WorldWideScience

Sample records for metallurgical flux

  1. Metallurgical Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose is to increase basic knowledge of metallurgical processing for controlling the microstructure and mechanical properties of metallic aerospace alloys and...

  2. Metallurgical coating system

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, L.C.; Whittaker, G.S.

    1984-05-01

    The present invention relates to a novel metallurgical coating system which provides corrosion resistance and non-stick properties to metallic components which are subjected to unusually severe operating conditions. The coating system comprises a first layer comprising tantalum which is deposited upon a substrate and a second layer comprising molybdenum disilicide which is deposited upon the first layer.

  3. Metallurgical applications: fractography

    International Nuclear Information System (INIS)

    Meny, L.

    1978-01-01

    The principal metallurgical uses of the scanning electron microscope and the microprobe described here employ images obtained on a CRT from an electron signal or X rays. The various electron signals are the back scattered electrons, secondary electrons and absorbed electrons. The differences in the intensity of thee signals with the acceleration tension E 0 , the inclination angle β, the atomic number Z of the target and any potential applied to the sample give rise to contrasts: atomic number contrast, given by the sample current or the back scattered electrons; topographical contrast, given by the emission of the secondary electrons Δ that vary with α (the angle between the normal to the surface and the direction of the incident beam) [fr

  4. Metallurgical plasma torches

    International Nuclear Information System (INIS)

    Shapovalov, V.A.; Latash, Yu.V.

    2000-01-01

    The technological equipment for the plasma heating of metals, plasma melting and plasma treatment of the surface is usually developed on the basis of are plasma torches using direct or alternating current. The reasons which partly restrict the industrial application of the plasma torches are the relatively short service life of the electrode (cathode) on which the arc is supported, and the contamination of the treated metal with the products of failure of the electrode. The aim of this work was to determine the reasons for the occurrence of negative phenomena observed in the process of service of plasma torches, and propose suitable approaches to the design of metallurgical plasma torches characterised by a long service life

  5. Crisis management in metallurgical enterprises

    Directory of Open Access Journals (Sweden)

    B. Gajdzik

    2014-07-01

    Full Text Available On the basis of report analysis which presents situation in metallurgical sector after 2008 the range of changes implemented in management of metallurgical enterprises was characterised. A definition approach to crisis management was suggested as the process when the enterprise is managed during the breakdown period in market condition of the economy in the way directed towards preventing the negative effects of crisis inside enterprises. The publication presents the key aspects of enterprise management in the period of collapse of the balance between the supply and demand on the metallurgical market.

  6. Plasma technology in metallurgical processing

    Energy Technology Data Exchange (ETDEWEB)

    Haile, O.

    1995-12-31

    This literature work is mainly focusing on the mechanisms of plasma technology and telling about metallurgical processing, particularly iron and steelmaking as well as the advantage of the unique properties of plasma. The main advantages of plasma technology in metallurgical operations is to direct utilization of naturally available raw materials and fuels without costly upgrading andlor beneficiation, improved environmental impact, improve process control, significant amplification of reactor and process equipment utilization and increased efficiency of raw materials, energy and man power. This literature survey is based on the publication `plasma technology in metallurgical processing` presents a comprehensive account of the physical, electrical, and mechanical aspects of plasma production and practical processing. The applications of plasma technology in metallurgical processing are covered in depth with special emphasis on developments in promising early stages. Plasma technology of today is mature in the metallurgical process applications. A few dramatic improvements are expected in the near future this giving an impetus to the technologists for the long range planning. (18 refs.) (author)

  7. Experimental research on quality features of metallurgical coke

    Science.gov (United States)

    Andrei, V.; Constantin, N.

    2015-06-01

    From all the solid fuels, the metallurgical coke is the most used in obtaining iron in the blast furnace. Together with the iron ore, manganese ore and fluxes, it constitutes the basis of raw materials and materials for elaborating pig iron. This paper presents the results of laboratory investigations by the authors to determine the most important quality characteristics of some types of coke used in the blast furnace charge.

  8. Flux

    DEFF Research Database (Denmark)

    Ravn, Ib

    . FLUX betegner en flyden eller strømmen, dvs. dynamik. Forstår man livet som proces og udvikling i stedet for som ting og mekanik, får man et andet billede af det gode liv end det, som den velkendte vestlige mekanicisme lægger op til. Dynamisk forstået indebærer det gode liv den bedst mulige...... kanalisering af den flux eller energi, der strømmer igennem os og giver sig til kende i vore daglige aktiviteter. Skal vores tanker, handlinger, arbejde, samvær og politiske liv organiseres efter stramme og faste regelsæt, uden slinger i valsen? Eller skal de tværtimod forløbe ganske uhindret af regler og bånd...

  9. Mechanical and metallurgical properties of carotid artery clamps.

    Science.gov (United States)

    Dujovny, M; Kossovsky, N; Kossowsky, R; Segal, R; Diaz, F G; Kaufman, H; Perlin, A; Cook, E E

    1985-11-01

    The mechanical and metallurgical properties of carotid artery clamps were evaluated. The pressure plate retreat propensity, metallurgical composition, surface morphology, magnetic properties, and corrosion resistance of the Crutchfield, Selverstone, Salibi, and Kindt clamps were tested. None of the clamps showed evidence of pressure plate retreat. The clamps differed significantly in their composition, surface cleanliness, magnetic properties, and corrosion resistance. The Crutchfield clamp was the only one manufactured from an ASTM-ANSI-approved implantable stainless steel (AISI 316) and the only clamp in which the surfaces were clean and free of debris. The Selverstone clamp was made principally from AISI 304 stainless steel, as was one Salibi clamp. The pressure plate on another Salibi clamp was made from a 1% chromium and 1% manganese steel. Machining and surface debris consisting principally of aluminum, silicon, and sulfur was abundant on the Selverstone and Salibi clamps. The Kindt clamp was manufactured from AISI 301 stainless steel with a silicate-aluminized outer coating. The Crutchfield and Selverstone clamps were essentially nonferromagnetic, whereas the Salibi and Kindt clamps were sensitive to magnetic flux. In the pitting potential corrosion test, the Crutchfield clamp demonstrated good corrosion resistance with a pitting potential of 310 mV and no surface corrosion or pitting by scanning electron microscopy examination. The Selverstone clamp had lower pitting potentials and showed various degrees of corrosion and surface pitting by scanning electron microscopy. The Salibi pressure plate had a very low pitting potential of -525 mV and showed severe corrosion. By metallurgical criteria, only the Crutchfield clamp is suitable for long term implantation.

  10. Diagnosis of employee engagement in metallurgical enterprise

    Directory of Open Access Journals (Sweden)

    B. Gajdzik

    2013-01-01

    Full Text Available In the theoretical part of the publication an overview of the definitions of employee engagement was conducted together with the analysis of the methods and techniques which influence the professional activity of the employees in the metallurgical enterprise. The practical part discusses the results of diagnosis of engagement in steelworks. Presented theories, as well as the research, fill the information gap concerning the engagement of the employees in metallurgical enterprises. This notion is important due to the fact that modern conditions of human resources management require the engagement of the employees as something commonly accepted and a designation of manufacturing enterprises.

  11. Friction welding thermal and metallurgical characteristics

    CERN Document Server

    Yilbas, Bekir Sami

    2014-01-01

    This book provides insight into the thermal analysis of friction welding incorporating welding parameters such as external, duration, breaking load, and material properties. The morphological and metallurgical changes associated with the resulting weld sites are analysed using characterization methods such as electron scanning microscope, energy dispersive spectroscopy, X-ray Diffraction, and Nuclear reaction analysis.

  12. Cyril Stanley Smith's Translations of Metallurgical Classics

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 6. Cyril Stanley Smith's Translations of Metallurgical Classics. Martha Goodway. General Article Volume 11 Issue 6 June 2006 pp 63-66. Fulltext. Click here to view fulltext PDF. Permanent link:

  13. Cyril Stanley Smith's Translations of Metallurgical Classics

    Indian Academy of Sciences (India)

    A remarkable contribution of Professor Cyril Stanley Smith was the translation of metallurgical classics into English from several languages - both ancient and modem ... He had not prepared for the role of technical translator. His wife,. Alice Kimball Smith, in oral history interviews made for Harvard. University related how his ...

  14. Utilization of secondary energy resources of metallurgical ...

    African Journals Online (AJOL)

    ... with a heat output of 4200 kW, a working agent R 600, a source of low-potential heat-circulating water: a 460 kW gas engine. The proposed scheme showed high efficiency of power supply of the town in comparison with the gas boiler. Keywords: heat pump; internal combustion engine metallurgical plant; energy efficiency ...

  15. Refining of metallurgical silicon by directional solidification

    Energy Technology Data Exchange (ETDEWEB)

    Martorano, M.A., E-mail: martoran@usp.br [Department of Metallurgical and Materials Engineering, University of Sao Paulo, Av. Prof. Mello Moraes, 2463 Sao Paulo-SP, 05508-900 (Brazil); Neto, J.B. Ferreira, E-mail: jbfn@ipt.br [Laboratory of Metallurgy and Ceramics Materials, Institute for Technological Research, Av. Prof. Almeida Prado, 532, Sao Paulo-SP, 05508-901 (Brazil); Oliveira, T.S., E-mail: theo.usp@bol.com.br [Department of Metallurgical and Materials Engineering, University of Sao Paulo, Av. Prof. Mello Moraes, 2463 Sao Paulo-SP, 05508-900 (Brazil); Tsubaki, T.O., E-mail: tomoe@ipt.br [Laboratory of Metallurgy and Ceramics Materials, Institute for Technological Research, Av. Prof. Almeida Prado, 532, Sao Paulo-SP, 05508-901 (Brazil)

    2011-02-25

    The directional solidification of a typical and a previously refined metallurgical silicon was carried out in a vertical Bridgman furnace. The mold velocity out of the hot zone of the furnace changed from one experiment to another in the range between 5 and 110 {mu}m s{sup -1}. Samples were extracted from the cylindrical ingots obtained in the experiments to investigate the effects of the mold velocity on the micro and macrostructures and on the concentration profiles of impurities along the ingots. At the lowest mold velocity, the macrostructures consist of columnar grains oriented approximately parallel to the ingot axis. As velocity increases, grains become thinner and more inclined in the radial direction. Precipitated particles containing Si, Fe, Al, and Ti are observed at the top of all ingots and, as the mold velocity increases, they are also seen at the ingot bottom and middle. The concentration profiles of several impurities have been measured along the ingots by inductively coupled plasma atomic emission spectrometry (ICP), indicating an accumulation of impurities at the ingot top. Consequently, the bottom and middle of the ingots are purer than the corresponding metallurgical silicon from which they solidified. Slices from the ingot bottom have also been analyzed by the glow discharge mass spectrometry technique (GDMS), allowing measurement of impurity concentrations that were below the quantification limit of the ICP. The purification effect and the accumulation of impurities at the ingot top are more pronounced as the mold velocity decreases. In the ingots obtained from the typical metallurgical silicon at the lowest mold velocities (5 and 10 {mu}m s{sup -1}), except for Al, all impurities are in concentrations below an important maximum limit for the feedstock of solar grade silicon. At the same mold velocities, the concentrations of Fe, Ti, Cu, Mn, and Ni measured at the bottom of the ingots obtained from both types of metallurgical silicon (typical

  16. Modern recycling methods in metallurgical industry

    Directory of Open Access Journals (Sweden)

    M. Maj

    2010-04-01

    Full Text Available The contamination of environment caused by increased industrial activities is the main topic of discussions in Poland and in the world. The possibilities of waste recovery and recycling vary in different sectors of the industry, and the specific methods, developed and improved all the time, depend on the type of the waste. In this study, the attention has been focussed mainly on the waste from metallurgical industry and on the available techniques of its recycling

  17. Processing and utilization of metallurgical slag

    Directory of Open Access Journals (Sweden)

    Alena Pribulová

    2016-06-01

    Full Text Available Metallurgy and foundry industry create a huge amount of slags that are by-products in production of pig iron, steel and cast iron. Slag is produced in a very large amount in pyrometallurgical processes, and is a huge source of waste if not properly recycled and utilized. With rapid growth of industrialization, land available for land-filling of large quantity of metallurgical slag is being reduced all over the world and disposal cost is becoming increasingly higher. Metallurgical slag from different metallurgical processes treated and utilized in different ways based on different slag characteristics. The most economic and efficient option for reducing metallurgical waste is through recycling, which is a significant contribution to saving natural resources and reducing CO2 emissions. Characteristic of slags as well as its treatment and utilization are given in the paper. Slag from pig iron and steel production is used most frequently in building industry. From experiments using blast furnace slag and granulated blast furnace slag as gravel, and water glass as binder it can be concluded that that the best results – the best values of compression strength and tensile strength were reached by using of 18% of water glass as a solidification activating agent. According to cubic compression strength, mixture from 50% blast furnace gravel, 50% granulated blast furnace slag and 18% water glass falls into C35/45 class of concrete. Such concrete also fulfils strength requirements for road concrete, moreover, it even exceeds them considerably and, therefore, it can find an application in construction of road communications or in production of concrete slabs.

  18. Production of iron from metallurgical waste

    Science.gov (United States)

    Hendrickson, David W; Iwasaki, Iwao

    2013-09-17

    A method of recovering metallic iron from iron-bearing metallurgical waste in steelmaking comprising steps of providing an iron-bearing metallurgical waste containing more than 55% by weight FeO and FeO equivalent and a particle size of at least 80% less than 10 mesh, mixing the iron-bearing metallurgical waste with a carbonaceous material to form a reducible mixture where the carbonaceous material is between 80 and 110% of the stoichiometric amount needed to reduce the iron-bearing waste to metallic iron, and as needed additions to provide a silica content between 0.8 and 8% by weight and a ratio of CaO/SiO.sub.2 between 1.4 and 1.8, forming agglomerates of the reducible mixture over a hearth material layer to protect the hearth, heating the agglomerates to a higher temperature above the melting point of iron to form nodules of metallic iron and slag material from the agglomerates by melting.

  19. 7th european metallurgical conference EMC 2013

    Directory of Open Access Journals (Sweden)

    Srećko R. Stopić

    2014-02-01

    Full Text Available From June 23 – 26, 2013, the GDMB Society for Mining, Metallurgy, Resource and Environmental Technology organized 7th European Metallurgical Conference (EMC 2013 in Weimar, Germany. The previous European metallurgical conferences were organized by  the GDMB in Friedrichshafen (2001, Hanover (2003, Leipzig (2005, Duesseldorf (2007, Innsbruck (2009, and Duesseldorf (2011. The GDMB is a non-profit organization from Clausthal, Germany,,focused on combining science with practical experience in metallurgy, mining, materials engineering, mineral processing, recycling and refining of metals, and  manufacturing of semi- and finishing products. The European Metallurgical conference EMC is one of the most well-known conferences worldwide in the field of non-ferrous metallurgy and is attended regularly by decision makers from industry and universities. The scientific program contained 6 plenary lectures and more than 130 presentations. An extensive poster exhibition was held, during which the authors had an opportunity to introduce their posters to the entire plenum as a part of a brief presentation., The € 500 worth “Poster Award EMC 2011 was awarded to Christoph Pichler from the Montan-University in Leoben, Austria. Not only the most important European countries were represented here, but also more than one third of the lecturers were from countries outside Europe (Canada, Japan, China, USA, South Africa, Australia. The origin of the participants reflects the aim of the organizers: to make this conference a worldwide platform for the scientific exchange of experience and information. The scientific presentations of the conference are presented in Proceedings: Vol. 1: Copper, Precious Metals, Waste effluents Treatment/ Biohydrometallurgical applications; Process Metallurgy, Bridging Non-Ferrous and Ferrous Metallurgy; Vol. 2: Lead and Zinc, Light metals, Sustainable technologies, Sustainable of non-ferrous metals production, Process Control

  20. Application of logistic principles in metallurgical production

    Directory of Open Access Journals (Sweden)

    D. Malindžák

    2012-07-01

    Full Text Available Metallurgical production processes (MPP consist of continuous and discrete types of technology operation, transport, manipulation and storing processes regards the flow of material and also the equipment and machines. Other specifics are: long production cycles, great inertia, tree structure of production processes (from roots up to the leaves, high level of investments etc. These characteristics resulted in some specifics of production logistics. This article deals with these specifics and explains it using the conditions of production processes of continuous slab casting, their heating in push furnaces at rolling temperature and rolling itself in hot wideband steel mill.

  1. Proceedings of papers. 3. Balkan Metallurgical Conference

    International Nuclear Information System (INIS)

    Mickovski, Jovan

    2003-01-01

    This Conference aims to be a central event in the metallurgy research of Balkan, fulfilling the goals to present the most outstanding relevant developments in modern metallurgy; to inspire high standards of excellence in pure and applied metallurgy research; to attract outstanding scientists to present central lectures on modem metallurgical research, and on the challenges imposed by the needs of society; to inspire the young generation of metallurgists in Balkan and other countries. Following these lines, the 3. Balkan Conference on Metallurgy will provide a unique opportunity for academic and industrial metallurgists from the Balkan countries and wider, to exchange ideas, expertise, and experience on topics related to the theme of the Conference - Balkan Metallurgy in Search for New Ways of Development. The aim of the organizers was to bring together distinguished experts, not only to present their work, but also to discuss the major scientific and technological challenges facing metallurgy in this millennium.The 6 sections of the conference were entitled: Section A: Extractive metallurgy; Section B: Physical metallurgy and materials science - ferrous metals and non ferrous metals; Section C: Management, maintenance control and optimization of metallurgical processes; Section D: New technologies and techniques; Section E: Refractory and powder; Section F: Corrosion and protection of metals. Papers relevant to INIS are indexed separately

  2. The use of radioisotope tracers in the metallurgical industries

    International Nuclear Information System (INIS)

    Easey, J.F.

    1987-01-01

    Radioisotope techniques have been widely used in the metallurgical industries for many years. They have been shown to be very suitable for studying large scale plant and, in many cases, they are the most suitable techniques for such investigations. Applications of radioisotope tracers to some specific metallurgical problems are discussed. (author)

  3. Electric arc spraying for restoration and repair of metallurgical equipment parts

    Directory of Open Access Journals (Sweden)

    В’ячеслав Олександрович Роянов

    2016-07-01

    Full Text Available It has been shown that the electric arc spraying with the use of powder wires can be used to repair and restore parts of metallurgical equipment. The technology of spraying parts by means of the cored wire Steelcored M8TUV; T462MMIN5 and combinations of steel and aluminum wires to restore shaft-gears, shaft-beams, cranes axles for the foundry of the Moldavian Metallurgical Plant has been introduced. The composition of the flux-cored wires MMP-2,3 developed at the Department of Equipment and welding production technology of PSTU that provides the required hardness and adhesion of the coating and the substrate have been shown and the results of the coatings properties studies have been published. Studies have shown matching properties of the coatings to be used for details of the metallurgical equipment working under difficult conditions, including the rolls of rolling mills. Cored wire was used for pilot plating of the rolls surface of the skin-rolling stand at the cold-rolling mill at Illich Steel and Iron Works, Mariupol. Residual coating thickness ranged from 15 to 25 microns. Strip sized 0,9 × 1025 mm has been rolled, the squeezing is equal to 0,8...1,0%.

  4. Key Lake Mining Corporation metallurgical complex

    International Nuclear Information System (INIS)

    Lendrum, F.C.

    1984-02-01

    The Key Lake uranium mine is located in Saskatchewan, 550 km northeast of Saskatoon. It began operations in 1983, and is licensed and regulated by both Saskatchewan government agencies and the Canadian Atomic Energy Control Board. This report examines the metallurgical processes used at the mill and discusses the spills that occurred in the first four months the mine was in operation. It finds that all spills of an acidic nature in the mill were small amounts in the CCD or solution pretreatment sections. Contingency procedures are in place and sumps are capable of handling spills. The only major change in design contemplated will be converting the secondary crushing from the use of an impact crusher to the use of a semi-autogeneous grinding mill. The monitoring program set out by the AECB and Saskatchewan Environment is thorough. It monitors effluents and water pathways, and includes aquatic biota and sediments. Air monitoring is also required by Saskatchewan Environment

  5. Effect of metallurgical variables on void swelling

    International Nuclear Information System (INIS)

    Johnston, W.G.; Lauritzen, T.; Rosolowski, J.H.; Turkalo, A.M.

    1976-01-01

    The mechanism of void swelling is reviewed briefly and the anticipated effects of metallurgical variables are described. Experimental results showing the effects of metallurgical variables are reviewed, most of the work being done by simulation methods employing charged particle bombardments to simulate reactor damage. Although the early emphasis was on structural variables such as grain size, cold work and precipitates to control swelling, it now seems that the practical reduction of swelling will be achieved by modifying alloy composition. Void swelling is strongly influenced by the relative amounts of Fe, Cr, and Ni in an alloy; the amount of swelling can be varied by three orders of magnitude by changing the relative amounts of the three elements in an austenitic ternary alloy. The effect of composition on swelling of a simple ferritic alloy will also be described. The swelling of a simple austenitic alloy of Fe, Cr, and Ni can be reduced by certain minor element additions. The most effective swelling inhibitors are Si, Ti, Zr, and Nb, and combinations of Si and Ti are synergetic. Swelling reductions of two orders of magnitude have been achieved with combined additions. Predictions of swelling in commercial solid solution alloys are made on the basis of the present knowledge of the effects of major composition and minor element additions. The predictions agree with experimental results. For more complex commercial alloys, predictions are made for the effects on swelling of heat treatments that cause changes in matrix composition. In some cases, heat treatment is expected to change the peak swelling by more than a factor of ten, and to shift the peak swelling temperature by almost 100 0 C. Sensitivity of swelling to detailed matrix composition places emphasis on the need for developing understanding of the stability of structure and local composition in an irradiation environment

  6. The application of winning key metrics in a metallurgical firm

    Directory of Open Access Journals (Sweden)

    M. Mikušová

    2014-10-01

    Full Text Available This article is focused on creating a system of metrics and its application in a metallurgical firm. Its aim is to highlight the dangers associated with the creation and application of an effective system of metrics. Its objective is also to demonstrate the process (initial steps in the development of this system in the real family metallurgical firm. In the experimental part an example of causal links among key metrics in the chosen metallurgical firm is presented. Risks associated with the selection of appropriate metrics are presented for discussion.

  7. Sustainable cost reduction by lean management in metallurgical processes

    Directory of Open Access Journals (Sweden)

    A. V. Todorut

    2016-10-01

    Full Text Available This paper focuses on the need for sustainable cost reduction in the metallurgical industry by applying Lean Management (LM tools and concepts in metallurgical production processes leading to increased competitiveness of corporations in a global market. The paper highlights that Lean Management is a novel way of thinking, adapting to change, reducing waste and continuous improvement, leading to sustainable development of companies in the metallurgical industry. The authors outline the main Lean Management instruments based on recent scientific research and include a comparative analysis of other tools, such as Sort, Straighten, Shine, Standardize, Sustain (5S, Visual Management (VM, Kaizen, Total Productive Maintenance (TPM, Single-Minute Exchange of Dies (SMED, leading to a critical appraisal of their application in the metallurgical industry.

  8. Soft restructuring process in metallurgical enterprises in Poland

    Directory of Open Access Journals (Sweden)

    B. Gajdzik

    2015-10-01

    Full Text Available This article presents the range and outcomes of soft restructuring in metallurgical enterprises in Poland. The term ‘soft restructuring’ applies to changes in metallurgical enterprises’ employment policy during the period of political transformation in Poland. Steelworks performance under the market economy conditions demanded introducing changes in staff resources. Changes referred both to the staff structure as well as employees’ skills and gradual engaging of the staff in building the steelworks’ competitive advantage.

  9. Mercury distribution in an abandoned metallurgical plant

    Directory of Open Access Journals (Sweden)

    Millán R.

    2013-04-01

    Full Text Available The aim of the work is to evaluate the spatial distribution of Hg in the soil-plant system within an area where intense activity of Hg was dominant over a long period. An abandoned metallurgical plant from the 17th-18th centuries was chosen as the study area. It is situated in Almadenejos within the Almadén mining district (Spain that constitutes the largest and most unusual concentration of mercury in the world and has provided a third of the entire world production of mercury (Hg. Nowadays, this study area is covered with cinnabar mine tailings and village habitants use it for livestock. The area has elevated Hg concentrations of natural origin and from human activities. Soil parameters are similar throughout the study area; however, data reveal high variability in total and available Hg concentrations in soils, making it difficult to establish a tendency. Marrubium vulgare L.has been studied due to its high presence in the field plot, and there is no evidence of phenological toxicity. Furthermore, in spite of elevated Hg concentrations, a good biological activity is tested in the soil samples. All these characteristics, spatial variation, high Hg concentration, good biological activity, enhance the peculiarity of the study area for studies involving Hg.

  10. A metallurgical study of some viking swords

    Directory of Open Access Journals (Sweden)

    Williams, Alan

    2009-12-01

    Full Text Available While «pattern-welded» swords have been found all over Europe from sites dating from the Migration Period and into the Early Middle Ages, they were steadily supplanted during the Viking period by swords made out of a few pieces of iron and steel, or even a single piece of steel. Swords with «Ulfberht» or related inscriptions were the most famous of these. The results of the metallurgical study of 44 specimens from «Ulfberht» swords, as well as some other Viking-age swords, together with electron microanalyses carried out on selected examples, are presented here.

    Mientras que se han encontrado en toda Europa espadas forjadas mediante el sistema de ‘pattern welding’ (entrelazado de láminas formando patrones visibles, procedentes de yacimientos que se extienden desde el Periodo de las Migraciones bárbaras hasta la Alta Edad Media, durante el periodo vikingo fueron habitualmente reemplazadas por espadas forjadas a partir de unas pocas piezas de hierro y acero, o incluso de una única pieza de acero. Las más famosas de entre ellas fueron las espadas con la inscripción «Ulfbehrt» u otras relacionadas. Este artículo presenta los resultados del estudio metalúrgico de 44 ejemplares de espadas de «Ulfberht» y otras de época vikinga, así como los microanálisis efectuados sobre algunas muestras seleccionadas.

  11. New radionuclide specific laboratory detection system for metallurgical industry

    International Nuclear Information System (INIS)

    Burianova, L.; Solc, J.; Dryak, P.; Moser, H.; Branger, T.; Garcia-Torano, E.; Peyres, V.; Capogni, M.; Luca, A.; Vodenik, B.; Oliveira, C.; Portugal, L.; Tzika, F.; Lutter, G.; Szucs, L.; Dziel, T.; Burda, O.; Dirk, A.; Martinkovic, J.; Sliskonen, T.; Mattila, A.

    2014-01-01

    One of the main outputs of the European Metrology Research Programme (EMRP) project 'Ionising radiation metrology for the metallurgical industry' (MetroMetal) was the recommendation on a novel spectrometric detection system optimized for the measurement of radioactivity in metallurgical samples. The recommended system, prototypes of which were constructed at two project partner's laboratories, was characterized by using Monte Carlo (MC) simulations. Six different MC codes were used to model the system and a range of cylindrical samples of cast steel, slag and fume dust. The samples' shape, density, and elemental composition were the same as the ones of the calibration standards developed within the project to provide traceability to end-users. The MC models were used to calculate full-energy peak and total detection efficiencies as well as true coincidence summing correction (TCSC) factors for selected radionuclides of interest in the metallurgical industry: 60 Co, 137 Cs, 192 Ir, 214 Bi, 214 Pb, and 208 Tl. The MC codes were compared to each other on the basis of the calculated detection efficiencies and TCSC factors. In addition, a 'Procedural guide for calculation of TCSC factors for samples in metallurgical industry' was developed for end-users. The TCSC factors reached in certain cases up to 32% showing that the summing effects are of high importance in the close measurement geometries met in routine analysis of metallurgical samples. (authors)

  12. Energy-dissipation-model for metallurgical multi-phase-systems

    Energy Technology Data Exchange (ETDEWEB)

    Mavrommatis, K.T. [Rheinisch-Westfaelische Technische Hochschule Aachen, Aachen (Germany)

    1996-12-31

    Entropy production in real processes is directly associated with the dissipation of energy. Both are potential measures for the proceed of irreversible processes taking place in metallurgical systems. Many of these processes in multi-phase-systems could then be modelled on the basis of the energy-dissipation associated with. As this entity can often be estimated using very simple assumptions from first principles, the evolution of an overall measure of systems behaviour can be studied constructing an energy-dissipation -based model of the system. In this work a formulation of this concept, the Energy-Dissipation-Model (EDM), for metallurgical multi-phase-systems is given. Special examples are studied to illustrate the concept, and benefits as well as the range of validity are shown. This concept might be understood as complement to usual CFD-modelling of complex systems on a more abstract level but reproducing essential attributes of complex metallurgical systems. (author)

  13. Safety performance indicators in the metallurgical industry using WEB programming

    Directory of Open Access Journals (Sweden)

    M. Cioca

    2017-01-01

    Full Text Available Sustainable development has a significant impact today in Romania and worldwide. In this context, risk assessment becomes mandatory for enterprises. This paper analyzes the situation of occupational risks in the metallurgical industry in the European Union, Romania, and the United States and highlights the main causes for work accidents in Romanian metallurgical industry. The analysis covers the period 2010 - 2016. The data collected from Romania is compared to the data related to the European Union and the United States. Moreover, the paper aims to present an occupational risk assessment tool, which is customizable for each area of activity. The last section of the paper discusses the research results and limitations.

  14. RISKS IDENTIFYING IN INNOVATION DEVELOPMENT PROGRAMS OF METALLURGICAL ENTERPRISES

    Directory of Open Access Journals (Sweden)

    Євгенія Сергіївна ШВЕЦЬ

    2015-05-01

    Full Text Available The theoretical aspects of risk management in innovative programs of metallurgical enterprises are examined; the causes of risks, their classification on the basic signs and stages of the risk management process and methods of risk management in innovative programs of metallurgical enterprises are described in modern conditions of Ukraine. The advanced and simplified methods of audit risk are characterized and the most common methods of quantitative risk analysis are listed. Conclusions were made about the essential things that are important especially for risks arising in the company due innovative development selecting.

  15. Metallurgical and mechanical characterization of mild steel-mild ...

    Indian Academy of Sciences (India)

    679–686. c Indian Academy of Sciences. Metallurgical and mechanical characterization of mild steel-mild steel joint formed by microwave hybrid heating process. AMIT BANSAL1,∗, APURBBA KUMAR SHARMA1 and. SHANTANU DAS2. 1Mechanical and Industrial Engineering Department, Indian Institute of Technology.

  16. The R85m President Brand joint metallurgical complex

    International Nuclear Information System (INIS)

    Payne, Adam.

    1977-01-01

    The uranium plant at President Brand, which was built in 1971 and opened last year, is now being extended. The plant forms only part of the extensive joint metallurgical complex being developed by Anglo American Corp. in the Free State, costing a total R85million. This article examines technical details of the recovery processes involved

  17. Radioactivity of raw materials, metallurgical and casting products

    International Nuclear Information System (INIS)

    Hons, J.

    2000-01-01

    At present, the radioactive contamination of metallurgical products and initial materials represent a potential obstacle in foreign and domestic trade. It is of course an undesirable threat o the living environment on the one side and, at the same time, a new incorrectly used means for suppressing competition and forming a protection 'umbrella' of the national market to desirable imports on the other hand

  18. Cost estimation and management over the life cycle of metallurgical ...

    African Journals Online (AJOL)

    This study investigates whether all expected costs over the life cycle of metallurgical research projects are included in initial, normal and fi nal cost estimates, and whether these costs are managed throughout a project's life cycle since there is not enough emphasis on the accurate estimation of costs and their management ...

  19. Control of innovation activity in a competitive metallurgical business

    Science.gov (United States)

    Bogdanov, S. V.

    2010-12-01

    Certain competitive advantages of a manufacturer on a goods market can be provided if one creates conditions for bifurcation development of an innovation process in metallurgical business under conditions of market uncertainty of a demand for goods of a specified consumer quality and determines the technical-and-economic versions of stable operation of a production system for performing orders of metal product consumers.

  20. Mining-metallurgical projects for the production of uranium concentrates

    International Nuclear Information System (INIS)

    Ajuria-Garza, S.

    1983-01-01

    This report presents an overall view of a complete project for a mining-metallurgical complex for the production of uranium concentrates. Relevant aspects of each important topic are discussed as parts of an integrated methodology. The principal project activities are analyzed and the relationships among the various factors affecting the design are indicated. A list of 96 principal activities is proposed as an example. These activities are distributed in eight groups: initial evaluations preliminary feasibility studies, project engineering, construction, industrial operation, decommissioning and post-decommissioning activities. The environmental impact and the radiological risks due to the construction and operation of the mining metallurgical complex are analyzed. The principles of radiological protection and the regulations, standards and recommendations for radiological protection in uranium mines and mills are discussed. This report is also a guide to the specialized literature: a bibliography with 765 references is included. (author)

  1. Supercritical water oxidation benchscale testing metallurgical analysis report

    International Nuclear Information System (INIS)

    Norby, B.C.

    1993-02-01

    This report describes metallurgical evaluation of witness wires from a series of tests using supercritical water oxidation (SCWO) to process cutting oil containing a simulated radionuclide. The goal of the tests was to evaluate the technology's ability to process a highly chlorinated waste representative of many mixed waste streams generated in the DOE complex. The testing was conducted with a bench-scale SCWO system developed by the Modell Development Corporation. Significant test objectives included process optimization for adequate destruction efficiency, tracking the radionuclide simulant and certain metals in the effluent streams, and assessment of reactor material degradation resulting from processing a highly chlorinated waste. The metallurgical evaluation described herein includes results of metallographic analysis and Scanning Electron Microscopy analysis of witness wires exposed to the SCWO environment for one test series

  2. LWR surveillance dosimetry improvement program: PSF metallurgical blind test results

    International Nuclear Information System (INIS)

    Kam, F.B.K.; Maerker, R.E.; Stallmann, F.W.

    1984-01-01

    The metallurgical irradiation experiment at the Oak Ridge Research Reactor Poolside Facility (ORR-PSF) was designed as a benchmark to test the accuracy of radiation embrittlement predictions in the pressure vessel wall of light water reactors on the basis of results from surveillance capsules. The PSF metallurgical Blind Test is concerned with the simulated surveillance capsule (SSC) and the simulated pressure vessel capsule (SPVC). The data from the ORR-PSF benchmark experiment are the basis for comparison with the predictions made by participants of the metallurgical ''Blind Test''. The Blind Test required the participants to predict the embrittlement of the irradiated specimen based only on dosimetry and metallurgical data from the SSC1 capsule. This exercise included both the prediction of damage fluence and the prediction of embrittlement based on the predicted fluence. A variety of prediction methodologies was used by the participants. No glaring biases or other deficiencies were found, but neither were any of the methods clearly superior to the others. Closer analysis shows a rather complex and poorly understood relation between fluence and material damage. Many prediction formulas can give an adequate approximation, but further improvement of the prediction methodology is unlikely at this time given the many unknown factors. Instead, attention should be focused on determining realistic uncertainties for the predicted material changes. The Blind Test comparisons provide some clues for the size of these uncertainties. In particular, higher uncertainties must be assigned to materials whose chemical composition lies outside the data set for which the prediction formula was obtained. 16 references, 14 figures, 5 tables

  3. Thermo-ecological cost (TEC evaluation of metallurgical processes

    Directory of Open Access Journals (Sweden)

    W. Stanek

    2015-01-01

    Full Text Available Metallurgy represents a complex production system of fuel and mineral non-renewable resources transformation. The effectiveness of resource management in metallurgical chains depends on the applied ore grade and on the irreversibility of components of the system. TEC can be applied to measure the influence of metallurgy on the depletion of natural resources. The paper discusses the possibility of application of TEC in metallurgy and presents illustrative example concerning blast-furnace process.

  4. HIT Solar Cells with N-Type Low-Cost Metallurgical Si

    Directory of Open Access Journals (Sweden)

    Xing Yang

    2018-01-01

    Full Text Available A conversion efficiency of 20.23% of heterojunction with intrinsic thin layer (HIT solar cell on 156 mm × 156 mm metallurgical Si wafer has been obtained. Applying AFORS-HET software simulation, HIT solar cell with metallurgical Si was investigated with regard to impurity concentration, compensation level, and their impacts on cell performance. It is known that a small amount of impurity in metallurgical Si materials is not harmful to solar cell properties.

  5. Growth of zircaloy 4 under neutron flux

    International Nuclear Information System (INIS)

    Morize, P.; Baicry, J.; Morlot, G.; Sciers, P.; Lehmann, D.

    1982-06-01

    Between 300 and 385 0 C, and under neutron fluxes between 0.5 and 2.10 14 n/cm 2 /s, the growth of zircaloy tubes is nil in the plane perpendicular to the axis, and can be represented by the equation: Δl/l=4.6610 -14 (phit)sup(0.49) in the axial direction. In the area investigated, neither the irradiation temperature nor the instantaneous flux has any effect on the metallurgical state (relieved or recrystallized) [fr

  6. Some results of medical researches at Ulba Metallurgical Plant

    Energy Technology Data Exchange (ETDEWEB)

    Artemieva, G.I.; Novikov, V.G.; Savchuk, V.V. [Ulba Metallurgical Plant, Ust-Kamenogorsk (Kazakhstan)

    1998-01-01

    The results of 45-years medical researches at beryllium production of Ulba Metallurgical Plant are summarized in this report. Statistic data on different kinds of occupational diseases, related to beryllium production and the dynamics of changing occupational diseases with the development of beryllium production, are given there. Data on average duration of life of occupational disease patients are presented in the report. It includes the description of problems, related to berylliosis diagnosis. Issues, connected to beryllium production effect on health of man, located nearby beryllium production are also discussed there as well. (author)

  7. Wear and corrosion performance of metallurgical coatings in sodium

    International Nuclear Information System (INIS)

    Johnson, R.N.; Farwick, D.G.

    1980-01-01

    The friction, wear, and corrosion performance of several metallurgical coatings in 200 to 650 0 C sodium are reviewed. Emphasis is placed on those coatings which have successfully passed the qualification tests necessary for acceptance in breeder reactor environments. Tests include friction, wear, corrosion, thermal cycling, self-welding, and irradiation exposure under as-prototypic-as-possible service conditions. Materials tested were coatings of various refractory metal carbides in metallic binders, nickel-base and cobalt-base alloys and intermetallic compounds such as the aluminides and borides. Coating processes evaluated included plasma spray, detonation gun, sputtering, spark-deposition, and solid-state diffusion

  8. Magnetohydrodynamic research in fusion blanket engineering and metallurgical processing

    International Nuclear Information System (INIS)

    Tokuhiro, A.

    1991-11-01

    A review of recent research activities in liquid metal magnetohydrodynamics (LM-MHDs) is presented in this article. Two major reserach areas are discussed. The first topic involves the thermomechanical design issues in a proposed tokamak fusion reactor. The primary concerns are in the magneto-thermal-hydraulic performance of a self-cooled liquid metal blanket. The second topic involves the application of MHD in material processing in the metallurgical and semiconductor industries. The two representative applications are electromagnetic stirring (EMS) of continuously cast steel and the Czochralski (CZ) method of crystal growth in the presence of a magnetic field. (author) 24 figs., 10 tabs., 136 refs

  9. The 6th European metallurgical conference EMC 2011: Proceedings review

    Directory of Open Access Journals (Sweden)

    Srećko R. Stopić

    2011-10-01

    Full Text Available The GDMB Society for Mining, Metallurgy, Resource and Environmental Technology organized the 6th European Metallurgical Conference (2011 in Duesseldorf from June 26 to 29, 2011. The same venue hosted the most important international metallurgical trade fairs for metallurgy of iron and steel, new casting and thermochemical processes METEC, GIFA, THERMOPROCESS and NEWCAST. The previous European metallurgical conferences were organized by GDMB in Friedrichshafen (2001, Hanover (2003, Leipzig (2005, Duesseldorf (2007, Innsbruck (2009. The GDMB is a non-profit organization situated in Clausthal in Germany, which is related to combining science with the practical experience in metallurgy, mining, materials engineering, mineral processing, recycling and refining of metals, and manufacturing of semi- and finishing products. The European Metallurgical conference EMC is one of the most known conferences worldwide in the field of non-ferrous metallurgy and is attended regularly by the decision makers from the industry and universities. The scientific program contained 6 plenary lectures and more than 160 presentations from 40 countries in 5 parallel series. An extensive poster exhibition was held, during which the authors had an opportunity to introduce their posters to the entire plenum as a part of a brief presentation. The best poster from the Montan-University in Leoben, Austria, was awarded the € 500 'Poster Award EMC 2011'. Not only were the most important European countries represented here, more than one third of the lecturers were from the non-European countries (Canada, Japan, China, USA, South Africa, Australia. The origin of the participants reflects the aim of the organizers: to make this conference a worldwide platform for the scientific exchange of experience and information. More than 400 participants from all over the world participated at this conference. The scientific presentations of the conference are presented in five Proceedings

  10. Market Structure Differences Impacting Australian Iron Ore and Metallurgical Coal Industries

    Directory of Open Access Journals (Sweden)

    Kurt Lawrence

    2015-07-01

    Full Text Available Steelmaking relies on iron ore and metallurgical coal as main ingredients, the trade of which is hypothesized to theoretically change in tandem. However, strong correlation is not evident in historical trade prices of steelmaking inputs. To determine causes to this occurrence, the market factors that influence the Australian iron ore and metallurgical coal industries were studied. Data was collected over the past decade for worldwide resource production and trade quantities of crude steel, iron ore, and metallurgical coal. The data was analysed to reveal trends, allowing examination of the macroeconomic trade of metallurgical coal and iron ore with relation to worldwide and country specific steel production. It was determined that the influential growth of China’s steel production has spurred the growth of worldwide iron ore demand, which was met with increased production and supply, from Australia. The increased metallurgical coal demand has been met with increased production within China locally. Measures of supply elasticity were created for worldwide iron ore and metallurgical coal trade, where comparisons between Australia’s industries to the relevant greatest competitor were examined. The results, along with respective resource production data, highlighted the elevated competitive position that Australian iron ore producers enjoy compared to metallurgical coal producers. Trade characteristics revealed the different market structures that iron ore and metallurgical coal industries operate in, prompting a discussion of the effects these markets have on the two Australian industries.

  11. Integrated Multimotor Electrical DC Drive for Metallurgical Rolling Table

    Directory of Open Access Journals (Sweden)

    Gała Marek

    2015-06-01

    Full Text Available A drive system of a section of a metallurgical rolling table consisting of six dc motors, 2220 amperes of total current, fed from a single ABB reversible thyristor converter has been described in this paper. Autonomous excitation circuits of the motors are fed from independent thyristor converters working in the so called MULTIFEX system linked with a supervisory high power converter. There are presented schemes of the DSL communication realized by FEX excitation cards of the motors using the SDSC card of the DCS-800-S02 converter and logic control system based on a PLC controller. The parameterization of the DCS-800 converter and the DCF 803 excitation systems was conducted using the DriveWindow software tool. Significant waveforms of voltages, currents and the estimated motor velocity are described and presented for the idle run as well as during transporting sheets discharged from a pusher furnace.

  12. Characterization of Nanocarbon Copper Composites Manufactured in Metallurgical Synthesis Process

    Science.gov (United States)

    Knych, Tadeusz; Kwaśniewski, Paweł; Kiesiewicz, Grzegorz; Mamala, Andrzej; Kawecki, Artur; Smyrak, Beata

    2014-08-01

    Currently, there is a worldwide search for new forms of materials with properties that are significantly improved in comparison to materials currently in use. One promising research direction lies in the synthesis of metals containing modern carbon materials ( e.g., graphene, nanotubes). In this article, the research results of metallurgical synthesis of a mixture of copper and two different kinds of carbon (activated carbon and multiwall carbon nanotubes) are shown. Samples of copper-carbon nanocomposite were synthesized by simultaneously exposing molten copper to an electrical current while vigorously stirring and adding carbon while under an inert gas atmosphere. The article contains research results of density, hardness, electrical conductivity, structure (TEM), and carbon decomposition (SIMS method) for the obtained materials.

  13. First Mining workshop of Mining and metallurgical of MERCOSUR

    International Nuclear Information System (INIS)

    1994-01-01

    In the city of Montevideo, capital of the Oriental Republic of Uruguay, at 23 days of September 1994, under the First Meeting of Mercosur Mining Metallurgical, meet representatives of the mining sector in the countries signed the Treaty of Asuncion , attended as observers, authorities of the Republic of Bolivia and Ecuador and representatives of the productive labor, legislative and research. The primary objective is to integrate the mining sectors of those countries, taking into account the specificity of the mining, given by the resource it uses, the need for high-risk investment with slow recoveries of capital and infrastructure problems, taking into account leverage and its remarkable impact on the development of regional economies.

  14. Cryogenic treatment of steel: from concept to metallurgical understanding

    DEFF Research Database (Denmark)

    Villa, Matteo; Somers, Marcel A. J.

    2017-01-01

    Subjecting steel to cryogenic treatment to improve its properties was conceived in the 30ies of the previous century. The proof of concept that properties, in particular wear resistance, can indeed be improved importantly, was reported in the next decades. Despite many investigations......, the metallurgical understanding of the microstructural changes involved in cryogenic treatment of steel has remained poor. It is believed that the improvement in wear resistance is promoted by an enhanced precipitation of carbides during tempering, but no explanation has been given as to how this enhanced...... precipitation can be obtained. In the last six years, the authors have applied in situ magnetometry, synchrotron X-Ray Diffraction and dilatometry to enlighten the phase transitions occurring in steels at cryogenic temperatures and to point out the connection between different treatment parameters...

  15. Inventory management in a metallurgical of the automotive industry

    Directory of Open Access Journals (Sweden)

    Marcos Antonio Maia de Oliveira

    2015-12-01

    Full Text Available This article aims to analyze the importance of inventory management in a metallurgical company, located in Santo André city, in Grande São Paulo, since the inventory management is crucial within a company that wants to survive nowadays, by studying the main features and trends in the methods used for inventory control. In this case study the basic concepts for good control were considered, showing tools currently used in the market, providing data for material purchase, sales control, parts in stock, future orders, MRP, storage space, among others once many companies have high and unnecessary cost of stock for not being aware of the real importance of this control. It is felt that the logistics of the company should invest in technology by purchasing the MRP system, visiting fairs and attending seminars. This way, the company will have better inventory control thus consequently decrease the purchase of materials.

  16. Powder metallurgical high performance materials. Proceedings. Volume 4: late papers

    International Nuclear Information System (INIS)

    Kneringer, G.; Roedhammer, P.; Wildner, H.

    2001-01-01

    This is the fourth volume (late papers) of the 15th International Plansee seminar 2001 which general theme was 'Powder metallurgical high performance materials'. The seminar looked beyond the refractory metals and cemented carbides, which remain as its focus, to novel classes of materials, such as intermetallic compounds, with potential for high temperature applications. This volume 4 contains papers dealing with high performance P/M metals (ITER and fusion reactors, solid targets, materials microstructure, novel alloys, etc.), P/M hard materials ( production and characterization, tungsten carbides, titanium carbides, microstructural design, coatings composition and performance, etc.) and general topics. From 37 papers 24 correspond to INIS subject scope and they were indexed separately. (nevyjel)

  17. Centrifugal Casting Features/Metallurgical Characterization of Aluminum Alloys

    International Nuclear Information System (INIS)

    Chirita, G.; Soares, D.; Cruz, D.; Silva, F. S.; Stefanescu, I.

    2008-01-01

    This paper deals with the study of centrifugal effects on aluminium castings under high G values. Most of the studies in this domain (FGMs obtained by centrifugal casting) deal with functionally graded composites reinforced with a solid phase such as silicon particles or others. However, in this study it will be shown that unreinforced aluminium alloys may be significantly influenced by the centrifugal effect and that functionally graded castings are also obtained. It has been observed that the centrifugal effect may increase in some alloys, depending on the relative position in the castings, the rupture strength by approx. 50%, and rupture strain by about 300%, as compared to the gravity casting technique. The Young's modulus may also increase by about 20%. It has also been reported that in vertical centrifugal castings there are mainly three aspects that affect the components thus obtained, namely: fluid dynamics; vibration (inherent to the system); and centrifugal force. These features have a different effect on the castings depending on the aluminium alloy. In this paper, an analysis of the most important effects of the centrifugal casting process on metallurgical features is conducted. A solidification characterization at several points along the mould will be made in order to have an accurate idea of both the fluid dynamics inside the mould during the casting and the solidification behavior in different parts of the component. These two analyses will be related to the metallurgical properties (phase distribution; SDAS; eutectic silicon content and shape, pores density and shape) along the component and mainly along the direction of the centrifugal pressure. A comparison between castings obtained by both centrifugal casting technique and gravity casting technique is made for reference (gravity casting)

  18. The metallurgical integrity of the frit vent assembly diffusion bond

    Science.gov (United States)

    Ulrich, G. B.

    1994-06-01

    Iridium alloy clad vent sets (CVS's) are now being made by Energy Systems at the Oak Ridge Y-12 Plant. These CVS's are being made for the US Department of Energy's (NE-53) General Purpose Heat Source- Radioisotope Thermoelectric Generator (GPHS-RTG) program, which is to supply electrical power for the National Aeronautics and Space Administration's Cassini mission to Saturn. A GPHS-RTG has 72 CVS'. Each CVS encapsulates one (238)PuO2 fuel pellet. The helium gas produced from the alpha decay of the (238)Pu is vented through a nominal 0.45-mm-diam hole in the vent cup of each CVS. A frit vent assembly that is electron beam welded over the vent hole allows helium gas to escape but prevents plutonia fines from exiting. The metallurgical integrity of frit vent assemblies produced by Martin Marietta Energy Systems, Inc. (Energy Systems) were compared with those produced earlier by EG&G-Mound Applied Technology, Inc. (EG&G-MAT). Scanning electron microscope (SEM) photographs were taken (at magnifications of from 126x to 1,000x) of the starting frit vent powder and the diffusion-bonded powder in finished frit vent assemblies produced by Energy Systems and EG&G-MAT. Frit vent assemblies also were metallographically prepared and visually examined/photographed at magnifications of from 50x to 1,000x. The SEM and metallographic examinations of the particle-to-particle and particle-to-foil component diffusion bonds indicated that the Energy Systems-produced and EG&G-MAT-produced frit vent assemblies have comparable metallurgical integrity. Statistical analysis of the Energy Systems production data shows that the frit vent manufacturing yield is 91%.

  19. Cleaner metallurgical industry in Serbia: a road to the sustainable development

    Directory of Open Access Journals (Sweden)

    D. Panias

    2009-01-01

    Full Text Available Since the sustainable development has been a global and fundamental objecttive, a metallurgical industrial sector faces some of the most difficult sustainability challenges of any industrial sector. On the other hand, the metallurgical production in Serbia is a very important part of the economy. Due to present facilities and technologies, metallurgical companies face a great challenge to fulfill the requirements introduced by legislature referring to the cleaner production and sustainable development. The state of art in the production, facilities, pollution with some answers to imposed challenges is presented.

  20. Estimation of metallurgical parameters of flotation process from froth visual features

    Directory of Open Access Journals (Sweden)

    Mohammad Massinaei

    2015-06-01

    Full Text Available The estimation of metallurgical parameters of flotation process from froth visual features is the ultimate goal of a machine vision based control system. In this study, a batch flotation system was operated under different process conditions and metallurgical parameters and froth image data were determined simultaneously. Algorithms have been developed for measuring textural and physical froth features from the captured images. The correlation between the froth features and metallurgical parameters was successfully modeled, using artificial neural networks. It has been shown that the performance parameters of flotation process can be accurately estimated from the extracted image features, which is of great importance for developing automatic control systems.

  1. Numerical computation of fluid flow in different nonferrous metallurgical reactors

    International Nuclear Information System (INIS)

    Lackner, A.

    1996-10-01

    Heat, mass and fluid flow phenomena in metallurgical reactor systems such as smelting cyclones or electrolytic cells are complex and intricately linked through the governing equations of fluid flow, chemical reaction kinetics and chemical thermodynamics. The challenges for the representation of flow phenomena in such reactors as well as the transfers of these concepts to non-specialist modelers (e.g. plant operators and management personnel) can be met through scientific flow visualization techniques. In the first example the fluid flow of the gas phase and of concentrate particles in a smelting cyclone for copper production are calculated three dimensionally. The effect of design parameters (length and diameter of reactor, concentrate feeding tangentially or from the top, ..) and operating conditions are investigated. Single particle traces show, how to increase particle retention time before the particles reach the liquid film flowing down the cyclone wall. Cyclone separators are widely used in the metallurgical and chemical industry for collection of large quantities of dust. Most of the empirical models, which today are applied for the design, are lacking in being valid in the high temperature region. Therefore the numerical prediction of the collection efficiency of dust particles is done. The particle behavior close to the wall is considered by applying a particle restitution model, which calculates individual particle restitution coefficients as functions of impact velocity and impact angle. The effect of design parameters and operating are studied. Moreover, the fluid flow inside a copper refining electrolysis cell is modeled. The simulation is based on density variations in the boundary layer at the electrode surface. Density and thickness of the boundary layer are compared to measurements in a parametric study. The actual inhibitor concentration in the cell is calculated, too. Moreover, a two-phase flow approach is developed to simulate the behavior of

  2. Metallurgical sessions. Second ALAMET congress (held in) Buenos Aires, Argentina, 6-10 May 1991

    International Nuclear Information System (INIS)

    1991-01-01

    This congress was held in Buenos Aires, Argentine Republic, on May 6-10, 1991, gathering experts from all over the world. The present volume includes the papers presented at the Metallurgical Sessions - II. ALAMET Congress [es

  3. Development of market strategies of metallurgical enterrprises after restructuring of steel industry

    Directory of Open Access Journals (Sweden)

    B. Gajdzik

    2014-01-01

    Full Text Available Before metallurgical enterprises started implementation of marketing activities they had to go through restructuring processes which included all areas of their market activities. Privatised metallurgical enterprises after economic transformation gradually implemented marketing to their business activities. The article presents notions connected with development of marketing strategies from the period of last 20 years. The range of analysis includes categories corresponding with instruments of mix marketing (4P − product, price, place, promotion.

  4. USING THE OUTSOURCING MECHANISM TO INCREASE THE EFFICIENCY OF REPAIR AND MAINTENANCE IN METALLURGICAL ENTERPRISES

    OpenAIRE

    Elena I. Kozlova; Anna N. Lopatina; Maxim A. Novak

    2017-01-01

    Abstract. Objectives The aim of the work is to study the outsourcing mechanism from the point of view of increasing the efficiency of repair and maintenance at a metallurgical enterprise. Method Analysis of the experience of using outsourcing of repair services at domestic and foreign metallurgical enterprises was carried out. Analysis of the experience of the withdrawal from enterprise repair services into a separate outsourcing company has shown that the main advantages of this method of or...

  5. NMR investigation of boron impurities in refined metallurgical grade silicon

    Energy Technology Data Exchange (ETDEWEB)

    Grafe, Hans-Joachim; Loeser, Wolfgang; Schmitz, Steffen; Sakaliyska, Miroslava [Leibniz Institute for Solid State and Materials Research (IFW), Dresden (Germany); Wurmehl, Sabine [Leibniz Institute for Solid State and Materials Research (IFW), Dresden (Germany); Institute for Solid State Physics, Technische Universitaet Dresden (Germany); Eisert, Stefan; Reichenbach, Birk; Mueller, Tim [Adensis GmbH, Dresden (Germany); Acker, Joerg; Rietig, Anja; Ducke, Jana [Department of Chemistry, Faculty for Natural Sciences, Brandenburg Technical University Cottbus-Senftenberg, Senftenberg (Germany)

    2015-09-15

    The nuclear magnetic resonance (NMR) method was applied for tracking boron impurities in the refining process of metallurgical grade (MG) silicon. From the NMR signal of the {sup 11}B isotope at an operating temperature 4.2 K, the boron concentration can be estimated down to the order of 1-10 wppm B. After melting and resolidification of MG-Si alloyed with Ca and Ti, a major fraction of B impurities remains in the Si solid solution as inferred from the characteristic NMR frequency. The alloying element Ti does not form substantial fractions of TiB{sub 2}. Acid leaching of crushed powders of MG-Si alloyed with Ca and Ti can diminish the initial impurity content of B suggesting its accumulation in the grain boundary phases. NMR signals of TiB{sub 2} at 4.2 K and room temperature (RT), and of poly-Si with different B doping at 4.2 K. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Fundamental metallurgical aspects of axial splitting in zircaloy cladding

    International Nuclear Information System (INIS)

    Chung, H. M.

    2000-01-01

    Fundamental metallurgical aspects of axial splitting in irradiated Zircaloy cladding have been investigated by microstructural characterization and analytical modeling, with emphasis on application of the results to understand high-burnup fuel failure under RIA situations. Optical microscopy, SEM, and TEM were conducted on BWR and PWR fuel cladding tubes that were irradiated to fluence levels of 3.3 x 10 21 n cm -2 to 5.9 x 10 21 n cm -2 (E > 1 MeV) and tested in hot cell at 292--325 C in Ar. The morphology, distribution, and habit planes of macroscopic and microscopic hydrides in as-irradiated and posttest cladding were determined by stereo-TEM. The type and magnitude of the residual stress produced in association with oxide-layer growth and dense hydride precipitation, and several synergistic factors that strongly influence axial-splitting behavior were analyzed. The results of the microstructural characterization and stress analyses were then correlated with axial-splitting behavior of high-burnup PWR cladding reported for simulated-RIA conditions. The effects of key test procedures and their implications for the interpretation of RIA test results are discussed

  7. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, C.Y.

    1993-03-01

    During fourth quarter 1992, samples from 18 groundwater monitoring wells of the AMB series at the Metallurgical Laboratory Hazardous Waste Management Facility were analyzed for certain heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. Six parameters exceeded final Primary Drinking Water Standards (PDWS) and the Savannah River Site Flag 2 criteria during the quarter. The results for fourth quarter 1992 are fairly consistent with the rest of the year's data. Tetrachloroethylene exceeded the final PDWS in well AMB 4D only two of the four quarters; in the other three wells in which it was elevated, it was present at similar levels throughout the year. Trichloroethylene consistently exceeded its PDWS in wells AMB 4A, 4B, 4D, 5, and 7A during the year. Trichloroethylene was elevated in well AMB 6 only during third and fourth quarters and in well AMB 7 only during fourth quarter. Total alpha-emitting radium was above the final PDWS for total radium in well AMB 5 at similar levels throughout the year and exceeded the PDWS during one of the three quarters it was analyzed for (third quarter 1992) in well AMB 10B.

  8. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report

    International Nuclear Information System (INIS)

    Thompson, C.Y.

    1993-03-01

    During fourth quarter 1992, samples from 18 groundwater monitoring wells of the AMB series at the Metallurgical Laboratory Hazardous Waste Management Facility were analyzed for certain heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. Six parameters exceeded final Primary Drinking Water Standards (PDWS) and the Savannah River Site Flag 2 criteria during the quarter. The results for fourth quarter 1992 are fairly consistent with the rest of the year's data. Tetrachloroethylene exceeded the final PDWS in well AMB 4D only two of the four quarters; in the other three wells in which it was elevated, it was present at similar levels throughout the year. Trichloroethylene consistently exceeded its PDWS in wells AMB 4A, 4B, 4D, 5, and 7A during the year. Trichloroethylene was elevated in well AMB 6 only during third and fourth quarters and in well AMB 7 only during fourth quarter. Total alpha-emitting radium was above the final PDWS for total radium in well AMB 5 at similar levels throughout the year and exceeded the PDWS during one of the three quarters it was analyzed for (third quarter 1992) in well AMB 10B

  9. Laser treatment of boron carbide surfaces: Metallurgical and morphological examinations

    Energy Technology Data Exchange (ETDEWEB)

    Yilbas, B.S., E-mail: bsilbas@kfupm.edu.sa; Karatas, C.

    2014-08-01

    Highlights: • Dense layer with fine grains is formed at surface. • Irregular shaped grains and dendrites are formed below dense layer. • Assisting gas forms nitride species (BN and BC{sub 2}N) at surface. • Fracture toughness of treated surface reduces because of high hardness. • Residual stress is compressive and the maximum residual stress is about 0.9 GPa. - Abstract: Laser treatment of B{sub 4}C tile surfaces is carried out under high pressure nitrogen assisting gas environment. Morphological and metallurgical changes in the laser treated layer are examined by incorporating scanning electron microscope, energy dispersive spectroscopy, and X-ray diffraction. Microhardness and fracture toughness of the laser treated surface are determined from the indentation data. Residual stress formed at the treated surface is obtained by using X-ray diffraction technique. It is found that laser treated surface is free from large scale asperities including cracks and voids; however, some locally scattered shallow cavities with 1.5–2 μm widths are formed at the surface because of high temperature processing. Dense layer, consisting of fine grains, and formation of nitride species (BN and BC{sub 2}N) enhance microhardness and lower fracture toughness at the surface. Residual stress formed in the treated layer is compressive and the maximum residual stress is in the order of −0.9 GPa.

  10. ECOLOGICAL MANAGEMENT IN THE MINING AND METALLURGICAL MARAMURES AREA

    Directory of Open Access Journals (Sweden)

    Viorel POP

    2015-04-01

    Full Text Available The paper is part of the interdisciplinary recent concerns of "environmental management", looking to determine the damages caused by pollution, remediation expenditures, and benefits that may arise through the application of remediation techniques and decontamination technologies in the mining and metallurgical Maramureş area. Large areas of land were diverted from their original destination (pastures, arable land, forests being now covered with ponds and dumps of mine or flotation tailings, deposits that are insufficiently protected, and have become sources of pollution to surrounding areas. All Eastern European countries have in common major environmental problems, the most serious being due to mining, metallurgy and chemistry. In the relationship of "economic-ecological" equilibrium, should be considered both economic criteria, as well as ecological ones. Pollution as the deterioration of environment, requires costs for rehabilitation of degraded areas, and for environmental protection, costs for new technologies, non polluting ones. The assessment foundation of environmental damages, is necessary for establishing the priority directions in the allocation of funds for projects to protect and rehabilitate the environment.

  11. A metallurgical route to solar-grade silicon

    Science.gov (United States)

    Schei, A.

    1986-02-01

    The aim of the process is to produce silicon for crystallization into ingots that can be sliced to wafers for processing into photovoltaic cells. If the potential purity can be realized, the silicon will also be applicable for ribbon pulling techniques where the purification during crystallization is negligible. The process consists of several steps: selection and purification of raw materials, carbothermic reduction of silica, ladle treatment, casting, crushing, leaching, and melting. The leaching step is crucial for high purity, and the obtainable purity is determined by the solidification before leaching. The most difficult specifications to fulfill are the low contents of boron, phosphorus, and carbon. Boron and phosphorus can be excluded from the raw materials, but the carbothermic reduction will unavoidably saturate the silicon with carbon at high temperature. During cooling carbon will precipitate as silicon carbide crystals, which will be harmful in solar cells. The cost of this solar silicon will depend strongly on the scale of production. It is as yet premature to give exact figures, but with a scale of some thousand tons per year, the cost will only be a few times the cost of ordinary metallurgical silicon.

  12. Quest for steel quality: the role of metallurgical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    McLean, A. [Toronto Univ., ON (Canada). Dept. of Metallurgy and Materials Science

    2000-10-01

    Improvements in the quality of steels and the role played by metallurgical chemistry to bring about those improvements are discussed. The particular emphasis is on the chemical behaviour of solutes in molten steel and the reaction between steel, slag and refractory materials and the manner in which they influence the physical properties and performance of the steel product. As an illustration of the contribution of chemistry to steel making the case of the steel plates used in the construction of the Titanic is cited. In 1911 when the Titanic was constructed by Harland and Wolff at their Belfast shipyard, the steel plates used in the hull met all then current specifications. In 1992 when a number of steel samples recovered from the Titanic were examined, it was found that the hull of the vessel was constructed of low carbon, semi-killed steel, produced in the open-hearth process. Microstructural analysis showed extensive carbon banding, typical of hot rolled 0.2 per cent carbon steel. Also found were long manganese sulphide inclusions elongated in the rolling direction, some of which exceeded 25 mm in length. It was determined that as a consequence of these inclusions, at a seawater temperature of 0 degree C, the hull plates of the Titanic had essentially no resistance to fracture. Today's high quality steels used in applications such as Arctic pipelines, offshore platforms, icebreakers and ships for the transportation of natural gas, oxygen and sulphur concentrations are frequently less than 10 ppm. These elements have a profound influence of the quality of the final steel products by virtue of their effect of hindering the formation of inclusions. 2 refs., 3 figs.

  13. Metallurgical test work to support development of the Kintyre Project

    International Nuclear Information System (INIS)

    Maley, M.; Ring, R.; Paulsen, E.; Maxton, D.

