRAD is a real-time, remotely deployed, radiation detection device designed to operate in elevated levels of radiation (i.e. thousands and tens of thousands of Gray) as seen in parts of the nuclear industry. Like the RadBall technology, the HiRAD system does not require any electrical components, the small dimensions and flexibility of the device allow it to be positioned in difficult to access areas (such as pipe work). HiRAD can be deployed as a single detector, a chain, or as an array giving the ability to monitor large process areas. Results during the development and deployment of the technology are presented. (3) Wireless Sensor Network is a NNL supported development project led by the University of Manchester (UK) in partnership with Oxford University (UK). The project is concerned with the development of wireless sensor network technology to enable the underwater deployment and communication of miniaturised probes allowing pond

  17. Assessment of radiological and non-radiological hazards in the nuclear fuel cycle - The Indian experience

    International Nuclear Information System (INIS)

    Krishnamony, S.; Gopinath, D.V.

    1996-01-01

    Design and operational aspects of nuclear fuel cycle facilities have several features that distinguish them from nuclear power plants. These are related to (i) the nature of operations which are chiefly mining, metallurgical and chemical; (ii) the nature and type of radio-active materials handled, their specific activities and inventories; and (iii) the physical and chemical processes involved and the associated containment provisions. Generally the radioactive materials are present in an already highly dispersible or mobile form, in the form of solutions, slurries and powders, often associated with a wide variety of reactive and corrosive chemicals. There are further marked differences between the front-end and back-end of the fuel cycle. Whereas the front-end is characterized by the presence of large quantities of low specific activity naturally occurring radioactive materials, the back-end is characterized by high specific activities and concentrations of fission products and actinides. Radioactive characteristics of waste arisings are also different in different phases of the nuclear fuel cycle. Potential for internal exposure in the occupational environment is another distinguishing feature as compared with the more common designs of nuclear power reactors. Potential for accidents, their phenomenology and the resulting consequences are also markedly different in fuel cycle operations. The non-radiological hazards in fuel cycle operations are also of significance, since the operations are mostly mining, metallurgical and chemical in nature. These aspects are examined and evaluated in this paper, based on the Indian experience. (author). 12 refs, 10 tabs

  18. Process waste assessment for the Radiography Laboratory

    International Nuclear Information System (INIS)

    Phillips, N.M.

    1994-07-01

    This Process Waste Assessment was conducted to evaluate the Radiography Laboratory, located in Building 923. It documents the processes, identifies the hazardous chemical waste streams generated by these processes, recommends possible ways to minimize waste, and serves as a reference for future assessments of this facility. The Radiography Laboratory provides film radiography or radioscopy (electronic imaging) of weapon and nonweapon components. The Radiography Laboratory has six x-ray machines and one gamma ray source. It also has several other sealed beta- and gamma-ray isotope sources of low microcurie (μCi) activity. The photochemical processes generate most of the Radiography Laboratory's routinely generated hazardous waste, and most of that is generated by the DuPont film processor. Because the DuPont film processor generates the most photochemical waste, it was selected for an estimated material balance

  19. Powder metallurgical high performance materials. Proceedings. Volume 4: late papers

    Energy Technology Data Exchange (ETDEWEB)

    Kneringer, G; Roedhammer, P; Wildner, H [eds.

    2001-07-01

    This is the fourth volume (late papers) of the 15th International Plansee seminar 2001 which general theme was 'Powder metallurgical high performance materials'. The seminar looked beyond the refractory metals and cemented carbides, which remain as its focus, to novel classes of materials, such as intermetallic compounds, with potential for high temperature applications. This volume 4 contains papers dealing with high performance P/M metals (ITER and fusion reactors, solid targets, materials microstructure, novel alloys, etc.), P/M hard materials ( production and characterization, tungsten carbides, titanium carbides, microstructural design, coatings composition and performance, etc.) and general topics. From 37 papers 24 correspond to INIS subject scope and they were indexed separately. (nevyjel)

  20. Characterization of Nanocarbon Copper Composites Manufactured in Metallurgical Synthesis Process

    Science.gov (United States)

    Knych, Tadeusz; Kwaśniewski, Paweł; Kiesiewicz, Grzegorz; Mamala, Andrzej; Kawecki, Artur; Smyrak, Beata

    2014-08-01

    Currently, there is a worldwide search for new forms of materials with properties that are significantly improved in comparison to materials currently in use. One promising research direction lies in the synthesis of metals containing modern carbon materials ( e.g., graphene, nanotubes). In this article, the research results of metallurgical synthesis of a mixture of copper and two different kinds of carbon (activated carbon and multiwall carbon nanotubes) are shown. Samples of copper-carbon nanocomposite were synthesized by simultaneously exposing molten copper to an electrical current while vigorously stirring and adding carbon while under an inert gas atmosphere. The article contains research results of density, hardness, electrical conductivity, structure (TEM), and carbon decomposition (SIMS method) for the obtained materials.

  1. Powder metallurgical high performance materials. Proceedings. Volume 4: late papers

    International Nuclear Information System (INIS)

    Kneringer, G.; Roedhammer, P.; Wildner, H.

    2001-01-01

    This is the fourth volume (late papers) of the 15th International Plansee seminar 2001 which general theme was 'Powder metallurgical high performance materials'. The seminar looked beyond the refractory metals and cemented carbides, which remain as its focus, to novel classes of materials, such as intermetallic compounds, with potential for high temperature applications. This volume 4 contains papers dealing with high performance P/M metals (ITER and fusion reactors, solid targets, materials microstructure, novel alloys, etc.), P/M hard materials ( production and characterization, tungsten carbides, titanium carbides, microstructural design, coatings composition and performance, etc.) and general topics. From 37 papers 24 correspond to INIS subject scope and they were indexed separately. (nevyjel)

  2. Optimization Review: Bunker Hill Mining and Metallurgical Complex Superfund Site, Central Treatment Plant (CTP), Kellogg, Shoshone County, Idaho

    Science.gov (United States)

    The Bunker Hill Mining and Metallurgical Complex Superfund Site includes all areas of the Coeur d’Alene Basin where mining-related contamination occurred and encompasses a 21-square mile “Box” along Interstate 90 surrounding the former smelter complex.

  3. THE MODELS OF THE MANAGEMENT OPTIMIZATION OF THE ORGANIZATIONAL STRUCTURES OF RUP “BELORUSSIAN METALLURGICAL WORKS”

    Directory of Open Access Journals (Sweden)

    A. N. Chichko

    2006-01-01

    Full Text Available The new approach to the mathematic modeling and optimization of interrelation of the control units of the metallurgical enterprise organizational structures is offered. The mathematical model of the organizational structure based on temporary characteristics of control units loading is offered at the example of one of the organizational structures BMZ.

  4. Cryogenic treatment of steel: from concept to metallurgical understanding

    DEFF Research Database (Denmark)

    Villa, Matteo; Somers, Marcel A. J.

    2017-01-01

    , the metallurgical understanding of the microstructural changes involved in cryogenic treatment of steel has remained poor. It is believed that the improvement in wear resistance is promoted by an enhanced precipitation of carbides during tempering, but no explanation has been given as to how this enhanced......Subjecting steel to cryogenic treatment to improve its properties was conceived in the 30ies of the previous century. The proof of concept that properties, in particular wear resistance, can indeed be improved importantly, was reported in the next decades. Despite many investigations...... precipitation can be obtained. In the last six years, the authors have applied in situ magnetometry, synchrotron X-Ray Diffraction and dilatometry to enlighten the phase transitions occurring in steels at cryogenic temperatures and to point out the connection between different treatment parameters...

  5. Decommissioning of surplus facilities at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Stout, D.S.

    1995-01-01

    Decommissioning Buildings 3 and 4 South at Technical Area 21, Los Alamos National Laboratory, involves the decontamination, dismantlement, and demolition of two enriched-uranium processing buildings containing process equipment and ductwork holdup. The Laboratory has adopted two successful management strategies to implement this project: Rather than characterize an entire site, upfront, investigators use the ''observational approach,'' in which they collect only enough data to begin decommissioning activities and then determine appropriate procedures for further characterization as the work progresses. Project leaders augment work packages with task hazard analyses to fully define specific tasks and inform workers of hazards; all daily work activities are governed by specific work procedures and hazard analyses

  6. Hazardous waste minimization report for CY 1986

    International Nuclear Information System (INIS)

    Kendrick, C.M.

    1990-12-01

    Oak Ridge National Laboratory (ORNL) is a multipurpose research and development facility. Its primary role is the support of energy technology through applied research and engineering development and scientific research in basic and physical sciences. ORNL also is a valuable resource in the solution of problems of national importance, such as nuclear and chemical waste management. In addition, useful radioactive and stable isotopes which are unavailable from the private sector are produced at ORNL. As a result of these activities, hazardous, radioactive, and mixed wastes are generated at ORNL. A formal hazardous waste minimization program for ORNL was launched in mid 1985 in response to the requirements of Section 3002 of the Resource Conservation and Recovery Act (RCRA). During 1986, a task plan was developed. The six major tasks include: planning and implementation of a laboratory-wide chemical inventory and the subsequent distribution, treatment, storage, and/or disposal (TSD) of unneeded chemicals; establishment and implementation of a distribution system for surplus chemicals to other (internal and external) organizations; training and communication functions necessary to inform and motivate laboratory personnel; evaluation of current procurement and tracking systems for hazardous materials and recommendation and implementation of improvements; systematic review of applicable current and proposed ORNL procedures and ongoing and proposed activities for waste volume and/or toxicity reduction potential; and establishment of criteria by which to measure progress and reporting of significant achievements. 8 refs., 1 fig., 5 tabs

  7. Metallurgical source-contribution analysis of PM10 annual average concentration: A dispersion modeling approach in moravian-silesian region

    Directory of Open Access Journals (Sweden)

    P. Jančík

    2013-10-01

    Full Text Available The goal of the article is to present analysis of metallurgical industry contribution to annual average PM10 concentrations in Moravian-Silesian based on means of the air pollution modelling in accord with the Czech reference methodology SYMOS´97.

  8. THE PROFITABILITY AND LIQUIDITY UNDER THE INFLUENCE OF THE FINANCING POLICY IN THE METALLURGICAL INDUSTRY OF EU 28

    Directory of Open Access Journals (Sweden)

    DOBROTĂ GABRIELA

    2014-12-01

    Full Text Available In the context of the problems of the economic system, the use of the capital and his structure represent important elements in the process of the financial decisions. The aim of this paper is to identify the influence of funding policy on rentability in metallurgical industry, dimensioned with the help of a set of relevant indicators, determined on the base of some aggregated data for a significant sample of very large firms from EU 28. Also, the paper present the situation of liquidity, reflected through the cash- flow and liquidity ratio, in the metallurgical industry of EU 28, being used dates for the period 2004 – 2013, for the mentioned sample. The conclusion of the realised study is that a funding policy well-founded, correlated with the efficient management of expenses and proactive risk management can positively influence the profitability and liquidity.

  9. Low drift type N thermocouples in out-of-pile advanced gas reactor mock-up test: metallurgical analysis

    International Nuclear Information System (INIS)

    Scervini, M.; Palmer, J.; Haggard, D.C.; Swank, W.D.

    2015-01-01

    Thermocouples are the most commonly used sensors for temperature measurement in nuclear reactors. They are crucial for the control of current nuclear reactors and for the development of GEN IV reactors. In nuclear applications thermocouples are strongly affected by intense neutron fluxes. As a result of the interaction with neutrons, the thermoelements of the thermocouples undergo transmutation, which produces a time dependent change in composition and, as a consequence, a time dependent drift of the thermocouple signal. Thermocouple drift can be very significant for in-pile temperature measurements and may render the temperature sensors unreliable after exposure to nuclear radiation for relatively short times compared to the life required for temperature sensors in nuclear applications. Previous experiences with type K thermocouples in nuclear reactors have shown that they are affected by neutron irradiation only to a limited extent. Similarly type N thermocouples are expected to be only slightly affected by neutron fluxes. Currently the use of Nickel based thermocouples is limited to temperatures lower than 1000 deg. C due to drift related to phenomena other than nuclear irradiation. As part of a collaboration between Idaho National Laboratory (INL) and the University of Cambridge a variety of Type N thermocouples have been exposed at INL in an Advanced Gas Reactor mock-up test at 1150 deg. C for 2000 h, 1200 deg. C for 2000 h, 125 deg. C for 200 h and 1300 deg. C for 200 h, and later analysed metallurgically at the University of Cambridge. The use of electron microscopy allows to identify the metallurgical changes occurring in the thermocouples during high temperature exposure and correlate the time dependent thermocouple drift with the microscopic changes experienced by the thermoelements of different thermocouple designs. In this paper conventional Inconel 600 sheathed type N thermocouples and a type N using a customized sheath developed at the University of

  10. Low drift type N thermocouples in out-of-pile advanced gas reactor mock-up test: metallurgical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Scervini, M. [University of Cambridge, Department of Materials Science and Metallurgy, 27 Charles Babbage Road, CB30FS Cambridge, (United Kingdom); Palmer, J.; Haggard, D.C.; Swank, W.D. [Idaho National Laboratory, Idaho Falls, ID 83415-3840, (United States)

    2015-07-01

    Thermocouples are the most commonly used sensors for temperature measurement in nuclear reactors. They are crucial for the control of current nuclear reactors and for the development of GEN IV reactors. In nuclear applications thermocouples are strongly affected by intense neutron fluxes. As a result of the interaction with neutrons, the thermoelements of the thermocouples undergo transmutation, which produces a time dependent change in composition and, as a consequence, a time dependent drift of the thermocouple signal. Thermocouple drift can be very significant for in-pile temperature measurements and may render the temperature sensors unreliable after exposure to nuclear radiation for relatively short times compared to the life required for temperature sensors in nuclear applications. Previous experiences with type K thermocouples in nuclear reactors have shown that they are affected by neutron irradiation only to a limited extent. Similarly type N thermocouples are expected to be only slightly affected by neutron fluxes. Currently the use of Nickel based thermocouples is limited to temperatures lower than 1000 deg. C due to drift related to phenomena other than nuclear irradiation. As part of a collaboration between Idaho National Laboratory (INL) and the University of Cambridge a variety of Type N thermocouples have been exposed at INL in an Advanced Gas Reactor mock-up test at 1150 deg. C for 2000 h, 1200 deg. C for 2000 h, 125 deg. C for 200 h and 1300 deg. C for 200 h, and later analysed metallurgically at the University of Cambridge. The use of electron microscopy allows to identify the metallurgical changes occurring in the thermocouples during high temperature exposure and correlate the time dependent thermocouple drift with the microscopic changes experienced by the thermoelements of different thermocouple designs. In this paper conventional Inconel 600 sheathed type N thermocouples and a type N using a customized sheath developed at the University of

  11. Evaluation of powder metallurgical processing routes for multi-component niobium silicide-based high-temperature alloys

    Energy Technology Data Exchange (ETDEWEB)

    Seemueller, Hans Christoph Maximilian

    2016-03-22

    Niobium silicide-based composites are potential candidates to replace nickel-base superalloys for turbine applications. The goal of this work was to evaluate the feasibility and differences in ensuing properties of various powder metallurgical processing techniques that are capable of manufacturing net-shape turbine components. Two routes for powder production, mechanical alloying and gas atomization were combined with compaction via hot isostatic pressing and powder injection molding.

  12. The identification of zones of amplification of disruptions in network supply chains of metallurgic products

    Directory of Open Access Journals (Sweden)

    M. Kramarz

    2015-01-01

    Full Text Available An increase in the number of participants in a supply chain and network relations results in an increase in the complexity of the entire logistic and production system. Consequently, there appear additional potential sources of disruptions in material flows. The aim of the research presented in the article is to identify the zones of amplification of disruptions in network supply chains of metallurgic products.

  13. Fast determination of impurities in metallurgical grade silicon for photovoltaics by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Hampel, J.; Boldt, F.M.; Gerstenberg, H.; Hampel, G.; Kratz, J.V.; Reber, S.; Wiehl, N.

    2011-01-01

    Standard wafer solar cells are made of near-semiconductor quality silicon. This high quality material makes up a significant part of the total costs of a solar module. Therefore, new concepts with less expensive so called solar grade silicon directly based on physiochemically upgraded metallurgical grade silicon are investigated. Metallurgical grade silicon contains large amounts of impurities, mainly transition metals like Fe, Cr, Mn, and Co, which degrade the minority carrier lifetime and thus the solar cell efficiency. A major reduction of the transition metal content occurs during the unidirectional crystallization due to the low segregation coefficient between the solid and liquid phase. A further reduction of the impurity level has to be done by gettering procedures applied to the silicon wafers. The efficiency of such cleaning procedures of metallurgical grade silicon is studied by instrumental neutron activation analysis (INAA). Small sized silicon wafers of approximately 200 mg with and without gettering step were analyzed. To accelerate the detection of transition metals in a crystallized silicon ingot, experiments of scanning whole vertical silicon columns with a diameter of approximately 1 cm by gamma spectroscopy were carried out. It was demonstrated that impurity profiles can be obtained in a comparably short time. Relatively constant transition metal ratios were found throughout an entire silicon ingot. This led to the conclusion that the determination of several metal profiles might be possible by the detection of only one 'leading element'. As the determination of Mn in silicon can be done quite fast compared to elements like Fe, Cr, and Co, it could be used as a rough marker for the overall metal concentration level. Thus, a fast way to determine impurities in photovoltaic silicon material is demonstrated. - Highlights: → We demonstrate a fast way to determine impurities in photovoltaic silicon by NAA. → We make first experiments of locally

  14. Modified Hazard Ranking System/Hazard Ranking System for sites with mixed radioactive and hazardous wastes: Software documentation

    Energy Technology Data Exchange (ETDEWEB)

    Stenner, R.D.; Peloquin, R.A.; Hawley, K.A.

    1986-11-01

    The mHRS/HRS software package was developed by the Pacific Northwest Laboratory (PNL) under contract with the Department of Energy (DOE) to provide a uniform method for DOE facilities to use in performing their Conservation Environmental Response Compensation and Liability Act (CERCLA) Phase I Modified Hazard Ranking System or Hazard Ranking System evaluations. The program is designed to remove the tedium and potential for error associated with the performing of hand calculations and the interpreting of information on tables and in reference books when performing an evaluation. The software package is designed to operate on a microcomputer (IBM PC, PC/XT, or PC/AT, or a compatible system) using either a dual floppy disk drive or a hard disk storage system. It is written in the dBASE III language and operates using the dBASE III system. Although the mHRS/HRS software package was developed for use at DOE facilities, it has direct applicability to the performing of CERCLA Phase I evaluations for any facility contaminated by hazardous waste. The software can perform evaluations using either the modified hazard ranking system methodology developed by DOE/PNL, the hazard ranking system methodology developed by EPA/MITRE Corp., or a combination of the two. This document is a companion manual to the mHRS/HRS user manual. It is intended for the programmer who must maintain the software package and for those interested in the computer implementation. This manual documents the system logic, computer programs, and data files that comprise the package. Hardware and software implementation requirements are discussed. In addition, hand calculations of three sample situations (problems) with associated computer runs used for the verification of program calculations are included.

  15. Modified Hazard Ranking System/Hazard Ranking System for sites with mixed radioactive and hazardous wastes: Software documentation

    International Nuclear Information System (INIS)

    Stenner, R.D.; Peloquin, R.A.; Hawley, K.A.

    1986-11-01

    The mHRS/HRS software package was developed by the Pacific Northwest Laboratory (PNL) under contract with the Department of Energy (DOE) to provide a uniform method for DOE facilities to use in performing their Conservation Environmental Response Compensation and Liability Act (CERCLA) Phase I Modified Hazard Ranking System or Hazard Ranking System evaluations. The program is designed to remove the tedium and potential for error associated with the performing of hand calculations and the interpreting of information on tables and in reference books when performing an evaluation. The software package is designed to operate on a microcomputer (IBM PC, PC/XT, or PC/AT, or a compatible system) using either a dual floppy disk drive or a hard disk storage system. It is written in the dBASE III language and operates using the dBASE III system. Although the mHRS/HRS software package was developed for use at DOE facilities, it has direct applicability to the performing of CERCLA Phase I evaluations for any facility contaminated by hazardous waste. The software can perform evaluations using either the modified hazard ranking system methodology developed by DOE/PNL, the hazard ranking system methodology developed by EPA/MITRE Corp., or a combination of the two. This document is a companion manual to the mHRS/HRS user manual. It is intended for the programmer who must maintain the software package and for those interested in the computer implementation. This manual documents the system logic, computer programs, and data files that comprise the package. Hardware and software implementation requirements are discussed. In addition, hand calculations of three sample situations (problems) with associated computer runs used for the verification of program calculations are included

  16. Residual life assessment of French PWR vessel head penetrations through metallurgical analysis

    International Nuclear Information System (INIS)

    Pichon, C.; Boudot, R.; Benhamou, C.; Gelpi, A.

    1994-01-01

    In September 1991, a vessel head penetration was found leaking at Bugey 3 plant during the hydrotest included in the framework of decennial In Service Inspections. Non destructive examinations performed afterwards on several other plants have shown some cracked penetrations. Destructive expertise confirmed quickly that again this new problem is related to stress corrosion cracking of Alloy 600 used as base material. During the last 15 years, similar cracking have been met in steam generator tubes and secondly in pressurizer instrumentation tubes. In spite of all the work performed since that time an extension appears to be necessary for explaining the features of this new event; however material sensitivity, stress and temperature still remain the key parameters governing the behavior of Alloy 600 in PWR environment. In this paper, only the material sensitivity of vessel head penetrations is examined through metallurgical analysis in relation with SCC tests. On the basis of vessel head field experience in combination with thermomechanical process used for fabrication of original bars criteria for a sensitivity ranking of penetrations are proposed. Metallurgical investigations and SCC tests were carried out to support this sensitivity ranking. The final aim is to use such information among those quoted above for assessment of vessel heads residual life. This document is an overview of the work performed in France concerning the material sensitivity of forged Alloy 600. It represents an important part of the assessments and investigations undertaken in France on the stress corrosion cracking phenomenon affecting the reactor vessel head penetrations in PWR's

  17. Radiation hazard control report

    International Nuclear Information System (INIS)

    Morishima, Hiroshige; Koga, Taeko; Hisanaga, Saemi; Miki, Ryota; Kawai, Hiroshi; Aoki, Yutaka; Sone, Koji; Okada, Hirokazu

    1990-01-01

    The report describes the radiation hazard control activities performed at the Atomic Energy Research Institute of Kinki University, Japan, during the one-year period from April 1989 to March 1990. Personal radiation hazard control is outlined first focusing on results of physical examination and data of personal exposure dose equivalent. Radiation control in laboratory is then described. Dose equivalent at various places is discussed on the basis of monthly total dose equivalent measured on film badges, measurements made by TLD, and observations made through a continuous radiations monitoring system. The concentration of radiations in air and water is discussed focusing on their measured concentrations in air at the air outlets of tracer/accelerator facilities, and radioactivity in waste water sampled in the reactor facilities and tracer/accelerator facilities. Another discussion is made on the surface contamination density over the floors, draft systems, sink surface, etc. Concerning outdoor radiation hazard control, furthermore, TLD measurements of environmental gamma-rays, data on total gamma-ray radioactivity in environmental samples, and analysis of gamma-ray emitting nuclides in environmental samples are described and discussed. (N.K.)

  18. Hazards assessment for the INEL Landfill Complex

    International Nuclear Information System (INIS)

    Knudsen, J.K.; Calley, M.B.

    1994-02-01

    This report documents the hazards assessment for the INEL Landfill Complex (LC) located at the Idaho National Engineering Laboratory, which is operated by EG ampersand G Idaho, Inc., for the US Department of Energy (DOE). The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. DOE Order 5500.3A requires that a facility-specific hazards assessment be performed to provide the technical basis for facility emergency planning efforts. This hazards assessment was conducted in accordance with DOE Headquarters and the DOE Idaho Operations Office (DOE-ID) guidance to comply with DOE Order 5500.3A. The hazards assessment identifies and analyzes the hazards that are significant enough to warrant consideration in a facility's operational emergency management program. The area surrounding the LC, the buildings and structures at the LC, and the processes that are used at the LC are described in this report. All hazardous materials, both radiological and nonradiological, at the LC were identified and screened against threshold quantities according to DOE Order 5500.3A guidance. Asbestos at the Asbestos Pit was the only hazardous material that exceeded its specified threshold quantity. However, the type of asbestos received and the packaging practices used are believed to limit the potential for an airborne release of asbestos fibers. Therefore, in accordance with DOE Order 5500.3A guidance, no further hazardous material characterization or analysis was required for this hazards assessment

  19. Hazards assessment for the INEL Landfill Complex

    Energy Technology Data Exchange (ETDEWEB)

    Knudsen, J.K.; Calley, M.B.

