WorldWideScience

Sample records for metalloproteinases evolution gene

  1. Identification of accelerated evolution in the metalloproteinase ...

    African Journals Online (AJOL)

    U

    2016-02-24

    Feb 24, 2016 ... drugs for different diseases. Key words: SVMPs, evolution, multiple sequence alignment, phylogenic tree, secondary structure, homology. ... in matrix metalloproteinase genes MMP1, MMP9 and. MMP12 are shown to be ... Evolution and diversification of snake venom is a very interesting phenomenon.

  2. Amyloid precursor protein regulates migration and metalloproteinase gene expression in prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, Toshiaki; Ikeda, Kazuhiro; Horie-Inoue, Kuniko [Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama 350-1241 (Japan); Inoue, Satoshi, E-mail: INOUE-GER@h.u-tokyo.ac.jp [Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama 350-1241 (Japan); Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655 (Japan); Department of Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655 (Japan)

    2014-09-26

    Highlights: • APP knockdown reduced proliferation and migration of prostate cancer cells. • APP knockdown reduced expression of metalloproteinase and EMT-related genes. • APP overexpression promoted LNCaP cell migration. • APP overexpression increased expression of metalloproteinase and EMT-related genes. - Abstract: Amyloid precursor protein (APP) is a type I transmembrane protein, and one of its processed forms, β-amyloid, is considered to play a central role in the development of Alzheimer’s disease. We previously showed that APP is a primary androgen-responsive gene in prostate cancer and that its increased expression is correlated with poor prognosis for patients with prostate cancer. APP has also been implicated in several human malignancies. Nevertheless, the mechanism underlying the pro-proliferative effects of APP on cancers is still not well-understood. In the present study, we explored a pathophysiological role for APP in prostate cancer cells using siRNA targeting APP (siAPP). The proliferation and migration of LNCaP and DU145 prostate cancer cells were significantly suppressed by siAPP. Differentially expressed genes in siAPP-treated cells compared to control siRNA-treated cells were identified by microarray analysis. Notably, several metalloproteinase genes, such as ADAM10 and ADAM17, and epithelial–mesenchymal transition (EMT)-related genes, such as VIM, and SNAI2, were downregulated in siAPP-treated cells as compared to control cells. The expression of these genes was upregulated in LNCaP cells stably expressing APP when compared with control cells. APP-overexpressing LNCaP cells exhibited enhanced migration in comparison to control cells. These results suggest that APP may contribute to the proliferation and migration of prostate cancer cells by modulating the expression of metalloproteinase and EMT-related genes.

  3. Exercise Prevents Diaphragm Wasting Induced by Cigarette Smoke through Modulation of Antioxidant Genes and Metalloproteinases

    Directory of Open Access Journals (Sweden)

    Gracielle Vieira Ramos

    2018-01-01

    Full Text Available Background. The present study aimed to analyze the effects of physical training on an antioxidant canonical pathway and metalloproteinases activity in diaphragm muscle in a model of cigarette smoke-induced chronic obstructive pulmonary disease (COPD. Methods. Male mice were randomized into control, smoke, exercise, and exercise + smoke groups, which were maintained in trial period of 24 weeks. Gene expression of kelch-like ECH-associated protein 1; nuclear factor erythroid-2 like 2; and heme-oxygenase1 by polymerase chain reaction was performed. Metalloproteinases 2 and 9 activities were analyzed by zymography. Exercise capacity was evaluated by treadmill exercise test before and after the protocol. Results. Aerobic training inhibited diaphragm muscle wasting induced by cigarette smoke exposure. This inhibition was associated with improved aerobic capacity in those animals that were submitted to 24 weeks of aerobic training, when compared to the control and smoke groups, which were not submitted to training. The aerobic training also downregulated the increase of matrix metalloproteinases (MMP-2 and MMP-9 and upregulated antioxidant genes, such as nuclear factor erythroid-2 like 2 (NRF2 and heme-oxygenase1 (HMOX1, in exercise + smoke group compared to smoke group. Conclusions. Treadmill aerobic training protects diaphragm muscle wasting induced by cigarette smoke exposure involving upregulation of antioxidant genes and downregulation of matrix metalloproteinases.

  4. Matrix metalloproteinases: structures, evolution, and diversification.

    Science.gov (United States)

    Massova, I; Kotra, L P; Fridman, R; Mobashery, S

    1998-09-01

    A comprehensive sequence alignment of 64 members of the family of matrix metalloproteinases (MMPs) for the entire sequences, and subsequently the catalytic and the hemopexin-like domains, have been performed. The 64 MMPs were selected from plants, invertebrates, and vertebrates. The analyses disclosed that as many as 23 distinct subfamilies of these proteins are known to exist. Information from the sequence alignments was correlated with structures, both crystallographic as well as computational, of the catalytic domains for the 23 representative members of the MMP family. A survey of the metal binding sites and two loops containing variable sequences of amino acids, which are important for substrate interactions, are discussed. The collective data support the proposal that the assembly of the domains into multidomain enzymes was likely to be an early evolutionary event. This was followed by diversification, perhaps in parallel among the MMPs, in a subsequent evolutionary time scale. Analysis indicates that a retrograde structure simplification may have accounted for the evolution of MMPs with simple domain constituents, such as matrilysin, from the larger and more elaborate enzymes.

  5. Insights into the Evolution of a Snake Venom Multi-Gene Family from the Genomic Organization of Echis ocellatus SVMP Genes

    Directory of Open Access Journals (Sweden)

    Libia Sanz

    2016-07-01

    Full Text Available The molecular events underlying the evolution of the Snake Venom Metalloproteinase (SVMP family from an A Disintegrin And Metalloproteinase (ADAM ancestor remain poorly understood. Comparative genomics may provide decisive information to reconstruct the evolutionary history of this multi-locus toxin family. Here, we report the genomic organization of Echis ocellatus genes encoding SVMPs from the PII and PI classes. Comparisons between them and between these genes and the genomic structures of Anolis carolinensis ADAM28 and E. ocellatus PIII-SVMP EOC00089 suggest that insertions and deletions of intronic regions played key roles along the evolutionary pathway that shaped the current diversity within the multi-locus SVMP gene family. In particular, our data suggest that emergence of EOC00028-like PI-SVMP from an ancestral PII(e/d-type SVMP involved splicing site mutations that abolished both the 3′ splice AG acceptor site of intron 12* and the 5′ splice GT donor site of intron 13*, and resulted in the intronization of exon 13* and the consequent destruction of the structural integrity of the PII-SVMP characteristic disintegrin domain.

  6. Matrix Metalloproteinase Enzyme Family

    Directory of Open Access Journals (Sweden)

    Ozlem Goruroglu Ozturk

    2013-04-01

    Full Text Available Matrix metalloproteinases play an important role in many biological processes such as embriogenesis, tissue remodeling, wound healing, and angiogenesis, and in some pathological conditions such as atherosclerosis, arthritis and cancer. Currently, 24 genes have been identified in humans that encode different groups of matrix metalloproteinase enzymes. This review discuss the members of the matrix metalloproteinase family and their substrate specificity, structure, function and the regulation of their enzyme activity by tissue inhibitors. [Archives Medical Review Journal 2013; 22(2.000: 209-220

  7. Correlation of Claudins6 (CLDN6 gene expression in meningioma tissue with the expression of matrix metalloproteinases (MMPs/ tissue inhibitors of matrix metalloproteinase (TIMPs and epithelialmesenchymal transition (EMT genes

    Directory of Open Access Journals (Sweden)

    An-Qiang Yang

    2017-09-01

    Full Text Available Objective: To study the correlation of Claudins6 (CLDN6 gene expression in meningioma tissue with the expression of matrix metalloproteinases (MMPs/tissue inhibitors of matrix metalloproteinase (TIMPs and epithelial-mesenchymal transition (EMT genes. Methods: Meningioma tissue samples that were surgically removed in Yibin First People’s Hospital between April 2014 and May 2017 were selected, normal arachnoid tissue samples that were collected from decompressive craniectomy in Yibin First People’s Hospital during the same period were selected, and the expression of CLDN6, MMPs/TIMPs and EMT genes in tissues were determined. Results: CLDN6 protein expression in meningioma tissue was significantly lower than that in normal arachnoid tissue; EMMPRIN, MMP2, MMP9, Vimentin and N-cadherin protein expression in meningioma tissue were significantly higher than those in normal arachnoid tissue while TIMP1, TIMP2, E-cadherin and α-catenin protein expression were significantly lower than those in normal arachnoid tissue; EMMPRIN, MMP2, MMP9, Vimentin and N-cadherin protein expression in meningioma tissue with higher CLDN6 expression were significantly lower than those in meningioma tissue with lower CLDN6 expression while TIMP1, TIMP2, E-cadherin and α-catenin protein expression were significantly higher than those in meningioma tissue with lower CLDN6 expression. Conclusion: Lowly expressed CLDN6 gene in meningioma tissue can increase the hydrolysis activity of MMPs, induce epithelial-mesenchymal transition and thus promote the invasive growth of meningioma.

  8. Genetic Variation in the Matrix Metalloproteinase Genes and Diabetic Nephropathy in Type 1 Diabetes

    OpenAIRE

    Kure, Masahiko; Pezzolesi, Marcus G.; Poznik, G. David; Katavetin, Pisut; Skupien, Jan; Dunn, Jonathon S.; Mychaleckyj, Josyf C.; Warram, James H.; Krolewski, Andrzej S.

    2011-01-01

    Genetic data support the notion that polymorphisms in members of the matrix metalloproteinase (MMP) family of genes play an important role in extracellular matrix remodeling and contribute to the pathogenesis of vascular disease. To identify novel genetic markers for diabetic nephropathy (DN), we examined the relationship between MMP gene polymorphisms and DN in the Genetics of Kidneys in Diabetes (GoKinD) population. Genotypic data from the Genetic Association Information Network (GAIN) type...

  9. Matrix metalloproteinase-2 gene variants and abdominal aortic aneurysm.

    Science.gov (United States)

    Smallwood, L; Warrington, N; Allcock, R; van Bockxmeer, F; Palmer, L J; Iacopetta, B; Golledge, J; Norman, P E

    2009-08-01

    To investigate associations between two polymorphisms of the matrix metalloproteinase-2 gene (MMP2) and the incidence and progression of abdominal aortic aneurysm (AAA). Cases and controls were recruited from a trial of screening for AAAs. The association between two variants of MMP2 (-1360C>T, and +649C>T) in men with AAA (n=678) and in controls (n=659) was examined using multivariate analyses. The association with AAA expansion (n=638) was also assessed. In multivariate analyses with adjustments for multiple testing, no association between either SNP and AAA presence or expansion was detected. MMP2 -1360C>T and +649C>T variants are not risk factors for AAA.

  10. Neighboring Genes Show Correlated Evolution in Gene Expression

    Science.gov (United States)

    Ghanbarian, Avazeh T.; Hurst, Laurence D.

    2015-01-01

    When considering the evolution of a gene’s expression profile, we commonly assume that this is unaffected by its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between neighboring genes in gene expression profiles in extant taxa. Indeed, in all eukaryotic genomes genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this here we consider evolution of human gene expression since the human-chimp common ancestor, allowing for both variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. We find that in all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression of neighbors. The effect is highly pronounced in the immediate vicinity (genes increasing their expression in humans tend to avoid nuclear lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, we conclude that, most probably owing to chromatin level control of gene expression, a change in gene expression of one gene likely affects the expression evolution of neighbors, what we term expression piggybacking, an analog of hitchhiking. PMID:25743543

  11. Evolution of homeobox genes.

    Science.gov (United States)

    Holland, Peter W H

    2013-01-01

    Many homeobox genes encode transcription factors with regulatory roles in animal and plant development. Homeobox genes are found in almost all eukaryotes, and have diversified into 11 gene classes and over 100 gene families in animal evolution, and 10 to 14 gene classes in plants. The largest group in animals is the ANTP class which includes the well-known Hox genes, plus other genes implicated in development including ParaHox (Cdx, Xlox, Gsx), Evx, Dlx, En, NK4, NK3, Msx, and Nanog. Genomic data suggest that the ANTP class diversified by extensive tandem duplication to generate a large array of genes, including an NK gene cluster and a hypothetical ProtoHox gene cluster that duplicated to generate Hox and ParaHox genes. Expression and functional data suggest that NK, Hox, and ParaHox gene clusters acquired distinct roles in patterning the mesoderm, nervous system, and gut. The PRD class is also diverse and includes Pax2/5/8, Pax3/7, Pax4/6, Gsc, Hesx, Otx, Otp, and Pitx genes. PRD genes are not generally arranged in ancient genomic clusters, although the Dux, Obox, and Rhox gene clusters arose in mammalian evolution as did several non-clustered PRD genes. Tandem duplication and genome duplication expanded the number of homeobox genes, possibly contributing to the evolution of developmental complexity, but homeobox gene loss must not be ignored. Evolutionary changes to homeobox gene expression have also been documented, including Hox gene expression patterns shifting in concert with segmental diversification in vertebrates and crustaceans, and deletion of a Pitx1 gene enhancer in pelvic-reduced sticklebacks. WIREs Dev Biol 2013, 2:31-45. doi: 10.1002/wdev.78 For further resources related to this article, please visit the WIREs website. The author declares that he has no conflicts of interest. Copyright © 2012 Wiley Periodicals, Inc.

  12. Polymorphisms in the estrogen receptor 1 and vitamin C and matrix metalloproteinase gene families are associated with susceptibility to lymphoma.

    Directory of Open Access Journals (Sweden)

    Christine F Skibola

    Full Text Available BACKGROUND: Non-Hodgkin lymphoma (NHL is the fifth most common cancer in the U.S. and few causes have been identified. Genetic association studies may help identify environmental risk factors and enhance our understanding of disease mechanisms. METHODOLOGY/PRINCIPAL FINDINGS: 768 coding and haplotype tagging SNPs in 146 genes were examined using Illumina GoldenGate technology in a large population-based case-control study of NHL in the San Francisco Bay Area (1,292 cases 1,375 controls are included here. Statistical analyses were restricted to HIV- participants of white non-Hispanic origin. Genes involved in steroidogenesis, immune function, cell signaling, sunlight exposure, xenobiotic metabolism/oxidative stress, energy balance, and uptake and metabolism of cholesterol, folate and vitamin C were investigated. Sixteen SNPs in eight pathways and nine haplotypes were associated with NHL after correction for multiple testing at the adjusted q<0.10 level. Eight SNPs were tested in an independent case-control study of lymphoma in Germany (494 NHL cases and 494 matched controls. Novel associations with common variants in estrogen receptor 1 (ESR1 and in the vitamin C receptor and matrix metalloproteinase gene families were observed. Four ESR1 SNPs were associated with follicular lymphoma (FL in the U.S. study, with rs3020314 remaining associated with reduced risk of FL after multiple testing adjustments [odds ratio (OR = 0.42, 95% confidence interval (CI = 0.23-0.77 and replication in the German study (OR = 0.24, 95% CI = 0.06-0.94. Several SNPs and haplotypes in the matrix metalloproteinase-3 (MMP3 and MMP9 genes and in the vitamin C receptor genes, solute carrier family 23 member 1 (SLC23A1 and SLC23A2, showed associations with NHL risk. CONCLUSIONS/SIGNIFICANCE: Our findings suggest a role for estrogen, vitamin C and matrix metalloproteinases in the pathogenesis of NHL that will require further validation.

  13. The relationship among gene expression, the evolution of gene dosage, and the rate of protein evolution.

    Directory of Open Access Journals (Sweden)

    Jean-François Gout

    2010-05-01

    Full Text Available The understanding of selective constraints affecting genes is a major issue in biology. It is well established that gene expression level is a major determinant of the rate of protein evolution, but the reasons for this relationship remain highly debated. Here we demonstrate that gene expression is also a major determinant of the evolution of gene dosage: the rate of gene losses after whole genome duplications in the Paramecium lineage is negatively correlated to the level of gene expression, and this relationship is not a byproduct of other factors known to affect the fate of gene duplicates. This indicates that changes in gene dosage are generally more deleterious for highly expressed genes. This rule also holds for other taxa: in yeast, we find a clear relationship between gene expression level and the fitness impact of reduction in gene dosage. To explain these observations, we propose a model based on the fact that the optimal expression level of a gene corresponds to a trade-off between the benefit and cost of its expression. This COSTEX model predicts that selective pressure against mutations changing gene expression level or affecting the encoded protein should on average be stronger in highly expressed genes and hence that both the frequency of gene loss and the rate of protein evolution should correlate negatively with gene expression. Thus, the COSTEX model provides a simple and common explanation for the general relationship observed between the level of gene expression and the different facets of gene evolution.

  14. New Gene Evolution: Little Did We Know

    Science.gov (United States)

    Long, Manyuan; VanKuren, Nicholas W.; Chen, Sidi; Vibranovski, Maria D.

    2014-01-01

    Genes are perpetually added to and deleted from genomes during evolution. Thus, it is important to understand how new genes are formed and evolve as critical components of the genetic systems determining the biological diversity of life. Two decades of effort have shed light on the process of new gene origination, and have contributed to an emerging comprehensive picture of how new genes are added to genomes, ranging from the mechanisms that generate new gene structures to the presence of new genes in different organisms to the rates and patterns of new gene origination and the roles of new genes in phenotypic evolution. We review each of these aspects of new gene evolution, summarizing the main evidence for the origination and importance of new genes in evolution. We highlight findings showing that new genes rapidly change existing genetic systems that govern various molecular, cellular and phenotypic functions. PMID:24050177

  15. Matrix metalloproteinase gene polymorphisms in patients with coronary artery disease

    Directory of Open Access Journals (Sweden)

    Vanessa L.N. Dalepiane

    2007-01-01

    Full Text Available Matrix metalloproteinases (MMPs play an important role in the pathogenesis of atherosclerosis, the pathology underlying the majority of coronary artery disease (CAD. In this study we tested the hypothesis that polymorphic variation in the MMP genes influences the risk of developing atherosclerosis. We analyzed functional polymorphisms in the promoter of the MMP-1, MMP-3, MMP-9 and MMP-12 genes in 183 Brazilian Caucasian individuals submitted to coronary angiography, of which 67 (37% had normal coronary arteries (control group and 116 (63% had CAD (CAD patient group. The -1607 1G/2G MMP-1, -1171 5A/6A MMP-3, -1562 C/T MMP-9, -82 A/G MMP-12 polymorphisms were analyzed by PCR followed by restriction digestion. No significant differences were observed in allele frequencies between the CAD patients and controls. Haplotype analysis showed no differences between the CAD patients and controls. There was a significant difference in the severity of CAD, as assessed by the number of diseased vessels, in MMP-1 1G/1G homozygous individuals and in those homozygous for the 6A allele of the MMP-3 polymorphism. However, multivariate analysis showed that diabetes mellitus was the only variable independently associated with CAD severity. Our findings indicated that MMP polymorphisms have no significant impact on the risk and severity of CAD.

  16. MADS-box gene evolution - structure and transcription patterns

    DEFF Research Database (Denmark)

    Johansen, Bo; Pedersen, Louise Buchholt; Skipper, Martin

    2002-01-01

    Mads-box genes, ABC model, Evolution, Phylogeny, Transcription patterns, Gene structure, Conserved motifs......Mads-box genes, ABC model, Evolution, Phylogeny, Transcription patterns, Gene structure, Conserved motifs...

  17. Expression of matrix metalloproteinase-8 gene in fixed orthodontic patients

    Directory of Open Access Journals (Sweden)

    Susilowati Susilowati

    2011-03-01

    Full Text Available Background: Orthodontic treatment with fixed appliance produces structural and biochemical changes and breaking the balance between the synthesis and the breakdown of the collagen in the periodontium. Matrix metalloproteinase-8 (MMP-8 plays an important role in the remodeling of periodontal ligament during orthodontic movement. Purpose: The purpose of this study was to observe the expression of MMP-8 gene in the gingival crevicular fluid (GCF of fixed orthodontic patients. It is expexted that the result can be used as a reference to decide the proper time for elastomeric chain to be reactivated. Methods: Orthodontic fixed appliances were placed on 8 patients and elastomeric chains exerting 75 grams were attached to produce canine distalization. GCF samples were collected from the distal side of upper canines before force application, 1-, 2-, 3-, and 4 weeks after application consecutively. The samples were analyzed by using RT-PCR. Statistical analyses used were univariate analysis and Mann-WhitneyU test. Results: The expression of MMP-8 in the GCF at t0 was 31.3% but the force application elevated its expression to 65.6% at t1, and then decreased continously at t2, t3, and t4. There was no statistically significant difference of MMP-8 gene expression between t0 and t3. Conclusion: The highest level of MMP-8 gene expression due to orthodontic forces was occured in the first week, but it declined continously in the following weeks. The proper time to reactivate an elastomeric chain was 3 weeks after application.Latar belakang: Perawatan ortodontik dengan peranti cekat menghasilkan perubahan-perubahan stuktural dan biokimiawi pada jaringan periodontal dan mengganggu keseimbangan antara sintesis dan pemecahan kolagen pada periodonsium. Matrix metalloproteinase-8MMP-8 memainkan peran yang penting dalam remodeling ligamentum periodontal selama pergerakan gigi ortodontik. Tujuan: Tujuan dari penelitian ini ialah untuk mengamati ekspresi gen MMP-8

  18. Neutral and Non-Neutral Evolution of Duplicated Genes with Gene Conversion

    Directory of Open Access Journals (Sweden)

    Jeffrey A. Fawcett

    2011-02-01

    Full Text Available Gene conversion is one of the major mutational mechanisms involved in the DNA sequence evolution of duplicated genes. It contributes to create unique patters of DNA polymorphism within species and divergence between species. A typical pattern is so-called concerted evolution, in which the divergence between duplicates is maintained low for a long time because of frequent exchanges of DNA fragments. In addition, gene conversion affects the DNA evolution of duplicates in various ways especially when selection operates. Here, we review theoretical models to understand the evolution of duplicates in both neutral and non-neutral cases. We also explain how these theories contribute to interpreting real polymorphism and divergence data by using some intriguing examples.

  19. Polymorphisms of the matrix metalloproteinase 9 gene and abdominal aortic aneurysm.

    Science.gov (United States)

    Smallwood, L; Allcock, R; van Bockxmeer, F; Warrington, N; Palmer, L J; Iacopetta, B; Golledge, J; Norman, P E

    2008-10-01

    Increased matrix metalloproteinase (MMP) 9 activity has been implicated in the formation of abdominal aortic aneurysm (AAA). The aim was to explore the association between potentially functional variants of the MMP-9 gene and AAA. The -1562C > T and -1811A > T variants of the MMP-9 gene were genotyped in 678 men with an AAA (at least 30 mm in diameter) and 659 control subjects (aortic diameter 19-22 mm) recruited from a population-based trial of screening for AAA. Levels of MMP-9 were measured in a random subset of 300 cases and 84 controls. The association between genetic variants (including haplotypes) and AAA was assessed by multivariable logistic regression. There was no association between the MMP-9-1562C > T (odds ratio (OR) 0.70 (95 per cent confidence interval (c.i.) 0.27 to 1.82)) or -1811A > T (OR 0.71 (95 per cent c.i. 0.28 to 1.85)) genotypes, or the most common haplotype (OR 0.81 (95 per cent c.i. 0.62 to 1.05)) and AAA. The serum MMP-9 concentration was higher in cases than controls, and in minor allele carriers in cases and controls, although the differences were not statistically significant. In this study, the genetic tendency to higher levels of circulating MMP-9 was not associated with AAA.

  20. New genes as drivers of phenotypic evolution

    Science.gov (United States)

    Chen, Sidi; Krinsky, Benjamin H.; Long, Manyuan

    2014-01-01

    During the course of evolution, genomes acquire novel genetic elements as sources of functional and phenotypic diversity, including new genes that originated in recent evolution. In the past few years, substantial progress has been made in understanding the evolution and phenotypic effects of new genes. In particular, an emerging picture is that new genes, despite being present in the genomes of only a subset of species, can rapidly evolve indispensable roles in fundamental biological processes, including development, reproduction, brain function and behaviour. The molecular underpinnings of how new genes can develop these roles are starting to be characterized. These recent discoveries yield fresh insights into our broad understanding of biological diversity at refined resolution. PMID:23949544

  1. Mycobacterium tuberculosis, but not vaccine BCG, specifically upregulates matrix metalloproteinase-1.

    Science.gov (United States)

    Elkington, Paul T G; Nuttall, Robert K; Boyle, Joseph J; O'Kane, Cecilia M; Horncastle, Donna E; Edwards, Dylan R; Friedland, Jon S

    2005-12-15

    Pulmonary cavitation is fundamental to the global success of Mycobacterium tuberculosis. However, the mechanisms of this lung destruction are poorly understood. The biochemistry of lung matrix predicts matrix metalloproteinase (MMP) involvement in immunopathology. We investigated gene expression of all MMPs, proteins with a disintegrin and metalloproteinase domain, and tissue inhibitors of metalloproteinases in M. tuberculosis-infected human macrophages by real-time polymerase chain reaction. MMP secretion was measured by zymography and Western analysis, and expression in patients with pulmonary tuberculosis was localized by immunohistochemistry. MMP-1 and MMP-7 gene expression and secretion are potently upregulated by M. tuberculosis, and no increase in tissue inhibitor of metalloproteinase expression occurs to oppose their activity. Dexamethasone completely suppresses MMP-1 but not MMP-7 gene expression and secretion. In patients with active tuberculosis, macrophages express MMP-1 and MMP-7 adjacent to areas of tissue destruction. MMP-1 but not MMP-7 expression and secretion are relatively M. tuberculosis specific, are not upregulated by tuberculosis-associated cytokines, and are prostaglandin dependent. In contrast, the vaccine M. bovis bacillus Calmette-Guérin (BCG) does not stimulate MMP-1 secretion from human macrophages, although M. tuberculosis and BCG do upregulate MMP-7 equally. BCG-infected macrophages secrete reduced prostaglandin E2 concentrations compared with M. tuberculosis-infected macrophages, and prostaglandin pathway supplementation augments MMP-1 secretion from BCG-infected cells. M. tuberculosis specifically upregulates MMP-1 in a cellular model of human infection and in patients with tuberculosis. In contrast, vaccine BCG, which does not cause lung cavitation, does not upregulate prostaglandin E2-dependent MMP-1 secretion.

  2. Co-evolution of secondary metabolite gene clusters and their host

    DEFF Research Database (Denmark)

    Kjærbølling, Inge; Vesth, Tammi Camilla; Frisvad, Jens Christian

    Secondary metabolite gene cluster evolution is mainly driven by two events: gene duplication and annexation and horizontal gene transfer. Here we use comparative genomics of Aspergillus species to investigate the evolution of secondary metabolite (SM) gene clusters across a wide spectrum of speci....... We investigate the dynamic evolutionary relationship between the cluster and the host by examining the genes within the cluster and the number of homologous genes found within the host and in closely related species.......Secondary metabolite gene cluster evolution is mainly driven by two events: gene duplication and annexation and horizontal gene transfer. Here we use comparative genomics of Aspergillus species to investigate the evolution of secondary metabolite (SM) gene clusters across a wide spectrum of species...

  3. Matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in diagnosis of pleural effusion of malignant origin.

    Science.gov (United States)

    Fiorelli, Alfonso; Ricci, Serena; Feola, Antonia; Mazzella, Antonio; D'Angelo, Luigi; Santini, Mario; Di Domenico, Marina; Di Carlo, Angelina

    2016-04-01

    The aim of the present study was to evaluate the diagnostic accuracy of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in differentiating benign from malignant exudative pleural effusions. This is a unicentre observational study including 97 consecutive patients with exudative pleural effusions. Metalloproteinase-9, tissue inhibitor of metalloproteinase-1, lactate dehydrogenase, ferritin, carcinoembryonic antigen and carbohydrate antigen 15-3 were measured in pleural effusion and serum by enzyme-linked immunosorbent assay. The activity of metalloproteinase-9 was also evaluated by substrate zymography. The data were correlated with final diagnosis of pleural effusions to evaluate the diagnostic accuracy. Of the 97 eligible patients, 6 were excluded. Of the 91 patients included in the study, 70 had malignant pleural effusions and 21 had benign pleural effusions. Both in sera and pleural effusions, matrix metalloproteinase-9 (P effusion (P effusion metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 levels showed higher value of sensitivity (97 and 91%, respectively) and specificity (90 and 95%, respectively) compared with other standard markers. Serum metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 levels showed similar results. Among 70 neoplastic patients, 29 had negative pleural cytology. Of these, 25 presented elevated levels of metalloproteinase-9 and tissue inhibitor of metalloproteinase-1, whereas 4 patients had elevated levels of one of the two markers. Our results showed that metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 might be valuable markers in differentiating benign from malignant pleural effusions. Their levels are neither influenced by the histology and tumour origin nor by the presence of tumour cells in pleural effusions. Thus, their use in clinical practice could help in the selection of patients needing more invasive procedures, such as thoracoscopic biopsy. © The Author 2016

  4. Expression of the insect metalloproteinase inhibitor IMPI in the fat body of Galleria mellonella exposed to infection with Beauveria bassiana.

    Science.gov (United States)

    Vertyporokh, Lidiia; Wojda, Iwona

    2017-01-01

    The inducible metalloproteinase inhibitor (IMPI) discovered in Galleria mellonella is currently the only specific inhibitor of metalloproteinases found in animals. Its role is to inhibit the activity of metalloproteinases secreted by pathogenic organisms as virulence factors to degrade immune-relevant polypeptides of the infected host. This is a good example of an evolutionary arms race between the insect hosts and their natural pathogens. In this report, we analyze the expression of a gene encoding an inducible metalloproteinase inhibitor (IMPI) in fat bodies of the greater wax moth larvae Galleria mellonella infected with an entomopathogenic fungus Beauveria bassiana. We have used a natural infection, i.e. covering larval integument with fungal aerospores, as well as injection of fungal blastospores directly into the larval hemocel. We compare the expression of IMPI with the expression of genes encoding proteins with fungicidal activity, gallerimycin and galiomycin, whose expression reflects the stimulation of Galleria mellonella defense mechanisms. Also, gene expression is analyzed in the light of survival of animals after spore injection.

  5. Immune genes undergo more adaptive evolution than non-immune system genes in Daphnia pulex

    Directory of Open Access Journals (Sweden)

    McTaggart Seanna J

    2012-05-01

    Full Text Available Abstract Background Understanding which parts of the genome have been most influenced by adaptive evolution remains an unsolved puzzle. Some evidence suggests that selection has the greatest impact on regions of the genome that interact with other evolving genomes, including loci that are involved in host-parasite co-evolutionary processes. In this study, we used a population genetic approach to test this hypothesis by comparing DNA sequences of 30 putative immune system genes in the crustacean Daphnia pulex with 24 non-immune system genes. Results In support of the hypothesis, results from a multilocus extension of the McDonald-Kreitman (MK test indicate that immune system genes as a class have experienced more adaptive evolution than non-immune system genes. However, not all immune system genes show evidence of adaptive evolution. Additionally, we apply single locus MK tests and calculate population genetic parameters at all loci in order to characterize the mode of selection (directional versus balancing in the genes that show the greatest deviation from neutral evolution. Conclusions Our data are consistent with the hypothesis that immune system genes undergo more adaptive evolution than non-immune system genes, possibly as a result of host-parasite arms races. The results of these analyses highlight several candidate loci undergoing adaptive evolution that could be targeted in future studies.

  6. Snake Venom Metalloproteinases

    Directory of Open Access Journals (Sweden)

    Gâz Florea Şerban Andrei

    2016-03-01

    Full Text Available As more data are generated from proteome and transcriptome analysis revealing that metalloproteinases represent most of the Viperid and Colubrid venom components authors decided to describe in a short review a classification and some of the multiple activities of snake venom metalloproteinases. SVMPs are classified in three major classes (P-I, P-II and P-III classes based on the presence of various domain structures and according to their domain organization. Furthermore, P-II and P-III classes were separated in subclasses based on distinctive post-translational modifications. SVMPs are synthesized in a latent form, being activated through a Cys-switch mechanism similar to matrix metalloproteinases. Most of the metalloproteinases of the snake venom are responsible for the hemorrhagic events but also have fibrinogenolytic activity, poses apoptotic activity, activate blood coagulation factor II and X, inhibit platelet aggregation, demonstrating that SVMPs have multiple functions in addition to well-known hemorrhagic function.

  7. The origin and evolution of Basigin(BSG) gene: A comparative genomic and phylogenetic analysis.

    Science.gov (United States)

    Zhu, Xinyan; Wang, Shenglan; Shao, Mingjie; Yan, Jie; Liu, Fei

    2017-07-01

    Basigin (BSG), also known as extracellular matrix metalloproteinase inducer (EMMPRIN) or cluster of differentiation 147 (CD147), plays various fundamental roles in the intercellular recognition involved in immunologic phenomena, differentiation, and development. In this study, we aimed to compare the similarities and differences of BSG among organisms and explore possible evolutionary relationships based on the comparison result. We used the extensive BLAST tool to search the metazoan genomes, N-glycosylation sites, the transmembrane region and other functional sites. We then identified BSG homologs from genomic sequences and analyzed their phylogenetic relationships. We identified that BSG genes exist not only in the vertebrate metazoans but also in the invertebrate metazoans such as Amphioxus B. floridae, D. melanogaster, A. mellifera, S. japonicum, C. gigas, and T. patagoniensis. After sequence analysis, we confirmed that only vertebrate metazoans and Cephalochordate (amphioxus B. floridae) have the classic structure (a signal peptide, two Ig-like domains (IgC2 and IgI), a transmembrane region, and an intracellular domain). The invertebrate metazoans (excluding amphioxus B. floridae) lack the N-terminal signal peptides and IgC2 domain. We then generated a phylogenetic tree, genome organization comparison, and chromosomal disposition analysis based on the biological information obtained from the NCBI and Ensembl databases. Finally, we established the possible evolutionary scenario of the BSG gene, which showed the restricted exon rearrangement that has occurred during evolution, forming the present-day BSG gene. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. RANK ligand signaling modulates the matrix metalloproteinase-9 gene expression during osteoclast differentiation

    International Nuclear Information System (INIS)

    Sundaram, Kumaran; Nishimura, Riko; Senn, Joseph; Youssef, Rimon F.; London, Steven D.; Reddy, Sakamuri V.

    2007-01-01

    Osteoclast differentiation is tightly regulated by receptor activator of NF-κB ligand (RANKL) signaling. Matrix metalloproteinase-9 (MMP-9), a type IV collagenase is highly expressed in osteoclast cells and plays an important role in degradation of extracellular matrix; however, the molecular mechanisms that regulate MMP-9 gene expression are unknown. In this study, we demonstrate that RANKL signaling induces MMP-9 gene expression in osteoclast precursor cells. We further show that RANKL regulates MMP-9 gene expression through TRAF6 but not TRAF2. Interestingly, blockade of p38 MAPK activity by pharmacological inhibitor, SB203580 increases MMP-9 activity whereas ERK1/2 inhibitor, PD98059 decreases RANKL induced MMP-9 activity in RAW264.7 cells. These data suggest that RANKL differentially regulates MMP-9 expression through p38 and ERK signaling pathways during osteoclast differentiation. Transient expression of MMP-9 gene (+ 1 to - 1174 bp relative to ATG start codon) promoter-luciferase reporter plasmids in RAW264.7 cells and RANKL stimulation showed significant increase (20-fold) of MMP-9 gene promoter activity; however, there is no significant change with respect to + 1 bp to - 446 bp promoter region and empty vector transfected cells. These results indicated that MMP-9 promoter sequence from - 446 bp to - 1174 bp relative to start codon is responsive to RANKL stimulation. Sequence analysis of the mouse MMP-9 gene promoter region further identified the presence of binding motif (- 1123 bp to - 1153 bp) for the nuclear factor of activated T cells 1 (NFATc1) transcription factor. Inhibition of NFATc1 using siRNA and VIVIT peptide inhibitor significantly decreased RANKL stimulation of MMP-9 activity. We further confirm by oligonucleotide pull-down assay that RANKL stimuli enhanced NFATc1 binding to MMP-9 gene promoter element. In addition, over-expression of constitutively active NFAT in RAW264.7 cells markedly increased (5-fold) MMP-9 gene promoter activity in

  9. The evolution of the matrix metalloproteinase inhibitor drug discovery program at abbott laboratories.

    Science.gov (United States)

    Wada, Carol K

    2004-01-01

    Matrix metalloproteinases (MMPs) have been implicated in several pathologies. At Abbott Laboratories, the matrix metalloproteinases inhibitor drug discovery program has focused on the discovery of a potent, selective, orally bioavailable MMP inhibitor for the treatment of cancer. The program evolved from early succinate-based inhibitors to utilizing in-house technology such as SAR by NMR to develop a novel class of biaryl hydroxamate MMP inhibitors. The metabolic instability of the biaryl hydroxamates led to the discovery of a new class of N-formylhydroxylamine (retrohydroxamate) biaryl ethers, exemplified by ABT-770 (16). Toxicity issues with this pre-clinical candidate led to the discovery of another novel class of retrohydroxamate MMP inhibitors, the phenoxyphenyl sulfones such as ABT-518 (19j). ABT-518 is a potent, orally bioavailable, selective inhibitor of MMP-2 and 9 over MMP-1 that has been evaluated in Phase I clinical trials in cancer patients.

  10. The evolution of gene expression levels in mammalian organs

    DEFF Research Database (Denmark)

    Brawand, David; Soumillon, Magali; Necsulea, Anamaria

    2011-01-01

    and chromosomes, owing to differences in selective pressures: transcriptome change was slow in nervous tissues and rapid in testes, slower in rodents than in apes and monotremes, and rapid for the X chromosome right after its formation. Although gene expression evolution in mammals was strongly shaped......Changes in gene expression are thought to underlie many of the phenotypic differences between species. However, large-scale analyses of gene expression evolution were until recently prevented by technological limitations. Here we report the sequencing of polyadenylated RNA from six organs across...... ten species that represent all major mammalian lineages (placentals, marsupials and monotremes) and birds (the evolutionary outgroup), with the goal of understanding the dynamics of mammalian transcriptome evolution. We show that the rate of gene expression evolution varies among organs, lineages...

  11. The evolution of gene expression QTL in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    James Ronald

    2007-08-01

    Full Text Available Understanding the evolutionary forces that influence patterns of gene expression variation will provide insights into the mechanisms of evolutionary change and the molecular basis of phenotypic diversity. To date, studies of gene expression evolution have primarily been made by analyzing how gene expression levels vary within and between species. However, the fundamental unit of heritable variation in transcript abundance is the underlying regulatory allele, and as a result it is necessary to understand gene expression evolution at the level of DNA sequence variation. Here we describe the evolutionary forces shaping patterns of genetic variation for 1206 cis-regulatory QTL identified in a cross between two divergent strains of Saccharomyces cerevisiae. We demonstrate that purifying selection against mildly deleterious alleles is the dominant force governing cis-regulatory evolution in S. cerevisiae and estimate the strength of selection. We also find that essential genes and genes with larger codon bias are subject to slightly stronger cis-regulatory constraint and that positive selection has played a role in the evolution of major trans-acting QTL.

  12. Adaptive Evolution of Gene Expression in Drosophila.

    Science.gov (United States)

    Nourmohammad, Armita; Rambeau, Joachim; Held, Torsten; Kovacova, Viera; Berg, Johannes; Lässig, Michael

    2017-08-08

    Gene expression levels are important quantitative traits that link genotypes to molecular functions and fitness. In Drosophila, population-genetic studies have revealed substantial adaptive evolution at the genomic level, but the evolutionary modes of gene expression remain controversial. Here, we present evidence that adaptation dominates the evolution of gene expression levels in flies. We show that 64% of the observed expression divergence across seven Drosophila species are adaptive changes driven by directional selection. Our results are derived from time-resolved data of gene expression divergence across a family of related species, using a probabilistic inference method for gene-specific selection. Adaptive gene expression is stronger in specific functional classes, including regulation, sensory perception, sexual behavior, and morphology. Moreover, we identify a large group of genes with sex-specific adaptation of expression, which predominantly occurs in males. Our analysis opens an avenue to map system-wide selection on molecular quantitative traits independently of their genetic basis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Adaptive Evolution of Gene Expression in Drosophila

    Directory of Open Access Journals (Sweden)

    Armita Nourmohammad

    2017-08-01

    Full Text Available Gene expression levels are important quantitative traits that link genotypes to molecular functions and fitness. In Drosophila, population-genetic studies have revealed substantial adaptive evolution at the genomic level, but the evolutionary modes of gene expression remain controversial. Here, we present evidence that adaptation dominates the evolution of gene expression levels in flies. We show that 64% of the observed expression divergence across seven Drosophila species are adaptive changes driven by directional selection. Our results are derived from time-resolved data of gene expression divergence across a family of related species, using a probabilistic inference method for gene-specific selection. Adaptive gene expression is stronger in specific functional classes, including regulation, sensory perception, sexual behavior, and morphology. Moreover, we identify a large group of genes with sex-specific adaptation of expression, which predominantly occurs in males. Our analysis opens an avenue to map system-wide selection on molecular quantitative traits independently of their genetic basis.

  14. Dynamic evolution of bitter taste receptor genes in vertebrates

    Directory of Open Access Journals (Sweden)

    Jones Gareth

    2009-01-01

    Full Text Available Abstract Background Sensing bitter tastes is crucial for many animals because it can prevent them from ingesting harmful foods. This process is mainly mediated by the bitter taste receptors (T2R, which are largely expressed in the taste buds. Previous studies have identified some T2R gene repertoires, and marked variation in repertoire size has been noted among species. However, the mechanisms underlying the evolution of vertebrate T2R genes remain poorly understood. Results To better understand the evolutionary pattern of these genes, we identified 16 T2R gene repertoires based on the high coverage genome sequences of vertebrates and studied the evolutionary changes in the number of T2R genes during birth-and-death evolution using the reconciled-tree method. We found that the number of T2R genes and the fraction of pseudogenes vary extensively among species. Based on the results of phylogenetic analysis, we showed that T2R gene families in teleost fishes are more diverse than those in tetrapods. In addition to the independent gene expansions in teleost fishes, frogs and mammals, lineage-specific gene duplications were also detected in lizards. Furthermore, extensive gains and losses of T2R genes were detected in each lineage during their evolution, resulting in widely differing T2R gene repertoires. Conclusion These results further support the hypotheses that T2R gene repertoires are closely related to the dietary habits of different species and that birth-and-death evolution is associated with adaptations to dietary changes.

  15. Snake Venom Metalloproteinases

    OpenAIRE

    Gâz Florea Şerban Andrei; Gâz Florea Adriana; Kelemen Hajnal; Muntean Daniela-Lucia

    2016-01-01

    As more data are generated from proteome and transcriptome analysis revealing that metalloproteinases represent most of the Viperid and Colubrid venom components authors decided to describe in a short review a classification and some of the multiple activities of snake venom metalloproteinases. SVMPs are classified in three major classes (P-I, P-II and P-III classes) based on the presence of various domain structures and according to their domain organization. Furthermore, P-II and P-III clas...

  16. Circulating levels of matrix metalloproteinases and tissue inhibitors of metalloproteinases in patients with incisional hernia

    DEFF Research Database (Denmark)

    Henriksen, Nadia A; Sørensen, Lars T; Jorgensen, Lars N

    2013-01-01

    Incisional hernia formation is a common complication to laparotomy and possibly associated with alterations in connective tissue metabolism. Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) are closely involved in the metabolism of the extracellular matrix. Our...

  17. The association of the metalloproteinase-3 gene promoter polymorphisms and the middle cerebral artery stenosis.

    Science.gov (United States)

    Fu, Chunli; Xing, Yingqi; Song, Xiaonan

    2011-04-01

    To investigate the association of single nucleotide polymorphism in the matrix metalloproteinase-3 (MMP3) gene promoter with the susceptibility to the middle cerebral artery stenosis. A case-control study was performed by determining the genotype of MMP3 gene promoter region using polymerase chain reaction-restriction fragment length polymorphism in 119 patients with middle cerebral artery stenosis documented by transcranial Doppler compared to 92 control patients. The frequencies of 5A and 6A alleles in MMP3 promoter region were 16.0 and 84.0% respectively in case group compared to 15.8 and 84.2% in control group with no significant difference between the two groups (P > 0.05). No significant difference was also observed in the distribution of genotypes 5A/5A,5A/6A, and 6A/6A between middle cerebral artery stenosis and control groups. Compared to 5A/5A + 5A/6A genotypes,the 6A/6A genotype did not significantly modify the risk of developing the middle cerebral artery stenosis. The MMP3-1171 dupA promoter polymorphisms are not valuable markers of susceptibility of the middle cerebral artery stenosis in this sample of population studied.

  18. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in gingival crevicular fluid during orthodontic tooth movement.

    NARCIS (Netherlands)

    Bildt, M.M.; Bloemen, M.; Kuijpers-Jagtman, A.M.; Hoff, J.W. Von den

    2009-01-01

    Orthodontic tooth movement requires extensive re-modelling of the periodontium. Matrix metalloproteinases (MMPs) degrade the extracellular matrix during re-modelling, while their activity is regulated by the tissue inhibitors of metalloproteinases (TIMPs). The aim of this study was to investigate

  19. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in gingival crevicular fluid during orthodontic tooth movement

    NARCIS (Netherlands)

    Bildt, Miriam; Bloemen, M; Kuijpers-Jagtman, A.M.; Von Den Hoff, Johannes W

    2009-01-01

    Orthodontic tooth movement requires extensive re-modelling of the periodontium. Matrix metalloproteinases (MMPs) degrade the extracellular matrix during re-modelling, while their activity is regulated by the tissue inhibitors of metalloproteinases (TIMPs). The aim of this study was to investigate

  20. Gene-expression analysis of matrix metalloproteinases 1 and 2 and their tissue inhibitors in chronic periapical inflammatory lesions.

    Science.gov (United States)

    Hadziabdic, Naida; Kurtovic-Kozaric, Amina; Pojskic, Naris; Sulejmanagic, Nedim; Todorovic, Ljubomir

    2016-03-01

    Periapical inflammatory lesions have been investigated previously, but understanding of pathogenesis of these lesions (granulomas and radicular cysts) at the molecular level is still questionable. Matrix metalloproteinases (MMPs) are enzymes involved in the development of periapical pathology, specifically inflammation and tissue destruction. To elucidate pathogenesis of periapical granulomas and radicular cysts, we undertook a detailed analysis of gene expression of MMP-1, MMP-2 and their tissue inhibitors, TIMP-1 and TIMP-2. A total of 149 samples were analyzed using real-time PCR (59 radicular cysts, 50 periapical granulomas and 40 healthy gingiva samples as controls) for expression of MMP-1, MMP-2, TIMP-1 and TIMP-2 genes. The determination of best reference gene for expression analysis of periapical lesions was done using a panel of 12 genes. We have shown that β-actin and GAPDH are not the most stable reference controls for gene expression analysis of inflammatory periapical tissues and healthy gingiva. The most suitable reference gene was determined to be SDHA (a succinate dehydrogenase complex, subunit A, flavoprotein [Fp]). We found that granulomas (n = 50) and radicular cysts (n = 59) exhibited significantly higher expression of all four examined genes, MMP-1, MMP-2, TIMP-1, and TIMP-2, when compared to healthy gingiva (n = 40; P periapical inflammatory lesions. Since the abovementioned markers were not differentially expressed in periapical granulomas and radicular cysts, the challenge of finding the genetic differences between the two lesions still remains. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Evolution of glutamate dehydrogenase genes: evidence for lateral gene transfer within and between prokaryotes and eukaryotes

    Directory of Open Access Journals (Sweden)

    Roger Andrew J

    2003-06-01

    Full Text Available Abstract Background Lateral gene transfer can introduce genes with novel functions into genomes or replace genes with functionally similar orthologs or paralogs. Here we present a study of the occurrence of the latter gene replacement phenomenon in the four gene families encoding different classes of glutamate dehydrogenase (GDH, to evaluate and compare the patterns and rates of lateral gene transfer (LGT in prokaryotes and eukaryotes. Results We extend the taxon sampling of gdh genes with nine new eukaryotic sequences and examine the phylogenetic distribution pattern of the various GDH classes in combination with maximum likelihood phylogenetic analyses. The distribution pattern analyses indicate that LGT has played a significant role in the evolution of the four gdh gene families. Indeed, a number of gene transfer events are identified by phylogenetic analyses, including numerous prokaryotic intra-domain transfers, some prokaryotic inter-domain transfers and several inter-domain transfers between prokaryotes and microbial eukaryotes (protists. Conclusion LGT has apparently affected eukaryotes and prokaryotes to a similar extent within the gdh gene families. In the absence of indications that the evolution of the gdh gene families is radically different from other families, these results suggest that gene transfer might be an important evolutionary mechanism in microbial eukaryote genome evolution.

  2. Conditions for the Evolution of Gene Clusters in Bacterial Genomes

    Science.gov (United States)

    Ballouz, Sara; Francis, Andrew R.; Lan, Ruiting; Tanaka, Mark M.

    2010-01-01

    Genes encoding proteins in a common pathway are often found near each other along bacterial chromosomes. Several explanations have been proposed to account for the evolution of these structures. For instance, natural selection may directly favour gene clusters through a variety of mechanisms, such as increased efficiency of coregulation. An alternative and controversial hypothesis is the selfish operon model, which asserts that clustered arrangements of genes are more easily transferred to other species, thus improving the prospects for survival of the cluster. According to another hypothesis (the persistence model), genes that are in close proximity are less likely to be disrupted by deletions. Here we develop computational models to study the conditions under which gene clusters can evolve and persist. First, we examine the selfish operon model by re-implementing the simulation and running it under a wide range of conditions. Second, we introduce and study a Moran process in which there is natural selection for gene clustering and rearrangement occurs by genome inversion events. Finally, we develop and study a model that includes selection and inversion, which tracks the occurrence and fixation of rearrangements. Surprisingly, gene clusters fail to evolve under a wide range of conditions. Factors that promote the evolution of gene clusters include a low number of genes in the pathway, a high population size, and in the case of the selfish operon model, a high horizontal transfer rate. The computational analysis here has shown that the evolution of gene clusters can occur under both direct and indirect selection as long as certain conditions hold. Under these conditions the selfish operon model is still viable as an explanation for the evolution of gene clusters. PMID:20168992

  3. Molecular evolution of the keratin associated protein gene family in mammals, role in the evolution of mammalian hair.

    Science.gov (United States)

    Wu, Dong-Dong; Irwin, David M; Zhang, Ya-Ping

    2008-08-23

    Hair is unique to mammals. Keratin associated proteins (KRTAPs), which contain two major groups: high/ultrahigh cysteine and high glycine-tyrosine, are one of the major components of hair and play essential roles in the formation of rigid and resistant hair shafts. The KRTAP family was identified as being unique to mammals, and near-complete KRTAP gene repertoires for eight mammalian genomes were characterized in this study. An expanded KRTAP gene repertoire was found in rodents. Surprisingly, humans have a similar number of genes as other primates despite the relative hairlessness of humans. We identified several new subfamilies not previously reported in the high/ultrahigh cysteine KRTAP genes. Genes in many subfamilies of the high/ultrahigh cysteine KRTAP genes have evolved by concerted evolution with frequent gene conversion events, yielding a higher GC base content for these gene sequences. In contrast, the high glycine-tyrosine KRTAP genes have evolved more dynamically, with fewer gene conversion events and thus have a lower GC base content, possibly due to positive selection. Most of the subfamilies emerged early in the evolution of mammals, thus we propose that the mammalian ancestor should have a diverse KRTAP gene repertoire. We propose that hair content characteristics have evolved and diverged rapidly among mammals because of rapid divergent evolution of KRTAPs between species. In contrast, subfamilies of KRTAP genes have been homogenized within each species due to concerted evolution.

  4. The low-recombining pericentromeric region of barley restricts gene diversity and evolution but not gene expression

    Science.gov (United States)

    Baker, Katie; Bayer, Micha; Cook, Nicola; Dreißig, Steven; Dhillon, Taniya; Russell, Joanne; Hedley, Pete E; Morris, Jenny; Ramsay, Luke; Colas, Isabelle; Waugh, Robbie; Steffenson, Brian; Milne, Iain; Stephen, Gordon; Marshall, David; Flavell, Andrew J

    2014-01-01

    The low-recombining pericentromeric region of the barley genome contains roughly a quarter of the genes of the species, embedded in low-recombining DNA that is rich in repeats and repressive chromatin signatures. We have investigated the effects of pericentromeric region residency upon the expression, diversity and evolution of these genes. We observe no significant difference in average transcript level or developmental RNA specificity between the barley pericentromeric region and the rest of the genome. In contrast, all of the evolutionary parameters studied here show evidence of compromised gene evolution in this region. First, genes within the pericentromeric region of wild barley show reduced diversity and significantly weakened purifying selection compared with the rest of the genome. Second, gene duplicates (ohnolog pairs) derived from the cereal whole-genome duplication event ca. 60MYa have been completely eliminated from the barley pericentromeric region. Third, local gene duplication in the pericentromeric region is reduced by 29% relative to the rest of the genome. Thus, the pericentromeric region of barley is a permissive environment for gene expression but has restricted gene evolution in a sizeable fraction of barley's genes. PMID:24947331

  5. Kinetic analysis of the inhibition of matrix metalloproteinases: lessons from the study of tissue inhibitors of metalloproteinases.

    Science.gov (United States)

    Willenbrock, Frances; Thomas, Daniel A; Amour, Augustin

    2010-01-01

    Tissue inhibitors of metalloproteinases (TIMPs) are a group of highly potent inhibitors of matrix metalloproteinases (MMPs) and disintegrin metalloproteinases (ADAMs). The high affinity and "tight-binding" nature of the inhibition of MMPs or ADAMs by TIMPs presents challenges for the determination of both equilibrium and dissociation rate constants of these inhibitory events. Methodologies that enable some of these challenges to be overcome are described in this chapter and represent valuable lessons for the in vitro assessment of MMP or ADAM inhibitors within a drug discovery context.

  6. Rate of evolution in brain-expressed genes in humans and other primates.

    Directory of Open Access Journals (Sweden)

    Hurng-Yi Wang

    2007-02-01

    Full Text Available Brain-expressed genes are known to evolve slowly in mammals. Nevertheless, since brains of higher primates have evolved rapidly, one might expect acceleration in DNA sequence evolution in their brain-expressed genes. In this study, we carried out full-length cDNA sequencing on the brain transcriptome of an Old World monkey (OWM and then conducted three-way comparisons among (i mouse, OWM, and human, and (ii OWM, chimpanzee, and human. Although brain-expressed genes indeed appear to evolve more rapidly in species with more advanced brains (apes > OWM > mouse, a similar lineage effect is observable for most other genes. The broad inclusion of genes in the reference set to represent the genomic average is therefore critical to this type of analysis. Calibrated against the genomic average, the rate of evolution among brain-expressed genes is probably lower (or at most equal in humans than in chimpanzee and OWM. Interestingly, the trend of slow evolution in coding sequence is no less pronounced among brain-specific genes, vis-à-vis brain-expressed genes in general. The human brain may thus differ from those of our close relatives in two opposite directions: (i faster evolution in gene expression, and (ii a likely slowdown in the evolution of protein sequences. Possible explanations and hypotheses are discussed.

  7. Conditions for the evolution of gene clusters in bacterial genomes.

    Directory of Open Access Journals (Sweden)

    Sara Ballouz

    2010-02-01

    Full Text Available Genes encoding proteins in a common pathway are often found near each other along bacterial chromosomes. Several explanations have been proposed to account for the evolution of these structures. For instance, natural selection may directly favour gene clusters through a variety of mechanisms, such as increased efficiency of coregulation. An alternative and controversial hypothesis is the selfish operon model, which asserts that clustered arrangements of genes are more easily transferred to other species, thus improving the prospects for survival of the cluster. According to another hypothesis (the persistence model, genes that are in close proximity are less likely to be disrupted by deletions. Here we develop computational models to study the conditions under which gene clusters can evolve and persist. First, we examine the selfish operon model by re-implementing the simulation and running it under a wide range of conditions. Second, we introduce and study a Moran process in which there is natural selection for gene clustering and rearrangement occurs by genome inversion events. Finally, we develop and study a model that includes selection and inversion, which tracks the occurrence and fixation of rearrangements. Surprisingly, gene clusters fail to evolve under a wide range of conditions. Factors that promote the evolution of gene clusters include a low number of genes in the pathway, a high population size, and in the case of the selfish operon model, a high horizontal transfer rate. The computational analysis here has shown that the evolution of gene clusters can occur under both direct and indirect selection as long as certain conditions hold. Under these conditions the selfish operon model is still viable as an explanation for the evolution of gene clusters.

  8. The evolution of gene expression in primates

    OpenAIRE

    Tashakkori Ghanbarian, Avazeh

    2015-01-01

    The evolution of a gene’s expression profile is commonly assumed to be independent of its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between expression of neighboring genes in extant taxa. Indeed, in all eukaryotic genomes, genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their e...

  9. The evolution of CHROMOMETHYLASES and gene body DNA methylation in plants.

    Science.gov (United States)

    Bewick, Adam J; Niederhuth, Chad E; Ji, Lexiang; Rohr, Nicholas A; Griffin, Patrick T; Leebens-Mack, Jim; Schmitz, Robert J

    2017-05-01

    The evolution of gene body methylation (gbM), its origins, and its functional consequences are poorly understood. By pairing the largest collection of transcriptomes (>1000) and methylomes (77) across Viridiplantae, we provide novel insights into the evolution of gbM and its relationship to CHROMOMETHYLASE (CMT) proteins. CMTs are evolutionary conserved DNA methyltransferases in Viridiplantae. Duplication events gave rise to what are now referred to as CMT1, 2 and 3. Independent losses of CMT1, 2, and 3 in eudicots, CMT2 and ZMET in monocots and monocots/commelinids, variation in copy number, and non-neutral evolution suggests overlapping or fluid functional evolution of this gene family. DNA methylation within genes is widespread and is found in all major taxonomic groups of Viridiplantae investigated. Genes enriched with methylated CGs (mCG) were also identified in species sister to angiosperms. The proportion of genes and DNA methylation patterns associated with gbM are restricted to angiosperms with a functional CMT3 or ortholog. However, mCG-enriched genes in the gymnosperm Pinus taeda shared some similarities with gbM genes in Amborella trichopoda. Additionally, gymnosperms and ferns share a CMT homolog closely related to CMT2 and 3. Hence, the dependency of gbM on a CMT most likely extends to all angiosperms and possibly gymnosperms and ferns. The resulting gene family phylogeny of CMT transcripts from the most diverse sampling of plants to date redefines our understanding of CMT evolution and its evolutionary consequences on DNA methylation. Future, functional tests of homologous and paralogous CMTs will uncover novel roles and consequences to the epigenome.

  10. Evolution of the vertebrate insulin receptor substrate (Irs) gene family.

    Science.gov (United States)

    Al-Salam, Ahmad; Irwin, David M

    2017-06-23

    Insulin receptor substrate (Irs) proteins are essential for insulin signaling as they allow downstream effectors to dock with, and be activated by, the insulin receptor. A family of four Irs proteins have been identified in mice, however the gene for one of these, IRS3, has been pseudogenized in humans. While it is known that the Irs gene family originated in vertebrates, it is not known when it originated and which members are most closely related to each other. A better understanding of the evolution of Irs genes and proteins should provide insight into the regulation of metabolism by insulin. Multiple genes for Irs proteins were identified in a wide variety of vertebrate species. Phylogenetic and genomic neighborhood analyses indicate that this gene family originated very early in vertebrae evolution. Most Irs genes were duplicated and retained in fish after the fish-specific genome duplication. Irs genes have been lost of various lineages, including Irs3 in primates and birds and Irs1 in most fish. Irs3 and Irs4 experienced an episode of more rapid protein sequence evolution on the ancestral mammalian lineage. Comparisons of the conservation of the proteins sequences among Irs paralogs show that domains involved in binding to the plasma membrane and insulin receptors are most strongly conserved, while divergence has occurred in sequences involved in interacting with downstream effector proteins. The Irs gene family originated very early in vertebrate evolution, likely through genome duplications, and in parallel with duplications of other components of the insulin signaling pathway, including insulin and the insulin receptor. While the N-terminal sequences of these proteins are conserved among the paralogs, changes in the C-terminal sequences likely allowed changes in biological function.

  11. Molecular cloning of RBCS genes in Selaginella and the evolution of the rbcS gene family

    Directory of Open Access Journals (Sweden)

    Wang Bo

    2015-01-01

    Full Text Available Rubisco small subunits (RBCS are encoded by a nuclear rbcS multigene family in higher plants and green algae. However, owing to the lack of rbcS sequences in lycophytes, the characteristics of rbcS genes in lycophytes is unclear. Recently, the complete genome sequence of the lycophyte Selaginella moellendorffii provided the first insight into the rbcS gene family in lycophytes. To understand further the characteristics of rbcS genes in other Selaginella, the full length of rbcS genes (rbcS1 and rbcS2 from two other Selaginella species were isolated. Both rbcS1 and rbcS2 genes shared more than 97% identity among three Selaginella species. RBCS proteins from Selaginella contained the Pfam RBCS domain F00101, which was a major domain of other plant RBCS proteins. To explore the evolution of the rbcS gene family across Selaginella and other plants, we identified and performed comparative analysis of the rbcS gene family among 16 model plants based on a genome-wide analysis. The results showed that (i two rbcS genes were obtained in Selaginella, which is the second fewest number of rbcS genes among the 16 representative plants; (ii an expansion of rbcS genes occurred in the moss Physcomitrella patens; (iii only RBCS proteins from angiosperms contained the Pfam PF12338 domains, and (iv a pattern of concerted evolution existed in the rbcS gene family. Our study provides new insights into the evolution of the rbcS gene family in Selaginella and other plants.

  12. Distinctive patterns of evolution of the δ-globin gene (HBD in primates.

    Directory of Open Access Journals (Sweden)

    Ana Moleirinho

    Full Text Available In most vertebrates, hemoglobin (Hb is a heterotetramer composed of two dissimilar globin chains, which change during development according to the patterns of expression of α- and β-globin family members. In placental mammals, the β-globin cluster includes three early-expressed genes, ε(HBE-γ(HBG-ψβ(HBBP1, and the late expressed genes, δ (HBD and β (HBB. While HBB encodes the major adult β-globin chain, HBD is weakly expressed or totally silent. Paradoxically, in human populations HBD shows high levels of conservation typical of genes under strong evolutionary constraints, possibly due to a regulatory role in the fetal-to-adult switch unique of Anthropoid primates. In this study, we have performed a comprehensive phylogenetic and comparative analysis of the two adult β-like globin genes in a set of diverse mammalian taxa, focusing on the evolution and functional divergence of HBD in primates. Our analysis revealed that anthropoids are an exception to a general pattern of concerted evolution in placental mammals, showing a high level of sequence conservation at HBD, less frequent and shorter gene conversion events. Moreover, this lineage is unique in the retention of a functional GATA-1 motif, known to be involved in the control of the developmental expression of the β-like globin genes. We further show that not only the mode but also the rate of evolution of the δ-globin gene in higher primates are strictly associated with the fetal/adult β-cluster developmental switch. To gain further insight into the possible functional constraints that have been shaping the evolutionary history of HBD in primates, we calculated dN/dS (ω ratios under alternative models of gene evolution. Although our results indicate that HBD might have experienced different selective pressures throughout primate evolution, as shown by different ω values between apes and Old World Monkeys + New World Monkeys (0.06 versus 0.43, respectively, these estimates

  13. Serum matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 levels in patients with tick-borne encephalitis

    Czech Academy of Sciences Publication Activity Database

    Palus, Martin; Žampachová, E.; Elsterová, Jana; Růžek, Daniel

    2014-01-01

    Roč. 68, č. 2 (2014), s. 165-169 ISSN 0163-4453 R&D Projects: GA ČR GAP502/11/2116 Institutional support: RVO:60077344 Keywords : tick-borne encephalitis * matrix metalloproteinase-9 * tissue inhibitor of metalloproteinase-1 * bloodebrain barrier Subject RIV: EC - Immunology Impact factor: 4.441, year: 2014

  14. The Influence of Autologous Bone Marrow Stem Cell Transplantation on Matrix Metalloproteinases in Patients Treated for Acute ST-Elevation Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Eline Bredal Furenes

    2014-01-01

    Full Text Available Background. Matrix metalloproteinase-9 (MMP-9, regulated by tissue inhibitor of metalloproteinase-9 (TIMP-1 and the extracellular matrix metalloproteinase inducer (EMMPRIN, contributes to plaque instability. Autologous stem cells from bone marrow (mBMC treatment are suggested to reduce myocardial damage; however, limited data exists on the influence of mBMC on MMPs. Aim. We investigated the influence of mBMC on circulating levels of MMP-9, TIMP-1, and EMMPRIN at different time points in patients included in the randomized Autologous Stem-Cell Transplantation in Acute Myocardial Infarction (ASTAMI trial (n=100. Gene expression analyses were additionally performed. Results. After 2-3 weeks we observed a more pronounced increase in MMP-9 levels in the mBMC group, compared to controls (P=0.030, whereas EMMPRIN levels were reduced from baseline to 2-3 weeks and 3 months in both groups (P<0.0001. Gene expression of both MMP-9 and EMMPRIN was reduced from baseline to 3 months. MMP-9 and EMMPRIN were significantly correlated to myocardial injury (CK: P=0.005 and P<0.001, resp. and infarct size (SPECT: P=0.018 and P=0.008, resp.. Conclusion. The results indicate that the regulation of metalloproteinases is important during AMI, however, limited influenced by mBMC.

  15. Molecular Evolution and Expression Divergence of HMT Gene Family in Plants

    Directory of Open Access Journals (Sweden)

    Man Zhao

    2018-04-01

    Full Text Available Homocysteine methyltransferase (HMT converts homocysteine to methionine using S-methylmethionine (SMM or S-adenosylmethionine (SAM as methyl donors in organisms, playing an important role in supplying methionine for the growth and the development of plants. To better understand the functions of the HMT genes in plants, we conducted a wide evolution and expression analysis of these genes. Reconstruction of the phylogenetic relationship showed that the HMT gene family was divided into Class 1 and Class 2. In Class 1, HMTs were only found in seed plants, while Class 2 presented in all land plants, which hinted that the HMT genes might have diverged in seed plants. The analysis of gene structures and selection pressures showed that they were relatively conserved during evolution. However, type I functional divergence had been detected in the HMTs. Furthermore, the expression profiles of HMTs showed their distinct expression patterns in different tissues, in which some HMTs were widely expressed in various organs, whereas the others were highly expressed in some specific organs, such as seeds or leaves. Therefore, according to our results in the evolution, functional divergence, and expression, the HMT genes might have diverged during evolution. Further analysis in the expression patterns of AthHMTs with their methyl donors suggested that the diverged HMTs might be related to supply methionine for the development of plant seeds.

  16. Cytogenetics, conserved synteny and evolution of chicken fucosyltransferase genes compared to human

    NARCIS (Netherlands)

    Coullin, P.; Crooijmans, R.P.M.A.; Fillon, V.; Mollicone, R.; Groenen, M.A.M.; Adrien-Dehais, C.; Bernheim, A.; Zoorob, R.; Oriol, R.; Candelier, J.J.

    2003-01-01

    Fucosyltransferases appeared early in evolution, since they are present from bacteria to primates and the genes are well conserved. The aim of this work was to study these genes in the bird group, which is particularly attractive for the comprehension of the evolution of the vertebrate genome.

  17. Metalloproteinases and their regulators in colorectal cancer.

    NARCIS (Netherlands)

    Jagt, M.F.P. van der; Wobbes, T.; Strobbe, L.J.; Sweep, F.C.; Span, P.N.

    2010-01-01

    Metalloproteinases (MPs) such as the matrix metalloproteinases (MMPs) and adamalysins (ADAMs and ADAMTS) are expressed in various stages of colorectal cancer (CRC), and some correlate with survival and prognosis. The MPs are regulated by various factors including EMMPRIN, TIMPs, and RECK. In

  18. The evolution of heart gene delivery vectors

    Science.gov (United States)

    Wasala, Nalinda B.; Shin, Jin-Hong; Duan, Dongsheng

    2012-01-01

    Gene therapy holds promise for treating numerous heart diseases. A key premise for the success of cardiac gene therapy is the development of powerful gene transfer vehicles that can achieve highly efficient and persistent gene transfer specifically in the heart. Other features of an ideal vector include negligible toxicity, minimal immunogenicity and easy manufacturing. Rapid progress in the fields of molecular biology and virology has offered great opportunities to engineer various genetic materials for heart gene delivery. Several nonviral vectors (e.g. naked plasmids, plasmid lipid/polymer complexes and oligonucleotides) have been tested. Commonly used viral vectors include lentivirus, adenovirus and adeno-associated virus. Among these, adeno-associated virus has shown many attractive features for pre-clinical experimentation in animal models of heart diseases. We review the history and evolution of these vectors for heart gene transfer. PMID:21837689

  19. Convergent evolution of gene networks by single-gene duplications in higher eukaryotes.

    Science.gov (United States)

    Amoutzias, Gregory D; Robertson, David L; Oliver, Stephen G; Bornberg-Bauer, Erich

    2004-03-01

    By combining phylogenetic, proteomic and structural information, we have elucidated the evolutionary driving forces for the gene-regulatory interaction networks of basic helix-loop-helix transcription factors. We infer that recurrent events of single-gene duplication and domain rearrangement repeatedly gave rise to distinct networks with almost identical hub-based topologies, and multiple activators and repressors. We thus provide the first empirical evidence for scale-free protein networks emerging through single-gene duplications, the dominant importance of molecular modularity in the bottom-up construction of complex biological entities, and the convergent evolution of networks.

  20. Molecular pathways to parallel evolution: I. Gene nexuses and their morphological correlates.

    Science.gov (United States)

    Zuckerkandl, E

    1994-12-01

    Aspects of the regulatory interactions among genes are probably as old as most genes are themselves. Correspondingly, similar predispositions to changes in such interactions must have existed for long evolutionary periods. Features of the structure and the evolution of the system of gene regulation furnish the background necessary for a molecular understanding of parallel evolution. Patently "unrelated" organs, such as the fat body of a fly and the liver of a mammal, can exhibit fractional homology, a fraction expected to become subject to quantitation. This also seems to hold for different organs in the same organism, such as wings and legs of a fly. In informational macromolecules, on the other hand, homology is indeed all or none. In the quite different case of organs, analogy is expected usually to represent attenuated homology. Many instances of putative convergence are likely to turn out to be predominantly parallel evolution, presumably including the case of the vertebrate and cephalopod eyes. Homology in morphological features reflects a similarity in networks of active genes. Similar nexuses of active genes can be established in cells of different embryological origins. Thus, parallel development can be considered a counterpart to parallel evolution. Specific macromolecular interactions leading to the regulation of the c-fos gene are given as an example of a "controller node" defined as a regulatory unit. Quantitative changes in gene control are distinguished from relational changes, and frequent parallelism in quantitative changes is noted in Drosophila enzymes. Evolutionary reversions in quantitative gene expression are also expected. The evolution of relational patterns is attributed to several distinct mechanisms, notably the shuffling of protein domains. The growth of such patterns may in part be brought about by a particular process of compensation for "controller gene diseases," a process that would spontaneously tend to lead to increased regulatory

  1. Expression of matrix metalloproteinase genes during basement membrane degradation in the metamorphosis of Bombyx mori.

    Science.gov (United States)

    Kawasaki, Hideki; Manickam, Asaithambi; Shahin, Rima; Ote, Manabu; Iwanaga, Masashi

    2018-01-05

    The present study was conducted to clarify the involvement of the basement membrane (BM) in insect metamorphosis through analysis of the expression profile of two types of metalloproteinase (MMP and ADAMTS) genes in several organs, their ecdysone involvement, and the histological change of BM. BM was observed around wing sac and in the wing cavity and around fat bodies at the W0 stage but disappeared after the W3 stage, and wing discs evaginated and fat body cells scattered after the W3 stage. The disappearance of the BM of midgut and silk glands was not observed after the W3 stage, but degenerated epithelium cells in the midgut and shrunken cells in the silk gland were observed after the W3 stage. BmMMP1 showed a peak at P0 in the wing discs, fat bodies, midgut, and silk gland. BmMMP2 showed a broad peak around pupation in the wing discs, fat bodies, midgut, and silk gland. BmADAMTS-1 showed enhanced expression at W2 in the wing discs, fat bodies, midgut, and hemocyte, while BmADAMTS-L showed enhanced expression at W3 in the fat bodies, midgut, silk gland, and hemocyte. After pupation, they showed a different expression in different organs. All of four genes were induced by 20-hydroxyecdysone in wing discs in vitro. The present results suggested the involvement of MMPs and ADAMTS in the BM digestion and the morphogenesis of organs during Bombyx metamorphosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Molecular evolution and diversification of snake toxin genes, revealed by analysis of intron sequences.

    Science.gov (United States)

    Fujimi, T J; Nakajyo, T; Nishimura, E; Ogura, E; Tsuchiya, T; Tamiya, T

    2003-08-14

    The genes encoding erabutoxin (short chain neurotoxin) isoforms (Ea, Eb, and Ec), LsIII (long chain neurotoxin) and a novel long chain neurotoxin pseudogene were cloned from a Laticauda semifasciata genomic library. Short and long chain neurotoxin genes were also cloned from the genome of Laticauda laticaudata, a closely related species of L. semifasciata, by PCR. A putative matrix attached region (MAR) sequence was found in the intron I of the LsIII gene. Comparative analysis of 11 structurally relevant snake toxin genes (three-finger-structure toxins) revealed the molecular evolution of these toxins. Three-finger-structure toxin genes diverged from a common ancestor through two types of evolutionary pathways (long and short types), early in the course of evolution. At a later stage of evolution in each gene, the accumulation of mutations in the exons, especially exon II, by accelerated evolution may have caused the increased diversification in their functions. It was also revealed that the putative MAR sequence found in the LsIII gene was integrated into the gene after the species-level divergence.

  3. Association of matrix metalloproteinase inducer (EMMPRIN) with the expression of matrix metalloproteinases-1, -2 and -9 during periapical lesion development.

    Science.gov (United States)

    Sousa, Natália Guimarães Kalatzis; Cardoso, Cristina Ribeiro de Barros; Silva, João Satana da; Kuga, Milton Carlos; Tanomaru-Filho, Mário; Faria, Gisele

    2014-09-01

    To evaluate the expression of matrix metalloproteinase inducer (EMMPRIN) and its correlation with the expression of matrix metalloproteinases (MMPs)-1, -2 and -9 during the development of periapical lesion in mice. Periapical lesions were induced in the lower first molars of mice and after 7, 14, 21 and 42 days the mandibles were removed. The periapical lesions were measured by micro-computed tomography. The expression of EMMPRIN, MMPs-1, -2, and -9 genes were determined by real-time RT-PCR. The location and expression of EMMPRIN and MMPs were evaluated by immunohistochemistry. At 14 days, the periapical lesion area was higher than at 7 days. At 21 and 42 days no statistically significant bone loss was observed in comparison to 14 days. The control group showed discrete and occasional EMMPRIM, MMP-1, -2 and -9 immunostaining in the periodontal ligament fibroblasts. At 7, 14, 21 and 42 days intense immunoexpression was observed for EMMPRIN, MMPs-1, -2 and -9 in the region adjacent to the apical foramen. The EMMPRIN immunoexpression was higher at 7, 14, 21 and 42 days compared with the control. There was a positive correlation between gene expression of EMMPRIN and MMPs in the active phase of periapical lesion development. There is a high expression of EMMPRIM mainly by the inflammatory infiltrate in the region adjacent to the apical foramen during periapical lesion development. Furthermore, the positive correlation with MMP-1, -2, and -9 during the first days after periapical lesion induction indicates that EMMPRIM may be involved in the active phase of periapical lesions development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. On the role of sparseness in the evolution of modularity in gene regulatory networks.

    Science.gov (United States)

    Espinosa-Soto, Carlos

    2018-05-01

    Modularity is a widespread property in biological systems. It implies that interactions occur mainly within groups of system elements. A modular arrangement facilitates adjustment of one module without perturbing the rest of the system. Therefore, modularity of developmental mechanisms is a major factor for evolvability, the potential to produce beneficial variation from random genetic change. Understanding how modularity evolves in gene regulatory networks, that create the distinct gene activity patterns that characterize different parts of an organism, is key to developmental and evolutionary biology. One hypothesis for the evolution of modules suggests that interactions between some sets of genes become maladaptive when selection favours additional gene activity patterns. The removal of such interactions by selection would result in the formation of modules. A second hypothesis suggests that modularity evolves in response to sparseness, the scarcity of interactions within a system. Here I simulate the evolution of gene regulatory networks and analyse diverse experimentally sustained networks to study the relationship between sparseness and modularity. My results suggest that sparseness alone is neither sufficient nor necessary to explain modularity in gene regulatory networks. However, sparseness amplifies the effects of forms of selection that, like selection for additional gene activity patterns, already produce an increase in modularity. That evolution of new gene activity patterns is frequent across evolution also supports that it is a major factor in the evolution of modularity. That sparseness is widespread across gene regulatory networks indicates that it may have facilitated the evolution of modules in a wide variety of cases.

  5. Gene duplication, modularity and adaptation in the evolution of the aflatoxin gene cluster

    Directory of Open Access Journals (Sweden)

    Jakobek Judy L

    2007-07-01

    Full Text Available Abstract Background The biosynthesis of aflatoxin (AF involves over 20 enzymatic reactions in a complex polyketide pathway that converts acetate and malonate to the intermediates sterigmatocystin (ST and O-methylsterigmatocystin (OMST, the respective penultimate and ultimate precursors of AF. Although these precursors are chemically and structurally very similar, their accumulation differs at the species level for Aspergilli. Notable examples are A. nidulans that synthesizes only ST, A. flavus that makes predominantly AF, and A. parasiticus that generally produces either AF or OMST. Whether these differences are important in the evolutionary/ecological processes of species adaptation and diversification is unknown. Equally unknown are the specific genomic mechanisms responsible for ordering and clustering of genes in the AF pathway of Aspergillus. Results To elucidate the mechanisms that have driven formation of these clusters, we performed systematic searches of aflatoxin cluster homologs across five Aspergillus genomes. We found a high level of gene duplication and identified seven modules consisting of highly correlated gene pairs (aflA/aflB, aflR/aflS, aflX/aflY, aflF/aflE, aflT/aflQ, aflC/aflW, and aflG/aflL. With the exception of A. nomius, contrasts of mean Ka/Ks values across all cluster genes showed significant differences in selective pressure between section Flavi and non-section Flavi species. A. nomius mean Ka/Ks values were more similar to partial clusters in A. fumigatus and A. terreus. Overall, mean Ka/Ks values were significantly higher for section Flavi than for non-section Flavi species. Conclusion Our results implicate several genomic mechanisms in the evolution of ST, OMST and AF cluster genes. Gene modules may arise from duplications of a single gene, whereby the function of the pre-duplication gene is retained in the copy (aflF/aflE or the copies may partition the ancestral function (aflA/aflB. In some gene modules, the

  6. Matrix Metalloproteinases: The Gene Expression Signatures of Head and Neck Cancer Progression

    Energy Technology Data Exchange (ETDEWEB)

    Iizuka, Shinji [Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037 (United States); Ishimaru, Naozumi; Kudo, Yasusei, E-mail: yasusei@tokushima-u.ac.jp [Department of Oral Molecular Pathology, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-8-15 Kuramoto, Tokushima 770-8504 (Japan)

    2014-02-13

    Extracellular matrix degradation by matrix metalloproteinases (MMPs) plays a pivotal role in cancer progression by promoting motility, invasion and angiogenesis. Studies have shown that MMP expression is increased in head and neck squamous cell carcinomas (HNSCCs), one of the most common cancers in the world, and contributes to poor outcome. In this review, we examine the expression pattern of MMPs in HNSCC by microarray datasets and summarize the current knowledge of MMPs, specifically MMP-1, -3, -7 -10, -12, -13, 14 and -19, that are highly expressed in HNSCCs and involved cancer invasion and angiogenesis.

  7. Horizontal Gene Transfer Contributes to the Evolution of Arthropod Herbivory.

    Science.gov (United States)

    Wybouw, Nicky; Pauchet, Yannick; Heckel, David G; Van Leeuwen, Thomas

    2016-06-27

    Within animals, evolutionary transition toward herbivory is severely limited by the hostile characteristics of plants. Arthropods have nonetheless counteracted many nutritional and defensive barriers imposed by plants and are currently considered as the most successful animal herbivores in terrestrial ecosystems. We gather a body of evidence showing that genomes of various plant feeding insects and mites possess genes whose presence can only be explained by horizontal gene transfer (HGT). HGT is the asexual transmission of genetic information between reproductively isolated species. Although HGT is known to have great adaptive significance in prokaryotes, its impact on eukaryotic evolution remains obscure. Here, we show that laterally transferred genes into arthropods underpin many adaptations to phytophagy, including efficient assimilation and detoxification of plant produced metabolites. Horizontally acquired genes and the traits they encode often functionally diversify within arthropod recipients, enabling the colonization of more host plant species and organs. We demonstrate that HGT can drive metazoan evolution by uncovering its prominent role in the adaptations of arthropods to exploit plants. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  8. Structure and evolutionary aspects of matrix metalloproteinases: a brief overview.

    Science.gov (United States)

    Das, Sudip; Mandal, Malay; Chakraborti, Tapati; Mandal, Amritlal; Chakraborti, Sajal

    2003-11-01

    The matrix metalloproteinases (MMPs) are zinc dependent endopeptidases known for their ability to cleave one or several extracellular matrix (ECM) constituents, as well as non-matrix proteins. They comprise a large family of proteinases that share common structural and functional elements and are products of different genes. All members of this family contain a signal peptide, a propeptide and a catalytic domain. The catalytic domain contains two zinc ions and at least one calcium ion coordinated to various residues. All MMPs, with the exception matrilysin, have a hemopexin/vitronectin-like domain that is connected to the catalytic domain by a hinge or linker region. The hemopexin-like domain influences tissue inhibitor of metalloproteinases (TIMP) binding, the binding of certain substrates, membrane activation, and some proteolytic activities. It has been proposed that the origin of MMPs could be traced to before the emergence of vertebrates from invertebrates. It appears conceivable that the domain assemblies occurred at an early stage of the diversification of different MMPs and that they progressed through the evolutionary process independent of one another, and perhaps parallel to each other.

  9. New intracellular activities of matrix metalloproteinases shine in the moonlight.

    Science.gov (United States)

    Jobin, Parker G; Butler, Georgina S; Overall, Christopher M

    2017-11-01

    Adaption of a single protein to perform multiple independent functions facilitates functional plasticity of the proteome allowing a limited number of protein-coding genes to perform a multitude of cellular processes. Multifunctionality is achievable by post-translational modifications and by modulating subcellular localization. Matrix metalloproteinases (MMPs), classically viewed as degraders of the extracellular matrix (ECM) responsible for matrix protein turnover, are more recently recognized as regulators of a range of extracellular bioactive molecules including chemokines, cytokines, and their binders. However, growing evidence has convincingly identified select MMPs in intracellular compartments with unexpected physiological and pathological roles. Intracellular MMPs have both proteolytic and non-proteolytic functions, including signal transduction and transcription factor activity thereby challenging their traditional designation as extracellular proteases. This review highlights current knowledge of subcellular location and activity of these "moonlighting" MMPs. Intracellular roles herald a new era of MMP research, rejuvenating interest in targeting these proteases in therapeutic strategies. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Understanding the Snake Venom Metalloproteinases: An Interview with Jay Fox and José María Gutiérrez.

    Science.gov (United States)

    Fox, Jay W; Gutiérrez, José María

    2017-01-16

    Jay W. Fox and José María Gutiérrez recently finished editing a Special Issue on the topic "Snake Venom Metalloproteinases" in Toxins . The Special Issue covers a wide range of topics, including the molecular evolution and structure of snake venom metalloproteinases (SVMPs), the mechanisms involved in the generation of diversity of SVMPs, the mechanism of action of SVMPs, and their role in the pathophysiology of envenomings, with implications for improving the therapy of envenomings. In this interview, we discussed with Jay W. Fox and José María Gutiérrez their research on the SVMPs and their perspectives on the future trends and challenges for studying snake venoms.

  11. Improvisation in evolution of genes and genomes: whose structure is it anyway?

    Science.gov (United States)

    Shakhnovich, Boris E; Shakhnovich, Eugene I

    2008-06-01

    Significant progress has been made in recent years in a variety of seemingly unrelated fields such as sequencing, protein structure prediction, and high-throughput transcriptomics and metabolomics. At the same time, new microscopic models have been developed that made it possible to analyze the evolution of genes and genomes from first principles. The results from these efforts enable, for the first time, a comprehensive insight into the evolution of complex systems and organisms on all scales--from sequences to organisms and populations. Every newly sequenced genome uncovers new genes, families, and folds. Where do these new genes come from? How do gene duplication and subsequent divergence of sequence and structure affect the fitness of the organism? What role does regulation play in the evolution of proteins and folds? Emerging synergism between data and modeling provides first robust answers to these questions.