    2014-01-01

    The Kintyre uranium deposit is located in the Pilbara region of Western Australia and is jointly owned by Cameco and Mitsubishi. The current indicated resource estimate is approximately 55 million pounds of U 3 O 8 equivalent [~21,000 t U] at an average grade of 0.58% [0.49% U]. Due to the high levels of carbonate minerals in the deposit, alkaline leaching was strongly considered as an option to the usually preferred acid route. Following a detailed assessment, the acid option was chosen, with the preferred flowsheet involving an acid leach, followed by solvent extraction and precipitation. As part of the Kintyre metallurgical investigations, ANSTO Minerals performed an extensive work program, examining numerous aspects of the proposed flowsheet. This included a leach optimisation program, followed by a study determining the effects of sample variability in leaching. Settling, filtration and rheology work on slurries and tailings was performed, as well as testwork to determine the effect of neutralisation conditions on metal precipitation and radionuclide deportment. In addition, an extensive laboratory and solvent extraction mixer-settler mini-pilot plan campaign was performed to compare the performance of conventional ammonia/ammonium sulphate strip and the non-conventional strong acid strip (400 g/L H 2 SO 4 ) using leach liquor generated from Kintyre ore. The pilot plant involved two campaigns of three days continuous operation using each stripping system, with >99.5% uranium recovery achieved in each campaign. This paper will present an overview of the key results from the Kintyre leaching and neutralisation testwork undertaken at ANSTO Minerals, and will also outline the performance of the solvent extraction mini pilot plant. (author)

  14. Groundwater quality assessment plan for the Metallurgical Laboratory Hazardous Waste Management Facility

    Energy Technology Data Exchange (ETDEWEB)

    Jerome, K.M.

    1990-10-01

    The Metallurgical Laboratory Hazardous Waste Management Facility (MLHWMF) will be closed under interim status regulation and permitted as a hazardous waste management facility by a Post Closure Part B Permit under 40 CFR 264. This report discusses the ground water quality assessment plan for the MLHWMF. The Metallurgical Laboratory Hazardous Waste Management Facility consists of the process sewer line leading to the Metallurgical Laboratory basin from the fence, the Metallurgical Laboratory basin, the drainage outfall to the Carolina bay, and the Carolina bay itself. The Metallurgical Laboratory HWMF received F001, F003, F007, and D011 waste. F001 waste includes spent halogenated solvents used in degreasing (trichloroethylene, 1,1,1-trichloroethane, and carbon tetrachloride). F003 waste includes spent nonhalogenated solvents (acetone), and F007 waste is spent cyanide plating bath solution. At present forty-three constituents are analyzed per sample. Trichloroethylene, tetrachloroethylene, and total radium are the only constituents that were reported above Primary Drinking Water Standards (PDWS) during the second quarter of 1990. Listed in this report are the constituents that are being analyzed at present. Appendix A presents the trends for the analyzed constituents from the fourth quarter of 1988 to the second quarter of 1990. 5 figs., 5 tabs.

  15. Anaerobic microbiological method of cleaning water contaminated by metallurgical slags

    Directory of Open Access Journals (Sweden)

    Олена Леонідівна Дан

    2015-11-01

    Full Text Available The problem of environmental protection and rational use of water resources is one of the most important problems of environmental policy in Ukraine. This problem in Mariupol is particularly acute as metallurgical and coke industries cause significant damage to adjacent water bodies (the Kalchyk, the Kalmius and coastal zone of the Sea of Azov. One of the most harmful components of wastewater of these enterprises are sulfide-containing compounds. These compounds in water can cause great harm to both human health and the environment. For example, in 1999 the main city enterprises (AZOVSTAL IRON & STEEL WORKS and ILYICH IRON AND STEEL WORKS discharged 885,0 million m³ of wastewater (including 403,9 million m³ of polluted waste water into water bodies. The slag dumps and landfills in close proximity to the sea form a source of dangerous pollution, because contaminated water infiltration washed out here in the groundwater and surface water, get into the Sea of Azov later on. There are 97 mg/l of sulfides in the protective dam of AZOVSTAL IRON & STEEL WORKS, what exceeds the standards (MPC = 10 mg/l. It makes it possible for us to put forward biochemical purification processes. Anaerobic microbiological method proposed in the article has several advantages (compact hardware design, a minimum amount of activated sludge and lack of energy consumption for aeration over the existing wastewater treatment (chemical, mechanical, biological. The experimental procedure consisted in introducing the medium to be purified purified into microbial communities of high concentration (Thiobacillus «X», Thiobacillus concretivorus, which assimilated organic substances of the medium as a primary energy source. The kinetics of sulfide compounds removal by means of anaerobic microbiological method was considered. The effectiveness of wastewater treatment with changing purification process conditions has been also assessed (concentration of sulfides, reactor type, p

  16. A metallurgical study of Nāga Bhasma

    Directory of Open Access Journals (Sweden)

    Dev Nath Singh Gautam

    2017-01-01

    Full Text Available Background: The metal Nāga (Lead is being used by Indians since ancient times. Its external and internal uses have been described in Caraka, Suśruta and other Ayurvedic Saṃhitā. According to most of the Rasa texts, Nāga Bhasma and its formulations are used in many diseases such as Prameha, Jvara, Gulma, Śukrameha etc. Objectives: In the present study, Nāga Bhasma was prepared by the traditional Puṭa method (TPM and by the electric muffle furnace Puṭa method (EMFPM and standardized using Metallographic studies. Doing so helps in the study of the microstructure of Nāga Bhasma and also helps in the identification of the metal particles along with the nature of compound formed during the Māraṇa (Bhasmīkaraṇa process. Setting and Design: Different samples from initial raw material to final product of Nāga Bhasma were collected during the pharmaceutical process (1st, 30th and 60th Puṭa from both methods i.e. TPM and EMFPM. Samples from both methods were studied using metallographic examination. Materials and Methods: The processing of the Nāga Bhasma (ṣaṣṭipuṭa was done according to Ānanda Kanda[9] Samples from the raw material i.e. Aśodhita Nāga (raw Lead and that processed after 1st, 30th and 60th Puṭa from both methods i.e. traditional Puṭa method (using heat from burning of cow dung cakes and electric muffle furnace Puṭa method were taken. They were mounted on self hardening acrylic base. After careful polishing to obtain scratch free surface of product, they were used for metallurgical study. Conclusion: This study shows that traditional Puṭa method may be better than electric muffle furnace Puṭa method because of more homogeneous distribution of Lead sulphide in the Nāga Bhasma which is prepared by traditional method.

  17. Application of transformational roasting to the treatment of metallurgical wastes

    Science.gov (United States)

    Holloway, Preston Carl

    Transformational roasting involves the heating of a material along with specific additives to induce mineralogical changes in the starting material. By controlling the chemical composition, roasting atmosphere, temperature and time of reaction, the mineral transformations induced during roasting can be engineered to control the distribution of valuable or harmful metals and to produce new mineral assemblages that are more amenable to conventional methods of metals recovery or to environmentally safe disposal. However, to date, transformational roasting processes have only been applied to the recovery of a limited number of metals from a limited number of materials. A generalized procedure for the application of transformational roasting techniques to the treatment of new materials was proposed that utilized a combination of thermodynamic analysis, scoping tests, Design of Experiments (DOE) testing, mineralogical studies, process optimization and analysis of the deportment of minor elements to identify promising roasting systems for further study. This procedure was developed, tested and refined through the application of these techniques to four different industrial metallurgical wastes, including oil sands fly ash from Suncor in northern Alberta, zinc ferrite residue from Doe Run Peru, electric are furnace (EAF) dust from Altasteel's operations in Edmonton, Alberta, and copper-nickel-arsenic sulphide residue from Inco's refinery in Thompson, Manitoba. A large number of potential reagents were identified and tested for the latter three materials and transformational roasting was effectively used to induce mineral transformations during the roasting of these wastes which increased the solubility of valuable elements, decreased the solubility of major impurities, produced a differential solubility between valuable and harmful elements or controlled the volatilization of harmful elements. Comprehensive studies of these mineralogical transformations and the solubility

  18. Biaxial fatigue behavior of a powder metallurgical TRIP steel

    Directory of Open Access Journals (Sweden)

    S. Ackermann

    2015-10-01

    Full Text Available Multiaxial fatigue behavior is an important topic in critical structural components. In the present study the biaxial-planar fatigue behavior of a powder metallurgical TRIP steel (Transformation Induced Plasticity was studied by taking into account martensitic phase transformation and crack growth behavior. Biaxial cyclic deformation tests were carried out on a servo hydraulic biaxial tension-compression test rig using cruciform specimens. Different states of strain were studied by varying the strain ratio between the axial strain amplitudes in the range of -1 (shear loading to 1 (equibiaxial loading. The investigated loading conditions were proportional due to fixed directions of principal strains. The studied TRIP steel exhibits martensitic phase transformation from -austenite via ε-martensite into α‘- martensite which causes pronounced cyclic hardening. The α‘-martensite formation increased with increasing plastic strain amplitude. Shear loading promoted martensite formation and caused the highest α‘-martensite volume fractions at fatigue failure in comparison to uniaxial and other biaxial states of strain. Moreover, the fatigue lives of shear tests were higher than those of uniaxial and other biaxial tests. The von Mises equivalent strain hypothesis was found to be appropriate for uniaxial and biaxial fatigue, but too conservative for shear fatigue, according to literature for torsional fatigue. The COD strain amplitude which is based on crack opening displacement gave a better correlation of the investigated fatigue lives, especially those for shear loading. Different types of major cracks were observed on the sample surfaces after biaxial cyclic deformation by using electron monitoring in an electron beam universal system and scanning electron microscopy (SEM. Specimens with strain ratios of 1, 0.5, -0.1 and -0.5 showed mode I major cracks (perpendicular to the axis of maximum principal strain. Major cracks after shear fatigue

  19. Conceptual design for treatment of mining and metallurgical wastewaters which contains arsenic and antimony

    Directory of Open Access Journals (Sweden)

    Željko Kamberović

    2012-12-01

    Full Text Available This paper presents a preliminary design for treatment of mining and metallurgical wastewaters (MMW from the basin of antimony “Zajača“, which contains high concentrations of arsenic and antimony. MMW have been investigated in laboratory, due to large difference in concentrations of pollutants. Metallurgical wastewaters were treated using iron (II-sulfate and lime milk used to adjust the pH value at 7. After chemical treatment of metallurgical wastewater and its joining with mining wastewater, residual amount of arsenic in water was below maximum allowed concentrations, while the concentration of antimony, remained above the maximum allowed value. The final phase of purification process was performed using ion exchange resin. After treatment of MMW, they can be used as technical water in the smelting process of secondary raw lead materials.

  20. ORNL evaluation of the ORR-PSF metallurgical experiment and blind test

    International Nuclear Information System (INIS)

    Stallmann, F.W.

    1984-01-01

    A methodology is described to evaluate the dosimetry and metallurgical data from the two-year ORR-PSF metallurgical irradiation experiment. The first step is to obtain a three-dimensional map of damage exposure parameter values based on neutron transport calculations and dosimetry measurements which are obtained by means of the LSL-M2 adjustment procedure. Metallurgical test data are then combined with damage parameter, temperature, and chemistry information to determine the correlation between radiation and steel embrittlement in reactor pressure vessels including estimates for the uncertainties. Statistical procedures for the evaluation of Charpy data, developed earlier, are used for this investigation. The data obtained in this investigation provide a benchmark against which the predictions of the PSF Blind Test can be compared. The results of this investigation and the Blind Test comparison are discussed

  1. Effects of mechanical activation on the carbothermal reduction of chromite with metallurgical coke

    Directory of Open Access Journals (Sweden)

    Kenan Yıldız

    2010-06-01

    Full Text Available The carbothermal reduction of mechanically activated chromite with metallurgical coke under an argon atmosphere was investigated at temperatures between 1100 and 1400°C and the effects of the mechanical activation on chromite structure were analyzed by x-ray diffraction (XRD and scanning electron microscopy (SEM. An increase in specific surface area resulted in more contact points. The activation procedure led to amorphization and structural disordering in chromite and accelerated the degree of reduction and metalization in the mixture of chromite and metallurgical coke. Carbothermal reduction products were analzed by using scanning electron microscopy (SEM/EDS.

  2. Retail optimization in Romanian metallurgical industry by applying of fuzzy networks concept

    Directory of Open Access Journals (Sweden)

    Ioana Adrian

    2017-01-01

    Full Text Available Our article presents possibilities of applying the concept Fuzzy Networks for an efficient metallurgical industry in Romania. We also present and analyze Fuzzy Networks complementary concepts, such as Expert Systems (ES, Enterprise Resource Planning (ERP, Analytics and Intelligent Strategies (SAI. The main results of our article are based on a case study of the possibilities of applying these concepts in metallurgy through Fuzzy Networks. Also, it is presented a case study on the application of the FUZZY concept on the Romanian metallurgical industry.

  3. Comparison of Metallurgical and Ultrasonic Inspections of Galvanized Steel Resistance Spot Welds

    International Nuclear Information System (INIS)

    Potter, Timothy J.; Ghaffari, Bita; Mozurkewich, George; Reverdy, Frederic; Hopkins, Deborah

    2006-01-01

    Metallurgical examination of galvanized steel resistance spot welds was used to gauge the capabilities of two ultrasonic, non-destructive, scanning techniques. One method utilized the amplitude of the echo from the weld faying surface, while the other used the spectral content of the echo train to map the fused area. The specimens were subsequently sectioned and etched, to distinguish the fused, zinc-brazed, and non-fused areas. The spectral maps better matched the metallurgical maps, while the interface-amplitude method consistently overestimated the weld size

  4. Magnesite base desulfurizer of metallurgical physical chemistry research

    Directory of Open Access Journals (Sweden)

    G. D. Liu

    2017-01-01

    Full Text Available This topic put carbon thermal vacuum method in combination with magnesium based desulfurization technology with magnesite reduction of magnesium vapor directly on hot metal desulphurization. This is a new type of desulfurization technology, the retrieval related literature at home and abroad was not reported in the recent ten years, according to the relationship between heat of desulfurizer preparation MgO style content can reach 50 %.It was found that the desulfurizer sample with 50 % MgO content was in accordance with the requirements, without adding flux, but its viscosity did not meet the requirements; adding 1 % flux (CaF2, the sample viscosity was significantly reduced, and about 1 400 °C sample viscosity suitable for hot metal pretreatment desulfurization.

  5. The economic and social dimensions of Romania’s metallurgical industry

    Directory of Open Access Journals (Sweden)

    V. A. Popescu

    2014-01-01

    Full Text Available The purpose of this paper is to enhance the understanding of both the economic and social dimensions belonging to Romania’s metallurgical industry and how they contribute to generating business value. The approach of this subject became of utmost necessity in turbulent times such as the one Romania is facing nowadays.

  6. Metallurgical analysis of a 304L stainless steel canister from the Spent Fuel Test - Climax

    International Nuclear Information System (INIS)

    Weiss, H.; Van Konynenburg, R.A.; McCright, R.D.

    1985-01-01

    Results of a metallurgical examination of a type 304L stainless steel canister that had been used to store spent nuclear fuel in an underground granite formation for about three years are reported. No observable corrosion or cracking were found. The results are applied to waste packages in a potential high level nuclear waste repository in tuff. 10 refs., 9 figs., 2 tabs

  7. Utilisation of metallurgical by-products in road construction in the Czech Republic

    Science.gov (United States)

    Kresta, František

    2017-09-01

    Metallurgical by-products, primarily blast furnace slag and steel slag, have ranked among important alternative sources of fill as well as of material for the structural layers in highways. Main hazards of metallurgical by-products are closely connected to their chemical and mineralogical composition and they can be resulted in volume changes. Fears from possible deformations similar to the D47 motorway meant that metallurgical by-products were excluded from several public tenders of road construction. Comparison of blast furnace slag, steel slag and other metallurgical by products parameters allow us to define the most hazardous material as steelworks waste. Linear swelling of steelwork waste achieves more than 40% at 75°C and swelling pressure was higher than 1.5 MPa. Compositional heterogeneity of steelworks waste makes it difficult to establish the long-term behaviour of this material. At the present time we cannot ascertain which maximum values can be reached by deformation and what are the swelling pressures acting on the material while the volume changes are in progress.

  8. Comparison of metallurgical coke and lignite coke for power generation in Thailand

    Science.gov (United States)

    Ratanakuakangwan, Sudlop; Tangjitsitcharoen, Somkiat

    2017-04-01

    This paper presents and compares two alternatives of cokes in power generation which are the metallurgical coke with coke oven gas and the coke from lignite under the consideration of the energy and the environment. These alternatives not only consume less fuel due to their higher heat content than conventional coal but also has less SO2 emission. The metallurgical coke and its by-product which is coke oven gas can be obtained from the carbonization process of coking coal. According to high grade coking coal, the result in the energy attitude is not profitable but its sulfur content that directly affects the emission of SO2 is considered to be very low. On the other hand, the coke produced from lignite is known as it is the lowest grade from coal and it causes the high pollution. Regarding to energy profitability, the lignite coke is considered to be much more beneficial than the metallurgical coke in contrast to the environmental concerns. However, the metallurgical coke has the highest heating value. Therefore, a decision making between those choices must be referred to the surrounding circumstances based on energy and environment as well as economic consideration in the further research.

  9. International competitiveness and marketing practices in the Australian mining and metallurgical industry

    Energy Technology Data Exchange (ETDEWEB)

    Fynmore, R.J.

    1993-12-31

    The paper examines the sources of Australia`s competitive strengths and weaknesses in the mining and metallurgical industry, and goes on to examine minerals marketing practices. A chart compares Australia`s production costs for iron ore, coal, aluminium, copper, gold, zinc and nickel with those of other major producing countries. 1 fig., 2 tabs.

  10. Simulation model for planning metallurgical treatment of large-size billets

    International Nuclear Information System (INIS)

    Timofeev, M.A.; Echeistova, L.A.; Kuznetsov, V.G.; Semakin, S.V.; Krivonogov, A.B.

    1989-01-01

    The computerized simulation system ''Ritm'' for planning metallurgical treatment of billets is developed. Three principles, specifying the organization structure of the treatment cycle are formulated as follows: a cycling principle, a priority principle and a principle of group treatment. The ''Ritm'' software consists of three independent operating systems: preparation of source data, simulation, data output

  11. Quality of some Nigerian coals as a blending stock in metallurgical ...

    African Journals Online (AJOL)

    Lafia- Obi/foreign coals blends possess lower ash and better rheological properties compared to Chikila/foreign coal composites which have high ash and poor rheological properties. These together suggest that amongst the two Nigerian coals, Lafia-Obi is superior for blending with the foreign ones in metallurgical coke ...

  12. IFM – SCIENTIFIC CENTRE OF THE DEVELOPMENT OF THE UKRAINIAN METALLURGICAL INDUSTRY

    Directory of Open Access Journals (Sweden)

    BOLSHAKOV V. I.

    2017-01-01

    Full Text Available The history of creation and development of the Institute of ferrous metallurgy of the Ukrainian Academy of Sciences named after Z. I. Nekrasov is regarded in the article. IFM has become the scientific centre of the development of the metallurgical industry of Ukraine. Researches of the outstanding scientists show their significant contribution in the development of the metallurgical science and implementation of their achievements in the production of the metallurgical industry of Ukraine. Analysis of publications. History of the Institute of the ferrous metallurgy is regarded in the fundamental works devoted to the development of the metallurgical industry in Ukraine and in the works published to the jubilee dates of the prominent scientists academicians Z. I. Nekrasov, V. I. Bol’shakov and others. The purpose of the article is to analyze the process of the creation of the Institute and the stages of its development in the 20th and 21st centuries and to define the influence of the economic and political situation in the country upon this process? To regard the role of the outstanding scientists and influence of their achievements on the development of the metallurgical industry of Ukraine. The history of IFM began in 1939 when it was organized in Kharkiv as a part of the Academy of Sciences of Ukraine. At the beginning of the Great Patriotic war the Institute was moved to Ufa – the capital of Bashkiria. During the war the scientists of the Institute tried to increase the output of metal and special steels for the defence industry. In 1943 the Institute moved to Moscow and then to Kiev. In 1952 it was decided to move the Institute to Dnepropetrovsk. In order to combine the scientific researches and production of metal. Z. I. Nekrasov was elected Director of the Institute. The departments of the Indtitute were headed by academicians Z. I. Nekrasov, A. P. Chekmariov, K. F. Starodubov, Correspondence Members of the Ukrainian Academy of Sciences

  13. Development and production of cobalt-60 sources for metallurgical application

    International Nuclear Information System (INIS)

    Oliveira, Paulo Fernando; Valente, Eduardo Sarmento; Maretti Junior, Fausto

    2002-01-01

    The CDTN has developed and produced 60 Co sources to be used in level controllers on continuous ingot casting. The sources used in these systems are sealed with a stainless steel revetment and have an useful life equivalent to one half life of the 60 Co (5.272 years). Each system of continuous ingot casting uses a source with one specified activity and different activation section. The sources have been imported with a very high cost due the special shields used to keep and transport them safety. One of its sources, with initial activity of 148 MBq, after being used for more than 5 years in one factory, was given to CDTN to carry out an activation section studies. After these studies be concluded CDTN/CNEN began the procedures to produce a new source in the IPR-R1 TRIGA Reactor, with an irradiation of one cobalt wire in the maximum flux region of the core. The same metallic cobalt wire was irradiated (10% of total activity), to determinate the necessary irradiation time to obtain the final activation. The CDTN developed too a stainless steel recipient with a aluminum nucleus, to seal and to guarantee the integrity of the source. (author)

  14. Long-Term Monitoring Network Optimization Evaluation for Operable Unit 2, Bunker Hill Mining and Metallurgical Complex Superfund Site, Idaho

    Science.gov (United States)

    This report presents a description and evaluation of the ground water and surface water monitoring program associated with the Bunker Hill Mining and Metallurgical Complex Superfund Site (Bunker Hill) Operable Unit (OU) 2.

  15. METALLURGICAL PROGRAMS: CALCULATION OF MASS FROM VOLUME, DENSITY OF MIXTURES, AND CONVERSION OF ATOMIC TO WEIGHT PERCENT

    Science.gov (United States)

    Degroh, H.

    1994-01-01

    The Metallurgical Programs include three simple programs which calculate solutions to problems common to metallurgical engineers and persons making metal castings. The first program calculates the mass of a binary ideal (alloy) given the weight fractions and densities of the pure components and the total volume. The second program calculates the densities of a binary ideal mixture. The third program converts the atomic percentages of a binary mixture to weight percentages. The programs use simple equations to assist the materials staff with routine calculations. The Metallurgical Programs are written in Microsoft QuickBASIC for interactive execution and have been implemented on an IBM PC-XT/AT operating MS-DOS 2.1 or higher with 256K bytes of memory. All instructions needed by the user appear as prompts as the software is used. Data is input using the keyboard only and output is via the monitor. The Metallurgical programs were written in 1987.

  16. The beryllium production at Ulba metallurgical plant (Ust-Kamenogrsk, Kazakhstan)

    Energy Technology Data Exchange (ETDEWEB)

    Dvinskykh, E.M.; Savchuk, V.V.; Tuzov, Y.V. [Ulba Metallurgical Plant (Zavod), Ust-Kamenogorsk, Abay prospect 102 (Kazakhstan)

    1998-01-01

    The Report includes data on beryllium production of Ulba metallurgical plant, located in Ust-Kamenogorsk (Kazakhstan). Beryllium production is showed to have extended technological opportunities in manufacturing semi-products (beryllium ingots, master alloys, metallic beryllium powders, beryllium oxide) and in production of structural beryllium and its parts. Ulba metallurgical plant owns a unique technology of beryllium vacuum distillation, which allows to produce reactor grades of beryllium with a low content of metallic impurities. At present Ulba plant does not depend on raw materials suppliers. The quantity of stored raw materials and semi-products will allow to provide a 25-years work of beryllium production at a full capacity. The plant has a satisfactory experience in solving ecological problems, which could be useful in ITER program. (author)

  17. Characterization of tool wear in high-speed milling of hardened powder metallurgical steels

    OpenAIRE

    Klocke, Fritz; Arntz, Kristian; Cabral, Gustavo Francisco; Stolorz, Martin; Busch, Marc

    2011-01-01

    In this experimental study, the cutting performance of ball-end mills in high-speed dry-hard milling of powder metallurgical steels was investigated. The cutting performance of the milling tools was mainly evaluated in terms of cutting length, tool wear, and cutting forces. Two different types of hardened steels were machined, the cold working steel HS 4-2-4 PM (K490 Microclean/66 HRC) and the high speed steel HS 6-5-3 PM (S790...

  18. Magnetic spherules from the soils near the slag dump of the Nizhniy Tagil metallurgical plant

    Directory of Open Access Journals (Sweden)

    A. B. Makarov

    2017-12-01

    Full Text Available Magnetic spherules, which are widespread in soils, can have different origins, but spherules with cosmic origin are the most studied. At that, functioning of numerous industrial enterprises of metallurgical profile, thermal power stations, and motor transport can be their origin. According to the data of previous researchers, spherical magnetic particles in soils can serve as an indicator for quantitative assessment of erosion-accumulative phenomena. The authors studied magnetic spherules, isolated from soil samples taken near the dump of blast furnace and metallurgical slags of a large Nizhny Tagil metallurgical plant located on the left bank of the Olkhovka river, functioning since 1949. The way the dump forms is by draining slag along the slope. Consequently, adjacent territories are exposed to a significant dust load, associated with increased concentrations of a number of heavy metals: chromium, iron, manganese, vanadium, copper and zinc. The study of magnetic spherules performed for samples of soils taken at a distance of 50 and 100 m to the west of the dump showed that the content of magnetic fraction in them was 15.1 and 11.7% respectively, of the mineral part of the samples. The authors studied magnetic spherules on a scanning microscope JEOL JSM 6390LV, an at that provide their morphology and the chemical composition of magnetic spherules (18 analyzes and aggregates on their surface (5 analyzes. Based on the presence of characteristic impurity elements, there are the following varieties: zinc, manganese, vanadium, determined by the peculiarities of metallurgical processes. Low concentrations of spherules in soils do not allow considering them as a significant source of pollution of natural environment, only a slight increase in the content of heavy metals characteristic for them is possible.

  19. Metallurgical Characterization of Reduced Activation Martensitic Steel F-82H Modified

    International Nuclear Information System (INIS)

    Fernandez, P.; Lapena, J.; Lancha, A.M.; Gomez-Briceno, D.; Schirra, M.

    1999-12-01

    During 1995-1998 within of research and development programs on reduced ferritic/martensitic steels for fusion, metallurgical characterization of 8Cr-2WVTa steel, denominated F-28H modified, have been carried out. The work has focused on studying the microstructural and mechanical (tensile, creep, low cycle fatigue and charpy) characteristics of as-received state and aged material in the temperature range 300 degree centigrade to 600 degree centigrade for periods up to 5000 h. (Author) 45 refs

  20. Metallurgical bond between magnesium AZ91 alloy and aluminium plasma sprayed coatings

    Czech Academy of Sciences Publication Activity Database

    Kubatík, Tomáš František; Pala, Zdeněk; Neufuss, Karel; Vilémová, Monika; Mušálek, Radek; Stoulil, J.; Slepička, P.; Chráska, Tomáš

    2015-01-01

    Roč. 282, November (2015), s. 163-170 ISSN 0257-8972 R&D Projects: GA ČR(CZ) GP14-31538P Institutional support: RVO:61389021 Keywords : Plasma spraying * AZ91 magnesium alloy * Aluminium * Metallurgical bond * X-ray diffraction Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 2.139, year: 2015 http://www.sciencedirect.com/science/article/pii/S0257897215303297

  1. Graduates mining and metallurgical specialty in professional and economic spheres of society (Dnepropetrovsk region)

    OpenAIRE

    M. V. Mosondz

    2015-01-01

    The paper analyzes the process of inclusion graduates of mining and metallurgical complex (MMC) to professional and economic spheres of society; attitude of employers to hire graduates; barriers to hiring young professionals; evaluation indicators of successful graduates of vocational integration. Revealed a rather high level of professional work (64%); positive assessment of the benefits of education; greatest satisfaction such conditions as stable income, matching specialty; insufficient...

  2. Metallurgical flow recognition by random signal analysis of stress wave emissions

    International Nuclear Information System (INIS)

    Woodward, B.

    1973-01-01

    The present study involves detailed random signal analysis of individual 'bursts' of emission with objective of 'reading' their frequency spectra to identify specific metallurgical mechanisms. Mild steel unnotched testpieces were used in the early stages of development of this research. From a fracture mechanics point of view this research could lead to a powerful nondestructive testing device allowing identification of interior, instead of only surface, deformation mechanisms. (author)

  3. Grinding-induced metallurgical alterations in the binder phase of WC-Co cemented carbides

    OpenAIRE

    Yang, Jing; Roa Rovira, Joan Josep; Schwind, Martin; Odén, M.; Johansonn Joesaar, M. P.; Llanes Pitarch, Luis Miguel

    2017-01-01

    The metallic binder phase dictates the toughening behavior of WC-Co cemented carbides (hardmetals), even though it occupies a relative small fraction of the composite. Studies on deformation and phase transformation of the binder constituent are scarce. Grinding represents a key manufacturing step in machining of hardmetal tools, and is well-recognized to induce surface integrity alterations. In this work, metallurgical alterations of the binder phase in ground WC-Co cemented carbides have be...

  4. The two faces of coal : uncertainty the common prospect for metallurgical and thermal coal

    International Nuclear Information System (INIS)

    Zlotnikov, D.

    2010-01-01

    Although the methods of producing thermal and metallurgical coal are the same, metallurgical coal is destined to cross the world for steel manufacturing and thermal coal is destined for power plants close to where it was mined. This article discussed the factors influencing the price of these 2 coals. The production of thermal coal can remain steady during an economic crisis because coal-fired power plants generally provide low-cost-base-load electricity that remains stable during economic cycles. However, the demand for metallurgical coal is more volatile during an economic crisis because it is directly related to the demand for steel products in the construction and automotive industry, which are very sensitive to the state of the economy. There have been recent indications that Canada's export market for thermal coal is on the rise. In 2008, China became a net importer of coking coal. China's need for more coal to fuel its growing economy despite the global economic slowdown has meant that producers are diverting excess supply from European markets to China. Higher-end thermal coal offers low sulphur content and higher energy content, both desirable traits for power utilities facing strict emissions control. In addition to having huge reserves of very high-quality coal that is becoming increasingly important to China, Canada has the advantage of having the available transportation capacity in its west coast terminals and on its rail network. 3 figs.

  5. Critical flux determination by flux-stepping

    DEFF Research Database (Denmark)

    Beier, Søren; Jonsson, Gunnar Eigil

    2010-01-01

    In membrane filtration related scientific literature, often step-by-step determined critical fluxes are reported. Using a dynamic microfiltration device, it is shown that critical fluxes determined from two different flux-stepping methods are dependent upon operational parameters such as step......, such values are more or less useless in itself as critical flux predictors, and constant flux verification experiments have to be conducted to check if the determined critical fluxes call predict sustainable flux regimes. However, it is shown that using the step-by-step predicted critical fluxes as start...

  6. Fast determination of impurities in metallurgical grade silicon for photovoltaics by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Hampel, J.; Boldt, F.M.; Gerstenberg, H.; Hampel, G.; Kratz, J.V.; Reber, S.; Wiehl, N.

    2011-01-01

    Standard wafer solar cells are made of near-semiconductor quality silicon. This high quality material makes up a significant part of the total costs of a solar module. Therefore, new concepts with less expensive so called solar grade silicon directly based on physiochemically upgraded metallurgical grade silicon are investigated. Metallurgical grade silicon contains large amounts of impurities, mainly transition metals like Fe, Cr, Mn, and Co, which degrade the minority carrier lifetime and thus the solar cell efficiency. A major reduction of the transition metal content occurs during the unidirectional crystallization due to the low segregation coefficient between the solid and liquid phase. A further reduction of the impurity level has to be done by gettering procedures applied to the silicon wafers. The efficiency of such cleaning procedures of metallurgical grade silicon is studied by instrumental neutron activation analysis (INAA). Small sized silicon wafers of approximately 200 mg with and without gettering step were analyzed. To accelerate the detection of transition metals in a crystallized silicon ingot, experiments of scanning whole vertical silicon columns with a diameter of approximately 1 cm by gamma spectroscopy were carried out. It was demonstrated that impurity profiles can be obtained in a comparably short time. Relatively constant transition metal ratios were found throughout an entire silicon ingot. This led to the conclusion that the determination of several metal profiles might be possible by the detection of only one 'leading element'. As the determination of Mn in silicon can be done quite fast compared to elements like Fe, Cr, and Co, it could be used as a rough marker for the overall metal concentration level. Thus, a fast way to determine impurities in photovoltaic silicon material is demonstrated. - Highlights: → We demonstrate a fast way to determine impurities in photovoltaic silicon by NAA. → We make first experiments of locally

  7. Influence of carbon nano tubes on mechanical, metallurgical and tribological behavior of magnesium nanocomposites

    Directory of Open Access Journals (Sweden)

    S.T. Selvamani

    2017-09-01

    Full Text Available In this research work, three different reinforcements of Carbon Nano Tubes (in weight % such as 2%, 3% and 4% were added to the magnesium AZ91D grade magnesium alloy to fabricate the Nanocomposites through stir casting method. The effects of volume percentage on the mechanical, metallurgical and wear behavior were analyzed. The composites with 4% reinforcement show high hardness while the composites with 3% reinforcement show better tensile and yield strength and also an improved wear resistance compared to other. Also, the characterization of the Nanocomposites were made using Optical Microscopy, Scanning Electron Microscopy, Finite Element – Scanning Electron Microscopy and Transmission Electron Microscopy to understand its nature.

  8. Metallurgical and acoustical characterization of a hydroformed, 304 stainless steel, Caribbean-style musical pan

    International Nuclear Information System (INIS)

    Murr, L.E.; Gaytan, S.M.; Lopez, M.I.; Bujanda, D.E.; Martinez, E.Y.; Whitmyre, G.; Price, H.

    2008-01-01

    We report herein the metallurgical and acoustical characterization of hydroformed 304 stainless steel, Caribbean pans. These pans were fully tuned to chromatic tones and compared to a manufactured, low-carbon, Caribbean steel pan standard. Hydroformed platforms had a Vickers microindentation hardness of HV 345, which was reduced by annealing during pan fabrication to HV 270. Skirts welded to the hydroformed head had a microindentation hardness of HV 440. Microstructural characterization by light optical metallography and transmission electron microscopy illustrated microstructures (including grain structures) characteristic of these pan microindentation hardnesses

  9. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report: Third quarter 1993

    International Nuclear Information System (INIS)

    1993-12-01

    During third quarter 1993, samples from AMB groundwater monitoring wells at the Metallurgical Laboratory Hazardous Waste Management Facility were analyzed for certain heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. Eight parameters exceeded standards during the quarter. As in previous quarters, tetrachloroethylene and trichloroethylene exceeded final Primary Drinking Water Standards; and aluminum, iron, lead, manganese, pH, and total organic halogens exceeded the Savannah River Site Flag 2 criteria in one or more of the wells. Groundwater flow direction and rate in the water-table unit were similar to previous quarters

  10. Effective recruitment method for the marketing department of a metallurgical enterprise

    Directory of Open Access Journals (Sweden)

    E. Jaba

    2014-04-01

    Full Text Available This paper presents some solutions to recruit staff for the Marketing Department of a metallurgical enterprise. Our goal is to present the psychological characteristics of a certain category of employees on a sample of 107 employees and to evaluate the relationship between the motivation to work and those characteristics. In order to realize such evaluation we used the linear mixed effects model in the statistical software program R. The results showed that a significant effect on work motivation have factors like work climate and the employee agreeability.

  11. Options of utilizing steelmaking dust in a non-metallurgical industry

    Directory of Open Access Journals (Sweden)

    T. Lis

    2012-04-01

    Full Text Available Recycling of by-products of the steelmaking process in electric arc (EAF furnaces is an important activity from the perspective of environmental protection as well as the steelmaking industry itself. This article is a discussion concerning the selected research results in terms of utilisation of steelmaking dusts containing 4 - 12 % of zinc in manufacture of cement bricks, ceramic construction materials as well as colored glass products. The research conducted has implied that using steelmaking dusts in non-metallurgical industries is both possible and reasonable.

  12. Selection of human capital in metallurgical companies using information technology (IT

    Directory of Open Access Journals (Sweden)

    I. Iancu

    2013-10-01

    Full Text Available Personnel selection is a process that takes place in a company in order to have better business performance and competitive advantage. Nowadays, companies have realized the importance of human capital as a necessity for survival in today’s competitive market. There are several methods for selecting staff, but this paper seeks to demonstrate that this selection can be done with the help of an expert system. Metallurgical companies face even greater challenges for managing personnel selection. This research will discover and test the key elements of management personnel selection and implementation of an expert system.

  13. A multi-level code for metallurgical effects in metal-forming processes

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, P.A.; Silling, S.A. [Sandia National Labs., Albuquerque, NM (United States). Computational Physics and Mechanics Dept.; Hughes, D.A.; Bammann, D.J.; Chiesa, M.L. [Sandia National Labs., Livermore, CA (United States)

    1997-08-01

    The authors present the final report on a Laboratory-Directed Research and Development (LDRD) project, A Multi-level Code for Metallurgical Effects in metal-Forming Processes, performed during the fiscal years 1995 and 1996. The project focused on the development of new modeling capabilities for simulating forging and extrusion processes that typically display phenomenology occurring on two different length scales. In support of model fitting and code validation, ring compression and extrusion experiments were performed on 304L stainless steel, a material of interest in DOE nuclear weapons applications.

  14. SOCIO-ECONOMICAL SUBSTANTIATION OF LARGE INTEGRATED STRUCTURES IN METALLURGICAL COMPLEX CREATION

    Directory of Open Access Journals (Sweden)

    A.A. Kozitsyn

    2007-03-01

    Full Text Available The main tendencies of Russia and Urals economy development on modern stage are considered; the necessity of creation of large integrated structures is shown. The methodical apparate of effectiveness evaluation of manufactural-territorial integration in regional economy is given, in its base the use of complex evaluation of economical safety of the territory is put. On the example of Urals mining-metallurgical company the effectiveness evaluation of creation and functioning of large integrated structure for municipal formations of Sverdlovskaya area in retrospective (2000 − 2004 yy and perspective (for the period till 2010 y periods is conducted.

  15. Study of the Metallurgical Aspects of Steel Micro-Alloying by Titan

    Directory of Open Access Journals (Sweden)

    Kijac, J.

    2006-01-01

    Full Text Available The metal properties upgrading applying it’s alloying with the simultaneous limitation of the impurities represents a prospective possibility of the metallurgical production further development. The interaction of the alloying substance active element with oxygen in metal and adjacent multiphase environment occurs under the actual conditions. Present paper is oriented particularly to the thermodynamic aspects of deoxygenation by titan in process of production of micro alloyed low carbon steel in two plants (oxygen converter 1-OC1 and 2-OC2 with the different effect of micro-alloy exploitation. Analysis of the effect of the metallurgical factors on the titan smelting loss in micro-alloyed steel production points at the need to master the metal preparation for the alloying and especially has got the decisive effect upon the oxidizing ability and rate of the slag phase availability. When comparing the micro-alloying matter yield among the individual production units, disclosed have been better results obtained in plant OC 2. Confirmed has been the effect of the slag amount (average amount of 7,3 t at OC 1 and 5,83 t at OC 2 and its quality during the steel tapping as one among the most significant factors affecting the alloying process and which also represent its oxidizing potential.

  16. [Three years of work-related accidents in a metallurgic plant: ways to its understanding].

    Science.gov (United States)

    Gonçalves, Cláudia Giglio de Oliveira; Dias, Adriano

    2011-02-01

    The objective of this study is to describe, by quantitative and qualitative methods, industrial accidents occurred during three years in a metallurgic plant in the rural area to understand the possible causes. It is a case study in a metallurgic plant where 336 accidents were studied in a 3-year period by means of three procedures: analysis of accidents' registers, interviews with 166 hurt workers, and the organization of Focal Groups (111 workers) for discussion. The ratio of yearly incidence of accidents was 16.9%; 75 cases required more than 15 out-of-work days; 51.2% occurred in the morning and affected boilermakers (48.2%). Among the interviewed workers, average schooling was 8.8 years, age ranged from 31-50 years (55.4%), 64.5% of workers had already suffered more than one accident. Besides, workers exposed to intense noise (+ 90 dBA) were the most affected (53%). In the focal groups, perceptions and feelings of workers regarding the accidents were identified that had not appeared in the previous stages. It can be concluded that focal groups allow for a better identification of factors that may contribute for accidents such as performance pressures, extra-hours of work, low wages, and precarious conditions of work and work organization.

  17. Metallurgical study of stress corrosion in aqueous media of alloy 600 (NC15Fe)

    International Nuclear Information System (INIS)

    Garriga-Majo, Denis

    1993-01-01

    The development of intergranular cracks have been noticed in steam generator tubes made of alloy 600. These cracks result in tube embrittlement, and several actions have been implemented to try to improve tube strength, mainly by reducing the applied mechanical solicitations. For given temperature, chemistry and mechanical solicitations, the alloy sensitivity seems to depend on its micro-structural condition. Thus, after a general description of stress corrosion cracking phenomena, the main existing theories are reviewed as well as means to reproduce these cracking phenomena in laboratory. The author addresses general and microstructure properties of Alloy 600, metallurgical, electrochemical or mechanical parameters which govern its stress corrosion cracking behaviour, and different theories proposed to model and predict this behaviour. In the second part, the author studies the structure of Alloy 600 tubes before their installation in the steam generator: metallurgical study, search for parameters enabling the prediction of tube microstructure and tensile characteristics, study of the origin of microstructure differences with respect to tube fabrication batch. The third part addresses the study of Alloy 600 plasticity and creep with respect to its micro-structural condition, with a particular attention to material deformation mechanisms at grain boundaries. The fourth part reports the analysis of the stress corrosion behaviour of steam generator tubes in pure water and in primary environment [fr

  18. Characterization of Tool Wear in High-Speed Milling of Hardened Powder Metallurgical Steels

    Directory of Open Access Journals (Sweden)

    Fritz Klocke

    2011-01-01

    Full Text Available In this experimental study, the cutting performance of ball-end mills in high-speed dry-hard milling of powder metallurgical steels was investigated. The cutting performance of the milling tools was mainly evaluated in terms of cutting length, tool wear, and cutting forces. Two different types of hardened steels were machined, the cold working steel HS 4-2-4 PM (K490 Microclean/66 HRC and the high speed steel HS 6-5-3 PM (S790 Microclean/64 HRC. The milling tests were performed at effective cutting speeds of 225, 300, and 400 m/min with a four fluted solid carbide ball-end mill (0 = 6, TiAlN coating. It was observed that by means of analytically optimised chipping parameters and increased cutting speed, the tool life can be drastically enhanced. Further, in machining the harder material HS 4-2-4 PM, the tool life is up to three times in regard to the less harder material HS 6-5-3 PM. Thus, it can be assumed that not only the hardness of the material to be machined plays a vital role for the high-speed dry-hard cutting performance, but also the microstructure and thermal characteristics of the investigated powder metallurgical steels in their hardened state.

  19. Review of New Technology for Preparing Crystalline Silicon Solar Cell Materials by Metallurgical Method

    Science.gov (United States)

    Li, Man; Dai, Yongnian; Ma, Wenhui; Yang, Bin; Chu, Qingmei

    2017-11-01

    The goals of greatly reducing the photovoltaic power cost and making it less than that of thermal power to realize photovoltaic power grid parity without state subsidies are focused on in this paper. The research status, key technologies and development of the new technology for preparing crystalline silicon solar cell materials by metallurgical method at home and abroad are reviewed. The important effects of impurities and defects in crystalline silicon on its properties are analysed. The importance of new technology on reducing production costs and improving its quality to increase the cell conversion efficiency are emphasized. The previous research results show that the raw materials of crystalline silicon are extremely abundant. The product of crystalline silicon can meet the quality requirements of solar cell materials: Si ≥ 6 N, P 1 Ω cm, minority carrier life > 25 μs cell conversion efficiency of about 19.3%, the product costs dollars / kg, the product energy consumption < 30 kwh / kg. The existing problems are pointed out. The prospect of the new metallurgical process with low cost, low energy consumption, low carbon and sustainable development are prospected.

  20. Relation between the optical and metallurgical properties of polished molybdenum mirrors

    Science.gov (United States)

    Bennett, J. M.; Wong, S. M.; Krauss, G.

    1980-10-01

    A study has been performed to determine the correlation among the microstructure, metallurgical processing, and optical surface finish of commercially available types of molybdenum (Mo) bar and plate and 0.5-mm thick Mo sheet. Specimens of bar and plate stock produced from low-carbon vacuum-arc Mo or powder-metallurgy-processed Mo, as well as TZM(Ti-Zr-Mo) Mo alloy, were in the form of 3.86-cm diam disks. In addition, typical cross-rolled sheet specimens were produced from powder-metallurgy-processed Mo that had a very fine grain structure and a high degree of texture. Specimens were extensively characterized both optically and metallurgically. It was found that well-polished surfaces have surface topographies directly related to the microstructure and hence to the processing of the material. In sheet material having a well-developed texture, the polishability appeared to be independent of texture, and the grain size did not result in a lower scatter surface. It was concluded that the optimum type of Mo to use for smooth low-scatter mirrors is low-carbon vacuum-arc-cast plate or sheet material.

  1. A thermo-metallurgical constitutive law of steels for structural mechanics

    International Nuclear Information System (INIS)

    Waeckel, Francois

    1994-01-01

    The aim of this work is to include the metallurgical behaviour of steels (and specifically their phases transformations) into thermo-mechanical studies. For this, a new model of aniso-thermal phase transformations during the cooling stage is proposed. Developed in the thermodynamics framework of simple materials with memory variables, its originality lies in the choice of the temperature time derivative T as independent variable. The identification and the transformation rates computation use the C.C.T. diagrams which are considered as families of particular solutions of evolution equations. The validation shows ability of the model to simulate all C.C.T. deductible tests. Furthermore, for some tests not included into the C.C.T., the numerical results remain good and the model, from which evolution equation form has been let free, allows to incorporate them to the identification data without modifying the C.C.T. simulation accuracy. Lastly, to take into account structural transformations mechanical effects, some currently used models have been introduced, together with the metallurgical model, in a finite element code. They allow whole quenching or welding simulations (up to residual stresses) as demonstrated by application examples. (author) [fr

  2. Occupational exposure in South African metallurgical plants and industries involving naturally occurring radionuclides

    International Nuclear Information System (INIS)

    Kruger, I.D.

    2002-01-01

    South Africa has a very large mining and minerals processing industry exploiting a variety of ores and minerals containing elevated levels of NORM. The industry employs more than 300,000 persons. Doses have been assessed to workers in the mining industry in South Africa. In the gold mining industry radon measurements have been performed since the early 1970s. Regulations have been in force since 1990. The mean annual dose to underground gold mine workers, mostly from radon progeny, is about 5 mSv with maximum doses exceeding 20 mSv. The maximum annual dose to surface workers in gold mines is 5 mSv. In South African coal mines the mean annual dose from inhalation of radon decay products has been estimated from limited radon concentration measurements to be about 0.6 mSv. In the phosphoric acid and fertilizer production industry the doses to the workers do not exceed 6 mSv/y. There are 3 mineral sands operations in South Africa, for which the maximum annual dose to workers is 3 mSv. One open pit copper mine contains elevated levels of U, which is extracted as a by-product. The maximum annual doses to workers are 5 mSv for workers in the mine and 20 mSv for workers in the metallurgical plant. Worker doses in the metallurgical plant have since been reduced with the introduction of radiation protection measures

  3. Metallurgical characterization of pulsed current gas tungsten arc, friction stir and laser beam welded AZ31B magnesium alloy joints

    International Nuclear Information System (INIS)

    Padmanaban, G.; Balasubramanian, V.

    2011-01-01

    This paper reports the influences of welding processes such as friction stir welding (FSW), laser beam welding (LBW) and pulsed current gas tungsten arc welding (PCGTAW) on mechanical and metallurgical properties of AZ31B magnesium alloy. Optical microscopy, scanning electron microscopy, transmission electron microscopy and X-Ray diffraction technique were used to evaluate the metallurgical characteristics of welded joints. LBW joints exhibited superior tensile properties compared to FSW and PCGTAW joints due to the formation of finer grains in weld region, higher fusion zone hardness, the absence of heat affected zone, presence of uniformly distributed finer precipitates in weld region.

  4. Possibilities of Formation of Dioxins and Furans in Metallurgical Processes as well as Methods of their Reduction

    Directory of Open Access Journals (Sweden)

    Holtzer, M.

    2007-01-01

    Full Text Available The metallurgical industry, among others, generates various kinds of wastes: gaseous, dusts, wastes and sewage. Special attention of the European Union is directed towards the elimination or significant reduction of the gaseous-dust contamination emissions including the most hazardous compounds, such as dioxins and furans. In the article the sources of dioxins and furans in metallurgical industry are described along with the reduction methods of these pollutants. Particularly the activities recommended as the Best Available Techniques (BAT in order to reduce the PCDD/PCDF emission from sintering processes, non-ferrous metallurgy and foundry engineering have been presented.

  5. Project development for mining-metallurgical complexes for production of uranium concentrates - an analysis and a methodology

    International Nuclear Information System (INIS)

    Ajuria G, S.; Blanco P, B.; Pena A, J.; Manzanera Q, C.

    1978-10-01

    Activities comprising the development of a project for a mining-metallurgical complex for production of uranium concentrates, from sampling and evaluation of an orebody until plant start-up, are analyzed. The analysis of the orebody, characterization of the ore, bench scale and pilot plant metallurgical studies, environmental studies and economic analyses of the project are described. The mining project and mine preparation and engineering and construction of the plant are reviewed in less detail. The estimated time lapse for the development of a typical project under ideal conditions is 66 months. A bar diagram is included showing an approximate timetable for each activity. (author)

  6. Measures to restore metallurgical mine wasteland using ecological restoration technologies: A case study at Longnan Rare Earth Mine

    Science.gov (United States)

    Rao, Yunzhang; Gu, Ruizhi; Guo, Ruikai; Zhang, Xueyan

    2017-01-01

    Whereas mining activities produce the raw materials that are crucial to economic growth, such activities leave extensive scarring on the land, contributing to the waste of valuable land resources and upsetting the ecological environment. The aim of this study is therefore to investigate various ecological technologies to restore metallurgical mine wastelands. These technologies include measures such as soil amelioration, vegetation restoration, different vegetation planting patterns, and engineering technologies. The Longnan Rare Earth Mine in the Jiangxi Province of China is used as the case study. The ecological restoration process provides a favourable reference for the restoration of a metallurgical mine wasteland.

  7. Correlation Between the Efficiency of Machinery and Equipment and the Productivity of Workers and its Effect on the Performance of a Metallurgical Undertaking

    Directory of Open Access Journals (Sweden)

    Kulawik, A.

    2007-01-01

    Full Text Available In this paper the example of procedure of life and objectify work effectiveness analysis in metallurgical enterprise were presented. Besides, on the example of chosen units of metallurgical enterprise, results of analysis - based on methodic proposed in the article - were discussed.

  8. THE ROLE OF SHIELDING GAS ON MECHANICAL, METALLURGICAL AND CORROSION PROPERTIES OF CORTEN STEEL WELDED JOINTS OF RAILWAY COACHES USING GMAW

    Directory of Open Access Journals (Sweden)

    Byju John

    2016-12-01

    Full Text Available This analysis lays emphasis on finding a suitable combination of shielding gas for welding underframe members such as sole bar of Railway Coaches made of corten steel; for improved mechanical, metallurgical and corrosion properties of welds using copper coated solid MIG/MAG welding filler wire size 1.2 mm conforming to AWS/SFA 5.18 ER 70 S in Semi-automatic GMAW process. Solid filler wire is preferred by welders due to less fumes, practically no slag and easy manipulation of welding torch with smooth wire flow during corrosion repair attention, when compared to Flux cored wire. Three joints using Gas metal arc welding (GMAW with shielding gases viz., Pure CO2, (80% Ar – 20% CO2 and (90% Ar – 10% CO2 were made from test pieces cut from Sole bar material of Railway Coach. Study of Mechanical properties such as tensile strength, hardness and toughness revealed that welded joint made using shielding gas (80% Ar – 20% CO2 has better Mechanical properties compared to the other two shielding gases and comparable to that of Parent metal. Type of Shielding gas used has influence on the chemical composition and macro & micro structures. The Tafel extrapolation study of freshly ground samples in 3.5% NaCl solution revealed that the welded joint made using shielding gas (80% Ar – 20% CO2 has also better corrosion resistance which is comparable to the Parent metal as well as similar commercial steels.

  9. Optimization Review: Bunker Hill Mining and Metallurgical Complex Superfund Site, Central Treatment Plant (CTP), Kellogg, Shoshone County, Idaho

    Science.gov (United States)

    The Bunker Hill Mining and Metallurgical Complex Superfund Site includes all areas of the Coeur d’Alene Basin where mining-related contamination occurred and encompasses a 21-square mile “Box” along Interstate 90 surrounding the former smelter complex.

  10. Metallurgical source-contribution analysis of PM10 annual average concentration: A dispersion modeling approach in moravian-silesian region

    Directory of Open Access Journals (Sweden)

    P. Jančík

    2013-10-01

    Full Text Available The goal of the article is to present analysis of metallurgical industry contribution to annual average PM10 concentrations in Moravian-Silesian based on means of the air pollution modelling in accord with the Czech reference methodology SYMOS´97.

  11. Morphology, chemistry and distribution of neoformed spherulites in agricultural land affected by metallurgical point-source pollution

    NARCIS (Netherlands)

    Leguedois, S.; Oort, van F.; Jongmans, A.G.; Chevalier, P.

    2004-01-01

    Metal distribution patterns in superficial soil horizons of agricultural land affected by metallurgical point-source pollution were studied using optical and electron microscopy, synchrotron radiation and spectroscopy analyses. The site is located in northern France, at the center of a former entry

  12. Explosion bonding of dissimilar materials for fabricating APS front end components: Analysis of metallurgical and mechanical properties and UHV applications

    International Nuclear Information System (INIS)

    Li, Yuheng; Shu, Deming; Kuzay, T.M.

    1994-01-01

    The front end beamline section contains photon shutters and fixed masks. These components are made of OFHC copper and GlidCOP AL-15. Stainless steels (304 or 316) are also used for connecting photon shutters and fixed masks to other components that operate in the ultrahigh vacuum system. All these dissimilar materials need to be joined together. However, bonding these dissimilar materials is very difficult because of their different mechanical and thermal properties and incompatible metallurgical properties. Explosion bonding is a bonding method in which the controlled energy of a detonating explosive is used to create a metallurgical bond between two or more similar or dissimilar materials. No intermediate filler metal, for example, a brazing compound or soldering alloy, is needed to promote bonding, and no external heat need be applied. A study of the metallurgical and mechanical properties and YGV applications of GlidCop AL-15, OFHC copper, and 304 stainless steel explosion-bonded joints has been done. This report contains five parts: an ultrasonic examination of explosion-bonded joints and a standard setup; mechanical-property and thermal-cycle tests of GlidCop AL-15/304 stainless steel explosion-bonded joints; leak tests of a GlidCop AL-15/304 stainless steel explosion-bonded interfaces for UHV application; metallurgical examination of explosion-bonded interfaces and failure analysis, and discussion and conclusion

  13. Mechanical fasteners used in historical Siberian shipbuilding: perspectives for metallurgical analysis

    Science.gov (United States)

    Goncharov, A. E.; Mednikov, D. M.; Karelin, N. M.; Nasyrov, I. R.

    2017-10-01

    Recent discoveries of shipwrecked vessels in the northern reaches of the river Yenisei led to a number of questions concerning the history of shipbuilding in Siberia and the technical features of the first vessels of the industrial era to navigate the Northern Sea Route and the Yenisei. One of these questions addresses the features of mechanical fasteners used in the construction of the Siberian vessels. The answer to this question may provide information on how the first vessels, constructed in Siberia during the 1870’s, were able to sail the high seas of the Arctic Ocean and reach European ports. In this paper, we provide a description of iron mechanical fasteners obtained from one shipwrecked vessel and discuss on the perspectives of a metallurgical analysis This research has been funded by a grant of the Russian Fund of Humanities Research (Russian Fund of Fundamental Research) and the Krasnoyarsk Regional Science Fund under Grant number 16-11-24010.

  14. Arsenic precipitation from metallurgical effluents; Precipitacion de arsenico desde efluentes metalurgicos

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, P.; Vargas, C.; Araya, E.; Martin, I.; Alguacil, F. J.

    2004-07-01

    In the mining-metallurgical companies different liquid effluents are produced, which can contain a series of dissolved elements that are considered dangerous from an environmental point of view. One of these elements is the arsenic, especially in the state of oxidation +5 that can be precipitated as calcium or iron arsenate. To fulfil the environmental requests it should have in solution a content of arsenic lower than 0,5 mg/l and the obtained solid product should be very stable under the condition in which it will be stored. this work looks for the best conditions of arsenic precipitation, until achieving contents in solution lower than such mentioned concentration. Also, the stability of the precipitates was studied. (Author) 7 refs.

  15. Utilizing of the metallurgical slag for production of cementless concrete mixtures

    Directory of Open Access Journals (Sweden)

    D. Baricová

    2012-10-01

    Full Text Available In process of pig iron, steel and cast iron production besides main product, also secondary products are formed, that have character of secondary raw materials and industrial wastes. The most abundant secondary product originating in the metallurgical process is furnace slag. Total amount of accured slag, also its chemical, mineralogical, physical – chemical properties and similarity with natural stones predestinate its utilisation in different fields of industry. The contribution deals with production of cementless concrete mixtures, where the main parts were formed by blast furnace granulated slag grinded and different gravel slag from blast furnace, oxygen converter and electric arc furnace. As activators of solidification different kinds of water glass were tested.

  16. Powder metallurgical high performance materials. Proceedings. Volume 1: high performance P/M metals

    International Nuclear Information System (INIS)

    Kneringer, G.; Roedhammer, P.; Wildner, H.

    2001-01-01

    The proceedings of this sequence of seminars form an impressive chronicle of the continued progress in the understanding of refractory metals and cemented carbides and in their manufacture and application. There the ingenuity and assiduous work of thousands of scientists and engineers striving for progress in the field of powder metallurgy is documented in more than 2000 contributions covering some 30000 pages. The 15th Plansee Seminar was convened under the general theme 'Powder Metallurgical High Performance Materials'. Under this broadened perspective the seminar will strive to look beyond the refractory metals and cemented carbides, which remain at its focus, to novel classes of materials, such as intermetallic compounds, with potential for high temperature applications. (author)

  17. Method of purifying metallurgical grade silicon employing reduced pressure atmospheric control

    Science.gov (United States)

    Ingle, W. M.; Thompson, S. W.; Chaney, R. E. (Inventor)

    1979-01-01

    A method in which a quartz tube is charged with chunks of metallurgical grade silicon and/or a mixture of such chunks and high purity quartz sand, and impurities from a class including aluminum, boron, as well as certain transition metals including nickel, iron, and manganese is described. The tube is then evacuated and heated to a temperature within a range of 800 C to 1400 C. A stream of gas comprising a reactant, such as silicon tetrafluoride, is continuously delivered at low pressures through the charge for causing a metathetical reaction of impurities of the silicon and the reactant to occur for forming a volatile halide and leaving a residue of silicon of an improved purity. The reactant which included carbon monoxide gas and impurities such as iron and nickel react to form volatile carbonyls.

  18. Determination of Japanese buyer valuation of metallurgical coal characteristics by hedonic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Koerner, R.J. [Griffith University, Brisbane, Qld. (Australia). Graduate School of Management

    2001-09-01

    Considerable efforts have been devoted by econometric researchers to understanding Japanese steel mill (JSM) metallurgical coal valuation policies, and whether such policies disadvantage coal exporters. Much of this research has employed the hedonic regression modeling technique of Rosen and examines the significance of coal quality in establishing market price. This article discusses shortcomings in some such modeling studies, and presents results of additional hedonic modeling to buttress findings of previous work suggesting that cross-cultural bargaining factors rather than coal quality explain lower prices for Australian coals in Japanese market settlements. Policy changes that might be effective in ameliorating bilateral market distortions arising from oligopsony characteristics exhibited in JSM contract settlements are then explored. 29 refs., 2 figs., 2 tabs.

  19. Leaching of nickel and copper from soil contaminated by metallurgical dust.

    Science.gov (United States)

    Barcan, Valery

    2002-04-01

    The paper presents the results of the laboratory percolation experiment simulated soil contamination by emissions from a Ni-Cu smelter. Humus (Ao horizon) columns were transferred to lysimeters from an illuvial, humic, ferriferous forest podzol site. Fine metallurgical dust containing Ni and Cu was layered on the columns and irrigated with sulphuric acid solutions at pH 3, 4, 5, and 6. Irrigation for 19 months indicated that the leaching of metals down the humus column was greatest at pH 6. Calculations indicated that it would take 160-270 years for complete leaching of Ni from the Ao layer, and 100-200 years for Cu, depending on the dust composition. Natural decontamination of affected soils will take centuries.

  20. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report. Second quarter 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    During second quarter 1994, samples from AMB groundwater monitoring wells at the Metallurgical Laboratory Hazardous Waste Management Facility were analyzed for selected heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. Three parameters exceeded standards during the quarter. As in previous quarters, tetrachloroethylene and trichloroethylene exceeded final Primary Drinking Water Standards. Total organic halogens exceeded the Savannah River Site (SRS) Flag 2 criteria in two of the wells. Groundwater flow direction and rate in the M-Area Aquifer Zone were similar to previous quarters. Conditions affecting determination of groundwater flow directions and rates in the Upper Lost Lake Aquifer Zone, Lower Lost Lake Aquifer Zone, and the Middle Sand Aquifer Zone of the Crouch Branch Confining Unit were also similar to previous quarters. During second quarter 1994, SRS received SCDHEC approval for five point-of-compliance wells and two plume definition wells near the Met Lab HWMF. Field work has begun on this project.

  1. Change of the layout of an office of a metallurgical company: simple projects, big solutions.

    Science.gov (United States)

    Duarte, Luiz Carlos da Silva; Eckhardt, Moacir; da Motta, Giordano Paulo

    2012-01-01

    The posture, a good organization and the proper layout of the environment and workplaces have a positive influence on the income of an employee. To develop the work it is used a methodology that addressed the study phases of the theory involving the subject, description of the current situation, preparation of conceptions, choice of design, implementation and reporting of results. Through the project of "Change of the layout of an office of a metallurgical company" there was an intervention in these reported aspects providing improvements in the office, regarding ergonomic, layout, workplace and lighting issues, bringing welfare to the official, with the intent to improve its performance within the company and facilitating its actions, as the company's customer service. The results provided improvements in layout, in the workplace and especially in comfort for the human resources that perform their activities.

  2. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report. First quarter 1995

    International Nuclear Information System (INIS)

    1995-06-01

    During first quarter 1995, samples from AMB groundwater monitoring wells at the Metallurgical Laboratory Hazardous Waste Management Facility (Met Lab HWMF) were analyzed for selected heavy metals, field measurements, radionuclides, volatile organic compounds, and other constituents. Six parameters exceeded standards during the quarter. As in previous quarters, tetrachloroethylene and trichloroethylene exceeded final Primary Drinking Water Standards (PDWS). Total organic halogens exceeded its Savannah River Site (SRS) Flag 2 criterion during first quarter 1995 as in fourth quarter 1994. Aluminum, iron, and manganese, which were not analyzed for during fourth quarter 1994, exceeded the Flag 2 criteria in at least two wells each during first quarter 1995. Groundwater flow direction and rate in the M-Area Aquifer Zone were similar to previous quarters. Conditions affecting the determination of groundwater flow directions and rates in the Upper Lost Lake Aquifer Zone, Lower Lost Lake Aquifer Zone, and the Middle Sand Aquifer Zone of the Crouch Branch Confining Unit were also similar to previous quarters

  3. DIFFERENCES OF COMMITMENT BETWEEN GENERATIONS X AND Y – A STUDY IN A METALLURGICAL INDUSTRY

    Directory of Open Access Journals (Sweden)

    Fábio Teodoro Tolfo Ribas

    2015-06-01

    Full Text Available The way each generation acts in society and in organizations is always a matter of study and appreciation (LOMBARDIA; STEIN & PIN, 2008. Thus, this study aimed to examine the organizational commitment in its affetctive, instrumental and normative dimensions in different generational groups (X and Y of Metallurgical Industry in the city of Caxias do Sul (RS. The research is descriptive and quantitative in nature. To reach its objective it uses a validated questionnaire, based on Ribas 2010, with 96 professional of the administrative sector. The results identify that the respondents have very similar approaches regarding affective, instrumental and normative commitment perceptions. Still, it was noticed that the highest means for both generations, were obtained in the construct of affective commitment. The clearest difference emerged in the focus of instrumental commitment, which determines the individual’s need to remain in business.