    1994-02-01

    This report documents the hazards assessment for the INEL Landfill Complex (LC) located at the Idaho National Engineering Laboratory, which is operated by EG&G Idaho, Inc., for the US Department of Energy (DOE). The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. DOE Order 5500.3A requires that a facility-specific hazards assessment be performed to provide the technical basis for facility emergency planning efforts. This hazards assessment was conducted in accordance with DOE Headquarters and the DOE Idaho Operations Office (DOE-ID) guidance to comply with DOE Order 5500.3A. The hazards assessment identifies and analyzes the hazards that are significant enough to warrant consideration in a facility`s operational emergency management program. The area surrounding the LC, the buildings and structures at the LC, and the processes that are used at the LC are described in this report. All hazardous materials, both radiological and nonradiological, at the LC were identified and screened against threshold quantities according to DOE Order 5500.3A guidance. Asbestos at the Asbestos Pit was the only hazardous material that exceeded its specified threshold quantity. However, the type of asbestos received and the packaging practices used are believed to limit the potential for an airborne release of asbestos fibers. Therefore, in accordance with DOE Order 5500.3A guidance, no further hazardous material characterization or analysis was required for this hazards assessment.

  20. A simplified hazard audit procedures guide

    International Nuclear Information System (INIS)

    Harrison, D.G.; Tabatabai, A.S.; Scott, W.B.; Murphy, K.J.

    1991-02-01

    As part of on-going technical support services to the US Department of Energy (DOE), Battelle Pacific Northwest Laboratory (PNL) has developed a simplified hazard audit procedures guide which enables cost-effective and timely assessment and characterization of the DOE nuclear (reactor and nonreactor) and non-nuclear facilities safety profile

  1. 3-D Modelling of Electromagnetic, Thermal, Mechanical and Metallurgical Couplings in Metal Forming Processes

    International Nuclear Information System (INIS)

    Chenot, Jean-Loup; Bay, Francois

    2007-01-01

    The different stages of metal forming processes often involve - beyond the mechanical deformations processes - other physical coupled problems, such as heat transfer, electromagnetism or metallurgy. The purpose of this paper is to focus on problems involving electromagnetic couplings. After a brief recall on electromagnetic modeling, we shall then focus on induction heating processes and present some results regarding heat transfer, as well as mechanical couplings. A case showing coupling for metallurgic microstructure evolution will conclude this paper

  2. Application for the renewable of the authorisation of exploitation of the Meuse/Haute-Marne underground research laboratory for the 2012-2030 period and of authorisation of exploitation of installations classified for the protection of the environment. Non technical summary of the hazard study

    International Nuclear Information System (INIS)

    2009-12-01

    This publication first briefly presents the project of deep geological storage of radioactive wastes, and then the present activities of its underground research laboratory (installations, activities) and the future activities of this laboratory (projected extension by 2015, by 2029 and 2030). It evokes the application for an extension of the exploitation of the laboratory, the application as classified installation for the protection of the environment, the hazard study, and the definition of accidental scenarios. It briefly presents some aspects of the environment (local geology and hydrography, human environment), briefly indicates products present on this site. It proposes a brief overview of hazards related to activities (related to products and materials, to digging activities, to underground and surface structures and equipment, to research activities, to transfer activities and equipment). It indicates measures envisaged to reduce potential hazards, discusses a brief risk analysis, indicates risks related to the installation itself. It presents the two main accidental scenarios: oil tanker truck fire, and explosion

  3. Hazard classification criteria for non-nuclear facilities

    International Nuclear Information System (INIS)

    Mahn, J.A.; Walker, S.A.

    1997-01-01

    Sandia National Laboratories' Integrated Risk Management Department has developed a process for establishing the appropriate hazard classification of a new facility or operation, and thus the level of rigor required for the associated authorization basis safety documentation. This process is referred to as the Preliminary Hazard Screen. DOE Order 5481.1B contains the following hazard classification for non-nuclear facilities: high--having the potential for onsite or offsite impacts to large numbers of persons or for major impacts to the environment; moderate--having the potential for considerable onsite impacts but only minor offsite impacts to people or the environment; low--having the potential for only minor onsite and negligible offsite impacts to people or the environment. It is apparent that the application of such generic criteria is more than likely to be fraught with subjective judgment. One way to remove the subjectivity is to define health and safety classification thresholds for specific hazards that are based on the magnitude of the hazard, rather than on a qualitative assessment of possible accident consequences. This paper presents the results of such an approach to establishing a readily usable set of non-nuclear facility hazard classifications

  4. Occupational exposure in South African metallurgical plants and industries involving naturally occurring radionuclides

    International Nuclear Information System (INIS)

    Kruger, I.D.

    2002-01-01

    South Africa has a very large mining and minerals processing industry exploiting a variety of ores and minerals containing elevated levels of NORM. The industry employs more than 300,000 persons. Doses have been assessed to workers in the mining industry in South Africa. In the gold mining industry radon measurements have been performed since the early 1970s. Regulations have been in force since 1990. The mean annual dose to underground gold mine workers, mostly from radon progeny, is about 5 mSv with maximum doses exceeding 20 mSv. The maximum annual dose to surface workers in gold mines is 5 mSv. In South African coal mines the mean annual dose from inhalation of radon decay products has been estimated from limited radon concentration measurements to be about 0.6 mSv. In the phosphoric acid and fertilizer production industry the doses to the workers do not exceed 6 mSv/y. There are 3 mineral sands operations in South Africa, for which the maximum annual dose to workers is 3 mSv. One open pit copper mine contains elevated levels of U, which is extracted as a by-product. The maximum annual doses to workers are 5 mSv for workers in the mine and 20 mSv for workers in the metallurgical plant. Worker doses in the metallurgical plant have since been reduced with the introduction of radiation protection measures

  5. Evaluation of ferrocyanide/nitrate explosive hazard

    International Nuclear Information System (INIS)

    Cady, H.H.

    1992-06-01

    Los Alamos National Laboratory agreed to assist Pacific Northwest Laboratory in the Ferrocyanide Safety Evaluation Program by helping to evaluate the explosive hazard of several mixtures of simulated ferrocyanide waste-tank sludge containing sodium nitrite and sodium nitrate. This report is an evaluation of the small-scale safety tests used to assess the safety of these materials from an explosive point of view. These tests show that these materials are not initiated by mechanical insult, and they require an external heat source before any exothermic chemical reaction can be observed

  6. Hazards assessment for the Waste Experimental Reduction Facility

    International Nuclear Information System (INIS)

    Calley, M.B.; Jones, J.L. Jr.

    1994-01-01

    This report documents the hazards assessment for the Waste Experimental Reduction Facility (WERF) located at the Idaho National Engineering Laboratory, which is operated by EG ampersand G Idaho, Inc., for the US Department of Energy (DOE). The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. DOE Order 5500.3A requires that a facility-specific hazards assessment be performed to provide the technical basis for facility emergency planning efforts. This hazards assessment was conducted in accordance with DOE Headquarters and DOE Idaho Operations Office (DOE-ID) guidance to comply with DOE Order 5500.3A. The hazards assessment identifies and analyzes hazards that are significant enough to warrant consideration in a facility's operational emergency management program. This hazards assessment describes the WERF, the area surrounding WERF, associated buildings and structures at WERF, and the processes performed at WERF. All radiological and nonradiological hazardous materials stored, used, or produced at WERF were identified and screened. Even though the screening process indicated that the hazardous materials could be screened from further analysis because the inventory of radiological and nonradiological hazardous materials were below the screening thresholds specified by DOE and DOE-ID guidance for DOE Order 5500.3A, the nonradiological hazardous materials were analyzed further because it was felt that the nonradiological hazardous material screening thresholds were too high

  7. Hazards assessment for the Waste Experimental Reduction Facility

    Energy Technology Data Exchange (ETDEWEB)

    Calley, M.B.; Jones, J.L. Jr.

    1994-09-19

    This report documents the hazards assessment for the Waste Experimental Reduction Facility (WERF) located at the Idaho National Engineering Laboratory, which is operated by EG&G Idaho, Inc., for the US Department of Energy (DOE). The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. DOE Order 5500.3A requires that a facility-specific hazards assessment be performed to provide the technical basis for facility emergency planning efforts. This hazards assessment was conducted in accordance with DOE Headquarters and DOE Idaho Operations Office (DOE-ID) guidance to comply with DOE Order 5500.3A. The hazards assessment identifies and analyzes hazards that are significant enough to warrant consideration in a facility`s operational emergency management program. This hazards assessment describes the WERF, the area surrounding WERF, associated buildings and structures at WERF, and the processes performed at WERF. All radiological and nonradiological hazardous materials stored, used, or produced at WERF were identified and screened. Even though the screening process indicated that the hazardous materials could be screened from further analysis because the inventory of radiological and nonradiological hazardous materials were below the screening thresholds specified by DOE and DOE-ID guidance for DOE Order 5500.3A, the nonradiological hazardous materials were analyzed further because it was felt that the nonradiological hazardous material screening thresholds were too high.

  8. Eighteenth annual risk reduction engineering laboratory research symposium

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The Eighteenth Annual Risk Reduction Engineering Laboratory Research Symposium was held in Cincinnati, Ohio, April 14-16, 1992. The purpose of this Symposium was to present the latest significant research findings from ongoing and recently completed projects funded by the Risk Reduction Engineering Laboratory (RREL). These Proceedings are organized into two sections. Sessions A and B, which contain extended abstracts of the paper presentations. A list of poster displays is also included. Subjects include remedial action, treatment, and control technologies for waste disposal, landfill liner and cover systems, underground storage tanks, and demonstration and development of innovative/alternative treatment technologies for hazardous waste. Alternative technology subjects include thermal destruction of hazardous wastes, field evaluations, existing treatment options, emerging treatment processes, waste minimization, and biosystems for hazardous waste destruction

  9. Application of Six Sigma Using DMAIC Methodology in the Process of Product Quality Control in Metallurgical Operation

    Directory of Open Access Journals (Sweden)

    Girmanová Lenka

    2017-12-01

    Full Text Available The Six Sigma DMAIC can be considered a guide for problem solving and product or process improvement. The majority of companies start to implement Six Sigma using the DMAIC methodology. The paper deals with application of Six Sigma using the DMAIC methodology in the process of product quality control. The case study is oriented on the field of metallurgical operations. The goal of the Six Sigma project was to ensure the required metallurgic product quality and to avoid an increase in internal costs associated with poor product quality. In this case study, a variety of tools and techniques like flow chart, histogram, Pareto diagram, analysis of FMEA (Failure Mode and Effect Analysis data, cause and effect diagram, logical analysis was used. The Sigma level has improved by approximately 13%. The achieved improvements have helped to reduce the quantity of defective products and the processing costs (technology for re-adjusting. Benefits resulting from the DMAIC implementation can be divided into three levels: the qualitative, economic and safety level.

  10. Numerical computation of fluid flow in different nonferrous metallurgical reactors

    International Nuclear Information System (INIS)

    Lackner, A.

    1996-10-01

    Heat, mass and fluid flow phenomena in metallurgical reactor systems such as smelting cyclones or electrolytic cells are complex and intricately linked through the governing equations of fluid flow, chemical reaction kinetics and chemical thermodynamics. The challenges for the representation of flow phenomena in such reactors as well as the transfers of these concepts to non-specialist modelers (e.g. plant operators and management personnel) can be met through scientific flow visualization techniques. In the first example the fluid flow of the gas phase and of concentrate particles in a smelting cyclone for copper production are calculated three dimensionally. The effect of design parameters (length and diameter of reactor, concentrate feeding tangentially or from the top, ..) and operating conditions are investigated. Single particle traces show, how to increase particle retention time before the particles reach the liquid film flowing down the cyclone wall. Cyclone separators are widely used in the metallurgical and chemical industry for collection of large quantities of dust. Most of the empirical models, which today are applied for the design, are lacking in being valid in the high temperature region. Therefore the numerical prediction of the collection efficiency of dust particles is done. The particle behavior close to the wall is considered by applying a particle restitution model, which calculates individual particle restitution coefficients as functions of impact velocity and impact angle. The effect of design parameters and operating are studied. Moreover, the fluid flow inside a copper refining electrolysis cell is modeled. The simulation is based on density variations in the boundary layer at the electrode surface. Density and thickness of the boundary layer are compared to measurements in a parametric study. The actual inhibitor concentration in the cell is calculated, too. Moreover, a two-phase flow approach is developed to simulate the behavior of

  11. Determining sulfur in metallurgical coke by the X-ray fluorescent method

    Energy Technology Data Exchange (ETDEWEB)

    Sofilic, T.; Kesic-Racan, M.; Sindler, M.; Sokolean, D.

    1979-01-01

    A method is described of X-ray fluorescent analysis for current determination of sulfur in the concentration range of 0.5-1.16% in metallurgical coke. To do this, the analyzed material (coke) is ground to a particle size of 200 mu and mixed in a 1:1 ratio with an organic binder (soluble starch). The mixture is briquetted in meshes of a certain size under a pressure of 25 tons/cm/sub 2/. The tablets obtained are analyzed in a Phillips spectrometer with a Cr anticathode. The presence is noted of a linear dependence between the S content and the instrument reading; the correlation factor is 0.91; the mean detection error, 0.0596.

  12. Utilizing of the metallurgical slag for production of cementless concrete mixtures

    Directory of Open Access Journals (Sweden)

    D. Baricová

    2012-10-01

    Full Text Available In process of pig iron, steel and cast iron production besides main product, also secondary products are formed, that have character of secondary raw materials and industrial wastes. The most abundant secondary product originating in the metallurgical process is furnace slag. Total amount of accured slag, also its chemical, mineralogical, physical – chemical properties and similarity with natural stones predestinate its utilisation in different fields of industry. The contribution deals with production of cementless concrete mixtures, where the main parts were formed by blast furnace granulated slag grinded and different gravel slag from blast furnace, oxygen converter and electric arc furnace. As activators of solidification different kinds of water glass were tested.

  13. Preliminary report of the past and present uses, storage, and disposal of hazardous materials at the Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Dreicer, M.

    1985-12-01

    This report contains the findings of a records search performed to survey the past and present use, storage, and disposal of hazardous materials and wastes at the Lawrence Livermore National Laboratory (LLNL) site. This report provides a point of departure for further planning of environmental protection activities at the site. This report was conducted using the LLNL archives and library, documents from the US Navy, old LLNL Plant Engineering blueprint files, published articles and reports, Environmental Protection Program records, employee interviews, and available aerial photographs. Sections I and II of this report provide an introduction to the LLNL site and its environmental characteristics. Several tenants have occupied the site prior to the establishment of LLNL, currently operated by the University of California for the US Department of Energy. Section III of this report contains information on environmentally related operations of early site users, the US Navy and California Research and Development. Section IV of this report contains information on the handling of hazardous materials and wastes by LLNL programs. The information is presented in 12 sub-sections, one for each currently operating LLNL program. General site areas, i.e., garbage trenches, the traffic circle landfill, the taxi strip, and old ammunition bunkers are discussed in Section V. 12 refs., 23 figs., 27 tabs.

  14. Preliminary report of the past and present uses, storage, and disposal of hazardous materials at the Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Dreicer, M.

    1985-12-01

    This report contains the findings of a records search performed to survey the past and present use, storage, and disposal of hazardous materials and wastes at the Lawrence Livermore National Laboratory (LLNL) site. This report provides a point of departure for further planning of environmental protection activities at the site. This report was conducted using the LLNL archives and library, documents from the US Navy, old LLNL Plant Engineering blueprint files, published articles and reports, Environmental Protection Program records, employee interviews, and available aerial photographs. Sections I and II of this report provide an introduction to the LLNL site and its environmental characteristics. Several tenants have occupied the site prior to the establishment of LLNL, currently operated by the University of California for the US Department of Energy. Section III of this report contains information on environmentally related operations of early site users, the US Navy and California Research and Development. Section IV of this report contains information on the handling of hazardous materials and wastes by LLNL programs. The information is presented in 12 sub-sections, one for each currently operating LLNL program. General site areas, i.e., garbage trenches, the traffic circle landfill, the taxi strip, and old ammunition bunkers are discussed in Section V. 12 refs., 23 figs., 27 tabs

  15. Six Strategies for Chemical Waste Minimization in Laboratories.

    Science.gov (United States)

    Matteson, Gary C.; Hadley, Cheri R.

    1991-01-01

    Guidelines are offered to research administrators for reducing the volume of hazardous laboratory waste. Suggestions include a chemical location inventory, a chemical reuse facility, progressive contracts with chemical suppliers, internal or external chemical recycling mechanisms, a "chemical conservation" campaign, and laboratory fees for…

  16. Integrated Multimotor Electrical DC Drive for Metallurgical Rolling Table

    Directory of Open Access Journals (Sweden)

    Gała Marek

    2015-06-01

    Full Text Available A drive system of a section of a metallurgical rolling table consisting of six dc motors, 2220 amperes of total current, fed from a single ABB reversible thyristor converter has been described in this paper. Autonomous excitation circuits of the motors are fed from independent thyristor converters working in the so called MULTIFEX system linked with a supervisory high power converter. There are presented schemes of the DSL communication realized by FEX excitation cards of the motors using the SDSC card of the DCS-800-S02 converter and logic control system based on a PLC controller. The parameterization of the DCS-800 converter and the DCF 803 excitation systems was conducted using the DriveWindow software tool. Significant waveforms of voltages, currents and the estimated motor velocity are described and presented for the idle run as well as during transporting sheets discharged from a pusher furnace.

  17. Silver recovery from zinc metallurgical sludge – analysis of solutions

    Directory of Open Access Journals (Sweden)

    Pietrzyk Stanisław

    2017-01-01

    Full Text Available During the hydrometallurgical process of zinc production, conducted in the ZGH “Bolesław” S.A. in Bukowno [Mine and Metallurgical Plant], about 40,000 tons of sludge is generated. After dehydration in the Larox filter presses, sludge contains ca. 16-18% of Zn, 20-25% of Fe, and 200-300 ppm of Ag. Next, sludge is transported to the Olkusz concentrator for flotation to obtain concentrate enriched with Ag (1,000-1,500 ppm. The concentrate is then sent to the HC “Miasteczko Śląskie” [zinc smelter], while the flotation tailings are subjected to recycling in waelz kiln in Bukowno to regain mainly Zn and Pb, in the form of oxides (also sent later to the HC “Miasteczko Śląskie”.

  18. Ti3SiC2 Synthesis by Powder Metallurgical Methods

    OpenAIRE

    Kero, Ida; Antti, Marta-Lena; Odén, Magnus

    2007-01-01

    Titanium silicon carbide MAX phase was synthesised by a powder metallurgical method from ball milled TiC/Si powders of two different compositions, with TiC/Si ratios of 3:2 and 3:2.2 respectively. The cold pressed samples were analysed by dilatometry under flowing argon or sintered under vacuum for different times. The sintered samples were evaluated using x-ray diffraction (XRD). This study showed that titanium carbide was always present as a secondary phase and silicon carbide accompanied t...

  19. laboratory activities and students practical performance

    African Journals Online (AJOL)

    unesco

    as necessary and important, very little justification was given for their .... Chemistry laboratory activities refer to the practical activities which students ..... equations, formulae, definitions, terminology, physical properties, hazards or disposal.

  20. Handbook of laboratory health and safety measures

    International Nuclear Information System (INIS)

    Pal, S.B.

    1985-01-01

    The application of radioactive isotopes and various scientific instruments based on different ionizing and non-ionizing radiation have brought new safety problems to laboratory workers today. Therefore, there is a need to revise present knowledge of safety measures to deal with new hazards, thus broadening the outlook towards health and safety measures for contemporary laboratory staff. This handbook presents a series of articles on current knowledge regarding laboratory safety

  1. The Hazardous Material Technician Apprenticeship Program at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Steiner, S.D.

    1987-07-01

    This document describes an apprenticeship training program for hazardous material technician. This entry-level category is achieved after approximately 216 hours of classroom and on-the-job training. Procedures for evaluating performance include in-class testing, use of on-the-job checks, and the assignment of an apprentice mentor for each trainee

  2. Production of metallurgical cokes from some Turkish lignites using sulphite liquor binders

    Energy Technology Data Exchange (ETDEWEB)

    Yanik, J.; Saglam, M.; Yuksel, M. (Ege University, Izmir (Turkey). Dept. of Chemistry)

    1990-04-01

    Soma and Tuncbilek lignites were briquetted at 80{degree}C under 0-100 MPa, using varying amounts of sulphite liquor binders. The briquettes were then carbonized at 950{degree}C, and the resulting formed cokes were examined. The effects of the type and concentration of binders, and of the briquetting pressure, on the strength and porosity of the formcokes were investigated. As a result of these experiments, optimal briquetting conditions were established. It was also stated that formcokes made from both Turkish lignite samples under optimal briquetting conditions could be used for metallurgical purposes, particularly in non-ferrous metallurgy. 17 refs., 1 fig., 4 tabs.

  3. Road Transportable Analytical Laboratory (RTAL) system

    International Nuclear Information System (INIS)

    1993-01-01

    The goal of this contractual effort is the development and demonstration of a Road Transportable Analytical Laboratory (RTAL) system to meet the unique needs of the Department of Energy (DOE) for rapid, accurate analysis of a wide variety of hazardous and radioactive contaminants in soil, groundwater, and surface waters. This laboratory system will be designed to provide the field and laboratory analytical equipment necessary to detect and quantify radionuclides, organics, heavy metals and other inorganics, and explosive materials. The planned laboratory system will consist of a set of individual laboratory modules deployable independently or as an interconnected group to meet each DOE site's specific needs

  4. Natural phenomena hazards project for Department of Energy sites

    International Nuclear Information System (INIS)

    Coats, D.W.

    1985-01-01

    Lawrence Livermore National Laboratory (LLNL) has developed seismic and wind hazard models for the Office of Nuclear Safety (ONS), Department of Energy (DOE). The work is part of a three-phase effort aimed at establishing uniform building design criteria for seismic and wind hazards at DOE sites throughout the United States. In Phase 1, LLNL gathered information on the sites and their critical facilities, including nuclear reactors, fuel-reprocessing plants, high-level waste storage and treatment facilities, and special nuclear material facilities. In Phase 2, development of seismic and wind hazard models, was initiated. These hazard models express the annual probability that the site will experience an earthquake or wind speed greater than some specified magnitude. In the final phase, it is anticipated that the DOE will use the hazard models to establish uniform criteria for the design and evaluation of critical facilities. 13 references, 2 figures, 1 table

  5. Health and Safety Procedures Manual for hazardous waste sites

    Energy Technology Data Exchange (ETDEWEB)

    Thate, J.E.

    1992-09-01

    The Oak Ridge National Laboratory Chemical Assessments Team (ORNL/CAT) has developed this Health and Safety Procedures Manual for the guidance, instruction, and protection of ORNL/CAT personnel expected to be involved in hazardous waste site assessments and remedial actions. This manual addresses general and site-specific concerns for protecting personnel, the general public, and the environment from any possible hazardous exposures. The components of this manual include: medical surveillance, guidance for determination and monitoring of hazards, personnel and training requirements, protective clothing and equipment requirements, procedures for controlling work functions, procedures for handling emergency response situations, decontamination procedures for personnel and equipment, associated legal requirements, and safe drilling practices.

  6. Production of highly porous glass-ceramics from metallurgical slag, fly ash and waste glass

    OpenAIRE

    Mangutova Bianka V.; Fidancevska Emilija M.; Milosevski Milosav I.; Bossert Joerg H.

    2004-01-01

    Glass-ceramics composites were produced based on fly-ash obtained from coal power stations, metallurgical slag from ferronickel industry and waste glass from TV monitors, windows and flasks. Using 50% waste flask glass in combination with fly ash and 20% waste glass from TV screens in combination with slag, E-modulus and bending strength values of the designed systems are increased (system based on fly ash: E-modulus from 6 to 29 GPa, and bending strength from 9 to 75 MPa). The polyurethane f...

  7. 3D Model Studies on the Effect of Bed and Powder Type Upon Radial Static Pressure and Powder Distribution in Metallurgical Shaft Furnaces

    Directory of Open Access Journals (Sweden)

    Panic B.

    2017-09-01

    Full Text Available The flow of gases in metallurgical shaft furnaces has a decisive influence on the course and process efficiency. Radial changes in porosity of the bed cause uneven flow of gas along the radius of the reactor, which sometimes is deliberate and intentional. However, holdup of solid particles in descending packed beds of metallurgical shaft furnaces can lead to unintentional changes in porosity of the bed along the radial reactor. Unintentional changes in porosity often disrupt the flow of gas causing poor performance of the furnace. Such disruptions of flow may occur in the blast furnace due to high level of powder content in gas caused by large amount of coal dust/powder insufflated as fuel substitute. The paper describes the model test results of radial distribution of static pressure and powder hold up within metallurgical reactor. The measurements were carried out with the use of 3D physical model of two-phase flow gas-powder in the moving (descending packed bed. Sinter or blast furnace pellets were used as packed bed while carbon powder or iron powder were used as the powder. Wide diversity within both static pressure distribution and powder distribution along the radius of the reactor were observed once the change in the type of powder occurred.

  8. Inventory management in a metallurgical of the automotive industry

    Directory of Open Access Journals (Sweden)

    Marcos Antonio Maia de Oliveira

    2015-12-01

    Full Text Available This article aims to analyze the importance of inventory management in a metallurgical company, located in Santo André city, in Grande São Paulo, since the inventory management is crucial within a company that wants to survive nowadays, by studying the main features and trends in the methods used for inventory control. In this case study the basic concepts for good control were considered, showing tools currently used in the market, providing data for material purchase, sales control, parts in stock, future orders, MRP, storage space, among others once many companies have high and unnecessary cost of stock for not being aware of the real importance of this control. It is felt that the logistics of the company should invest in technology by purchasing the MRP system, visiting fairs and attending seminars. This way, the company will have better inventory control thus consequently decrease the purchase of materials.