  12. Analysis of ribosomal protein gene structures: implications for intron evolution.

    Directory of Open Access Journals (Sweden)

    2006-03-01

    Full Text Available Many spliceosomal introns exist in the eukaryotic nuclear genome. Despite much research, the evolution of spliceosomal introns remains poorly understood. In this paper, we tried to gain insights into intron evolution from a novel perspective by comparing the gene structures of cytoplasmic ribosomal proteins (CRPs and mitochondrial ribosomal proteins (MRPs, which are held to be of archaeal and bacterial origin, respectively. We analyzed 25 homologous pairs of CRP and MRP genes that together had a total of 527 intron positions. We found that all 12 of the intron positions shared by CRP and MRP genes resulted from parallel intron gains and none could be considered to be "conserved," i.e., descendants of the same ancestor. This was supported further by the high frequency of proto-splice sites at these shared positions; proto-splice sites are proposed to be sites for intron insertion. Although we could not definitively disprove that spliceosomal introns were already present in the last universal common ancestor, our results lend more support to the idea that introns were gained late. At least, our results show that MRP genes were intronless at the time of endosymbiosis. The parallel intron gains between CRP and MRP genes accounted for 2.3% of total intron positions, which should provide a reliable estimate for future inferences of intron evolution.

  13. Chromosomal evolution of the PKD1 gene family in primates

    Directory of Open Access Journals (Sweden)

    Krawczak Michael

    2008-09-01

    Full Text Available Abstract Background The autosomal dominant polycystic kidney disease (ADPKD is mostly caused by mutations in the PKD1 (polycystic kidney disease 1 gene located in 16p13.3. Moreover, there are six pseudogenes of PKD1 that are located proximal to the master gene in 16p13.1. In contrast, no pseudogene could be detected in the mouse genome, only a single copy gene on chromosome 17. The question arises how the human situation originated phylogenetically. To address this question we applied comparative FISH-mapping of a human PKD1-containing genomic BAC clone and a PKD1-cDNA clone to chromosomes of a variety of primate species and the dog as a non-primate outgroup species. Results Comparative FISH with the PKD1-cDNA clone clearly shows that in all primate species studied distinct single signals map in subtelomeric chromosomal positions orthologous to the short arm of human chromosome 16 harbouring the master PKD1 gene. Only in human and African great apes, but not in orangutan, FISH with both BAC and cDNA clones reveals additional signal clusters located proximal of and clearly separated from the PKD1 master genes indicating the chromosomal position of PKD1 pseudogenes in 16p of these species, respectively. Indeed, this is in accordance with sequencing data in human, chimpanzee and orangutan. Apart from the master PKD1 gene, six pseudogenes are identified in both, human and chimpanzee, while only a single-copy gene is present in the whole-genome sequence of orangutan. The phylogenetic reconstruction of the PKD1-tree reveals that all human pseudogenes are closely related to the human PKD1 gene, and all chimpanzee pseudogenes are closely related to the chimpanzee PKD1 gene. However, our statistical analyses provide strong indication that gene conversion events may have occurred within the PKD1 family members of human and chimpanzee, respectively. Conclusion PKD1 must have undergone amplification very recently in hominid evolution. Duplicative

  14. Extensive lineage-specific gene duplication and evolution of the spiggin multi-gene family in stickleback

    Directory of Open Access Journals (Sweden)

    Nishida Mutsumi

    2007-11-01

    Full Text Available Abstract Background The threespine stickleback (Gasterosteus aculeatus has a characteristic reproductive mode; mature males build nests using a secreted glue-like protein called spiggin. Although recent studies reported multiple occurrences of genes that encode this glue-like protein spiggin in threespine and ninespine sticklebacks, it is still unclear how many genes compose the spiggin multi-gene family. Results Genome sequence analysis of threespine stickleback showed that there are at least five spiggin genes and two pseudogenes, whereas a single spiggin homolog occurs in the genomes of other fishes. Comparative genome sequence analysis demonstrated that Muc19, a single-copy mucous gene in human and mouse, is an ortholog of spiggin. Phylogenetic and molecular evolutionary analyses of these sequences suggested that an ancestral spiggin gene originated from a member of the mucin gene family as a single gene in the common ancestor of teleosts, and gene duplications of spiggin have occurred in the stickleback lineage. There was inter-population variation in the copy number of spiggin genes and positive selection on some codons, indicating that additional gene duplication/deletion events and adaptive evolution at some amino acid sites may have occurred in each stickleback population. Conclusion A number of spiggin genes exist in the threespine stickleback genome. Our results provide insight into the origin and dynamic evolutionary process of the spiggin multi-gene family in the threespine stickleback lineage. The dramatic evolution of genes for mucous substrates may have contributed to the generation of distinct characteristics such as "bio-glue" in vertebrates.

  15. The function and evolution of Wnt genes in arthropods.

    Science.gov (United States)

    Murat, Sophie; Hopfen, Corinna; McGregor, Alistair P

    2010-11-01

    Wnt signalling is required for a wide range of developmental processes, from cleavage to patterning and cell migration. There are 13 subfamilies of Wnt ligand genes and this diverse repertoire appeared very early in metazoan evolution. In this review, we first summarise the known Wnt gene repertoire in various arthropods. Insects appear to have lost several Wnt subfamilies, either generally, such as Wnt3, or in lineage specific patterns, for example, the loss of Wnt7 in Anopheles. In Drosophila and Acyrthosiphon, only seven and six Wnt subfamilies are represented, respectively; however, the finding of nine Wnt genes in Tribolium suggests that arthropods had a larger repertoire ancestrally. We then discuss what is currently known about the expression and developmental function of Wnt ligands in Drosophila and other insects in comparison to other arthropods, such as the spiders Achaearanea and Cupiennius. We conclude that studies of Wnt genes have given us much insight into the developmental roles of some of these ligands. However, given the frequent loss of Wnt genes in insects and the derived development of Drosophila, further studies of these important genes are required in a broader range of arthropods to fully understand their developmental function and evolution. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Hox genes and evolution [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Steven M. Hrycaj

    2016-05-01

    Full Text Available Hox proteins are a deeply conserved group of transcription factors originally defined for their critical roles in governing segmental identity along the antero-posterior (AP axis in Drosophila. Over the last 30 years, numerous data generated in evolutionarily diverse taxa have clearly shown that changes in the expression patterns of these genes are closely associated with the regionalization of the AP axis, suggesting that Hox genes have played a critical role in the evolution of novel body plans within Bilateria. Despite this deep functional conservation and the importance of these genes in AP patterning, key questions remain regarding many aspects of Hox biology. In this commentary, we highlight recent reports that have provided novel insight into the origins of the mammalian Hox cluster, the role of Hox genes in the generation of a limbless body plan, and a novel putative mechanism in which Hox genes may encode specificity along the AP axis. Although the data discussed here offer a fresh perspective, it is clear that there is still much to learn about Hox biology and the roles it has played in the evolution of the Bilaterian body plan.

  17. The sociobiology of genes: the gene's eye view as a unifying behavioural-ecological framework for biological evolution.

    Science.gov (United States)

    De Tiège, Alexis; Van de Peer, Yves; Braeckman, Johan; Tanghe, Koen B

    2017-11-22

    Although classical evolutionary theory, i.e., population genetics and the Modern Synthesis, was already implicitly 'gene-centred', the organism was, in practice, still generally regarded as the individual unit of which a population is composed. The gene-centred approach to evolution only reached a logical conclusion with the advent of the gene-selectionist or gene's eye view in the 1960s and 1970s. Whereas classical evolutionary theory can only work with (genotypically represented) fitness differences between individual organisms, gene-selectionism is capable of working with fitness differences among genes within the same organism and genome. Here, we explore the explanatory potential of 'intra-organismic' and 'intra-genomic' gene-selectionism, i.e., of a behavioural-ecological 'gene's eye view' on genetic, genomic and organismal evolution. First, we give a general outline of the framework and how it complements the-to some extent-still 'organism-centred' approach of classical evolutionary theory. Secondly, we give a more in-depth assessment of its explanatory potential for biological evolution, i.e., for Darwin's 'common descent with modification' or, more specifically, for 'historical continuity or homology with modular evolutionary change' as it has been studied by evolutionary developmental biology (evo-devo) during the last few decades. In contrast with classical evolutionary theory, evo-devo focuses on 'within-organism' developmental processes. Given the capacity of gene-selectionism to adopt an intra-organismal gene's eye view, we outline the relevance of the latter model for evo-devo. Overall, we aim for the conceptual integration between the gene's eye view on the one hand, and more organism-centred evolutionary models (both classical evolutionary theory and evo-devo) on the other.

  18. Matrix metalloproteinase 2 is required for ovulation and corpus luteum formation in Drosophila.

    Directory of Open Access Journals (Sweden)

    Lylah D Deady

    2015-02-01

    Full Text Available Ovulation is critical for successful reproduction and correlates with ovarian cancer risk, yet genetic studies of ovulation have been limited. It has long been thought that the mechanism controlling ovulation is highly divergent due to speciation and fast evolution. Using genetic tools available in Drosophila, we now report that ovulation in Drosophila strongly resembles mammalian ovulation at both the cellular and molecular levels. Just one of up to 32 mature follicles per ovary pair loses posterior follicle cells ("trimming" and protrudes into the oviduct, showing that a selection process prefigures ovulation. Follicle cells that remain after egg release form a "corpus luteum (CL" at the end of the ovariole, develop yellowish pigmentation, and express genes encoding steroid hormone biosynthetic enzymes that are required for full fertility. Finally, matrix metalloproteinase 2 (Mmp2, a type of protease thought to facilitate mammalian ovulation, is expressed in mature follicle and CL cells. Mmp2 activity is genetically required for trimming, ovulation and CL formation. Our studies provide new insights into the regulation of Drosophila ovulation and establish Drosophila as a model for genetically investigating ovulation in diverse organisms, including mammals.

  19. The evolution and expression of panarthropod frizzled genes

    Directory of Open Access Journals (Sweden)

    Ralf eJanssen

    2015-08-01

    Full Text Available Wnt signaling regulates many important processes during metazoan development. It has been shown that Wnt ligands represent an ancient and diverse family of proteins that likely function in complex signaling landscapes to induce target cells via receptors including those of the Frizzled (Fz family. The four subfamilies of Fz receptors also evolved early in metazoan evolution. To date, Fz receptors have been characterised mainly in mammals, the nematode Caenorhabditis elegans and insects such as Drosophila melanogaster. To compare these findings with other metazoans, we explored the repertoire of fz genes in three panarthropod species: Parasteatoda tepidariorum, Glomeris marginata and Euperipatoides kanangrensis, representing the Chelicerata, Myriapoda and Onychophora respectively. We found that these three diverse panarthropods each have four fz genes, with representatives of all four metazoan fz subfamilies found in Glomeris and Euperipatoides, while Parasteatoda does not have a fz3 gene, but has two fz4 paralogues. Furthermore we characterized the expression patterns of all the fz genes among these animals. Our results exemplify the evolutionary diversity of Fz receptors and reveals conserved and divergent aspects of their protein sequences and expression patterns among panarthropods; thus providing new insights into the evolution of Wnt signaling more generally.

  20. Influence of matrix metalloproteinase gene polymorphisms in healthy North Indians compared to variations in other ethnic groups worldwide.

    Science.gov (United States)

    Srivastava, Priyanka; Kapoor, Rakesh; Mittal, Rama Devi

    2009-01-01

    Matrix metalloproteinases have a range of biological functions, including the liberation of cytokines and membrane-bound receptors, with roles in promotion of tumor invasion and angiogenesis. Several polymorphisms in MMPs have been implicated in the development of cancer as well as other diseases. Since their frequency distributions in the general North Indian population is not known the present study was conducted with the focus on MMP-1(-519) Aandgt; G, MMP-1(-1607) 1Gandgt; 2G, and MMP-7(-181) Aandgt; G gene polymorphisms. PCR-based analysis was conducted for 200 normal healthy individuals of similar ethnicity. Allelic frequencies in wild type of MMP-1(-519) Aandgt; G were 71.2% A; MMP-1(-1607) 1Gandgt; 2G 48.2% 1G; MMP-7(-181) Aandgt; G 60.7% A. The variant allele frequencies were 29% A in MMP-1(-519) Aandgt; G; 52% 2G in MMP-1(-1607) 1Gandgt; 2G; and 39.3% G in MMP-7(-181) Aandgt; G respectively. We further compared frequency distribution for these genes with various published studies in different ethnicity globally. Our results suggest that frequency in these MMP genes exhibit distinctive patterns in India that could perhaps be attributed to ethnic variation. This study is important as it can form a baseline for screening individuals who are at high risk when exposed to environmental carcinogens. More emphasis is needed on evaluating polymorphisms, alone or in combination, as modifiers of risk from relevant environmental/lifestyle exposures.

  1. Matrix metalloproteinase 2 (MMP-2) levels are increased in active acromegaly patients.

    Science.gov (United States)

    Karci, Alper Cagri; Canturk, Zeynep; Tarkun, Ilhan; Cetinarslan, Berrin

    2017-07-01

    During follow-up of acromegaly patients, there is a discordance rate of 30% between the measurements of growth hormone and insulin-like growth factor-1 levels. Further tests are required to determine disease activity in patients with discordant results. This study was planned to investigate an association of serum levels of matrix metalloproteinase-2, matrix metalloproteinase-9, and cathepsin B with disease activity in acromegaly patients. In this study, 64 acromegaly patients followed in our clinic were divided into two groups according to the 2010 consensus criteria for cure of acromegaly as patients with active disease (n = 24) and patients with controlled disease (n = 40). Serum matrix metalloproteinase-2, matrix metalloproteinase-9, and cathepsin B levels were measured by the enzyme-linked immunosorbent assay method. The mean serum matrix metalloproteinase-2 level was significantly higher in the active acromegaly patients than in the controlled acromegaly patients (150.1 ± 54.5 ng/mL vs. 100.2 ± 44.6 ng/mL; p matrix metalloproteinase-9 and cathepsin B levels (p = 0.205 and p = 0.598, respectively). Serum matrix metalloproteinase-2 levels of 118.3 ng/mL and higher had a sensitivity of 75% and a specificity of 77.5% in determining active disease. The risk of active acromegaly was 3.3 fold higher in the patients with a matrix metalloproteinase-2 level of >118.3 ng/mL than in the patients with a matrix metalloproteinase-2 level of matrix metalloproteinase-2 level is increased in the active acromegaly patients and a threshold value in determining active disease was defined for serum matrix metalloproteinase-2 level. This study is the first to compare acromegaly patients having active or controlled disease in terms of matrix metalloproteinase-2 and matrix metalloproteinase-9 levels. The results need to be confirmed by a study that will be conducted in a larger patient group also including a healthy control group to demonstrate the

  2. Increased expression of matrix metalloproteinase-1 in systemic vessels of preeclamptic women: a critical mediator of vascular dysfunction.

    Science.gov (United States)

    Estrada-Gutierrez, Guadalupe; Cappello, Renato E; Mishra, Nikita; Romero, Roberto; Strauss, Jerome F; Walsh, Scott W

    2011-01-01

    This study was conducted to determine the following: (1) whether matrix metalloproteinase-1 (MMP-1) is increased in systemic vessels of preeclamptic women, (2) whether this increase might be mediated by neutrophils, and (3) whether MMP-1 could be responsible for vascular dysfunction. Omental arteries and plasma were collected from healthy pregnant and preeclamptic women. Omental arteries were evaluated for gene and protein expression of MMP-1, collagen type 1α, tissue inhibitor of metalloproteinase-1, and vascular reactivity to MMP-1. Gene and protein expression levels were also evaluated in human vascular smooth muscle cells (VSMCs) co-cultured with activated neutrophils, reactive oxygen species, or tumor necrosis factor α. Vessel expression of MMP-1 and circulating MMP-1 levels were increased in preeclamptic women, whereas vascular expression of collagen or tissue inhibitor of metalloproteinase-1 were down-regulated or unchanged. In cultured VSMCs, the imbalance in collagen-regulating genes of preeclamptic vessels was reproduced by treatment with neutrophils, tumor necrosis factor α, or reactive oxygen species. Chemotaxis studies with cultured cells revealed that MMP-1 promoted recruitment of neutrophils via vascular smooth muscle release of interleukin-8. Furthermore, MMP-1 induced vasoconstriction via protease-activated receptor-1, whose expression was significantly increased in omental arteries of preeclamptic women and in VSMCs co-cultured with neutrophils. Collectively, these findings disclose a novel role for MMP-1 as a mediator of vasoconstriction and vascular dysfunction in preeclampsia. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  3. Evolution of trappin genes in mammals

    Directory of Open Access Journals (Sweden)

    Furutani Yutaka

    2010-01-01

    Full Text Available Abstract Background Trappin is a multifunctional host-defense peptide that has antiproteolytic, antiinflammatory, and antimicrobial activities. The numbers and compositions of trappin paralogs vary among mammalian species: human and sheep have a single trappin-2 gene; mouse and rat have no trappin gene; pig and cow have multiple trappin genes; and guinea pig has a trappin gene and two other derivativegenes. Independent duplications of trappin genes in pig and cow were observed recently after the species were separated. To determine whether these trappin gene duplications are restricted only to certain mammalian lineages, we analyzed recently-developed genome databases for the presence of duplicate trappin genes. Results The database analyses revealed that: 1 duplicated trappin multigenes were found recently in the nine-banded armadillo; 2 duplicated two trappin genes had been found in the Afrotherian species (elephant, tenrec, and hyrax since ancient days; 3 a single trappin-2 gene was found in various eutherians species; and 4 no typical trappin gene has been found in chicken, zebra finch, and opossum. Bayesian analysis estimated the date of the duplication of trappin genes in the Afrotheria, guinea pig, armadillo, cow, and pig to be 244, 35, 11, 13, and 3 million-years ago, respectively. The coding regions of trappin multigenes of almadillo, bovine, and pig evolved much faster than the noncoding exons, introns, and the flanking regions, showing that these genes have undergone accelerated evolution, and positive Darwinian selection was observed in pig-specific trappin paralogs. Conclusion These results suggest that trappin is an eutherian-specific molecule and eutherian genomes have the potential to form trappin multigenes.

  4. Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster

    Science.gov (United States)

    Robertson, Hugh M.; Warr, Coral G.; Carlson, John R.

    2003-01-01

    The insect chemoreceptor superfamily in Drosophila melanogaster is predicted to consist of 62 odorant receptor (Or) and 68 gustatory receptor (Gr) proteins, encoded by families of 60 Or and 60 Gr genes through alternative splicing. We include two previously undescribed Or genes and two previously undescribed Gr genes; two previously predicted Or genes are shown to be alternative splice forms. Three polymorphic pseudogenes and one highly defective pseudogene are recognized. Phylogenetic analysis reveals deep branches connecting multiple highly divergent clades within the Gr family, and the Or family appears to be a single highly expanded lineage within the superfamily. The genes are spread throughout the Drosophila genome, with some relatively recently diverged genes still clustered in the genome. The Gr5a gene on the X chromosome, which encodes a receptor for the sugar trehalose, has transposed from one such tandem cluster of six genes at cytological location 64, as has Gr61a, and all eight of these receptors might bind sugars. Analysis of intron evolution suggests that the common ancestor consisted of a long N-terminal exon encoding transmembrane domains 1-5 followed by three exons encoding transmembrane domains 6-7. As many as 57 additional introns have been acquired idiosyncratically during the evolution of the superfamily, whereas the ancestral introns and some of the older idiosyncratic introns have been lost at least 48 times independently. Altogether, these patterns of molecular evolution suggest that this is an ancient superfamily of chemoreceptors, probably dating back at least to the origin of the arthropods. PMID:14608037

  5. Taxonomically restricted genes are associated with the evolution of sociality in the honey bee

    Directory of Open Access Journals (Sweden)

    Tsutsui Neil D

    2011-03-01

    Full Text Available Abstract Background Studies have shown that taxonomically restricted genes are significant in number and important for the evolution of lineage specific traits. Social insects have gained many novel morphological and behavioral traits relative to their solitary ancestors. The task repertoire of an advanced social insect, for example, can be 40-50 tasks, about twice that of a solitary wasp or bee. The genetic basis of this expansion in behavioral repertoire is still poorly understood, and a role for taxonomically restricted genes has not been explored at the whole genome level. Results Here we present comparative genomics results suggesting that taxonomically restricted genes may have played an important role in generating the expansion of behavioral repertoire associated with the evolution of eusociality. First, we show that the current honey bee official gene set contains about 700 taxonomically restricted genes. These are split between orphans, genes found only in the Hymenoptera, and genes found only in insects. Few of the orphans or genes restricted to the Hymenoptera have been the focus of experimental work, but several of those that have are associated with novel eusocial traits or traits thought to have changed radically as a consequence of eusociality. Second, we predicted that if taxonomically restricted genes are important for generating novel eusocial traits, then they should be expressed with greater frequency in workers relative to the queen, as the workers exhibit most of the novel behavior of the honey bee relative to their solitary ancestors. We found support for this prediction. Twice as many taxonomically restricted genes were found amongst the genes with higher expression in workers compared to those with higher expression in queens. Finally, we compiled an extensive list of candidate taxonomically restricted genes involved in eusocial evolution by analyzing several caste specific gene expression data sets. Conclusions This

  6. Comparative genome sequencing of Drosophila pseudoobscura: Chromosomal, gene, and cis-element evolution

    DEFF Research Database (Denmark)

    Richards, Stephen; Liu, Yue; Bettencourt, Brian R.

    2005-01-01

    years (Myr) since the pseudoobscura/melanogaster divergence. Genes expressed in the testes had higher amino acid sequence divergence than the genome-wide average, consistent with the rapid evolution of sex-specific proteins. Cis-regulatory sequences are more conserved than random and nearby sequences......We have sequenced the genome of a second Drosophila species, Drosophila pseudoobscura, and compared this to the genome sequence of Drosophila melanogaster, a primary model organism. Throughout evolution the vast majority of Drosophila genes have remained on the same chromosome arm, but within each...... between the species-but the difference is slight, suggesting that the evolution of cis-regulatory elements is flexible. Overall, a pattern of repeat-mediated chromosomal rearrangement, and high coadaptation of both male genes and cis-regulatory sequences emerges as important themes of genome divergence...

  7. Quantum selfish gene (biological evolution in terms of quantum mechanics)

    OpenAIRE

    Ozhigov, Yuri I.

    2013-01-01

    I propose to treat the biological evolution of genoms by means of quantum mechanical tools. We start with the concept of meta- gene, which specifies the "selfish gene" of R.Dawkins. Meta- gene encodes the abstract living unity, which can live relatively independently of the others, and can contain a few real creatures. Each population of living creatures we treat as the wave function on meta- genes, which module squared is the total number of creatures with the given meta-gene, and the phase ...

  8. Correlation between the -1562C/T polymorphism in the matrix metalloproteinase-9 gene and hemorrhagic transformation of ischemic stroke.

    Science.gov (United States)

    Zhang, Xiaoman; Cao, Xinhui; Xu, Xiaoyu; Li, Aifan; Xu, Yuming

    2015-03-01

    The aim of the present study was to investigate the correlation between the -1562C/T polymorphism in an intron of the matrix metalloproteinase-9 (MMP-9) gene and hemorrhagic transformation of ischemic stroke (IS). Using polymerase chain reaction-restriction fragment length polymorphism, the -1562C/T polymorphisms in 222 patients with IS were detected. The patients were divided into hemorrhagic transformation (HT; 84 cases) and non-hemorrhagic transformation (NHT) groups (138 cases) depending on the results from the susceptibility-weighted magnetic resonance imaging, which was performed between one and two weeks following stroke onset. The allele frequencies were subsequently compared. Baseline data of the two groups were comparable. The HT group exhibited a significantly lower frequency of the CT+TT genotype compared with the NHT group (17.86 vs. 30.43%, Pcorrelated with hemorrhagic transformation of IS in the population studied. Furthermore, the T allele may be a protective factor for hemorrhagic transformation of IS in this population.

  9. Matrix metalloproteinases in the brain and blood–brain barrier: Versatile breakers and makers

    Science.gov (United States)

    Rempe, Ralf G; Hartz, Anika MS

    2016-01-01

    Matrix metalloproteinases are versatile endopeptidases with many different functions in the body in health and disease. In the brain, matrix metalloproteinases are critical for tissue formation, neuronal network remodeling, and blood–brain barrier integrity. Many reviews have been published on matrix metalloproteinases before, most of which focus on the two best studied matrix metalloproteinases, the gelatinases MMP-2 and MMP-9, and their role in one or two diseases. In this review, we provide a broad overview of the role various matrix metalloproteinases play in brain disorders. We summarize and review current knowledge and understanding of matrix metalloproteinases in the brain and at the blood–brain barrier in neuroinflammation, multiple sclerosis, cerebral aneurysms, stroke, epilepsy, Alzheimer’s disease, Parkinson’s disease, and brain cancer. We discuss the detrimental effects matrix metalloproteinases can have in these conditions, contributing to blood–brain barrier leakage, neuroinflammation, neurotoxicity, demyelination, tumor angiogenesis, and cancer metastasis. We also discuss the beneficial role matrix metalloproteinases can play in neuroprotection and anti-inflammation. Finally, we address matrix metalloproteinases as potential therapeutic targets. Together, in this comprehensive review, we summarize current understanding and knowledge of matrix metalloproteinases in the brain and at the blood–brain barrier in brain disorders. PMID:27323783

  10. Fast rate of evolution in alternatively spliced coding regions of mammalian genes

    Directory of Open Access Journals (Sweden)

    Nurtdinov Ramil N

    2006-04-01

    Full Text Available Abstract Background At least half of mammalian genes are alternatively spliced. Alternative isoforms are often genome-specific and it has been suggested that alternative splicing is one of the major mechanisms for generating protein diversity in the course of evolution. Another way of looking at alternative splicing is to consider sequence evolution of constitutive and alternative regions of protein-coding genes. Indeed, it turns out that constitutive and alternative regions evolve in different ways. Results A set of 3029 orthologous pairs of human and mouse alternatively spliced genes was considered. The rate of nonsynonymous substitutions (dN, the rate of synonymous substitutions (dS, and their ratio (ω = dN/dS appear to be significantly higher in alternatively spliced coding regions compared to constitutive regions. When N-terminal, internal and C-terminal alternatives are analysed separately, C-terminal alternatives appear to make the main contribution to the observed difference. The effects become even more pronounced in a subset of fast evolving genes. Conclusion These results provide evidence of weaker purifying selection and/or stronger positive selection in alternative regions and thus one more confirmation of accelerated evolution in alternative regions. This study corroborates the theory that alternative splicing serves as a testing ground for molecular evolution.

  11. Matrix metalloproteinases in lung biology

    Directory of Open Access Journals (Sweden)

    Parks William C

    2000-12-01

    Full Text Available Abstract Despite much information on their catalytic properties and gene regulation, we actually know very little of what matrix metalloproteinases (MMPs do in tissues. The catalytic activity of these enzymes has been implicated to function in normal lung biology by participating in branching morphogenesis, homeostasis, and repair, among other events. Overexpression of MMPs, however, has also been blamed for much of the tissue destruction associated with lung inflammation and disease. Beyond their role in the turnover and degradation of extracellular matrix proteins, MMPs also process, activate, and deactivate a variety of soluble factors, and seldom is it readily apparent by presence alone if a specific proteinase in an inflammatory setting is contributing to a reparative or disease process. An important goal of MMP research will be to identify the actual substrates upon which specific enzymes act. This information, in turn, will lead to a clearer understanding of how these extracellular proteinases function in lung development, repair, and disease.

  12. Concerted evolution of sea anemone neurotoxin genes is revealed through analysis of the Nematostella vectensis genome.

    Science.gov (United States)

    Moran, Yehu; Weinberger, Hagar; Sullivan, James C; Reitzel, Adam M; Finnerty, John R; Gurevitz, Michael

    2008-04-01

    Gene families, which encode toxins, are found in many poisonous animals, yet there is limited understanding of their evolution at the nucleotide level. The release of the genome draft sequence for the sea anemone Nematostella vectensis enabled a comprehensive study of a gene family whose neurotoxin products affect voltage-gated sodium channels. All gene family members are clustered in a highly repetitive approximately 30-kb genomic region and encode a single toxin, Nv1. These genes exhibit extreme conservation at the nucleotide level which cannot be explained by purifying selection. This conservation greatly differs from the toxin gene families of other animals (e.g., snakes, scorpions, and cone snails), whose evolution was driven by diversifying selection, thereby generating a high degree of genetic diversity. The low nucleotide diversity at the Nv1 genes is reminiscent of that reported for DNA encoding ribosomal RNA (rDNA) and 2 hsp70 genes from Drosophila, which have evolved via concerted evolution. This evolutionary pattern was experimentally demonstrated in yeast rDNA and was shown to involve unequal crossing-over. Through sequence analysis of toxin genes from multiple N. vectensis populations and 2 other anemone species, Anemonia viridis and Actinia equina, we observed that the toxin genes for each sea anemone species are more similar to one another than to those of other species, suggesting they evolved by manner of concerted evolution. Furthermore, in 2 of the species (A. viridis and A. equina) we found genes that evolved under diversifying selection, suggesting that concerted evolution and accelerated evolution may occur simultaneously.

  13. Gene expression profiles of cell adhesion molecules, matrix metalloproteinases and their tissue inhibitors in canine oral tumors.

    Science.gov (United States)

    Pisamai, Sirinun; Rungsipipat, Anudep; Kalpravidh, Chanin; Suriyaphol, Gunnaporn

    2017-08-01

    Perturbation of cell adhesion can be essential for tumor cell invasion and metastasis, but the current knowledge on the gene expression of molecules that mediate cell adhesion in canine oral tumors is limited. The present study aimed to investigate changes in the gene expression of cell adhesion molecules (E-cadherin or CDH1, syndecan 1 or SDC1, NECTIN2 and NECTIN4), matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs), in canine oral tumors, including benign tumors, oral melanoma (OM) and non-tonsillar oral squamous cell carcinoma (OSCC), by quantitative real-time reverse transcription PCR. When compared with the normal gingival controls, decreased CDH1, SDC1 and NECTIN4 expression levels were observed in OSCC and OM, reflecting a possible role as cell adhesion molecules and tumor suppressors in canine oral cancers in contrast to the upregulation of MMP2 expression. Downregulated MMP7 was specifically revealed in the OM group. In the late-stage OM, the positive correlation of MMP7 and CDH1 expression was noticed as well as that of SDC1 and NECTIN4. Enhanced TIMP1 expression was shown in all tumor groups with prominent expression in the benign tumors and the early-stage OM. MMP14 expression was notable in the early-stage OM. Higher MMP9 and TIMP1 expression was observed in the acanthomatous ameloblastoma. In conclusion, this study revealed that the altered expression of cell adhesion molecules, MMP7 and MMP2 was correlated with clinicopathologic features in canine oral cancers whereas TIMP1 and MMP14 expression was probably associated with early-stage tumors; therefore, these genes might serve as molecular markers for canine oral tumors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Neuronal matrix metalloproteinase-9 is a determinant of selective neurodegeneration.

    Science.gov (United States)

    Kaplan, Artem; Spiller, Krista J; Towne, Christopher; Kanning, Kevin C; Choe, Ginn T; Geber, Adam; Akay, Turgay; Aebischer, Patrick; Henderson, Christopher E

    2014-01-22

    Selective neuronal loss is the hallmark of neurodegenerative diseases. In patients with amyotrophic lateral sclerosis (ALS), most motor neurons die but those innervating extraocular, pelvic sphincter, and slow limb muscles exhibit selective resistance. We identified 18 genes that show >10-fold differential expression between resistant and vulnerable motor neurons. One of these, matrix metalloproteinase-9 (MMP-9), is expressed only by fast motor neurons, which are selectively vulnerable. In ALS model mice expressing mutant superoxide dismutase (SOD1), reduction of MMP-9 function using gene ablation, viral gene therapy, or pharmacological inhibition significantly delayed muscle denervation. In the presence of mutant SOD1, MMP-9 expressed by fast motor neurons themselves enhances activation of ER stress and is sufficient to trigger axonal die-back. These findings define MMP-9 as a candidate therapeutic target for ALS. The molecular basis of neuronal diversity thus provides significant insights into mechanisms of selective vulnerability to neurodegeneration. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Chemically modified tetracyclines stimulate matrix metalloproteinase-s production by periodontal ligament cells

    NARCIS (Netherlands)

    Bildt, M.M.; Snoek-van Beurden, A.M.P.; Groot, J. de; El, B. van; Kuijpers-Jagtman, A.M.; Hoff, J.W. van den

    2006-01-01

    Background and Objective: The purpose of this study was to investigate the effects of chemically modified tetracyclines (CMTs) on the production of gelatinases [matrix metalloproteinase (MMP)-2 and -9] by human periodontal ligament (PDL) cells, and on the activity of recombinant gelatinases.

  16. Science & Society seminar: Evolution is not only a story of genes

    CERN Multimedia

    2002-01-01

    Memes are behaviours and ideas copied from person to person by imitation. These include songs, habits, skills, inventions and ways of doing things. Darwinian evolutionary theory, which holds that genes control the traits of organisms, has traditionally explained human nature. Susan Blackmore offers a new look at evolution, and considers evolving memes as well as genes. This will be the subject of the next Science and Society seminar, 'The evolution of Meme machines', that will take place on Thursday 24 October. According to the meme idea, everything changed in human evolution when imitation first appeared because imitation let loose a new replicator, the meme. Since that time, two replicators have been driving human evolution, not one. This is why humans have such big brains, and why they alone produce and understand grammatical language, sing, dance, wear clothes and have complex cumulative cultures. Unlike other brains, human brains had to solve the problem of choosing which memes to imitate. In other wor...

  17. Snake venom metalloproteinases and disintegrins: interactions with cells

    Directory of Open Access Journals (Sweden)

    Kamiguti A.S.

    1998-01-01

    Full Text Available Metalloproteinases and disintegrins are important components of most viperid and crotalid venoms. Large metalloproteinases referred to as MDC enzymes are composed of an N-terminal Metalloproteinase domain, a Disintegrin-like domain and a Cys-rich C-terminus. In contrast, disintegrins are small non-enzymatic RGD-containing cysteine-rich polypeptides. However, the disintegrin region of MDC enzymes bears a high degree of structural homology to that of the disintegrins, although it lacks the RGD motif. Despite these differences, both components share the property of being able to recognize integrin cell surface receptors and thereby to inhibit integrin-dependent cell reactions. Recently, several membrane-bound MDC enzymes, closely related to soluble venom MDC enzymes, have been described in mammalian cells. This group of membrane-anchored mammalian enzymes is also called the ADAM family of proteins due to the structure revealing A Disintegrin And Metalloproteinase domains. ADAMs are involved in the shedding of molecules from the cell surface, a property which is also shared by some venom MDC enzymes.

  18. Matrix metalloproteinase-3 gene polymorphism in renal transplant patients with gingival overgrowth.

    Science.gov (United States)

    Drozdzik, A; Kurzawski, M; Lener, A; Kozak, M; Banach, J; Drozdzik, M

    2010-02-01

    Gingival enlargement frequently occurs in transplant patients receiving immunosuppressive drugs. It was hypothesized that gingival enlargement associated with cyclosporine use results from reduced degradation of extracellular matrix in the gingiva. Matrix metalloproteinase-3 (MMP-3) is involved in biodegradation of the extracellular matrix, and its inhibition may contribute to an abnormal accumulation of fibronectin and proteoglycans, which are MMP-3 substrates. The aim of this study was to investigate whether an association exists between MMP-3 genotypes and gingival enlargement in kidney transplant patients medicated with cyclosporine A. Sixty-four unrelated kidney transplant patients suffering from gingival overgrowth, as well as 111 control transplant patients without gingival overgrowth, were enrolled in the study. Gingival overgrowth was assessed 6 mo after transplantation. During the post-transplant period all patients were given cyclosporine A as a principal immunosuppressive agent. MMP-3 polymorphism was determined using a PCR restriction fragment length polymorphism assay. In kidney transplant patients suffering from gingival overgrowth the mean gingival overgrowth score was 1.35 +/- 0.57, whereas in control subjects the mean gingival overgrowth score was 0.0. The distribution of MMP-3-1178A/dupA alleles among all kidney transplant patients, as well as in the two study subgroups, did not differ significantly from Hardy-Weinberg equilibrium. The frequency of the MMP-3-1171A/A genotype (28.1% for gingival overgrowth vs. 26.1% for controls) and of the MMP-3-1171dupA/dupA genotype (32.8% for gingival overgrowth vs. 22.5% for controls) was similar for both study groups. The risk of gingival overgrowth was lowest among patients carrying the MMP-3-1171A/dupA genotype (odds ratio 0.52), but this did not differ markedly from the other genotypes. No association between MMP-3 gene polymorphism and gingival overgrowth was revealed in kidney transplant patients

  19. Darwinian Evolution of Mutualistic RNA Replicators with Different Genes

    Science.gov (United States)

    Mizuuchi, R.; Ichihashi, N.

    2017-07-01

    We report a sustainable long-term replication and evolution of two distinct cooperative RNA replicators encoding different genes. One of the RNAs evolved to maintain or increase the cooperativity, despite selective advantage of selfish mutations.

  20. Urinary metalloproteinases: noninvasive biomarkers for breast cancer risk assessment

    DEFF Research Database (Denmark)

    Pories, Susan E; Zurakowski, David; Roy, Roopali

    2008-01-01

    Matrix metalloproteinases (MMP) and a disintegrin and metalloprotease 12 (ADAM 12) can be detected in the urine of breast cancer patients and provide independent prediction of disease status. To evaluate the potential of urinary metalloproteinases as biomarkers to predict breast cancer risk statu...

  1. Simulating evolution of protein complexes through gene duplication and co-option.

    Science.gov (United States)

    Haarsma, Loren; Nelesen, Serita; VanAndel, Ethan; Lamine, James; VandeHaar, Peter

    2016-06-21

    We present a model of the evolution of protein complexes with novel functions through gene duplication, mutation, and co-option. Under a wide variety of input parameters, digital organisms evolve complexes of 2-5 bound proteins which have novel functions but whose component proteins are not independently functional. Evolution of complexes with novel functions happens more quickly as gene duplication rates increase, point mutation rates increase, protein complex functional probability increases, protein complex functional strength increases, and protein family size decreases. Evolution of complexity is inhibited when the metabolic costs of making proteins exceeds the fitness gain of having functional proteins, or when point mutation rates get so large the functional proteins undergo deleterious mutations faster than new functional complexes can evolve. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Investigation of the Matrix Metalloproteinase-2 Gene in Patients with Non-Syndromic Mitral Valve Prolapse

    Directory of Open Access Journals (Sweden)

    Maëlle Perrocheau

    2015-07-01

    Full Text Available Non-syndromic mitral valve prolapse (MVP is a common degenerative valvulopathy, predisposing to arrhythmia and sudden death. The etiology of MVP is suspected to be under genetic control, as supported by familial cases and its manifestation in genetic syndrome (e.g., Marfan syndrome. One candidate etiological mechanism is a perturbation of the extracellular matrix (ECM remodeling of the valve. To test this hypothesis, we assessed the role of genetic variants in the matrix metalloproteinase 2 gene (MMP2 known to regulate the ECM turnover by direct degradation of proteins and for which transgenic mice develop MVP. Direct sequencing of exons of MMP2 in 47 unrelated patients and segregation analyses in families did not reveal any causative mutation. We studied eight common single nucleotide polymorphisms (TagSNPs, which summarize the genetic information at the MMP2 locus. The association study in two case controls sets (NCases = 1073 and NControls = 1635 provided suggestive evidence for the association of rs1556888 located downstream MMP2 with the risk of MVP, especially in patients with the fibroelastic defiency form. Our study does not support the contribution of MMP2 rare variation in the etiology to MVP in humans, though further genetic and molecular investigation is required to confirm our current suggestive association of one common variant.

  3. Glutamine synthetase gene evolution: A good molecular clock

    International Nuclear Information System (INIS)

    Pesole, G.; Lanvave, C.; Saccone, C.; Bozzetti, M.P.; Preparata, G.

    1991-01-01

    Glutamine synthetase gene evolution in various animals, plants, and bacteria was evaluated by a general stationary Markov model. The evolutionary process proved to be unexpectedly regular even for a time span as long as that between the divergence of prokaryotes from eukaryotes. This enabled us to draw phylogenetic trees for species whose phylogeny cannot be easily reconstructed from the fossil record. The calculation of the times of divergence of the various organelle-specific enzymes led us to hypothesize that the pea and bean chloroplast genes for these enzymes originated from the duplication of nuclear genes as a result of the different metabolic needs of the various species. The data indicate that the duplication of plastid glutamine synthetase genes occurred long after the endosymbiotic events that produced the organelles themselves

  4. A study on expression levels of matrix metalloproteinases and their ...

    African Journals Online (AJOL)

    Keywords: Ulcerative colitis, Matrix metalloproteinases, Tissue inhibitors of metalloproteinases, Lamina propria ... The symptoms of UC include diarrhea with blood, fever ..... Eisen A, Jeffrey J, Gross J. Human skin collagenase. Isolation and ...

  5. TIMP-2 gene transfer by positively charged PEG-lated monosized polycationic carrier to smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Lacin, Nelisa, E-mail: melisalacin@yahoo.com [Mersin University, Advanced Technology Education, Research and Application Center (Turkey); Utkan, Gueldem [TUBITAK MAM, Enzyme and Fermentation Technology Laboratory, Genetic Engineering and Biotechnology Institute (Turkey); Kutsal, Tuelin [Hacettepe University, Chemical Engineering Department and Bioengineering Division (Turkey); Dedeoglu, Bala Guer; Yulug, Is Latin-Small-Letter-Dotless-I k G. [Bilkent University, Department of Molecular Biology and Genetics, Faculty of Science (Turkey); Piskin, Erhan [Hacettepe University, Chemical Engineering Department and Bioengineering Division and Center for Bioengineering-Biyomedtek (Turkey)

    2012-02-15

    Remodeling of the extracellular matrix resulting from increased secretion of metalloproteinase enzymes is implicated in restenosis following balloon angioplasty. Matrix metalloproteinases (MMPs) and the tissue inhibitors of metalloproteinases play an essential role in both normal and pathological extracellular matrix degradation. Tissue inhibitor of matrix metalloproteinase-2 is the most extensively studied tissue inhibitor of metalloproteinases in myocardial tissue in animal models and clinical examples of cardiac disease; therefore it is selected for this study. Gene transfer of tissue inhibitor of matrix metalloproteinase-2 may have a therapeutic potential by inhibition of matrix metalloproteinase activity. We have used PEG-lated nanoparticles poly(St/PEG-EEM/DMAPM) which were synthesized previously in our laboratory. The nanoparticles, with an average size of 77.6 {+-} 2.05 nm with a zeta potential of +64. 4 {+-} 1.14 mV and 201.9 {+-} 1.83 nm with +54.2 {+-} 0.77 mV were used in the transfection studies. Zeta Potential values and size of polyplex were appropriate for an effective transfection. TIMP-2 expression was detected by western blotting. Increased protein level in smooth muscle cells according to non-transfected smooth muscle cells confirms the successful delivery and expression of the tissue inhibitor of matrix metalloproteinase-2 gene with the non-viral vector transfection approach.

  6. TIMP-2 gene transfer by positively charged PEG-lated monosized polycationic carrier to smooth muscle cells

    Science.gov (United States)

    Laçin, Nelisa; Utkan, Güldem; Kutsal, Tülin; Dedeoğlu, Bala Gür; Yuluğ, Işık G.; Pişkin, Erhan

    2012-02-01

    Remodeling of the extracellular matrix resulting from increased secretion of metalloproteinase enzymes is implicated in restenosis following balloon angioplasty. Matrix metalloproteinases (MMPs) and the tissue inhibitors of metalloproteinases play an essential role in both normal and pathological extracellular matrix degradation. Tissue inhibitor of matrix metalloproteinase-2 is the most extensively studied tissue inhibitor of metalloproteinases in myocardial tissue in animal models and clinical examples of cardiac disease; therefore it is selected for this study. Gene transfer of tissue inhibitor of matrix metalloproteinase-2 may have a therapeutic potential by inhibition of matrix metalloproteinase activity. We have used PEG-lated nanoparticles poly(St/PEG-EEM/DMAPM) which were synthesized previously in our laboratory. The nanoparticles, with an average size of 77.6 ± 2.05 nm with a zeta potential of +64. 4 ± 1.14 mV and 201.9 ± 1.83 nm with +54.2 ± 0.77 mV were used in the transfection studies. Zeta Potential values and size of polyplex were appropriate for an effective transfection. TIMP-2 expression was detected by western blotting. Increased protein level in smooth muscle cells according to non-transfected smooth muscle cells confirms the successful delivery and expression of the tissue inhibitor of matrix metalloproteinase-2 gene with the non-viral vector transfection approach.

  7. Evolution dynamics of a model for gene duplication under adaptive conflict

    Science.gov (United States)

    Ancliff, Mark; Park, Jeong-Man

    2014-06-01

    We present and solve the dynamics of a model for gene duplication showing escape from adaptive conflict. We use a Crow-Kimura quasispecies model of evolution where the fitness landscape is a function of Hamming distances from two reference sequences, which are assumed to optimize two different gene functions, to describe the dynamics of a mixed population of individuals with single and double copies of a pleiotropic gene. The evolution equations are solved through a spin coherent state path integral, and we find two phases: one is an escape from an adaptive conflict phase, where each copy of a duplicated gene evolves toward subfunctionalization, and the other is a duplication loss of function phase, where one copy maintains its pleiotropic form and the other copy undergoes neutral mutation. The phase is determined by a competition between the fitness benefits of subfunctionalization and the greater mutational load associated with maintaining two gene copies. In the escape phase, we find a dynamics of an initial population of single gene sequences only which escape adaptive conflict through gene duplication and find that there are two time regimes: until a time t* single gene sequences dominate, and after t* double gene sequences outgrow single gene sequences. The time t* is identified as the time necessary for subfunctionalization to evolve and spread throughout the double gene sequences, and we show that there is an optimum mutation rate which minimizes this time scale.

  8. Isolation of Hox cluster genes from insects reveals an accelerated sequence evolution rate.

    Directory of Open Access Journals (Sweden)

    Heike Hadrys

    Full Text Available Among gene families it is the Hox genes and among metazoan animals it is the insects (Hexapoda that have attracted particular attention for studying the evolution of development. Surprisingly though, no Hox genes have been isolated from 26 out of 35 insect orders yet, and the existing sequences derive mainly from only two orders (61% from Hymenoptera and 22% from Diptera. We have designed insect specific primers and isolated 37 new partial homeobox sequences of Hox cluster genes (lab, pb, Hox3, ftz, Antp, Scr, abd-a, Abd-B, Dfd, and Ubx from six insect orders, which are crucial to insect phylogenetics. These new gene sequences provide a first step towards comparative Hox gene studies in insects. Furthermore, comparative distance analyses of homeobox sequences reveal a correlation between gene divergence rate and species radiation success with insects showing the highest rate of homeobox sequence evolution.

  9. Clonorchis sinensis excretory-secretory products regulate migration and invasion in cholangiocarcinoma cells via extracellular signal-regulated kinase 1/2/nuclear factor-κB-dependent matrix metalloproteinase-9 expression.

    Science.gov (United States)

    Pak, Jhang Ho; Shin, Jimin; Song, In-Sung; Shim, Sungbo; Jang, Sung-Wuk

    2017-01-01

    Matrix metalloproteinase-9 plays an important role in the invasion and metastasis of various types of cancer cells. We have previously reported that excretory-secretory products from Clonorchis sinensis increases matrix metalloproteinase-9 expression. However, the regulatory mechanisms through which matrix metalloproteinase-9 expression affects cholangiocarcinoma development remain unclear. In the current study, we examined the potential role of excretory-secretory products in regulating the migration and invasion of various cholangiocarcinoma cell lines. We demonstrated that excretory-secretory products significantly induced matrix metalloproteinase-9 expression and activity in a concentration-dependent manner. Reporter gene and chromatin immunoprecipitation assays showed that excretory-secretory products induced matrix metalloproteinase-9 expression by enhancing the activity of nuclear factor-kappa B. Moreover, excretory-secretory products induced the degradation and phosphorylation of IκBα and stimulated nuclear factor-kappa B p65 nuclear translocation, which was regulated by extracellular signal-regulated kinase 1/2. Taken together, our findings indicated that the excretory-secretory product-dependent enhancement of matrix metalloproteinase-9 activity and subsequent induction of IκBα and nuclear factor-kappa B activities may contribute to the progression of cholangiocarcinoma. Copyright © 2016 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  10. Evolution of the HIV-1 nef gene in HLA-B*57 Positive Elite Suppressors

    Directory of Open Access Journals (Sweden)

    Siliciano Robert F

    2010-11-01

    Full Text Available Abstract Elite controllers or suppressors (ES are HIV-1 infected patients who maintain viral loads of gag and nef in HLA-B*57 positive ES. We previously showed evolution in the gag gene of ES which surprisingly was mostly due to synonymous mutations rather than non-synonymous mutation in targeted CTL epitopes. This finding could be the result of structural constraints on Gag, and we therefore examined the less conserved nef gene. We found slow evolution of nef in plasma virus in some ES. This evolution is mostly due to synonymous mutations and occurs at a rate similar to that seen in the gag gene in the same patients. The results provide further evidence of ongoing viral replication in ES and suggest that the nef and gag genes in these patients respond similarly to selective pressure from the host.

  11. Molecular evolution of the Paramyxoviridae and Rhabdoviridae multiple-protein-encoding P gene.

    Science.gov (United States)

    Jordan, I K; Sutter, B A; McClure, M A

    2000-01-01

    Presented here is an analysis of the molecular evolutionary dynamics of the P gene among 76 representative sequences of the Paramyxoviridae and Rhabdoviridae RNA virus families. In a number of Paramyxoviridae taxa, as well as in vesicular stomatitis viruses of the Rhabdoviridae, the P gene encodes multiple proteins from a single genomic RNA sequence. These products include the phosphoprotein (P), as well as the C and V proteins. The complexity of the P gene makes it an intriguing locus to study from an evolutionary perspective. Amino acid sequence alignments of the proteins encoded at the P and N loci were used in independent phylogenetic reconstructions of the Paramyxoviridae and Rhabdoviridae families. P-gene-coding capacities were mapped onto the Paramyxoviridae phylogeny, and the most parsimonious path of multiple-coding-capacity evolution was determined. Levels of amino acid variation for Paramyxoviridae and Rhabdoviridae P-gene-encoded products were also analyzed. Proteins encoded in overlapping reading frames from the same nucleotides have different levels of amino acid variation. The nucleotide architecture that underlies the amino acid variation was determined in order to evaluate the role of selection in the evolution of the P gene overlapping reading frames. In every case, the evolution of one of the proteins encoded in the overlapping reading frames has been constrained by negative selection while the other has evolved more rapidly. The integrity of the overlapping reading frame that represents a derived state is generally maintained at the expense of the ancestral reading frame encoded by the same nucleotides. The evolution of such multicoding sequences is likely a response by RNA viruses to selective pressure to maximize genomic information content while maintaining small genome size. The ability to evolve such a complex genomic strategy is intimately related to the dynamics of the viral quasispecies, which allow enhanced exploration of the adaptive

  12. Overexpression of membrane sialic acid-specific sialidase Neu3 inhibits matrix metalloproteinase-9 expression in vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Moon, Sung-Kwon; Cho, Seung-Hak; Kim, Kyung-Woon; Jeon, Jae Heung; Ko, Jeong-Heon; Kim, Bo Yeon; Kim, Cheorl-Ho

    2007-01-01

    The ganglioside-specific sialidase Neu3 has been suggested to participate in cell growth, migration, and differentiation. Recent reports suggest that sialidase may be involved in intimal thickening, an early stage in the development of atherosclerosis. However, the role of the Neu3 gene in vascular smooth muscle cells (VSMC) responses has not yet been elucidated. To determine whether a Neu3 is able to modulate VSMC growth, the effect of overexpression of the Neu3 gene on cell proliferation was examined. However, the results show that the overexpression of this gene has no effect on DNA synthesis and ERK phosphorylation in cultured VSMC in the presence of TNF-α. Because atherogenic effects need not be limited to proliferation, we decided to examine whether Neu3 exerted inhibitory effects on matrix metalloproteinase-9 (MMP-9) activity in TNF-α-induced VSMC. The expression of the Neu3 gene led to the inhibition of TNF-α-induced matrix metalloproteinase-9 (MMP-9) expression in VSMC as determined by zymography and immunoblot. Furthermore, Neu3 gene expression strongly decreased MMP-9 promoter activity in response to TNF-α. This inhibition was characterized by the down-regulation of MMP-9, which was transcriptionally regulated at NF-κB and activation protein-1 (AP-1) sites in the MMP-9 promoter. These findings suggest that the Neu3 gene represents a physiological modulator of VSMC responses that may contribute to plaque instability in atherosclerosis

  13. Saltatory Evolution of the Ectodermal Neural Cortex Gene Family at the Vertebrate Origin

    Science.gov (United States)

    Feiner, Nathalie; Murakami, Yasunori; Breithut, Lisa; Mazan, Sylvie; Meyer, Axel; Kuraku, Shigehiro

    2013-01-01

    The ectodermal neural cortex (ENC) gene family, whose members are implicated in neurogenesis, is part of the kelch repeat superfamily. To date, ENC genes have been identified only in osteichthyans, although other kelch repeat-containing genes are prevalent throughout bilaterians. The lack of elaborate molecular phylogenetic analysis with exhaustive taxon sampling has obscured the possible link of the establishment of this gene family with vertebrate novelties. In this study, we identified ENC homologs in diverse vertebrates by means of database mining and polymerase chain reaction screens. Our analysis revealed that the ENC3 ortholog was lost in the basal eutherian lineage through single-gene deletion and that the triplication between ENC1, -2, and -3 occurred early in vertebrate evolution. Including our original data on the catshark and the zebrafish, our comparison revealed high conservation of the pleiotropic expression pattern of ENC1 and shuffling of expression domains between ENC1, -2, and -3. Compared with many other gene families including developmental key regulators, the ENC gene family is unique in that conventional molecular phylogenetic inference could identify no obvious invertebrate ortholog. This suggests a composite nature of the vertebrate-specific gene repertoire, consisting not only of de novo genes introduced at the vertebrate origin but also of long-standing genes with no apparent invertebrate orthologs. Some of the latter, including the ENC gene family, may be too rapidly evolving to provide sufficient phylogenetic signals marking orthology to their invertebrate counterparts. Such gene families that experienced saltatory evolution likely remain to be explored and might also have contributed to phenotypic evolution of vertebrates. PMID:23843192

  14. Pareto evolution of gene networks: an algorithm to optimize multiple fitness objectives

    International Nuclear Information System (INIS)

    Warmflash, Aryeh; Siggia, Eric D; Francois, Paul

    2012-01-01

    The computational evolution of gene networks functions like a forward genetic screen to generate, without preconceptions, all networks that can be assembled from a defined list of parts to implement a given function. Frequently networks are subject to multiple design criteria that cannot all be optimized simultaneously. To explore how these tradeoffs interact with evolution, we implement Pareto optimization in the context of gene network evolution. In response to a temporal pulse of a signal, we evolve networks whose output turns on slowly after the pulse begins, and shuts down rapidly when the pulse terminates. The best performing networks under our conditions do not fall into categories such as feed forward and negative feedback that also encode the input–output relation we used for selection. Pareto evolution can more efficiently search the space of networks than optimization based on a single ad hoc combination of the design criteria. (paper)

  15. Pareto evolution of gene networks: an algorithm to optimize multiple fitness objectives.

    Science.gov (United States)

    Warmflash, Aryeh; Francois, Paul; Siggia, Eric D

    2012-10-01

    The computational evolution of gene networks functions like a forward genetic screen to generate, without preconceptions, all networks that can be assembled from a defined list of parts to implement a given function. Frequently networks are subject to multiple design criteria that cannot all be optimized simultaneously. To explore how these tradeoffs interact with evolution, we implement Pareto optimization in the context of gene network evolution. In response to a temporal pulse of a signal, we evolve networks whose output turns on slowly after the pulse begins, and shuts down rapidly when the pulse terminates. The best performing networks under our conditions do not fall into categories such as feed forward and negative feedback that also encode the input-output relation we used for selection. Pareto evolution can more efficiently search the space of networks than optimization based on a single ad hoc combination of the design criteria.

  16. Horizontal gene transfer and the evolution of transcriptionalregulation in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Price, Morgan N.; Dehal, Paramvir S.; Arkin, Adam P.

    2007-12-20

    Background: Most bacterial genes were acquired by horizontalgene transfer from other bacteria instead of being inherited bycontinuous vertical descent from an ancient ancestor}. To understand howthe regulation of these {acquired} genes evolved, we examined theevolutionary histories of transcription factors and of regulatoryinteractions from the model bacterium Escherichia coli K12. Results:Although most transcription factors have paralogs, these usually arose byhorizontal gene transfer rather than by duplication within the E. colilineage, as previously believed. In general, most neighbor regulators --regulators that are adjacent to genes that they regulate -- were acquiredby horizontal gene transfer, while most global regulators evolvedvertically within the gamma-Proteobacteria. Neighbor regulators wereoften acquired together with the adjacent operon that they regulate, sothe proximity might be maintained by repeated transfers (like "selfishoperons"). Many of the as-yet-uncharacterized (putative) regulators havealso been acquired together with adjacent genes, so we predict that theseare neighbor regulators as well. When we analyzed the histories ofregulatory interactions, we found that the evolution of regulation byduplication was rare, and surprisingly, many of the regulatoryinteractions that are shared between paralogs result from convergentevolution. Another surprise was that horizontally transferred genes aremore likely than other genes to be regulated by multiple regulators, andmost of this complex regulation probably evolved after the transfer.Conclusions: Our results highlight the rapid evolution of niche-specificgene regulation in bacteria.

  17. Diversification of CYCLOIDEA-like genes in Dipsacaceae (Dipsacales: implications for the evolution of capitulum inflorescences

    Directory of Open Access Journals (Sweden)

    Carlson Sara E

    2011-11-01

    Full Text Available Abstract Background CYCLOIDEA (CYC-like genes have been implicated in the development of capitulum inflorescences (i.e. flowering heads in Asteraceae, where many small flowers (florets are packed tightly into an inflorescence that resembles a single flower. Several rounds of duplication of CYC-like genes have occurred in Asteraceae, and this is hypothesized to be correlated with the evolution of the capitulum, which in turn has been implicated in the evolutionary success of the group. We investigated the evolution of CYC-like genes in Dipsacaceae (Dipsacales, a plant clade in which capitulum inflorescences originated independently of Asteraceae. Two main inflorescence types are present in Dipsacaceae: (1 radiate species contain two kinds of floret within the flowering head (disk and ray, and (2 discoid species contain only disk florets. To test whether a dynamic pattern of gene duplication, similar to that documented in Asteraceae, is present in Dipsacaceae, and whether these patterns are correlated with different inflorescence types, we inferred a CYC-like gene phylogeny for Dipsacaceae based on representative species from the major lineages. Results We recovered within Dipsacaceae the three major forms of CYC-like genes that have been found in most core eudicots, and identified several additional duplications within each of these clades. We found that the number of CYC-like genes in Dipsacaceae is similar to that reported for members of Asteraceae and that the same gene lineages (CYC1-like and CYC2B-like genes have duplicated in a similar fashion independently in both groups. The number of CYC-like genes recovered for radiate versus discoid species differed, with discoid species having fewer copies of CYC1-like and CYC2B-like genes. Conclusions CYC-like genes have undergone extensive duplication in Dipsacaceae, with radiate species having more copies than discoid species, suggesting a potential role for these genes in the evolution of disk and

  18. A six-gene phylogeny provides new insights into choanoflagellate evolution.

    Science.gov (United States)

    Carr, Martin; Richter, Daniel J; Fozouni, Parinaz; Smith, Timothy J; Jeuck, Alexandra; Leadbeater, Barry S C; Nitsche, Frank

    2017-02-01

    Recent studies have shown that molecular phylogenies of the choanoflagellates (Class Choanoflagellatea) are in disagreement with their traditional taxonomy, based on morphology, and that Choanoflagellatea requires considerable taxonomic revision. Furthermore, phylogenies suggest that the morphological and ecological evolution of the group is more complex than has previously been recognized. Here we address the taxonomy of the major choanoflagellate order Craspedida, by erecting four new genera. The new genera are shown to be morphologically, ecologically and phylogenetically distinct from other choanoflagellate taxa. Furthermore, we name five novel craspedid species, as well as formally describe ten species that have been shown to be either misidentified or require taxonomic revision. Our revised phylogeny, including 18 new species and sequence data for two additional genes, provides insights into the morphological and ecological evolution of the choanoflagellates. We examine the distribution within choanoflagellates of these two additional genes, EF-1A and EFL, closely related translation GTPases which are required for protein synthesis. Mapping the presence and absence of these genes onto the phylogeny highlights multiple events of gene loss within the choanoflagellates. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Evolution of the duplicated intracellular lipid-binding protein genes of teleost fishes.

    Science.gov (United States)

    Venkatachalam, Ananda B; Parmar, Manoj B; Wright, Jonathan M

    2017-08-01

    Increasing organismal complexity during the evolution of life has been attributed to the duplication of genes and entire genomes. More recently, theoretical models have been proposed that postulate the fate of duplicated genes, among them the duplication-degeneration-complementation (DDC) model. In the DDC model, the common fate of a duplicated gene is lost from the genome owing to nonfunctionalization. Duplicated genes are retained in the genome either by subfunctionalization, where the functions of the ancestral gene are sub-divided between the sister duplicate genes, or by neofunctionalization, where one of the duplicate genes acquires a new function. Both processes occur either by loss or gain of regulatory elements in the promoters of duplicated genes. Here, we review the genomic organization, evolution, and transcriptional regulation of the multigene family of intracellular lipid-binding protein (iLBP) genes from teleost fishes. Teleost fishes possess many copies of iLBP genes owing to a whole genome duplication (WGD) early in the teleost fish radiation. Moreover, the retention of duplicated iLBP genes is substantially higher than the retention of all other genes duplicated in the teleost genome. The fatty acid-binding protein genes, a subfamily of the iLBP multigene family in zebrafish, are differentially regulated by peroxisome proliferator-activated receptor (PPAR) isoforms, which may account for the retention of iLBP genes in the zebrafish genome by the process of subfunctionalization of cis-acting regulatory elements in iLBP gene promoters.

  20. Convergent evolution of RFX transcription factors and ciliary genes predated the origin of metazoans

    Directory of Open Access Journals (Sweden)

    Chen Nansheng

    2010-05-01

    Full Text Available Abstract Background Intraflagellar transport (IFT genes, which are critical for the development and function of cilia and flagella in metazoans, are tightly regulated by the Regulatory Factor X (RFX transcription factors (TFs. However, how and when their evolutionary relationship was established remains unknown. Results We have identified evidence suggesting that RFX TFs and IFT genes evolved independently and their evolution converged before the first appearance of metazoans. Both ciliary genes and RFX TFs exist in all metazoans as well as some unicellular eukaryotes. However, while RFX TFs and IFT genes are found simultaneously in all sequenced metazoan genomes, RFX TFs do not co-exist with IFT genes in most pre-metazoans and thus do not regulate them in these organisms. For example, neither the budding yeast nor the fission yeast possesses cilia although both have well-defined RFX TFs. Conversely, most unicellular eukaryotes, including the green alga Chlamydomonas reinhardtii, have typical cilia and well conserved IFT genes but lack RFX TFs. Outside of metazoans, RFX TFs and IFT genes co-exist only in choanoflagellates including M. brevicollis, and only one fungus Allomyces macrogynus of the 51 sequenced fungus genomes. M. brevicollis has two putative RFX genes and a full complement of ciliary genes. Conclusions The evolution of RFX TFs and IFT genes were independent in pre-metazoans. We propose that their convergence in evolution, or the acquired transcriptional regulation of IFT genes by RFX TFs, played a pivotal role in the establishment of metazoan.

  1. Genome-wide Identification of WRKY Genes in the Desert Poplar Populus euphratica and Adaptive Evolution of the Genes in Response to Salt Stress.

    Science.gov (United States)

    Ma, Jianchao; Lu, Jing; Xu, Jianmei; Duan, Bingbing; He, Xiaodong; Liu, Jianquan

    2015-01-01

    WRKY transcription factors play important roles in plant development and responses to various stresses in plants. However, little is known about the evolution of the WRKY genes in the desert poplar species Populus euphratica, which is highly tolerant of salt stress. In this study, we identified 107 PeWRKY genes from the P. euphratica genome and examined their evolutionary relationships with the WRKY genes of the salt-sensitive congener Populus trichocarpa. Ten PeWRKY genes are specific to P. euphratica, and five of these showed altered expression under salt stress. Furthermore, we found that two pairs of orthologs between the two species showed evidence of positive evolution, with dN/dS ratios>1 (nonsynonymous/synonymous substitutions), and both of them altered their expression in response to salinity stress. These findings suggested that both the development of new genes and positive evolution in some orthologs of the WRKY gene family may have played an important role in the acquisition of high salt tolerance by P. euphratica.

  2. A study on the expression levels of matrix metalloproteinases and ...

    African Journals Online (AJOL)

    Conclusion: MMP-2, MMP-7, and MMP-9 are potential targets for therapeutic control of UC. Keywords: Glandular epithelium, Inflammatory cells, Inhibitors, Matrix metalloproteinases (MMPs),. Tissue inhibitors of metalloproteinases, Ulcerative colitis. Tropical Journal of Pharmaceutical Research is indexed by Science ...

  3. Gain, loss and divergence in primate zinc-finger genes: a rich resource for evolution of gene regulatory differences between species.

    Directory of Open Access Journals (Sweden)

    Katja Nowick

    Full Text Available The molecular changes underlying major phenotypic differences between humans and other primates are not well understood, but alterations in gene regulation are likely to play a major role. Here we performed a thorough evolutionary analysis of the largest family of primate transcription factors, the Krüppel-type zinc finger (KZNF gene family. We identified and curated gene and pseudogene models for KZNFs in three primate species, chimpanzee, orangutan and rhesus macaque, to allow for a comparison with the curated set of human KZNFs. We show that the recent evolutionary history of primate KZNFs has been complex, including many lineage-specific duplications and deletions. We found 213 species-specific KZNFs, among them 7 human-specific and 23 chimpanzee-specific genes. Two human-specific genes were validated experimentally. Ten genes have been lost in humans and 13 in chimpanzees, either through deletion or pseudogenization. We also identified 30 KZNF orthologs with human-specific and 42 with chimpanzee-specific sequence changes that are predicted to affect DNA binding properties of the proteins. Eleven of these genes show signatures of accelerated evolution, suggesting positive selection between humans and chimpanzees. During primate evolution the most extensive re-shaping of the KZNF repertoire, including most gene additions, pseudogenizations, and structural changes occurred within the subfamily homininae. Using zinc finger (ZNF binding predictions, we suggest potential impact these changes have had on human gene regulatory networks. The large species differences in this family of TFs stands in stark contrast to the overall high conservation of primate genomes and potentially represents a potent driver of primate evolution.

  4. Processes of fungal proteome evolution and gain of function: gene duplication and domain rearrangement

    International Nuclear Information System (INIS)

    Cohen-Gihon, Inbar; Nussinov, Ruth; Sharan, Roded

    2011-01-01

    During evolution, organisms have gained functional complexity mainly by modifying and improving existing functioning systems rather than creating new ones ab initio. Here we explore the interplay between two processes which during evolution have had major roles in the acquisition of new functions: gene duplication and protein domain rearrangements. We consider four possible evolutionary scenarios: gene families that have undergone none of these event types; only gene duplication; only domain rearrangement, or both events. We characterize each of the four evolutionary scenarios by functional attributes. Our analysis of ten fungal genomes indicates that at least for the fungi clade, species significantly appear to gain complexity by gene duplication accompanied by the expansion of existing domain architectures via rearrangements. We show that paralogs gaining new domain architectures via duplication tend to adopt new functions compared to paralogs that preserve their domain architectures. We conclude that evolution of protein families through gene duplication and domain rearrangement is correlated with their functional properties. We suggest that in general, new functions are acquired via the integration of gene duplication and domain rearrangements rather than each process acting independently

  5. Human aqueous humor levels of transforming growth factor-β2: Association with matrix metalloproteinases/tissue inhibitors of matrix metalloproteinases

    OpenAIRE

    Jia, Yan; Yue, Yu; Hu, Dan-Ning; Chen, Ji-Li; Zhou, Ji-Bo

    2017-01-01

    The present study aims to investigate the association of transforming growth factor-β2 (TGF-β2) and matrix metalloproteinases (MMPs), MMP-2 and MMP-3, and tissue inhibitors of matrix metalloproteinases (TIMPs), TIMP-1, TIMP-2 and TIMP-3 in the aqueous humor of patients with high myopia or cataracts. The levels of TGF-β2 and MMPs/TIMPs were measured with the Luminex xMAP Technology using commercially available Milliplex xMAP kits. The association between TGF-β2 and MMPs/TIMPs levels was analyz...

  6. Gene expression levels of matrix metalloproteinases in human atherosclerotic plaques and evaluation of radiolabeled inhibitors as imaging agents for plaque vulnerability

    International Nuclear Information System (INIS)

    Müller, Adrienne; Krämer, Stefanie D.; Meletta, Romana; Beck, Katharina; Selivanova, Svetlana V.; Rancic, Zoran; Kaufmann, Philipp A.; Vos, Bernhard; Meding, Jörg; Stellfeld, Timo; Heinrich, Tobias K.; Bauser, Marcus; Hütter, Joachim; Dinkelborg, Ludger M.; Schibli, Roger; Ametamey, Simon M.

    2014-01-01

    Introduction: Atherosclerotic plaque rupture is the primary cause for myocardial infarction and stroke. During plaque progression macrophages and mast cells secrete matrix-degrading proteolytic enzymes, such as matrix metalloproteinases (MMPs). We studied levels of MMPs and tissue inhibitor of metalloproteinases-3 (TIMP-3) in relation to the characteristics of carotid plaques. We evaluated in vitro two radiolabeled probes targeting active MMPs towards non-invasive imaging of rupture-prone plaques. Methods: Human carotid plaques obtained from endarterectomy were classified into stable and vulnerable by visual and histological analysis. MMP-1, MMP-2, MMP-8, MMP-9, MMP-10, MMP-12, MMP-14, TIMP-3, and CD68 levels were investigated by quantitative polymerase chain reaction. Immunohistochemistry was used to localize MMP-2 and MMP-9 with respect to CD68-expressing macrophages. Western blotting was applied to detect their active forms. A fluorine-18-labeled MMP-2/MMP-9 inhibitor and a tritiated selective MMP-9 inhibitor were evaluated by in vitro autoradiography as potential lead structures for non-invasive imaging. Results: Gene expression levels of all MMPs and CD68 were elevated in plaques. MMP-1, MMP-9, MMP-12 and MMP-14 were significantly higher in vulnerable than stable plaques. TIMP-3 expression was highest in stable and low in vulnerable plaques. Immunohistochemistry revealed intensive staining of MMP-9 in vulnerable plaques. Western blotting confirmed presence of the active form in plaque lysates. In vitro autoradiography showed binding of both inhibitors to stable and vulnerable plaques. Conclusions: MMPs differed in their expression patterns among plaque phenotypes, providing possible imaging targets. The two tested MMP-2/MMP-9 and MMP-9 inhibitors may be useful to detect atherosclerotic plaques, but not the vulnerable lesions selectively

  7. Isolation and cloning of a metalloproteinase from king cobra snake venom.

    Science.gov (United States)

    Guo, Xiao-Xi; Zeng, Lin; Lee, Wen-Hui; Zhang, Yun; Jin, Yang

    2007-06-01

    A 50 kDa fibrinogenolytic protease, ohagin, from the venom of Ophiophagus hannah was isolated by a combination of gel filtration, ion-exchange and heparin affinity chromatography. Ohagin specifically degraded the alpha-chain of human fibrinogen and the proteolytic activity was completely abolished by EDTA, but not by PMSF, suggesting it is a metalloproteinase. It dose-dependently inhibited platelet aggregation induced by ADP, TMVA and stejnulxin. The full sequence of ohagin was deduced by cDNA cloning and confirmed by protein sequencing and peptide mass fingerprinting. The full-length cDNA sequence of ohagin encodes an open reading frame of 611 amino acids that includes signal peptide, proprotein and mature protein comprising metalloproteinase, disintegrin-like and cysteine-rich domains, suggesting it belongs to P-III class metalloproteinase. In addition, P-III class metalloproteinases from the venom glands of Naja atra, Bungarus multicinctus and Bungarus fasciatus were also cloned in this study. Sequence analysis and phylogenetic analysis indicated that metalloproteinases from elapid snake venoms form a new subgroup of P-III SVMPs.

  8. Curcumin influences hepatic expression patterns of matrix metalloproteinases in liver toxicity.

    Science.gov (United States)

    Rukkumani, Rajagopalan; Aruna, Kode; Varma, Penumathsa Suresh; Menon, Venugopal Padmanabhan

    2004-07-01

    Hepatic fibrosis is a result of an imbalance between enhanced matrix synthesis and diminished breakdown of connective tissue proteins, the net result of which is increased deposition of Extra Cellular Matrix. In this concept Matrix Metalloproteinases play an important role because their activity is largely responsible for extra cellular matrix breakdown. In the present study we have tested the influence of curcumin, the active principle of turmeric, on matrix metalloproteinase expression during alcohol and thermally oxidised sunflower oil induced liver toxicity. Male albino Wistar rats were used for the study. The matrix metalloproteinase expressions were found to be increased significantly in alcohol as well as thermally oxidised sunflower oil groups and on treatment with curcumin there was a significant decrease. In alcohol + thermally oxidised sunflower oil group, we found a significant decrease in matrix metalloproteinase activities. Administration of curcumin significantly improved their activities. From the results obtained, we could conclude that curcumin influences the hepatic matrix metalloproteinases and effectively protects liver against alcohol and delta PUFA induced toxicity.

  9. Parallel evolution of TCP and B-class genes in Commelinaceae flower bilateral symmetry

    Directory of Open Access Journals (Sweden)

    Preston Jill C

    2012-03-01

    Full Text Available Abstract Background Flower bilateral symmetry (zygomorphy has evolved multiple times independently across angiosperms and is correlated with increased pollinator specialization and speciation rates. Functional and expression analyses in distantly related core eudicots and monocots implicate independent recruitment of class II TCP genes in the evolution of flower bilateral symmetry. Furthermore, available evidence suggests that monocot flower bilateral symmetry might also have evolved through changes in B-class homeotic MADS-box gene function. Methods In order to test the non-exclusive hypotheses that changes in TCP and B-class gene developmental function underlie flower symmetry evolution in the monocot family Commelinaceae, we compared expression patterns of teosinte branched1 (TB1-like, DEFICIENS (DEF-like, and GLOBOSA (GLO-like genes in morphologically distinct bilaterally symmetrical flowers of Commelina communis and Commelina dianthifolia, and radially symmetrical flowers of Tradescantia pallida. Results Expression data demonstrate that TB1-like genes are asymmetrically expressed in tepals of bilaterally symmetrical Commelina, but not radially symmetrical Tradescantia, flowers. Furthermore, DEF-like genes are expressed in showy inner tepals, staminodes and stamens of all three species, but not in the distinct outer tepal-like ventral inner tepals of C. communis. Conclusions Together with other studies, these data suggest parallel recruitment of TB1-like genes in the independent evolution of flower bilateral symmetry at early stages of Commelina flower development, and the later stage homeotic transformation of C. communis inner tepals into outer tepals through the loss of DEF-like gene expression.

  10. Gene duplication, silencing and expression alteration govern the molecular evolution of PRC2 genes in plants.

    Science.gov (United States)

    Furihata, Hazuka Y; Suenaga, Kazuya; Kawanabe, Takahiro; Yoshida, Takanori; Kawabe, Akira

    2016-10-13

    PRC2 genes were analyzed for their number of gene duplications, d N /d S ratios and expression patterns among Brassicaceae and Gramineae species. Although both amino acid sequences and copy number of the PRC2 genes were generally well conserved in both Brassicaceae and Gramineae species, we observed that some rapidly evolving genes experienced duplications and expression pattern changes. After multiple duplication events, all but one or two of the duplicated copies tend to be silenced. Silenced copies were reactivated in the endosperm and showed ectopic expression in developing seeds. The results indicated that rapid evolution of some PRC2 genes is initially caused by a relaxation of selective constraint following the gene duplication events. Several loci could become maternally expressed imprinted genes and acquired functional roles in the endosperm.

  11. Measuring the combinatorial expression of solute transporters and metalloproteinases transcripts in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Cosgrove Leah

    2009-08-01

    Full Text Available Abstract Background It was hypothesised that colorectal cancer (CRC could be diagnosed in biopsies by measuring the combined expression of a small set of well known genes. Genes were chosen based on their role in either the breakdown of the extracellular matrix or with changes in cellular metabolism both of which are associated with CRC progression Findings Gene expression data derived from quantitative real-time PCR for the solute transporter carriers (SLCs and the invasion-mediating matrix metalloproteinases (MMPs were examined using a Linear Descriminant Analysis (LDA. The combination of MMP-7 and SLC5A8 was found to be the most predictive of CRC. Conclusion A combinatorial analysis technique is an effective method for both furthering our understanding on the molecular basis of some aspects of CRC, as well as for leveraging well defined cancer-related gene sets to identify cancer. In this instance, the combination of MMP-7 and SLC5A8 were optimal for identifying CRC.

  12. Relaxed evolution in the tyrosine aminotransferase gene tat in old world fruit bats (Chiroptera: Pteropodidae).

    Science.gov (United States)

    Shen, Bin; Fang, Tao; Yang, Tianxiao; Jones, Gareth; Irwin, David M; Zhang, Shuyi

    2014-01-01

    Frugivorous and nectarivorous bats fuel their metabolism mostly by using carbohydrates and allocate the restricted amounts of ingested proteins mainly for anabolic protein syntheses rather than for catabolic energy production. Thus, it is possible that genes involved in protein (amino acid) catabolism may have undergone relaxed evolution in these fruit- and nectar-eating bats. The tyrosine aminotransferase (TAT, encoded by the Tat gene) is the rate-limiting enzyme in the tyrosine catabolic pathway. To test whether the Tat gene has undergone relaxed evolution in the fruit- and nectar-eating bats, we obtained the Tat coding region from 20 bat species including four Old World fruit bats (Pteropodidae) and two New World fruit bats (Phyllostomidae). Phylogenetic reconstructions revealed a gene tree in which all echolocating bats (including the New World fruit bats) formed a monophyletic group. The phylogenetic conflict appears to stem from accelerated TAT protein sequence evolution in the Old World fruit bats. Our molecular evolutionary analyses confirmed a change in the selection pressure acting on Tat, which was likely caused by a relaxation of the evolutionary constraints on the Tat gene in the Old World fruit bats. Hepatic TAT activity assays showed that TAT activities in species of the Old World fruit bats are significantly lower than those of insectivorous bats and omnivorous mice, which was not caused by a change in TAT protein levels in the liver. Our study provides unambiguous evidence that the Tat gene has undergone relaxed evolution in the Old World fruit bats in response to changes in their metabolism due to the evolution of their special diet.

  13. Evolution of vertebrate central nervous system is accompanied by novel expression changes of duplicate genes.

    Science.gov (United States)

    Chen, Yuan; Ding, Yun; Zhang, Zuming; Wang, Wen; Chen, Jun-Yuan; Ueno, Naoto; Mao, Bingyu

    2011-12-20

    The evolution of the central nervous system (CNS) is one of the most striking changes during the transition from invertebrates to vertebrates. As a major source of genetic novelties, gene duplication might play an important role in the functional innovation of vertebrate CNS. In this study, we focused on a group of CNS-biased genes that duplicated during early vertebrate evolution. We investigated the tempo-spatial expression patterns of 33 duplicate gene families and their orthologs during the embryonic development of the vertebrate Xenopus laevis and the cephalochordate Brachiostoma belcheri. Almost all the identified duplicate genes are differentially expressed in the CNS in Xenopus embryos, and more than 50% and 30% duplicate genes are expressed in the telencephalon and mid-hindbrain boundary, respectively, which are mostly considered as two innovations in the vertebrate CNS. Interestingly, more than 50% of the amphioxus orthologs do not show apparent expression in the CNS in amphioxus embryos as detected by in situ hybridization, indicating that some of the vertebrate CNS-biased duplicate genes might arise from non-CNS genes in invertebrates. Our data accentuate the functional contribution of gene duplication in the CNS evolution of vertebrate and uncover an invertebrate non-CNS history for some vertebrate CNS-biased duplicate genes. Copyright © 2011. Published by Elsevier Ltd.

  14. Trans gene regulation in adaptive evolution: a genetic algorithm model.

    Science.gov (United States)

    Behera, N; Nanjundiah, V

    1997-09-21

    This is a continuation of earlier studies on the evolution of infinite populations of haploid genotypes within a genetic algorithm framework. We had previously explored the evolutionary consequences of the existence of indeterminate-"plastic"-loci, where a plastic locus had a finite probability in each generation of functioning (being switched "on") or not functioning (being switched "off"). The relative probabilities of the two outcomes were assigned on a stochastic basis. The present paper examines what happens when the transition probabilities are biased by the presence of regulatory genes. We find that under certain conditions regulatory genes can improve the adaptation of the population and speed up the rate of evolution (on occasion at the cost of lowering the degree of adaptation). Also, the existence of regulatory loci potentiates selection in favour of plasticity. There is a synergistic effect of regulatory genes on plastic alleles: the frequency of such alleles increases when regulatory loci are present. Thus, phenotypic selection alone can be a potentiating factor in a favour of better adaptation. Copyright 1997 Academic Press Limited.

  15. Developmental evolution in social insects: regulatory networks from genes to societies.

    Science.gov (United States)

    Linksvayer, Timothy A; Fewell, Jennifer H; Gadau, Jürgen; Laubichler, Manfred D

    2012-05-01

    The evolution and development of complex phenotypes in social insect colonies, such as queen-worker dimorphism or division of labor, can, in our opinion, only be fully understood within an expanded mechanistic framework of Developmental Evolution. Conversely, social insects offer a fertile research area in which fundamental questions of Developmental Evolution can be addressed empirically. We review the concept of gene regulatory networks (GRNs) that aims to fully describe the battery of interacting genomic modules that are differentially expressed during the development of individual organisms. We discuss how distinct types of network models have been used to study different levels of biological organization in social insects, from GRNs to social networks. We propose that these hierarchical networks spanning different organizational levels from genes to societies should be integrated and incorporated into full GRN models to elucidate the evolutionary and developmental mechanisms underlying social insect phenotypes. Finally, we discuss prospects and approaches to achieve such an integration. © 2012 WILEY PERIODICALS, INC.

  16. Phylogenomic analysis of secondary metabolism genes sheds light on their evolution in Aspergilli

    DEFF Research Database (Denmark)

    Theobald, Sebastian; Vesth, Tammi Camilla; Rasmussen, Jane Lind Nybo

    .Natural products are encoded by genes located in close proximity, called secondary metabolic gene clusters, which makes them interesting targets for genomic analysis. We use a modified version of the Secondary Metabolite Unique Regions Finder (SMURF) algorithm, combined with InterPro annotations to create...... approximate maximum likelihood trees of conserved domains from secondary metabolic genes across 56 species, giving insights into the secondary metabolism gene diversity and evolution.In this study we can describe the evolution of non ribosomal peptide synthetases (NRPS), polyketide synthases (PKS) and hybrids.......In the aspMine project, we are sequencing and analyzing over 300 species of Aspergilli, agroup of filamentous fungi rich in natural compounds. The vast amount of data obtained from these species challenges the way we were mining for products and requires new pipelines for secondary metabolite analysis...

  17. Divergent evolution of multiple virus-resistance genes from a progenitor in Capsicum spp.

    Science.gov (United States)

    Kim, Saet-Byul; Kang, Won-Hee; Huy, Hoang Ngoc; Yeom, Seon-In; An, Jeong-Tak; Kim, Seungill; Kang, Min-Young; Kim, Hyun Jung; Jo, Yeong Deuk; Ha, Yeaseong; Choi, Doil; Kang, Byoung-Cheorl

    2017-01-01

    Plants have evolved hundreds of nucleotide-binding and leucine-rich domain proteins (NLRs) as potential intracellular immune receptors, but the evolutionary mechanism leading to the ability to recognize specific pathogen effectors is elusive. Here, we cloned Pvr4 (a Potyvirus resistance gene in Capsicum annuum) and Tsw (a Tomato spotted wilt virus resistance gene in Capsicum chinense) via a genome-based approach using independent segregating populations. The genes both encode typical NLRs and are located at the same locus on pepper chromosome 10. Despite the fact that these two genes recognize completely different viral effectors, the genomic structures and coding sequences of the two genes are strikingly similar. Phylogenetic studies revealed that these two immune receptors diverged from a progenitor gene of a common ancestor. Our results suggest that sequence variations caused by gene duplication and neofunctionalization may underlie the evolution of the ability to specifically recognize different effectors. These findings thereby provide insight into the divergent evolution of plant immune receptors. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  18. Distribution and evolution of genes responsible for biosynthesis of mycotoxins in Fusarium

    Science.gov (United States)

    Fusarium secondary metabolites (SMs) include some of the mycotoxins of greatest concern to food and feed safety. In fungi, genes directly involved in synthesis of the same SM are typically located adjacent to one another in gene clusters. To better understand the distribution and evolution of mycoto...