  4. Powder metallurgical high performance materials. Proceedings. Volume 2: P/M hard materials

    International Nuclear Information System (INIS)

    Kneringer, G.; Roedhammer, P.; Wildner, H.

    2001-01-01

    The proceedings of these seminars form an impressive chronicle of the continued progress in the understanding of refractory metals and cemented carbides and in their manufacture and application. There the ingenuity and assiduous work of thousands of scientists and engineers striving for progress in the field of powder metallurgy is documented in more than 2000 contributions covering some 30000 pages. The 15 th Plansee Seminar was convened under the general theme 'Powder Metallurgical High Performance Materials'. Under this broadened perspective the seminar will strive to look beyond the refractory metals and cemented carbides, which remain at its focus, to novel classes of materials, such as intermetallic compounds, with potential for high temperature applications. (author)

  5. Metallurgical and Chemical Characterization of Bronze Remains Found at the Houhe Site in Shanxi Province, China

    Science.gov (United States)

    Mu, D.; Nan, P. H.; Wang, J. Y.; Song, G. D.; Luo, W. G.

    2015-07-01

    This study attempts to determine the metallurgical and chemical characteristics of Chinese bronze artifacts from the early Iron Age by taking the bronze artifacts from the Houhe site as an example. The bronze artifacts included vessels, buckles, mirrors, and bells. Elemental compositions of 10 Chinese bronze artifacts from the Houhe site were determined by an x-ray fluorescence system. Microstructures were observed by a polarizing microscope. Most of the artifacts were cast and lacked external evidence of secondary processing. The copper content of the vessels is higher than the other samples, and the copper content of buckles is the lowest. High tin content is a distinctive characteristic of the mirrors. Through comparisons, bells show a decline in the content of copper from the Western Zhou dynasty to the early Han dynasty, and the content of lead increased over time. Combined with historical studies, the findings show that there may have been industrial standards for bronze production during the Han dynasty.

  6. GEOLOGY OF THE FLORENCIA GOLD – TELLURIDE DEPOSIT (CAMAGÜEY, CUBA AND SOME METALLURGICAL CONSIDERATIONS

    Directory of Open Access Journals (Sweden)

    López K Jesús M.

    2006-12-01

    Full Text Available This paper describes the results from a study of the Florencia gold-telluride deposit in Central Cuba, including mineralogical, petrographical, microprobe and chemical analysis. Valuable information is provided for the exploration, mining and processing of gold ores from other nearby deposits with similar characteristics. Results highlight changes in the mineralogical composition of the ores between the north and south sectors of the deposit, as reflected in metallurgical concentrates after beneficiation and flotation of samples from these sectors.
    It is shown that gold deposits of the Cretaceous Volcanic Arc of Cuba largely consist of native gold, telluride and pyrite, where arsenopyrite is almost absent. Traces of lead, zinc and cadmium are present in the periphery of the main ore zones.

  7. Atomic absorption determination of vanadium in products of metallurgical production and mineral feed stock

    International Nuclear Information System (INIS)

    Polikarpova, N.V.; Panteleeva, E.Yu.

    1983-01-01

    Rapid and selective method of atomic absorption determination of vanadium in metallurgical process products and numerical feed stock is suggested. Buffering mixture of aluminium and phosphoric acid is used to suppress the effect of sample composition on the value of vanadium atomic absorption. The concentration of buffer components can vary from 400 up to 2000 μg/ml Al and from 2 up to 5% vol. H 3 PO 4 . The suggested mixture completely eli-- minates the strong chromium effect. The developed method was used for analyzing steels, alloys based on Mo, Ni, Ti, Cr, as well as titanium magnetite ores and concentrates. The method enables to determine from 0.05 up to 10% vanadium with 0.05-0.01 relative standard deviation, respectively

  8. Employment and other selected personnel attributes in metallurgical and industrial enterprises of different size - research results

    Directory of Open Access Journals (Sweden)

    A. Pawliczek

    2015-10-01

    Full Text Available The presented paper deals with the issue of employment and other selected personnel attributes as employees’ affiliations, employees’ benefits, monitoring of employees’ satisfaction, monitoring of work productivity, investments into employees education and obstacles in hiring qualified human resources. The characteristics are benchmarked on the background of enterprise size based on the employees count in the year 2013. The relevant data were collected in Czech industrial enterprises, including metallurgical companies, with the help of university questionnaire research in order to induce synergy effect arising from mutual communication of academy-students-industry. The most important results are presented later in the paper, complemented with discussion based on relevant professional literature sources. The findings suggest that bigger companies check productivity and satisfaction and dismiss employees more frequently, unlike medium companies which do not reduce their workforce and solve the impact of crisis by decreased affiliations, reduced benefits and similar savings.

  9. Termination of the Special Metallurgical (SM) Building at Mound Laboratory: a final report

    International Nuclear Information System (INIS)

    Harris, W.R.; Kokenge, B.R.; Marsh, G.C.

    1976-01-01

    The report describes and highlights the more important factors associated with the termination of the Special Metallurgical (SM) Building at Mound Laboratory. As a result, a written record of the more important techniques and procedures is now available for reference by others involved in similar termination efforts. Included in this report is a description of the organizational units that were used in this effort along with a description of their responsibilities. A general description of the SM Building and a discussion of the more relevant procedures and equipment that were used are also presented. In addition, pertinent Health Physics information, such as personnel exposure, final wipe levels in the terminated facility, and assays of the structure, are provided. Based on the experience gained from this project, recommendations were made regarding the design of future radioactive material handling facilities so that when they are ultimately terminated the effort can be accomplished more efficiently

  10. Radon flux measurement methodologies

    International Nuclear Information System (INIS)

    Nielson, K.K.; Rogers, V.C.

    1984-01-01

    Five methods for measuring radon fluxes are evaluated: the accumulator can, a small charcoal sampler, a large-area charcoal sampler, the ''Big Louie'' charcoal sampler, and the charcoal tent sampler. An experimental comparison of the five flux measurement techniques was also conducted. Excellent agreement was obtained between the measured radon fluxes and fluxes predicted from radium and emanation measurements

  11. Mathematical Modelling of the Price Range in the Procurement of Ferrous Scrap by Metallurgical Enterprises

    Directory of Open Access Journals (Sweden)

    Tatyana Aleksandrovna Ivanova

    2018-03-01

    Full Text Available For metallurgical enterprises, it is important to understand the limits of the most probable values of prices and geographical area for procurement of ferrous scrap in the regions. In order to define the maximal scrap prices in the regions, the authors have developed a mathematical model of “auction purchases”. This model equally assesses price competition between scrap consumers. When setting the price, we consider the territorial imbalances between scrap supply and demand in the regions; costs for scrap transportation from supplier to consumer; price level for scrap in the “windows for exports”. We calculate the lowest price according to the “export parity”. The results of the calculations allow evaluating a range of regional prices and interregional flows of scrap. This approach is unnown in the published works of Russian and foreign researchers. For calculations, we have developed a special software. The following initial data were used: data on railroad transportation of ferrous scrap in the Russian Federation provided by JSC Russian Railways; handbooks of railway tariffs 10–01 between railway stations of the Russian Federation; statistical data on prices of 3A metal scrap in the “windows for exports”. The article presents the formal structure of the model of “auction procurement”, the algorithm of its implementation and the results of calculations. The price level calculated according to the model of “auction procurement” can be used in management practice as potentially highest level of price, which can be reached in the conditions of competition between consumers of scrap in a situation when the negotiations are impossible. The proposed mathematical model allows a metallurgical enterprise to prove and implement a differentiated approach to the formation of regional prices of scrap, and to define regions for scrap purchasing.

  12. Metallurgical Effects of Shunting Current on Resistance Spot-Welded Joints of AA2219 Sheets

    Science.gov (United States)

    Jafari Vardanjani, M.; Araee, A.; Senkara, J.; Jakubowski, J.; Godek, J.

    2016-08-01

    Shunting effect is the loss of electrical current via the secondary circuit provided due to the existence of previous nugget in a series of welding spots. This phenomenon influences on metallurgical aspects of resistance spot-welded (RSW) joints in terms of quality and performance. In this paper RSW joints of AA2219 sheets with 1 mm thickness are investigated metallurgically for shunted and single spots. An electro-thermal finite element analysis is performed on the RSW process of shunted spot and temperature distribution and variation are obtained. These predictions are then compared with experimental micrographs. Three values of 5 mm, 20 mm, and infinite (i.e., single spot) are assumed for welding distance. Numerical and experimental results are matching each other in terms of nugget and HAZ geometry as increasing distance raised nugget size and symmetry of HAZ. In addition, important effect of shunting current on nugget thickness, microstructure, and Copper segregation on HAZ grain boundaries were discovered. A quantitative analysis is also performed about the influence of welding distance on important properties including ratio of nugget thickness and diameter ( r t), ratio of HAZ area on shunted and free side of nugget ( r HA), and ratio of equivalent segregated and total amount of Copper, measured in sample ( r Cu) on HAZ. Increasing distance from 5 mm to infinite, indicated a gain of 111.04, -45.55, and -75.15% in r t, r HA, and r Cu, respectively, while obtained ratios for 20 mm welding distance was suitable compared to single spot.

  13. Peer review of the Three Mile Island Unit 2 Vessel Investigation Project metallurgical examinations

    International Nuclear Information System (INIS)

    Bohl, R.W.; Gaydos, R.G.; Vander Voort, G.F.; Diercks, D.R.

    1994-07-01

    Fifteen samples recovered from the lower head of the Three Mile Island (TMI) Unit 2 nuclear reactor pressure vessel were subjected to detailed metallurgical examinations by the Idaho National Engineering Laboratory (INEL), with supporting work carried out by Argonne National Laboratory (ANL) and several of the European participants. These examinations determined that a portion of the lower head, a so-called elliptical ''hot spot'' measuring ∼0.8 x 1 m, reached temperatures as high as 1100 degrees C during the accident and cooled from these temperatures at ∼10--100 degrees C/min. The remainder of the lower head was found to have remained below the ferrite-toaustenite transformation temperature of 727 degrees C during the accident. Because of the significance of these results and their importance to the overall analysis of the TMI accident, a panel of three outside peer reviewers, Dr. Robert W. Bohl, Mr. Richard G. Gaydos, and Mr. George F. Vander Voort, was formed to conduct an independent review of the metallurgical analyses. After a thorough review of the previous analyses and examination of photo-micrographs and actual lower head specimens, the panel determined that the conclusions resulting from the INEL study were fundamentally correct. In particular, the panel reaffirmed that four lower head samples attained temperatures as high as 1100 degrees C, and perhaps as high as 1150--1200 degrees C in one case, during the accident. They concluded that these samples subsequently cooled at a rate of ∼50--125 degrees C/min in the temperature range of 600--400 degrees C, in good agreement with the original analysis. The reviewers also agreed that the remainder of the lower head samples had not exceeded the ferrite-to-austenite transformation temperature during the accident and suggested several refinements and alternative procedures that could have been employed in the original analysis

  14. Integration of soil magnetometry and geochemistry for assessment of human health risk from metallurgical slag dumps.

    Science.gov (United States)

    Rachwał, Marzena; Wawer, Małgorzata; Magiera, Tadeusz; Steinnes, Eiliv

    2017-12-01

    The main objective of the study was an assessment of the pollution level of agricultural land located close to dumps of industrial waste remaining after former Zn and Pb ore processing in Poland. The integrated geophysical-geochemical methods were applied for assessment of soil quality with respect to trace element pollution. Additionally, human health risk induced by the contaminated arable soil and dusting slag heap was estimated. The investigations pointed out that soils in the vicinity of the metallurgical slag dump in Piekary were heavily polluted. Spatial distribution of magnetic susceptibility corresponding well with distribution of the content of potentially toxic elements indicated the local "pollution hotspots." Proper geophysical and geochemical data interpretation supported by statistical factor analysis enabled identification of three different sources of pollution including metallurgical slug dump as a main source, but also traffic pollution influencing the area located along the busy road and relatively strong influence of the geochemical background. Computed health hazard index revealed no adverse health effect to the farmers cultivating arable soil, but in the direct vicinity of dusting, slag dump health risk occurred, caused mostly by very toxic elements as As and Tl. In the future, investigation should be focused on contribution of different sources to the heavy metal pollution in soil-crop system in this area. It should be highlighted that a site-specific approach should be taken in order to redevelop this kind of area in order to reduce ecological and human health threat. The study proved the integrated two-stage geophysical-geochemical method to be a feasible, reliable, and cost-effective tool for identification of the extent of soil pollution and areas at risk.

  15. ALTERNATIVE BINDERS TO BENTONITE FOR IRON ORE PELLETIZING : PART II : EFFECTS ON METALLURGICAL AND CHEMICAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    Osman Sivrikaya

    2014-07-01

    Full Text Available This study was started to find alternative binders to bentonite and to recover the low preheated and fired pellet mechanical strengths of organic binders-bonded pellets. Bentonite is considered as a chemical impurity for pellet chemistry due to acid constituents (SiO2 and Al2O3. Especially addition of silica-alumina bearing binders is detrimental for iron ore concentrate with high acidic content. Organic binders are the most studied binders since they are free in silica. Although they yield pellets with good wet strength; they have found limited application in industry since they fail to give sufficient physical and mechanical strength to preheated and fired pellets. It is investigated that how insufficient preheated and fired pellet strengths can be improved when organic binders are used as binder. The addition of a slag bonding/strength increasing constituent (free in acidic contents into pellet feed to provide pellet strength with the use of organic binders was proposed. Addition of boron compounds such as colemanite, tincal, borax pentahydrate, boric acid together with organic binders such as CMC, starch, dextrin and some organic based binders, into magnetite and hematite pellet mixture was tested. After determining the addition of boron compounds is beneficial to recover the low pellet physical and mechanical qualities in the first part of this study, in this second part, metallurgical and chemical properties (reducibility - swelling index – microstructure – mineralogy - chemical content of pellets produced with combined binders (an organic binder plus a boron compound were presented. The metallurgical and chemical tests results showed that good quality product pellets can be produced with combined binders when compared with the bentonite-bonded pellets. Hence, the suggested combined binders can be used as binder in place of bentonite in iron ore pelletizing without compromising the pellet chemistry.

  16. Metallurgical study and phase diagram calculations of the Zr-Nb-Fe-(Sn,O) system

    International Nuclear Information System (INIS)

    Toffolon, C.

    2000-01-01

    The Framatome M5 TM Zr-Nb-O alloy with small amounts of Fe is of interest for nuclear applications (PWR fuel cladding).The behaviour of this kind of alloy for in-service conditions strongly depends on the microstructure. Therefore, a metallurgical study of alloys of the Zr-Nb-Fe-(O-Sn) system has been developed in order to study the influence of chemical composition variabilities of Nb, Fe and O and thermal treatments on the resultant microstructure. In order to get some insight on the physical metallurgy of Zr-Nb-Fe-(Sn,O) alloys and to minimize the experiments, it is useful to build a thermodynamic database. With this object, it was necessary to re-optimize and to calculate the low order binary systems such as Fe-Nb and Nb-Sn in order to assess the Zr-Nb-Fe-(Sn,O) system. Then, the experimental studies concerned: the influence of small variations in Nb and O contents on the α/β transus temperatures. A comparison between experimental results and thermodynamic predictions showed a good agreement; the precipitation kinetics of βNb and intermetallic phases in the α phase domain. These experiments showed that the kinetics depends on the initial metallurgical conditions; the determination of the crystallographic structure and the stoichiometry of the ternary Zr-Nb-Fe intermetallic compounds as a function of the temperature. Finally, these experimental data were used to propose a first assessment of the Zr-Nb-Fe(O∼1200 ppm) system. (author)

  17. Performance analysis of locomotive park of the transport service of rolling mills metallurgical enterprises

    Directory of Open Access Journals (Sweden)

    Ганна Вікторовна Маслак

    2017-07-01

    Full Text Available In terms of market economy it is highly important to implement new transport and energy-saving technologies into industrial enterprises and industrial objects’ workflow. And the main point here is employment of traction means which secure considerable economy in transport costs and, first and foremost, energy consumption. The issue of transport service of the rolling shop at a metallurgical enterprise is of high importance from the point of view of railway traction means utilization effectiveness, i.e. locomotives utilization within the process of shunting (which is carried out at railway tracks serving loading and unloading sites of the rolling shop. The article assesses operational indicators of locomotives’ performance by the time, power and adhesion weight within serving transport-and-handling complex of rolling shop at metallurgical enterprise. With this purpose transport technology of transport-and-handling complex of rolling shop is taken into consideration. In order to make the performance assessment of the locomotive fleet operation, algorithm of research has been developed. In accordance with this algorithm, operational parameters for TGM-4 locomotives exploitation have been defined (the data is provided for locomotive operation during a shift.Adhesion weight and locomotive power calculations have been made for work and after-hours runs. The analysis shows the level of inefficiency of locomotives use. One of the main ways of saving these costs is substitution of high-powered locomotives with energy-saving traction means. This issue can be solved at the expense of traction means based on wheeled tractors or self-propelled chassis which can be used either on a road or on a railway track. In accordance with operational conditions, qualification of tractive effort and other parameters, the effectiveness of traction means utilization at railway- and auto-transportations significantly increases

  18. Manganese Ores from South Sulawesi: Their Potential Uses as Raw Materials for Metallurgical Industry

    Directory of Open Access Journals (Sweden)

    Sufriadin Sufriadin

    2017-03-01

    Full Text Available Characterization of manganese ores from Barru and Bone regencies of South Sulawesi has been conducted with the aim at clarification of their mineralogical and chemical composition for their potential uses as the raw materials for metallurgical industry. Mineralogical properties of the ores analyzed by means of optical microscopy and X-ray diffractometry (XRD show that samples from Barru consist mainly of rhodochrosite (MnCO3 with less cryptomelane, groutite, bixbyite, and todorokite. Goethite, calcite and small amount of quartz present as impurities. Manganese ore samples from Bone are predominantly composed of pyrolusite (MnO2 with subordinate ramsdellite and hollandite. Barite, quartz, hematite and clay are present as gangue minerals. Chemical compositions determined by using XRF method revealed that Barru samples contain higher in MnO (average is 40.07 wt% than the Bone samples (average is 34.36 wt%. Similarly, Fe2O3 and CaO are also higher in Barru than those of the Bone samples. In contrast, concentrations of SiO2 and total alkali (K2O + Na2O are lower in the Barru samples. The average P2O5 content of samples in both areas is low (<0.2 wt%. Relatively higher grade of Fe2O3 in the Barru ore implies that it has potential application for ferromanganese production; whereas the elevated SiO2 content of the Bone ore is a good indication for silicomanganese manufacture. However, both ores may not favorable to be directly used as raw materials in metallurgical uses. Prior to be used, the ores should be treated by applying physical beneficiation in order to reduce deleterious elements.

  19. Peer review of the Three Mile Island Unit 2 Vessel Investigation Project metallurgical examinations

    Energy Technology Data Exchange (ETDEWEB)

    Bohl, R.W.; Gaydos, R.G.; Vander Voort, G.F.; Diercks, D.R. [Argonne National Lab., IL (United States)

    1994-07-01

    Fifteen samples recovered from the lower head of the Three Mile Island (TMI) Unit 2 nuclear reactor pressure vessel were subjected to detailed metallurgical examinations by the Idaho National Engineering Laboratory (INEL), with supporting work carried out by Argonne National Laboratory (ANL) and several of the European participants. These examinations determined that a portion of the lower head, a so-called elliptical ``hot spot`` measuring {approx}0.8 {times} 1 m, reached temperatures as high as 1100{degrees}C during the accident and cooled from these temperatures at {approx}10--100{degrees}C/min. The remainder of the lower head was found to have remained below the ferrite-toaustenite transformation temperature of 727{degrees}C during the accident. Because of the significance of these results and their importance to the overall analysis of the TMI accident, a panel of three outside peer reviewers, Dr. Robert W. Bohl, Mr. Richard G. Gaydos, and Mr. George F. Vander Voort, was formed to conduct an independent review of the metallurgical analyses. After a thorough review of the previous analyses and examination of photo-micrographs and actual lower head specimens, the panel determined that the conclusions resulting from the INEL study were fundamentally correct. In particular, the panel reaffirmed that four lower head samples attained temperatures as high as 1100{degrees}C, and perhaps as high as 1150--1200{degrees}C in one case, during the accident. They concluded that these samples subsequently cooled at a rate of {approx}50--125{degrees}C/min in the temperature range of 600--400{degrees}C, in good agreement with the original analysis. The reviewers also agreed that the remainder of the lower head samples had not exceeded the ferrite-to-austenite transformation temperature during the accident and suggested several refinements and alternative procedures that could have been employed in the original analysis.

  20. Mechanical and metallurgical properties of dissimilar metal joints using novel joining techniques

    Science.gov (United States)

    Ashcroft, Emma Jane

    In recent years there have been significant new developments in welding processes for joining stainless steel and dissimilar metals. This is associated with the rise in interest of using stainless steel in the automotive industry from both car manufacturers and stainless steel producers. The main reason for using stainless steel within the automotive industry is the combination of formability and high strength but also the improved corrosion resistance when compared to zinc coated mild steel. This research explores the mechanical and metallurgical properties of dissimilar metal joining and determines a relationship between the fatigue properties and weld geometry. The research focuses on the relatively unexplored joining techniques of Laser Hybrid Welding and Cold Metal Transfer applied to joining stainless steel grades Hy-Tens 1000 and LDX 2101 to Dogal 260RP-X mild steel. The joints are assessed in terms of tensile, fatigue and metallurgical properties. Experimental results and analysis show that the fatigue properties of both laser hybrid welding and cold metal transfer joints are a linear relationship with a negative gradient to value of the root angle on the mild steel side of the joints, as the angle at the root decreases the fatigue life increases.It was found that when joining the material combinations outlined in this research with Laser Hybrid Welding the resulting solidified weld pool was chemically inhomogeneous. However, welds produced using Cold Metal Transfer resulted in a chemically homogenous weld pool and consistent microhardness. Comparisons with laser welding show that laser hybrid welding and cold metal transfer can produce joints with mechanical properties comparable to welding methods currently being used in the automotive industry, for example, laser welding.

  1. Corrosion behaviour of hyper duplex stainless steel in various metallurgical conditions for sea water cooled condensers

    International Nuclear Information System (INIS)

    Singh, Umesh Pratap; Kain, Vivekanand; Chandra, Kamlesh

    2011-01-01

    The sea water cooled condensers have to resist severe corrosion as marine environment is the most corrosive natural environment. Copper alloys are being phased out due to difficulties in water chemistry control and Titanium base alloys are extremely expensive. Austenitic stainless steels (SS) remain prone to localized corrosion in marine environments hence not suitable. These heat exchangers operate at temperatures not exceeding 50 deg C and at very low pressures. The tubes of these heat exchangers are joined to the carbon steel tube sheets by roll expansion or by roll expansion followed by seam welding. These conditions are expected to affect the localized corrosion resistance of the tube in roll joined region due to cold working and in the tube-tube sheet welded joint due to thermal effects of welding. In this study, the localized corrosion behaviour of a Hyper Duplex Stainless Steel (HDSS) has been evaluated, and compared with other materials e.g. types 304L SS, 316L SS, Duplex SS 2205, Titanium grade - 2, and Al Brass. The evaluation is done in three metallurgical conditions (a) as received, (b) cold rolled and (c) welded condition in synthetic sea water at room temperature and at 50 deg C to assess the resistance to crevice, pitting and stress corrosion cracking using standard ASTM exposure and electrochemical techniques. The results provide comparative assessment of these alloys and show their susceptibility in the three metallurgical conditions as encountered in condensers. Hyper-duplex SS has been shown to be highly resistant in sea water for the condenser tubing application. (author)

  2. An environmentally-friendly vacuum reduction metallurgical process to recover germanium from coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lingen; Xu, Zhenming, E-mail: zmxu@sjtu.edu.cn

    2016-07-15

    Highlights: • An environmental friendly vacuum reduction metallurgical process is proposed. • Rare and valuable metal germanium from coal fly ash is recycled. • Residues are not a hazardous material and can be further recycled. • A germanium recovery ratio of 94.64% is obtained in pilot scale experiments. - Abstract: The demand for germanium in the field of semiconductor, electronics, and optical devices is growing rapidly; however, the resources of germanium are scarce worldwide. As a secondary material, coal fly ash could be further recycled to retrieve germanium. Up to now, the conventional processes to recover germanium have two problems as follows: on the one hand, it is difficult to be satisfactory for its economic and environmental effect; on the other hand, the recovery ratio of germanium is not all that could be desired. In this paper, an environmentally-friendly vacuum reduction metallurgical process (VRMP) was proposed to recover germanium from coal fly ash. The results of the laboratory scale experiments indicated that the appropriate parameters were 1173 K and 10 Pa with 10 wt% coke addition for 40 min, and recovery ratio germanium was 93.96%. On the basis of above condition, the pilot scale experiments were utilized to assess the actual effect of VRMP for recovery of germanium with parameter of 1473 K, 1–10 Pa and heating time 40 min, the recovery ratio of germanium reached 94.64%. This process considerably enhances germanium recovery, meanwhile, eliminates much of the water usage and residue secondary pollution compared with other conventional processes.

  3. Clustering of Emerging Flux

    Science.gov (United States)

    Ruzmaikin, A.

    1997-01-01

    Observations show that newly emerging flux tends to appear on the Solar surface at sites where there is flux already. This results in clustering of solar activity. Standard dynamo theories do not predict this effect.

  4. Thermo-mecano-metallurgical modelling of welding: application to welded joints in nuclear power plants

    International Nuclear Information System (INIS)

    Cosimo, Alejandro

    2014-01-01

    The Thermo-Mecano-Metallurgical (TMM) modelling of welding is considered in this thesis, where the high non-linearity and the multiphysics character of the problem makes necessary to study different areas of Computational Mechanics. Each of the main problems, specifically the thermal, the mechanical and the metallurgical problems, are separately investigated. In the context of Computational Welding Mechanics (CWM), their coupling is solved by means of a staggered approach making the hypothesis that they are weakly-coupled. In the case of the thermal problem, the primary complication is stated by the solid/liquid phase change. Classical formulations dealing with the solution of this problem suffer from instabilities associated to the discontinuity of the temperature gradient at the phase change boundary. This issue is studied in this work by considering an enriched finite element formulation with the ability of representing the gradient discontinuity inside finite elements. It is remarked that the proposed method avoids the use of an auxiliary equation to determine the enrichment position, which is common for level set formulations. The mechanical behaviour of bodies during solidification is revisited and implemented as part of the Finite Element (FE) framework OOFELIE. When possible, microstructure evolution must be considered in order to correctly predict Weld Residual Stresses (WRS). In this context, the implementation of a particular model for predicting microstructure evolution comes in association with the restriction that it can be applied to a reduced number of materials. In order to deal with this issue, the conception of a computational tool flexible enough to describe a wide range of materials is undertaken. Additionally, a model describing the Titanium alloy Ti6Al4V is particularly considered. The high computational cost of welding problems is addressed by means of the formulation of Hyper-Reduced Order Models (HROMs), and the parallelization of the FE

  5. Metallurgical and mechanical behaviours of PWR fuel cladding tube oxidised at high temperature

    International Nuclear Information System (INIS)

    Stern, A.

    2007-12-01

    Zirconium alloys are used as cladding materials in Pressurized Water Reactors (PWR). As they are submitted to very extreme conditions, it is necessary to check their behaviour and especially to make sure they meet the safety criteria. They are therefore studied under typical in service-loadings but also under accidental loadings. In one of these accidental scenarios, called Loss of Coolant Accident (LOCA) the cladding temperature may increase above 800 C, in a steam environment, and decrease before a final quench of the cladding. During this temperature transient, the cladding is heavily oxidised, and the metallurgical changes lead to a decrease of the post quench mechanical properties. It is then necessary to correlate this drop in residual ductility to the metallurgical evolutions. This is the problem we want to address in this study: the oxidation of PWR cladding materials at high temperature in a steam environment and its consequences on post quench mechanical properties. As oxygen goes massively into the metallic part - a zirconia layer grows at the same time - during the high temperature oxidation, the claddings tubes microstructure shows three different phases that are the outer oxide layer (zirconia) and the inner metallic phases (α(O) and 'ex β') - with various mechanical properties. In order to reproduce the behaviour of this multilayered material, the first part of this study consisted in creating samples with different - but homogeneous in thickness - oxygen contents, similar to those observed in the different phases of the real cladding. The study was especially focused on the β-->α phase transformation upon cooling and on the resulting microstructures. A mechanism was proposed to describe this phase transformation. For instance, we conclude that for our oxygen enriched samples, the phase transformation kinetics upon cooling are ruled by the oxygen partitioning between the two allotropic phases. Then, these materials were mechanically tested at

  6. USING THE OUTSOURCING MECHANISM TO INCREASE THE EFFICIENCY OF REPAIR AND MAINTENANCE IN METALLURGICAL ENTERPRISES

    Directory of Open Access Journals (Sweden)

    Elena I. Kozlova

    2017-01-01

    Full Text Available Abstract. Objectives The aim of the work is to study the outsourcing mechanism from the point of view of increasing the efficiency of repair and maintenance at a metallurgical enterprise. Method Analysis of the experience of using outsourcing of repair services at domestic and foreign metallurgical enterprises was carried out. Analysis of the experience of the withdrawal from enterprise repair services into a separate outsourcing company has shown that the main advantages of this method of organising repair activities are an increase in the transparency of the costs of repairs and maintenance, and hence their reduction, as well as a reduction in the amount of equipment downtime. The main characteristics of outsourcing were revealed, substantiating its expediency. The restructuring of the repair system provides a step-by-step transition from decentralised to centralised structures of technical, mechanical, power and electrical repair services of enterprises, from the principle of "self-service" to the principle of "proprietary service" by isolating the subdivisions of the repair system from the structure of enterprises and creating competing members of the repair services market. Put another way, this is typified by moving away from the status of auxiliary production to a selfdependent activity. The stages of outsourcing the repair services of the enterprise are considered and possible problems that may arise in the course of the work of a working group are established to determine the suitability of outsourcing and to resolve the numerous issues arising from the transfer of repair functions. Results The findings of the research include approaches developed for overcoming risky situations: providing guarantees from the customer and the contractor and indicating them in the contract, increasing the motivation of the outsourcing company through a key performance indicator that should increase the interest of the performer in providing quality

  7. Nutrient and dissolved organic carbon removal from water using mining and metallurgical by-products.

    Science.gov (United States)

    Wendling, Laura A; Douglas, Grant B; Coleman, Shandel; Yuan, Zheng

    2012-05-15

    Excess nutrient input to water bodies frequently results in algal blooms and development of oxygen deficient conditions. Mining or metallurgical by-products can potentially be utilised as filtration media within water treatment systems such as constructed wetlands, permeable reactive barriers, or drain liners. These materials may offer a cost-effective solution for the removal of nutrients and dissolved organic carbon (DOC) from natural waters. This study investigated steel-making, alumina refining (red mud and red sand) and heavy mineral processing by-products, as well as the low-cost mineral-based material calcined magnesia, in laboratory column trials. Influent water and column effluents were analysed for pH and flow rate, alkalinity, nutrient species and DOC, and a range of major cations and anions. In general, by-products with high Ca or Mg, and to a lesser extent those with high Fe content, were well-suited to nutrient and DOC removal from water. Of the individual materials examined, the heavy mineral processing residue neutralised used acid (NUA) exhibited the highest sorption capacity for P, and removed the greatest proportions of all N species and DOC from influent water. In general, NUA and mixtures containing NUA, particularly those with calcined magnesia or red mud/red sand were the most effective in removing nutrients and DOC from influent water. Post-treatment effluents from columns containing NUA and NUA/steel-making by-product, NUA/red sand and NUA/calcined magnesia mixtures exhibited large reductions in DOC, P and N concentrations and exhibited a shift in nutrient ratios away from potential N- and Si-limitation and towards potential P-limitation. If employed as part of a large-scale water treatment scheme, use of these mining and metallurgical by-products for nutrient removal could result in reduced algal biomass and improved water quality. Identification and effective implementation of mining by-products or blends thereof in constructed wetlands

  8. M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities groundwater monitoring and corrective-action report (U). Third and fourth quarters 1996, Vol. I

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River Site (SRS) during 1996.

  9. THE PROFITABILITY AND LIQUIDITY UNDER THE INFLUENCE OF THE FINANCING POLICY IN THE METALLURGICAL INDUSTRY OF EU 28

    Directory of Open Access Journals (Sweden)

    DOBROTĂ GABRIELA

    2014-12-01

    Full Text Available In the context of the problems of the economic system, the use of the capital and his structure represent important elements in the process of the financial decisions. The aim of this paper is to identify the influence of funding policy on rentability in metallurgical industry, dimensioned with the help of a set of relevant indicators, determined on the base of some aggregated data for a significant sample of very large firms from EU 28. Also, the paper present the situation of liquidity, reflected through the cash- flow and liquidity ratio, in the metallurgical industry of EU 28, being used dates for the period 2004 – 2013, for the mentioned sample. The conclusion of the realised study is that a funding policy well-founded, correlated with the efficient management of expenses and proactive risk management can positively influence the profitability and liquidity.

  10. A comparison of the metallurgical behaviour of dispersion fuels with uranium silicides and U6Fe as dispersants

    International Nuclear Information System (INIS)

    Nazare, S.

    1984-01-01

    In the past few years metallurgical studies have been carried out to develop fuel dispersions with U-densities up to 7.0 Mg U m -3 . Uranium silicides have been considered to be the prime candidates as dispersants; U 6 Fe being a potential alternative on account of its higher U-density. The objective of this paper is to compare the metallurgical behaviour of these two material combinations with regard to the following aspects: (1) preparation of the compounds U 3 Si, U 3 Si 2 and U 6 Fe; (2) powder metallurgical processing to miniature fuel element plates; (3) reaction behaviour under equilibrium conditions in the relevant portions of the ternary U-Si-Al and U-Fe-Al systems; (4) dimensional stability of the fuel plates after prolonged thermal treatment; (5) thermochemical behaviour of fuel plates at temperatures near the melting point of the cladding. Based on this data, the possible advantages of each fuel combination are discussed. (author)

  11. Mechanical and Metallurgical Properties of Various Nickel-Titanium Rotary Instruments

    Directory of Open Access Journals (Sweden)

    Kyu-Sang Shim

    2017-01-01

    Full Text Available The aim of this study was to investigate the effect of thermomechanical treatment on mechanical and metallurgical properties of nickel-titanium (NiTi rotary instruments. Eight kinds of NiTi rotary instruments with sizes of ISO #25 were selected: ProFile, K3, and One Shape for the conventional alloy; ProTaper NEXT, Reciproc, and WaveOne for the M-wire alloy; HyFlex CM for the controlled memory- (CM- wire; and TF for the R-phase alloy. Torsional fracture and cyclic fatigue fracture tests were performed. Products underwent a differential scanning calorimetry (DSC analysis. The CM-wire and R-phase groups had the lowest elastic modulus, followed by the M-wire group. The maximum torque of the M-wire instrument was comparable to that of a conventional instrument, while those of the CM-wire and R-phase instruments were lower. The angular displacement at failure (ADF for the CM-wire and R-phase instruments was higher than that of conventional instruments, and ADF of the M-wire instruments was lower. The cyclic fatigue resistance of the thermomechanically treated NiTi instruments was higher. DSC plots revealed that NiTi instruments made with the conventional alloy were primarily composed of austenite at room temperature; stable martensite and R-phase were found in thermomechanically treated instruments.

  12. Metallurgical examination of, and resin transfer from, Three Mile Island prefilter liners

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, Jr, J W; Spaletta, H W

    1984-08-01

    Metallurgical examinations were performed on two EPICOR-II prefilter liners at the Idaho National Engineering Laboratory (INEL) to determine conditions of the liners and identify the minimum expected lifetime of those and other liners stored at INEL. The research work was accomplished by EG and G Idaho, Inc. for the EPICOR-II Research and Disposition Program, which is funded by the US Department of Energy. The EPICOR-II prefilter liners were used to filter radionuclides from contaminated water during cleanup of Three Mile Island Unit 2 (TMI-2). The liners were constructed of carbon steel with a phenolic protective coating and contained organic and inorganic ion-exchange filtration media. Program plans call for interim storage of EPICOR-II prefilters at INEL for up to ten years, before final disposal in high integrity containers at the Hanford, Washington commercial disposal site. This report describes the (a) resin transfer process used to empty liners for examination, (b) removal of metallographic sections from those liners, (c) specimen preparation, and (d) findings from metallographic examination of those specimens. A minimum lifetime for the liners is determined and recommendations are given for storage of wastes from future TMI-2 activities.

  13. Metallurgical electrochemistry: the interface between materials science and molten salt chemistry

    International Nuclear Information System (INIS)

    Sadoway, D.R.

    1991-01-01

    Even though molten salt electrolysis finds application in the primary extraction of metals (electrowinning), the purification and recycling of metals (electrorefining), and in the formation of metal coatings (electroplating), the technology remains in many respects underexploited. Electrolysis in molten salts as well as other nonaqueous media has enormous potential for materials processing. First, owing to the special attributes of nonaqueous electrolytes electrochemical processing in these media has an important role to play in the generation of advanced materials, i.e., materials with specialized chemistries or tailored microstructures (electrosynthesis). Secondly, as environmental quality standards rise beyond the capabilities of classical metals extraction technologies to comply, molten salt electrolysis may prove to be the only acceptable route from ore to metal. Growing public awareness of pollution from the metals industry could stimulate a renaissance in molten salt electrochemistry. Challenges facing metallurgical electrochemistry as relates to the environment fall into two categories: (1) improving existing electrochemical technology, and (2) developing clean electrochemical technology to displace current nonelectrochemical technology. In both instances success hinges upon the discovery of advanced materials and the ecologically sound extraction of metals, the close coupling between materials science and molten salt chemistry is manifest. (author) 6 refs

  14. Development and characterization of powder metallurgically produced discontinuous tungsten fiber reinforced tungsten composites

    Science.gov (United States)

    Mao, Y.; Coenen, J. W.; Riesch, J.; Sistla, S.; Almanstötter, J.; Jasper, B.; Terra, A.; Höschen, T.; Gietl, H.; Bram, M.; Gonzalez-Julian, J.; Linsmeier, Ch; Broeckmann, C.

    2017-12-01

    In future fusion reactors, tungsten is the prime candidate material for the plasma facing components. Nevertheless, tungsten is prone to develop cracks due to its intrinsic brittleness—a major concern under the extreme conditions of fusion environment. To overcome this drawback, tungsten fiber reinforced tungsten (Wf/W) composites are being developed. These composite materials rely on an extrinsic toughing principle, similar to those in ceramic matrix composite, using internal energy dissipation mechanisms, such as crack bridging and fiber pull-out, during crack propagation. This can help Wf/W to facilitate a pseudo-ductile behavior and allows an elevated damage resilience compared to pure W. For pseudo-ductility mechanisms to occur, the interface between the fiber and matrix is crucial. Recent developments in the area of powder-metallurgical Wf/W are presented. Two consolidation methods are compared. Field assisted sintering technology and hot isostatic pressing are chosen to manufacture the Wf/W composites. Initial mechanical tests and microstructural analyses are performed on the Wf/W composites with a 30% fiber volume fraction. The samples produced by both processes can give pseudo-ductile behavior at room temperature.

  15. Synergetic use of lignite fly ash and metallurgical converter slag in geopolymer concrete

    Directory of Open Access Journals (Sweden)

    Gábor Mucsi

    2014-08-01

    Full Text Available The application and utilization of the industrial wastes and by-products in the construction industry is a key issue from an environmental and economic point of view. The increased use of lignite has substantially increased the available quantities of lignite fired power plant fly ash, which can be mainly classified as class C fly ash. The utilization of such raw material however has some difficulties. In the present paper lignite fired power station fly ash and metallurgical converter slag were used for the production of geopolymer concrete. The fly ash was used as a geopolymer based binder material, and a converter slag as aggregate, thus created a geopolymer concrete which contains mainly industrial wastes. As preliminary test experimental series were carried out using andesite as aggregate. The optimal aggregate/binder ratio was determined. The effect of the amount of alkaline activator solution in the binder, the aggregate type on the geopolymer concretes’ compressive strength and density was investigated. Furthermore, the physical properties - freeze-thaw resistance and particle size distribution - of the applied aggregates were measured as well. As a result of the experiments it was found that physical properties of the andesite and converter slag aggregate was close. Therefore andesite can be replaced by converter slag in the concrete mixture. Additionally, geopolymer concrete with nearly 20 MPa compressive strength was produced from class C fly ash and converter slag.

  16. Process of optimization of district heat production by utilizing waste energy from metallurgical processes

    Science.gov (United States)

    Konovšek, Damjan; Fužir, Miran; Slatinek, Matic; Šepul, Tanja; Plesnik, Kristijan; Lečnik, Samo

    2017-07-01

    In a consortium with SIJ (Slovenian Steel Group), Metal Ravne, the local community of Ravne na Koro\\vskem and the public research Institut Jožef Stefan, with its registered office in Slovenia, Petrol Energetika, d.o.o. set up a technical and technological platform of an innovative energy case for a transition of steel industry into circular economy with a complete energy solution called »Utilization of Waste Heat from Metallurgical Processes for District Heating of Ravne na Koro\\vskem. This is the first such project designed for a useful utilization of waste heat in steel industry which uses modern technology and innovative system solutions for an integration of a smart, efficient and sustainable heating and cooling system and which shows a growth potential. This will allow the industry and cities to make energy savings, to improve the quality of air and to increase the benefits for the society we live in. On the basis of circular economy, we designed a target-oriented co-operation of economy, local community and public research institute to produce new business models where end consumers are put into the centre. This innovation opens the door for steel industry and local community to a joint aim that is a transition into efficient low-carbon energy systems which are based on involvement of natural local conditions, renewable energy sources, the use of waste heat and with respect for the principles of sustainable development.

  17. High power density systems used in advanced metallurgical applications and safety aspects

    International Nuclear Information System (INIS)

    Mirji, K.V.; Ramesh, N.

    2016-01-01

    This topic concerns about the operation and development of electron beam (EB) machines utilized in metallurgical applications such as EB melting and EB welding. They are popular in purification of refractory metals and welding of their alloy components. In this equipment, EB generation, acceleration, harnessing and energy dissipation need to be performed under high vacuum conditions. The high voltage required for acceleration is generated by using 3 phase 415 Volts, 50 Hz ac power supply. The transformers used have to be specially designed to withstand frequent, high short circuit currents which result from discharges during processing. The high voltage rectifiers are similarly designed to cater to such duties, apart from generating high voltage with low ripple contents. Apart from trans-rectifiers, the cables need to be designed with proper termination at the gun to ensure safety of operating personnel, while ensuring ease of connection. Practical problems of electric discharges due to sudden evolution of gaseous and metallic impurities, proper dissipation of residual charge on cathode assembly and the EB gun need to be handled carefully. (author)

  18. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report. Fourth quarter 1992 and 1992 summary

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, C.Y.

    1993-03-01

    During fourth quarter 1992, samples from 18 groundwater monitoring wells of the AMB series at the Metallurgical Laboratory Hazardous Waste Management Facility were analyzed for certain heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. Six parameters exceeded final Primary Drinking Water Standards (PDWS) and the Savannah River Site Flag 2 criteria during the quarter. The results for fourth quarter 1992 are fairly consistent with the rest of the year`s data. Tetrachloroethylene exceeded the final PDWS in well AMB 4D only two of the four quarters; in the other three wells in which it was elevated, it was present at similar levels throughout the year. Trichloroethylene consistently exceeded its PDWS in wells AMB 4A, 4B, 4D, 5, and 7A during the year. Trichloroethylene was elevated in well AMB 6 only during third and fourth quarters and in well AMB 7 only during fourth quarter. Total alpha-emitting radium was above the final PDWS for total radium in well AMB 5 at similar levels throughout the year and exceeded the PDWS during one of the three quarters it was analyzed for (third quarter 1992) in well AMB 10B.

  19. Influence of metallurgical heterogeneities on the mechanisms of hydrogen diffusion and trapping of in nickel

    International Nuclear Information System (INIS)

    Oudriss, Abdelali

    2012-01-01

    A thorough investigation on the influence of several metallurgical defects on the hydrogen diffusion and trapping was conducted on nickel. This work was conducted towards two scientific orientations. A first approach was to assess the impact of intrinsic defects, especially grain boundaries and geometrically necessary dislocations on the hydrogen transport and segregation mechanisms. Combining microstructural characterizations with electrochemical permeation tests and thermal desorption spectroscopy, it has established that the grain boundaries with ordered structure called 'special grain boundaries' are preferential areas for hydrogen segregation. On the other hand, a second category of grain boundaries called 'general' or 'random' with high free volume and disordered structure are promoters for hydrogen diffusion, and they represent the main sources of the phenomena short circuit diffusion reported in the face-centered cubic materials. The second approach of this work consisted in the study of the interaction of hydrogen with the plastic deformation heterogeneities. The electrochemical permeation tests performed on microstructures obtained by deformation showed that for the traction monotonous, the equiaxed cells and walls of dislocations are the potential traps for hydrogen and they slow its transport, this latter is mainly provided by the interstitial diffusion mechanism. In addition, for fatigue microstructure, rapid diffusivity of hydrogen was recorded, and suggesting that a phenomenon similar to short-circuit diffusion is involved in the transport of hydrogen. On two approaches, the results suggest a contribution of hydrogen in the formation of vacancies. (author) [fr

  20. Nuclear methods on service of mountain manufacture Navoi Mining-Metallurgical complex

    International Nuclear Information System (INIS)

    Kucherskiy, N.I.

    2004-01-01

    Full text: On a number of the major minerals, such as gold, uranium, copper, tungsten, potash salts, phosphorites, caolines, etc. Uzbekistan on the confirmed stocks and predicted resources occupies leading places among the states of the world. The basic deposits of gold and uranium are concentrated in Central-Kysylkum region, which is field of activity of Navoi mining-metallurgical combine. In industrial divisions of the combine, located in five areas of republic about 60000 persons are engaged. At all stages of manufacture of gold (since investigation) analytical maintenance has extremely important role. In NMMC radioanalytical methods are widely used, in particular, on mine 'Muruntau' the unique gamma-activation analysis laboratory has been constructed and entered into operation. For the period of operation of laboratory, i.e. since 1977, it is executed more than nine millions analyses of geological tests with extremely high expressness (about tens seconds). It is used x-ray-radiometric method for large-portion (by dumper) sortings and on lumpy separation of ores. With the help of high-sensitivity radiometric means of measurements it is possible to develop phosphorites for reception of phosphoric fertilizers. Nuclear-physical methods are applied to the decision of other problems. Thus, due to application of nuclear-physical methods of the operative control of technological processes of mining manufacture, quality management of ores, the account of quantity of products of extraction and their preliminary enrichment, the actual problem - increase in profitability of all mining manufacture NMMC is solved

  1. Powder metallurgical low-modulus Ti-Mg alloys for biomedical applications.

    Science.gov (United States)

    Liu, Yong; Li, Kaiyang; Luo, Tao; Song, Min; Wu, Hong; Xiao, Jian; Tan, Yanni; Cheng, Ming; Chen, Bing; Niu, Xinrui; Hu, Rong; Li, Xiaohui; Tang, Huiping

    2015-11-01

    In this work, powder metallurgical (PM) Ti-Mg alloys were prepared using combined techniques of mechanical alloying and spark plasma sintering. The alloys mainly consist of super saturations of Mg in Ti matrix, and some laminar structured Ti- and Mg-rich phases. The PM Ti-Mg alloys contain a homogeneous mixtures of nanocrystalline Mg and Ti phases. The novel microstructures result in unconventional mechanical and biological properties. It has been shown that the PM Ti-Mg alloys have a much lower compression modulus (36-50GPa) compared to other Ti alloys, but still remain a very high compressive strength (1500-1800MPa). In addition, the PM Ti-Mg alloys show good biocompatibility and bioactivity. Mg can dissolve in the simulated body fluids, and induce the formation of the calcium phosphate layer. The compression modulus of PM Ti-Mg alloys decreases with the amount of Mg, while the bioactivity increases. Although the corrosion resistance of Ti-Mg alloys decreases with the content of Mg, the alloys still show good stability in simulated body fluid under electrochemical conditions. The indirect and direct cytotoxicity results show that PM Ti-Mg alloys have a good biocompatibility to NIH-3T3 cells. Therefore, the PM Ti-Mg alloys are promising candidates in biomedical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. A CFD study on the dust behaviour in a metallurgical waste-heat boiler

    Energy Technology Data Exchange (ETDEWEB)

    Yang Yongxiang; Jokilaakso, A. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Materials Processing and Powder Metallurgy

    1997-12-31

    A waste-heat boiler forms an essential part for the treatment of high temperature flue-gases in most metallurgical processes. Flue-dust carried by the furnace off-gas has to be captured efficiently in the waste-heat boilers before entering the downstream gas purification equipment. Flue dust may accumulate and foul on the heat transfer surfaces such as tube-walls, narrow conjunctions between the boiler and the furnace uptake, and thus may cause smelter shutdown, and interrupt the production. A commercial CFD package is used as the major tool on modelling the dust flow and settling in the waste-heat boiler of an industrial copper flash smelter. In the presentation, dust settling behaviour is illustrated for a wide range of particle sizes, and dust capture efficiency in the radiation section of the boiler for different particle sizes has been shown with the transient simulation. The simulation aims at providing detailed information of dust behaviour in the waste-heat boiler in sulphide smelting. (author) 11 refs.

  3. EDXRF and micro-EDXRF studies of Late Bronze Age metallurgical productions from Canedotes (Portugal)

    Science.gov (United States)

    Valerio, Pedro; Araújo, M. de Fátima; Canha, Alexandre

    2007-10-01

    Metallurgical production in Central Portugal during the Late Bronze Age was primarily based on copper-tin alloys, despite influences from the Atlantic area where copper-tin-lead alloys are common. Metallic artefacts from archaeological site of Canedotes (Central Portugal) were analysed by EDXRF to establish the type of alloys present. Polished spots in selected artefacts were also analysed by micro-EDXRF to determine the major and minor elemental composition of the original alloys. The collection constitutes 18 copper-tin artefacts and one unalloyed copper artefact with tin and arsenic as minor constituents. Artefacts that require a thermomechanical finishing process, such as tools and weapons, seem to have improved control over the tin content. The composition of two buttons, one cramp and one metallic droplet suggest that some of the copper sources were rich in arsenic. Finally, the low iron content of the artefacts seems to agree well with the smelting of copper ores in crucible furnaces, a smelting process used in certain areas of the Iberian Peninsula until pre-Roman times.

  4. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report. Third quarter, 1994

    International Nuclear Information System (INIS)

    1994-12-01

    During third quarter 1994, samples from AMB groundwater monitoring wells at the Metallurgical Laboratory Hazardous Waste Management Facility (Met Lab HWMF) were analyzed for selected heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. Eight parameters exceeded standards during the quarter. As in previous quarters, tetrachloroethylene and trichloroethylene exceeded final Primary Drinking Water Standards (PDWS). Bis(2-ethylhexyl) phthalate exceeded final PDWS in one well. Aluminum, iron, manganese, tin, and total organic halogens exceeded the Savannah River Site (SRS) Flag 2 criteria. Groundwater flow direction and rate in the M-Area Aquifer Zone were similar to previous quarters. Conditions affecting determination of groundwater flow directions and rates in the Upper Lost Lake Aquifer Zone, Lower Lost Lake Aquifer Zone, and the Middle Sand Aquifer Zone of the Crouch Branch Confining Unit were also similar to previous quarters. During second quarter 1994, SRS received South Carolina Department of Health and Environmental Control approval for constructing five point-of-compliance wells and two plume definition wells near the Met Lab HWMF. This project began in July 1994 and is complete; however, analytical data from these wells is not available yet

  5. Metallurgical aspects of fatigue fractured surfaces of al grain refined by some rare earth materials

    International Nuclear Information System (INIS)

    Zaid, A.I.O.

    2005-01-01

    Aluminum and aluminum alloys are widely used materials in the automobile and air craft industries due to their high strength-to-weight ratio, in addition to some other attractive characteristics e.g. corrosion resistance and high electrical and thermal conductivities. Aluminum and its alloys are normally grain refined by Ti or Ti+B to enhance their surface quality and improve their mechanical strength. Although the effect of addition of these grain refiners on the microstructure mechanical behaviour has been investigated and reported, little work has been published on the effect of the refiners on the fatigue life of aluminum and its alloys. In this paper, the effect of addition of some rare earth materials, namely Vanadium and Zirconium on the fatigue life of commercially pure aluminum grain refined by Ti or Ti+B is reported and discussed. Furthermore, metallurgical aspects of these elements on the fatigue fractured surfaces are also discussed using scanning electron microscopy, SEM. Finally, photoscans of the fractured surfaces at different fatigue stresses are presented and discussed. (author)

  6. Evaluation of Metallurgical Quality of Master Heat IN-713C Nickel Alloy Ingots

    Directory of Open Access Journals (Sweden)

    Binczyk F.

    2012-12-01

    Full Text Available The paper presents the results of evaluation of the metallurgical quality of master heat ingots and of the identification of non-metallic inclusions (oxides of Al., Zr, Hf, Cr, etc., which have been found in the shrinkage cavities formed in these ingots. The inclusions penetrate into the liquid alloy, and on pouring of mould are transferred to the casting, especially when the filtering system is not sufficiently effective. The specific nature of the melting process of nickel and cobalt alloys, carried out in vacuum induction furnaces, excludes the possibility of alloy refining and slag removal from the melt surface. Therefore, to improve the quality of castings (parts of aircraft engines, it is so important to evaluate the quality of ingots before charging them into the crucible of an induction furnace. It has been proved that one of the methods for rapid quality evaluation is an ATD analysis of the sample solidification process, where samples are taken from different areas of the master heat ingot. The evaluation is based on a set of parameters plotted on the graph of the dT/dt derivative curve during the last stage of the solidification process in a range from TEut to Tsol.

  7. Evaluation of Metallurgical Quality of Master Heat IN-713C Nickel Alloy Ingots

    Directory of Open Access Journals (Sweden)

    F. Binczyk

    2012-12-01

    Full Text Available The paper presents the results of evaluation of the metallurgical quality of master heat ingots and of the identification of non-metallic inclusions (oxides of Al., Zr, Hf, Cr, etc., which have been found in the shrinkage cavities formed in these ingots. The inclusions penetrate into the liquid alloy, and on pouring of mould are transferred to the casting, especially when the filtering system is not sufficiently effective. The specific nature of the melting process of nickel and cobalt alloys, carried out in vacuum induction furnaces,excludes the possibility of alloy refining and slag removal from the melt surface. Therefore, to improve the quality of castings (parts of aircraft engines, it is so important to evaluate the quality of ingots before charging them into the crucible of an induction furnace. It has been proved that one of the methods for rapid quality evaluation is an ATD analysis of the sample solidification process, where samples are taken from different areas of the master heat ingot. The evaluation is based on a set of parameters plotted on the graph of the dT/dt derivative curve during the last stage of the solidification process in a range from TEut to Tsol.

  8. Determination of nanoscale particles in the air of working zone at the metallurgical production

    Directory of Open Access Journals (Sweden)

    Т.S. Ulanova

    2015-03-01

    Full Text Available The results of studies of the air of working zone at the metallurgical production on the example of Avisma OJSC (Berezniki, the Perm Territory for the content of nanoscale particles are specified. The maximum nanoparticles concentration in the range of 13523–28609 mln./m3 is determined at the working place of the titanium production smelter with the maximum size of particles of 10–15 nm. At the working place in the administrative building (reference working place the maximum concentration is determined within the range of 524–1000 mln./m3; the maximum size of nanoparticles is 20 nm. It was established that the number concentration of nanoparticles at the reference working places (administration of Avisma OJSC is significantly lower than at the working places of main production processes. The presented studies can be used as the additional factors in the assessment of labor conditions and occupational risk during the manufacture and use of materials containing nanoparticles as well as the production processes with the nanoparticles formation.

  9. Measures to detect and control radioactive contaminated metallurgical scrap at border checkpoints in Poland

    International Nuclear Information System (INIS)

    Smagala, G.

    1999-01-01

    The issue of radioactive contaminated metallurgical scrap has never received a high priority in Poland and in the international community. Since the dissolution of the former Soviet Union a higher attention has been given to the problem. Poland which is located between the West and East Europe has the obligation to develop and implement an effective prevention and detection system. The reasons to increase national control and detection system at the border checkpoints in Poland are to avoid the following risks: post Chernobyl contamination transports of commodities; transport of contaminated metal scrap; transfer of radioactive waste for their disposal or utilization; high risk of becoming a transit country of illicit trafficking of nuclear materials and radioactive sources. In order to avoid the above-mentioned risks, Poland initiated in 1990, a deployment of the portable radiation devices at the border checkpoints and, as of 1998, the number of installed instruments exceeded a hundred. This paper presents Poland's activities to detect contaminated scrap at its border checkpoints. (author)

  10. Performance Analysis of a Grid-Connected Upgraded Metallurgical Grade Silicon Photovoltaic System

    Directory of Open Access Journals (Sweden)

    Chao Huang

    2016-05-01

    Full Text Available Because of their low cost, photovoltaic (PV cells made from upgraded metallurgical grade silicon (UMG-Si are a promising alternative to conventional solar grade silicon-based PV cells. This study investigates the outdoor performance of a 1.26 kW grid-connected UMG-Si PV system over five years, reporting the energy yields and performance ratio and estimating the long-term performance degradation rate. To make this investigation more meaningful, the performance of a mono-Si PV system installed at the same place and studied during the same period of time is presented for reference. Furthermore, this study systematizes and rationalizes the necessity of a data selection and filtering process to improve the accuracy of degradation rate estimation. The impact of plane-of-array irradiation threshold for data filtering on performance ratio and degradation rate is also studied. The UMG-Si PV system’s monthly performance ratio after data filtering ranged from 84% to 93% over the observation period. The annual degradation rate was 0.44% derived from time series of monthly performance ratio using the classical decomposition method. A comparison of performance ratio and degradation rate to conventional crystalline silicon-based PV systems suggests that performance of the UMG-Si PV system is comparable to that of conventional systems.

  11. A review of recent developments in ion implantation for metallurgical application

    International Nuclear Information System (INIS)

    Hutchings, Ron

    1994-01-01

    Ion implantation emerged during the 1970s as a possible tool for improving the wear and corrosion resistance of metals and alloys. This emergence led to a period of intense activity in the early 1980s, aimed at identifying opportunities for the industrial application of ion implantation. This paper reviews the progress which has been made towards establishing ion implantation as an effective and reliable technique for improving the wear resistance of engineering materials. Particular emphasis is placed on the implantation of nitrogen. It is shown how detailed metallurgical studies have elucidated the role played by the implanted nitrogen in enhancing the resistance to wear of a broad range of alloys. These studies have highlighted the fact that the thin nature of the implanted layer has been a prime factor in restricting the industrial usage of ion implantation to a narrow range of specialized applications. This has resulted in a shift to the development of duplex treatments involving two-stage processes or, more recently, new techniques which allow simultaneous implantation and thermochemical treatment. The capabilities of, and future prospects for, such techniques are discussed. ((orig.))

  12. Comparative assessment of metallurgical recovery of metals from electronic waste with special emphasis on bioleaching.

    Science.gov (United States)

    Priya, Anshu; Hait, Subrata

    2017-03-01

    Waste electrical and electronic equipment (WEEE) or electronic waste (e-waste) is one of the fastest growing waste streams in the urban environment worldwide. The core component of printed circuit board (PCB) in e-waste contains a complex array of metals in rich quantity, some of which are toxic to the environment and all of which are valuable resources. Therefore, the recycling of e-waste is an important aspect not only from the point of waste treatment but also from the recovery of metals for economic growth. Conventional approaches for recovery of metals from e-waste, viz. pyrometallurgical and hydrometallurgical techniques, are rapid and efficient, but cause secondary pollution and economically unviable. Limitations of the conventional techniques have led to a shift towards biometallurgical technique involving microbiological leaching of metals from e-waste in eco-friendly manner. However, optimization of certain biotic and abiotic factors such as microbial species, pH, temperature, nutrients, and aeration rate affect the bioleaching process and can lead to profitable recovery of metals from e-waste. The present review provides a comprehensive assessment on the metallurgical techniques for recovery of metals from e-waste with special emphasis on bioleaching process and the associated factors.

  13. Production of highly porous glass-ceramics from metallurgical slag, fly ash and waste glass

    Directory of Open Access Journals (Sweden)

    Mangutova Bianka V.

    2004-01-01

    Full Text Available Glass-ceramics composites were produced based on fly-ash obtained from coal power stations, metallurgical slag from ferronickel industry and waste glass from TV monitors, windows and flasks. Using 50% waste flask glass in combination with fly ash and 20% waste glass from TV screens in combination with slag, E-modulus and bending strength values of the designed systems are increased (system based on fly ash: E-modulus from 6 to 29 GPa, and bending strength from 9 to 75 MPa. The polyurethane foam was used as a pore creator which gave the material porosity of 70(5% (fly ash-glass composite and a porosity of 65( 5% (slag-glass composite. E-modulus values of the designed porous systems were 3.5(1.2 GPa and 8.1(3 GPa, while the bending strength values were 6.0(2 MPa and 13.2(3.5 MPa, respectively. These materials could be used for the production of tiles, wall bricks, as well as for the construction of air diffusers for waste water aeration.

  14. Model for temperature profile estimation in the refractory of a metallurgical ladle

    Science.gov (United States)

    Fredman, T. P.; Saxén, H.

    1998-06-01

    Modeling of the transient thermal state of metallurgical ladels is motivated by the need for estimating the drop in temperature of the liquid metal in the ladle. On-line estimation of the state is required, since the same ladle is used in a number of casting cycles with rapid changes in boundary conditions for the temperature field, and the conditions in the current as well as previous cycles affect the thermal state. Although a large number of methods for the numerical solution of conduction-diffusion partial differential equations have been developed, there are still advantages to keeping thermal field computations at a relatively simple level, in contrast to the situation in the design process of ladles, where two-dimensional modeling may be required. Extensive computations under nonverifiable boundary and initial parameter values are not especially suited for real-time simulation of industrial processes. This article presents a novel approach to the solution of the one-dimensional transient heat conduction problem applied to ladle linings, relying on classical analytical techniques in combination with numerical methods. The performance of the model was validated by a comparison of predictions to thermocouple measurements from the refractory of a steelmaking ladle during a campaign of 26 casting cycles. Reasonable agreement between the measured and simulated variables could be established, which demonstrates the feasibility of the approach.

  15. Metallurgical examination of, and resin transfer from, Three Mile Island prefilter liners

    International Nuclear Information System (INIS)

    McConnell, J.W. Jr.; Spaletta, H.W.

    1984-08-01

    Metallurgical examinations were performed on two EPICOR-II prefilter liners at the Idaho National Engineering Laboratory (INEL) to determine conditions of the liners and identify the minimum expected lifetime of those and other liners stored at INEL. The research work was accomplished by EG and G Idaho, Inc. for the EPICOR-II Research and Disposition Program, which is funded by the US Department of Energy. The EPICOR-II prefilter liners were used to filter radionuclides from contaminated water during cleanup of Three Mile Island Unit 2 (TMI-2). The liners were constructed of carbon steel with a phenolic protective coating and contained organic and inorganic ion-exchange filtration media. Program plans call for interim storage of EPICOR-II prefilters at INEL for up to ten years, before final disposal in high integrity containers at the Hanford, Washington commercial disposal site. This report describes the (a) resin transfer process used to empty liners for examination, (b) removal of metallographic sections from those liners, (c) specimen preparation, and (d) findings from metallographic examination of those specimens. A minimum lifetime for the liners is determined and recommendations are given for storage of wastes from future TMI-2 activities

  16. Microstructure, cytotoxicity and corrosion of powder-metallurgical iron alloys for biodegradable bone replacement materials

    Energy Technology Data Exchange (ETDEWEB)

    Wegener, Bernd; Sievers, Birte; Utzschneider, Sandra; Mueller, Peter; Jansson, Volkmar [Department of Orthopedic Surgery, Ludwig-Maximilians-University of Munich, Marchioninistrasse 15, 81377 Muenchen (Germany); Roessler, Sophie; Nies, Berthold [InnoTERE GmbH, Tatzberg 47, 01307 Dresden (Germany); Stephani, Guenter; Kieback, Bernd [Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM), Dresden Branch Lab, Winterbergstrasse 28, 01277 Dresden (Germany); Quadbeck, Peter, E-mail: peter.quadbeck@ifam-dd.fraunhofer.de [Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM), Dresden Branch Lab, Winterbergstrasse 28, 01277 Dresden (Germany)

    2011-12-15

    Up to now biodegradable bone implants with the ability of bearing high loads for the temporary replacement of bones or as osteosynthesis material are not available. Iron and iron based alloys have been identified as appropriate materials, since they combine high strength at medium corrosion rates. Thus, the aim of the present study is the development of a degradable iron based alloy with the perspective of using them as matrix material of cellular structures with biomechanical tailored properties. A powder metallurgical approach has been used to manufacture Fe-C, Fe-0.6P, Fe-1.6P, Fe-B and Fe-Ag samples, which have been tested with respect to their microstructure, their cytotoxicity, and their degradation rate. In order to determine the cytotoxicity of the material a monolayer culture of fibroblast and a perfusion chamber system has been chosen, which was recommended by the ISO 10993-5:1999 for biological testing of medical devices. It has been found, that in particular phosphorus features beneficial properties, since density and thus the strength of the material are increased. No corrosion inhibiting effects of phosphorus on the degradation rate have been found.