  9. Arsenic precipitation from metallurgical effluents; Precipitacion de arsenico desde efluentes metalurgicos

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, P.; Vargas, C.; Araya, E.; Martin, I.; Alguacil, F. J.

    2004-07-01

    In the mining-metallurgical companies different liquid effluents are produced, which can contain a series of dissolved elements that are considered dangerous from an environmental point of view. One of these elements is the arsenic, especially in the state of oxidation +5 that can be precipitated as calcium or iron arsenate. To fulfil the environmental requests it should have in solution a content of arsenic lower than 0,5 mg/l and the obtained solid product should be very stable under the condition in which it will be stored. this work looks for the best conditions of arsenic precipitation, until achieving contents in solution lower than such mentioned concentration. Also, the stability of the precipitates was studied. (Author) 7 refs.

  10. Upgrade of 400,000 gallon water storage tank at Argonne National Laboratory-West to UCRL-15910 high hazard seismic requirements

    International Nuclear Information System (INIS)

    Griffin, M.J.; Harris, B.G.

    1993-01-01

    As part of the Integral Fast Reactor (IFR) Project at Argonne National Laboratory West (ANL-W), it was necessary to strengthen an existing 400,000 gallon flat-bottom water storage tank to meet UCRL-15910 (currently formulated as DOE Standard DOE-STD-1020-92, Draft) high hazard natural phenomena requirements. The tank was constructed in 1988 and preliminary calculations indicated that the existing base anchorage was insufficient to prevent buckling and potential failure during a high hazard seismic event. General design criteria, including ground motion input, load combinations, etc., were based upon the requirements of UCRL-15910 for high hazard facilities. The analysis and capacity assessment criteria were based on the Generic Implementation Procedure developed by the Seismic Qualification Utilities Group (SQUG). Upgrade modifications, consisting of increasing the size of the Generic Implementation Procedure developed by the Seismic Qualification Utilities Group (SQUG). Upgrade modifications, consisting of increasing the size of the foundation and installing additional anchor bolts and chairs, were necessary to increase the capacity of the tank anchorage/support system. The construction of the upgrades took place in 1992 while the tank remained in service to allow continued operation of the EBR-II reactor. The major phases of construction included the installation and testing of 144 1/14in. x 15in., and 366 1in. x 16in. epoxied concrete anchors, placement of 220 cubic yards of concrete heavily reinforced, and installation of 24 1-1/2in. x 60in. tank anchor bolts and chairs. A follow-up inspection of the tank interior by a diver was conducted to determine if the interior tank coating had been damaged by the chair welding. The project was completed on schedule and within budget

  11. Reduce the methane hazards in collieries, vol. 1.

    CSIR Research Space (South Africa)

    Van Zyl, FJ

    1996-10-01

    Full Text Available In an effort to improve safety in the underground environment of a mechanical miner section, with relation to the methane hazard a data obtained with the multi-channel methane monitoring unit, combined with situ and laboratory coal analysis data...

  12. Historical Review of the Correlation of Ballistic and Metallurgical Characteristics of Domestic Armor at Watertown Arsenal

    Science.gov (United States)

    1945-12-07

    really under- stood. It was learned, then that pearlitic and bainitic microstructures imparted poor impact toughness to steels , pearlitic structures...having a more detrimental effect than bainitic structures, and that a steel could show little or no free ferrite and still pofssess poor shock resistance...arsenal for metallurgical study. The studies at the arsenal revealed that presence of bainitic structures in the core of low alloy NS type steels

  13. Powder metallurgical processing of magnetostrictive materials based on rare earth-iron intermetallic compounds

    International Nuclear Information System (INIS)

    Malekzadeh, M.

    1978-01-01

    Procedures are described for fabrication of high density rare earth-iron magnetostrictive compounds by powder metallurgical techniques. The fabrication involves a sequence of steps which includes preparing the pre-alloyed compounds, pulverizing them into a fine powder, compacting in suitable sizes and shapes, and sintering. Samples prepared by these procedures are carefully characterized by scanning electron microscopy, x-ray diffraction, dilatometry, and magnetic measurements. Process steps are found to exert important influences upon densities, microstructure and magnetic properties attained after densification. Investigations on a number of these process steps, including milling time and medium, sintering, and magnetic powder alignment are described

  14. Special Report: Hazardous Wastes in Academic Labs.

    Science.gov (United States)

    Sanders, Howard J.

    1986-01-01

    Topics and issues related to toxic wastes in academic laboratories are addressed, pointing out that colleges/universities are making efforts to dispose of hazardous wastes safely to comply with tougher federal regulations. University sites on the Environmental Protection Agency Superfund National Priorities List, costs, and use of lab packs are…

  15. Controlled air incineration of hazardous chemical waste at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Stretz, L.A.; Borduin, L.C.; Draper, W.E.; Koenig, R.A.; Vavruska, J.S.

    1982-01-01

    An incineration system, originally demonstrated as a transuranic (TRU) waste volume-reduction process, is described. The production-scale controlled air incinerator using commercially available equipment and technology was modified for solid radioactive waste service. The same incinerator and offgas treatment system has been modified further for use in evaluating the destruction of hazardous liquid wastes such as polychlorinated biphenyls (PCBs) and hazardous solid wastes such as pentachlorophenol (PCP)-treated wood. Results of a PCP-treated wood incineration test show a PCP destruction efficiency of greater than 99.99% in the primary chamber for the operating conditions investigated. Conditions and results for this test are described

  16. Metallurgical study and phase diagram calculations of the Zr-Nb-Fe-(Sn,O) system

    International Nuclear Information System (INIS)

    Toffolon, C.

    2000-01-01

    The Framatome M5 TM Zr-Nb-O alloy with small amounts of Fe is of interest for nuclear applications (PWR fuel cladding).The behaviour of this kind of alloy for in-service conditions strongly depends on the microstructure. Therefore, a metallurgical study of alloys of the Zr-Nb-Fe-(O-Sn) system has been developed in order to study the influence of chemical composition variabilities of Nb, Fe and O and thermal treatments on the resultant microstructure. In order to get some insight on the physical metallurgy of Zr-Nb-Fe-(Sn,O) alloys and to minimize the experiments, it is useful to build a thermodynamic database. With this object, it was necessary to re-optimize and to calculate the low order binary systems such as Fe-Nb and Nb-Sn in order to assess the Zr-Nb-Fe-(Sn,O) system. Then, the experimental studies concerned: the influence of small variations in Nb and O contents on the α/β transus temperatures. A comparison between experimental results and thermodynamic predictions showed a good agreement; the precipitation kinetics of βNb and intermetallic phases in the α phase domain. These experiments showed that the kinetics depends on the initial metallurgical conditions; the determination of the crystallographic structure and the stoichiometry of the ternary Zr-Nb-Fe intermetallic compounds as a function of the temperature. Finally, these experimental data were used to propose a first assessment of the Zr-Nb-Fe(O∼1200 ppm) system. (author)

  17. Safety management and risk assessment in chemical laboratories.

    Science.gov (United States)

    Marendaz, Jean-Luc; Friedrich, Kirstin; Meyer, Thierry

    2011-01-01

    The present paper highlights a new safety management program, MICE (Management, Information, Control and Emergency), which has been specifically adapted for the academic environment. The process starts with an exhaustive hazard inventory supported by a platform assembling specific hazards encountered in laboratories and their subsequent classification. A proof of concept is given by a series of implementations in the domain of chemistry targeting workplace health protection. The methodology is expressed through three examples to illustrate how the MICE program can be used to address safety concerns regarding chemicals, strong magnetic fields and nanoparticles in research laboratories. A comprehensive chemical management program is also depicted.

  18. Experimental evaluation of ballistic hazards in imaging diagnostic center.

    Science.gov (United States)

    Karpowicz, Jolanta; Gryz, Krzysztof

    2013-04-01

    Serious hazards for human health and life and devices in close proximity to the magnetic resonance scanners (MRI scanners) include the effects of being hit by ferromagnetic objects attracted by static magnetic field (SMF) produced by scanner magnet - the so-called ballistic hazards classified among indirect electromagnetic hazards. International safety guidelines and technical literature specify different SMF threshold values regarding ballistic hazards - e.g. 3 mT (directive 2004/40/EC, EN 60601-2-33), and 30 mT (BMAS 2009, directive proposal 2011). Investigations presented in this article were performed in order to experimentally verify SMF threshold for ballistic hazards near MRI scanners used in Poland. Investigations were performed with the use of a laboratory source of SMF (0-30 mT) and MRI scanners of various types. The levels of SMF in which metal objects of various shapes and 0.4-500 g mass are moved by the field influence were investigated. The distance from the MRI scanners (0.2-3T) where hazards may occur were also investigated. Objects investigated under laboratory conditions were moved by SMF of 2.2-15 mT magnetic flux density when they were freely suspended, but were moved by the SMF of 5.6-22 mT when they were placed on a smooth surface. Investigated objects were moved in fields of 3.5-40 mT by MRI scanners. Distances from scanner magnet cover, where ballistic hazards might occur are: up to 0.5 m for 0.2-0.3T scanners; up to 1.3 m for 0.5T scanners; up to 2.0 m for 1.5T scanners and up to 2.5 m for 3T scanners (at the front and back of the magnet). It was shown that SMF of 3 mT magnetic flux density should be taken as the threshold for ballistic hazards. Such level is compatible with SMF limit value regarding occupational safety and health-protected areas/zones, where according to the Polish labor law the procedures of work environment inspection and prevention measures regarding indirect electromagnetic hazards should be applied. Presented results

  19. Integrating environment, safety and health training at a national laboratory

    International Nuclear Information System (INIS)

    Larson, D.R.

    1993-01-01

    In a multi-purpose research laboratory, innovation and creativity are required to satisfy the training requirements for hazards to people and the environment. A climate that encourages excellence in research and enhances hazard minimization skills is created by combining technical expertise with instructional design talent

  20. Development of Non-hazardous Explosives for Security Training and Testing (NESTT)

    International Nuclear Information System (INIS)

    Kury, J.W.; Simpson, R.L.; Hallowell, S.F.

    1996-01-01

    The security force at the Lawrence Livermore National Laboratory (LLNL) routinely used canines to search for explosives and other contraband substances. The use of threat quantities of explosive for realistic training in populated or sensitive Laboratory areas has not been permitted because of the hazard. To overcome this limitation a series of non-hazardous materials with authentic signatures have been prepared and evaluated. A series of materials has been prepared that have authentic properties of explosives but are non-hazardous. These NESTT materials are prepared by coating a few micron thick layer of an explosive on a non-reactive substrate. This produces a formulation with an authentic vapor and molecular signature. Authentic x-ray and oxygen/nitrogen density signatures are obtained through the appropriate choice of a substrate. The signatures of NESTT TNT and NESTT Comp. C-4 have been verified by instrument and canine (K-9) detection in a Beta Test Program

  1. Metallurgical and acoustical characterization of a hydroformed, 304 stainless steel, Caribbean-style musical pan

    International Nuclear Information System (INIS)

    Murr, L.E.; Gaytan, S.M.; Lopez, M.I.; Bujanda, D.E.; Martinez, E.Y.; Whitmyre, G.; Price, H.

    2008-01-01

    We report herein the metallurgical and acoustical characterization of hydroformed 304 stainless steel, Caribbean pans. These pans were fully tuned to chromatic tones and compared to a manufactured, low-carbon, Caribbean steel pan standard. Hydroformed platforms had a Vickers microindentation hardness of HV 345, which was reduced by annealing during pan fabrication to HV 270. Skirts welded to the hydroformed head had a microindentation hardness of HV 440. Microstructural characterization by light optical metallography and transmission electron microscopy illustrated microstructures (including grain structures) characteristic of these pan microindentation hardnesses

  2. Proceedings of papers. 3. Balkan Metallurgical Conference; Kniga na trudovi. 3-ta Balkanska konferencija na metalurzite

    Energy Technology Data Exchange (ETDEWEB)

    Mickovski, Jovan [Faculty of Technology and Metallurgy, St. ' Cyril and Methodius' University, Skopje (Macedonia, The Former Yugoslav Republic of)

    2003-07-01

    This Conference aims to be a central event in the metallurgy research of Balkan, fulfilling the goals to present the most outstanding relevant developments in modern metallurgy; to inspire high standards of excellence in pure and applied metallurgy research; to attract outstanding scientists to present central lectures on modem metallurgical research, and on the challenges imposed by the needs of society; to inspire the young generation of metallurgists in Balkan and other countries. Following these lines, the 3. Balkan Conference on Metallurgy will provide a unique opportunity for academic and industrial metallurgists from the Balkan countries and wider, to exchange ideas, expertise, and experience on topics related to the theme of the Conference - Balkan Metallurgy in Search for New Ways of Development. The aim of the organizers was to bring together distinguished experts, not only to present their work, but also to discuss the major scientific and technological challenges facing metallurgy in this millennium.The 6 sections of the conference were entitled: Section A: Extractive metallurgy; Section B: Physical metallurgy and materials science - ferrous metals and non ferrous metals; Section C: Management, maintenance control and optimization of metallurgical processes; Section D: New technologies and techniques; Section E: Refractory and powder; Section F: Corrosion and protection of metals. Papers relevant to INIS are indexed separately.

  3. Packaging and transportation manual. Chapter on the packaging and transportation of hazardous and radioactive waste

    International Nuclear Information System (INIS)

    1998-03-01

    The purpose of this chapter is to outline the requirements that Los Alamos National Laboratory employees and contractors must follow when they package and ship hazardous and radioactive waste. This chapter is applied to on-site, intra-Laboratory, and off-site transportation of hazardous and radioactive waste. The chapter contains sections on definitions, responsibilities, written procedures, authorized packaging, quality assurance, documentation for waste shipments, loading and tiedown of waste shipments, on-site routing, packaging and transportation assessment and oversight program, nonconformance reporting, training of personnel, emergency response information, and incident and occurrence reporting. Appendices provide additional detail, references, and guidance on packaging for hazardous and radioactive waste, and guidance for the on-site transport of these wastes

  4. Packaging and transportation manual. Chapter on the packaging and transportation of hazardous and radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The purpose of this chapter is to outline the requirements that Los Alamos National Laboratory employees and contractors must follow when they package and ship hazardous and radioactive waste. This chapter is applied to on-site, intra-Laboratory, and off-site transportation of hazardous and radioactive waste. The chapter contains sections on definitions, responsibilities, written procedures, authorized packaging, quality assurance, documentation for waste shipments, loading and tiedown of waste shipments, on-site routing, packaging and transportation assessment and oversight program, nonconformance reporting, training of personnel, emergency response information, and incident and occurrence reporting. Appendices provide additional detail, references, and guidance on packaging for hazardous and radioactive waste, and guidance for the on-site transport of these wastes.

  5. Chemical health risk assessment for hazardous and mixed waste management units at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    1992-09-01

    The waste characterization for each treatment unit or process is based on treatment records from LLNL's computerized Hazardous Waste Management Inventory System (HWMIS). In 1990, these data were compiled into a single database comprising both hazardous waste and mixed waste data. Even though these data originate from the same source used in the previous HRA, the database was modified to set quantities and concentrations to a consistent set of units. This allowed an analysis of waste types by Hazardous Waste Management unit that was more accurate and did not rely upon many of the conservative assumptions used in the Phase II HRA waste characterization. Finally, the current waste characterizations are considered more representative of potential long-term wastes because they were developed by combining all wastes that could be treated in each unit, as opposed to the wastes treated only during 1988 to 1989. This final step more appropriately accounts for the variability in waste types likely to be seen by the Hazardous Waste Management Division. The quantities of each waste listed in the characterization tables represent the sum of all chemical quantities belonging to hazardous and mixed waste types potentially handled by each area

  6. Powder metallurgical high performance materials. Proceedings. Volume 2: P/M hard materials

    Energy Technology Data Exchange (ETDEWEB)

    Kneringer, G; Roedhammer, P; Wildner, H [eds.

    2001-07-01

    The proceedings of these seminars form an impressive chronicle of the continued progress in the understanding of refractory metals and cemented carbides and in their manufacture and application. There the ingenuity and assiduous work of thousands of scientists and engineers striving for progress in the field of powder metallurgy is documented in more than 2000 contributions covering some 30000 pages. The 15{sup th} Plansee Seminar was convened under the general theme 'Powder Metallurgical High Performance Materials'. Under this broadened perspective the seminar will strive to look beyond the refractory metals and cemented carbides, which remain at its focus, to novel classes of materials, such as intermetallic compounds, with potential for high temperature applications. (author)

  7. Powder metallurgical high performance materials. Proceedings. Volume 2: P/M hard materials

    International Nuclear Information System (INIS)

    Kneringer, G.; Roedhammer, P.; Wildner, H.

    2001-01-01

    The proceedings of these seminars form an impressive chronicle of the continued progress in the understanding of refractory metals and cemented carbides and in their manufacture and application. There the ingenuity and assiduous work of thousands of scientists and engineers striving for progress in the field of powder metallurgy is documented in more than 2000 contributions covering some 30000 pages. The 15 th Plansee Seminar was convened under the general theme 'Powder Metallurgical High Performance Materials'. Under this broadened perspective the seminar will strive to look beyond the refractory metals and cemented carbides, which remain at its focus, to novel classes of materials, such as intermetallic compounds, with potential for high temperature applications. (author)

  8. Recent trends and current practices for secondary processing of zinc and lead. Part II: zinc recovery from secondary sources.

    Science.gov (United States)

    Sahu, Kamala Kanta; Agrawal, Archana; Pandey, Banshi Dhar

    2004-08-01

    Almost all metallurgical processes are associated with the generation of wastes and residues that may be hazardous or non-hazardous in nature depending upon the criteria specified by institutions such as the US Environment Protection Agency, etc. Wastes containing heavy and toxic metals such as arsenic, cadmium, chromium, nickel, lead, copper, mercury, zinc, etc., that are present beyond permissible limits deemed to be treated or disposed of, and non-hazardous wastes can be utilized for metal recovery or safe disposal. Zinc is in growing demand all over the world. In India, a major amount of zinc is imported and therefore processing of zinc secondaries will assist in satisfying the gap between demand and supply to some extent. This report mainly focuses on the current practices and recent trends on the secondary processing of zinc. Attempts made by various laboratories to develop ecofriendly processes for the recovery of zinc from secondary raw materials are also described and discussed.

  9. Oxide nano-rod array structure via a simple metallurgical process

    International Nuclear Information System (INIS)

    Nanko, M; Do, D T M

    2011-01-01

    A simple method for fabricating oxide nano-rod array structure via metallurgical process is reported. Some dilute alloys such as Ni(Al) solid solution shows internal oxidation with rod-like oxide precipices during high-temperature oxidation with low oxygen partial pressure. By removing a metal part in internal oxidation zone, oxide nano-rod array structure can be developed on the surface of metallic components. In this report, Al 2 O 3 or NiAl 2 O 4 nano-rod array structures were prepared by using Ni(Al) solid solution. Effects of Cr addition into Ni(Al) solid solution on internal oxidation were also reported. Pack cementation process for aluminizing of Ni surface was applied to prepare nano-rod array components with desired shape. Near-net shape Ni components with oxide nano-rod array structure on their surface can be prepared by using the pack cementation process and internal oxidation,

  10. [Safety in the Microbiology laboratory].

    Science.gov (United States)

    Rojo-Molinero, Estrella; Alados, Juan Carlos; de la Pedrosa, Elia Gómez G; Leiva, José; Pérez, José L

    2015-01-01

    The normal activity in the laboratory of microbiology poses different risks - mainly biological - that can affect the health of their workers, visitors and the community. Routine health examinations (surveillance and prevention), individual awareness of self-protection, hazard identification and risk assessment of laboratory procedures, the adoption of appropriate containment measures, and the use of conscientious microbiological techniques allow laboratory to be a safe place, as records of laboratory-acquired infections and accidents show. Training and information are the cornerstones for designing a comprehensive safety plan for the laboratory. In this article, the basic concepts and the theoretical background on laboratory safety are reviewed, including the main legal regulations. Moreover, practical guidelines are presented for each laboratory to design its own safety plan according its own particular characteristics. Copyright © 2014 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  11. School Chemistry Laboratory Safety Guide

    Science.gov (United States)

    Brundage, Patricia; Palassis, John

    2006-01-01

    The guide presents information about ordering, using, storing, and maintaining chemicals in the high school laboratory. The guide also provides information about chemical waste, safety and emergency equipment, assessing chemical hazards, common safety symbols and signs, and fundamental resources relating to chemical safety, such as Material…

  12. Hazardous material reduction initiative

    International Nuclear Information System (INIS)

    Nichols, D.H.

    1995-02-01

    The Hazardous Material Reduction Initiative (HMRI) explores using the review of purchase requisitions to reduce both the use of hazardous materials and the generation of regulated and nonregulated wastes. Based on an 11-month program implemented at the Hanford Site, hazardous material use and waste generation was effectively reduced by using a centralized procurement control program known as HMRI. As expected, several changes to the original proposal were needed during the development/testing phase of the program to accommodate changing and actual conditions found at the Hanford Site. The current method requires a central receiving point within the Procurement Organization to review all purchase requisitions for potentially Occupational Safety and Health Administration (OSHA) hazardous products. Those requisitions (approximately 4% to 6% of the total) are then forwarded to Pollution Prevention personnel for evaluation under HMRI. The first step is to determine if the requested item can be filled by existing or surplus material. The requisitions that cannot filled by existing or surplus material are then sorted into two groups based on applicability to the HMRI project. For example, laboratory requests for analytical reagents or standards are excluded and the purchase requisitions are returned to Procurement for normal processing because, although regulated, there is little opportunity for source reduction due to the strict protocols followed. Each item is then checked to determine if it is regulated or not. Regulated items are prioritized based on hazardous contents, quantity requested, and end use. Copies of these requisitions are made and the originals are returned to Procurement within 1-hr. Since changes to the requisition can be made at later stages during procurement, the HMRI fulfills one of its original premises in that it does not slow the procurement process

  13. Hazardous-waste analysis plan for LLNL operations

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, R.S.

    1982-02-12

    The Lawrence Livermore National Laboratory is involved in many facets of research ranging from nuclear weapons research to advanced Biomedical studies. Approximately 80% of all programs at LLNL generate hazardous waste in one form or another. Aside from producing waste from industrial type operations (oils, solvents, bottom sludges, etc.) many unique and toxic wastes are generated such as phosgene, dioxin (TCDD), radioactive wastes and high explosives. One key to any successful waste management program must address the following: proper identification of the waste, safe handling procedures and proper storage containers and areas. This section of the Waste Management Plan will address methodologies used for the Analysis of Hazardous Waste. In addition to the wastes defined in 40 CFR 261, LLNL and Site 300 also generate radioactive waste not specifically covered by RCRA. However, for completeness, the Waste Analysis Plan will address all hazardous waste.

  14. Hazardous-waste analysis plan for LLNL operations

    International Nuclear Information System (INIS)

    Roberts, R.S.

    1982-01-01

    The Lawrence Livermore National Laboratory is involved in many facets of research ranging from nuclear weapons research to advanced Biomedical studies. Approximately 80% of all programs at LLNL generate hazardous waste in one form or another. Aside from producing waste from industrial type operations (oils, solvents, bottom sludges, etc.) many unique and toxic wastes are generated such as phosgene, dioxin (TCDD), radioactive wastes and high explosives. One key to any successful waste management program must address the following: proper identification of the waste, safe handling procedures and proper storage containers and areas. This section of the Waste Management Plan will address methodologies used for the Analysis of Hazardous Waste. In addition to the wastes defined in 40 CFR 261, LLNL and Site 300 also generate radioactive waste not specifically covered by RCRA. However, for completeness, the Waste Analysis Plan will address all hazardous waste

  15. Stabilization of mixed waste at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Boehmer, A.M.; Gillins, R.L.; Larsen, M.M.

    1989-01-01

    EG and G Idaho, Inc. has initiated a program to develop safe, efficient, cost-effective treatment methods for the stabilization of some of the hazardous and mixed wastes generated at the Idaho National Engineering Laboratory. Laboratory-scale testing has shown that extraction procedure toxic wastes can be successfully stabilized by solidification, using various binders to produce nontoxic, stable waste forms for safe, long-term disposal as either landfill waste or low-level radioactive waste, depending upon the radioactivity content. This paper presents the results of drum-scale solidification testing conducted on hazardous, low-level incinerator flyash generated at the Waste Experimental Reduction Facility. The drum-scale test program was conducted to verify that laboratory-scale results could be successfully adapted into a production operation

  16. Earthquake hazard assessment and small earthquakes

    International Nuclear Information System (INIS)

    Reiter, L.