  19. Tubulin evolution in insects: gene duplication and subfunctionalization provide specialized isoforms in a functionally constrained gene family

    Directory of Open Access Journals (Sweden)

    Gadagkar Sudhindra R

    2010-04-01

    Full Text Available Abstract Background The completion of 19 insect genome sequencing projects spanning six insect orders provides the opportunity to investigate the evolution of important gene families, here tubulins. Tubulins are a family of eukaryotic structural genes that form microtubules, fundamental components of the cytoskeleton that mediate cell division, shape, motility, and intracellular trafficking. Previous in vivo studies in Drosophila find a stringent relationship between tubulin structure and function; small, biochemically similar changes in the major alpha 1 or testis-specific beta 2 tubulin protein render each unable to generate a motile spermtail axoneme. This has evolutionary implications, not a single non-synonymous substitution is found in beta 2 among 17 species of Drosophila and Hirtodrosophila flies spanning 60 Myr of evolution. This raises an important question, How do tubulins evolve while maintaining their function? To answer, we use molecular evolutionary analyses to characterize the evolution of insect tubulins. Results Sixty-six alpha tubulins and eighty-six beta tubulin gene copies were retrieved and subjected to molecular evolutionary analyses. Four ancient clades of alpha and beta tubulins are found in insects, a major isoform clade (alpha 1, beta 1 and three minor, tissue-specific clades (alpha 2-4, beta 2-4. Based on a Homarus americanus (lobster outgroup, these were generated through gene duplication events on major beta and alpha tubulin ancestors, followed by subfunctionalization in expression domain. Strong purifying selection acts on all tubulins, yet maximum pairwise amino acid distances between tubulin paralogs are large (0.464 substitutions/site beta tubulins, 0.707 alpha tubulins. Conversely orthologs, with the exception of reproductive tissue isoforms, show little sequence variation except in the last 15 carboxy terminus tail (CTT residues, which serve as sites for post-translational modifications (PTMs and interactions

  20. Comparative Analysis of Gene Expression for Convergent Evolution of Camera Eye Between Octopus and Human

    Science.gov (United States)

    Ogura, Atsushi; Ikeo, Kazuho; Gojobori, Takashi

    2004-01-01

    Although the camera eye of the octopus is very similar to that of humans, phylogenetic and embryological analyses have suggested that their camera eyes have been acquired independently. It has been known as a typical example of convergent evolution. To study the molecular basis of convergent evolution of camera eyes, we conducted a comparative analysis of gene expression in octopus and human camera eyes. We sequenced 16,432 ESTs of the octopus eye, leading to 1052 nonredundant genes that have matches in the protein database. Comparing these 1052 genes with 13,303 already-known ESTs of the human eye, 729 (69.3%) genes were commonly expressed between the human and octopus eyes. On the contrary, when we compared octopus eye ESTs with human connective tissue ESTs, the expression similarity was quite low. To trace the evolutionary changes that are potentially responsible for camera eye formation, we also compared octopus-eye ESTs with the completed genome sequences of other organisms. We found that 1019 out of the 1052 genes had already existed at the common ancestor of bilateria, and 875 genes were conserved between humans and octopuses. It suggests that a larger number of conserved genes and their similar gene expression may be responsible for the convergent evolution of the camera eye. PMID:15289475

  1. Identification of genes that have undergone adaptive evolution in ...

    African Journals Online (AJOL)

    Cassava (Manihot esculenta) is a vital food security crop and staple in Africa, yet cassava brown streak disease (CBSD) and cassava mosaic disease result in substantial yield losses. The aim of this study was to identify genes that have undergone positive selection during adaptive evolution, from CBSD resistant, tolerant ...

  2. Relaxed evolution in the tyrosine aminotransferase gene tat in old world fruit bats (Chiroptera: Pteropodidae.

    Directory of Open Access Journals (Sweden)

    Bin Shen

    Full Text Available Frugivorous and nectarivorous bats fuel their metabolism mostly by using carbohydrates and allocate the restricted amounts of ingested proteins mainly for anabolic protein syntheses rather than for catabolic energy production. Thus, it is possible that genes involved in protein (amino acid catabolism may have undergone relaxed evolution in these fruit- and nectar-eating bats. The tyrosine aminotransferase (TAT, encoded by the Tat gene is the rate-limiting enzyme in the tyrosine catabolic pathway. To test whether the Tat gene has undergone relaxed evolution in the fruit- and nectar-eating bats, we obtained the Tat coding region from 20 bat species including four Old World fruit bats (Pteropodidae and two New World fruit bats (Phyllostomidae. Phylogenetic reconstructions revealed a gene tree in which all echolocating bats (including the New World fruit bats formed a monophyletic group. The phylogenetic conflict appears to stem from accelerated TAT protein sequence evolution in the Old World fruit bats. Our molecular evolutionary analyses confirmed a change in the selection pressure acting on Tat, which was likely caused by a relaxation of the evolutionary constraints on the Tat gene in the Old World fruit bats. Hepatic TAT activity assays showed that TAT activities in species of the Old World fruit bats are significantly lower than those of insectivorous bats and omnivorous mice, which was not caused by a change in TAT protein levels in the liver. Our study provides unambiguous evidence that the Tat gene has undergone relaxed evolution in the Old World fruit bats in response to changes in their metabolism due to the evolution of their special diet.

  3. Algorithms for computing parsimonious evolutionary scenarios for genome evolution, the last universal common ancestor and dominance of horizontal gene transfer in the evolution of prokaryotes

    Directory of Open Access Journals (Sweden)

    Galperin Michael Y

    2003-01-01

    Full Text Available Abstract Background Comparative analysis of sequenced genomes reveals numerous instances of apparent horizontal gene transfer (HGT, at least in prokaryotes, and indicates that lineage-specific gene loss might have been even more common in evolution. This complicates the notion of a species tree, which needs to be re-interpreted as a prevailing evolutionary trend, rather than the full depiction of evolution, and makes reconstruction of ancestral genomes a non-trivial task. Results We addressed the problem of constructing parsimonious scenarios for individual sets of orthologous genes given a species tree. The orthologous sets were taken from the database of Clusters of Orthologous Groups of proteins (COGs. We show that the phyletic patterns (patterns of presence-absence in completely sequenced genomes of almost 90% of the COGs are inconsistent with the hypothetical species tree. Algorithms were developed to reconcile the phyletic patterns with the species tree by postulating gene loss, COG emergence and HGT (the latter two classes of events were collectively treated as gene gains. We prove that each of these algorithms produces a parsimonious evolutionary scenario, which can be represented as mapping of loss and gain events on the species tree. The distribution of the evolutionary events among the tree nodes substantially depends on the underlying assumptions of the reconciliation algorithm, e.g. whether or not independent gene gains (gain after loss after gain are permitted. Biological considerations suggest that, on average, gene loss might be a more likely event than gene gain. Therefore different gain penalties were used and the resulting series of reconstructed gene sets for the last universal common ancestor (LUCA of the extant life forms were analysed. The number of genes in the reconstructed LUCA gene sets grows as the gain penalty increases. However, qualitative examination of the LUCA versions reconstructed with different gain penalties

  4. Molecular evolution of the major chemosensory gene families in insects.

    Science.gov (United States)

    Sánchez-Gracia, A; Vieira, F G; Rozas, J

    2009-09-01

    Chemoreception is a crucial biological process that is essential for the survival of animals. In insects, olfaction allows the organism to recognise volatile cues that allow the detection of food, predators and mates, whereas the sense of taste commonly allows the discrimination of soluble stimulants that elicit feeding behaviours and can also initiate innate sexual and reproductive responses. The most important proteins involved in the recognition of chemical cues comprise moderately sized multigene families. These families include odorant-binding proteins (OBPs) and chemosensory proteins (CSPs), which are involved in peripheral olfactory processing, and the chemoreceptor superfamily formed by the olfactory receptor (OR) and gustatory receptor (GR) families. Here, we review some recent evolutionary genomic studies of chemosensory gene families using the data from fully sequenced insect genomes, especially from the 12 newly available Drosophila genomes. Overall, the results clearly support the birth-and-death model as the major mechanism of evolution in these gene families. Namely, new members arise by tandem gene duplication, progressively diverge in sequence and function, and can eventually be lost from the genome by a deletion or pseudogenisation event. Adaptive changes fostered by environmental shifts are also observed in the evolution of chemosensory families in insects and likely involve reproductive, ecological or behavioural traits. Consequently, the current size of these gene families is mainly a result of random gene gain and loss events. This dynamic process may represent a major source of genetic variation, providing opportunities for FUTURE specific adaptations.

  5. Acrolein-activated matrix metalloproteinase 9 contributes to persistent mucin production.

    Science.gov (United States)

    Deshmukh, Hitesh S; Shaver, Colleen; Case, Lisa M; Dietsch, Maggie; Wesselkamper, Scott C; Hardie, William D; Korfhagen, Thomas R; Corradi, Massimo; Nadel, Jay A; Borchers, Michael T; Leikauf, George D

    2008-04-01

    Chronic obstructive pulmonary disease (COPD), a global public health problem, is characterized by progressive difficulty in breathing, with increased mucin production, especially in the small airways. Acrolein, a constituent of cigarette smoke and an endogenous mediator of oxidative stress, increases airway mucin 5, subtypes A and C (MUC5AC) production; however, the mechanism remains unclear. In this study, increased mMUC5AC transcripts and protein were associated with increased lung matrix metalloproteinase 9 (mMMP9) transcripts, protein, and activity in acrolein-exposed mice. Increased mMUC5AC transcripts and mucin protein were diminished in gene-targeted Mmp9 mice [Mmp9((-/-))] or in mice treated with an epidermal growth factor receptor (EGFR) inhibitor, erlotinib. Acrolein also decreased mTissue inhibitor of metalloproteinase protein 3 (an MMP9 inhibitor) transcript levels. In a cell-free system, acrolein increased pro-hMMP9 cleavage and activity in concentrations (100-300 nM) found in sputum from subjects with COPD. Acrolein increased hMMP9 transcripts in human airway cells, which was inhibited by an MMP inhibitor, EGFR-neutralizing antibody, or a mitogen-activated protein kinase (MAPK) 3/2 inhibitor. Together these findings indicate that acrolein can initiate cleavage of pro-hMMP9 and EGFR/MAPK signaling that leads to additional MMP9 formation. Augmentation of hMMP9 activity, in turn, could contribute to persistent excessive mucin production.

  6. Downregulation of reversion-inducing cysteine-rich protein with Kazal motifs in malignant melanoma: inverse correlation with membrane-type 1-matrix metalloproteinase and tissue inhibitor of metalloproteinase 2.

    Science.gov (United States)

    Jacomasso, Thiago; Trombetta-Lima, Marina; Sogayar, Mari C; Winnischofer, Sheila M B

    2014-02-01

    The invasive phenotype of many tumors is associated with an imbalance between the matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of metalloproteinases (TIMPs), and the membrane-anchored reversion-inducing cysteine-rich protein with Kazal motifs (RECK). RECK inhibits MMP-2, MMP-9, and MT1-MMP, and has been linked to patient survival and better prognosis in several types of tumors. However, despite the wide implication of these MMPs in melanoma establishment and progression, the role of RECK in this type of tumor is still unknown. Here, we analyzed the expression of RECK, TIMP1, TIMP2, TIMP3, MT1MMP, MMP2, and MMP9 in two publicly available melanoma microarray datasets and in a panel of human melanoma cell lines. We found that RECK is downregulated in malignant melanoma, accompanied by upregulation of MT1MMP and TIMP2. In both datasets, we observed that the group of samples displaying higher RECK levels show lower median expression levels of MT1MMP and TIMP2 and higher levels of TIMP3. When tested in a sample-wise manner, these correlations were statistically significant. Inverse correlations between RECK, MT1MMP, and TIMP2 were verified in a panel of human melanoma cell lines and in a further reduced model that includes a pair of matched primary tumor-derived and metastasis-derived cell lines. Taken together, our data indicate a consistent correlation between RECK, MT1MMP, and TIMP2 across different models of clinical samples and cell lines and suggest evidence of the potential use of this subset of genes as a gene signature for diagnosing melanoma.

  7. Evolution-development congruence in pattern formation dynamics: Bifurcations in gene expression and regulation of networks structures.

    Science.gov (United States)

    Kohsokabe, Takahiro; Kaneko, Kunihiko

    2016-01-01

    Search for possible relationships between phylogeny and ontogeny is important in evolutionary-developmental biology. Here we uncover such relationships by numerical evolution and unveil their origin in terms of dynamical systems theory. By representing developmental dynamics of spatially located cells with gene expression dynamics with cell-to-cell interaction under external morphogen gradient, gene regulation networks are evolved under mutation and selection with the fitness to approach a prescribed spatial pattern of expressed genes. For most numerical evolution experiments, evolution of pattern over generations and development of pattern by an evolved network exhibit remarkable congruence. Both in the evolution and development pattern changes consist of several epochs where stripes are formed in a short time, while for other temporal regimes, pattern hardly changes. In evolution, these quasi-stationary regimes are generations needed to hit relevant mutations, while in development, they are due to some gene expression that varies slowly and controls the pattern change. The morphogenesis is regulated by combinations of feedback or feedforward regulations, where the upstream feedforward network reads the external morphogen gradient, and generates a pattern used as a boundary condition for the later patterns. The ordering from up to downstream is common in evolution and development, while the successive epochal changes in development and evolution are represented as common bifurcations in dynamical-systems theory, which lead to the evolution-development congruence. Mechanism of exceptional violation of the congruence is also unveiled. Our results provide a new look on developmental stages, punctuated equilibrium, developmental bottlenecks, and evolutionary acquisition of novelty in morphogenesis. © 2015 The Authors. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution Published by Wiley Periodicals, Inc.

  8. Levels of matrix metalloproteinase-1 and tissue inhibitors of metalloproteinase-1 in gastric cancer

    Science.gov (United States)

    Kemik, Ozgur; Kemik, Ahu Sarbay; Sümer, Aziz; Dulger, Ahmet Cumhur; Adas, Mine; Begenik, Huseyin; Hasirci, Ismail; Yilmaz, Ozkan; Purisa, Sevim; Kisli, Erol; Tuzun, Sefa; Kotan, Cetin

    2011-01-01

    AIM: To evaluate the levels of preoperative serum matrix metalloproteinase-1 (MMP-1) and tissue inhibitor of metalloproteinase-1 (TIMP-1) in gastric cancer. METHODS: One hundred gastric cancer patients who underwent gastrectomy were enrolled in this study. The serum concentrations of MMP-1 and TIMP-1 in these patients and in fifty healthy controls were determined using an enzyme-linked immunosorbent assay. RESULTS: Higher serum MMP-1 and TIMP-1 levels were observed in patients than in controls (P < 0.001). Serum MMP-1 and TIMP-1 levels were positively associated with morphological appearance, tumor size, depth of wall invasion, lymph node metastasis, liver metastasis, perineural invasion, and pathological stage. They were not significantly associated with age, gender, tumor location, or histological type. CONCLUSION: Increased MMP-1 and TIMP-1 were associated with gastric cancer. Although these markers are not good markers for diagnosis, these markers show in advanced gastric cancer. PMID:21547130

  9. Zymographic techniques for the analysis of matrix metalloproteinases and their inhibitors.

    NARCIS (Netherlands)

    Snoek, P.A.; Hoff, J.W. Von den

    2005-01-01

    The balance between matrix metalloproteinases (MMPs) and their inhibitors, the tissue inhibitors of metalloproteinases (TIMPs), is largely responsible for the remodeling of tissues. Deregulation of this balance is a characteristic of extensive tissue degradation in certain degenerative diseases. To

  10. Rapid evolution of Beta-keratin genes contribute to phenotypic differences that distinguish turtles and birds from other reptiles.

    Science.gov (United States)

    Li, Yang I; Kong, Lesheng; Ponting, Chris P; Haerty, Wilfried

    2013-01-01

    Sequencing of vertebrate genomes permits changes in distinct protein families, including gene gains and losses, to be ascribed to lineage-specific phenotypes. A prominent example of this is the large-scale duplication of beta-keratin genes in the ancestors of birds, which was crucial to the subsequent evolution of their beaks, claws, and feathers. Evidence suggests that the shell of Pseudomys nelsoni contains at least 16 beta-keratins proteins, but it is unknown whether this is a complete set and whether their corresponding genes are orthologous to avian beak, claw, or feather beta-keratin genes. To address these issues and to better understand the evolution of the turtle shell at a molecular level, we surveyed the diversity of beta-keratin genes from the genome assemblies of three turtles, Chrysemys picta, Pelodiscus sinensis, and Chelonia mydas, which together represent over 160 Myr of chelonian evolution. For these three turtles, we found 200 beta-keratins, which indicate that, as for birds, a large expansion of beta-keratin genes in turtles occurred concomitantly with the evolution of a unique phenotype, namely, their plastron and carapace. Phylogenetic reconstruction of beta-keratin gene evolution suggests that separate waves of gene duplication within a single genomic location gave rise to scales, claws, and feathers in birds, and independently the scutes of the shell in turtles.

  11. Phylogeny and adaptive evolution of the brain-development gene microcephalin (MCPH1 in cetaceans

    Directory of Open Access Journals (Sweden)

    Montgomery Stephen H

    2011-04-01

    Full Text Available Abstract Background Representatives of Cetacea have the greatest absolute brain size among animals, and the largest relative brain size aside from humans. Despite this, genes implicated in the evolution of large brain size in primates have yet to be surveyed in cetaceans. Results We sequenced ~1240 basepairs of the brain development gene microcephalin (MCPH1 in 38 cetacean species. Alignments of these data and a published complete sequence from Tursiops truncatus with primate MCPH1 were utilized in phylogenetic analyses and to estimate ω (rate of nonsynonymous substitution/rate of synonymous substitution using site and branch models of molecular evolution. We also tested the hypothesis that selection on MCPH1 was correlated with brain size in cetaceans using a continuous regression analysis that accounted for phylogenetic history. Our analyses revealed widespread signals of adaptive evolution in the MCPH1 of Cetacea and in other subclades of Mammalia, however, there was not a significant positive association between ω and brain size within Cetacea. Conclusion In conjunction with a recent study of Primates, we find no evidence to support an association between MCPH1 evolution and the evolution of brain size in highly encephalized mammalian species. Our finding of significant positive selection in MCPH1 may be linked to other functions of the gene.

  12. Gene finding with a hidden Markov model of genome structure and evolution

    DEFF Research Database (Denmark)

    Pedersen, Jakob Skou; Hein, Jotun

    2003-01-01

    the model are linear in alignment length and genome number. The model is applied to the problem of gene finding. The benefit of modelling sequence evolution is demonstrated both in a range of simulations and on a set of orthologous human/mouse gene pairs. AVAILABILITY: Free availability over the Internet...

  13. Structural properties of matrix metalloproteinases.

    Science.gov (United States)

    Bode, W; Fernandez-Catalan, C; Tschesche, H; Grams, F; Nagase, H; Maskos, K

    1999-04-01

    Matrix metalloproteinases (MMPs) are involved in extracellular matrix degradation. Their proteolytic activity must be precisely regulated by their endogenous protein inhibitors, the tissue inhibitors of metalloproteinases (TIMPs). Disruption of this balance results in serious diseases such as arthritis, tumour growth and metastasis. Knowledge of the tertiary structures of the proteins involved is crucial for understanding their functional properties and interference with associated dysfunctions. Within the last few years, several three-dimensional MMP and MMP-TIMP structures became available, showing the domain organization, polypeptide fold and main specificity determinants. Complexes of the catalytic MMP domains with various synthetic inhibitors enabled the structure-based design and improvement of high-affinity ligands, which might be elaborated into drugs. A multitude of reviews surveying work done on all aspects of MMPs have appeared in recent years, but none of them has focused on the three-dimensional structures. This review was written to close the gap.

  14. Gene expression and adaptive noncoding changes during human evolution.

    Science.gov (United States)

    Babbitt, Courtney C; Haygood, Ralph; Nielsen, William J; Wray, Gregory A

    2017-06-05

    Despite evidence for adaptive changes in both gene expression and non-protein-coding, putatively regulatory regions of the genome during human evolution, the relationship between gene expression and adaptive changes in cis-regulatory regions remains unclear. Here we present new measurements of gene expression in five tissues of humans and chimpanzees, and use them to assess this relationship. We then compare our results with previous studies of adaptive noncoding changes, analyzing correlations at the level of gene ontology groups, in order to gain statistical power to detect correlations. Consistent with previous studies, we find little correlation between gene expression and adaptive noncoding changes at the level of individual genes; however, we do find significant correlations at the level of biological function ontology groups. The types of function include processes regulated by specific transcription factors, responses to genetic or chemical perturbations, and differentiation of cell types within the immune system. Among functional categories co-enriched with both differential expression and noncoding adaptation, prominent themes include cancer, particularly epithelial cancers, and neural development and function.

  15. Polymorphism of matrix metalloproteinase genes (MMP1 and MMP3) in patients with varicose veins.

    Science.gov (United States)

    Kurzawski, M; Modrzejewski, A; Pawlik, A; Droździk, M

    2009-07-01

    Several risk factors for varicose veins have been identified: female gender, combined with obesity and pregnancy, occupations requiring standing for long periods, sedentary lifestyle, history of deep-vein thrombosis and family history. However, no specific gene variants related to a wide prevalence of varicosities in general population have been identified. Extracellular matrix composition, predominantly maintained by matrix metalloproteinases (MMPs), may affect the vein-wall structure, which may lead to dilation of vessels and cause varicosities. MMP-1 (tissue collagenase I) and MMP-3 (stromelysin I) expression was found to be raised in varicose veins compared with normal vessels. Therefore, a study was conducted to evaluate a potential association between MMP1 and MMP3 promoter polymorphisms and a risk of varicose veins. Genotyping for the presence of the polymorphisms -1607dupG (rs1799750) in MMP1 and -1171dupA (rs3025058) in the MMP3 promoter region was performed using PCR and restriction-fragment length polymorphism assays in a group of 109 patients diagnosed with varicose veins and 112 healthy controls. The frequencies of the MMP1 and MMP3 alleles (minor allele frequency 0.440 in patients vs. 0.451 in the controls for MMP1-1607*G and 0.514 vs. 0.469 for MMP3-1171*dupA, respectively) and of genotypes did not differ significantly between patients and controls. The MMP1-1607dupG and MMP3-1171dupA promoter polymorphisms are not valuable markers of susceptibility for varicose veins.

  16. 5S rRNA gene arrangements in protists: a case of nonadaptive evolution.

    Science.gov (United States)

    Drouin, Guy; Tsang, Corey

    2012-06-01

    Given their high copy number and high level of expression, one might expect that both the sequence and organization of eukaryotic ribosomal RNA genes would be conserved during evolution. Although the organization of 18S, 5.8S and 28S ribosomal RNA genes is indeed relatively well conserved, that of 5S rRNA genes is much more variable. Here, we review the different types of 5S rRNA gene arrangements which have been observed in protists. This includes linkages to the other ribosomal RNA genes as well as linkages to ubiquitin, splice-leader, snRNA and tRNA genes. Mapping these linkages to independently derived phylogenies shows that these diverse linkages have repeatedly been gained and lost during evolution. This argues against such linkages being the primitive condition not only in protists but also in other eukaryote species. Because the only characteristic the diverse genes with which 5S rRNA genes are found linked with is that they are tandemly repeated, these arrangements are unlikely to provide any selective advantage. Rather, the observed high variability in 5S rRNA genes arrangements is likely the result of the fact that 5S rRNA genes contain internal promoters, that these genes are often transposed by diverse recombination mechanisms and that these new gene arrangements are rapidly homogenized by unequal crossingovers and/or by gene conversions events in species with short generation times and frequent founder events.

  17. Extraordinary molecular evolution in the PRDM9 fertility gene.

    Directory of Open Access Journals (Sweden)

    James H Thomas

    2009-12-01

    Full Text Available Recent work indicates that allelic incompatibility in the mouse PRDM9 (Meisetz gene can cause hybrid male sterility, contributing to genetic isolation and potentially speciation. The only phenotype of mouse PRDM9 knockouts is a meiosis I block that causes sterility in both sexes. The PRDM9 gene encodes a protein with histone H3(K4 trimethyltransferase activity, a KRAB domain, and a DNA-binding domain consisting of multiple tandem C2H2 zinc finger (ZF domains. We have analyzed human coding polymorphism and interspecies evolutionary changes in the PRDM9 gene. The ZF domains of PRDM9 are evolving very rapidly, with compelling evidence of positive selection in primates. Positively selected amino acids are predominantly those known to make nucleotide specific contacts in C2H2 zinc fingers. These results suggest that PRDM9 is subject to recurrent selection to change DNA-binding specificity. The human PRDM9 protein is highly polymorphic in its ZF domains and nearly all polymorphisms affect the same nucleotide contact residues that are subject to positive selection. ZF domain nucleotide sequences are strongly homogenized within species, indicating that interfinger recombination contributes to their evolution. PRDM9 has previously been assumed to be a transcription factor required to induce meiosis specific genes, a role that is inconsistent with its molecular evolution. We suggest instead that PRDM9 is involved in some aspect of centromere segregation conflict and that rapidly evolving centromeric DNA drives changes in PRDM9 DNA-binding domains.

  18. Comparative genome sequencing of drosophila pseudoobscura: Chromosomal, gene and cis-element evolution

    Energy Technology Data Exchange (ETDEWEB)

    Richards, Stephen; Liu, Yue; Bettencourt, Brian R.; Hradecky, Pavel; Letovsky, Stan; Nielsen, Rasmus; Thornton, Kevin; Todd, Melissa J.; Chen, Rui; Meisel, Richard P.; Couronne, Olivier; Hua, Sujun; Smith, Mark A.; Bussemaker, Harmen J.; van Batenburg, Marinus F.; Howells, Sally L.; Scherer, Steven E.; Sodergren, Erica; Matthews, Beverly B.; Crosby, Madeline A.; Schroeder, Andrew J.; Ortiz-Barrientos, Daniel; Rives, Catherine M.; Metzker, Michael L.; Muzny, Donna M.; Scott, Graham; Steffen, David; Wheeler, David A.; Worley, Kim C.; Havlak, Paul; Durbin, K. James; Egan, Amy; Gill, Rachel; Hume, Jennifer; Morgan, Margaret B.; Miner, George; Hamilton, Cerissa; Huang, Yanmei; Waldron, Lenee; Verduzco, Daniel; Blankenburg, Kerstin P.; Dubchak, Inna; Noor, Mohamed A.F.; Anderson, Wyatt; White, Kevin P.; Clark, Andrew G.; Schaeffer, Stephen W.; Gelbart, William; Weinstock, George M.; Gibbs, Richard A.

    2004-04-01

    The genome sequence of a second fruit fly, D. pseudoobscura, presents an opportunity for comparative analysis of a primary model organism D. melanogaster. The vast majority of Drosophila genes have remained on the same arm, but within each arm gene order has been extensively reshuffled leading to the identification of approximately 1300 syntenic blocks. A repetitive sequence is found in the D. pseudoobscura genome at many junctions between adjacent syntenic blocks. Analysis of this novel repetitive element family suggests that recombination between offset elements may have given rise to many paracentric inversions, thereby contributing to the shuffling of gene order in the D. pseudoobscura lineage. Based on sequence similarity and synteny, 10,516 putative orthologs have been identified as a core gene set conserved over 35 My since divergence. Genes expressed in the testes had higher amino acid sequence divergence than the genome wide average consistent with the rapid evolution of sex-specific proteins. Cis-regulatory sequences are more conserved than control sequences between the species but the difference is slight, suggesting that the evolution of cis-regulatory elements is flexible. Overall, a picture of repeat mediated chromosomal rearrangement, and high co-adaptation of both male genes and cis-regulatory sequences emerges as important themes of genome divergence between these species of Drosophila.

  19. The evolution of CHROMOMETHYLASES and gene body DNA methylation in plants

    OpenAIRE

    Leebens-Mack, Jim; Griffin, Patrick; Rohr, Nicholas; Niederhuth, Chad; Ji, Lexiang; Bewick, Adam; Schmitz, Robert

    2017-01-01

    Background The evolution of gene body methylation (gbM), its origins, and its functional consequences are poorly understood. By pairing the largest collection of transcriptomes (>1000) and methylomes (77) across Viridiplantae, we provide novel insights into the evolution of gbM and its relationship to CHROMOMETHYLASE (CMT) proteins. Results CMTs are evolutionary conserved DNA methyltransferases in Viridiplantae. Duplication events gave rise to what are now referred to as CMT1, 2 and 3. Indepe...

  20. Adaptive evolution of mitochondrial energy metabolism genes associated with increased energy demand in flying insects.

    Science.gov (United States)

    Yang, Yunxia; Xu, Shixia; Xu, Junxiao; Guo, Yan; Yang, Guang

    2014-01-01

    Insects are unique among invertebrates for their ability to fly, which raises intriguing questions about how energy metabolism in insects evolved and changed along with flight. Although physiological studies indicated that energy consumption differs between flying and non-flying insects, the evolution of molecular energy metabolism mechanisms in insects remains largely unexplored. Considering that about 95% of adenosine triphosphate (ATP) is supplied by mitochondria via oxidative phosphorylation, we examined 13 mitochondrial protein-encoding genes to test whether adaptive evolution of energy metabolism-related genes occurred in insects. The analyses demonstrated that mitochondrial DNA protein-encoding genes are subject to positive selection from the last common ancestor of Pterygota, which evolved primitive flight ability. Positive selection was also found in insects with flight ability, whereas no significant sign of selection was found in flightless insects where the wings had degenerated. In addition, significant positive selection was also identified in the last common ancestor of Neoptera, which changed its flight mode from direct to indirect. Interestingly, detection of more positively selected genes in indirect flight rather than direct flight insects suggested a stronger selective pressure in insects having higher energy consumption. In conclusion, mitochondrial protein-encoding genes involved in energy metabolism were targets of adaptive evolution in response to increased energy demands that arose during the evolution of flight ability in insects.

  1. Trends in the Evolution of Snake Toxins Underscored by an Integrative Omics Approach to Profile the Venom of the Colubrid Phalotris mertensi.

    Science.gov (United States)

    Campos, Pollyanna Fernandes; Andrade-Silva, Débora; Zelanis, André; Paes Leme, Adriana Franco; Rocha, Marisa Maria Teixeira; Menezes, Milene Cristina; Serrano, Solange M T; Junqueira-de-Azevedo, Inácio de Loiola Meirelles

    2016-08-16

    Only few studies on snake venoms were dedicated to deeply characterize the toxin secretion of animals from the Colubridae family, despite the fact that they represent the majority of snake diversity. As a consequence, some evolutionary trends observed in venom proteins that underpinned the evolutionary histories of snake toxins were based on data from a minor parcel of the clade. Here, we investigated the proteins of the totally unknown venom from Phalotris mertensi (Dipsadinae subfamily), in order to obtain a detailed profile of its toxins and to appreciate evolutionary tendencies occurring in colubrid venoms. By means of integrated omics and functional approaches, including RNAseq, Sanger sequencing, high-resolution proteomics, recombinant protein production, and enzymatic tests, we verified an active toxic secretion containing up to 21 types of proteins. A high content of Kunitz-type proteins and C-type lectins were observed, although several enzymatic components such as metalloproteinases and an L-amino acid oxidase were also present in the venom. Interestingly, an arguable venom component of other species was demonstrated as a true venom protein and named svLIPA (snake venom acid lipase). This finding indicates the importance of checking the actual protein occurrence across species before rejecting genes suggested to code for toxins, which are relevant for the discussion about the early evolution of reptile venoms. Moreover, trends in the evolution of some toxin classes, such as simplification of metalloproteinases and rearrangements of Kunitz and Wap domains, parallel similar phenomena observed in other venomous snake families and provide a broader picture of toxin evolution. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  2. Concerted and nonconcerted evolution of the Hsp70 gene superfamily in two sibling species of nematodes.

    Science.gov (United States)

    Nikolaidis, Nikolas; Nei, Masatoshi

    2004-03-01

    We have identified the Hsp70 gene superfamily of the nematode Caenorhabditis briggsae and investigated the evolution of these genes in comparison with Hsp70 genes from C. elegans, Drosophila, and yeast. The Hsp70 genes are classified into three monophyletic groups according to their subcellular localization, namely, cytoplasm (CYT), endoplasmic reticulum (ER), and mitochondria (MT). The Hsp110 genes can be classified into the polyphyletic CYT group and the monophyletic ER group. The different Hsp70 and Hsp110 groups appeared to evolve following the model of divergent evolution. This model can also explain the evolution of the ER and MT genes. On the other hand, the CYT genes are divided into heat-inducible and constitutively expressed genes. The constitutively expressed genes have evolved more or less following the birth-and-death process, and the rates of gene birth and gene death are different between the two nematode species. By contrast, some heat-inducible genes show an intraspecies phylogenetic clustering. This suggests that they are subject to sequence homogenization resulting from gene conversion-like events. In addition, the heat-inducible genes show high levels of sequence conservation in both intra-species and inter-species comparisons, and in most cases, amino acid sequence similarity is higher than nucleotide sequence similarity. This indicates that purifying selection also plays an important role in maintaining high sequence similarity among paralogous Hsp70 genes. Therefore, we suggest that the CYT heat-inducible genes have been subjected to a combination of purifying selection, birth-and-death process, and gene conversion-like events.

  3. Population genomic scans suggest novel genes underlie convergent flowering time evolution in the introduced range of Arabidopsis thaliana.

    Science.gov (United States)

    Gould, Billie A; Stinchcombe, John R

    2017-01-01

    A long-standing question in evolutionary biology is whether the evolution of convergent phenotypes results from selection on the same heritable genetic components. Using whole-genome sequencing and genome scans, we tested whether the evolution of parallel longitudinal flowering time clines in the native and introduced ranges of Arabidopsis thaliana has a similar genetic basis. We found that common variants of large effect on flowering time in the native range do not appear to have been under recent strong selection in the introduced range. We identified a set of 38 new candidate genes that are putatively linked to the evolution of flowering time. A high degree of conditional neutrality of flowering time variants between the native and introduced range may preclude parallel evolution at the level of genes. Overall, neither gene pleiotropy nor available standing genetic variation appears to have restricted the evolution of flowering time to high-frequency variants from the native range or to known flowering time pathway genes. © 2016 John Wiley & Sons Ltd.

  4. On theoretical models of gene expression evolution with random genetic drift and natural selection.

    Directory of Open Access Journals (Sweden)

    Osamu Ogasawara

    2009-11-01

    Full Text Available The relative contributions of natural selection and random genetic drift are a major source of debate in the study of gene expression evolution, which is hypothesized to serve as a bridge from molecular to phenotypic evolution. It has been suggested that the conflict between views is caused by the lack of a definite model of the neutral hypothesis, which can describe the long-run behavior of evolutionary change in mRNA abundance. Therefore previous studies have used inadequate analogies with the neutral prediction of other phenomena, such as amino acid or nucleotide sequence evolution, as the null hypothesis of their statistical inference.In this study, we introduced two novel theoretical models, one based on neutral drift and the other assuming natural selection, by focusing on a common property of the distribution of mRNA abundance among a variety of eukaryotic cells, which reflects the result of long-term evolution. Our results demonstrated that (1 our models can reproduce two independently found phenomena simultaneously: the time development of gene expression divergence and Zipf's law of the transcriptome; (2 cytological constraints can be explicitly formulated to describe long-term evolution; (3 the model assuming that natural selection optimized relative mRNA abundance was more consistent with previously published observations than the model of optimized absolute mRNA abundances.The models introduced in this study give a formulation of evolutionary change in the mRNA abundance of each gene as a stochastic process, on the basis of previously published observations. This model provides a foundation for interpreting observed data in studies of gene expression evolution, including identifying an adequate time scale for discriminating the effect of natural selection from that of random genetic drift of selectively neutral variations.

  5. ADAM and ADAMTS Family Proteins and Snake Venom Metalloproteinases: A Structural Overview

    Directory of Open Access Journals (Sweden)

    Soichi Takeda

    2016-05-01

    Full Text Available A disintegrin and metalloproteinase (ADAM family proteins constitute a major class of membrane-anchored multidomain proteinases that are responsible for the shedding of cell-surface protein ectodomains, including the latent forms of growth factors, cytokines, receptors and other molecules. Snake venom metalloproteinases (SVMPs are major components in most viper venoms. SVMPs are primarily responsible for hemorrhagic activity and may also interfere with the hemostatic system in envenomed animals. SVMPs are phylogenetically most closely related to ADAMs and, together with ADAMs and related ADAM with thrombospondin motifs (ADAMTS family proteinases, constitute adamalysins/reprolysins or the M12B clan (MEROPS database of metalloproteinases. Although the catalytic domain structure is topologically similar to that of other metalloproteinases such as matrix metalloproteinases, the M12B proteinases have a modular structure with multiple non-catalytic ancillary domains that are not found in other proteinases. Notably, crystallographic studies revealed that, in addition to the conserved metalloproteinase domain, M12B members share a hallmark cysteine-rich domain designated as the “ADAM_CR” domain. Despite their name, ADAMTSs lack disintegrin-like structures and instead comprise two ADAM_CR domains. This review highlights the current state of our knowledge on the three-dimensional structures of M12B proteinases, focusing on their unique domains that may collaboratively participate in directing these proteinases to specific substrates.

  6. Evolution of stress-regulated gene expression in duplicate genes of Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Cheng Zou

    2009-07-01

    Full Text Available Due to the selection pressure imposed by highly variable environmental conditions, stress sensing and regulatory response mechanisms in plants are expected to evolve rapidly. One potential source of innovation in plant stress response mechanisms is gene duplication. In this study, we examined the evolution of stress-regulated gene expression among duplicated genes in the model plant Arabidopsis thaliana. Key to this analysis was reconstructing the putative ancestral stress regulation pattern. By comparing the expression patterns of duplicated genes with the patterns of their ancestors, duplicated genes likely lost and gained stress responses at a rapid rate initially, but the rate is close to zero when the synonymous substitution rate (a proxy for time is > approximately 0.8. When considering duplicated gene pairs, we found that partitioning of putative ancestral stress responses occurred more frequently compared to cases of parallel retention and loss. Furthermore, the pattern of stress response partitioning was extremely asymmetric. An analysis of putative cis-acting DNA regulatory elements in the promoters of the duplicated stress-regulated genes indicated that the asymmetric partitioning of ancestral stress responses are likely due, at least in part, to differential loss of DNA regulatory elements; the duplicated genes losing most of their stress responses were those that had lost more of the putative cis-acting elements. Finally, duplicate genes that lost most or all of the ancestral responses are more likely to have gained responses to other stresses. Therefore, the retention of duplicates that inherit few or no functions seems to be coupled to neofunctionalization. Taken together, our findings provide new insight into the patterns of evolutionary changes in gene stress responses after duplication and lay the foundation for testing the adaptive significance of stress regulatory changes under highly variable biotic and abiotic environments.

  7. The plasma and peritoneal fluid concentrations of matrix metalloproteinase-9 are elevated in patients with endometriosis.

    Science.gov (United States)

    Liu, Haiping; Wang, Jianye; Wang, Haiyu; Tang, Ning; Li, Yunfei; Zhang, Yan; Hao, Tianyu

    2016-09-01

    Enzyme matrix metalloproteinase-9 is a member of the matrix metalloproteinase family, which is critical to normal tissue remodelling during embryogenesis and wound healing. In patients with endometriosis, increased expression and activity of matrix metalloproteinase-9 have been observed in ectopic endometrium, but the plasma and peritoneal fluid concentrations of matrix metalloproteinase-9 in patients with endometriosis and their relation to disease severity have not been clear. The aim of the study was to investigate the concentrations of matrix metalloproteinase-9 in plasma and peritoneal fluid of patients with endometriosis. A prospective case-control study was conducted in Jinan Military General Hospital between January 2010 and December 2013. Fifty patients with proven endometriosis and 26 endometriosis-free controls were enrolled in this study. Patients with endometriosis were evaluated and divided into moderate/severe endometriosis group (stage I-II, n = 26) and minimal/mild endometriosis group (stage III-IV, n = 24) according to the revised criteria of the American Society for Reproductive Medicine. Blood samples and peritoneal fluid were obtained from both patients and controls. Matrix metalloproteinase-9 was measured using enzyme-linked immunosorbent assay in plasma and peritoneal fluid. The concentration of matrix metalloproteinase-9 between different groups was compared and its correlation to disease severity was analysed. Plasma and peritoneal fluid concentrations of matrix metalloproteinase-9 in patients with endometriosis were higher than that in controls. In addition, those patients with moderate/severe endometriosis had significantly higher plasma and peritoneal fluid concentrations of matrix metalloproteinase-9 compared to those with minimal/mild endometriosis. Matrix metalloproteinase-9 concentrations in plasma and peritoneal fluid were both positively correlated with severity of endometriosis and plasma matrix metalloproteinase-9

  8. Evolution and Stress Responses of Gossypium hirsutum SWEET Genes.

    Science.gov (United States)

    Li, Wei; Ren, Zhongying; Wang, Zhenyu; Sun, Kuan; Pei, Xiaoyu; Liu, Yangai; He, Kunlun; Zhang, Fei; Song, Chengxiang; Zhou, Xiaojian; Zhang, Wensheng; Ma, Xiongfeng; Yang, Daigang

    2018-03-08

    The SWEET (sugars will eventually be exported transporters) proteins are sugar efflux transporters containing the MtN3_saliva domain, which affects plant development as well as responses to biotic and abiotic stresses. These proteins have not been functionally characterized in the tetraploid cotton, Gossypium hirsutum , which is a widely cultivated cotton species. In this study, we comprehensively analyzed the cotton SWEET gene family. A total of 55 putative G. hirsutum SWEET genes were identified. The GhSWEET genes were classified into four clades based on a phylogenetic analysis and on the examination of gene structural features. Moreover, chromosomal localization and an analysis of homologous genes in Gossypium arboreum , Gossypium raimondii , and G. hirsutum suggested that a whole-genome duplication, several tandem duplications, and a polyploidy event contributed to the expansion of the cotton SWEET gene family, especially in Clade III and IV. Analyses of cis -acting regulatory elements in the promoter regions, expression profiles, and artificial selection revealed that the GhSWEET genes were likely involved in cotton developmental processes and responses to diverse stresses. These findings may clarify the evolution of G. hirsutum SWEET gene family and may provide a foundation for future functional studies of SWEET proteins regarding cotton development and responses to abiotic stresses.

  9. Purification and characterization of a novel milk-clotting metalloproteinase from Paenibacillus spp. BD3526.

    Science.gov (United States)

    Hang, Feng; Wang, Qinbo; Hong, Qing; Liu, Peiyi; Wu, Zhengjun; Liu, Zhenmin; Zhang, Hao; Chen, Wei

    2016-04-01

    In this study, a milk-clotting enzyme (MCE) isolated from Paenibacillus spp. BD3526 was purified and characterized. The MCE was purified 8.9-fold with a 10.11% recovery using ammonium sulfate precipitation and anion-exchange chromatography and the specific milk-clotting activity (MCA) reached 6791.73 SU/mg. The enzyme was characterized as a 35kDa metalloproteinase, and the zymogen of which was encoded by a 1671 bp gene named zinc metalloproteinase precursor (zmp) with a predicted molecular weight of 59.6 kDa. The optimal temperature for MCA and proteolytic activity (PA) was 65°C and 60°C, respectively. The enzyme was stable over a pH range of 5.0-9.0 and at temperatures below 50°C. The MCA was completely inactivated when the enzyme was heated at 60°C for 30 min, and the PA was totally inactivated for 20 and 10 min when the enzyme was heated at 55°C and 60°C, respectively. The BD3526 enzyme was preferentially active towards κ-casein (κ-CN) and β-casein (β-CN), as determined by sodium dodecyl sulfate-polyacrylamide gels (SDS-PAGE), whereas the hydrolysis of αs-casein (αs-CN) was slow and comparable to that caused by chymosin and asparatic acid proteinase from Rhizomucor miehei. The cleavage site of the metalloproteinase in κ-CN was located at the Met106-Ala107 bond, as determined by mass spectrometry analysis. Copyright © 2016. Published by Elsevier B.V.

  10. Transcriptomics of aged Drosophila motor neurons reveals a matrix metalloproteinase that impairs motor function.

    Science.gov (United States)

    Azpurua, Jorge; Mahoney, Rebekah E; Eaton, Benjamin A

    2018-04-01

    The neuromuscular junction (NMJ) is responsible for transforming nervous system signals into motor behavior and locomotion. In the fruit fly Drosophila melanogaster, an age-dependent decline in motor function occurs, analogous to the decline experienced in mice, humans, and other mammals. The molecular and cellular underpinnings of this decline are still poorly understood. By specifically profiling the transcriptome of Drosophila motor neurons across age using custom microarrays, we found that the expression of the matrix metalloproteinase 1 (dMMP1) gene reproducibly increased in motor neurons in an age-dependent manner. Modulation of physiological aging also altered the rate of dMMP1 expression, validating dMMP1 expression as a bona fide aging biomarker for motor neurons. Temporally controlled overexpression of dMMP1 specifically in motor neurons was sufficient to induce deficits in climbing behavior and cause a decrease in neurotransmitter release at neuromuscular synapses. These deficits were reversible if the dMMP1 expression was shut off again immediately after the onset of motor dysfunction. Additionally, repression of dMMP1 enzymatic activity via overexpression of a tissue inhibitor of metalloproteinases delayed the onset of age-dependent motor dysfunction. MMPs are required for proper tissue architecture during development. Our results support the idea that matrix metalloproteinase 1 is acting as a downstream effector of antagonistic pleiotropy in motor neurons and is necessary for proper development, but deleterious when reactivated at an advanced age. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  11. Contrasting expression of membrane metalloproteinases, MT1-MMP and MT3-MMP, suggests distinct functions in skeletal development.

    Science.gov (United States)

    Yang, Maozhou; Zhang, Bingbing; Zhang, Liang; Gibson, Gary

    2008-07-01

    Membrane-type 1 matrix metalloproteinase (MT1-MMP) is the most ubiquitous and widely studied of the membrane-type metalloproteinases (MT-MMPs). It was thus surprising to find no published data on chicken MT1-MMP. We report here the characterization of the chicken gene. Its low sequence identity with the MT1-MMP genes of other species, high GC content, and divergent catalytic domain explains the absence of data and our difficulties in characterizing the gene. The absence of structural features in the chicken gene that have been suggested to be critical for the activation of MMP-2 by MT1-MMP; for the effect of MT1-MMP on cell migration and for the recycling of MT1-MMP suggest these features are either not essential or that MT1-MMP does not perform these functions in chickens. Comparison of the expression of chicken MT1-MMP with MT3-MMP and with MMP-2 and MMP-13 has confirmed the previously recognized co-expression of MT1-MMP with MMP-2 and MMP-13 in fibrous and vascular tissues, particularly those surrounding the developing long bones in other species. By contrast, MT3-MMP expression differs markedly from that of MT1-MMP and of both MMP-2 and MMP-13. MT3-MMP is expressed by chondrocytes of the developing articular surface. Similar expression patterns of this group of MT-MMPs and MMPs have been observed in mouse embryos and suggest distinct and specific functions for MT1-MMP and MT3-MMP in skeletal development.

  12. Molecular evolution of a Y chromosome to autosome gene duplication in Drosophila.

    Science.gov (United States)

    Dyer, Kelly A; White, Brooke E; Bray, Michael J; Piqué, Daniel G; Betancourt, Andrea J

    2011-03-01

    In contrast to the rest of the genome, the Y chromosome is restricted to males and lacks recombination. As a result, Y chromosomes are unable to respond efficiently to selection, and newly formed Y chromosomes degenerate until few genes remain. The rapid loss of genes from newly formed Y chromosomes has been well studied, but gene loss from highly degenerate Y chromosomes has only recently received attention. Here, we identify and characterize a Y to autosome duplication of the male fertility gene kl-5 that occurred during the evolution of the testacea group species of Drosophila. The duplication was likely DNA based, as other Y-linked genes remain on the Y chromosome, the locations of introns are conserved, and expression analyses suggest that regulatory elements remain linked. Genetic mapping reveals that the autosomal copy of kl-5 resides on the dot chromosome, a tiny autosome with strongly suppressed recombination. Molecular evolutionary analyses show that autosomal copies of kl-5 have reduced polymorphism and little recombination. Importantly, the rate of protein evolution of kl-5 has increased significantly in lineages where it is on the dot versus Y linked. Further analyses suggest this pattern is a consequence of relaxed purifying selection, rather than adaptive evolution. Thus, although the initial fixation of the kl-5 duplication may have been advantageous, slightly deleterious mutations have accumulated in the dot-linked copies of kl-5 faster than in the Y-linked copies. Because the dot chromosome contains seven times more genes than the Y and is exposed to selection in both males and females, these results suggest that the dot suffers the deleterious effects of genetic linkage to more selective targets compared with the Y chromosome. Thus, a highly degenerate Y chromosome may not be the worst environment in the genome, as is generally thought, but may in fact be protected from the accumulation of deleterious mutations relative to other nonrecombining

  13. Zinc and metalloproteinases 2 and 9: What is their relation with breast cancer?

    Directory of Open Access Journals (Sweden)

    Aldenora Oliveira do Nascimento Holanda

    Full Text Available Summary Zinc is the catalytic component of proteins that regulate responses to DNA damage, intracellular signaling enzymes, and matrix metalloproteinases, which are important proteins in carcinogenesis. The objective of this review is to bring current information on the participation of zinc and matrix metalloproteinases types 2 and 9 in mechanisms involved in the pathogenesis of breast cancer. We conducted a literature review, in consultation with the PubMed, Lilacs, and Scielo databases. The zinc and cysteine residues are structural elements shared by all members of the family of matrix metalloproteinases, and these proteins appear to be involved in the propagation of various types of neoplasms, including breast cancer. Moreover, transported zinc is likely to be used for the metalation of the catalytic domain of the newly synthesized metalloproteinases before the latter are secreted. Accordingly, increase in zinc concentrations in cellular compartments and the reduction of this trace element in the blood of patients with breast cancer appear to alter the activity of metalloproteinases 2 and 9, contributing to the occurrence of malignancy. Thus, it is necessary to carry out further studies with a view to clarify the role of zinc and metalloproteinases 2 and 9 in the pathogenesis of breast cancer.

  14. Postnatal changes of gene expression for tissue inhibitors of metalloproteinase-1 and -2 and cystatins S and C, in rat submandibular gland demonstrated by quantitative reverse transcription-polymerase chain reaction.

    Science.gov (United States)

    Nishiura, T; Abe, K

    1999-01-01

    The rat submandibular gland is not fully developed at birth and definitive differentiation takes place postnatally. The steady-state mRNA expression for the four proteinase inhibitor molecules, tissue inhibitors of metalloproteinase (TIMP)-1 and -2, and cystatins S and C, and for a housekeeping gene, glyceraldehyde-3-phosphate dehydrogenase (G3PDH), in rat submandibular glands was measured by quantitative competitive reverse transcription-polymerase chain reaction (RT-PCR) at different stages of postnatal development. The gene-expression patterns of TIMP-1 and -2 relative to G3PDH were similar to each other. The TIMP-2 and cystatin C genes were more highly expressed than those of TIMP-1 and cystatin S at all stages. Moreover, the gene expressions of TIMP-1 and -2, and of cystatins S and C, were predominant between 1 and 7, and 7 and 12 weeks of age, respectively, and coincided developmentally with the regression of terminal tubule cells and the differentiation of granular convoluted tubule cells, respectively. Quantitative competitive RT-PCR allowed accurate measurement of small changes in the steady-state concentrations of these proteinase-inhibitor mRNA molecules.

  15. A study of the evolution of human microRNAs by their apparent repression effectiveness on target genes.

    Directory of Open Access Journals (Sweden)

    Yong Huang

    Full Text Available BACKGROUND: Even though the genomes of many model species have already been sequenced, our knowledge of gene regulation in evolution is still very limited. One big obstacle is that it is hard to predict the target genes of transcriptional factors accurately from sequences. In this respect, microRNAs (miRNAs are different from transcriptional factors, as target genes of miRNAs can be readily predicted from sequences. This feature of miRNAs offers an unprecedented vantage point for evolutionary analysis of gene regulation. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we analyzed a particular aspect of miRNA evolution, the differences in the "apparent repression effectiveness (ARE" between human miRNAs of different conservational levels. ARE is a measure we designed to evaluate the repression effect of miRNAs on target genes based on publicly available gene expression data in normal tissues and miRNA targeting and expression data. We found that ARE values of more conserved miRNAs are significantly higher than those of less conserved miRNAs in general. We also found the gain in expression abundance and broadness of miRNAs in evolution contributed to the gain in ARE. CONCLUSIONS/SIGNIFICANCE: The ARE measure quantifies the repressive effects of miRNAs and enables us to study the influences of many factors on miRNA-mediated repression, such as conservational levels and expression levels of miRNAs. The gain in ARE can be explained by the existence of a trend of miRNAs in evolution to effectively control more target genes, which is beneficial to the miRNAs but not necessarily to the organism at all times. Our results from miRNAs gave us an insight of the complex interplay between regulators and target genes in evolution.

  16. Emergent properties of gene evolution: Species as attractors in phenotypic space

    Science.gov (United States)

    Reuveni, Eli; Giuliani, Alessandro

    2012-02-01

    The question how the observed discrete character of the phenotype emerges from a continuous genetic distance metrics is the core argument of two contrasted evolutionary theories: punctuated equilibrium (stable evolution scattered with saltations in the phenotype) and phyletic gradualism (smooth and linear evolution of the phenotype). Identifying phenotypic saltation on the molecular levels is critical to support the first model of evolution. We have used DNA sequences of ∼1300 genes from 6 isolated populations of the budding yeast Saccharomyces cerevisiae. We demonstrate that while the equivalent measure of the genetic distance show a continuum between lineage distance with no evidence of discrete states, the phenotypic space illustrates only two (discrete) possible states that can be associated with a saltation of the species phenotype. The fact that such saltation spans large fraction of the genome and follows by continuous genetic distance is a proof of the concept that the genotype-phenotype relation is not univocal and may have severe implication when looking for disease related genes and mutations. We used this finding with analogy to attractor-like dynamics and show that punctuated equilibrium could be explained in the framework of non-linear dynamics systems.

  17. Global expression differences and tissue specific expression differences in rice evolution result in two contrasting types of differentially expressed genes

    KAUST Repository

    Horiuchi, Youko

    2015-12-23

    Background Since the development of transcriptome analysis systems, many expression evolution studies characterized evolutionary forces acting on gene expression, without explicit discrimination between global expression differences and tissue specific expression differences. However, different types of gene expression alteration should have different effects on an organism, the evolutionary forces that act on them might be different, and different types of genes might show different types of differential expression between species. To confirm this, we studied differentially expressed (DE) genes among closely related groups that have extensive gene expression atlases, and clarified characteristics of different types of DE genes including the identification of regulating loci for differential expression using expression quantitative loci (eQTL) analysis data. Results We detected differentially expressed (DE) genes between rice subspecies in five homologous tissues that were verified using japonica and indica transcriptome atlases in public databases. Using the transcriptome atlases, we classified DE genes into two types, global DE genes and changed-tissues DE genes. Global type DE genes were not expressed in any tissues in the atlas of one subspecies, however changed-tissues type DE genes were expressed in both subspecies with different tissue specificity. For the five tissues in the two japonica-indica combinations, 4.6 ± 0.8 and 5.9 ± 1.5 % of highly expressed genes were global and changed-tissues DE genes, respectively. Changed-tissues DE genes varied in number between tissues, increasing linearly with the abundance of tissue specifically expressed genes in the tissue. Molecular evolution of global DE genes was rapid, unlike that of changed-tissues DE genes. Based on gene ontology, global and changed-tissues DE genes were different, having no common GO terms. Expression differences of most global DE genes were regulated by cis-eQTLs. Expression

  18. Matrix metalloproteinases in gastric inflammation and cancer : clinical relevance and prognostic impact

    NARCIS (Netherlands)

    Kubben, Francois Jozef Gerard Marie

    2007-01-01

    The studies in this thesis describe the clinical impact of several matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) in H. pylori-induced gastritis and gastric cancer. In patients with H. pylori-induced gastritis, significantly increased mucosal MMP-9 levels were

  19. Functional evolution of cis-regulatory modules at a homeotic gene in Drosophila.

    Directory of Open Access Journals (Sweden)

    Margaret C W Ho

    2009-11-01

    Full Text Available It is a long-held belief in evolutionary biology that the rate of molecular evolution for a given DNA sequence is inversely related to the level of functional constraint. This belief holds true for the protein-coding homeotic (Hox genes originally discovered in Drosophila melanogaster. Expression of the Hox genes in Drosophila embryos is essential for body patterning and is controlled by an extensive array of cis-regulatory modules (CRMs. How the regulatory modules functionally evolve in different species is not clear. A comparison of the CRMs for the Abdominal-B gene from different Drosophila species reveals relatively low levels of overall sequence conservation. However, embryonic enhancer CRMs from other Drosophila species direct transgenic reporter gene expression in the same spatial and temporal patterns during development as their D. melanogaster orthologs. Bioinformatic analysis reveals the presence of short conserved sequences within defined CRMs, representing gap and pair-rule transcription factor binding sites. One predicted binding site for the gap transcription factor KRUPPEL in the IAB5 CRM was found to be altered in Superabdominal (Sab mutations. In Sab mutant flies, the third abdominal segment is transformed into a copy of the fifth abdominal segment. A model for KRUPPEL-mediated repression at this binding site is presented. These findings challenge our current understanding of the relationship between sequence evolution at the molecular level and functional activity of a CRM. While the overall sequence conservation at Drosophila CRMs is not distinctive from neighboring genomic regions, functionally critical transcription factor binding sites within embryonic enhancer CRMs are highly conserved. These results have implications for understanding mechanisms of gene expression during embryonic development, enhancer function, and the molecular evolution of eukaryotic regulatory modules.

  20. Rapid Evolution of Ovarian-Biased Genes in the Yellow Fever Mosquito (Aedes aegypti).

    Science.gov (United States)

    Whittle, Carrie A; Extavour, Cassandra G

    2017-08-01

    Males and females exhibit highly dimorphic phenotypes, particularly in their gonads, which is believed to be driven largely by differential gene expression. Typically, the protein sequences of genes upregulated in males, or male-biased genes, evolve rapidly as compared to female-biased and unbiased genes. To date, the specific study of gonad-biased genes remains uncommon in metazoans. Here, we identified and studied a total of 2927, 2013, and 4449 coding sequences (CDS) with ovary-biased, testis-biased, and unbiased expression, respectively, in the yellow fever mosquito Aedes aegypti The results showed that ovary-biased and unbiased CDS had higher nonsynonymous to synonymous substitution rates (dN/dS) and lower optimal codon usage (those codons that promote efficient translation) than testis-biased genes. Further, we observed higher dN/dS in ovary-biased genes than in testis-biased genes, even for genes coexpressed in nonsexual (embryo) tissues. Ovary-specific genes evolved exceptionally fast, as compared to testis- or embryo-specific genes, and exhibited higher frequency of positive selection. Genes with ovary expression were preferentially involved in olfactory binding and reception. We hypothesize that at least two potential mechanisms could explain rapid evolution of ovary-biased genes in this mosquito: (1) the evolutionary rate of ovary-biased genes may be accelerated by sexual selection (including female-female competition or male-mate choice) affecting olfactory genes during female swarming by males, and/or by adaptive evolution of olfactory signaling within the female reproductive system ( e.g. , sperm-ovary signaling); and/or (2) testis-biased genes may exhibit decelerated evolutionary rates due to the formation of mating plugs in the female after copulation, which limits male-male sperm competition. Copyright © 2017 by the Genetics Society of America.

  1. Gene loss, adaptive evolution and the co-evolution of plumage coloration genes with opsins in birds.

    Science.gov (United States)

    Borges, Rui; Khan, Imran; Johnson, Warren E; Gilbert, M Thomas P; Zhang, Guojie; Jarvis, Erich D; O'Brien, Stephen J; Antunes, Agostinho

    2015-10-06

    The wide range of complex photic systems observed in birds exemplifies one of their key evolutionary adaptions, a well-developed visual system. However, genomic approaches have yet to be used to disentangle the evolutionary mechanisms that govern evolution of avian visual systems. We performed comparative genomic analyses across 48 avian genomes that span extant bird phylogenetic diversity to assess evolutionary changes in the 17 representatives of the opsin gene family and five plumage coloration genes. Our analyses suggest modern birds have maintained a repertoire of up to 15 opsins. Synteny analyses indicate that PARA and PARIE pineal opsins were lost, probably in conjunction with the degeneration of the parietal organ. Eleven of the 15 avian opsins evolved in a non-neutral pattern, confirming the adaptive importance of vision in birds. Visual conopsins sw1, sw2 and lw evolved under negative selection, while the dim-light RH1 photopigment diversified. The evolutionary patterns of sw1 and of violet/ultraviolet sensitivity in birds suggest that avian ancestors had violet-sensitive vision. Additionally, we demonstrate an adaptive association between the RH2 opsin and the MC1R plumage color gene, suggesting that plumage coloration has been photic mediated. At the intra-avian level we observed some unique adaptive patterns. For example, barn owl showed early signs of pseudogenization in RH2, perhaps in response to nocturnal behavior, and penguins had amino acid deletions in RH2 sites responsible for the red shift and retinal binding. These patterns in the barn owl and penguins were convergent with adaptive strategies in nocturnal and aquatic mammals, respectively. We conclude that birds have evolved diverse opsin adaptations through gene loss, adaptive selection and coevolution with plumage coloration, and that differentiated selective patterns at the species level suggest novel photic pressures to influence evolutionary patterns of more-recent lineages.

  2. Expression of matrix metalloproteinase 9 (MMP-9) and tissue inhibitor of metalloproteinases 1 (TIMP-1) by colorectal cancer cells and adjacent stroma cells--associations with histopathology and patients outcome

    DEFF Research Database (Denmark)

    Jensen, Søren Astrup; Vainer, Ben; Bartels, Annette

    2010-01-01

    To elucidate cellular features accountable for colorectal cancers' (CRC) capability to invade normal tissue and to metastasize, we investigated the level of the collagenase matrix metalloproteinase 9 (MMP-9) and its physiological inhibitor tissue inhibitor of metalloproteinases 1 (TIMP-1) in canc...

  3. Targeted Sequencing of Venom Genes from Cone Snail Genomes Improves Understanding of Conotoxin Molecular Evolution.

    Science.gov (United States)

    Phuong, Mark A; Mahardika, Gusti N

    2018-05-01

    To expand our capacity to discover venom sequences from the genomes of venomous organisms, we applied targeted sequencing techniques to selectively recover venom gene superfamilies and nontoxin loci from the genomes of 32 cone snail species (family, Conidae), a diverse group of marine gastropods that capture their prey using a cocktail of neurotoxic peptides (conotoxins). We were able to successfully recover conotoxin gene superfamilies across all species with high confidence (> 100× coverage) and used these data to provide new insights into conotoxin evolution. First, we found that conotoxin gene superfamilies are composed of one to six exons and are typically short in length (mean = ∼85 bp). Second, we expanded our understanding of the following genetic features of conotoxin evolution: 1) positive selection, where exons coding the mature toxin region were often three times more divergent than their adjacent noncoding regions, 2) expression regulation, with comparisons to transcriptome data showing that cone snails only express a fraction of the genes available in their genome (24-63%), and 3) extensive gene turnover, where Conidae species varied from 120 to 859 conotoxin gene copies. Finally, using comparative phylogenetic methods, we found that while diet specificity did not predict patterns of conotoxin evolution, dietary breadth was positively correlated with total conotoxin gene diversity. Overall, the targeted sequencing technique demonstrated here has the potential to radically increase the pace at which venom gene families are sequenced and studied, reshaping our ability to understand the impact of genetic changes on ecologically relevant phenotypes and subsequent diversification.

  4. Matrix metalloproteinase-3, vitamin D receptor gene polymorphisms, and occupational risk factors in lumbar disc degeneration.

    Science.gov (United States)

    Zawilla, N H; Darweesh, H; Mansour, N; Helal, S; Taha, F M; Awadallah, M; El Shazly, R

    2014-06-01

    Lumbar disc degeneration (LDD) is a process that begins early in life, contributing to the development of low back pain. LDD is a consequence of a variety of factors, and its etiology remains poorly understood. Objectives to investigate occupational and genetic risk factors inducing lumbar disc degeneration, and to evaluate the possible association of genetic polymorphisms of matrix metalloproteinase 3 (MMP-3) and vitamin D receptor (VDR) with the severity of LDD in an Egyptian population. A case control study involving 84 LDD and 60 controls was carried out. Five types of work related factors were investigated by questionnaire, complete neurological examination for all subjects and MRI for the cases. Polymerase chain reaction and restriction fragment length polymorphism methods were applied to detect polymorphisms in MMP-3 Promoter (-1,171 6A/5A) (rs 731236) and VDR-Apa (rs 35068180). We found that family history, back injury, smoking, high level of sitting, bending/twisting, physical workload, lifting, whole body vibration, mutant allele 5A of MMP-3 and mutant allele T of VDR were significantly associated with LDD (OR = 2.9, 3.1, 2.1, 11.1, 15.9, 11.7, 8.2, 12.6, 2.5 and 3.1 respectively, p < 0.05). Cases that carry allele 5A and/or allele T were associated with LDD severity. LDD is closely associated in occurrence and severity with occupational, environmental risk factors and susceptibility genes namely MMP-3, and VDR (ApaI). This study throws light on the importance of screening for early detection of susceptible individuals and disease prevention.

  5. Functional evolution in the plant SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL gene family

    Directory of Open Access Journals (Sweden)

    Jill Christine Preston

    2013-04-01

    Full Text Available The SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL family of transcription factors is functionally diverse, controlling a number of fundamental aspects of plant growth and development, including vegetative phase change, flowering time, branching, and leaf initiation rate. In natural plant populations, variation in flowering time and shoot architecture have major consequences for fitness. Likewise, in crop species, variation in branching and developmental rate impact biomass and yield. Thus, studies aimed at dissecting how the various functions are partitioned among different SPL genes in diverse plant lineages are key to providing insight into the genetic basis of local adaptation and have already garnered attention by crop breeders. Here we use phylogenetic reconstruction to reveal nine major SPL gene lineages, each of which is described in terms of function and diversification. To assess evidence for ancestral and derived functions within each SPL gene lineage, we use ancestral character state reconstructions. Our analyses suggest an emerging pattern of sub-functionalization, neo-functionalization, and possible convergent evolution following both ancient and recent gene duplication. Based on these analyses we suggest future avenues of research that may prove fruitful for elucidating the importance of SPL gene evolution in plant growth and development.

  6. Gene conversion as a secondary mechanism of short interspersed element (SINE) evolution

    Energy Technology Data Exchange (ETDEWEB)

    Kass, D.H. [Louisiana State Univ. Medical Center, New Orleans, LA (United States). Dept. of Biochemistry and Molecular Biology; Batzer, M.A. [Lawrence Livermore National Lab., CA (United States); Deininger, P.L. [Louisiana State Univ. Medical Center, New Orleans, LA (United States). Dept. of Biochemistry and Molecular Biology]|[Alton Ochsner Medical Foundation, New Orleans, LA (United States). Lab. of Molecular Genetics

    1995-01-01

    The Alu repetitive family of short interspersed elements (SINEs) in primates can be subdivided into distinct subfamilies by specific diagnostic nucleotide changes. The older subfamilies are generally very abundant, while the younger subfamilies have fewer copies. Some of the youngest Alu elements are absent in the orthologous loci of nonhuman primates, indicative of recent retroposition events, the primary mode of SINE evolutions. PCR analysis of one young Alu subfamily (Sb2) member found in the low-density lipoprotein receptor gene apparently revealed the presence of this element in the green monkey, orangutan, gorilla, and chimpanzee genomes, as well as the human genome. However, sequence analysis of these genomes revealed a highly mutated, older, primate-specific Alu element was present at this position in the nonhuman primates. Comparison of the flanking DNA sequences upstream of this Alu insertion corresponded to evolution expected for standard primate phylogeny, but comparison of the Alu repeat sequences revealed that the human element departed from this phylogeny. The change in the human sequence apparently occurred by a gene conversion event only within the Alu element itself, converting it from one of the oldest to one of the youngest Alu subfamilies. Although gene conversions of Alu elements are clearly very rare, this finding shows that such events can occur and contribute to specific cases of SINE subfamily evolution.

  7. Genome-Wide Identification and Evolution of HECT Genes in Soybean

    Directory of Open Access Journals (Sweden)

    Xianwen Meng

    2015-04-01

    Full Text Available Proteins containing domains homologous to the E6-associated protein (E6-AP carboxyl terminus (HECT are an important class of E3 ubiquitin ligases involved in the ubiquitin proteasome pathway. HECT-type E3s play crucial roles in plant growth and development. However, current understanding of plant HECT genes and their evolution is very limited. In this study, we performed a genome-wide analysis of the HECT domain-containing genes in soybean. Using high-quality genome sequences, we identified 19 soybean HECT genes. The predicted HECT genes were distributed unevenly across 15 of 20 chromosomes. Nineteen of these genes were inferred to be segmentally duplicated gene pairs, suggesting that in soybean, segmental duplications have made a significant contribution to the expansion of the HECT gene family. Phylogenetic analysis showed that these HECT genes can be divided into seven groups, among which gene structure and domain architecture was relatively well-conserved. The Ka/Ks ratios show that after the duplication events, duplicated HECT genes underwent purifying selection. Moreover, expression analysis reveals that 15 of the HECT genes in soybean are differentially expressed in 14 tissues, and are often highly expressed in the flowers and roots. In summary, this work provides useful information on which further functional studies of soybean HECT genes can be based.

  8. Matrix metalloproteinase 2 and membrane type 1 matrix metalloproteinase co-regulate axonal outgrowth of mouse retinal ganglion cells

    DEFF Research Database (Denmark)

    Gaublomme, Djoere; Buyens, Tom; De Groef, Lies

    2014-01-01

    regenerative therapies, an improved understanding of axonal outgrowth and the various molecules influencing it, is highly needed. Matrix metalloproteinases (MMPs) constitute a family of zinc-dependent proteases that were sporadically reported to influence axon outgrowth. Using an ex vivo retinal explant model......, but not MMP-9, are involved in this process. Furthermore, administration of a novel antibody to MT1-MMP that selectively blocks pro-MMP-2 activation revealed a functional co-involvement of these proteinases in determining RGC axon outgrowth. Subsequent immunostainings showed expression of both MMP-2 and MT1...... nervous system is lacking in adult mammals, thereby impeding recovery from injury to the nervous system. Matrix metalloproteinases (MMPs) constitute a family of zinc-dependent proteases that were sporadically reported to influence axon outgrowth. Inhibition of specific MMPs reduced neurite outgrowth from...

  9. The Black Queen Hypothesis: evolution of dependencies through adaptive gene loss.

    Science.gov (United States)

    Morris, J Jeffrey; Lenski, Richard E; Zinser, Erik R

    2012-01-01

    Reductive genomic evolution, driven by genetic drift, is common in endosymbiotic bacteria. Genome reduction is less common in free-living organisms, but it has occurred in the numerically dominant open-ocean bacterioplankton Prochlorococcus and "Candidatus Pelagibacter," and in these cases the reduction appears to be driven by natural selection rather than drift. Gene loss in free-living organisms may leave them dependent on cooccurring microbes for lost metabolic functions. We present the Black Queen Hypothesis (BQH), a novel theory of reductive evolution that explains how selection leads to such dependencies; its name refers to the queen of spades in the game Hearts, where the usual strategy is to avoid taking this card. Gene loss can provide a selective advantage by conserving an organism's limiting resources, provided the gene's function is dispensable. Many vital genetic functions are leaky, thereby unavoidably producing public goods that are available to the entire community. Such leaky functions are thus dispensable for individuals, provided they are not lost entirely from the community. The BQH predicts that the loss of a costly, leaky function is selectively favored at the individual level and will proceed until the production of public goods is just sufficient to support the equilibrium community; at that point, the benefit of any further loss would be offset by the cost. Evolution in accordance with the BQH thus generates "beneficiaries" of reduced genomic content that are dependent on leaky "helpers," and it may explain the observed nonuniversality of prototrophy, stress resistance, and other cellular functions in the microbial world.

  10. Extracellular matrix metalloproteinase inducer enhances host resistance against pseudomonas aeruginosa infection through MAPK signaling pathway

    OpenAIRE

    Li, Yongwei; Chen, Lu; Wang, Chunxia; Chen, Jianshe; Zhang, Xiaoqian; Hu, Yue; Niu, Xiaobin; Pei, Dongxu; He, Zhiqiang; Bi, Yongyi

    2016-01-01

    This study aims to explore the role of extra-cellular matrix metalloproteinase inducer (EMMPRIN) in the drug resistance of the pseudomonas aeruginosa (PA). The BALB/c mice were transfected with PA, then the mice were infected with the siRNA of EMMPRIN to silence the EMMPRIN gene. The EMMPRIN mRNA and protein were detected by using RT-PCR and western blot, respectively. In order to examine the function of EMMPRIN in drug resistance of PA, the BALB/c and C57BL/6 mice were treated with EMMPRIN s...

  11. Expressions of matrix metalloproteinase-2 and extracellular matrix metalloproteinase inducer in retinoblastoma

    Directory of Open Access Journals (Sweden)

    Yu-Hong Cheng

    2015-07-01

    Full Text Available AIM: To investigate expressions of matrix metalloproteinase-2(MMP-2and extracellular matrix metalloproteinase inducer(EMMPRINin retinoblastoma(Rband the relationships between MMP-2, EMMPRIN and tumor development.METHODS:Immunohistochemical technique was used to detect expressions of MMP-2 and EMMPRIN in 39 cases of paraffin embedded Rb samples. Quantitative analysis of expressions of MMP-2 and EMMPRIN were assessed by measuring the mean gray scale of Rb tissue with LEICA IM50 Color Pathologic Analysis System. The differences of expressions of MMP-2 and EMMPRIN in each clinical and pathological stage were statistically analyzed, and the same step was also undertaken to study the relationship between Rb with MMP-2 positive expression and that with EMMPRIN positive expression.RESULTS: The positive expression rate of MMP-2 was 90%(Gray value: 109.64±14.52; 35/39, and that of EMMPRIN was 85%(Gray value: 108.01±13.60; 33/39. The expressions of MMP-2 and EMMPRIN were significantly higher in tumors of glaucomatous stage(Gray value: 108.21±11.47 and 107.56±14.32than those in intraocular stage(Gray value: 121.13±11.32 and 119.34±12.66; PPPPPPCONCLUSION: The positive expression levels of MMP-2 and EMMPRIN may correlate with tumor infiltration and metastasis.

  12. Roles of Solvent Accessibility and Gene Expression in Modeling Protein Sequence Evolution

    OpenAIRE

    Kuangyu Wang; Shuhui Yu; Xiang Ji; Clemens Lakner; Alexander Griffing; Jeffrey L. Thorne

    2015-01-01

    Models of protein evolution tend to ignore functional constraints, although structural constraints are sometimes incorporated. Here we propose a probabilistic framework for codon substitution that evaluates joint effects of relative solvent accessibility (RSA), a structural constraint; and gene expression, a functional constraint. First, we explore the relationship between RSA and codon usage at the genomic scale as well as at the individual gene scale. Motivated by these results, we construc...

  13. HPLC-MS/MS method optimisation for matrix metalloproteinase 3 and matrix metalloproteinase 9 determination in human blood serum using target analysis.

    Science.gov (United States)

    Kotnik, Petra; Krajnc, Metka Koren; Pahor, Artur; Finšgar, Matjaž; Knez, Željko

    2018-02-20

    A quantitative analysis of zinc endopeptidases matrix metalloproteinase 9 (MMP9) and matrix metalloproteinase 3 (MMP3) from human blood serum are presented. Both matrix metalloproteinases (MMP) are present in human blood serum and can be used as biomarkers for different diseases. The analysis was performed using LC-MS/MS with a triple quadrupole mass spectrometer, based on two specific peptides of each MMP in comparison with an enzyme-linked immunosorbent assay (ELISA). While the conditions for the LC-MS/MS analysis of MMP9 peptides were previously reported for bronchoalveolar lavage fluid, the analysis of MMP3 peptides was newly quantified for human blood serum herein for the first time. For MMP3, the linear behaviour was determined in the concentration range from 1.0-200.0ng/mL (R 2 =0.997) with an LLOD of 0.5ng/mL. For MMP9, linearity was determined in the concentration range from 6.5-65.0ng/mL (R 2 =0.995) with an LLOD of 2.0ng/mL. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Evolution of Cis-Regulatory Elements and Regulatory Networks in Duplicated Genes of Arabidopsis.

    Science.gov (United States)

    Arsovski, Andrej A; Pradinuk, Julian; Guo, Xu Qiu; Wang, Sishuo; Adams, Keith L

    2015-12-01

    Plant genomes contain large numbers of duplicated genes that contribute to the evolution of new functions. Following duplication, genes can exhibit divergence in their coding sequence and their expression patterns. Changes in the cis-regulatory element landscape can result in changes in gene expression patterns. High-throughput methods developed recently can identify potential cis-regulatory elements on a genome-wide scale. Here, we use a recent comprehensive data set of DNase I sequencing-identified cis-regulatory binding sites (footprints) at single-base-pair resolution to compare binding sites and network connectivity in duplicated gene pairs in Arabidopsis (Arabidopsis thaliana). We found that duplicated gene pairs vary greatly in their cis-regulatory element architecture, resulting in changes in regulatory network connectivity. Whole-genome duplicates (WGDs) have approximately twice as many footprints in their promoters left by potential regulatory proteins than do tandem duplicates (TDs). The WGDs have a greater average number of footprint differences between paralogs than TDs. The footprints, in turn, result in more regulatory network connections between WGDs and other genes, forming denser, more complex regulatory networks than shown by TDs. When comparing regulatory connections between duplicates, WGDs had more pairs in which the two genes are either partially or fully diverged in their network connections, but fewer genes with no network connections than the TDs. There is evidence of younger TDs and WGDs having fewer unique connections compared with older duplicates. This study provides insights into cis-regulatory element evolution and network divergence in duplicated genes. © 2015 American Society of Plant Biologists. All Rights Reserved.

  15. The compact Selaginella genome identifies changes in gene content associated with the evolution of vascular plants

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor V.; Banks, Jo Ann; Nishiyama, Tomoaki; Hasebe, Mitsuyasu; Bowman, John L.; Gribskov, Michael; dePamphilis, Claude; Albert, Victor A.; Aono, Naoki; Aoyama, Tsuyoshi; Ambrose, Barbara A.; Ashton, Neil W.; Axtell, Michael J.; Barker, Elizabeth; Barker, Michael S.; Bennetzen, Jeffrey L.; Bonawitz, Nicholas D.; Chapple, Clint; Cheng, Chaoyang; Correa, Luiz Gustavo Guedes; Dacre, Michael; DeBarry, Jeremy; Dreyer, Ingo; Elias, Marek; Engstrom, Eric M.; Estelle, Mark; Feng, Liang; Finet, Cedric; Floyd, Sandra K.; Frommer, Wolf B.; Fujita, Tomomichi; Gramzow, Lydia; Gutensohn, Michael; Harholt, Jesper; Hattori, Mitsuru; Heyl, Alexander; Hirai, Tadayoshi; Hiwatashi, Yuji; Ishikawa, Masaki; Iwata, Mineko; Karol, Kenneth G.; Koehler, Barbara; Kolukisaoglu, Uener; Kubo, Minoru; Kurata, Tetsuya; Lalonde, Sylvie; Li, Kejie; Li, Ying; Litt, Amy; Lyons, Eric; Manning, Gerard; Maruyama, Takeshi; Michael, Todd P.; Mikami, Koji; Miyazaki, Saori; Morinaga, Shin-ichi; Murata, Takashi; Mueller-Roeber, Bernd; Nelson, David R.; Obara, Mari; Oguri, Yasuko; Olmstead, Richard G.; Onodera, Naoko; Petersen, Bent Larsen; Pils, Birgit; Prigge, Michael; Rensing, Stefan A.; Riano-Pachon, Diego Mauricio; Roberts, Alison W.; Sato, Yoshikatsu; Scheller, Henrik Vibe; Schulz, Burkhard; Schulz, Christian; Shakirov, Eugene V.; Shibagaki, Nakako; Shinohara, Naoki; Shippen, Dorothy E.; Sorensen, Iben; Sotooka, Ryo; Sugimoto, Nagisa; Sugita, Mamoru; Sumikawa, Naomi; Tanurdzic, Milos; Theilsen, Gunter; Ulvskov, Peter; Wakazuki, Sachiko; Weng, Jing-Ke; Willats, William W.G.T.; Wipf, Daniel; Wolf, Paul G.; Yang, Lixing; Zimmer, Andreas D.; Zhu, Qihui; Mitros, Therese; Hellsten, Uffe; Loque, Dominique; Otillar, Robert; Salamov, Asaf; Schmutz, Jeremy; Shapiro, Harris; Lindquist, Erika; Lucas, Susan; Rokhsar, Daniel

    2011-04-28

    We report the genome sequence of the nonseed vascular plant, Selaginella moellendorffii, and by comparative genomics identify genes that likely played important roles in the early evolution of vascular plants and their subsequent evolution

  16. Early evolution of the LIM homeobox gene family

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Mansi; Larroux, Claire; Lu, Daniel R; Mohanty, Kareshma; Chapman, Jarrod; Degnan, Bernard M; Rokhsar, Daniel S

    2010-01-01

    LIM homeobox (Lhx) transcription factors are unique to the animal lineage and have patterning roles during embryonic development in flies, nematodes and vertebrates, with a conserved role in specifying neuronal identity. Though genes of this family have been reported in a sponge and a cnidarian, the expression patterns and functions of the Lhx family during development in non-bilaterian phyla are not known. We identified Lhx genes in two cnidarians and a placozoan and report the expression of Lhx genes during embryonic development in Nematostella and the demosponge Amphimedon. Members of the six major LIM homeobox subfamilies are represented in the genomes of the starlet sea anemone, Nematostella vectensis, and the placozoan Trichoplax adhaerens. The hydrozoan cnidarian, Hydra magnipapillata, has retained four of the six Lhx subfamilies, but apparently lost two others. Only three subfamilies are represented in the haplosclerid demosponge Amphimedon queenslandica. A tandem cluster of three Lhx genes of different subfamilies and a gene containing two LIM domains in the genome of T. adhaerens (an animal without any neurons) indicates that Lhx subfamilies were generated by tandem duplication. This tandem cluster in Trichoplax is likely a remnant of the original chromosomal context in which Lhx subfamilies first appeared. Three of the six Trichoplax Lhx genes are expressed in animals in laboratory culture, as are all Lhx genes in Hydra. Expression patterns of Nematostella Lhx genes correlate with neural territories in larval and juvenile polyp stages. In the aneural demosponge, A. queenslandica, the three Lhx genes are expressed widely during development, including in cells that are associated with the larval photosensory ring. The Lhx family expanded and diversified early in animal evolution, with all six subfamilies already diverged prior to the cnidarian-placozoan-bilaterian last common ancestor. In Nematostella, Lhx gene expression is correlated with neural

  17. Early evolution of the LIM homeobox gene family

    Directory of Open Access Journals (Sweden)

    Degnan Bernard M

    2010-01-01

    Full Text Available Abstract Background LIM homeobox (Lhx transcription factors are unique to the animal lineage and have patterning roles during embryonic development in flies, nematodes and vertebrates, with a conserved role in specifying neuronal identity. Though genes of this family have been reported in a sponge and a cnidarian, the expression patterns and functions of the Lhx family during development in non-bilaterian phyla are not known. Results We identified Lhx genes in two cnidarians and a placozoan and report the expression of Lhx genes during embryonic development in Nematostella and the demosponge Amphimedon. Members of the six major LIM homeobox subfamilies are represented in the genomes of the starlet sea anemone, Nematostella vectensis, and the placozoan Trichoplax adhaerens. The hydrozoan cnidarian, Hydra magnipapillata, has retained four of the six Lhx subfamilies, but apparently lost two others. Only three subfamilies are represented in the haplosclerid demosponge Amphimedon queenslandica. A tandem cluster of three Lhx genes of different subfamilies and a gene containing two LIM domains in the genome of T. adhaerens (an animal without any neurons indicates that Lhx subfamilies were generated by tandem duplication. This tandem cluster in Trichoplax is likely a remnant of the original chromosomal context in which Lhx subfamilies first appeared. Three of the six Trichoplax Lhx genes are expressed in animals in laboratory culture, as are all Lhx genes in Hydra. Expression patterns of Nematostella Lhx genes correlate with neural territories in larval and juvenile polyp stages. In the aneural demosponge, A. queenslandica, the three Lhx genes are expressed widely during development, including in cells that are associated with the larval photosensory ring. Conclusions The Lhx family expanded and diversified early in animal evolution, with all six subfamilies already diverged prior to the cnidarian-placozoan-bilaterian last common ancestor. In

  18. A Gene Gravity Model for the Evolution of Cancer Genomes: A Study of 3,000 Cancer Genomes across 9 Cancer Types

    Science.gov (United States)

    Lin, Chen-Ching; Zhao, Junfei; Jia, Peilin; Li, Wen-Hsiung; Zhao, Zhongming

    2015-01-01

    Cancer development and progression result from somatic evolution by an accumulation of genomic alterations. The effects of those alterations on the fitness of somatic cells lead to evolutionary adaptations such as increased cell proliferation, angiogenesis, and altered anticancer drug responses. However, there are few general mathematical models to quantitatively examine how perturbations of a single gene shape subsequent evolution of the cancer genome. In this study, we proposed the gene gravity model to study the evolution of cancer genomes by incorporating the genome-wide transcription and somatic mutation profiles of ~3,000 tumors across 9 cancer types from The Cancer Genome Atlas into a broad gene network. We found that somatic mutations of a cancer driver gene may drive cancer genome evolution by inducing mutations in other genes. This functional consequence is often generated by the combined effect of genetic and epigenetic (e.g., chromatin regulation) alterations. By quantifying cancer genome evolution using the gene gravity model, we identified six putative cancer genes (AHNAK, COL11A1, DDX3X, FAT4, STAG2, and SYNE1). The tumor genomes harboring the nonsynonymous somatic mutations in these genes had a higher mutation density at the genome level compared to the wild-type groups. Furthermore, we provided statistical evidence that hypermutation of cancer driver genes on inactive X chromosomes is a general feature in female cancer genomes. In summary, this study sheds light on the functional consequences and evolutionary characteristics of somatic mutations during tumorigenesis by propelling adaptive cancer genome evolution, which would provide new perspectives for cancer research and therapeutics. PMID:26352260

  19. The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system.

    Science.gov (United States)

    Vonk, Freek J; Casewell, Nicholas R; Henkel, Christiaan V; Heimberg, Alysha M; Jansen, Hans J; McCleary, Ryan J R; Kerkkamp, Harald M E; Vos, Rutger A; Guerreiro, Isabel; Calvete, Juan J; Wüster, Wolfgang; Woods, Anthony E; Logan, Jessica M; Harrison, Robert A; Castoe, Todd A; de Koning, A P Jason; Pollock, David D; Yandell, Mark; Calderon, Diego; Renjifo, Camila; Currier, Rachel B; Salgado, David; Pla, Davinia; Sanz, Libia; Hyder, Asad S; Ribeiro, José M C; Arntzen, Jan W; van den Thillart, Guido E E J M; Boetzer, Marten; Pirovano, Walter; Dirks, Ron P; Spaink, Herman P; Duboule, Denis; McGlinn, Edwina; Kini, R Manjunatha; Richardson, Michael K

    2013-12-17

    Snakes are limbless predators, and many species use venom to help overpower relatively large, agile prey. Snake venoms are complex protein mixtures encoded by several multilocus gene families that function synergistically to cause incapacitation. To examine venom evolution, we sequenced and interrogated the genome of a venomous snake, the king cobra (Ophiophagus hannah), and compared it, together with our unique transcriptome, microRNA, and proteome datasets from this species, with data from other vertebrates. In contrast to the platypus, the only other venomous vertebrate with a sequenced genome, we find that snake toxin genes evolve through several distinct co-option mechanisms and exhibit surprisingly variable levels of gene duplication and directional selection that correlate with their functional importance in prey capture. The enigmatic accessory venom gland shows a very different pattern of toxin gene expression from the main venom gland and seems to have recruited toxin-like lectin genes repeatedly for new nontoxic functions. In addition, tissue-specific microRNA analyses suggested the co-option of core genetic regulatory components of the venom secretory system from a pancreatic origin. Although the king cobra is limbless, we recovered coding sequences for all Hox genes involved in amniote limb development, with the exception of Hoxd12. Our results provide a unique view of the origin and evolution of snake venom and reveal multiple genome-level adaptive responses to natural selection in this complex biological weapon system. More generally, they provide insight into mechanisms of protein evolution under strong selection.