  17. Co-injection of basic fluxes or BF flue dust with PC into a BF charged with 100% pellets:effects on slag formation and coal combustion

    OpenAIRE

    Sundqvist Ökvist, Lena

    2004-01-01

    Based on 100% pellets operation at BF No. 3 at SSAB Tunnplåt in Luleå a new pellet with CaO/SiO2=1 was developed during early nineties. The pellet showed good results in metallurgical laboratory test but caused slag formation problems in the bosh. A high basicity slag was formed during interaction with basic fluxes and its melting point was increased when the slag was finally reduced. By injection of basic fluxes, the slag formation problems in the bosh can be avoided. Without a sinter plant,...

  18. Effects of different production technologies on mechanical and metallurgical properties of precious metal denture alloys

    Science.gov (United States)

    Ferro, Paolo; Battaglia, Eleonora; Capuzzi, Stefano; Berto, Filippo

    2017-12-01

    Precious metal alloys can be supplied in traditional plate form or innovative drop form with high degree of purity. The aim of the present work is to evaluate the influence of precious metal alloy form on metallurgical and mechanical properties of the final dental products with particular reference to metal-ceramic bond strength and casting defects. A widely used alloy for denture was selected; its nominal composition was close to 55 wt% Pd - 34 wt% Ag - 6 wt% In - 3 wt% Sn. Specimens were produced starting from the alloy in both plate and drop forms. A specific test method was developed to obtain results that could be representative of the real conditions of use. In order to achieve further information about the adhesion behaviour and resistance, the fracture surfaces of the samples were observed using `Scanning Electron Microscopy (SEM)'. Moreover, material defects caused by the moulding process were studied. The form of the alloy before casting does not significantly influence the shear bond strength between the metal and the ceramic material (p-value=0,976); however, according to SEM images, products from drop form alloy show less solidification defects compared to products obtained with plate form alloy. This was attributed to the absence of polluting additives used in the production of drop form alloy. This study shows that the use of precious metal denture alloys supplied in drop form does not affect the metal-ceramic bond strength compared to alloys supplied in the traditional plate form. However, compared to the plate form, the drop form is found free of solidification defects, less expensive to produce and characterized by minor environmental impacts.

  19. Effects of alloying element and metallurgical structure on semiconducting characteristics of oxide film of zirconium alloy

    International Nuclear Information System (INIS)

    Inagaki, Masahisa; Kanno, Masayosi; Maki, Hideo.

    1991-01-01

    Semiconducting characteristics of oxide films formed on pure Zr, Zr-Sn binary alloy and Zr-Sn-X (X: Fe, Ni or Cr) ternary alloys were evaluated by photo-electrochemical method, in order to make clear the effects of alloying elements on oxidation mechanism of Zr alloy in BWR environment. Oxide films of the alloys showed the characteristics of n-type semiconductor. Maximum photocurrent (I max) was generated by an illumination of monochromatic light with the energy of 5 ∼ 6 eV, i.e. the band gap energy of the Zr alloy oxide was 5 ∼ 6 eV. This value is lower by 2 ∼ 3 eV than the theoretical band gap energy (8 eV) of stoichiometric ZrO 2 . These facts suggest that the generation of I max was resulted from an excitation of electrons trapped with anion vacancies (oxygen vacancies) of non-stoichiometric ZrO 2-x . Therefore, the value of I max is considered to be proportional to the density of anion vacancy. High corrosion resistant alloys showed lower value of I max. The changes of I max, due to change of chemical composition of alloys and due to the change of metallurgical structure, was able to be explained by the valence theory of oxide semiconductor, i.e. the decrease of 1 max was considered to be resulted from the decrease of anion vacancies due to the substitution of divalent cations (Ni 2+ ) and trivalent cations (Fe 3+ , Cr 3+ ) at Zr 4+ cation sites. From these results, it was concluded that oxidation rate of Zr alloy depended on the density of oxygen vacancies in oxide film. (author)

  20. Metallurgical characterization of brass objects from the Akko 1 shipwreck, Israel

    Energy Technology Data Exchange (ETDEWEB)

    Ashkenazi, D., E-mail: dana@eng.tau.ac.il [Faculty of Engineering, Tel Aviv University, Ramat Aviv 69978 (Israel); Cvikel, D. [Leon Recanati Institute for Maritime Studies, University of Haifa, 31905 (Israel); Stern, A. [Department of Materials Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105 (Israel); Klein, S. [Institut für Geowissenschaften, Facheinheit Mineralogie, J. W. Goethe Universität, Altenhöferallee 1, D-60438 Frankfurt am Main (Germany); Kahanov, Y. [Leon Recanati Institute for Maritime Studies, University of Haifa, 31905 (Israel)

    2014-06-01

    The Akko 1 shipwreck was a small Egyptian armed vessel or auxiliary naval brig built in the eastern Mediterranean at the beginning of the 19th century. During the underwater excavations, about 230 brass hook-and-eye closures were found, mainly in the bow area. In addition, 158 brass cases were found, mainly between midships and the aft extremity of the shipwreck. Metallurgical non-destructive and destructive characterizations of selected items were performed, including radiographic testing, XRF, lead isotope analysis, optical microscopy, SEM–EDS and microhardness tests. The hook-and-eye closures and the cases were both found to be made of binary copper–zinc alloy (about 30 wt.% zinc). While the brass cases were made from rolled sheets, hand-made using simple tools, and joined by tin–lead soldering material, the brass hook-and-eye closures were hand-made from drawn brass wire, and manufactured from commercial drawn brass bars by a cold-working process. The lead isotope analyses suggest different provenances of the raw materials used for making the brass objects, thus the different origins of the ores may hint that the brass wire and sheet were imported to the workshops in which the objects were manufactured. - Highlights: • Brass cases and hook-and-eye closures were retrieved from the Akko 1 shipwreck. • Both types of objects were made of binary copper–zinc alloy (about 30 wt.% zinc). • The cases were hand-made from rolled sheets and joined by tin–lead soldering. • Hook-and-eye closures were made from drawn brass wire manufactured by cold-working. • Lead isotope analyses suggest that the origins of the raw material were diverse.

  1. Soil pollution indices conditioned by medieval metallurgical activity - A case study from Krakow (Poland).

    Science.gov (United States)

    Kowalska, Joanna; Mazurek, Ryszard; Gąsiorek, Michał; Setlak, Marcin; Zaleski, Tomasz; Waroszewski, Jaroslaw

    2016-11-01

    The studied soil profile under the Main Market Square (MMS) in Krakow was characterised by the influence of medieval metallurgical activity. In the presented soil section lithological discontinuity (LD) was found, which manifests itself in the form of cultural layers (CLs). Moreover, in this paper LD detection methods based on soil texture are presented. For the first time, three different ways to identify the presence of LD in the urban soils are suggested. The presence of LD had an influence on the content and distribution of heavy metals within the soil profile. The content of heavy metals in the CLs under the MMS in Krakow was significantly higher than the content in natural horizons. In addition, there were distinct differences in the content of heavy metals within CLs. Profile variability and differences in the content of heavy metals and phosphorus within the CLs under the MMS were activity indicators of Krakow inhabitants in the past. This paper presents alternative methods for the assessment of the degree of heavy metal contamination in urban soils using selected pollution indices. On the basis of the studied total concentration of heavy metals (Zn, Pb, Cu, Mn, Cr, Cd, Ni, Sn, Ag) and total phosphorus content, the Geoaccumulation Index (I geo ), Enrichment Factor (EF), Sum of Pollution Index (PI sum ), Single Pollution Index (PI), Nemerow Pollution Index (PI Nemerow ) and Potential Ecological Risk (RI) were calculated using different local and reference geochemical backgrounds. The use of various geochemical backgrounds is helpful to evaluate the assessment of soil pollution. The individual CLs differed from each other according to the degree of pollution. The different values of pollution indices within the studied soil profile showed that LDS should not be evaluated in terms of contamination as one, homogeneous soil profile but each separate CL should be treated individually. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Metallurgical characterization of brass objects from the Akko 1 shipwreck, Israel

    International Nuclear Information System (INIS)

    Ashkenazi, D.; Cvikel, D.; Stern, A.; Klein, S.; Kahanov, Y.

    2014-01-01

    The Akko 1 shipwreck was a small Egyptian armed vessel or auxiliary naval brig built in the eastern Mediterranean at the beginning of the 19th century. During the underwater excavations, about 230 brass hook-and-eye closures were found, mainly in the bow area. In addition, 158 brass cases were found, mainly between midships and the aft extremity of the shipwreck. Metallurgical non-destructive and destructive characterizations of selected items were performed, including radiographic testing, XRF, lead isotope analysis, optical microscopy, SEM–EDS and microhardness tests. The hook-and-eye closures and the cases were both found to be made of binary copper–zinc alloy (about 30 wt.% zinc). While the brass cases were made from rolled sheets, hand-made using simple tools, and joined by tin–lead soldering material, the brass hook-and-eye closures were hand-made from drawn brass wire, and manufactured from commercial drawn brass bars by a cold-working process. The lead isotope analyses suggest different provenances of the raw materials used for making the brass objects, thus the different origins of the ores may hint that the brass wire and sheet were imported to the workshops in which the objects were manufactured. - Highlights: • Brass cases and hook-and-eye closures were retrieved from the Akko 1 shipwreck. • Both types of objects were made of binary copper–zinc alloy (about 30 wt.% zinc). • The cases were hand-made from rolled sheets and joined by tin–lead soldering. • Hook-and-eye closures were made from drawn brass wire manufactured by cold-working. • Lead isotope analyses suggest that the origins of the raw material were diverse

  3. Recycling of the rare earth oxides from spent rechargeable batteries using waste metallurgical slags

    Directory of Open Access Journals (Sweden)

    Tang K.

    2013-01-01

    Full Text Available A high temperature process for recycling spent nickel-metal hydride rechargeable batteries has been recently developed at SINTEF/NTNU. The spent battery modules were first frozen with liquid nitrogen for the de-activation and brittle fracture treatment. The broken steel scraps and plastics were then separated by the mechanical classification and magnetic separation. The remaining positive and negative electrodes, together with the polymer separator, were heated to 600-800oC in order to remove the organic components and further separate the Ni-based negative electrode. XRF analyses indicate that the heat-treated materials consist mainly of nickel, rare earth and cobalt oxides. The valuable rare earth oxides were further recovered by the high-temperature slagging treatment. The waste metallurgical slags, consist mainly of SiO2 and CaO, were used as the rare earth oxide absorbent. After the high temperature slagging treatment, over 98% of nickel and cobalt oxides were reduced to the metal phase; meanwhile almost all rare earth oxides remain in the molten slags. Furthermore, EPMA and XRF analyses of the slag samples indicate that the rare earth oxides selectively precipitate in the forms of solid xSiO2•yCaO•zRe2O3. The matrix of slag phase is Re2O3 deficient, typically being less than 5 wt%. This provides a sound basis to further develop the high-temperature process of concentrating the Re2O3 oxides in slags.

  4. Compact neutron flux monitor

    International Nuclear Information System (INIS)

    Madhavi, V.; Phatak, P.R.; Bahadur, C.; Bayala, A.K.; Jakati, R.K.; Sathian, V.

    2003-01-01

    Full text: A compact size neutron flux monitor has been developed incorporating standard boards developed for smart radiation monitors. The sensitivity of the monitors is 0.4cps/nV. It has been tested up to 2075 nV flux with standard neutron sources. It shows convincing results even in high flux areas like 6m away from the accelerator in RMC (Parel) for 106/107 nV. These monitors have a focal and remote display, alarm function with potential free contacts for centralized control and additional provision of connectivity via RS485/Ethernet. This paper describes the construction, working and results of the above flux monitor

  5. Video Meteor Fluxes

    Science.gov (United States)

    Campbell-Brown, M. D.; Braid, D.

    2011-01-01

    The flux of meteoroids, or number of meteoroids per unit area per unit time, is critical for calibrating models of meteoroid stream formation and for estimating the hazard to spacecraft from shower and sporadic meteors. Although observations of meteors in the millimetre to centimetre size range are common, flux measurements (particularly for sporadic meteors, which make up the majority of meteoroid flux) are less so. It is necessary to know the collecting area and collection time for a given set of observations, and to correct for observing biases and the sensitivity of the system. Previous measurements of sporadic fluxes are summarized in Figure 1; the values are given as a total number of meteoroids striking the earth in one year to a given limiting mass. The Gr n et al. (1985) flux model is included in the figure for reference. Fluxes for sporadic meteoroids impacting the Earth have been calculated for objects in the centimeter size range using Super-Schmidt observations (Hawkins & Upton, 1958); this study used about 300 meteors, and used only the physical area of overlap of the cameras at 90 km to calculate the flux, corrected for angular speed of meteors, since a large angular speed reduces the maximum brightness of the meteor on the film, and radiant elevation, which takes into account the geometric reduction in flux when the meteors are not perpendicular to the horizontal. They bring up corrections for both partial trails (which tends to increase the collecting area) and incomplete overlap at heights other than 90 km (which tends to decrease it) as effects that will affect the flux, but estimated that the two effects cancelled one another. Halliday et al. (1984) calculated the flux of meteorite-dropping fireballs with fragment masses greater than 50 g, over the physical area of sky accessible to the MORP fireball cameras, counting only observations in clear weather. In the micron size range, LDEF measurements of small craters on spacecraft have been used to

  6. Solar Magnetic Flux Ropes

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... The most probable initial magnetic configuration of a CME is a flux rope consisting of twisted field lines which fill the whole volume of a dark coronal cavity. The flux ropes can be in stable equilibrium in the coronal magnetic field for weeks and even months, but suddenly they lose their stability and erupt with ...

  7. The history of decisions on creation of nuclear and metallurgical complex on the basis of the Kola nuclear power plant

    Directory of Open Access Journals (Sweden)

    Kudrin B. I.

    2017-02-01

    Full Text Available Some reasons for the choice of directions for using electric and thermal energy of the Kola nuclear power plant located beyond the Arctic Circle have been presented. The regions of the country and their large-scale industrial productions based on metallurgical enterprises have been indicated; the electrical supply of these enterprises is implemented from the Kola NPP. The results of research of energy inputs for the production of a ton of steel and cast iron have been presented. It has been determined that the main direction of technological modernization in the steel industry is avoiding the use of organic fuels (particularly in coke-blast furnace production as the most energy-intensive and its replacement with the technology of direct reduction of iron with hydrogen. As an alternative energy source for organic fuels the creation of a fuel-free nuclear-metallurgical electrified complex has been proposed. The principal scheme of the fuel-free nuclear-metallurgical electrified complex has been described, here the main novelty has a reducing gases preparation block giving the potential ability for creating waste-free process. It has been noted that this technology requires using high temperatures and solving technical problems related to heat resistance of constructions. Some examples of world research on the implementation of similar projects have been presented. It has been determined that the use of new technology will cause the need for optimization of power consumption structure due to the redistribution of capacity and electrical consumption between productions. The introduction of new technologies requires solving a number of problems on electric power supply and electrical equipment designing. It has been observed that on the Kola NPP large-scale reconstruction was carried out during the working period, it helped to increase its project capacity and extend the operation life. Nowadays the region has excess installed capacity that can be

  8. Synergistic Separation Behavior of Boron in Metallurgical Grade Silicon Using a Combined Slagging and Gas Blowing Refining Technique

    Science.gov (United States)

    Wu, Jijun; Zhou, Yeqiang; Ma, Wenhui; Xu, Min; Yang, Bin

    2017-02-01

    A combined slagging and gas blowing refining technique for boron removal from metallurgical grade silicon using the CaO-SiO2-CaCl2 slag and the mixed Ar-O2-H2O gas is investigated. The oxygen gas blowing in combination with water vapor shows a wonderful removal efficiency of boron compared with the single oxygen or the single water vapor blowing. It is analyzed from the thermodynamics that a synergistic separation behavior of boron is resulted from CaCl2 and O2. Boron is removed and reduced from 22 to 0.75 ppmw with a removal efficiency of 96.6 pct.

  9. Evidence of trace element emission during the combustion of sulfide-bearing metallurgical slags

    International Nuclear Information System (INIS)

    Bortnikova, Svetlana Borisovna; Olenchenko, Vladimir Vladimirovich; Gaskova, Olga Lukinichna; Chernii, Konstantin Ivanovich; Devyatova, Anna Yurevna; Kucher, Dmitrii Olegovich

    2017-01-01

    The present study shows the results of field and laboratory studies of trace element transfer from waste heaps of metallurgical slags (Kemerovo region, town of Belovo). Temperature anomalies were observed, with high temperatures up to 81.2 °C on the top of the heap. A visual geophysical model of the inner parts of the heap with contrasting resistivity zones was obtained using the electrical resistivity tomography (ERT) method, and quantitative characteristics were derived. Dry and frozen slag zones were characterized by resistivity of 50–500 Ohm·m. The resistivity of wet slag varied from 5 to 10 Ohm·m for slag with low humidity of 1–2 Ohm·m for slag saturated with highly mineralized solutions. The local anomaly of extremely low resistivity (0.3–0.5 Ohm·m) might be associated with a combustion centre or high pore solutions TDS. Basic major elements (Ca, Mg, K, Na, Si, and Al), metals (Cu, Zn, Pb, and Cd) and anionic elements (As, Sb, and V) were determined in gas condensates in situ. The most volatile elements were basic elements: Ca > Cu > Mg > Na > Mn > Fe, Zn. Lower concentration in the condensates was determined for Si > K > As > Sr > Al > V and Pb, Ba, La were also found. The observed mineral paragenetic sequences were primary minerals of barite-polymetallic ores and sphalerite concentrate, high-temperature minerals formed during pyrometallurgical processing and/or permanent combustion of the heap surface, efflorescence minerals formed by atmospheric oxidation accelerated by acid steam condensation. An experimental investigations using stepwise and 500 °C heating of the same samples were performed to compare the elements that were released into the gas phase in situ and off-site. - Highlights: • Sulfide tailings temperature anomalies up to 81.2 °C. • A visual geophysical model of the bowels of the heap with contrasting resistivity zones was obtained. • Base rock-forming elements, metals and anionogenic elements were

  10. Microbiological and physicochemical treatments applied to metallurgic industry aiming water reuse

    Directory of Open Access Journals (Sweden)

    Antonio Roberto Crystal Bello

    2008-04-01

    Full Text Available A study was conducted on the reuse of the water in a system composed of a sewage treatment plant (STP using prolonged aeration with activated sludge and a compact water treatment plant (CWTP in a metallurgic industry. The processes for obtaining the water for reuse were microbiological and physicochemical. The domestic sewage was then pumped to the STP, where biological flocks were formed and clarified water was obtained. The efficiency of the microbiological process in the STP was evaluated for removal of biochemical oxygen demand (BOD, chemical oxygen demand (COD and sedimentary solids (SS. The efficiency of physicochemical processes for clarifying the water and disinfection was evaluated through analysis of pH, turbidity, color, aerobic heterotrophic bacterial count, free chlorine, hardness, alkalinity, chlorides, sulfates and dissolved total solids (DTS. In the reuse of the water, acute toxicity for the microcrustaceans Daphnia similis was also evaluated.Estudou-se o reuso de água de um sistema composto por estação de tratamento de esgoto (ETE com aeração prolongada e lodo ativado, e em uma estação compacta de tratamento de água (ECTA de uma indústria metalúrgica. Os processos para obtenção da água de reuso foram: microbiológico e físico-químico. O esgoto doméstico foi bombeado para a ETE, onde houve formação de flocos biológicos e água clarificada. Avaliou-se a eficiência do processo microbiológico da ETE mediante a remoção de demanda bioquímica de oxigênio (DBO, demanda química de oxigênio (DQO e sólidos sedimentáveis (SS. A eficiência do processo físico-químico de clarificação e desinfecção foi avaliada mediante análises de pH, turbidez, cor, contagem de bactérias heterotróficas aeróbias, cloro livre, dureza, alcalinidade, cloretos, sulfatos, sólidos totais dissolvidos (STD. Na água de reuso além desses parâmetros avaliou-se a toxicidade aguda ao microcrustáceo Daphnia similis.

  11. Directed flux motor

    Science.gov (United States)

    Wilson, Andrew (Inventor); Punnoose, Andrew (Inventor); Strausser, Katherine (Inventor); Parikh, Neil (Inventor)

    2011-01-01

    A directed flux motor described utilizes the directed magnetic flux of at least one magnet through ferrous material to drive different planetary gear sets to achieve capabilities in six actuated shafts that are grouped three to a side of the motor. The flux motor also utilizes an interwoven magnet configuration which reduces the overall size of the motor. The motor allows for simple changes to modify the torque to speed ratio of the gearing contained within the motor as well as simple configurations for any number of output shafts up to six. The changes allow for improved manufacturability and reliability within the design.

  12. Assessing market structures in resource markets. An empirical analysis of the market for metallurgical coal using various equilibrium models

    Energy Technology Data Exchange (ETDEWEB)

    Lorenczik, Stefan; Panke, Timo [Koeln Univ. (Germany). Inst. of Energy Economics

    2015-05-15

    The prevalent market structures found in many resource markets consist of a high concentration on the supply side and a low demand elasticity. Market results are therefore frequently assumed to be an outcome of strategic interaction between producers. Common models to investigate the market outcomes and underlying market structures are games representing competitive markets, strategic Cournot competition and Stackelberg structures taking into account a dominant player acting first followed by one or more followers. Besides analysing a previously neglected scenario of the latter kind, we add to the literature by expanding the application of mathematical models by applying an Equilibrium Problem with Equilibrium Constraints (EPEC), which is used to model multi-leader-follower games, to a spatial market. We apply our model by investigating the prevalent market setting in the international market for metallurgical coal between 2008 and 2010, whose market structure provides arguments for a wide variety of market structures. Using different statistical measures and comparing model with actual market outcomes, we find that two previously neglected settings perform best: First, a setting in which the four largest metallurgical coal exporting firms compete against each other as Stackelberg leaders, while the remainders act as Cournot followers. Second, a setting with BHPB acting as sole Stackelberg leader.

  13. Assessing market structures in resource markets. An empirical analysis of the market for metallurgical coal using various equilibrium models

    International Nuclear Information System (INIS)

    Lorenczik, Stefan; Panke, Timo

    2015-01-01

    The prevalent market structures found in many resource markets consist of a high concentration on the supply side and a low demand elasticity. Market results are therefore frequently assumed to be an outcome of strategic interaction between producers. Common models to investigate the market outcomes and underlying market structures are games representing competitive markets, strategic Cournot competition and Stackelberg structures taking into account a dominant player acting first followed by one or more followers. Besides analysing a previously neglected scenario of the latter kind, we add to the literature by expanding the application of mathematical models by applying an Equilibrium Problem with Equilibrium Constraints (EPEC), which is used to model multi-leader-follower games, to a spatial market. We apply our model by investigating the prevalent market setting in the international market for metallurgical coal between 2008 and 2010, whose market structure provides arguments for a wide variety of market structures. Using different statistical measures and comparing model with actual market outcomes, we find that two previously neglected settings perform best: First, a setting in which the four largest metallurgical coal exporting firms compete against each other as Stackelberg leaders, while the remainders act as Cournot followers. Second, a setting with BHPB acting as sole Stackelberg leader.

  14. Application of Six Sigma Using DMAIC Methodology in the Process of Product Quality Control in Metallurgical Operation

    Directory of Open Access Journals (Sweden)

    Girmanová Lenka

    2017-12-01

    Full Text Available The Six Sigma DMAIC can be considered a guide for problem solving and product or process improvement. The majority of companies start to implement Six Sigma using the DMAIC methodology. The paper deals with application of Six Sigma using the DMAIC methodology in the process of product quality control. The case study is oriented on the field of metallurgical operations. The goal of the Six Sigma project was to ensure the required metallurgic product quality and to avoid an increase in internal costs associated with poor product quality. In this case study, a variety of tools and techniques like flow chart, histogram, Pareto diagram, analysis of FMEA (Failure Mode and Effect Analysis data, cause and effect diagram, logical analysis was used. The Sigma level has improved by approximately 13%. The achieved improvements have helped to reduce the quantity of defective products and the processing costs (technology for re-adjusting. Benefits resulting from the DMAIC implementation can be divided into three levels: the qualitative, economic and safety level.

  15. Effect of Laser Beam Alloying Strategies on the Metallurgical and Mechanical Properties of Hot Forming Tool Steels

    Science.gov (United States)

    Hofmann, Konstantin; Neubauer, Franziska; Holzer, Matthias; Mann, Vincent; Hugger, Florian; Roth, Stephan; Schmidt, Michael

    In terms of increasing lightweight designs of car body parts, the machining of high strength steels in hot stamping processes becomes of particular interest. Due to high process forces at hot stamping, the surface of such tools in the area of maximal stress is subject wear, which necessitate some local increase of microhardness to enhance the mechanical performance. Especially laser beam alloying using filler wire and beam oscillation is some suitable method to modify the mechanical properties of tool surfaces to emcompass some continuous martensitic structure, featuring a certain microhardness. Nevertheless the thermal energy input during laser beam alloying induces tempering in the heat affected zone and reduces the hardness. This paper discusses the influence of alloying strategies on the thermal energy input and the resulting metallurgical structure of modified tool surfaces. Also the cooling behavior of alloyed lines for different energy inputs per unit length is of interest. Therefore, the metallurgical microstructure is analyzed regarding microhardness as well as formation of carbides. Furthermore, a numerical thermal simulation is developed to investigate the temperature profile in the heat affected zone of the specimen. These investigations permit the control of the spatiotemporal energy input to avoid tempering of the microstructure.

  16. Aeronet Solar Flux

    Data.gov (United States)

    National Aeronautics and Space Administration — SolRad-Net (Solar Radiation Network) is an established network of ground-based sensors providing high-frequency solar flux measurements in quasi-realtime to the...

  17. Flux in Tallinn

    Index Scriptorium Estoniae

    2004-01-01

    Rahvusvahelise elektroonilise kunsti sümpoosioni ISEA2004 klubiõhtu "Flux in Tallinn" klubis Bon Bon. Eestit esindasid Ropotator, Ars Intel Inc., Urmas Puhkan, Joel Tammik, Taavi Tulev (pseud. Wochtzchee). Klubiõhtu koordinaator Andres Lõo

  18. Determining Reactor Neutrino Flux

    OpenAIRE

    Cao, Jun

    2011-01-01

    Flux is an important source of uncertainties for a reactor neutrino experiment. It is determined from thermal power measurements, reactor core simulation, and knowledge of neutrino spectra of fuel isotopes. Past reactor neutrino experiments have determined the flux to (2-3)% precision. Precision measurements of mixing angle $\\theta_{13}$ by reactor neutrino experiments in the coming years will use near-far detector configurations. Most uncertainties from reactor will be canceled out. Understa...

  19. Theoretical magnetic flux emergence

    OpenAIRE

    MacTaggart, David

    2011-01-01

    Magnetic flux emergence is the subject of how magnetic fields from the solar interior can rise and expand into the atmosphere to produce active regions. It is the link that joins dynamics in the convection zone with dynamics in the atmosphere. In this thesis, we study many aspects of magnetic flux emergence through mathematical modelling and computer simulations. Our primary aim is to understand the key physical processes that lie behind emergence. The first chapter intro...

  20. Flux Emergence (Theory)

    Science.gov (United States)

    Cheung, Mark C. M.; Isobe, Hiroaki

    2014-07-01

    Magnetic flux emergence from the solar convection zone into the overlying atmosphere is the driver of a diverse range of phenomena associated with solar activity. In this article, we introduce theoretical concepts central to the study of flux emergence and discuss how the inclusion of different physical effects (e.g., magnetic buoyancy, magnetoconvection, reconnection, magnetic twist, interaction with ambient field) in models impact the evolution of the emerging field and plasma.

  1. Neutron flux monitoring device

    International Nuclear Information System (INIS)

    Shimazu, Yoichiro.

    1995-01-01

    In a neutron flux monitoring device, there are disposed a neutron flux measuring means for outputting signals in accordance with the intensity of neutron fluxes, a calculation means for calculating a self power density spectrum at a frequency band suitable to an object to be measured based on the output of the neutron flux measuring means, an alarm set value generation means for outputting an alarm set value as a comparative reference, and an alarm judging means for comparing the alarm set value with the outputted value of the calculation means to judge requirement of generating an alarm and generate an alarm in accordance with the result of the judgement. Namely, the time-series of neutron flux signals is put to fourier transformation for a predetermined period of time by the calculation means, and from each of square sums for real number component and imaginary number component for each of the frequencies, a self power density spectrum in the frequency band suitable to the object to be measured is calculated. Then, when the set reference value is exceeded, an alarm is generated. This can reliably prevent generation of erroneous alarm due to neutron flux noises and can accurately generate an alarm at an appropriate time. (N.H.)

  2. Neutron flux monitor

    International Nuclear Information System (INIS)

    Oda, Naotaka.

    1993-01-01

    The device of the present invention greatly saves an analog processing section such as an analog filter and an analog processing circuit. That is, the device of the present invention comprises (1) a neutron flux detection means for detecting neutron fluxed in the reactor, (2) a digital filter means for dividing signals corresponding to the detected neutron fluxes into predetermined frequency band regions, (3) a calculation processing means for applying a calculation processing corresponding to the frequency band regions to the neutron flux detection signals divided by the digital filter means. With such a constitution, since the neutron detection signals are processed by the digital filter means, the accuracy is improved and the change for the property of the filter is facilitated. Further, when a neutron flux level is obtained, a calculation processing corresponding to the frequency band region can be conducted without the analog processing circuit. Accordingly, maintenance and accuracy are improved by greatly decreasing the number of parts. Further, since problems inherent to the analog circuit are solved, neutron fluxes are monitored at high reliability. (I.S.)

  3. New welding fluxes based on silicomanganese slag for deposition and welding of canopies and crib bed of mine support

    Science.gov (United States)

    Kryukov, R. E.; Kozyrev, N. A.; Usoltsev, A. A.; Kozyreva, O. E.

    2017-09-01

    The paper considers the possibility of efficient use of silicomanganese slag for the production of welding fluxes. The results of studying the use of metallurgical wastes as components of welding fluxes are given. Analysis of the results of mechanical properties of the samples made it possible to determine the optimum content of the pulverized fraction less than 0.45 mm in the flux. The composition and technology of manufacturing a new welding flux using slag of silicomanganese production was developed. The effect of fractional composition on the welding-technological properties of fluxes was studied. The optimal content of liquid glass in the flux, which allows a favorable complex of mechanical properties to be obtained, is 20-30%. To reduce the level of contamination of the weld metal with non-metallic oxide inclusions and to increase the mechanical properties of the welded joint, it is proposed to introduce a carbon-fluorine-containing additive FD-UFS into fluxes based on the slag.

  4. Detection of contaminated metallurgical scrap at borders: a proposal for an 'investigation level'

    International Nuclear Information System (INIS)

    Duftschmid, K.E.

    1999-01-01

    In 1995 the IAEA started a program to combat illicit trafficking in nuclear and other radioactive materials which includes the problem of cross-border movement of contaminated metallurgical scrap. A major activity in this program is the elaboration of a Safety Guide on 'Preventing, Detecting and Responding to Illicit Trafficking', co-sponsored by the World Customs Organization (WCO) and INTERPOL. The guide will provide advice to the Member States, in particular on technical and administrative procedures for detection of radioactive materials at borders. Radiation monitoring systems for contaminated scrap metals have been successfully used in steel plants and larger scrap yards since several years and suitable products are on the market today. Using sophisticated software and dynamic scanning techniques such systems allow for detection of an artificial increase in radiation background level as low as by 20%, even if the natural background signal is substantially suppressed by the vehicle itself entering the monitor. However, the measurement conditions at borders are essentially different from those in plants. Large traffic crossing major borders limits the time for detection and response to a few seconds and multiple checks are nearly impractical. Shielded radioactive sources - even of high activity - which are deeply buried in scrap, cannot be detected without unloading the vehicle, a procedure generally ruled out at borders. Highly sensitive monitoring systems necessarily cause frequent false alarms or nuisance alarms due to innocent radioactive materials such as naturally occurring radioactivity e.g. in fertilizers, scale in pipes used in the oil industry or medical radioisotopes. A particular, rather frequent problem is the unnecessary reject of scrap transports on borders due to the inherent low level contamination of steel with 60 Co, even in sheet metal used for lorries or railroad cars. Such contamination can easily be caused by the routine method to control

  5. Corrosion resistance of Ni-Cr-Mo alloys. Chemical composition and metallurgical condition's effects

    International Nuclear Information System (INIS)

    Zadorozne, N.S.; Rebak, Raul B.

    2009-01-01

    P, may form if Ni-Cr-Mo alloys are exposed for tens of hours in the range of 600 C degrees to 1100 C degrees. These phases could have a detrimental effect upon corrosion resistance and cause a loss of mechanical ductility. The precipitation of TCP phases starts at grain boundaries and for long aging times it progresses to twins boundaries and then the grain bodies. TCP phases are rich in Mo and Cr. Zones in the matrix adjacent to the TCP precipitates may be depleted of Cr and Mo, and the alloy becomes sensitized.The aim of the present work was to compare the general corrosion rate and the crevice corrosion susceptibility of alloys C-22, C-22HS and HYBRID-BC1 in different metallurgical conditions when exposed to hot chloride solutions. The effects of the alloy composition and different heat treatments were assessed. (author)

  6. The Open Flux Problem

    International Nuclear Information System (INIS)

    Linker, J. A.; Caplan, R. M.; Downs, C.; Riley, P.; Mikic, Z.; Lionello, R.; Henney, C. J.; Arge, C. N.; Liu, Y.; Derosa, M. L.; Yeates, A.; Owens, M. J.

    2017-01-01

    The heliospheric magnetic field is of pivotal importance in solar and space physics. The field is rooted in the Sun’s photosphere, where it has been observed for many years. Global maps of the solar magnetic field based on full-disk magnetograms are commonly used as boundary conditions for coronal and solar wind models. Two primary observational constraints on the models are (1) the open field regions in the model should approximately correspond to coronal holes (CHs) observed in emission and (2) the magnitude of the open magnetic flux in the model should match that inferred from in situ spacecraft measurements. In this study, we calculate both magnetohydrodynamic and potential field source surface solutions using 14 different magnetic maps produced from five different types of observatory magnetograms, for the time period surrounding 2010 July. We have found that for all of the model/map combinations, models that have CH areas close to observations underestimate the interplanetary magnetic flux, or, conversely, for models to match the interplanetary flux, the modeled open field regions are larger than CHs observed in EUV emission. In an alternative approach, we estimate the open magnetic flux entirely from solar observations by combining automatically detected CHs for Carrington rotation 2098 with observatory synoptic magnetic maps. This approach also underestimates the interplanetary magnetic flux. Our results imply that either typical observatory maps underestimate the Sun’s magnetic flux, or a significant portion of the open magnetic flux is not rooted in regions that are obviously dark in EUV and X-ray emission.

  7. Effect of groove design on mechanical and metallurgical properties of quenched and tempered low alloy abrasion resistant steel welded joints

    International Nuclear Information System (INIS)

    Sharma, Varun; Shahi, A.S.

    2014-01-01

    Highlights: • Effect of weld groove design on Q and T steel welded joints is investigated. • Groove design influences heat dissipation characteristics of welded joints. • Double-V groove joint possesses maximum yield strength and UTS. • C-groove joint possesses highest impact energy, both at room temperature and 0 °C. • A wide variation in microhardness exists across different zone of the weldments. - Abstract: Experimental investigations were carried out to study the influence of three different groove designs on mechanical and metallurgical properties of 15 mm thick Q and T (quenched and tempered) steel welded joints. Welding heat input variation corresponding to each joint configuration was kept to a minimal such that the objective of investigating, exclusively, the effect of varied weld volume on the mechanical and metallurgical performance of these joints could be accomplished. Mechanical performance of these joints was evaluated by subjecting them to transverse tensile testing, and Charpy V-notch impact testing of the weld zones at room temperature and 0 °C. The results of this study reveal that among all types of groove formations used for welding, double-V groove joint possessed maximum YS (yield strength) and UTS (ultimate tensile strength), besides maximum strength ratio (YS/UTS) that was followed by U-groove joint and C-groove joint, respectively. However, weld zone tested individually, for the cover as well as the root pass of the C-groove joint possessed highest CVN (Charpy V-notch) values, both at room temperature and 0 °C. Extensive microhardness studies of these weldments showed a wide variation in the microhardness values of the weld zone and the HAZ (heat affected zone). It was concluded that each groove formation/design exerted a significant influence on the heat dissipation characteristics of these joints, which is evident from different morphological features as revealed through optical microscopy. Scanning electron microscopic

  8. Occupational exposure to PCDDs, PCDFs, and PCBs of metallurgical workers in some industrial plants of the Brescia area, northern Italy.

    Science.gov (United States)

    Abballe, Annalisa; Barbieri, Pietro Gino; di Domenico, Alessandro; Garattini, Siria; Iacovella, Nicola; Ingelido, Anna Maria; Marra, Valentina; Miniero, Roberto; Valentini, Silvia; De Felip, Elena

    2013-01-01

    The study was carried out in order to respond to public concern on the occupational exposure of metallurgical workers to highly toxic PCDDs, PCDFs, and PCBs in the area of the city of Brescia, northern Italy. The study investigated the effects on the haematic burden of occupational exposures to the aforesaid contaminants in different work environments, attempting to establish causal relationships and providing indications for occupational health preventive measures. Chemical concentrations were measured in blood serum of "professionally exposed" (PE) and "not professionally exposed" (NPE) subjects. NPE subjects included industrial administrative employees, Brescia inhabitants, and remote rural people. The central tendency indexes of contaminant cumulative concentrations were higher in PE than in NPE samples (for the mean values: PCDDs+PCDFs, 22.9 vs. 19.5 pgWHO-TEQ(1997)/g lb; DL-PCBs, 26.0 vs. 23.6 pgWHO-TEQ(1997)/g lb; PCDDs+PCDFs+DL-PCBs (TEQ(TOT)), 48.9 vs. 43.1 pgWHO-TEQ(1997)/g lb; Σ(6)[NDL-PCBs], 427 vs. 401 ng g(-1)lb); however, no statistical differences were detected at P=0.05. A significant difference for PCDDs+PCDFs and TEQ(TOT) was observed as the NPE data were progressively reduced to those of the remote rural people. The existence of a differential occupational exposure due to different environments was detected by applying the factor analysis to congener-specific data (analytical profiles). Findings indicate that metallurgical workers may be exposed to PCDD, PCDF, and PCB more than the general population, in particular due to non-negligible contributions to exposure from workplace ambient air. Findings also suggest that an improvement of preventive measures may be required to avoid chemical overexposure in certain metallurgical workplaces. To identify exposure groups, the DL- and NDL-PCB analytical profiles seemed to be more sensitive to environmental exposure sources/pathways than those of PCDDs and PCDFs. Copyright © 2012 Elsevier Ltd. All

  9. Effect of CH3COOH on Hydrometallurgical Purification of Metallurgical-Grade Silicon Using HCl-HF Leaching

    Science.gov (United States)

    Tian, Chunjin; Lu, Haifei; Wei, Kuixian; Ma, Wenhui; Xie, Keqiang; Wu, Jijun; Lei, Yun; Yang, Bin; Morita, Kazuki

    2018-04-01

    The present study investigated the effects of adding CH3COOH to HCl and HF used to purify metallurgical-grade Si (MG-Si). After 6 h of leaching MG-Si with an acid mixture consisting of 4 mol L-1 HCl, 3 mol L-1 HF, and 3 mol L-1 CH3COOH at 348 K, the total impurity removal efficiency was 88.5%, exceeding the 81.5% removal efficiency obtained without addition of CH3COOH. The microstructural evolution of Si after etching with the two lixiviants indicated better dissolution of metal impurities in MG-Si when using the HCl-HF-CH3COOH mixture. Furthermore, the leaching kinetics of Fe using the HCl-HF and HCl-HF-CH3COOH mixtures were observed to depend on the interfacial chemical reactions.

  10. Influence of metallurgical and electrochemical factors on cracking of steels at nuclear power plants under high temperature

    International Nuclear Information System (INIS)

    Pokhmurskii, V.I.; Gnyp, I.P.

    1994-01-01

    The influence of metallurgical heterogeneities in steels and electrochemical factors on corrosion cracking under high temperature water environment is studied, with special emphasis on the influence of manganese sulfide inclusions and other non-metallic ones on the crack growth rate. Results show that the electro-chemical conditions for an hydrogen concentration increase in a pre-failure zone exist at a crack tip under cyclic loading; hydrogen penetrating into metals at high temperature reduces manganese sulfides, ferric carbides, and cause high pressure of gases in micro-discontinuities, thus leading to cyclic corrosion cracking; anodic (relatively to a metal matrix) inclusions are rather the cause of steel cracking resistance decrease than cathodic ones. 16 refs., 4 figs

  11. Recent advances and future perspectives of nanosized zero- valent iron for extraction of heavy elements from metallurgical sludges

    Science.gov (United States)

    Mikhailov, I. Yu; Levina, V. V.; Kolesnikov, E. A.; Chuprunov, K. O.; Gusev, A. A.; Godymchuk, A. Yu; Kuznetsov, D. V.

    2016-01-01

    Advanced oxidation processes with nanosized zero-valent iron have presented great potential in wastewater treatment technology and now experience both increasing popularity and reliable technical improvements. Besides wastewater treatment, there is another promising application for an emerging technology of iron nanoparticles - as Fenton-like catalyst for extraction of valuable elements from poor and secondary raw materials such as metallurgical sludges. In present research, we carried out a set of experiments with emphasis on the physicochemical mechanisms and their relationship to the performance. In particular, we examined complex acidic - hydrogen peroxide leaching of zinc from blast furnace sludge with nanosized zero-valent iron as Fenton-like catalyst. Results of the experiments showed promising potential for subsequent application in extraction of heavy and rare-earth elements.

  12. Recent advances and future perspectives of nanosized zero- valent iron for extraction of heavy elements from metallurgical sludges

    International Nuclear Information System (INIS)

    Mikhailov, I Yu; Levina, V V; Kolesnikov, E A; Chuprunov, K O; Gusev, A A; Godymchuk, A Yu; Kuznetsov, D V

    2016-01-01

    Advanced oxidation processes with nanosized zero-valent iron have presented great potential in wastewater treatment technology and now experience both increasing popularity and reliable technical improvements. Besides wastewater treatment, there is another promising application for an emerging technology of iron nanoparticles - as Fenton-like catalyst for extraction of valuable elements from poor and secondary raw materials such as metallurgical sludges. In present research, we carried out a set of experiments with emphasis on the physicochemical mechanisms and their relationship to the performance. In particular, we examined complex acidic - hydrogen peroxide leaching of zinc from blast furnace sludge with nanosized zero-valent iron as Fenton-like catalyst. Results of the experiments showed promising potential for subsequent application in extraction of heavy and rare-earth elements. (paper)

  13. Roadmap report of the Metallurgical Industry and Foundries [in the Netherlands]; Rapportage Routekaart Metallurgische Industrie en Gieterijen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-08-15

    The roadmap describes the direction VNMI and AVNeG consider as feasible to realize substantial improvements with regard to energy efficiency in metallurgical production processes and in the usage of metal products. The aim of the report is to guide development efforts and describe technical and organizational options for businesses and industries in the metal sector [Dutch] De Routekaart beschrijft de richting die VNMI en AVNeG als haalbaar zien om naar 2030 toe substantiele energie-efficientieverbeteringen te realiseren in metallurgische productieprocessen en in de gebruiksfase van metaal producten. Het rapport is richtinggevend voor ontwikkelingsinspanningen en beschrijft technische en organisatorische mogelijkheden waar bedrijven individueel en in sectorverband zich voor zullen inzetten.

  14. Metallurgical investigation of cracking of the isolation valve downstream piping of regenerative heat exchanger at beaver valley unit 1 station

    International Nuclear Information System (INIS)

    Rao, G.V.

    1998-01-01

    A metallurgical investigation was conducted to establish the mechanism and cause of cracking in the regenerative heat exchanger piping at Beaver Valley Unit 1 PWR station in the USA. The investigation, which was centered on an eight inch long pipe section containing the cracking included surface examinations, metallographic and fractographic examinations, and chemistry evaluations. The results of the examinations showed that there were two types of pipe degradation mechanisms that affected the type 304 stainless schedule 40 piping. These consisted of localized corrosive attack on the OD surface due to the presence of chlorides, sulphates and phosphates, and transgranular stress corrosion cracking in the pipe wall due to the presence of chloride contaminants. The overall results of the investigation showed that the introduction of contaminants from external sources other than pipe insulation was the cause of heat exchanger pipe cracking. (author)

  15. Theoretical and experimental research on the use of expert systems (ES in assessing risks of failure in metallurgical companies

    Directory of Open Access Journals (Sweden)

    E. Iancu

    2013-04-01

    Full Text Available The systems’ engineering has reached an explosive development of intelligent systems technology which solves complex problems based on human expertise accumulated in the past and following the processes of learning and reasoning very similar to those of the biological brain. In this article, the concept of the proposed expert system is the result of interdisciplinary researches (computer science, management, accounting and business administration, etc., which are designed to provide a tool for top management work force of a listed metallurgical company. The inference machine will provide in the end score functions for Altman, Conan Holder model and rating which eventually can be combined into a single model that will forecast the company’s evolution in coming years.

  16. Metallurgical and Mechanical Characterization of High Temperature Titanium Alloys Joined by Friction Stir Welding

    Science.gov (United States)

    Gangwar, Kapil Dev

    In the world of joining, riveting and additive manufacturing, weight reduction, and omission of defects (at both macro and micro level) remain of paramount. Therefore, in the wake of ubiquitous fusion welding (FW) and widely accepted approach of riveting using Inconel bolts to resist corrosion at higher temperature, friction stir welding (FSW) has emerged as a novice jewel in friction based additive manufacturing industry. With advancements in automation of welding process and tool material, FSW of materials with higher work hardening such as steel and titanium has also become probable. Process and property relations associated with FSW are inevitable in case of dissimilar titanium alloys, due to presence of heterogeneity (whether atrocious or advantageous) in and around the weld nugget. These process property relationships are needed to be studied and addressed properly in order to optimize the processing window for improved mechanical and metallurgical properties. In this study FSWed similar and dissimilar butt joints of α+β, and near α titanium, alloys have been produced for varying processing conditions in order to study the effect of rotation speed (rpm) and traverse speed (TS; mm-min-1). The aim of this study is to assess the effect of tool geometry, tool rpm, TS on microstructure and mechanical properties of most widely used α+β titanium alloy, Ti-6Al-4V (Ti-64), standard grain and fine grain in addition to α+β,Ti-5Al-4V (T-54M), standard grain, and near α, Ti-6Al-2Mo-4Zr-2Sn (Ti-6242), standard grain (SG) and fine grain (FG). During FSW, a unique α+β fine-grained microstructure has been formed depending on whether or not the peak temperature in the weld nugget (WN) reached above or below β transus temperature. The resulting microstructure consists of acicular α+β, emanating from the prior β grain boundary as the weld cools off. The changes in the microstructure are observed by optical microscopy (OM). Later, a detailed analysis of material

  17. Soluble organic nutrient fluxes

    Science.gov (United States)

    Robert G. Qualls; Bruce L. Haines; Wayne Swank

    2014-01-01

    Our objectives in this study were (i) compare fluxes of the dissolved organic nutrients dissolved organic carbon (DOC), DON, and dissolved organic phosphorus (DOP) in a clearcut area and an adjacent mature reference area. (ii) determine whether concentrations of dissolved organic nutrients or inorganic nutrients were greater in clearcut areas than in reference areas,...

  18. Radiation flux measuring device

    International Nuclear Information System (INIS)

    Corte, E.; Maitra, P.

    1977-01-01

    A radiation flux measuring device is described which employs a differential pair of transistors, the output of which is maintained constant, connected to a radiation detector. Means connected to the differential pair produce a signal representing the log of the a-c component of the radiation detector, thereby providing a signal representing the true root mean square logarithmic output. 3 claims, 2 figures

  19. Muon and neutrino fluxes

    Science.gov (United States)

    Edwards, P. G.; Protheroe, R. J.

    1985-01-01

    The result of a new calculation of the atmospheric muon and neutrino fluxes and the energy spectrum of muon-neutrinos produced in individual extensive air showers (EAS) initiated by proton and gamma-ray primaries is reported. Also explained is the possibility of detecting atmospheric nu sub mu's due to gamma-rays from these sources.

  20. Flux scaling: Ultimate regime

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Flux scaling: Ultimate regime. With the Nusselt number and the mixing length scales, we get the Nusselt number and Reynolds number (w'd/ν) scalings: and or. and. scaling expected to occur at extremely high Ra Rayleigh-Benard convection. Get the ultimate regime ...

  1. ULY JUP COSPIN HIGH FLUX TELESCOPE HIGH RES. ION FLUX

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains ion flux data recorded by the COSPIN High Flux Telescope (HFT) during the Ulysses Jupiter encounter 1992-Jan-25 to 1992-Feb-18.

  2. Atmospheric lepton fluxes

    Directory of Open Access Journals (Sweden)

    Gaisser Thomas K.

    2015-01-01

    Full Text Available This review of atmospheric muons and neutrinos emphasizes the high energy range relevant for backgrounds to high-energy neutrinos of astrophysical origin. After a brief historical introduction, the main distinguishing features of atmospheric νμ and νe are discussed, along with the implications of the muon charge ratio for the νµ / ν̅µ ratio. Methods to account for effects of the knee in the primary cosmic-ray spectrum and the energy-dependence of hadronic interactions on the neutrino fluxes are discussed and illustrated in the context of recent results from IceCube. A simple numerical/analytic method is proposed for systematic investigation of uncertainties in neutrino fluxes arising from uncertainties in the primary cosmic-ray spectrum/composition and hadronic interactions.

  3. NEUTRON FLUX INTENSITY DETECTION

    Science.gov (United States)

    Russell, J.T.

    1964-04-21

    A method of measuring the instantaneous intensity of neutron flux in the core of a nuclear reactor is described. A target gas capable of being transmuted by neutron bombardment to a product having a resonance absorption line nt a particular microwave frequency is passed through the core of the reactor. Frequency-modulated microwave energy is passed through the target gas and the attenuation of the energy due to the formation of the transmuted product is measured. (AEC)

  4. Physics of magnetic flux ropes

    Science.gov (United States)

    Russell, C. T.; Priest, E. R.; Lee, L. C.

    The present work encompasses papers on the structure, waves, and instabilities of magnetic flux ropes (MFRs), photospheric flux tubes (PFTs), the structure and heating of coronal loops, solar prominences, coronal mass ejections and magnetic clouds, flux ropes in planetary ionospheres, the magnetopause, magnetospheric field-aligned currents and flux tubes, and the magnetotail. Attention is given to the equilibrium of MFRs, resistive instability, magnetic reconnection and turbulence in current sheets, dynamical effects and energy transport in intense flux tubes, waves in solar PFTs, twisted flux ropes in the solar corona, an electrodynamical model of solar flares, filament cooling and condensation in a sheared magnetic field, the magnetopause, the generation of twisted MFRs during magnetic reconnection, ionospheric flux ropes above the South Pole, substorms and MFR structures, evidence for flux ropes in the earth magnetotail, and MFRs in 3D MHD simulations.

  5. Environmental management and educational needs of the small and medium-sized businesses of the metallurgical sector in the south region of Madrid

    International Nuclear Information System (INIS)

    Urena, A.; Rams, J.; Mendez, F. J.; Rodriguez, J.

    2004-01-01

    In this study, the environmental management and needs of the small and medium-sized businesses of the metallurgical industry in the south region of Madrid were analysed. Information was obtained through a telephone questionnaire distributed to more than 170 companies. Although most of the respondent employees do not consider environmental training one of their priorities, they expressed their interest in implementing Environmental Management Systems, waste minimization and higher knowledge of the specific legal aspects. (Author) 7 refs

  6. Assessment of the effect of Nd:YAG laser pulse operating parameters on the metallurgical characteristics of different tool steels using DOE software

    OpenAIRE

    Muhič, T.; Kosec, L.; Liedl, G.; Pleterski, M.

    2011-01-01

    To ensure the reliability of repair welded tool surfaces, clad quality should be improved. The relationships between metallurgical characteristics of cladding and laser input welding parameters were studied using the design of experiments software. The influence of laser power, welding speed, focal point position and diameter of welding wire on the weld-bead geometry (i.e. penetration, cladding zone width and heat-affected-zone width), microstructural homogeneity, dilution and bond strength w...

  7. Reactor flux calculations

    Energy Technology Data Exchange (ETDEWEB)

    Lhuillier, D. [Commissariat à l' Énergie Atomique et aux Énergies Alternatives, Centre de Saclay, IRFU/SPhN, 91191 Gif-sur-Yvette (France)

    2013-02-15

    The status of the prediction of reactor anti-neutrino spectra is presented. The most accurate method is still the conversion of total β spectra of fissionning isotopes as measured at research reactors. Recent re-evaluations of the conversion process led to an increased predicted flux by few percent and were at the origin of the so-called reactor anomaly. The up to date predictions are presented with their main sources of error. Perspectives are given on the complementary ab-initio predictions and upcoming experimental cross-checks of the predicted spectrum shape.

  8. Australian methane fluxes

    International Nuclear Information System (INIS)

    Williams, D.J.

    1990-01-01

    Estimates are provided for the amount of methane emitted annually into the atmosphere in Australia for a variety of sources. The sources considered are coal mining, landfill, motor vehicles, natural gas suply system, rice paddies, bushfires, termites, wetland and animals. This assessment indicates that the major sources of methane are natural or agricultural in nature and therefore offer little scope for reduction. Nevertheless the remainder are not trival and reduction of these fluxes could play a significant part in any Australian action on the greenhouse problem. 19 refs., 7 tabs., 1 fig

  9. [The flux of historiography].

    Science.gov (United States)

    Mazzolini, R G

    2001-01-01

    The author places Grmek's editorial within the flux of the historiographical debate which, since the middle of the 1970s, has concentrated on two major crises due to the end of social science-oriented 'scientific history' and to the 'linguistic turn'. He also argues that Grmek's historiographical work of the 1980s and 1990s was to some extent an alternative to certain observed changes in historical fashion and has achieved greater intelligibility because of its commitment to a rational vision of science and historiography.

  10. 3D Model Studies on the Effect of Bed and Powder Type Upon Radial Static Pressure and Powder Distribution in Metallurgical Shaft Furnaces

    Directory of Open Access Journals (Sweden)

    Panic B.

    2017-09-01

    Full Text Available The flow of gases in metallurgical shaft furnaces has a decisive influence on the course and process efficiency. Radial changes in porosity of the bed cause uneven flow of gas along the radius of the reactor, which sometimes is deliberate and intentional. However, holdup of solid particles in descending packed beds of metallurgical shaft furnaces can lead to unintentional changes in porosity of the bed along the radial reactor. Unintentional changes in porosity often disrupt the flow of gas causing poor performance of the furnace. Such disruptions of flow may occur in the blast furnace due to high level of powder content in gas caused by large amount of coal dust/powder insufflated as fuel substitute. The paper describes the model test results of radial distribution of static pressure and powder hold up within metallurgical reactor. The measurements were carried out with the use of 3D physical model of two-phase flow gas-powder in the moving (descending packed bed. Sinter or blast furnace pellets were used as packed bed while carbon powder or iron powder were used as the powder. Wide diversity within both static pressure distribution and powder distribution along the radius of the reactor were observed once the change in the type of powder occurred.

  11. Morphology, chemistry and distribution of neoformed spherulites in agricultural land affected by metallurgical point-source pollution.

    Science.gov (United States)

    Leguédois, Sophie; Van Oort, Folkert; Jongmans, Toine; Chevallier, Pierre

    2004-07-01

    Metal distribution patterns in superficial soil horizons of agricultural land affected by metallurgical point-source pollution were studied using optical and electron microscopy, synchrotron radiation and spectroscopy analyses. The site is located in northern France, at the center of a former entry lane to a bunker of World War II, temporarily paved with coarse industrial waste fragments and removed at the end of the war. Thin sections made from undisturbed soil samples from A and B horizons were studied. Optical microscopy revealed the occurrence of yellow micrometer-sized (Ap horizon) and red decamicrometer-sized spherulites (AB, B(1)g horizons) as well as distinct distribution patterns. The chemical composition of the spherulites was dominated by Fe, Mn, Zn, Pb, Ca, and P. Comparison of calculated Zn stocks, both in the groundmass and in spherulites, showed a quasi-exclusive Zn accumulation in these neoformed features. Their formation was related to several factors: (i) liberation of metal elements due to weathering of waste products, (ii) Ca and P supply from fertilizing practices, (iii) co-precipitation of metal elements and Ca and P in a porous soil environment, after slow exudation of a supersaturated soil solution in more confined mineral media.

  12. Thallium isotopes in metallurgical wastes/contaminated soils: A novel tool to trace metal source and behavior.

    Science.gov (United States)

    Vaněk, Aleš; Grösslová, Zuzana; Mihaljevič, Martin; Ettler, Vojtěch; Trubač, Jakub; Chrastný, Vladislav; Penížek, Vít; Teper, Leslaw; Cabala, Jerzy; Voegelin, Andreas; Zádorová, Tereza; Oborná, Vendula; Drábek, Ondřej; Holubík, Ondřej; Houška, Jakub; Pavlů, Lenka; Ash, Christopher

    2018-02-05

    Thallium (Tl) concentration and isotope data have been recorded for contaminated soils and a set of industrial wastes that were produced within different stages of Zn ore mining and metallurgical processing of Zn-rich materials. Despite large differences in Tl levels of the waste materials (1-500mgkg -1 ), generally small changes in ε 205 Tl values have been observed. However, isotopically lighter Tl was recorded in fly ash (ε 205 Tl∼-4.1) than in slag (ε 205 Tl∼-3.3), implying partial isotope fractionation during material processing. Thallium isotope compositions in the studied soils reflected the Tl contamination (ε 205 Tl∼-3.8), despite the fact that the major pollution period ended more than 30 years ago. Therefore, we assume that former industrial Tl inputs into soils, if significant, can potentially be traced using the isotope tracing method. We also suggest that the isotope redistributions occurred in some soil (subsurface) horizons, with Tl being isotopically heavier than the pollution source, due to specific sorption and/or precipitation processes, which complicates the discrimination of primary Tl. Thallium isotope analysis proved to be a promising tool to aid our understanding of Tl behavior within the smelting process, as well as its post-depositional dynamics in the environmental systems (soils). Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Metallurgical Bonding Development of V-4Cr-4Ti Alloy for the DIII-D Radiative Divertor Program

    International Nuclear Information System (INIS)

    Smith, J.P.; Johnson, W.R.; Trester, P.W.

    1998-01-01

    General Atomics (GA), in conjunction with the Department of Energy's (DOE) DIII-D Program, is carrying out a plan to utilize a vanadium alloy in the DIII-D tokamak as part of the DIII-D Radiative Divertor (RD) upgrade. The V-4Cr-4Ti alloy has been selected in the U.S. as the leading candidate vanadium alloy for fusion applications. This alloy will be used for the divertor fabrication. Manufacturing development with the V-4Cr-4Ti alloy is a focus of the DIII-D RD Program. The RD structure, part of which will be fabricated from V-4Cr-4Ti alloy, will require many product forms and types of metal/metal bonded joints. Metallurgical bonding methods development on this vanadium alloy is therefore a key area of study by GA. Several solid state (non-fusion weld) and fusion weld joining methods are being investigated. To date, GA has been successful in producing ductile, high strength, vacuum leak tight joints by all of the methods under investigation. The solid state joining was accomplished in air, i.e., without the need for a vacuum or inert gas environment to prevent interstitial impurity contamination of the V-4Cr-4Ti alloy

  14. Left-wing, democracy, and trade union insurgency in Mexico: nuclear, mining, and metallurgical workers, 1972-1985

    Directory of Open Access Journals (Sweden)

    Gerardo Necoechea Gracia

    2016-03-01

    Full Text Available This article analyzes the history of trade union insurgency in Mexico during the 1970s and the relationship established between the left and the labor class. To do this, experiences of the Mexican National Nuclear Energy Trade Union and those of sections 11 and 147 of the mining-metallurgical trade union are analyzed. In the first case, its relationship with the democratic movement of electrical workers and the current of revolutionary nationalism are observed and in the second its links with the political organization Línea Proletaria, which has a Maoist affiliation. Both currents proposed various strategies that revived the tension existing in the Mexican labor movement in the early century, between those who thought that trade unions should not ally to political parties and instead exert direct action at work and those who advocated for political alliances, which they called multiple action. Both movements converged in the trade union movement of that period, which demanded trade union democracy and demonstrated against the austerity policy imposed by the government, as well as for the defense of natural resources. On the other hand, labor activism was manifested in an environment of greater rebelliousness combined with other social groups, a situation that ascertains advances in the struggles of workers from the industry and services, and its impact on the political, social, and cultural life in the country.

  15. Metallurgical reactions in the coalescence zone between a reinforcement and a base metal in reinforced brazed joints

    Directory of Open Access Journals (Sweden)

    Zorc, B.

    2004-12-01

    Full Text Available A reinforcement wire added to a brazed joint strongly improves the properties of the joint, i.e., its strength, toughness and resistance to crack initiation and propagation. This effect, however, can be achieved only if the reinforcement wire is of a suitable shape, from an appropriate material as regards the base metal and the brazing alloy and it coalesces strongly and toughly with the base metal. The properties of such a joint depend on the reinforcement wire and not on the brazing alloy. The most favourable reinforcement shape was determined. Metallurgical reactions among the base metal, the brazing alloy, and the reinforcement were studied.

    La armadura, añadida a las uniones fuertemente soldadas, mejora considerablemente las características de la unión, es decir, su dureza, tenacidad y resistencia frente a la formación y propagación de la grieta separada. Se puede alcanzar dicho resultado solamente si el alambre de la armadura tiene la forma apropiada, está formado con el material adecuado (acorde al material de base y la unión y se funde de manera fuerte y tenaz con el material de base. Las propiedades de la unión mencionada, dependen del alambre de la armadura y no de la soldadura. Se determina la forma más ventajosa de la armadura y se investigan las reacciones metalúrgicas entre el material de base, la soldadura y la armadura.

  16. Resistance Upset Welding of ODS Steel Fuel Claddings—Evaluation of a Process Parameter Range Based on Metallurgical Observations

    Directory of Open Access Journals (Sweden)

    Fabien Corpace

    2017-08-01

    Full Text Available Resistance upset welding is successfully applied to Oxide Dispersion Strengthened (ODS steel fuel cladding. Due to the strong correlation between the mechanical properties and the microstructure of the ODS steel, this study focuses on the consequences of the welding process on the metallurgical state of the PM2000 ODS steel. A range of process parameters is identified to achieve operative welding. Characterizations of the microstructure are correlated to measurements recorded during the welding process. The thinness of the clad is responsible for a thermal unbalance, leading to a higher temperature reached. Its deformation is important and may lead to a lack of joining between the faying surfaces located on the outer part of the join which can be avoided by increasing the dissipated energy or by limiting the clad stick-out. The deformation and the temperature reached trigger a recrystallization phenomenon in the welded area, usually combined with a modification of the yttrium dispersion, i.e., oxide dispersion, which can damage the long-life resistance of the fuel cladding. The process parameters are optimized to limit the deformation of the clad, preventing the compactness defect and the modification of the nanoscale oxide dispersion.

  17. Microstructure and tribology behaviors of in-situ WC/Fe carbide coating fabricated by plasma transferred arc metallurgic reaction

    Science.gov (United States)

    Yuan, Youlu; Li, Zhuguo

    2017-11-01

    In order to improve the dry sliding tribology properties of mild steel compound, the in-situ WC carbide coatings with 18, 32, 54 vol% WC were successfully synthesized using plasma transferred arc metallurgic reaction (PTAMR) with alloy powders W, C and Fe-30Ni. The composition, microstructure and microhardness of the carbide coatings were characterized. It was found that the carbide coating consisted of WC, M6C and γ phases, carbides distribute gradually from the coating bottom to top, the in-situ WC crystal grows into triangle prism structure with high hardness and good toughness. Dry sliding tribology behaviors were studied on block-on-wheel dry sliding wear tester with load 300 N, sliding speed 0.836 m/s and distance 500 m. Results show that the friction coefficient diagrams contain three stages, variation of friction coefficient increase with the content of WC, friction temperature increase with the sliding distance, increasing the content of WC can directly increase the antiwear property of WC/Fe carbide coating. The main wear mechanisms of in-situ WC/Fe carbide coating are adhesive, oxidation, micro-cutting and ploughing wear.