    1987-01-01

    The significance of small earthquakes and their treatment in nuclear power plant seismic hazard assessment is an issue which has received increased attention over the past few years. In probabilistic studies, sensitivity studies showed that the choice of the lower bound magnitude used in hazard calculations can have a larger than expected effect on the calculated hazard. Of particular interest is the fact that some of the difference in seismic hazard calculations between the Lawrence Livermore National Laboratory (LLNL) and Electric Power Research Institute (EPRI) studies can be attributed to this choice. The LLNL study assumed a lower bound magnitude of 3.75 while the EPRI study assumed a lower bound magnitude of 5.0. The magnitudes used were assumed to be body wave magnitudes or their equivalents. In deterministic studies recent ground motion recordings of small to moderate earthquakes at or near nuclear power plants have shown that the high frequencies of design response spectra may be exceeded. These exceedances became important issues in the licensing of the Summer and Perry nuclear power plants. At various times in the past particular concerns have been raised with respect to the hazard and damage potential of small to moderate earthquakes occurring at very shallow depths. In this paper a closer look is taken at these issues. Emphasis is given to the impact of lower bound magnitude on probabilistic hazard calculations and the historical record of damage from small to moderate earthquakes. Limited recommendations are made as to how these issues should be viewed

  17. Laboratory experience in the analysis of orphan waste

    International Nuclear Information System (INIS)

    Leventhal, L.; Kharkar, D.P.

    1986-01-01

    Energy related low level radioactive waste mixed with inorganic and organic hazardous waste derive from all stages of the fuel cycle. In order to comply with EPA and NRC regulations, prior to disposal this waste must be analyzed. For the analytical laboratory, the samples comprise both a potential radiation and chemical hazard. Screening procedures for handling such samples are described. Sophisticated instrumentation is necessary to identify the contaminants with the sensitivity required by the EPA and NRC. Aliquotting and dilution techniques have been adequate to reduce the activity levels sufficiently to allow operations in an uncontrolled laboratory and meet the minimum detection levels. Higher level samples are analyzed in a controlled area employing dedicated instrumentation and health physics precautions

  18. Performance Assessment of Hazardous Air Pollutant (HAP)Free Chemical Paint Strippers on Military Coatings for Validation to Federal Specification TT-R-2918A

    Science.gov (United States)

    2016-03-01

    ARL-TN-0742 ● MAR 2016 US Army Research Laboratory Performance Assessment of Hazardous Air Pollutant (HAP)–Free Chemical Paint...the originator. ARL-TN-0742 ● MAR 2016 US Army Research Laboratory Performance Assessment of Hazardous Air Pollutant (HAP...COVERED (From - To) 1–30 April 2014 4. TITLE AND SUBTITLE Performance Assessment of Hazardous Air Pollutant (HAP)–Free Chemical Paint Strippers

  19. Apparatus for sampling hazardous media

    International Nuclear Information System (INIS)

    Gardner, J.F.; Showalter, T.W.

    1984-01-01

    An apparatus for sampling a hazardous medium, such as radioactive or chemical waste, selectively collects a predetermined quantity of the medium in a recess of an end-over-end rotatable valving member. This collected quantity is deposited in a receiving receptacle located in a cavity while the receiving receptacle is in a sealed relationship with a recess to prevent dusting of the sampled media outside the receiving receptacle. The receiving receptacle is removably fitted within a vehicle body which is, in turn, slidably movable upon a track within a transport tube. The receiving receptacle is transported in the vehicle body from its sample receiving position within a container for the hazardous medium to a sample retrieval position outside the medium container. The receiving receptacle may then be removed from the vehicle body, capped and taken to a laboratory for chemical analysis. (author)

  20. Guidelines for Biosafety Training Programs for Workers Assigned to BSL-3 Research Laboratories.

    Science.gov (United States)

    Homer, Lesley C; Alderman, T Scott; Blair, Heather Ann; Brocard, Anne-Sophie; Broussard, Elaine E; Ellis, Robert P; Frerotte, Jay; Low, Eleanor W; McCarthy, Travis R; McCormick, Jessica M; Newton, JeT'Aime M; Rogers, Francine C; Schlimgen, Ryan; Stabenow, Jennifer M; Stedman, Diann; Warfield, Cheryl; Ntiforo, Corrie A; Whetstone, Carol T; Zimmerman, Domenica; Barkley, Emmett

    2013-03-01

    The Guidelines for Biosafety Training Programs for Workers Assigned to BSL-3 Research Laboratories were developed by biosafety professionals who oversee training programs for the 2 national biocontainment laboratories (NBLs) and the 13 regional biocontainment laboratories (RBLs) that participate in the National Institute of Allergy and Infectious Diseases (NIAID) NBL/RBL Network. These guidelines provide a general training framework for biosafety level 3 (BSL-3) high-containment laboratories, identify key training concepts, and outline training methodologies designed to standardize base knowledge, understanding, and technical competence of laboratory personnel working in high-containment laboratories. Emphasis is placed on building a culture of risk assessment-based safety through competency training designed to enhance understanding and recognition of potential biological hazards as well as methods for controlling these hazards. These guidelines may be of value to other institutions and academic research laboratories that are developing biosafety training programs for BSL-3 research.

  1. Metallurgical Effects of Shunting Current on Resistance Spot-Welded Joints of AA2219 Sheets

    Science.gov (United States)

    Jafari Vardanjani, M.; Araee, A.; Senkara, J.; Jakubowski, J.; Godek, J.

    2016-08-01

    Shunting effect is the loss of electrical current via the secondary circuit provided due to the existence of previous nugget in a series of welding spots. This phenomenon influences on metallurgical aspects of resistance spot-welded (RSW) joints in terms of quality and performance. In this paper RSW joints of AA2219 sheets with 1 mm thickness are investigated metallurgically for shunted and single spots. An electro-thermal finite element analysis is performed on the RSW process of shunted spot and temperature distribution and variation are obtained. These predictions are then compared with experimental micrographs. Three values of 5 mm, 20 mm, and infinite (i.e., single spot) are assumed for welding distance. Numerical and experimental results are matching each other in terms of nugget and HAZ geometry as increasing distance raised nugget size and symmetry of HAZ. In addition, important effect of shunting current on nugget thickness, microstructure, and Copper segregation on HAZ grain boundaries were discovered. A quantitative analysis is also performed about the influence of welding distance on important properties including ratio of nugget thickness and diameter ( r t), ratio of HAZ area on shunted and free side of nugget ( r HA), and ratio of equivalent segregated and total amount of Copper, measured in sample ( r Cu) on HAZ. Increasing distance from 5 mm to infinite, indicated a gain of 111.04, -45.55, and -75.15% in r t, r HA, and r Cu, respectively, while obtained ratios for 20 mm welding distance was suitable compared to single spot.

  2. Impacts on health and safety from transfer/consolidation of nuclear materials and hazardous chemicals

    International Nuclear Information System (INIS)

    Gallucci, R.H.V.

    1994-11-01

    Environmental restoration plans at the US Department of Energy (USDOE) Hanford Site calls for transfer/consolidation of ''targets/threats,'' namely nuclear materials and hazardous chemicals. Reductions in the health and safety hazards will depend on the plans implemented. Pacific Northwest Laboratory (PNL) estimated these potential impacts, assuming implementation of the current reference plan and employing ongoing risk and safety analyses. The results indicated the potential for ''significant'' reductions in health and safety hazards in the long term (> 25 years) and a potentially ''noteworthy'' reduction in health hazard in the short term (≤ 25 years)

  3. Safety Analysis Report for the use of hazardous production materials in photovoltaic applications at the National Renewable Energy Laboratory

    International Nuclear Information System (INIS)

    Crandall, R.S.; Nelson, B.P.; Moskowitz, P.D.; Fthenakis, V.M.

    1992-07-01

    To ensure the continued safety of SERI's employees, the community, and the environment, NREL commissioned an internal audit of its photovoltaic operations that used hazardous production materials (HPMs). As a result of this audit, NREL management voluntarily suspended all operations using toxic and/or pyrophoric gases. This suspension affected seven laboratories and ten individual deposition systems. These activities are located in Building 16, which has a permitted occupancy of Group B, Division 2 (B-2). NREL management decided to do the following. (1) Exclude from this SAR all operations which conformed, or could easily be made to conform, to B-2 Occupancy requirements. (2) Include in this SAR all operations that could be made to conform to B-2 Occupancy requirements with special administrative and engineering controls. (3) Move all operations that could not practically be made to conform to B-2 Occupancy requirements to alternate locations. In addition to the layered set of administrative and engineering controls set forth in this SAR, a semiquantitative risk analysis was performed on 30 various accident scenarios. Twelve presented only routine risks, while 18 presented low risks. Considering the demonstrated safe operating history of NREL in general and these systems specifically, the nature of the risks identified, and the layered set of administrative and engineering controls, it is clear that this facility falls within the DOE Low Hazard Class. Each operation can restart only after it has passed an Operational Readiness Review, comparing it to the requirements of this SAR, while subsequent safety inspections will ensure future compliance

  4. Metallurgical Characterization of a Weld Bead Coating Applied by the PTA Process on the D2 Tool Steel

    Directory of Open Access Journals (Sweden)

    Ali Tahaei

    Full Text Available Abstract In this investigation, a nickel-base powder mixed with tungsten carbide particles was applied by Plasma Transferred Arc welding (PTA on the surface of the D2 cold work tool steel to improve surface quality and to extend its lifetime during applications. The Design of Experiment (DoE method was applied to obtain the appropriate combination of hardfacing parameters and to run the minimum number of tests. Current, travel speed and preheat were considered as variable parameters. These parameters are important to reach a final layer with an appropriate bead geometry accompanied with good metallurgical properties. All samples were prepared for metallurgical investigations and the effect of process parameters on the weld bead geometry was considered. For each experiment run, weld bead geometry parameters were measured including dilution, penetration and reinforcement. Microstructures and the distribution of tungsten carbide particles after welding were analyzed by Optical Microscopy (OM and Scanning Electron Microscopy (SEM equipped with an EDS microprobe. In addition, hardness tests were performed to evaluate the mechanical properties of the weld bead layers. Finally, among all the experiments, the best sample with appropriate bead geometry and microstructure was selected.

  5. ECOLOGICAL MANAGEMENT IN THE MINING AND METALLURGICAL MARAMURES AREA

    Directory of Open Access Journals (Sweden)

    Viorel POP

    2015-04-01

    Full Text Available The paper is part of the interdisciplinary recent concerns of "environmental management", looking to determine the damages caused by pollution, remediation expenditures, and benefits that may arise through the application of remediation techniques and decontamination technologies in the mining and metallurgical Maramureş area. Large areas of land were diverted from their original destination (pastures, arable land, forests being now covered with ponds and dumps of mine or flotation tailings, deposits that are insufficiently protected, and have become sources of pollution to surrounding areas. All Eastern European countries have in common major environmental problems, the most serious being due to mining, metallurgy and chemistry. In the relationship of "economic-ecological" equilibrium, should be considered both economic criteria, as well as ecological ones. Pollution as the deterioration of environment, requires costs for rehabilitation of degraded areas, and for environmental protection, costs for new technologies, non polluting ones. The assessment foundation of environmental damages, is necessary for establishing the priority directions in the allocation of funds for projects to protect and rehabilitate the environment.

  6. Determination of Japanese buyer valuation of metallurgical coal characteristics by hedonic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Koerner, R.J. [Griffith University, Brisbane, Qld. (Australia). Graduate School of Management

    2001-09-01

    Considerable efforts have been devoted by econometric researchers to understanding Japanese steel mill (JSM) metallurgical coal valuation policies, and whether such policies disadvantage coal exporters. Much of this research has employed the hedonic regression modeling technique of Rosen and examines the significance of coal quality in establishing market price. This article discusses shortcomings in some such modeling studies, and presents results of additional hedonic modeling to buttress findings of previous work suggesting that cross-cultural bargaining factors rather than coal quality explain lower prices for Australian coals in Japanese market settlements. Policy changes that might be effective in ameliorating bilateral market distortions arising from oligopsony characteristics exhibited in JSM contract settlements are then explored. 29 refs., 2 figs., 2 tabs.

  7. Pb pollution from leaded gasoline in South America in the context of a 2000-year metallurgical history.

    Science.gov (United States)

    Eichler, Anja; Gramlich, Gabriela; Kellerhals, Thomas; Tobler, Leonhard; Schwikowski, Margit

    2015-03-01

    Exploitation of the extensive polymetallic deposits of the Andean Altiplano in South America since precolonial times has caused substantial emissions of neurotoxic lead (Pb) into the atmosphere; however, its historical significance compared to recent Pb pollution from leaded gasoline is not yet resolved. We present a comprehensive Pb emission history for the last two millennia for South America, based on a continuous, high-resolution, ice core record from Illimani glacier. Illimani is the highest mountain of the eastern Bolivian Andes and is located at the northeastern margin of the Andean Altiplano. The ice core Pb deposition history revealed enhanced Pb enrichment factors (EFs) due to metallurgical processing for silver production during periods of the Tiwanaku/Wari culture (AD 450-950), the Inca empires (AD 1450-1532), colonial times (AD 1532-1900), and tin production at the beginning of the 20th century. After the 1960s, Pb EFs increased by a factor of 3 compared to the emission level from metal production, which we attribute to gasoline-related Pb emissions. Our results show that anthropogenic Pb pollution levels from road traffic in South America exceed those of any historical metallurgy in the last two millennia, even in regions with exceptional high local metallurgical activity.

  8. Pb pollution from leaded gasoline in South America in the context of a 2000-year metallurgical history

    Science.gov (United States)

    Eichler, Anja; Gramlich, Gabriela; Kellerhals, Thomas; Tobler, Leonhard; Schwikowski, Margit

    2015-01-01

    Exploitation of the extensive polymetallic deposits of the Andean Altiplano in South America since precolonial times has caused substantial emissions of neurotoxic lead (Pb) into the atmosphere; however, its historical significance compared to recent Pb pollution from leaded gasoline is not yet resolved. We present a comprehensive Pb emission history for the last two millennia for South America, based on a continuous, high-resolution, ice core record from Illimani glacier. Illimani is the highest mountain of the eastern Bolivian Andes and is located at the northeastern margin of the Andean Altiplano. The ice core Pb deposition history revealed enhanced Pb enrichment factors (EFs) due to metallurgical processing for silver production during periods of the Tiwanaku/Wari culture (AD 450–950), the Inca empires (AD 1450–1532), colonial times (AD 1532–1900), and tin production at the beginning of the 20th century. After the 1960s, Pb EFs increased by a factor of 3 compared to the emission level from metal production, which we attribute to gasoline-related Pb emissions. Our results show that anthropogenic Pb pollution levels from road traffic in South America exceed those of any historical metallurgy in the last two millennia, even in regions with exceptional high local metallurgical activity. PMID:26601147

  9. Assembly for melting and heat treatment

    International Nuclear Information System (INIS)

    Blumenfeld, M.

    1976-11-01

    Laboratory scale production of alloys having a precise alloying materials content and the exact heat treatment of metallurgical specimens are discussed. The design and assembly of two relevant instruments are described. These instruments include a laboratory vacuum induction furnace and a specially designed glass lathe, that enables even an unskilled operator to encapsulate and seal metallurgical specimens in glass capsules. (author)

  10. Experimental evaluation of ballistic hazards in imaging diagnostic center

    International Nuclear Information System (INIS)

    Karpowicz, Jolanta; Gryz, Krzysztof

    2013-01-01

    Serious hazards for human health and life and devices in close proximity to the magnetic resonance scanners (MRI scanners) include the effects of being hit by ferromagnetic objects attracted by static magnetic field (SMF) produced by scanner magnet – the so-called ballistic hazards classified among indirect electromagnetic hazards. International safety guidelines and technical literature specify different SMF threshold values regarding ballistic hazards – e.g. 3 mT (directive 2004/40/EC, EN 60601-2-33), and 30 mT (BMAS 2009, directive proposal 2011). Investigations presented in this article were performed in order to experimentally verify SMF threshold for ballistic hazards near MRI scanners used in Poland. Investigations were performed with the use of a laboratory source of SMF (0–30 mT) and MRI scanners of various types. The levels of SMF in which metal objects of various shapes and 0.4–500 g mass are moved by the field influence were investigated. The distance from the MRI scanners (0.2–3T) where hazards may occur were also investigated. Objects investigated under laboratory conditions were moved by SMF of 2.2–15 mT magnetic flux density when they were freely suspended, but were moved by the SMF of 5.6–22 mT when they were placed on a smooth surface. Investigated objects were moved in fields of 3.5–40 mT by MRI scanners. Distances from scanner magnet cover, where ballistic hazards might occur are: up to 0.5 m for 0.2–0.3T scanners; up to 1.3 m for 0.5T scanners; up to 2.0 m for 1.5T scanners and up to 2.5 m for 3T scanners (at the front and back of the magnet). It was shown that SMF of 3 mT magnetic flux density should be taken as the threshold for ballistic hazards. Such level is compatible with SMF limit value regarding occupational safety and health-protected areas/zones, where according to the Polish labor law the procedures of work environment inspection and prevention measures regarding indirect electromagnetic hazards should be applied

  11. 1996 Idaho National Engineering and Environmental Laboratory (INEEL) National Emissions Standards for Hazardous Air Pollutants (NESHAPs) -- Radionuclides. Annual report

    International Nuclear Information System (INIS)

    1997-06-01

    Under Section 61.94 of Title 40, Code of Federal Regulations (CFR), Part 61, Subpart H, ''National Emission Standards for Emissions of Radionuclides Other Than Radon From Department of Energy Facilities,'' each Department of Energy (DOE) facility must submit an annual report documenting compliance. This report addresses the Section 61.94 reporting requirements for operations at the Idaho National Engineering and Environmental Laboratory (INEEL) for calendar year (CY) 1996. The Idaho Operations Office of the DOE is the primary contact concerning compliance with the National Emission Standards for Hazardous Air Pollutants (NESHAPs) at the INEEL. For calendar year 1996, airborne radionuclide emissions from the INEEL operations were calculated to result in a maximum individual dose to a member of the public of 3.14E-02 mrem (3.14E-07 Sievert). This effective dose equivalent (EDE) is well below the 40 CFR 61, Subpart H, regulatory standard of 10 mrem per year (1.0E-04 Sievert per year)

  12. Defense Laboratory Enterprise

    Science.gov (United States)

    2011-07-01

    NSWC - Corona Division Corona , CA 53 NSWC - Crane Division Crane, IN 55 NSWC - Dahlgren Division Dahlgren, VA 57 NSWC - Naval Explosive Ordnance...Invention • HemCon Chitosan Dressing – 2004 Army Greatest Invention • Combat Application Tourniquet ( CAT ) – 2005 Army Greatest Invention • Damage...laboratory within DoD with the capability to study highly hazardous viruses requiring maximum containment at Biosafety Level 4 (BSL-4). While the

  13. Assessment of LANL hazardous waste management documentation

    International Nuclear Information System (INIS)

    Davis, K.D.; Hoevemeyer, S.S.; Stirrup, T.S.; Jennrich, E.A.; Lund, D.M.

    1991-04-01

    The objective of this report is to present findings from evaluating the Los Alamos National Laboratory (LANL) ''Hazardous Waste Acceptance Criteria Receipt at TA-54, Area L'' to determine if it meets applicable DOE requirements. The guidelines and requirements for the establishment of a Hazardous Waste Acceptance Criteria (HW-WAC) are found in 40 CFR 260 to 270 and DOE Order 5820.2A. Neither set of requirements specifically require a WAC for the management of hazardous waste; however, the use of such documentation is logical and is consistent with the approach required for the management of radioactive waste. The primary purpose of a HW-WAC is to provide generators and waste management with established criteria that must be met before hazardous waste can be acceptable for treatment, storage and/or disposal. An annotated outline for a generic waste acceptance criteria was developed based on the requirements of 40 CFR 260 to 270 and DOE Order 5820.2A. The outline contains only requirements for hazardous waste, it does not address the radiological components of low-level mixed waste. The outline generated from the regulations was used for comparison to the LANL WAC For Chemical and Low-level Mixed Waste Receipt at TA-54, Area L. The major elements that should be addressed by a hazardous waste WAC were determined to be as follows: Waste Package/Container Requirements, Waste Forms, Land Disposal Restrictions, and Data Package-Certification ampersand Documentation

  14. Code of practice for safety in laboratory - non ionising radiation

    International Nuclear Information System (INIS)

    Ramli Jaya; Mohd Yusof Mohd Ali; Khoo Boo Huat; Khatijah Hashim

    1995-01-01

    The code identifies the non-ionizing radiation encountered in laboratories and the associated hazards. The code is intended as a laboratory standard reference document for general information on safety requirements relating to the usage of non-ionizing radiations in laboratories. The nonionizing radiations cover in this code, namely, are ultraviolet radiation, visible light, radio-frequency radiation, lasers, sound waves and ultrasonic radiation. (author)

  15. NMR investigation of boron impurities in refined metallurgical grade silicon

    Energy Technology Data Exchange (ETDEWEB)

    Grafe, Hans-Joachim; Loeser, Wolfgang; Schmitz, Steffen; Sakaliyska, Miroslava [Leibniz Institute for Solid State and Materials Research (IFW), Dresden (Germany); Wurmehl, Sabine [Leibniz Institute for Solid State and Materials Research (IFW), Dresden (Germany); Institute for Solid State Physics, Technische Universitaet Dresden (Germany); Eisert, Stefan; Reichenbach, Birk; Mueller, Tim [Adensis GmbH, Dresden (Germany); Acker, Joerg; Rietig, Anja; Ducke, Jana [Department of Chemistry, Faculty for Natural Sciences, Brandenburg Technical University Cottbus-Senftenberg, Senftenberg (Germany)

    2015-09-15

    The nuclear magnetic resonance (NMR) method was applied for tracking boron impurities in the refining process of metallurgical grade (MG) silicon. From the NMR signal of the {sup 11}B isotope at an operating temperature 4.2 K, the boron concentration can be estimated down to the order of 1-10 wppm B. After melting and resolidification of MG-Si alloyed with Ca and Ti, a major fraction of B impurities remains in the Si solid solution as inferred from the characteristic NMR frequency. The alloying element Ti does not form substantial fractions of TiB{sub 2}. Acid leaching of crushed powders of MG-Si alloyed with Ca and Ti can diminish the initial impurity content of B suggesting its accumulation in the grain boundary phases. NMR signals of TiB{sub 2} at 4.2 K and room temperature (RT), and of poly-Si with different B doping at 4.2 K. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Rules and procedures for the design and operation of hazardous research equipment

    International Nuclear Information System (INIS)

    1978-12-01

    The manual has been prepared for use by research personnel involved in experiments at the Lawrence Berkeley Laboratory. It contains rules and procedures for the design, test, installation, and operation of hazardous research equipment. Sect. I contains such information as responsibility of experimenters for safety, descriptions of the various Laboratory safety organizations, and enumeration of various services available to experimenters at the Laboratory. Sect. II describes specific rules for the setup and operation of experimental equipment at the Laboratory. Sect. III gives detailed design criteria and procedures for equipment frequently encountered in the high energy physics laboratory

  17. Friction, adhesion and corrosion performance of metallurgical coatings in HTGR-helium

    International Nuclear Information System (INIS)

    Engel, R.; Kleemann, W.

    1981-01-01

    The friction-, adhesion-, thermal cycling- and corrosion performance of several metallurgical coating systems have been tested in a simulated HTGR-test atmosphere at elevated temperatures. The coatings were applied to a solid solution strengthened Ni-based superalloy. Component design requires coatings for the protection of mating surfaces, since under reactor operating conditions, contacting surfaces of metallic components under high pressures are prone to friction and wear damage. The coatings will have to protect the metal surface for 30 years up to 950 0 C in HTGR-helium. The materials tested were various refractory carbides with or without metallic binders and intermetallic compounds. The coatings evaluated were applied by plasma spraying-, detonation gun- and chemical vapor deposition techniques. These yielded two types of coatings which employ different mechanisms to improve the tribiological properties and maintain coating integrity. (Auth.)

  18. Method of purifying metallurgical grade silicon employing reduced pressure atmospheric control

    Science.gov (United States)

    Ingle, W. M.; Thompson, S. W.; Chaney, R. E. (Inventor)

    1979-01-01

    A method in which a quartz tube is charged with chunks of metallurgical grade silicon and/or a mixture of such chunks and high purity quartz sand, and impurities from a class including aluminum, boron, as well as certain transition metals including nickel, iron, and manganese is described. The tube is then evacuated and heated to a temperature within a range of 800 C to 1400 C. A stream of gas comprising a reactant, such as silicon tetrafluoride, is continuously delivered at low pressures through the charge for causing a metathetical reaction of impurities of the silicon and the reactant to occur for forming a volatile halide and leaving a residue of silicon of an improved purity. The reactant which included carbon monoxide gas and impurities such as iron and nickel react to form volatile carbonyls.

  19. Environmental aspects of stabilization and solidification of hazardous and radioactive wastes

    International Nuclear Information System (INIS)

    Cote, P.; Gilliam, M.