  20. Activity of matrix metalloproteinases during antimycobacterial therapy in mice with simulated tuberculous inflammation.

    Science.gov (United States)

    Sumenkova, D V; Russkikh, G S; Poteryaeva, O N; Polyakov, L M; Panin, L E

    2013-05-01

    Matrix metalloproteinases are shown to be involved in the pathogenesis of tuberculosis inflammation. In the early stages of BCG-granuloma formation in mouse liver and lungs, the serum levels of matrix metalloproteinases 2 and 7 increased by 4.5 times and remained unchanged while the pathology developed. Antimycobacterial therapy with isoniazid reduced enzyme activity almost to the level of intact control. The decrease in activity of matrix metalloproteinases 2 and 7 that play the most prominent role in the development of destructive forms of tuberculosis is of great therapeutic importance.

  1. CCR5 delta32, matrix metalloproteinase-9 and disease activity in multiple sclerosis

    DEFF Research Database (Denmark)

    Sellebjerg, Finn; Madsen, Hans O; Jensen, Claus V

    2000-01-01

    Chemokines and matrix metalloproteinases (MMPs) appear to be crucial in leukocyte recruitment to the central nervous system in multiple sclerosis (MS). CCR5 delta32, a truncated allele of the CC chemokine receptor CCR5 gene encoding a non-functional receptor, did not confer protection from MS. CCR5...... delta32 was, however, associated with a lower risk of recurrent clinical disease activity. High CSF levels of MMP-9 activity were also associated with recurrent disease activity. These results directly link intrathecal inflammation to disease activity in patients with MS, suggesting that treatments...... targeting CCR5 or treatment with MMP inhibitors may attenuate disease activity in MS...

  2. Substitutions in the Glycogenin-1 Gene Are Associated with the Evolution of Endothermy in Sharks and Tunas.

    Science.gov (United States)

    Ciezarek, Adam G; Dunning, Luke T; Jones, Catherine S; Noble, Leslie R; Humble, Emily; Stefanni, Sergio S; Savolainen, Vincent

    2016-10-05

    Despite 400-450 million years of independent evolution, a strong phenotypic convergence has occurred between two groups of fish: tunas and lamnid sharks. This convergence is characterized by centralization of red muscle, a distinctive swimming style (stiffened body powered through tail movements) and elevated body temperature (endothermy). Furthermore, both groups demonstrate elevated white muscle metabolic capacities. All these traits are unusual in fish and more likely evolved to support their fast-swimming, pelagic, predatory behavior. Here, we tested the hypothesis that their convergent evolution was driven by selection on a set of metabolic genes. We sequenced white muscle transcriptomes of six tuna, one mackerel, and three shark species, and supplemented this data set with previously published RNA-seq data. Using 26 species in total (including 7,032 tuna genes plus 1,719 shark genes), we constructed phylogenetic trees and carried out maximum-likelihood analyses of gene selection. We inferred several genes relating to metabolism to be under selection. We also found that the same one gene, glycogenin-1, evolved under positive selection independently in tunas and lamnid sharks, providing evidence of convergent selective pressures at gene level possibly underlying shared physiology. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  3. Expression of venom gene homologs in diverse python tissues suggests a new model for the evolution of snake venom.

    Science.gov (United States)

    Reyes-Velasco, Jacobo; Card, Daren C; Andrew, Audra L; Shaney, Kyle J; Adams, Richard H; Schield, Drew R; Casewell, Nicholas R; Mackessy, Stephen P; Castoe, Todd A

    2015-01-01

    Snake venom gene evolution has been studied intensively over the past several decades, yet most previous studies have lacked the context of complete snake genomes and the full context of gene expression across diverse snake tissues. We took a novel approach to studying snake venom evolution by leveraging the complete genome of the Burmese python, including information from tissue-specific patterns of gene expression. We identified the orthologs of snake venom genes in the python genome, and conducted detailed analysis of gene expression of these venom homologs to identify patterns that differ between snake venom gene families and all other genes. We found that venom gene homologs in the python are expressed in many different tissues outside of oral glands, which illustrates the pitfalls of using transcriptomic data alone to define "venom toxins." We hypothesize that the python may represent an ancestral state prior to major venom development, which is supported by our finding that the expansion of venom gene families is largely restricted to highly venomous caenophidian snakes. Therefore, the python provides insight into biases in which genes were recruited for snake venom systems. Python venom homologs are generally expressed at lower levels, have higher variance among tissues, and are expressed in fewer organs compared with all other python genes. We propose a model for the evolution of snake venoms in which venom genes are recruited preferentially from genes with particular expression profile characteristics, which facilitate a nearly neutral transition toward specialized venom system expression. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4.  The role of metalloproteinases in modification of extracellular matrix in invasive tumor growth, metastasis and angiogenesis

    Directory of Open Access Journals (Sweden)

    Krzysztof Fink

    2012-09-01

    Full Text Available Extracellular matrix metalloproteinases (MMPs are a family of endopeptydases which recquire a zinc ion at their active site, for proteolityc activity. There are six members of the MMP family: matrilysins, collagenases, stromelysins, gelatinases, membrane MMPs and other MMPs. Activity of MMPs is regulated at the level of gene transcription, mRNA stability, zymogene proteolitic activation, inhibition of an active enzyme and MMP degradation. Tissue inhibitors of metalloproteinases (TIMPs are main intracellular inhibitors of MMPs. Host cells can be stimulated by tumor cells to produce MMPs by secreted interleukins, interferons, growth factors and an extracellular matrix metalloproteinase inducer (EMMPRIN. MMPs are produced by tumor cells, fibroblasts, macrophages, mast cells, polimorphonuclear neutrophiles (PMNs and endothelial cells (ECs. MMPs affect many stages of tumor development, facilitating its growth through promoting tumor cells proliferation, invasion and migration, new blood vessels formation and blocking tumor cells apoptosis. MMPs can promote tumor development in several ways. ECM degradation results in release of peptide growth factors. Growth factors linked with cell surface or binding proteins can also be liberated by MMPs. MMPs can indirectly regulate integrin signalling or cleave E-cadherins, facilitating cell migration. MMPs support metastasis inducing an epithelial to mesenchymal transition (EMT. MMP also support transendothelial migration. MMPs support angiogenesis by releasing pro-angiogenic factors and degrading ECM to support ECs migration. Cell surface growth factor receptors are also cleaved by MMPs, which results in inhibition of tumor development, so is release of anti-angiogenic factors from ECM. 

  5. The matrix metalloproteinase in larynx cancer

    Directory of Open Access Journals (Sweden)

    Weronika Lucas Grzelczyk

    2016-12-01

    Full Text Available One of the most common carcinoma occurring in the head and neck is laryngeal cancer. Despite the rapid scientific advances in medicine the prognosis for patients with such type of disease is not satisfying. In the last few years matrix metalloproteinases ‑ MMPs and their tissue inhibitors – TIMPs, mostly MMP‑2 and MMP‑9, arouses a great interest, especially in the process of carcinogenesis. It seems that their impact in the formation and development of laryngeal cancer is significant. MMPs a group of zinc‑ and calcium‑ dependent endopeptidases play crucial role extracellular matrix collagen degradation. That are enzymes, that degrade and the basement membrane by facilitating tumor growth, cell migration and tumor invasion. They are implicated in metastasis and angiogenesis potentiate within the tumor. Clear tendency was observed towards the higher MMPs and TIMPs expression in larynx cancer than in the stroma. Recent studies show correlations between increased MMP‑2 gene expression in the tumor tissue and clinical status, histopathological grading and metastases occurrence. The similar MMP2 over expression dependence were found on tumor recurrence and survival. Many authors pointed out, significant higher MMP‑2 expression as a potential marker of tumor invasiveness and worse prognosis in patients with larynx cancer. However, association of MMP 9 gene expression with laryngeal cancer clinicopathological features and survival of patients are ambiguous. Although, numerous researches show that this relationship does exists. Similar correlations could be found in TIMPs, but further studies are necessary because of small amount of literature.

  6. Dynamic evolution of Geranium mitochondrial genomes through multiple horizontal and intracellular gene transfers.

    Science.gov (United States)

    Park, Seongjun; Grewe, Felix; Zhu, Andan; Ruhlman, Tracey A; Sabir, Jamal; Mower, Jeffrey P; Jansen, Robert K

    2015-10-01

    The exchange of genetic material between cellular organelles through intracellular gene transfer (IGT) or between species by horizontal gene transfer (HGT) has played an important role in plant mitochondrial genome evolution. The mitochondrial genomes of Geraniaceae display a number of unusual phenomena including highly accelerated rates of synonymous substitutions, extensive gene loss and reduction in RNA editing. Mitochondrial DNA sequences assembled for 17 species of Geranium revealed substantial reduction in gene and intron content relative to the ancestor of the Geranium lineage. Comparative analyses of nuclear transcriptome data suggest that a number of these sequences have been functionally relocated to the nucleus via IGT. Evidence for rampant HGT was detected in several Geranium species containing foreign organellar DNA from diverse eudicots, including many transfers from parasitic plants. One lineage has experienced multiple, independent HGT episodes, many of which occurred within the past 5.5 Myr. Both duplicative and recapture HGT were documented in Geranium lineages. The mitochondrial genome of Geranium brycei contains at least four independent HGT tracts that are absent in its nearest relative. Furthermore, G. brycei mitochondria carry two copies of the cox1 gene that differ in intron content, providing insight into contrasting hypotheses on cox1 intron evolution. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  7. Matrix metalloproteinases in acute coronary syndromes: current perspectives.

    Science.gov (United States)

    Kampoli, Anna-Maria; Tousoulis, Dimitris; Papageorgiou, Nikolaos; Antoniades, Charalambos; Androulakis, Emmanuel; Tsiamis, Eleftherios; Latsios, George; Stefanadis, Christodoulos

    2012-01-01

    Matrix metalloproteinases (MMPs) are a family of zinc metallo-endopeptidases secreted by cells and are responsible for much of the turnover of matrix components. Several studies have shown that MMPs are involved in all stages of the atherosclerotic process, from the initial lesion to plaque rupture. Recent evidence suggests that MMP activity may facilitate atherosclerosis, plaque destabilization, and platelet aggregation. In the heart, matrix metalloproteinases participate in vascular remodeling, plaque instability, and ventricular remodelling after cardiac injury. The aim of the present article is to review the structure, function, regulation of MMPs and to discuss their potential role in the pathogenesis of acute coronary syndromes, as well as their contribution and usefullness in the setting of the disease.

  8. Molecular evolution of the odorant and gustatory receptor genes in lepidopteran insects: implications for their adaptation and speciation.

    Science.gov (United States)

    Engsontia, Patamarerk; Sangket, Unitsa; Chotigeat, Wilaiwan; Satasook, Chutamas

    2014-08-01

    Lepidoptera (comprised of butterflies and moths) is one of the largest groups of insects, including more than 160,000 described species. Chemoreception plays important roles in the adaptation of these species to a wide range of niches, e.g., plant hosts, egg-laying sites, and mates. This study investigated the molecular evolution of the lepidopteran odorant (Or) and gustatory receptor (Gr) genes using recently identified genes from Bombyx mori, Danaus plexippus, Heliconius melpomene, Plutella xylostella, Heliothis virescens, Manduca sexta, Cydia pomonella, and Spodoptera littoralis. A limited number of cases of large lineage-specific gene expansion are observed (except in the P. xylostella lineage), possibly due to selection against tandem gene duplication. There has been strong purifying selection during the evolution of both lepidopteran odorant and gustatory genes, as shown by the low ω values estimated through CodeML analysis, ranging from 0.0093 to 0.3926. However, purifying selection has been relaxed on some amino acid sites in these receptors, leading to sequence divergence, which is a precursor of positive selection on these sequences. Signatures of positive selection were detected only in a few loci from the lineage-specific analysis. Estimation of gene gains and losses suggests that the common ancestor of the Lepidoptera had fewer Or genes compared to extant species and an even more reduced number of Gr genes, particularly within the bitter receptor clade. Multiple gene gains and a few gene losses occurred during the evolution of Lepidoptera. Gene family expansion may be associated with the adaptation of lepidopteran species to plant hosts, especially after angiosperm radiation. Phylogenetic analysis of the moth sex pheromone receptor genes suggested that chromosomal translocations have occurred several times. New sex pheromone receptors have arisen through tandem gene duplication. Positive selection was detected at some amino acid sites predicted to be

  9. Evidence for adaptive evolution of low-temperature stress response genes in a Pooideae grass ancestor

    DEFF Research Database (Denmark)

    Vigeland, Magnus D; Spannagl, Manuel; Asp, Torben

    2013-01-01

    Adaptation to temperate environments is common in the grass subfamily Pooideae, suggesting an ancestral origin of cold climate adaptation. Here, we investigated substitution rates of genes involved in low-temperature-induced (LTI) stress responses to test the hypothesis that adaptive molecular...... evolution of LTI pathway genes was important for Pooideae evolution. Substitution rates and signatures of positive selection were analyzed using 4330 gene trees including three warm climate-adapted species (maize (Zea mays), sorghum (Sorghum bicolor), and rice (Oryza sativa)) and five temperate Pooideae...... species (Brachypodium distachyon, wheat (Triticum aestivum), barley (Hordeum vulgare), Lolium perenne and Festuca pratensis). Nonsynonymous substitution rate differences between Pooideae and warm habitat-adapted species were elevated in LTI trees compared with all trees. Furthermore, signatures...

  10. Correlation between expression of extracellular matrix metalloproteinase inducer and matrix metalloproteinase-2 and cervical lymph node metastasis of nasopharyngeal carcinoma.

    Science.gov (United States)

    Huang, Tian; Chen, Mao-Huai; Wu, Ming-Yao; Wu, Xian-Ying

    2013-03-01

    We evaluated the expression of extracellular matrix metalloproteinase inducer (EMMPRIN) and matrix metalloproteinase-2 (MMP-2) in nasopharyngeal carcinoma (NPC) and studied their relationship with cervical lymph node metastasis. Immunohistochemical staining was used to detect the expression of EMMPRIN and MMP-2 in specimens from patients with chronic nasopharyngitis (CN), nonmetastastic NPC (NM-NPC), and lymph node-metastatic NPC (LNM-NPC). The rates of positive EMMPRIN expression in CN, NM-NPC, and LNM-NPC were 13.3%, 30.0%, and 66.7%, respectively. Significant differences were found between the rates in CN and LNM-NPC (p correlated (rs = 0.466; p <0.01). Nasopharyngeal carcinoma cells may attain enhanced metastastic capability through the expression of MMP-2 induced by EMMPRIN.

  11. Divergence and Conservative Evolution of XTNX Genes in Land Plants

    Directory of Open Access Journals (Sweden)

    Yan-Mei Zhang

    2017-10-01

    Full Text Available The Toll-interleukin-1 receptor (TIR and Nucleotide-binding site (NBS domains are two major components of the TIR-NBS-leucine-rich repeat family plant disease resistance genes. Extensive functional and evolutionary studies have been performed on these genes; however, the characterization of a small group of genes that are composed of atypical TIR and NBS domains, namely XTNX genes, is limited. The present study investigated this specific gene family by conducting genome-wide analyses of 59 green plant genomes. A total of 143 XTNX genes were identified in 51 of the 52 land plant genomes, whereas no XTNX gene was detected in any green algae genomes, which indicated that XTNX genes originated upon emergence of land plants. Phylogenetic analysis revealed that the ancestral XTNX gene underwent two rounds of ancient duplications in land plants, which resulted in the formation of clades I/II and clades IIa/IIb successively. Although clades I and IIb have evolved conservatively in angiosperms, the motif composition difference and sequence divergence at the amino acid level suggest that functional divergence may have occurred since the separation of the two clades. In contrast, several features of the clade IIa genes, including the absence in the majority of dicots, the long branches in the tree, the frequent loss of ancestral motifs, and the loss of expression in all detected tissues of Zea mays, all suggest that the genes in this lineage might have undergone pseudogenization. This study highlights that XTNX genes are a gene family originated anciently in land plants and underwent specific conservative pattern in evolution.

  12. Evolution of the snake body form reveals homoplasy in amniote Hox gene function.

    Science.gov (United States)

    Head, Jason J; Polly, P David

    2015-04-02

    Hox genes regulate regionalization of the axial skeleton in vertebrates, and changes in their expression have been proposed to be a fundamental mechanism driving the evolution of new body forms. The origin of the snake-like body form, with its deregionalized pre-cloacal axial skeleton, has been explained as either homogenization of Hox gene expression domains, or retention of standard vertebrate Hox domains with alteration of downstream expression that suppresses development of distinct regions. Both models assume a highly regionalized ancestor, but the extent of deregionalization of the primaxial domain (vertebrae, dorsal ribs) of the skeleton in snake-like body forms has never been analysed. Here we combine geometric morphometrics and maximum-likelihood analysis to show that the pre-cloacal primaxial domain of elongate, limb-reduced lizards and snakes is not deregionalized compared with limbed taxa, and that the phylogenetic structure of primaxial morphology in reptiles does not support a loss of regionalization in the evolution of snakes. We demonstrate that morphometric regional boundaries correspond to mapped gene expression domains in snakes, suggesting that their primaxial domain is patterned by a normally functional Hox code. Comparison of primaxial osteology in fossil and modern amniotes with Hox gene distributions within Amniota indicates that a functional, sequentially expressed Hox code patterned a subtle morphological gradient along the anterior-posterior axis in stem members of amniote clades and extant lizards, including snakes. The highly regionalized skeletons of extant archosaurs and mammals result from independent evolution in the Hox code and do not represent ancestral conditions for clades with snake-like body forms. The developmental origin of snakes is best explained by decoupling of the primaxial and abaxial domains and by increases in somite number, not by changes in the function of primaxial Hox genes.

  13. Matrix metalloproteinase (MMP) 9 transcription in mouse brain induced by fear learning.

    Science.gov (United States)

    Ganguly, Krishnendu; Rejmak, Emilia; Mikosz, Marta; Nikolaev, Evgeni; Knapska, Ewelina; Kaczmarek, Leszek

    2013-07-19

    Memory formation requires learning-based molecular and structural changes in neurons, whereas matrix metalloproteinase (MMP) 9 is involved in the synaptic plasticity by cleaving extracellular matrix proteins and, thus, is associated with learning processes in the mammalian brain. Because the mechanisms of MMP-9 transcription in the brain are poorly understood, this study aimed to elucidate regulation of MMP-9 gene expression in the mouse brain after fear learning. We show here that contextual fear conditioning markedly increases MMP-9 transcription, followed by enhanced enzymatic levels in the three major brain structures implicated in fear learning, i.e. the amygdala, hippocampus, and prefrontal cortex. To reveal the role of AP-1 transcription factor in MMP-9 gene expression, we have used reporter gene constructs with specifically mutated AP-1 gene promoter sites. The constructs were introduced into the medial prefrontal cortex of neonatal mouse pups by electroporation, and the regulation of MMP-9 transcription was studied after contextual fear conditioning in the adult animals. Specifically, -42/-50- and -478/-486-bp AP-1 binding motifs of the mouse MMP-9 promoter sequence have been found to play a major role in MMP-9 gene activation. Furthermore, increases in MMP-9 gene promoter binding by the AP-1 transcription factor proteins c-Fos and c-Jun have been demonstrated in all three brain structures under investigation. Hence, our results suggest that AP-1 acts as a positive regulator of MMP-9 transcription in the brain following fear learning.

  14. Developmental roles of the BMP1/TLD metalloproteinases.

    Science.gov (United States)

    Ge, Gaoxiang; Greenspan, Daniel S

    2006-03-01

    The astacin family (M12A) of the metzincin subclan MA(M) of metalloproteinases has been detected in developing and mature individuals of species that range from hydra to humans. Functions of this family of metalloproteinase vary from digestive degradation of polypeptides, to biosynthetic processing of extracellular proteins, to activation of growth factors. This review will focus on a small subgroup of the astacin family; the bone morphogenetic protein 1 (BMP1)/Tolloid (TLD)-like metalloproteinases. In vertebrates, the BMP1/TLD-like metalloproteinases play key roles in regulating formation of the extracellular matrix (ECM) via biosynthetic processing of various precursor proteins into mature functional enzymes, structural proteins, and proteins involved in initiating mineralization of the ECM of hard tissues. Roles in ECM formation include: processing of the C-propeptides of procollagens types I-III, to yield the major fibrous components of vertebrate ECM; proteolytic activation of the enzyme lysyl oxidase, necessary to formation of covalent cross-links in collagen and elastic fibers; processing of NH2-terminal globular domains and C-propeptides of types V and XI procollagen chains to yield monomers that are incorporated into and control the diameters of collagen type I and II fibrils, respectively; processing of precursors for laminin 5 and collagen type VII, both of which are involved in securing epidermis to underlying dermis; and maturation of small leucine-rich proteoglycans. The BMP1/TLD-related metalloproteinases are also capable of activating the vertebrate transforming growth factor-beta (TGF-beta)-like "chalones" growth differentiation factor 8 (GDF8, also known as myostatin), and GDF11 (also known as BMP11), involved in negative feedback inhibition of muscle and neural tissue growth, respectively; by freeing them from noncovalent latent complexes with their cleaved prodomains. BMP1/TLD-like proteinases also liberate the vertebrate TGF

  15. Messenger RNA for membrane-type 2 matrix metalloproteinase, MT2-MMP, is expressed in human placenta of first trimester.

    Science.gov (United States)

    Bjørn, S F; Hastrup, N; Larsen, J F; Lund, L R; Pyke, C

    2000-01-01

    An intimately regulated cell surface activation of matrix metalloproteinases (MMPs) is believed to be of critical importance for the control of trophoblast invasion. A histological investigation of the expression and localization of three different MMPs, the membrane-type matrix metalloproteinases 1 and 2 (MT1-MMP, MT2-MMP) and matrix metalloproteinase 2 (MMP-2/gelatinase A) was performed by in situ hybridization on consecutive sections from human placentae of first trimester pregnancies. Cytokeratin immunostaining identified trophoblast cells. Both normal and tubal implantation sites were studied. We observed a high degree of coexpression of MT2-MMP, MT1-MMP and MMP-2 mRNAs in single extravillous cytotrophoblasts that had invaded the endometrium and tubal wall. Furthermore, mRNAs for all three genes were also seen in cytotrophoblasts of cell islands. In contrast to this coexpression pattern, MT2-MMP expression was absent from cell columns and decidual cells, in which signals for MT1-MMP and MMP-2 mRNAs were seen. The present data on the cellular expression of MT2-MMP mRNA in placenta extend our knowledge of the proteolytic events that take place during early pregnancy. The data suggest that MT2-MMP, capable of activating MMP-2 in vitro, is involved in the invasion of extravillous cytotrophoblast, possibly related to the physiological activation of MMP-2. Copyright 2000 Harcourt Publishers Ltd.

  16. The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system

    Science.gov (United States)

    Vonk, Freek J.; Casewell, Nicholas R.; Henkel, Christiaan V.; Heimberg, Alysha M.; Jansen, Hans J.; McCleary, Ryan J. R.; Kerkkamp, Harald M. E.; Vos, Rutger A.; Guerreiro, Isabel; Calvete, Juan J.; Wüster, Wolfgang; Woods, Anthony E.; Logan, Jessica M.; Harrison, Robert A.; Castoe, Todd A.; de Koning, A. P. Jason; Pollock, David D.; Yandell, Mark; Calderon, Diego; Renjifo, Camila; Currier, Rachel B.; Salgado, David; Pla, Davinia; Sanz, Libia; Hyder, Asad S.; Ribeiro, José M. C.; Arntzen, Jan W.; van den Thillart, Guido E. E. J. M.; Boetzer, Marten; Pirovano, Walter; Dirks, Ron P.; Spaink, Herman P.; Duboule, Denis; McGlinn, Edwina; Kini, R. Manjunatha; Richardson, Michael K.

    2013-01-01

    Snakes are limbless predators, and many species use venom to help overpower relatively large, agile prey. Snake venoms are complex protein mixtures encoded by several multilocus gene families that function synergistically to cause incapacitation. To examine venom evolution, we sequenced and interrogated the genome of a venomous snake, the king cobra (Ophiophagus hannah), and compared it, together with our unique transcriptome, microRNA, and proteome datasets from this species, with data from other vertebrates. In contrast to the platypus, the only other venomous vertebrate with a sequenced genome, we find that snake toxin genes evolve through several distinct co-option mechanisms and exhibit surprisingly variable levels of gene duplication and directional selection that correlate with their functional importance in prey capture. The enigmatic accessory venom gland shows a very different pattern of toxin gene expression from the main venom gland and seems to have recruited toxin-like lectin genes repeatedly for new nontoxic functions. In addition, tissue-specific microRNA analyses suggested the co-option of core genetic regulatory components of the venom secretory system from a pancreatic origin. Although the king cobra is limbless, we recovered coding sequences for all Hox genes involved in amniote limb development, with the exception of Hoxd12. Our results provide a unique view of the origin and evolution of snake venom and reveal multiple genome-level adaptive responses to natural selection in this complex biological weapon system. More generally, they provide insight into mechanisms of protein evolution under strong selection. PMID:24297900

  17. Adaptive evolution of a key gene affecting queen and worker traits in the honey bee, Apis mellifera.

    Science.gov (United States)

    Kent, Clement F; Issa, Amer; Bunting, Alexandra C; Zayed, Amro

    2011-12-01

    The vitellogenin egg yolk precursor protein represents a well-studied case of social pleiotropy in the model organism Apis mellifera. Vitellogenin is associated with fecundity in queens and plays a major role in controlling division of labour in workers, thereby affecting both individual and colony-level fitness. We studied the molecular evolution of vitellogenin and seven other genes sequenced in a large population panel of Apis mellifera and several closely related species to investigate the role of social pleiotropy on adaptive protein evolution. We found a significant excess of nonsynonymous fixed differences between A. mellifera, A. cerana and A. florea relative to synonymous sites indicating high rates of adaptive evolution at vitellogenin. Indeed, 88% of amino acid changes were fixed by selection in some portions of the gene. Further, vitellogenin exhibited hallmark signatures of selective sweeps in A. mellifera, including a significant skew in the allele frequency spectrum, extreme levels of genetic differentiation and linkage disequilibrium. Finally, replacement polymorphisms in vitellogenin were significantly enriched in parts of the protein involved in binding lipid, establishing a link between the gene's structure, function and effects on fitness. Our case study provides unequivocal evidence of historical and ongoing bouts of adaptive evolution acting on a key socially pleiotropic gene in the honey bee. © 2011 Blackwell Publishing Ltd.

  18. Rapid evolution of cancer/testis genes on the X chromosome

    Directory of Open Access Journals (Sweden)

    Simpson Andrew J

    2007-05-01

    Full Text Available Abstract Background Cancer/testis (CT genes are normally expressed only in germ cells, but can be activated in the cancer state. This unusual property, together with the finding that many CT proteins elicit an antigenic response in cancer patients, has established a role for this class of genes as targets in immunotherapy regimes. Many families of CT genes have been identified in the human genome, but their biological function for the most part remains unclear. While it has been shown that some CT genes are under diversifying selection, this question has not been addressed before for the class as a whole. Results To shed more light on this interesting group of genes, we exploited the generation of a draft chimpanzee (Pan troglodytes genomic sequence to examine CT genes in an organism that is closely related to human, and generated a high-quality, manually curated set of human:chimpanzee CT gene alignments. We find that the chimpanzee genome contains homologues to most of the human CT families, and that the genes are located on the same chromosome and at a similar copy number to those in human. Comparison of putative human:chimpanzee orthologues indicates that CT genes located on chromosome X are diverging faster and are undergoing stronger diversifying selection than those on the autosomes or than a set of control genes on either chromosome X or autosomes. Conclusion Given their high level of diversifying selection, we suggest that CT genes are primarily responsible for the observed rapid evolution of protein-coding genes on the X chromosome.

  19. Divergent evolution and purifying selection of the H (FUT1 gene in New World monkeys (Primates, Platyrrhini

    Directory of Open Access Journals (Sweden)

    Bárbara do Nascimento Borges

    2004-01-01

    Full Text Available In the present study, the coding region of the H gene was sequenced and analyzed in fourteen genera of New World primates (Alouatta, Aotus, Ateles, Brachyteles, Cacajao, Callicebus, Callithrix, Cebus, Chiropotes, Lagothrix, Leontopithecus, Pithecia, Saguinus, and Saimiri, in order to investigate the evolution of the gene. The analyses revealed that this coding region contains 1,101 nucleotides, with the exception of Brachyteles, the callitrichines (Callithrix, Leontopithecus, and Saguinus and one species of Callicebus (moloch, in which one codon was deleted. In the primates studied, the high GC content (63%, the nonrandom distribution of codons and the low evolution rate of the gene (0.513 substitutions/site/MA in the order Primates suggest the action of a purifying type of selective pressure, confirmed by the Z-test. Our analyses did not identify mutations equivalent to those responsible for the H-deficient phenotypes found in humans, nor any other alteration that might explain the lack of expression of the gene in the erythrocytes of Neotropical monkeys. The phylogenetic trees obtained for the H gene and the distance matrix data suggest the occurrence of divergent evolution in the primates.

  20. Venom-related transcripts from Bothrops jararaca tissues provide novel molecular insights into the production and evolution of snake venom.

    Science.gov (United States)

    Junqueira-de-Azevedo, Inácio L M; Bastos, Carolina Mancini Val; Ho, Paulo Lee; Luna, Milene Schmidt; Yamanouye, Norma; Casewell, Nicholas R

    2015-03-01

    Attempts to reconstruct the evolutionary history of snake toxins in the context of their co-option to the venom gland rarely account for nonvenom snake genes that are paralogous to toxins, and which therefore represent important connectors to ancestral genes. In order to reevaluate this process, we conducted a comparative transcriptomic survey on body tissues from a venomous snake. A nonredundant set of 33,000 unigenes (assembled transcripts of reference genes) was independently assembled from six organs of the medically important viperid snake Bothrops jararaca, providing a reference list of 82 full-length toxins from the venom gland and specific products from other tissues, such as pancreatic digestive enzymes. Unigenes were then screened for nontoxin transcripts paralogous to toxins revealing 1) low level coexpression of approximately 20% of toxin genes (e.g., bradykinin-potentiating peptide, C-type lectin, snake venom metalloproteinase, snake venom nerve growth factor) in body tissues, 2) the identity of the closest paralogs to toxin genes in eight classes of toxins, 3) the location and level of paralog expression, indicating that, in general, co-expression occurs in a higher number of tissues and at lower levels than observed for toxin genes, and 4) strong evidence of a toxin gene reverting back to selective expression in a body tissue. In addition, our differential gene expression analyses identify specific cellular processes that make the venom gland a highly specialized secretory tissue. Our results demonstrate that the evolution and production of venom in snakes is a complex process that can only be understood in the context of comparative data from other snake tissues, including the identification of genes paralogous to venom toxins. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  1. Matrix metalloproteinase 2 and tissue inhibitor of matrix metalloproteinases 2 in the diagnosis of colorectal adenoma and cancer patients

    Directory of Open Access Journals (Sweden)

    Magdalena Groblewska

    2010-04-01

    Full Text Available The aim of the study was to assess the importance of the measurement of matrix metalloproteinase 2 (MMP-2and tissue inhibitor of matrix metalloproteinases 2 (TIMP-2 in patients with colorectal cancer (CRC in relation to clinicopathologicalfeatures of tumor and patients' survival. Additionally, we determined serum MMP-2 and TIMP-2 in colorectaladenoma (CA patients and healthy controls and compared them with tumor markers, CEA and CA 19-9. The serum levelsof MMP-2 and TIMP-2 in 91 CRC patients, 28 CA subjects and 91 healthy controls were determined by ELISA method, butconcentrations of CEA and CA 19-9 using MEIA method. Nonparametric statistical analyses were used. Serum levels ofMMP-2 and TIMP-2 were significantly lower in CRC patients than in healthy subjects and decreased with tumor stage.Additionally, MMP-2 concentrations were significantly lower in patients with CRC than in CA group. Diagnostic sensitivityof TIMP-2 (59% was the highest among biomarkers tested and increased in combined use with CEA (79%. Moreover,the area under ROC curve (AUC of TIMP-2 was larger than AUC of MMP-2 in differentiation between CRC and healthysubjects, but lower than AUC of matrix metalloproteinase 2 in differentiation between colorectal cancer and adenoma. Ourfindings suggest clinical usefulness of TIMP-2 as a biomarker in the diagnosis of CRC, especially in combination with CEA.However, further investigation is necessary.

  2. Matrix metalloproteinase 2 and tissue inhibitor of matrix metalloproteinases 2 in the diagnosis of colorectal adenoma and cancer patients.

    Directory of Open Access Journals (Sweden)

    Barbara Mroczko

    2011-04-01

    Full Text Available The aim of the study was to assess the importance of the measurement of matrix metalloproteinase 2 (MMP-2 and tissue inhibitor of matrix metalloproteinases 2 (TIMP-2 in patients with colorectal cancer (CRC in relation to clinicopathological features of tumor and patients' survival. Additionally, we determined serum MMP-2 and TIMP-2 in colorectal adenoma (CA patients and healthy controls and compared them with tumor markers, CEA and CA 19-9. The serum levels of MMP-2 and TIMP-2 in 91 CRC patients, 28 CA subjects and 91 healthy controls were determined by ELISA method, but concentrations of CEA and CA 19-9 using MEIA method. Nonparametric statistical analyses were used. Serum levels of MMP-2 and TIMP-2 were significantly lower in CRC patients than in healthy subjects and decreased with tumor stage. Additionally, MMP-2 concentrations were significantly lower in patients with CRC than in CA group. Diagnostic sensitivity of TIMP-2 (59% was the highest among biomarkers tested and increased in combined use with CEA (79%. Moreover, the area under ROC curve (AUC of TIMP-2 was larger than AUC of MMP-2 in differentiation between CRC and healthy subjects, but lower than AUC of matrix metalloproteinase 2 in differentiation between colorectal cancer and adenoma. Our findings suggest clinical usefulness of TIMP-2 as a biomarker in the diagnosis of CRC, especially in combination with CEA. However, further investigation is necessary.

  3. Neofunctionalization of Duplicated P450 Genes Drives the Evolution of Insecticide Resistance in the Brown Planthopper.

    Science.gov (United States)

    Zimmer, Christoph T; Garrood, William T; Singh, Kumar Saurabh; Randall, Emma; Lueke, Bettina; Gutbrod, Oliver; Matthiesen, Svend; Kohler, Maxie; Nauen, Ralf; Davies, T G Emyr; Bass, Chris

    2018-01-22

    Gene duplication is a major source of genetic variation that has been shown to underpin the evolution of a wide range of adaptive traits [1, 2]. For example, duplication or amplification of genes encoding detoxification enzymes has been shown to play an important role in the evolution of insecticide resistance [3-5]. In this context, gene duplication performs an adaptive function as a result of its effects on gene dosage and not as a source of functional novelty [3, 6-8]. Here, we show that duplication and neofunctionalization of a cytochrome P450, CYP6ER1, led to the evolution of insecticide resistance in the brown planthopper. Considerable genetic variation was observed in the coding sequence of CYP6ER1 in populations of brown planthopper collected from across Asia, but just two sequence variants are highly overexpressed in resistant strains and metabolize imidacloprid. Both variants are characterized by profound amino-acid alterations in substrate recognition sites, and the introduction of these mutations into a susceptible P450 sequence is sufficient to confer resistance. CYP6ER1 is duplicated in resistant strains with individuals carrying paralogs with and without the gain-of-function mutations. Despite numerical parity in the genome, the susceptible and mutant copies exhibit marked asymmetry in their expression with the resistant paralogs overexpressed. In the primary resistance-conferring CYP6ER1 variant, this results from an extended region of novel sequence upstream of the gene that provides enhanced expression. Our findings illustrate the versatility of gene duplication in providing opportunities for functional and regulatory innovation during the evolution of an adaptive trait. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Early events in the evolution of spider silk genes.

    Directory of Open Access Journals (Sweden)

    James Starrett

    Full Text Available Silk spinning is essential to spider ecology and has had a key role in the expansive diversification of spiders. Silk is composed primarily of proteins called spidroins, which are encoded by a multi-gene family. Spidroins have been studied extensively in the derived clade, Orbiculariae (orb-weavers, from the suborder Araneomorphae ('true spiders'. Orbicularians produce a suite of different silks, and underlying this repertoire is a history of duplication and spidroin gene divergence. A second class of silk proteins, Egg Case Proteins (ECPs, is known only from the orbicularian species, Lactrodectus hesperus (Western black widow. In L. hesperus, ECPs bond with tubuliform spidroins to form egg case silk fibers. Because most of the phylogenetic diversity of spiders has not been sampled for their silk genes, there is limited understanding of spidroin gene family history and the prevalence of ECPs. Silk genes have not been reported from the suborder Mesothelae (segmented spiders, which diverged from all other spiders >380 million years ago, and sampling from Mygalomorphae (tarantulas, trapdoor spiders and basal araneomorph lineages is sparse. In comparison to orbicularians, mesotheles and mygalomorphs have a simpler silk biology and thus are hypothesized to have less diversity of silk genes. Here, we present cDNAs synthesized from the silk glands of six mygalomorph species, a mesothele, and a non-orbicularian araneomorph, and uncover a surprisingly rich silk gene diversity. In particular, we find ECP homologs in the mesothele, suggesting that ECPs were present in the common ancestor of extant spiders, and originally were not specialized to complex with tubuliform spidroins. Furthermore, gene-tree/species-tree reconciliation analysis reveals that numerous spidroin gene duplications occurred after the split between Mesothelae and Opisthothelae (Mygalomorphae plus Araneomorphae. We use the spidroin gene tree to reconstruct the evolution of amino acid

  5. A contribution to the study of plant development evolution based on gene co-expression networks

    Directory of Open Access Journals (Sweden)

    Francisco J. Romero-Campero

    2013-08-01

    Full Text Available Phototrophic eukaryotes are among the most successful organisms on Earth due to their unparalleled efficiency at capturing light energy and fixing carbon dioxide to produce organic molecules. A conserved and efficient network of light-dependent regulatory modules could be at the bases of this success. This regulatory system conferred early advantages to phototrophic eukaryotes that allowed for specialization, complex developmental processes and modern plant characteristics. We have studied light-dependent gene regulatory modules from algae to plants employing integrative-omics approaches based on gene co-expression networks. Our study reveals some remarkably conserved ways in which eukaryotic phototrophs deal with day length and light signaling. Here we describe how a family of Arabidopsis transcription factors involved in photoperiod response has evolved from a single algal gene according to the innovation, amplification and divergence theory of gene evolution by duplication. These modifications of the gene co-expression networks from the ancient unicellular green algae Chlamydomonas reinhardtii to the modern brassica Arabidopsis thaliana may hint on the evolution and specialization of plants and other organisms.

  6. Reduced Levels of Tissue Inhibitors of Metalloproteinases in UVB-Irradiated Corneal Epithelium

    Czech Academy of Sciences Publication Activity Database

    Ardan, Taras; Němcová, Lucie; Bohuslavová, Božena; Klezlová, A.; Popelka, Štěpán; Studenovská, Hana; Hrnčiarová, Eva; Čejková, Jitka; Motlík, Jan

    2016-01-01

    Roč. 92, č. 5 (2016), s. 720-727 ISSN 0031-8655 R&D Projects: GA ČR GPP302/10/P155; GA MŠk(CZ) LO1609 Institutional support: RVO:67985904 ; RVO:61389013 ; RVO:68378041 Keywords : tissue inhibitors of metalloproteinases * matrix metalloproteinases Subject RIV: EB - Genetics ; Molecular Biology; CD - Macromolecular Chemistry (UMCH-V) Impact factor: 2.121, year: 2016

  7. Comparative symbiotic plasmid analysis indicates that symbiosis gene ancestor type affects plasmid genetic evolution.

    Science.gov (United States)

    Wang, X; Zhao, L; Zhang, L; Wu, Y; Chou, M; Wei, G

    2018-07-01

    Rhizobial symbiotic plasmids play vital roles in mutualistic symbiosis with legume plants by executing the functions of nodulation and nitrogen fixation. To explore the gene composition and genetic constitution of rhizobial symbiotic plasmids, comparison analyses of 24 rhizobial symbiotic plasmids derived from four rhizobial genera was carried out. Results illustrated that rhizobial symbiotic plasmids had higher proportion of functional genes participating in amino acid transport and metabolism, replication; recombination and repair; carbohydrate transport and metabolism; energy production and conversion and transcription. Mesorhizobium amorphae CCNWGS0123 symbiotic plasmid - pM0123d had similar gene composition with pR899b and pSNGR234a. All symbiotic plasmids shared 13 orthologous genes, including five nod and eight nif/fix genes which participate in the rhizobia-legume symbiosis process. These plasmids contained nod genes from four ancestors and fix genes from six ancestors. The ancestral type of pM0123d nod genes was similar with that of Rhizobium etli plasmids, while the ancestral type of pM0123d fix genes was same as that of pM7653Rb. The phylogenetic trees constructed based on nodCIJ and fixABC displayed different topological structures mainly due to nodCIJ and fixABC ancestral type discordance. The study presents valuable insights into mosaic structures and the evolution of rhizobial symbiotic plasmids. This study compared 24 rhizobial symbiotic plasmids that included four genera and 11 species, illuminating the functional gene composition and symbiosis gene ancestor types of symbiotic plasmids from higher taxonomy. It provides valuable insights into mosaic structures and the evolution of symbiotic plasmids. © 2018 The Society for Applied Microbiology.

  8. Prolonged Adaptive Evolution of a Defensive Gene in the Solanaceae.

    Science.gov (United States)

    Rausher, Mark D; Huang, Jie

    2016-01-01

    Although plants and their natural enemies may coevolve for prolonged periods, little is known about how long individual plant defensive genes are involved in the coevolutionary process. We address this issue by examining patterns of selection on the defensive gene threonine deaminase (TD). Tomato (Solanum lycopersicum) has two copies of this gene. One performs the canonical housekeeping function in amino acid metabolism of catalyzing the first reaction in the conversion of threonine to isoleucine. The second copy functions as an antinutritive defense against lepidopteran herbivores by depleting threonine in the insect gut. Wild tobacco (Nicotiana attenuata) also contains a defensive copy. We show that a single copy of TD underwent two or three duplications near the base of the Solanaceae. One copy retains the housekeeping function, whereas a second copy evolved defensive functions. Positive selection occurred on the branch of the TD2 gene tree subtending the common ancestor of the Nicotianoideae and Solanoideae. It also occurred within the Solanoideae clade but not within the Nicotianoideae clade. Finally, it occurred on most branches leading from the common ancestor to S. lycopersicum. Based on recent calibrations of the Solanaceae phylogeny, TD2 experienced adaptive substitutions for a period of 30-50 My. We suggest that the most likely explanation for this result is fluctuating herbivore abundances: When herbivores are rare, relaxed selection increases the likelihood that slightly disadvantageous mutations will be fixed by drift; when herbivores are common, increased selection causes the evolution of compensatory adaptive mutations. Alternative explanations are also discussed. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Evolutionary mechanisms driving the evolution of a large polydnavirus gene family coding for protein tyrosine phosphatases

    Directory of Open Access Journals (Sweden)

    Serbielle Céline

    2012-12-01

    Full Text Available Abstract Background Gene duplications have been proposed to be the main mechanism involved in genome evolution and in acquisition of new functions. Polydnaviruses (PDVs, symbiotic viruses associated with parasitoid wasps, are ideal model systems to study mechanisms of gene duplications given that PDV genomes consist of virulence genes organized into multigene families. In these systems the viral genome is integrated in a wasp chromosome as a provirus and virus particles containing circular double-stranded DNA are injected into the parasitoids’ hosts and are essential for parasitism success. The viral virulence factors, organized in gene families, are required collectively to induce host immune suppression and developmental arrest. The gene family which encodes protein tyrosine phosphatases (PTPs has undergone spectacular expansion in several PDV genomes with up to 42 genes. Results Here, we present strong indications that PTP gene family expansion occurred via classical mechanisms: by duplication of large segments of the chromosomally integrated form of the virus sequences (segmental duplication, by tandem duplications within this form and by dispersed duplications. We also propose a novel duplication mechanism specific to PDVs that involves viral circle reintegration into the wasp genome. The PTP copies produced were shown to undergo conservative evolution along with episodes of adaptive evolution. In particular recently produced copies have undergone positive selection in sites most likely involved in defining substrate selectivity. Conclusion The results provide evidence about the dynamic nature of polydnavirus proviral genomes. Classical and PDV-specific duplication mechanisms have been involved in the production of new gene copies. Selection pressures associated with antagonistic interactions with parasitized hosts have shaped these genes used to manipulate lepidopteran physiology with evidence for positive selection involved in

  10. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Baumgarten Andrew

    2004-06-01

    Full Text Available Abstract Background Most genes in Arabidopsis thaliana are members of gene families. How do the members of gene families arise, and how are gene family copy numbers maintained? Some gene families may evolve primarily through tandem duplication and high rates of birth and death in clusters, and others through infrequent polyploidy or large-scale segmental duplications and subsequent losses. Results Our approach to understanding the mechanisms of gene family evolution was to construct phylogenies for 50 large gene families in Arabidopsis thaliana, identify large internal segmental duplications in Arabidopsis, map gene duplications onto the segmental duplications, and use this information to identify which nodes in each phylogeny arose due to segmental or tandem duplication. Examples of six gene families exemplifying characteristic modes are described. Distributions of gene family sizes and patterns of duplication by genomic distance are also described in order to characterize patterns of local duplication and copy number for large gene families. Both gene family size and duplication by distance closely follow power-law distributions. Conclusions Combining information about genomic segmental duplications, gene family phylogenies, and gene positions provides a method to evaluate contributions of tandem duplication and segmental genome duplication in the generation and maintenance of gene families. These differences appear to correspond meaningfully to differences in functional roles of the members of the gene families.

  11. The presence of promatrix metalloproteinase-3 and its relation with different categories of coal workers' pneumoconiosis

    Directory of Open Access Journals (Sweden)

    Remzi Altin

    2004-01-01

    Full Text Available Extracellular matrix formation (ECM and remodeling are critical events related to the pathogenesis of pulmonary fibrosis. Matrix metalloproteinases play an essential role in degrading and remodeling the ECM. In this study, we tried to show the presence and correlation of promatrix metalloproteinase-3 (proMMP-3 (the inactive form of metalloproteinase-3 levels in coal workers' pneumoconiosis (CWP with different categories.

  12. Sex linkage, sex-specific selection, and the role of recombination in the evolution of sexually dimorphic gene expression.

    Science.gov (United States)

    Connallon, Tim; Clark, Andrew G

    2010-12-01

    Sex-biased genes--genes that are differentially expressed within males and females--are nonrandomly distributed across animal genomes, with sex chromosomes and autosomes often carrying markedly different concentrations of male- and female-biased genes. These linkage patterns are often gene- and lineage-dependent, differing between functional genetic categories and between species. Although sex-specific selection is often hypothesized to shape the evolution of sex-linked and autosomal gene content, population genetics theory has yet to account for many of the gene- and lineage-specific idiosyncrasies emerging from the empirical literature. With the goal of improving the connection between evolutionary theory and a rapidly growing body of genome-wide empirical studies, we extend previous population genetics theory of sex-specific selection by developing and analyzing a biologically informed model that incorporates sex linkage, pleiotropy, recombination, and epistasis, factors that are likely to vary between genes and between species. Our results demonstrate that sex-specific selection and sex-specific recombination rates can generate, and are compatible with, the gene- and species-specific linkage patterns reported in the genomics literature. The theory suggests that sexual selection may strongly influence the architectures of animal genomes, as well as the chromosomal distribution of fixed substitutions underlying sexually dimorphic traits. © 2010 The Author(s). Evolution© 2010 The Society for the Study of Evolution.

  13. Analysis of the complement and molecular evolution of tRNA genes in cow

    Directory of Open Access Journals (Sweden)

    Barris Wesley C

    2009-04-01

    Full Text Available Abstract Background Detailed information regarding the number and organization of transfer RNA (tRNA genes at the genome level is becoming readily available with the increase of DNA sequencing of whole genomes. However the identification of functional tRNA genes is challenging for species that have large numbers of repetitive elements containing tRNA derived sequences, such as Bos taurus. Reliable identification and annotation of entire sets of tRNA genes allows the evolution of tRNA genes to be understood on a genomic scale. Results In this study, we explored the B. taurus genome using bioinformatics and comparative genomics approaches to catalogue and analyze cow tRNA genes. The initial analysis of the cow genome using tRNAscan-SE identified 31,868 putative tRNA genes and 189,183 pseudogenes, where 28,830 of the 31,868 predicted tRNA genes were classified as repetitive elements by the RepeatMasker program. We then used comparative genomics to further discriminate between functional tRNA genes and tRNA-derived sequences for the remaining set of 3,038 putative tRNA genes. For our analysis, we used the human, chimpanzee, mouse, rat, horse, dog, chicken and fugu genomes to predict that the number of active tRNA genes in cow lies in the vicinity of 439. Of this set, 150 tRNA genes were 100% identical in their sequences across all nine vertebrate genomes studied. Using clustering analyses, we identified a new tRNA-GlyCCC subfamily present in all analyzed mammalian genomes. We suggest that this subfamily originated from an ancestral tRNA-GlyGCC gene via a point mutation prior to the radiation of the mammalian lineages. Lastly, in a separate analysis we created phylogenetic profiles for each putative cow tRNA gene using a representative set of genomes to gain an overview of common evolutionary histories of tRNA genes. Conclusion The use of a combination of bioinformatics and comparative genomics approaches has allowed the confident identification of a

  14. Inventing an arsenal: adaptive evolution and neofunctionalization of snake venom phospholipase A2 genes

    Directory of Open Access Journals (Sweden)

    Lynch Vincent J

    2007-01-01

    Full Text Available Abstract Background Gene duplication followed by functional divergence has long been hypothesized to be the main source of molecular novelty. Convincing examples of neofunctionalization, however, remain rare. Snake venom phospholipase A2 genes are members of large multigene families with many diverse functions, thus they are excellent models to study the emergence of novel functions after gene duplications. Results Here, I show that positive Darwinian selection and neofunctionalization is common in snake venom phospholipase A2 genes. The pattern of gene duplication and positive selection indicates that adaptive molecular evolution occurs immediately after duplication events as novel functions emerge and continues as gene families diversify and are refined. Surprisingly, adaptive evolution of group-I phospholipases in elapids is also associated with speciation events, suggesting adaptation of the phospholipase arsenal to novel prey species after niche shifts. Mapping the location of sites under positive selection onto the crystal structure of phospholipase A2 identified regions evolving under diversifying selection are located on the molecular surface and are likely protein-protein interactions sites essential for toxin functions. Conclusion These data show that increases in genomic complexity (through gene duplications can lead to phenotypic complexity (venom composition and that positive Darwinian selection is a common evolutionary force in snake venoms. Finally, regions identified under selection on the surface of phospholipase A2 enzymes are potential candidate sites for structure based antivenin design.

  15. Immunohistochemical correlation of matrix metalloproteinase-2 and tissue inhibitors of metalloproteinase-2 in tobacco associated epithelial dysplasia.

    Science.gov (United States)

    Bajracharya, Dipshikha; Shrestha, Bijayatha; Kamath, Asha; Menon, Aparna; Radhakrishnan, Raghu

    2014-01-01

    To study the immunohistochemical expression of matrix metalloproteinase and tissue inhibitors of matrix metalloproteinase-2 in different histological grades of tobacco associated epithelial dysplasia and correlate the association between these proteases. Potentially malignant oral disorders (PMODs) progressing to oral cancer are related to the severity of epithelial dysplasia. A retrospective immunohistochemical study was carried out on 30 clinically and histologically proven cases of leukoplakia with dysplasia and 10 cases of normal buccal mucosa using anti-MMP-2 and anti-TIMP-2 monoclonal antibodies. Mann Whitney U test, for comparing the expression of both MMP-2 and TIMP-2 in normal mucosa with dysplasia, was highly significant (P correlation between MMP-2 and TIMP-2 through different grades of dysplasia and cells observed showed positive correlation. Concomitant increase in the expression of both MMP-2 and TIMP-2 suggested that the activation of MMP-2 is dependent on TIMP-2 acting as a cofactor. Changes in TIMP-2 levels are considered important because they directly affect the level of MMP-2 activity.

  16. Supplementary Material for: Global expression differences and tissue specific expression differences in rice evolution result in two contrasting types of differentially expressed genes

    KAUST Repository

    Horiuchi, Youko; Harushima, Yoshiaki; Fujisawa, Hironori; Mochizuki, Takako; Fujita, Masahiro; Ohyanagi, Hajime; Kurata, Nori

    2015-01-01

    Abstract Background Since the development of transcriptome analysis systems, many expression evolution studies characterized evolutionary forces acting on gene expression, without explicit discrimination between global expression differences and tissue specific expression differences. However, different types of gene expression alteration should have different effects on an organism, the evolutionary forces that act on them might be different, and different types of genes might show different types of differential expression between species. To confirm this, we studied differentially expressed (DE) genes among closely related groups that have extensive gene expression atlases, and clarified characteristics of different types of DE genes including the identification of regulating loci for differential expression using expression quantitative loci (eQTL) analysis data. Results We detected differentially expressed (DE) genes between rice subspecies in five homologous tissues that were verified using japonica and indica transcriptome atlases in public databases. Using the transcriptome atlases, we classified DE genes into two types, global DE genes and changed-tissues DE genes. Global type DE genes were not expressed in any tissues in the atlas of one subspecies, however changed-tissues type DE genes were expressed in both subspecies with different tissue specificity. For the five tissues in the two japonica-indica combinations, 4.6 ± 0.8 and 5.9 ± 1.5 % of highly expressed genes were global and changed-tissues DE genes, respectively. Changed-tissues DE genes varied in number between tissues, increasing linearly with the abundance of tissue specifically expressed genes in the tissue. Molecular evolution of global DE genes was rapid, unlike that of changed-tissues DE genes. Based on gene ontology, global and changed-tissues DE genes were different, having no common GO terms. Expression differences of most global DE genes were regulated by cis

  17. Association of single nucleotide polymorphisms in promoter of matrix metalloproteinase-2, 8 genes with bladder cancer risk in Northern India.

    Science.gov (United States)

    Srivastava, Priyanka; Kapoor, Rakesh; Mittal, Rama D

    2013-02-01

    Matrix metalloproteinases (MMPs) are expressed in melanocytes and their overexpression has been linked to tumor development, progression, and metastasis. At the genetic level, following functional promoter polymorphisms are known to modify the gene transcription: -1306 C > T, -735 C > T in MMP2, and 799 C > T in MMP8 gene. Hence we hypothesize that functional polymorphisms in the 2 MMP SNPs in promoter region may modulate the risk for bladder cancer (BC) progression in North Indian population. Genotyping for these polymorphisms were done in a group of 200 BC and 200 age matched, similar ethnicity unrelated healthy controls using PCR-based methods. Two-sided χ(2), Cox-regression was utilized to evaluate the associations between genotype and various clinical and epidemiologic factors. Multivariate analyses were conducted using logistic regression, adjusting for known BC confounders such as age and gender. Survival analysis was done using the Kaplan-Meier method and differences in survival were assessed using the log rank test. Individuals with MMP2 (-1306) TT genotype as well as T allele were at higher risk of BC (P, 0.042; OR, 2.85; P, 0.001; OR, 1.76). This effect was even more apparent in case of CT+TT (P T were associated with high risk of recurrence in BCG treated patients (HR, 4.32; P, 0.006 and HR, 2.06; P, 0.047) thus showing reduced recurrence free survival (CT+TT/CC = 34/45 months; log rank P, 0.039). Our data suggested that variant allele of MMP2 1306C > T was associated with high risk of tumor recurrence and reduced recurrence free survival in superficial BC patients. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Directed evolution combined with synthetic biology strategies expedite semi-rational engineering of genes and genomes.

    Science.gov (United States)

    Kang, Zhen; Zhang, Junli; Jin, Peng; Yang, Sen

    2015-01-01

    Owing to our limited understanding of the relationship between sequence and function and the interaction between intracellular pathways and regulatory systems, the rational design of enzyme-coding genes and de novo assembly of a brand-new artificial genome for a desired functionality or phenotype are difficult to achieve. As an alternative approach, directed evolution has been widely used to engineer genomes and enzyme-coding genes. In particular, significant developments toward DNA synthesis, DNA assembly (in vitro or in vivo), recombination-mediated genetic engineering, and high-throughput screening techniques in the field of synthetic biology have been matured and widely adopted, enabling rapid semi-rational genome engineering to generate variants with desired properties. In this commentary, these novel tools and their corresponding applications in the directed evolution of genomes and enzymes are discussed. Moreover, the strategies for genome engineering and rapid in vitro enzyme evolution are also proposed.

  19. Dynamic Copy Number Evolution of X- and Y-Linked Ampliconic Genes in Human Populations

    DEFF Research Database (Denmark)

    Lucotte, Elise A; Skov, Laurits; Jensen, Jacob Malte

    2018-01-01

    we explore the evolution of human X- and Y-linked ampliconic genes by investigating copy number variation (CNV) and coding variation between populations using the Simons Genome Diversity Project. We develop a method to assess CNVs using the read-depth on modified X and Y chromosome targets containing...... related Y haplogroups, that diversified less than 50,000 years ago. Moreover, X and Y-linked ampliconic genes seem to have a faster amplification dynamic than autosomal multicopy genes. Looking at expression data from another study, we also find that XY-linked ampliconic genes with extensive copy number...

  20. The evolution of milk casein genes from tooth genes before the origin of mammals.

    Science.gov (United States)

    Kawasaki, Kazuhiko; Lafont, Anne-Gaelle; Sire, Jean-Yves

    2011-07-01

    Caseins are among cardinal proteins that evolved in the lineage leading to mammals. In milk, caseins and calcium phosphate (CaP) form a huge complex called casein micelle. By forming the micelle, milk maintains high CaP concentrations, which help altricial mammalian neonates to grow bone and teeth. Two types of caseins are known. Ca-sensitive caseins (α(s)- and β-caseins) bind Ca but precipitate at high Ca concentrations, whereas Ca-insensitive casein (κ-casein) does not usually interact with Ca but instead stabilizes the micelle. Thus, it is thought that these two types of caseins are both necessary for stable micelle formation. Both types of caseins show high substitution rates, which make it difficult to elucidate the evolution of caseins. Yet, recent studies have revealed that all casein genes belong to the secretory calcium-binding phosphoprotein (SCPP) gene family that arose by gene duplication. In the present study, we investigated exon-intron structures and phylogenetic distributions of casein and other SCPP genes, particularly the odontogenic ameloblast-associated (ODAM) gene, the SCPP-Pro-Gln-rich 1 (SCPPPQ1) gene, and the follicular dendritic cell secreted peptide (FDCSP) gene. The results suggest that contemporary Ca-sensitive casein genes arose from a putative common ancestor, which we refer to as CSN1/2. The six putative exons comprising CSN1/2 are all found in SCPPPQ1, although ODAM also shares four of these exons. By contrast, the five exons of the Ca-insensitive casein gene are all reminiscent of FDCSP. The phylogenetic distribution of these genes suggests that both SCPPPQ1 and FDCSP arose from ODAM. We thus argue that all casein genes evolved from ODAM via two different pathways; Ca-sensitive casein genes likely originated directly from SCPPPQ1, whereas the Ca-insensitive casein genes directly differentiated from FDCSP. Further, expression of ODAM, SCPPPQ1, and FDCSP was detected in dental tissues, supporting the idea that both types of caseins

  1. Analysis of matrix metalloproteinase-1 gene polymorphisms and expression in benign and malignant breast tumors

    Science.gov (United States)

    Zhou, Jing; Brinckerhoff, Constance; Lubert, Susan; Yang, Kui; Saini, Jasmine; Hooke, Jeffrey; Mural, Richard; Shriver, Craig; Somiari, Stella

    2013-01-01

    A guanine insertion polymorphism in matrix metalloproteinase-1 promoter (MMP-1 2G) is linked to early onset and aggressiveness in cancer. We determined the role of MMP-1 2G on the level of MMP-1 expression and breast cancer severity in benign breast disease, atypical hyperplasia, invasive and non invasive (in situ) breast cancer. We observed no significant difference in genotype distribution among the different breast disease groups. However, the level of MMP-1 expression was significantly higher in atypical ductal hyperplasia compared to benign breast disease; and in invasive breast cancer compared to in situ breast cancer. MMP-1 2G insertion polymorphism in the invasive group also correlated significantly with the expression of MMP-1 and breast cancer prognostic markers HER2 and P53. PMID:22011282

  2. EMMPRIN mediates beta-adrenergic receptor-stimulated matrix metalloproteinase activity in cardiac myocytes.

    OpenAIRE

    Siwik Deborah A; Kuster Gabriela M; Brahmbhatt Jamin V; Zaidi Zaheer; Malik Julia; Ooi Henry; Ghorayeb Ghassan

    2008-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) expression is increased in myocardium from patients with dilated cardiomyopathy and animal models of heart failure. However little is known about the regulated expression or functional role of EMMPRIN in the myocardium. In rat cardiac cells EMMPRIN is expressed on myocytes but not endothelial cells or fibroblasts. Therefore we tested the hypothesis that EMMPRIN expression regulates matrix metalloproteinase (MMP) activity in rat ventricu...

  3. The evolution of Homo sapiens denisova and Homo sapiens neanderthalensis miRNA targeting genes in the prenatal and postnatal brain.

    Science.gov (United States)

    Gunbin, Konstantin V; Afonnikov, Dmitry A; Kolchanov, Nikolay A; Derevianko, Anatoly P; Rogaev, Eugeny I

    2015-01-01

    As the evolution of miRNA genes has been found to be one of the important factors in formation of the modern type of man, we performed a comparative analysis of the evolution of miRNA genes in two archaic hominines, Homo sapiens neanderthalensis and Homo sapiens denisova, and elucidated the expression of their target mRNAs in bain. A comparative analysis of the genomes of primates, including species in the genus Homo, identified a group of miRNA genes having fixed substitutions with important implications for the evolution of Homo sapiens neanderthalensis and Homo sapiens denisova. The mRNAs targeted by miRNAs with mutations specific for Homo sapiens denisova exhibited enhanced expression during postnatal brain development in modern humans. By contrast, the expression of mRNAs targeted by miRNAs bearing variations specific for Homo sapiens neanderthalensis was shown to be enhanced in prenatal brain development. Our results highlight the importance of changes in miRNA gene sequences in the course of Homo sapiens denisova and Homo sapiens neanderthalensis evolution. The genetic alterations of miRNAs regulating the spatiotemporal expression of multiple genes in the prenatal and postnatal brain may contribute to the progressive evolution of brain function, which is consistent with the observations of fine technical and typological properties of tools and decorative items reported from archaeological Denisovan sites. The data also suggest that differential spatial-temporal regulation of gene products promoted by the subspecies-specific mutations in the miRNA genes might have occurred in the brains of Homo sapiens denisova and Homo sapiens neanderthalensis, potentially contributing to the cultural differences between these two archaic hominines.

  4. Parallel and convergent evolution of the dim-light vision gene RH1 in bats (Order: Chiroptera).

    Science.gov (United States)

    Shen, Yong-Yi; Liu, Jie; Irwin, David M; Zhang, Ya-Ping

    2010-01-21

    Rhodopsin, encoded by the gene Rhodopsin (RH1), is extremely sensitive to light, and is responsible for dim-light vision. Bats are nocturnal mammals that inhabit poor light environments. Megabats (Old-World fruit bats) generally have well-developed eyes, while microbats (insectivorous bats) have developed echolocation and in general their eyes were degraded, however, dramatic differences in the eyes, and their reliance on vision, exist in this group. In this study, we examined the rod opsin gene (RH1), and compared its evolution to that of two cone opsin genes (SWS1 and M/LWS). While phylogenetic reconstruction with the cone opsin genes SWS1 and M/LWS generated a species tree in accord with expectations, the RH1 gene tree united Pteropodidae (Old-World fruit bats) and Yangochiroptera, with very high bootstrap values, suggesting the possibility of convergent evolution. The hypothesis of convergent evolution was further supported when nonsynonymous sites or amino acid sequences were used to construct phylogenies. Reconstructed RH1 sequences at internal nodes of the bat species phylogeny showed that: (1) Old-World fruit bats share an amino acid change (S270G) with the tomb bat; (2) Miniopterus share two amino acid changes (V104I, M183L) with Rhinolophoidea; (3) the amino acid replacement I123V occurred independently on four branches, and the replacements L99M, L266V and I286V occurred each on two branches. The multiple parallel amino acid replacements that occurred in the evolution of bat RH1 suggest the possibility of multiple convergences of their ecological specialization (i.e., various photic environments) during adaptation for the nocturnal lifestyle, and suggest that further attention is needed on the study of the ecology and behavior of bats.

  5. Gene Structures, Evolution and Transcriptional Profiling of the WRKY Gene Family in Castor Bean (Ricinus communis L.).

    Science.gov (United States)

    Zou, Zhi; Yang, Lifu; Wang, Danhua; Huang, Qixing; Mo, Yeyong; Xie, Guishui

    2016-01-01

    WRKY proteins comprise one of the largest transcription factor families in plants and form key regulators of many plant processes. This study presents the characterization of 58 WRKY genes from the castor bean (Ricinus communis L., Euphorbiaceae) genome. Compared with the automatic genome annotation, one more WRKY-encoding locus was identified and 20 out of the 57 predicted gene models were manually corrected. All RcWRKY genes were shown to contain at least one intron in their coding sequences. According to the structural features of the present WRKY domains, the identified RcWRKY genes were assigned to three previously defined groups (I-III). Although castor bean underwent no recent whole-genome duplication event like physic nut (Jatropha curcas L., Euphorbiaceae), comparative genomics analysis indicated that one gene loss, one intron loss and one recent proximal duplication occurred in the RcWRKY gene family. The expression of all 58 RcWRKY genes was supported by ESTs and/or RNA sequencing reads derived from roots, leaves, flowers, seeds and endosperms. Further global expression profiles with RNA sequencing data revealed diverse expression patterns among various tissues. Results obtained from this study not only provide valuable information for future functional analysis and utilization of the castor bean WRKY genes, but also provide a useful reference to investigate the gene family expansion and evolution in Euphorbiaceus plants.

  6. Trichomonas vaginalis Metalloproteinase Induces mTOR Cleavage of SiHa Cells

    Science.gov (United States)

    Quan, Juan-Hua; Choi, In-Wook; Yang, Jung-Bo; Zhou, Wei; Cha, Guang-Ho; Zhou, Yu; Ryu, Jae-Sook

    2014-01-01

    Trichomonas vaginalis secretes a number of proteases which are suspected to be the cause of pathogenesis; however, little is understood how they manipulate host cells. The mammalian target of rapamycin (mTOR) regulates cell growth, cell proliferation, cell motility, cell survival, protein synthesis, and transcription. We detected various types of metalloproteinases including GP63 protein from T. vaginalis trophozoites, and T. vaginalis GP63 metalloproteinase was confirmed by sequencing and western blot. When SiHa cells were stimulated with live T. vaginalis, T. vaginalis excretory-secretory products (ESP) or T. vaginalis lysate, live T. vaginalis and T. vaginalis ESP induced the mTOR cleavage in both time- and parasite load-dependent manner, but T. vaginalis lysate did not. Pretreatment of T. vaginalis with a metalloproteinase inhibitor, 1,10-phenanthroline, completely disappeared the mTOR cleavage in SiHa cells. Collectively, T. vaginalis metallopeptidase induces host cell mTOR cleavage, which may be related to survival of the parasite. PMID:25548410

  7. Gene duplication and adaptive evolution of digestive proteases in Drosophila arizonae female reproductive tracts.

    Directory of Open Access Journals (Sweden)

    Erin S Kelleher

    2007-08-01

    Full Text Available It frequently has been postulated that intersexual coevolution between the male ejaculate and the female reproductive tract is a driving force in the rapid evolution of reproductive proteins. The dearth of research on female tracts, however, presents a major obstacle to empirical tests of this hypothesis. Here, we employ a comparative EST approach to identify 241 candidate female reproductive proteins in Drosophila arizonae, a repleta group species in which physiological ejaculate-female coevolution has been documented. Thirty-one of these proteins exhibit elevated amino acid substitution rates, making them candidates for molecular coevolution with the male ejaculate. Strikingly, we also discovered 12 unique digestive proteases whose expression is specific to the D. arizonae lower female reproductive tract. These enzymes belong to classes most commonly found in the gastrointestinal tracts of a diverse array of organisms. We show that these proteases are associated with recent, lineage-specific gene duplications in the Drosophila repleta species group, and exhibit strong signatures of positive selection. Observation of adaptive evolution in several female reproductive tract proteins indicates they are active players in the evolution of reproductive tract interactions. Additionally, pervasive gene duplication, adaptive evolution, and rapid acquisition of a novel digestive function by the female reproductive tract points to a novel coevolutionary mechanism of ejaculate-female interaction.

  8. Influence of vaginal bacteria and D- and L-lactic acid isomers on vaginal extracellular matrix metalloproteinase inducer: implications for protection against upper genital tract infections.

    Science.gov (United States)

    Witkin, Steven S; Mendes-Soares, Helena; Linhares, Iara M; Jayaram, Aswathi; Ledger, William J; Forney, Larry J

    2013-08-06

    We evaluated levels of vaginal extracellular matrix metalloproteinase inducer (EMMPRIN) and matrix metalloproteinase (MMP-8) in vaginal secretions in relation to the composition of vaginal bacterial communities and D- and L-lactic acid levels. The composition of vaginal bacterial communities in 46 women was determined by pyrosequencing the V1 to V3 region of 16S rRNA genes. Lactobacilli were dominant in 71.3% of the women, followed by Gardnerella (17.4%), Streptococcus (8.7%), and Enterococcus (2.2%). Of the lactobacillus-dominated communities, 51.5% were dominated by Lactobacillus crispatus, 36.4% by Lactobacillus iners, and 6.1% each by Lactobacillus gasseri and Lactobacillus jensenii. Concentrations of L-lactic acid were slightly higher in lactobacillus-dominated vaginal samples, but most differences were not statistically significant. D-Lactic acid levels were higher in samples containing L. crispatus than in those with L. iners (Pvaginal communities dominated by species of lactobacilli was in concordance with the proportions found in axenic cultures of the various species grown in vitro. Levels of L-lactic acid (Pvaginal concentrations of EMMPRIN and MMP-8 levels were highly correlated (Pinfections. A large proportion of preterm births (>50%) result from infections caused by bacteria originating in the vagina, which requires that they traverse the cervix. Factors that influence susceptibility to these infections are not well understood; however, there is evidence that matrix metalloproteinase (MMP-8) is known to alter the integrity of the cervix. In this work, we show that concentrations of vaginal extracellular matrix metalloproteinase inducer (EMMPRIN) are influenced by members of the vaginal microbial community and concentrations of D- or L-lactic acid isomers in vaginal secretions. Elevated levels of D-lactic acid and the ratio of D- to L-lactic acid influence EMMPRIN concentrations as well as MMP-8 levels. Thus, isomers of lactic acid may function as

  9. Role of aberrant metalloproteinase activity in the pro-inflammatory phenotype of bronchial epithelium in COPD

    Directory of Open Access Journals (Sweden)

    Postma Dirkje S

    2011-08-01

    Full Text Available Abstract Background Cigarette smoke, the major risk factor for COPD, is known to activate matrix metalloproteinases in airway epithelium. We investigated whether metalloproteinases, particularly A Disintegrin and Metalloproteinase (ADAM17, contribute to increased pro-inflammatory epithelial responses with respect to the release of IL-8 and TGF-α, cytokines implicated in COPD pathogenesis. Methods We studied the effects of cigarette smoke extract (CSE and metalloproteinase inhibitors on TGF-α and IL-8 release in primary bronchial epithelial cells (PBECs from COPD patients, healthy smokers and non-smokers. Results We observed that TGF-α was mainly shed by ADAM17 in PBECs from all groups. Interestingly, IL-8 production occurred independently from ADAM17 and TGF-α shedding, but was significantly inhibited by broad-spectrum metalloproteinase inhibitor TAPI-2. CSE did not induce ADAM17-dependent TGF-α shedding, while it slightly augmented the production of IL-8. This was accompanied by reduced endogenous inhibitor of metalloproteinase (TIMP-3 levels, suggesting that CSE does not directly but rather indirectly alter activity of ADAM17 through the regulation of its endogenous inhibitor. Furthermore, whereas baseline TGF-α shedding was lower in COPD PBECs, the early release of IL-8 (likely due to its shedding was higher in PBECs from COPD than healthy smokers. Importantly, this was accompanied by lower TIMP-2 levels in COPD PBECs, while baseline TIMP-3 levels were similar between groups. Conclusions Our data indicate that IL-8 secretion is regulated independently from ADAM17 activity and TGF-α shedding and that particularly its early release is differentially regulated in PBECs from COPD and healthy smokers. Since TIMP-2-sensitive metalloproteinases could potentially contribute to IL-8 release, these may be interesting targets to further investigate novel therapeutic strategies in COPD.

  10. Age distribution of human gene families shows significant roles of both large- and small-scale duplications in vertebrate evolution.

    Science.gov (United States)

    Gu, Xun; Wang, Yufeng; Gu, Jianying

    2002-06-01

    The classical (two-round) hypothesis of vertebrate genome duplication proposes two successive whole-genome duplication(s) (polyploidizations) predating the origin of fishes, a view now being seriously challenged. As the debate largely concerns the relative merits of the 'big-bang mode' theory (large-scale duplication) and the 'continuous mode' theory (constant creation by small-scale duplications), we tested whether a significant proportion of paralogous genes in the contemporary human genome was indeed generated in the early stage of vertebrate evolution. After an extensive search of major databases, we dated 1,739 gene duplication events from the phylogenetic analysis of 749 vertebrate gene families. We found a pattern characterized by two waves (I, II) and an ancient component. Wave I represents a recent gene family expansion by tandem or segmental duplications, whereas wave II, a rapid paralogous gene increase in the early stage of vertebrate evolution, supports the idea of genome duplication(s) (the big-bang mode). Further analysis indicated that large- and small-scale gene duplications both make a significant contribution during the early stage of vertebrate evolution to build the current hierarchy of the human proteome.

  11. Multifaceted role of matrix metalloproteinases (MMPs)

    OpenAIRE

    Singh, Divya; Srivastava, Sanjeev K.; Chaudhuri, Tapas K.; Upadhyay, Ghanshyam

    2015-01-01

    Matrix metalloproteinases (MMPs), a large family of calcium-dependent zinc-containing endopeptidases, are involved in the tissue remodeling and degradation of the extracellular matrix. MMPs are widely distributed in the brain and regulate various processes including microglial activation, inflammation, dopaminergic apoptosis, blood-brain barrier disruption, and modulation of ?-synuclein pathology. High expression of MMPs is well documented in various neurological disorders including Parkinson...

  12. Three neuropeptide Y receptor genes in the spiny dogfish, Squalus acanthias, support en bloc duplications in early vertebrate evolution.

    Science.gov (United States)

    Salaneck, Erik; Ardell, David H; Larson, Earl T; Larhammar, Dan

    2003-08-01

    It has been debated whether the increase in gene number during early vertebrate evolution was due to multiple independent gene duplications or synchronous duplications of many genes. We describe here the cloning of three neuropeptide Y (NPY) receptor genes belonging to the Y1 subfamily in the spiny dogfish, Squalus acanthias, a cartilaginous fish. The three genes are orthologs of the mammalian subtypes Y1, Y4, and Y6, which are located in paralogous gene regions on different chromosomes in mammals. Thus, these genes arose by duplications of a chromosome region before the radiation of gnathostomes (jawed vertebrates). Estimates of duplication times from linearized trees together with evidence from other gene families supports two rounds of chromosome duplications or tetraploidizations early in vertebrate evolution. The anatomical distribution of mRNA was determined by reverse-transcriptase PCR and was found to differ from mammals, suggesting differential functional diversification of the new gene copies during the radiation of the vertebrate classes.

  13. Matrix metalloproteinase-12 gene regulation by a PPAR alpha agonist in human monocyte-derived macrophages

    International Nuclear Information System (INIS)

    Souissi, Imen Jguirim; Billiet, Ludivine; Cuaz-Perolin, Clarisse; Slimane, Mohamed-Naceur; Rouis, Mustapha

    2008-01-01

    MMP-12, a macrophage-specific matrix metalloproteinase with large substrate specificity, has been reported to be highly expressed in mice, rabbits and human atherosclerotic lesions. Increased MMP-12 from inflammatory macrophages is associated with several degenerative diseases such as atherosclerosis. In this manuscript, we show that IL-1β, a proinflammatory cytokine found in atherosclerotic plaques, increases both mRNA and protein levels of MMP-12 in human monocyte-derived macrophages (HMDM). Since peroxisome proliferator-activated receptors (PPARs), such as PPARα and PPARγ, are expressed in macrophages and because PPAR activation exerts an anti-inflammatory effect on vascular cells, we have investigated the effect of PPARα and γ isoforms on MMP-12 regulation in HMDM. Our results show that MMP-12 expression (mRNA and protein) is down regulated in IL-1β-treated macrophages only in the presence of a specific PPARα agonist, GW647, in a dose-dependent manner. In contrast, this inhibitory effect was abolished in IL-1β-stimulated peritoneal macrophages isolated from PPARα -/- mice and treated with the PPARα agonist, GW647. Moreover, reporter gene transfection experiments using different MMP-12 promoter constructs showed a reduction of the promoter activities by ∼ 50% in IL-1β-stimulated PPARα-pre-treated cells. However, MMP-12 promoter analysis did not reveal the presence of a PPRE response element. The IL-1β effect is known to be mediated through the AP-1 binding site. Mutation of the AP-1 site, located at - 81 in the MMP-12 promoter region relative to the transcription start site, followed by transfection analysis, gel shift and ChIP experiments revealed that the inhibitory effect was the consequence of the protein-protein interaction between GW 647-activated PPARα and c-Fos or c-Jun transcription factors, leading to inhibition of their binding to the AP-1 motif. These studies suggest that PPARα agonists may be used therapeutically, not only for lipid

  14. Decrease in Survival Rate of Colorectal Cancer Patients Due to Insertion of a Single Guanine Base in Promoter Sequences of Matrix Metalloproteinase-1 Gene (in Tehran Population

    Directory of Open Access Journals (Sweden)

    Z Hojati

    2009-01-01

    Full Text Available Introduction: Insertion or deletion of a guanine in -1607 at promoter region of matrix metalloproteinase-1 enzyme creates two allelic types for this gene in the population: 2G and 1G, respectively. 2G allele contains an extra binding site for ETS transcription factors that this may increase the level of gene expression. Therefore, aim of this study was investigation of the single Guanine insertion in the promoter gene and its association with colorectal cancer patient survival rate and tumor progression. Methods: Blood samples from 150 colorectal patients and 100 cases were extracted. The mean follow-up was 25 months (12-36 months. Cases and patients were genotyped using genomic DNA extraction and PCR-RFLP. Results: Colorectal cancer patients were divided in two groups; with activity of metastasis (M+ and without activity of metastasis (M-. 2G allele in metastasis group (55% showed more frequency rather than controls (23%. Survival analyses showed that 3 years survival patients rate in the patients without metastasis activity carrying 1G allele (homo and heterozygote was 81% and for 2G homozygote is 66% (p=0.04. The survival rate dependent to cancer was 90% and 71%, respectively (P=0.01. Conclusion: According to the results, it seems that patients carrying 1G allele show a better survival rate dependent on cancer as compared to patients who do not carry this allele.

  15. Matrix metalloproteinase 9 level as an indicator for restenosis following cervical and intracranial angioplasty and stenting

    Directory of Open Access Journals (Sweden)

    Jun-peng Liu

    2015-01-01

    Full Text Available Cervical and intracranial angioplasty and stenting is an effective and safe method of reducing the risk of ischemic stroke, but it may be affected by in-stent restenosis. The present study investigated serum level of matrix metalloproteinase 9 as a predictor of restenosis after 40 patients underwent cervical and/or intracranial angioplasty and stenting. Results showed that restenosis occurred in 30% (3/10 of patients when the serum level of matrix metalloproteinase 9 at 3 days after surgery was 2.5 times higher than preoperative level. No restenosis occurred when the serum level of matrix metalloproteinase 9 at 3 days after surgery was not 2.5 times higher than preoperative level. Restenosis occurred in 12% (2/17 of patients when the serum level of matrix metalloproteinase 9 was higher than preoperative level for more than 30 days after surgery, but only occurred in 4% (1/23 of patients when the serum level of matrix metalloproteinase 9 was higher than preoperative level for less than 30 days after surgery. However, the differences observed were not statistically significant (P > 0.05. Experimental findings indicate that when the serum level of matrix metalloproteinase 9 is 2.5 times higher than preoperative level at 3 days after cervical and intracranial angioplasty and stenting, it may serve as a predictor of in-stent restenosis.