  18. Effects of metallurgical factors on stress corrosion cracking of Ni-base alloys in high temperature water

    International Nuclear Information System (INIS)

    Yonezawa, T.; Sasaguri, N.; Onimura, K.

    1988-01-01

    Nickel-base Alloy 600 is the principal material used for the steam generator tubes of PWRs. Generally, this alloy has been proven to be satisfactory for this application, however when it is subjected to extremely high stress level in PWR primary water, it may suffer from stress corrosion cracking. The authors have systematically studied the effects of test temperature and such metallurgical factors as cold working, chemical composition and heat treatment on the stress corrosion cracking of Alloy 600 in high temperature water, and also on that of Alloy 690 which is a promising material for the tubes and may provide improved crrosion resistance for steam generators. The test materials, the stress corrosion cracking test and the test results are reported. When the test temperature was raise, the stress corrosion cracking of the nickel-base alloys was accelerated. The time of stress corrosion cracking occurrence decreased with increasing applied stress, and it occurred at the stress level higher than the 0.2 % offset proof stress of Alloy 600. In Alloy 690, stress corrosion cracking was not observed at such stress level. Cold worked Alloy 600 showed higher resistance to stress corrosion cracking than the annealed alloy. (Kako, I.)

  19. Projects development for mining-metallurgical units for production of uranium concentrates. An analysis an a methodology

    International Nuclear Information System (INIS)

    Ajuria G, S.; Blanco P, B.; Manzanera Q, C.; Pena A, J.

    1978-07-01

    An analysis and a methodology for the complete development of a mining- metallurgist project is presented, from the sampling and the evaluation of a deposit until the outburst of a metallurgical plant. The main objectives of this work are three: On one hand it is to establish a methodology for standardize the internal activities of the Sub management of Benefits. It is convenient standardize the experimental procedures, the evaluation approaches and the form of presentation of results so that they are directly comparable and that it is easy their interpretation and use. Given the nature so variable of the minerals this document cannot be but that a guide and it is indispensable that in all moment the personnel that develops these activities uses his knowledge, experience and professional approach to obtain the best results. On the other hand it is to establish a base to facilitate the coordination of the activities of the Sub management of Benefit with other work groups, inside of and outside of the INEN that should collaborate in the projects. Finally it is to present a vision of group of the whole project like reference base for the participant personnel. Many of the specialists that contribute to the project would not be metallurgists, but rather they practice other disciplines. It is therefore convenient to facilitate the one that are formed an image of the complete project. (Author)

  20. Permanent magnet flux-biased magnetic actuator with flux feedback

    Science.gov (United States)

    Groom, Nelson J. (Inventor)

    1991-01-01

    The invention is a permanent magnet flux-biased magnetic actuator with flux feedback for adjustably suspending an element on a single axis. The magnetic actuator includes a pair of opposing electromagnets and provides bi-directional forces along the single axis to the suspended element. Permanent magnets in flux feedback loops from the opposing electromagnets establish a reference permanent magnet flux-bias to linearize the force characteristics of the electromagnets to extend the linear range of the actuator without the need for continuous bias currents in the electromagnets.

  1. Reactor neutron flux measuring device

    International Nuclear Information System (INIS)

    Okutani, Yasushi; Hayakawa, Toshifumi.

    1994-01-01

    The present invention concerns a device for displaying an approximate neutron flux distribution to recognize the neutron flux distribution of the whole reactor in a short period of time. The device of the present invention displays, the results of measurement for neutron fluxes collected by a data collecting section on every results of the measurements at measuring points situating at horizontally identical positions of the reactor core. In addition, every results of the measurements at the measuring points situating at the identical height in the reactor core are accumulated, and the results of the integration are graphically displayed. With such procedures, the neutron flux distribution in the entire reactor is approximately displayed. Existent devices could not recognize the neutron flux distribution of the entire reactor at a glance and it took much time for the recognition. The device of the present invention can recognize the neutron flux distribution of the entire reactor in a short period of time. (I.S.)

  2. Flux compactifications and generalized geometries

    International Nuclear Information System (INIS)

    Grana, Mariana

    2006-01-01

    Following the lectures given at CERN Winter School 2006, we present a pedagogical overview of flux compactifications and generalized geometries, concentrating on closed string fluxes in type II theories. We start by reviewing the supersymmetric flux configurations with maximally symmetric four-dimensional spaces. We then discuss the no-go theorems (and their evasion) for compactifications with fluxes. We analyse the resulting four-dimensional effective theories for Calabi-Yau and Calabi-Yau orientifold compactifications, concentrating on the flux-induced superpotentials. We discuss the generic mechanism of moduli stabilization and illustrate with two examples: the conifold in IIB and a T 6 /(Z 3 x Z 3 ) torus in IIA. We finish by studying the effective action and flux vacua for generalized geometries in the context of generalized complex geometry

  3. California's Future Carbon Flux

    Science.gov (United States)

    Xu, L.; Pyles, R. D.; Paw U, K.; Gertz, M.

    2008-12-01

    The diversity of the climate and vegetation systems in the state of California provides a unique opportunity to study carton dioxide exchange between the terrestrial biosphere and the atmosphere. In order to accurately calculate the carbon flux, this study couples the sophisticated analytical surface layer model ACASA (Advance Canopy-Atmosphere-Soil Algorithm, developed in the University of California, Davis) with the newest version of mesoscale model WRF (the Weather Research & Forecasting Model, developed by NCAR and several other agencies). As a multilayer, steady state model, ACASA incorporates higher-order representations of vertical temperature variations, CO2 concentration, radiation, wind speed, turbulent statistics, and plant physiology. The WRF-ACASA coupling is designed to identify how multiple environmental factors, in particularly climate variability, population density, and vegetation distribution, impact on future carbon cycle prediction across a wide geographical range such as in California.

  4. Neutron fluxes in test reactors

    Energy Technology Data Exchange (ETDEWEB)

    Youinou, Gilles Jean-Michel [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-01-01

    Communicate the fact that high-power water-cooled test reactors such as the Advanced Test Reactor (ATR), the High Flux Isotope Reactor (HFIR) or the Jules Horowitz Reactor (JHR) cannot provide fast flux levels as high as sodium-cooled fast test reactors. The memo first presents some basics physics considerations about neutron fluxes in test reactors and then uses ATR, HFIR and JHR as an illustration of the performance of modern high-power water-cooled test reactors.

  5. Fluxes of biogenic volatile organic compounds measured and modelled above a Norway spruce forest

    Science.gov (United States)

    Juráň, Stanislav; Fares, Silvano; Pallozzi, Emanuele; Guidolotti, Gabriele; Savi, Flavia; Alivernini, Alessandro; Calfapietra, Carlo; Večeřová, Kristýna; Křůmal, Kamil; Večeřa, Zbyněk; Cudlín, Pavel; Urban, Otmar

    2016-04-01

    Fluxes of biogenic volatile organic compounds (BVOCs) were investigated at Norway spruce forest at Bílý Kříž in Beskydy Mountains of the Czech Republic during the summer 2014. A proton-transfer-reaction-time-of-flight mass spectrometer (PTR-TOF-MS, Ionicon Analytik, Austria) has been coupled with eddy-covariance system. Additionally, Inverse Lagrangian Transport Model has been used to derive fluxes from concentration gradient of various monoterpenes previously absorbed into n-heptane by wet effluent diffusion denuder with consequent quantification by gas chromatography with mass spectrometry detection. Modelled data cover each one day of three years with different climatic conditions and previous precipitation patterns. Model MEGAN was run to cover all dataset with monoterpene fluxes and measured basal emission factor. Highest fluxes measured by eddy-covariance were recorded during the noon hours, represented particularly by monoterpenes and isoprene. Inverse Lagrangian Transport Model suggests most abundant monoterpene fluxes being α- and β-pinene. Principal component analysis revealed dependencies of individual monoterpene fluxes on air temperature and particularly global radiation; however, these dependencies were monoterpene specific. Relationships of monoterpene fluxes with CO2 flux and relative air humidity were found to be negative. MEGAN model correlated to eddy-covariance PTR-TOF-MS measurement evince particular differences, which will be shown and discussed. Bi-directional fluxes of oxygenated short-chain volatiles (methanol, formaldehyde, acetone, acetaldehyde, formic acid, acetic acid, methyl vinyl ketone, methacrolein, and methyl ethyl ketone) were recorded by PTR-TOF-MS. Volatiles of anthropogenic origin as benzene and toluene were likely transported from the most benzene polluted region in Europe - Ostrava city and adjacent part of Poland around Katowice, where metallurgical and coal mining industries are located. Those were accumulated during

  6. Data Acquisition and Flux Calculations

    DEFF Research Database (Denmark)

    Rebmann, C.; Kolle, O; Heinesch, B

    2012-01-01

    In this chapter, the basic theory and the procedures used to obtain turbulent fluxes of energy, mass, and momentum with the eddy covariance technique will be detailed. This includes a description of data acquisition, pretreatment of high-frequency data and flux calculation.......In this chapter, the basic theory and the procedures used to obtain turbulent fluxes of energy, mass, and momentum with the eddy covariance technique will be detailed. This includes a description of data acquisition, pretreatment of high-frequency data and flux calculation....

  7. Heat Flux Instrumentation Laboratory (HFIL)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The Heat Flux Instrumentation Laboratory is used to develop advanced, flexible, thin film gauge instrumentation for the Air Force Research Laboratory....

  8. KoFlux: Korean Regional Flux Network in AsiaFlux

    Science.gov (United States)

    Kim, J.

    2002-12-01

    AsiaFlux, the Asian arm of FLUXNET, held the Second International Workshop on Advanced Flux Network and Flux Evaluation in Jeju Island, Korea on 9-11 January 2002. In order to facilitate comprehensive Asia-wide studies of ecosystem fluxes, the meeting launched KoFlux, a new Korean regional network of long-term micrometeorological flux sites. For a successful assessment of carbon exchange between terrestrial ecosystems and the atmosphere, an accurate measurement of surface fluxes of energy and water is one of the prerequisites. During the 7th Global Energy and Water Cycle Experiment (GEWEX) Asian Monsoon Experiment (GAME) held in Nagoya, Japan on 1-2 October 2001, the Implementation Committee of the Coordinated Enhanced Observing Period (CEOP) was established. One of the immediate tasks of CEOP was and is to identify the reference sites to monitor energy and water fluxes over the Asian continent. Subsequently, to advance the regional and global network of these reference sites in the context of both FLUXNET and CEOP, the Korean flux community has re-organized the available resources to establish a new regional network, KoFlux. We have built up domestic network sites (equipped with wind profiler and radiosonde measurements) over deciduous and coniferous forests, urban and rural rice paddies and coastal farmland. As an outreach through collaborations with research groups in Japan, China and Thailand, we also proposed international flux sites at ecologically and climatologically important locations such as a prairie on the Tibetan plateau, tropical forest with mixed and rapid land use change in northern Thailand. Several sites in KoFlux already begun to accumulate interesting data and some highlights are presented at the meeting. The sciences generated by flux networks in other continents have proven the worthiness of a global array of micrometeorological flux towers. It is our intent that the launch of KoFlux would encourage other scientists to initiate and

  9. A metallurgical and mechanical study on dissimilar Friction Stir welding of aluminum 1050 to brass (CuZn30)

    International Nuclear Information System (INIS)

    Esmaeili, A.; Givi, M.K. Besharati; Rajani, H.R. Zareie

    2011-01-01

    Highlights: → Brass and aluminum 1050 are joined for the first time through Friction Stir welding. → Welding parameters are optimized to obtain a sound joint. → The ultimate tensile strength of the sound joint reaches 80% of aluminum base metal. → The effect of interfacial intermetallic compounds on mechanical properties is probed. → CuZn, Cu9Al4 and CuAl2 form the majority of observed intermetallic compounds. - Abstract: In this research, the effect of Friction Stir welding parameters on mechanical and metallurgical properties of aluminum 1050/brass (70%Cu-30%Zn) joints was investigated. Optical microscopy, SEM, X-ray diffraction analysis and EDS analysis were used to probe microstructures and chemical compositions. In order to examine mechanical properties, besides hardness test, tensile strength of the welds was measured. The main parameters in this study were the tool rotational speed, offset, welding speed, and depth of the sinking pin. The maximum ultimate tensile strength of the joint reached in this research was 80% of the base metal (aluminum). Results show that the optimum parameters will yield a defect free joint arisen from a suitable material flow and a narrow multilayer intermetallic compound at interface in addition to a composite structure in the stir zone which all result in a strong joint. Also, by leaving the optimized condition, occurrence of large brass fragments and weld defects lower weld strength besides shifting fracture path from interface to the stir zone. Also, according to the results, using low rotation speed is accompanied by disappearance of interfacial intermetallic layer, whereas fast rotation will thicken this layer. Moreover, severe mechanical twining is observed in TMAZ of brass which leads to high values of hardness in this region.

  10. Metallurgical and mechanical examinations of steel–copper joints arc welded using bronze and nickel-base superalloy filler materials

    International Nuclear Information System (INIS)

    Velu, M.; Bhat, Sunil

    2013-01-01

    Highlights: ► Optical and scanning electron microscopy show defect free weld interfaces. ► Energy dispersive spectroscopy shows low dilution level of the weld by Fe. ► XRD studies show no brittle intermetallic phases in the weld interfaces. ► Weld interfaces did not fail during tensile, transverse bending and impact tests. ► The joint exhibits superior strength properties than that of bronze filler. - Abstract: The paper presents metallurgical and mechanical examinations of joints between dissimilar metals viz. copper (UNSC11000) and alloy steel (En31) obtained by Shielded Metal Arc Welding (SMAW) using two different filler materials, bronze and nickel-base super alloy. The weld bead of the joint with bronze-filler displayed porosity, while that with nickel-filler did not. In tension tests, the weldments with bronze-filler fractured in the centre of the weld, while those with nickel-filler fractured in the heat affected zone (HAZ) of copper. Since the latter exhibited higher strength than the former, all the major tests were undertaken over the joints with nickel-filler alone. Scanning Electron Microscopy (SEM) coupled with Energy Dispersive Spectroscopy (EDS) indicated corrugated weld interfaces and favorable elemental diffusions across them. X-ray diffraction (XRD) studies around the weld interfaces did not reveal any detrimental intermetallic compounds. Transverse bending tests showed that flexural strengths of the weldments were higher than the tensile strengths. Transverse side bend tests confirmed good ductility of the joints. Shear strength of the weld-interface (Cu–Ni or Ni–steel) was higher than the yield strength of weaker metal. Microhardness and Charpy impact values were measured at all the important zones across the weldment

  11. Trial-by-fire transformation: an interview with Globe Metallurgical's Arden C. Sims. Interview by Bruce Rayner.

    Science.gov (United States)

    Sims, A C

    1992-01-01

    Globe Metallurgical Inc., a $115 million supplier of specialty metals, is best known as the first small company to win the Baldrige Award in 1988. But there is much more to this gutsy little company than total quality. During the 1980s, Globe transformed itself from a rust-belt has-been on the verge of bankruptcy into a high-technology, high-quality industry leader. Along the way, the company went private in a management-led leveraged buyout, embraced flexible work teams, adopted a high-value-added, niche marketing strategy, and took its business global. Leading the way in Globe's reinvention was Chief Executive Arden C. Sims, the slow-talking son of a West Virginian coal miner. When he joined the company in 1984, Sims had no experience in the new managerial techniques. He was a product of the old school of management: cut costs and trim operations to regain competitiveness. But he soon discovered that old-style management was not enough to battle offshore competitors, an unproductive work force, rising costs, and outdated production technology. He was forced to go looking for new ideas and practices. In a succession of learning experiences, Sims attended a seminar on total quality in 1985, paving the way for the company's quality program; he discovered the power of flexible work teams when management was forced to run the furnaces during a year-long strike; he organized an LBO, allowing him to change the work order even more dramatically; and he took the company global and into highly profitable niche markets by severing a long-standing relationship with Globe's sales and marketing representative. As a result of these and other changes, Globe leads the specialty metals industry in virtually all performance measures.

  12. Metallurgical, surface, and corrosion analysis of Ni-Cr dental casting alloys before and after porcelain firing.

    Science.gov (United States)

    Lin, Hsin-Yi; Bowers, Bonnie; Wolan, John T; Cai, Zhuo; Bumgardner, Joel D

    2008-03-01

    A porcelain veneer is often fired on nickel-chromium casting alloys used in dental restorations for aesthetic purposes. The porcelain-fused-to-metal (PFM) process brings the temperature to over 950 degrees C and may change the alloy's corrosion properties. In this study, the metallurgical, surface, and corrosion properties of two Ni-Cr alloys were examined, before and after PFM firing. Two types of alloy were tested-a high Cr, Mo alloy without Be and a low Cr, Mo alloy with Be. Before the PFM firing, specimens from both alloys were examined for their microstructures, hardness, electrochemical corrosion properties, surface composition, and metal ion release. After the PFM firing, the same specimens were again examined for the same properties. Neither of the alloys showed any differences in their electrochemical corrosion properties after the PFM firing. However, both alloys exhibited new phases in their microstructure and significant changes in hardness after firing. In addition, there was a slight increase in CrO(x) on the surface of the Be-free alloy and increased Mo-Ni was observed on the surface of both alloys via X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). This might be one of the reasons why both alloys had increased Ni and Mo ion release after firing. The PFM firing process changed the alloys' hardness, microstructure, and surface composition. No significant changes in the alloys' corrosion behavior were observed, however, the significant increase in metal ion release over a month may need to be further investigated for its clinical effects.

  13. Investigations on structure–property relationships of activated flux TIG weldments of super-duplex/austenitic stainless steels

    International Nuclear Information System (INIS)

    Devendranath Ramkumar, K.; Bajpai, Ankur; Raghuvanshi, Shubham; Singh, Anshuman; Chandrasekhar, Aditya; Arivarasu, M.; Arivazhagan, N.

    2015-01-01

    This research work articulated the effect of SiO 2 flux assisted tungsten inert gas (TIG) welding on the microstructure and mechanical properties of marine grade stainless steel weldments, such as super-duplex stainless steel (UNS S32750) and austenitic stainless steel (AISI 316L). The studies showed that the use of flux decreased the heat input required to obtain complete penetration. Microstructure studies revealed the presence of ferrite at the heat affected zone of AISI 316L and the fusion zone which obviated the hot cracking tendency. Tensile studies corroborated that the joint strength was sufficiently greater than that of the parent metals. Impact toughness slightly impoverished owing to the presence of large platelets of Widmanstätten austenite in the fusion zone. The study also explored the structure–property relationships of the flux assisted weldments using the combined techniques of optical and scanning electron microscopy analysis. Owing to the better metallurgical and mechanical properties, this study recommends the use of SiO 2 flux for joining the dissimilar metals involving austenitic and super-duplex stainless steels

  14. Investigations on structure–property relationships of activated flux TIG weldments of super-duplex/austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Devendranath Ramkumar, K., E-mail: ramdevendranath@gmail.com; Bajpai, Ankur; Raghuvanshi, Shubham; Singh, Anshuman; Chandrasekhar, Aditya; Arivarasu, M.; Arivazhagan, N.

    2015-06-25

    This research work articulated the effect of SiO{sub 2} flux assisted tungsten inert gas (TIG) welding on the microstructure and mechanical properties of marine grade stainless steel weldments, such as super-duplex stainless steel (UNS S32750) and austenitic stainless steel (AISI 316L). The studies showed that the use of flux decreased the heat input required to obtain complete penetration. Microstructure studies revealed the presence of ferrite at the heat affected zone of AISI 316L and the fusion zone which obviated the hot cracking tendency. Tensile studies corroborated that the joint strength was sufficiently greater than that of the parent metals. Impact toughness slightly impoverished owing to the presence of large platelets of Widmanstätten austenite in the fusion zone. The study also explored the structure–property relationships of the flux assisted weldments using the combined techniques of optical and scanning electron microscopy analysis. Owing to the better metallurgical and mechanical properties, this study recommends the use of SiO{sub 2} flux for joining the dissimilar metals involving austenitic and super-duplex stainless steels.

  15. From elementary flux modes to elementary flux vectors: Metabolic pathway analysis with arbitrary linear flux constraints

    Science.gov (United States)

    Klamt, Steffen; Gerstl, Matthias P.; Jungreuthmayer, Christian; Mahadevan, Radhakrishnan; Müller, Stefan

    2017-01-01

    Elementary flux modes (EFMs) emerged as a formal concept to describe metabolic pathways and have become an established tool for constraint-based modeling and metabolic network analysis. EFMs are characteristic (support-minimal) vectors of the flux cone that contains all feasible steady-state flux vectors of a given metabolic network. EFMs account for (homogeneous) linear constraints arising from reaction irreversibilities and the assumption of steady state; however, other (inhomogeneous) linear constraints, such as minimal and maximal reaction rates frequently used by other constraint-based techniques (such as flux balance analysis [FBA]), cannot be directly integrated. These additional constraints further restrict the space of feasible flux vectors and turn the flux cone into a general flux polyhedron in which the concept of EFMs is not directly applicable anymore. For this reason, there has been a conceptual gap between EFM-based (pathway) analysis methods and linear optimization (FBA) techniques, as they operate on different geometric objects. One approach to overcome these limitations was proposed ten years ago and is based on the concept of elementary flux vectors (EFVs). Only recently has the community started to recognize the potential of EFVs for metabolic network analysis. In fact, EFVs exactly represent the conceptual development required to generalize the idea of EFMs from flux cones to flux polyhedra. This work aims to present a concise theoretical and practical introduction to EFVs that is accessible to a broad audience. We highlight the close relationship between EFMs and EFVs and demonstrate that almost all applications of EFMs (in flux cones) are possible for EFVs (in flux polyhedra) as well. In fact, certain properties can only be studied with EFVs. Thus, we conclude that EFVs provide a powerful and unifying framework for constraint-based modeling of metabolic networks. PMID:28406903

  16. Squeezing Flux Out of Fat

    DEFF Research Database (Denmark)

    Gonzalez-Franquesa, Alba; Patti, Mary-Elizabeth

    2018-01-01

    Merging transcriptomics or metabolomics data remains insufficient for metabolic flux estimation. Ramirez et al. integrate a genome-scale metabolic model with extracellular flux data to predict and validate metabolic differences between white and brown adipose tissue. This method allows both metab...

  17. Principal Metabolic Flux Mode Analysis.

    Science.gov (United States)

    Bhadra, Sahely; Blomberg, Peter; Castillo, Sandra; Rousu, Juho; Wren, Jonathan

    2018-02-06

    In the analysis of metabolism, two distinct and complementary approaches are frequently used: Principal component analysis (PCA) and stoichiometric flux analysis. PCA is able to capture the main modes of variability in a set of experiments and does not make many prior assumptions about the data, but does not inherently take into account the flux mode structure of metabolism. Stoichiometric flux analysis methods, such as Flux Balance Analysis (FBA) and Elementary Mode Analysis, on the other hand, are able to capture the metabolic flux modes, however, they are primarily designed for the analysis of single samples at a time, and not best suited for exploratory analysis on a large sets of samples. We propose a new methodology for the analysis of metabolism, called Principal Metabolic Flux Mode Analysis (PMFA), which marries the PCA and stoichiometric flux analysis approaches in an elegant regularized optimization framework. In short, the method incorporates a variance maximization objective form PCA coupled with a stoichiometric regularizer, which penalizes projections that are far from any flux modes of the network. For interpretability, we also introduce a sparse variant of PMFA that favours flux modes that contain a small number of reactions. Our experiments demonstrate the versatility and capabilities of our methodology. The proposed method can be applied to genome-scale metabolic network in efficient way as PMFA does not enumerate elementary modes. In addition, the method is more robust on out-of-steady steady-state experimental data than competing flux mode analysis approaches. Matlab software for PMFA and SPMFA and data set used for experiments are available in https://github.com/aalto-ics-kepaco/PMFA. sahely@iitpkd.ac.in, juho.rousu@aalto.fi, Peter.Blomberg@vtt.fi, Sandra.Castillo@vtt.fi. Detailed results are in Supplementary files. Supplementary data are available at https://github.com/aalto-ics-kepaco/PMFA/blob/master/Results.zip.

  18. Use of refractory chromites for obtaining fluxes amassed employed in submerged arc welding (SAW); Empleo de cromitas refractarias par la obtencion de fundentes aglomerados utilizados en la soldadura automatica por arco sumegido (SAW)

    Energy Technology Data Exchange (ETDEWEB)

    Perdomo-Gonzalez, L.; Quintana-Puchol, R.; Cruz-Crespo, A.; Castellanos-Estupinan, J.; Garcia-Sanchez, L. L.; Formoso-Prego, A.; Cores-Sanchez, A.

    2003-07-01

    In the present work high carbon ferrochrome (load ferrochrome) and slags are obtained, starting from the metallurgic reductive processing of refractory chromites. The obtaining of alloys and slags is studied using an experiment design based in the relationships among components. The chemical compositions of alloys and slags guarantee their application for the conformation of alloys loads and matrix fluxes amassed for the superficial filling by means of submerged arc welding (SAW). The melting-reduction process is carried out in an electric arc furnace. (Author) 16 refs.

  19. M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities Groundwate Monitoring and Corrective-Action Report, First and Second Quarters 1998, Volumes I, II, & III

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J.

    1998-10-30

    This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah river Site (SRS) during first and second quarters 1998. This program is required by South Carolina Hazardous Waste Permit SC1-890-008-989 and Section 264.100(g) of the South Carolina Hazardous Waste Management Regulations. Report requirements are described in the 1995 RCRA Renewal Permit, effective October 5, 1995, Section IIIB.H.11.b for the M-Area HWMF and Section IIIG.H.11.b for the Met Lab HWMF.

  20. Coal Mining and Post-Metallurgic Dumping Grounds and Their Connections with Exploitation of Raw Materials in the Region of Ruda Śląska

    Science.gov (United States)

    Jonczy, Iwona; Gawor, Łukasz

    2017-06-01

    Characteristics of mining and metallurgical waste dumps in Ruda Śląska was presented in this article. Special attention was paid to the relationship of waste material accumulated on the dumps with resources exploited on studied area. The possibilities of dumps management were also traced and two directions were indicated. The first one is associated with forming a biological covering on the dumps and the second one - with the dumps liquidation and with recovery areas now occupied by the dumps and thus with the secondary use of material collected on them.

  1. Determination, by neutron diffraction, of basic interaction forces for flux pinning in superconductors

    International Nuclear Information System (INIS)

    Lippmann, G.; Schelten, J.; Schmatz, W.

    1976-01-01

    A new method has been developed for the determination of the basic interaction force exerted on the flux lines in type II superconductors. From neutron diffraction by flux line lattices in the two-phase system Nb with Nb 2 N precipitates of a well defined metallurgical structure, it is observed that the flux lines are bent due to the presence of pinning centres. A measure for the bending is the width of the rocking curve which is rather directly related to the main basic interaction force (f 2 )sup(1/2). For four specimens with different number densities of precipitates from 1.3 x 10 17 to 1.3 x 10 18 m -3 the force (f 2 )sup(1/2) has been evaluated as a function of the flux density B from the angular widths of the measured rocking curves. These widths ranged from 6' to 4 0 . The basic interaction forces were independent of the number density; at B/Bsub(c2) = 0.5 a value (f 2 )sup(1/2) = 2 x 10 -10 N was obtained. The maximum interaction force K 0 obtained from the pinning force densities for one sample agreed well with (f 2 )sup(1/2). Reasonable agreements result from further comparisons of (f 2 )sup(1/2) with K 0 at B = 0 calculated from superconductivity parameters and also with K 0 S measured by Antesberger and Ullmaier (Antesberger, G. and Ullmaier, H.; 1974, Phil. Mag., vol. 29, 1101) on the alloy NbTa which has a precipitate structure similar to that of the Nb samples. (author)

  2. Interpreting Flux from Broadband Photometry

    Science.gov (United States)

    Brown, Peter J.; Breeveld, Alice; Roming, Peter W. A.; Siegel, Michael

    2016-10-01

    We discuss the transformation of observed photometry into flux for the creation of spectral energy distributions (SED) and the computation of bolometric luminosities. We do this in the context of supernova studies, particularly as observed with the Swift spacecraft, but the concepts and techniques should be applicable to many other types of sources and wavelength regimes. Traditional methods of converting observed magnitudes to flux densities are not very accurate when applied to UV photometry. Common methods for extinction and the integration of pseudo-bolometric fluxes can also lead to inaccurate results. The sources of inaccuracy, though, also apply to other wavelengths. Because of the complicated nature of translating broadband photometry into monochromatic flux densities, comparison between observed photometry and a spectroscopic model is best done by forward modeling the spectrum into the count rates or magnitudes of the observations. We recommend that integrated flux measurements be made using a spectrum or SED which is consistent with the multi-band photometry rather than converting individual photometric measurements to flux densities, linearly interpolating between the points, and integrating. We also highlight some specific areas where the UV flux can be mischaracterized.

  3. Metallurgical aspects of welding. Ferrous and nonferrous materials. 4. new rev. ed.; Die Metallurgie des Schweissens. Eisenwerkstoffe - nichteisenmetallische Werkstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, Guenter

    2010-07-01

    This is the fourth edition of the standard work on welding metallurgy. The various problems of ferrous and nonferrous materials in the welding process are presented in great detail. In order to prevent corrosion of welded constructions, metallurgical properties and problems of all important technical materials are discussed, i.e. alloyed and unalloyed steels, cast iron materials, and the most relevant nonferrous materials. At the end of each chapter, the interested reader will find exercises for self-studies. Some of these can be solved using the material presented in the book while others are intended for deepening and further training. Easy examples (with solutions) are found all over the book; they are helpful because they provide information on underlying mechanisms and interdependences that are not obvious at first glance. The information was adapted to new EURO standards and international standards (up to March 2009) as far as these are relevant to Germany. New information is provided, e.g., on new steel standards (constructional steels according to DIN EN 10025), heat-treatable steels according to DIN EN 10025-6 and DIN EN 10083, high-alloy steels according to DIN EN 10088, and filler materials for steel welding according to DIN EN ISO 2560. The systematics of the ''law of cohabitation'' was applied to welding engineering for the first time here. (orig.) [German] Das in vierter Auflage erscheinende Buch widmet sich der Schweissmetallurgie mit ihren Besonderheiten. Die vielfaeltigen Probleme der Eisenwerkstoffe und der nichteisenmetallischen Werkstoffe bei ihrer schweisstechnischen Verarbeitung werden ausfuehrlich dargestellt. Um Korrosionsschaeden an geschweissten Konstruktionen vorzubeugen, wird die Metallurgie aller technisch bedeutsamen Werkstoffe, wie unlegierte und legierte Staehle, Eisen-Gusswerkstoffe, die wichtigsten NE-Metalle, ausfuehrlich besprochen. An den Kapitelenden findet der interessierte Leser Aufgaben, von denen ein

  4. Early Iron Age gold buttons from South-Western Iberian Peninsula. Identification of a gold metallurgical workshop

    Directory of Open Access Journals (Sweden)

    Monge Soares, António M.

    2010-12-01

    Full Text Available Early Iron Age gold buttons from Castro dos Ratinhos, Fortios and Outeiro da Cabeça were analysed by conventional EDXRF, Micro-PIXE, SEM-EDS and Optical Microscopy. EDXRF results point out to a rather homogeneous alloy composition throughout all the analysed buttons. PIXE microanalyses show that all the button components (disk, tab and peripheral grooved decorated rod have the same alloy composition. PIXE and SEM-EDS microanalyses, supplemented with optical microscopy characterization, show the absence of chemical composition differences between distinct components and joining zones, suggesting that no solder had been applied, i.e. that a partial melting/solid state diffusion process had been used for the welding of button components. Finally, the noticeable similar compositions together with the use of the same welding process and the very similar artefact typologies suggest that those small gold treasures could be interpreted as the result of the work of a single metallurgical workshop, probably located somewhere in the South-Western Iberian Peninsula.

    Botones de oro pertenecientes a la primera Edad del Hierro, procedentes de Castro dos Ratinhos, Fortios e Outeiro da Cabeça (Portugal, fueron analizados por EDXRF y Micro-PIXE. Los resultados de los análisis por EDXRF mostraron una composición similar en todos los botones, independientemente de su procedencia. Por otra parte, los microanálisis por PIXE permitieron verificar que los componentes soldados de cada botón (disco, presilla y cordón exterior tienen la misma composición química. Además de eso, las áreas de soldadura fueron estudiadas mediante Micro-PIXE, SEM-EDS y posterior análisis metalográfico por microscopia óptica de reflexión. Estos análisis permitieron comprobar la ausencia de soldaduras en las zonas de unión de estos componentes, lo que nos permite concluir que debe haber tenido lugar un proceso de fusión parcial y de difusión en estado sólido para unir

  5. Research on Metallurgical Synthesis.

    Science.gov (United States)

    Aluminum alloys, *Titanium alloys, *Ceramic materials , *Dispersion hardening, *Vapor plating, * Refractory materials , Mechanical properties...Microstructure, Powder alloys, Oxides, Induction heating, Boron alloys, Yttrium oxides, Creep, Fracture(Mechanics), Toughness, Crucibles, Shock waves, Thermomechanics

  6. Specification of ROP flux shape

    Energy Technology Data Exchange (ETDEWEB)

    Min, Byung Joo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Gray, A. [Atomic Energy of Canada Ltd., Chalk River, ON (Canada)

    1997-06-01

    The CANDU 9 480/SEU core uses 0.9% SEU (Slightly Enriched Uranium) fuel. The use f SEU fuel enables the reactor to increase the radial power form factor from 0.865, which is typical in current natural uranium CANDU reactors, to 0.97 in the nominal CANDU 9 480/SEU core. The difference is a 12% increase in reactor power. An additional 5% increase can be achieved due to a reduced refuelling ripple. The channel power limits were also increased by 3% for a total reactor power increase of 20%. This report describes the calculation of neutron flux distributions in the CANDU 9 480/SEU core under conditions specified by the C and I engineers. The RFSP code was used to calculate of neutron flux shapes for ROP analysis. Detailed flux values at numerous potential detector sites were calculated for each flux shape. (author). 6 tabs., 70 figs., 4 refs.

  7. Notes on neutron flux measurement

    International Nuclear Information System (INIS)

    Alcala Ruiz, F.

    1984-01-01

    The main purpose of this work is to get an useful guide to carry out topical neutron flux measurements. Although the foil activation technique is used in the majority of the cases, other techniques, such as those based on fission chambers and self-powered neutron detectors, are also shown. Special interest is given to the description and application of corrections on the measurement of relative and absolute induced activities by several types of detectors (scintillators, G-M and gas proportional counters). The thermal arid epithermal neutron fluxes, as determined in this work, are conventional or effective (West cots fluxes), which are extensively used by the reactor experimentalists; however, we also give some expressions where they are related to the integrated neutron fluxes, which are used in neutron calculations. (Author) 16 refs

  8. Conical electromagnetic radiation flux concentrator

    Science.gov (United States)

    Miller, E. R.

    1972-01-01

    Concentrator provides method of concentrating a beam of electromagnetic radiation into a smaller beam, presenting a higher flux density. Smaller beam may be made larger by sending radiation through the device in the reverse direction.

  9. High Flux Isotope Reactor (HFIR)

    Data.gov (United States)

    Federal Laboratory Consortium — The HFIR at Oak Ridge National Laboratory is a light-water cooled and moderated reactor that is the United States’ highest flux reactor-based neutron source. HFIR...

  10. Flux tubes at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Cea, Paolo [INFN, Sezione di Bari,Via G. Amendola 173, I-70126 Bari (Italy); Dipartimento di Fisica dell’Università di Bari,Via G. Amendola 173, I-70126 Bari (Italy); Cosmai, Leonardo [INFN, Sezione di Bari,Via G. Amendola 173, I-70126 Bari (Italy); Cuteri, Francesca; Papa, Alessandro [Dipartimento di Fisica, Università della Calabria & INFN-Cosenza,Ponte Bucci, cubo 31C, I-87036 Rende (Cosenza) (Italy)

    2016-06-07

    The chromoelectric field generated by a static quark-antiquark pair, with its peculiar tube-like shape, can be nicely described, at zero temperature, within the dual superconductor scenario for the QCD confining vacuum. In this work we investigate, by lattice Monte Carlo simulations of the SU(3) pure gauge theory, the fate of chromoelectric flux tubes across the deconfinement transition. We find that, if the distance between the static sources is kept fixed at about 0.76 fm ≃1.6/√σ and the temperature is increased towards and above the deconfinement temperature T{sub c}, the amplitude of the field inside the flux tube gets smaller, while the shape of the flux tube does not vary appreciably across deconfinement. This scenario with flux-tube “evaporation” above T{sub c} has no correspondence in ordinary (type-II) superconductivity, where instead the transition to the phase with normal conductivity is characterized by a divergent fattening of flux tubes as the transition temperature is approached from below. We present also some evidence about the existence of flux-tube structures in the magnetic sector of the theory in the deconfined phase.

  11. A two-step leaching method designed based on chemical fraction distribution of the heavy metals for selective leaching of Cd, Zn, Cu, and Pb from metallurgical sludge.

    Science.gov (United States)

    Wang, Fen; Yu, Junxia; Xiong, Wanli; Xu, Yuanlai; Chi, Ru-An

    2018-01-01

    For selective leaching and highly effective recovery of heavy metals from a metallurgical sludge, a two-step leaching method was designed based on the distribution analysis of the chemical fractions of the loaded heavy metal. Hydrochloric acid (HCl) was used as a leaching agent in the first step to leach the relatively labile heavy metals and then ethylenediamine tetraacetic acid (EDTA) was applied to leach the residual metals according to their different fractional distribution. Using the two-step leaching method, 82.89% of Cd, 55.73% of Zn, 10.85% of Cu, and 0.25% of Pb were leached in the first step by 0.7 M HCl at a contact time of 240 min, and the leaching efficiencies for Cd, Zn, Cu, and Pb were elevated up to 99.76, 91.41, 71.85, and 94.06%, by subsequent treatment with 0.2 M EDTA at 480 min, respectively. Furthermore, HCl leaching induced fractional redistribution, which might increase the mobility of the remaining metals and then facilitate the following metal removal by EDTA. The facilitation was further confirmed by the comparison to the one-step leaching method with single HCl or single EDTA, respectively. These results suggested that the designed two-step leaching method by HCl and EDTA could be used for selective leaching and effective recovery of heavy metals from the metallurgical sludge or heavy metal-contaminated solid media.

  12. Studies on the influence of metallurgical variables on the stress corrosion behavior of aisi 304 stainless steel in sodium chloride solution using the fracture mechanics approach

    Science.gov (United States)

    Khatak, H. S.; Gnanamoorthy, J. B.; Rodriguez, P.

    1996-05-01

    Stress corrosion data on a nuclear grade AISI type 304 stainless steel in a boiling solution of 5M NaCl+ 0.15M Na2SO4+ 3 mL/L HC1 (bp 381 K) for various metallurgical conditions of the steel are presented in this article. The metallurgical conditions used are solution annealing, sensitization, 10 pct cold work, 20 pct cold work, solution annealing + sensitization, 10 pct cold work + sensi-tization, and 20 pct cold work + sensitization. The fracture mechanics approach has been used to obtain quantitative data on the stress corrosion crack growth rates. The stress intensity factor, K 1, and J integral, J 1, have been used as evaluation parameters. The crack growth rates have been measured using compact tension type samples under both increasing and decreasing stress intensity factors. A crack growth rate of 5 X 10-11 m/s was chosen for the determination of threshold para-meters. Results of the optical microscopic and fractographic examinations are presented. Acoustic signals were recorded during crack growth. Data generated from acoustic emissions, activation energy measurements, and fractographic features indicate hydrogen embrittlement as the possible mechanism of cracking.

  13. Revisiting (Some of) the Lasting Impacts of the Liberty Ships via a Metallurgical Analysis of Rivets from the SS "John W. Brown"

    Science.gov (United States)

    Harris, M. D.; Grogg, W. J.; Akoma, A.; Hayes, B. J.; Reidy, R. F.; Imhoff, E. F.; Collins, P. C.

    2015-12-01

    During World War II, 2710 Liberty ships were built in the United States across 18 ship yards. The rate of production of these ships was at a scale not previously witnessed, reflecting a strategic marshaling of national assets critical to the war effort. For the metallurgist, metallurgical engineer, or materials scientist, these ships also struck commanding images regarding their catastrophic failures. The study of these failures led to increased understanding of brittle fracture, fracture mechanics, and ductile-to-brittle transition temperatures. The post-mortem studies of Liberty ships highlighted the importance of composition and microstructure in controlling the properties of steel in fracture-critical applications. This study examines a rivet from the SS "John W. Brown", which was assembled in Baltimore, Maryland, and launched in September 1942, The "John W. Brown" was restored between 1988 and 1991. Classical metallurgical analysis of a rivet from the original 1942 vessel is compared with modern rivets used during its restoration. The rivets provide an analogue to the plate material used in these ships. A comparison of these materials is presented along with a discussion of the importance of composition-microstructure-property relationships that concomitantly evolved.

  14. Ecological Catastrophes in the steppe? Landscape Archaeology at the mining and metallurgical complex of Kargaly (Region of Orenbourg, Russia

    Directory of Open Access Journals (Sweden)

    Vicent García, Juan M.

    2000-06-01

    Full Text Available Kargaly is one of the most important centers of mining and metallurgy in the great Eurasian steppe. Dr. E.N. Chernykh and his team (Institute of Archaeology, Russian Academy of Sciences, Moscow and various researchers at the CSIC and other Spanish institutions have developed a joint project to undertake a comprehensive study of the site's two main phases of occupation, the Bronze Age (2nd millenium BC and the first Russian industrialization (1745-1900 AD. The Russian members of the joint team are in charge of the archaeological investigations, while the Spanish members are studying metallurgical and mining technology and production, on the one hand, and the environmental context and impact of these activities, on the other. This article presents the research design and first results of the Palaeoenvironmental research at Kargaly. This work has two aspects. The first consisted of obtaining one of the most complete palaeoenvironmental data sets from the steppes through both the systematic sampling of archaeological sites to recover charcoal, seeds, fruits and pollen and the taking of palynological cores from natural deposits, on the other Both sampling programs were supported by radiocarbon dates. The second aspect, to which the greater part of this article is devoted, was dedicated to contextualizing the palaeobotanical evidence by studying the present-day landscape, with particular attention to understanding the processes which shape the variability of the pollen rain. Our purpose was to obtain explicit and measurable calibrative criteria which would enable us to answer the palaeoenvironmental questions raised by our archaeological and archaeometallurgical research. These questions include, most importantly, the following: what was the extent of forest (the energy base for the mining/metallurgical complex during the Bronze Age? and how do we evaluate subsistence practices? (an issue related to the origins of agriculture on the

  15. Physics of magnetic flux tubes

    CERN Document Server

    Ryutova, Margarita

    2015-01-01

    This book is the first account of the physics of magnetic flux tubes from their fundamental properties to collective phenomena in an ensembles of flux tubes. The physics of magnetic flux tubes is absolutely vital for understanding fundamental physical processes in the solar atmosphere shaped and governed by magnetic fields. High-resolution and high cadence observations from recent space and  ground-based instruments taken simultaneously at different heights and temperatures not only show the ubiquity of filamentary structure formation but also allow to study how various events are interconnected by system of magnetic flux tubes. The book covers both theory and observations. Theoretical models presented in analytical and phenomenological forms are tailored for practical applications. These are welded with state-of-the-art observations from early decisive ones to the most recent data that open a new phase-space for exploring the Sun and sun-like stars. Concept of magnetic flux tubes is central to various magn...

  16. Flux driven turbulence in tokamaks

    International Nuclear Information System (INIS)

    Garbet, X.; Ghendrih, P.; Ottaviani, M.; Sarazin, Y.; Beyer, P.; Benkadda, S.; Waltz, R.E.

    1999-01-01

    This work deals with tokamak plasma turbulence in the case where fluxes are fixed and profiles are allowed to fluctuate. These systems are intermittent. In particular, radially propagating fronts, are usually observed over a broad range of time and spatial scales. The existence of these fronts provide a way to understand the fast transport events sometimes observed in tokamaks. It is also shown that the confinement scaling law can still be of the gyroBohm type in spite of these large scale transport events. Some departure from the gyroBohm prediction is observed at low flux, i.e. when the gradients are close to the instability threshold. Finally, it is found that the diffusivity is not the same for a turbulence calculated at fixed flux than at fixed temperature gradient, with the same time averaged profile. (author)

  17. Looking for high neutron fluxes

    International Nuclear Information System (INIS)

    Lengeler, Herbert

    1994-01-01

    The neutron is a powerful and versatile probe of both the structure and dynamics of condensed matter. However unlike other techniques such as X-ray, electron or light scattering, its interaction with matter is rather weak. Historically neutron scattering has always been intensity limited and scientists are always looking for more intense sources. These come in two kinds - fission reactors and spallation sources (in which neutrons are released from a target bombardment by beams). Unfortunately the power density of high flux reactors is approaching a technical limit and it will be difficult to achieve a large increase of neutron fluxes above typical present values as represented for example by the high flux reactor at ILL, Grenoble

  18. Reconstructing the ecological impacts of eight decades of mining, metallurgical, and municipal activities on a small boreal lake in northern Canada.

    Science.gov (United States)

    Doig, Lorne E; Schiffer, Stephanie T; Liber, Karsten

    2015-07-01

    As a result of long-term metal mining and metallurgical activities, the sediment of Ross Lake (Flin Flon, MB, Canada) is highly contaminated with metals and other elements. Although the effluents likely were discharged into Ross Lake as early as the late 1920s, lake biophysical data were not collected until 1973, more than 4 decades after the onset of mining and municipal activities. The early influence of these activities on the ecology of Ross Lake is unknown, as are the effects of improvements to metallurgical effluent quality and discontinuation of municipal wastewater discharge into the lake's north basin. To address this knowledge gap, analyses typical of paleolimnological investigations were applied to cores of sediment collected in 2009 from the south basin of Ross Lake. Stratigraphic analyses of physicochemical sediment characteristics (e.g., the concentrations of metals and other elements, organic C, total N, and δ(13)C and δ(15)N values) and subfossil remains (diatoms, Chironomidae, Chaoborus, and Cladocera) were used to infer historical biological and chemical changes in Ross Lake. With the onset of mining activities, concentrations of various elements (e.g., As, Cr, Cu, Zn, and Se) increased dramatically in the sediment profile, eventually declining with improved tailings management. Nevertheless, concentrations of metals in recent sediments remain elevated compared with pre-industrial sediments. Constrained cluster analyses demonstrated distinct pre-industrial and postindustrial communities for both the diatoms and chironomids. The biodiversity of the postindustrial diatom assemblages were much reduced compared with the pre-industrial assemblages. The postindustrial chironomid assemblage was dominated by Chironomus and to a lesser extent by Procladius, suggesting that Ross Lake became a degraded environment. Abundances of Cladocera and Chaoborus were severely reduced in the postindustrial era, likely because of metals toxicity. Overall, improvements

  19. DISCONNECTING OPEN SOLAR MAGNETIC FLUX

    International Nuclear Information System (INIS)

    DeForest, C. E.; Howard, T. A.; McComas, D. J.

    2012-01-01

    Disconnection of open magnetic flux by reconnection is required to balance the injection of open flux by coronal mass ejections and other eruptive events. Making use of recent advances in heliospheric background subtraction, we have imaged many abrupt disconnection events. These events produce dense plasma clouds whose distinctive shape can now be traced from the corona across the inner solar system via heliospheric imaging. The morphology of each initial event is characteristic of magnetic reconnection across a current sheet, and the newly disconnected flux takes the form of a 'U-'shaped loop that moves outward, accreting coronal and solar wind material. We analyzed one such event on 2008 December 18 as it formed and accelerated at 20 m s –2 to 320 km s –1 , thereafter expanding self-similarly until it exited our field of view 1.2 AU from the Sun. From acceleration and photometric mass estimates we derive the coronal magnetic field strength to be 8 μT, 6 R ☉ above the photosphere, and the entrained flux to be 1.6 × 10 11 Wb (1.6 × 10 19 Mx). We model the feature's propagation by balancing inferred magnetic tension force against accretion drag. This model is consistent with the feature's behavior and accepted solar wind parameters. By counting events over a 36 day window, we estimate a global event rate of 1 day –1 and a global solar minimum unsigned flux disconnection rate of 6 × 10 13 Wb yr –1 (6 × 10 21 Mx yr –1 ) by this mechanism. That rate corresponds to ∼ – 0.2 nT yr –1 change in the radial heliospheric field at 1 AU, indicating that the mechanism is important to the heliospheric flux balance.

  20. The gradiometer flux qubit without an external flux bias

    International Nuclear Information System (INIS)

    Wu, C E; Liu, Y; Chi, C C

    2006-01-01

    We analyse the potential of the gradiometer flux qubit (GFQ), which should be insensitive to flux noise because of the nature of the gradiometer structure. However, to enjoy the benefit of such a design, we must be careful in choosing the initial condition. In the fluxoid quantization condition the flux integer n, which is set to zero in the usual single-loop flux qubit analysis, plays an important role in the GFQ potential. We found that it is impossible to construct a double-well potential if we choose the wrong initial condition. For a qubit application, n must be a small odd integer and the best choice would be n = 1. We also provide a precise and efficient numerical method for calculating the energy spectrum of the arbitrary GFQ potential; this will become useful in designing the circuitry parameters. The state control and read-out schemes are also optimized to a situation where a minimum requirement for using electronics is possible, which reduces noise from instruments directly

  1. The flux database concerted action

    International Nuclear Information System (INIS)

    Mitchell, N.G.; Donnelly, C.E.

    1999-01-01

    This paper summarizes the background to the UIR action on the development of a flux database for radionuclide transfer in soil-plant systems. The action is discussed in terms of the objectives, the deliverables and the progress achieved so far by the flux database working group. The paper describes the background to the current initiative and outlines specific features of the database and supporting documentation. Particular emphasis is placed on the proforma used for data entry, on the database help file and on the approach adopted to indicate data quality. Refs. 3 (author)

  2. 1Q/2Q00 M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities Groundwater Monitoring and Corrective-Action Report - First and Second Quarters 2000 - Volumes I, II, and II

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J.

    2000-10-24

    This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River site (SRS) during first and second quarters of 2000.

  3. Microstructure of Precipitation Hardenable Powder Metallurgical Ni Alloys Containing 35 to 45 pct Cr and 3.5 to 6 pct Nb

    DEFF Research Database (Denmark)

    Bihlet, Uffe Ditlev; Dahl, Kristian Vinter; Somers, Marcel A. J.

    2014-01-01

    Ni-based alloys with high Cr contents are not only known for their excellent high temperature and hot corrosion resistance, but are also known for poor mechanical properties and difficult workability. Powder metallurgical (PM) manufacturing of alloys may overcome several of the shortcomings...... encountered in materials manufacturing involving solidification. In the present work, six PM Ni-based alloys containing 35 to 45 wt pct Cr and 3.5 to 6 wt pct Nb were produced and compacted via hot isostatic pressing. Samples were heat treated for up to 1656 hours at either 923 K or 973 K (650 °C or 700 °C......), and the microstructures and mechanical properties were quantified and compared to thermodynamic calculations. For the majority of the investigated alloys, the high Cr and Nb contents caused development of primary populations of globular α-Cr and δ (Ni3Nb). Transmission electron microscopy of selected alloys confirmed...

  4. Development of advanced high strength tantalum base alloys. Phase 3: Influence of metallurgical condition on the mechanical properties of ASTAR-811C sheet

    Science.gov (United States)

    Ammon, R. L.; Buckman, R. W., Jr.; Harrod, D. L.

    1972-01-01

    Metallurgical condition was shown to have a significant effect on the creep properties of ASTAR-811C (Ta-8W-1Re-0.7Hf-0.025C) sheet. Cold worked material exhibited creep rates 30 times higher than solution annealed material and 10 times greater than for recrystallized material. Both grain size and the carbide morphology changes as the final annealing temperature was raised from 3000 F to 3600 F. However, the lowest creep rates were achieved for material which retained the high temperature form of the Ta2C precipitate. Samples with GTA weldments had essentially identical properties as recrystallized base metal. Cooling rates from 3600 F of 5, 50, and 800 F deg/min. had little effect on the 2000 and 2400 F creep behavior of ASTAR-811C.

  5. Metallurgical and mechanical properties of Inconel 600 and stellite; Estudio del comportamiento mecanico-metalurgico de alceacion inconel 600 y estelita

    Energy Technology Data Exchange (ETDEWEB)

    Cstillo, Martin; Villa, Gabriel; Vite, Manuel [Instituto Politecnico Nacional, Mexico D.F. (Mexico); Palacios, Francisco [Instituto Nacional de Investigacion Nuclear (ININ), Estado de Mexico (Mexico); Hernandez, Luis H; Urriolagoita, Guillermo [Instituto Politecnico Nacional, Mexico D.F. (Mexico)

    2005-01-15

    The present work studies the metallurgical and mechanical properties of two alloys, Inconel 600 and stellite, which are within the group of high hardness alloys or superalloys, which are deposited through the electrical weld process to the metallic arc with coated electrode (SMAW) and thereinafter analyzed through electron microscopy, diffractometry and abrasion, Impact and hardness test. The relationship between the microstructure and the final properties of the coating (hardness and abrasion wear resistance) was observed. [Spanish] Este trabajo presenta el estudio sobre las propiedades metalurgicas y mecanicas de dos aleaciones, inconel 600 y estelita, clasificadas dentro del grupo de aleaciones de alta dureza o superaleaciones; las cuales fueron depositadas mediante el proceso de soldadura electrica al arco metalico con electrodo revestido (SMAW) y fueron analizadas mediante microscopia electronica (SEM), difractometria pruebas de abrasion, impacto y dureza. Se observo la relacion entre la microstructura y las propiedades del recubrimiento, como son: dureza, resistencia a la abrasion, resistencia al impacto, ente otras.

  6. Preliminary results on air pollution inside an iron metallurgical plant, using rotating streaker sampler and energy dispersive X-ray microfluorescence

    International Nuclear Information System (INIS)

    Nascimento Filho, V.F.; Silva, R.M.C.; Perez, C.A.

    2005-01-01

    Our aim was to study the chemical concentration of some metals in suspended particulate matter inside an-iron metallurgical plant. Using a rotating streaker air-particulate sampler with 8 and 0.45 microns pore diameter filter, it was possible to collect coarse and fine particulates during a week, with one hour step. After this, each strip of the filter was analyzed by energy dispersive x-ray microfluorescence (μ-EDXRF), using in the excitation a collimated x-ray line beam from a Mo target tube (30 kV, 20 mA, Zr filter) with a quartz capillary (120 mm long, 10 mm entrance diameter and 20 microns inner diameter at exit). The detection was carried out using a Si(Li) semiconductor detector coupled to a multichannel analyzer, and the X-ray spectra were fitted with the AXIL software. The profiles of several elements are shown and the results are discussed.

  7. Stress corrosion cracking of austenitic stainless steels in PWR primary water: an update of metallurgical investigations performed on French withdrawn components

    Energy Technology Data Exchange (ETDEWEB)

    Boursier, J.M. [R and D Division - Materials Branch Studies - Les Renardieres - 78 - Moret sur Loing (France); Gallet, S.; Rouillon, Y. [Nuclear Power Division - Corporate Laboratories - 37 - Avoine (France); Bordes, P. [Electricite de France, Nuclear Power Division - 93 - Saint Denis (France)

    2002-07-01

    Austenitic stainless steels (AISI 304, 304L, 316 and 316L) are largely used in Nuclear Power Plants because of their good resistance to corrosion and their satisfactory mechanical properties. Nevertheless, on various French PWR Nuclear Power Plants, several cases of corrosion have been encountered in auxiliary circuit portions where deleterious species and oxygen can be present. This paper focuses on the metallurgical investigations performed on pulled out components such as Canopy welds or 'dead legs' (auxiliary circuit portions connected to the main primary loops) in terms of cracking locations and degradation parameters. In addition, some comparisons between Nuclear Power Plant feedback and fundamental research and development studies are discussed, particularly in the scope of temperature, microstructure, stresses (applied and residual) and medium responsible for the degradation. (authors)

  8. Black branes in flux compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Torroba, Gonzalo; Wang, Huajia

    2013-10-01

    We construct charged black branes in type IIA flux compactifications that are dual to (2 + 1)-dimensional field theories at finite density. The internal space is a general Calabi-Yau manifold with fluxes, with internal dimensions much smaller than the AdS radius. Gauge fields descend from the 3-form RR potential evaluated on harmonic forms of the Calabi-Yau, and Kaluza-Klein modes decouple. Black branes are described by a four-dimensional effective field theory that includes only a few light fields and is valid over a parametrically large range of scales. This effective theory determines the low energy dynamics, stability and thermodynamic properties. Tools from flux compactifications are also used to construct holographic CFTs with no relevant scalar operators, that can lead to symmetric phases of condensed matter systems stable to very low temperatures. The general formalism is illustrated with simple examples such as toroidal compactifications and manifolds with a single size modulus. We initiate the classification of holographic phases of matter described by flux compactifications, which include generalized Reissner-Nordstrom branes, nonsupersymmetric AdS2×R2 and hyperscaling violating solutions.

  9. High flux compact neutron generators

    International Nuclear Information System (INIS)

    Reijonen, J.; Lou, T.-P.; Tolmachoff, B.; Leung, K.-N.; Verbeke, J.; Vujic, J.

    2001-01-01

    Compact high flux neutron generators are developed at the Lawrence Berkeley National Laboratory. The neutron production is based on D-D or D-T reaction. The deuterium or tritium ions are produced from plasma using either a 2 MHz or 13.56 MHz radio frequency (RF) discharge. RF-discharge yields high fraction of atomic species in the beam which enables higher neutron output. In the first tube design, the ion beam is formed using a multiple hole accelerator column. The beam is accelerated to energy of 80 keV by means of a three-electrode extraction system. The ion beam then impinges on a titanium target where either the 2.4 MeV D-D or 14 MeV D-T neutrons are generated. The MCNP computation code has predicted a neutron flux of ∼10 11 n/s for the D-D reaction at beam intensity of 1.5 A at 150 kV. The neutron flux measurements of this tube design will be presented. Recently new compact high flux tubes are being developed which can be used for various applications. These tubes also utilize RF-discharge for plasma generation. The design of these tubes and the first measurements will be discussed in this presentation

  10. Structuration of the overall volume of transport operations at handling of the inbound waggon traffic of metallurgical enterprise with one railway siding connecting to the external network

    Directory of Open Access Journals (Sweden)

    Ганна Вікторовна Маслак

    2016-07-01

    Full Text Available The article deals with the operation analysis of a metallurgical enterprise transport system with one railway siding connected to the external network. Three functional modules were determined: transport complex for incoming wagon traffic processing, transport-and-handling complex for raw materials unloading, transport-and-handling complex for finished products shipment. For each of the complexes basic functions were determined: the first module distributes empty and loaded waggons between the freight railway stations within the enterprise; the second module provides timely supply of production shops with required volumes of raw materials; the third module enables timely supply of production shops with railway rolling stock for finished products shipment. Structuration of overall volume of transport operations has been conducted for each of the complexes within the transport system of the metallurgical enterprise, basic technological operations have been determined, and causes for time waste have been found out. Overall volume of transport operations per day has been determined, it comprising planned transport operations and extra transport operations as well. As a result of the research it has been determined, that maximum volume of extra transport operations occur at the transport complex for incoming wagon traffic processing. Its operation is based on time norms which not always fit the dynamics of external network operation, as well as production shops operation. Furthermore, this module is a connecting link making the dynamics of external waggon traffic, the internal dynamics of the enterprise, and the dynamics of production shops compatible. As a consequence, considerable extra time waste occurs when waggon traffic goes through this module

  11. Effect of friction time on mechanical and metallurgical properties of continuous drive friction welded Ti6Al4V/SUS321 joints

    International Nuclear Information System (INIS)

    Li, Peng; Li, Jinglong; Salman, Muhammad; Liang, Li; Xiong, Jiangtao; Zhang, Fusheng

    2014-01-01

    Highlights: • The effect of friction time on the microstructure and joint strength was studied. • The fit of burn-off lengths at different times yields a simple equation. • The longer friction time leads to oversized flash in Ti6Al4V side and overgrown IMCs. • An IMZ with width less than 3 μm is beneficial to make a strong metallurgical bond. • The average strength of 560 MPa is obtained and higher than ever reported results. - Abstract: Dissimilar joint of Ti6Al4V titanium alloy and SUS321 stainless steel was fabricated by continuous drive friction welding. The effect of friction time on the mechanical properties was evaluated by hardness measurement and tensile test, while the interfacial microstructure and fracture morphologies were analyzed by scanning electron microscope, energy dispersive spectroscope and X-ray Diffraction. The results show that the tensile strength increases with friction time under the experimental conditions. And the maximum average strength 560 MPa, which is 90.3% of the SUS321 base metal, is achieved at a friction time of 4 s. For all samples, studied fracture occurred along the joint interface, where intermetallic compounds like FeTi, Fe 2 Ti, Ni 3 (Al, Ti) and Fe 3 Ti 3 O and many other phases were formed among elements from the two base metals. The width of intermetallic compounds zone increases with friction time up to 3 μm, below which it is beneficial to make a strong metallurgical bond. However, the longer friction time leads to oversized flash on the Ti6Al4V side and overgrown intermetallic compounds. Finally the optimized friction time was discussed to be in the range of 2–4 s, under which the sound joint with good reproducibility can be expected

  12. Ex situ characterization of metallurgical inclusions in X100 pipeline steel before and after immersion in a neutral pH bicarbonate solution

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yingbo; Liu, Jie [Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Deng, Yida [Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China); Han, Xiaopeng [Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Hu, Wenbin [Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China); Zhong, Cheng, E-mail: cheng.zhong@tju.edu.cn [Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2016-07-15

    The initiation of corrosion pits in pipeline steels plays an important role in the development of stress corrosion cracking. In order to reveal the effect of inclusions on corrosion initiation sites and also to clarify contradictory results from previous literature, we proposed an ex situ characterization method that is allowed to characterize exactly the same inclusion or location of the surface of steel before and after corrosion tests. The time-dependent corrosion behaviour of the inclusions and the surrounding X100 steel matrix at the same area before and after early stage immersion in a near-neutral pH bicarbonate solution was investigated by ex situ scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) analysis and localized electrochemical impedance spectroscopy (LEIS). The sizes of most inclusions in X100 steel are below 3 μm. The results challenge the long-held opinion of previous work that corrosion pit initiations are related with the inclusions. It has been found that most of the inclusions remain stable (intact) during the whole testing time although severe corrosion occurs on the matrix of the steel. The chemical composition of the inclusion greatly affects the chemical stability of the inclusion. SiO{sub 2} inclusions and complex inclusions with a high SiO{sub 2} content remain intact although obvious general corrosion occurs on the steel matrix under the investigated immersion period. Inclusions with little Si, such as Al–Mg–Ca–O enriched inclusions, totally disappear after certain immersion time. During the immersion, the corrosion product tends to deposit at the interstice between the inclusion and steel matrix. - Highlights: • Ex situ characterization of metallurgical inclusions in X100 pipeline steel. • The pipeline steel was immersed in neutral pH bicarbonate solution. • Majority of inclusions remain stable during the whole testing time. • The chemical stability of metallurgical inclusions depends on the SiO{sub 2

  13. Ex situ characterization of metallurgical inclusions in X100 pipeline steel before and after immersion in a neutral pH bicarbonate solution

    International Nuclear Information System (INIS)

    Li, Yingbo; Liu, Jie; Deng, Yida; Han, Xiaopeng; Hu, Wenbin; Zhong, Cheng

    2016-01-01

    The initiation of corrosion pits in pipeline steels plays an important role in the development of stress corrosion cracking. In order to reveal the effect of inclusions on corrosion initiation sites and also to clarify contradictory results from previous literature, we proposed an ex situ characterization method that is allowed to characterize exactly the same inclusion or location of the surface of steel before and after corrosion tests. The time-dependent corrosion behaviour of the inclusions and the surrounding X100 steel matrix at the same area before and after early stage immersion in a near-neutral pH bicarbonate solution was investigated by ex situ scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) analysis and localized electrochemical impedance spectroscopy (LEIS). The sizes of most inclusions in X100 steel are below 3 μm. The results challenge the long-held opinion of previous work that corrosion pit initiations are related with the inclusions. It has been found that most of the inclusions remain stable (intact) during the whole testing time although severe corrosion occurs on the matrix of the steel. The chemical composition of the inclusion greatly affects the chemical stability of the inclusion. SiO 2 inclusions and complex inclusions with a high SiO 2 content remain intact although obvious general corrosion occurs on the steel matrix under the investigated immersion period. Inclusions with little Si, such as Al–Mg–Ca–O enriched inclusions, totally disappear after certain immersion time. During the immersion, the corrosion product tends to deposit at the interstice between the inclusion and steel matrix. - Highlights: • Ex situ characterization of metallurgical inclusions in X100 pipeline steel. • The pipeline steel was immersed in neutral pH bicarbonate solution. • Majority of inclusions remain stable during the whole testing time. • The chemical stability of metallurgical inclusions depends on the SiO 2 content.