    1989-01-01

    This book contains papers presented at the Fourth International Hazardous Waste Symposium. It is organized under the following headings: processes, regulatory aspects and testing methods, laboratory evaluation and large-scale evaluation or demonstrations

  20. Robotic applications at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Griebenow, B.E.; Marts, D.J.

    1990-01-01

    The Idaho National Engineering Laboratory (INEL) has several programs and projected programs that involve work in hazardous environments. Robotics/remote handling technology is being considered for an active role in these programs. The most appealing aspect of using robotics is in the area of personnel safety. Any task requiring an individual to enter a hazardous or potentially hazardous environment can benefit substantially from robotics by removing the operator from the environment and having him conduct the work remotely. Several INEL programs were evaluated based on their applications for robotics and the results and some conclusions are discussed in this paper. 1 fig

  1. A modeling framework for investment planning in interdependent infrastructures in multi-hazard environments.

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Nathanael J. K.; Gearhart, Jared Lee; Jones, Dean A.; Nozick, Linda Karen; Prince, Michael

    2013-09-01

    Currently, much of protection planning is conducted separately for each infrastructure and hazard. Limited funding requires a balance of expenditures between terrorism and natural hazards based on potential impacts. This report documents the results of a Laboratory Directed Research & Development (LDRD) project that created a modeling framework for investment planning in interdependent infrastructures focused on multiple hazards, including terrorism. To develop this framework, three modeling elements were integrated: natural hazards, terrorism, and interdependent infrastructures. For natural hazards, a methodology was created for specifying events consistent with regional hazards. For terrorism, we modeled the terrorists actions based on assumptions regarding their knowledge, goals, and target identification strategy. For infrastructures, we focused on predicting post-event performance due to specific terrorist attacks and natural hazard events, tempered by appropriate infrastructure investments. We demonstrate the utility of this framework with various examples, including protection of electric power, roadway, and hospital networks.

  2. Uncertainty on shallow landslide hazard assessment: from field data to hazard mapping

    Science.gov (United States)

    Trefolini, Emanuele; Tolo, Silvia; Patelli, Eduardo; Broggi, Matteo; Disperati, Leonardo; Le Tuan, Hai

    2015-04-01

    Shallow landsliding that involve Hillslope Deposits (HD), the surficial soil that cover the bedrock, is an important process of erosion, transport and deposition of sediment along hillslopes. Despite Shallow landslides generally mobilize relatively small volume of material, they represent the most hazardous factor in mountain regions due to their high velocity and the common absence of warning signs. Moreover, increasing urbanization and likely climate change make shallow landslides a source of widespread risk, therefore the interest of scientific community about this process grown in the last three decades. One of the main aims of research projects involved on this topic, is to perform robust shallow landslides hazard assessment for wide areas (regional assessment), in order to support sustainable spatial planning. Currently, three main methodologies may be implemented to assess regional shallow landslides hazard: expert evaluation, probabilistic (or data mining) methods and physical models based methods. The aim of this work is evaluate the uncertainty of shallow landslides hazard assessment based on physical models taking into account spatial variables such as: geotechnical and hydrogeologic parameters as well as hillslope morphometry. To achieve this goal a wide dataset of geotechnical properties (shear strength, permeability, depth and unit weight) of HD was gathered by integrating field survey, in situ and laboratory tests. This spatial database was collected from a study area of about 350 km2 including different bedrock lithotypes and geomorphological features. The uncertainty associated to each step of the hazard assessment process (e.g. field data collection, regionalization of site specific information and numerical modelling of hillslope stability) was carefully characterized. The most appropriate probability density function (PDF) was chosen for each numerical variable and we assessed the uncertainty propagation on HD strength parameters obtained by

  3. Powder metallurgical high performance materials. Proceedings. Volume 1: high performance P/M metals

    International Nuclear Information System (INIS)

    Kneringer, G.; Roedhammer, P.; Wildner, H.

    2001-01-01

    The proceedings of this sequence of seminars form an impressive chronicle of the continued progress in the understanding of refractory metals and cemented carbides and in their manufacture and application. There the ingenuity and assiduous work of thousands of scientists and engineers striving for progress in the field of powder metallurgy is documented in more than 2000 contributions covering some 30000 pages. The 15th Plansee Seminar was convened under the general theme 'Powder Metallurgical High Performance Materials'. Under this broadened perspective the seminar will strive to look beyond the refractory metals and cemented carbides, which remain at its focus, to novel classes of materials, such as intermetallic compounds, with potential for high temperature applications. (author)

  4. Powder metallurgical high performance materials. Proceedings. Volume 1: high performance P/M metals

    Energy Technology Data Exchange (ETDEWEB)

    Kneringer, G; Roedhammer, P; Wildner, H [eds.

    2001-07-01

    The proceedings of this sequence of seminars form an impressive chronicle of the continued progress in the understanding of refractory metals and cemented carbides and in their manufacture and application. There the ingenuity and assiduous work of thousands of scientists and engineers striving for progress in the field of powder metallurgy is documented in more than 2000 contributions covering some 30000 pages. The 15th Plansee Seminar was convened under the general theme 'Powder Metallurgical High Performance Materials'. Under this broadened perspective the seminar will strive to look beyond the refractory metals and cemented carbides, which remain at its focus, to novel classes of materials, such as intermetallic compounds, with potential for high temperature applications. (author)

  5. EXPERIMENTAL INVESTIGATION OF CRITICAL FUNDAMENTAL ISSUES IN HAZARDOUS WASTE INCINERATION

    Science.gov (United States)

    The report gives results of a laboratory-scale program investigating several fundamental issues involved in hazardous waste incineration. The key experiment for each study was the measurement of waste destruction behavior in a sub-scale turbulent spray flame. (1) Atomization Qual...

  6. Irradiation hazards and safety standards for patients in dental radiography

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, B D.P.

    1975-07-01

    The historical developments which have led to a reduction in the hazards or potential hazards to patients in dental radiography are reviewed. Based on a simple risk estimate, the safety of present-day techniques employed in routine dental radiography is assessed. Also included in the review is a description of techniques used and results obtained from the National Radiation Laboratory's (NRL) surveillance programme of patients' exposure to irradiation in dental radiography. The possibilities of and need for achieving further reductions of irradiation are discussed.

  7. Health and safety in clinical laboratories in developing countries: safety considerations.

    Science.gov (United States)

    Ejilemele, A A; Ojule, A C

    2004-01-01

    Clinical laboratories are potentially hazardous work areas. Health and safety in clinical laboratories is becoming an increasingly important subject as a result of the emergence of highly infectious diseases such as hepatitis and HIV. This is even more so in developing countries where health and safety have traditionally been regarded as low priority issues, considering the more important health problems confronting the health authorities in these countries. We conducted a literature search using the medical subheadings titles on the INTERNET over a period of twenty years and summarized our findings. This article identifies hazards in the laboratories and highlights measures to make the laboratory a safer work place. It also emphasizes the mandatory obligations of employers and employees towards the attainment of acceptable safety standards in clinical laboratories in Third World countries in the face of the current HIV/AIDS epidemic in many of these developing countries especially in the sub-Saharan Africa while accommodating the increasing work load in these laboratories. Both the employer and the employee have major roles to play in the maintenance of a safe working environment. This can be achieved if measures discussed are incorporated into everyday laboratory practice.

  8. Idaho National Engineering Laboratory hazardous and radioactive mixed waste identification and characterization report for CY 1986

    International Nuclear Information System (INIS)

    Nishimoto, D.D.

    1987-05-01

    This report provides updated tabulations of the hazardous and radioactive mixed wastes generated and/or handled during CY 1986 at each INEL facility operated by EG and G, or any other operating contractor at the Site. These wastes are described in tabular form, providing information such as composition, generating process, contact person, EPA hazardous waste designation, quantity shipped off site (if applicable), and quantity in storage. Waste generation projections for the next ten years are also included for all INEL facilities. Finally, since many of EG and G's inactive disposal sites may prove to be significant sources of either hazardous or radioactive mixed wastes as remedial action activities under RCRA or CERCLA progress, information on these sites is provided. 2 refs., 1 fig., 8 tabs

  9. Current waste-management practices and operations at Oak Ridge National Laboratory, 1982

    Energy Technology Data Exchange (ETDEWEB)

    Eisenhower, B.M.; Oakes, T.W.; Coobs, J.H.; Weeter, D.W.

    1982-09-01

    The need for efficient management of industrial chemical wastes, especially those considered hazardous or radioactive, is receiving increased attention in the United States. During the past five years, several federal laws have addressed the establishment of stronger programs for the control of hazardous and residual wastes. At a facility such as Oak Ridge National Laboratory (ORNL), an efficient waste management program is an absolute necessity to ensure protection of human health and compliance with regulatory requirements addressing the treatment and disposal of hazardous, nonhazardous, and radioactive wastes. This report highlights the major regulatory requirements under which the Laboratory must operate and their impact on ORNL facilities. Individual waste streams, estimates of quantities of waste, and current waste management operations are discussed.

  10. Current waste-management practices and operations at Oak Ridge National Laboratory, 1982

    International Nuclear Information System (INIS)

    Eisenhower, B.M.; Oakes, T.W.; Coobs, J.H.; Weeter, D.W.

    1982-09-01

    The need for efficient management of industrial chemical wastes, especially those considered hazardous or radioactive, is receiving increased attention in the United States. During the past five years, several federal laws have addressed the establishment of stronger programs for the control of hazardous and residual wastes. At a facility such as Oak Ridge National Laboratory (ORNL), an efficient waste management program is an absolute necessity to ensure protection of human health and compliance with regulatory requirements addressing the treatment and disposal of hazardous, nonhazardous, and radioactive wastes. This report highlights the major regulatory requirements under which the Laboratory must operate and their impact on ORNL facilities. Individual waste streams, estimates of quantities of waste, and current waste management operations are discussed

  11. Manganese Ores from South Sulawesi: Their Potential Uses as Raw Materials for Metallurgical Industry

    Directory of Open Access Journals (Sweden)

    Sufriadin Sufriadin

    2017-03-01

    Full Text Available Characterization of manganese ores from Barru and Bone regencies of South Sulawesi has been conducted with the aim at clarification of their mineralogical and chemical composition for their potential uses as the raw materials for metallurgical industry. Mineralogical properties of the ores analyzed by means of optical microscopy and X-ray diffractometry (XRD show that samples from Barru consist mainly of rhodochrosite (MnCO3 with less cryptomelane, groutite, bixbyite, and todorokite. Goethite, calcite and small amount of quartz present as impurities. Manganese ore samples from Bone are predominantly composed of pyrolusite (MnO2 with subordinate ramsdellite and hollandite. Barite, quartz, hematite and clay are present as gangue minerals. Chemical compositions determined by using XRF method revealed that Barru samples contain higher in MnO (average is 40.07 wt% than the Bone samples (average is 34.36 wt%. Similarly, Fe2O3 and CaO are also higher in Barru than those of the Bone samples. In contrast, concentrations of SiO2 and total alkali (K2O + Na2O are lower in the Barru samples. The average P2O5 content of samples in both areas is low (<0.2 wt%. Relatively higher grade of Fe2O3 in the Barru ore implies that it has potential application for ferromanganese production; whereas the elevated SiO2 content of the Bone ore is a good indication for silicomanganese manufacture. However, both ores may not favorable to be directly used as raw materials in metallurgical uses. Prior to be used, the ores should be treated by applying physical beneficiation in order to reduce deleterious elements.

  12. Economic statistics for the mining and metallurgical industries: 1990. Statistique economique des industries extractives et metallurgiques annee 1990

    Energy Technology Data Exchange (ETDEWEB)

    Rzonzef, L.

    1991-01-01

    Provides economic statistics for the Belgian mining and metallurgical industries in 1990. The review is divided into 4 parts: the extractive industries (including an analysis of the coal market and mines, quarries and associated industries); coke and briquette making; metallurgy (i.e. blast furnaces, steel making, rolling mills and manpower and materials consumption in the steel industry); and the extraction of sand from the Belgian continental shelf. 17 tabs.

  13. A New Method for Rating Hazard from Intense Sounds: Implications for Hearing Protection, Speech Intelligibility, and Situation Awareness

    National Research Council Canada - National Science Library

    Price, G. R

    2005-01-01

    The auditory hazard assessment algorithm for the human (AHAAH), developed by the U.S. Army Research Laboratory, is theoretically based and has been demonstrated to rate hazard from intense sounds much more accurately than existing methods...

  14. Safety analysis report for the use of hazardous production materials in photovoltaic applications at the National Renewable Energy Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Crandall, R.S.; Nelson, B.P.; Moskowitz, P.D.; Fthenakis, V.M.

    1992-07-01

    To ensure the continued safety of SERI's employees, the community, and the environment, NREL commissioned an internal audit of its photovoltaic operations that used hazardous production materials (HPMS). As a result of this audit, NREL management voluntarily suspended all operations using toxic and/or pyrophoric gases. This suspension affected seven laboratories and ten individual deposition systems. These activities are located in Building 16, which has a permitted occupancy of Group B, Division 2 (B-2). NREL management decided to do the following. (1) Exclude from this SAR all operations which conformed, or could easily be made to conform, to B-2 Occupancy requirements. (2) Include in this SAR all operations that could be made to conform to B-2 Occupancy requirements with special administrative and engineering controls. (3) Move all operations that could not practically be made to conform to B-2 occupancy requirements to alternate locations. In addition to the layered set of administrative and engineering controls set forth in this SAR, a semiquantitative risk analysis was performed on 30 various accident scenarios. Twelve presented only routine risks, while 18 presented low risks. Considering the demonstrated safe operating history of NREL in general and these systems specifically, the nature of the risks identified, and the layered set of administrative and engineering controls, it is clear that this facility falls within the DOE Low Hazard Class. Each operation can restart only after it has passed an Operational Readiness Review, comparing it to the requirements of this SAR, while subsequent safety inspections will ensure future compliance. This document contains the appendices to the NREL safety analysis report.

  15. Biosafety in the Laboratory: Prudent Practices for the Handling and Disposal of Infectious Materials

    Science.gov (United States)

    1989-03-01

    psittacosis, lymphogranuloma animal disease diagnostic laboratory). Biosafety Level venereum (LGV), and trachoma are documented APPENDIX A I11 hazards and...127 see also Facilities Lymphogranuloma venereum , 110-111 Laboratory practices academic laboratories, 68-69 M Biosafety Level 1, 90 Biosafety Level

  16. Radiation Hazard Detector

    Science.gov (United States)

    1978-01-01

    NASA technology has made commercially available a new, inexpensive, conveniently-carried device for protection, of people exposed to potentially dangerous levels of microwave radiation. Microwaves are radio emissions of extremely high frequency. They can be hazardous but the degree of hazard is not yet well understood. Generally, it is believed that low intensity radiation of short duration is not harmful but that exposure to high levels can induce deep internal burns, affecting the circulatory and nervous systems, and particularly the eyes. The Department of Labor's Occupational Safety and Health Administration (OSHA) has established an allowable safe threshold of exposure. However, people working near high intensity sources of microwave energy-for example, radar antennas and television transmitters-may be unknowingly exposed to radiation levels beyond the safe limit. This poses not only a personal safety problem but also a problem for employers in terms of productivity loss, workman's compensation claims and possible liability litigation. Earlier-developed monitoring devices which warn personnel of dangerous radiation levels have their shortcomings. They can be cumbersome and awkward to use while working. They also require continual visual monitoring to determine if a person is in a dangerous area of radiation, and they are relatively expensive, another deterrent to their widespread adoption. In response to the need for a cheaper and more effective warning system, Jet Propulsion Laboratory developed, under NASA auspices, a new, battery-powered Microwave Radiation Hazard Detector. To bring the product to the commercial market, California Institute Research Foundation, the patent holder, granted an exclusive license to Cicoil Corporation, Chatsworth, California, an electronic components manufacturer.

  17. Mineralogical test as a preliminary step for metallurgical proses of Kalan ores

    International Nuclear Information System (INIS)

    Affandi, K.

    1998-01-01

    Mineralogical tests as a preliminary step for hydrometallurgy of Kalan ores, including Eko Remaja and Rirang have been carried out to identify the elements and minerals content which affect the metallurgical process, especially the leaching and purification of uranium. Mineralogical tests have been done by means of radioactive and radioluxugraph tests to identify radioactive minerals; thin specimen analysis, Scanning Electron Microscopy (SEM) to identify elements and morphology, EPMA to analyse qualitatively the elements, X-ray Diffractometer (XRD) to identify of minerals content; and X-ray Fluorescence (XRF) and chemical analyses to determine total elements qualitatively and quantitatively. The experimental results show that the Eko Remaja ores contain uraninite and brannerite, iron and titan oxides, sulfides, phosphates and silicates minerals, while the Rirang ores contain uraninite, monazite and molybdenite

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. RAVI KANT1 UJJWAL PRAKASH1 VIJAYA AGARWALA1 V V SATYA PRASAD2. Department of Metallurgical and Materials Engineering, IIT Roorkee, Roorkee 247 667, India; Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad 500 058, India ...

  19. Influence of material and gear parameters on the safety of gearing in metallurgical industry

    Directory of Open Access Journals (Sweden)

    S. Medvecká - Beňová

    2015-01-01

    Full Text Available This paper deals with the appropriate choice of parameters to obtain the desired level of safety of gears in a gearbox to drive the conveyor in the metallurgical industry under increased load. Steel with surface hardness up to 350 HBW, or heat treated steel with hardness of 500 - 650 HBW are used. As a final heat treatment are used surface hardening, cementation and hardening, nitridation. Good properties of heat-treated steels are at the correct thickness of the heat-treated layer of the tooth. Results are presented for dual-ratio gearbox with spur gears from operation of an integrated steel company.

  20. Seed production of woody plants in conditions of environment pollution by metallurgical industry emissions

    Directory of Open Access Journals (Sweden)

    Z. V. Gritzay

    2011-10-01

    Full Text Available The influence of environment pollution by metallurgical industry emissions on woody plants bearing parameters was examined. The results obtained show the decrease of bearing rate, diminution of seeds, fruits and seed cells sizes in woody plants affected by technogenic emissions. Attenuation of the 1000 seeds’ weight was established. Incresing the amount of fruits with development deviations was ascertained. It was found aplasia and abnormal form of the samara fruit of ash and ailanthus trees, arcuation and narrowing of some parts of the catalpa fruitcases. Practical recommendations on using seeds’ sensitive parameters in biomonitoring of woody phytocenoses under technogenic stressful conditions are proposed.

  1. A metallurgical study of some viking swords

    Directory of Open Access Journals (Sweden)

    Williams, Alan

    2009-12-01

    Full Text Available While «pattern-welded» swords have been found all over Europe from sites dating from the Migration Period and into the Early Middle Ages, they were steadily supplanted during the Viking period by swords made out of a few pieces of iron and steel, or even a single piece of steel. Swords with «Ulfberht» or related inscriptions were the most famous of these. The results of the metallurgical study of 44 specimens from «Ulfberht» swords, as well as some other Viking-age swords, together with electron microanalyses carried out on selected examples, are presented here.

    Mientras que se han encontrado en toda Europa espadas forjadas mediante el sistema de ‘pattern welding’ (entrelazado de láminas formando patrones visibles, procedentes de yacimientos que se extienden desde el Periodo de las Migraciones bárbaras hasta la Alta Edad Media, durante el periodo vikingo fueron habitualmente reemplazadas por espadas forjadas a partir de unas pocas piezas de hierro y acero, o incluso de una única pieza de acero. Las más famosas de entre ellas fueron las espadas con la inscripción «Ulfbehrt» u otras relacionadas. Este artículo presenta los resultados del estudio metalúrgico de 44 ejemplares de espadas de «Ulfberht» y otras de época vikinga, así como los microanálisis efectuados sobre algunas muestras seleccionadas.

  2. Frozen soil barriers for hazardous waste confinement

    International Nuclear Information System (INIS)

    Dash, J.G.; Leger, R.; Fu, H.Y.

    1997-01-01

    Laboratory and full field measurements have demonstrated the effectiveness of artificial ground freezing for the containment of subsurface hazardous and radioactive wastes. Bench tests and a field demonstration have shown that cryogenic barriers are impenetrable to aqueous and non aqueous liquids. As a result of the successful tests the US Department of Energy has designated frozen ground barriers as one of its top ten remediation technologies

  3. Annual report 2004. Laboratory of Energy Engineering and Environmental Protection

    Energy Technology Data Exchange (ETDEWEB)

    Saeed, L.; Zevenhoven, R. (eds.)

    2005-07-01

    This fifth annual report in this series, covering year 2004, gives an overview of the research, education and other activities of the Laboratory of Energy Engineering and Environmental Protection at Helsinki University of Technology. From the research point of view, the laboratory continues in the Nordic Energy Research Program (2003-2006) in the field of CO{sub 2} capture and storage, and in the EU project 'ToMeRed' on toxic trace elements emissions control. The laboratory is also the operating agent for the IEA project 'Energy systems integration between society and industry'. The bulk of the research can be classified into three groups, in short: energy systems; spraying and combustion and combustion and waste treatment. This research takes mainly place in national and international consortia, but sometimes also in a direct cooperation with one industry partner. Some of the work involves the use and development of models and sub- models for the simulation and optimisation of energy systems and processes. Commercial softwares like Aspen Plus and Prosim are important tools for our work as well. Besides this, single particle modelling can be applied to fuel droplets, fuel particles or particles found in metallurgical industry. We make CFD calculations with commercial codes are made as well, while working on the improvement of (sub-) models for multiphase fluid dynamics.

  4. Process hazards review of the 904-A trench

    International Nuclear Information System (INIS)

    Snyder, D.E.

    1988-01-01

    The 904-A trench is an enclosed underground concrete containment for high level and low level radioactive waste lines between the main Laboratory Building 773-A and waste storage and shipping Building 776-A. The waste generated in laboratories and other facilities in 773-A flows by gravity into the high level and low level drain lines, which proceed from 773-A through the 904-A trench. The trench ends at 776-2A, where the underground was handling tanks for both high level and low level liquids are located. The trench serves to contain any leaks originating in the drain lines. The trench is sloped downward toward the Building 776-2A pipe gallery. Any liquid collected from the sump can be pumped automatically to a waste tank sampled. The review of the 904-A trench system included a study of the trench and piping itself, as well as a study of the high level and low level drain lines from the laboratories to the trench. The present review emphasized on examination of the hazards involved in chemical reactions in the drain lines, misuse of the drains, and criticality. The following items were examined: Process Hazards Review of the Liquid Waste Collection System, Nuclear Criticality Review of the High Level Drain System, Improvements in the 904-A Trench System, Operating Procedures, and Unusual Incidents

  5. Cleaning and dismantling of a high activity laboratory (abstract and presentation slides)

    Energy Technology Data Exchange (ETDEWEB)

    Bredel; Thierry; Buzare, Alain

    2005-01-01

    The high activity laboratories have been built at the end of the 50ies. The particularity of this facility was that about 14 different laboratories worked in 14 different fields (biology, production of Cs and Cf sources, metallurgy, mechanical testing ...). Because of the optimization of the nuclear research, the CEA decided to close progressively this facility and to transfer the different experiments in other places. This action began in 1997 and is planed to end in 2010. 6 laboratories have been closed from 1997 to 2001 and the dismantling of the shielded cells has begun since 2002. Therefore, several laboratories have been cleaned of the materials and experiments. Nevertheless, the main particularity of this subject is that some experimental activities have been pursued during the cleaning and dismantling of other laboratories. For example, we describe the dismantling of the laboratory that performed metallurgical and mechanical characterization of irradiated materials. This laboratory occupied 20 lead cells and 2 glove boxes. The exploitation of those cells has been stopped progressively (12 at the end of 2001 and 5 at the end of 2003). The end of the last 3 cell exploitation is planed to end 2005. Since the end of 2001, 9 lead cells have been cleaned. Their dismantling is planed for next the two years. In parallel, we will clean all the other cells. During this phase we will have also to transfer all the irradiated samples (about 5000) that are still in the laboratory to the waste treatment facility of the CEA centre or to the new laboratory which has been presented during the previous hotlab meeting in Saclay. The paper gives details for background about ended operations: Organization, waste production, specific designs which improve radioprotection, waste destinations and costs, Difficulties and feedback experience of dismantling. (Author)

  6. Assessment of mixed hazardous and radioactive waste sites at Hanford

    International Nuclear Information System (INIS)

    McLaughlin, T.J.; Cramer, K.H.; Lamar, D.A.; Sherwood, D.R.; Stenner, R.D.; Schulze, W.B.

    1987-10-01

    The US Department of Energy and Pacific Northwest Laboratory recently completed a preliminary assessment of 685 inactive hazardous waste sites located on the Hanford Site. The preliminary assessment involved collecting historical data and individual site information, conducting site inspections, and establishing an environmental impact priority, using the Hazard Ranking System, for each of these 685 sites. This preliminary assessment was the first step in the remediation process required by the Comprehensive Environmental Response, Compensation and Liability Act. This paper presents the results of that preliminary assessment. 10 refs., 4 figs., 1 tab

  7. Using an information system to meet Hazardous Waste Management needs

    International Nuclear Information System (INIS)

    Stewart, J.J. Jr.; Howe, R.E.; Townsend, S.L.; Maloy, D.T.; Kochhar, R.K.

    1995-02-01

    Lawrence Livermore National Laboratory (LLNL) is a large quantity RCRA hazardous waste generator. LLNL also generates low level and transuranic radioactive waste that is managed in accordance with the Department of Energy (DOE) orders. The mixed low level and mixed transuranic waste generated must be managed to comply with both RCRA regulations and DOE orders. LLNL's hazardous and radioactive waste generation is comprised of 900 generators who contribute to nearly two hundred waste streams. LLNL has a permitted EPA treatment and storage (TSD) facility for handling RCRA hazardous waste that is operated by LLNL's Hazardous Waste Management (HWM) division. In HWM we have developed an information system, the Total Waste Management System (TWMS), to replace an inadequate ''cradle to grave'' tracking of all the waste types described above. The goals of this system are to facilitate the safe handling and storage of these hazardous wastes, provide compliance with the regulations and serve as an informational tool to help HWM manage and dispose of these wastes in a cost effective manner

  8. Fundamental metallurgical aspects of axial splitting in zircaloy cladding

    International Nuclear Information System (INIS)

    Chung, H. M.