  16. Role of matrix metalloproteinases in recurrent corneal melting

    Czech Academy of Sciences Publication Activity Database

    Brejchová, K.; Lisková, P.; Čejková, Jitka; Jirsová, K.

    2010-01-01

    Roč. 90, č. 5 (2010), s. 583-590 ISSN 0014-4835 Institutional research plan: CEZ:AV0Z50390512 Keywords : corneal melting * extracellular matrix degradation * matrix metalloproteinases Subject RIV: FF - HEENT, Dentistry Impact factor: 2.817, year: 2010

  17. Matrix Metalloproteinases Are Differentially Regulated and Responsive to Compression Therapy in a Red Duroc Model of Hypertrophic Scar.

    Science.gov (United States)

    Travis, Taryn E; Ghassemi, Pejhman; Prindeze, Nicholas J; Moffatt, Lauren T; Carney, Bonnie C; Alkhalil, Abdulnaser; Ramella-Roman, Jessica C; Shupp, Jeffrey W

    2018-01-01

    Objective: Proteins of the matrix metalloproteinases family play a vital role in extracellular matrix maintenance and basic physiological processes in tissue homeostasis. The function and activities of matrix metalloproteinases in response to compression therapies have yet to be defined. Here, a swine model of hypertrophic scar was used to profile the transcription of all known 26 matrix metalloproteinases in scars treated with a precise compression dose. Methods: Full-thickness excisional wounds were created. Wounds underwent healing and scar formation. A subset of scars underwent 2 weeks of compression therapy. Biopsy specimens were preserved, and microarrays, reverse transcription-polymerase chain reaction, Western blotting, and immunohistochemistry were performed to characterize the transcription and expression of various matrix metalloproteinase family members. Results: Microarray results showed that 13 of the known 26 matrix metalloproteinases were differentially transcribed in wounds relative to the preinjury skin. The predominant upregulation of these matrix metalloproteinases during early wound-healing stages declined gradually in later stages of wound healing. The use of compression therapy reduced this decline in 10 of the 13 differentially regulated matrix metalloproteinases. Further investigation of MMP7 using reverse transcription-polymerase chain reaction confirmed the effect of compression on transcript levels. Assessment of MMP7 at the protein level using Western blotting and immunohistochemistry was concordant. Conclusions: In a swine model of hypertrophic scar, the application of compression to hypertrophic scar attenuated a trend of decreasing levels of matrix metalloproteinases during the process of hypertrophic wound healing, including MMP7, whose enzyme regulation was confirmed at the protein level.

  18. Molecular Evolution of the dotA Gene in Legionella pneumophila

    OpenAIRE

    Ko, Kwan Soo; Hong, Seong Karp; Lee, Hae Kyung; Park, Mi-Yeoun; Kook, Yoon-Hoh

    2003-01-01

    The molecular evolution of dotA, which is related to the virulence of Legionella pneumophila, was investigated by comparing the sequences of 15 reference strains (serogroups 1 to 15). It was found that dotA has a complex mosaic structure. The whole dotA gene of Legionella pneumophila subsp. pneumophila serogroups 2, 6, and 12 has been transferred from Legionella pneumophila subsp. fraseri. A discrepancy was found between the trees inferred from the nucleotide and deduced amino acid sequences ...

  19. Molecular phylogeny, population genetics, and evolution of heterocystous cyanobacteria using nifH gene sequences

    Czech Academy of Sciences Publication Activity Database

    Singh, P.; Singh, S. S.; Elster, Josef; Mishra, A. K.

    2013-01-01

    Roč. 250, č. 3 (2013), s. 751-764 ISSN 0033-183X Institutional support: RVO:67985939 Keywords : evolution * heterocystous cyanobacteria * nifH gene Subject RIV: EH - Ecology, Behaviour Impact factor: 3.171, year: 2013

  20. Molecular evolution of the endosperm starch synthesis pathway genes in rice (Oryza sativa L.) and its wild ancestor, O. rufipogon L.

    Science.gov (United States)

    Yu, Guoqin; Olsen, Kenneth M; Schaal, Barbara A

    2011-01-01

    The evolution of metabolic pathways is a fundamental but poorly understood aspect of evolutionary change. One approach for understanding the complexity of pathway evolution is to examine the molecular evolution of genes that together comprise an integrated metabolic pathway. The rice endosperm starch biosynthetic pathway is one of the most thoroughly characterized metabolic pathways in plants, and starch is a trait that has evolved in response to strong selection during rice domestication. In this study, we have examined six key genes (AGPL2, AGPS2b, SSIIa, SBEIIb, GBSSI, ISA1) in the rice endosperm starch biosynthesis pathway to investigate the evolution of these genes before and after rice domestication. Genome-wide sequence tagged sites data were used as a neutral reference to overcome the problems of detecting selection in species with complex demographic histories such as rice. Five variety groups of Oryza sativa (aus, indica, tropical japonica, temperate japonica, aromatic) and its wild ancestor (O. rufipogon) were sampled. Our results showed evidence of purifying selection at AGPL2 in O. rufipogon and strong evidence of positive selection at GBSSI in temperate japonica and tropical japonica varieties and at GBSSI and SBEIIb in aromatic varieties. All the other genes showed a pattern consistent with neutral evolution in both cultivated rice and its wild ancestor. These results indicate the important role of positive selection in the evolution of starch genes during rice domestication. We discuss the role of SBEIIb and GBSSI in the evolution of starch quality during rice domestication and the power and limitation of detecting selection using genome-wide data as a neutral reference.

  1. Adaptive Evolution of the Myo6 Gene in Old World Fruit Bats (Family: Pteropodidae)

    Science.gov (United States)

    Shen, Bin; Han, Xiuqun; Jones, Gareth; Rossiter, Stephen J.; Zhang, Shuyi

    2013-01-01

    Myosin VI (encoded by the Myo6 gene) is highly expressed in the inner and outer hair cells of the ear, retina, and polarized epithelial cells such as kidney proximal tubule cells and intestinal enterocytes. The Myo6 gene is thought to be involved in a wide range of physiological functions such as hearing, vision, and clathrin-mediated endocytosis. Bats (Chiroptera) represent one of the most fascinating mammal groups for molecular evolutionary studies of the Myo6 gene. A diversity of specialized adaptations occur among different bat lineages, such as echolocation and associated high-frequency hearing in laryngeal echolocating bats, large eyes and a strong dependence on vision in Old World fruit bats (Pteropodidae), and specialized high-carbohydrate but low-nitrogen diets in both Old World and New World fruit bats (Phyllostomidae). To investigate what role(s) the Myo6 gene might fulfill in bats, we sequenced the coding region of the Myo6 gene in 15 bat species and used molecular evolutionary analyses to detect evidence of positive selection in different bat lineages. We also conducted real-time PCR assays to explore the expression levels of Myo6 in a range of tissues from three representative bat species. Molecular evolutionary analyses revealed that the Myo6 gene, which was widely considered as a hearing gene, has undergone adaptive evolution in the Old World fruit bats which lack laryngeal echolocation and associated high-frequency hearing. Real-time PCR showed the highest expression level of the Myo6 gene in the kidney among ten tissues examined in three bat species, indicating an important role for this gene in kidney function. We suggest that Myo6 has undergone adaptive evolution in Old World fruit bats in relation to receptor-mediated endocytosis for the preservation of protein and essential nutrients. PMID:23620821

  2. Overexpression of matrix metalloproteinase-12 (MMP-12) correlates with radiation-induced lung fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Myung Gu; Jeong, Ye Ji; Lee, Haejune [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Lee, Sujae [Hanyang Univ., Seoul (Korea, Republic of)

    2014-05-15

    MMPs are classified into five subgroups: collagenases (MMP-1, MMP-8, MMP-13), gelatinases (MMP-2, MMP-9), stromelysins (MMP-3, MMP-10, MMP-11), as well as metalloelastase (MMP-12), the membrane-type MMPs (MMP14, MMP15), and other MMPS (e. g., MMP-19, and MMP20). MMP-12 (matrix metalloproteinase12), also known as macrophage metalloelastase, was first identified as an elastolytic metalloproteinase secreted by inflammatory macrophages 30 years ago. MMP-12 degrades extracellular matrix (ECM) components to facilitate tissue remodeling. It can degrade elastin and other substrates, such as type IV collagen, fibronectin, laminin, gelatin, vitronectin, entactin, heparin, and chondroitin sulfates. In the lung, MMP-12 is identified in alveolar macrophages of cigarette smokers as an elastolytic MMP. Inactivation of the MMP-12 gene in knockout mice demonstrates a critical role of MMP-12 in smoking-induced chronic obstructive pulmonary disease (COPD). The aim of the present study was to investigate the effects of MMP-12 by radiation in lung, so we evaluate that MMP-12 expression pattern in normal lung tissue and cancer cell following radiation. Radiation induced lung injury most commonly occurs as a result of radiation therapy administered to treat cancer. The present study demonstrates that MMP-12 was highly increased in the lung damaged by radiation Thus, MMP-12 might be of potential relevance as a clinically diagnostic tool and sensitive biomarker for radiation induced lung injury and fibrosis.

  3. Overexpression of matrix metalloproteinase-12 (MMP-12) correlates with radiation-induced lung fibrosis

    International Nuclear Information System (INIS)

    Jung, Myung Gu; Jeong, Ye Ji; Lee, Haejune; Lee, Sujae

    2014-01-01

    MMPs are classified into five subgroups: collagenases (MMP-1, MMP-8, MMP-13), gelatinases (MMP-2, MMP-9), stromelysins (MMP-3, MMP-10, MMP-11), as well as metalloelastase (MMP-12), the membrane-type MMPs (MMP14, MMP15), and other MMPS (e. g., MMP-19, and MMP20). MMP-12 (matrix metalloproteinase12), also known as macrophage metalloelastase, was first identified as an elastolytic metalloproteinase secreted by inflammatory macrophages 30 years ago. MMP-12 degrades extracellular matrix (ECM) components to facilitate tissue remodeling. It can degrade elastin and other substrates, such as type IV collagen, fibronectin, laminin, gelatin, vitronectin, entactin, heparin, and chondroitin sulfates. In the lung, MMP-12 is identified in alveolar macrophages of cigarette smokers as an elastolytic MMP. Inactivation of the MMP-12 gene in knockout mice demonstrates a critical role of MMP-12 in smoking-induced chronic obstructive pulmonary disease (COPD). The aim of the present study was to investigate the effects of MMP-12 by radiation in lung, so we evaluate that MMP-12 expression pattern in normal lung tissue and cancer cell following radiation. Radiation induced lung injury most commonly occurs as a result of radiation therapy administered to treat cancer. The present study demonstrates that MMP-12 was highly increased in the lung damaged by radiation Thus, MMP-12 might be of potential relevance as a clinically diagnostic tool and sensitive biomarker for radiation induced lung injury and fibrosis

  4. Gene Duplication and Gene Expression Changes Play a Role in the Evolution of Candidate Pollen Feeding Genes in Heliconius Butterflies.

    Science.gov (United States)

    Smith, Gilbert; Macias-Muñoz, Aide; Briscoe, Adriana D

    2016-09-02

    Heliconius possess a unique ability among butterflies to feed on pollen. Pollen feeding significantly extends their lifespan, and is thought to have been important to the diversification of the genus. We used RNA sequencing to examine feeding-related gene expression in the mouthparts of four species of Heliconius and one nonpollen feeding species, Eueides isabella We hypothesized that genes involved in morphology and protein metabolism might be upregulated in Heliconius because they have longer proboscides than Eueides, and because pollen contains more protein than nectar. Using de novo transcriptome assemblies, we tested these hypotheses by comparing gene expression in mouthparts against antennae and legs. We first looked for genes upregulated in mouthparts across all five species and discovered several hundred genes, many of which had functional annotations involving metabolism of proteins (cocoonase), lipids, and carbohydrates. We then looked specifically within Heliconius where we found eleven common upregulated genes with roles in morphology (CPR cuticle proteins), behavior (takeout-like), and metabolism (luciferase-like). Closer examination of these candidates revealed that cocoonase underwent several duplications along the lineage leading to heliconiine butterflies, including two Heliconius-specific duplications. Luciferase-like genes also underwent duplication within lepidopterans, and upregulation in Heliconius mouthparts. Reverse-transcription PCR confirmed that three cocoonases, a peptidase, and one luciferase-like gene are expressed in the proboscis with little to no expression in labial palps and salivary glands. Our results suggest pollen feeding, like other dietary specializations, was likely facilitated by adaptive expansions of preexisting genes-and that the butterfly proboscis is involved in digestive enzyme production. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  5. Co-Option and De Novo Gene Evolution Underlie Molluscan Shell Diversity

    Science.gov (United States)

    Aguilera, Felipe; McDougall, Carmel

    2017-01-01

    Abstract Molluscs fabricate shells of incredible diversity and complexity by localized secretions from the dorsal epithelium of the mantle. Although distantly related molluscs express remarkably different secreted gene products, it remains unclear if the evolution of shell structure and pattern is underpinned by the differential co-option of conserved genes or the integration of lineage-specific genes into the mantle regulatory program. To address this, we compare the mantle transcriptomes of 11 bivalves and gastropods of varying relatedness. We find that each species, including four Pinctada (pearl oyster) species that diverged within the last 20 Ma, expresses a unique mantle secretome. Lineage- or species-specific genes comprise a large proportion of each species’ mantle secretome. A majority of these secreted proteins have unique domain architectures that include repetitive, low complexity domains (RLCDs), which evolve rapidly, and have a proclivity to expand, contract and rearrange in the genome. There are also a large number of secretome genes expressed in the mantle that arose before the origin of gastropods and bivalves. Each species expresses a unique set of these more ancient genes consistent with their independent co-option into these mantle gene regulatory networks. From this analysis, we infer lineage-specific secretomes underlie shell diversity, and include both rapidly evolving RLCD-containing proteins, and the continual recruitment and loss of both ancient and recently evolved genes into the periphery of the regulatory network controlling gene expression in the mantle epithelium. PMID:28053006

  6. Structures and Functions of Snake Venom Metalloproteinases (SVMP) from Protobothrops venom Collected in Japan.

    Science.gov (United States)

    Oyama, Etsuko; Takahashi, Hidenobu

    2017-08-04

    Snake venom metalloproteinases (SVMP) are widely distributed among the venoms of Crotalinae and Viperidae, and are organized into three classes (P-I, P-II and P-III) according to their size and domain structure. P-I SVMP are the smallest SVMP, as they only have a metalloproteinase (M) domain. P-II SVMP contain a disintegrin-like (D) domain, which is connected by a short spacer region to the carboxyl terminus of the M domain. P-III SVMP contain a cysteine-rich (C) domain, which is attached to the carboxyl terminus of the D domain. Some SVMP exhibit hemorrhagic activity, whereas others do not. In addition, SVMP display fibrinolytic/fibrinogenolytic (FL) activity, and the physiological functions of SVMP are controlled by their structures. Furthermore, these proteinases also demonstrate fibrinogenolytic and proteolytic activity against synthetic substrates for matrix metalloproteinases and ADAM (a disintegrin and metalloproteinase). This article describes the structures and FL, hemorrhagic, and platelet aggregation-inhibiting activity of SVMP derived from Protobothrops snake venom that was collected in Japan.

  7. The IQD gene family in soybean: structure, phylogeny, evolution and expression.

    Directory of Open Access Journals (Sweden)

    Lin Feng

    Full Text Available Members of the plant-specific IQ67-domain (IQD protein family are involved in plant development and the basal defense response. Although systematic characterization of this family has been carried out in Arabidopsis, tomato (Solanum lycopersicum, Brachypodium distachyon and rice (Oryza sativa, systematic analysis and expression profiling of this gene family in soybean (Glycine max have not previously been reported. In this study, we identified and structurally characterized IQD genes in the soybean genome. A complete set of 67 soybean IQD genes (GmIQD1-67 was identified using Blast search tools, and the genes were clustered into four subfamilies (IQD I-IV based on phylogeny. These soybean IQD genes are distributed unevenly across all 20 chromosomes, with 30 segmental duplication events, suggesting that segmental duplication has played a major role in the expansion of the soybean IQD gene family. Analysis of the Ka/Ks ratios showed that the duplicated genes of the GmIQD family primarily underwent purifying selection. Microsynteny was detected in most pairs: genes in clade 1-3 might be present in genome regions that were inverted, expanded or contracted after the divergence; most gene pairs in clade 4 showed high conservation with little rearrangement among these gene-residing regions. Of the soybean IQD genes examined, six were most highly expressed in young leaves, six in flowers, one in roots and two in nodules. Our qRT-PCR analysis of 24 soybean IQD III genes confirmed that these genes are regulated by MeJA stress. Our findings present a comprehensive overview of the soybean IQD gene family and provide insights into the evolution of this family. In addition, this work lays a solid foundation for further experiments aimed at determining the biological functions of soybean IQD genes in growth and development.

  8. Retroviral gene transfer of an antisense construct against membrane type 1 matrix metalloproteinase reduces the invasiveness of rheumatoid arthritis synovial fibroblasts.

    Science.gov (United States)

    Rutkauskaite, Edita; Volkmer, Dagmar; Shigeyama, Yukio; Schedel, Jörg; Pap, Geza; Müller-Ladner, Ulf; Meinecke, Ingmar; Alexander, Dorothea; Gay, Renate E; Drynda, Susanne; Neumann, Wolfram; Michel, Beat A; Aicher, Wilhelm K; Gay, Steffen; Pap, Thomas

    2005-07-01

    Membrane type 1 matrix metalloproteinase (MT1-MMP) is expressed prominently in rheumatoid arthritis synovial fibroblasts (RASFs), but the specific contribution of MT1-MMP to fibroblast-mediated destruction of articular cartilage is incompletely understood. This study used gene transfer of an antisense expression construct to assess the effects of MT1-MMP inhibition on the invasiveness of RASFs. Retroviral gene transfer of a pLXIN vector-based antisense RNA expression construct (MT1-MMPalphaS) to MT1-MMP was used to stably transduce RASFs. Levels of MT1-MMP RNA and protein were determined by quantitative polymerase chain reaction, Western blotting, and immunocytochemistry in MT1-MMPalphaS-transduced RASFs as well as in control cells, with monitoring for 60 days. The effects of MT1-MMPalphaS on the invasiveness of RASFs were analyzed in the SCID mouse co-implantation model of RA. MT1-MMPalphaS-transduced RASFs produced high levels of antisense RNA that exceeded endogenous levels of MT1-MMP messenger RNA by 15-fold and resulted in a down-regulation of MT1-MMP at the protein level. Inhibition of MT1-MMP production was maintained for 60 days and significantly reduced the invasiveness of RASFs in the SCID mouse model. Whereas prominent invasion into cartilage by non-transduced and mock-transduced RASFs was observed (mean invasion scores 3.0 and 3.1, respectively), MT1-MMPalphaS-transduced cells showed only moderate invasiveness (mean invasion score 1.8; P < 0.05). The data demonstrate that an antisense RNA expression construct against MT1-MMP can be generated and expressed in RASFs for at least 60 days. Inhibition of MT1-MMP significantly reduces the cartilage degradation by RASFs.

  9. Incorporation of a horizontally transferred gene into an operon during cnidarian evolution.

    Directory of Open Access Journals (Sweden)

    Catherine E Dana

    Full Text Available Genome sequencing has revealed examples of horizontally transferred genes, but we still know little about how such genes are incorporated into their host genomes. We have previously reported the identification of a gene (flp that appears to have entered the Hydra genome through horizontal transfer. Here we provide additional evidence in support of our original hypothesis that the transfer was from a unicellular organism, and we show that the transfer occurred in an ancestor of two medusozoan cnidarian species. In addition we show that the gene is part of a bicistronic operon in the Hydra genome. These findings identify a new animal phylum in which trans-spliced leader addition has led to the formation of operons, and define the requirements for evolution of an operon in Hydra. The identification of operons in Hydra also provides a tool that can be exploited in the construction of transgenic Hydra strains.

  10. Genetic Variation of Goat Interferon Regulatory Factor 3 Gene and Its Implication in Goat Evolution.

    Science.gov (United States)

    Okpeku, Moses; Esmailizadeh, Ali; Adeola, Adeniyi C; Shu, Liping; Zhang, Yesheng; Wang, Yangzi; Sanni, Timothy M; Imumorin, Ikhide G; Peters, Sunday O; Zhang, Jiajin; Dong, Yang; Wang, Wen

    2016-01-01

    The immune systems are fundamentally vital for evolution and survival of species; as such, selection patterns in innate immune loci are of special interest in molecular evolutionary research. The interferon regulatory factor (IRF) gene family control many different aspects of the innate and adaptive immune responses in vertebrates. Among these, IRF3 is known to take active part in very many biological processes. We assembled and evaluated 1356 base pairs of the IRF3 gene coding region in domesticated goats from Africa (Nigeria, Ethiopia and South Africa) and Asia (Iran and China) and the wild goat (Capra aegagrus). Five segregating sites with θ value of 0.0009 for this gene demonstrated a low diversity across the goats' populations. Fu and Li tests were significantly positive but Tajima's D test was significantly negative, suggesting its deviation from neutrality. Neighbor joining tree of IRF3 gene in domesticated goats, wild goat and sheep showed that all domesticated goats have a closer relationship than with the wild goat and sheep. Maximum likelihood tree of the gene showed that different domesticated goats share a common ancestor and suggest single origin. Four unique haplotypes were observed across all the sequences, of which, one was particularly common to African goats (MOCH-K14-0425, Poitou and WAD). In assessing the evolution mode of the gene, we found that the codon model dN/dS ratio for all goats was greater than one. Phylogenetic Analysis by Maximum Likelihood (PAML) gave a ω0 (dN/dS) value of 0.067 with LnL value of -6900.3 for the first Model (M1) while ω2 = 1.667 in model M2 with LnL value of -6900.3 with positive selection inferred in 3 codon sites. Mechanistic empirical combination (MEC) model for evaluating adaptive selection pressure on particular codons also confirmed adaptive selection pressure in three codons (207, 358 and 408) in IRF3 gene. Positive diversifying selection inferred with recent evolutionary changes in domesticated goat IRF3

  11. Restriction and Recruitment—Gene Duplication and the Origin and Evolution of Snake Venom Toxins

    Science.gov (United States)

    Hargreaves, Adam D.; Swain, Martin T.; Hegarty, Matthew J.; Logan, Darren W.; Mulley, John F.

    2014-01-01

    Snake venom has been hypothesized to have originated and diversified through a process that involves duplication of genes encoding body proteins with subsequent recruitment of the copy to the venom gland, where natural selection acts to develop or increase toxicity. However, gene duplication is known to be a rare event in vertebrate genomes, and the recruitment of duplicated genes to a novel expression domain (neofunctionalization) is an even rarer process that requires the evolution of novel combinations of transcription factor binding sites in upstream regulatory regions. Therefore, although this hypothesis concerning the evolution of snake venom is very unlikely and should be regarded with caution, it is nonetheless often assumed to be established fact, hindering research into the true origins of snake venom toxins. To critically evaluate this hypothesis, we have generated transcriptomic data for body tissues and salivary and venom glands from five species of venomous and nonvenomous reptiles. Our comparative transcriptomic analysis of these data reveals that snake venom does not evolve through the hypothesized process of duplication and recruitment of genes encoding body proteins. Indeed, our results show that many proposed venom toxins are in fact expressed in a wide variety of body tissues, including the salivary gland of nonvenomous reptiles and that these genes have therefore been restricted to the venom gland following duplication, not recruited. Thus, snake venom evolves through the duplication and subfunctionalization of genes encoding existing salivary proteins. These results highlight the danger of the elegant and intuitive “just-so story” in evolutionary biology. PMID:25079342

  12. Spider Transcriptomes Identify Ancient Large-Scale Gene Duplication Event Potentially Important in Silk Gland Evolution.

    Science.gov (United States)

    Clarke, Thomas H; Garb, Jessica E; Hayashi, Cheryl Y; Arensburger, Peter; Ayoub, Nadia A

    2015-06-08

    The evolution of specialized tissues with novel functions, such as the silk synthesizing glands in spiders, is likely an influential driver of adaptive success. Large-scale gene duplication events and subsequent paralog divergence are thought to be required for generating evolutionary novelty. Such an event has been proposed for spiders, but not tested. We de novo assembled transcriptomes from three cobweb weaving spider species. Based on phylogenetic analyses of gene families with representatives from each of the three species, we found numerous duplication events indicative of a whole genome or segmental duplication. We estimated the age of the gene duplications relative to several speciation events within spiders and arachnids and found that the duplications likely occurred after the divergence of scorpions (order Scorpionida) and spiders (order Araneae), but before the divergence of the spider suborders Mygalomorphae and Araneomorphae, near the evolutionary origin of spider silk glands. Transcripts that are expressed exclusively or primarily within black widow silk glands are more likely to have a paralog descended from the ancient duplication event and have elevated amino acid replacement rates compared with other transcripts. Thus, an ancient large-scale gene duplication event within the spider lineage was likely an important source of molecular novelty during the evolution of silk gland-specific expression. This duplication event may have provided genetic material for subsequent silk gland diversification in the true spiders (Araneomorphae). © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  13. Caste-biased gene expression in a facultatively eusocial bee suggests a role for genetic accommodation in the evolution of eusociality.

    Science.gov (United States)

    Jones, Beryl M; Kingwell, Callum J; Wcislo, William T; Robinson, Gene E

    2017-01-11

    Developmental plasticity may accelerate the evolution of phenotypic novelty through genetic accommodation, but studies of genetic accommodation often lack knowledge of the ancestral state to place selected traits in an evolutionary context. A promising approach for assessing genetic accommodation involves using a comparative framework to ask whether ancestral plasticity is related to the evolution of a particular trait. Bees are an excellent group for such comparisons because caste-based societies (eusociality) have evolved multiple times independently and extant species exhibit different modes of eusociality. We measured brain and abdominal gene expression in a facultatively eusocial bee, Megalopta genalis, and assessed whether plasticity in this species is functionally linked to eusocial traits in other bee lineages. Caste-biased abdominal genes in M. genalis overlapped significantly with caste-biased genes in obligately eusocial bees. Moreover, caste-biased genes in M. genalis overlapped significantly with genes shown to be rapidly evolving in multiple studies of 10 bee species, particularly for genes in the glycolysis pathway and other genes involved in metabolism. These results provide support for the idea that eusociality can evolve via genetic accommodation, with plasticity in facultatively eusocial species like M. genalis providing a substrate for selection during the evolution of caste in obligately eusocial lineages. © 2017 The Author(s).

  14. Hox gene cluster of the ascidian, Halocynthia roretzi, reveals multiple ancient steps of cluster disintegration during ascidian evolution.

    Science.gov (United States)

    Sekigami, Yuka; Kobayashi, Takuya; Omi, Ai; Nishitsuji, Koki; Ikuta, Tetsuro; Fujiyama, Asao; Satoh, Noriyuki; Saiga, Hidetoshi

    2017-01-01

    Hox gene clusters with at least 13 paralog group (PG) members are common in vertebrate genomes and in that of amphioxus. Ascidians, which belong to the subphylum Tunicata (Urochordata), are phylogenetically positioned between vertebrates and amphioxus, and traditionally divided into two groups: the Pleurogona and the Enterogona. An enterogonan ascidian, Ciona intestinalis ( Ci ), possesses nine Hox genes localized on two chromosomes; thus, the Hox gene cluster is disintegrated. We investigated the Hox gene cluster of a pleurogonan ascidian, Halocynthia roretzi ( Hr ) to investigate whether Hox gene cluster disintegration is common among ascidians, and if so, how such disintegration occurred during ascidian or tunicate evolution. Our phylogenetic analysis reveals that the Hr Hox gene complement comprises nine members, including one with a relatively divergent Hox homeodomain sequence. Eight of nine Hr Hox genes were orthologous to Ci-Hox1 , 2, 3, 4, 5, 10, 12 and 13. Following the phylogenetic classification into 13 PGs, we designated Hr Hox genes as Hox1, 2, 3, 4, 5, 10, 11/12/13.a , 11/12/13.b and HoxX . To address the chromosomal arrangement of the nine Hox genes, we performed two-color chromosomal fluorescent in situ hybridization, which revealed that the nine Hox genes are localized on a single chromosome in Hr , distinct from their arrangement in Ci . We further examined the order of the nine Hox genes on the chromosome by chromosome/scaffold walking. This analysis suggested a gene order of Hox1 , 11/12/13.b, 11/12/13.a, 10, 5, X, followed by either Hox4, 3, 2 or Hox2, 3, 4 on the chromosome. Based on the present results and those previously reported in Ci , we discuss the establishment of the Hox gene complement and disintegration of Hox gene clusters during the course of ascidian or tunicate evolution. The Hox gene cluster and the genome must have experienced extensive reorganization during the course of evolution from the ancestral tunicate to Hr and Ci

  15. Degeneration of the olfactory guanylyl cyclase D gene during primate evolution.

    Directory of Open Access Journals (Sweden)

    Janet M Young

    2007-09-01

    Full Text Available The mammalian olfactory system consists of several subsystems that detect specific sets of chemical cues and underlie a variety of behavioral responses. Within the main olfactory epithelium at least three distinct types of chemosensory neurons can be defined by their expression of unique sets of signal transduction components. In rodents, one set of neurons expresses the olfactory-specific guanylyl cyclase (GC-D gene (Gucy2d, guanylyl cyclase 2d and other cell-type specific molecules. GC-D-positive neurons project their axons to a small group of atypical "necklace" glomeruli in the olfactory bulb, some of which are activated in response to suckling in neonatal rodents and to atmospheric CO2 in adult mice. Because GC-D is a pseudogene in humans, signaling through this system appears to have been lost at some point in primate evolution.Here we used a combination of bioinformatic analysis of trace-archive and genome-assembly data and sequencing of PCR-amplified genomic DNA to determine when during primate evolution the functional gene was lost. Our analysis reveals that GC-D is a pseudogene in a large number of primate species, including apes, Old World and New World monkeys and tarsier. In contrast, the gene appears intact and has evolved under purifying selection in mouse, rat, dog, lemur and bushbaby.These data suggest that signaling through GC-D-expressing cells was probably compromised more than 40 million years ago, prior to the divergence of New World monkeys from Old World monkeys and apes, and thus cannot be involved in chemosensation in most primates.

  16. Divergence and adaptive evolution of the gibberellin oxidase genes in plants.

    Science.gov (United States)

    Huang, Yuan; Wang, Xi; Ge, Song; Rao, Guang-Yuan

    2015-09-29

    The important phytohormone gibberellins (GAs) play key roles in various developmental processes. GA oxidases (GAoxs) are critical enzymes in GA synthesis pathway, but their classification, evolutionary history and the forces driving the evolution of plant GAox genes remain poorly understood. This study provides the first large-scale evolutionary analysis of GAox genes in plants by using an extensive whole-genome dataset of 41 species, representing green algae, bryophytes, pteridophyte, and seed plants. We defined eight subfamilies under the GAox family, namely C19-GA2ox, C20-GA2ox, GA20ox,GA3ox, GAox-A, GAox-B, GAox-C and GAox-D. Of these, subfamilies GAox-A, GAox-B, GAox-C and GAox-D are described for the first time. On the basis of phylogenetic analyses and characteristic motifs of GAox genes, we demonstrated a rapid expansion and functional divergence of the GAox genes during the diversification of land plants. We also detected the subfamily-specific motifs and potential sites of some GAox genes, which might have evolved under positive selection. GAox genes originated very early-before the divergence of bryophytes and the vascular plants and the diversification of GAox genes is associated with the functional divergence and could be driven by positive selection. Our study not only provides information on the classification of GAox genes, but also facilitates the further functional characterization and analysis of GA oxidases.

  17. Matrix metalloproteinases in exercise and obesity

    OpenAIRE

    Jaoude, Jonathan; Koh, Yunsuk

    2016-01-01

    Jonathan Jaoude,1 Yunsuk Koh2 1Department of Biology, 2Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA Abstract: Matrix metalloproteinases (MMPs) are zinc- and calcium-dependent endoproteinases that have the ability to break down extracellular matrix. The large range of MMPs’ functions widens their spectrum of potential role as activators or inhibitors in tissue remodeling, cardiovascular diseases, and obesity. In particular, MMP-1, -2, and ...

  18. Porphyromonas gingivalis-mediated shedding of extracellular matrix metalloproteinase inducer (EMMPRIN) by oral epithelial cells: a potential role in inflammatory periodontal disease.

    Science.gov (United States)

    Feldman, Mark; La, Vu Dang; Lombardo Bedran, Telma Blanca; Palomari Spolidorio, Denise Madalena; Grenier, Daniel

    2011-12-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) or CD147 is a transmembrane glycoprotein expressed by various cell types, including oral epithelial cells. Recent studies have brought evidence that EMMPRIN plays a role in periodontitis. In the present study, we investigated the effect of Porphyromonas gingivalis, a major pathogen in chronic periodontitis, on the shedding of membrane-anchored EMMPRIN and on the expression of the EMMPRIN gene by oral epithelial cells. A potential contribution of shed EMMPRIN to the inflammatory process of periodontitis was analyzed by evaluating the effect of recombinant EMMPRIN on cytokine and matrix metalloproteinase (MMP) secretion by human gingival fibroblasts. ELISA and immunofluorescence analyses revealed that P. gingivalis mediated the shedding of epithelial cell-surface EMMPRIN in a dose- and time-dependent manner. Cysteine proteinase (gingipain)-deficient P. gingivalis mutants were used to demonstrate that both Arg- and Lys-gingipain activities are involved in EMMPRIN shedding. Real-time PCR showed that P. gingivalis had no significant effect on the expression of the EMMPRIN gene in epithelial cells. Recombinant EMMPRIN induced the secretion of IL-6 and MMP-3 by gingival fibroblasts, a phenomenon that appears to involve mitogen activated protein kinases. The present study brought to light a new mechanism by which P. gingivalis can promote the inflammatory response during periodontitis. Copyright © 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  19. Matrix metalloproteinase-8 overexpression prevents proper tissue repair

    DEFF Research Database (Denmark)

    Danielsen, Patricia L; Holst, Anders V; Maltesen, Henrik R

    2011-01-01

    The collagenolytic matrix metalloproteinase-8 (MMP-8) is essential for normal tissue repair but is often overexpressed in wounds with disrupted healing. Our aim was to study the impact of a local excess of this neutrophil-derived proteinase on wound healing using recombinant adenovirus...

  20. Matrix metalloproteinases outside vertebrates.

    Science.gov (United States)

    Marino-Puertas, Laura; Goulas, Theodoros; Gomis-Rüth, F Xavier

    2017-11-01

    The matrix metalloproteinase (MMP) family belongs to the metzincin clan of zinc-dependent metallopeptidases. Due to their enormous implications in physiology and disease, MMPs have mainly been studied in vertebrates. They are engaged in extracellular protein processing and degradation, and present extensive paralogy, with 23 forms in humans. One characteristic of MMPs is a ~165-residue catalytic domain (CD), which has been structurally studied for 14 MMPs from human, mouse, rat, pig and the oral-microbiome bacterium Tannerella forsythia. These studies revealed close overall coincidence and characteristic structural features, which distinguish MMPs from other metzincins and give rise to a sequence pattern for their identification. Here, we reviewed the literature available on MMPs outside vertebrates and performed database searches for potential MMP CDs in invertebrates, plants, fungi, viruses, protists, archaea and bacteria. These and previous results revealed that MMPs are widely present in several copies in Eumetazoa and higher plants (Tracheophyta), but have just token presence in eukaryotic algae. A few dozen sequences were found in Ascomycota (within fungi) and in double-stranded DNA viruses infecting invertebrates (within viruses). In contrast, a few hundred sequences were found in archaea and >1000 in bacteria, with several copies for some species. Most of the archaeal and bacterial phyla containing potential MMPs are present in human oral and gut microbiomes. Overall, MMP-like sequences are present across all kingdoms of life, but their asymmetric distribution contradicts the vertical descent model from a eubacterial or archaeal ancestor. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Similar traits, different genes? Examining convergent evolution in related weedy rice populations.

    Science.gov (United States)

    Thurber, Carrie S; Jia, Melissa H; Jia, Yulin; Caicedo, Ana L

    2013-02-01

    Convergent phenotypic evolution may or may not be associated with convergent genotypic evolution. Agricultural weeds have repeatedly been selected for weed-adaptive traits such as rapid growth, increased seed dispersal and dormancy, thus providing an ideal system for the study of convergent evolution. Here, we identify QTL underlying weedy traits and compare their genetic architecture to assess the potential for convergent genetic evolution in two distinct populations of weedy rice. F(2) offspring from crosses between an indica cultivar and two individuals from genetically differentiated U.S. weedy rice populations were used to map QTL for four quantitative (heading date, seed shattering, plant height and growth rate) and two qualitative traits. We identified QTL on nine of the twelve rice chromosomes, yet most QTL locations do not overlap between the two populations. Shared QTL among weed groups were only seen for heading date, a trait for which weedy groups have diverged from their cultivated ancestors and from each other. Sharing of some QTL with wild rice also suggests a possible role in weed evolution for genes under selection during domestication. The lack of overlapping QTL for the remaining traits suggests that, despite a close evolutionary relationship, weedy rice groups have adapted to the same agricultural environment through different genetic mechanisms. © 2012 Blackwell Publishing Ltd.

  2. Evolution of the vertebrate Pax4/6 class of genes with focus on its novel member, the Pax10 gene.

    Science.gov (United States)

    Feiner, Nathalie; Meyer, Axel; Kuraku, Shigehiro

    2014-06-19

    The members of the paired box (Pax) family regulate key developmental pathways in many metazoans as tissue-specific transcription factors. Vertebrate genomes typically possess nine Pax genes (Pax1-9), which are derived from four proto-Pax genes in the vertebrate ancestor that were later expanded through the so-called two-round (2R) whole-genome duplication. A recent study proposed that pax6a genes of a subset of teleost fishes (namely, acanthopterygians) are remnants of a paralog generated in the 2R genome duplication, to be renamed pax6.3, and reported one more group of vertebrate Pax genes (Pax6.2), most closely related to the Pax4/6 class. We propose to designate this new member Pax10 instead and reconstruct the evolutionary history of the Pax4/6/10 class with solid phylogenetic evidence. Our synteny analysis showed that Pax4, -6, and -10 originated in the 2R genome duplications early in vertebrate evolution. The phylogenetic analyses of relationships between teleost pax6a and other Pax4, -6, and -10 genes, however, do not support the proposed hypothesis of an ancient origin of the acanthopterygian pax6a genes in the 2R genome duplication. Instead, we confirmed the traditional scenario that the acanthopterygian pax6a is derived from the more recent teleost-specific genome duplication. Notably, Pax6 is present in all vertebrates surveyed to date, whereas Pax4 and -10 were lost multiple times in independent vertebrate lineages, likely because of their restricted expression patterns: Among Pax6-positive domains, Pax10 has retained expression in the adult retina alone, which we documented through in situ hybridization and quantitative reverse transcription polymerase chain reaction experiments on zebrafish, Xenopus, and anole lizard. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  3. Early vertebrate chromosome duplications and the evolution of the neuropeptide Y receptor gene regions

    Directory of Open Access Journals (Sweden)

    Brenner Sydney

    2008-06-01

    Full Text Available Abstract Background One of the many gene families that expanded in early vertebrate evolution is the neuropeptide (NPY receptor family of G-protein coupled receptors. Earlier work by our lab suggested that several of the NPY receptor genes found in extant vertebrates resulted from two genome duplications before the origin of jawed vertebrates (gnathostomes and one additional genome duplication in the actinopterygian lineage, based on their location on chromosomes sharing several gene families. In this study we have investigated, in five vertebrate genomes, 45 gene families with members close to the NPY receptor genes in the compact genomes of the teleost fishes Tetraodon nigroviridis and Takifugu rubripes. These correspond to Homo sapiens chromosomes 4, 5, 8 and 10. Results Chromosome regions with conserved synteny were identified and confirmed by phylogenetic analyses in H. sapiens, M. musculus, D. rerio, T. rubripes and T. nigroviridis. 26 gene families, including the NPY receptor genes, (plus 3 described recently by other labs showed a tree topology consistent with duplications in early vertebrate evolution and in the actinopterygian lineage, thereby supporting expansion through block duplications. Eight gene families had complications that precluded analysis (such as short sequence length or variable number of repeated domains and another eight families did not support block duplications (because the paralogs in these families seem to have originated in another time window than the proposed genome duplication events. RT-PCR carried out with several tissues in T. rubripes revealed that all five NPY receptors were expressed in the brain and subtypes Y2, Y4 and Y8 were also expressed in peripheral organs. Conclusion We conclude that the phylogenetic analyses and chromosomal locations of these gene families support duplications of large blocks of genes or even entire chromosomes. Thus, these results are consistent with two early vertebrate

  4. Evolutionary and polymorphism analyses reveal the central role of BTN3A2 in the concerted evolution of the BTN3 gene family.

    Science.gov (United States)

    Afrache, Hassnae; Pontarotti, Pierre; Abi-Rached, Laurent; Olive, Daniel

    2017-06-01

    The butyrophilin 3 (BTN3) receptors are implicated in the T lymphocytes regulation and present a wide plasticity in mammals. In order to understand how these genes have been diversified, we studied their evolution and show that the three human BTN3 are the result of two successive duplications in Primates and that the three genes are present in Hominoids and the Old World Monkey groups. A thorough phylogenetic analysis reveals a concerted evolution of BTN3 characterized by a strong and recurrent homogenization of the region encoding the signal peptide and the immunoglobulin variable (IgV) domain in Hominoids, where the sequences of BTN3A1 or BTN3A3 are replaced by BTN3A2 sequence. In human, the analysis of the diversity of these genes in 1683 individuals representing 26 worldwide populations shows that the three genes are polymorphic, with more than 46 alleles for each gene, and marked by extreme homogenization of the IgV sequences. The same analysis performed for the BTN2 genes shows also a concerted evolution; however, it is not as strong and recurrent as for BTN3. This study shows that BTN3 receptors are marked by extreme concerted evolution at the IgV domain and that BTN3A2 plays a central role in this evolution.

  5. Degeneration and domestication of a selfish gene in yeast: molecular evolution versus site-directed mutagenesis.

    Science.gov (United States)

    Koufopanou, Vassiliki; Burt, Austin

    2005-07-01

    VDE is a homing endonuclease gene in yeasts with an unusual evolutionary history including horizontal transmission, degeneration, and domestication into the mating-type switching locus HO. We investigate here the effects of these features on its molecular evolution. In addition, we correlate rates of evolution with results from site-directed mutagenesis studies. Functional elements have lower rates of evolution than degenerate ones and higher conservation at functionally important sites. However, functionally important and unimportant sites are equally likely to have been involved in the evolution of new function during the domestication of VDE into HO. The domestication event also indicates that VDE has been lost in some species and that VDE has been present in yeasts for more than 50 Myr.

  6. Expression of matrix metalloproteinase 9 (MMP-9) and tissue inhibitor of metalloproteinases 1 (TIMP-1) by colorectal cancer cells and adjacent stroma cells - associations with histopathology and patients outcome

    DEFF Research Database (Denmark)

    Jensen, Søren Astrup; Vainer, Ben; Bartels, Annette

    2010-01-01

    AIM: To elucidate cellular features accountable for colorectal cancers' (CRC) capability to invade normal tissue and to metastasize, we investigated the level of the collagenase matrix metalloproteinase 9 (MMP-9) and its physiological inhibitor tissue inhibitor of metalloproteinases 1 (TIMP-1) in...... cells is associated with poor prognosis independent of its function as inhibitor of MMP-9. MMP-9 and TIMP-1 are important mediators of the host-cancer cell interaction in the tumour microenvironment with significant influence on the histopathology and on prognosis of CRC....

  7. Parsing parallel evolution: ecological divergence and differential gene expression in the adaptive radiations of thick-lipped Midas cichlid fishes from Nicaragua.

    Science.gov (United States)

    Manousaki, Tereza; Hull, Pincelli M; Kusche, Henrik; Machado-Schiaffino, Gonzalo; Franchini, Paolo; Harrod, Chris; Elmer, Kathryn R; Meyer, Axel

    2013-02-01

    The study of parallel evolution facilitates the discovery of common rules of diversification. Here, we examine the repeated evolution of thick lips in Midas cichlid fishes (the Amphilophus citrinellus species complex)-from two Great Lakes and two crater lakes in Nicaragua-to assess whether similar changes in ecology, phenotypic trophic traits and gene expression accompany parallel trait evolution. Using next-generation sequencing technology, we characterize transcriptome-wide differential gene expression in the lips of wild-caught sympatric thick- and thin-lipped cichlids from all four instances of repeated thick-lip evolution. Six genes (apolipoprotein D, myelin-associated glycoprotein precursor, four-and-a-half LIM domain protein 2, calpain-9, GTPase IMAP family member 8-like and one hypothetical protein) are significantly underexpressed in the thick-lipped morph across all four lakes. However, other aspects of lips' gene expression in sympatric morphs differ in a lake-specific pattern, including the magnitude of differentially expressed genes (97-510). Generally, fewer genes are differentially expressed among morphs in the younger crater lakes than in those from the older Great Lakes. Body shape, lower pharyngeal jaw size and shape, and stable isotopes (δ(13)C and δ(15)N) differ between all sympatric morphs, with the greatest differentiation in the Great Lake Nicaragua. Some ecological traits evolve in parallel (those related to foraging ecology; e.g. lip size, body and head shape) but others, somewhat surprisingly, do not (those related to diet and food processing; e.g. jaw size and shape, stable isotopes). Taken together, this case of parallelism among thick- and thin-lipped cichlids shows a mosaic pattern of parallel and nonparallel evolution. © 2012 Blackwell Publishing Ltd.

  8. Comparative transcriptomics of Entelegyne spiders (Araneae, Entelegynae), with emphasis on molecular evolution of orphan genes.

    Science.gov (United States)

    Carlson, David E; Hedin, Marshal

    2017-01-01

    Next-generation sequencing technology is rapidly transforming the landscape of evolutionary biology, and has become a cost-effective and efficient means of collecting exome information for non-model organisms. Due to their taxonomic diversity, production of interesting venom and silk proteins, and the relative scarcity of existing genomic resources, spiders in particular are excellent targets for next-generation sequencing (NGS) methods. In this study, the transcriptomes of six entelegyne spider species from three genera (Cicurina travisae, C. vibora, Habronattus signatus, H. ustulatus, Nesticus bishopi, and N. cooperi) were sequenced and de novo assembled. Each assembly was assessed for quality and completeness and functionally annotated using gene ontology information. Approximately 100 transcripts with evidence of homology to venom proteins were discovered. After identifying more than 3,000 putatively orthologous genes across all six taxa, we used comparative analyses to identify 24 instances of positively selected genes. In addition, between ~ 550 and 1,100 unique orphan genes were found in each genus. These unique, uncharacterized genes exhibited elevated rates of amino acid substitution, potentially consistent with lineage-specific adaptive evolution. The data generated for this study represent a valuable resource for future phylogenetic and molecular evolutionary research, and our results provide new insight into the forces driving genome evolution in taxa that span the root of entelegyne spider phylogeny.

  9. Selection on the Major Color Gene Melanocortin-1-Receptor Shaped the Evolution of the Melanocortin System Genes

    Directory of Open Access Journals (Sweden)

    Linda Dib

    2017-12-01

    Full Text Available Modular genetic systems and networks have complex evolutionary histories shaped by selection acting on single genes as well as on their integrated function within the network. However, uncovering molecular coevolution requires the detection of coevolving sites in sequences. Detailed knowledge of the functions of each gene in the system is also necessary to identify the selective agents driving coevolution. Using recently developed computational tools, we investigated the effect of positive selection on the coevolution of ten major genes in the melanocortin system, responsible for multiple physiological functions and human diseases. Substitutions driven by positive selection at the melanocortin-1-receptor (MC1R induced more coevolutionary changes on the system than positive selection on other genes in the system. Contrarily, selection on the highly pleiotropic POMC gene, which orchestrates the activation of the different melanocortin receptors, had the lowest coevolutionary influence. MC1R and possibly its main function, melanin pigmentation, seems to have influenced the evolution of the melanocortin system more than functions regulated by MC2-5Rs such as energy homeostasis, glucocorticoid-dependent stress and anti-inflammatory responses. Although replication in other regulatory systems is needed, this suggests that single functional aspects of a genetic network or system can be of higher importance than others in shaping coevolution among the genes that integrate it.

  10. Immunohistochemical Correlation of Matrix Metalloproteinase-2 and Tissue Inhibitors of Metalloproteinase-2 in Tobacco Associated Epithelial Dysplasia

    Directory of Open Access Journals (Sweden)

    Dipshikha Bajracharya

    2014-01-01

    Full Text Available Aim. To study the immunohistochemical expression of matrix metalloproteinase and tissue inhibitors of matrix metalloproteinase-2 in different histological grades of tobacco associated epithelial dysplasia and correlate the association between these proteases. Potentially malignant oral disorders (PMODs progressing to oral cancer are related to the severity of epithelial dysplasia. Methods. A retrospective immunohistochemical study was carried out on 30 clinically and histologically proven cases of leukoplakia with dysplasia and 10 cases of normal buccal mucosa using anti-MMP-2 and anti-TIMP-2 monoclonal antibodies. Results. Mann Whitney U test, for comparing the expression of both MMP-2 and TIMP-2 in normal mucosa with dysplasia, was highly significant (P<0.001. Kruskal-Wallis test to compare the median score of MMP-2 and TIMP-2 in different grades of dysplasia showed statistical significance (P<0.001, and a Spearman’s correlation between MMP-2 and TIMP-2 through different grades of dysplasia and cells observed showed positive correlation. Conclusion. Concomitant increase in the expression of both MMP-2 and TIMP-2 suggested that the activation of MMP-2 is dependent on TIMP-2 acting as a cofactor. Changes in TIMP-2 levels are considered important because they directly affect the level of MMP-2 activity.

  11. Bone-associated gene evolution and the origin of flight in birds.

    Science.gov (United States)

    Machado, João Paulo; Johnson, Warren E; Gilbert, M Thomas P; Zhang, Guojie; Jarvis, Erich D; O'Brien, Stephen J; Antunes, Agostinho

    2016-05-18

    Bones have been subjected to considerable selective pressure throughout vertebrate evolution, such as occurred during the adaptations associated with the development of powered flight. Powered flight evolved independently in two extant clades of vertebrates, birds and bats. While this trait provided advantages such as in aerial foraging habits, escape from predators or long-distance travels, it also imposed great challenges, namely in the bone structure. We performed comparative genomic analyses of 89 bone-associated genes from 47 avian genomes (including 45 new), 39 mammalian, and 20 reptilian genomes, and demonstrate that birds, after correcting for multiple testing, have an almost two-fold increase in the number of bone-associated genes with evidence of positive selection (~52.8 %) compared with mammals (~30.3 %). Most of the positive-selected genes in birds are linked with bone regulation and remodeling and thirteen have been linked with functional pathways relevant to powered flight, including bone metabolism, bone fusion, muscle development and hyperglycemia levels. Genes encoding proteins involved in bone resorption, such as TPP1, had a high number of sites under Darwinian selection in birds. Patterns of positive selection observed in bird ossification genes suggest that there was a period of intense selective pressure to improve flight efficiency that was closely linked with constraints on body size.

  12. Female mating preferences determine system-level evolution in a gene network model.

    Science.gov (United States)

    Fierst, Janna L

    2013-06-01

    Environmental patterns of directional, stabilizing and fluctuating selection can influence the evolution of system-level properties like evolvability and mutational robustness. Intersexual selection produces strong phenotypic selection and these dynamics may also affect the response to mutation and the potential for future adaptation. In order to to assess the influence of mating preferences on these evolutionary properties, I modeled a male trait and female preference determined by separate gene regulatory networks. I studied three sexual selection scenarios: sexual conflict, a Gaussian model of the Fisher process described in Lande (in Proc Natl Acad Sci 78(6):3721-3725, 1981) and a good genes model in which the male trait signalled his mutational condition. I measured the effects these mating preferences had on the potential for traits and preferences to evolve towards new states, and mutational robustness of both the phenotype and the individual's overall viability. All types of sexual selection increased male phenotypic robustness relative to a randomly mating population. The Fisher model also reduced male evolvability and mutational robustness for viability. Under good genes sexual selection, males evolved an increased mutational robustness for viability. Females choosing their mates is a scenario that is sufficient to create selective forces that impact genetic evolution and shape the evolutionary response to mutation and environmental selection. These dynamics will inevitably develop in any population where sexual selection is operating, and affect the potential for future adaptation.

  13. Mutant matrix metalloproteinase-9 reduces postoperative peritoneal adhesions in rats.

    Science.gov (United States)

    Atta, Hussein; El-Rehany, Mahmoud; Roeb, Elke; Abdel-Ghany, Hend; Ramzy, Maggie; Gaber, Shereen

    2016-02-01

    Postoperative peritoneal adhesions continue to be a major source of morbidity and occasional mortality. Studies have shown that matrix metalloproteinase-9 (MMP-9) levels are decreased postoperatively which may limits matrix degradation and participate in the development of peritoneal adhesions. In this proof-of-principle study, we evaluated the effect of gene therapy with catalytically inactive mutant MMP-9 on postoperative peritoneal adhesions in rats. Adenovirus encoding mutant MMP-9 (Ad-mMMP-9) or saline was instilled in the peritoneal cavity after cecal and parietal peritoneal injury in rats. Expression of mutant MMP-9 transcript was verified by sequencing. Adenovirus E4 gene expression, adhesion scores, MMP-9, tissue plasminogen activator (tPA), plasminogen activator inhibitor-1 (PAI-1) and transforming growth factor-β1 (TGF-β1) expression were evaluated at sacrifice one week after treatment. Both mutant MMP-9 transcripts and adenovirus E4 gene were expressed in Ad-mMMP-9 treated adhesions. Adhesions severity decreased significantly (p = 0.036) in the Ad-mMMP-9-treated compared with saline-treated adhesions. Expression of MMP-9 mRNA and protein were elevated (p = 0.001 and p = 0.029, respectively) in the Ad-mMMP-9-treated adhesions compared with saline-treated adhesions. While tPA levels were increased (p = 0.02) in Ad-mMMP-9 treated adhesions compared with saline-treated adhesions, TGF-β1 and PAI-1 levels were decreased (p = 0.017 and p = 0.042, respectively). No difference in mortality were found between groups (p = 0.64). Mutant MMP-9 gene therapy effectively transduced peritoneal adhesions resulting in reduction of severity of primary peritoneal adhesions. Copyright © 2016 IJS Publishing Group Limited. Published by Elsevier Ltd. All rights reserved.

  14. Diabetes may affect the expression of matrix metalloproteinases and their inhibitors more than smoking in chronic periodontitis.

    Science.gov (United States)

    Bastos, M F; Tucci, M A; de Siqueira, A; de Faveri, M; Figueiredo, L C; Vallim, P C; Duarte, P M

    2017-04-01

    No previous study has directly compared the levels of matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs) between smokers and individuals with diabetes mellitus (DM) with periodontitis. Therefore, the aim of this study was to evaluate the gene expression of MMP-1, MMP-2, MMP-8, MMP-9, TIMP-1 and TIMP-2 in tissues with chronic periodontitis (ChP) of smokers and individuals with type 2 DM. Gingival biopsies were harvested from: non-smokers and non-diabetic individuals with ChP (n = 18) (ChP group); non-diabetic smokers (≥ 10 cigarettes per day for at least the past 5 years) with ChP (n = 18) (SChP group); non-smoking individuals with type 2 diabetes (glycated hemoglobin levels ≥ 7.5%) and ChP (n = 18) (DMChP group). The tissue levels of mRNA of MMP-1, MMP-2, MMP-8, MMP-9, TIMP-1 and TIMP-2 were evaluated by quantitative real-time polymerase chain reaction. The MMP-8 expression was the lowest in the ChP group (p smoking, which may contribute to a greater extracellular matrix degradation and periodontal breakdown in DM-related periodontitis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Phylogenetics and evolution of Trx SET genes in fully sequenced land plants.

    Science.gov (United States)

    Zhu, Xinyu; Chen, Caoyi; Wang, Baohua

    2012-04-01

    Plant Trx SET proteins are involved in H3K4 methylation and play a key role in plant floral development. Genes encoding Trx SET proteins constitute a multigene family in which the copy number varies among plant species and functional divergence appears to have occurred repeatedly. To investigate the evolutionary history of the Trx SET gene family, we made a comprehensive evolutionary analysis on this gene family from 13 major representatives of green plants. A novel clustering (here named as cpTrx clade), which included the III-1, III-2, and III-4 orthologous groups, previously resolved was identified. Our analysis showed that plant Trx proteins possessed a variety of domain organizations and gene structures among paralogs. Additional domains such as PHD, PWWP, and FYR were early integrated into primordial SET-PostSET domain organization of cpTrx clade. We suggested that the PostSET domain was lost in some members of III-4 orthologous group during the evolution of land plants. At least four classes of gene structures had been formed at the early evolutionary stage of land plants. Three intronless orphan Trx SET genes from the Physcomitrella patens (moss) were identified, and supposedly, their parental genes have been eliminated from the genome. The structural differences among evolutionary groups of plant Trx SET genes with different functions were described, contributing to the design of further experimental studies.

  16. On meme--gene coevolution.

    Science.gov (United States)

    Bull, L; Holland, O; Blackmore, S

    2000-01-01

    In this article we examine the effects of the emergence of a new replicator, memes, on the evolution of a pre-existing replicator, genes. Using a version of the NKCS model we examine the effects of increasing the rate of meme evolution in relation to the rate of gene evolution, for various degrees of interdependence between the two replicators. That is, the effects of memes' (suggested) more rapid rate of evolution in comparison to that of genes is investigated using a tunable model of coevolution. It is found that, for almost any degree of interdependence between the two replicators, as the rate of meme evolution increases, a phase transition-like dynamic occurs under which memes have a significantly detrimental effect on the evolution of genes, quickly resulting in the cessation of effective gene evolution. Conversely, the memes experience a sharp increase in benefit from increasing their rate of evolution. We then examine the effects of enabling genes to reduce the percentage of gene-detrimental evolutionary steps taken by memes. Here a critical region emerges as the comparative rate of meme evolution increases, such that if genes cannot effectively select memes a high percentage of the time, they suffer from meme evolution as if they had almost no selective capability.

  17. Analysis of four achaete-scute homologs in Bombyx mori reveals new viewpoints of the evolution and functions of this gene family.

    Science.gov (United States)

    Zhou, Qingxiang; Zhang, Tianyi; Xu, Weihua; Yu, Linlin; Yi, Yongzhu; Zhang, Zhifang

    2008-03-06

    achaete-scute complexe (AS-C) has been widely studied at genetic, developmental and evolutional levels. Genes of this family encode proteins containing a highly conserved bHLH domain, which take part in the regulation of the development of central nervous system and peripheral nervous system. Many AS-C homologs have been isolated from various vertebrates and invertebrates. Also, AS-C genes are duplicated during the evolution of Diptera. Functions besides neural development controlling have also been found in Drosophila AS-C genes. We cloned four achaete-scute homologs (ASH) from the lepidopteran model organism Bombyx mori, including three proneural genes and one neural precursor gene. Proteins encoded by them contained the characteristic bHLH domain and the three proneural ones were also found to have the C-terminal conserved motif. These genes regulated promoter activity through the Class A E-boxes in vitro. Though both Bm-ASH and Drosophila AS-C have four members, they are not in one by one corresponding relationships. Results of RT-PCR and real-time PCR showed that Bm-ASH genes were expressed in different larval tissues, and had well-regulated expressional profiles during the development of embryo and wing/wing disc. There are four achaete-scute homologs in Bombyx mori, the second insect having four AS-C genes so far, and these genes have multiple functions in silkworm life cycle. AS-C gene duplication in insects occurs after or parallel to, but not before the taxonomic order formation during evolution.

  18. Temporal and spatial expression of matrix metalloproteinase-2 and matrix metalloproteinase-9 in trophoblast and endometrial epithelium during pregnancy of pig

    Czech Academy of Sciences Publication Activity Database

    Georgieva, R.; Rashev, P.; Pěknicová, Jana; Michailova, A.

    2004-01-01

    Roč. 52, Suppl.1 (2004), s. 42-43 ISSN 1046-7408. [International Congress of Reproductive Immunology /9./. Hakone, 11.10.2004-15.10.2004] Institutional research plan: CEZ:AV0Z5052915 Keywords : matrix metalloproteinase * trophoblast * endometrium Subject RIV: EC - Immunology Impact factor: 1.808, year: 2004

  19. Transcriptional start site turnover in the evolution of bacterial paralogous genes - the pelE-pelD virulence genes in Dickeya.

    Science.gov (United States)

    Duprey, Alexandre; Nasser, William; Léonard, Simon; Brochier-Armanet, Céline; Reverchon, Sylvie

    2016-11-01

    After a gene duplication event, the resulting paralogous genes frequently acquire distinct expression profiles, roles, and/or functions but the underlying mechanisms are poorly understood. While transcription start site (TSS) turnover, i.e., the repositioning of the TSS during evolution, is widespread in eukaryotes, it is less documented in bacteria. Using pelD and pelE, two closely related paralogous genes encoding key virulence factors in Dickeya, a gamma proteobacterial genus of phytopathogens, we show that pelE has been selected as an initiator of bacterial aggression, while pelD acts at a later stage, thanks to modifications in the transcriptional regulation of these two genes. This expression change is linked to a few mutations that caused a shift in the position of the pelETSS and the rapid divergence in the regulation of these genes after their duplication. Genomic surveys detected additional examples of putative turnovers in other bacteria. This first report of TSS shifting in bacteria suggests that this mechanism could play a major role in paralogous genes fixation in prokaryotes. © 2016 Federation of European Biochemical Societies.

  20. Analysis of the WUSCHEL-RELATED HOMEOBOX gene family in Pinus pinaster: New insights into the gene family evolution.

    Science.gov (United States)

    Alvarez, José M; Bueno, Natalia; Cañas, Rafael A; Avila, Concepción; Cánovas, Francisco M; Ordás, Ricardo J

    2018-02-01

    WUSCHEL-RELATED HOMEOBOX (WOX) genes are key players controlling stem cells in plants and can be divided into three clades according to the time of their appearance during plant evolution. Our knowledge of stem cell function in vascular plants other than angiosperms is limited, they separated from gymnosperms ca 300 million years ago and their patterning during embryogenesis differs significantly. For this reason, we have used the model gymnosperm Pinus pinaster to identify WOX genes and perform a thorough analysis of their gene expression patterns. Using transcriptomic data from a comprehensive range of tissues and stages of development we have shown three major outcomes: that the P. pinaster genome encodes at least fourteen members of the WOX family spanning all the major clades, that the genome of gymnosperms contains a WOX gene with no homologues in angiosperms representing a transitional stage between intermediate- and WUS-clade proteins, and that we can detect discrete WUS and WOX5 transcripts for the first time in a gymnosperm. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. A remarkably stable TipE gene cluster: evolution of insect Para sodium channel auxiliary subunits

    Directory of Open Access Journals (Sweden)

    Li Jia

    2011-11-01

    -specific characteristics. Conclusions TipE-like genes form a remarkably conserved genomic cluster across all examined insect genomes. This study reveals likely structural and functional constraints on the genomic evolution of insect TipE gene family members maintained in synteny over hundreds of millions of years of evolution. The likely common origin of these NaV channel regulators with BKCa auxiliary subunits highlights the evolutionary plasticity of ion channel regulatory mechanisms.

  2. Genome-Wide Identification, Molecular Evolution, and Expression Profiling Analysis of Pectin Methylesterase Inhibitor Genes in Brassica campestris ssp. chinensis

    Directory of Open Access Journals (Sweden)

    Tingting Liu

    2018-05-01

    Full Text Available Pectin methylesterase inhibitor genes (PMEIs are a large multigene family and play crucial roles in cell wall modifications in plant growth and development. Here, a comprehensive analysis of the PMEI gene family in Brassica campestris, an important leaf vegetable, was performed. We identified 100 Brassica campestris PMEI genes (BcPMEIs, among which 96 BcPMEIs were unevenly distributed on 10 chromosomes and nine tandem arrays containing 20 BcPMEIs were found. We also detected 80 pairs of syntenic PMEI orthologs. These findings indicated that whole-genome triplication (WGT and tandem duplication (TD were the main mechanisms accounting for the current number of BcPMEIs. In evolution, BcPMEIs were retained preferentially and biasedly, consistent with the gene balance hypothesis and two-step theory, respectively. The molecular evolution analysis of BcPMEIs manifested that they evolved through purifying selection and the divergence time is in accordance with the WGT data of B. campestris. To obtain the functional information of BcPMEIs, the expression patterns in five tissues and the cis-elements distributed in promoter regions were investigated. This work can provide a better understanding of the molecular evolution and biological function of PMEIs in B. campestris.

  3. Spontaneous metastasis in matrix metalloproteinase 3-deficient mice

    DEFF Research Database (Denmark)

    Juncker-Jensen, Anna; Rømer, John; Pennington, Caroline J

    2009-01-01

    Matrix metalloproteinases (MMPs) have been linked to the metastatic potential of tumor cells due to their ability to degrade the extracellular matrix. MMP-3 (stromelysin-1) is upregulated in a wide variety of human tumors. We used the MMTV-PyMT breast cancer model to determine if MMP-3 is involved...

  4. Population Level Purifying Selection and Gene Expression Shape Subgenome Evolution in Maize.

    Science.gov (United States)

    Pophaly, Saurabh D; Tellier, Aurélien

    2015-12-01

    The maize ancestor experienced a recent whole-genome duplication (WGD) followed by gene erosion which generated two subgenomes, the dominant subgenome (maize1) experiencing fewer deletions than maize2. We take advantage of available extensive polymorphism and gene expression data in maize to study purifying selection and gene expression divergence between WGD retained paralog pairs. We first report a strong correlation in nucleotide diversity between duplicate pairs, except for upstream regions. We then show that maize1 genes are under stronger purifying selection than maize2. WGD retained genes have higher gene dosage and biased Gene Ontologies consistent with previous studies. The relative gene expression of paralogs across tissues demonstrates that 98% of duplicate pairs have either subfunctionalized in a tissuewise manner or have diverged consistently in their expression thereby preventing functional complementation. Tissuewise subfunctionalization seems to be a hallmark of transcription factors, whereas consistent repression occurs for macromolecular complexes. We show that dominant gene expression is a strong determinant of the strength of purifying selection, explaining the inferred stronger negative selection on maize1 genes. We propose a novel expression-based classification of duplicates which is more robust to explain observed polymorphism patterns than the subgenome location. Finally, upstream regions of repressed genes exhibit an enrichment in transposable elements which indicates a possible mechanism for expression divergence. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Evolution of High Cellulolytic Activity in Symbiotic Streptomyces through Selection of Expanded Gene Content and Coordinated Gene Expression

    Science.gov (United States)

    McDonald, Bradon R.; Takasuka, Taichi E.; Wendt-Pienkowski, Evelyn; Doering, Drew T.; Raffa, Kenneth F.; Fox, Brian G.; Currie, Cameron R.

    2016-01-01

    The evolution of cellulose degradation was a defining event in the history of life. Without efficient decomposition and recycling, dead plant biomass would quickly accumulate and become inaccessible to terrestrial food webs and the global carbon cycle. On land, the primary drivers of plant biomass deconstruction are fungi and bacteria in the soil or associated with herbivorous eukaryotes. While the ecological importance of plant-decomposing microbes is well established, little is known about the distribution or evolution of cellulolytic activity in any bacterial genus. Here we show that in Streptomyces, a genus of Actinobacteria abundant in soil and symbiotic niches, the ability to rapidly degrade cellulose is largely restricted to two clades of host-associated strains and is not a conserved characteristic of the Streptomyces genus or host-associated strains. Our comparative genomics identify that while plant biomass degrading genes (CAZy) are widespread in Streptomyces, key enzyme families are enriched in highly cellulolytic strains. Transcriptomic analyses demonstrate that cellulolytic strains express a suite of multi-domain CAZy enzymes that are coregulated by the CebR transcriptional regulator. Using targeted gene deletions, we verify the importance of a highly expressed cellulase (GH6 family cellobiohydrolase) and the CebR transcriptional repressor to the cellulolytic phenotype. Evolutionary analyses identify complex genomic modifications that drive plant biomass deconstruction in Streptomyces, including acquisition and selective retention of CAZy genes and transcriptional regulators. Our results suggest that host-associated niches have selected some symbiotic Streptomyces for increased cellulose degrading activity and that symbiotic bacteria are a rich biochemical and enzymatic resource for biotechnology. PMID:27276034

  6. Rheumatoid Factor Positivity Is Associated with Increased Joint Destruction and Upregulation of Matrix Metalloproteinase 9 and Cathepsin K Gene Expression in the Peripheral Blood in Rheumatoid Arthritic Patients Treated with Methotrexate

    Directory of Open Access Journals (Sweden)

    Elena V. Tchetina

    2013-01-01

    Full Text Available We evaluated changes in gene expression of mTOR, p21, caspase-3, ULK1, TNFα, matrix metalloproteinase (MMP-9, and cathepsin K in the whole blood of rheumatoid arthritic (RA patients treated with methotrexate (MTX in relation to their rheumatoid factor status, clinical, immunological, and radiological parameters, and therapeutic response after a 24-month follow-up. The study group consisted of 35 control subjects and 33 RA patients without previous history of MTX treatment. Gene expression was measured using real-time RT-PCR. Decreased disease activity in patients at the end of the study was associated with significant downregulation of TNFα expression. Downregulation of mTOR was observed in seronegative patients, while no significant changes in the expression of p21, ULK1, or caspase-3 were noted in any RA patients at the end of the study. The increase in erosion numbers observed in the seropositive patients at the end of the follow-up was accompanied by upregulation of MMP-9 and cathepsin K, while seronegative patients demonstrated an absence of significant changes in MMP-9 and cathepsin K expression and no increase in the erosion score. Our results suggest that increased expression of MMP-9 and cathepsin K genes in the peripheral blood might indicate higher bone tissue destruction activity in RA patients treated with methotrexate. The clinical study registration number is 0120.0810610.

  7. Accelerated evolution of the ASPM gene controlling brain size begins prior to human brain expansion.

    Directory of Open Access Journals (Sweden)

    Natalay Kouprina

    2004-05-01

    Full Text Available Primary microcephaly (MCPH is a neurodevelopmental disorder characterized by global reduction in cerebral cortical volume. The microcephalic brain has a volume comparable to that of early hominids, raising the possibility that some MCPH genes may have been evolutionary targets in the expansion of the cerebral cortex in mammals and especially primates. Mutations in ASPM, which encodes the human homologue of a fly protein essential for spindle function, are the most common known cause of MCPH. Here we have isolated large genomic clones containing the complete ASPM gene, including promoter regions and introns, from chimpanzee, gorilla, orangutan, and rhesus macaque by transformation-associated recombination cloning in yeast. We have sequenced these clones and show that whereas much of the sequence of ASPM is substantially conserved among primates, specific segments are subject to high Ka/Ks ratios (nonsynonymous/synonymous DNA changes consistent with strong positive selection for evolutionary change. The ASPM gene sequence shows accelerated evolution in the African hominoid clade, and this precedes hominid brain expansion by several million years. Gorilla and human lineages show particularly accelerated evolution in the IQ domain of ASPM. Moreover, ASPM regions under positive selection in primates are also the most highly diverged regions between primates and nonprimate mammals. We report the first direct application of TAR cloning technology to the study of human evolution. Our data suggest that evolutionary selection of specific segments of the ASPM sequence strongly relates to differences in cerebral cortical size.

  8. Evolution of the DAZ gene and the AZFc region on primate Y chromosomes

    Directory of Open Access Journals (Sweden)

    Yu Jane-Fang

    2008-03-01

    Full Text Available Abstract Background The Azoospermia Factor c (AZFc region of the human Y chromosome is a unique product of segmental duplication. It consists almost entirely of very long amplicons, represented by different colors, and is frequently deleted in subfertile men. Most of the AZFc amplicons have high sequence similarity with autosomal segments, indicating recent duplication and transposition to the Y chromosome. The Deleted in Azoospermia (DAZ gene within the red-amplicon arose from an ancestral autosomal DAZ-like (DAZL gene. It varies significantly between different men regarding to its copy number and the numbers of RNA recognition motif and DAZ repeat it encodes. We used Southern analyses to study the evolution of DAZ and AZFc amplicons on the Y chromosomes of primates. Results The Old World monkey rhesus macaque has only one DAZ gene. In contrast, the great apes have multiple copies of DAZ, ranging from 2 copies in bonobos and gorillas to at least 6 copies in orangutans, and these DAZ genes have polymorphic structures similar to those of their human counterparts. Sequences homologous to the various AZFc amplicons are present on the Y chromosomes of some but not all primates, indicating that they arrived on the Y chromosome at different times during primate evolution. Conclusion The duplication and transposition of AZFc amplicons to the human Y chromosome occurred in three waves, i.e., after the branching of the New World monkey, the gorilla, and the chimpanzee/bonobo lineages, respectively. The red-amplicon, one of the first to arrive on the Y chromosome, amplified by inverted duplication followed by direct duplication after the separation of the Old World monkey and the great ape lineages. Subsequent duplication/deletion in the various lineages gave rise to a spectrum of DAZ gene structure and copy number found in today's great apes.

  9. Human intronless genes: Functional groups, associated diseases, evolution, and mRNA processing in absence of splicing

    International Nuclear Information System (INIS)

    Grzybowska, Ewa A.

    2012-01-01

    Highlights: ► Functional characteristics of intronless genes (IGs). ► Diseases associated with IGs. ► Origin and evolution of IGs. ► mRNA processing without splicing. -- Abstract: Intronless genes (IGs) constitute approximately 3% of the human genome. Human IGs are essentially different in evolution and functionality from the IGs of unicellular eukaryotes, which represent the majority in their genomes. Functional analysis of IGs has revealed a massive over-representation of signal transduction genes and genes encoding regulatory proteins important for growth, proliferation, and development. IGs also often display tissue-specific expression, usually in the nervous system and testis. These characteristics translate into IG-associated diseases, mainly neuropathies, developmental disorders, and cancer. IGs represent recent additions to the genome, created mostly by retroposition of processed mRNAs with retained functionality. Processing, nuclear export, and translation of these mRNAs should be hampered dramatically by the lack of splice factors, which normally tightly cover mature transcripts and govern their fate. However, natural IGs manage to maintain satisfactory expression levels. Different mechanisms by which IGs solve the problem of mRNA processing and nuclear export are discussed here, along with their possible impact on reporter studies.

  10. Matrix metalloproteinases: a review of their structure and role in systemic sclerosis.

    Science.gov (United States)

    Peng, Wen-jia; Yan, Jun-wei; Wan, Ya-nan; Wang, Bing-xiang; Tao, Jin-hui; Yang, Guo-jun; Pan, Hai-feng; Wang, Jing

    2012-12-01

    Matrix metalloproteinases (MMPs) are the main enzymes involved in arterial wall extracellular matrix (ECM) degradation and remodeling, whose activity has been involved in various normal and pathologic processes, such as inflammation, fibrosis. As a result, the MMPs have come to consider as both therapeutic targets and diagnostic tools for the treatment and diagnosis of autoimmune diseases, including systemic lupus erythematosus and rheumatoid arthritis. Systemic sclerosis (SSc) is a rare autoimmune disease of unknown etiology characterized by an excessive over-production of collagen and other ECM, resulting in skin thickening and fibrosis of internal organs. In recent years, abnormal expression of MMPs has been demonstrated with the pathogenesis of SSc, and the association of different polymorphisms on MMPs genes with SSc has been extensively studied. This review describes the structure, function and regulation of MMPs and shortly summarizes current understanding on experimental findings, genetic associations of MMPs in SSc.

  11. Positive selection and ancient duplications in the evolution of class B floral homeotic genes of orchids and grasses

    Directory of Open Access Journals (Sweden)

    Koch Marcus A

    2009-04-01

    Full Text Available Abstract Background Positive selection is recognized as the prevalence of nonsynonymous over synonymous substitutions in a gene. Models of the functional evolution of duplicated genes consider neofunctionalization as key to the retention of paralogues. For instance, duplicate transcription factors are specifically retained in plant and animal genomes and both positive selection and transcriptional divergence appear to have played a role in their diversification. However, the relative impact of these two factors has not been systematically evaluated. Class B MADS-box genes, comprising DEF-like and GLO-like genes, encode developmental transcription factors essential for establishment of perianth and male organ identity in the flowers of angiosperms. Here, we contrast the role of positive selection and the known divergence in expression patterns of genes encoding class B-like MADS-box transcription factors from monocots, with emphasis on the family Orchidaceae and the order Poales. Although in the monocots these two groups are highly diverse and have a strongly canalized floral morphology, there is no information on the role of positive selection in the evolution of their distinctive flower morphologies. Published research shows that in Poales, class B-like genes are expressed in stamens and in lodicules, the perianth organs whose identity might also be specified by class B-like genes, like the identity of the inner tepals of their lily-like relatives. In orchids, however, the number and pattern of expression of class B-like genes have greatly diverged. Results The DEF-like genes from Orchidaceae form four well-supported, ancient clades of orthologues. In contrast, orchid GLO-like genes form a single clade of ancient orthologues and recent paralogues. DEF-like genes from orchid clade 2 (OMADS3-like genes are under less stringent purifying selection than the other orchid DEF-like and GLO-like genes. In comparison with orchids, purifying selection

  12. Mitochondrial genome evolution in Alismatales: Size reduction and extensive loss of ribosomal protein genes

    DEFF Research Database (Denmark)

    Petersen, Gitte; Cuenca, Argelia; Zervas, Athanasios

    2017-01-01

    The order Alismatales is a hotspot for evolution of plant mitochondrial genomes characterized by remarkable differences in genome size, substitution rates, RNA editing, retrotranscription, gene loss and intron loss. Here we have sequenced the complete mitogenomes of Zostera marina and Stratiotes...... aloides, which together with previously sequenced mitogenomes from Butomus and Spirodela, provide new evolutionary evidence of genome size reduction, gene loss and transfer to the nucleus. The Zostera mitogenome includes a large portion of DNA transferred from the plastome, yet it is the smallest known...... mitogenome from a non-parasitic plant. Using a broad sample of the Alismatales, the evolutionary history of ribosomal protein gene loss is analyzed. In Zostera almost all ribosomal protein genes are lost from the mitogenome, but only some can be found in the nucleus....

  13. Structural differences of matrix metalloproteinases. Homology modeling and energy minimization of enzyme-substrate complexes

    DEFF Research Database (Denmark)

    Terp, G E; Christensen, I T; Jørgensen, Flemming Steen

    2000-01-01

    Matrix metalloproteinases are extracellular enzymes taking part in the remodeling of extracellular matrix. The structures of the catalytic domain of MMP1, MMP3, MMP7 and MMP8 are known, but structures of enzymes belonging to this family still remain to be determined. A general approach...... to the homology modeling of matrix metalloproteinases, exemplified by the modeling of MMP2, MMP9, MMP12 and MMP14 is described. The models were refined using an energy minimization procedure developed for matrix metalloproteinases. This procedure includes incorporation of parameters for zinc and calcium ions...... in the AMBER 4.1 force field, applying a non-bonded approach and a full ion charge representation. Energy minimization of the apoenzymes yielded structures with distorted active sites, while reliable three-dimensional structures of the enzymes containing a substrate in active site were obtained. The structural...

  14. Modulation of Matrix Metalloproteinase 14, Tissue Inhibitor of Metalloproteinase 3, Tissue Inhibitor of Metalloproteinase 4, and Inducible Nitric Oxide Synthase in the Development of Periapical Lesions.

    Science.gov (United States)

    Cassanta, Lorena Teodoro de Castro; Rodrigues, Virmondes; Violatti-Filho, Jose Roberto; Teixeira Neto, Benedito Alves; Tavares, Vinícius Marques; Bernal, Eduarda Castelo Branco Araujo; Souza, Danila Malheiros; Araujo, Marcelo Sivieri; de Lima Pereira, Sanivia Aparecida; Rodrigues, Denise Bertulucci Rocha

    2017-07-01

    Periapical cysts and granulomas are chronic lesions caused by an inflammatory immune response against microbial challenge in the root canal. Different cell types, cytokines, and molecules have been associated with periapical lesion formation and expansion. Therefore, because of the chronic inflammatory state of these lesions, the aim of this study was to evaluate the in situ expression of matrix metalloproteinase (MMP)-14 and -19, tissue inhibitor of metalloproteinase (TIMP)-3 and -4, CD68, and inducible nitric oxide synthase (iNOS) in periapical cysts and granulomas. Sixteen cases of periapical cysts and 15 cases of periapical granulomas were analyzed. Ten normal dental pulps were used as the negative control. Immunohistochemistry was performed with anti-MMP-19, anti-MMP-14, anti-TIMP-3, anti-TIMP-4, anti-iNOS, and anti-CD68 antibodies. The expression of TIMP-3, TIMP-4, iNOS, and CD68 was significantly higher in both the cyst and granuloma groups than in the control group. TIMP-4 was also significantly higher in cases of chronic apical abscess. There was also a significant difference in the expression of MMP-14 between the cyst and control groups. However, there were no differences in the expression of MMP-19 between the 3 groups. Our data suggest that the expression of MMP-14, TIMP-3, and TIMP-4 is associated with the development of periapical lesions. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. Gene duplication, loss and selection in the evolution of saxitoxin biosynthesis in alveolates.

    Science.gov (United States)

    Murray, Shauna A; Diwan, Rutuja; Orr, Russell J S; Kohli, Gurjeet S; John, Uwe

    2015-11-01

    A group of marine dinoflagellates (Alveolata, Eukaryota), consisting of ∼10 species of the genus Alexandrium, Gymnodinium catenatum and Pyrodinium bahamense, produce the toxin saxitoxin and its analogues (STX), which can accumulate in shellfish, leading to ecosystem and human health impacts. The genes, sxt, putatively involved in STX biosynthesis, have recently been identified, however, the evolution of these genes within dinoflagellates is not clear. There are two reasons for this: uncertainty over the phylogeny of dinoflagellates; and that the sxt genes of many species of Alexandrium and other dinoflagellate genera are not known. Here, we determined the phylogeny of STX-producing and other dinoflagellates based on a concatenated eight-gene alignment. We determined the presence, diversity and phylogeny of sxtA, domains A1 and A4 and sxtG in 52 strains of Alexandrium, and a further 43 species of dinoflagellates and thirteen other alveolates. We confirmed the presence and high sequence conservation of sxtA, domain A4, in 40 strains (35 Alexandrium, 1 Pyrodinium, 4 Gymnodinium) of 8 species of STX-producing dinoflagellates, and absence from non-producing species. We found three paralogs of sxtA, domain A1, and a widespread distribution of sxtA1 in non-STX producing dinoflagellates, indicating duplication events in the evolution of this gene. One paralog, clade 2, of sxtA1 may be particularly related to STX biosynthesis. Similarly, sxtG appears to be generally restricted to STX-producing species, while three amidinotransferase gene paralogs were found in dinoflagellates. We investigated the role of positive (diversifying) selection following duplication in sxtA1 and sxtG, and found negative selection in clades of sxtG and sxtA1, clade 2, suggesting they were functionally constrained. Significant episodic diversifying selection was found in some strains in clade 3 of sxtA1, a clade that may not be involved in STX biosynthesis, indicating pressure for diversification

  16. Analysis of four achaete-scute homologs in Bombyx mori reveals new viewpoints of the evolution and functions of this gene family

    Directory of Open Access Journals (Sweden)

    Yi Yongzhu

    2008-03-01

    Full Text Available Abstract Background achaete-scute complexe (AS-C has been widely studied at genetic, developmental and evolutional levels. Genes of this family encode proteins containing a highly conserved bHLH domain, which take part in the regulation of the development of central nervous system and peripheral nervous system. Many AS-C homologs have been isolated from various vertebrates and invertebrates. Also, AS-C genes are duplicated during the evolution of Diptera. Functions besides neural development controlling have also been found in Drosophila AS-C genes. Results We cloned four achaete-scute homologs (ASH from the lepidopteran model organism Bombyx mori, including three proneural genes and one neural precursor gene. Proteins encoded by them contained the characteristic bHLH domain and the three proneural ones were also found to have the C-terminal conserved motif. These genes regulated promoter activity through the Class A E-boxes in vitro. Though both Bm-ASH and Drosophila AS-C have four members, they are not in one by one corresponding relationships. Results of RT-PCR and real-time PCR showed that Bm-ASH genes were expressed in different larval tissues, and had well-regulated expressional profiles during the development of embryo and wing/wing disc. Conclusion There are four achaete-scute homologs in Bombyx mori, the second insect having four AS-C genes so far, and these genes have multiple functions in silkworm life cycle. AS-C gene duplication in insects occurs after or parallel to, but not before the taxonomic order formation during evolution.