  14. Some metallurgical aspects of ancient silver coins discovered in romania (original and imitations) - provenance, destination and commercial networks

    International Nuclear Information System (INIS)

    Constantinescu, Bogdan; Cojocaru, Viorel; Bugoi, Roxana

    2007-01-01

    migrated to the South and Southeast Dacia. - The preference for adding tin (and maybe also lead) in Ag/Cu alloys is due probably to the fact that tin fades the red color of copper, resulting a silvery nuance. In addition the melting point of alloy is lowered which was important for an unsophisticated metallurgy. Although tin does almost not exist in the earth of old Romania territory, bronze objects (huge medals, statues, coins, etc.) were common enough and easy to be found. - Lead concentration also increased in time bringing out to a quaternary alloy (Ag+Cu+Sn+Pb), such as in Varteju-Carlomanesti and/or Radulesti-Hunedoara issues. Such an alloy also generalized in the Roman coinage, but much latter (c. AD 250). 23 - Although hundreds of Geto-Dacian coins were investigated by atomic and nuclear techniques, no entirely bronze or copper coin was found except a few proved modern fakes. In the same time official fake coins made of bronze was a practice in extra Dacian territory. This can be understood by the metallurgical methods used by Geto-Dacians. If the coin alloy had no Au or Ag, the melting into a clay cylinder would wet the clay preventing the formation of a globule necessary for the coin blank. Even for an alloy with a smaller concentration of noble metals, the adding of some charcoal and clay dust will produce a carbon monoxide atmosphere around of metal that prevents the oxides formation and will help the globule appearance. As concerning the Apollonia - Dyrrhachium drachms, five main categories were found: - original coins (similar to drachms emitted before the Civil War) with 97-99% silver, low (1-2%) copper content, - debased coins with silver content down to 70% and copper content from 5 to 25%, probably emitted due to inflation problem, normal phenomenon for an economy in war, - official (original dies) counterfeits from bronze (70% copper and 30% tin) covered by a very thin layer of argentarium (tin-lead alloy imitating the silver), - official counterfeits

  15. Borax as flux on sintering of iron Ancor Steel 1000® under glow discharge

    Science.gov (United States)

    Ariza Suarez, H. G.; Sarmiento Santos, A.; Ortiz Otálora, C. A.

    2016-02-01

    This work studies the flux effect of borax (di sodium tetraborate decahydrate) on sintering of iron Ancor Steel 1000® in abnormal glow discharge. The incidence of the percentage by weight of borax and the sintering temperature in the process were observed. Samples of powder metallurgical iron were prepared with proportions of 0.50%, 2.0%, 4.0% and 6.0% by weight of borax using the procedures of powder metallurgy. The samples were sintered at 800 and 1100°C for 30min, by glow discharge at low pressure in a reducing atmosphere composed of 20% H2+80% Ar. The samples in compact green-state were analyzed by TGA-DSC to determine the fusion process and mass loss during sintering. The analysis of microhardness and density, shows that at a sintering temperature of 800°C the sample density decreases and the sample microhardness increases with respect to sintered samples without borax. Sintered samples were analysed by DRX showing the absence of precipitates.

  16. Flavour mixings in flux compactifications

    International Nuclear Information System (INIS)

    Buchmuller, Wilfried; Schweizer, Julian

    2017-01-01

    A multiplicity of quark-lepton families can naturally arise as zero-modes in flux compactifications. The flavour structure of quark and lepton mass matrices is then determined by the wave function profiles of the zero-modes. We consider a supersymmetric SO(10) x U(1) model in six dimensions compactified on the orbifold T 2 =Z 2 with Abelian magnetic flux. A bulk 16-plet charged under the U(1) provides the quark-lepton generations whereas two uncharged 10-plets yield two Higgs doublets. Bulk anomaly cancellation requires the presence of additional 16- and 10-plets. The corresponding zero-modes form vectorlike split multiplets that are needed to obtain a successful flavour phenomenology. We analyze the pattern of flavour mixings for the two heaviest families of the Standard Model and discuss possible generalizations to three and more generations.

  17. Flux through a Markov chain

    International Nuclear Information System (INIS)

    Floriani, Elena; Lima, Ricardo; Ourrad, Ouerdia; Spinelli, Lionel

    2016-01-01

    Highlights: • The flux through a Markov chain of a conserved quantity (mass) is studied. • Mass is supplied by an external source and ends in the absorbing states of the chain. • Meaningful for modeling open systems whose dynamics has a Markov property. • The analytical expression of mass distribution is given for a constant source. • The expression of mass distribution is given for periodic or random sources. - Abstract: In this paper we study the flux through a finite Markov chain of a quantity, that we will call mass, which moves through the states of the chain according to the Markov transition probabilities. Mass is supplied by an external source and accumulates in the absorbing states of the chain. We believe that studying how this conserved quantity evolves through the transient (non-absorbing) states of the chain could be useful for the modelization of open systems whose dynamics has a Markov property.

  18. Superconducting flux flow digital circuits

    International Nuclear Information System (INIS)

    Martens, J.S.; Zipperian, T.E.; Hietala, V.M.; Ginley, D.S.; Tigges, C.P.; Phillips, J.M.; Siegal, M.P.

    1993-01-01

    The authors have developed a family of digital logic circuits based on superconducting flux flow transistors that show high speed, reasonable signal levels, large fan-out, and large noise margins. The circuits are made from high-temperature superconductors (HTS) and have been shown to operate at over 90 K. NOR gates have been demonstrated with fan-outs of more than 5 and fully loaded switching times less than a fixture-limited 50 ps. Ring-oscillator data suggest inverter delay times of about 40ps when using a 3-μm linewidths. Simple flip-flops have also been demonstrated showing large noise margins, response times of less than 30 ps, and static power dissipation on the order of 30 nW. Among other uses, this logic family is appropriate as an interface between logic families such as single flux quantum and conventional semiconductor logic

  19. Surface fluxes in heterogeneous landscape

    Energy Technology Data Exchange (ETDEWEB)

    Bay Hasager, C.

    1997-01-01

    The surface fluxes in homogeneous landscapes are calculated by similarity scaling principles. The methodology is well establish. In heterogeneous landscapes with spatial changes in the micro scale range, i e from 100 m to 10 km, advective effects are significant. The present work focus on these effects in an agricultural countryside typical for the midlatitudes. Meteorological and satellite data from a highly heterogeneous landscape in the Rhine Valley, Germany was collected in the large-scale field experiment TRACT (Transport of pollutants over complex terrain) in 1992. Classified satellite images, Landsat TM and ERS SAR, are used as basis for roughness maps. The roughnesses were measured at meteorological masts in the various cover classes and assigned pixel by pixel to the images. The roughness maps are aggregated, i e spatially averaged, into so-called effective roughness lengths. This calculation is performed by a micro scale aggregation model. The model solves the linearized atmospheric flow equations by a numerical (Fast Fourier Transform) method. This model also calculate maps of friction velocity and momentum flux pixel wise in heterogeneous landscapes. It is indicated how the aggregation methodology can be used to calculate the heat fluxes based on the relevant satellite data i e temperature and soil moisture information. (au) 10 tabs., 49 ills., 223 refs.

  20. Neutron flux control systems validation

    International Nuclear Information System (INIS)

    Hascik, R.

    2003-01-01

    In nuclear installations main requirement is to obtain corresponding nuclear safety in all operation conditions. From the nuclear safety point of view is commissioning and start-up after reactor refuelling appropriate period for safety systems verification. In this paper, methodology, performance and results of neutron flux measurements systems validation is presented. Standard neutron flux measuring chains incorporated into the reactor protection and control system are used. Standard neutron flux measuring chain contains detector, preamplifier, wiring to data acquisition unit, data acquisition unit, wiring to display at control room and display at control room. During reactor outage only data acquisition unit and wiring and displaying at reactor control room is verified. It is impossible to verify detector, preamplifier and wiring to data acquisition recording unit during reactor refuelling according to low power. Adjustment and accurate functionality of these chains is confirmed by start-up rate (SUR) measurement during start-up tests after refuelling of the reactors. This measurement has direct impact to nuclear safety and increase operational nuclear safety level. Briefly description of each measuring system is given. Results are illustrated on measurements performed at Bohunice NPP during reactor start-up tests. Main failures and their elimination are described (Authors)

  1. Determination of Energy Fluxes Over Agricultural Surfaces

    Directory of Open Access Journals (Sweden)

    Josefina Argete

    1994-12-01

    Full Text Available An energy budget was conducted over two kinds if surfaces: grass and corn canopy. The net radiative flux and the soil heat flux were directly measured while the latent and sensible heat flux were calculated from the vertical profiles if wet and dry-bulb temperature and wind speed. The crop storage flux was also estimated. Using the gradient or aerodynamic equations, the calculated fluxes when compared to the measured fluxes in the context of an energy budget gave an SEE = 63 Wm-2 over grass and SEE = 81 Wm-2 over corn canopy. The calculated fluxes compared reasonably well with those obtained using the Penman equations.For an energy budget research with limited instrumentation, the aerodynamic method performed satisfactorily in estimating the daytime fluxes, when atmospheric conditions are fully convective, but failed when conditions were stably stratified as during nighttime.

  2. Numerical Simulations of a Flux Rope Ejection

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Coronal mass ejections (CMEs) are the most violent phenomena observed on the Sun. One of the most successful models to explain CMEs is the flux rope ejection model, where a magnetic flux rope is expelled from the solar corona after a long phase along which the flux rope stays in equilibrium while ...

  3. Surface fluxes over natural landscapes using scintillometry

    NARCIS (Netherlands)

    Meijninger, W.M.L.

    2003-01-01

    Motivated by the demand for reliable area-averaged fluxes associated with natural landscapes this thesis investigates a relative new measurement technique known as the scintillation method. For homogeneous areas the surface fluxes can be derived with reasonable accuracy. However, fluxes

  4. Models of Flux Tubes from Constrained Relaxation

    Indian Academy of Sciences (India)

    tribpo

    Equilibria corresponding to the energy extrema while conserving these invariants for parallel flows yield three classes of ... parallel heat flux, due to the boundary condition Β · n = 0, that the total energy, is conserved. In all HR, K, S, and the total mass, ... Zero net current flux tubes are qualitatively similar to the flux tube with ...

  5. Influence of hydrogen simulating burn-up effects on the metallurgical and thermal-mechanical behaviour of M5TM and zircaloy-4 alloys under LOCA conditions

    International Nuclear Information System (INIS)

    Mardon, J.P.; Brachet, J.C.; Portier, L.; Maillot, V.; Forgeron, T.; Lesbros, A.; Waeckel, N.

    2005-01-01

    A few years ago, within the framework of the CEA/ EDF /Framatome ANP R and D cooperative program, we made the assumption that the burn-up influence on the thermal-mechanical behavior of the cladding tubes under LOCA conditions is strongly linked to the hydrogen uptake due to the in-service oxidation. Thus, since that time, an extensive experimental program has been conducted in CEA labs on as-received and pre-hydrided Zircaloy-4 and M5 TM alloys of Framatome-ANP to get a better insight into the influence of the hydrogen on the thermal-mechanical cladding behavior during the first phase of the LOCA transient (ballooning and rupture) and for post-quenched conditions (residual ductility / toughness). On the one hand, one of the main assumptions here was that the microstructural defects, and the resultant hardening produced under heavy neutron irradiation within the Zr matrix, are annealed early in the first phase of the LOCA transient (i.e. first thermal ramp) and thus, that the main effects of high burn-up should come from the hydrogen uptake. To assess this hypothesis, specific thermal-mechanical tests have been performed on as-received, pre-hydrided and irradiated cladding tubes. This confirmed that the effect of hydrogen uptake dominates over that of irradiation on the thermal-mechanical response of the materials. So, in a first part of the paper, we will summarize the main results obtained here and, from the metallurgical point of view, we will illustrate the strong influence of hydrogen on the decrease of the α-to-β phase transformation temperatures of the zirconium alloys studied. On the other hand, studies have been performed on the post-quench mechanical behavior of as-received and pre-hydrided cladding tubes after single-face oxidation at 1000-1200 degree C and quenching. In parallel with these mechanical tests, in-depth metallurgical investigations have been developed, to be able to quantify the resultant phases thickness (ZrO 2 , α-Zr(O) and ex-β phase

  6. Metallurgical and mechanical behaviours of PWR fuel cladding tube oxidised at high temperature; Comportements metallurqigue et mecanique des materiaux de gainage du combustible REP oxydes a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Stern, A

    2007-12-15

    Zirconium alloys are used as cladding materials in Pressurized Water Reactors (PWR). As they are submitted to very extreme conditions, it is necessary to check their behaviour and especially to make sure they meet the safety criteria. They are therefore studied under typical in service-loadings but also under accidental loadings. In one of these accidental scenarios, called Loss of Coolant Accident (LOCA) the cladding temperature may increase above 800 C, in a steam environment, and decrease before a final quench of the cladding. During this temperature transient, the cladding is heavily oxidised, and the metallurgical changes lead to a decrease of the post quench mechanical properties. It is then necessary to correlate this drop in residual ductility to the metallurgical evolutions. This is the problem we want to address in this study: the oxidation of PWR cladding materials at high temperature in a steam environment and its consequences on post quench mechanical properties. As oxygen goes massively into the metallic part - a zirconia layer grows at the same time - during the high temperature oxidation, the claddings tubes microstructure shows three different phases that are the outer oxide layer (zirconia) and the inner metallic phases ({alpha}(O) and 'ex {beta}') - with various mechanical properties. In order to reproduce the behaviour of this multilayered material, the first part of this study consisted in creating samples with different - but homogeneous in thickness - oxygen contents, similar to those observed in the different phases of the real cladding. The study was especially focused on the {beta}-->{alpha} phase transformation upon cooling and on the resulting microstructures. A mechanism was proposed to describe this phase transformation. For instance, we conclude that for our oxygen enriched samples, the phase transformation kinetics upon cooling are ruled by the oxygen partitioning between the two allotropic phases. Then, these materials

  7. Flux of Cadmium through Euphausiids

    International Nuclear Information System (INIS)

    Benayoun, G.; Fowler, S.W.; Oregioni, B.

    1976-01-01

    Flux of the heavy metal cadmium through the euphausiid Meganyctiphanes norvegica was examined. Radiotracer experiments showed that cadmium can be accumulated either directly from water or through the food chain. When comparing equilibrium cadmium concentration factors based on stable element measurements with those obtained from radiotracer experiments, it is evident that exchange between cadmium in the water and that in euphausiid tissue is a relatively slow process, indicating that, in the long term, ingestion of cadmium will probably be the more important route for the accumulation of this metal. Approximately 10% of cadmium ingested by euphausiids was incorporated into internal tissues when the food source was radioactive Artemia. After 1 month cadmium, accumulated directly from water, was found to be most concentrated in the viscera with lesser amounts in eyes, exoskeleton and muscle, respectively. Use of a simple model, based on the assumption that cadmium taken in by the organism must equal cadmium released plus that accumulated in tissue, allowed assessment of the relative importance of various metabolic parameters in controlling the cadmium flux through euphausiids. Fecal pellets, due to their relatively high rate of production and high cadmium content, accounted for 84% of the total cadmium flux through M. norvegica. Comparisons of stable cadmium concentrations in natural euphausiid food and the organism's resultant fecal pellets indicate that the cadmium concentration in ingested material was increased nearly 5-fold during its passage through the euphausiid. From comparisons of all routes by which cadmium can be released from M. norvegica to the water column, it is concluded that fecal pellet deposition represents the principal mechanism effecting the downward vertical transport of cadmium by this species. (author)

  8. Four-collector flux sensor

    International Nuclear Information System (INIS)

    Wiegand, W.J. Jr.; Bullis, R.H.; Mongeon, R.J.

    1980-01-01

    A flowmeter based on ion drift techniques was developed for measuring the rate of flow of a fluid through a given cross-section. Ion collectors are positioned on each side of an immediately adjacent to ion source. When air flows axially through the region in which ions are produced and appropriate electric fields are maintained between the collectors, an electric current flows to each collector due to the net motion of the ions. The electric currents and voltages and other parameters which define the flow are combined in an electric circuit so that the flux of the fluid can be determined. (DN)

  9. Effect of Continuous and Pulsed Current on the Metallurgical and Mechanical Properties of Gas Tungsten Arc Welded AISI 4340 Aeronautical and AISI 304 L Austenitic Stainless Steel Dissimilar Joints

    OpenAIRE

    Arivarasu, Moganraj; Ramkumar Kasinath, Devendranath; Natarajan, Arivazhagan

    2015-01-01

    In this research work, the weldability of low alloyed AISI 4340 aeronautical steel and AISI 304L austenitic stainless steel joined by continuous current (CC) and pulsed current (PC) gas tungsten arc welding (GTAW) techniques, using ER309L and ERNiCr-3 filler metals was investigated. The main focus of the study involves the investigation on the effect of continuous and pulsed current mode of GTA welding process on the metallurgical and mechanical properties of these dissimilar weldments. Micro...

  10. Tokamak disruption heat flux simulator

    International Nuclear Information System (INIS)

    Langhoff, M.; Hess, G.; Gahl, J.; Ingram, R.

    1990-01-01

    A coaxial plasma gun system, operating in the deflagration mode, has been built and fired at the University of New Mexico. This system, powered by a 100 kJ capacitor bank, was designed to give a variable pulse length of approximately 50-100 us. The gun is intended to deliver to a target an energy deposition density of 1 kJ per cm 2 via impact with a deuterium plasma possessing a highly directed energy. This system should simulate on the target, over an area of approximately 10 cm 2 , the heat flux of a tokamak plasma disruption on plasma facing components. Current diagnostics for the system are rather rudimentary but sufficient for determination of plasma pulse characteristics and energy transfer to target. Electrical measurements include bank voltage measured via resistive voltage dividers, and bank current measured via Rogowski coil. The shape of the plasma, its position relative to the target area, and the final impact area, is determined via open-shutter photography and the use of witness plates. Total energy deposited onto targets will be determined through simple calorimetry and careful target mass measurements. Preliminary results describing the ablation of carbon targets exposed to disruption like heat fluxes will be presented as well as a description of the experimental apparatus

  11. Neutron flux enhancement at LASREF

    International Nuclear Information System (INIS)

    Sommer, W.F.; Ferguson, P.D.; Wechsler, M.S.

    1991-01-01

    The accelerator at the Los Alamos Meson Physics Facility produces a 1-mA beam of protons at an energy of 800 MeV. Since 1985, the Los Alamos Spallation Radiation Effects Facility (LASREF) has made use of the neutron flux that is generated as the incident protons interact with the nuclei in targets and a copper beam stop. A variety of basic and applied experiments in radiation damage and radiation effects have been completed. Recent studies indicate that the flux at LASREF can be increased by at least a factor of ten from the present level of about 5 E+17 m -2 s -1 . This requires changing the beam-stop material from Cu to W and optimizing the geometry of the beam-target interaction region. These studies are motivated by the need for a large volume, high energy, and high intensity neutron source in the development of materials for advanced energy concepts such as fusion reactors. 18 refs., 7 figs., 2 tabs

  12. Restoration in a mining and metallurgical industries area as a model project. Subproject 1: Factory for amalgamation Halsbruecke. Final report; Modellhafte Sanierung in einer Region mit Bergbau- und Huettenindustrie. Teilvorhaben 1: Amalgamierwerk Halsbruecke, Land Sachsen. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Cichos, C.; Menzer, V.; Schaal, A.

    1993-06-01

    Technology development for the restoration of a metallurgical site contaminated by heavy metals (Pb, Zn, Cu, Hg, As) with the aims of far-reaching recycling as well as minimizing of residues and demonstration of this technology contains in a first step - detailed historical exploration; - chemical, physical and mineralogical materials analysis; - bench scale investigations for process engineering. Starting from historical appraisal and geogene/anthropogene conditions the methods of material characterization bring statements on processing of noxious materials (metallurgical), harmless dumping abilities (immobilization, stabilization) and technological process stages (particularly wet mechanical processes). The same methodology is useful for analogous mining, metallurgical and used material sites with contamination by heavy metals and consisting of heterogeneous materials. (orig.) [Deutsch] Die modellhafte Technologieentwicklung und die Demonstration dieser Technologie zur Sanierung eines durch Schwermetalle (Pb, Zn, Cu, Cd, Hg, As) komplex belasteten Huettenstandortes unter dem Aspekt einer weitgehenden Reststoffverwertung sowie Minimierung der zu entsorgenden Rueckstaende umfasst in der ersten Phase - eine detaillierte historische Analyse/Erkundung; - eine chemische, physikalische und mineralogische Stoffcharakterisierung; verfahrenstechnische Untersuchungen im Labormassstab. Ausgehend von der historischen Bewertung und der geogenen/anthropogenen Verhaeltnisse fuehren die Methoden der Stoffcharakterisierung zu Aussagen der Schadstoffweiterverarbeitung (metallurgisch) sowie der gefahrlosen Deponierung (Immobilisierung, Stabilisierung) und zu technologischen Verfahrensschritten (bes. nassmechanische Verfahren). Die Herangehensweise ist fuer analoge Bergbau- aber besonders Huettenstandorte ggf. auch fuer andere Altlastenstandorte mit komplexer Schwermetallkontamination und heterogenem Material relevant. (orig.)

  13. An assessment and evaluation for recycle/reuse of contaminated process and metallurgical equipment at the DOE Rocky Flats Plant Site -- Building 865. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    An economic analysis of the potential advantages of alternatives for recycling and reusing equipment now stored in Building 865 at the Rocky Flats Plant (RFP) in Colorado has been conducted. The inventory considered in this analysis consists primarily of metallurgical and process equipment used before January 1992, during development and production of nuclear weapons components at the site. The economic analysis consists of a thorough building inventory and cost comparisons for four equipment dispositions alternatives. The first is a baseline option of disposal at a Low Level Waste (LLW) landfill. The three alternatives investigated are metal recycling, reuse with the government sector, and release for unrestricted use. This report provides item-by-item estimates of value, disposal cost, and decontamination cost. The economic evaluation methods documented here, the simple cost comparisons presented, and the data provided as a supplement, should provide a foundation for D&D decisions for Building 865, as well as for similar D&D tasks at RFP and at other sites.

  14. Effects of various tool pin profiles on mechanical and metallurgical properties of friction stir welded joints of cryorolled AA2219 aluminium alloy

    Science.gov (United States)

    Kamal Babu, Karupannan; Panneerselvam, Kavan; Sathiya, Paulraj; Noorul Haq, Abdul Haq; Sundarrajan, Srinivasan; Mastanaiah, Potta; Srinivasa Murthy, Chunduri Venkata

    2018-02-01

    Friction stir welding (FSW) process was conducted on cryorolled (CR) AA2219 plate using different tool pin profiles such as cylindrical pin, threaded cylindrical pin, square pin and hexagonal pin profiles. The FSW was carried out with pairs of 6 mm thick CR aluminium plates with different tool pin profiles. The different tool pin profile weld portions' behaviors like mechanical (tensile strength, impact and hardness) and metallurgical characteristics were analyzed. The results of the mechanical analysis revealed that the joint made by the hexagonal pin tool had good strength compared to other pin profiles. This was due to the pulsating action and material flow of the tool resulting in dynamic recrystallization in the weld zone. This was confirmed by the ultra fine grain structure formation in Weld Nugget (WN) of hexagonal pin tool joint with a higher percentage of precipitate dissolution. The fractograph of the hexagonal tool pin weld portion confirmed the finer dimple structure morphology without having any interior defect compared to other tool pin profiles. The lowest weld joint strength was obtained from cylindrical pin profile weld joint due to insufficient material flow during welding. The Transmission Electron Microscope and EDX analysis showed the dissolution of the metastable θ″, θ' (Al2Cu) partial precipitates in the WN and proved the influence of metastable precipitates on enhancement of mechanical behavior of weld. The XRD results also confirmed the Al2Cu precipitation dissolution in the weld zone.

  15. Production of Copper as a Complex Mining and Metallurgical Processing System in Polish Copper Mines of the Legnica-Glogów Copper Belt

    Science.gov (United States)

    Malewski, Jerzy

    2017-12-01

    Geological and technological conditions of Cu production in the Polish copper mines of the Legnica-Glogów Copper Belt are presented. Cu production is recognized as a technological fractal consisting of subsystems for mineral exploration, ore extraction and processing, and metallurgical treatment. Qualitative and quantitative models of these operations have been proposed, including estimation of their costs of process production. Numerical calculations of such a system have been performed, which allow optimize the system parameters according to economic criteria under variable Cu mineralization in the ore deposit. The main objective of the study is to develop forecasting tool for analysis of production efficiency in domestic copper mines based on available sources of information. Such analyses are primarily of social value, allowing for assessment of the efficiency of management of local mineral resources in the light of current technological and market constraints. At the same time, this is a concept of the system analysis method to manage deposit exploitation on operational and strategic level.

  16. Metallurgical examinations update of baffle bolts removed from operating French PWR. Microstructural investigations of a baffle to former bolt located on a high level of the internal structures

    International Nuclear Information System (INIS)

    Panait, C.; Fargeas, E.; Miloudi, S.; Moulart, P.; Tommy-Martin, M.; Monteil, N.; Pokor, C.

    2015-01-01

    This paper presents the microstructural investigations conducted on a cracked baffle to former bolt extracted from an upper former level of the internal structures of a French Pressurized Water Reactor (PWR). Extensive microstructural investigations using Light Microscopy, Scanning Electron Microscopy and Transmission Electron Microscopy (TEM) have been conducted to understand the degradation mechanisms of this bolt. TEM investigations have revealed neutron irradiation damage in the microstructure of the bolt such as Frank loops and cavities and/or bubbles. The number of features per unit volume as a function of diameter was determined in the head and in the shank of the bolt. The obtained results are relatively similar to those obtained for other damaged bolts extracted from PWR-type reactors and irradiated in similar conditions (dose and temperature). The irradiation damage has induced an evolution of the mechanical properties (hardening of the material), as revealed by the hardness measurements along the bolt, with a higher average value in the head (400 HV), compared to the shank (15 mm under the head), about 340 HV. The metallurgical investigations have confirmed that this bolt was damaged by Irradiation Assisted Stress Corrosion Cracking (IASCC)

  17. Reduced Antivation Ferritic/Martensitic Steel Eurofer 97 as Possible Structural Material for Fusion Devices. Metallurgical Characterization on As-Received Condition and after Simulated Services Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, P.; Lancha, A. M.; Lapena, J.; Serrano, M.; Hernandez-Mayoral, M.

    2004-07-01

    Metallurgical Characterization of the reduced activation ferritic/martensitic steel Eurofer'97, on as-received condition and after thermal ageing treatment in the temperature range from 400 degree centigree to 600 degree centigree for periods up to 10.000 h, was carried out. The microstructure of the steel remained stable (tempered martensite with M{sub 2}3 C{sub 6} and MX precipitates) after the thermal ageing treatments studied in this work. In general, this stability was also observed in the mechanical properties. The Eurofer'97 steel exhibited similar values of hardness, ultimate tensile stress, 0,2% proof stress, USE and T{sub 0}3 regardless of the investigated material condition. However, ageing at 600 degree centigree for 10.000 ha caused a slight increase in the DBTT, of approximately 23. In terms of creep properties, the steel shows in general adequate creep rupture strength levels for short rupture times. However, the results obtained up to now for long time creep rupture tests at 500 degree centigree suggests a change in the deformation mechanisms. (Author) 62 refs.

  18. Metallurgical production from North-east of the Iberian Peninsula during III millennium cal. BC: the Bauma del Serrat del Pont (Tortellá, Girona workshop

    Directory of Open Access Journals (Sweden)

    Alcalde, Gabriel

    1998-06-01

    Full Text Available We examine the third millennium cal. BC levels from the small rockshelter of Bauma del Serrat del Pont. The site was settled by a small group, building a perishable structure except in the II. 5 level. Some evidence suggests a seasonal occupation of the site. Multidisciplinary research shows a broad spectrum of local resources involved in the dairy life of this people, including those related to metallurgical activity. We find very old tin alloys, plain or bell beaker decorated pot-furnaces (used to smelt copper ores and clay tuyeres.

    Se presentan los resultados de la excavación en los niveles del III milenio cal. AC del pequeño abrigo rocoso de la Bauma del Serrat del Pont. El yacimiento fue ocupado por un grupo pequeño que organizó el espacio interno con una estructura de material perecedero, excepto en el nivel II.5. Algunos datos indican que las ocupaciones pudieron tener un carácter estacional. Los estudios multidisciplinares reconstruyen un aprovechamiento diversificado de recursos locales, entre los que se integran los dedicados a las tareas metalúrgicas. Se documentan aleaciones intencionadas de bronce de gran antigüedad, el empleo de vasijas horno con o sin decoración campaniforme, y toberas de arcilla.

  19. An assessment and evaluation for recycle/reuse of contaminated process and metallurgical equipment at the DOE Rocky Flats Plant Site -- Building 865

    International Nuclear Information System (INIS)

    1993-08-01

    An economic analysis of the potential advantages of alternatives for recycling and reusing equipment now stored in Building 865 at the Rocky Flats Plant (RFP) in Colorado has been conducted. The inventory considered in this analysis consists primarily of metallurgical and process equipment used before January 1992, during development and production of nuclear weapons components at the site. The economic analysis consists of a thorough building inventory and cost comparisons for four equipment dispositions alternatives. The first is a baseline option of disposal at a Low Level Waste (LLW) landfill. The three alternatives investigated are metal recycling, reuse with the government sector, and release for unrestricted use. This report provides item-by-item estimates of value, disposal cost, and decontamination cost. The economic evaluation methods documented here, the simple cost comparisons presented, and the data provided as a supplement, should provide a foundation for D ampersand D decisions for Building 865, as well as for similar D ampersand D tasks at RFP and at other sites

  20. Feasibility studies to establish at the Kazakhstan Ulba metallurgical plant the manufacturing capability to produce low-enriched uranium certified reference materials

    Energy Technology Data Exchange (ETDEWEB)

    Kuzminski, Jozef [Los Alamos National Laboratory; Nesuhoff, J [NBL; Cratto, P [NBL; Pfennigwerth, G [Y12 NATIONAL SEC. COMPLEX; Mikhailenko, A [ULBA METALLURGICAL PLANT; Maliutina, I [ULBA METALLURGICAL PLANT; Nations, J [GREGG PROTECTION SERVICES

    2009-01-01

    One of the salient features of the transition plan that the United States Department of Energy/National Nuclear Security Administration (DOE/NNSA) is presently implementing in the Former Soviet Union countries is the availability of uranium certified reference materials for calibration of nondestructive assay (NDA) measurement equipment. To address this challenge, DOE/NNSA and U.S. national laboratories have focused their cooperative efforts on establishing a reliable source for manufacturing, certifying, and supplying of such standards. The Ulba Metallurgical Plant (UMP), Kazakhstan, which processes large quantities of low-enriched uranium to produce ceramic fuel pellets for nuclear-powered reactors, is well situated to become a key supplier of low-enriched uranium certified reference materials for the country and Central Asia region. We have recently completed Phase I of a feasibility study to establish at UMP capabilities of manufacturing these standards. In this paper we will discuss details of a proposed methodology for uranium down-blending, material selection and characterization, and a proposed methodology of measurement by destructive (DA) and non-destructive (NDA) analysis to form a database for material certification by the competent State authorities in the Republic of Kazakhstan. In addition, we will discuss the prospect for manufacturing of such standards at UMP.

  1. A comparative evaluation of metallurgical properties of stainless steel and TMA archwires with timolium and titanium niobium archwires--an in vitro study.

    Science.gov (United States)

    Vijayalakshmi, R Devaki; Nagachandran, K S; Kummi, Pradeep; Jayakumar, P

    2009-01-01

    This study aims to evaluate and compare the mechanical and metallurgical properties of stainless steel and titanium molybdenum alloy (TMA) archwires, with recently introduced timolium and titanium niobium arch wires. Archwires were categorized into four groups (group I to IV) with 10 samples in each group. They were evaluated for tensile strength, yield strength, modulus of elasticity, load deflection, frictional properties and weld characteristics. The results were statistically analyzed using ANOVA test and it indicated that stainless steel has high strength, high stiffness and low friction compared to other arch wires, thereby proving that it is the best choice for both sliding as well as frictionless retraction mechanics. TMA with its high formability, low stiffness and low load deflection property is suited to apply consistent force in malaligned teeth but, high friction limits its use in retraction only with loop mechanics. Timolium possesses comparatively low stiffness, better strength and behaves as an intermediate between stainless steel and TMA and hence can be tried for almost all clinical situations. Low springback and high formability of titanium-niobium archwire allows creation of finishing bends and thus it can be used as finishing archwire.

  2. A comparative evaluation of metallurgical properties of stainless steel and TMA archwires with timolium and titanium niobium archwires - An in vitro study

    Directory of Open Access Journals (Sweden)

    Vijayalakshmi R

    2009-01-01

    Full Text Available Objectives: This study aims to evaluate and compare the mechanical and metallurgical properties of stainless steel and titanium molybdenum alloy (TMA archwires, with recently introduced timolium and titanium niobium arch wires. Materials and Methods: Archwires were categorized into four groups (group I to IV with 10 samples in each group. They were evaluated for tensile strength, yield strength, modulus of elasticity, load deflection, frictional properties and weld characteristics. Results: The results were statistically analyzed using ANOVA test and it indicated that stainless steel has high strength, high stiffness and low friction compared to other arch wires, thereby proving that it is the best choice for both sliding as well as frictionless retraction mechanics. TMA with its high formability, low stiffness and low load deflection property is suited to apply consistent force in malaligned teeth but, high friction limits its use in retraction only with loop mechanics. Conclusion: Timolium possesses comparatively low stiffness, better strength and behaves as an intermediate between stainless steel and TMA and hence can be tried for almost all clinical situations. Low springback and high formability of titanium-niobium archwire allows creation of finishing bends and thus it can be used as finishing archwire.

  3. Carbon dioxide, water vapour and energy fluxes over a semi ...

    Indian Academy of Sciences (India)

    42

    vapour fluxes in Mangrove ecosystems, Sundarbans (India). The above observations are. 57 .... with the help of PAR. 115 sensor. Soil heat flux plates were used for the measurement of soil heat flux. ..... where Rn is net radiation, G is the soil heat flux, H is sensible heat flux and LE is the latent. 233 heat flux. 234. We have ...

  4. Pyrolytic graphite gauge for measuring heat flux

    Science.gov (United States)

    Bunker, Robert C. (Inventor); Ewing, Mark E. (Inventor); Shipley, John L. (Inventor)

    2002-01-01

    A gauge for measuring heat flux, especially heat flux encountered in a high temperature environment, is provided. The gauge includes at least one thermocouple and an anisotropic pyrolytic graphite body that covers at least part of, and optionally encases the thermocouple. Heat flux is incident on the anisotropic pyrolytic graphite body by arranging the gauge so that the gauge surface on which convective and radiative fluxes are incident is perpendicular to the basal planes of the pyrolytic graphite. The conductivity of the pyrolytic graphite permits energy, transferred into the pyrolytic graphite body in the form of heat flux on the incident (or facing) surface, to be quickly distributed through the entire pyrolytic graphite body, resulting in small substantially instantaneous temperature gradients. Temperature changes to the body can thereby be measured by the thermocouple, and reduced to quantify the heat flux incident to the body.

  5. Local rectification of heat flux

    Science.gov (United States)

    Pons, M.; Cui, Y. Y.; Ruschhaupt, A.; Simón, M. A.; Muga, J. G.

    2017-09-01

    We present a chain-of-atoms model where heat is rectified, with different fluxes from the hot to the cold baths located at the chain boundaries when the temperature bias is reversed. The chain is homogeneous except for boundary effects and a local modification of the interactions at one site, the “impurity”. The rectification mechanism is due here to the localized impurity, the only asymmetrical element of the structure, apart from the externally imposed temperature bias, and does not rely on putting in contact different materials or other known mechanisms such as grading or long-range interactions. The effect survives if all interaction forces are linear except the ones for the impurity.

  6. Nuclear transmutation by flux compression

    International Nuclear Information System (INIS)

    Seifritz, W.

    2001-01-01

    A new idea for the transmutation of minor actinides, long (and even short) lived fission products is presented. It is based an the property of neutron flux compression in nuclear (fast and/or thermal) reactors possessing spatially non-stationary critical masses. An advantage factor for the burn-up fluence of the elements to be transmuted in the order of magnitude of 100 and more is obtainable compared with the classical way of transmutation. Three typical examples of such transmuters (a subcritical ringreactor with a rotating reflector, a sub-critical ring reactor with a rotating spallation source, the socalled ''pulsed energy amplifier'', and a fast burn-wave reactor) are presented and analysed with regard to this purpose. (orig.) [de

  7. Insects, infestations and nutrient fluxes

    Science.gov (United States)

    Michalzik, B.

    2012-04-01

    Forest ecosystems are characterized by a high temporal and spatial variability in the vertical transfer of energy and matter within the canopy and the soil compartment. The mechanisms and controlling factors behind canopy processes and system-internal transfer dynamics are imperfectly understood at the moment. Seasonal flux diversities and inhomogeneities in throughfall composition have been reported from coniferous and deciduous forests, and in most cases leaf leaching has been considered as principle driver for differences in the amount and quality of nutrients and organic compounds (Tukey and Morgan 1963). Since herbivorous insects and the processes they initiate received less attention in past times, ecologists now emphasize the need for linking biological processes occurring in different ecosystem strata to explain rates and variability of nutrient cycling (Bardgett et al. 1998, Wardle et al. 2004). Consequently, herbivore insects in the canopies of forests are increasingly identified to play an important role for the (re)cycling and availability of nutrients, or, more generally, for the functioning of ecosystems not only in outbreak situations but also at endemic (non-outbreak) density levels (Stadler et al. 2001, Hunter et al. 2003). Before, little attention was paid to insect herbivores when quantifying element and energy fluxes through ecosystems, although the numerous and different functions insects fulfill in ecosystems (e.g. as pollinators, herbivores or detritivores) were unanimously recognized (Schowalter 2000). Amongst the reasons for this restraint was the argument that the total biomass of insects tends to be relatively low compared to the biomass of trees or the pool of soil organic matter (Ohmart et al. 1983). A second argument which was put forward to justify the inferior role of insects in nutrient cycling were the supposed low defoliation losses between 5-10% of the annual leaf biomass, or net primary production, due to insect herbivory under

  8. Heat Flux Inhibition by Whistlers: Experimental Confirmation

    International Nuclear Information System (INIS)

    Eichler, D.

    2002-01-01

    Heat flux in weakly magnetized collisionless plasma is, according to theoretical predictions, limited by whistler turbulence that is generated by heat flux instabilities near threshold. Observations of solar wind electrons by Gary and coworkers appear to confirm the limit on heat flux as being roughly the product of the magnetic energy density and the electron thermal velocity, in agreement with prediction (Pistinner and Eichler 1998)

  9. Dimensional reduction of a generalized flux problem

    International Nuclear Information System (INIS)

    Moroz, A.

    1992-01-01

    In this paper, a generalized flux problem with Abelian and non-Abelian fluxes is considered. In the Abelian case we shall show that the generalized flux problem for tight-binding models of noninteracting electrons on either 2n- or (2n + 1)-dimensional lattice can always be reduced to an n-dimensional hopping problem. A residual freedom in this reduction enables one to identify equivalence classes of hopping Hamiltonians which have the same spectrum. In the non-Abelian case, the reduction is not possible in general unless the flux tensor factorizes into an Abelian one times are element of the corresponding algebra

  10. Self-organization in magnetic flux ropes

    Science.gov (United States)

    Lukin, Vyacheslav S.

    2014-06-01

    This cross-disciplinary special issue on 'Self-organization in magnetic flux ropes' follows in the footsteps of another collection of manuscripts dedicated to the subject of magnetic flux ropes, a volume on 'Physics of magnetic flux ropes' published in the American Geophysical Union's Geophysical Monograph Series in 1990 [1]. Twenty-four years later, this special issue, composed of invited original contributions highlighting ongoing research on the physics of magnetic flux ropes in astrophysical, space and laboratory plasmas, can be considered an update on our state of understanding of this fundamental constituent of any magnetized plasma. Furthermore, by inviting contributions from research groups focused on the study of the origins and properties of magnetic flux ropes in a variety of different environments, we have attempted to underline both the diversity of and the commonalities among magnetic flux ropes throughout the solar system and, indeed, the universe. So, what is a magnetic flux rope? The answer will undoubtedly depend on whom you ask. A flux rope can be as narrow as a few Larmor radii and as wide as the Sun (see, e.g., the contributions by Heli Hietala et al and by Angelous Vourlidas). As described below by Ward Manchester IV et al , they can stretch from the Sun to the Earth in the form of interplanetary coronal mass ejections. Or, as in the Swarthmore Spheromak Experiment described by David Schaffner et al , they can fit into a meter-long laboratory device tended by college students. They can be helical and line-tied (see, e.g., Walter Gekelman et al or J Sears et al ), or toroidal and periodic (see, e.g., John O'Bryan et al or Philippa Browning et al ). They can form in the low plasma beta environment of the solar corona (Tibor Török et al ), the order unity beta plasmas of the solar wind (Stefan Eriksson et al ) and the plasma pressure dominated stellar convection zones (Nicholas Nelson and Mark Miesch). In this special issue, Setthivoine You

  11. Surface Flux Modeling for Air Quality Applications

    Directory of Open Access Journals (Sweden)

    Limei Ran

    2011-08-01

    Full Text Available For many gasses and aerosols, dry deposition is an important sink of atmospheric mass. Dry deposition fluxes are also important sources of pollutants to terrestrial and aquatic ecosystems. The surface fluxes of some gases, such as ammonia, mercury, and certain volatile organic compounds, can be upward into the air as well as downward to the surface and therefore should be modeled as bi-directional fluxes. Model parameterizations of dry deposition in air quality models have been represented by simple electrical resistance analogs for almost 30 years. Uncertainties in surface flux modeling in global to mesoscale models are being slowly reduced as more field measurements provide constraints on parameterizations. However, at the same time, more chemical species are being added to surface flux models as air quality models are expanded to include more complex chemistry and are being applied to a wider array of environmental issues. Since surface flux measurements of many of these chemicals are still lacking, resistances are usually parameterized using simple scaling by water or lipid solubility and reactivity. Advances in recent years have included bi-directional flux algorithms that require a shift from pre-computation of deposition velocities to fully integrated surface flux calculations within air quality models. Improved modeling of the stomatal component of chemical surface fluxes has resulted from improved evapotranspiration modeling in land surface models and closer integration between meteorology and air quality models. Satellite-derived land use characterization and vegetation products and indices are improving model representation of spatial and temporal variations in surface flux processes. This review describes the current state of chemical dry deposition modeling, recent progress in bi-directional flux modeling, synergistic model development research with field measurements, and coupling with meteorological land surface models.

  12. Sensorless Direct Flux Vector Control of Synchronous Reluctance Motors Including Standstill, MTPA and Flux Weakening

    OpenAIRE

    Yousefi-Talouki, Arzhang; Pescetto, Paolo; Pellegrino, Gian-Mario Luigi

    2017-01-01

    This paper proposes a sensorless direct flux vector control scheme for synchronous reluctance motor drives. Torque is controlled at constant switching frequency, via the closed loop regulation of the stator flux linkage vector and of the current component in quadrature with it, using the stator flux oriented reference frame. A hybrid flux and position observer combines back-electromotive force integration with pulsating voltage injection around zero speed. Around zero speed, the position obse...

  13. The influence of microstructure on the mechanical properties of metallurgical rolls made of G200CrMoNi4-3-3 cast steel

    Directory of Open Access Journals (Sweden)

    A. Brodziak

    2009-07-01

    Full Text Available The subject of the study is the high-carbon tool cast steel G200CrMoNi4-3-3 used for metallurgical rolls, especially in section rolling mills. The test material was derived from a roll damaged in production; therefore, the authors had the material in a raw state at their disposal, on which they were able to carry out additional heat treatment operations. The pearlitic matrix of casting steel G200CrMoNi4-3-3 allows machining to be done to modify the pass or to remove any defects, and the primary and secondary precipitates of carbides enhance the tribological properties. The authors have been for years involved in the optimization of the structure of this material by slight correction to its chemical composition and/or the modification of heat treatment. The presented principles of heat treatment modifications will lead to considerable economic and ecologic profits. It has also been demonstrated that raising slightly the contents of carbide-forming elements, which markedly increases the quantity of transformed ledeburite, results in an enhancement of tribological properties. The analysis of a dozen or so rolls exploited down to the dead roll diameter has shown that roll of cast steel with increased contents of carbon and carbide-forming elements exhibit better service properties, as characterized by the amount of feedstock rolled. Such a method of enhancing the service properties required the assessment of fracture toughness, which was verified using the linear-elastic methods of fracture mechanics.

  14. Competitiveness and Economic Security — Priority Problems of the Region’s Metallurgical Comples and Its Leaders in the Conditions Of Instability

    Directory of Open Access Journals (Sweden)

    Andrey Anatolyevich Kozitsyn

    2015-09-01

    Full Text Available The subject-matter of the research is the study of the regional metallurgical complex and its leaders, which account for 55 % of industrial output and more than 57 % of exports of the Sverdlovsk region, in the current terms of economic instability. Supporting the business priorities of improving the competitiveness and economic security of the enterprise is based on the example of "UMMCHolding" — the leader of ferrous metallurgy in the Middle Urals, an active participant in the global and Russian copper market. The modern economic, mathematical, and general scientific methods (comparison study, the ratio of total and private, and others are applied as the research methods. To obtain the study results, the main areas of the holding impacted by the sanctions are analyzed: modernization of production and spare parts provisions of the current imported equipment, correction of the supply chain, searching for new business partners, transformation of the structure and direction of cargo traffic, solving transportation problems, stocks system management and minimization of economic, social and environmental costs. The urgency of solving the problem of company competitiveness and economic security increasing together with its sectoral and regional features in the present conditions is proved as the key conclusion. The high competitiveness of the holding is considered to be one of the factors of its economic security. The main goal of the economic security of the company is its sustainable and maximally effective functioning at the present time and high potential for successful development in the future. The indicators and criteria for the economic security evaluation are studied in detail. The analysis conducted has shown that, in general, the holding has high indicators characterizing its economic security on the basis of high competitiveness. As a negative sign, a lack of the investment growth needed to solve urgent problems is noticed.

  15. Natural arsenic attenuation via metal arsenate precipitation in soils contaminated with metallurgical wastes: III. Adsorption versus precipitation in clean As(V)/goethite/Pb(II)/carbonate systems

    International Nuclear Information System (INIS)

    Vaca-Escobar, Katherine; Villalobos, Mario; Ceniceros-Gómez, Agueda E.

    2012-01-01

    Soil contamination with As and potentially harmful metals is a widespread problem around the world especially from mining and metallurgical wastes, which release substantial amounts of these elements to the environment in potentially mobile species. Recently, it has been found that in various Mexican soils contaminated with these types of wastes, arsenate is not in the form of sorbed species on Fe oxides present in the soils, as generally reported in the literature, but in the form of very insoluble compounds such as Pb, Cu and Ca arsenates. Here a thermodynamic model is applied and validated with the results from wet chemical experiments to determine the fundamental geochemical conditions governing the mobility of As in the presence of Pb. For this purpose, a relatively simple but fundamental system of goethite (α-FeOOH)/As(V)/Pb(II)/carbonate was defined as a function of the As(V)/Fe(III) ratio, in a pH range of 5–10. The speciation model included the simultaneous inclusion of triple layer surface complexation and arsenate precipitation equilibria. The model predicts that from very low total As(V)/Fe(III) molar ratios (0.012 at pH 7) the precipitation mechanism significantly influences the attenuation of As(V), and rapidly becomes the dominant process over the adsorption mechanism. Model results identify the quantitative conditions of predominance for each mechanism and describe the transition conditions in which relatively large fractions of adsorbed, precipitated and dissolved As(V) species prevail. Experimental measurements at selected As(V)/Fe(III) ratios and pH confirmed the predictions and validated the coupled thermodynamic model utilized.

  16. TiNi shape memory alloys: effects of the fabrication route, the oxygen content and the zirconium or hafnium additions on the metallurgical characteristics and the thermomechanical properties

    International Nuclear Information System (INIS)

    Olier, P.

    1996-01-01

    In order to promote the development of Ti-Ni shape memory alloys, we have studied the correlation between the fabrication route, the chemical composition (O 2 content, Zr or Hf additions), the metallurgical characteristics and the thermomechanical properties. A conventional sintering does not allow to obtain a homogeneous compound of pure Ti 50 Ni 50 alloy because of the occurrence of Kirkendall porosities which act as a diffusion barrier. An original process including combustion synthesis and hot-extrusion was successfully developed. Resulting products exhibit a smaller grain size (15-20μm) and an enhanced workability in comparison with products obtained by arc-melting and subsequent hot rolling. The presence of oxygen in equiatomic Ti-Ni alloy induces the oxide precipitation of Ti 4 Ni 2 O x type (with x ≤ 1). The precipitated particle fraction is proportional to the oxygen nominal content of the alloy. We show that the decrease of the transformation temperatures is correlated with the decrease of Ti in solid solution due to Ti 4 Ni 2 O precipitation. Moreover, we find that a fine and homogenous oxide dispersion is suitable to decrease the grain size during hot rolling and to enhance to the one way shape memory properties. An increase of the typical transformation temperatures is obtained through of Zr or Hf (in substitution to Ti). But, an increase of the hardness is measured, and consequently the workability of the ternary alloys becomes reduced. However, it is worthwhile to point out that a Ti 38 Ni 50 Hf 12 product obtained by arc melting and hot extrusion is able to fully recover an apparent plastic strain of more than 4% during tensile tests performed under special loading conditions. Such as behaviour is of great interest with respect to potential applications in a temperature range higher that 100 deg. C. (author)

  17. Flux compactifications, gauge algebras and De Sitter

    NARCIS (Netherlands)

    Dibitetto, Giuseppe; Linares, Roman; Roest, Diederik

    2010-01-01

    The introduction of (non-)geometric fluxes allows for N = 1 moduli stabilisation in a De Sitter vacuum. The aim of this Letter is to assess to what extent this is true in N = 4 compactifications. First we identify the correct gauge algebra in terms of gauge and (non-)geometric fluxes. We then show

  18. Neutron flux measurement by mobile detectors

    International Nuclear Information System (INIS)

    Verchain, M.

    1987-01-01

    Various incore instrumentation systems and their technological evolution are first reviewed. Then, for 1300 MWe PWR nuclear power plant, temperature and neutron flux measurement are described. Mobile fission chambers, with their large measuring range and accurate location allow a good knowledge of the core. Other incore measures are possible because of flux detector thimble tubes inserted in the reactor core [fr

  19. Fast flux module detection using matroid theory.

    Science.gov (United States)

    Reimers, Arne C; Bruggeman, Frank J; Olivier, Brett G; Stougie, Leen

    2015-05-01

    Flux balance analysis (FBA) is one of the most often applied methods on genome-scale metabolic networks. Although FBA uniquely determines the optimal yield, the pathway that achieves this is usually not unique. The analysis of the optimal-yield flux space has been an open challenge. Flux variability analysis is only capturing some properties of the flux space, while elementary mode analysis is intractable due to the enormous number of elementary modes. However, it has been found by Kelk et al. (2012) that the space of optimal-yield fluxes decomposes into flux modules. These decompositions allow a much easier but still comprehensive analysis of the optimal-yield flux space. Using the mathematical definition of module introduced by Müller and Bockmayr (2013b), we discovered useful connections to matroid theory, through which efficient algorithms enable us to compute the decomposition into modules in a few seconds for genome-scale networks. Using that every module can be represented by one reaction that represents its function, in this article, we also present a method that uses this decomposition to visualize the interplay of modules. We expect the new method to replace flux variability analysis in the pipelines for metabolic networks.

  20. EL-2 reactor: Thermal neutron flux distribution

    International Nuclear Information System (INIS)

    Rousseau, A.; Genthon, J.P.

    1958-01-01

    The flux distribution of thermal neutrons in EL-2 reactor is studied. The reactor core and lattices are described as well as the experimental reactor facilities, in particular, the experimental channels and special facilities. The measurement shows that the thermal neutron flux increases in the central channel when enriched uranium is used in place of natural uranium. However the thermal neutron flux is not perturbed in the other reactor channels by the fuel modification. The macroscopic flux distribution is measured according the radial positioning of fuel rods. The longitudinal neutron flux distribution in a fuel rod is also measured and shows no difference between enriched and natural uranium fuel rods. In addition, measurements of the flux distribution have been effectuated for rods containing other material as steel or aluminium. The neutron flux distribution is also studied in all the experimental channels as well as in the thermal column. The determination of the distribution of the thermal neutron flux in all experimental facilities, the thermal column and the fuel channels has been made with a heavy water level of 1825 mm and is given for an operating power of 1000 kW. (M.P.)

  1. Increased heat fluxes near a forest edge

    NARCIS (Netherlands)

    Klaassen, W; van Breugel, PB; Moors, EJ; Nieveen, JP

    2002-01-01

    Observations of sensible and latent heat flux above forest downwind of a forest edge show these fluxes to be larger than the available energy over the forest. The enhancement averages to 56 W m(-2), or 16% of the net radiation, at fetches less than 400 m, equivalent to fetch to height ratios less

  2. Increased heat fluxes near a forest edge

    NARCIS (Netherlands)

    Klaassen, W.; Breugel, van P.B.; Moors, E.J.; Nieveen, J.P.

    2002-01-01

    Observations of sensible and latent heat flux above forest downwind of a forest edge show these fluxes to be larger than the available energy over the forest. The enhancement averages to 56 W mm2, or 16 f the net radiation, at fetches less than 400 m, equivalent to fetch to height ratios less than

  3. Initiation of CMEs by Magnetic Flux Emergence

    Indian Academy of Sciences (India)

    The initiation of solar Coronal Mass Ejections (CMEs) is studied in the framework of numerical magnetohydrodynamics (MHD). The initial CME model includes a magnetic flux rope in spherical, axisymmetric geometry. The initial configuration consists of a magnetic flux rope embedded in a gravitationally stratified solar ...

  4. Heat flux viscosity in collisional magnetized plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C., E-mail: cliu@pppl.gov [Princeton University, Princeton, New Jersey 08544 (United States); Fox, W. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Bhattacharjee, A. [Princeton University, Princeton, New Jersey 08544 (United States); Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2015-05-15

    Momentum transport in collisional magnetized plasmas due to gradients in the heat flux, a “heat flux viscosity,” is demonstrated. Even though no net particle flux is associated with a heat flux, in a plasma there can still be momentum transport owing to the velocity dependence of the Coulomb collision frequency, analogous to the thermal force. This heat-flux viscosity may play an important role in numerous plasma environments, in particular, in strongly driven high-energy-density plasma, where strong heat flux can dominate over ordinary plasma flows. The heat flux viscosity can influence the dynamics of the magnetic field in plasmas through the generalized Ohm's law and may therefore play an important role as a dissipation mechanism allowing magnetic field line reconnection. The heat flux viscosity is calculated directly using the finite-difference method of Epperlein and Haines [Phys. Fluids 29, 1029 (1986)], which is shown to be more accurate than Braginskii's method [S. I. Braginskii, Rev. Plasma Phys. 1, 205 (1965)], and confirmed with one-dimensional collisional particle-in-cell simulations. The resulting transport coefficients are tabulated for ease of application.

  5. Anthropogenic heat flux estimation from space

    NARCIS (Netherlands)

    Chrysoulakis, Nektarios; Marconcini, Mattia; Gastellu-Etchegorry, Jean Philippe; Grimmond, C.S.B.; Feigenwinter, Christian; Lindberg, Fredrik; Frate, Del Fabio; Klostermann, Judith; Mitraka, Zina; Esch, Thomas; Landier, Lucas; Gabey, Andy; Parlow, Eberhard; Olofson, Frans

    2016-01-01

    H2020-Space project URBANFLUXES (URBan ANthrpogenic heat FLUX from Earth observation Satellites) investigates the potential of Copernicus Sentinels to retrieve anthropogenic heat flux, as a key component of the Urban Energy Budget (UEB). URBANFLUXES advances the current knowledge of the impacts

  6. ANthropogenic heat FLUX estimation from Space

    NARCIS (Netherlands)

    Chrysoulakis, Nektarios; Marconcini, Mattia; Gastellu-Etchegorry, Jean Philippe; Grimmong, C.S.B.; Feigenwinter, Christian; Lindberg, Fredrik; Frate, Del Fabio; Klostermann, Judith; Mi, Zina; Esch, Thomas; Landier, Lucas; Gabey, Andy; Parlow, Eberhard; Olofson, Frans

    2017-01-01

    The H2020-Space project URBANFLUXES (URBan ANthrpogenic heat FLUX from Earth observation Satellites) investigates the potential of Copernicus Sentinels to retrieve anthropogenic heat flux, as a key component of the Urban Energy Budget (UEB). URBANFLUXES advances the current knowledge of the

  7. Optical magnetic flux generation in superconductor

    Indian Academy of Sciences (India)

    Abstract. The generation of the magnetic flux quanta inside the superconductors is studied as a new effect to destroy ... Ultrafast phenomena; femtosecond laser; optical magnetic flux generation. PACS Nos 85.25. .... [8] M Tonouchi, M Tani, Z Wang, K Sakai, S Tomozawa, M Hangyo, Y Murakami and S. Nakashima, Jpn. J.

  8. Multi-circular flux motor

    Energy Technology Data Exchange (ETDEWEB)

    El-Kharashi, Eyhab Aly, E-mail: EyhabElkharahi@hotmail.com [Faculty of Engineering, Electrical Power and Machines Department, Ain Shams University, 1 El-Sarayat Street, Abdou Basha Square, Abbassia 11517, Cairo (Egypt)

    2011-11-15

    Highlights: {yields} The paper uses the multi-circular rotor in the switched reluctance motor to increase its output torque and its efficiency. {yields} Finite element is used to model the new SRM accurately. {yields} The Matlab/Simulink is used to dynamically model the new SRM. {yields} The paper compares the torque capability of the multi-circular rotor SRM. {yields} The new SRM produces approximately double the torque of its equivalent conventional SRM. - Abstract: The paper introduces a new type of electrical machines which has significantly high output torque. The toothed-rotor in the conventional electrical machine is replaced by a multi-circular rotor to increase the saliency and to shorten the flux loops consequently the output torque increases. The paper presents the design steps of this new type of electrical machine and also examines its performance. In addition, the paper compares the percentage increase in output torque from the proposed new electric machine to its equivalent conventional motor. Then the paper proceeds to discuss the relation between the switching on angle and the maximum speed, the torque ripples, and the efficiency.

  9. Crystal growth of emerald by flux method

    International Nuclear Information System (INIS)

    Inoue, Mikio; Narita, Eiichi; Okabe, Taijiro; Morishita, Toshihiko.

    1979-01-01

    Emerald crystals have been formed in two binary fluxes of Li 2 O-MoO 2 and Li 2 O-V 2 O 5 using the slow cooling method and the temperature gradient method under various conditions. In the flux of Li 2 O-MoO 3 carried out in the range of 2 -- 5 of molar ratios (MoO 3 /Li 2 O), emerald was crystallized in the temperature range from 750 to 950 0 C, and the suitable crystallization conditions were found to be the molar ratio of 3 -- 4 and the temperature about 900 0 C. In the flux of Li 2 O-V 2 O 5 carried out in the range of 1.7 -- 5 of molar ratios (V 2 O 5 /Li 2 O), emerald was crystallized in the temperature range from 900 to 1150 0 . The suitable crystals were obtained at the molar ratio of 3 and the temperature range of 1000 -- 1100 0 C. The crystallization temperature rised with an increase in the molar ratio of the both fluxes. The emeralds grown in two binary fluxes were transparent green, having the density of 2.68, the refractive index of 1.56, and the two distinct bands in the visible spectrum at 430 and 600nm. The emerald grown in Li 2 O-V 2 O 5 flux was more bluish green than that grown in Li 2 O-MoO 3 flux. The size of the spontaneously nucleated emerald grown in the former flux was larger than the latter, when crystallized by the slow cooling method. As for the solubility of beryl in the two fluxes, Li 2 O-V 2 O 5 flux was superior to Li 2 O-MoO 3 flux whose small solubility of SiO 2 caused an experimental problem to the temperature gradient method. The suitability of the two fluxes for the crystal growth of emerald by the flux method was discussed from the view point of various properties of above-mentioned two fluxes. (author)

  10. Heat Flux Distribution of Antarctica Unveiled

    Science.gov (United States)

    Martos, Yasmina M.; Catalán, Manuel; Jordan, Tom A.; Golynsky, Alexander; Golynsky, Dmitry; Eagles, Graeme; Vaughan, David G.

    2017-11-01

    Antarctica is the largest reservoir of ice on Earth. Understanding its ice sheet dynamics is crucial to unraveling past global climate change and making robust climatic and sea level predictions. Of the basic parameters that shape and control ice flow, the most poorly known is geothermal heat flux. Direct observations of heat flux are difficult to obtain in Antarctica, and until now continent-wide heat flux maps have only been derived from low-resolution satellite magnetic and seismological data. We present a high-resolution heat flux map and associated uncertainty derived from spectral analysis of the most advanced continental compilation of airborne magnetic data. Small-scale spatial variability and features consistent with known geology are better reproduced than in previous models, between 36% and 50%. Our high-resolution heat flux map and its uncertainty distribution provide an important new boundary condition to be used in studies on future subglacial hydrology, ice sheet dynamics, and sea level change.

  11. Flux Modulation in the Electrodynamic Loudspeaker

    DEFF Research Database (Denmark)

    Halvorsen, Morten; Tinggaard, Carsten; Agerkvist, Finn T.

    2015-01-01

    This paper discusses the effect of flux modulation in the electrodynamic loudspeaker with main focus on the effect on the force factor. A measurement setup to measure the AC flux modulation with static voice coil is explained and the measurements shows good consistency with FEA simulations....... Measurements of the generated AC flux modulation shows, that eddy currents are the main source to magnetic losses in form of phase lag and amplitude changes. Use of a copper cap shows a decrease in flux modulation amplitude at the expense of increased power losses. Finally, simulations show...... that there is a high dependency between the generated AC flux modulation from the voice coil and the AC force factor change....

  12. Spacecraft-produced neutron fluxes on Skylab

    Science.gov (United States)

    Quist, T. C.; Furst, M.; Burnett, D. S.; Baum, J. H.; Peacock, C. L., Jr.; Perry, D. G.

    1977-01-01

    Estimates of neutron fluxes in different energy ranges are reported for the Skylab spacecraft. Detectors composed of uranium, thorium, and bismuth foils with mica as a fission track recorder, as well as boron foils with cellulose acetate as an alpha-particle recorder, were deployed at different positions in the Orbital Workshop. It was found that the Skylab neutron flux was dominated by high energy (greater than 1 MeV) contributions and that there was no significant time variation in the fluxes. Firm upper limits of 7-15 neutrons/sq cm-sec, depending on the detector location in the spacecraft, were established for fluxes above 1 MeV. Below 1 MeV, the neutron fluxes were about an order of magnitude lower. The neutrons are interpreted as originating from the interactions of leakage protons from the radiation belt with the spacecraft.