    2000-01-01

    Fundamental metallurgical aspects of axial splitting in irradiated Zircaloy cladding have been investigated by microstructural characterization and analytical modeling, with emphasis on application of the results to understand high-burnup fuel failure under RIA situations. Optical microscopy, SEM, and TEM were conducted on BWR and PWR fuel cladding tubes that were irradiated to fluence levels of 3.3 x 10 21 n cm -2 to 5.9 x 10 21 n cm -2 (E > 1 MeV) and tested in hot cell at 292--325 C in Ar. The morphology, distribution, and habit planes of macroscopic and microscopic hydrides in as-irradiated and posttest cladding were determined by stereo-TEM. The type and magnitude of the residual stress produced in association with oxide-layer growth and dense hydride precipitation, and several synergistic factors that strongly influence axial-splitting behavior were analyzed. The results of the microstructural characterization and stress analyses were then correlated with axial-splitting behavior of high-burnup PWR cladding reported for simulated-RIA conditions. The effects of key test procedures and their implications for the interpretation of RIA test results are discussed

  9. Analytical ultrasonics for characterization of metallurgical microstructures and transformations

    Science.gov (United States)

    Rosen, M.

    1986-01-01

    The application of contact (piezoelectric) and noncontact (laser generation and detection) ultrasonic techniques for dynamic investigation of precipitation hardening processes in aluminum alloys, as well as crystallization and phase transformation in rapidly solidified amorphous and microcrystalline alloys is discussed. From the variations of the sound velocity and attenuation the precipitation mechanism and kinetics were determined. In addition, a correlation was established between the observed changes in the velocity and attenuation and the mechanical properties of age-hardenable aluminum alloys. The behavior of the elastic moduli, determined ultrasonically, were found to be sensitive to relaxation, crystallization and phase decomposition phenomena in rapidly solidified metallic glasses. Analytical ultrasonics enables determination of the activation energies and growth parameters of the reactions. Therefrom theoretical models can be constructed to explain the changes in mechanical and physical properties upon heat treatment of glassy alloys. The composition dependence of the elastic moduli in amorphous Cu-Zr alloys was found to be related to the glass transition temperature, and consequently to the glass forming ability of these alloys. Dynamic ultrasonic analysis was found to be feasible for on-line, real-time, monitoring of metallurgical processes.

  10. ODH, oxygen deficiency hazard cryogenic analysis

    International Nuclear Information System (INIS)

    Augustynowicz, S.D.

    1994-01-01

    An oxygen deficiency exists when the concentration of oxygen, by volume, drops to a level at which atmosphere supplying respiratory protection must be provided. Since liquid cryogens can expand by factors of 700 (LN 2 ) to 850 (LH e ), the uncontrolled release into an enclosed space can easily cause an oxygen-deficient condition. An oxygen deficiency hazard (ODH) fatality rate per hour (OE) is defined as: OE = Σ N i P i F i , where N i = number of components, P i = probability of failure or operator error, and F i = fatality factor. ODHs range from open-quotes unclassifiedclose quotes (OE -9 1/h) to class 4, which is the most hazardous (OE>10 -1 1/h). For Superconducting Super Collider Laboratory (SSCL) buildings where cryogenic systems exist, failure rate, fatality factor, reduced oxygen ratio, and fresh air circulation are examined

  11. Status of Safety Precautions in Science Laboratories in Enugu State ...

    African Journals Online (AJOL)

    This study was conducted to determine the status of safety precautions in science laboratories in Enugu State of Nigeria. Three research questions and two hypotheses guided the study. The research questions include: 1. What are the sources of hazards in school science laboratories? 2. What are the causes of accidents in ...

  12. Mission: Possible. Center of Excellence for Hazardous Materials Management

    International Nuclear Information System (INIS)

    Bartlett, W.T.; Prather-Stroud, W.

    2006-01-01

    The Center of Excellence for Hazardous Materials Management (CEHMM) was established in May 2004 as a nonprofit research organization. Its purpose is to develop a sustainable technical/scientific community located in Carlsbad, New Mexico, that interacts worldwide to find solutions to hazardous materials management issues. An important part of the mission is to achieve improved protection of worker safety, human health, and the environment. Carlsbad has a large technical community due to the presence of the Waste Isolation Pilot Plant (WIPP) and its many contractors and support organizations. These groups include the Carlsbad Environmental Monitoring and Research Center, Washington Group International, Los Alamos National Laboratory, and Sandia National Laboratories. These organizations form the basis of a unique knowledge community with strengths in many areas, such as geosciences, actinide chemistry, environmental monitoring, and waste transportation. CEHMM works cooperatively with these organizations and others to develop projects that will maintain this knowledge community beyond the projected closure date of WIPP. At present, there is an emphasis in bio-monitoring, air monitoring, hazardous materials educational programs, and endangered species remediation. CEHMM is also currently working with a group from the American Nuclear Society to help facilitate their conference scheduled for April 2006 in Carlsbad. CEHMM is growing rapidly and is looking forward to a diverse array of new projects. (authors)

  13. Mobile instrumentation platform and robotic accessory for real-time screening of hazardous waste

    International Nuclear Information System (INIS)

    Anderson, M.S.; Jaselskis, E.J.

    1992-01-01

    An innovative mobile laboratory for real-time field screening of soils for inorganic hazardous waste using laser ablation-inductively coupled plasma-atomic emission spectrometry sampling and analysis technique is being developed at Ames Laboratory. This sampling technique as well as the concept for installing, monitoring, and controlling the instrumentation and utilities in the mobile laboratory, the robotic sampling accessory, and manual sampling method are discussed. Benefits of this mobile configuration and future development plans also are described

  14. Safety Design Requirements for The Interior Architecture of Scientific Research Laboratories

    International Nuclear Information System (INIS)

    ElDib, A.A.

    2014-01-01

    The paper discusses one of the primary objectives of interior architecture design of research laboratories (specially those using radioactive materials) where it should provide a safe, accessible environment for laboratory personnel to conduct their work. A secondary objective is to allow for maximum flexibility for safe research. Therefore, health and safety hazards must be anticipated and carefully evaluated so that protective measures can be incorporated into the interior architectural design of these facilities wherever possible. The interior architecture requirements discussed in this paper illustrate some of the basic health and safety design features required for new and remodeled laboratories.The paper discusses one of the primary objectives of interior architecture design of research laboratories (specially those using radioactive materials) where it should provide a safe, accessible environment for laboratory personnel to conduct their work. A secondary objective is to allow for maximum flexibility for safe research. Therefore, health and safety hazards must be anticipated and carefully evaluated so that protective measures can be incorporated into the interior architectural design of these facilities wherever possible. The interior architecture requirements discussed in this paper illustrate some of the basic health and safety design features required for new and remodeled laboratories.

  15. Automated economic analysis model for hazardous waste minimization

    International Nuclear Information System (INIS)

    Dharmavaram, S.; Mount, J.B.; Donahue, B.A.

    1990-01-01

    The US Army has established a policy of achieving a 50 percent reduction in hazardous waste generation by the end of 1992. To assist the Army in reaching this goal, the Environmental Division of the US Army Construction Engineering Research Laboratory (USACERL) designed the Economic Analysis Model for Hazardous Waste Minimization (EAHWM). The EAHWM was designed to allow the user to evaluate the life cycle costs for various techniques used in hazardous waste minimization and to compare them to the life cycle costs of current operating practices. The program was developed in C language on an IBM compatible PC and is consistent with other pertinent models for performing economic analyses. The potential hierarchical minimization categories used in EAHWM include source reduction, recovery and/or reuse, and treatment. Although treatment is no longer an acceptable minimization option, its use is widespread and has therefore been addressed in the model. The model allows for economic analysis for minimization of the Army's six most important hazardous waste streams. These include, solvents, paint stripping wastes, metal plating wastes, industrial waste-sludges, used oils, and batteries and battery electrolytes. The EAHWM also includes a general application which can be used to calculate and compare the life cycle costs for minimization alternatives of any waste stream, hazardous or non-hazardous. The EAHWM has been fully tested and implemented in more than 60 Army installations in the United States

  16. Perspectives in metallurgical development. Proceedings of the centenary conference held at Ranmoor House, Sheffield, GB, on 16-18 July 1984

    International Nuclear Information System (INIS)

    1984-07-01

    Forty one papers were presented on perspectives in metallurgical development, with sessions on historical metallurgy, extraction and process metallurgy, solidification processes, microstructural studies, working and forming, mechanical behaviour, corrosion and environmental effects, and future developments in metallurgy. One paper, on fracture mechanics and non-destructive testing related to assurance of structural integrity of nuclear pressure vessels, is indexed separately. (U.K.)

  17. Hazardous waste treatment facility and skid-mounted treatment systems at Los Alamos

    International Nuclear Information System (INIS)

    Lussiez, G.W.; Zygmunt, S.J.

    1993-01-01

    To centralize treatment, storage, and staging areas for hazardous wastes, Los Alamos National Laboratory has designed a 12,000-ft 2 hazardous waste treatment facility. The facility will house a treatment room for each of four kinds of wastes: nonradioactive characteristic wastes, nonradioactive listed wastes radioactive characteristic wastes, and radioactive listed wastes. The facility will be used for repacking labpacks, bulking small organic waste volumes, processing scintillation vials, treating reactives such as lithium hydride and pyrophoric uranium, treating contaminated solids such as barium sand, and treating plating wastes. The treated wastes will then be appropriately disposed of. This report describes the integral features of the hazardous waste treatment facility

  18. Knowledge and practices of pharmaceutical laboratory workers on laboratory safety

    Directory of Open Access Journals (Sweden)

    Esra Emerce

    2017-09-01

    Full Text Available Laboratories are classified as very hazardous workplaces. Objective: The aim of this descriptive study was to determine the knowledge and practice of laboratory safety by analysts and technicians in the laboratories of the Turkish Medicine and Medical Devices Agency. Methods:  85.0% (n=93 of the workers (n=109 was reached. A pre-tested, laboratory safety oriented, self-administered questionnaire was completed under observation. Results: Participants were mostly female (66,7%, had 12.8±8.2 years of laboratory experience and worked 24.6±10.3 hours per week. 53.8% of the employees generally worked with flammable and explosive substances, 29.0% with acute toxic or carcinogenic chemicals and 30.1% with physical dangers. Of all surveyed, 14.0% had never received formal training on laboratory safety. The proportion of ‘always use’ of laboratory coats, gloves, and goggles were 84.9%, 66.7%, and 6.5% respectively. 11.9% of the participants had at least one serious injury throughout their working lives and 24.7% had at least one small injury within the last 6 months. Among these injuries, incisions, bites and tears requiring no stiches (21.0% and the inhalation of chemical vapors (16.1% took first place. The mean value for the number of correct responses to questions on basic safety knowledge was 65.4±26.5, out of a possible 100. Conclusion: Overall, the participants have failed in some safety practices and have been eager to get regular education on laboratory safety.  From this point onwards, it would be appropriate for the employers to organize periodic trainings on laboratory safety.Keywords: Health personnel, laboratory personnel, occupational health, occupational safety, pharmacy

  19. Laboratory Waste Disposal Manual. Revised Edition.

    Science.gov (United States)

    Stephenson, F. G., Ed.

    This manual is designed to provide laboratory personnel with information about chemical hazards and ways of disposing of chemical wastes with minimum contamination of the environment. The manual contains a reference chart section which has alphabetical listings of some 1200 chemical substances with information on the health, fire and reactivity…

  20. Hazard waste risk assessment

    International Nuclear Information System (INIS)

    Hawley, K.A.; Napier, B.A.

    1986-01-01

    Pacific Northwest Laboratory continued to provide technical assistance to the Department of Energy (DOE) Office of Operational Safety (OOS) in the area of risk assessment for hazardous and radioactive-mixed waste management. The overall objective is to provide technical assistance to OOS in developing cost-effective risk assessment tools and strategies for bringing DOE facilities into compliance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA or Superfund) and the Resource Conservation and Recovery Act (RCRA). Major efforts during FY 1985 included (1) completing the modification of the Environmental Protection Agency (EPA) Hazard Ranking System (HRS) and developing training manuals and courses to assist in field office implementation of the modified Hazard Ranking System (mHRS); (2) initiating the development of a system for reviewing field office HRS/mHRS evaluations for appropriate use of data and appropriate application of the methodology; (3) initiating the development of a data base management system to maintain all field office HRS/mHRS scoring sheets and to support the master OOS environmental data base system; (4) developing implementation guidance for Phase I of the DOE CERCLA Program, Installation Assessment; (5) continuing to develop an objective, scientifically based methodology for DOE management to use in establishing priorities for conducting site assessments under Phase II of the DOE CERCLA Program, Confirmation; and (6) participating in developing the DOE response to EPA on the proposed listing of three sites on the National Priorities List

  1. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. K L Sahoo1 Rina Sahu1 M Ghosh1 S Chatterjee2. Metal Extraction and Forming Division, National Metallurgical Laboratory, Jamshedpur 831 007, India; Department of Metallurgical and Materials Engineering, Bengal Engineering and Science University, Howrah 711 103, India ...

  2. Guidelines for generators of hazardous chemical waste at LBL and Guidelines for generators of radioactive and mixed waste at LBL

    International Nuclear Information System (INIS)

    1991-07-01

    The purpose of this document is to provide the acceptance criteria for the transfer of hazardous chemical, radioactive, and mixed waste to Lawrence Berkeley Laboratory's (LBL) Hazardous Waste Handling Facility (HWHF). These guidelines describe how a generator of wastes can meet LBL's acceptance criteria for hazardous chemical, radioactive, and mixed waste. 9 figs

  3. Mechanical fasteners used in historical Siberian shipbuilding: perspectives for metallurgical analysis

    Science.gov (United States)

    Goncharov, A. E.; Mednikov, D. M.; Karelin, N. M.; Nasyrov, I. R.

    2017-10-01

    Recent discoveries of shipwrecked vessels in the northern reaches of the river Yenisei led to a number of questions concerning the history of shipbuilding in Siberia and the technical features of the first vessels of the industrial era to navigate the Northern Sea Route and the Yenisei. One of these questions addresses the features of mechanical fasteners used in the construction of the Siberian vessels. The answer to this question may provide information on how the first vessels, constructed in Siberia during the 1870’s, were able to sail the high seas of the Arctic Ocean and reach European ports. In this paper, we provide a description of iron mechanical fasteners obtained from one shipwrecked vessel and discuss on the perspectives of a metallurgical analysis This research has been funded by a grant of the Russian Fund of Humanities Research (Russian Fund of Fundamental Research) and the Krasnoyarsk Regional Science Fund under Grant number 16-11-24010.

  4. Feasibility studies to establish at the Kazakhstan Ulba metallurgical plant the manufacturing capability to produce low-enriched uranium certified reference materials

    Energy Technology Data Exchange (ETDEWEB)

    Kuzminski, Jozef [Los Alamos National Laboratory; Nesuhoff, J [NBL; Cratto, P [NBL; Pfennigwerth, G [Y12 NATIONAL SEC. COMPLEX; Mikhailenko, A [ULBA METALLURGICAL PLANT; Maliutina, I [ULBA METALLURGICAL PLANT; Nations, J [GREGG PROTECTION SERVICES

    2009-01-01

    One of the salient features of the transition plan that the United States Department of Energy/National Nuclear Security Administration (DOE/NNSA) is presently implementing in the Former Soviet Union countries is the availability of uranium certified reference materials for calibration of nondestructive assay (NDA) measurement equipment. To address this challenge, DOE/NNSA and U.S. national laboratories have focused their cooperative efforts on establishing a reliable source for manufacturing, certifying, and supplying of such standards. The Ulba Metallurgical Plant (UMP), Kazakhstan, which processes large quantities of low-enriched uranium to produce ceramic fuel pellets for nuclear-powered reactors, is well situated to become a key supplier of low-enriched uranium certified reference materials for the country and Central Asia region. We have recently completed Phase I of a feasibility study to establish at UMP capabilities of manufacturing these standards. In this paper we will discuss details of a proposed methodology for uranium down-blending, material selection and characterization, and a proposed methodology of measurement by destructive (DA) and non-destructive (NDA) analysis to form a database for material certification by the competent State authorities in the Republic of Kazakhstan. In addition, we will discuss the prospect for manufacturing of such standards at UMP.

  5. Influence of carbon nano tubes on mechanical, metallurgical and tribological behavior of magnesium nanocomposites

    Directory of Open Access Journals (Sweden)

    S.T. Selvamani

    2017-09-01

    Full Text Available In this research work, three different reinforcements of Carbon Nano Tubes (in weight % such as 2%, 3% and 4% were added to the magnesium AZ91D grade magnesium alloy to fabricate the Nanocomposites through stir casting method. The effects of volume percentage on the mechanical, metallurgical and wear behavior were analyzed. The composites with 4% reinforcement show high hardness while the composites with 3% reinforcement show better tensile and yield strength and also an improved wear resistance compared to other. Also, the characterization of the Nanocomposites were made using Optical Microscopy, Scanning Electron Microscopy, Finite Element – Scanning Electron Microscopy and Transmission Electron Microscopy to understand its nature.

  6. Systems integration for the Kennedy Space Center (KSC) Robotics Applications Development Laboratory (RADL)

    Science.gov (United States)

    Davis, V. Leon; Nordeen, Ross

    1988-01-01

    A laboratory for developing robotics technology for hazardous and repetitive Shuttle and payload processing activities is discussed. An overview of the computer hardware and software responsible for integrating the laboratory systems is given. The center's anthropomorphic robot is placed on a track allowing it to be moved to different stations. Various aspects of the laboratory equipment are described, including industrial robot arm control, smart systems integration, the supervisory computer, programmable process controller, real-time tracking controller, image processing hardware, and control display graphics. Topics of research include: automated loading and unloading of hypergolics for space vehicles and payloads; the use of mobile robotics for security, fire fighting, and hazardous spill operations; nondestructive testing for SRB joint and seal verification; Shuttle Orbiter radiator damage inspection; and Orbiter contour measurements. The possibility of expanding the laboratory in the future is examined.

  7. Uranium storage bed accident hazards evaluation

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Shmayda, W.T.

    1989-01-01

    To properly assess hazards and risks associated with the use of uranium beds as tritium storage devices in fusion reactor systems, it is necessary to understand the consequences occurring in the event of an accident. Accidents involving uranium beds are postulated, and the possible results are considered. A research program to more fully and accurately understand those results has been initiated involving the Idaho National Engineering Laboratory and Ontario Hydro. The plan and objectives of that program are presented. 11 refs., 1 tab

  8. Uranium storage bed accident hazards evaluation

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Shmayda, W.T.

    1989-10-01

    To properly assess hazards and risks associated with the use of uranium beds as tritium storage devices in fusion reactor systems, it is necessary to understand the consequences occurring in the event of an accident. Accidents involving uranium beds are postulated, and the possible results are considered. A research program to more fully and accurately understand those results has been initiated involving the Idaho National Engineering Laboratory and Ontario Hydro. The plan and objectives of that program are presented. 11 refs., 1 tab

  9. Metallurgical behavior of fine fractions of copper sulfide minerals in a combined process of modified flotation and agitated bio leaching; Respuesta metalurgica de fracciones finas de minerales sulfurados de cobre en un proceso combinado de flotacion modificada y biolixiviacion agitada

    Energy Technology Data Exchange (ETDEWEB)

    Ibanez, J. P.; Ipinza, J.; Collao, N.; Ahlborn, G.

    2007-07-01

    The metallurgical behaviour of fine fraction of copper sulfide minerals of Compania Minera Quebrada Blanca S. A. was studied by concentration through flotation in aqueous media modified by alcohol followed by bio leaching of the concentrates. By using a 1% v/v of methanol, the metallurgical recovery of copper reaches 88%, while the iron recovery was 43%, the weight recovery was 18%, which indicates a high selectivity. these concentrates were then bio leached with and without nutrient medium, reaching 80% of copper recovery after 10 and 17 days, respectively. then, it is possible to conclude that this concentration-bio leaching metallurgical process is a promising route for copper recovery from the fine fraction of sulfide minerals. (Author) 24 refs.

  10. The evaluation of an analytical protocol for the determination of substances in waste for hazard classification

    Energy Technology Data Exchange (ETDEWEB)

    Hennebert, Pierre, E-mail: pierre.hennebert@ineris.fr [INERIS – Institut National de l’Environnement Industriel et des Risques, Domaine du Petit Arbois BP33, F-13545 Aix-en-Provence (France); Papin, Arnaud [INERIS, Parc Technologique ALATA, BP No. 2, 60550 Verneuil en Halatte (France); Padox, Jean-Marie [INERIS – Institut National de l’Environnement Industriel et des Risques, Domaine du Petit Arbois BP33, F-13545 Aix-en-Provence (France); Hasebrouck, Benoît [INERIS, Parc Technologique ALATA, BP No. 2, 60550 Verneuil en Halatte (France)

    2013-07-15

    Highlights: • Knowledge of wastes in substances will be necessary to assess HP1–HP15 hazard properties. • A new analytical protocol is proposed for this and tested by two service laboratories on 32 samples. • Sixty-three percentage of the samples have a satisfactory analytical balance between 90% and 110%. • Eighty-four percentage of the samples were classified identically (Seveso Directive) for their hazardousness by the two laboratories. • The method, in progress, is being normalized in France and is be proposed to CEN. - Abstract: The classification of waste as hazardous could soon be assessed in Europe using largely the hazard properties of its constituents, according to the the Classification, Labelling and Packaging (CLP) regulation. Comprehensive knowledge of the component constituents of a given waste will therefore be necessary. An analytical protocol for determining waste composition is proposed, which includes using inductively coupled plasma (ICP) screening methods to identify major elements and gas chromatography/mass spectrometry (GC–MS) screening techniques to measure organic compounds. The method includes a gross or indicator measure of ‘pools’ of higher molecular weight organic substances that are taken to be less bioactive and less hazardous, and of unresolved ‘mass’ during the chromatography of volatile and semi-volatile compounds. The concentration of some elements and specific compounds that are linked to specific hazard properties and are subject to specific regulation (examples include: heavy metals, chromium(VI), cyanides, organo-halogens, and PCBs) are determined by classical quantitative analysis. To check the consistency of the analysis, the sum of the concentrations (including unresolved ‘pools’) should give a mass balance between 90% and 110%. Thirty-two laboratory samples comprising different industrial wastes (liquids and solids) were tested by two routine service laboratories, to give circa 7000 parameter

  11. Analysis of Precipitation (Rain and Snow) Levels and Straight-line Wind Speeds in Support of the 10-year Natural Phenomena Hazards Review for Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Elizabeth J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dewart, Jean Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Deola, Regina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-10

    This report provides site-specific return level analyses for rain, snow, and straight-line wind extreme events. These analyses are in support of the 10-year review plan for the assessment of meteorological natural phenomena hazards at Los Alamos National Laboratory (LANL). These analyses follow guidance from Department of Energy, DOE Standard, Natural Phenomena Hazards Analysis and Design Criteria for DOE Facilities (DOE-STD-1020-2012), Nuclear Regulatory Commission Standard Review Plan (NUREG-0800, 2007) and ANSI/ ANS-2.3-2011, Estimating Tornado, Hurricane, and Extreme Straight-Line Wind Characteristics at Nuclear Facility Sites. LANL precipitation and snow level data have been collected since 1910, although not all years are complete. In this report the results from the more recent data (1990–2014) are compared to those of past analyses and a 2004 National Oceanographic and Atmospheric Administration report. Given the many differences in the data sets used in these different analyses, the lack of statistically significant differences in return level estimates increases confidence in the data and in the modeling and analysis approach.

  12. Assessing market structures in resource markets. An empirical analysis of the market for metallurgical coal using various equilibrium models

    Energy Technology Data Exchange (ETDEWEB)

    Lorenczik, Stefan; Panke, Timo [Koeln Univ. (Germany). Inst. of Energy Economics

    2015-05-15

    The prevalent market structures found in many resource markets consist of a high concentration on the supply side and a low demand elasticity. Market results are therefore frequently assumed to be an outcome of strategic interaction between producers. Common models to investigate the market outcomes and underlying market structures are games representing competitive markets, strategic Cournot competition and Stackelberg structures taking into account a dominant player acting first followed by one or more followers. Besides analysing a previously neglected scenario of the latter kind, we add to the literature by expanding the application of mathematical models by applying an Equilibrium Problem with Equilibrium Constraints (EPEC), which is used to model multi-leader-follower games, to a spatial market. We apply our model by investigating the prevalent market setting in the international market for metallurgical coal between 2008 and 2010, whose market structure provides arguments for a wide variety of market structures. Using different statistical measures and comparing model with actual market outcomes, we find that two previously neglected settings perform best: First, a setting in which the four largest metallurgical coal exporting firms compete against each other as Stackelberg leaders, while the remainders act as Cournot followers. Second, a setting with BHPB acting as sole Stackelberg leader.