  17. Rapid evolution and copy number variation of primate RHOXF2, an X-linked homeobox gene involved in male reproduction and possibly brain function.

    Science.gov (United States)

    Niu, Ao-lei; Wang, Yin-qiu; Zhang, Hui; Liao, Cheng-hong; Wang, Jin-kai; Zhang, Rui; Che, Jun; Su, Bing

    2011-10-12

    Homeobox genes are the key regulators during development, and they are in general highly conserved with only a few reported cases of rapid evolution. RHOXF2 is an X-linked homeobox gene in primates. It is highly expressed in the testicle and may play an important role in spermatogenesis. As male reproductive system is often the target of natural and/or sexual selection during evolution, in this study, we aim to dissect the pattern of molecular evolution of RHOXF2 in primates and its potential functional consequence. We studied sequences and copy number variation of RHOXF2 in humans and 16 nonhuman primate species as well as the expression patterns in human, chimpanzee, white-browed gibbon and rhesus macaque. The gene copy number analysis showed that there had been parallel gene duplications/losses in multiple primate lineages. Our evidence suggests that 11 nonhuman primate species have one RHOXF2 copy, and two copies are present in humans and four Old World monkey species, and at least 6 copies in chimpanzees. Further analysis indicated that the gene duplications in primates had likely been mediated by endogenous retrovirus (ERV) sequences flanking the gene regions. In striking contrast to non-human primates, humans appear to have homogenized their two RHOXF2 copies by the ERV-mediated non-allelic recombination mechanism. Coding sequence and phylogenetic analysis suggested multi-lineage strong positive selection on RHOXF2 during primate evolution, especially during the origins of humans and chimpanzees. All the 8 coding region polymorphic sites in human populations are non-synonymous, implying on-going selection. Gene expression analysis demonstrated that besides the preferential expression in the reproductive system, RHOXF2 is also expressed in the brain. The quantitative data suggests expression pattern divergence among primate species. RHOXF2 is a fast-evolving homeobox gene in primates. The rapid evolution and copy number changes of RHOXF2 had been driven by

  18. Rapid evolution and copy number variation of primate RHOXF2, an X-linked homeobox gene involved in male reproduction and possibly brain function

    Directory of Open Access Journals (Sweden)

    Zhang Rui

    2011-10-01

    Full Text Available Abstract Background Homeobox genes are the key regulators during development, and they are in general highly conserved with only a few reported cases of rapid evolution. RHOXF2 is an X-linked homeobox gene in primates. It is highly expressed in the testicle and may play an important role in spermatogenesis. As male reproductive system is often the target of natural and/or sexual selection during evolution, in this study, we aim to dissect the pattern of molecular evolution of RHOXF2 in primates and its potential functional consequence. Results We studied sequences and copy number variation of RHOXF2 in humans and 16 nonhuman primate species as well as the expression patterns in human, chimpanzee, white-browed gibbon and rhesus macaque. The gene copy number analysis showed that there had been parallel gene duplications/losses in multiple primate lineages. Our evidence suggests that 11 nonhuman primate species have one RHOXF2 copy, and two copies are present in humans and four Old World monkey species, and at least 6 copies in chimpanzees. Further analysis indicated that the gene duplications in primates had likely been mediated by endogenous retrovirus (ERV sequences flanking the gene regions. In striking contrast to non-human primates, humans appear to have homogenized their two RHOXF2 copies by the ERV-mediated non-allelic recombination mechanism. Coding sequence and phylogenetic analysis suggested multi-lineage strong positive selection on RHOXF2 during primate evolution, especially during the origins of humans and chimpanzees. All the 8 coding region polymorphic sites in human populations are non-synonymous, implying on-going selection. Gene expression analysis demonstrated that besides the preferential expression in the reproductive system, RHOXF2 is also expressed in the brain. The quantitative data suggests expression pattern divergence among primate species. Conclusions RHOXF2 is a fast-evolving homeobox gene in primates. The rapid

  19. Molecular evolution of the polyamine oxidase gene family in Metazoa

    Directory of Open Access Journals (Sweden)

    Polticelli Fabio

    2012-06-01

    monophyletic clades including, respectively, all the SMOs and APAOs from vertebrates. The two vertebrate monophyletic clades clustered strictly mirroring the organismal phylogeny of fishes, amphibians, reptiles, birds, and mammals. Evidences from comparative genomic analysis, structural evolution and functional divergence in a phylogenetic framework across Metazoa suggested an evolutionary scenario where the ancestor PAO coding sequence, present in invertebrates as an orthologous gene, has been duplicated in the vertebrate branch to originate the paralogous SMO and APAO genes. A further genome evolution event concerns the SMO gene of placental, but not marsupial and monotremate, mammals which increased its functional variation following an alternative splicing (AS mechanism. Conclusions In this study the explicit integration in a phylogenomic framework of phylogenetic tree construction, structure prediction, and biochemical function data/prediction, allowed inferring the molecular evolutionary history of the PAO gene family and to disambiguate paralogous genes related by duplication event (SMO and APAO and orthologous genes related by speciation events (PAOs, SMOs/APAOs. Further, while in vertebrates experimental data corroborate SMO and APAO molecular function predictions, in invertebrates the finding of a supported phylogenetic clusters of insect PAOs and the co-occurrence of two PAO variants in the amphioxus urgently claim the need for future structure-function studies.

  20. Detection of Matrix Metalloproteinases by Zymography.

    Science.gov (United States)

    Tajhya, Rajeev B; Patel, Rutvik S; Beeton, Christine

    2017-01-01

    Matrix metalloproteinases (MMPs) represent more than 20 zinc-containing endopeptidases that cleave internal peptide bonds, leading to protein degradation. They play a critical role in many physiological cell functions, including tissue remodeling, embryogenesis, and angiogenesis. They are also involved in the pathogenesis of a vast array of diseases, including but not limited to systemic inflammation, various cancers, and cardiovascular, neurological, and autoimmune diseases. Here, we describe gel zymography to detect MMPs in cell and tissue samples and in cell culture supernatants.

  1. Gene alterations at Drosophila inversion breakpoints provide prima facie evidence for natural selection as an explanation for rapid chromosomal evolution.

    Science.gov (United States)

    Guillén, Yolanda; Ruiz, Alfredo

    2012-02-01

    Chromosomal inversions have been pervasive during the evolution of the genus Drosophila, but there is significant variation between lineages in the rate of rearrangement fixation. D. mojavensis, an ecological specialist adapted to a cactophilic niche under extreme desert conditions, is a chromosomally derived species with ten fixed inversions, five of them not present in any other species. In order to explore the causes of the rapid chromosomal evolution in D. mojavensis, we identified and characterized all breakpoints of seven inversions fixed in chromosome 2, the most dynamic one. One of the inversions presents unequivocal evidence for its generation by ectopic recombination between transposon copies and another two harbor inverted duplications of non-repetitive DNA at the two breakpoints and were likely generated by staggered single-strand breaks and repair by non-homologous end joining. Four out of 14 breakpoints lay in the intergenic region between preexisting duplicated genes, suggesting an adaptive advantage of separating previously tightly linked duplicates. Four out of 14 breakpoints are associated with transposed genes, suggesting these breakpoints are fragile regions. Finally two inversions contain novel genes at their breakpoints and another three show alterations of genes at breakpoints with potential adaptive significance. D. mojavensis chromosomal inversions were generated by multiple mechanisms, an observation that does not provide support for increased mutation rate as explanation for rapid chromosomal evolution. On the other hand, we have found a number of gene alterations at the breakpoints with putative adaptive consequences that directly point to natural selection as the cause of D. mojavensis rapid chromosomal evolution.

  2. Gene alterations at Drosophila inversion breakpoints provide prima facie evidence for natural selection as an explanation for rapid chromosomal evolution

    Directory of Open Access Journals (Sweden)

    Guillén Yolanda

    2012-02-01

    Full Text Available Abstract Background Chromosomal inversions have been pervasive during the evolution of the genus Drosophila, but there is significant variation between lineages in the rate of rearrangement fixation. D. mojavensis, an ecological specialist adapted to a cactophilic niche under extreme desert conditions, is a chromosomally derived species with ten fixed inversions, five of them not present in any other species. Results In order to explore the causes of the rapid chromosomal evolution in D. mojavensis, we identified and characterized all breakpoints of seven inversions fixed in chromosome 2, the most dynamic one. One of the inversions presents unequivocal evidence for its generation by ectopic recombination between transposon copies and another two harbor inverted duplications of non-repetitive DNA at the two breakpoints and were likely generated by staggered single-strand breaks and repair by non-homologous end joining. Four out of 14 breakpoints lay in the intergenic region between preexisting duplicated genes, suggesting an adaptive advantage of separating previously tightly linked duplicates. Four out of 14 breakpoints are associated with transposed genes, suggesting these breakpoints are fragile regions. Finally two inversions contain novel genes at their breakpoints and another three show alterations of genes at breakpoints with potential adaptive significance. Conclusions D. mojavensis chromosomal inversions were generated by multiple mechanisms, an observation that does not provide support for increased mutation rate as explanation for rapid chromosomal evolution. On the other hand, we have found a number of gene alterations at the breakpoints with putative adaptive consequences that directly point to natural selection as the cause of D. mojavensis rapid chromosomal evolution.

  3. Gene alterations at Drosophila inversion breakpoints provide prima facie evidence for natural selection as an explanation for rapid chromosomal evolution

    Science.gov (United States)

    2012-01-01

    Background Chromosomal inversions have been pervasive during the evolution of the genus Drosophila, but there is significant variation between lineages in the rate of rearrangement fixation. D. mojavensis, an ecological specialist adapted to a cactophilic niche under extreme desert conditions, is a chromosomally derived species with ten fixed inversions, five of them not present in any other species. Results In order to explore the causes of the rapid chromosomal evolution in D. mojavensis, we identified and characterized all breakpoints of seven inversions fixed in chromosome 2, the most dynamic one. One of the inversions presents unequivocal evidence for its generation by ectopic recombination between transposon copies and another two harbor inverted duplications of non-repetitive DNA at the two breakpoints and were likely generated by staggered single-strand breaks and repair by non-homologous end joining. Four out of 14 breakpoints lay in the intergenic region between preexisting duplicated genes, suggesting an adaptive advantage of separating previously tightly linked duplicates. Four out of 14 breakpoints are associated with transposed genes, suggesting these breakpoints are fragile regions. Finally two inversions contain novel genes at their breakpoints and another three show alterations of genes at breakpoints with potential adaptive significance. Conclusions D. mojavensis chromosomal inversions were generated by multiple mechanisms, an observation that does not provide support for increased mutation rate as explanation for rapid chromosomal evolution. On the other hand, we have found a number of gene alterations at the breakpoints with putative adaptive consequences that directly point to natural selection as the cause of D. mojavensis rapid chromosomal evolution. PMID:22296923

  4. Epigallocatechin-3-gallate ameliorates intrahepatic cholestasis of pregnancy by inhibiting matrix metalloproteinase-2 and matrix metalloproteinase-9.

    Science.gov (United States)

    Zhang, Mei; Xu, Meimei

    2017-10-01

    Matrix metalloproteinase (MMP)-2 and matrix metalloproteinase-9 are involved in many illnesses affecting pregnant women, including intrahepatic cholestasis of pregnancy (ICP), a serious liver abnormality during pregnancy. Epigallocatechin-3-gallate (EGCG) has been widely reported to inhibit activities of MMP-2 and MMP-9. We aimed to investigate the role of EGCG in ameliorating ICP symptoms in a rat model. Using 17α-ethinylestradiol to induce ICP in pregnant rats, we investigated the efficacy of EGCG administration on ICP symptoms, including bile flow rate, total bile acids (TBA) and MMP-2 and MMP-9 activities. Correlation study was conducted among levels of the two MMPs with other ICP symptoms. In ICP rats, activities of both MMP-2 and MMP-9 were significantly elevated. EGCG administration could inhibit the upregulation of MMP-2 and MMP-9 post-transcriptionally. Furthermore, EGCG ameliorated ICP symptoms, as evidenced by restored bile flow rate and TBA, showing efficient treatment outcomes. At last, levels of TBA and the two MMPs were found to be strongly correlated. Our study demonstrates that, for the first time, the efficacy of EGCG in ameliorating ICP symptoms by inhibiting both MMP-2 and MMP-9, which supports its potential as a novel drug in ameliorating ICP. © 2017 Société Française de Pharmacologie et de Thérapeutique.

  5. Curcumin: a potential candidate for matrix metalloproteinase inhibitors.

    Science.gov (United States)

    Kumar, Dileep; Kumar, Manish; Saravanan, Chinnadurai; Singh, Sushil Kumar

    2012-10-01

    Curcumin, a natural yellow pigment of turmeric, has become focus of interest with regard to its role in regulation of matrix metalloproteinases (MMPs). MMPs are metal-dependent endopeptidases capable of degrading components of the extracellular matrix. MMPs are involved in chronic diseases such as arthritis, Alzheimer's disease, psoriasis, chronic obstructive pulmonary disease, asthma, cancer, neuropathic pain, and atherosclerosis. Curcumin regulates the expression and secretion of various MMPs. This review documents the matrix metalloproteinase inhibitory activity of curcumin on various diseases viz., cancer, arthritis, and ulcer. Finally, the steps to be taken for getting potent curcuminoids have also been discussed in the structure-activity relationship (SAR) section. From this review, readers can get answer to the question: Is curcumin a potential MMPI candidate? Numerous approaches have been taken to beget a molecule with specificity restricted to a particular MMP as well as good oral bioavailability; however, nearly all the molecules lack these criteria. Using quantitative structure-activity relationship (QSAR) modeling and virtual screening, new analogs of curcumin can be designed which will be selectively inhibiting different MMPs.

  6. Analysis of four achaete-scute homologs in Bombyx mori reveals new viewpoints of the evolution and functions of this gene family

    OpenAIRE

    Zhou, Qingxiang; Zhang, Tianyi; Xu, Weihua; Yu, Linlin; Yi, Yongzhu; Zhang, Zhifang

    2008-01-01

    Abstract Background achaete-scute complexe (AS-C) has been widely studied at genetic, developmental and evolutional levels. Genes of this family encode proteins containing a highly conserved bHLH domain, which take part in the regulation of the development of central nervous system and peripheral nervous system. Many AS-C homologs have been isolated from various vertebrates and invertebrates. Also, AS-C genes are duplicated during the evolution of Diptera. Functions besides neural development...

  7. Matrix metalloproteinase-10 (MMP-10) interaction with tissue inhibitors of metalloproteinases TIMP-1 and TIMP-2: binding studies and crystal structure.

    Science.gov (United States)

    Batra, Jyotica; Robinson, Jessica; Soares, Alexei S; Fields, Alan P; Radisky, Derek C; Radisky, Evette S

    2012-05-04

    Matrix metalloproteinase 10 (MMP-10, stromelysin-2) is a secreted metalloproteinase with functions in skeletal development, wound healing, and vascular remodeling; its overexpression is also implicated in lung tumorigenesis and tumor progression. To understand the regulation of MMP-10 by tissue inhibitors of metalloproteinases (TIMPs), we have assessed equilibrium inhibition constants (K(i)) of putative physiological inhibitors TIMP-1 and TIMP-2 for the active catalytic domain of human MMP-10 (MMP-10cd) using multiple kinetic approaches. We find that TIMP-1 inhibits the MMP-10cd with a K(i) of 1.1 × 10(-9) M; this interaction is 10-fold weaker than the inhibition of the similar MMP-3 (stromelysin-1) catalytic domain (MMP-3cd) by TIMP-1. TIMP-2 inhibits the MMP-10cd with a K(i) of 5.8 × 10(-9) M, which is again 10-fold weaker than the inhibition of MMP-3cd by this inhibitor (K(i) = 5.5 × 10(-10) M). We solved the x-ray crystal structure of TIMP-1 bound to the MMP-10cd at 1.9 Å resolution; the structure was solved by molecular replacement and refined with an R-factor of 0.215 (R(free) = 0.266). Comparing our structure of MMP-10cd·TIMP-1 with the previously solved structure of MMP-3cd·TIMP-1 (Protein Data Bank entry 1UEA), we see substantial differences at the binding interface that provide insight into the differential binding of stromelysin family members to TIMP-1. This structural information may ultimately assist in the design of more selective TIMP-based inhibitors tailored for specificity toward individual members of the stromelysin family, with potential therapeutic applications.

  8. Evolution before genes

    Directory of Open Access Journals (Sweden)

    Vasas Vera

    2012-01-01

    Full Text Available Abstract Background Our current understanding of evolution is so tightly linked to template-dependent replication of DNA and RNA molecules that the old idea from Oparin of a self-reproducing 'garbage bag' ('coacervate' of chemicals that predated fully-fledged cell-like entities seems to be farfetched to most scientists today. However, this is exactly the kind of scheme we propose for how Darwinian evolution could have occurred prior to template replication. Results We cannot confirm previous claims that autocatalytic sets of organic polymer molecules could undergo evolution in any interesting sense by themselves. While we and others have previously imagined inhibition would result in selectability, we found that it produced multiple attractors in an autocatalytic set that cannot be selected for. Instead, we discovered that if general conditions are satisfied, the accumulation of adaptations in chemical reaction networks can occur. These conditions are the existence of rare reactions producing viable cores (analogous to a genotype, that sustains a molecular periphery (analogous to a phenotype. Conclusions We conclude that only when a chemical reaction network consists of many such viable cores, can it be evolvable. When many cores are enclosed in a compartment there is competition between cores within the same compartment, and when there are many compartments, there is between-compartment competition due to the phenotypic effects of cores and their periphery at the compartment level. Acquisition of cores by rare chemical events, and loss of cores at division, allows macromutation, limited heredity and selectability, thus explaining how a poor man's natural selection could have operated prior to genetic templates. This is the only demonstration to date of a mechanism by which pre-template accumulation of adaptation could occur. Reviewers This article was reviewed by William Martin and Eugene Koonin.

  9. Liposome-mediated amplified detection of cell-secreted matrix metalloproteinase-9†

    Science.gov (United States)

    Banerjee, Jayati; Hanson, Andrea J.; Nyren-Erickson, Erin K.; Ganguli, Bratati; Wagh, Anil; Muhonen, Wallace W.; Law, Benedict; Shabb, John B.; Srivastava, D. K.; Mallik, Sanku

    2018-01-01

    A liposome-based amplified detection system is presented for the cancer cell secreted pathogenic enzyme matrix metalloproteinase-9 which does not require the use of biological antibodies. PMID:20424776

  10. Diversification, phylogeny and evolution of auxin response factor (ARF) family: insights gained from analyzing maize ARF genes.

    Science.gov (United States)

    Wang, Yijun; Deng, Dexiang; Shi, Yating; Miao, Nan; Bian, Yunlong; Yin, Zhitong

    2012-03-01

    Auxin response factors (ARFs), member of the plant-specific B3 DNA binding superfamily, target specifically to auxin response elements (AuxREs) in promoters of primary auxin-responsive genes and heterodimerize with Aux/IAA proteins in auxin signaling transduction cascade. In previous research, we have isolated and characterized maize Aux/IAA genes in whole-genome scale. Here, we report the comprehensive analysis of ARF genes in maize. A total of 36 ARF genes were identified and validated from the B73 maize genome through an iterative strategy. Thirty-six maize ARF genes are distributed in all maize chromosomes except chromosome 7. Maize ARF genes expansion is mainly due to recent segmental duplications. Maize ARF proteins share one B3 DNA binding domain which consists of seven-stranded β sheets and two short α helixes. Twelve maize ARFs with glutamine-rich middle regions could be as activators in modulating expression of auxin-responsive genes. Eleven maize ARF proteins are lack of homo- and heterodimerization domains. Putative cis-elements involved in phytohormones and light signaling responses, biotic and abiotic stress adaption locate in promoters of maize ARF genes. Expression patterns vary greatly between clades and sister pairs of maize ARF genes. The B3 DNA binding and auxin response factor domains of maize ARF proteins are primarily subjected to negative selection during selective sweep. The mixed selective forces drive the diversification and evolution of genomic regions outside of B3 and ARF domains. Additionally, the dicot-specific proliferation of ARF genes was detected. Comparative genomics analysis indicated that maize, sorghum and rice duplicate chromosomal blocks containing ARF homologs are highly syntenic. This study provides insights into the distribution, phylogeny and evolution of ARF gene family.

  11. Relationship between Serum Levels of Metalloproteinase-8 and Tissue Inhibitor of Metalloproteinases-1 and Exercise Test Results in Postmenopausal Women

    Directory of Open Access Journals (Sweden)

    J. Mieczkowska

    2016-01-01

    Full Text Available Physical activity as a part of the lifestyle is a significant factor influencing health condition. Exercises that require stamina are of particular importance. Oxygen metabolism, which is a significant part of all longer training processes, has an influence on cardiovascular and respiratory system functioning as well as all the processes taking part in maintenance of efficient homeostasis. Presentation of the correlation between exercise test results and MMP-8 (metalloproteinase-8 and TIMP-1 (tissue inhibitor of metalloproteinases-1 levels was attempted in this work. MMP-8 is a proteolytic enzyme taking part in progression of diseases related to process of ageing. 62 healthy women in postmenopausal period were qualified for the study (mean age: 54±3.6. There was exercise test on the treadmill according to Bruce’s protocol performed. MMP-8 and TIMP-1 serum levels were measured. There was statistically important correlation between increased level of MMP-8 and increased level of TIMP-1 with lower results of exercise test observed. The conducted study provides further biochemical arguments for prophylactic role of physical activity, which lowers the risk of noninfectious diseases, typical for middle adulthood, by influencing physical capacity.

  12. Tumorigenic Potential of Extracellular Matrix Metalloproteinase Inducer

    Science.gov (United States)

    Zucker, Stanley; Hymowitz, Michelle; Rollo, Ellen E.; Mann, Richard; Conner, Cathleen E.; Cao, Jian; Foda, Hussein D.; Tompkins, David C.; Toole, Bryan P.

    2001-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN), a glycoprotein present on the cancer cell plasma membrane, enhances fibroblast synthesis of matrix metalloproteinases (MMPs). The demonstration that peritumoral fibroblasts synthesize most of the MMPs in human tumors rather than the cancer cells themselves has ignited interest in the role of EMMPRIN in tumor dissemination. In this report we have demonstrated a role for EMMPRIN in cancer progression. Human MDA-MB-436 breast cancer cells, which are tumorigenic but slow growing in vivo, were transfected with EMMPRIN cDNA and injected orthotopically into mammary tissue of female NCr nu/nu mice. Green fluorescent protein was used to visualize metastases. In three experiments, breast cancer cell clones transfected with EMMPRIN cDNA were considerably more tumorigenic and invasive than plasmid-transfected cancer cells. Increased gelatinase A and gelatinase B expression (demonstrated by in situ hybridization and gelatin substrate zymography) was demonstrated in EMMPRIN-enhanced tumors. In contrast to de novo breast cancers in humans, human tumors transplanted into mice elicited minimal stromal or inflammatory cell reactions. Based on these experimental studies and our previous demonstration that EMMPRIN is prominently displayed in human cancer tissue, we propose that EMMPRIN plays an important role in cancer progression by increasing synthesis of MMPs. PMID:11395366

  13. Matrix Metalloproteinase Responsive Delivery of Myostatin Inhibitors.

    Science.gov (United States)

    Braun, Alexandra C; Gutmann, Marcus; Ebert, Regina; Jakob, Franz; Gieseler, Henning; Lühmann, Tessa; Meinel, Lorenz

    2017-01-01

    The inhibition of myostatin - a member of the transforming growth factor (TGF-β) family - drives regeneration of functional skeletal muscle tissue. We developed a bioresponsive drug delivery system (DDS) linking release of a myostatin inhibitor (MI) to inflammatory flares of myositis to provide self-regulated MI concentration gradients within tissues of need. A protease cleavable linker (PCL) - responding to MMP upregulation - is attached to the MI and site-specifically immobilized on microparticle surfaces. The PCL disintegrated in a matrix metalloproteinase (MMP) 1, 8, and particularly MMP-9 concentration dependent manner, with MMP-9 being an effective surrogate biomarker correlating with the activity of myositis. The bioactivity of particle-surface bound as well as released MI was confirmed by luciferase suppression in stably transfected HEK293 cells responding to myostatin induced SMAD phosphorylation. We developed a MMP-responsive DDS for MI delivery responding to inflammatory flare of a diseased muscle matching the kinetics of MMP-9 upregulation, with MMP-9 kinetics matching (patho-) physiological myostatin levels. ᅟ: Graphical Abstract Schematic illustration of the matrix metalloproteinase responsive delivery system responding to inflammatory flares of muscle disease. The protease cleavable linker readily disintegrates upon entry into the diseased tissue, therby releasing the mystatin inhibitor.

  14. Bacterial evolution through the selective loss of beneficial Genes. Trade-offs in expression involving two loci.

    Science.gov (United States)

    Zinser, Erik R; Schneider, Dominique; Blot, Michel; Kolter, Roberto

    2003-01-01

    The loss of preexisting genes or gene activities during evolution is a major mechanism of ecological specialization. Evolutionary processes that can account for gene loss or inactivation have so far been restricted to one of two mechanisms: direct selection for the loss of gene activities that are disadvantageous under the conditions of selection (i.e., antagonistic pleiotropy) and selection-independent genetic drift of neutral (or nearly neutral) mutations (i.e., mutation accumulation). In this study we demonstrate with an evolved strain of Escherichia coli that a third, distinct mechanism exists by which gene activities can be lost. This selection-dependent mechanism involves the expropriation of one gene's upstream regulatory element by a second gene via a homologous recombination event. Resulting from this genetic exchange is the activation of the second gene and a concomitant inactivation of the first gene. This gene-for-gene expression tradeoff provides a net fitness gain, even if the forfeited activity of the first gene can play a positive role in fitness under the conditions of selection. PMID:12930738

  15. Bacterial evolution through the selective loss of beneficial Genes. Trade-offs in expression involving two loci.

    Science.gov (United States)

    Zinser, Erik R; Schneider, Dominique; Blot, Michel; Kolter, Roberto

    2003-08-01

    The loss of preexisting genes or gene activities during evolution is a major mechanism of ecological specialization. Evolutionary processes that can account for gene loss or inactivation have so far been restricted to one of two mechanisms: direct selection for the loss of gene activities that are disadvantageous under the conditions of selection (i.e., antagonistic pleiotropy) and selection-independent genetic drift of neutral (or nearly neutral) mutations (i.e., mutation accumulation). In this study we demonstrate with an evolved strain of Escherichia coli that a third, distinct mechanism exists by which gene activities can be lost. This selection-dependent mechanism involves the expropriation of one gene's upstream regulatory element by a second gene via a homologous recombination event. Resulting from this genetic exchange is the activation of the second gene and a concomitant inactivation of the first gene. This gene-for-gene expression tradeoff provides a net fitness gain, even if the forfeited activity of the first gene can play a positive role in fitness under the conditions of selection.

  16. Universal pacemaker of genome evolution.

    Science.gov (United States)

    Snir, Sagi; Wolf, Yuri I; Koonin, Eugene V

    2012-01-01

    A fundamental observation of comparative genomics is that the distribution of evolution rates across the complete sets of orthologous genes in pairs of related genomes remains virtually unchanged throughout the evolution of life, from bacteria to mammals. The most straightforward explanation for the conservation of this distribution appears to be that the relative evolution rates of all genes remain nearly constant, or in other words, that evolutionary rates of different genes are strongly correlated within each evolving genome. This correlation could be explained by a model that we denoted Universal PaceMaker (UPM) of genome evolution. The UPM model posits that the rate of evolution changes synchronously across genome-wide sets of genes in all evolving lineages. Alternatively, however, the correlation between the evolutionary rates of genes could be a simple consequence of molecular clock (MC). We sought to differentiate between the MC and UPM models by fitting thousands of phylogenetic trees for bacterial and archaeal genes to supertrees that reflect the dominant trend of vertical descent in the evolution of archaea and bacteria and that were constrained according to the two models. The goodness of fit for the UPM model was better than the fit for the MC model, with overwhelming statistical significance, although similarly to the MC, the UPM is strongly overdispersed. Thus, the results of this analysis reveal a universal, genome-wide pacemaker of evolution that could have been in operation throughout the history of life.

  17. Molecular Evolution at a Meiosis Gene Mediates Species Differences in the Rate and Patterning of Recombination.

    Science.gov (United States)

    Brand, Cara L; Cattani, M Victoria; Kingan, Sarah B; Landeen, Emily L; Presgraves, Daven C

    2018-04-23

    Crossing over between homologous chromosomes during meiosis repairs programmed DNA double-strand breaks, ensures proper segregation at meiosis I [1], shapes the genomic distribution of nucleotide variability in populations, and enhances the efficacy of natural selection among genetically linked sites [2]. Between closely related Drosophila species, large differences exist in the rate and chromosomal distribution of crossing over. Little, however, is known about the molecular genetic changes or population genetic forces that mediate evolved differences in recombination between species [3, 4]. Here, we show that a meiosis gene with a history of rapid evolution acts as a trans-acting modifier of species differences in crossing over. In transgenic flies, the dicistronic gene, mei-217/mei-218, recapitulates a large part of the species differences in the rate and chromosomal distribution of crossing over. These phenotypic differences appear to result from changes in protein sequence not gene expression. Our population genetics analyses show that the protein-coding sequence of mei-218, but not mei-217, has a history of recurrent positive natural selection. By modulating the intensity of centromeric and telomeric suppression of crossing over, evolution at mei-217/-218 has incidentally shaped gross differences in the chromosomal distribution of nucleotide variability between species. We speculate that recurrent bouts of adaptive evolution at mei-217/-218 might reflect a history of coevolution with selfish genetic elements. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Evolution of GHF5 endoglucanase gene structure in plant-parasitic nematodes: no evidence for an early domain shuffling event

    Directory of Open Access Journals (Sweden)

    Gheysen Godelieve

    2008-11-01

    Full Text Available Abstract Background Endo-1,4-beta-glucanases or cellulases from the glycosyl hydrolase family 5 (GHF5 have been found in numerous bacteria and fungi, and recently also in higher eukaryotes, particularly in plant-parasitic nematodes (PPN. The origin of these genes has been attributed to horizontal gene transfer from bacteria, although there still is a lot of uncertainty about the origin and structure of the ancestral GHF5 PPN endoglucanase. It is not clear whether this ancestral endoglucanase consisted of the whole gene cassette, containing a catalytic domain and a carbohydrate-binding module (CBM, type 2 in PPN and bacteria or only of the catalytic domain while the CBM2 was retrieved by domain shuffling later in evolution. Previous studies on the evolution of these genes have focused primarily on data of sedentary nematodes, while in this study, extra data from migratory nematodes were included. Results Two new endoglucanases from the migratory nematodes Pratylenchus coffeae and Ditylenchus africanus were included in this study. The latter one is the first gene isolated from a PPN of a different superfamily (Sphaerularioidea; all previously known nematode endoglucanases belong to the superfamily Tylenchoidea (order Rhabditida. Phylogenetic analyses were conducted with the PPN GHF5 endoglucanases and homologous endoglucanases from bacterial and other eukaryotic lineages such as beetles, fungi and plants. No statistical incongruence between the phylogenetic trees deduced from the catalytic domain and the CBM2 was found, which could suggest that both domains have evolved together. Furthermore, based on gene structure data, we inferred a model for the evolution of the GHF5 endoglucanase gene structure in plant-parasitic nematodes. Our data confirm a close relationship between Pratylenchus spp. and the root knot nematodes, while some Radopholus similis endoglucanases are more similar to cyst nematode genes. Conclusion We conclude that the ancestral

  19. Evolution of GHF5 endoglucanase gene structure in plant-parasitic nematodes: no evidence for an early domain shuffling event.

    Science.gov (United States)

    Kyndt, Tina; Haegeman, Annelies; Gheysen, Godelieve

    2008-11-03

    Endo-1,4-beta-glucanases or cellulases from the glycosyl hydrolase family 5 (GHF5) have been found in numerous bacteria and fungi, and recently also in higher eukaryotes, particularly in plant-parasitic nematodes (PPN). The origin of these genes has been attributed to horizontal gene transfer from bacteria, although there still is a lot of uncertainty about the origin and structure of the ancestral GHF5 PPN endoglucanase. It is not clear whether this ancestral endoglucanase consisted of the whole gene cassette, containing a catalytic domain and a carbohydrate-binding module (CBM, type 2 in PPN and bacteria) or only of the catalytic domain while the CBM2 was retrieved by domain shuffling later in evolution. Previous studies on the evolution of these genes have focused primarily on data of sedentary nematodes, while in this study, extra data from migratory nematodes were included. Two new endoglucanases from the migratory nematodes Pratylenchus coffeae and Ditylenchus africanus were included in this study. The latter one is the first gene isolated from a PPN of a different superfamily (Sphaerularioidea); all previously known nematode endoglucanases belong to the superfamily Tylenchoidea (order Rhabditida). Phylogenetic analyses were conducted with the PPN GHF5 endoglucanases and homologous endoglucanases from bacterial and other eukaryotic lineages such as beetles, fungi and plants. No statistical incongruence between the phylogenetic trees deduced from the catalytic domain and the CBM2 was found, which could suggest that both domains have evolved together. Furthermore, based on gene structure data, we inferred a model for the evolution of the GHF5 endoglucanase gene structure in plant-parasitic nematodes. Our data confirm a close relationship between Pratylenchus spp. and the root knot nematodes, while some Radopholus similis endoglucanases are more similar to cyst nematode genes. We conclude that the ancestral PPN GHF5 endoglucanase gene most probably consisted of

  20. Ulex europaeus I lectin induces activation of matrix-metalloproteinase-2 in endothelial cells.

    Science.gov (United States)

    Gomez, D E; Yoshiji, H; Kim, J C; Thorgeirsson, U P

    1995-11-02

    In this report, we show that the lectin Ulex europaeus agglutinin I (UEA I), which binds to alpha-linked fucose residues on the surface of endothelial cells, mediates activation of the 72-kDa matrix metalloproteinase-2 (MMP-2). A dose-dependent increase in the active 62-kDa form of MMP-2 was observed in conditioned medium from monkey aortic endothelial cells (MAEC) following incubation with concentrations of UEA I ranging from 2 to 100 micrograms/ml. The increase in the 62-kDa MMP-2 gelatinolytic activity was not reflected by a rise in MMP-2 gene expression. The UEA I-mediated activation of MMP-2 was blocked by L-fucose, which competes with UEA I for binding to alpha-fucose. These findings may suggest that a similar in vivo mechanism exists, whereby adhesive interactions between tumor cell lectins and endothelial cells can mediate MMP-2 activation.

  1. Fractional Excretion of Survivin, Extracellular Matrix Metalloproteinase Inducer, and Matrix Metalloproteinase 7 in Children with Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Agnieszka Bargenda

    2016-07-01

    Full Text Available Background: Epithelial–mesenchymal transition (EMT is defined as a transformation of tubular epithelial cells into mesenchymal ones. These cells migrate through the extracellular matrix and change into active myofibroblasts, which are responsible for excessive matrix deposition. Such changes may lead to tubular dysfunction and fibrosis of the renal parenchyma, characteristic of chronic kidney disease (CKD. However, there are no data on potential EMT markers in children with CKD. The aim of our study was to assess the usefulness of fractional excretion (FE of survivin, E-cadherin, extracellular matrix metalloproteinase inducer (EMMPRIN, matrix metalloproteinase (MMP7, and transforming growth factor beta 1 (TGF-β1 as potential markers of CKD-related complications such as tubular damage and fibrosis. Methods: Forty-one pre-dialysis children with CKD Stages 3–5 and 23 age-matched controls were enrolled in the study. The serum and urine concentrations of analysed parameters were assessed by an enzyme-linked immunosorbent assay test. Results: Tubular reabsorption of all analysed parameters was >99% in the control group. All FE values rose significantly in children with CKD, yet they remained 1%. Conclusions: FE of the examined markers may become a useful tool in the assessment of tubular dysfunction during the course of CKD. The FE of survivin, EMMPRIN, and MMP7 warrant further research as potential independent markers of kidney-specific EMT.

  2. Modular evolution of glutathione peroxidase genes in association with different biochemical properties of their encoded proteins in invertebrate animals

    Directory of Open Access Journals (Sweden)

    Zo Young-Gun

    2009-04-01

    Full Text Available Abstract Background Phospholipid hydroperoxide glutathione peroxidases (PHGPx, the most abundant isoforms of GPx families, interfere directly with hydroperoxidation of lipids. Biochemical properties of these proteins vary along with their donor organisms, which has complicated the phylogenetic classification of diverse PHGPx-like proteins. Despite efforts for comprehensive analyses, the evolutionary aspects of GPx genes in invertebrates remain largely unknown. Results We isolated GPx homologs via in silico screening of genomic and/or expressed sequence tag databases of eukaryotic organisms including protostomian species. Genes showing strong similarity to the mammalian PHGPx genes were commonly found in all genomes examined. GPx3- and GPx7-like genes were additionally detected from nematodes and platyhelminths, respectively. The overall distribution of the PHGPx-like proteins with different biochemical properties was biased across taxa; selenium- and glutathione (GSH-dependent proteins were exclusively detected in platyhelminth and deuterostomian species, whereas selenium-independent and thioredoxin (Trx-dependent enzymes were isolated in the other taxa. In comparison of genomic organization, the GSH-dependent PHGPx genes showed a conserved architectural pattern, while their Trx-dependent counterparts displayed complex exon-intron structures. A codon for the resolving Cys engaged in reductant binding was found to be substituted in a series of genes. Selection pressure to maintain the selenocysteine codon in GSH-dependent genes also appeared to be relaxed during their evolution. With the dichotomized fashion in genomic organizations, a highly polytomic topology of their phylogenetic trees implied that the GPx genes have multiple evolutionary intermediate forms. Conclusion Comparative analysis of invertebrate GPx genes provides informative evidence to support the modular pathways of GPx evolution, which have been accompanied with sporadic

  3. The molecular evolution of cytochrome P450 genes within and between drosophila species.

    Science.gov (United States)

    Good, Robert T; Gramzow, Lydia; Battlay, Paul; Sztal, Tamar; Batterham, Philip; Robin, Charles

    2014-04-20

    We map 114 gene gains and 74 gene losses in the P450 gene family across the phylogeny of 12 Drosophila species by examining the congruence of gene trees and species trees. Although the number of P450 genes varies from 74 to 94 in the species examined, we infer that there were at least 77 P450 genes in the ancestral Drosophila genome. One of the most striking observations in the data set is the elevated loss of P450 genes in the Drosophila sechellia lineage. The gain and loss events are not evenly distributed among the P450 genes-with 30 genes showing no gene gains or losses whereas others show as many as 20 copy number changes among the species examined. The P450 gene clades showing the fewest number of gene gain and loss events tend to be those evolving with the most purifying selection acting on the protein sequences, although there are exceptions, such as the rapid rate of amino acid replacement observed in the single copy phantom (Cyp306a1) gene. Within D. melanogaster, we observe gene copy number polymorphism in ten P450 genes including multiple cases of interparalog chimeras. Nonallelic homologous recombination (NAHR) has been associated with deleterious mutations in humans, but here we provide a second possible example of an NAHR event in insect P450s being adaptive. Specifically, we find that a polymorphic Cyp12a4/Cyp12a5 chimera correlates with resistance to an insecticide. Although we observe such interparalog exchange in our within-species data sets, we have little evidence of it between species, raising the possibility that such events may occur more frequently than appreciated but are masked by subsequent sequence change. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  4. Evolution and Diversity of Biosynthetic Gene Clusters in Fusarium

    Directory of Open Access Journals (Sweden)

    Koen Hoogendoorn

    2018-06-01

    Full Text Available Plant pathogenic fungi in the Fusarium genus cause severe damage to crops, resulting in great financial losses and health hazards. Specialized metabolites synthesized by these fungi are known to play key roles in the infection process, and to provide survival advantages inside and outside the host. However, systematic studies of the evolution of specialized metabolite-coding potential across Fusarium have been scarce. Here, we apply a combination of bioinformatic approaches to identify biosynthetic gene clusters (BGCs across publicly available genomes from Fusarium, to group them into annotated families and to study gain/loss events of BGC families throughout the history of the genus. Comparison with MIBiG reference BGCs allowed assignment of 29 gene cluster families (GCFs to pathways responsible for the production of known compounds, while for 57 GCFs, the molecular products remain unknown. Comparative analysis of BGC repertoires using ancestral state reconstruction raised several new hypotheses on how BGCs contribute to Fusarium pathogenicity or host specificity, sometimes surprisingly so: for example, a gene cluster for the biosynthesis of hexadehydro-astechrome was identified in the genome of the biocontrol strain Fusarium oxysporum Fo47, while being absent in that of the tomato pathogen F. oxysporum f.sp. lycopersici. Several BGCs were also identified on supernumerary chromosomes; heterologous expression of genes for three terpene synthases encoded on the Fusarium poae supernumerary chromosome and subsequent GC/MS analysis showed that these genes are functional and encode enzymes that each are able to synthesize koraiol; this observed functional redundancy supports the hypothesis that localization of copies of BGCs on supernumerary chromosomes provides freedom for evolutionary innovations to occur, while the original function remains conserved. Altogether, this systematic overview of biosynthetic diversity in Fusarium paves the way for

  5. Genome-wide identification and evolution of the PIN-FORMED (PIN) gene family in Glycine max.

    Science.gov (United States)

    Liu, Yuan; Wei, Haichao

    2017-07-01

    Soybean (Glycine max) is one of the most important crop plants. Wild and cultivated soybean varieties have significant differences worth further investigation, such as plant morphology, seed size, and seed coat development; these characters may be related to auxin biology. The PIN gene family encodes essential transport proteins in cell-to-cell auxin transport, but little research on soybean PIN genes (GmPIN genes) has been done, especially with respect to the evolution and differences between wild and cultivated soybean. In this study, we retrieved 23 GmPIN genes from the latest updated G. max genome database; six GmPIN protein sequences were changed compared with the previous database. Based on the Plant Genome Duplication Database, 18 GmPIN genes have been involved in segment duplication. Three pairs of GmPIN genes arose after the second soybean genome duplication, and six occurred after the first genome duplication. The duplicated GmPIN genes retained similar expression patterns. All the duplicated GmPIN genes experienced purifying selection (K a /K s genome sequence of 17 wild and 14 cultivated soybean varieties. Our research provides useful and comprehensive basic information for understanding GmPIN genes.

  6. Inhibition of matrix metalloproteinase-14 in osteosarcoma cells by clodronate

    NARCIS (Netherlands)

    Heikkilä, P.; Teronen, O.; Hirn, M.Y.; Sorsa, T.; Tervahartiala, T.; Salo, T.; Konttinen, Y.T.; Halttunen, T.; Moilanen, M.; Hanemaaijer, R.; Laitinen, M.

    2003-01-01

    Background. Bisphosphonates reduce the bone metastasis formation and angiogenesis but the exact molecular mechanisms involved are unclear. Progelatinase A (proMMP-2; 78 KDa) is activated up during the tumor spread and metastasis by a cell surface-associated matrix metalloproteinase (membrane-type

  7. Metastasis is strongly reduced by the matrix metalloproteinase inhibitor Galardin in the MMTV-PymT transgenic breast cancer model

    DEFF Research Database (Denmark)

    Almholt, Kasper; Juncker-Jensen, Anna; Lærum, Ole Didrik

    2008-01-01

    Matrix metalloproteinases (MMP) have several roles that influence cancer progression and dissemination. However, low molecular weight metalloproteinase inhibitors (MPI) have not yet been tested in transgenic/spontaneous metastasis models. We have tested Galardin/GM6001, a potent MPI that reacts w...

  8. Matrix metalloproteinases during and outside of migraine attacks without aura

    DEFF Research Database (Denmark)

    Ashina, M.; Tvedskov, J.F.; Thiesen, Kerstin Lipka

    2010-01-01

    Ashina M, Tvedskov JF, Lipka K, Bilello J, Penkowa M & Olesen J. Matrix metalloproteinases during and outside of migraine attacks without aura. Cephalalgia 2009. London. ISSN 0333-1024To test the hypothesis that permeability of the blood-brain barrier (BBB) is altered during migraine attack due...... to enhanced activation of matrix metalloproteinases (MMPs), we investigated MMP-3, MMP-9 and tissue inhibitor of metalloproteases (TIMP)-1 in the external jugular vein during and outside of migraine attacks in 21 patients with migraine without aura. In addition, we measured plasma levels of several other...... of MMP-3 in the external jugular (P = 0.002) and cubital (P = 0.008) vein during attacks compared with outside of attacks. We found no correlation of ictal or interictal MMP-3, MMP-9 and TIMP-1 to migraine duration and frequency analysed in 21 patients (P > 0.05). There was no difference between ictal...

  9. Gene duplication and the evolution of hemoglobin isoform differentiation in birds.

    Science.gov (United States)

    Grispo, Michael T; Natarajan, Chandrasekhar; Projecto-Garcia, Joana; Moriyama, Hideaki; Weber, Roy E; Storz, Jay F

    2012-11-02

    The majority of bird species co-express two functionally distinct hemoglobin (Hb) isoforms in definitive erythrocytes as follows: HbA (the major adult Hb isoform, with α-chain subunits encoded by the α(A)-globin gene) and HbD (the minor adult Hb isoform, with α-chain subunits encoded by the α(D)-globin gene). The α(D)-globin gene originated via tandem duplication of an embryonic α-like globin gene in the stem lineage of tetrapod vertebrates, which suggests the possibility that functional differentiation between the HbA and HbD isoforms may be attributable to a retained ancestral character state in HbD that harkens back to a primordial, embryonic function. To investigate this possibility, we conducted a combined analysis of protein biochemistry and sequence evolution to characterize the structural and functional basis of Hb isoform differentiation in birds. Functional experiments involving purified HbA and HbD isoforms from 11 different bird species revealed that HbD is characterized by a consistently higher O(2) affinity in the presence of allosteric effectors such as organic phosphates and Cl(-) ions. In the case of both HbA and HbD, analyses of oxygenation properties under the two-state Monod-Wyman-Changeux allosteric model revealed that the pH dependence of Hb-O(2) affinity stems primarily from changes in the O(2) association constant of deoxy (T-state)-Hb. Ancestral sequence reconstructions revealed that the amino acid substitutions that distinguish the adult-expressed Hb isoforms are not attributable to the retention of an ancestral (pre-duplication) character state in the α(D)-globin gene that is shared with the embryonic α-like globin gene.

  10. Gene Duplication and the Evolution of Hemoglobin Isoform Differentiation in Birds*

    Science.gov (United States)

    Grispo, Michael T.; Natarajan, Chandrasekhar; Projecto-Garcia, Joana; Moriyama, Hideaki; Weber, Roy E.; Storz, Jay F.

    2012-01-01

    The majority of bird species co-express two functionally distinct hemoglobin (Hb) isoforms in definitive erythrocytes as follows: HbA (the major adult Hb isoform, with α-chain subunits encoded by the αA-globin gene) and HbD (the minor adult Hb isoform, with α-chain subunits encoded by the αD-globin gene). The αD-globin gene originated via tandem duplication of an embryonic α-like globin gene in the stem lineage of tetrapod vertebrates, which suggests the possibility that functional differentiation between the HbA and HbD isoforms may be attributable to a retained ancestral character state in HbD that harkens back to a primordial, embryonic function. To investigate this possibility, we conducted a combined analysis of protein biochemistry and sequence evolution to characterize the structural and functional basis of Hb isoform differentiation in birds. Functional experiments involving purified HbA and HbD isoforms from 11 different bird species revealed that HbD is characterized by a consistently higher O2 affinity in the presence of allosteric effectors such as organic phosphates and Cl− ions. In the case of both HbA and HbD, analyses of oxygenation properties under the two-state Monod-Wyman-Changeux allosteric model revealed that the pH dependence of Hb-O2 affinity stems primarily from changes in the O2 association constant of deoxy (T-state)-Hb. Ancestral sequence reconstructions revealed that the amino acid substitutions that distinguish the adult-expressed Hb isoforms are not attributable to the retention of an ancestral (pre-duplication) character state in the αD-globin gene that is shared with the embryonic α-like globin gene. PMID:22962007

  11. Beneficial Regulation of Matrix Metalloproteinases for Skin Health

    Directory of Open Access Journals (Sweden)

    Neena Philips

    2011-01-01

    Full Text Available Matrix metalloproteinases (MMPs are essential to the remodeling of the extracellular matrix. While their upregulation facilitates aging and cancer, they are essential to epidermal differentiation and the prevention of wound scars. The pharmaceutical industry is active in identifying products that inhibit MMPs to prevent or treat aging and cancer and products that stimulate MMPs to prevent epidermal hyperproliferative diseases and wound scars.

  12. Matrix metalloproteinases in stem cell regulation and cancer

    OpenAIRE

    Kessenbrock, K; Wang, CY; Wang, CY; Werb, Z

    2014-01-01

    © 2015. Since Gross and Lapiere firstly discovered matrix metalloproteinases (MMPs) as important collagenolytic enzymes during amphibian tadpole morphogenesis in 1962, this intriguing family of extracellular proteinases has been implicated in various processes of developmental biology. However, the pathogenic roles of MMPs in human diseases such as cancer have also garnered widespread attention. The most straightforward explanation for their role in cancer is that MMPs, through extracellular ...

  13. Molecular Evolution and Genetic Variation of G2-Like Transcription Factor Genes in Maize.

    Directory of Open Access Journals (Sweden)

    Fang Liu

    Full Text Available The productivity of maize (Zea mays L. depends on the development of chloroplasts, and G2-like transcription factors play a central role in regulating chloroplast development. In this study, we identified 59 G2-like genes in the B73 maize genome and systematically analyzed these genes at the molecular and evolutionary levels. Based on gene structure character, motif compositions and phylogenetic analysis, maize G2-like genes (ZmG1- ZmG59 were divided into seven groups (I-VII. By synteny analysis, 18 collinear gene pairs and strongly conserved microsyntny among regions hosting G2-like genes across maize and sorghum were found. Here, we showed that the vast majority of ZmG gene duplications resulted from whole genome duplication events rather than tandem duplications. After gene duplication events, some ZmG genes were silenced. The functions of G2-like genes were multifarious and most genes that are expressed in green tissues may relate to maize photosynthesis. The qRT-PCR showed that the expression of these genes was sensitive to low temperature and drought. Furthermore, we analyzed differences of ZmGs specific to cultivars in temperate and tropical regions at the population level. Interestingly, the single nucleotide polymorphism (SNP analysis revealed that nucleotide polymorphism associated with different temperature zones. Above all, G2-like genes were highly conserved during evolution, but polymorphism could be caused due to a different geographical location. Moreover, G2-like genes might be related to cold and drought stresses.

  14. Effects of bromopride on expression of metalloproteinases and interleukins in left colonic anastomoses: an experimental study

    International Nuclear Information System (INIS)

    Silva, S.M.; Jerônimo, M.S.; Silva-Pereira, I.; Bocca, A.L.; Sousa, J.B.

    2014-01-01

    Anastomotic dehiscence is the most severe complication of colorectal surgery. Metalloproteinases (MMPs) and interleukins (ILs) can be used to analyze the healing process of anastomosis. To evaluate the effects of bromopride on MMP and cytokine gene expression in left colonic anastomoses in rats with or without induced abdominal sepsis, 80 rats were divided into two groups for euthanasia on the third or seventh postoperative day (POD). They were then divided into subgroups of 20 rats for sepsis induction or not, and then into subgroups of 10 rats for administration of bromopride or saline. Left colonic anastomosis was performed and abdominal sepsis was induced by cecal ligation and puncture. A colonic segment containing the anastomosis was removed for analysis of gene expression of MMP-1α, MMP-8, MMP-13, IL-β, IL-6, IL-10, tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ). On the third POD, bromopride was associated with increased MMP-1α, MMP-13, IL-6, IFN-γ, and IL-10 gene expression. On the seventh POD, all MMP transcripts became negatively modulated and all IL transcripts became positively modulated. In the presence of sepsis, bromopride administration increased MMP-8 and IFN-γ gene expression and decreased MMP-1, TNF-α, IL-6, and IL-10 gene expression on the third POD. On the seventh POD, we observed increased expression of MMP-13 and all cytokines, except for TNF-α. In conclusion, bromopride interferes with MMP and IL gene expression during anastomotic healing. Further studies are needed to correlate these changes with the healing process

  15. Effects of bromopride on expression of metalloproteinases and interleukins in left colonic anastomoses: an experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Silva, S.M. [Programa de Pós-Graduação em Ciências Médicas, Faculdade de Medicina, Universidade de Brasília, Brasília, DF (Brazil); Jerônimo, M.S. [Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, DF (Brazil); Silva-Pereira, I.; Bocca, A.L. [Departamento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Brasília, DF (Brazil); Sousa, J.B. [Departamento de Clínica Cirúrgica, Faculdade de Medicina, Universidade de Brasília, Brasília, DF (Brazil)

    2014-08-15

    Anastomotic dehiscence is the most severe complication of colorectal surgery. Metalloproteinases (MMPs) and interleukins (ILs) can be used to analyze the healing process of anastomosis. To evaluate the effects of bromopride on MMP and cytokine gene expression in left colonic anastomoses in rats with or without induced abdominal sepsis, 80 rats were divided into two groups for euthanasia on the third or seventh postoperative day (POD). They were then divided into subgroups of 20 rats for sepsis induction or not, and then into subgroups of 10 rats for administration of bromopride or saline. Left colonic anastomosis was performed and abdominal sepsis was induced by cecal ligation and puncture. A colonic segment containing the anastomosis was removed for analysis of gene expression of MMP-1α, MMP-8, MMP-13, IL-β, IL-6, IL-10, tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ). On the third POD, bromopride was associated with increased MMP-1α, MMP-13, IL-6, IFN-γ, and IL-10 gene expression. On the seventh POD, all MMP transcripts became negatively modulated and all IL transcripts became positively modulated. In the presence of sepsis, bromopride administration increased MMP-8 and IFN-γ gene expression and decreased MMP-1, TNF-α, IL-6, and IL-10 gene expression on the third POD. On the seventh POD, we observed increased expression of MMP-13 and all cytokines, except for TNF-α. In conclusion, bromopride interferes with MMP and IL gene expression during anastomotic healing. Further studies are needed to correlate these changes with the healing process.

  16. Direct detection of male quality can facilitate the evolution of female choosiness and indicators of good genes: Evolution across a continuum of indicator mechanisms.

    Science.gov (United States)

    Dhole, Sumit; Stern, Caitlin A; Servedio, Maria R

    2018-04-01

    The evolution of mating displays as indicators of male quality has been the subject of extensive theoretical and empirical research for over four decades. Research has also addressed the evolution of female mate choice favoring such indicators. Yet, much debate still exists about whether displays can evolve through the indirect benefits of female mate choice. Here, we use a population genetic model to investigate how the extent to which females can directly detect male quality influences the evolution of female choosiness and male displays. We use a continuum framework that incorporates indicator mechanisms that are traditionally modeled separately. Counter to intuition, we find that intermediate levels of direct detection of male quality can facilitate, rather than impede, the evolution of female choosiness and male displays in broad regions of this continuum. We examine how this evolution is driven by selective forces on genetic quality and on the display, and find that direct detection of male quality results in stronger indirect selection favoring female choosiness. Our results imply that displays maybe more likely to evolve when female choosiness has already evolved to discriminate perceptible forms of male quality. They also highlight the importance of considering general female choosiness, as well as preference, in studies of "good genes." © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.

  17. Evolution of HBV S-gene in the backdrop of HDV co-infection.

    Science.gov (United States)

    Baig, Samina; Abidi, Syed H; Azam, Zahid; Majid, Shahid; Khan, Saeed; Khanani, Muhammad R; Ali, Syed

    2018-04-16

    HBV-HDV co-infected people have a higher chance of developing cirrhosis, fulminant hepatitis, and hepatocellular carcinoma (HCC) compared to those infected only with HBV. The present study was conducted to investigate HBV genotypes and phylogeny among HBV mono-infected and HBV-HDV co-infected patients, as well as analyze mutations in the surface gene of HBV in mono-infected and co-infected patients. A total of 100 blood samples (50 co-infected with HBV and HDV, and 50 mono-infected with HBV only) were collected for this study. HBV DNA was extracted from patient sera and partial surface antigen gene was amplified from HBV genome using polymerase chain reaction. HBV S gene was sequenced from 49 mono-infected and 36 co-infected patients and analyzed to identify HBV genotypes and phylogenetic patterns. Subsequently, HBV S amino acid sequences were analyzed for mutational differences between sequences from mono- and co-infected patients. HBV genotype D was predominantly found in both mono-infected as well as co-infected patients. Phylogenetic analysis showed the divergence of HBV sequences, between mono- and co-infected patients, into two distinct clusters. HBV S gene mutation analysis revealed certain mutations in HBV-HDV co-infected subjects to be distinct from those found in mono-infected patients. This might indicate the evolution of HBV S gene under selection pressures generated from HDV coinfection. © 2018 Wiley Periodicals, Inc.

  18. Plasma tissue inhibitor of metalloproteinases-1 as a biological marker?

    DEFF Research Database (Denmark)

    Lomholt, Anne F.; Frederiksen, Camilla B.; Christensen, Ib J.

    2007-01-01

    Tissue Inhibitor of Metalloproteinases-1 (TIMP-1) may be a valuable biological marker in Colorectal Cancer (CRC). However, prospective validation of TIMP-1 as a biological marker should include a series of pre-analytical considerations. TIMP-1 is stored in platelets, which may degranulate during...

  19. Molecular evolution of candidate genes for crop-related traits in sunflower (Helianthus annuus L.).

    Science.gov (United States)

    Mandel, Jennifer R; McAssey, Edward V; Nambeesan, Savithri; Garcia-Navarro, Elena; Burke, John M

    2014-01-01

    Evolutionary analyses aimed at detecting the molecular signature of selection during crop domestication and/or improvement can be used to identify genes or genomic regions of likely agronomic importance. Here, we describe the DNA sequence-based characterization of a pool of candidate genes for crop-related traits in sunflower. These genes, which were identified based on homology to genes of known effect in other study systems, were initially sequenced from a panel of improved lines. All genes that exhibited a paucity of sequence diversity, consistent with the possible effects of selection during the evolution of cultivated sunflower, were then sequenced from a panel of wild sunflower accessions an outgroup. These data enabled formal tests for the effects of selection in shaping sequence diversity at these loci. When selection was detected, we further sequenced these genes from a panel of primitive landraces, thereby allowing us to investigate the likely timing of selection (i.e., domestication vs. improvement). We ultimately identified seven genes that exhibited the signature of positive selection during either domestication or improvement. Genetic mapping of a subset of these genes revealed co-localization between candidates for genes involved in the determination of flowering time, seed germination, plant growth/development, and branching and QTL that were previously identified for these traits in cultivated × wild sunflower mapping populations.

  20. Evolution, functional differentiation, and co-expression of the RLK gene family revealed in Jilin ginseng, Panax ginseng C.A. Meyer.

    Science.gov (United States)

    Lin, Yanping; Wang, Kangyu; Li, Xiangyu; Sun, Chunyu; Yin, Rui; Wang, Yanfang; Wang, Yi; Zhang, Meiping

    2018-02-21

    Most genes in a genome exist in the form of a gene family; therefore, it is necessary to have knowledge of how a gene family functions to comprehensively understand organismal biology. The receptor-like kinase (RLK)-encoding gene family is one of the most important gene families in plants. It plays important roles in biotic and abiotic stress tolerances, and growth and development. However, little is known about the functional differentiation and relationships among the gene members within a gene family in plants. This study has isolated 563 RLK genes (designated as PgRLK genes) expressed in Jilin ginseng (Panax ginseng C.A. Meyer), investigated their evolution, and deciphered their functional diversification and relationships. The PgRLK gene family is highly diverged and formed into eight types. The LRR type is the earliest and most prevalent, while only the Lec type originated after P. ginseng evolved. Furthermore, although the members of the PgRLK gene family all encode receptor-like protein kinases and share conservative domains, they are functionally very diverse, participating in numerous biological processes. The expressions of different members of the PgRLK gene family are extremely variable within a tissue, at a developmental stage and in the same cultivar, but most of the genes tend to express correlatively, forming a co-expression network. These results not only provide a deeper and comprehensive understanding of the evolution, functional differentiation and correlation of a gene family in plants, but also an RLK genic resource useful for enhanced ginseng genetic improvement.

  1. Evaluation of matrix metalloproteinases-2 (MMP-2) and tissue inhibitors of metalloproteinases-2 (TIMP-2) in oral submucous fibrosis and their correlation with disease severity.

    Science.gov (United States)

    Shrestha, A; Carnelio, S

    2013-01-01

    Oral submucous fibrosis (OSF), a potentially malignant oral lesion, is a form of pathological fibrosis affecting the oral mucosa. It results from an imbalance in equilibrium of the normal process of synthesis and degradation of extra cellular matrix. Matrix metalloproteinases and its inhibitors play important role in remodeling of the extra cellular matrix which are important in progression and pathogenesis of potentially malignant lesions to malignancy. To evaluate the expression and distribution of Matrix metalloproteinases-2 (MMP- 2) and Tissue inhibitor of metalloproteinases-2 (TIMP-2) in different grades of Oral Submucous Fibrosis(OSF). Immunohistochemical analysis for MMP-2 and its TIMP-2 was performed in 30 histopathologically confirmed, formalin fixed, paraffin embedded specimens of OSF. A semi-quantitative analysis was done to assess the expression, distribution and comparison of these in various stages of this disease. All moderately advanced cases and 64.2% for MMP-2 and 78.5% for TIMP-2 of early stage cases showed positivity. Between two stages of OSF, statistically significant differences were noted in expression of TIMP-2 in lamina propria, deep connective tissue and supra basal layers (p<0.05) and basal and supra basal layers for MMP-2 (p<0.05). The simultaneous increase in expression of MMP-2 and TIMP-2 with advancing stages of OSF can provide a basis for considering the proteases as important mediators in the pathogenesis and progression of OSF which could aid in identifying the aggressiveness of the condition and elucidate its role in its malignant transformation.

  2. Gene Conversion in Angiosperm Genomes with an Emphasis on Genes Duplicated by Polyploidization

    Directory of Open Access Journals (Sweden)

    Xi-Yin Wang

    2011-01-01

    Full Text Available Angiosperm genomes differ from those of mammals by extensive and recursive polyploidizations. The resulting gene duplication provides opportunities both for genetic innovation, and for concerted evolution. Though most genes may escape conversion by their homologs, concerted evolution of duplicated genes can last for millions of years or longer after their origin. Indeed, paralogous genes on two rice chromosomes duplicated an estimated 60–70 million years ago have experienced gene conversion in the past 400,000 years. Gene conversion preserves similarity of paralogous genes, but appears to accelerate their divergence from orthologous genes in other species. The mutagenic nature of recombination coupled with the buffering effect provided by gene redundancy, may facilitate the evolution of novel alleles that confer functional innovations while insulating biological fitness of affected plants. A mixed evolutionary model, characterized by a primary birth-and-death process and occasional homoeologous recombination and gene conversion, may best explain the evolution of multigene families.

  3. Evolution, epigenetics and cooperation

    Indian Academy of Sciences (India)

    Explanations for biological evolution in terms of changes in gene frequencies refer to outcomes rather than process. Integrating epigenetic studies with older evolutionary theories has drawn attention to the ways in which evolution occurs. Adaptation at the level of the gene is givingway to adaptation at the level of the ...

  4. Genome-wide identification of Jatropha curcas aquaporin genes and the comparative analysis provides insights into the gene family expansion and evolution in Hevea brasiliensis

    Directory of Open Access Journals (Sweden)

    Zhi eZou

    2016-03-01

    Full Text Available Aquaporins (AQPs are channel-forming integral membrane proteins that transport water and other small solutes across biological membranes. Despite the vital role of AQPs, to date, little is known in physic nut (Jatropha curcas L., Euphorbiaceae, an important non-edible oilseed crop with great potential for the production of biodiesel. In this study, 32 AQP genes were identified from the physic nut genome and the family number is relatively small in comparison to 51 in another Euphorbiaceae plant, rubber tree (Hevea brasiliensis Muell. Arg.. Based on the phylogenetic analysis, the JcAQPs were assigned to five subfamilies, i.e., 9 plasma membrane intrinsic proteins (PIPs, 9 tonoplast intrinsic proteins (TIPs, 8 NOD26-like intrinsic proteins (NIPs, 2 X intrinsic proteins (XIPs and 4 small basic intrinsic proteins (SIPs. Like rubber tree and other plant species, functional prediction based on the aromatic/arginine selectivity filter, Froger’s positions and specificity-determining positions showed a remarkable difference in substrate specificity among subfamilies of JcAQPs. Genome-wide comparative analysis revealed the specific expansion of PIP and TIP subfamilies in rubber tree and the specific gene loss of the XIP subfamily in physic nut. Furthermore, by analyzing deep transcriptome sequencing data, the expression evolution especially the expression divergence of duplicated HbAQP genes was also investigated and discussed. Results obtained from this study not only provide valuable information for future functional analysis and utilization of Jc/HbAQP genes, but also provide a useful reference to survey the gene family expansion and evolution in Euphorbiaceae plants and other plant species.

  5. Evolution of the MAGUK protein gene family in premetazoan lineages

    Directory of Open Access Journals (Sweden)

    Ruiz-Trillo Iñaki

    2010-04-01

    Full Text Available Abstract Background Cell-to-cell communication is a key process in multicellular organisms. In multicellular animals, scaffolding proteins belonging to the family of membrane-associated guanylate kinases (MAGUK are involved in the regulation and formation of cell junctions. These MAGUK proteins were believed to be exclusive to Metazoa. However, a MAGUK gene was recently identified in an EST survey of Capsaspora owczarzaki, an unicellular organism that branches off near the metazoan clade. To further investigate the evolutionary history of MAGUK, we have undertook a broader search for this gene family using available genomic sequences of different opisthokont taxa. Results Our survey and phylogenetic analyses show that MAGUK proteins are present not only in Metazoa, but also in the choanoflagellate Monosiga brevicollis and in the protist Capsaspora owczarzaki. However, MAGUKs are absent from fungi, amoebozoans or any other eukaryote. The repertoire of MAGUKs in Placozoa and eumetazoan taxa (Cnidaria + Bilateria is quite similar, except for one class that is missing in Trichoplax, while Porifera have a simpler MAGUK repertoire. However, Vertebrata have undergone several independent duplications and exhibit two exclusive MAGUK classes. Three different MAGUK types are found in both M. brevicollis and C. owczarzaki: DLG, MPP and MAGI. Furthermore, M. brevicollis has suffered a lineage-specific diversification. Conclusions The diversification of the MAGUK protein gene family occurred, most probably, prior to the divergence between Metazoa+choanoflagellates and the Capsaspora+Ministeria clade. A MAGI-like, a DLG-like, and a MPP-like ancestral genes were already present in the unicellular ancestor of Metazoa, and new gene members have been incorporated through metazoan evolution within two major periods, one before the sponge-eumetazoan split and another within the vertebrate lineage. Moreover, choanoflagellates have suffered an independent MAGUK

  6. The evolution of Msx gene function: expression and regulation of a sea urchin Msx class homeobox gene.

    Science.gov (United States)

    Dobias, S L; Ma, L; Wu, H; Bell, J R; Maxson, R

    1997-01-01

    Msx- class homeobox genes, characterized by a distinct and highly conserved homeodomain, have been identified in a wide variety of metazoans from vertebrates to coelenterates. Although there is evidence that they participate in inductive tissue interactions that underlie vertebrate organogenesis, including those that pattern the neural crest, there is little information about their function in simple deuterostomes. Both to learn more about the ancient function of Msx genes, and to shed light on the evolution of developmental mechanisms within the lineage that gave rise to vertebrates, we have isolated and characterized Msx genes from ascidians and echinoderms. Here we describe the sequence and expression of a sea urchin (Strongylocentrotus purpouratus) Msx gene whose homeodomain is very similar to that of vertebrate Msx2. This gene, designated SpMsx, is first expressed in blastula stage embryos, apparently in a non-localized manner. Subsequently, during the early phases of gastrulation, SpMsx transcripts are expressed intensely in the invaginating archenteron and secondary mesenchyme, and at reduced levels in the ectoderm. In the latter part of gastrulation, SpMsx transcripts are concentrated in the oral ectoderm and gut, and continue to be expressed at those sites through the remainder of embryonic development. That vertebrate Msx genes are regulated by inductive tissue interactions and growth factors suggested to us that the restriction of SpMsx gene expression to the oral ectoderm and derivatives of the vegetal plate might similarly be regulated by the series of signaling events that pattern these embryonic territories. As a first test of this hypothesis, we examined the influence of exogastrulation and cell-dissociation on SpMsx gene expression. In experimentally-induced exogastrulae, SpMsx transcripts were distributed normally in the oral ectoderm, evaginated gut, and secondary mesenchyme. However, when embryos were dissociated into their component cells, Sp

  7. Evolution and functional insights of different ancestral orthologous clades of chitin synthase genes in the fungal tree of life

    Directory of Open Access Journals (Sweden)

    Mu eLi

    2016-02-01

    Full Text Available Chitin synthases (CHSs are key enzymes in the biosynthesis of chitin, an important structural component of fungal cell walls that can trigger innate immune responses in host plants and animals. Members of CHS gene family perform various functions in fungal cellular processes. Previous studies focused primarily on classifying diverse CHSs into different classes, regardless of their functional diversification, or on characterizing their functions in individual fungal species. A complete and systematic comparative analysis of CHS genes based on their orthologous relationships will be valuable for elucidating the evolution and functions of different CHS genes in fungi. Here, we identified and compared members of the CHS gene family across the fungal tree of life, including 18 divergent fungal lineages. Phylogenetic analysis revealed that the fungal CHS gene family is comprised of at least 10 ancestral orthologous clades, which have undergone multiple independent duplications and losses in different fungal lineages during evolution. Interestingly, one of these CHS clades (class III was expanded in plant or animal pathogenic fungi belonging to different fungal lineages. Two clades (classes VIb and VIc identified for the first time in this study occurred mainly in plant pathogenic fungi from Sordariomycetes and Dothideomycetes. Moreover, members of classes III and VIb were specifically up-regulated during plant infection, suggesting important roles in pathogenesis. In addition, CHS-associated networks conserved among plant pathogenic fungi are involved in various biological processes, including sexual reproduction and plant infection. We also identified specificity-determining sites, many of which are located at or adjacent to important structural and functional sites that are potentially responsible for functional divergence of different CHS classes. Overall, our results provide new insights into the evolution and function of members of CHS gene

  8. Cloning and regulation of rat tissue inhibitor of metalloproteinases-2 in osteoblastic cells

    Science.gov (United States)

    Cook, T. F.; Burke, J. S.; Bergman, K. D.; Quinn, C. O.; Jeffrey, J. J.; Partridge, N. C.

    1994-01-01

    Rat tissue inhibitor of metalloproteinases-2 (TIMP-2) was cloned from a UMR 106-01 rat osteoblastic osteosarcoma cDNA library. The 969-bp full-length clone demonstrates 98 and 86% sequence identity to human TIMP-2 at the amino acid and nucleic acid levels, respectively. Parathyroid hormone (PTH), at 10(-8) M, stimulates an approximately twofold increase in both the 4.2- and 1.0-kb transcripts over basal levels in UMR cells after 24 h of exposure. The PTH stimulation of TIMP-2 transcripts was not affected by the inhibitor of protein synthesis, cycloheximide (10(-5) M), suggesting a primary effect of the hormone. This is in contradistinction to regulation of interstitial collagenase (matrix metalloproteinase-1) by PTH in these same cells. Nuclear run-on assays demonstrate that PTH causes an increase in TIMP-2 transcription that parallels the increase in message levels. Parathyroid hormone, in its stimulation of TIMP-2 mRNA, appears to act through a signal transduction pathway involving protein kinase A (PKA) since the increase in TIMP-2 mRNA is reproduced by treatment with the cAMP analogue, 8-bromo-cAMP (5 x 10(-3) M). The protein kinase C and calcium pathways do not appear to be involved due to the lack of effect of phorbol 12-myristate 13-acetate (2.6 x 10(-6) M) and the calcium ionophore, ionomycin (10(-7) M), on TIMP-2 transcript abundance. In this respect, regulation of TIMP-2 and collagenase in osteoblastic cells by PTH are similar. However, we conclude that since stimulation of TIMP-2 transcription is a primary event, the PKA pathway must be responsible for a direct increase in transcription of this gene.

  9. Suramin Inhibits Osteoarthritic Cartilage Degradation by Increasing Extracellular Levels of Chondroprotective Tissue Inhibitor of Metalloproteinases 3.

    Science.gov (United States)

    Chanalaris, Anastasios; Doherty, Christine; Marsden, Brian D; Bambridge, Gabriel; Wren, Stephen P; Nagase, Hideaki; Troeberg, Linda

    2017-10-01

    Osteoarthritis is a common degenerative joint disease for which no disease-modifying drugs are currently available. Attempts to treat the disease with small molecule inhibitors of the metalloproteinases that degrade the cartilage matrix have been hampered by a lack of specificity. We aimed to inhibit cartilage degradation by augmenting levels of the endogenous metalloproteinase inhibitor, tissue inhibitor of metalloproteinases (TIMP)-3, through blocking its interaction with the endocytic scavenger receptor, low-density lipoprotein receptor-related protein 1 (LRP1). We discovered that suramin (C 51 H 40 N 6 O 23 S 6 ) bound to TIMP-3 with a K D value of 1.9 ± 0.2 nM and inhibited its endocytosis via LRP1, thus increasing extracellular levels of TIMP-3 and inhibiting cartilage degradation by the TIMP-3 target enzyme, adamalysin-like metalloproteinase with thrombospondin motifs 5. NF279 (8,8'-[carbonyl bis (imino-4,1-phenylenecarbonylimino-4,1-phenylenecarbonylimino)] bis -1,3,5-naphthalenetrisulfonic acid hexasodium salt), a structural analog of suramin, has an increased affinity for TIMP-3 and increased ability to inhibit TIMP-3 endocytosis and protect cartilage. Suramin is thus a promising scaffold for the development of novel therapeutics to increase TIMP-3 levels and inhibit cartilage degradation in osteoarthritis. Copyright © 2017 by The Author(s).

  10. Increased matrix metalloproteinase-9 to tissue inhibitor of metalloproteinase-1 ratio in smokers with airway hyperresponsiveness and accelerated lung function decline

    Directory of Open Access Journals (Sweden)

    Lo CY

    2018-04-01

    Full Text Available Chun-Yu Lo,1 Hung-Yu Huang,1 Jung-Ru He,1 Tzu-Ting Huang,1 Chih-Chen Heh,1 Te-Fang Sheng,1 Kian Fan Chung,2 Han-Pin Kuo,1 Chun-Hua Wang1 1Department of Thoracic Medicine, Chang Gung Medical Foundation, College of Medicine, Chang Gung University, Taipei, Taiwan; 2Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, UK Background: Airway hyperresponsiveness (AHR is associated with airway inflammation and a rapid decline in lung function and is a predictor of future risk of COPD among smokers. Alveolar macrophages (AMs from patients with COPD release a greater amount of matrix metalloproteinase (MMP-9. We hypothesized that the imbalance between MMP-9 and tissue inhibitor of metalloproteinase-1 (TIMP-1 is related to AHR in smokers.Patients and methods: Healthy smokers with AHR (AHR + S or smokers without AHR (AHR - S; divided according to a methacholine challenge test and nonsmokers without AHR (AHR - NS were enrolled. Spirometry was performed during enrollment and repeated after 5 years. Initially, AMs recovered from bronchoalveolar lavage (BAL fluid were cultured in the presence of p38 mitogen-activated protein kinase (MAPK inhibitor (SB203580, MAPK kinase (MEK 1/2 (the MEK of extracellular signal-regulated kinase [ERK] inhibitor, PD98059, or medium alone for 24 h. The release of MMP-9 and TIMP-1 in culture supernatants was measured by enzyme-linked immunosorbent assay.Results: A greater reduction in forced expiratory volume in 1 s (FEV1/forced vital capacity (FVC, FEV1 (as a percentage of the predicted value [%pred], and maximal mid-expiratory flow (MMEF was observed among AHR + S in the 5-year period. There was a higher proportion of neutrophils and a lower proportion of AMs in BAL fluid recovered from AHR + S. Compared to AMs from AHR - NS and AHR - S, AMs from nonsmokers with AHR (AHR + NS released more MMP-9 and less TIMP-1, with an increase in MMP-9/TIMP-1 ratios. The MMP-9/TIMP-1 ratio in smokers

  11. Adaptive evolution of the mitochondrial ND6 gene in the domestic horse.

    Science.gov (United States)

    Ning, T; Xiao, H; Li, J; Hua, S; Zhang, Y P

    2010-01-26

    Mitochondria play a crucial role in energy metabolism through oxidative phosphorylation. Organisms living at high altitudes are potentially influenced by oxygen deficits and cold temperatures. The severe environmental conditions can impact on metabolism and direct selection of mitochondrial DNA. As a wide-ranging animal, the domestic horse (Equus caballus) has developed various morphological and physiological characteristics for adapting to different altitudes. Thus, this is a good species for studying adaption to high altitudes at a molecular level. We sequenced the complete NADH dehydrogenase 6 gene (ND6) of 509 horses from 24 sampling locations. By comparative analysis of three horse populations living at different altitudes (>2200 m, 1200-1700 m, and horses was found distributed on the selected branches. We conclude that the high-altitude environment has directed adaptive evolution of the mitochondrial ND6 gene in the plateau horse.

  12. RANGER-DTL 2.0: Rigorous Reconstruction of Gene-Family Evolution by Duplication, Transfer, and Loss.

    Science.gov (United States)

    Bansal, Mukul S; Kellis, Manolis; Kordi, Misagh; Kundu, Soumya

    2018-04-24

    RANGER-DTL 2.0 is a software program for inferring gene family evolution using Duplication-Transfer-Loss reconciliation. This new software is highly scalable and easy to use, and offers many new features not currently available in any other reconciliation program. RANGER-DTL 2.0 has a particular focus on reconciliation accuracy and can account for many sources of reconciliation uncertainty including uncertain gene tree rooting, gene tree topological uncertainty, multiple optimal reconciliations, and alternative event cost assignments. RANGER-DTL 2.0 is open-source and written in C ++ and Python. Pre-compiled executables, source code (open-source under GNU GPL), and a detailed manual are freely available from http://compbio.engr.uconn.edu/software/RANGER-DTL/. mukul.bansal@uconn.edu.

  13. Periodontal Disease, Matrix Metalloproteinases and Chemically Modified Tetracyclines

    OpenAIRE

    Steinsvoll, Svein

    2011-01-01

    Matrix metalloproteinases (MMPs) are crucial in the degradation of the main components in the extracellular matrix and thereby play important roles in cell migration, wound healing and tissue remodelling. MMPs have pathogenic roles in arthritis, periodontitis, hepatitis, glomerulonephritis, atherosclerosis and cancer cell invasion. MMPs are activators of pro-inflammatory mediators that occur in latent forms, such as interleukin (IL)-1β, membrane-bound tumour necrosis factor (TNF) and dif...

  14. Hyperglycemia-Induced Modulation of the Physiognomy and Angiogenic Potential of Fibroblasts Mediated by Matrix Metalloproteinase-2: Implications for Venous Stenosis Formation Associated with Hemodialysis Vascular Access in Diabetic Milieu.

    Science.gov (United States)

    Janardhanan, Rajiv; Kilari, Sreenivasulu; Leof, Edward B; Misra, Sanjay

    2015-01-01

    It is hypothesized that venous stenosis formation associated with hemodialysis vascular-access failure is caused by hypoxia-mediated fibroblast-to-myofibroblast differentiation accompanied by proliferation and migration, and that diabetic patients have worse clinical outcomes. The aim of this study was to determine the functional and gene expression outcomes of matrix metalloproteinase-2 (Mmp-2) silencing in fibroblasts cultured under hyperglycemia and euglycemia with hypoxic and normoxic stimuli. AKR-2B fibroblasts were stably transduced using lentivirus-mediated shRNA-Mmp-2 or scrambled controls and subjected to hypoxia or normoxia under hyperglycemic or euglycemic conditions for 24 and 72 h. Gene expression of vascular endothelial growth factor-A (Vegf-A), Vegfr-1, Mmp-2, Mmp-9 and tissue inhibitors of matrix metalloproteinases (Timps) were determined by RT-PCR. Collagen I and IV secretion and cellular proliferation and migration were determined. Under hyperglycemic conditions, there is a significant reduction in the average gene expression of Vegf-A and Mmp-9, with an increase in Timp-1 at 24 h of hypoxia (p < 0.05) in Mmp-2-silenced fibroblasts when compared to controls. In addition, there is a decrease in collagen I and IV secretion and cellular migration. The euglycemic cells were able to reverse these findings. These findings demonstrate the rationale for using anti-Mmp-2 therapy in dialysis patients with hemodialysis vascular access in helping to reduce stenosis formation. © 2016 The Author(s) Published by S. Karger AG, Basel.

  15. Matrix metalloproteinases (MMPs) safeguard osteoblasts from apoptosis during transdifferentiation into osteocytes

    DEFF Research Database (Denmark)

    Karsdal, M A; Levin Andersen, Thomas; Bonewald, L

    2004-01-01

    of osteoblasts forced to transdifferentiate into osteocytes in 3D type I collagen gels were inhibited by more than 50% when exposed to 10 microM GM6001 and to Tissue Inhibitor of Metalloproteinase-2 (TIMP-2), a natural MT1-MMP inhibitor. This shows the importance of MMPs in safeguarding osteoblasts from......Osteoblasts undergo apoptosis or differentiate into either osteocytes or bone-lining cells after termination of bone matrix synthesis. In this study, we investigated the role of matrix metalloproteinases (MMPs) in differentiation of osteoblasts, bone formation, transdifferentiation into osteocytes......, and osteocyte apoptosis. This was accomplished by using calvarial sections from the MT1-MMP-deficient mouse and by culture of the mouse osteoblast cell line MC3T3-E1 and primary mouse calvarial osteoblasts. We found that a synthetic matrix metalloprotease inhibitor, GM6001, strongly inhibited bone formation...

  16. Smad signaling pathway is a pivotal component of tissue inhibitor of metalloproteinases-3 regulation by transforming growth factor beta in human chondrocytes.

    Science.gov (United States)

    Qureshi, Hamid Yaqoob; Ricci, Gemma; Zafarullah, Muhammad

    2008-09-01

    Transforming growth factor beta (TGF-beta1) promotes cartilage matrix synthesis and induces tissue inhibitor of metalloproteinases-3 (TIMP-3), which inhibits matrix metalloproteinases, aggrecanases and TNF-alpha-converting enzyme implicated in articular cartilage degradation and joint inflammation. TGF-beta1 activates Akt, ERK and Smad2 pathways in chondrocytes. Here we investigated previously unexplored roles of specific Smads in TGF-beta1 induction of TIMP-3 gene by pharmacological and genetic knockdown approaches. TGF-beta1-induced Smad2 phosphorylation and TIMP-3 protein expression could be inhibited by the Smad2/3 phosphorylation inhibitors, PD169316 and SB203580 and by Smad2-specific siRNA. Specific inhibitor of Smad3 (SIS3) and Smad3 siRNA abolished TGF-beta induction of TIMP-3. Smad2/3 siRNAs also down regulated TIMP-3 promoter-driven luciferase activities, suggesting transcriptional regulation. SiRNA-driven co-Smad4 knockdown abrogated TIMP-3 augmentation by TGF-beta. TIMP-3 promoter deletion analysis revealed that -828 deletion retains the original promoter activity while -333 and -167 deletions display somewhat reduced activity suggesting that most of the TGF-beta-responsive, cis-acting elements are found in the -333 fragment. Chromatin Immunoprecipitation (ChIP) analysis confirmed binding of Smad2 and Smad4 with the -940 and -333 promoter sequences. These results suggest that receptor-activated Smad2 and Smad3 and co-Smad4 critically mediate TGF-beta-stimulated TIMP-3 expression in human chondrocytes and TIMP-3 gene is a target of Smad signaling pathway.

  17. Johne's disease in cattle is associated with enhanced expression of genes encoding IL-5, GATA-3, tissue inhibitors of matrix metalloproteinases 1 and 2, and factors promoting apoptosis in peripheral blood mononuclear cells

    DEFF Research Database (Denmark)

    Coussens, P.M.; Pudrith, C.B.; Skovgaard, Kerstin

    2005-01-01

    remodeling deficiencies through higher expression of tissue inhibitor of matrix metalloproteinase (TIMP) 1 and TIMP2 RNA and lower expression of matrix metalloproteinase (MMP) 14 RNA than similar cells from healthy controls, and that cells within the PBMC population of M. paratuberculosis-infected cows...... upon by quantitative real-time PCR (Q-RT-PCR). Our results indicate that T cells within PBMCs from M. paratuberculosis-infected cows have adopted a predominant Th 2-like phenotype (enhanced expression of IL-5, GATA 3, and possibly IL-4 mRNA), that cells within infected cow PBMCs may exhibit tissue...