  13. OpenFLUX: efficient modelling software for 13C-based metabolic flux analysis

    Directory of Open Access Journals (Sweden)

    Nielsen Lars K

    2009-05-01

    Full Text Available Abstract Background The quantitative analysis of metabolic fluxes, i.e., in vivo activities of intracellular enzymes and pathways, provides key information on biological systems in systems biology and metabolic engineering. It is based on a comprehensive approach combining (i tracer cultivation on 13C substrates, (ii 13C labelling analysis by mass spectrometry and (iii mathematical modelling for experimental design, data processing, flux calculation and statistics. Whereas the cultivation and the analytical part is fairly advanced, a lack of appropriate modelling software solutions for all modelling aspects in flux studies is limiting the application of metabolic flux analysis. Results We have developed OpenFLUX as a user friendly, yet flexible software application for small and large scale 13C metabolic flux analysis. The application is based on the new Elementary Metabolite Unit (EMU framework, significantly enhancing computation speed for flux calculation. From simple notation of metabolic reaction networks defined in a spreadsheet, the OpenFLUX parser automatically generates MATLAB-readable metabolite and isotopomer balances, thus strongly facilitating model creation. The model can be used to perform experimental design, parameter estimation and sensitivity analysis either using the built-in gradient-based search or Monte Carlo algorithms or in user-defined algorithms. Exemplified for a microbial flux study with 71 reactions, 8 free flux parameters and mass isotopomer distribution of 10 metabolites, OpenFLUX allowed to automatically compile the EMU-based model from an Excel file containing metabolic reactions and carbon transfer mechanisms, showing it's user-friendliness. It reliably reproduced the published data and optimum flux distributions for the network under study were found quickly ( Conclusion We have developed a fast, accurate application to perform steady-state 13C metabolic flux analysis. OpenFLUX will strongly facilitate and

  14. Neutron flux enhancement in the NRAD reactor

    International Nuclear Information System (INIS)

    Weeks, A.A.; Heidel, C.C.; Imel, G.R.

    1988-01-01

    In 1987 a series of experiments were conducted at the NRAD reactor facility at Argonne National Laboratory - West (ANL-W) to investigate the possibility of increasing the thermal neutron content at the end of the reactor's east beam tube through the use of hydrogenous flux traps. It was desired to increase the thermal flux for a series of experiments to be performed in the east radiography cell, in which the enhanced flux was required in a relatively small volume. Hence, it was feasible to attempt to focus the cross section of the beam to a smaller area. Two flux traps were constructed from unborated polypropylene and tested to determine their effectiveness. Both traps were open to the entire cross-sectional area of the neutron beam (as it emerges from the wall and enters the beam room). The sides then converged such that at the end of the trap the beam would be 'focused' to a greater intensity. The differences in the two flux traps were primarily in length, and hence angle to the beam as the inlet and outlet cross-sectional areas were held constant. The experiments have contributed to the design of a flux trap in which a thermal flux of nearly 10 9 was obtained, with an enhancement of 6.61

  15. CO2 flux geothermometer for geothermal exploration

    Science.gov (United States)

    Harvey, M. C.; Rowland, J. V.; Chiodini, G.; Rissmann, C. F.; Bloomberg, S.; Fridriksson, T.; Oladottir, A. A.

    2017-09-01

    A new geothermometer (TCO2 Flux) is proposed based on soil diffuse CO2 flux and shallow temperature measurements made on areas of steam heated, thermally altered ground above active geothermal systems. This CO2 flux geothermometer is based on a previously reported CO2 geothermometer that was designed for use with fumarole analysis. The new geothermometer provides a valuable additional exploration tool for estimating subsurface temperatures in high-temperature geothermal systems. Mean TCO2 Flux estimates fall within the range of deep drill hole temperatures at Wairakei (New Zealand), Tauhara (New Zealand), Rotokawa (New Zealand), Ohaaki (New Zealand), Reykjanes (Iceland) and Copahue (Argentina). The spatial distribution of geothermometry estimates is consistent with the location of major upflow zones previously reported at the Wairakei and Rotokawa geothermal systems. TCO2 Flux was also evaluated at White Island (New Zealand) and Reporoa (New Zealand), where limited sub-surface data exists. Mode TCO2 Flux at White Island is high (320 °C), the highest of the systems considered in this study. However, the geothermometer relies on mineral-water equilibrium in neutral pH reservoir fluids, and would not be reliable in such an active and acidic environment. Mean TCO2 Flux at Reporoa (310 °C) is high, which indicates Reporoa has a separate upflow from the nearby Waiotapu geothermal system; an outflow from Waiotapu would not be expected to have such high temperature.

  16. Eddy Correlation Flux Measurement System (ECOR) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Cook, DR

    2011-01-31

    The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration.

  17. Magnetic refrigeration using flux compression in superconductors

    International Nuclear Information System (INIS)

    Israelsson, U.E.; Strayer, D.M.; Jackson, H.W.; Petrac, D.

    1990-01-01

    The feasibility of using flux compression in high-temperature superconductors to produce the large time-varying magnetic fields required in a field cycled magnetic refrigerator operating between 20 K and 4 K is presently investigated. This paper describes the refrigerator concept and lists limitations and advantages in comparison with conventional refrigeration techniques. The maximum fields obtainable by flux compression in high-temperature superconductor materials, as presently prepared, are too low to serve in such a refrigerator. However, reports exist of critical current values that are near usable levels for flux pumps in refrigerator applications. 9 refs

  18. Evolution of magnetic flux ropes associated with flux transfer events and interplanetary magnetic clouds

    International Nuclear Information System (INIS)

    Wei, C.Q.; Lee, L.C.; Wang, S.; Akasofu, S.I.

    1991-01-01

    Spacecraft observations suggest that flux transfer events and interplanetary magnetic clouds may be associated with magnetic flux ropes which are magnetic flux tubes containing helical magnetic field lines. In the magnetic flux ropes, the azimuthal magnetic field (B θ ) is superposed on the axial field (B z ). In this paper the time evolution of a localized magnetic flux rope is studied. A two-dimensional compressible magnetohydrodynamic simulation code with a cylindrical symmetry is developed to study the wave modes associated with the evolution of flux ropes. It is found that in the initial phase both the fast magnetosonic wave and the Alfven wave are developed in the flux rope. After this initial phase, the Alfven wave becomes the dominant wave mode for the evolution of the magnetic flux rope and the radial expansion velocity of the flux rope is found to be negligible. Numerical results further show that even for a large initial azimuthal component of the magnetic field (B θ ≅ 1-4 B z ) the propagation velocity along the axial direction of the flux rope remains to be the Alfven velocity. Diagnoses show that after the initial phase the transverse kinetic energy equals the transverse magnetic energy, which is characteristic of the Alfven mode. It is also found that the localized magnetic flux rope tends to evolve into two separate magnetic ropes propagating in opposite directions. The simulation results are used to study the evolution of magnetic flux ropes associated with flux transfer events observed at the Earth's dayside magnetopause and magnetic clouds in the interplanetary space

  19. Accuracy of surface heat fluxes from observations of operational satellites

    Digital Repository Service at National Institute of Oceanography (India)

    Pankajakshan, T.; Sugimori, Y.

    Uncertainties in the flux estimates, resulting from the use of bulk method and remotely sensed data are worked out and are presented for individual and total fluxes. These uncertainties in satellite derived fluxes are further compared...

  20. Perda auditiva induzida pelo ruído em trabalhadores de metalúrgica Noise induced hearing loss in metallurgical workers

    Directory of Open Access Journals (Sweden)

    Simone Adad Araújo

    Full Text Available Introdução: A perda auditiva induzida pelo ruído é uma patologia insidiosa cumulativa, que cresce ao longo dos anos de exposição ao ruído associado ao ambiente de trabalho. Objetivos: Identificar e quantificar a ocorrência de alterações auditivas sugestivas de Perda Auditiva Induzida pelo Ruído e os principais sintomas otorrinolaringológicos referidos pelos trabalhadores. Forma de estudo: prospectivo clínico randomizado. Casuística e métodos: Pesquisa realizada no período de janeiro a março de 2000 com 187 trabalhadores de indústria metalúrgica no município de Goiânia, avaliados por médicos otorrinolaringologistas através de roteiro de entrevista e audiometria ocupacional. Resultados: Foram obtidas audiometrias ocupacionais sendo: 21% sugestivas de PAIR, 72%, normais e 7%, sugestivas de outras doenças auditivas. Os sintomas auditivos mais freqüentes foram: dificuldade de compreensão da fala, 12%; hipoacusia, 7%; tinitus, 13%; sensação de plenitude auricular, 4%; otorreia, 6%; tonturas, 12%. Conclusão: Concluímos que em metalúrgica há ocorrência de alterações auditivas sugestivas de Perda Auditiva Induzida pelo Ruído e queixa de sintomas otorrinolaringológicos significativos.Introduction: Noise induced hearing loss is a cumulative pathological disease that increases over the years with exposure to noise associated with the work atmosphere. Objectives: To identify and quantify the occurrence of hearing loss suggestive of Noise Induced Hearing Loss (NIHL and the principle otolaryngological symptoms referred to by workers. Study design: prospective clinical randomized. Material and method: Research was carried out from January to March of 2000 with 187 metallurgical workers in the city of Goiânia, who were evaluated by otolaryngologists by means of a combination of interviews and occupational hearing exams. Results: Occupational hearing tests results were: 21% suggestive of NIHL, 72% normal, and 7% suggestive of

  1. Potentially harmful elements (PHEs) in scalp hair, soil and metallurgical wastes in Mitrovica, Kosovo: the role of oral bioaccessibility and mineralogy in human PHE exposure.

    Science.gov (United States)

    Boisa, N; Bird, G; Brewer, P A; Dean, J R; Entwistle, J A; Kemp, S J; Macklin, M G

    2013-10-01

    Internationally publicized impacts upon human health associated with potentially harmful element (PHE) exposure have been reported amongst internally displaced populations (IDPs) in Mitrovica, Kosovo, following the Kosovan War. Particular concern has surrounded the exposure to Pb indicated by the presence of highly elevated concentrations of Pb in blood and hair samples. This study utilizes a physiologically-based in-vitro extraction method to assess the bioaccessibility of PHEs in surface soils and metallurgical waste in Mitrovica and assesses the potential daily intake of soil-bound PHEs. Maximum As (210mgkg(-1)), Cd (38mgkg(-1)), Cu (410mgkg(-1)), Pb (18790mgkg(-1)) and Zn (8500mgkg(-1)) concentrations in surface soils (0-10cm) are elevated above guideline values. Samples with high PHE concentrations (e.g. As >1000mgkg(-1); Pb >1500mgkg(-1)) exhibit a wide range of bioaccessibilities (5.40 - 92.20% in the gastric (G) phase and 10.00 - 55.80% in the gastric-intestinal (G-I) phase). Samples associated with lower bioaccessibilities typically contain a number of XRD-identifiable primary and secondary mineral phases, particularly As- and Pb-bearing arsenian pyrite, beudantite, galena and cerrusite. Quantification of the potential human exposure risk associated with the ingestion of soil-associated PHEs indicates that on average, 0.01μg Cd kg(-1) BW d(-1), 0.16μg Cu kg(-1) BW d(--1), 0.12μg As kg(-1) BW d(-1), 7.81μg Pb kg(-1) BW d(-1), and 2.68μg Zn kg(-1) BW d(-1) could be bioaccessible following ingestion of PHE-rich soils in the Mitrovica region, with Pb, and to a lesser extent As, indicating the likely possibility of local populations exceeding the recommended tolerable daily intake. Lead present within surface soils of the area could indeed have contributed to the human Pb burden due to the high bioaccessibility of Pb present within these soils (13.40 - 92.20% in the gastric phase). Data for Pb levels in scalp hair (≤120μgg(-1)) and blood (≥650μgdL(-1

  2. Tetrakis-amido high flux membranes

    Science.gov (United States)

    McCray, S.B.

    1989-10-24

    Composite RO membranes of a microporous polymeric support and a polyamide reaction product of a tetrakis-aminomethyl compound and a polyacylhalide are disclosed, said membranes exhibiting high flux and good chlorine resistance.

  3. 400 Area/Fast Flux Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The 400 Area at Hanford is home primarily to the Fast Flux Test Facility (FFTF), a DOE-owned, formerly operating, 400-megawatt (thermal) liquid-metal (sodium)-cooled...

  4. Pulse power applications of flux compression generators

    International Nuclear Information System (INIS)

    Fowler, C.M.; Caird, R.S.; Erickson, D.J.; Freeman, B.L.

    1981-01-01

    Characteristics are presented for two different types of explosive driven flux compression generators and a megavolt pulse transformer. Status reports are given for rail gun and plasma focus programs for which the generators serve as power sources

  5. Rotating flux compressor for energy conversion

    International Nuclear Information System (INIS)

    Chowdhuri, P.; Linton, T.W.; Phillips, J.A.

    1983-01-01

    The rotating flux compressor (RFC) converts rotational kinetic energy into an electrical output pulse which would have higher energy than the electrical energy initially stored in the compressor. An RFC has been designed in which wedge-shaped rotor blades pass through the air gaps between successive turns of a solenoid, the stator. Magnetic flux is generated by pulsing the stator solenoids when the inductance is a maximum, i.e., when the flux fills the stator-solenoid volume. Connecting the solenoid across a load conserves the flux which is compressed within the small volume surrounding the stator periphery when the rotor blades cut into the free space between the stator plates, creating a minimum-inductance condition. The unique features of this design are: (1) no electrical connections (brushes) to the rotor; (2) no conventional windings; and (3) no maintenance. The device has been tested up to 5000 rpm of rotor speed

  6. Modelling drug flux through microporated skin.

    Science.gov (United States)

    Rzhevskiy, Alexey S; Guy, Richard H; Anissimov, Yuri G

    2016-11-10

    A simple mathematical equation has been developed to predict drug flux through microporated skin. The theoretical model is based on an approach applied previously to water evaporation through leaf stomata. Pore density, pore radius and drug molecular weight are key model parameters. The predictions of the model were compared with results derived from a simple, intuitive method using porated area alone to estimate the flux enhancement. It is shown that the new approach predicts significantly higher fluxes than the intuitive analysis, with transport being proportional to the total pore perimeter rather than area as intuitively anticipated. Predicted fluxes were in good general agreement with experimental data on drug delivery from the literature, and were quantitatively closer to the measured values than those derived from the intuitive, area-based approach. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Flux Tube Dynamics in the Dual Superconductor

    International Nuclear Information System (INIS)

    Lampert, M.; Svetitsky, B.

    1999-01-01

    We have studied plasma oscillations in a flux tube created in a dual superconductor. The theory contains an Abelian gauge field coupled magnetically to a Higgs field that confines electric charge via the dual Meissner effect. Starting from a static flux tube configuration, with electric charges at either end, we release a fluid of electric charges in the system that accelerate and screen the electric field. The weakening of the electric field allows the flux tube to collapse, and the inertia of the charges forces it open again. We investigate both Type I and Type II superconductors, with plasma frequencies both above and below the threshold for radiation into the Higgs vacuum. (The parameters appropriate to QCD are in the Type II regime; the plasma frequency depends on the mass taken for the fluid constituents.) The coupling of the plasma oscillations to the Higgs field making up the flux tube is the main new feature in our work

  8. CO2 fluxes near a forest edge

    DEFF Research Database (Denmark)

    Sogachev, Andrey; Leclerc, Monique Y.; Zhang, Gensheng

    2008-01-01

    the concentration and flux fields against those of a uniform forested surface. We use an atmospheric boundary layer two-equation closure model that accounts for the flow dynamics and vertical divergence of CO2 sources/sinks within a plant canopy. This paper characterizes the spatial variation of CO2 fluxes...... as a function of both sources/sinks distribution and the vertical structure of the canopy. Results suggest that the ground source plays a major role in the formation of wave-like vertical CO2 flux behavior downwind of a forest edge, despite the fact that the contribution of foliage sources/sinks changes...... monotonously. Such a variation is caused by scalar advection in the trunk space and reveals itself as a decrease or increase in vertical fluxes over the forest relative to carbon dioxide exchange of the underlying forest. The effect was more pronounced in model forests where the leaf area is concentrated...

  9. Magnetic flux generator for balanced membrane loudspeaker

    DEFF Research Database (Denmark)

    Rehder, Jörg; Rombach, Pirmin; Hansen, Ole

    2002-01-01

    This paper reports the development of a magnetic flux generator with an application in a hearing aid loudspeaker produced in microsystem technology (MST). The technology plans for two different designs for the magnetic flux generator utilizing a softmagnetic substrate or electroplated NiCoFe as c......CoFe as core material are presented and the production and characterization of four different mono- and double-layer planar coil types are reported....

  10. Stochastic flux analysis of chemical reaction networks.

    Science.gov (United States)

    Kahramanoğulları, Ozan; Lynch, James F

    2013-12-07

    Chemical reaction networks provide an abstraction scheme for a broad range of models in biology and ecology. The two common means for simulating these networks are the deterministic and the stochastic approaches. The traditional deterministic approach, based on differential equations, enjoys a rich set of analysis techniques, including a treatment of reaction fluxes. However, the discrete stochastic simulations, which provide advantages in some cases, lack a quantitative treatment of network fluxes. We describe a method for flux analysis of chemical reaction networks, where flux is given by the flow of species between reactions in stochastic simulations of the network. Extending discrete event simulation algorithms, our method constructs several data structures, and thereby reveals a variety of statistics about resource creation and consumption during the simulation. We use these structures to quantify the causal interdependence and relative importance of the reactions at arbitrary time intervals with respect to the network fluxes. This allows us to construct reduced networks that have the same flux-behavior, and compare these networks, also with respect to their time series. We demonstrate our approach on an extended example based on a published ODE model of the same network, that is, Rho GTP-binding proteins, and on other models from biology and ecology. We provide a fully stochastic treatment of flux analysis. As in deterministic analysis, our method delivers the network behavior in terms of species transformations. Moreover, our stochastic analysis can be applied, not only at steady state, but at arbitrary time intervals, and used to identify the flow of specific species between specific reactions. Our cases study of Rho GTP-binding proteins reveals the role played by the cyclic reverse fluxes in tuning the behavior of this network.

  11. Determination flux in the Reactor JEN-1

    International Nuclear Information System (INIS)

    Manas Diaz, L.; Montes Ponce de leon, J.

    1960-01-01

    This report summarized several irradiations that have been made to determine the neutron flux distributions in the core of the JEN-1 reactor. Gold foils of 380 μ gr and Mn-Ni (12% de Ni) of 30 mg have been employed. the epithermal flux has been determined by mean of the Cd radio. The resonance integral values given by Macklin and Pomerance have been used. (Author) 9 refs

  12. Flux at a point in MCNP

    International Nuclear Information System (INIS)

    Cashwell, E.D.; Schrandt, R.G.

    1980-01-01

    The current state of the art of calculating flux at a point with MCNP is discussed. Various techniques are touched upon, but the main emphasis is on the fast improved version of the once-more-collided flux estimator, which has been modified to treat neutrons thermalized by the free gas model. The method is tested on several problems on interest and the results are presented

  13. Controlling fluxes for microbial metabolic engineering

    OpenAIRE

    Sachdeva, Gairik

    2014-01-01

    This thesis presents novel synthetic biology tools and design principles usable for microbial metabolic engineering. Controlling metabolic fluxes is essential for biological manufacturing of fuels, materials, and high value chemicals. Insulating the flow of metabolites is a successful natural strategy for metabolic flux regulation. Recently, approaches using scaffolds, both in vitro and in vivo, to spatially co-localize enzymes have reported significant gains in product yields. RNA is suitabl...

  14. Mold Flux Crystallization and Mold Thermal Behavior

    Science.gov (United States)

    Peterson, Elizabeth Irene

    Mold flux plays a small but critical role in the continuous casting of steel. The carbon-coated powder is added at the top of the water-cooled copper mold, over time it melts and infiltrates the gap between the copper mold and the solidifying steel strand. Mold powders serve five primary functions: (1) chemical insulation, (2) thermal insulation, (3) lubrication between the steel strand and mold, (4) absorption of inclusions, and (5) promotion of even heat flux. All five functions are critical to slab casting, but surface defect prevention is primarily controlled through even heat flux. Glassy fluxes have high heat transfer and result in a thicker steel shell. Steels with large volumetric shrinkage on cooling must have a crystalline flux to reduce the radiative heat transfer and avoid the formation of cracks in the shell. Crystallinity plays a critical role in steel shell formation, therefore it is important to study the thermal conditions that promote each phase and its morphology. Laboratory tests were performed to generate continuous cooling transformation (CCT) and time-temperature-transformation (TTT) diagrams. Continuous cooling transformation tests were performed in an instrumented eight cell step chill mold. Results showed that cuspidine was the only phase formed in conventional fluxes and all observed structures were dendritic. An isothermal tin bath quench method was also developed to isothermally age glassy samples. Isothermal tests yielded different microstructures and different phases than those observed by continuous cooling. Comparison of aged tests with industrial flux films indicates similar faceted structures along the mold wall, suggesting that mold flux first solidifies as a glass along the mold wall, but the elevated temperature devitrifies the glassy structure forming crystals that cannot form by continuous cooling.

  15. Bidirectional solar wind electron heat flux events

    International Nuclear Information System (INIS)

    Gosling, J.T.; Baker, D.N.; Bame, S.J.; Feldman, W.C.; Zwickl, R.D.; Smith, E.J.

    1987-01-01

    Normally the approx. >80-eV electrons which carry the solar wind electron heat flux are collimated along the interplanetary magnetic field (IMF) in the direction pointing outward away from the sun. Occasionally, however, collimated fluxes of approx. >80-eV electrons are observed traveling both parallel and antiparallel to the IMF. Here we present the results of a survey of such bidirectional electron heat flux events as observed with the plasma and magnetic field experiments aboard ISEE 3 at times when the spacecraft was not magnetically connected to the earth's bow shock. The onset of a bidirectional electron heat flux at ISEE 3 usually signals spacecraft entry into a distinct solar wind plasma and field entity, most often characterized by anomalously low proton and electron temperatures, a strong, smoothly varying magnetic field, a low plasma beta, and a high total pressure. Significant field rotations often occur at the beginning and/or end of bidirectional heat flux events, and, at times, the large field rotations characteristic of ''magnetic clouds'' are present. Approximately half of all bidirectional heat flux events are associated with and follow interplanetary shocks, while the other events have no obvious shock associations

  16. Metallurgical Laboratory and Components Testing

    Data.gov (United States)

    Federal Laboratory Consortium — In the field of metallurgy, TTC is equipped to run laboratory tests on track and rolling stock components and materials. The testing lab contains scanning-electron,...

  17. Turbulent fluxes by "Conditional Eddy Sampling"

    Science.gov (United States)

    Siebicke, Lukas

    2015-04-01

    Turbulent flux measurements are key to understanding ecosystem scale energy and matter exchange, including atmospheric trace gases. While the eddy covariance approach has evolved as an invaluable tool to quantify fluxes of e.g. CO2 and H2O continuously, it is limited to very few atmospheric constituents for which sufficiently fast analyzers exist. High instrument cost, lack of field-readiness or high power consumption (e.g. many recent laser-based systems requiring strong vacuum) further impair application to other tracers. Alternative micrometeorological approaches such as conditional sampling might overcome major limitations. Although the idea of eddy accumulation has already been proposed by Desjardin in 1972 (Desjardin, 1977), at the time it could not be realized for trace gases. Major simplifications by Businger and Oncley (1990) lead to it's widespread application as 'Relaxed Eddy Accumulation' (REA). However, those simplifications (flux gradient similarity with constant flow rate sampling irrespective of vertical wind velocity and introduction of a deadband around zero vertical wind velocity) have degraded eddy accumulation to an indirect method, introducing issues of scalar similarity and often lack of suitable scalar flux proxies. Here we present a real implementation of a true eddy accumulation system according to the original concept. Key to our approach, which we call 'Conditional Eddy Sampling' (CES), is the mathematical formulation of conditional sampling in it's true form of a direct eddy flux measurement paired with a performant real implementation. Dedicated hardware controlled by near-real-time software allows full signal recovery at 10 or 20 Hz, very fast valve switching, instant vertical wind velocity proportional flow rate control, virtually no deadband and adaptive power management. Demonstrated system performance often exceeds requirements for flux measurements by orders of magnitude. The system's exceptionally low power consumption is ideal

  18. A finite element calculation of flux pumping

    Science.gov (United States)

    Campbell, A. M.

    2017-12-01

    A flux pump is not only a fascinating example of the power of Faraday’s concept of flux lines, but also an attractive way of powering superconducting magnets without large electronic power supplies. However it is not possible to do this in HTS by driving a part of the superconductor normal, it must be done by exceeding the local critical density. The picture of a magnet pulling flux lines through the material is attractive, but as there is no direct contact between flux lines in the magnet and vortices, unless the gap between them is comparable to the coherence length, the process must be explicable in terms of classical electromagnetism and a nonlinear V-I characteristic. In this paper a simple 2D model of a flux pump is used to determine the pumping behaviour from first principles and the geometry. It is analysed with finite element software using the A formulation and FlexPDE. A thin magnet is passed across one or more superconductors connected to a load, which is a large rectangular loop. This means that the self and mutual inductances can be calculated explicitly. A wide strip, a narrow strip and two conductors are considered. Also an analytic circuit model is analysed. In all cases the critical state model is used, so the flux flow resistivity and dynamic resistivity are not directly involved, although an effective resistivity appears when J c is exceeded. In most of the cases considered here is a large gap between the theory and the experiments. In particular the maximum flux transferred to the load area is always less than the flux of the magnet. Also once the threshold needed for pumping is exceeded the flux in the load saturates within a few cycles. However the analytic circuit model allows a simple modification to allow for the large reduction in I c when the magnet is over a conductor. This not only changes the direction of the pumped flux but leads to much more effective pumping.

  19. Estimating surface fluxes using eddy covariance and numerical ogive optimization

    DEFF Research Database (Denmark)

    Sievers, J.; Papakyriakou, T.; Larsen, Søren Ejling

    2015-01-01

    Estimating representative surface fluxes using eddy covariance leads invariably to questions concerning inclusion or exclusion of low-frequency flux contributions. For studies where fluxes are linked to local physical parameters and up-scaled through numerical modelling efforts, low......-frequency contributions interfere with our ability to isolate local biogeochemical processes of interest, as represented by turbulent fluxes. No method currently exists to disentangle low-frequency contributions on flux estimates. Here, we present a novel comprehensive numerical scheme to identify and separate out low......-frequency contributions to vertical turbulent surface fluxes. For high flux rates (|Sensible heat flux| > 40Wm-2, |latent heat flux|> 20Wm-2 and |CO2 flux|> 100 mmolm-2 d-1/ we found that the average relative difference between fluxes estimated by ogive optimization and the conventional method was low (5–20 %) suggesting...

  20. A model for heliospheric flux-ropes

    Science.gov (United States)

    Nieves-Chinchilla, T.; Linton, M.; Vourlidas, A.; Hidalgo, M. A. U.

    2017-12-01

    This work is presents an analytical flux-rope model, which explores different levels of complexity starting from a circular-cylindrical geometry. The framework of this series of models was established by Nieves-Chinchilla et al. 2016 with the circular-cylindrical analytical flux rope model. The model attempts to describe the magnetic flux rope topology with distorted cross-section as a possible consequence of the interaction with the solar wind. In this model, the flux rope is completely described in a non-orthogonal geometry. The Maxwell equations are solved using tensor calculus consistent with the geometry chosen, invariance along the axial direction, and with the assumption of no radial current density. The model is generalized in terms of the radial and azimuthal dependence of the poloidal current density component and axial current density component. The misalignment between current density and magnetic field is studied in detail for several example profiles of the axial and poloidal current density components. This theoretical analysis provides a map of the force distribution inside of the flux-rope. For reconstruction of the heliospheric flux-ropes, the circular-cylindrical reconstruction technique has been adapted to the new geometry and applied to in situ ICMEs with a flux-rope entrained and tested with cases with clear in situ signatures of distortion. The model adds a piece in the puzzle of the physical-analytical representation of these magnetic structures that should be evaluated with the ultimate goal of reconciling in-situ reconstructions with imaging 3D remote sensing CME reconstructions. Other effects such as axial curvature and/or expansion could be incorporated in the future to fully understand the magnetic structure.

  1. Production flux of sea spray aerosol

    Energy Technology Data Exchange (ETDEWEB)

    de Leeuw, G.; Lewis, E.; Andreas, E. L.; Anguelova, M. D.; Fairall, C. W.; O’Dowd, C.; Schulz, M.; Schwartz, S. E.

    2011-05-07

    Knowledge of the size- and composition-dependent production flux of primary sea spray aerosol (SSA) particles and its dependence on environmental variables is required for modeling cloud microphysical properties and aerosol radiative influences, interpreting measurements of particulate matter in coastal areas and its relation to air quality, and evaluating rates of uptake and reactions of gases in sea spray drops. This review examines recent research pertinent to SSA production flux, which deals mainly with production of particles with r{sub 80} (equilibrium radius at 80% relative humidity) less than 1 {micro}m and as small as 0.01 {micro}m. Production of sea spray particles and its dependence on controlling factors has been investigated in laboratory studies that have examined the dependences on water temperature, salinity, and the presence of organics and in field measurements with micrometeorological techniques that use newly developed fast optical particle sizers. Extensive measurements show that water-insoluble organic matter contributes substantially to the composition of SSA particles with r{sub 80} < 0.25 {micro}m and, in locations with high biological activity, can be the dominant constituent. Order-of-magnitude variation remains in estimates of the size-dependent production flux per white area, the quantity central to formulations of the production flux based on the whitecap method. This variation indicates that the production flux may depend on quantities such as the volume flux of air bubbles to the surface that are not accounted for in current models. Variation in estimates of the whitecap fraction as a function of wind speed contributes additional, comparable uncertainty to production flux estimates.

  2. Derivative processes for modelling metabolic fluxes

    Science.gov (United States)

    Žurauskienė, Justina; Kirk, Paul; Thorne, Thomas; Pinney, John; Stumpf, Michael

    2014-01-01

    Motivation: One of the challenging questions in modelling biological systems is to characterize the functional forms of the processes that control and orchestrate molecular and cellular phenotypes. Recently proposed methods for the analysis of metabolic pathways, for example, dynamic flux estimation, can only provide estimates of the underlying fluxes at discrete time points but fail to capture the complete temporal behaviour. To describe the dynamic variation of the fluxes, we additionally require the assumption of specific functional forms that can capture the temporal behaviour. However, it also remains unclear how to address the noise which might be present in experimentally measured metabolite concentrations. Results: Here we propose a novel approach to modelling metabolic fluxes: derivative processes that are based on multiple-output Gaussian processes (MGPs), which are a flexible non-parametric Bayesian modelling technique. The main advantages that follow from MGPs approach include the natural non-parametric representation of the fluxes and ability to impute the missing data in between the measurements. Our derivative process approach allows us to model changes in metabolite derivative concentrations and to characterize the temporal behaviour of metabolic fluxes from time course data. Because the derivative of a Gaussian process is itself a Gaussian process, we can readily link metabolite concentrations to metabolic fluxes and vice versa. Here we discuss how this can be implemented in an MGP framework and illustrate its application to simple models, including nitrogen metabolism in Escherichia coli. Availability and implementation: R code is available from the authors upon request. Contact: j.norkunaite@imperial.ac.uk; m.stumpf@imperial.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24578401

  3. Measuring Convective Mass Fluxes Over Tropical Oceans

    Science.gov (United States)

    Raymond, David

    2017-04-01

    Deep convection forms the upward branches of all large-scale circulations in the tropics. Understanding what controls the form and intensity of vertical convective mass fluxes is thus key to understanding tropical weather and climate. These mass fluxes and the corresponding conditions supporting them have been measured by recent field programs (TPARC/TCS08, PREDICT, HS3) in tropical disturbances considered to be possible tropical storm precursors. In reality, this encompasses most strong convection in the tropics. The measurements were made with arrays of dropsondes deployed from high altitude. In some cases Doppler radar provided additional measurements. The results are in some ways surprising. Three factors were found to control the mass flux profiles, the strength of total surface heat fluxes, the column-integrated relative humidity, and the low to mid-tropospheric moist convective instability. The first two act as expected, with larger heat fluxes and higher humidity producing more precipitation and stronger lower tropospheric mass fluxes. However, unexpectedly, smaller (but still positive) convective instability produces more precipitation as well as more bottom-heavy convective mass flux profiles. Furthermore, the column humidity and the convective instability are anti-correlated, at least in the presence of strong convection. On spatial scales of a few hundred kilometers, the virtual temperature structure appears to be in dynamic balance with the pattern of potential vorticity. Since potential vorticity typically evolves on longer time scales than convection, the potential vorticity pattern plus the surface heat fluxes then become the immediate controlling factors for average convective properties. All measurements so far have taken place in regions with relatively flat sea surface temperature (SST) distributions. We are currently seeking funding for a measurement program in the tropical east Pacific, a region that exhibits strong SST gradients and

  4. Turbulent Fogwater Flux Measurements Above A Forest

    Science.gov (United States)

    Burkard, R.; Eugster, W.; Buetzberger, P.; Siegwolf, R.

    Many forest ecosystems in elevated regions receive a significant fraction of their wa- ter and nutrient input by the interception of fogwater. Recently, several studies have demonstrated the suitability of the eddy covariance technique for the direct measure- ment of turbulent liquid water fluxes. Since summer 2001 a fogwater flux measure- ment equipment has been running at a montane site above a mixed forest canopy in Switzerland. The measurement equipment consists of a high-speed size-resolving droplet spectrometer and a three-dimensional ultrasonic anemometer. The chemical composition of the fogwater was determined from samples collected with a modified Caltech active strand collector. The deposition of nutrients by fog (occult deposition) was calculated by multiplying the total fogwater flux (total of measured turbulent and calculated gravitational flux) during each fog event by the ionic concentrations found in the collected fogwater. Several uncertainties still exist as far as the accuracy of the measurements is con- cerned. Although there is no universal statistical approach for testing the quality of the liquid water flux data directly, results of independent data quality checks of the two time series involved in the flux computation and accordingly the two instruments (ultrasonic anemometer and the droplet spectrometer) are presented. Within the measurement period, over 80 fog events with a duration longer than 2.5 hours were analyzed. An enormous physical and chemical heterogeneity among these fog events was found. We assume that some of this heterogeneity is due to the fact that fog or cloud droplets are not conservative entities: the turbulent flux of fog droplets, which can be referred to as the liquid water flux, is affected by phase change processes and coagulation. The measured coexistence of upward fluxes of small fog droplets (di- ameter < 10 µm) with the downward transport of larger droplets indicates the influ- ence of such processes. With the

  5. Neutron flux measurement utilizing Campbell technique

    International Nuclear Information System (INIS)

    Kropik, M.

    2000-01-01

    Application of the Campbell technique for the neutron flux measurement is described in the contribution. This technique utilizes the AC component (noise) of a neutron chamber signal rather than a usually used DC component. The Campbell theorem, originally discovered to describe noise behaviour of valves, explains that the root mean square of the AC component of the chamber signal is proportional to the neutron flux (reactor power). The quadratic dependence of the reactor power on the root mean square value usually permits to accomplish the whole current power range of the neutron flux measurement by only one channel. Further advantage of the Campbell technique is that large pulses of the response to neutrons are favoured over small pulses of the response to gamma rays in the ratio of their mean square charge transfer and thus, the Campbell technique provides an excellent gamma rays discrimination in the current operational range of a neutron chamber. The neutron flux measurement channel using state of the art components was designed and put into operation. Its linearity, accuracy, dynamic range, time response and gamma discrimination were tested on the VR-1 nuclear reactor in Prague, and behaviour under high neutron flux (accident conditions) was tested on the TRIGA nuclear reactor in Vienna. (author)

  6. CO2 flux from Javanese mud volcanism

    Science.gov (United States)

    Burton, M. R.; Arzilli, F.; Chiarugi, A.; Marliyani, G. I.; Anggara, F.; Harijoko, A.

    2017-01-01

    Abstract Studying the quantity and origin of CO2 emitted by back‐arc mud volcanoes is critical to correctly model fluid‐dynamical, thermodynamical, and geochemical processes that drive their activity and to constrain their role in the global geochemical carbon cycle. We measured CO2 fluxes of the Bledug Kuwu mud volcano on the Kendeng Fold and thrust belt in the back arc of Central Java, Indonesia, using scanning remote sensing absorption spectroscopy. The data show that the expelled gas is rich in CO2 with a volume fraction of at least 16 vol %. A lower limit CO2 flux of 1.4 kg s−1 (117 t d−1) was determined, in line with the CO2 flux from the Javanese mud volcano LUSI. Extrapolating these results to mud volcanism from the whole of Java suggests an order of magnitude total CO2 flux of 3 kt d−1, comparable with the expected back‐arc efflux of magmatic CO2. After discussing geochemical, geological, and geophysical evidence we conclude that the source of CO2 observed at Bledug Kuwu is likely a mixture of thermogenic, biogenic, and magmatic CO2, with faulting controlling potential pathways for magmatic fluids. This study further demonstrates the merit of man‐portable active remote sensing instruments for probing natural gas releases, enabling bottom‐up quantification of CO2 fluxes. PMID:28944134

  7. CO2 flux from Javanese mud volcanism

    Science.gov (United States)

    Queißer, M.; Burton, M. R.; Arzilli, F.; Chiarugi, A.; Marliyani, G. I.; Anggara, F.; Harijoko, A.

    2017-06-01

    Studying the quantity and origin of CO2 emitted by back-arc mud volcanoes is critical to correctly model fluid-dynamical, thermodynamical, and geochemical processes that drive their activity and to constrain their role in the global geochemical carbon cycle. We measured CO2 fluxes of the Bledug Kuwu mud volcano on the Kendeng Fold and thrust belt in the back arc of Central Java, Indonesia, using scanning remote sensing absorption spectroscopy. The data show that the expelled gas is rich in CO2 with a volume fraction of at least 16 vol %. A lower limit CO2 flux of 1.4 kg s-1 (117 t d-1) was determined, in line with the CO2 flux from the Javanese mud volcano LUSI. Extrapolating these results to mud volcanism from the whole of Java suggests an order of magnitude total CO2 flux of 3 kt d-1, comparable with the expected back-arc efflux of magmatic CO2. After discussing geochemical, geological, and geophysical evidence we conclude that the source of CO2 observed at Bledug Kuwu is likely a mixture of thermogenic, biogenic, and magmatic CO2, with faulting controlling potential pathways for magmatic fluids. This study further demonstrates the merit of man-portable active remote sensing instruments for probing natural gas releases, enabling bottom-up quantification of CO2 fluxes.

  8. Neutron flux enhancement in the NRAD reactor

    International Nuclear Information System (INIS)

    Weeks, A.A.; Heidel, C.C.; Imel, G.R.

    1988-01-01

    In 1987 a series of experiments were conducted at the NRAD reactor facility at Argonne National Laboratory - West (ANL-W) to investigate the possibility of increasing the thermal neutron content at the end of the reactor's east beam tube through the use of hydrogenous flux traps. It was desired to increase the thermal flux for a series of experiments to be performed in the east radiography cell, in which the enhanced flux was required in a relatively small volume. Hence, it was feasible to attempt to focus the cross section of the beam to a smaller area. Two flux traps were constructed from unborated polypropylene and tested to determine their effectiveness. Both traps were open to the entire cross-sectional area of the neutron beam (as it emerges from the wall and enters the beam room). The sides then converged such that at the end of the trap the beam would be 'focused' to a greater intensity. The differences in the two flux traps were primarily in length, and hence angle to the beam as the inlet and outlet cross-sectional areas were held constant. It should be noted that merely placing a slab of polypropylene in the beam will not yield significant multiplication as neutrons are primarily scattered away

  9. The Flux Database Concerted Action (invited paper)

    International Nuclear Information System (INIS)

    Mitchell, N.G.; Donnelly, C.E.

    2000-01-01

    The background to the IUR action on the development of a flux database for radionuclide transfer in soil-plant systems is summarised. The action is discussed in terms of the objectives, the deliverables and the progress achieved by the flux database working group. The paper describes the background to the current initiative, outlines specific features of the database and supporting documentation, and presents findings from the working group's activities. The aim of the IUR flux database working group is to bring together researchers to collate data from current experimental studies investigating aspects of radionuclide transfer in soil-plant systems. The database will incorporate parameters describing the time-dependent transfer of radionuclides between soil, plant and animal compartments. Work under the EC Concerted Action considers soil-plant interactions. This initiative has become known as the radionuclide flux database. It is emphasised that the word flux is used in this case simply to indicate the flow of radionuclides between compartments in time. (author)

  10. About Merging Threshold and Critical Flux Concepts into a Single One: The Boundary Flux

    Directory of Open Access Journals (Sweden)

    Marco Stoller

    2014-01-01

    Full Text Available In the last decades much effort was put in understanding fouling phenomena on membranes. One successful approach to describe fouling issues on membranes is the critical flux theory. The possibility to measure a maximum value of the permeate flux for a given system without incurring in fouling issues was a breakthrough in membrane process design. However, in many cases critical fluxes were found to be very low, lower than the economic feasibility of the process. The knowledge of the critical flux value must be therefore considered as a good starting point for process design. In the last years, a new concept was introduced, the threshold flux, which defines the maximum permeate flow rate characterized by a low constant fouling rate regime. This concept, more than the critical flux, is a new practical tool for membrane process designers. In this paper a brief review on critical and threshold flux will be reported and analyzed. And since the concepts share many common aspects, merged into a new concept, called the boundary flux, the validation will occur by the analysis of previously collected data by the authors, during the treatment of olive vegetation wastewater by ultrafiltration and nanofiltration membranes.

  11. Eddy covariance based methane flux in Sundarbans mangroves, India

    Indian Academy of Sciences (India)

    Eddy covariance based methane flux in Sundarbans mangroves, India ... Eddy covariance; mangrove forests; methane flux; Sundarbans. ... In order to quantify the methane flux in mangroves, an eddy covariance flux tower was recently erected in the largest unpolluted and undisturbed mangrove ecosystem in Sundarbans ...

  12. Fluxes of nitrogen in Chaliyar River Estuary, India

    Digital Repository Service at National Institute of Oceanography (India)

    Xavier, J.K.; Joseph, T.; Paimpillii, J.S.

    the instantaneous nutrient fluxes. The net fluxes are the algebraic sums of the instantaneous fluxes over the tidal cycle sampled divided by the number of observations in the tidal cycle. Net fluxes for all the stations with its cross sectional averages for each...

  13. Generating energy dependent neutron flux maps for effective ...

    African Journals Online (AJOL)

    For activation analysis and irradiation scheme of miniature neutron source reactor, designers or engineers usually require information on thermal neutron flux levels and other energy group flux levels (such as fast, resonance and epithermal). A methodology for readily generating such flux maps and flux profiles for any ...

  14. Non-geometric fluxes and mixed-symmetry potentials

    NARCIS (Netherlands)

    Bergshoeff, E.A.; Penas, V.A.; Riccioni, F.; Risoli, S.

    2015-01-01

    We discuss the relation between generalised fluxes and mixed-symmetry potentials. We refer to the fluxes that cannot be described even locally in the framework of supergravity as ‘non-geometric’. We first consider the NS fluxes, and point out that the non-geometric R flux is dual to a mixed-symmetry

  15. Neutron-diffraction investigations of flux-lines in superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Forgan, E.M. [Birmingham Univ. (United Kingdom); Lee, S.L. [Saint Andrews Univ. (United Kingdom); McKPaul, D. [Warwick Univ., Coventry (United Kingdom); Mook, H.A. [Oak Ridge National Lab., TN (United States); Cubitt, R. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    SANS has proved an extremely useful tool for investigating flux-line structures within the bulk of superconductors. With high-T{sub c} materials, the scattered intensities are weak, but careful measurements are giving important new information about flux lattices, flux pinning and flux-lattice melting. (author). 10 refs.

  16. Standardized Automated CO2/H2O Flux Systems for Individual Research Groups and Flux Networks

    Science.gov (United States)

    Burba, George; Begashaw, Israel; Fratini, Gerardo; Griessbaum, Frank; Kathilankal, James; Xu, Liukang; Franz, Daniela; Joseph, Everette; Larmanou, Eric; Miller, Scott; Papale, Dario; Sabbatini, Simone; Sachs, Torsten; Sakai, Ricardo; McDermitt, Dayle

    2017-04-01

    In recent years, spatial and temporal flux data coverage improved significantly, and on multiple scales, from a single station to continental networks, due to standardization, automation, and management of data collection, and better handling of the extensive amounts of generated data. With more stations and networks, larger data flows from each station, and smaller operating budgets, modern tools are required to effectively and efficiently handle the entire process. Such tools are needed to maximize time dedicated to authoring publications and answering research questions, and to minimize time and expenses spent on data acquisition, processing, and quality control. Thus, these tools should produce standardized verifiable datasets and provide a way to cross-share the standardized data with external collaborators to leverage available funding, promote data analyses and publications. LI-COR gas analyzers are widely used in past and present flux networks such as AmeriFlux, ICOS, AsiaFlux, OzFlux, NEON, CarboEurope, and FluxNet-Canada, etc. These analyzers have gone through several major improvements over the past 30 years. However, in 2016, a three-prong development was completed to create an automated flux system which can accept multiple sonic anemometer and datalogger models, compute final and complete fluxes on-site, merge final fluxes with supporting weather soil and radiation data, monitor station outputs and send automated alerts to researchers, and allow secure sharing and cross-sharing of the station and data access. Two types of these research systems were developed: open-path (LI-7500RS) and enclosed-path (LI-7200RS). Key developments included: • Improvement of gas analyzer performance • Standardization and automation of final flux calculations onsite, and in real-time • Seamless integration with latest site management and data sharing tools In terms of the gas analyzer performance, the RS analyzers are based on established LI-7500/A and LI-7200

  17. Influence of metallurgical phase transformation on crack propagation of 15-5PH stainless steel and 16MND5 low carbon steel

    International Nuclear Information System (INIS)

    Liu, J.

    2012-01-01

    This study focuses on the effects of phase transformations on crack propagation. We want to understand the changes of fracture toughness during welding. In this work, fracture toughness is expressed by J-integral. There are many experimental methods to obtain the critical toughness JIC but they are impractical for our investigation during phase transformation. That is the reason why we have proposed a method coupling mechanical tests, digital image correlation and finite element simulation. The fracture tests are implemented on pre-cracked single edge notched plate sample which is easy for machining and heat conduct during phase transformation. The tests are conducted at different temperatures until rupture. Digital image correlation gives us the displacement information on every sample. Each test is then simulated by finite element where the fracture toughness is evaluated by the method G-Theta at the crack propagation starting moment found by potential drop method and digital image correlation technical. Two materials have been studied, 15Cr-5Ni martensitic precipitation hardening stainless steel and 16MND5 ferritic low carbon steel. For these two materials, different test temperatures were chosen before, during and after phase transformation for testing and failure characterization of the mechanical behavior. Investigation result shows that metallurgical phase transformation has an influence on fracture toughness and further crack propagation. For 15-5PH, the result of J1C shows that the as received 15-5PH has higher fracture toughness than the one at 200 C. The toughness is also higher than the original material after one cycle heat treatment probably due to some residual austenite. Meanwhile, pure austenite 15-5PH at 200 C has higher fracture toughness than pure martensitic 15-5PH at 200 C. For 16MND5, the result also proves that the phase transformation affects fracture toughness. The as received material has bigger J1C than the situation where it was heated

  18. Prevalencia de los factores de riesgo cardiovascular en trabajadores de una planta metalúrgica Prevalence of cardiovascular risk factors among workers in a metallurgical factory

    Directory of Open Access Journals (Sweden)

    Juan Antonio Alonso Díaz

    2012-09-01

    and sex obtained by applying a standardized protocol performed during periodic medical examinations at work to a group of 358 workers, 330 men and 28 women, in a metallurgical industry in Cantabria with a mean age of 42 ± 8 years. Result: Dyslipidemia is the most important risk factor for its high prevalence (52% in a relatively young population, followed by smoking (35% and obesity (22%. These three risk factors are also those with a higher attributable risk in the incidence of ischemic heart disease in the general Spanish population, so they should be subject to intervention. Conclusions: Occupational Health Service companies have a privileged position due to their accessibility to evaluate and treat cardiovascular risk factors present in the working population they serve.

  19. Characterization of ion fluxes and heat fluxes for PMI relevant conditions on Proto-MPEX

    Science.gov (United States)

    Beers, Clyde; Shaw, Guinevere; Biewer, Theodore; Rapp, Juergen

    2016-10-01

    Plasma characterization, in particular, particle flux and electron and ion temperature distributions nearest to an exposed target, are critical to quantifying Plasma Surface Interaction (PSI). In the Proto-Material Plasma Exposure eXperiment (Proto-MPEX), the ion fluxes and heat fluxes are derived from double Langmuir Probes (DLP) and Thomson Scattering in front of the target assuming Bohm conditions at the sheath entrance. Power fluxes derived from ne and Te measurements are compared to heat fluxes measured with IR thermography. The comparison will allow conclusions on the sheath heat transmission coefficient to be made experimentally. Different experimental conditions (low and high density plasmas (0.5 - 6 x 1019 m-3) with different magnetic configuration are compared. This work was supported by the U.S. D.O.E. contract DE-AC05-00OR22725.

  20. Automated flux chamber for investigating gas flux at water-air interfaces.

    Science.gov (United States)

    Duc, Nguyen Thanh; Silverstein, Samuel; Lundmark, Lars; Reyier, Henrik; Crill, Patrick; Bastviken, David

    2013-01-15

    Aquatic ecosystems are major sources of greenhouse gases (GHG). Representative measurements of GHG fluxes from aquatic ecosystems to the atmosphere are vital for quantitative understanding of relationships between biogeochemistry and climate. Fluxes occur at high temporal variability at diel or longer scales, which are not captured by traditional short-term deployments (often in the order of 30 min) of floating flux chambers. High temporal frequency measurements are necessary but also extremely labor intensive if manual flux chamber based methods are used. Therefore, we designed an inexpensive and easily mobile automated flux chamber (AFC) for extended deployments. The AFC was designed to measure in situ accumulation of gas in the chamber and also to collect gas samples in an array of sample bottles for subsequent analysis in the laboratory, providing two independent ways of CH(4) concentration measurements. We here present the AFC design and function together with data from initial laboratory tests and from a field deployment.

  1. Freezing E3-brane instantons with fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, M.; Martucci, L. [Dipartimento di Fisica, Universita di Roma Tor Vergata (Italy); I.N.F.N., Sezione di Roma Tor Vergata (Italy); Collinucci, A. [Theory Group, Physics Department, CERN, Geneva (Switzerland); Physique Theorique et Mathematique Universite Libre de Bruxelles (Belgium)

    2012-07-15

    E3-instantons that generate non-perturbative superpotentials in IIB N = 1 compactifications have a much more frequent occurrence than currently believed. Worldvolume fluxes will typically lift the E3-brane geometric moduli and their fermionic superpartners, leaving only the two required universal fermionic zero-modes. We consistently incorporate SL(2,Z) monodromies and world-volume fluxes in the effective theory of the E3-brane fermions and study the resulting zero modes spectrum, highlighting the relation between F-theory and perturbative IIB results. This leads us to a IIB derivation of the index for generation of superpotential terms, which reproduces and generalizes available results. Furthermore, we show how E3 worldvolume fluxes can be explicitly constructed in a one-modulus compactification, such that the instanton has exactly two fermonic zero-modes. This construction is readily applicable to numerous scenarios. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Heat-Flux Gage thermophosphor system

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, K.W.

    1991-08-01

    This document describes the installation, hardware requirements, and application of the Heat-Flux Gage (Version 1.0) software package developed by the Oak Ridge National Laboratory, Applied Technology Division. The developed software is a single component of a thermographic phosphor-based temperature and heat-flux measurement system. The heat-flux transducer was developed by EG G Energy Measurements Systems and consists of a 1- by 1-in. polymethylpentene sheet coated on the front and back with a repeating thermographic phosphor pattern. The phosphor chosen for this application is gadolinium oxysulphide doped with terbium. This compound has a sensitive temperature response from 10 to 65.6{degree}C (50--150{degree}F) for the 415- and 490-nm spectral emission lines. 3 refs., 17 figs.

  3. Comic ray flux anisotropies caused by astrospheres

    Science.gov (United States)

    Scherer, K.; Strauss, R. D.; Ferreira, S. E. S.; Fichtner, H.

    2016-09-01

    Huge astrospheres or stellar wind bubbles influence the propagation of cosmic rays at energies up to the TeV range and can act as small-scale sinks decreasing the cosmic ray flux. We model such a sink (in 2D) by a sphere of radius 10 pc embedded within a sphere of a radius of 1 kpc. The cosmic ray flux is calculated by means of backward stochastic differential equations from an observer, which is located at r0, to the outer boundary. It turns out that such small-scale sinks can influence the cosmic ray flux at the observer's location by a few permille (i.e. a few 0.1%), which is in the range of the observations by IceCube, Milagro and other large area telescopes.

  4. From Hubble's NGSL to Absolute Fluxes

    Science.gov (United States)

    Heap, Sara R.; Lindler, Don

    2012-01-01

    Hubble's Next Generation Spectral Library (NGSL) consists of R-l000 spectra of 374 stars of assorted temperature, gravity, and metallicity. Each spectrum covers the wavelength range, 0.18-1.00 microns. The library can be viewed and/or downloaded from the website, http://archive.stsci.edu/prepds/stisngsll. Stars in the NGSL are now being used as absolute flux standards at ground-based observatories. However, the uncertainty in the absolute flux is about 2%, which does not meet the requirements of dark-energy surveys. We are therefore developing an observing procedure that should yield fluxes with uncertainties less than 1 % and will take part in an HST proposal to observe up to 15 stars using this new procedure.

  5. The FLUKA atmospheric neutrino flux calculation

    CERN Document Server

    Battistoni, G.; Montaruli, T.; Sala, P.R.

    2003-01-01

    The 3-dimensional (3-D) calculation of the atmospheric neutrino flux by means of the FLUKA Monte Carlo model is here described in all details, starting from the latest data on primary cosmic ray spectra. The importance of a 3-D calculation and of its consequences have been already debated in a previous paper. Here instead the focus is on the absolute flux. We stress the relevant aspects of the hadronic interaction model of FLUKA in the atmospheric neutrino flux calculation. This model is constructed and maintained so to provide a high degree of accuracy in the description of particle production. The accuracy achieved in the comparison with data from accelerators and cross checked with data on particle production in atmosphere certifies the reliability of shower calculation in atmosphere. The results presented here can be already used for analysis by current experiments on atmospheric neutrinos. However they represent an intermediate step towards a final release, since this calculation does not yet include the...

  6. MHD energy fluxes for late type dwarfs

    Science.gov (United States)

    Rosner, R.; Musielak, Z. E.

    1987-01-01

    The efficiency of MHD wave generation by turbulent motions in stratified stellar atmospheres with embedded uniform magnetic fields is calculated. In contradiction with previous results, it is shown that there is no significant increase in the efficiency of wave generation because of the presence of magnetic fields, at least within the theory's limits of applicability. It is shown that MHD energy fluxes for late-type stars are less than those obtained for acoustic waves in a magnetic-field-free atmosphere, and do not vary enough for a given spectral type in order to explain observed UV and X-ray fluxes. Thus, the results show that MHD energy fluxes obtained if stellar surface magnetic fields are uniform cannot explain the observed stellar coronal emissions.

  7. Color magnetic flux tubes in dense QCD

    International Nuclear Information System (INIS)

    Eto, Minoru; Nitta, Muneto

    2009-01-01

    QCD is expected to be in the color-flavor locking phase in high baryon density, which exhibits color superconductivity. The most fundamental topological objects in the color superconductor are non-Abelian vortices which are topologically stable color magnetic flux tubes. We present numerical solutions of the color magnetic flux tube for diverse choices of the coupling constants based on the Ginzburg-Landau Lagrangian. We also analytically study its asymptotic profiles and find that they are different from the case of usual superconductors. We propose the width of color magnetic fluxes and find that it is larger than naive expectation of the Compton wavelength of the massive gluon when the gluon mass is larger than the scalar mass.

  8. Real Time Flux Control in PM Motors

    Energy Technology Data Exchange (ETDEWEB)

    Otaduy, P.J.

    2005-09-27

    Significant research at the Oak Ridge National Laboratory (ORNL) Power Electronics and Electric Machinery Research Center (PEEMRC) is being conducted to develop ways to increase (1) torque, (2) speed range, and (3) efficiency of traction electric motors for hybrid electric vehicles (HEV) within existing current and voltage bounds. Current is limited by the inverter semiconductor devices' capability and voltage is limited by the stator wire insulation's ability to withstand the maximum back-electromotive force (emf), which occurs at the upper end of the speed range. One research track has been to explore ways to control the path and magnitude of magnetic flux while the motor is operating. The phrase, real time flux control (RTFC), refers to this mode of operation in which system parameters are changed while the motor is operating to improve its performance and speed range. RTFC has potential to meet an increased torque demand by introducing additional flux through the main air gap from an external source. It can augment the speed range by diverting flux away from the main air gap to reduce back-emf at high speeds. Conventional RTFC technology is known as vector control [1]. Vector control decomposes the stator current into two components; one that produces torque and a second that opposes (weakens) the magnetic field generated by the rotor, thereby requiring more overall stator current and reducing the efficiency. Efficiency can be improved by selecting a RTFC method that reduces the back-emf without increasing the average current. This favors methods that use pulse currents or very low currents to achieve field weakening. Foremost in ORNL's effort to develop flux control is the work of J. S. Hsu. Early research [2,3] introduced direct control of air-gap flux in permanent magnet (PM) machines and demonstrated it with a flux-controlled generator. The configuration eliminates the problem of demagnetization because it diverts all the flux from the

  9. Open string wavefunctions in flux compactifications

    CERN Document Server

    Cámara, Pablo G

    2009-01-01

    We consider compactifications of type I supergravity on manifolds with SU(3) structure, in the presence of RR fluxes and magnetized D9-branes, and analyze the generalized Dirac and Laplace-Beltrami operators associated to the D9-brane worldvolume fields. These compactifications are T-dual to standard type IIB toroidal orientifolds with NSNS and RR 3-form fluxes and D3/D7 branes. By using techniques of representation theory and harmonic analysis, the spectrum of open string wavefunctions can be computed for Lie groups and their quotients, as we illustrate with explicit twisted tori examples. We find a correspondence between irreducible unitary representations of the Kaloper-Myers algebra and families of Kaluza-Klein excitations. We perform the computation of 2- and 3-point couplings for matter fields in the above flux compactifications, and compare our results with those of 4d effective supergravity.

  10. U-dual fluxes and Generalized Geometry

    CERN Document Server

    Aldazabal, G; Camara, Pablo G; Grana, M

    2010-01-01

    We perform a systematic analysis of generic string flux compactifications, making use of Exceptional Generalized Geometry (EGG) as an organizing principle. In particular, we establish the precise map between fluxes, gaugings of maximal 4d supergravity and EGG, identifying the complete set of gaugings that admit an uplift to 10d heterotic or type IIB supegravity backgrounds. Our results reveal a rich structure, involving new deformations of 10d supergravity backgrounds, such as the RR counterparts of the $\\beta$-deformation. These new deformations are expected to provide the natural extension of the $\\beta$-deformation to full-fledged F-theory backgrounds. Our analysis also provides some clues on the 10d origin of some of the particularly less understood gaugings of 4d supergravity. Finally, we derive the explicit expression for the effective superpotential in arbitrary N = 1 heterotic or type IIB orientifold compactifications, for all the allowed fluxes.

  11. Hamiltonian boundary term and quasilocal energy flux

    International Nuclear Information System (INIS)

    Chen, C.-M.; Nester, James M.; Tung, R.-S.

    2005-01-01

    The Hamiltonian for a gravitating region includes a boundary term which determines not only the quasilocal values but also, via the boundary variation principle, the boundary conditions. Using our covariant Hamiltonian formalism, we found four particular quasilocal energy-momentum boundary term expressions; each corresponds to a physically distinct and geometrically clear boundary condition. Here, from a consideration of the asymptotics, we show how a fundamental Hamiltonian identity naturally leads to the associated quasilocal energy flux expressions. For electromagnetism one of the four is distinguished: the only one which is gauge invariant; it gives the familiar energy density and Poynting flux. For Einstein's general relativity two different boundary condition choices correspond to quasilocal expressions which asymptotically give the ADM energy, the Trautman-Bondi energy and, moreover, an associated energy flux (both outgoing and incoming). Again there is a distinguished expression: the one which is covariant

  12. Evaluating Energy Flux in Vibrofluidized Granular Bed

    Directory of Open Access Journals (Sweden)

    N. A. Sheikh

    2013-01-01

    Full Text Available Granular flows require sustained input of energy for fluidization. A level of fluidization depends on the amount of heat flux provided to the flow. In general, the dissipation of the grains upon interaction balances the heat inputs and the resultant flow patterns can be described using hydrodynamic models. However, with the increase in packing fraction, the heat fluxes prediction of the cell increases. Here, a comparison is made for the proposed theoretical models against the MD simulations data. It is observed that the variation of packing fraction in the granular cell influences the heat flux at the base. For the elastic grain-base interaction, the predictions vary appreciably compared to MD simulations, suggesting the need to accurately model the velocity distribution of grains for averaging.

  13. Warped Kähler potentials and fluxes

    International Nuclear Information System (INIS)

    Martucci, Luca

    2017-01-01

    The four-dimensional effective theory for type IIB warped flux compactifications proposed in https://www.doi.org/10.1007/JHEP03(2015)067 is completed by taking into account the backreaction of the Kähler moduli on the three-form fluxes. The only required modification consists in a flux-dependent contribution to the chiral fields parametrising the Kähler moduli. The resulting supersymmetric effective theory satisfies the no-scale condition and consistently combines previous partial results present in the literature. Similar results hold for M-theory warped compactifications on Calabi-Yau fourfolds, whose effective field theory and Kähler potential are also discussed.

  14. Type IIB flux compactifications on twistor bundles

    Energy Technology Data Exchange (ETDEWEB)

    Imaanpur, Ali, E-mail: aimaanpu@modares.ac.ir

    2014-02-05

    We construct a U(1) bundle over N(1,1), usually considered as an SO(3) bundle on CP{sup 2}, and show that type IIB supergravity can be consistently compactified over it. With the five form flux turned on, there is a solution for which the metric becomes Einstein. We further turn on 3-form fluxes and show that there is a one parameter family of solutions. In particular, there is a limiting solution of large 3-form fluxes for which two U(1) fiber directions of the metric shrink to zero size. We also discuss compactifications over N(1,1) to AdS{sub 3}. All solutions turn out to be non-supersymmetric.

  15. Enumerating Flux Vacua With Enhanced Symmetries

    Energy Technology Data Exchange (ETDEWEB)

    DeWolfe, O.

    2004-11-12

    We study properties of flux vacua in type IIB string theory in several simple but illustrative models. We initiate the study of the relative frequencies of vacua with vanishing superpotential W = 0 and with certain discrete symmetries. For the models we investigate we also compute the overall rate of growth of the number of vacua as a function of the D3-brane charge associated to the fluxes, and the distribution of vacua on the moduli space. The latter two questions can also be addressed by the statistical theory developed by Ashok, Denef and Douglas, and our results are in good agreement with their predictions. Analysis of the first two questions requires methods which are more number-theoretic in nature. We develop some elementary techniques of this type, which are based on arithmetic properties of the periods of the compactification geometry at the points in moduli space where the flux vacua are located.

  16. Atmosphere–Surface Fluxes of CO2 using Spectral Techniques

    DEFF Research Database (Denmark)

    Sørensen, Lise Lotte; Larsen, Søren Ejling

    2010-01-01

    Different flux estimation techniques are compared here in order to evaluate air–sea exchange measurement methods used on moving platforms. Techniques using power spectra and cospectra to estimate fluxes are presented and applied to measurements of wind speed and sensible heat, latent heat and CO2...... fluxes. Momentum and scalar fluxes are calculated from the dissipation technique utilizing the inertial subrange of the power spectra and from estimation of the cospectral amplitude, and both flux estimates are compared to covariance derived fluxes. It is shown how even data having a poor signal......-to-noise ratio can be used for flux estimations....

  17. Software applications for flux balance analysis.

    Science.gov (United States)

    Lakshmanan, Meiyappan; Koh, Geoffrey; Chung, Bevan K S; Lee, Dong-Yup

    2014-01-01

    Flux balance analysis (FBA) is a widely used computational method for characterizing and engineering intrinsic cellular metabolism. The increasing number of its successful applications and growing popularity are possibly attributable to the availability of specific software tools for FBA. Each tool has its unique features and limitations with respect to operational environment, user-interface and supported analysis algorithms. Presented herein is an in-depth evaluation of currently available FBA applications, focusing mainly on usability, functionality, graphical representation and inter-operability. Overall, most of the applications are able to perform basic features of model creation and FBA simulation. COBRA toolbox, OptFlux and FASIMU are versatile to support advanced in silico algorithms to identify environmental and genetic targets for strain design. SurreyFBA, WEbcoli, Acorn, FAME, GEMSiRV and MetaFluxNet are the distinct tools which provide the user friendly interfaces in model handling. In terms of software architecture, FBA-SimVis and OptFlux have the flexible environments as they enable the plug-in/add-on feature to aid prospective functional extensions. Notably, an increasing trend towards the implementation of more tailored e-services such as central model repository and assistance to collaborative efforts was observed among the web-based applications with the help of advanced web-technologies. Furthermore, most recent applications such as the Model SEED, FAME, MetaFlux and MicrobesFlux have even included several routines to facilitate the reconstruction of genome-scale metabolic models. Finally, a brief discussion on the future directions of FBA applications was made for the benefit of potential tool developers.