  13. Assessing market structures in resource markets. An empirical analysis of the market for metallurgical coal using various equilibrium models

    International Nuclear Information System (INIS)

    Lorenczik, Stefan; Panke, Timo

    2015-01-01

    The prevalent market structures found in many resource markets consist of a high concentration on the supply side and a low demand elasticity. Market results are therefore frequently assumed to be an outcome of strategic interaction between producers. Common models to investigate the market outcomes and underlying market structures are games representing competitive markets, strategic Cournot competition and Stackelberg structures taking into account a dominant player acting first followed by one or more followers. Besides analysing a previously neglected scenario of the latter kind, we add to the literature by expanding the application of mathematical models by applying an Equilibrium Problem with Equilibrium Constraints (EPEC), which is used to model multi-leader-follower games, to a spatial market. We apply our model by investigating the prevalent market setting in the international market for metallurgical coal between 2008 and 2010, whose market structure provides arguments for a wide variety of market structures. Using different statistical measures and comparing model with actual market outcomes, we find that two previously neglected settings perform best: First, a setting in which the four largest metallurgical coal exporting firms compete against each other as Stackelberg leaders, while the remainders act as Cournot followers. Second, a setting with BHPB acting as sole Stackelberg leader.

  14. Corrosion behaviour of hyper duplex stainless steel in various metallurgical conditions for sea water cooled condensers

    International Nuclear Information System (INIS)

    Singh, Umesh Pratap; Kain, Vivekanand; Chandra, Kamlesh

    2011-01-01

    The sea water cooled condensers have to resist severe corrosion as marine environment is the most corrosive natural environment. Copper alloys are being phased out due to difficulties in water chemistry control and Titanium base alloys are extremely expensive. Austenitic stainless steels (SS) remain prone to localized corrosion in marine environments hence not suitable. These heat exchangers operate at temperatures not exceeding 50 deg C and at very low pressures. The tubes of these heat exchangers are joined to the carbon steel tube sheets by roll expansion or by roll expansion followed by seam welding. These conditions are expected to affect the localized corrosion resistance of the tube in roll joined region due to cold working and in the tube-tube sheet welded joint due to thermal effects of welding. In this study, the localized corrosion behaviour of a Hyper Duplex Stainless Steel (HDSS) has been evaluated, and compared with other materials e.g. types 304L SS, 316L SS, Duplex SS 2205, Titanium grade - 2, and Al Brass. The evaluation is done in three metallurgical conditions (a) as received, (b) cold rolled and (c) welded condition in synthetic sea water at room temperature and at 50 deg C to assess the resistance to crevice, pitting and stress corrosion cracking using standard ASTM exposure and electrochemical techniques. The results provide comparative assessment of these alloys and show their susceptibility in the three metallurgical conditions as encountered in condensers. Hyper-duplex SS has been shown to be highly resistant in sea water for the condenser tubing application. (author)

  15. Occupational exposure to PCDDs, PCDFs, and PCBs of metallurgical workers in some industrial plants of the Brescia area, northern Italy.

    Science.gov (United States)

    Abballe, Annalisa; Barbieri, Pietro Gino; di Domenico, Alessandro; Garattini, Siria; Iacovella, Nicola; Ingelido, Anna Maria; Marra, Valentina; Miniero, Roberto; Valentini, Silvia; De Felip, Elena

    2013-01-01

    The study was carried out in order to respond to public concern on the occupational exposure of metallurgical workers to highly toxic PCDDs, PCDFs, and PCBs in the area of the city of Brescia, northern Italy. The study investigated the effects on the haematic burden of occupational exposures to the aforesaid contaminants in different work environments, attempting to establish causal relationships and providing indications for occupational health preventive measures. Chemical concentrations were measured in blood serum of "professionally exposed" (PE) and "not professionally exposed" (NPE) subjects. NPE subjects included industrial administrative employees, Brescia inhabitants, and remote rural people. The central tendency indexes of contaminant cumulative concentrations were higher in PE than in NPE samples (for the mean values: PCDDs+PCDFs, 22.9 vs. 19.5 pgWHO-TEQ(1997)/g lb; DL-PCBs, 26.0 vs. 23.6 pgWHO-TEQ(1997)/g lb; PCDDs+PCDFs+DL-PCBs (TEQ(TOT)), 48.9 vs. 43.1 pgWHO-TEQ(1997)/g lb; Σ(6)[NDL-PCBs], 427 vs. 401 ng g(-1)lb); however, no statistical differences were detected at P=0.05. A significant difference for PCDDs+PCDFs and TEQ(TOT) was observed as the NPE data were progressively reduced to those of the remote rural people. The existence of a differential occupational exposure due to different environments was detected by applying the factor analysis to congener-specific data (analytical profiles). Findings indicate that metallurgical workers may be exposed to PCDD, PCDF, and PCB more than the general population, in particular due to non-negligible contributions to exposure from workplace ambient air. Findings also suggest that an improvement of preventive measures may be required to avoid chemical overexposure in certain metallurgical workplaces. To identify exposure groups, the DL- and NDL-PCB analytical profiles seemed to be more sensitive to environmental exposure sources/pathways than those of PCDDs and PCDFs. Copyright © 2012 Elsevier Ltd. All

  16. The history of decisions on creation of nuclear and metallurgical complex on the basis of the Kola nuclear power plant

    Directory of Open Access Journals (Sweden)

    Kudrin B. I.

    2017-02-01

    Full Text Available Some reasons for the choice of directions for using electric and thermal energy of the Kola nuclear power plant located beyond the Arctic Circle have been presented. The regions of the country and their large-scale industrial productions based on metallurgical enterprises have been indicated; the electrical supply of these enterprises is implemented from the Kola NPP. The results of research of energy inputs for the production of a ton of steel and cast iron have been presented. It has been determined that the main direction of technological modernization in the steel industry is avoiding the use of organic fuels (particularly in coke-blast furnace production as the most energy-intensive and its replacement with the technology of direct reduction of iron with hydrogen. As an alternative energy source for organic fuels the creation of a fuel-free nuclear-metallurgical electrified complex has been proposed. The principal scheme of the fuel-free nuclear-metallurgical electrified complex has been described, here the main novelty has a reducing gases preparation block giving the potential ability for creating waste-free process. It has been noted that this technology requires using high temperatures and solving technical problems related to heat resistance of constructions. Some examples of world research on the implementation of similar projects have been presented. It has been determined that the use of new technology will cause the need for optimization of power consumption structure due to the redistribution of capacity and electrical consumption between productions. The introduction of new technologies requires solving a number of problems on electric power supply and electrical equipment designing. It has been observed that on the Kola NPP large-scale reconstruction was carried out during the working period, it helped to increase its project capacity and extend the operation life. Nowadays the region has excess installed capacity that can be

  17. Laboratory scale vitrification of low-level radioactive nitrate salts and soils from the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Shaw, P.; Anderson, B.

    1993-07-01

    INEL has radiologically contaminated nitrate salt and soil waste stored above and below ground in Pad A and the Acid Pit at the Radioactive Waste Management Complex. Pad A contain uranium and transuranic contaminated potassium and sodium nitrate salts generated from dewatered waste solutions at the Rocky Flats Plant. The Acid Pit was used to dispose of liquids containing waste mineral acids, uranium, nitrate, chlorinated solvents, and some mercury. Ex situ vitrification is a high temperature destruction of nitrates and organics and immobilizes hazardous and radioactive metals. Laboratory scale melting of actual radionuclides containing INEL Pad A nitrate salts and Acid Pit soils was performed. The salt/soil/additive ratios were varied to determine the range of glass compositions (resulted from melting different wastes); maximize mass and volume reduction, durability, and immobilization of hazardous and radioactive metals; and minimize viscosity and offgas generation for wastes prevalent at INEL and other DOE sites. Some mixtures were spiked with additional hazardous and radioactive metals. Representative glasses were leach tested and showed none. Samples spiked with transuranic showed low nuclide leaching. Wasteforms were two to three times bulk densities of the salt and soil. Thermally co-processing soils and salts is an effective remediation method for destroying nitrate salts while stabilizing the radiological and hazardous metals they contain. The measured durability of these low-level waste glasses approached those of high-level waste glasses. Lab scale vitrification of actual INEL contaminated salts and soils was performed at General Atomics Laboratory as part of the INEL Waste Technology Development and Environmental Restoration within the Buried Waste Integrated Demonstration Program

  18. Transportation of Hazardous Materials Emergency Preparedness Hazards Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, A.

    2000-02-28

    This report documents the Emergency Preparedness Hazards Assessment (EPHA) for the Transportation of Hazardous Materials (THM) at the Department of Energy (DOE) Savannah River Site (SRS). This hazards assessment is intended to identify and analyze those transportation hazards significant enough to warrant consideration in the SRS Emergency Management Program.

  19. Transportation of Hazardous Materials Emergency Preparedness Hazards Assessment

    International Nuclear Information System (INIS)

    Blanchard, A.

    2000-01-01

    This report documents the Emergency Preparedness Hazards Assessment (EPHA) for the Transportation of Hazardous Materials (THM) at the Department of Energy (DOE) Savannah River Site (SRS). This hazards assessment is intended to identify and analyze those transportation hazards significant enough to warrant consideration in the SRS Emergency Management Program

  20. Transportation of hazardous materials emergency preparedness hazards assessment

    International Nuclear Information System (INIS)

    Blanchard, A.

    2000-01-01

    This report documents the Emergency Preparedness Hazards Assessment (EPHA) for the Transportation of Hazardous Materials (THM) at the Department of Energy (DOE) Savannah River Site (SRS). This hazards assessment is intended to identify and analyze those transportation hazards significant enough to warrant consideration in the SRS Emergency Management Program

  1. Advances in refractories for the metallurgical industries III: proceedings of the international symposium

    Energy Technology Data Exchange (ETDEWEB)

    Allaire, C.; Rigaud, M. [eds.] [Ecole Polytchnique, Montreal, PQ (Canada)

    1999-07-01

    In the three years since the last symposium key innovations have been made in the penetration of monoliths in all sectors of the metallurgical industries. The symposium was presented within the 38th Annual Conference of Metallurgists of the Canadian Institute of Mining, Metallurgy and Petroleum. Broad international coverage was maintained with papers originating from 12 different countries including: Australia, Canada, China, France, Germany, India, Iran, Japan, Korea, Mexico, New Zealand, Norway, and the United States. The 27 papers presented are divided into seven sessions to reflect the interests of the participants. The sessions included mold fluxes I and II, aluminum refractories, alumina castables, andalusite castables, continuous casting of refractories, aluminum refractories II and copper-nickel refineries. One paper on refractories for exhaust gas scrubbers is abstracted separately.

  2. Characterization of radioactive and hazardous waste at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Wieneke, R.E.; Balkey, J.J.

    2001-01-01

    Radioactive and hazardous waste from actinide processing in nuclear facilities must be characterized in order to ensure safe and regulatory compliant disposal. Nondestructive assay techniques are used to determine nuclear material content and analytical chemistry methods are used to establish composition, but these activities are time-consuming and expensive. Regulations allow acceptable knowledge to be used in order to reduce analytical requirements, provided the integrity of documentation can be demonstrated. The viability of the program is based upon record management and traceability and must withstand the rigors of audit. Electronic inventory and data-gathering systems are implemented to reduce record management and reporting burdens. (author)

  3. Characterization of radioactive and hazardous waste at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Wieneke, R.E.; Balkey, J.J. [Los Alamos National Lab., Nuclear Materials Technology Div., NM (United States)

    2001-07-01

    Radioactive and hazardous waste from actinide processing in nuclear facilities must be characterized in order to ensure safe and regulatory compliant disposal. Nondestructive assay techniques are used to determine nuclear material content and analytical chemistry methods are used to establish composition, but these activities are time-consuming and expensive. Regulations allow acceptable knowledge to be used in order to reduce analytical requirements, provided the integrity of documentation can be demonstrated. The viability of the program is based upon record management and traceability and must withstand the rigors of audit. Electronic inventory and data-gathering systems are implemented to reduce record management and reporting burdens. (author)

  4. Treatment of hazardous organic wastes using silent discharge plasmas

    International Nuclear Information System (INIS)

    Rosocha, L.A.; Anderson, G.K.; Bechtold, L.A.; Coogan, J.J.; Heck, H.G.; Kang, M.; McCulla, W.H.; Tennant, R.A.; Wantuck, P.J.

    1992-01-01

    During the past two decades, interest in applying non-equilibrium plasmas to the removal of hazardous chemicals from gaseous media has been growing, in particular from heightened concerns over the pollution of our environment and a growing body of environmental regulations. At the Los Alamos National Laboratory, we are currently engaged in a project to develop non-equilibrium plasma technology for hazardous waste treatment. Our present focus is on dielectric-barrier discharges, which are historically called silent electrical discharges. This type of plasma is also named a silent discharge plasma (SDP). We have chosen this method due to its potential for high energy efficiency, its scientific and technological maturity, and its scalability. The SDP process has been demonstrated to be reliable and economical for the industrial-scale synthesis of ozone, where municipal water treatment plants frequently require the on-site generation of thousands of kilograins per day (Eliasson ampersand Kogelschatz). The related methods of corona processing are presently the focus of work at other institutions, particularly for flue gas processing. Both SDP and corona processes are characterized by the production of large quantities of highly reactive free radicals, especially atomic oxygen O(3P) and the hydroxyl OH, in the gaseous medium and their subsequent reaction with contaminants. Our primary objective is to convert hazardous or toxic chemicals into non-hazardous compounds or into materials which are more amenable to treatment. In the ideal case, the hazardous wastes are destructively oxidized to simpler, non-hazardous compounds plus CO2 and H2O. Sometimes the reaction products are still potentially hazardous, but are easily treated by conventional methods to yield non-hazardous products

  5. The behaviour of Pacific metallurgical coal markets: the impact of Japan's acquisition strategy on market price

    Energy Technology Data Exchange (ETDEWEB)

    Koerner, R J [Queensland University, St. Lucia, Qld. (Australia). Graduate School of Management, Faculty of Commerce and Economics

    1993-03-01

    This paper examines whether some elements of Japan's resource acquisition strategies might have caused price and other distortions of market behaviour in the Pacific metallurgical coal trade. The industry chosen for investigation is that of steel manufacture, and the traded resources commodity examined is coking coal, which is the primary energy input for blast furnace iron making. Regression modelling studies to determine historic acquisition value and quality relationships for US, Australian and Canadian coals sold into the Japanese coking coal market are described. Departures from normal demand response behaviour to price competitiveness are also investigated. 3 figs., 3 tabs.

  6. Second DOE natural phenomena hazards mitigation conference

    International Nuclear Information System (INIS)

    1989-01-01

    This conference has been organized into ten presentation sessions which include an overview of the DOE Natural Phenomena Guidelines, Seismic Analysis, Seismic Design, Modifying Existing Facilities, DOE Orders, Codes, and Standards (2 sessions), Seismic Hazard (2 sessions), and Probabilistic Risk Assessment (2 sessions). Two poster sessions were also included in the program to provide a different forum for communication of ideas. Over the past fourteen years, Lawrence Livermore National Laboratory, Nuclear Systems Safety Program, has been working with the US Department of Energy, Office of Safety Appraisals and their predecessors in the area of natural phenomena hazards. During this time we have developed seismic, extreme wind/tornado, and flood hazard models for DOE sites in the United States. Guidelines for designing and evaluating DOE facilities for natural phenomena have been developed and are in interim use throughout the DOE community. A series of state-of-the practice manuals have also been developed to aid the designers. All of this material is listed in the Natural Phenomena Hazards Bibliography included in these proceedings. This conference provides a mechanism to disseminate current information on natural phenomena hazards and their mitigation. It provides an opportunity to bring together members of the DOE community to discuss current projects, to share information, and to hear practicing members of the structural engineering community discuss their experiences from past natural phenomena, future trends, and any changes to building codes. Each paper or poster presented is included in these proceedings. We have also included material related to the luncheon and dinner talks

  7. Hazard function theory for nonstationary natural hazards

    Science.gov (United States)

    Read, L.; Vogel, R. M.

    2015-12-01

    Studies from the natural hazards literature indicate that many natural processes, including wind speeds, landslides, wildfires, precipitation, streamflow and earthquakes, show evidence of nonstationary behavior such as trends in magnitudes through time. Traditional probabilistic analysis of natural hazards based on partial duration series (PDS) generally assumes stationarity in the magnitudes and arrivals of events, i.e. that the probability of exceedance is constant through time. Given evidence of trends and the consequent expected growth in devastating impacts from natural hazards across the world, new methods are needed to characterize their probabilistic behavior. The field of hazard function analysis (HFA) is ideally suited to this problem because its primary goal is to describe changes in the exceedance probability of an event over time. HFA is widely used in medicine, manufacturing, actuarial statistics, reliability engineering, economics, and elsewhere. HFA provides a rich theory to relate the natural hazard event series (x) with its failure time series (t), enabling computation of corresponding average return periods and reliabilities associated with nonstationary event series. This work investigates the suitability of HFA to characterize nonstationary natural hazards whose PDS magnitudes are assumed to follow the widely applied Poisson-GP model. We derive a 2-parameter Generalized Pareto hazard model and demonstrate how metrics such as reliability and average return period are impacted by nonstationarity and discuss the implications for planning and design. Our theoretical analysis linking hazard event series x, with corresponding failure time series t, should have application to a wide class of natural hazards.

  8. Hazard function theory for nonstationary natural hazards

    Science.gov (United States)

    Read, Laura K.; Vogel, Richard M.

    2016-04-01

    Impact from natural hazards is a shared global problem that causes tremendous loss of life and property, economic cost, and damage to the environment. Increasingly, many natural processes show evidence of nonstationary behavior including wind speeds, landslides, wildfires, precipitation, streamflow, sea levels, and earthquakes. Traditional probabilistic analysis of natural hazards based on peaks over threshold (POT) generally assumes stationarity in the magnitudes and arrivals of events, i.e., that the probability of exceedance of some critical event is constant through time. Given increasing evidence of trends in natural hazards, new methods are needed to characterize their probabilistic behavior. The well-developed field of hazard function analysis (HFA) is ideally suited to this problem because its primary goal is to describe changes in the exceedance probability of an event over time. HFA is widely used in medicine, manufacturing, actuarial statistics, reliability engineering, economics, and elsewhere. HFA provides a rich theory to relate the natural hazard event series (X) with its failure time series (T), enabling computation of corresponding average return periods, risk, and reliabilities associated with nonstationary event series. This work investigates the suitability of HFA to characterize nonstationary natural hazards whose POT magnitudes are assumed to follow the widely applied generalized Pareto model. We derive the hazard function for this case and demonstrate how metrics such as reliability and average return period are impacted by nonstationarity and discuss the implications for planning and design. Our theoretical analysis linking hazard random variable X with corresponding failure time series T should have application to a wide class of natural hazards with opportunities for future extensions.

  9. Remote Laser Laboratory: Lifebuoy for Laser Engineering Curriculum

    Directory of Open Access Journals (Sweden)

    Igor Titov

    2012-05-01

    Full Text Available Laboratory experience is one of the essentials of engineering curriculum and even more so for laser engineering specialities. But such experience might be hazardous both for students and for expensive equipment. This paper presents a ready-to-use solution fitting great in both e-learning and safe remote operation paradigms: Remote Laser Laboratory (RLL. Software and hardware solutions are presented. In addition, a short description of ongoing student activities within the RLL framework is given.

  10. Site characteristics of Argonne National Laboratory in Illinois

    International Nuclear Information System (INIS)

    Chang, Y.W.

    1995-01-01

    This report reviews the geology and topography of the Argonne National Laboratory, near Lemont, Illinois. It describes the thickness and stratigraphy of soils, glacial till, and bedrock in and adjacent to the laboratory and support facilities. Seismic surveys were also conducted through the area to help determine the values of seismic wave velocities in the glacial till which is important in determining the seismic hazard of the area. Borehole log descriptions are summarized along with information on area topography

  11. Wet chemical analysis with a laboratory robotic system

    International Nuclear Information System (INIS)

    Burkett, S.D.; Dyches, G.M.; Spencer, W.A.

    1984-01-01

    Emphasis on laboratory automation has increased in recent years. The desire to improve analytical reliability, increase productivity, and reduce exposure of personnel to hazardous materials has been fundamental to this increase. The Savannah River Laboratory (SRL) performs research and development on nuclear materials. Development of methods to increase efficiency and safety and to reduce exposure of personnel to radioactive materials is an ongoing process at our site. Robotic systems offer a potentially attractive way to achieve these goals

  12. Development of constrained motion control for robot handling of hazardous waste

    International Nuclear Information System (INIS)

    Starr, G.P.

    1993-01-01

    Handling and archiving of hazardous waste is an area where automation and robotics can be of significant benefit, by removing the human operator from the workplace and its associated hazards. For reasons of safety, throughput, and reduced setup time, force-controlled robots are well-suited for hazardous materials handling. The focus of this investigation is the development of advanced force control techniques for commercial industrial robots in the surface sampling of hazardous waste containers. Two particular control strategies are considered, (1) preview control, and (2) adaptive control. Preview control uses a sensor which can ''look ahead'' and thereby reduce the effect of surface irregularity on contact force control. Adaptive control allows the robot controller to compensate for changes in the robot characteristics as it changes position, and likewise improves performance. The resulting control algorithms will be applied to a two-dimensional contour-following task using a PUMA robot at the Robotics Research Laboratory at The University of New Mexico. (author) 9 figs., 13 refs

  13. Final characterization report for the 108-F Biological Laboratory

    International Nuclear Information System (INIS)

    Harris, R.A.

    1996-09-01

    This report provides a compilation of characterization data for the 108-F Biological Laboratory collected during the period of May 7, 1996 through August 29, 1996. The 108-F Biology Laboratory is located on the Hanford Site in Richland, Washington. The characterization activities were organized and implemented to evaluate the radiological status of the laboratory and to identify hazardous materials. This report reflects the current conditions and status of the laboratory. Information in this report is intended to be utilized to prepare an accurate cost estimate for building demolition, to aid in planning decontamination and demolition activities, and allow proper disposal of demolition debris

  14. Atomic absorption determination of vanadium in products of metallurgical production and mineral feed stock

    International Nuclear Information System (INIS)

    Polikarpova, N.V.; Panteleeva, E.Yu.

    1983-01-01

    Rapid and selective method of atomic absorption determination of vanadium in metallurgical process products and numerical feed stock is suggested. Buffering mixture of aluminium and phosphoric acid is used to suppress the effect of sample composition on the value of vanadium atomic absorption. The concentration of buffer components can vary from 400 up to 2000 μg/ml Al and from 2 up to 5% vol. H 3 PO 4 . The suggested mixture completely eli-- minates the strong chromium effect. The developed method was used for analyzing steels, alloys based on Mo, Ni, Ti, Cr, as well as titanium magnetite ores and concentrates. The method enables to determine from 0.05 up to 10% vanadium with 0.05-0.01 relative standard deviation, respectively

  15. Visible and Infrared Remote Imaging of Hazardous Waste: A Review

    Directory of Open Access Journals (Sweden)

    Barry Haack

    2010-11-01

    Full Text Available One of the critical global environmental problems is human and ecological exposure to hazardous wastes from agricultural, industrial, military and mining activities. These wastes often include heavy metals, hydrocarbons and other organic chemicals. Traditional field and laboratory detection and monitoring of these wastes are generally expensive and time consuming. The synoptic perspective of overhead remote imaging can be very useful for the detection and remediation of hazardous wastes. Aerial photography has a long and effective record in waste site evaluations. Aerial photographic archives allow temporal evaluation and change detection by visual interpretation. Multispectral aircraft and satellite systems have been successfully employed in both spectral and morphological analysis of hazardous wastes on the landscape and emerging hyperspectral sensors have permitted determination of the specific contaminants by processing strategies using the tens or hundreds of acquired wavelengths in the solar reflected and/or thermal infrared parts of the electromagnetic spectrum. This paper reviews the literature of remote sensing and overhead imaging in the context of hazardous waste and discusses future monitoring needs and emerging scientific research areas.

  16. Visible and infrared remote imaging of hazardous waste: A review

    Science.gov (United States)

    Slonecker, Terrence; Fisher, Gary B.; Aiello, Danielle P.; Haack, Barry

    2010-01-01

    One of the critical global environmental problems is human and ecological exposure to hazardous wastes from agricultural, industrial, military and mining activities. These wastes often include heavy metals, hydrocarbons and other organic chemicals. Traditional field and laboratory detection and monitoring of these wastes are generally expensive and time consuming. The synoptic perspective of overhead remote imaging can be very useful for the detection and remediation of hazardous wastes. Aerial photography has a long and effective record in waste site evaluations. Aerial photographic archives allow temporal evaluation and change detection by visual interpretation. Multispectral aircraft and satellite systems have been successfully employed in both spectral and morphological analysis of hazardous wastes on the landscape and emerging hyperspectral sensors have permitted determination of the specific contaminants by processing strategies using the tens or hundreds of acquired wavelengths in the solar reflected and/or thermal infrared parts of the electromagnetic spectrum. This paper reviews the literature of remote sensing and overhead imaging in the context of hazardous waste and discusses future monitoring needs and emerging scientific research areas.