  18. Diversification and evolution of the SDG gene family in Brassica rapa after the whole genome triplication.

    Science.gov (United States)

    Dong, Heng; Liu, Dandan; Han, Tianyu; Zhao, Yuxue; Sun, Ji; Lin, Sue; Cao, Jiashu; Chen, Zhong-Hua; Huang, Li

    2015-11-24

    Histone lysine methylation, controlled by the SET Domain Group (SDG) gene family, is part of the histone code that regulates chromatin function and epigenetic control of gene expression. Analyzing the SDG gene family in Brassica rapa for their gene structure, domain architecture, subcellular localization, rate of molecular evolution and gene expression pattern revealed common occurrences of subfunctionalization and neofunctionalization in BrSDGs. In comparison with Arabidopsis thaliana, the BrSDG gene family was found to be more divergent than AtSDGs, which might partly explain the rich variety of morphotypes in B. rapa. In addition, a new evolutionary pattern of the four main groups of SDGs was presented, in which the Trx group and the SUVR subgroup evolved faster than the E(z), Ash groups and the SUVH subgroup. These differences in evolutionary rate among the four main groups of SDGs are perhaps due to the complexity and variability of the regions that bind with biomacromolecules, which guide SDGs to their target loci.

  19. Expansion and Functional Divergence of AP2 Group Genes in Spermatophytes Determined by Molecular Evolution and Arabidopsis Mutant Analysis

    Directory of Open Access Journals (Sweden)

    Pengkai Wang

    2016-09-01

    Full Text Available The APETALA2 (AP2 genes represent the AP2 group within a large group of DNA-binding proteins called AP2/EREBP. The AP2 gene is functional and necessary for flower development, stem cell maintenance, and seed development, whereas the other members of AP2 group redundantly affect flowering time. Here we study the phylogeny of AP2 group genes in spermatophytes. Spermatophyte AP2 group genes can be classified into AP2 and TOE types, six clades, and we found that the AP2 group homologs in gymnosperms belong to the AP2 type, whereas TOE types are absent, which indicates the AP2 type gene are more ancient and TOE type was split out of AP2 type and losing the major function. In Brassicaceae, the expansion of AP2 and TOE type lead to the gene number of AP2 group were up to six. Purifying selection appears to have been the primary driving force of spermatophyte AP2 group evolution, although positive selection occurred in the AP2 clade. The transition from exon to intron of AtAP2 in Arabidopsis mutant leads to the loss of gene function and the same situation was found in AtTOE2. Combining this evolutionary analysis and published research, the results suggest that typical AP2 group genes may first appear in gymnosperms and diverged in angiosperms, following expansion of group members and functional differentiation. In angiosperms, AP2 genes (AP2 clade inherited key functions from ancestors and other genes of AP2 group lost most function but just remained flowering time controlling in gene formation. In this study, the phylogenies of AP2 group genes in spermatophytes was analyzed, which supported the evidence for the research of gene functional evolution of AP2 group.

  20. Tissue Inhibitor of Matrix Metalloproteinase-1 Promotes Myocardial Fibrosis by Mediating CD63-Integrin β1 Interaction.

    Science.gov (United States)

    Takawale, Abhijit; Zhang, Pu; Patel, Vaibhav B; Wang, Xiuhua; Oudit, Gavin; Kassiri, Zamaneh

    2017-06-01

    Myocardial fibrosis is excess accumulation of the extracellular matrix fibrillar collagens. Fibrosis is a key feature of various cardiomyopathies and compromises cardiac systolic and diastolic performance. TIMP1 (tissue inhibitor of metalloproteinase-1) is consistently upregulated in myocardial fibrosis and is used as a marker of fibrosis. However, it remains to be determined whether TIMP1 promotes tissue fibrosis by inhibiting extracellular matrix degradation by matrix metalloproteinases or via an matrix metalloproteinase-independent pathway. We examined the function of TIMP1 in myocardial fibrosis using Timp1 -deficient mice and 2 in vivo models of myocardial fibrosis (angiotensin II infusion and cardiac pressure overload), in vitro analysis of adult cardiac fibroblasts, and fibrotic myocardium from patients with dilated cardiomyopathy (DCM). Timp1 deficiency significantly reduced myocardial fibrosis in both in vivo models of cardiomyopathy. We identified a novel mechanism for TIMP1 action whereby, independent from its matrix metalloproteinase-inhibitory function, it mediates an association between CD63 (cell surface receptor for TIMP1) and integrin β1 on cardiac fibroblasts, initiates activation and nuclear translocation of Smad2/3 and β-catenin, leading to de novo collagen synthesis. This mechanism was consistently observed in vivo, in cultured cardiac fibroblasts, and in human fibrotic myocardium. In addition, after long-term pressure overload, Timp1 deficiency persistently reduced myocardial fibrosis and ameliorated diastolic dysfunction. This study defines a novel matrix metalloproteinase-independent function of TIMP1 in promoting myocardial fibrosis. As such targeting TIMP1 could prove to be a valuable approach in developing antifibrosis therapies. © 2017 American Heart Association, Inc.

  1. The evolution of mollusc shells.

    Science.gov (United States)

    McDougall, Carmel; Degnan, Bernard M

    2018-05-01

    Molluscan shells are externally fabricated by specialized epithelial cells on the dorsal mantle. Although a conserved set of regulatory genes appears to underlie specification of mantle progenitor cells, the genes that contribute to the formation of the mature shell are incredibly diverse. Recent comparative analyses of mantle transcriptomes and shell proteomes of gastropods and bivalves are consistent with shell diversity being underpinned by a rapidly evolving mantle secretome (suite of genes expressed in the mantle that encode secreted proteins) that is the product of (a) high rates of gene co-option into and loss from the mantle gene regulatory network, and (b) the rapid evolution of coding sequences, particular those encoding repetitive low complexity domains. Outside a few conserved genes, such as carbonic anhydrase, a so-called "biomineralization toolkit" has yet to be discovered. Despite this, a common suite of protein domains, which are often associated with the extracellular matrix and immunity, appear to have been independently and often uniquely co-opted into the mantle secretomes of different species. The evolvability of the mantle secretome provides a molecular explanation for the evolution and diversity of molluscan shells. These genomic processes are likely to underlie the evolution of other animal biominerals, including coral and echinoderm skeletons. This article is categorized under: Comparative Development and Evolution > Regulation of Organ Diversity Comparative Development and Evolution > Evolutionary Novelties. © 2018 Wiley Periodicals, Inc.

  2. Matrix metalloproteinases in inflammatory bowel disease : expression, regulation and clinical relevance

    NARCIS (Netherlands)

    Meijer, Martin Jan-Willem

    2009-01-01

    Crohn’s disease (CD) is characterized by chronic, patchy, transmural inflammation of the entire gastrointestinal tract, while ulcerative colitis (UC) is manifested by chronic, continuous, superficial inflammation of the colon. Matrix metalloproteinases (MMPs) constitute a family of matrix degrading

  3. The impact of genome triplication on tandem gene evolution in Brassica rapa

    Directory of Open Access Journals (Sweden)

    Lu eFang

    2012-11-01

    Full Text Available Whole genome duplication (WGD and tandem duplication (TD are both important modes of gene expansion. However, how whole genome duplication influences tandemly duplicated genes is not well studied. We used Brassica rapa, which has undergone an additional genome triplication (WGT and shares a common ancestor with Arabidopsis thaliana, Arabidopsis lyrata and Thellungiella parvula, to investigate the impact of genome triplication on tandem gene evolution. We identified 2,137, 1,569, 1,751 and 1,135 tandem gene arrays in B. rapa, A. thaliana, A. lyrata and T. parvula respectively. Among them, 414 conserved tandem arrays are shared by the 3 species without WGT, which were also considered as existing in the diploid ancestor of B. rapa. Thus, after genome triplication, B. rapa should have 1,242 tandem arrays according to the 414 conserved tandems. Here, we found 400 out of the 414 tandems had at least one syntenic ortholog in the genome of B. rapa. Furthermore, 294 out of the 400 shared syntenic orthologs maintain tandem arrays (more than one gene for each syntenic hit in B. rapa. For the 294 tandem arrays, we obtained 426 copies of syntenic paralogous tandems in the triplicated genome of B. rapa. In this study, we demonstrated that tandem arrays in B. rapa were dramatically fractionated after WGT when compared either to non-tandem genes in the B. rapa genome or to the tandem arrays in closely related species that have not experienced a recent whole-genome polyploidization event.

  4. Rapid evolution of the sequences and gene repertoires of secreted proteins in bacteria.

    Directory of Open Access Journals (Sweden)

    Teresa Nogueira

    Full Text Available Proteins secreted to the extracellular environment or to the periphery of the cell envelope, the secretome, play essential roles in foraging, antagonistic and mutualistic interactions. We hypothesize that arms races, genetic conflicts and varying selective pressures should lead to the rapid change of sequences and gene repertoires of the secretome. The analysis of 42 bacterial pan-genomes shows that secreted, and especially extracellular proteins, are predominantly encoded in the accessory genome, i.e. among genes not ubiquitous within the clade. Genes encoding outer membrane proteins might engage more frequently in intra-chromosomal gene conversion because they are more often in multi-genic families. The gene sequences encoding the secretome evolve faster than the rest of the genome and in particular at non-synonymous positions. Cell wall proteins in Firmicutes evolve particularly fast when compared with outer membrane proteins of Proteobacteria. Virulence factors are over-represented in the secretome, notably in outer membrane proteins, but cell localization explains more of the variance in substitution rates and gene repertoires than sequence homology to known virulence factors. Accordingly, the repertoires and sequences of the genes encoding the secretome change fast in the clades of obligatory and facultative pathogens and also in the clades of mutualists and free-living bacteria. Our study shows that cell localization shapes genome evolution. In agreement with our hypothesis, the repertoires and the sequences of genes encoding secreted proteins evolve fast. The particularly rapid change of extracellular proteins suggests that these public goods are key players in bacterial adaptation.

  5. Herbicide resistance-endowing ACCase gene mutations in hexaploid wild oat (Avena fatua): insights into resistance evolution in a hexaploid species

    Science.gov (United States)

    Yu, Q; Ahmad-Hamdani, M S; Han, H; Christoffers, M J; Powles, S B

    2013-01-01

    Many herbicide-resistant weed species are polyploids, but far too little about the evolution of resistance mutations in polyploids is understood. Hexaploid wild oat (Avena fatua) is a global crop weed and many populations have evolved herbicide resistance. We studied plastidic acetyl-coenzyme A carboxylase (ACCase)-inhibiting herbicide resistance in hexaploid wild oat and revealed that resistant individuals can express one, two or three different plastidic ACCase gene resistance mutations (Ile-1781-Leu, Asp-2078-Gly and Cys-2088-Arg). Using ACCase resistance mutations as molecular markers, combined with genetic, molecular and biochemical approaches, we found in individual resistant wild-oat plants that (1) up to three unlinked ACCase gene loci assort independently following Mendelian laws for disomic inheritance, (2) all three of these homoeologous ACCase genes were transcribed, with each able to carry its own mutation and (3) in a hexaploid background, each individual ACCase resistance mutation confers relatively low-level herbicide resistance, in contrast to high-level resistance conferred by the same mutations in unrelated diploid weed species of the Poaceae (grass) family. Low resistance conferred by individual ACCase resistance mutations is likely due to a dilution effect by susceptible ACCase expressed by homoeologs in hexaploid wild oat and/or differential expression of homoeologous ACCase gene copies. Thus, polyploidy in hexaploid wild oat may slow resistance evolution. Evidence of coexisting non-target-site resistance mechanisms among wild-oat populations was also revealed. In all, these results demonstrate that herbicide resistance and its evolution can be more complex in hexaploid wild oat than in unrelated diploid grass weeds. Our data provide a starting point for the daunting task of understanding resistance evolution in polyploids. PMID:23047200

  6. Genome-wide Comparative Analyses Reveal the Dynamic Evolution of Nucleotide-Binding Leucine-Rich Repeat Gene Family among Solanaceae Plants

    Directory of Open Access Journals (Sweden)

    Eunyoung Seo

    2016-08-01

    Full Text Available Plants have evolved an elaborate innate immune system against invading pathogens. Within this system, intracellular nucleotide-binding leucine-rich repeat (NLR immune receptors are known play critical roles in effector-triggered immunity (ETI plant defense. We performed genome-wide identification and classification of NLR-coding sequences from the genomes of pepper, tomato, and potato using fixed criteria. We then compared genomic duplication and evolution features. We identified intact 267, 443, and 755 NLR-encoding genes in tomato, potato, and pepper genomes, respectively. Phylogenetic analyses and classification of Solanaceae NLRs revealed that the majority of NLR super family members fell into 14 subgroups, including a TIR-NLR (TNL subgroup and 13 non-TNL subgroups. Specific subgroups have expanded in each genome, with the expansion in pepper showing subgroup-specific physical clusters. Comparative analysis of duplications showed distinct duplication patterns within pepper and among Solanaceae plants suggesting subgroup- or species-specific gene duplication events after speciation, resulting in divergent evolution. Taken together, genome-wide analyses of NLR family members provide insights into their evolutionary history in Solanaceae. These findings also provide important foundational knowledge for understanding NLR evolution and will empower broader characterization of disease resistance genes to be used for crop breeding.

  7. Evolution of major histocompatibility complex class I and class II genes in the brown bear

    Directory of Open Access Journals (Sweden)

    Kuduk Katarzyna

    2012-10-01

    Full Text Available Abstract Background Major histocompatibility complex (MHC proteins constitute an essential component of the vertebrate immune response, and are coded by the most polymorphic of the vertebrate genes. Here, we investigated sequence variation and evolution of MHC class I and class II DRB, DQA and DQB genes in the brown bear Ursus arctos to characterise the level of polymorphism, estimate the strength of positive selection acting on them, and assess the extent of gene orthology and trans-species polymorphism in Ursidae. Results We found 37 MHC class I, 16 MHC class II DRB, four DQB and two DQA alleles. We confirmed the expression of several loci: three MHC class I, two DRB, two DQB and one DQA. MHC class I also contained two clusters of non-expressed sequences. MHC class I and DRB allele frequencies differed between northern and southern populations of the Scandinavian brown bear. The rate of nonsynonymous substitutions (dN exceeded the rate of synonymous substitutions (dS at putative antigen binding sites of DRB and DQB loci and, marginally significantly, at MHC class I loci. Models of codon evolution supported positive selection at DRB and MHC class I loci. Both MHC class I and MHC class II sequences showed orthology to gene clusters found in the giant panda Ailuropoda melanoleuca. Conclusions Historical positive selection has acted on MHC class I, class II DRB and DQB, but not on the DQA locus. The signal of historical positive selection on the DRB locus was particularly strong, which may be a general feature of caniforms. The presence of MHC class I pseudogenes may indicate faster gene turnover in this class through the birth-and-death process. South–north population structure at MHC loci probably reflects origin of the populations from separate glacial refugia.

  8. Evolution of major histocompatibility complex class I and class II genes in the brown bear.

    Science.gov (United States)

    Kuduk, Katarzyna; Babik, Wiesław; Bojarska, Katarzyna; Sliwińska, Ewa B; Kindberg, Jonas; Taberlet, Pierre; Swenson, Jon E; Radwan, Jacek

    2012-10-02

    Major histocompatibility complex (MHC) proteins constitute an essential component of the vertebrate immune response, and are coded by the most polymorphic of the vertebrate genes. Here, we investigated sequence variation and evolution of MHC class I and class II DRB, DQA and DQB genes in the brown bear Ursus arctos to characterise the level of polymorphism, estimate the strength of positive selection acting on them, and assess the extent of gene orthology and trans-species polymorphism in Ursidae. We found 37 MHC class I, 16 MHC class II DRB, four DQB and two DQA alleles. We confirmed the expression of several loci: three MHC class I, two DRB, two DQB and one DQA. MHC class I also contained two clusters of non-expressed sequences. MHC class I and DRB allele frequencies differed between northern and southern populations of the Scandinavian brown bear. The rate of nonsynonymous substitutions (dN) exceeded the rate of synonymous substitutions (dS) at putative antigen binding sites of DRB and DQB loci and, marginally significantly, at MHC class I loci. Models of codon evolution supported positive selection at DRB and MHC class I loci. Both MHC class I and MHC class II sequences showed orthology to gene clusters found in the giant panda Ailuropoda melanoleuca. Historical positive selection has acted on MHC class I, class II DRB and DQB, but not on the DQA locus. The signal of historical positive selection on the DRB locus was particularly strong, which may be a general feature of caniforms. The presence of MHC class I pseudogenes may indicate faster gene turnover in this class through the birth-and-death process. South-north population structure at MHC loci probably reflects origin of the populations from separate glacial refugia.

  9. Evolution of major histocompatibility complex class I and class II genes in the brown bear

    Science.gov (United States)

    2012-01-01

    Background Major histocompatibility complex (MHC) proteins constitute an essential component of the vertebrate immune response, and are coded by the most polymorphic of the vertebrate genes. Here, we investigated sequence variation and evolution of MHC class I and class II DRB, DQA and DQB genes in the brown bear Ursus arctos to characterise the level of polymorphism, estimate the strength of positive selection acting on them, and assess the extent of gene orthology and trans-species polymorphism in Ursidae. Results We found 37 MHC class I, 16 MHC class II DRB, four DQB and two DQA alleles. We confirmed the expression of several loci: three MHC class I, two DRB, two DQB and one DQA. MHC class I also contained two clusters of non-expressed sequences. MHC class I and DRB allele frequencies differed between northern and southern populations of the Scandinavian brown bear. The rate of nonsynonymous substitutions (dN) exceeded the rate of synonymous substitutions (dS) at putative antigen binding sites of DRB and DQB loci and, marginally significantly, at MHC class I loci. Models of codon evolution supported positive selection at DRB and MHC class I loci. Both MHC class I and MHC class II sequences showed orthology to gene clusters found in the giant panda Ailuropoda melanoleuca. Conclusions Historical positive selection has acted on MHC class I, class II DRB and DQB, but not on the DQA locus. The signal of historical positive selection on the DRB locus was particularly strong, which may be a general feature of caniforms. The presence of MHC class I pseudogenes may indicate faster gene turnover in this class through the birth-and-death process. South–north population structure at MHC loci probably reflects origin of the populations from separate glacial refugia. PMID:23031405

  10. Differential expression of lactic acid isomers, extracellular matrix metalloproteinase inducer, and matrix metalloproteinase-8 in vaginal fluid from women with vaginal disorders.

    Science.gov (United States)

    Beghini, J; Linhares, I M; Giraldo, P C; Ledger, W J; Witkin, S S

    2015-11-01

    Do metabolites in vaginal samples vary between women with different vaginal disorders. Cross-sectional study. Campinas, Brazil. Seventy-seven women (39.9%) with no vaginal disorder, 52 women (26.9%) with vulvovaginal candidiasis (VVC), 43 women (22.3%) with bacterial vaginosis (BV), and 21 women (10.9%) with cytolytic vaginosis (CTV). Concentrations of D- and L-lactic acid, extracellular matrix metalloproteinase inducer (EMMPRIN), and matrix metalloproteinase-8 (MMP-8), and the influence of Candida albicans on EMMPRIN production by cultured vaginal epithelial cells, were determined by enzyme-linked immunosorbent assay (ELISA). Associations were determined by the Mann-Whitney U-test and by Spearman's rank correlation test. Metabolite levels and their correlation with diagnoses. Vaginal concentrations of D- and L-lactic acid were reduced from control levels in BV (P vaginal epithelial cells. Vaginal secretions from women with BV are deficient in D- and L-lactic acid, women with VVC have elevated EMMPRIN and MMP-8 levels, and women with CTV have elevated L-lactic acid levels. These deviations may contribute to the clinical signs, symptoms, and sequelae that are characteristic of these disorders. © 2014 Royal College of Obstetricians and Gynaecologists.

  11. Evolution of the vertebrate claudin gene family: insights from a basal vertebrate, the sea lamprey.

    Science.gov (United States)

    Mukendi, Christian; Dean, Nicholas; Lala, Rushil; Smith, Jeramiah; Bronner, Marianne E; Nikitina, Natalya V

    2016-01-01

    Claudins are major constituents of tight junctions, contributing both to their intercellular sealing and selective permeability properties. While claudins and claudin-like molecules are present in some invertebrates, the association of claudins with tight junctions has been conclusively documented only in vertebrates. Here we report the sequencing, phylogenetic analysis and comprehensive spatiotemporal expression analysis of the entire claudin gene family in the basal extant vertebrate, the sea lamprey. Our results demonstrate that clear orthologues to about half of all mammalian claudins are present in the lamprey, suggesting that at least one round of whole genome duplication contributed to the diversification of this gene family. Expression analysis revealed that claudins are expressed in discrete and specific domains, many of which represent vertebrate-specific innovations, such as in cranial ectodermal placodes and the neural crest; whereas others represent structures characteristic of chordates, e.g. pronephros, notochord, somites, endostyle and pharyngeal arches. By comparing the embryonic expression of claudins in the lamprey to that of other vertebrates, we found that ancestral expression patterns were often preserved in higher vertebrates. Morpholino mediated loss of Cldn3b demonstrated a functional role for this protein in placode and pharyngeal arch morphogenesis. Taken together, our data provide novel insights into the origins and evolution of the claudin gene family and the significance of claudin proteins in the evolution of vertebrates.

  12. Identification of GPR65, a novel regulator of matrix metalloproteinases using high through-put screening

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hongbo; Chen, Xiaohong; Huang, Junwei [Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology Head and Neck Surgery, Beijing (China); Deng, Weiwei [Functional Genomics Group, Chinese National Human Genome Center (CHGB) at Beijing (China); Zhong, Qi [Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology Head and Neck Surgery, Beijing (China); Yue, Changli [Department of Pathology, Beijing Tongren Hospital, Capital Medical University, Beijing (China); Wang, Pingzhang, E-mail: wangpzh@bjmu.edu.cn [Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Peking University Center for Human Disease Genomics, Key Laboratory of Medical Immunology, Ministry of Health (China); Functional Genomics Group, Chinese National Human Genome Center (CHGB) at Beijing (China); Huang, Zhigang, E-mail: enthuangzhigang@sohu.com [Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology Head and Neck Surgery, Beijing (China)

    2013-06-21

    Highlights: •A novel mechanism of MMP3 regulation by proton-sensing G-protein-coupled receptors was defined. •GPR65 was identified to induce the MMP3 expression. •GPR65 mediated MMP induction under acidic conditions. •AP-1 binding site in MMP3 promoter was crucial for MMP3 induction. •GPR65 overexpression can accelerate the invision of A549 cells. -- Abstract: Matrix metalloproteinases (MMPs) are over-expressed in nearly all cancers. To study novel regulatory factors of MMP expression in head and neck cancer (HNC), we screened a total of 636 candidate genes encoding putative human transmembrane proteins using MMP promoter reporter in a dual luciferase assay system. Three genes GPR65, AXL and TNFRSF10B dramatically activated the induction of MMP3 expression. The induction of MMP expression by GPR65 was further confirmed in A549 and/or FaDu cells. GPR65 mediated MMP induction under acidic conditions. The AP-1 binding site in MMP3 promoter was crucial for MMP3 induction. Moreover, the A549 cells infected by recombinant adenovirus of GPR65 showed accelerated cell invasion. In conclusion, we validate that GPR65 is vital regulatory genes upstream of MMP3, and define a novel mechanism of MMP3 regulation by proton-sensing G-protein-coupled receptors.

  13. Identification of GPR65, a novel regulator of matrix metalloproteinases using high through-put screening

    International Nuclear Information System (INIS)

    Xu, Hongbo; Chen, Xiaohong; Huang, Junwei; Deng, Weiwei; Zhong, Qi; Yue, Changli; Wang, Pingzhang; Huang, Zhigang

    2013-01-01

    Highlights: •A novel mechanism of MMP3 regulation by proton-sensing G-protein-coupled receptors was defined. •GPR65 was identified to induce the MMP3 expression. •GPR65 mediated MMP induction under acidic conditions. •AP-1 binding site in MMP3 promoter was crucial for MMP3 induction. •GPR65 overexpression can accelerate the invision of A549 cells. -- Abstract: Matrix metalloproteinases (MMPs) are over-expressed in nearly all cancers. To study novel regulatory factors of MMP expression in head and neck cancer (HNC), we screened a total of 636 candidate genes encoding putative human transmembrane proteins using MMP promoter reporter in a dual luciferase assay system. Three genes GPR65, AXL and TNFRSF10B dramatically activated the induction of MMP3 expression. The induction of MMP expression by GPR65 was further confirmed in A549 and/or FaDu cells. GPR65 mediated MMP induction under acidic conditions. The AP-1 binding site in MMP3 promoter was crucial for MMP3 induction. Moreover, the A549 cells infected by recombinant adenovirus of GPR65 showed accelerated cell invasion. In conclusion, we validate that GPR65 is vital regulatory genes upstream of MMP3, and define a novel mechanism of MMP3 regulation by proton-sensing G-protein-coupled receptors

  14. Venom Evolution

    Indian Academy of Sciences (India)

    IAS Admin

    Therefore, the platypus sequence was studied to quantify the role of gene duplication in the evolution of venom. ... Platypus venom is present only in males and is used for asserting dominance over com- petitors during the ... Certain toxin gene families are known to re- peatedly evolve through gene duplications. The rapidly ...

  15. A Genomic Survey of SCPP Family Genes in Fishes Provides Novel Insights into the Evolution of Fish Scales.

    Science.gov (United States)

    Lv, Yunyun; Kawasaki, Kazuhiko; Li, Jia; Li, Yanping; Bian, Chao; Huang, Yu; You, Xinxin; Shi, Qiong

    2017-11-16

    The family of secretory calcium-binding phosphoproteins (SCPPs) have been considered vital to skeletal tissue mineralization. However, most previous SCPP studies focused on phylogenetically distant animals but not on those closely related species. Here we provide novel insights into the coevolution of SCPP genes and fish scales in 10 species from Otophysi . According to their scale phenotypes, these fishes can be divided into three groups, i.e., scaled, sparsely scaled, and scaleless. We identified homologous SCPP genes in the genomes of these species and revealed an absence of some SCPP members in some genomes, suggesting an uneven evolutionary history of SCPP genes in fishes. In addition, most of these SCPP genes, with the exception of SPP1 , individually form one or two gene cluster(s) on each corresponding genome. Furthermore, we constructed phylogenetic trees using maximum likelihood method to estimate their evolution. The phylogenetic topology mostly supports two subclasses in some species, such as Cyprinus carpio , Sinocyclocheilus anshuiensis , S. grahamin , and S. rhinocerous , but not in the other examined fishes. By comparing the gene structures of recently reported candidate genes, SCPP1 and SCPP5 , for determining scale phenotypes, we found that the hypothesis is suitable for Astyanax mexicanus , but denied by S. anshuiensis , even though they are both sparsely scaled for cave adaptation. Thus, we conclude that, although different fish species display similar scale phenotypes, the underlying genetic changes however might be diverse. In summary, this paper accelerates the recognition of the SCPP family in teleosts for potential scale evolution.

  16. Novel Random Mutagenesis Method for Directed Evolution.

    Science.gov (United States)

    Feng, Hong; Wang, Hai-Yan; Zhao, Hong-Yan

    2017-01-01

    Directed evolution is a powerful strategy for gene mutagenesis, and has been used for protein engineering both in scientific research and in the biotechnology industry. The routine method for directed evolution was developed by Stemmer in 1994 (Stemmer, Proc Natl Acad Sci USA 91, 10747-10751, 1994; Stemmer, Nature 370, 389-391, 1994). Since then, various methods have been introduced, each of which has advantages and limitations depending upon the targeted genes and procedure. In this chapter, a novel alternative directed evolution method which combines mutagenesis PCR with dITP and fragmentation by endonuclease V is described. The kanamycin resistance gene is used as a reporter gene to verify the novel method for directed evolution. This method for directed evolution has been demonstrated to be efficient, reproducible, and easy to manipulate in practice.

  17. Gene Expression Contributes to the Recent Evolution of Host Resistance in a Model Host Parasite System

    Directory of Open Access Journals (Sweden)

    Brian K. Lohman

    2017-09-01

    Full Text Available Heritable population differences in immune gene expression following infection can reveal mechanisms of host immune evolution. We compared gene expression in infected and uninfected threespine stickleback (Gasterosteus aculeatus from two natural populations that differ in resistance to a native cestode parasite, Schistocephalus solidus. Genes in both the innate and adaptive immune system were differentially expressed as a function of host population, infection status, and their interaction. These genes were enriched for loci controlling immune functions known to differ between host populations or in response to infection. Coexpression network analysis identified two distinct processes contributing to resistance: parasite survival and suppression of growth. Comparing networks between populations showed resistant fish have a dynamic expression profile while susceptible fish are static. In summary, recent evolutionary divergence between two vertebrate populations has generated population-specific gene expression responses to parasite infection, affecting parasite establishment and growth.

  18. Binding of matrix metalloproteinase inhibitors to extracellular matrix: 3D-QSAR analysis.

    Science.gov (United States)

    Zhang, Yufen; Lukacova, Viera; Bartus, Vladimir; Nie, Xiaoping; Sun, Guorong; Manivannan, Ethirajan; Ghorpade, Sandeep R; Jin, Xiaomin; Manyem, Shankar; Sibi, Mukund P; Cook, Gregory R; Balaz, Stefan

    2008-10-01

    Binding to the extracellular matrix, one of the most abundant human protein complexes, significantly affects drug disposition. Specifically, the interactions with extracellular matrix determine the free concentrations of small molecules acting in tissues, including signaling peptides, inhibitors of tissue remodeling enzymes such as matrix metalloproteinases, and other drug candidates. The nature of extracellular matrix binding was elucidated for 63 matrix metalloproteinase inhibitors, for which the association constants to an extracellular matrix mimic were reported here. The data did not correlate with lipophilicity as a common determinant of structure-nonspecific, orientation-averaged binding. A hypothetical structure of the binding site of the solidified extracellular matrix surrogate was analyzed using the Comparative Molecular Field Analysis, which needed to be applied in our multi-mode variant. This fact indicates that the compounds bind to extracellular matrix in multiple modes, which cannot be considered as completely orientation-averaged and exhibit structural dependence. The novel comparative molecular field analysis models, exhibiting satisfactory descriptive and predictive abilities, are suitable for prediction of the extracellular matrix binding for the untested chemicals, which are within applicability domains. The results contribute to a better prediction of the pharmacokinetic parameters such as the distribution volume and the tissue-blood partition coefficients, in addition to a more imminent benefit for the development of more effective matrix metalloproteinase inhibitors.

  19. Differential gene expression in colon cancer of the caecum versus the sigmoid and rectosigmoid

    DEFF Research Database (Denmark)

    Birkenkamp-Demtroder, K; Olesen, S H; Sørensen, Flemming Brandt

    2005-01-01

    or left sided tumours of the colon, showing more pronounced differences in Dukes' C than B tumours. Thirty genes differentially expressed in tumour tissue were common to adenocarcinomas of both sides, including known tumour markers such as the matrix metalloproteinases. Keratins 8, 19, and 20 as well...

  20. Characterization of small HSPs from Anemonia viridis reveals insights into molecular evolution of alpha crystallin genes among cnidarians.

    Directory of Open Access Journals (Sweden)

    Aldo Nicosia

    Full Text Available Gene family encoding small Heat-Shock Proteins (sHSPs containing α-crystallin domain are found both in prokaryotic and eukaryotic organisms; however, there is limited knowledge of their evolution. In this study, two small HSP genes termed AvHSP28.6 and AvHSP27, both organized in one intron and two exons, were characterised in the Mediterranean snakelocks anemone Anemonia viridis. The release of the genome sequence of Hydra magnipapillata and Nematostella vectensis enabled a comprehensive study of the molecular evolution of α-crystallin gene family among cnidarians. Most of the H. magnipapillata sHSP genes share the same gene organization described for AvHSP28.6 and AvHSP27, differing from the sHSP genes of N. vectensis which mainly show an intronless architecture. The different genomic organization of sHSPs, the phylogenetic analyses based on protein sequences, and the relationships among Cnidarians, suggest that the A.viridis sHSPs represent the common ancestor from which H. magnipapillata genes directly evolved through segmental genome duplication. Additionally retroposition events may be considered responsible for the divergence of sHSP genes of N. vectensis from A. viridis. Analyses of transcriptional expression profile showed that AvHSP28.6 was constitutively expressed among different tissues from both ectodermal and endodermal layers of the adult sea anemones, under normal physiological conditions and also under different stress condition. Specifically, we profiled the transcriptional activation of AvHSP28.6 after challenges with different abiotic/biotic stresses showing induction by extreme temperatures, heavy metals exposure and immune stimulation. Conversely, no AvHSP27 transcript was detected in such dissected tissues, in adult whole body cDNA library or under stress conditions. Hence, the involvement of AvHSP28.6 gene in the sea anemone defensome is strongly suggested.

  1. Characterization of small HSPs from Anemonia viridis reveals insights into molecular evolution of alpha crystallin genes among cnidarians.

    Science.gov (United States)

    Nicosia, Aldo; Maggio, Teresa; Mazzola, Salvatore; Gianguzza, Fabrizio; Cuttitta, Angela; Costa, Salvatore

    2014-01-01

    Gene family encoding small Heat-Shock Proteins (sHSPs containing α-crystallin domain) are found both in prokaryotic and eukaryotic organisms; however, there is limited knowledge of their evolution. In this study, two small HSP genes termed AvHSP28.6 and AvHSP27, both organized in one intron and two exons, were characterised in the Mediterranean snakelocks anemone Anemonia viridis. The release of the genome sequence of Hydra magnipapillata and Nematostella vectensis enabled a comprehensive study of the molecular evolution of α-crystallin gene family among cnidarians. Most of the H. magnipapillata sHSP genes share the same gene organization described for AvHSP28.6 and AvHSP27, differing from the sHSP genes of N. vectensis which mainly show an intronless architecture. The different genomic organization of sHSPs, the phylogenetic analyses based on protein sequences, and the relationships among Cnidarians, suggest that the A.viridis sHSPs represent the common ancestor from which H. magnipapillata genes directly evolved through segmental genome duplication. Additionally retroposition events may be considered responsible for the divergence of sHSP genes of N. vectensis from A. viridis. Analyses of transcriptional expression profile showed that AvHSP28.6 was constitutively expressed among different tissues from both ectodermal and endodermal layers of the adult sea anemones, under normal physiological conditions and also under different stress condition. Specifically, we profiled the transcriptional activation of AvHSP28.6 after challenges with different abiotic/biotic stresses showing induction by extreme temperatures, heavy metals exposure and immune stimulation. Conversely, no AvHSP27 transcript was detected in such dissected tissues, in adult whole body cDNA library or under stress conditions. Hence, the involvement of AvHSP28.6 gene in the sea anemone defensome is strongly suggested.

  2. Molecular Evolution of the CYP2D Subfamily in Primates: Purifying Selection on Substrate Recognition Sites without the Frequent or Long-Tract Gene Conversion

    Science.gov (United States)

    Yasukochi, Yoshiki; Satta, Yoko

    2015-01-01

    The human cytochrome P450 (CYP) 2D6 gene is a member of the CYP2D gene subfamily, along with the CYP2D7P and CYP2D8P pseudogenes. Although the CYP2D6 enzyme has been studied extensively because of its clinical importance, the evolution of the CYP2D subfamily has not yet been fully understood. Therefore, the goal of this study was to reveal the evolutionary process of the human drug metabolic system. Here, we investigate molecular evolution of the CYP2D subfamily in primates by comparing 14 CYP2D sequences from humans to New World monkey genomes. Window analysis and statistical tests revealed that entire genomic sequences of paralogous genes were extensively homogenized by gene conversion during molecular evolution of CYP2D genes in primates. A neighbor-joining tree based on genomic sequences at the nonsubstrate recognition sites showed that CYP2D6 and CYP2D8 genes were clustered together due to gene conversion. In contrast, a phylogenetic tree using amino acid sequences at substrate recognition sites did not cluster the CYP2D6 and CYP2D8 genes, suggesting that the functional constraint on substrate specificity is one of the causes for purifying selection at the substrate recognition sites. Our results suggest that the CYP2D gene subfamily in primates has evolved to maintain the regioselectivity for a substrate hydroxylation activity between individual enzymes, even though extensive gene conversion has occurred across CYP2D coding sequences. PMID:25808902

  3. Evolution of MHC class I genes in the endangered loggerhead sea turtle (Caretta caretta) revealed by 454 amplicon sequencing.

    Science.gov (United States)

    Stiebens, Victor A; Merino, Sonia E; Chain, Frédéric J J; Eizaguirre, Christophe

    2013-04-30

    In evolutionary and conservation biology, parasitism is often highlighted as a major selective pressure. To fight against parasites and pathogens, genetic diversity of the immune genes of the major histocompatibility complex (MHC) are particularly important. However, the extensive degree of polymorphism observed in these genes makes it difficult to conduct thorough population screenings. We utilized a genotyping protocol that uses 454 amplicon sequencing to characterize the MHC class I in the endangered loggerhead sea turtle (Caretta caretta) and to investigate their evolution at multiple relevant levels of organization. MHC class I genes revealed signatures of trans-species polymorphism across several reptile species. In the studied loggerhead turtle individuals, it results in the maintenance of two ancient allelic lineages. We also found that individuals carrying an intermediate number of MHC class I alleles are larger than those with either a low or high number of alleles. Multiple modes of evolution seem to maintain MHC diversity in the loggerhead turtles, with relatively high polymorphism for an endangered species.

  4. Parallel Evolution of Genes and Languages in the Caucasus Region

    Science.gov (United States)

    Balanovsky, Oleg; Dibirova, Khadizhat; Dybo, Anna; Mudrak, Oleg; Frolova, Svetlana; Pocheshkhova, Elvira; Haber, Marc; Platt, Daniel; Schurr, Theodore; Haak, Wolfgang; Kuznetsova, Marina; Radzhabov, Magomed; Balaganskaya, Olga; Romanov, Alexey; Zakharova, Tatiana; Soria Hernanz, David F.; Zalloua, Pierre; Koshel, Sergey; Ruhlen, Merritt; Renfrew, Colin; Wells, R. Spencer; Tyler-Smith, Chris; Balanovska, Elena

    2012-01-01

    We analyzed 40 SNP and 19 STR Y-chromosomal markers in a large sample of 1,525 indigenous individuals from 14 populations in the Caucasus and 254 additional individuals representing potential source populations. We also employed a lexicostatistical approach to reconstruct the history of the languages of the North Caucasian family spoken by the Caucasus populations. We found a different major haplogroup to be prevalent in each of four sets of populations that occupy distinct geographic regions and belong to different linguistic branches. The haplogroup frequencies correlated with geography and, even more strongly, with language. Within haplogroups, a number of haplotype clusters were shown to be specific to individual populations and languages. The data suggested a direct origin of Caucasus male lineages from the Near East, followed by high levels of isolation, differentiation and genetic drift in situ. Comparison of genetic and linguistic reconstructions covering the last few millennia showed striking correspondences between the topology and dates of the respective gene and language trees, and with documented historical events. Overall, in the Caucasus region, unmatched levels of gene-language co-evolution occurred within geographically isolated populations, probably due to its mountainous terrain. PMID:21571925

  5. Rapid evolution of chemosensory receptor genes in a pair of sibling species of orchid bees (Apidae: Euglossini).

    Science.gov (United States)

    Brand, Philipp; Ramírez, Santiago R; Leese, Florian; Quezada-Euan, J Javier G; Tollrian, Ralph; Eltz, Thomas

    2015-08-28

    Insects rely more on chemical signals (semiochemicals) than on any other sensory modality to find, identify, and choose mates. In most insects, pheromone production is typically regulated through biosynthetic pathways, whereas pheromone sensory detection is controlled by the olfactory system. Orchid bees are exceptional in that their semiochemicals are not produced metabolically, but instead male bees collect odoriferous compounds (perfumes) from the environment and store them in specialized hind-leg pockets to subsequently expose during courtship display. Thus, the olfactory sensory system of orchid bees simultaneously controls male perfume traits (sender components) and female preferences (receiver components). This functional linkage increases the opportunities for parallel evolution of male traits and female preferences, particularly in response to genetic changes of chemosensory detection (e.g. Odorant Receptor genes). To identify whether shifts in pheromone composition among related lineages of orchid bees are associated with divergence in chemosensory genes of the olfactory periphery, we searched for patterns of divergent selection across the antennal transcriptomes of two recently diverged sibling species Euglossa dilemma and E. viridissima. We identified 3185 orthologous genes including 94 chemosensory loci from five different gene families (Odorant Receptors, Ionotropic Receptors, Gustatory Receptors, Odorant Binding Proteins, and Chemosensory Proteins). Our results revealed that orthologs with signatures of divergent selection between E. dilemma and E. viridissima were significantly enriched for chemosensory genes. Notably, elevated signals of divergent selection were almost exclusively observed among chemosensory receptors (i.e. Odorant Receptors). Our results suggest that rapid changes in the chemosensory gene family occurred among closely related species of orchid bees. These findings are consistent with the hypothesis that strong divergent selection

  6. CcMP-II, a new hemorrhagic metalloproteinase from Cerastes cerastes snake venom: purification, biochemical characterization and amino acid sequence analysis.

    Science.gov (United States)

    Boukhalfa-Abib, Hinda; Laraba-Djebari, Fatima

    2015-01-01

    Snake venom metalloproteinases (SVMPs) are the most abundant components in snake venoms. They are important in the induction of systemic alterations and local tissue damage after envenomation. CcMP-II, which is a metalloproteinase purified from Cerastes cerastes snake venom, was obtained by a combination of gel filtration, ion-exchange and affinity chromatographies. It was homogeneous on SDS-PAGE, with a molecular mass estimated to 35kDa and presents a pI of 5.6. CcMP-II has an N-terminal sequence of EDRHINLVSVADHRMXTKY, with high levels of homology with those of the members of class P-II of SVMPs, which comprises metalloproteinase and disintegrin-like domains together. This proteinase displayed a fibrinogenolytic and hemorrhagic activities. The proteolytic and hemorrhagic activities of CcMP-II were inhibited by EDTA and 1,10-phenanthroline. However, these activities were not affected by aprotinine and PMSF, suggesting that CcMP-II is a zinc-dependent hemorrhagic metalloproteinase with an α-fibrinogenase activity. The hemorrhagic metalloproteinase CcMP-II was also able to hydrolyze extracellular matrix components, such as type IV collagen and laminin. These results indicate that CcMP-II is implicated in the local and systemic bleeding, contributing thus in the toxicity of C. cerastes venom. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Evolution of endogenous non-retroviral genes integrated into plant genomes

    Directory of Open Access Journals (Sweden)

    Hyosub Chu

    2014-08-01

    Full Text Available Numerous comparative genome analyses have revealed the wide extent of horizontal gene transfer (HGT in living organisms, which contributes to their evolution and genetic diversity. Viruses play important roles in HGT. Endogenous viral elements (EVEs are defined as viral DNA sequences present within the genomes of non-viral organisms. In eukaryotic cells, the majority of EVEs are derived from RNA viruses using reverse transcription. In contrast, endogenous non-retroviral elements (ENREs are poorly studied. However, the increasing availability of genomic data and the rapid development of bioinformatics tools have enabled the identification of several ENREs in various eukaryotic organisms. To date, a small number of ENREs integrated into plant genomes have been identified. Of the known non-retroviruses, most identified ENREs are derived from double-strand (ds RNA viruses, followed by single-strand (ss DNA and ssRNA viruses. At least eight virus families have been identified. Of these, viruses in the family Partitiviridae are dominant, followed by viruses of the families Chrysoviridae and Geminiviridae. The identified ENREs have been primarily identified in eudicots, followed by monocots. In this review, we briefly discuss the current view on non-retroviral sequences integrated into plant genomes that are associated with plant-virus evolution and their possible roles in antiviral resistance.

  8. Expression of extracellular matrix metalloproteinase inducer in odontogenic cysts.

    Science.gov (United States)

    Ali, Mohammad Abdulhadi Abbas

    2008-08-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) is known to induce matrix metalloproteinase (MMP) production. The expression of EMMPRIN in odontogenic cysts has not been previously studied. This study was done to determine the presence and the variability of EMMPRIN expression in various types of odontogenic cysts. An immunohistochemical study using a polyclonal anti-EMMPRIN antibody was done using 48 odontogenic cyst cases: 13 odontogenic keratocysts (OKCs), 18 dentigerous cysts (DCs), and 17 periapical cysts (PAs). Twelve cases of normal dental follicles (DFs) were also included in this study for comparison. EMMPRIN immunoreactivity was detected in all of the cysts and DFs studied. In odontogenic cysts, EMMPRIN immunoreactivity was generally higher in basal cells than in suprabasal cells. The overall EMMPRIN expression in the epithelial lining of the 3 different types of odontogenic cyst was significantly higher than in the DFs. Overall EMMPRIN expression was also found to be significantly higher in the epithelial lining of OKCs than in the other types of cysts. This study confirmed that EMMPRIN is present in odontogenic cysts and DFs. The higher EMMPRIN expression in OKCs suggests that it may be involved in the aggressive behavior of this type of cyst.

  9. Nearly Complete 28S rRNA Gene Sequences Confirm New Hypotheses of Sponge Evolution

    Science.gov (United States)

    Thacker, Robert W.; Hill, April L.; Hill, Malcolm S.; Redmond, Niamh E.; Collins, Allen G.; Morrow, Christine C.; Spicer, Lori; Carmack, Cheryl A.; Zappe, Megan E.; Pohlmann, Deborah; Hall, Chelsea; Diaz, Maria C.; Bangalore, Purushotham V.

    2013-01-01

    The highly collaborative research sponsored by the NSF-funded Assembling the Porifera Tree of Life (PorToL) project is providing insights into some of the most difficult questions in metazoan systematics. Our understanding of phylogenetic relationships within the phylum Porifera has changed considerably with increased taxon sampling and data from additional molecular markers. PorToL researchers have falsified earlier phylogenetic hypotheses, discovered novel phylogenetic alliances, found phylogenetic homes for enigmatic taxa, and provided a more precise understanding of the evolution of skeletal features, secondary metabolites, body organization, and symbioses. Some of these exciting new discoveries are shared in the papers that form this issue of Integrative and Comparative Biology. Our analyses of over 300 nearly complete 28S ribosomal subunit gene sequences provide specific case studies that illustrate how our dataset confirms new hypotheses of sponge evolution. We recovered monophyletic clades for all 4 classes of sponges, as well as the 4 major clades of Demospongiae (Keratosa, Myxospongiae, Haploscleromorpha, and Heteroscleromorpha), but our phylogeny differs in several aspects from traditional classifications. In most major clades of sponges, families within orders appear to be paraphyletic. Although additional sampling of genes and taxa are needed to establish whether this pattern results from a lack of phylogenetic resolution or from a paraphyletic classification system, many of our results are congruent with those obtained from 18S ribosomal subunit gene sequences and complete mitochondrial genomes. These data provide further support for a revision of the traditional classification of sponges. PMID:23748742

  10. Matrix metalloproteinase-12 (MMP-12) in osteoclasts

    DEFF Research Database (Denmark)

    Hou, Peng; Troen, Tine; Ovejero, Maria C

    2004-01-01

    Osteoclasts require matrix metalloproteinase (MMP) activity and cathepsin K to resorb bone, but the critical MMP has not been identified. Osteoclasts express MMP-9 and MMP-14, which do not appear limiting for resorption, and the expression of additional MMPs is not clear. MMP-12, also called...... bone show MMP-12 expression in osteoclasts in calvariae and long bones. We also demonstrate that recombinant MMP-12 cleaves the putative functional domains of osteopontin and bone sialoprotein, two bone matrix proteins that strongly influence osteoclast activities, such as attachment, spreading...

  11. Estrogen regulation of microcephaly genes and evolution of brain sexual dimorphism in primates.

    Science.gov (United States)

    Shi, Lei; Lin, Qiang; Su, Bing

    2015-06-30

    Sexual dimorphism in brain size is common among primates, including humans, apes and some Old World monkeys. In these species, the brain size of males is generally larger than that of females. Curiously, this dimorphism has persisted over the course of primate evolution and human origin, but there is no explanation for the underlying genetic controls that have maintained this disparity in brain size. In the present study, we tested the effect of the female hormone (estradiol) on seven genes known to be related to brain size in both humans and nonhuman primates, and we identified half estrogen responsive elements (half EREs) in the promoter regions of four genes (MCPH1, ASPM, CDK5RAP2 and WDR62). Likewise, at sequence level, it appears that these half EREs are generally conserved across primates. Later testing via a reporter gene assay and cell-based endogenous expression measurement revealed that estradiol could significantly suppress the expression of the four affected genes involved in brain size. More intriguingly, when the half EREs were deleted from the promoters, the suppression effect disappeared, suggesting that the half EREs mediate the regulation of estradiol on the brain size genes. We next replicated these experiments using promoter sequences from chimpanzees and rhesus macaques, and observed a similar suppressive effect of estradiol on gene expression, suggesting that this mechanism is conserved among primate species that exhibit brain size dimorphism. Brain size dimorphism among certain primates, including humans, is likely regulated by estrogen through its sex-dependent suppression of brain size genes during development.

  12. Cloning and molecular evolution of the aldehyde dehydrogenase 2 gene (Aldh2) in bats (Chiroptera).

    Science.gov (United States)

    Chen, Yao; Shen, Bin; Zhang, Junpeng; Jones, Gareth; He, Guimei

    2013-02-01

    Old World fruit bats (Pteropodidae) and New World fruit bats (Phyllostomidae) ingest significant quantities of ethanol while foraging. Mitochondrial aldehyde dehydrogenase (ALDH2, encoded by the Aldh2 gene) plays an important role in ethanol metabolism. To test whether the Aldh2 gene has undergone adaptive evolution in frugivorous and nectarivorous bats in relation to ethanol elimination, we sequenced part of the coding region of the gene (1,143 bp, ~73 % coverage) in 14 bat species, including three Old World fruit bats and two New World fruit bats. Our results showed that the Aldh2 coding sequences are highly conserved across all bat species we examined, and no evidence of positive selection was detected in the ancestral branches leading to Old World fruit bats and New World fruit bats. Further research is needed to determine whether other genes involved in ethanol metabolism have been the targets of positive selection in frugivorous and nectarivorous bats.

  13. Positive evolution of the glycoprotein (GP) gene is related to transmission of the Ebola virus.

    Science.gov (United States)

    Jing, Y X; Wang, L N; Wu, X M; Song, C X

    2016-03-28

    Ebola hemorrhagic fever is a fatal disease caused by the negative-strand RNA of the Ebola virus. A high-intensity outbreak of this fever was reported in West Africa last year; however, there is currently no definitive treatment strategy available for this disease. In this study, we analyzed the molecular evolutionary history and attempted to determine the positive selection sites in the Ebola genes using multiple-genomic sequences of the various Ebola virus subtypes, in order to gain greater clarity into the evolution of the virus and its various subtypes. Only the glycoprotein (GP) gene was positively selected among the 8 Ebola genes, with the other genes remaining in the purification stage. The positive selection sites in the GP gene were identified by a random-site model; these sites were found to be located in the mucin-like region, which is associated with transmembrane protein binding. Additionally, different branches of the phylogenetic tree displayed different positive sites, which in turn was responsible for differences in the cell adhesion ability of the virus. In conclusion, the pattern of positive sites in the GP gene is associated with the epidemiology and prevalence of Ebola in different areas.

  14. The evolution of multiple isotypic IgM heavy chain genes in the shark.

    Science.gov (United States)

    Lee, Victor; Huang, Jing Li; Lui, Ming Fai; Malecek, Karolina; Ohta, Yuko; Mooers, Arne; Hsu, Ellen

    2008-06-01

    The IgM H chain gene organization of cartilaginous fishes consists of 15-200 miniloci, each with a few gene segments (V(H)-D1-D2-J(H)) and one C gene. This is a gene arrangement ancestral to the complex IgH locus that exists in all other vertebrate classes. To understand the molecular evolution of this system, we studied the nurse shark, which has relatively fewer loci, and characterized the IgH isotypes for organization, functionality, and the somatic diversification mechanisms that act upon them. Gene numbers differ slightly between individuals ( approximately 15), but five active IgM subclasses are always present. Each gene undergoes rearrangement that is strictly confined within the minilocus; in B cells there is no interaction between adjacent loci located > or =120 kb apart. Without combinatorial events, the shark IgM H chain repertoire is based on junctional diversity and, subsequently, somatic hypermutation. We suggest that the significant contribution by junctional diversification reflects the selected novelty introduced by RAG in the early vertebrate ancestor, whereas combinatorial diversity coevolved with the complex translocon organization. Moreover, unlike other cartilaginous fishes, there are no germline-joined VDJ at any nurse shark mu locus, and we suggest that such genes, when functional, are species-specific and may have specialized roles. With an entire complement of IgM genes available for the first time, phylogenetic analyses were performed to examine how the multiple Ig loci evolved. We found that all domains changed at comparable rates, but V(H) appears to be under strong positive selection for increased amino acid sequence diversity, and surprisingly, so does Cmicro2.

  15. Evolution of HBV S-gene in the backdrop of HDV co-infection.

    Science.gov (United States)

    Baig, Samina; Abidi, Syed H; Azam, Zahid; Majid, Shahid; Khan, Saeed; Khanani, Muhammad R; Ali, Syed

    2018-04-12

    HBV-HDV co-infected people have a higher chance of developing cirrhosis, fulminant hepatitis, and hepatocellular carcinoma (HCC) compared to those infected only with HBV. The present study was conducted to investigate HBV genotypes and phylogeny among HBV mono-infected and HBV-HDV co-infected patients, as well as analyze mutations in the surface gene of HBV in mono-infected and co-infected patients. A total of 100 blood samples (50 co-infected with HBV and HDV, and 50 mono-infected with HBV only) were collected for this study. HBV DNA was extracted from patient sera and partial surface antigen gene was amplified from HBV genome using polymerase chain reaction. HBV S gene was sequenced from 49 mono-infected and 36 co-infected patients and analyzed to identify HBV genotypes and phylogenetic patterns. Subsequently, HBV S amino acid sequences were analyzed for mutational differences between sequences from mono- and co-infected patients. HBV genotype D was predominantly found in both mono-infected as well as co-infected patients. Phylogenetic analysis showed the divergence of HBV sequences, between mono- and co-infected patients, into two distinct clusters. HBV S gene mutation analysis revealed certain mutations in HBV-HDV co-infected subjects to be distinct from those found in mono-infected patients. In this study, we found that HBV S gene sequences from mono- and co-infected patients exhibit distinct mutation profiles. This might indicate the evolution of HBV S gene under selection pressures generated from HDV coinfection. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. Geomagnetic Field (Gmf) and Plant Evolution: Investigating the Effects of Gmf Reversal on Arabidopsis thaliana Development and Gene Expression.

    Science.gov (United States)

    Bertea, Cinzia M; Narayana, Ravishankar; Agliassa, Chiara; Rodgers, Christopher T; Maffei, Massimo E

    2015-11-30

    One of the most stimulating observations in plant evolution is a correlation between the occurrence of geomagnetic field (GMF) reversals (or excursions) and the moment of the radiation of Angiosperms. This led to the hypothesis that alterations in GMF polarity may play a role in plant evolution. Here, we describe a method to test this hypothesis by exposing Arabidopsis thaliana to artificially reversed GMF conditions. We used a three-axis magnetometer and the collected data were used to calculate the magnitude of the GMF. Three DC power supplies were connected to three Helmholtz coil pairs and were controlled by a computer to alter the GMF conditions. Plants grown in Petri plates were exposed to both normal and reversed GMF conditions. Sham exposure experiments were also performed. Exposed plants were photographed during the experiment and images were analyzed to calculate root length and leaf areas. Arabidopsis total RNA was extracted and Quantitative Real Time-PCR (qPCR) analyses were performed on gene expression of CRUCIFERIN 3 (CRU3), copper transport protein1 (COTP1), Redox Responsive Transcription Factor1 (RRTF1), Fe Superoxide Dismutase 1, (FSD1), Catalase3 (CAT3), Thylakoidal Ascorbate Peroxidase (TAPX), a cytosolic Ascorbate Peroxidase1 (APX1), and NADPH/respiratory burst oxidase protein D (RbohD). Four different reference genes were analysed to normalize the results of the qPCR. The best of the four genes was selected and the most stable gene for normalization was used. Our data show for the first time that reversing the GMF polarity using triaxial coils has significant effects on plant growth and gene expression. This supports the hypothesis that GMF reversal contributes to inducing changes in plant development that might justify a higher selective pressure, eventually leading to plant evolution.

  17. Broccoli and watercress suppress matrix metalloproteinase-9 activity and invasiveness of human MDA-MB-231 breast cancer cells

    International Nuclear Information System (INIS)

    Rose, Peter; Huang, Qing; Ong, Choon Nam; Whiteman, Matt

    2005-01-01

    A high dietary intake of cruciferous vegetables has been associated with a reduction in numerous human pathologies particularly cancer. In the current study, we examined the inhibitory effects of broccoli (Brassica oleracea var. italica) and watercress (Rorripa nasturtium aquaticum) extracts on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced cancer cell invasion and matrix metalloproteinase-9 activity using human MDA-MB-231 breast cancer cells. Aberrant overexpression of matrix metalloproteinases, including metalloproteinase-9, is associated with increased invasive potential in cancer cell lines. Our results demonstrate that extracts of broccoli and Rorripa suppressed TPA-induced MMP-9 activity and invasiveness in a concentration dependant manner as determined by zymographic analysis. Furthermore, fractionation of individual extracts followed by liquid chromatography mass spectroscopy analysis (LC-MS) revealed that the inhibitory effects of each vegetable were associated with the presence of 4-methysulfinylbutyl (sulforaphane) and 7-methylsulphinylheptyl isothiocyanates. Taken together, our data indicate that isothiocyanates derived form broccoli and Rorripa inhibit metalloproteinase 9 activities and also suppress the invasive potential of human MDA-MB-231 breast cancer cells in vitro. The inhibitory effects observed in the current study may contribute to the suppression of carcinogenesis by diets high in cruciferous vegetables

  18. Amphioxus and lamprey AP-2 genes: implications for neural crest evolution and migration patterns

    Science.gov (United States)

    Meulemans, Daniel; Bronner-Fraser, Marianne

    2002-01-01

    The neural crest is a uniquely vertebrate cell type present in the most basal vertebrates, but not in cephalochordates. We have studied differences in regulation of the neural crest marker AP-2 across two evolutionary transitions: invertebrate to vertebrate, and agnathan to gnathostome. Isolation and comparison of amphioxus, lamprey and axolotl AP-2 reveals its extensive expansion in the vertebrate dorsal neural tube and pharyngeal arches, implying co-option of AP-2 genes by neural crest cells early in vertebrate evolution. Expression in non-neural ectoderm is a conserved feature in amphioxus and vertebrates, suggesting an ancient role for AP-2 genes in this tissue. There is also common expression in subsets of ventrolateral neurons in the anterior neural tube, consistent with a primitive role in brain development. Comparison of AP-2 expression in axolotl and lamprey suggests an elaboration of cranial neural crest patterning in gnathostomes. However, migration of AP-2-expressing neural crest cells medial to the pharyngeal arch mesoderm appears to be a primitive feature retained in all vertebrates. Because AP-2 has essential roles in cranial neural crest differentiation and proliferation, the co-option of AP-2 by neural crest cells in the vertebrate lineage was a potentially crucial event in vertebrate evolution.

  19. Matrix metalloproteinase-9 plays a role in protecting zebrafish from lethal infection with Listeria monocytogenes by enhancing macrophage migration.

    Science.gov (United States)

    Shan, Ying; Zhang, Yikai; Zhuo, Xunhui; Li, Xiaoliang; Peng, Jinrong; Fang, Weihuan

    2016-07-01

    Zebrafish could serve as an alternative animal model for pathogenic bacteria in multiple infectious routes. Our previous study showed that immersion infection in zebrafish with Listeria monocytogenes did not cause lethality but induced transient expression of several immune response genes. We used an Affymetrix gene chip to examine the expression profiles of genes of zebrafish immersion-infected with L. monocytogenes. A total of 239 genes were up-regulated and 56 genes down-regulated compared with uninfected fish. Highest expression (>20-fold) was seen with the mmp-9 gene encoding the matrix metalloproteinase-9 (Mmp-9) known to degrade the extracellular matrix proteins. By morpholino knockdown of mmp-9, we found that the morphants showed rapid death with much higher bacterial load after intravenous or intraventricular (brain ventricle) infection with L. monocytogenes. Macrophages in mmp-9-knockdown morphants had significant defect in migrating to the brain cavity upon intraventricular infection. Decreased migration of murine macrophages with knockdown of mmp-9 and cd44 was also seen in transwell inserts with 8-μm pore polycarbonate membrane, as compared with the scrambled RNA. These findings suggest that Mmp-9 is a protective molecule against infection by L. monocytogenes by engaging in migration of zebrafish macrophages to the site of infection via a non-proteolytic role. Further work is required on the molecular mechanisms governing Mmp-9-driven macrophage migration in zebrafish. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Matrix metalloproteinase 3 polymorphisms as a potential marker of enhanced susceptibility to lung cancer in chronic obstructive pulmonary disease subjects

    Directory of Open Access Journals (Sweden)

    Kamil Brzóska

    2014-09-01

    Full Text Available [b]Introduction and objective[/b]. Chronic obstructive pulmonary disease (COPD is often accompanied by lung cancer. Among the genes that may play a role in the occurrence of COPD and lung cancer are those encoding the proteolytic enzymes, such as matrix metalloproteinases (MMPs and their tissue inhibitors. The objective of this study was to find MMPs-associated markers useful in the identification of COPD subjects with increased susceptibility to developing lung cancer. [b]Materials and methods[/b]. We compared the frequency of single nucleotide polymorphisms in genes coding for matrix proteinases ([i]MMP1, MMP2, MMP3, MMP9, MMP12[/i] as well as tissue inhibitor of metalloproteinases ([i]TIMP1[/i] in two groups of subjects: COPD patients (54 subjects and COPD patients diagnosed for lung cancer occurrence (53 subjects.The levels of the respective proteins in blood serum were also analyzed. [b]Results[/b]. The frequencies of 2 genotypes, [i]MMP3[/i] rs3025058 and MMP3 rs678815, were significantly different between the studied groups. In both cases, more heterozygotes and less homozygotes (both types were observed in the COPD group than in the COPD + cancer group. A significantly higher TIMP1 level in blood serum was observed in the COPD + cancer group than in the COPD group. There were no statistically significant differences in[i] MMPs[/i] blood levels between the studied groups. In addition, no genotype-associated differences in [i]TIMP1[/i] or[i] MMPs[/i] blood levels were observed. [b]Conclusions[/b]. Homozygocity for [i]MMP3[/i] rs3025058 and rs678815 polymorphisms is a potential marker of enhanced susceptibility to lung cancer development among COPD subjects.

  1. Haloperidol Abrogates Matrix Metalloproteinase-9 Expression by Inhibition of NF-κB Activation in Stimulated Human Monocytic Cells

    Directory of Open Access Journals (Sweden)

    Yueh-Lun Lee

    2018-01-01

    Full Text Available Much evidence has indicated that matrix metalloproteinases (MMPs participate in the progression of neuroinflammatory disorders. The present study was undertaken to investigate the inhibitory effect and mechanism of the antipsychotic haloperidol on MMP activation in the stimulated THP-1 monocytic cells. Haloperidol exerted a strong inhibition on tumor necrosis factor- (TNF- α-induced MMP-9 gelatinolysis of THP-1 cells. A concentration-dependent inhibitory effect of haloperidol was observed in TNF-α-induced protein and mRNA expression of MMP-9. On the other hand, haloperidol slightly affected cell viability and tissue inhibition of metalloproteinase-1 levels. It significantly inhibited the degradation of inhibitor-κB-α (IκBα in activated cells. Moreover, it suppressed activated nuclear factor-κB (NF-κB detected by a mobility shift assay, NF-κB reporter gene, and chromatin immunoprecipitation analyses. Consistent with NF-κB inhibition, haloperidol exerted a strong inhibition of lipopolysaccharide- (LPS- induced MMP-9 gelatinolysis but not of transforming growth factor-β1-induced MMP-2. In in vivo studies, administration of haloperidol significantly attenuated LPS-induced intracerebral MMP-9 activation of the brain homogenate and the in situ in C57BL/6 mice. In conclusion, the selective anti-MMP-9 activation of haloperidol could possibly involve the inhibition of the NF-κB signal pathway. Hence, it was found that haloperidol treatment may represent a bystander of anti-MMP actions for its conventional psychotherapy.

  2. Matrix metalloproteinase inhibition reduces intimal hyperplasia in a porcine arteriovenous-graft model

    NARCIS (Netherlands)

    Rotmans, Joris I.; Velema, Evelyn; Verhagen, Hence J. M.; Blankensteijn, Jan D.; de kleijn, Dominique P. V.; Stroes, Erik S. G.; Pasterkamp, Gerard

    2004-01-01

    Background: The patency of arteriovenous (AV) polytetrafluoroethylene grafts for hemodialysis is impaired by intimal hyperplasia (IH) at the venous outflow tract. IH mainly consists of vascular smooth muscle cells, fibroblasts, and extracellular matrix proteins. Because matrix metalloproteinases

  3. Matrix metalloproteinase inhibition reduces intimal hyperplasia in a porcine arteriovenous-graft model.

    NARCIS (Netherlands)

    Rotmans, J.I.; Velema, E.; Verhagen, H.J.; Blankensteijn, J.D.; Kleijn, D.P. de; Stroes, E.S.; Pasterkamp, G.

    2004-01-01

    BACKGROUND: The patency of arteriovenous (AV) polytetrafluoroethylene grafts for hemodialysis is impaired by intimal hyperplasia (IH) at the venous outflow tract. IH mainly consists of vascular smooth muscle cells, fibroblasts, and extracellular matrix proteins. Because matrix metalloproteinases

  4. Matrix metalloproteinase inhibition reduces intimal hyperplasia in a porcine arteriovenous-graft model

    NARCIS (Netherlands)

    Rotmans, JI; Velema, E; Verhagen, HJM; Blankensteijn, JD; de Kleijn, DPV; Stroes, ESG; Pasterkamp, G

    Background: The patency of arteriovenous (AV) polytetrafluoroethylene grafts for hemodialysis is impaired by intimal hyperplasia (IH) at the venous outflow tract. IH mainly consists of vascular smooth muscle cells, fibroblasts, and extracellular matrix proteins. Because matrix metalloproteinases

  5. Global expression differences and tissue specific expression differences in rice evolution result in two contrasting types of differentially expressed genes

    KAUST Repository

    Horiuchi, Youko; Harushima, Yoshiaki; Fujisawa, Hironori; Mochizuki, Takako; Fujita, Masahiro; Ohyanagi, Hajime; Kurata, Nori

    2015-01-01

    Since the development of transcriptome analysis systems, many expression evolution studies characterized evolutionary forces acting on gene expression, without explicit discrimination between global expression differences and tissue

  6. Invasion fitness for gene-culture co-evolution in family-structured populations and an application to cumulative culture under vertical transmission.

    Science.gov (United States)

    Mullon, Charles; Lehmann, Laurent

    2017-08-01

    Human evolution depends on the co-evolution between genetically determined behaviors and socially transmitted information. Although vertical transmission of cultural information from parent to offspring is common in hominins, its effects on cumulative cultural evolution are not fully understood. Here, we investigate gene-culture co-evolution in a family-structured population by studying the invasion fitness of a mutant allele that influences a deterministic level of cultural information (e.g., amount of knowledge or skill) to which diploid carriers of the mutant are exposed in subsequent generations. We show that the selection gradient on such a mutant, and the concomitant level of cultural information it generates, can be evaluated analytically under the assumption that the cultural dynamic has a single attractor point, thereby making gene-culture co-evolution in family-structured populations with multigenerational effects mathematically tractable. We apply our result to study how genetically determined phenotypes of individual and social learning co-evolve with the level of adaptive information they generate under vertical transmission. We find that vertical transmission increases adaptive information due to kin selection effects, but when information is transmitted as efficiently between family members as between unrelated individuals, this increase is moderate in diploids. By contrast, we show that the way resource allocation into learning trades off with allocation into reproduction (the "learning-reproduction trade-off") significantly influences levels of adaptive information. We also show that vertical transmission prevents evolutionary branching and may therefore play a qualitative role in gene-culture co-evolutionary dynamics. More generally, our analysis of selection suggests that vertical transmission can significantly increase levels of adaptive information under the biologically plausible condition that information transmission between relatives is

  7. Matrix Metalloproteinase-9 (MMP-9 polymorphisms in patients with cutaneous malignant melanoma

    Directory of Open Access Journals (Sweden)

    Busam Klaus

    2007-03-01

    Full Text Available Abstract Background Cutaneous Malignant Melanoma causes over 75% of skin cancer-related deaths, and it is clear that many factors may contribute to the outcome. Matrix Metalloproteinases (MMPs play an important role in the degradation and remodeling of the extracellular matrix and basement membrane that, in turn, modulate cell division, migration and angiogenesis. Some polymorphisms are known to influence gene expression, protein activity, stability, and interactions, and they were shown to be associated with certain tumor phenotypes and cancer risk. Methods We tested seven polymorphisms within the MMP-9 gene in 1002 patients with melanoma in order to evaluate germline genetic variants and their association with progression and known risk factors of melanoma. The polymorphisms were selected based on previously published reports and their known or potential functional relevance using in-silico methods. Germline DNA was then genotyped using pyrosequencing, melting temperature profiles, heteroduplex analysis, and fragment size analysis. Results We found that reference alleles were present in higher frequency in patients who tend to sunburn, have family history of melanoma, higher melanoma stage, intransit metastasis and desmoplastic melanomas among others. However, after adjustment for age, sex, phenotypic index, moles, and freckles only Q279R, P574R and R668Q had significant associations with intransit metastasis, propensity to tan/sunburn and primary melanoma site. Conclusion This study does not provide strong evidence for further investigation into the role of the MMP-9 SNPs in melanoma progression.

  8. Dietary Lecithin Decreases Skeletal Muscle COL1A1 and COL3A1 Gene Expression in Finisher Gilts

    Directory of Open Access Journals (Sweden)

    Henny Akit

    2016-06-01

    Full Text Available The purpose of this study was to investigate the effect of dietary lecithin on skeletal muscle gene expression of collagen precursors and enzymes involved in collagen synthesis and degradation. Finisher gilts with an average start weight of 55.9 ± 2.22 kg were fed diets containing either 0, 4, 20 or 80 g/kg soybean lecithin prior to harvest for six weeks and the rectus abdominis muscle gene expression profile was analyzed by quantitative real-time PCR. Lecithin treatment down-regulated Type I (α1 procollagen (COL1A1 and Type III (α1 procollagen (COL3A1 mRNA expression ( p < 0.05, respectively, indicating a decrease in the precursors for collagen synthesis. The α-subunit of prolyl 4-hydroxylase (P4H mRNA expression also tended to be down-regulated ( p = 0.056, indicating a decrease in collagen synthesis. Decreased matrix metalloproteinase-1 (MMP-1 mRNA expression may reflect a positive regulatory response to the reduced collagen synthesis in muscle from the pigs fed lecithin ( p = 0.035. Lecithin had no effect on tissue inhibitor metalloproteinase-1 (TIMP-1, matrix metalloproteinase-13 (MMP-13 and lysyl oxidase mRNA expression. In conclusion, lecithin down-regulated COL1A1 and COL3A1 as well as tended to down-regulate α-subunit P4H expression. However, determination of muscle collagen content and solubility are required to support the gene functions.

  9. Genome-Wide Analysis Suggests the Relaxed Purifying Selection Affect the Evolution of WOX Genes in Pyrus bretschneideri, Prunus persica, Prunus mume, and Fragaria vesca

    Directory of Open Access Journals (Sweden)

    Yunpeng Cao

    2017-06-01

    Full Text Available WUSCHEL-related homeobox (WOX family is one of the largest group of transcription factors (TFs specifically found in plant kingdom. WOX TFs play an important role in plant development processes and evolutionary novelties. Although the roles of WOXs in Arabidopsis and rice have been well-studied, however, little are known about the relationships among the main clades in the molecular evolution of these genes in Rosaceae. Here, we carried out a genome-wide analysis and identified 14, 10, 10, and 9 of WOX genes from four Rosaceae species (Fragaria vesca, Prunus persica, Prunus mume, and Pyrus bretschneideri, respectively. According to evolutionary analysis, as well as amino acid sequences of their homodomains, these genes were divided into three clades with nine subgroups. Furthermore, due to the conserved structural patterns among these WOX genes, it was proposed that there should exist some highly conserved regions of microsynteny in the four Rosaceae species. Moreover, most of WOX gene pairs were presented with the conserved orientation among syntenic genome regions. In addition, according to substitution models analysis using PMAL software, no significant positive selection was detected, but type I functional divergence was identified among certain amino acids in WOX protein. These results revealed that the relaxed purifying selection might be the main driving force during the evolution of WOX genes in the tested Rosaceae species. Our result will be useful for further precise research on evolution of the WOX genes in family Rosaceae.

  10. Structure of matrix metalloproteinase-3 with a platinum-based inhibitor.

    Science.gov (United States)

    Belviso, Benny Danilo; Caliandro, Rocco; Siliqi, Dritan; Calderone, Vito; Arnesano, Fabio; Natile, Giovanni

    2013-06-18

    An X-ray investigation has been performed with the aim of characterizing the binding sites of a platinum-based inhibitor (K[PtCl3(DMSO)]) of matrix metalloproteinase-3 (stromelysin-1). The platinum complex targets His224 in the S1' specificity loop, representing the first step in the selective inhibition process (PDB ID code 4JA1).

  11. Differential evolution of members of the rhomboid gene family with conservative and divergent patterns.

    Science.gov (United States)

    Li, Qi; Zhang, Ning; Zhang, Liangsheng; Ma, Hong

    2015-04-01

    Rhomboid proteins are intramembrane serine proteases that are involved in a plethora of biological functions, but the evolutionary history of the rhomboid gene family is not clear. We performed a comprehensive molecular evolutionary analysis of the rhomboid gene family and also investigated the organization and sequence features of plant rhomboids in different subfamilies. Our results showed that eukaryotic rhomboids could be divided into five subfamilies (RhoA-RhoD and PARL). Most orthology groups appeared to be conserved only as single or low-copy genes in all lineages in RhoB-RhoD and PARL, whereas RhoA genes underwent several duplication events, resulting in multiple gene copies. These duplication events were due to whole genome duplications in plants and animals and the duplicates might have experienced functional divergence. We also identified a novel group of plant rhomboid (RhoB1) that might have lost their enzymatic activity; their existence suggests that they might have evolved new mechanisms. Plant and animal rhomboids have similar evolutionary patterns. In addition, there are mutations affecting key active sites in RBL8, RBL9 and one of the Brassicaceae PARL duplicates. This study delineates a possible evolutionary scheme for intramembrane proteins and illustrates distinct fates and a mechanism of evolution of gene duplicates. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  12. Involvement of matrix metalloproteinases and their inhibitors in peripheral synovitis and down-regulation by tumor necrosis factor alpha blockade in spondylarthropathy

    NARCIS (Netherlands)

    Vandooren, Bernard; Kruithof, Elli; Yu, David T. Y.; Rihl, Markus; Gu, Jieruo; de Rycke, Leen; van den Bosch, Filip; Veys, Eric M.; de Keyser, Filip; Baeten, Dominique

    2004-01-01

    OBJECTIVE: To investigate the role of matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinases (TIMPs) in spondylarthropathy (SpA) synovitis. METHODS: Paired samples of synovial biopsy tissue as well as serum and synovial fluid (SF) from 41 patients with SpA and 20

  13. Evolution of Ig- and T-cell receptor gene configuration in a Ph1+ hybrid leukemia patient

    DEFF Research Database (Denmark)

    Jensen, Arne Willy; Hokland, Peter; Kristensen, J S

    1992-01-01

    In a longitudinal study of a 32-year-old male with Ph1+ hybrid leukemia we have followed the immunophenotype and configuration of Ig- and TCR genes during the course of different chemotherapy regimens directed first against the myeloid and later against the lymphoid components of the disease. We...... the configuration of the Ig heavy and light chain lambda genes remained constant during the whole period of treatment, that of the Ig light chain kappa gene and TCR beta gene displayed extensive rearrangements after initiation of ALL therapy. Since this patient represents a de novo acute leukemia as evaluated...... identified changes in all parameters, interpretable as an evolution of the malignant clone resulting in a leukemic switch towards a more lymphoid character. Thus, while the expression of the myeloid antigens CD13 and CD33 decreased, that of CD10 (CALLA) and CD20 (B1) increased. Moreover, while...

  14. Characterization of Small HSPs from Anemonia viridis Reveals Insights into Molecular Evolution of Alpha Crystallin Genes among Cnidarians

    OpenAIRE

    Nicosia, Aldo; Maggio, Teresa; Mazzola, Salvatore; Gianguzza, Fabrizio; Cuttitta, Angela; Costa, Salvatore

    2014-01-01

    Gene family encoding small Heat-Shock Proteins (sHSPs containing α-crystallin domain) are found both in prokaryotic and eukaryotic organisms; however, there is limited knowledge of their evolution. In this study, two small HSP genes termed AvHSP28.6 and AvHSP27, both organized in one intron and two exons, were characterised in the Mediterranean snakelocks anemone Anemonia viridis. The release of the genome sequence of Hydra magnipapillata and Nematostella vectensis enabled a comprehensive stu...

  15. Elucidating gene function and function evolution through comparison of co-expression networks in plants

    Directory of Open Access Journals (Sweden)

    Marek eMutwil

    2014-08-01

    Full Text Available The analysis of gene expression data has shown that transcriptionally coordinated (co-expressed genes are often functionally related, enabling scientists to use expression data in gene function prediction. This Focused Review discusses our original paper (Large-scale co-expression approach to dissect secondary cell wall formation across plant species, Frontiers in Plant Science 2:23. In this paper we applied cross-species analysis to co-expression networks of genes involved in cellulose biosynthesis. We show that the co-expression networks from different species are highly similar, indicating that whole biological pathways are conserved across species. This finding has two important implications. First, the analysis can transfer gene function annotation from well-studied plants, such as Arabidopsis, to other, uncharacterized plant species. As the analysis finds genes that have similar sequence and similar expression pattern across different organisms, functionally equivalent genes can be identified. Second, since co-expression analyses are often noisy, a comparative analysis should have higher performance, as parts of co-expression networks that are conserved are more likely to be functionally relevant. In this Focused Review, we outline the comparative analysis done in the original paper and comment on the recent advances and approaches that allow comparative analyses of co-function networks. We hypothesize that, in comparison to simple co-expression analysis, comparative analysis would yield more accurate gene function predictions. Finally, by combining comparative analysis with genomic information of green plants, we propose a possible composition of cellulose biosynthesis machinery during earlier stages of plant evolution.

  16. Matrix Metalloproteinases as Therapeutic Targets for Idiopathic Pulmonary Fibrosis

    OpenAIRE

    Craig, Vanessa J.; Zhang, Li; Hagood, James S.; Owen, Caroline A.

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF) is a restrictive lung disease that is associated with high morbidity and mortality. Current medical therapies are not fully effective at limiting mortality in patients with IPF, and new therapies are urgently needed. Matrix metalloproteinases (MMPs) are proteinases that, together, can degrade all components of the extracellular matrix and numerous nonmatrix proteins. MMPs and their inhibitors, tissue inhibitors of MMPs (TIMPs), have been implicated in the p...

  17. Patterns of evolution and host gene mimicry in influenza and other RNA viruses.

    Directory of Open Access Journals (Sweden)

    Benjamin D Greenbaum

    2008-06-01

    Full Text Available It is well known that the dinucleotide CpG is under-represented in the genomic DNA of many vertebrates. This is commonly thought to be due to the methylation of cytosine residues in this dinucleotide and the corresponding high rate of deamination of 5-methycytosine, which lowers the frequency of this dinucleotide in DNA. Surprisingly, many single-stranded RNA viruses that replicate in these vertebrate hosts also have a very low presence of CpG dinucleotides in their genomes. Viruses are obligate intracellular parasites and the evolution of a virus is inexorably linked to the nature and fate of its host. One therefore expects that virus and host genomes should have common features. In this work, we compare evolutionary patterns in the genomes of ssRNA viruses and their hosts. In particular, we have analyzed dinucleotide patterns and found that the same patterns are pervasively over- or under-represented in many RNA viruses and their hosts suggesting that many RNA viruses evolve by mimicking some of the features of their host's genes (DNA and likely also their corresponding mRNAs. When a virus crosses a species barrier into a different host, the pressure to replicate, survive and adapt, leaves a footprint in dinucleotide frequencies. For instance, since human genes seem to be under higher pressure to eliminate CpG dinucleotide motifs than avian genes, this pressure might be reflected in the genomes of human viruses (DNA and RNA viruses when compared to those of the same viruses replicating in avian hosts. To test this idea we have analyzed the evolution of the influenza virus since 1918. We find that the influenza A virus, which originated from an avian reservoir and has been replicating in humans over many generations, evolves in a direction strongly selected to reduce the frequency of CpG dinucleotides in its genome. Consistent with this observation, we find that the influenza B virus, which has spent much more time in the human population, has

  18. Clock gene evolution: seasonal timing, phylogenetic signal, or functional constraint?

    Science.gov (United States)

    Krabbenhoft, Trevor J; Turner, Thomas F

    2014-01-01

    Genetic determinants of seasonal reproduction are not fully understood but may be important predictors of organism responses to climate change. We used a comparative approach to study the evolution of seasonal timing within a fish community in a natural common garden setting. We tested the hypothesis that allelic length variation in the PolyQ domain of a circadian rhythm gene, Clock1a, corresponded to interspecific differences in seasonal reproductive timing across 5 native and 1 introduced cyprinid fishes (n = 425 individuals) that co-occur in the Rio Grande, NM, USA. Most common allele lengths were longer in native species that initiated reproduction earlier (Spearman's r = -0.70, P = 0.23). Clock1a allele length exhibited strong phylogenetic signal and earlier spawners were evolutionarily derived. Aside from length variation in Clock1a, all other amino acids were identical across native species, suggesting functional constraint over evolutionary time. Interestingly, the endangered Rio Grande silvery minnow (Hybognathus amarus) exhibited less allelic variation in Clock1a and observed heterozygosity was 2- to 6-fold lower than the 5 other (nonimperiled) species. Reduced genetic variation in this functionally important gene may impede this species' capacity to respond to ongoing environmental change.

  19. Assessment of Matrix Metalloproteinases by Gelatin Zymography.

    Science.gov (United States)

    Cathcart, Jillian

    2016-01-01

    Matrix metalloproteinases are endopeptidases responsible for remodeling of the extracellular matrix and have been identified as critical contributors to breast cancer progression. Gelatin zymography is a valuable tool which allows the analysis of MMP expression. In this approach, enzymes are resolved electrophoretically on a sodium dodecyl sulfate-polyacrylamide gel copolymerized with the substrate for the MMP of interest. Post electrophoresis, the enzymes are refolded in order for proteolysis of the incorporated substrate to occur. This assay yields valuable information about MMP isoforms or changes in activation and can be used to analyze the role of MMPs in normal versus pathological conditions.

  20. Enhanced cerebrovascular expression of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 via the MEK/ERK pathway during cerebral ischemia in the rat

    Directory of Open Access Journals (Sweden)

    Maddahi Aida

    2009-06-01

    Full Text Available Abstract Background Cerebral ischemia is usually characterized by a reduction in local blood flow and metabolism and by disruption of the blood-brain barrier in the infarct region. The formation of oedema and opening of the blood-brain barrier in stroke is associated with enhanced expression of metalloproteinase-9 (MMP-9 and tissue inhibitor of metalloproteinase-1 (TIMP-1. Results Here, we found an infarct volume of 24.8 ± 2% and a reduced neurological function after two hours of middle cerebral artery occlusion (MCAO, followed by 48 hours of recirculation in rat. Immunocytochemistry and confocal microscopy revealed enhanced expression of MMP-9, TIMP-1, and phosphorylated ERK1/2 in the smooth muscle cells of the ischemic MCA and associated intracerebral microvessels. The specific MEK1/2 inhibitor U0126, given intraperitoneal zero or 6 hours after the ischemic event, reduced the infarct volume significantly (11.8 ± 2% and 14.6 ± 3%, respectively; P Conclusion These data are the first to show that the elevated vascular expression of MMP-9 and TIMP-1, associated with breakdown of the blood-brain barrier following focal ischemia, are transcriptionally regulated via the MEK/ERK pathway.