  18. Can Polar Fields Explain Missing Open Flux?

    Science.gov (United States)

    Linker, J.; Downs, C.; Caplan, R. M.; Riley, P.; Mikic, Z.; Lionello, R.

    2017-12-01

    The "open" magnetic field is the portion of the Sun's magnetic field that extends out into the heliosphere and becomes the interplanetary magnetic field (IMF). Both the IMF and the Sun's magnetic field in the photosphere have been measured for many years. In the standard paradigm of coronal structure, the open magnetic field originates primarily in coronal holes. The regions that are magnetically closed trap the coronal plasma and give rise to the streamer belt. This basic picture is qualitatively reproduced by models of coronal structure using photospheric magnetic fields as input. If this paradigm is correct, there are two primary observational constraints on the models: (1) The open field regions in the model should approximately correspond to coronal holes observed in emission, and (2) the magnitude of the open magnetic flux in the model should match that inferred from in situ spacecraft measurements. Linker et al. (2017, ApJ, submitted) investigated the July 2010 time period for a range of observatory maps and both PFSS and MHD models. We found that all of the model/map combinations underestimated the interplanetary magnetic flux, unless the modeled open field regions were larger than observed coronal holes. An estimate of the open magnetic flux made entirely from solar observations (combining detected coronal hole boundaries with observatory synoptic magnetic maps) also underestimated the interplanetary magnetic flux. The magnetic field near the Sun's poles is poorly observed and may not be well represented in observatory maps. In this paper, we explore whether an underestimate of the polar magnetic flux during this time period could account for the overall underestimate of open magnetic flux. Research supported by NASA, AFOSR, and NSF.

  19. Eddy Correlation Flux Measurement System Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Cook, D. R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-01-01

    The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration. The instruments used are: • a fast-response, three-dimensional (3D) wind sensor (sonic anemometer) to obtain the orthogonal wind components and the speed of sound (SOS) (used to derive the air temperature) • an open-path infrared gas analyzer (IRGA) to obtain the water vapor density and the CO2 concentration, and • an open-path infrared gas analyzer (IRGA) to obtain methane density and methane flux at one SGP EF and at the NSA CF. The ECOR systems are deployed at the locations where other methods for surface flux measurements (e.g., energy balance Bowen ratio [EBBR] systems) are difficult to employ, primarily at the north edge of a field of crops. A Surface Energy Balance System (SEBS) has been installed collocated with each deployed ECOR system in SGP, NSA, Tropical Western Pacific (TWP), ARM Mobile Facility 1 (AMF1), and ARM Mobile Facility 2 (AMF2). The surface energy balance system consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes. The SEBS at one SGP and one NSA site also support upwelling and downwelling PAR measurements to qualify those two locations as Ameriflux sites.

  20. Wet Deposition Flux of Reactive Organic Carbon

    Science.gov (United States)

    Safieddine, S.; Heald, C. L.

    2016-12-01

    Reactive organic carbon (ROC) is the sum of non-methane volatile organic compounds (NMVOCs) and primary and secondary organic aerosols (OA). ROC plays a key role in driving the chemistry of the atmosphere, affecting the hydroxyl radical concentrations, methane lifetime, ozone formation, heterogeneous chemical reactions, and cloud formation, thereby impacting human health and climate. Uncertainties on the lifecycle of ROC in the atmosphere remain large. In part this can be attributed to the large uncertainties associated with the wet deposition fluxes. Little is known about the global magnitude of wet deposition as a sink of both gas and particle phase organic carbon, making this an important area for research and sensitivity testing in order to better understand the global ROC budget. In this study, we simulate the wet deposition fluxes of the reactive organic carbon of the troposphere using a global chemistry transport model, GEOS-Chem. We start by showing the current modeled global distribution of ROC wet deposition fluxes and investigate the sensitivity of these fluxes to variability in Henry's law solubility constants and spatial resolution. The average carbon oxidation state (OSc) is a useful metric that depicts the degree of oxidation of atmospheric reactive carbon. Here, we present for the first time the simulated gas and particle phase OSc of the global troposphere. We compare the OSc in the wet deposited reactive carbon flux and the dry deposited reactive carbon flux to the OSc of atmospheric ROC to gain insight into the degree of oxidation in deposited material and, more generally, the aging of organic material in the troposphere.

  1. Depicting CH4 fluxes and drivers dynamics

    Science.gov (United States)

    Dengel, S.; Billesbach, D. P.; Hughes, H.; Humphreys, E.; Lee, J.; Noormets, A.; Verfaillie, J. G.

    2016-12-01

    Since the advancement in CH4 eddy covariance flux measurements, monitoring of CH4 emissions is becoming more widespread. Since CH4 fluxes are not as predictable or as easily interpretable as CO2 fluxes, understanding their emission patterns often still challenging. As these are spatially (ecosystem and latitudinal) and temporal very divers and often event based, a better understanding or interpretation of results is required. An improvement in understanding does also increase the reliability of gap-filling methods as annual greenhouse gas budgets rely on high quality data. There are generalised additive models (Wood 2001) that can easily be applied to sites, models where a relationship between the response variable, in this case CH4 and explanatory variables (drivers) is established. Relevant for CH4flux dynamics are the smoothing function that is applied, where each predictor variable is separated into sections and a polynomial function fitted. On the one hand such models are rarely used as they are difficult to interpret since no parameter values are retuned. On the other hand, such models are very good for prediction and explanatory analysis in estimating the functional nature of a response. Applying such models to CH4 eddy flux data does improve our understanding of the dynamics of CH4 emissions and the respective meteorological drivers. Furthermore, such models combined with tree models (interactions between the explanatory variables), can visualise precise dynamics and easily applied to individual sites. These models are simple tools in understanding of these complex fluxes, as they can include a variety of drivers, and their relevance tested by the model. Model input variables should be as independent as possible (avoiding cross-correlation), avoiding redundant inputs, as models should follow the principle of parsimony of being simple but not too simple. Wood SN (2001). mgcv: GAMs and generalized ridge regression for R. R news.

  2. Diffusive flux of energy in binary mixtures

    International Nuclear Information System (INIS)

    Sampaio, R.S.

    1976-04-01

    The diffusive flux of energy j tilde is studied through the reduced diffusive flux of energy K tilde, which obeys equations of the form: sim(delta K tilde/delta grad rho sub(α))= sim(delta K tilde/delta grad theta)=0. By a representation theorem, herein proved, is obtained a general representation for K tilde which is simplified, for the case of binary mixtures, using the principle of objectivity. Some consequences of this representation are discussed such as the symmetry of the partial stresses T 1 tilde and T 2 tilde and the difference between the normal stresses [pt

  3. Observation of a Coulomb flux tube

    Science.gov (United States)

    Greensite, Jeff; Chung, Kristian

    2018-03-01

    In Coulomb gauge there is a longitudinal color electric field associated with a static quark-antiquark pair. We have measured the spatial distribution of this field, and find that it falls off exponentially with transverse distance from a line joining the two quarks. In other words there is a Coulomb flux tube, with a width that is somewhat smaller than that of the minimal energy flux tube associated with the asymptotic string tension. A confinement criterion for gauge theories with matter fields is also proposed.

  4. Atmospheric electron flux at airplane altitude

    International Nuclear Information System (INIS)

    Enomoto, R.; Chiba, J.; Ogawa, K.; Sumiyoshi, T.; Takasaki, F.; Kifune, T.; Matsubara, Y.; Nishimura, J.

    1991-01-01

    We have developed a new detector to systematically measure the cosmic-ray electron flux at airplane altitudes. We loaded a lead-glass-based electron telescope onto a commercial cargo airplane. The first experiment was carried out using the air route between Narita (Japan) and Sydney (Australia); during this flight we measured the electron flux at various altitudes and latitudes. The thresholds of the electron energies were 1, 2, and 4 GeV. The results agree with a simple estimation using one-dimensional shower theory. A comparison with a Monte Carlo calculation was made

  5. Dual neutron flux/temperature measurement sensor

    Science.gov (United States)

    Mihalczo, John T.; Simpson, Marc L.; McElhaney, Stephanie A.

    1994-01-01

    Simultaneous measurement of neutron flux and temperature is provided by a single sensor which includes a phosphor mixture having two principal constituents. The first constituent is a neutron sensitive 6LiF and the second is a rare-earth activated Y203 thermophosphor. The mixture is coated on the end of a fiber optic, while the opposite end of the fiber optic is coupled to a light detector. The detected light scintillations are quantified for neutron flux determination, and the decay is measured for temperature determination.

  6. Gravitational effects on planetary neutron flux spectra

    Science.gov (United States)

    Feldman, W. C.; Drake, D. M.; O'Dell, R. D.; Brinkley, F. W., Jr.; Anderson, R. C.

    1989-01-01

    The effects of gravity on the planetary neutron flux spectra for planet Mars, and the lifetime of the neutron, were investigated using a modified one-dimensional diffusion accelerated neutral-particle transport code, coupled with a multigroup cross-section library tailored specifically for Mars. The results showed the presence of a qualitatively new feature in planetary neutron leakage spectra in the form of a component of returning neutrons with kinetic energies less than the gravitational binding energy (0.132 eV for Mars). The net effect is an enhancement in flux at the lowest energies that is largest at and above the outermost layer of planetary matter.

  7. Flux pinning characteristics of YBCO coated conductor

    International Nuclear Information System (INIS)

    Matsushita, T.; Watanabe, T.; Fukumoto, Y.; Yamauchi, K.; Kiuchi, M.; Otabe, E.S.; Kiss, T.; Watanabe, T.; Miyata, S.; Ibi, A.; Muroga, T.; Yamada, Y.; Shiohara, Y.

    2005-01-01

    Flux pinning properties of PLD-processed YBCO coated conductors deposited on IBAD substrate are investigated. The thickness of YBCO layer is changed in the range of 0.27-1.0 μm. The thickness dependence of critical current density, n-value and irreversibility field are measured in a wide range of magnetic field. The results are compared with the theoretical flux creep-flow model. It is found that these pinning properties are strongly influenced by the thickness as well as the pinning strength. Optimum condition for high field application of this superconductor is discussed

  8. Planck intermediate results - LII. Planet flux densities

    DEFF Research Database (Denmark)

    Akrami, Y.; Ashdown, M.; Aumont, J.

    2017-01-01

    Measurements of flux density are described for five planets, Mars, Jupiter, Saturn, Uranus, and Neptune, across the six Planck High Frequency Instrument frequency bands (100–857 GHz) and these are then compared with models and existing data. In our analysis, we have also included estimates of the...... experiments. In particular, we observe that the flux densities measured by Planck HFI and WMAP agree to within 2%. These results allow experiments operating in the mm-wavelength range to cross-calibrate against Planck and improve models of radiative transport used in planetary science....

  9. Flux pinning and flux flow studies in superconductors using flux flow noise techniques. Progress report, April 1-December 30, 1979

    International Nuclear Information System (INIS)

    Joiner, W.C.H.

    1979-12-01

    Flux flow noise power spectra were investigated, and information obtained through such spectra is applied to describe flux flow and pinning in situations where volume pinning force data is also available. In one case, the application of noise data to PB 80 In 20 samples after recovery and after high temperature annealing is discussed. This work is consistent with a recent model for flux flow noise generation. In the second case we discuss experiments designed to change the fluxoid transit path length, which according to the model should affect both the noise amplitude and the parameter α specifying the longest subpulse times in terms of the average transit time, tau/sub c/. Transient flux flow voltages when a current is switched on after field cycling a Pb 60 In 40 sample have been discovered. Noise spectra have been measured during the transient. These observations are discussed along with a simple model which fits the data. A surprising result is that the transient decay times increase with the applied current. Other characteristics of Pb 60 In 40 after cold working are also discussed

  10. An Overview of Flux Pumps for HTS Coils

    OpenAIRE

    Coombs, Timothy Arthur; Geng, Jianzhao; Fu, L; Matsuda, K

    2016-01-01

    High-Tc superconducting (HTS) flux pumps are capable of injecting flux into closed HTS magnets without electrical contact. It is becoming a promising alternative of current source in powering HTS coils. This paper reviews the recent progress in flux pumps for HTS coil magnets. Different types of HTS flux pumps are introduced. The physics of these flux pumps are explained and comparisons are made. J. Geng would like to acknowledge Cambridge Trust for offering Cambridge International Scholar...

  11. Integrated passive flux measurement in groundwater: design and performance of iFLUX samplers

    Science.gov (United States)

    Verreydt, Goedele; Razaei, Meisam; Meire, Patrick; Van Keer, Ilse; Bronders, Jan; Seuntjens, Piet

    2017-04-01

    The monitoring and management of soil and groundwater is a challenge. Current methods for the determination of movement or flux of pollution in groundwater use no direct measurements but only simulations based on concentration measurements and Darcy velocity estimations. This entails large uncertainties which cause remediation failures and higher costs for contaminated site owners. On top of that, the lack of useful data makes it difficult to get approval for a risk-based management approach which completely avoids costly remedial actions. The iFLUX technology is a key development of Dr. Goedele Verreydt at the University of Antwerp and VITO. It is supported by the passive flux measurement technology as invented by Prof. Mike Annable and his team at the University of Florida. The iFLUX technology includes an in situ measurement device for capturing dynamic groundwater quality and quantity, the iFLUX sampler, and an associated interpretation and visualization method. The iFLUX sampler is a modular passive sampler that provides simultaneous in situ point determinations of a time-averaged target compound mass flux and water flux. The sampler is typically installed in a monitoring well where it intercepts the groundwater flow and captures the compounds of interest. The sampler consists of permeable cartridges which are each packed with a specific sorbent matrix. The sorbent matrix of the water flux cartridge is impregnated with known amounts of water soluble resident tracers. These tracers are leached from the matrix at rates proportional to the groundwater flux. The measurements of the contaminants and the remaining resident tracer are used to determine groundwater and target compound fluxes. Exposure times range from 1 week to 6 months, depending on the expected concentration and groundwater flow velocity. The iFLUX sampler technology has been validated and tested at several field projects. Currently, 4 cartridges are tested and available: 1 waterflux cartridge to

  12. A flux footprint analysis to understand ecosystem fluxes in an intensively managed landscape

    Science.gov (United States)

    Hernandez Rodriguez, L. C.; Goodwell, A. E.; Kumar, P.

    2017-12-01

    Flux tower studies in agricultural sites have mainly been done at plot scale, where the footprint of the instruments is small such that the data reveals the behaviour of the nearby crop on which the study is focused. In the Midwestern United States, the agricultural ecosystem and its associated drainage, evapotranspiration, and nutrient dynamics are dominant influences on interactions between the soil, land, and atmosphere. In this study, we address large-scale ecohydrologic fluxes and states in an intensively managed landscape based on data from a 25m high eddy covariance flux tower. We show the calculated upwind distance and flux footprint for a flux tower located in Central Illinois as part of the Intensively Managed Landscapes Critical Zone Observatory (IMLCZO). In addition, we calculate the daily energy balance during the summer of 2016 from the flux tower measurements and compare with the modelled energy balance from a representative corn crop located in the flux tower footprint using the Multi-Layer Canopy model, MLCan. The changes in flux footprint over the course of hours, days, and the growing season have significant implications for the measured fluxes of carbon and energy at the flux tower. We use MLCan to simulate these fluxes under land covers of corn and soybeans. Our results demonstrate how the instrument heights impact the footprint of the captured eddy covariance fluxes, and we explore the implication for hydrological analysis. The convective turbulent atmosphere during the daytime shows a wide footprint of more than 10 km2, which reaches 3km length for the 90% contribution, where buoyancy is the dominant mechanism driving turbulence. In contrast, the stable atmosphere during the night-time shows a narrower footprint that goes beyond 8km2 and grows in the direction of the prevalent wind, which exceeds 4 km in length. This study improves our understanding of agricultural ecosystem behaviour in terms of the magnitude and variability of fluxes and

  13. Industrial and natural sources of gaseous elemental mercury in the Almadén district (Spain): an updated report on this issue after the ceasing of mining and metallurgical activities in 2003 and major land reclamation works.

    Science.gov (United States)

    Higueras, Pablo; Esbrí, José María; Oyarzun, Roberto; Llanos, Willans; Martínez-Coronado, Alba; Lillo, Javier; López-Berdonces, Miguel Angel; García-Noguero, Eva Maria

    2013-08-01

    Two events during the last decade had major environmental repercussions in Almadén town (Spain). First it was the ceasing of activities in the mercury mine and metallurgical facilities in 2003, and then the finalization of the restoration works on the main waste dump in 2008. The combination of both events brought about a dramatic drop in the emissions of gaseous elemental mercury (GEM) to the atmosphere. Although no one would now call the Almadén area as 'mercury-free', the GEM levels have fallen beneath international reference safety levels for the first time in centuries. This has been a major breakthrough because in less than one decade the site went from GEM levels in the order of "tens of thousands" to mere "tens" nanogram per cubic meter. Although these figures are per se a remarkable achievement, they do not mark the end of the environmental concerns in the Almadén district. Two other sites remain as potential environmental hazards. (1) The Las Cuevas mercury storage complex, a partially restored ex-mining site where liquid mercury is being stored. The MERSADE Project (LIFE-European Union) has tested the Las Cuevas complex as a potential site for the installation of a future European prototype safe deposit of surplus mercury from industrial activities. Despite restoration works carried out in 2004, the Las Cuevas complex can still be regarded as hotspot of mercury contamination, with high concentrations above 800μgg(-1) Hgsoil and 300ngm(-3) Hggas. However, as predicted by air contamination modeling using the ISC-AERMOD software, GEM concentrations fade away in a short distance following the formation of a NW-SE oriented narrow plume extending for a few hundred meters from the complex perimeter. (2) Far more dangerous from the human health perspective is the Almadenejos area, hosting the small Almadenejos village, the so-called Cerco de Almadenejos (CDA; an old metallurgical precinct), and the mines of La Nueva Concepción, La Vieja Concepción and El

  14. Apparatus for measuring low thermal fluxes

    International Nuclear Information System (INIS)

    Aranovitch, R.; Warnery, M.

    1972-01-01

    Device for the measurement of slight wall heat fluxes, made up of a metallic contact plate combined with a shaft; temperature measurement elements are spaced along the shaft which is kept at a cold adjustable reference temperature lower than that of the walls; heat insulation is provided for the exposed part of the plate and for the shaft [fr

  15. Terrestrial water fluxes dominated by transpiration: Comment

    Science.gov (United States)

    Daniel R. Schlaepfer; Brent E. Ewers; Bryan N. Shuman; David G. Williams; John M. Frank; William J. Massman; William K. Lauenroth

    2014-01-01

    The fraction of evapotranspiration (ET) attributed to plant transpiration (T) is an important source of uncertainty in terrestrial water fluxes and land surface modeling (Lawrence et al. 2007, Miralles et al. 2011). Jasechko et al. (2013) used stable oxygen and hydrogen isotope ratios from 73 large lakes to investigate the relative roles of evaporation (E) and T in ET...

  16. EUV mirror based absolute incident flux detector

    Science.gov (United States)

    Berger, Kurt W.

    2004-03-23

    A device for the in-situ monitoring of EUV radiation flux includes an integrated reflective multilayer stack. This device operates on the principle that a finite amount of in-band EUV radiation is transmitted through the entire multilayer stack. This device offers improvements over existing vacuum photo-detector devices since its calibration does not change with surface contamination.

  17. Solitary wave propagation in solar flux tubes

    International Nuclear Information System (INIS)

    Erdelyi, Robert; Fedun, Viktor

    2006-01-01

    The aim of the present work is to investigate the excitation, time-dependent dynamic evolution, and interaction of nonlinear propagating (i.e., solitary) waves on vertical cylindrical magnetic flux tubes in compressible solar atmospheric plasma. The axisymmetric flux tube has a field strength of 1000 G at its footpoint, which is typical for photospheric regions. Nonlinear waves that develop into solitary waves are excited by a footpoint driver. The propagation of the nonlinear signal is investigated by solving numerically a set of fully nonlinear 2.0D magnetohydrodynamic (MHD) equations in cylindrical coordinates. For the initial conditions, axisymmetric solutions of the linear dispersion relation for wave modes in a magnetic flux tube are applied. In the present case, we focus on the sausage mode only. The dispersion relation is solved numerically for a range of plasma parameters. The equilibrium state is perturbed by a Gaussian at the flux tube footpoint. Two solitary solutions are found by solving the full nonlinear MHD equations. First, the nonlinear wave propagation with external sound speed is investigated. Next, the solitary wave propagating close to the tube speed, also found in the numerical solution, is studied. In contrast to previous analytical and numerical works, here no approximations were made to find the solitary solutions. A natural application of the present study may be spicule formation in the low chromosphere. Future possible improvements in modeling and the relevance of the photospheric chromospheric transition region coupling by spicules is suggested

  18. Annual Cycles of Surface Shortwave Radiative Fluxes

    Science.gov (United States)

    Wilber, Anne C.; Smith, G. Louis; Gupta, Shashi K.; Stackhouse, Paul W.

    2006-01-01

    The annual cycles of surface shortwave flux are investigated using the 8-yr dataset of the surface radiation budget (SRB) components for the period July 1983-June 1991. These components include the downward, upward, and net shortwave radiant fluxes at the earth's surface. The seasonal cycles are quantified in terms of principal components that describe the temporal variations and empirical orthogonal functions (EOFs) that describe the spatial patterns. The major part of the variation is simply due to the variation of the insolation at the top of the atmosphere, especially for the first term, which describes 92.4% of the variance for the downward shortwave flux. However, for the second term, which describes 4.1% of the variance, the effect of clouds is quite important and the effect of clouds dominates the third term, which describes 2.4% of the variance. To a large degree the second and third terms are due to the response of clouds to the annual cycle of solar forcing. For net shortwave flux at the surface, similar variances are described by each term. The regional values of the EOFs are related to climate classes, thereby defining the range of annual cycles of shortwave radiation for each climate class.

  19. Optimal flux patterns in cellular metabolic networks

    Energy Technology Data Exchange (ETDEWEB)

    Almaas, E

    2007-01-20

    The availability of whole-cell level metabolic networks of high quality has made it possible to develop a predictive understanding of bacterial metabolism. Using the optimization framework of flux balance analysis, I investigate metabolic response and activity patterns to variations in the availability of nutrient and chemical factors such as oxygen and ammonia by simulating 30,000 random cellular environments. The distribution of reaction fluxes is heavy-tailed for the bacteria H. pylori and E. coli, and the eukaryote S. cerevisiae. While the majority of flux balance investigations have relied on implementations of the simplex method, it is necessary to use interior-point optimization algorithms to adequately characterize the full range of activity patterns on metabolic networks. The interior-point activity pattern is bimodal for E. coli and S. cerevisiae, suggesting that most metabolic reaction are either in frequent use or are rarely active. The trimodal activity pattern of H. pylori indicates that a group of its metabolic reactions (20%) are active in approximately half of the simulated environments. Constructing the high-flux backbone of the network for every environment, there is a clear trend that the more frequently a reaction is active, the more likely it is a part of the backbone. Finally, I briefly discuss the predicted activity patterns of the central-carbon metabolic pathways for the sample of random environments.

  20. Predicting flux decline of reverse osmosis membranes

    NARCIS (Netherlands)

    Schippers, J.C.; Hanemaayer, J.H.; Smolders, C.A.; Kostense, A.

    1981-01-01

    A mathematical model predicting flux decline of reverse osmosis membranes due to colloidal fouling has been verified. This mathema- tical model is based on the theory of cake or gel filtration and the Modified Fouling Index (MFI). Research was conducted using artificial colloidal solutions and a

  1. Self-powered neutron flux detector assembly

    International Nuclear Information System (INIS)

    Allan, C.J.; McIntyre, I.L.

    1980-01-01

    A self-powered neutron flux detector has both the central emitter electrode and its surrounding collector electrode made of inconel 600. The lead cables may also be made of inconel. Other nickel alloys, or iron, nickel, titamium, chromium, zirconium or their alloys may also be used for the electrodes

  2. Radiation linewidth of flux-flow oscillators

    DEFF Research Database (Denmark)

    Koshelets, V.P.; Dmitriev, P.N.; Ermakov, A.B.

    2001-01-01

    (applied magnetic field) are taken. A profile of the FFO radiation line is measured in different regimes of FFO operation and compared to the theoretical models. A Lorentzian shape of the FFO line is observed both at Fiske steps (FSs) in the resonant regime and on the flux-flow step (FFS) at high voltages...

  3. SLC positron source flux concentrator modulator

    International Nuclear Information System (INIS)

    de Lamare, J.; Kulikov, A.; Cassel, R.; Nesterov, V.

    1991-06-01

    The modulator for the SLC e+ source flux concentrator provides 16 kA in a 5 μs sinusoidal half wave current for a pure inductive load, at 120 Hz. The modulator incorporates 10 EEV CX1622 thyratrons in a switching network. It provides reliable operation with acceptable thyratron lifetime. 3 refs., 3 figs., 1 tab

  4. AVERAGE FLUXES FROM HETEROGENEOUS VEGETATED REGIONS

    NARCIS (Netherlands)

    KLAASSEN, W

    Using a surface-layer model, fluxes of heat and momentum have been calculated for flat regions with regularly spaced step changes in surface roughness and stomatal resistance. The distance between successive step changes is limited to 10 km in order to fill the gap between micro-meteorological

  5. Models of Flux Tubes from Constrained Relaxation

    Indian Academy of Sciences (India)

    tribpo

    J. Astrophys. Astr. (2000) 21, 299 302. Models of Flux Tubes from Constrained Relaxation. Α. Mangalam* & V. Krishan†, Indian Institute of Astrophysics, Koramangala,. Bangalore 560 034, India. *e mail: mangalam @ iiap. ernet. in. † e mail: vinod@iiap.ernet.in. Abstract. We study the relaxation of a compressible plasma to ...

  6. Optical magnetic flux generation in superconductor

    Indian Academy of Sciences (India)

    Abstract. The generation of the magnetic flux quanta inside the superconductors is studied as a new effect to destroy superconductivity using femtosecond (fs) laser. The vortices are successfully generated in the YBa2Cu3O7−δ thin film striplines by the fs laser. It is revealed that the vortex distribution in the strip reflects the fs ...

  7. Physicochemical Flux and Phytoplankton diversity in Shagari ...

    African Journals Online (AJOL)

    USER

    2007-03-20

    Mar 20, 2007 ... Physicochemical Flux and Phytoplankton diversity in Shagari Reservoir,Sokoto, Nigeria. *1I.M. Magami, 1T. Adamu and 2A.A. Aliero. 1Zoology Unit, Department of Biological Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria. 2Botany Unit, Department of Biological Sciences, Usmanu Danfodiyo ...

  8. Examining gas flux responses to restoration

    Science.gov (United States)

    Wetlands play an important role in the flux of gases such as carbon dioxide, methane, and nitrous oxide. Wetland ecosystems are characterized by slow decomposition and, often, high productivity, making them net sinks of carbon dioxide. However, under some conditions, such as ti...

  9. Modelling radiocesium fluxes in forest ecosystems

    International Nuclear Information System (INIS)

    Shaw, G.; Kliashtorin, A.; Mamikhin, S.; Shcheglov, A.; Rafferty, B.; Dvornik, A.; Zhuchenko, T.; Kuchma, N.

    1996-01-01

    Monitoring of radiocesium inventories and fluxes has been carried out in forest ecosystems in Ukraine, Belarus and Ireland to determine distributions and rates of migration. This information has been used to construct and calibrate mathematical models which are being used to predict the likely longevity of contamination of forests and forest products such as timber following the Chernobyl accident

  10. MAGNETIC FLUX CANCELLATION IN ELLERMAN BOMBS

    Energy Technology Data Exchange (ETDEWEB)

    Reid, A.; Mathioudakis, M.; Nelson, C. J.; Henriques, V. [Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, BT7 1NN, Northern Ireland (United Kingdom); Doyle, J. G. [Armagh Observatory, College Hill, Armagh, BT61 9DG (United Kingdom); Scullion, E. [Trinity College Dublin, College Green, Dublin 2 (Ireland); Ray, T., E-mail: areid29@qub.ac.uk [Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland)

    2016-06-01

    Ellerman Bombs (EBs) are often found to be co-spatial with bipolar photospheric magnetic fields. We use H α imaging spectroscopy along with Fe i 6302.5 Å spectropolarimetry from the Swedish 1 m Solar Telescope (SST), combined with data from the Solar Dynamic Observatory , to study EBs and the evolution of the local magnetic fields at EB locations. EBs are found via an EB detection and tracking algorithm. Using NICOLE inversions of the spectropolarimetric data, we find that, on average, (3.43 ± 0.49) × 10{sup 24} erg of stored magnetic energy disappears from the bipolar region during EB burning. The inversions also show flux cancellation rates of 10{sup 14}–10{sup 15} Mx s{sup −1} and temperature enhancements of 200 K at the detection footpoints. We investigate the near-simultaneous flaring of EBs due to co-temporal flux emergence from a sunspot, which shows a decrease in transverse velocity when interacting with an existing, stationary area of opposite polarity magnetic flux, resulting in the formation of the EBs. We also show that these EBs can be fueled further by additional, faster moving, negative magnetic flux regions.

  11. Demystifying Electric Flux and Gauss's Law

    Science.gov (United States)

    McManus, Jeff

    2017-01-01

    Many physics students have experienced the difficulty of internalizing concepts in electrostatics. After studying concrete, measurable details in mechanics, they are challenged by abstract ideas such as electric fields, flux, Gauss's law, and electric potential. There are a few well-known hands-on activities that help students get experience with…

  12. What controls sediment flux in dryland channels?

    Science.gov (United States)

    Michaelides, K.; Singer, M. B.

    2010-12-01

    Theories for the development of longitudinal and grain size profiles in perennial fluvial systems are well developed, allowing for generalization of sediment flux and sorting in these fluvial systems over decadal to millennial time scales under different forcings (e.g., sediment supply, climate changes, etc). However, such theoretical frameworks are inadequate for understanding sediment flux in dryland channels subject to spatially and temporally discontinuous streamflow, where transport capacity is usually much lower than sediment supply. In such fluvial systems, channel beds are poorly sorted with weak vertical layering, poorly defined bar forms, minimal downstream fining, and straight longitudinal profiles. Previous work in dryland channels has documented sediment flux at higher rates than their humid counterparts once significant channel flow develops, pulsations in bed material transport under constant discharge, and oscillations in dryland channel width that govern longitudinal patterns in erosion and deposition. These factors point to less well appreciated controls on sediment flux in dryland valley floors that invite further study. This paper investigates the relative roles of hydrology, bed material grain size, and channel width on sediment flux rates in the Rambla de Nogalte in southeastern Spain. Topographic valley cross sections and hillslope and channel particle sizes were collected from an ephemeral-river reach. Longitudinal grain-size variation on the hillslopes and on the channel bed were analysed in order to determine the relationship between hillslope supply characteristics and channel grain-size distribution and longitudinal changes. Local fractional estimates of bed-material transport in the channel were calculated using a range of channel discharge scenarios in order to examine the effect of channel hydrology on sediment transport. Numerical modelling was conducted to investigate runoff connectivity from hillslopes to channel and to examine the

  13. The Solar-flux Third Granulation Signature

    Science.gov (United States)

    Gray, David F.; Oostra, Benjamin

    2018-01-01

    The velocity shifts of spectral lines as a function of line strength, so-called the third signature of granulation, are investigated using three published solar-flux atlases. We use flux atlases because we wish to treat the Sun as a star, against which stellar observations can be compared and judged. The atlases are critiqued and compared to the lower-resolution observations taken with the Elginfield stellar spectrograph. Third-signature plots are constructed for the 6020–6340 Å region. No dependence on excitation potential or wavelength is found over this wavelength span. The shape of the plots from the three solar atlases is essentially the same, with rms line-core velocity differences of 30–35 m s‑1. High-resolution atlas data are degraded to the level of the Elginfield spectrograph and compared to direct observations taken with that spectrograph. The line-core velocities show good agreement, with rms differences of 38 m s‑1. A new standard curve is derived and compared with the previously published one. Only small differences in shape are found, but a significant (+97 m s‑1) change in the zero point is indicated. The bisector of the Fe I 6253 line is mapped onto the third-signature plots and flux deficits are derived, which measure the granule/lane flux imbalance. The lower spectral resolution lowers the flux deficit area slightly and moves the peak of the deficit 0.3–0.5 km s‑1 toward higher velocities. These differences, while significant, are not large compared to measurement errors for stellar data.

  14. Flux trapping and shielding in irreversible superconductors

    International Nuclear Information System (INIS)

    Frankel, D.J.

    1978-05-01

    Flux trappings and shielding experiments were carried out on Pb, Nb, Pb-Bi, Nb-Sn, and Nb-Ti samples of various shapes. Movable Hall probes were used to measure fields near or inside the samples as a function of position and of applied field. The trapping of transverse multipole magnetic fields in tubular samples was accomplished by cooling the samples in an applied field and then smoothly reducing the applied field to zero. Transverse quadrupole and sextupole fields with gradients of over 2000 G/cm were trapped with typical fidelity to the original impressed field of a few percent. Transverse dipole fields of up to 17 kG were also trapped with similar fidelity. Shielding experiments were carried out by cooling the samples in zero field and then gradually applying an external field. Flux trapping and shielding abilities were found to be limited by two factors, the pinning strength of the material, and the susceptibility of a sample to flux jumping. The trapping and shielding behavior of flat disk samples in axial fields and thin-walled tubular samples in transverse fields was modeled. The models, which were based on the concept of the critical state, allowed a connection to be made between the pinning strength and critical current level, and the flux trapping and shielding abilities. Adiabatic and dynamic stability theories are discussed and applied to the materials tested. Good qualitative, but limited quantitative agreement was obtained between the predictions of the theoretical stability criteria and the observed flux jumping behavior

  15. How Giant Magnetospheres Maintain Their Magnetic Flux.

    Science.gov (United States)

    Rymer, A. M.

    2017-12-01

    Magnetic flux lost from a planet must be returned [Maxwell's first law, there are no magnetic monopoles (div(B) = 0)], and the dominant mechanism by which this is achieved is still to be determined. Here we compare a mechanism for magnetic flux return via small-scale plasma circulation. The existence of bi-modal superposed electron distributions at Jupiter and Saturn was a surprise to Voyager researchers [e.g. Sittler et al., 1983] that remains something of a mystery to this day. Electrons are virtually massless and are expected to rapidly thermalize to a single distribution. Observations by the Cassini spacecraft at Saturn have elucidated on the source of the hot electron component - small scale isolated flux tubes (commonly referred to as `injection events') that bubble planetward, returning magnetic flux that had been convected outward by centrifugal forces or stripped away during magnetospheric reconfigurations, such as substorms [Rymer et al., 2008]. Saturn is an ideal place to study injection events; relatively quiescent, aligned magnetic and geographic spins axes and a nice fast rotation rate in comparison to plasma drift speeds. The other magnetospheric laboratories in our solar system (Jupiter, Uranus and Neptune) will be more challenging. In this presentation we describe predictions for how plasma injection will be manifest as a function of magnetic field strength, topology and planetary spin rate and its importance in conservation of magnetic flux globally. Sittler, E. C., Jr., K. W. Ogilvie, and J. D. Scudder, 1983. Survey of low-energy plasma electrons in Saturn's magnetosphere: Voyager 1 and 2, J. Geophys. Res., 88, 8847- 8870. Rymer, A. M., Mauk, B. H. , Hill, T. W., Paranicas, C., Mitchell, D. G., Coates, A. J., Young, D. T. , 2008. Electron circulation in Saturn's magnetosphere. J. Geophys. Res.113, A01201.

  16. Comparison between Evapotranspiration Fluxes Assessment Methods

    Science.gov (United States)

    Casola, A.; Longobardi, A.; Villani, P.

    2009-11-01

    Knowledge of hydrological processes acting in the water balance is determinant for a rational water resources management plan. Among these, the water losses as vapour, in the form of evapotranspiration, play an important role in the water balance and the heat transfers between the land surface and the atmosphere. Mass and energy interactions between soil, atmosphere and vegetation, in fact, influence all hydrological processes modificating rainfall interception, infiltration, evapotraspiration, surface runoff and groundwater recharge.A numbers of methods have been developed in scientific literature for modelling evapotranspiration. They can be divided in three main groups: i) traditional meteorological models, ii) energy fluxes balance models, considering interaction between vegetation and the atmosphere, and iii) remote sensing based models. The present analysis preliminary performs a study of fluxes directions and an evaluation of energy balance closure in a typical Mediterranean short vegetation area, using data series recorded from an eddy covariance station, located in the Campania region, Southern Italy. The analysis was performed on different seasons of the year with the aim to assess climatic forcing features impact on fluxes balance, to evaluate the smaller imbalance and to highlight influencing factors and sampling errors on balance closure. The present study also concerns evapotranspiration fluxes assessment at the point scale. Evapotranspiration is evaluated both from empirical relationships (Penmann-Montheit, Penmann F AO, Prestley&Taylor) calibrated with measured energy fluxes at mentioned experimental site, and from measured latent heat data scaled by the latent heat of vaporization. These results are compared with traditional and reliable well known models at the plot scale (Coutagne, Turc, Thorthwaite).

  17. Shielding Gas and Heat Input Effects on the Mechanical and Metallurgical Characterization of Gas Metal Arc Welding of Super Martensitic Stainless Steel (12Cr5Ni2Mo) Joints

    Science.gov (United States)

    Prabakaran, T.; Prabhakar, M.; Sathiya, P.

    This paper deals with the effects of shielding gas mixtures (100% CO2, 100% Ar and 80 % Ar + 20% CO2) and heat input (3.00, 3.65 and 4.33kJ/mm) on the mechanical and metallurgical characteristics of AISI 410S (American Iron and Steel Institute) super martensitic stainless steel (SMSS) by gas metal arc welding (GMAW) process. AISI 410S SMSS with 1.2mm diameter of a 410 filler wire was used in this study. A detailed microstructural analysis of the weld region as well as the mechanical properties (impact, microhardness and tensile tests at room temperature and 800∘C) was carried out. The tensile and impact fracture surfaces were further analyzed through scanning electron microscope (SEM). 100% Ar shielded welds have a higher amount of δ ferrite content and due to this fact the tensile strength of the joints is superior to the other two shielded welds.

  18. Metallurgical study and phase diagram calculations of the Zr-Nb-Fe-(Sn,O) system; Etude metallurgique et calculs des diagrammes de phases des alliages base zirconium du systeme: Zr-Nb-Fe-(O,Sn)

    Energy Technology Data Exchange (ETDEWEB)

    Toffolon, C. [CEA/Saclay, Dept. d' Etudes du Comportement des Materiaux (DECM), 91 - Gif-sur-Yvette (France)]|[Paris-6 Univ., 75 (France)

    2000-07-01

    The Framatome M5{sup TM} Zr-Nb-O alloy with small amounts of Fe is of interest for nuclear applications (PWR fuel cladding).The behaviour of this kind of alloy for in-service conditions strongly depends on the microstructure. Therefore, a metallurgical study of alloys of the Zr-Nb-Fe-(O-Sn) system has been developed in order to study the influence of chemical composition variabilities of Nb, Fe and O and thermal treatments on the resultant microstructure. In order to get some insight on the physical metallurgy of Zr-Nb-Fe-(Sn,O) alloys and to minimize the experiments, it is useful to build a thermodynamic database. With this object, it was necessary to re-optimize and to calculate the low order binary systems such as Fe-Nb and Nb-Sn in order to assess the Zr-Nb-Fe-(Sn,O) system. Then, the experimental studies concerned: the influence of small variations in Nb and O contents on the {alpha}/{beta} transus temperatures. A comparison between experimental results and thermodynamic predictions showed a good agreement; the precipitation kinetics of {beta}Nb and intermetallic phases in the {alpha} phase domain. These experiments showed that the kinetics depends on the initial metallurgical conditions; the determination of the crystallographic structure and the stoichiometry of the ternary Zr-Nb-Fe intermetallic compounds as a function of the temperature. Finally, these experimental data were used to propose a first assessment of the Zr-Nb-Fe(O{approx}1200 ppm) system. (author)

  19. Flux quantisation in superconductivity rings and the mixed state

    International Nuclear Information System (INIS)

    Gough, C.E.

    1992-01-01

    This lecture introduces the concept of the macroscopic superconducting wave function and describes how this accounts for the Meissner Effect and flux quantisation. The experimental confirmation of flux quantisation in LTC, HTC and hybrid LTC/HTC rings will be briefly discussed. Flux quantisation in the superconducting mixed state leads to the formation of the Abrikosov flux in line lattice. Experiments confirming the flux line lattice in HTC superconductors by magnetic decoration and recent low angle neutron diffraction will be described. An extension of the mixed state model to granular superconductors with giant flux lines will also be briefly considered. (orig.)

  20. The limitation and modification of flux-limited diffusion theory

    International Nuclear Information System (INIS)

    Liu Chengan; Huang Wenkai

    1986-01-01

    The limitation of various typical flux-limited diffusion theory and advantages of asymptotic diffusion theory with time absorption constant are analyzed and compared. The conclusions are as following: Though the flux-limited problem in neutron diffusion theory are theoretically solved by derived flux-limited diffusion equation, it's going too far to limit flux due to the inappropriate assumption in deriving flux-limited diffusion equation. The asymptotic diffusion theory with time absorption constant has eliminated the above-mentioned limitation, and it is more accurate than flux-limited diffusion theory in describing neutron transport problem

  1. Inverse modeling of the terrestrial carbon flux in China with flux covariance among inverted regions

    Science.gov (United States)

    Wang, H.; Jiang, F.; Chen, J. M.; Ju, W.; Wang, H.

    2011-12-01

    Quantitative understanding of the role of ocean and terrestrial biosphere in the global carbon cycle, their response and feedback to climate change is required for the future projection of the global climate. China has the largest amount of anthropogenic CO2 emission, diverse terrestrial ecosystems and an unprecedented rate of urbanization. Thus information on spatial and temporal distributions of the terrestrial carbon flux in China is of great importance in understanding the global carbon cycle. We developed a nested inversion with focus in China. Based on Transcom 22 regions for the globe, we divide China and its neighboring countries into 17 regions, making 39 regions in total for the globe. A Bayesian synthesis inversion is made to estimate the terrestrial carbon flux based on GlobalView CO2 data. In the inversion, GEOS-Chem is used as the transport model to develop the transport matrix. A terrestrial ecosystem model named BEPS is used to produce the prior surface flux to constrain the inversion. However, the sparseness of available observation stations in Asia poses a challenge to the inversion for the 17 small regions. To obtain additional constraint on the inversion, a prior flux covariance matrix is constructed using the BEPS model through analyzing the correlation in the net carbon flux among regions under variable climate conditions. The use of the covariance among different regions in the inversion effectively extends the information content of CO2 observations to more regions. The carbon flux over the 39 land and ocean regions are inverted for the period from 2004 to 2009. In order to investigate the impact of introducing the covariance matrix with non-zero off-diagonal values to the inversion, the inverted terrestrial carbon flux over China is evaluated against ChinaFlux eddy-covariance observations after applying an upscaling methodology.

  2. Sensors for Metering Heat Flux Area Density and Metrological Equipment for the Heat Flux Density Measurement

    Science.gov (United States)

    Doronin, D. O.

    2018-04-01

    The demand in measuring and studies of heat conduction of various media is very urgent now. This article considers the problem of heat conduction monitoring and measurement in various media and materials in any industries and branches of science as well as metrological support of the heat flux measurement equipment. The main study objects are both the sensors manufactured and facilities onto which these sensors will be installed: different cladding structures of the buildings, awnings, rocket fairings, boiler units, internal combustion engines. The Company develops and manufactures different types of heat flux sensors: thermocouple, thin-film, heterogeneous gradient as well as metrological equipment for the gauging calibration of the heat flux density measurement. The calibration shall be performed using both referencing method in the unit and by fixed setting of the heat flux in the unit. To manufacture heterogeneous heat flux gradient sensors (HHFGS) the Company developed and designed a number of units: diffusion welding unit, HHFGS cutting unit. Rather good quality HHFGS prototypes were obtained. At this stage the factory tests on the equipment for the heat flux density measurement equipment are planned. A high-sensitivity heat flux sensor was produced, now it is tested at the Construction Physics Research Institute (Moscow). It became possible to create thin-film heat flux sensors with the sensitivity not worse than that of the sensors manufactured by Captec Company (France). The Company has sufficient premises to supply the market with a wide range of sensors, to master new sensor manufacture technologies which will enable their application range.

  3. Nitric oxide fluxes from an agricultural soil using a flux-gradient method

    Science.gov (United States)

    Taylor, N. M.; Wagner-Riddle, C.; Thurtell, G. W.; Beauchamp, E. G.

    1999-05-01

    Soil emission of nitric oxide may be a significant source of NOx in rural areas. Agricultural practices may enhance these emissions by addition of nitrogen fertilizers. A system that enables continuous measurement of NO fluxes from agricultural surfaces using the flux-gradient method was developed. Hourly differences in NO concentrations in air sampled at two intake heights (0.6 and 1 m) were determined using a chemiluminescence analyzer. Eddy diffusivities were determined using wind profiles (cup anemometers), and stability corrections calculated using a 5 cm path sonic anemometer. Fast switching of sampling between air intake heights (every 30 s) and determination of concentration values at a frequency of 2 Hz minimized the errors due to fluctuations in background concentration. Low travel times for air samples in the tubing (˜8 s) were estimated to result in small errors in flux values (chemical reactions. The overall resolution of the system was estimated as ˜1 ng N m-2s-1. NO fluxes from a bare soil were measured quasi-continuously from January to June 1995 at Elora, Canada, comprising a total of 1833 hourly values. Daily NO fluxes before nitrogen fertilization were small, increasing after nitrogen fertilizer was added (>10 ng N m-2 s-1). Monthly NO fluxes estimated were similar to those observed in previous studies. The designed system could be easily modified to measure NOx and NO fluxes by using an additional chemiluminescence analyzer. The system also could be adapted to measure fluxes sequentially from various plots, enabling testing of agricultural practices on NO emissions.

  4. Effect of chamber enclosure time on soil respiration flux: A comparison of linear and non-linear flux calculation methods

    DEFF Research Database (Denmark)

    Kandel, Tanka P; Lærke, Poul Erik; Elsgaard, Lars

    2016-01-01

    -deployment fluxes by linear regression techniques. Thus, usually the cumulative flux curve becomes downward concave due to the decreased gas diffusion rate. Non-linear models based on biophysical theory usually fit to such curvatures and may reduce the underestimation of fluxes. In this study, we examined...... the effect of increasing chamber enclosure time on SR flux rates calculated using a linear, an exponential and a revised Hutchinson and Mosier model (HMR). Soil respiration rates were measured with a closed chamber in combination with an infrared gas analyzer. During SR flux measurements the chamber......) to obtain a range of fluxes with different shapes of flux curves. The linear method provided more stable flux results during short enclosure times (few min) but underestimated initial fluxes by 15–300% after 45 min deployment time. Non-linear models reduced the underestimation as average underestimation...

  5. Regional nitrous oxide flux in Amazon basin

    International Nuclear Information System (INIS)

    Felippe, Monica Tais Siqueira D'Amelio

    2010-01-01

    Nitrous oxide (N 2 O) is the third most important anthropogenic greenhouse gas. Globally, the main sources of N 2 O are nitrification and denitrification in soils. About two thirds of the soil emissions occur in the tropics and approximately 20% originate in wet rain forest ecosystems, like the Amazon forest. The work presented here involves aircraft vertical profiles of N 2 O from the surface to 4 km over two sites in the Eastern and Central Amazon: Tapajos National Forest (2000-2009) and Cuieiras Biologic Reserve (2004-2007), and the estimation of N 2 O fluxes for regions upwind of these sites using two methods: Column Integration Technique and Inversion Model - FLEXPART. To our knowledge, these regional scale N 2 O measurements in Amazonia are unique and represent a new approach to looking regional scale emissions. For the both methods, the fluxes upwind of Cuieiras Biologic Reserve exhibited little seasonality, and the annual mean was 1.9 ±1.6 mgN 2 Om -2 day -1 for the Column Integration Technique and 2.3±0.9 mgN 2 Om -2 day -1 for Inversion Model - FLEXPART. For fluxes upwind of Tapajos Nacional Forest, the Inversion Model - FLEXPART presented about half (0.9±1.7 mgN 2 Om -2 day -1 ) of the Column Integration Technique (2.0±1.1 mgN 2 Om -2 day -1 ) for the same period (2004-2008). One reason could be because the inversion model does not consider anthropic activities, once it had a good representation for less impacted area. Both regions presented similar emission during wet season. By Column Integration Technique, fluxes upwind Tapajos Nacional Forest were similar for dry and wet seasons. The dry season N 2 O fluxes exhibit significant correlations with CO fluxes, indicating a larger than expected source of N 2 O from biomass burning. The average CO:N 2 O ratio for all 38 profiles sampled during the dry season was 82±69 mol CO:molN 2 O and suggests a larger biomass burning contribution to the global N 2 O budget than previously reported. (author)

  6. Gauge fluxes in F-theory compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Ling

    2016-07-13

    In this thesis, we study the geometry and physics of gauge fluxes in F-theory compactifications to four dimensions. Motivated by the phenomenological requirement of chiral matter in realistic model building scenarios, we develop methods for a systematic analysis of primary vertical G{sub 4}-fluxes on torus-fibred Calabi-Yau fourfolds. In particular, we extend the well-known description of fluxes on elliptic fibrations with sections to the more general set-up of genus-one fibrations with multi-sections. The latter are known to give rise to discrete abelian symmetries in F-theory. We test our proposal for constructing fluxes in such geometries on an explicit model with SU(5) x Z{sub 2} symmetry, which is connected to an ordinary elliptic fibration with SU(5) x U(1) symmetry by a conifold transition. With our methods we systematically verify anomaly cancellation and tadpole matching in both models. Along the way, we find a novel way of understanding anomaly cancellation in 4D F-theory in purely geometric terms. This observation is further strengthened by a similar analysis of an SU(3) x SU(2) x U(1){sup 2} model. The obvious connection of this particular model with the Standard Model is then investigated in a more phenomenologically motivated survey. There, we will first provide possible matchings of the geometric spectrum with the Standard Model states, which highlights the role of the additional U(1) factor as a selection rule. In a second step, we then utilise our novel methods on flux computations to set up a search algorithm for semi-realistic chiral spectra in our Standard- Model-like fibrations over specific base manifolds B. As a demonstration, we scan over three choices P{sup 3}, Bl{sub 1}P{sup 3} and Bl{sub 2}P{sup 3} for the base. As a result we find a consistent flux that gives the chiral Standard Model spectrum with a vector-like triplet exotic, which may be lifted by a Higgs mechanism.

  7. Effects of quartz on crystallization behavior of mold fluxes and microstructural characteristics of flux film.

    Science.gov (United States)

    Lei, Liu; Xiuli, Han; Mingduo, Li; Di, Zhang

    2018-01-01

    Mold fluxes are mainly prepared using cement clinker, quartz, wollastonite, borax, fluorite, soda ash and other mineral materials. Quartz, as one of the most common and essential materials, was chosen for this study to analyze itseffects on crystallization temperature, critical cooling rate, crystal incubation time, crystallization ratio and phases of flux film. We used the research methods of process mineralogy with the application of the single hot thermocouple technique, heat flux simulator, polarizing microscope, X-ray diffraction, etc. Results: By increasing the quartz content from 16 mass% to 24 mass%, the crystallization temperature, critical cooling rate and crystallization ratio of flux film decreased, and the crystal incubation time was extended. Meanwhile, the mineralogical structure of the flux film changed, with a large amount of wollastonite precipitation and a significant decrease in the cuspidine content until it reached zero. This showed a steady decline in the heat transfer control capacity of the flux film. The reason for the results above is that, by increasing the quartz content, the silicon-oxygen tetrahedron network structure promoted a rise in viscosity and restrained ion migration, inhibiting crystal nucleation and growth, leading to the weakening of the crystallization and a decline in the crystallization ratio.

  8. Failure analysis of beryllium tile assembles following high heat flux testing for the ITER program

    International Nuclear Information System (INIS)

    Odegard, B.C. Jr.; Cadden, C. H.; Yang, N. Y. C.

    2000-01-01

    The following document describes the processing, testing and post-test analysis of two Be-Cu assemblies that have successfully met the heat load requirements for the first wall and dome sections for the ITER (International Thermonuclear Experimental Reactor) fusion reactor. Several different joint assemblies were evaluated in support of a manufacturing technology investigation aimed at diffusion bonding or brazing a beryllium armor tile to a copper alloy heat sink for fusion reactor applications. Judicious selection of materials and coatings for these assemblies was essential to eliminate or minimize interactions with the highly reactive beryllium armor material. A thin titanium layer was used as a diffusion barrier to isolate the copper heat sink from the beryllium armor. To reduce residual stresses produced by differences in the expansion coefficients between the beryllium and copper, a compliant layer of aluminum or aluminum-beryllium (AlBeMet-150) was used. Aluminum was chosen because it does not chemically react with, and exhibits limited volubility in, beryllium. Two bonding processes were used to produce the assemblies. The primary process was a diffusion bonding technique. In this case, undesirable metallurgical reactions were minimized by keeping the materials in a solid state throughout the fabrication cycle. The other process employed an aluminum-silicon layer as a brazing filler material. In both cases, a hot isostatic press (HIP) furnace was used in conjunction with vacuum-canned assemblies in order to minimize oxidation and provide sufficient pressure on the assemblies for full metal-to-metal contact and subsequent bonding. The two final assemblies were subjected to a suite of tests including: tensile tests and electron and optical metallography. Finally, high heat flux testing was conducted at the electron beam testing system (EBTS) at Sandia National Laboratories, New Mexico. Here, test mockups were fabricated and subjected to normal heat loads to

  9. Comparison between elementary flux modes analysis and 13C-metabolic fluxes measured in bacterial and plant cells.

    Science.gov (United States)

    Beurton-Aimar, Marie; Beauvoit, Bertrand; Monier, Antoine; Vallée, François; Dieuaide-Noubhani, Martine; Colombié, Sophie

    2011-06-20

    (13)C metabolic flux analysis is one of the pertinent ways to compare two or more physiological states. From a more theoretical standpoint, the structural properties of metabolic networks can be analysed to explore feasible metabolic behaviours and to define the boundaries of steady state flux distributions. Elementary flux mode analysis is one of the most efficient methods for performing this analysis. In this context, recent approaches have tended to compare experimental flux measurements with topological network analysis. Metabolic networks describing the main pathways of central carbon metabolism were set up for a bacteria species (Corynebacterium glutamicum) and a plant species (Brassica napus) for which experimental flux maps were available. The structural properties of each network were then studied using the concept of elementary flux modes. To do this, coefficients of flux efficiency were calculated for each reaction within the networks by using selected sets of elementary flux modes. Then the relative differences - reflecting the change of substrate i.e. a sugar source for C. glutamicum and a nitrogen source for B. napus - of both flux efficiency and flux measured experimentally were compared. For both organisms, there is a clear relationship between these parameters, thus indicating that the network structure described by the elementary flux modes had captured a significant part of the metabolic activity in both biological systems. In B. napus, the extension of the elementary flux mode analysis to an enlarged metabolic network still resulted in a clear relationship between the change in the coefficients and that of the measured fluxes. Nevertheless, the limitations of the method to fit some particular fluxes are discussed. This consistency between EFM analysis and experimental flux measurements, validated on two metabolic systems allows us to conclude that elementary flux mode analysis could be a useful tool to complement (13)C metabolic flux analysis

  10. Lepton fluxes from atmospheric charm revisited

    International Nuclear Information System (INIS)

    Garzelli, M.V.; Moch, S.; Sigl, G.

    2015-07-01

    We update predictions for lepton fluxes from the hadroproduction of charm quarks in the scattering of primary cosmic rays with the Earth's atmosphere. The calculation of charm-pair hadroproduction applies the latest results from perturbative QCD through next-to-next-to-leading order and modern parton distributions, together with estimates on various sources of uncertainties. Our predictions for the lepton fluxes turn out to be compatible, within the uncertainty band, with recent results in the literature. However, by taking into account contributions neglected in previous works, our total uncertainties are much larger. The predictions are crucial for the interpretation of results from neutrino experiments like IceCube, when disentangling signals of neutrinos of astrophysical origin from the atmospheric background.

  11. Observations on fluxes near anti-branes

    Energy Technology Data Exchange (ETDEWEB)

    Cohen-Maldonado, Diego [Institute of Physics, University of Amsterdam, Science Park,Postbus 94485, Amsterdam, 1090 GL The (Netherlands); Diaz, Juan; Riet, Thomas Van [Instituut voor Theoretische Fysica, K.University Leuven,Celestijnenlaan 200D, Leuven, B-3001 (Belgium); Vercnocke, Bert [Institute of Physics, University of Amsterdam, Science Park,Postbus 94485, Amsterdam, 1090 GL The (Netherlands)

    2016-01-20

    We revisit necessary conditions for gluing local (anti-)D3 throats into flux throats with opposite charge. These consistency conditions typically reveal singularities in the 3-form fluxes whose meaning is being debated. In this note we prove, under well-motivated assumptions, that unphysical singularities can potentially be avoided when the anti-branes polarise into spherical NS5 branes, with a specific radius. If a consistent solution can then indeed be found, our analysis seems to suggests a rather large correction to the radius of the polarization sphere compared to the probe result. We furthermore comment on the gluing conditions at finite temperature and point out that one specific assumption of a recent no-go theorem can be broken if anti-branes are indeed to polarise into spherical NS5 branes at zero temperature.

  12. Earth-like sand fluxes on Mars.

    Science.gov (United States)

    Bridges, N T; Ayoub, F; Avouac, J-P; Leprince, S; Lucas, A; Mattson, S

    2012-05-09

    Strong and sustained winds on Mars have been considered rare, on the basis of surface meteorology measurements and global circulation models, raising the question of whether the abundant dunes and evidence for wind erosion seen on the planet are a current process. Recent studies showed sand activity, but could not determine whether entire dunes were moving--implying large sand fluxes--or whether more localized and surficial changes had occurred. Here we present measurements of the migration rate of sand ripples and dune lee fronts at the Nili Patera dune field. We show that the dunes are near steady state, with their entire volumes composed of mobile sand. The dunes have unexpectedly high sand fluxes, similar, for example, to those in Victoria Valley, Antarctica, implying that rates of landscape modification on Mars and Earth are similar.

  13. Helium cosmic ray flux measurements at Mars

    International Nuclear Information System (INIS)

    Lee, Kerry; Pinsky, Lawrence; Andersen, Vic; Zeitlin, Cary; Cleghorn, Tim; Cucinotta, Frank; Saganti, Premkumar; Atwell, William; Turner, Ron

    2006-01-01

    The helium energy spectrum in Martian orbit has been observed by the MARIE charged particle spectrometer aboard the 2001 Mars Odyssey spacecraft. The orbital data were taken from March 13, 2002 to October 28, 2003, at which time a very intense Solar Particle Event caused a loss of communication between the instrument and the spacecraft. The silicon detector stack in MARIE is optimized for the detection of protons and helium in the energy range below 100MeV/n, which typically includes almost all of the flux during SPEs. This also makes MARIE an efficient detector for GCR helium in the energy range of 50-150MeV/n. We will present the first fully normalized flux results from MARIE, using helium ions in this energy range

  14. Reduced TCA Flux in Diabetic Myotubes

    DEFF Research Database (Denmark)

    Gaster, Michael

    2012-01-01

    The diabetic phenotype is complex, requiring elucidation of key initiating defects. Diabetic myotubes express a primary reduced tricarboxylic acid (TCA) cycle flux but at present it is unclear in which part of the TCA cycle the defect is localised. In order to localise the defect we studied ATP...... production in isolated mitochondria from substrates entering the TCA cycle at various points. ATP production was measured by luminescence with or without concomitant ATP utilisation by hexokinase in mitochondria isolated from myotubes established from eight lean and eight type 2 diabetic subjects. The ATP......, there was no significant difference between groups. These results show that the primary reduced TCA cycle flux in diabetic myotubes is not explained by defects in specific part of the TCA cycle but rather results from a general downregulation of the TCA cycle....

  15. Anthropogenic methane ebullition and continuous flux measurement

    Science.gov (United States)

    Alshboul, Zeyad

    2017-04-01

    Keywords: Methane, Wastewater, Effluent, Anaerobic treatment. Municipal wastewater treatment plants (WWTPs) have shown to emit significant amount of methane during treatment processes. While most of studies cover only in-plant diffusive methane flux, magnitude and sources of methane ebullition have not well assessed. Moreover, the reported results of methane emissions from WWTPs are based on low spatial and temporal resolution. Using a continuous measurement approach of methane flux rate for effluent system and secondary clarifier treatment process at one WWTP in Southwest Germany, our results show that high percentage of methane is emitted by ebullition during the anaerobic treatment (clarification pond) with high spatial and temporal variability. Our measurements revealed that no ebullition is occur at the effluent system. The observed high contribution of methane ebullition to the total in-plant methane emission, emphasizes the need for considering in-plant methane emission by ebullition as well as the spatial and temporal variability of these emissions.

  16. Flux Limiter Lattice Boltzmann for Compressible Flows

    International Nuclear Information System (INIS)

    Chen Feng; Li Yingjun; Xu Aiguo; Zhang Guangcai

    2011-01-01

    In this paper, a new flux limiter scheme with the splitting technique is successfully incorporated into a multiple-relaxation-time lattice Boltzmann (LB) model for shacked compressible flows. The proposed flux limiter scheme is efficient in decreasing the artificial oscillations and numerical diffusion around the interface. Due to the kinetic nature, some interface problems being difficult to handle at the macroscopic level can be modeled more naturally through the LB method. Numerical simulations for the Richtmyer-Meshkov instability show that with the new model the computed interfaces are smoother and more consistent with physical analysis. The growth rates of bubble and spike present a satisfying agreement with the theoretical predictions and other numerical simulations. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  17. Flux qubit to a transmission line

    Energy Technology Data Exchange (ETDEWEB)

    Haeberlein, Max; Baust, Alexander; Zhong, Ling; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany); Anderson, Gustav; Wang, Lujun; Eder, Peter; Fischer, Michael; Goetz, Jan; Xie, Edwar; Schwarz, Manuel; Wulschner, Karl Friedrich; Deppe, Frank; Fedorov, Kirill; Huebl, Hans; Menzel, Edwin [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Marx, Achim [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany)

    2015-07-01

    Within the last decade, superconducting qubits coupled to microwave resonators have been extensively studied within the framework of quantum electrodynamics. Ultimately, quantum computing seems within reach in such architectures. However, error correction schemes are necessary to achieve the required fidelity in multi-qubit operations, drastically increasing the number of qubits involved. In this work, we couple a flux qubit to a transmission line where it interacts with itinerant microwave photons granting access to all-optical quantum computing. In this approach, travelling photons generate entanglement between two waveguides, containing the qubit information. In this presentation, we show experimental data on flux qubits coupled to transmission lines. Furthermore, we will discuss entanglement generation between two separate paths.

  18. Chiral charge flux and electroweak baryogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Funakubo, Koichi [Saga Univ. (Japan). Dept. of Physics; Kakuto, Akira; Otsuki, Shoichiro; Takenaga, Kazunori; Toyoda, Fumihiko

    1995-06-01

    By treating CP-violating interaction of the electroweak bubble wall as a perturbative term, chiral charge flux through the bubble wall is estimated. It is found that the absolute value of the flux F{sub Q} has a sharp peak at m{sub 0} - a - T with F{sub Q}/(uT{sup 3}) - 10{sup -3}(Q{sub L}-Q{sub R}){Delta}{theta}. Here m{sub 0} is the fermion mass, 1/a is the wall thickness, T is the temperature at which the bubbles are growing, u is the wall velocity, Q{sub L(R)} is the chiral charge of the relevant left (right)-handed fermion and {Delta}{theta} is the measure of CP violation. (author).

  19. Data system for automatic flux mapping applications

    International Nuclear Information System (INIS)

    Oates, R.M.; Neuner, J.A.; Couch, R.D. Jr.; Kasinoff, A.M.

    1982-01-01

    This patent discloses interface circuitry for coupling the data from neutron flux detectors in a reactor core to microprocessors. This circuitry minimizes the microprocessor time required to accept data and provides a technique for measuring variable frequency data from the in-core detectors within a minimum amount of hardware and with crystal-controlled accuracy. A frequency link is employed to transmit data with good isolation, and the information is measured using a programmable timer

  20. 2 π gaseous flux proportional detector

    International Nuclear Information System (INIS)

    Guevara, E.A.; Costello, E.D.; Di Carlo, R.O.

    1986-01-01

    A counting system has been developed in order to measure carbon-14 samples obtained in the course of a study of a plasmapheresis treatment for diabetic children. The system is based on the use of a 2π gaseous flux proportional detector especially designed for the stated purpose. The detector is described and experiment results are given, determining the characteristic parameters which set up the working conditions. (Author) [es