  17. Dog and cat exposures to hazardous substances reported to the Kansas State Veterinary Diagnostic Laboratory: 2009-2012.

    Science.gov (United States)

    Mahdi, Ali; Van der Merwe, Deon

    2013-06-01

    Pet dogs and cats in the USA are commonly exposed to potentially hazardous substances found in domestic environments. Requests for assistance and advice received by the Kansas State Veterinary Diagnostic Laboratory regarding exposures in dogs and cats to substances perceived by their caretakers to be potentially harmful included 1,616 phone calls, over a 3-year period covering 2009-2012. Enquiries occurred more often during summer. Dogs were involved in 84.7 % of calls and cats in 15.3 %. Oral exposures were reported in 95.5 % of calls, dermal exposures in 3.7 % of calls, inhalation exposures in 0.6 % of calls, and parenteral exposures in 0.2 % of calls. Therapeutic drugs were the most frequently reported substances, accounting for 35.4 % of calls, followed by household chemicals (15.5 %); foods (14.8 %); pesticides (13.9 %); plants (12 %), industrial chemicals and fertilizers (3.6 %); cosmetics and personal care products (2.8 %); and animal, insect, and microorganism toxins (2.1 %). Although requests for information or assistance are not a measure of poisoning incidence, it can provide insight regarding relative exposure rates, help to identify changing exposure trends and emerging exposures, and reflect the public concern regarding actual or apparent harmful exposures in pets.

  18. Department of Energy Natural Phenomena Hazards Mitigation program

    International Nuclear Information System (INIS)

    Murray, R.C.

    1993-01-01

    This paper presents a summary of past and present accomplishments of the Natural Phenomena Hazards Program that has been ongoing at Lawrence Livermore National Laboratory since 1975. The Natural Phenomena covered includes earthquake; winds, hurricanes, and tornadoes; flooding and precipitation; lightning; and volcanic events. The work is organized into four major areas (1) Policy, requirements, standards, and guidance, (2) Technical support, research and development, (3) Technology transfer, and (4) Oversight

  19. Development and demonstration of atmospheric electricity hazards protection

    OpenAIRE

    Beavin , R.C.; Lippert , J.R.; La Voie , J.E.

    1986-01-01

    An Advanced Development Program (ADP) to develop and demonstrate effective Atmospheric Electricity Hazards Protection (AEHP) for the fighter, transport/bomber, helicopter and cruise missile classes of air vehicles is being conducted under an Air Force Wright Aeronautical Laboratories (AFWAL) contract with Boeing Military Airplane Company (BMAC). Other Government agencies are also supporting the ADP. The parameters characterizing the lightning threat have been defined for moderate and severe f...

  20. Facility Effluent Monitoring Plan for the 325 Radiochemical Processing Laboratory

    International Nuclear Information System (INIS)

    Shields, K.D.; Ballinger, M.Y.

    1999-03-01

    This Facility Effluent Monitoring Plan (FEMP) has been prepared for the 325 Building Radiochemical Processing Laboratory (RPL) at the Pacific Northwest National Laboratory (PNNL) to meet the requirements in DOE Order 5400.1, ''General Environmental Protection Programs.'' This FEMP has been prepared for the RPL primarily because it has a ''major'' (potential to emit >0.1 mrem/yr) emission point for radionuclide air emissions according to the annual National Emission Standards for Hazardous Air Pollutants (NESHAP) assessment performed. This section summarizes the airborne and liquid effluents and the inventory based NESHAP assessment for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements. The RPL at PNNL houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and radioactive mixed waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities within the building include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials and a waste treatment facility for processing hazardous, mixed radioactive, low-level radioactive, and transuranic wastes generated by PNNL activities

  1. Facility Effluent Monitoring Plan for the 325 Radiochemical Processing Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Shields, K.D.; Ballinger, M.Y.

    1999-04-02

    This Facility Effluent Monitoring Plan (FEMP) has been prepared for the 325 Building Radiochemical Processing Laboratory (RPL) at the Pacific Northwest National Laboratory (PNNL) to meet the requirements in DOE Order 5400.1, ''General Environmental Protection Programs.'' This FEMP has been prepared for the RPL primarily because it has a ''major'' (potential to emit >0.1 mrem/yr) emission point for radionuclide air emissions according to the annual National Emission Standards for Hazardous Air Pollutants (NESHAP) assessment performed. This section summarizes the airborne and liquid effluents and the inventory based NESHAP assessment for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements. The RPL at PNNL houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and radioactive mixed waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities within the building include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials and a waste treatment facility for processing hazardous, mixed radioactive, low-level radioactive, and transuranic wastes generated by PNNL activities.

  2. Cyclic fatigue resistance, torsional resistance, and metallurgical characteristics of M3 Rotary and M3 Pro Gold NiTi files

    Science.gov (United States)

    2018-01-01

    Objectives To evaluate the mechanical properties and metallurgical characteristics of the M3 Rotary and M3 Pro Gold files (United Dental). Materials and Methods One hundred and sixty new M3 Rotary and M3 Pro Gold files (sizes 20/0.04 and 25/0.04) were used. Torque and angle of rotation at failure (n = 20) were measured according to ISO 3630-1. Cyclic fatigue resistance was tested by measuring the number of cycles to failure in an artificial stainless steel canal (60° angle of curvature and a 5-mm radius). The metallurgical characteristics were investigated by differential scanning calorimetry. Data were analyzed using analysis of variance and the Student-Newman-Keuls test. Results Comparing the same size of the 2 different instruments, cyclic fatigue resistance was significantly higher in the M3 Pro Gold files than in the M3 Rotary files (p Rotary files showed 1 small peak on the heating curve and 1 small peak on the cooling curve. Conclusions The M3 Pro Gold files showed greater flexibility and angular rotation than the M3 Rotary files, without decrement of their torque resistance. The superior flexibility of M3 Pro Gold files can be attributed to their martensite phase. PMID:29765904

  3. Hazard interactions and interaction networks (cascades) within multi-hazard methodologies

    Science.gov (United States)

    Gill, Joel C.; Malamud, Bruce D.

    2016-08-01

    This paper combines research and commentary to reinforce the importance of integrating hazard interactions and interaction networks (cascades) into multi-hazard methodologies. We present a synthesis of the differences between multi-layer single-hazard approaches and multi-hazard approaches that integrate such interactions. This synthesis suggests that ignoring interactions between important environmental and anthropogenic processes could distort management priorities, increase vulnerability to other spatially relevant hazards or underestimate disaster risk. In this paper we proceed to present an enhanced multi-hazard framework through the following steps: (i) description and definition of three groups (natural hazards, anthropogenic processes and technological hazards/disasters) as relevant components of a multi-hazard environment, (ii) outlining of three types of interaction relationship (triggering, increased probability, and catalysis/impedance), and (iii) assessment of the importance of networks of interactions (cascades) through case study examples (based on the literature, field observations and semi-structured interviews). We further propose two visualisation frameworks to represent these networks of interactions: hazard interaction matrices and hazard/process flow diagrams. Our approach reinforces the importance of integrating interactions between different aspects of the Earth system, together with human activity, into enhanced multi-hazard methodologies. Multi-hazard approaches support the holistic assessment of hazard potential and consequently disaster risk. We conclude by describing three ways by which understanding networks of interactions contributes to the theoretical and practical understanding of hazards, disaster risk reduction and Earth system management. Understanding interactions and interaction networks helps us to better (i) model the observed reality of disaster events, (ii) constrain potential changes in physical and social vulnerability

  4. Metallurgical and Mechanical Evaluation of 4340 Steel Produced by Direct Metal Laser Sintering

    Science.gov (United States)

    Jelis, Elias; Clemente, Matthew; Kerwien, Stacey; Ravindra, Nuggehalli M.; Hespos, Michael R.

    2015-03-01

    Direct metal laser sintering (DMLS) was used to produce high-strength low-alloy 4340 steel specimens. Mechanical and metallurgical analyses were performed on the specimens to determine the samples with the highest strengths and the least porosity. The optimal process parameters were thus defined based on the corresponding experimental conditions. Additionally, the effects of fabricating specimens with both virgin and recycled powders were studied. Scanning electron microscopy and electron-dispersive spectroscopy were performed on both types of powders to determine the starting morphology and composition. The initial tensile results are promising, suggesting that DMLS can produce specimens equal in strength to wrought materials. However, there is evidence of cracking on several of the heat-treated tensile specimens that is unexplained. Several theories point to disturbances in the build chamber environment that went undetected while the specimens were being fabricated.

  5. ORNL necessary and sufficient standards for environment, safety, and health. Final report of the Identification Team for other industrial, radiological, and non-radiological hazard facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    This Necessary and Sufficient (N and S) set of standards is for Other Industrial, Radiological, and Non-Radiological Hazard Facilities at Oak Ridge National Laboratory (ORNL). These facility classifications are based on a laboratory-wide approach to classify facilities by hazard category. An analysis of the hazards associated with the facilities at ORNL was conducted in 1993. To identify standards appropriate for these Other Industrial, Radiological, and Non-Radiological Hazard Facilities, the activities conducted in these facilities were assessed, and the hazards associated with the activities were identified. A preliminary hazards list was distributed to all ORNL organizations. The hazards identified in prior hazard analyses are contained in the list, and a category of other was provided in each general hazard area. A workshop to assist organizations in properly completing the list was held. Completed hazard screening lists were compiled for each ORNL division, and a master list was compiled for all Other Industrial, Radiological Hazard, and Non-Radiological facilities and activities. The master list was compared against the results of prior hazard analyses by research and development and environment, safety, and health personnel to ensure completeness. This list, which served as a basis for identifying applicable environment, safety, and health standards, appears in Appendix A.

  6. ORNL necessary and sufficient standards for environment, safety, and health. Final report of the Identification Team for other industrial, radiological, and non-radiological hazard facilities

    International Nuclear Information System (INIS)

    1998-07-01

    This Necessary and Sufficient (N and S) set of standards is for Other Industrial, Radiological, and Non-Radiological Hazard Facilities at Oak Ridge National Laboratory (ORNL). These facility classifications are based on a laboratory-wide approach to classify facilities by hazard category. An analysis of the hazards associated with the facilities at ORNL was conducted in 1993. To identify standards appropriate for these Other Industrial, Radiological, and Non-Radiological Hazard Facilities, the activities conducted in these facilities were assessed, and the hazards associated with the activities were identified. A preliminary hazards list was distributed to all ORNL organizations. The hazards identified in prior hazard analyses are contained in the list, and a category of other was provided in each general hazard area. A workshop to assist organizations in properly completing the list was held. Completed hazard screening lists were compiled for each ORNL division, and a master list was compiled for all Other Industrial, Radiological Hazard, and Non-Radiological facilities and activities. The master list was compared against the results of prior hazard analyses by research and development and environment, safety, and health personnel to ensure completeness. This list, which served as a basis for identifying applicable environment, safety, and health standards, appears in Appendix A

  7. Characterizing cemented TRU waste for RCRA hazardous constituents

    International Nuclear Information System (INIS)

    Yeamans, D.R.; Betts, S.E.; Bodenstein, S.A.

    1996-01-01

    Los Alamos National Laboratory (LANL) has characterized drums of solidified transuranic (TRU) waste from four major waste streams. The data will help the State of New Mexico determine whether or not to issue a no-migration variance of the Waste Isolation Pilot Plant (WIPP) so that WIPP can receive and dispose of waste. The need to characterize TRU waste stored at LANL is driven by two additional factors: (1) the LANL RCRA Waste Analysis Plan for EPA compliant safe storage of hazardous waste; (2) the WIPP Waste Acceptance Criteria (WAC) The LANL characterization program includes headspace gas analysis, radioassay and radiography for all drums and solids sampling on a random selection of drums from each waste stream. Data are presented showing that the only identified non-metal RCRA hazardous component of the waste is methanol

  8. Characteristic and Source of Atmospheric PM10- and PM2.5-bound PAHs in a Typical Metallurgic City Near Yangtze River in China.

    Science.gov (United States)

    Zhang, Hong; Wang, Ruwei; Xue, Huaqin; Hu, Ruoyu; Liu, Guijian

    2018-02-01

    The characteristics of atmospheric PM 10 - and PM 2.5 -bound polycyclic aromatic hydrocarbons (PAHs) were investigated in Tongling city, China. Results showed that the total concentrations of PM 10 - and PM 2.5 -bound PAHs exhibited distinct seasonal and spatial variability. The metallurgic sites showed the highest PAH concentrations, which is mainly attributed to the metallurgic activities (mainly copper ore smelting) and coal combustion as the smelting fuel. The rural area showed the lowest concentrations, but exhibited significant increase from summer to autumn. This seasonal fluctuation is mainly caused by the biomass burning at the sites in the harvest season. The diagnostic ratio indicated that the main PAHs sources were vehicle exhausts, coal combustion and biomass burning. The total BaP equivalent concentration (BAP-TEQ) was found to be maximum at DGS site in winter, whereas it was minimum at BGC site in summer. Risk assessment indicates that residential exposure to PAHs in the industrial area, especially in the winter season, may pose a greater inhalation cancer risk than people living in living area and rural area.

  9. Development and pilot demonstration program of a waste minimization plan at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Peters, R.W.; Wentz, C.A.; Thuot, J.R.

    1991-01-01

    In response to US Department of Energy directives, Argonne National Laboratory (ANL) has developed a waste minimization plan aimed at reducing the amount of wastes at this national research and development laboratory. Activities at ANL are primarily research- oriented and as such affect the amount and type of source reduction that can be achieved at this facility. The objective of ANL's waste minimization program is to cost-effectively reduce all types of wastes, including hazardous, mixed, radioactive, and nonhazardous wastes. The ANL Waste Minimization Plan uses a waste minimization audit as a systematic procedure to determine opportunities to reduce or eliminate waste. To facilitate these audits, a computerized bar-coding procedure is being implemented at ANL to track hazardous wastes from where they are generated to their ultimate disposal. This paper describes the development of the ANL Waste Minimization Plan and a pilot demonstration of the how the ANL Plan audited the hazardous waste generated within a selected divisions of ANL. It includes quantitative data on the generation and disposal of hazardous waste at ANL and describes potential ways to minimize hazardous wastes. 2 refs., 5 figs., 8 tabs

  10. Advanced fire prevention techniques for ITER-INDIA laboratory building, IPR

    International Nuclear Information System (INIS)

    Modi, D.V.; Channa Reddy, D.

    2016-01-01

    Just as air and water, survival of human life without fire is unimaginable. However, fire can be a boon as well as a bane. The ability to control the use of fire is an art towards improved industrial development. The same phenomenon is also applicable for research and development sector. Fire Safety is a key issue for any kind of research laboratories. Fire hazards in laboratories arise from the storage and use of flammable materials and electrical installations and from hazardous operations carried out there. The risk of damage due to fire depends on the combustible available, their physical arrangement, the geometry of the building, likelihood of the ignition, etc. The risk is also controlled by the fire protection measures in place, which relate to both fire prevention and fire control. (author)

  11. Lean six sigma methodologies improve clinical laboratory efficiency and reduce turnaround times.

    Science.gov (United States)

    Inal, Tamer C; Goruroglu Ozturk, Ozlem; Kibar, Filiz; Cetiner, Salih; Matyar, Selcuk; Daglioglu, Gulcin; Yaman, Akgun

    2018-01-01

    Organizing work flow is a major task of laboratory management. Recently, clinical laboratories have started to adopt methodologies such as Lean Six Sigma and some successful implementations have been reported. This study used Lean Six Sigma to simplify the laboratory work process and decrease the turnaround time by eliminating non-value-adding steps. The five-stage Six Sigma system known as define, measure, analyze, improve, and control (DMAIC) is used to identify and solve problems. The laboratory turnaround time for individual tests, total delay time in the sample reception area, and percentage of steps involving risks of medical errors and biological hazards in the overall process are measured. The pre-analytical process in the reception area was improved by eliminating 3 h and 22.5 min of non-value-adding work. Turnaround time also improved for stat samples from 68 to 59 min after applying Lean. Steps prone to medical errors and posing potential biological hazards to receptionists were reduced from 30% to 3%. Successful implementation of Lean Six Sigma significantly improved all of the selected performance metrics. This quality-improvement methodology has the potential to significantly improve clinical laboratories. © 2017 Wiley Periodicals, Inc.

  12. Quality management in environmental programs: Los Alamos National Laboratory's approach

    International Nuclear Information System (INIS)

    Maassen, L.; Day, J.L.

    1998-03-01

    Since its inception in 1943, Los Alamos National Laboratory's (LANL's) primary mission has been nuclear weapons research and development, which involved the use of hazardous and radioactive materials, some of which were disposed of onsite. LANL has established an extensive Environmental Restoration Project (Project) to investigate and remediate those hazardous and radioactive waste disposal sites. This paper describes LANL's identification and resolution of critical issues associated with the integration and management of quality in the Project

  13. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. S K Chaudhury1 2 A K Singh1 C S S Sivaramakrishnan1 S C Panigrahi3. National Metallurgical Laboratory, Jamshedpur 831 007, India; 100 Institute Road, MPI, WPI, Worcester, MA 01609, USA; Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur 721 302, ...

  14. Hazardous waste treatment and environmental remediation research

    International Nuclear Information System (INIS)

    1989-01-01

    Los Alamos National Laboratory (LANL) is currently evaluating hazardous waste treatment and environmental remediation technologies in existence and under development to determine applicability to remediation needs of the DOE facilities under the Albuquerque Operations Office and to determine areas of research need. To assist LANL is this effort, Science Applications International Corporation (SAIC) conducted an assessment of technologies and monitoring methods that have been demonstrated or are under development. The focus of this assessment is to: (1) identify existing technologies for hazardous waste treatment and environmental remediation of old waste sites; (2) identify technologies under development and the status of the technology; (3) assess new technologies that need development to provide adequate hazardous waste treatment and remedial action technologies for DOD and DOE sites; and (4) identify hazardous waste and remediation problems for environmental research and development. There are currently numerous research and development activities underway nationwide relating to environmental contaminants and the remediation of waste sites. To perform this effort, SAIC evaluated current technologies and monitoring methods development programs in EPA, DOD, and DOE, as these are the primary agencies through which developmental methods are being demonstrated. This report presents this evaluation and provides recommendations as to pertinent research needs or activities to address waste site contamination problems. The review and assessment have been conducted at a programmatic level; site-specific and contaminant-specific evaluations are being performed by LANL staff as a separate, related activity

  15. EPOS-WP16: A Platform for European Multi-scale Laboratories

    Science.gov (United States)

    Spiers, Chris; Drury, Martyn; Kan-Parker, Mirjam; Lange, Otto; Willingshofer, Ernst; Funiciello, Francesca; Rosenau, Matthias; Scarlato, Piergiorgio; Sagnotti, Leonardo; W16 Participants

    2016-04-01

    The participant countries in EPOS embody a wide range of world-class laboratory infrastructures ranging from high temperature and pressure experimental facilities, to electron microscopy, micro-beam analysis, analogue modeling and paleomagnetic laboratories. Most data produced by the various laboratory centres and networks are presently available only in limited "final form" in publications. As such many data remain inaccessible and/or poorly preserved. However, the data produced at the participating laboratories are crucial to serving society's need for geo-resources exploration and for protection against geo-hazards. Indeed, to model resource formation and system behaviour during exploitation, we need an understanding from the molecular to the continental scale, based on experimental data. This contribution will describe the work plans that the laboratories community in Europe is making, in the context of EPOS. The main objectives are: - To collect and harmonize available and emerging laboratory data on the properties and processes controlling rock system behaviour at multiple scales, in order to generate products accessible and interoperable through services for supporting research activities. - To co-ordinate the development, integration and trans-national usage of the major solid Earth Science laboratory centres and specialist networks. The length scales encompassed by the infrastructures included range from the nano- and micrometer levels (electron microscopy and micro-beam analysis) to the scale of experiments on centimetre sized samples, and to analogue model experiments simulating the reservoir scale, the basin scale and the plate scale. - To provide products and services supporting research into Geo-resources and Geo-storage, Geo-hazards and Earth System Evolution.

  16. Human hazards

    International Nuclear Information System (INIS)

    Delpla, M.; Vignes, S.; Wolber, G.

    1976-01-01

    Among health hazards from ionizing radiations, a distinction is made of observed, likely and theoretical risks. Theoretical risks, derived from extrapolation of observations on sublethal exposures to low doses may frighten. However, they have nothing in common with reality as shown for instance, by the study of carcinogenesis risks at Nagasaki. By extrapolation to low doses, theoretical mutation risks are derived by geneticians from the observation of some characters especially deleterious in the progeny of parents exposed to sublethal doses. One cannot agree when by calculation they express a population exposure by a shift of its genetic balance with an increase of the proportion of disabled individuals. As a matter of fact, experimental exposure of successive generations of laboratory animals shows no accumulation of deleterious genes, sublethal doses excepted. Large nuclear plants should not be overwhelmed by horrible charges on sanitary grounds, whereas small sources have but too often shown they may originate mortal risks [fr

  17. Plasma Hazards and Acceptance for International Space Station Extravehicular Activities

    Science.gov (United States)

    Patton, Thomas

    2010-09-01

    Extravehicular activity(EVA) is accepted by NASA and other space faring agencies as a necessary risk in order to build and maintain a safe and efficient laboratory in space. EVAs are used for standard construction and as contingency operations to repair critical equipment for vehicle sustainability and safety of the entire crew in the habitable volume. There are many hazards that are assessed for even the most mundane EVA for astronauts, and the vast majority of these are adequately controlled per the rules of the International Space Station Program. The need for EVA repair and construction has driven acceptance of a possible catastrophic hazard to the EVA crewmember which cannot currently be controlled adequately. That hazard is electrical shock from the very environment in which they work. This paper describes the environment, causes and contributors to the shock of EVA crewmembers attributed to the ionospheric plasma environment in low Earth orbit. It will detail the hazard history, and acceptance process for the risk associated with these hazards that give assurance to a safe EVA. In addition to the hazard acceptance process this paper will explore other factors that go into the decision to accept a risk including criticality of task, hardware design and capability, and the probability of hazard occurrence. Also included will be the required interaction between organizations at NASA(EVA Office, Environments, Engineering, Mission Operations, Safety) in order to build and eventually gain adequate acceptance rationale for a hazard of this kind. During the course of the discussion, all current methods of mitigating the hazard will be identified. This paper will capture the history of the plasma hazard analysis and processes used by the International Space Station Program to formally assess and qualify the risk. The paper will discuss steps that have been taken to identify and perform required analysis of the floating potential shock hazard from the ISS environment

  18. Risk analysis of environmental hazards at the High Flux Beam Reactor

    International Nuclear Information System (INIS)

    Boccio, J.L.; Ho, V.S.; Johnson, D.H.

    1994-01-01

    In the late 1980s, a Level 1 internal event probabilistic risk assessment (PRA) was performed for the High-Flux Beam Reactor (HFBR), a US Department of Energy research reactor located at Brookhaven National Laboratory. Prior to the completion of that study, a level 1 PRA for external events was initiated, including environmental hazards such as fire, internal flooding, etc. Although this paper provides a brief summary of the risks from environmental hazards, emphasis will be placed on the methodology employed in utilizing industrial event databases for event frequency determination for the HFBR complex. Since the equipment in the HFBR is different from that of, say, a commercial nuclear power plant, the current approach is to categorize the industrial events according to the hazard initiators instead of categorizing by initiator location. But first a general overview of the analysis

  19. Laboratory/industry partnerships for environmental remediation

    International Nuclear Information System (INIS)

    Beskid, N.J.; Zussman, S.K.

    1994-01-01

    There are two measures of ''successful'' technology transfer in DOE's environmental restoration and waste management program. The first is remediation of DOE sites, and the second is commercialization of an environmental remediation process or product. The ideal case merges these two in laboratory/industry partnerships for environmental remediation. The elements to be discussed in terms of their effectiveness in aiding technology transfer include: a decision-making champion; timely and sufficient funding; well organized technology transfer function; well defined DOE and commercial markets; and industry/commercial partnering. Several case studies are presented, including the successful commercialization of a process for vitrification of low-level radioactive waste, the commercial marketing of software for hazardous waste characterization, and the application of a monitoring technique that has won a prestigious technical award. Case studies will include: vitrification of low-level radioactive waste (GTS Duratek, Columbia, MD); borehole liner for emplacing instrumentation and sampling groundwater (Science and Engineering Associates, Inc., Santa Fe, NM); electronic cone penetrometer (Applied Research Associates, Inc., South Royalton, VT); and software for hazardous waste monitoring ConSolve, Inc. (Lexington, MA). The roles of the Department of Energy and Argonne National Laboratory in these successes will be characterized

  20. Fire and Spillage Risk Assessment Pattern in Scientific Laboratories

    OpenAIRE

    Manouchehr Omidvari; N. Mansouri

    2015-01-01

        Material hazards are the most important risk in scientific laboratories. In risk assessment processing, the potential impact of assessor personal judgment is the most important issue. This study tried to develop a risk assessment pattern based on Failure Mode and Effect Analysis (FMEA) and Analytical Hierarchy Process (AHP) logics and empirical data in scientific laboratories. The most important issues were high pressure reservoirs and hardware failure fuel. The other type of data about b...