  1. An ancient history of gene duplications, fusions and losses in the evolution of APOBEC3 mutators in mammals

    Science.gov (United States)

    2012-01-01

    Background The APOBEC3 (A3) genes play a key role in innate antiviral defense in mammals by introducing directed mutations in the DNA. The human genome encodes for seven A3 genes, with multiple splice alternatives. Different A3 proteins display different substrate specificity, but the very basic question on how discerning self from non-self still remains unresolved. Further, the expression of A3 activity/ies shapes the way both viral and host genomes evolve. Results We present here a detailed temporal analysis of the origin and expansion of the A3 repertoire in mammals. Our data support an evolutionary scenario where the genome of the mammalian ancestor encoded for at least one ancestral A3 gene, and where the genome of the ancestor of placental mammals (and possibly of the ancestor of all mammals) already encoded for an A3Z1-A3Z2-A3Z3 arrangement. Duplication events of the A3 genes have occurred independently in different lineages: humans, cats and horses. In all of them, gene duplication has resulted in changes in enzyme activity and/or substrate specificity, in a paradigmatic example of convergent adaptive evolution at the genomic level. Finally, our results show that evolutionary rates for the three A3Z1, A3Z2 and A3Z3 motifs have significantly decreased in the last 100 Mya. The analysis constitutes a textbook example of the evolution of a gene locus by duplication and sub/neofunctionalization in the context of virus-host arms race. Conclusions Our results provide a time framework for identifying ancestral and derived genomic arrangements in the APOBEC loci, and to date the expansion of this gene family for different lineages through time, as a response to changes in viral/retroviral/retrotransposon pressure. PMID:22640020

  2. Al-Aqeel Sewairi Syndrome, a new autosomal recessive disorder with multicentric osteolysis, nodulosis and arthropathy. The first genetic defect of matrix metalloproteinase 2 gene

    International Nuclear Information System (INIS)

    Al-Aqeel, Aida I.

    2005-01-01

    We report a distinctive autosomal recessive multicentric osteolysis in Saudi Arabian families with distal arthropathy of the metacarpal, metatarsal and interphalangeal joints, with ultimate progression to the proximal joints with decreased range of movements and deformities with ankylosis and generalized osteopenia. In addition, they had large, painful to touch palmar and plantar pads. Hirsutism and mild dysmorphic facial features including proptosis, a narrow nasal bridge, bulbous nose and micrognathia. Using a genome-wide search for microsatellite markers from 11 members of the family from the Armed Forces Hospital and King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia, localized the disease gene to chromosome 16q12-21. Haplotype analysis with additional markers narrowed the critical region to 1.2cM and identified the matrix metalloproteinase 2 (MMP-2), (gelatinase A, collagenase type IV, EC 3.4, 24,24) gene as a disease candidate at Mount Sinai School of Medicine, New York, United States of America in April 2000. Some affected individuals were homoallelic for a nonsense mutation (TCA>TAA) in codon 244 of exon 5, predicting the replacement of a tyrosine residue by a stop codon in the first fibronectin type II domain (Y244X). Other affected members had a missense mutation in exon 2 arginine 101-histidine (R101H) leading to no MMP-2 enzyme activity in serum or fibroblast or both of affected individuals. In other affected members, a non-pathogenic homoallelic GT transversion resulted in the substitution of an aspartate with a tyrosine residue in codon 210 of exon 4 (D210Y). The MMP-2-null mouse has no developmental defects, but are small, which may reflect genetic redundancy. The discovery that deficiency of this well-characterized gelatinase/collagenase results in an inherited form of an osteolytic and arthritic disorder provides an invaluable insights for the understanding of osteolysis and arthritis and is the first genetic

  3. Molecular evolution of the actin-like MreB protein gene family in wall-less bacteria.

    Science.gov (United States)

    Ku, Chuan; Lo, Wen-Sui; Kuo, Chih-Horng

    2014-04-18

    The mreB gene family encodes actin-like proteins that determine cell shape by directing cell wall synthesis and often exists in one to three copies in the genomes of non-spherical bacteria. Intriguingly, while most wall-less bacteria do not have this gene, five to seven mreB homologs are found in Spiroplasma and Haloplasma, which are both characterized by cell contractility. To investigate the molecular evolution of this gene family in wall-less bacteria, we sampled the available genome sequences from these two genera and other related lineages for comparative analysis. The gene phylogenies indicated that the mreB homologs in Haloplasma are more closely related to those in Firmicutes, whereas those in Spiroplasma form a separate clade. This finding suggests that the gene family expansions in these two lineages are the results of independent ancient duplications. Moreover, the Spiroplasma mreB homologs can be classified into five clades, of which the genomic positions are largely conserved. The inference of gene gains and losses suggests that there has been an overall trend to retain only one homolog from each of the five mreB clades in the evolutionary history of Spiroplasma. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Matrix metalloproteinase-2 is a consistent prognostic factor in gastric cancer

    NARCIS (Netherlands)

    Kubben, F.J.G.M.; Sier, C.F.M.; Duijn, W. van; Griffioen, G.; Hanemaaijer, R.; Velde, C.J.H. van de; Krieken, J.H.J.M. van; Lamers, C.B.H.W.; Verspaget, H.W.

    2006-01-01

    In a pioneer study, we showed 10 years ago that enhanced tissue levels of the matrix metalloproteinases (MMPs) MMP-2 and MMP-9 in gastric cancers, as determined by zymography, were related with worse overall survival of the patients. To corroborate these observations, we now assessed MMP-2 and MMP-9

  5. Matrix metalloproteinase-2 is a consistent prognostic factor in gastric cancer.

    NARCIS (Netherlands)

    Kubben, F.J.G.M.; Sier, C.F.M.; Duijn, W. van; Griffioen, G.; Hanemaaijer, R.; Velde, C.J. van de; Krieken, J.H.J.M. van; Lamers, C.B.H.W.; Verspaget, H.W.

    2006-01-01

    In a pioneer study, we showed 10 years ago that enhanced tissue levels of the matrix metalloproteinases (MMPs) MMP-2 and MMP-9 in gastric cancers, as determined by zymography, were related with worse overall survival of the patients. To corroborate these observations, we now assessed MMP-2 and MMP-9

  6. Evolution and diversity of secretome genes in the apicomplexan parasite Theileria annulata

    Directory of Open Access Journals (Sweden)

    Shiels Brian R

    2010-01-01

    Full Text Available Abstract Background Little is known about how apicomplexan parasites have evolved to infect different host species and cell types. Theileria annulata and Theileria parva invade and transform bovine leukocytes but each species favours a different host cell lineage. Parasite-encoded proteins secreted from the intracellular macroschizont stage within the leukocyte represent a critical interface between host and pathogen systems. Genome sequencing has revealed that several Theileria-specific gene families encoding secreted proteins are positively selected at the inter-species level, indicating diversification between the species. We extend this analysis to the intra-species level, focusing on allelic diversity of two major secretome families. These families represent a well-characterised group of genes implicated in control of the host cell phenotype and a gene family of unknown function. To gain further insight into their evolution and function, this study investigates whether representative genes of these two families are diversifying or constrained within the T. annulata population. Results Strong evidence is provided that the sub-telomerically encoded SVSP family and the host-nucleus targeted TashAT family have evolved under contrasting pressures within natural T. annulata populations. SVSP genes were found to possess atypical codon usage and be evolving neutrally, with high levels of nucleotide substitutions and multiple indels. No evidence of geographical sub-structuring of allelic sequences was found. In contrast, TashAT family genes, implicated in control of host cell gene expression, are strongly conserved at the protein level and geographically sub-structured allelic sequences were identified among Tunisian and Turkish isolates. Although different copy numbers of DNA binding motifs were identified in alleles of TashAT proteins, motif periodicity was strongly maintained, implying conserved functional activity of these sites. Conclusions

  7. Analysis of Enzymatic Activity of Matrix Metalloproteinase (MMP) by Collagen Zymography in Melanoma.

    Science.gov (United States)

    Walia, Vijay; Samuels, Yardena

    2018-01-01

    Protein zymography is the most commonly used technique to study the enzymatic activity of matrix metalloproteinases (MMPs) and their inhibitors. MMPs are proteolytic enzymes that promote extracellular matrix degradation. MMPs are frequently mutated in malignant melanomas as well as other cancers and are linked to increasing incidence of tumor metastasis. Substrate zymography characterizes MMP activity by their ability to degrade preferred substrates. Here we describe the collagen zymography technique to measure the active or latent form of MMPs using MMP-8 as an example, which is a frequently mutated MMP family member in malignant melanomas. The same technique can be used with the modification of substrate to detect metalloproteinase activity of other MMPs. Both wild-type and mutated forms of MMPs can be analyzed using a single gel using this method.

  8. The Evolution of the FT/TFL1 Genes in Amaranthaceae and Their Expression Patterns in the Course of Vegetative Growth and Flowering in Chenopodium rubrum

    Czech Academy of Sciences Publication Activity Database

    Drabešová, Jana; Černá, Lucie; Mašterová, Helena; Koloušková, Pavla; Potocký, Martin; Štorchová, Helena

    2016-01-01

    Roč. 6, č. 10 (2016), s. 3065-3076 ISSN 2160-1836 R&D Projects: GA ČR(CZ) GAP506/12/1359; GA ČR GA13-02290S Institutional support: RVO:61389030 Keywords : rna-seq data * locus-t * ft homologs * functional evolution * floral initiation * reference genome * arabidopsis * protein * quantification * activation * transcriptome * flowering locus t * TERMINAL FLOWER1 gene family * evolution * flowering * gene rearrangement * Amaranthaceae * Chenopodium rubrum Subject RIV: EF - Botanics Impact factor: 2.861, year: 2016

  9. Search for the algorithm of genes distribution during the process of microbial evolution

    Science.gov (United States)

    Pikuta, Elena V.

    2015-09-01

    Previous two and three dimensional graph analysis of eco-physiological data of Archaea demonstrated specific geometry for distribution of major Prokaryotic groups in a hyperboloid function. The function of a two-sheet hyperboloid covered all known biological groups, and therefore, could be applied for the entire evolution of life on Earth. The vector of evolution was indicated from the point of hyper temperature, extreme acidity and low salinity to the point of low temperature and increased alkalinity and salinity. According to this vector, the following groups were chosen for the gene screening analysis. In the vector "High-Temperature → Low-Temperature" within extreme acidic pH (0-3), it is: 1) the hyperthermophilic Crenarchaeota - order Sulfolobales, 2) moderately thermophilic Euryarchaeota - Class Thermoplasmata, and 3) mesophilic acidophiles- genus Thiobacillus and others. In the vector "Low pH → High pH" the following groups were selected in three temperature ranges: a) Hyperthermophilic Archaea and Eubacteria, b) moderately thermophilic - representatives of the genera Anaerobacter and Anoxybacillus, and c) mesophilic haloalkaliphiles (Eubacteria and Archaea). The genes associated with acidophily (H+ pump), chemolitho-autotrophy (proteins of biochemichal cycles), polymerases, and histones were proposed for the first vector, and for the second vector the genes associated with halo-alkaliphily (Na+ pumps), enzymes of organotrophic metabolisms (sugar- and proteolytics), and others were indicated for the screening. Here, an introduction to the phylogenetic constant (ρη) is presented and discussed. This universal characteristic is calculated for two principally different life forms -Prokaryotes and Eukaryotes; Existence of the second type of living forms is impossible without the first one. The number of chromosomes in Prokaryotic organisms is limited to one (with very rare exceptions, to two), while in Eukaryotic organisms this number is larger. Currently

  10. Differential susceptibility to plasticity: a 'missing link' between gene-culture co-evolution and neuropsychiatric spectrum disorders?

    Directory of Open Access Journals (Sweden)

    Wurzman Rachel

    2012-04-01

    Full Text Available Abstract Brüne's proposal that erstwhile 'vulnerability' genes need to be reconsidered as 'plasticity' genes, given the potential for certain environments to yield increased positive function in the same domain as potential dysfunction, has implications for psychiatric nosology as well as a more dynamic understanding of the relationship between genes and culture. In addition to validating neuropsychiatric spectrum disorder nosologies by calling for similar methodological shifts in gene-environment-interaction studies, Brüne's position elevates the importance of environmental contexts - inclusive of socio-cultural variables - as mechanisms that contribute to clinical presentation. We assert that when models of susceptibility to plasticity and neuropsychiatric spectrum disorders are concomitantly considered, a new line of inquiry emerges into the co-evolution and co-determination of socio-cultural contexts and endophenotypes. This presents potentially unique opportunities, benefits, challenges, and responsibilities for research and practice in psychiatry. Please see related manuscript: http://www.biomedcentral.com/1741-7015/10/38

  11. The gene transformer-2 of Anastrepha fruit flies (Diptera, Tephritidae) and its evolution in insects.

    Science.gov (United States)

    Sarno, Francesca; Ruiz, María F; Eirín-López, José M; Perondini, André L P; Selivon, Denise; Sánchez, Lucas

    2010-05-13

    In the tephritids Ceratitis, Bactrocera and Anastrepha, the gene transformer provides the memory device for sex determination via its auto-regulation; only in females is functional Tra protein produced. To date, the isolation and characterisation of the gene transformer-2 in the tephritids has only been undertaken in Ceratitis, and it has been shown that its function is required for the female-specific splicing of doublesex and transformer pre-mRNA. It therefore participates in transformer auto-regulatory function. In this work, the characterisation of this gene in eleven tephritid species belonging to the less extensively analysed genus Anastrepha was undertaken in order to throw light on the evolution of transformer-2. The gene transformer-2 produces a protein of 249 amino acids in both sexes, which shows the features of the SR protein family. No significant partially spliced mRNA isoform specific to the male germ line was detected, unlike in Drosophila. It is transcribed in both sexes during development and in adult life, in both the soma and germ line. The injection of Anastrepha transformer-2 dsRNA into Anastrepha embryos caused a change in the splicing pattern of the endogenous transformer and doublesex pre-mRNA of XX females from the female to the male mode. Consequently, these XX females were transformed into pseudomales. The comparison of the eleven Anastrepha Transformer-2 proteins among themselves, and with the Transformer-2 proteins of other insects, suggests the existence of negative selection acting at the protein level to maintain Transformer-2 structural features. These results indicate that transformer-2 is required for sex determination in Anastrepha through its participation in the female-specific splicing of transformer and doublesex pre-mRNAs. It is therefore needed for the auto-regulation of the gene transformer. Thus, the transformer/transfomer-2 > doublesex elements at the bottom of the cascade, and their relationships, probably represent

  12. Both noncoding and protein-coding RNAs contribute to gene expression evolution in the primate brain.

    Science.gov (United States)

    Babbitt, Courtney C; Fedrigo, Olivier; Pfefferle, Adam D; Boyle, Alan P; Horvath, Julie E; Furey, Terrence S; Wray, Gregory A

    2010-01-18

    Despite striking differences in cognition and behavior between humans and our closest primate relatives, several studies have found little evidence for adaptive change in protein-coding regions of genes expressed primarily in the brain. Instead, changes in gene expression may underlie many cognitive and behavioral differences. Here, we used digital gene expression: tag profiling (here called Tag-Seq, also called DGE:tag profiling) to assess changes in global transcript abundance in the frontal cortex of the brains of 3 humans, 3 chimpanzees, and 3 rhesus macaques. A substantial fraction of transcripts we identified as differentially transcribed among species were not assayed in previous studies based on microarrays. Differentially expressed tags within coding regions are enriched for gene functions involved in synaptic transmission, transport, oxidative phosphorylation, and lipid metabolism. Importantly, because Tag-Seq technology provides strand-specific information about all polyadenlyated transcripts, we were able to assay expression in noncoding intragenic regions, including both sense and antisense noncoding transcripts (relative to nearby genes). We find that many noncoding transcripts are conserved in both location and expression level between species, suggesting a possible functional role. Lastly, we examined the overlap between differential gene expression and signatures of positive selection within putative promoter regions, a sign that these differences represent adaptations during human evolution. Comparative approaches may provide important insights into genes responsible for differences in cognitive functions between humans and nonhuman primates, as well as highlighting new candidate genes for studies investigating neurological disorders.

  13. Adaptive molecular evolution of the Major Histocompatibility Complex genes, DRA and DQA, in the genus Equus.

    Science.gov (United States)

    Kamath, Pauline L; Getz, Wayne M

    2011-05-18

    Major Histocompatibility Complex (MHC) genes are central to vertebrate immune response and are believed to be under balancing selection by pathogens. This hypothesis has been supported by observations of extremely high polymorphism, elevated nonsynonymous to synonymous base pair substitution rates and trans-species polymorphisms at these loci. In equids, the organization and variability of this gene family has been described, however the full extent of diversity and selection is unknown. As selection is not expected to act uniformly on a functional gene, maximum likelihood codon-based models of selection that allow heterogeneity in selection across codon positions can be valuable for examining MHC gene evolution and the molecular basis for species adaptations. We investigated the evolution of two class II MHC genes of the Equine Lymphocyte Antigen (ELA), DRA and DQA, in the genus Equus with the addition of novel alleles identified in plains zebra (E. quagga, formerly E. burchelli). We found that both genes exhibited a high degree of polymorphism and inter-specific sharing of allele lineages. To our knowledge, DRA allelic diversity was discovered to be higher than has ever been observed in vertebrates. Evidence was also found to support a duplication of the DQA locus. Selection analyses, evaluated in terms of relative rates of nonsynonymous to synonymous mutations (dN/dS) averaged over the gene region, indicated that the majority of codon sites were conserved and under purifying selection (dN

  14. Adaptive molecular evolution of the Major Histocompatibility Complex genes, DRA and DQA, in the genus Equus

    Directory of Open Access Journals (Sweden)

    Getz Wayne M

    2011-05-01

    Full Text Available Abstract Background Major Histocompatibility Complex (MHC genes are central to vertebrate immune response and are believed to be under balancing selection by pathogens. This hypothesis has been supported by observations of extremely high polymorphism, elevated nonsynonymous to synonymous base pair substitution rates and trans-species polymorphisms at these loci. In equids, the organization and variability of this gene family has been described, however the full extent of diversity and selection is unknown. As selection is not expected to act uniformly on a functional gene, maximum likelihood codon-based models of selection that allow heterogeneity in selection across codon positions can be valuable for examining MHC gene evolution and the molecular basis for species adaptations. Results We investigated the evolution of two class II MHC genes of the Equine Lymphocyte Antigen (ELA, DRA and DQA, in the genus Equus with the addition of novel alleles identified in plains zebra (E. quagga, formerly E. burchelli. We found that both genes exhibited a high degree of polymorphism and inter-specific sharing of allele lineages. To our knowledge, DRA allelic diversity was discovered to be higher than has ever been observed in vertebrates. Evidence was also found to support a duplication of the DQA locus. Selection analyses, evaluated in terms of relative rates of nonsynonymous to synonymous mutations (dN/dS averaged over the gene region, indicated that the majority of codon sites were conserved and under purifying selection (dN dS. However, the most likely evolutionary codon models allowed for variable rates of selection across codon sites at both loci and, at the DQA, supported the hypothesis of positive selection acting on specific sites. Conclusions Observations of elevated genetic diversity and trans-species polymorphisms supported the conclusion that balancing selection may be acting on these loci. Furthermore, at the DQA, positive selection was

  15. Beating Bias in the Directed Evolution of Proteins: Combining High-Fidelity on-Chip Solid-Phase Gene Synthesis with Efficient Gene Assembly for Combinatorial Library Construction.

    Science.gov (United States)

    Li, Aitao; Acevedo-Rocha, Carlos G; Sun, Zhoutong; Cox, Tony; Xu, Jia Lucy; Reetz, Manfred T

    2018-02-02

    Saturation mutagenesis (SM) constitutes a widely used technique in the directed evolution of selective enzymes as catalysts in organic chemistry and in the manipulation of metabolic paths and genomes, but the quality of the libraries is far from optimal due to the inherent amino acid bias. Herein, it is shown how this fundamental problem can be solved by applying high-fidelity solid-phase chemical gene synthesis on silicon chips followed by efficient gene assembly. Limonene epoxide hydrolase was chosen as the catalyst in the model desymmetrization of cyclohexene oxide with the stereoselective formation of (R,R)- and (S,S)-cyclohexane-1,2-diol. A traditional combinatorial PCR-based SM library, produced by simultaneous randomization at several residues by using a reduced amino acid alphabet, and the respective synthetic library were constructed and compared. Statistical analysis at the DNA level with massive sequencing demonstrates that, in the synthetic approach, 97 % of the theoretically possible DNA mutants are formed, whereas the traditional SM library contained only about 50 %. Screening at the protein level also showed the superiority of the synthetic library; many highly (R,R)- and (S,S)-selective variants being discovered are not found in the traditional SM library. With the prices of synthetic genes decreasing, this approach may point the way to future directed evolution. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The complete plastome of macaw palm [Acrocomia aculeata (Jacq.) Lodd. ex Mart.] and extensive molecular analyses of the evolution of plastid genes in Arecaceae.

    Science.gov (United States)

    de Santana Lopes, Amanda; Gomes Pacheco, Túlio; Nimz, Tabea; do Nascimento Vieira, Leila; Guerra, Miguel P; Nodari, Rubens O; de Souza, Emanuel Maltempi; de Oliveira Pedrosa, Fábio; Rogalski, Marcelo

    2018-04-01

    The plastome of macaw palm was sequenced allowing analyses of evolution and molecular markers. Additionally, we demonstrated that more than half of plastid protein-coding genes in Arecaceae underwent positive selection. Macaw palm is a native species from tropical and subtropical Americas. It shows high production of oil per hectare reaching up to 70% of oil content in fruits and an interesting plasticity to grow in different ecosystems. Its domestication and breeding are still in the beginning, which makes the development of molecular markers essential to assess natural populations and germplasm collections. Therefore, we sequenced and characterized in detail the plastome of macaw palm. A total of 221 SSR loci were identified in the plastome of macaw palm. Additionally, eight polymorphism hotspots were characterized at level of subfamily and tribe. Moreover, several events of gain and loss of RNA editing sites were found within the subfamily Arecoideae. Aiming to uncover evolutionary events in Arecaceae, we also analyzed extensively the evolution of plastid genes. The analyses show that highly divergent genes seem to evolve in a species-specific manner, suggesting that gene degeneration events may be occurring within Arecaceae at the level of genus or species. Unexpectedly, we found that more than half of plastid protein-coding genes are under positive selection, including genes for photosynthesis, gene expression machinery and other essential plastid functions. Furthermore, we performed a phylogenomic analysis using whole plastomes of 40 taxa, representing all subfamilies of Arecaceae, which placed the macaw palm within the tribe Cocoseae. Finally, the data showed here are important for genetic studies in macaw palm and provide new insights into the evolution of plastid genes and environmental adaptation in Arecaceae.

  17. Adaptive evolution of the Hox gene family for development in bats and dolphins.

    Directory of Open Access Journals (Sweden)

    Lu Liang

    Full Text Available Bats and cetaceans (i.e., whales, dolphins, porpoises are two kinds of mammals with unique locomotive styles and occupy novel niches. Bats are the only mammals capable of sustained flight in the sky, while cetaceans have returned to the aquatic environment and are specialized for swimming. Associated with these novel adaptations to their environment, various development changes have occurred to their body plans and associated structures. Given the importance of Hox genes in many aspects of embryonic development, we conducted an analysis of the coding regions of all Hox gene family members from bats (represented by Pteropus vampyrus, Pteropus alecto, Myotis lucifugus and Myotis davidii and cetaceans (represented by Tursiops truncatus for adaptive evolution using the available draft genome sequences. Differences in the selective pressures acting on many Hox genes in bats and cetaceans were found compared to other mammals. Positive selection, however, was not found to act on any of the Hox genes in the common ancestor of bats and only upon Hoxb9 in cetaceans. PCR amplification data from additional bat and cetacean species, and application of the branch-site test 2, showed that the Hoxb2 gene within bats had significant evidence of positive selection. Thus, our study, with genomic and newly sequenced Hox genes, identifies two candidate Hox genes that may be closely linked with developmental changes in bats and cetaceans, such as those associated with the pancreatic, neuronal, thymus shape and forelimb. In addition, the difference in our results from the genome-wide scan and newly sequenced data reveals that great care must be taken in interpreting results from draft genome data from a limited number of species, and deep genetic sampling of a particular clade is a powerful tool for generating complementary data to address this limitation.

  18. Alternative haplotypes of antigen processing genes in zebrafish diverged early in vertebrate evolution

    Science.gov (United States)

    McConnell, Sean C.; Hernandez, Kyle M.; Wcisel, Dustin J.; Kettleborough, Ross N.; Stemple, Derek L.; Andrade, Jorge; de Jong, Jill L. O.

    2016-01-01

    Antigen processing and presentation genes found within the MHC are among the most highly polymorphic genes of vertebrate genomes, providing populations with diverse immune responses to a wide array of pathogens. Here, we describe transcriptome, exome, and whole-genome sequencing of clonal zebrafish, uncovering the most extensive diversity within the antigen processing and presentation genes of any species yet examined. Our CG2 clonal zebrafish assembly provides genomic context within a remarkably divergent haplotype of the core MHC region on chromosome 19 for six expressed genes not found in the zebrafish reference genome: mhc1uga, proteasome-β 9b (psmb9b), psmb8f, and previously unknown genes psmb13b, tap2d, and tap2e. We identify ancient lineages for Psmb13 within a proteasome branch previously thought to be monomorphic and provide evidence of substantial lineage diversity within each of three major trifurcations of catalytic-type proteasome subunits in vertebrates: Psmb5/Psmb8/Psmb11, Psmb6/Psmb9/Psmb12, and Psmb7/Psmb10/Psmb13. Strikingly, nearby tap2 and MHC class I genes also retain ancient sequence lineages, indicating that alternative lineages may have been preserved throughout the entire MHC pathway since early diversification of the adaptive immune system ∼500 Mya. Furthermore, polymorphisms within the three MHC pathway steps (antigen cleavage, transport, and presentation) are each predicted to alter peptide specificity. Lastly, comparative analysis shows that antigen processing gene diversity is far more extensive than previously realized (with ancient coelacanth psmb8 lineages, shark psmb13, and tap2t and psmb10 outside the teleost MHC), implying distinct immune functions and conserved roles in shaping MHC pathway evolution throughout vertebrates. PMID:27493218

  19. The oscillopathic nature of language deficits in autism: from genes to language evolution

    Directory of Open Access Journals (Sweden)

    Antonio eBenítez-Burraco

    2016-03-01

    Full Text Available Autism spectrum disorders (ASD are pervasive neurodevelopmental disorders involving a number of deficits to linguistic cognition. The gap between genetics and the pathophysiology of ASD remains open, in particular regarding its distinctive linguistic profile. The goal of this paper is to attempt to bridge this gap, focusing on how the autistic brain processes language, particularly through the perspective of brain rhythms. Due to the phenomenon of pleiotropy, which may take some decades to overcome, we believe that studies of brain rhythms, which are not faced with problems of this scale, may constitute a more tractable route to interpreting language deficits in ASD and eventually other neurocognitive disorders. Building on recent attempts to link neural oscillations to certain computational primitives of language, we show that interpreting language deficits in ASD as oscillopathic traits is a potentially fruitful way to construct successful endophenotypes of this condition. Additionally, we will show that candidate genes for ASD are overrepresented among the genes that played a role in the evolution of language. These genes include (and are related to genes involved in brain rhythmicity. We hope that the type of steps taken here will additionally lead to a better understanding of the comorbidity, heterogeneity, and variability of ASD, and may help achieve a better treatment of the affected populations.

  20. Matrix Metalloproteinases Contribute to Neuronal Dysfunction in Animal Models of Drug Dependence, Alzheimer's Disease, and Epilepsy

    Directory of Open Access Journals (Sweden)

    Hiroyuki Mizoguchi

    2011-01-01

    Full Text Available Matrix metalloproteinases (MMPs and tissue inhibitors of metalloproteinases (TIMPs remodel the pericellular environment by regulating the cleavage of extracellular matrix proteins, cell surface components, neurotransmitter receptors, and growth factors that mediate cell adhesion, synaptogenesis, synaptic plasticity, and long-term potentiation. Interestingly, increased MMP activity and dysregulation of the balance between MMPs and TIMPs have also been implicated in various pathologic conditions. In this paper, we discuss various animal models that suggest that the activation of the gelatinases MMP-2 and MMP-9 is involved in pathogenesis of drug dependence, Alzheimer's disease, and epilepsy.

  1. Metalloproteinases and atherothrombosis: MMP-10 mediates vascular remodeling promoted by inflammatory stimuli.

    Science.gov (United States)

    Rodriguez, Jose A; Orbe, Josune; Martinez de Lizarrondo, Sara; Calvayrac, Olivier; Rodriguez, Cristina; Martinez-Gonzalez, Jose; Paramo, Jose A

    2008-01-01

    Atherosclerosis is the common pathophysiological substrate of ischemic vascular diseases and their thrombotic complications. The unbalance between matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) has been hypothesized to be involved in the growth, destabilization, and eventual rupture of atherosclerotic lesions. Different MMPs have been assigned relevant roles in the pathology of vascular diseases and MMP-10 (stromelysin-2) has been involved in vascular development and atherogenesis. This article examines the pathophysiological role of MMPs, particularly MMP-10, in the onset and progression of vascular diseases and their regulation by pro-inflammatory stimuli. MMP-10 over-expression has been shown to compromise vascular integrity and it has been associated with aortic aneurysms. MMP-10 is induced by C-reactive protein in endothelial cells, and it is over-expressed in atherosclerotic lesions. Additionally, higher MMP-10 serum levels are associated with inflammatory markers, increased carotid intima-media thickness and the presence of atherosclerotic plaques. We have cloned the promoter region of the MMP-10 gene and studied the effect of inflammatory stimuli on MMP-10 transcriptional regulation, providing evidences further supporting the involvement of MMP-10 in the pathophysiology of atherothrombosis.

  2. Differential expression levels of collagen 1A2, tissue inhibitor of metalloproteinase 4, and cathepsin B in intracranial aneurysms.

    Science.gov (United States)

    Babu, R Arun; Paul, Pradip; Purushottam, Meera; Srinivas, Dwarakanath; Somanna, Sampath; Jain, Sanjeev

    2016-01-01

    Intracranial aneurysms (IAs) express a variety of differentially expressed genes when compared to the normal artery. The aim of this study was to evaluate the expression level of a few genes in the aneurysm wall and to correlate them with various clinicoradiological factors. The mRNA level of collagen 1A2 (COL1A2), tissue inhibitor of metalloproteinase 4 (TIMP4), and cathepsin B (CTSB) genes were studied in 23 aneurysmal walls and 19 superficial temporal arteries harvested from 23 patients undergoing clipping of IAs, by real-time polymerase chain reaction method. The mean fold change of COL1A2 gene between the aneurysm sample and the superficial temporal artery (STA) sample was 2.46 ± 0.12, that of TIMP4 gene was 0.31 ± 0, and that of CTSB gene was 31.47 ± 39.01. There was a positive correlation of TIMP4 expression level with maximum diameter of aneurysm (P = 0.008) and fundus of aneurysm (P = 0.012). The mean fold change of CTSB of patients who had preoperative hydrocephalus in the computed tomogram (CT) scan of the head at admission was 56.16 and that of the patients who did not have hydrocephalus was 13.51 (P = 0.008). The mean fold change of CTSB of patients who developed fresh postoperative deficits or worsening of the preexisting deficits was 23.64 and that of the patients who did not develop was 42.22 (P = 0.039). COL1A2 gene and CTSB genes were overexpressed, and TIMP4 gene was underexpressed in the aneurysmal sac compared to STA and their expression levels were associated with a few clinicoradiological factors.

  3. Large Diversity of Nonstandard Genes and Dynamic Evolution of Chloroplast Genomes in Siphonous Green Algae (Bryopsidales, Chlorophyta).

    Science.gov (United States)

    Cremen, Ma Chiela M; Leliaert, Frederik; Marcelino, Vanessa R; Verbruggen, Heroen

    2018-04-01

    Chloroplast genomes have undergone tremendous alterations through the evolutionary history of the green algae (Chloroplastida). This study focuses on the evolution of chloroplast genomes in the siphonous green algae (order Bryopsidales). We present five new chloroplast genomes, which along with existing sequences, yield a data set representing all but one families of the order. Using comparative phylogenetic methods, we investigated the evolutionary dynamics of genomic features in the order. Our results show extensive variation in chloroplast genome architecture and intron content. Variation in genome size is accounted for by the amount of intergenic space and freestanding open reading frames that do not show significant homology to standard plastid genes. We show the diversity of these nonstandard genes based on their conserved protein domains, which are often associated with mobile functions (reverse transcriptase/intron maturase, integrases, phage- or plasmid-DNA primases, transposases, integrases, ligases). Investigation of the introns showed proliferation of group II introns in the early evolution of the order and their subsequent loss in the core Halimedineae, possibly through RT-mediated intron loss.

  4. A Unique Evolution of the S2 Gene of Equine Infectious Anemia Virus in Hosts Correlated with Particular Infection Statuses

    Science.gov (United States)

    Wang, Xue-Feng; Wang, Shuai; Liu, Qiang; Lin, Yue-Zhi; Du, Cheng; Tang, Yan-Dong; Na, Lei; Wang, Xiaojun; Zhou, Jian-Hua

    2014-01-01

    Equine infectious anemia virus (EIAV) is a member of the Lentivirus genus in the Retroviridae family that exhibits a genomic structure similar to that of HIV-1. The S2 accessory proteins play important roles in viral replication in vivo and in viral pathogenicity; however, studies on S2 evolution in vivo are limited. This study analyzed the evolutionary characteristics of the S2 gene of a pathogenic EIAV strain, EIAVLN40, in four experimentally infected horses. The results demonstrated that 14.7% (10 of 68 residues) of the stable amino acid mutations occurred longitudinally in S2 during a 150-day infection period. Further analysis revealed that six of the ten mutated residues were positively selected during the infection. Alignment and phylogenetic analyses showed that the S2 gene sequences of viruses isolated from the infected horses at the early stage of EIAVLN40 infection were highly homologous and similar to the vaccine-specific sequence. The S2 gene variants isolated from the febrile episodes and late phase of infection became homologous to the S2 gene sequence of the inoculating EIAVLN40 strain. Our results indicate that the S2 gene evolves in diversity and divergence in vivo in different stages of EIAV infection and that this evolution correlates with the pathogenicity of the virus. PMID:25390683

  5. NDH expression marks major transitions in plant evolution and reveals coordinate intracellular gene loss.

    Science.gov (United States)

    Ruhlman, Tracey A; Chang, Wan-Jung; Chen, Jeremy J W; Huang, Yao-Ting; Chan, Ming-Tsair; Zhang, Jin; Liao, De-Chih; Blazier, John C; Jin, Xiaohua; Shih, Ming-Che; Jansen, Robert K; Lin, Choun-Sea

    2015-04-11

    Key innovations have facilitated novel niche utilization, such as the movement of the algal predecessors of land plants into terrestrial habitats where drastic fluctuations in light intensity, ultraviolet radiation and water limitation required a number of adaptations. The NDH (NADH dehydrogenase-like) complex of Viridiplantae plastids participates in adapting the photosynthetic response to environmental stress, suggesting its involvement in the transition to terrestrial habitats. Although relatively rare, the loss or pseudogenization of plastid NDH genes is widely distributed across diverse lineages of photoautotrophic seed plants and mutants/transgenics lacking NDH function demonstrate little difference from wild type under non-stressed conditions. This study analyzes large transcriptomic and genomic datasets to evaluate the persistence and loss of NDH expression across plants. Nuclear expression profiles showed accretion of the NDH gene complement at key transitions in land plant evolution, such as the transition to land and at the base of the angiosperm lineage. While detection of transcripts for a selection of non-NDH, photosynthesis related proteins was independent of the state of NDH, coordinate, lineage-specific loss of plastid NDH genes and expression of nuclear-encoded NDH subunits was documented in Pinaceae, gnetophytes, Orchidaceae and Geraniales confirming the independent and complete loss of NDH in these diverse seed plant taxa. The broad phylogenetic distribution of NDH loss and the subtle phenotypes of mutants suggest that the NDH complex is of limited biological significance in contemporary plants. While NDH activity appears dispensable under favorable conditions, there were likely sufficiently frequent episodes of abiotic stress affecting terrestrial habitats to allow the retention of NDH activity. These findings reveal genetic factors influencing plant/environment interactions in a changing climate through 450 million years of land plant

  6. The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system

    OpenAIRE

    Vonk, Freek J.; Casewell, Nicholas R.; Henkel, Christiaan V.; Heimberg, Alysha M.; Jansen, Hans J.; McCleary, Ryan J. R.; Kerkkamp, Harald M. E.; Vos, Rutger A.; Guerreiro, Isabel; Calvete, Juan J.; Wüster, Wolfgang; Woods, Anthony E.; Logan, Jessica M.; Harrison, Robert A.; Castoe, Todd A.

    2013-01-01

    Snakes are limbless predators, and many species use venom to help overpower relatively large, agile prey. Snake venoms are complex protein mixtures encoded by several multilocus gene families that function synergistically to cause incapacitation. To examine venom evolution, we sequenced and interrogated the genome of a venomous snake, the king cobra (Ophiophagus hannah), and compared it, together with our unique transcriptome, microRNA, and proteome datasets from this species, with data from ...

  7. Rapid evolution of female-biased genes among four species of Anopheles malaria mosquitoes.

    Science.gov (United States)

    Papa, Francesco; Windbichler, Nikolai; Waterhouse, Robert M; Cagnetti, Alessia; D'Amato, Rocco; Persampieri, Tania; Lawniczak, Mara K N; Nolan, Tony; Papathanos, Philippos Aris

    2017-09-01

    Understanding how phenotypic differences between males and females arise from the sex-biased expression of nearly identical genomes can reveal important insights into the biology and evolution of a species. Among Anopheles mosquito species, these phenotypic differences include vectorial capacity, as it is only females that blood feed and thus transmit human malaria. Here, we use RNA-seq data from multiple tissues of four vector species spanning the Anopheles phylogeny to explore the genomic and evolutionary properties of sex-biased genes. We find that, in these mosquitoes, in contrast to what has been found in many other organisms, female-biased genes are more rapidly evolving in sequence, expression, and genic turnover than male-biased genes. Our results suggest that this atypical pattern may be due to the combination of sex-specific life history challenges encountered by females, such as blood feeding. Furthermore, female propensity to mate only once in nature in male swarms likely diminishes sexual selection of post-reproductive traits related to sperm competition among males. We also develop a comparative framework to systematically explore tissue- and sex-specific splicing to document its conservation throughout the genus and identify a set of candidate genes for future functional analyses of sex-specific isoform usage. Finally, our data reveal that the deficit of male-biased genes on the X Chromosomes in Anopheles is a conserved feature in this genus and can be directly attributed to chromosome-wide transcriptional regulation that de-masculinizes the X in male reproductive tissues. © 2017 Papa et al.; Published by Cold Spring Harbor Laboratory Press.

  8. Back to the sea twice: identifying candidate plant genes for molecular evolution to marine life

    Directory of Open Access Journals (Sweden)

    Reusch Thorsten BH

    2011-01-01

    Full Text Available Abstract Background Seagrasses are a polyphyletic group of monocotyledonous angiosperms that have adapted to a completely submerged lifestyle in marine waters. Here, we exploit two collections of expressed sequence tags (ESTs of two wide-spread and ecologically important seagrass species, the Mediterranean seagrass Posidonia oceanica (L. Delile and the eelgrass Zostera marina L., which have independently evolved from aquatic ancestors. This replicated, yet independent evolutionary history facilitates the identification of traits that may have evolved in parallel and are possible instrumental candidates for adaptation to a marine habitat. Results In our study, we provide the first quantitative perspective on molecular adaptations in two seagrass species. By constructing orthologous gene clusters shared between two seagrasses (Z. marina and P. oceanica and eight distantly related terrestrial angiosperm species, 51 genes could be identified with detection of positive selection along the seagrass branches of the phylogenetic tree. Characterization of these positively selected genes using KEGG pathways and the Gene Ontology uncovered that these genes are mostly involved in translation, metabolism, and photosynthesis. Conclusions These results provide first insights into which seagrass genes have diverged from their terrestrial counterparts via an initial aquatic stage characteristic of the order and to the derived fully-marine stage characteristic of seagrasses. We discuss how adaptive changes in these processes may have contributed to the evolution towards an aquatic and marine existence.

  9. Back to the sea twice: identifying candidate plant genes for molecular evolution to marine life.

    Science.gov (United States)

    Wissler, Lothar; Codoñer, Francisco M; Gu, Jenny; Reusch, Thorsten B H; Olsen, Jeanine L; Procaccini, Gabriele; Bornberg-Bauer, Erich

    2011-01-12

    Seagrasses are a polyphyletic group of monocotyledonous angiosperms that have adapted to a completely submerged lifestyle in marine waters. Here, we exploit two collections of expressed sequence tags (ESTs) of two wide-spread and ecologically important seagrass species, the Mediterranean seagrass Posidonia oceanica (L.) Delile and the eelgrass Zostera marina L., which have independently evolved from aquatic ancestors. This replicated, yet independent evolutionary history facilitates the identification of traits that may have evolved in parallel and are possible instrumental candidates for adaptation to a marine habitat. In our study, we provide the first quantitative perspective on molecular adaptations in two seagrass species. By constructing orthologous gene clusters shared between two seagrasses (Z. marina and P. oceanica) and eight distantly related terrestrial angiosperm species, 51 genes could be identified with detection of positive selection along the seagrass branches of the phylogenetic tree. Characterization of these positively selected genes using KEGG pathways and the Gene Ontology uncovered that these genes are mostly involved in translation, metabolism, and photosynthesis. These results provide first insights into which seagrass genes have diverged from their terrestrial counterparts via an initial aquatic stage characteristic of the order and to the derived fully-marine stage characteristic of seagrasses. We discuss how adaptive changes in these processes may have contributed to the evolution towards an aquatic and marine existence.

  10. Testing Convergent Evolution in Auditory Processing Genes between Echolocating Mammals and the Aye-Aye, a Percussive-Foraging Primate.

    Science.gov (United States)

    Bankoff, Richard J; Jerjos, Michael; Hohman, Baily; Lauterbur, M Elise; Kistler, Logan; Perry, George H

    2017-07-01

    Several taxonomically distinct mammalian groups-certain microbats and cetaceans (e.g., dolphins)-share both morphological adaptations related to echolocation behavior and strong signatures of convergent evolution at the amino acid level across seven genes related to auditory processing. Aye-ayes (Daubentonia madagascariensis) are nocturnal lemurs with a specialized auditory processing system. Aye-ayes tap rapidly along the surfaces of trees, listening to reverberations to identify the mines of wood-boring insect larvae; this behavior has been hypothesized to functionally mimic echolocation. Here we investigated whether there are signals of convergence in auditory processing genes between aye-ayes and known mammalian echolocators. We developed a computational pipeline (Basic Exon Assembly Tool) that produces consensus sequences for regions of interest from shotgun genomic sequencing data for nonmodel organisms without requiring de novo genome assembly. We reconstructed complete coding region sequences for the seven convergent echolocating bat-dolphin genes for aye-ayes and another lemur. We compared sequences from these two lemurs in a phylogenetic framework with those of bat and dolphin echolocators and appropriate nonecholocating outgroups. Our analysis reaffirms the existence of amino acid convergence at these loci among echolocating bats and dolphins; some methods also detected signals of convergence between echolocating bats and both mice and elephants. However, we observed no significant signal of amino acid convergence between aye-ayes and echolocating bats and dolphins, suggesting that aye-aye tap-foraging auditory adaptations represent distinct evolutionary innovations. These results are also consistent with a developing consensus that convergent behavioral ecology does not reliably predict convergent molecular evolution. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  11. Genome evolution in an ancient bacteria-ant symbiosis: parallel gene loss among Blochmannia spanning the origin of the ant tribe Camponotini

    Directory of Open Access Journals (Sweden)

    Laura E. Williams

    2015-04-01

    Full Text Available Stable associations between bacterial endosymbionts and insect hosts provide opportunities to explore genome evolution in the context of established mutualisms and assess the roles of selection and genetic drift across host lineages and habitats. Blochmannia, obligate endosymbionts of ants of the tribe Camponotini, have coevolved with their ant hosts for ∼40 MY. To investigate early events in Blochmannia genome evolution across this ant host tribe, we sequenced Blochmannia from two divergent host lineages, Colobopsis obliquus and Polyrhachis turneri, and compared them with four published genomes from Blochmannia of Camponotus sensu stricto. Reconstructed gene content of the last common ancestor (LCA of these six Blochmannia genomes is reduced (690 protein coding genes, consistent with rapid gene loss soon after establishment of the symbiosis. Differential gene loss among Blochmannia lineages has affected cellular functions and metabolic pathways, including DNA replication and repair, vitamin biosynthesis and membrane proteins. Blochmannia of P. turneri (i.e., B. turneri encodes an intact DnaA chromosomal replication initiation protein, demonstrating that loss of dnaA was not essential for establishment of the symbiosis. Based on gene content, B. obliquus and B. turneri are unable to provision hosts with riboflavin. Of the six sequenced Blochmannia, B. obliquus is the earliest diverging lineage (i.e., the sister group of other Blochmannia sampled and encodes the fewest protein-coding genes and the most pseudogenes. We identified 55 genes involved in parallel gene loss, including glutamine synthetase, which may participate in nitrogen recycling. Pathways for biosynthesis of coenzyme A, terpenoids and riboflavin were lost in multiple lineages, suggesting relaxed selection on the pathway after inactivation of one component. Analysis of Illumina read datasets did not detect evidence of plasmids encoding missing functions, nor the presence of

  12. Human tissue inhibitor of metalloproteinases-1 improved wound healing in diabetes through its anti-apoptotic effect.

    Science.gov (United States)

    Lao, Guojuan; Ren, Meng; Wang, Xiaoyi; Zhang, Jinglu; Huang, Yanrui; Liu, Dan; Luo, Hengcong; Yang, Chuan; Yan, Li

    2017-09-08

    Impaired wound healing accompanies severe cell apoptosis in diabetic patients. Tissue inhibitor of metalloproteinases-1 (TIMP-1) was known to have effects on promoting growth and anti-apoptosis for cells. We aimed to determine the actual levels of TIMP-1 and cell apoptosis in: (i) the biopsies of diabetic and non-diabetic foot tissue and (ii) the human fibroblasts with or without treatments of advanced glycation end-products (AGEs). Next, we aimed to determine the improved levels of cell apoptosis and wound healing after the treatments of either active protein of TIMP-1 or in vivo expression of gene therapy vector-mediated TIMP-1 in both the human fibroblasts and the animal model of diabetic rats. The levels of TIMP-1 were significantly reduced in diabetic skin tissues and in AGEs-treated fibroblasts. Both AGEs-treated cells were effectively protected from apoptosis by active protein of TIMP-1 at appropriate dose level. So did the induced in vivo TIMP-1 expression after gene delivery. Similar effects were also found on the significant improvement of impaired wound healing in diabetic rats. We concluded that TIMP-1 improved wound healing through its anti-apoptotic effect. Treatments with either active protein TIMP-1 or TIMP-1 gene therapy delivered in local wound sites may be used as a strategy for accelerating diabetic wound healing. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Serum Matrix Metalloproteinase-9 and Tissue Inhibitor of Metalloproteinase-1 Expression in Patients with Non-alcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Taner Akyol

    2015-06-01

    Full Text Available Non-alcoholic fatty liver disease (NAFLD is the most common chronic liver disease in developed countries. NAFLD may progress to non-alcoholic steatohepatitis (NASH and cirrhosis. Emerging evidence suggests that NAFLD is the hepatic manifestation of metabolic syndrome (MetS. NAFLD is closely linked to MetS, with a significant increase in cardiovascular risk. Several matrix metalloproteinases (MMPs and tissue inhibitors of MMPs (TIMPs play important roles in the pathophysiology of atherosclerosis and liver fibrosis. In this study we investigated the usefulness of serum metalloproteinases as noninvasive markers of NAFLD. Forty-six patients with NAFLD and twenty-six healthy controls were enrolled into the study, in Gulhane Military Medical Academy, Haydarpasa Training Hospital. Liver biopsies were performed on all patients with NAFLD and histopathological evaluations were made by an experienced pathologist. All NAFLD patients were divided into 2 subgroups according to MetS status using ATP III criteria. MMP-9 and TIMP-1 were studied in serum samples of all groups. Results were compared between both groups and subgroups. In this study, the NAFLD and control groups did not differ significantly on MMP-9, TIMP-1 and TIMP-1/MMP-9 ratio (p > 0.05. However, we found a significant relationship between the HOMA and TIMP-1 (p<0.05. Moreover, MMP-9 and TIMP-1/MMP-9 levels were significantly correlated with waist circumference (p<0.05. Our findings are not sufficient to suggest that MMP-9, TIMP-1 and TIMP-1/MMP-9 ratio might be used as noninvasive biochemical diagnostic tests among NAFLD patients. [Dis Mol Med 2015; 3(2.000: 11-17

  14. Metalloproteinase Profiling in Lung Transplant Recipients With Good Outcome and Bronchiolitis Obliterans Syndrome

    NARCIS (Netherlands)

    Heijink, Irene H.; Rozeveld, Dennie; van der Heide, Sicco; Bij, van der Wim; Bischoff, Rainer; Oosterhout, van Antoon J,; van der Toorn, Marco

    Background. Bronchiolitis obliterans syndrome (BOS), the major cause of death on lung transplantation, is characterized by bronchiolar inflammation and tissue remodeling. Matrix metalloproteinases (MMPs) have been implicated in these processes, although it is still unclear whether MMP activity and

  15. Matrix metalloproteinase 2 and 9 activity in patients with colorectal cancer liver metastasis.

    NARCIS (Netherlands)

    Waas, E.T.; Wobbes, Th.; Lomme, R.M.L.M.; Groot, J.H. de; Ruers, T.J.M.; Hendriks, T.

    2003-01-01

    BACKGROUND: Matrix metalloproteinases (MMPs) have been reported to play an important role in tumour cell invasion and metastasis. The bioactivity of MMPs in liver metastasis from colorectal cancer was investigated and correlated with clinicopathological variables. METHOD: Thirty-two patients

  16. Evolution, epigenetics and cooperation.

    Science.gov (United States)

    Bateson, Patrick

    2014-04-01

    Explanations for biological evolution in terms of changes in gene frequencies refer to outcomes rather than process. Integrating epigenetic studies with older evolutionary theories has drawn attention to the ways in which evolution occurs. Adaptation at the level of the gene is givingway to adaptation at the level of the organism and higher-order assemblages of organisms. These ideas impact on the theories of how cooperation might have evolved. Two of the theories, i.e. that cooperating individuals are genetically related or that they cooperate for self-interested reasons, have been accepted for a long time. The idea that adaptation takes place at the level of groups is much more controversial. However, bringing together studies of development with those of evolution is taking away much of the heat in the debate about the evolution of group behaviour.

  17. Evolution of Phototrophy in the Chloroflexi Phylum Driven by Horizontal Gene Transfer

    Directory of Open Access Journals (Sweden)

    Lewis M. Ward

    2018-02-01

    Full Text Available The evolutionary mechanisms behind the extant distribution of photosynthesis is a point of substantial contention. Hypotheses range from the presence of phototrophy in the last universal common ancestor and massive gene loss in most lineages, to a later origin in Cyanobacteria followed by extensive horizontal gene transfer into the extant phototrophic clades, with intermediate scenarios that incorporate aspects of both end-members. Here, we report draft genomes of 11 Chloroflexi: the phototrophic Chloroflexia isolate Kouleothrix aurantiaca as well as 10 genome bins recovered from metagenomic sequencing of microbial mats found in Japanese hot springs. Two of these metagenome bins encode photrophic reaction centers and several of these bins form a metabolically diverse, monophyletic clade sister to the Anaerolineae class that we term Candidatus Thermofonsia. Comparisons of organismal (based on conserved ribosomal and phototrophy (reaction center and bacteriochlorophyll synthesis protein phylogenies throughout the Chloroflexi demonstrate that two new lineages acquired phototrophy independently via horizontal gene transfer (HGT from different ancestral donors within the classically phototrophic Chloroflexia class. These results illustrate a complex history of phototrophy within this group, with metabolic innovation tied to HGT. These observations do not support simple hypotheses for the evolution of photosynthesis that require massive character loss from many clades; rather, HGT appears to be the defining mechanic for the distribution of phototrophy in many of the extant clades in which it appears.

  18. Evolution of Sphingomonad Gene Clusters Related to Pesticide Catabolism Revealed by Genome Sequence and Mobilomics of Sphingobium herbicidovorans MH.

    Science.gov (United States)

    Nielsen, Tue Kjærgaard; Rasmussen, Morten; Demanèche, Sandrine; Cecillon, Sébastien; Vogel, Timothy M; Hansen, Lars Hestbjerg

    2017-09-01

    Bacterial degraders of chlorophenoxy herbicides have been isolated from various ecosystems, including pristine environments. Among these degraders, the sphingomonads constitute a prominent group that displays versatile xenobiotic-degradation capabilities. Four separate sequencing strategies were required to provide the complete sequence of the complex and plastic genome of the canonical chlorophenoxy herbicide-degrading Sphingobium herbicidovorans MH. The genome has an intricate organization of the chlorophenoxy-herbicide catabolic genes sdpA, rdpA, and cadABCD that encode the (R)- and (S)-enantiomer-specific 2,4-dichlorophenoxypropionate dioxygenases and four subunits of a Rieske non-heme iron oxygenase involved in 2-methyl-chlorophenoxyacetic acid degradation, respectively. Several major genomic rearrangements are proposed to help understand the evolution and mobility of these important genes and their genetic context. Single-strain mobilomic sequence analysis uncovered plasmids and insertion sequence-associated circular intermediates in this environmentally important bacterium and enabled the description of evolutionary models for pesticide degradation in strain MH and related organisms. The mobilome presented a complex mosaic of mobile genetic elements including four plasmids and several circular intermediate DNA molecules of insertion-sequence elements and transposons that are central to the evolution of xenobiotics degradation. Furthermore, two individual chromosomally integrated prophages were shown to excise and form free circular DNA molecules. This approach holds great potential for improving the understanding of genome plasticity, evolution, and microbial ecology. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  19. 100 million years of multigene family evolution: origin and evolution of the avian MHC class IIB

    Czech Academy of Sciences Publication Activity Database

    Goebel, J.; Promerová, Marta; Bonadonna, F.; McCoy, K. D.; Serbielle, C.; Strandh, M.; Yannic, G.; Burri, R.; Fumagalli, L.

    2017-01-01

    Roč. 18, č. 460 (2017), s. 1-9 ISSN 1471-2164 R&D Projects: GA ČR GAP505/10/1871 Institutional support: RVO:68081766 Keywords : Birds * Birth -death evolution * Concerted evolution * Gene duplication * Gene conversion * Major histocompatibility complex * Recombination Subject RIV: EG - Zoology OBOR OECD: Genetics and heredity (medical genetics to be 3) Impact factor: 3.729, year: 2016

  20. 100 million years of multigene family evolution: origin and evolution of the avian MHC class IIB

    Czech Academy of Sciences Publication Activity Database

    Goebel, J.; Promerová, Marta; Bonadonna, F.; McCoy, K. D.; Serbielle, C.; Strandh, M.; Yannic, G.; Burri, R.; Fumagalli, L.

    2017-01-01

    Roč. 18, č. 460 (2017), s. 1-9 ISSN 1471-2164 R&D Projects: GA ČR GAP505/10/1871 Institutional support: RVO:68081766 Keywords : Birds * Birth-death evolution * Concerted evolution * Gene duplication * Gene conversion * Major histocompatibility complex * Recombination Subject RIV: EG - Zoology OBOR OECD: Genetics and heredity (medical genetics to be 3) Impact factor: 3.729, year: 2016

  1. Gene repertoire evolution of Streptococcus pyogenes inferred from phylogenomic analysis with Streptococcus canis and Streptococcus dysgalactiae.

    Directory of Open Access Journals (Sweden)

    Tristan Lefébure

    Full Text Available Streptococcus pyogenes, is an important human pathogen classified within the pyogenic group of streptococci, exclusively adapted to the human host. Our goal was to employ a comparative evolutionary approach to better understand the genomic events concomitant with S. pyogenes human adaptation. As part of ascertaining these events, we sequenced the genome of one of the potential sister species, the agricultural pathogen S. canis, and combined it in a comparative genomics reconciliation analysis with two other closely related species, Streptococcus dysgalactiae and Streptococcus equi, to determine the genes that were gained and lost during S. pyogenes evolution. Genome wide phylogenetic analyses involving 15 Streptococcus species provided convincing support for a clade of S. equi, S. pyogenes, S. dysgalactiae, and S. canis and suggested that the most likely S. pyogenes sister species was S. dysgalactiae. The reconciliation analysis identified 113 genes that were gained on the lineage leading to S. pyogenes. Almost half (46% of these gained genes were phage associated and 14 showed significant matches to experimentally verified bacteria virulence factors. Subsequent to the origin of S. pyogenes, over half of the phage associated genes were involved in 90 different LGT events, mostly involving different strains of S. pyogenes, but with a high proportion involving the horse specific pathogen S. equi subsp. equi, with the directionality almost exclusively (86% in the S. pyogenes to S. equi direction. Streptococcus agalactiae appears to have played an important role in the evolution of S. pyogenes with a high proportion of LGTs originating from this species. Overall the analysis suggests that S. pyogenes adaptation to the human host was achieved in part by (i the integration of new virulence factors (e.g. speB, and the sal locus and (ii the construction of new regulation networks (e.g. rgg, and to some extent speB.

  2. Evolution of the bHLH genes involved in stomatal development: implications for the expansion of developmental complexity of stomata in land plants.

    Directory of Open Access Journals (Sweden)

    Jin-Hua Ran

    Full Text Available Stomata play significant roles in plant evolution. A trio of closely related basic Helix-Loop-Helix (bHLH subgroup Ia genes, SPCH, MUTE and FAMA, mediate sequential steps of stomatal development, and their functions may be conserved in land plants. However, the evolutionary history of the putative SPCH/MUTE/FAMA genes is still greatly controversial, especially the phylogenetic positions of the bHLH Ia members from basal land plants. To better understand the evolutionary pattern and functional diversity of the bHLH genes involved in stomatal development, we made a comprehensive evolutionary analysis of the homologous genes from 54 species representing the major lineages of green plants. The phylogenetic analysis indicated: (1 All bHLH Ia genes from the two basal land plants Physcomitrella and Selaginella were closely related to the FAMA genes of seed plants; and (2 the gymnosperm 'SPCH' genes were sister to a clade comprising the angiosperm SPCH and MUTE genes, while the FAMA genes of gymnosperms and angiosperms had a sister relationship. The revealed phylogenetic relationships are also supported by the distribution of gene structures and previous functional studies. Therefore, we deduce that the function of FAMA might be ancestral in the bHLH Ia subgroup. In addition, the gymnosperm "SPCH" genes may represent an ancestral state and have a dual function of SPCH and MUTE, two genes that could have originated from a duplication event in the common ancestor of angiosperms. Moreover, in angiosperms, SPCHs have experienced more duplications and harbor more copies than MUTEs and FAMAs, which, together with variation of the stomatal development in the entry division, implies that SPCH might have contributed greatly to the diversity of stomatal development. Based on the above, we proposed a model for the correlation between the evolution of stomatal development and the genes involved in this developmental process in land plants.

  3. Quantifying adaptive evolution in the Drosophila immune system.

    Directory of Open Access Journals (Sweden)

    Darren J Obbard

    2009-10-01

    Full Text Available It is estimated that a large proportion of amino acid substitutions in Drosophila have been fixed by natural selection, and as organisms are faced with an ever-changing array of pathogens and parasites to which they must adapt, we have investigated the role of parasite-mediated selection as a likely cause. To quantify the effect, and to identify which genes and pathways are most likely to be involved in the host-parasite arms race, we have re-sequenced population samples of 136 immunity and 287 position-matched non-immunity genes in two species of Drosophila. Using these data, and a new extension of the McDonald-Kreitman approach, we estimate that natural selection fixes advantageous amino acid changes in immunity genes at nearly double the rate of other genes. We find the rate of adaptive evolution in immunity genes is also more variable than other genes, with a small subset of immune genes evolving under intense selection. These genes, which are likely to represent hotspots of host-parasite coevolution, tend to share similar functions or belong to the same pathways, such as the antiviral RNAi pathway and the IMD signalling pathway. These patterns appear to be general features of immune system evolution in both species, as rates of adaptive evolution are correlated between the D. melanogaster and D. simulans lineages. In summary, our data provide quantitative estimates of the elevated rate of adaptive evolution in immune system genes relative to the rest of the genome, and they suggest that adaptation to parasites is an important force driving molecular evolution.

  4. Local evolution of pyrethroid resistance offsets gene flow among Aedes aegypti collections in Yucatan State, Mexico.

    Science.gov (United States)

    Saavedra-Rodriguez, Karla; Beaty, Meaghan; Lozano-Fuentes, Saul; Denham, Steven; Garcia-Rejon, Julian; Reyes-Solis, Guadalupe; Machain-Williams, Carlos; Loroño-Pino, Maria Alba; Flores-Suarez, Adriana; Ponce-Garcia, Gustavo; Beaty, Barry; Eisen, Lars; Black, William C

    2015-01-01

    The mosquito Aedes aegypti is the major vector of the four serotypes of dengue virus (DENV1-4). Previous studies have shown that Ae. aegypti in Mexico have a high effective migration rate and that gene flow occurs among populations that are up to 150 km apart. Since 2000, pyrethroids have been widely used for suppression of Ae. aegypti in cities in Mexico. In Yucatan State in particular, pyrethroids have been applied in and around dengue case households creating an opportunity for local selection and evolution of resistance. Herein, we test for evidence of local adaptation by comparing patterns of variation among 27 Ae. aegypti collections at 13 single nucleotide polymorphisms (SNPs): two in the voltage-gated sodium channel gene para known to confer knockdown resistance, three in detoxification genes previously associated with pyrethroid resistance, and eight in putatively neutral loci. The SNPs in para varied greatly in frequency among collections, whereas SNPs at the remaining 11 loci showed little variation supporting previous evidence for extensive local gene flow. Among Ae. aegypti in Yucatan State, Mexico, local adaptation to pyrethroids appears to offset the homogenizing effects of gene flow. © The American Society of Tropical Medicine and Hygiene.

  5. Positive correlation between disease activity index and matrix metalloproteinases activity in a rat model of colitis.

    Science.gov (United States)

    Oliveira, Luiz Gustavo de; Cunha, André Luiz da; Duarte, Amaury Caiafa; Castañon, Maria Christina Marques Nogueira; Chebli, Júlio Maria Fonseca; Aguiar, Jair Adriano Kopke de

    2014-01-01

    Inflammatory bowel disease, including ulcerative colitis and Crohn's disease, comprising a broad spectrum of diseases those have in common chronic inflammation of the gastrointestinal tract, histological alterations and an increased activity levels of certain enzymes, such as, metalloproteinases. Evaluate a possible correlation of disease activity index with the severity of colonic mucosal damage and increased activity of metalloproteinases in a model of ulcerative colitis induced by dextran sulfate sodium. Colitis was induced by oral administration of 5% dextran sulfate sodium for seven days in this group (n=10), whereas control group (n=16) received water. Effects were analyzed daily by disease activity index. In the seventh day, animals were euthanized and hematological measurements, histological changes (hematoxylin and eosin and Alcian Blue staining), myeloperoxidase and metalloproteinase activities (MMP-2 and MMP-9) were determined. Dextran sulfate sodium group showed elevated disease activity index and reduced hematological parameters. Induction of colitis caused tissue injury with loss of mucin and increased myeloperoxidase (Pcorrelation with the degree of histopathological changes after induction of colitis, and this result may be related mainly to the increased activity of MMP-9 and mieloperoxidase.

  6. The Complex Interaction of Matrix Metalloproteinases in the Migration of Cancer Cells through Breast Tissue Stroma

    Directory of Open Access Journals (Sweden)

    Kerry J. Davies

    2014-01-01

    Full Text Available Breast cancer mortality is directly linked to metastatic spread. The metastatic cell must exhibit a complex phenotype that includes the capacity to escape from the primary tumour mass, invade the surrounding normal tissue, and penetrate into the circulation before proliferating in the parenchyma of distant organs to produce a metastasis. In the normal breast, cellular structures change cyclically in response to ovarian hormones leading to regulated cell proliferation and apoptosis. Matrix metalloproteinases (MMPs are a family of zinc dependent endopeptidases. Their primary function is degradation of proteins in the extracellular matrix to allow ductal progression through the basement membrane. A complex balance between matrix metalloproteinases and their inhibitors regulate these changes. These proteinases interact with cytokines, growth factors, and tumour necrosis factors to stimulate branching morphologies in normal breast tissues. In breast cancer this process is disrupted facilitating tumour progression and metastasis and inhibiting apoptosis increasing the life of the metastatic cells. This paper highlights the role of matrix metalloproteinases in cell progression through the breast stroma and reviews the complex relationships between the different proteinases and their inhibitors in relation to breast cancer cells as they metastasise.

  7. The oxytocin receptor gene, an integral piece of the evolution of Canis familaris from Canis lupus

    Directory of Open Access Journals (Sweden)

    Jessica Lee Oliva

    2016-07-01

    Full Text Available Previous research in canids has revealed both group (dog versus wolf and individual differences in object choice task (OCT performance. These differences might be explained by variation in the oxytocin receptor (OXTR gene, as intranasally administered oxytocin has recently been shown to improve performance on this task by domestic dogs. This study looked at microsatellites at various distances from the OXTR gene to determine whether there was an association between this gene and: i species (dog/wolf and ii good versus bad OCT performers. Ten primer sets were designed to amplify 10 microsatellites that were identified at various distances from the canine OXTR gene. We used 94 (52 males, 42 females blood samples from shelter dogs, 75 (33 males, 42 females saliva samples from pet dogs and 12 (6 males, 6 females captive wolf saliva samples to carry out our analyses. Significant species differences were found in the two markers closest to the OXTR gene, suggesting that this gene may have played an important part in the domestic dogs’ evolution from the wolf. However, no significant, meaningful differences were found in microsatellites between good versus bad OCT performers, which suggests that other factors, such as different training and socialisation experiences, probably impacted task performance

  8. Gene expression and 18FDG uptake in atherosclerotic carotid plaques

    DEFF Research Database (Denmark)

    Pedersen, Sune Folke; Graebe, Martin; Fisker Hag, Anne Mette

    2010-01-01

    ) and an additional ipsilateral internal carotid artery stenosis of greater than 60% were recruited. FDG uptake in the carotids was determined by PET/computed tomography and expressed as mean and maximal standardized uptake values (SUVmean and SUVmax). The atherosclerotic plaques were subsequently recovered...... by carotid endarterectomy. The gene expression of markers of vulnerability - CD68, IL-18, matrix metalloproteinase 9, cathepsin K, GLUT-1, and hexokinase type II (HK2) - were measured in plaques by quantitative PCR. RESULTS: In a multivariate linear regression model, GLUT-1, CD68, cathepsin K, and HK2 gene...... expression remained in the final model as predictive variables of FDG accumulation calculated as SUVmean (R=0.26, PK, and HK2 gene expression as independent predictive variables of FDG accumulation calculated...

  9. Patterns of evolution of MHC class II genes of crows (Corvus suggest trans-species polymorphism

    Directory of Open Access Journals (Sweden)

    John A. Eimes

    2015-03-01

    Full Text Available A distinguishing characteristic of genes that code for the major histocompatibility complex (MHC is that alleles often share more similarity between, rather than within species. There are two likely mechanisms that can explain this pattern: convergent evolution and trans-species polymorphism (TSP, in which ancient allelic lineages are maintained by balancing selection and retained by descendant species. Distinguishing between these two mechanisms has major implications in how we view adaptation of immune genes. In this study we analyzed exon 2 of the MHC class IIB in three passerine bird species in the genus Corvus: jungle crows (Corvus macrorhynchos japonensis American crows (C. brachyrhynchos and carrion crows (C. corone orientalis. Carrion crows and American crows are recently diverged, but allopatric, sister species, whereas carrion crows and jungle crows are more distantly related but sympatric species, and possibly share pathogens linked to MHC IIB polymorphisms. These patterns of evolutionary divergence and current geographic ranges enabled us to test for trans-species polymorphism and convergent evolution of the MHC IIB in crows. Phylogenetic reconstructions of MHC IIB sequences revealed several well supported interspecific clusters containing all three species, and there was no biased clustering of variants among the sympatric carrion crows and jungle crows. The topologies of phylogenetic trees constructed from putatively selected sites were remarkably different than those constructed from putatively neutral sites. In addition, trees constructed using non-synonymous substitutions from a continuous fragment of exon 2 had more, and generally more inclusive, supported interspecific MHC IIB variant clusters than those constructed from the same fragment using synonymous substitutions. These phylogenetic patterns suggest that recombination, especially gene conversion, has partially erased the signal of allelic ancestry in these species. While

  10. Combining phylogenetic and syntenic analyses for understanding the evolution of TCP ECE genes in eudicots.

    Directory of Open Access Journals (Sweden)

    Hélène L Citerne

    Full Text Available TCP ECE genes encode transcription factors which have received much attention for their repeated recruitment in the control of floral symmetry in core eudicots, and more recently in monocots. Major duplications of TCP ECE genes have been described in core eudicots, but the evolutionary history of this gene family is unknown in basal eudicots. Reconstructing the phylogeny of ECE genes in basal eudicots will help set a framework for understanding the functional evolution of these genes. TCP ECE genes were sequenced in all major lineages of basal eudicots and Gunnera which belongs to the sister clade to all other core eudicots. We show that in these lineages they have a complex evolutionary history with repeated duplications. We estimate the timing of the two major duplications already identified in the core eudicots within a timeframe before the divergence of Gunnera and after the divergence of Proteales. We also use a synteny-based approach to examine the extent to which the expansion of TCP ECE genes in diverse eudicot lineages may be due to genome-wide duplications. The three major core-eudicot specific clades share a number of collinear genes, and their common evolutionary history may have originated at the γ event. Genomic comparisons in Arabidopsis thaliana and Solanumlycopersicum highlight their separate polyploid origin, with syntenic fragments with and without TCP ECE genes showing differential gene loss and genomic rearrangements. Comparison between recently available genomes from two basal eudicots Aquilegiacoerulea and Nelumbonucifera suggests that the two TCP ECE paralogs in these species are also derived from large-scale duplications. TCP ECE loci from basal eudicots share many features with the three main core eudicot loci, and allow us to infer the makeup of the ancestral eudicot locus.

  11. The Genome of Tolypocladium inflatum: Evolution, Organization, and Expression of the Cyclosporin Biosynthetic Gene Cluster

    Science.gov (United States)

    Bushley, Kathryn E.; Raja, Rajani; Jaiswal, Pankaj; Cumbie, Jason S.; Nonogaki, Mariko; Boyd, Alexander E.; Owensby, C. Alisha; Knaus, Brian J.; Elser, Justin; Miller, Daniel; Di, Yanming; McPhail, Kerry L.; Spatafora, Joseph W.

    2013-01-01

    The ascomycete fungus Tolypocladium inflatum, a pathogen of beetle larvae, is best known as the producer of the immunosuppressant drug cyclosporin. The draft genome of T. inflatum strain NRRL 8044 (ATCC 34921), the isolate from which cyclosporin was first isolated, is presented along with comparative analyses of the biosynthesis of cyclosporin and other secondary metabolites in T. inflatum and related taxa. Phylogenomic analyses reveal previously undetected and complex patterns of homology between the nonribosomal peptide synthetase (NRPS) that encodes for cyclosporin synthetase (simA) and those of other secondary metabolites with activities against insects (e.g., beauvericin, destruxins, etc.), and demonstrate the roles of module duplication and gene fusion in diversification of NRPSs. The secondary metabolite gene cluster responsible for cyclosporin biosynthesis is described. In addition to genes necessary for cyclosporin biosynthesis, it harbors a gene for a cyclophilin, which is a member of a family of immunophilins known to bind cyclosporin. Comparative analyses support a lineage specific origin of the cyclosporin gene cluster rather than horizontal gene transfer from bacteria or other fungi. RNA-Seq transcriptome analyses in a cyclosporin-inducing medium delineate the boundaries of the cyclosporin cluster and reveal high levels of expression of the gene cluster cyclophilin. In medium containing insect hemolymph, weaker but significant upregulation of several genes within the cyclosporin cluster, including the highly expressed cyclophilin gene, was observed. T. inflatum also represents the first reference draft genome of Ophiocordycipitaceae, a third family of insect pathogenic fungi within the fungal order Hypocreales, and supports parallel and qualitatively distinct radiations of insect pathogens. The T. inflatum genome provides additional insight into the evolution and biosynthesis of cyclosporin and lays a foundation for further investigations of the role

  12. 2-Methoxy-2,4-diphenyl-3(2H)-furanone-labeled gelatin zymography and reverse zymography: a rapid real-time method for quantification of matrix metalloproteinases-2 and -9 and tissue inhibitors of metalloproteinases.

    Science.gov (United States)

    Min, Danqing; Lyons, James Guy; Jia, Junhong; Lo, Lisa; McLennan, Susan V

    2006-02-01

    Measurement of matrix metalloproteinases (MMPs) and their specific tissue inhibitors of metalloproteinases (TIMPs) by the techniques of zymography and reverse zymography provide useful information regarding the status of matrix accumulation or breakdown. This report describes the use of 2-methoxy-2,4-diphenyl-3(2H)-furanone (MDPF), a fluorescent compound which can be used to label gelatin as a substrate for detection of the gelatin degrading MMP-2 and -9 by zymography. In addition, a modification of the zymographic technique by addition of excess MMPs enables the use of the MDPF-labeled gelatin substrate for the identification and quantification of TIMPs by reverse zymography. Both systems are real-time sensitive reliable quantification techniques, easily used for measurement of these MMPs and TIMPs in clinical, biological, and tissue culture samples.

  13. Inhibiting extracellular matrix metalloproteinase inducer maybe beneficial for diminishing the atherosclerotic plaque instability

    Directory of Open Access Journals (Sweden)

    Xie S

    2009-01-01

    Full Text Available Atherosclerotic plaque rupture and local thrombosis activation in the artery cause acute serious incidents such as acute coronary syndrome and stroke. The exact mechanism of plaque rupture remains unclear but excessive degradation of the extracellular matrix scaffold by matrix-degrading metalloproteinases (MMPs has been implicated as one of the major molecular mechanisms in this process. Convincing evidence is available to prove that extracellular matrix metalloproteinase inducer (EMMPRIN induces MMP expression and is involved in the inflammatory responses in the artery wall. The inflammation and MMPs have been shown to play a critical role for atherosclerotic lesion development and progression. More recent data showed that increased EMMPRIN expression was associated with vulnerable atherosclerotic lesions. Therefore, we speculate that EMMPRIN may be pivotal for atherosclerotic plaque instability, and hence inhibition of EMMPRIN expression could be a promising approach for the prevention or treatment of atheroma instability.

  14. [Expression of various matrix metalloproteinases in mice with hyperoxia-induced acute lung injury].

    Science.gov (United States)

    Zhang, Xiang-feng; Ding, Shao-fang; Gao, Yuan-ming; Liang, Ying; Foda, Hussein D

    2006-08-01

    To investigate the role of matrix metalloproteinases (MMPs) and extracellular matrix metalloproteinase inducer (EMMPRIN) in the pathogenesis of acute lung injury induced by hyperoxia. Fifty four mice were exposed in sealed cages to >98% oxygen (for 24-72 hours), and another 18 mice to room air. The severity of lung injury was assessed, and the expression of mRNA and protein of MMP-2, MMP-9 and EMMPRIN in lung tissue, after exposure for 24, 48 and 72 hours of hyperoxia were studied by reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. Hyperoxia caused acute lung injury; this was accompanied by increased expression of an upregulation of MMP-2, MMP-9 and EMMPRIN mRNA and protein in lung tissues. Hyperoxia causes acute lung injury in mice; increases in MMP-2, MMP-9 and EMMPRIN may play an important role in the development of hyperoxia induced lung injury in mice.

  15. Matrix Metalloproteinases in Normal Pregnancy and Preeclampsia

    Science.gov (United States)

    Chen, Juanjuan; Khalil, Raouf A.

    2017-01-01

    Normal pregnancy is associated with marked hemodynamic and uterine changes that allow adequate uteroplacental blood flow and uterine expansion for the growing fetus. These pregnancy-associated changes involve significant uteroplacental and vascular remodeling. Matrix metalloproteinases (MMPs) are important regulators of vascular and uterine remodeling. Increases in MMP-2 and MMP-9 have been implicated in vasodilation, placentation and uterine expansion during normal pregnancy. The increases in MMPs could be induced by the increased production of estrogen and progesterone during pregnancy. MMP expression/activity may be altered during complications of pregnancy. Decreased vascular MMP-2 and MMP-9 may lead to decreased vasodilation, increased vasoconstriction, hypertensive pregnancy and preeclampsia. Abnormal expression of uteroplacental integrins, cytokines and MMPs may lead to decreased maternal tolerance, apoptosis of invasive trophoblast cells, inadequate remodeling of spiral arteries, and reduced uterine perfusion pressure (RUPP). RUPP may cause imbalance between the anti-angiogenic factors soluble fms-like tyrosine kinase-1 and soluble endoglin and the pro-angiogenic vascular endothelial growth factor and placental growth factor, or stimulate the release of inflammatory cytokines, hypoxia-inducible factor, reactive oxygen species, and angiotensin AT1 receptor agonistic autoantibodies. These circulating factors could target MMPs in the extracellular matrix as well as endothelial and vascular smooth muscle cells, causing generalized vascular dysfunction, increased vasoconstriction and hypertension in pregnancy. MMP activity can also be altered by endogenous tissue inhibitors of metalloproteinases (TIMPs) and changes in the MMP/TIMP ratio. In addition to their vascular effects, decreases in expression/activity of MMP-2 and MMP-9 in the uterus could impede uterine growth and expansion and lead to premature labor. Understanding the role of MMPs in uteroplacental and

  16. Evolution of the PWWP-domain encoding genes in the plant and animal lineages

    Directory of Open Access Journals (Sweden)

    Alvarez-Venegas Raúl

    2012-06-01

    status throughout evolution. In contrast, our data show that most of the multidomain PWWP combinations in extant multicellular organisms (humans or land plants are present in their unicellular ancestral relatives suggesting they have been transmitted through evolution as conserved linear arrangements (‘cassettes’. Among the most interesting biologically relevant results is the finding that the genes of the two plant Trithorax family subgroups (ATX1/2 and ATX3/4/5 have different phylogenetic origins. The two subgroups occur together in the earliest land plants Physcomitrella patens and Selaginella moellendorffii. Conclusion Gain/loss of a single PWWP domain is observed throughout evolution reflecting dynamic lineage- or species-specific events. In contrast, higher-level protein architectures involving the PWWP domain have survived as stable arrangements driven by evolutionary descent. The association of PWWP domains with the DNA methyltransferases in O. tauri and in the metazoan lineage seems to have occurred independently consistent with convergent evolution. Our results do not support models wherein more complex protein architectures involving the PWWP domain occur with the appearance of more evolutionarily advanced life forms.

  17. Patterns and Implications of Gene Gain and Loss in the Evolution of Prochlorococcus

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, Alla; Kettler, Gregory C.; Martiny, Adam C.; Huang, Katherine; Zucker, Jeremy; Coleman, Maureen L.; Rodrigue, Sebastien; Chen, Feng; Lapidus, Alla; Ferriera, Steven; Johnson, Justin; Steglich, Claudia; Church, George M.; Richardson, Paul; Chisholm, Sallie W.

    2007-07-30

    Prochlorococcus is a marine cyanobacterium that numerically dominates the mid-latitude oceans and is the smallest known oxygenic phototroph. Numerous isolatesfrom diverse areas of the world's oceans have been studied and shown to be physiologically and genetically distinct. All isolates described thus far can be assigned to either a tightly clustered high-light (HL)-adapted clade, or a more divergent low-light (LL)-adapted group. The 16S rRNA sequences of the entire Prochlorococcus group differ by at most 3percent, and the four initially published genomes revealed patterns of genetic differentiation that help explain physiological differences among the isolates. Here we describe the genomes of eight newly sequenced isolates and combine them with the first four genomes for a comprehensive analysis of the core (shared by all isolates) and flexible genes of the Prochlorococcus group, and the patterns of loss and gain of the flexible genes over the course of evolution. There are 1,273 genes that represent the core shared by all 12 genomes. They are apparently sufficient, according to metabolic reconstruction, to encode a functional cell. We describe a phylogeny for all 12 isolates by subjecting their complete proteomes to three different phylogenetic analyses. For each non-core gene, we used a maximum parsimony method to estimate which ancestor likely first acquired or lost each gene. Many of the genetic differences among isolates, especially for genes involved in outer membrane synthesis and nutrient transport, are found within the same clade. Nevertheless, we identified some genes defining HL and LL ecotypes, and clades within these broad ecotypes, helping to demonstrate the basis of HL and LL adaptations in Prochlorococcus. Furthermore, our estimates of gene gain events allow us to identify highly variable genomic islands that are not apparent through simple pairwise comparisons. These results emphasize the functional roles, especially those connected to outer

  18. Targeted Enrichment of Large Gene Families for Phylogenetic Inference: Phylogeny and Molecular Evolution of Photosynthesis Genes in the Portullugo Clade (Caryophyllales).

    Science.gov (United States)

    Moore, Abigail J; Vos, Jurriaan M De; Hancock, Lillian P; Goolsby, Eric; Edwards, Erika J

    2018-05-01

    Hybrid enrichment is an increasingly popular approach for obtaining hundreds of loci for phylogenetic analysis across many taxa quickly and cheaply. The genes targeted for sequencing are typically single-copy loci, which facilitate a more straightforward sequence assembly and homology assignment process. However, this approach limits the inclusion of most genes of functional interest, which often belong to multi-gene families. Here, we demonstrate the feasibility of including large gene families in hybrid enrichment protocols for phylogeny reconstruction and subsequent analyses of molecular evolution, using a new set of bait sequences designed for the "portullugo" (Caryophyllales), a moderately sized lineage of flowering plants (~ 2200 species) that includes the cacti and harbors many evolutionary transitions to C$_{\\mathrm{4}}$ and CAM photosynthesis. Including multi-gene families allowed us to simultaneously infer a robust phylogeny and construct a dense sampling of sequences for a major enzyme of C$_{\\mathrm{4}}$ and CAM photosynthesis, which revealed the accumulation of adaptive amino acid substitutions associated with C$_{\\mathrm{4}}$ and CAM origins in particular paralogs. Our final set of matrices for phylogenetic analyses included 75-218 loci across 74 taxa, with ~ 50% matrix completeness across data sets. Phylogenetic resolution was greatly improved across the tree, at both shallow and deep levels. Concatenation and coalescent-based approaches both resolve the sister lineage of the cacti with strong support: Anacampserotaceae $+$ Portulacaceae, two lineages of mostly diminutive succulent herbs of warm, arid regions. In spite of this congruence, BUCKy concordance analyses demonstrated strong and conflicting signals across gene trees. Our results add to the growing number of examples illustrating the complexity of phylogenetic signals in genomic-scale data.

  19. Parallel evolution of tetrodotoxin resistance in three voltage-gated sodium channel genes in the garter snake Thamnophis sirtalis.

    Science.gov (United States)

    McGlothlin, Joel W; Chuckalovcak, John P; Janes, Daniel E; Edwards, Scott V; Feldman, Chris R; Brodie, Edmund D; Pfrender, Michael E; Brodie, Edmund D

    2014-11-01

    Members of a gene family expressed in a single species often experience common selection pressures. Consequently, the molecular basis of complex adaptations may be expected to involve parallel evolutionary changes in multiple paralogs. Here, we use bacterial artificial chromosome library scans to investigate the evolution of the voltage-gated sodium channel (Nav) family in the garter snake Thamnophis sirtalis, a predator of highly toxic Taricha newts. Newts possess tetrodotoxin (TTX), which blocks Nav's, arresting action potentials in nerves and muscle. Some Thamnophis populations have evolved resistance to extremely high levels of TTX. Previous work has identified amino acid sites in the skeletal muscle sodium channel Nav1.4 that confer resistance to TTX and vary across populations. We identify parallel evolution of TTX resistance in two additional Nav paralogs, Nav1.6 and 1.7, which are known to be expressed in the peripheral nervous system and should thus be exposed to ingested TTX. Each paralog contains at least one TTX-resistant substitution identical to a substitution previously identified in Nav1.4. These sites are fixed across populations, suggesting that the resistant peripheral nerves antedate resistant muscle. In contrast, three sodium channels expressed solely in the central nervous system (Nav1.1-1.3) showed no evidence of TTX resistance, consistent with protection from toxins by the blood-brain barrier. We also report the exon-intron structure of six Nav paralogs, the first such analysis for snake genes. Our results demonstrate that the molecular basis of adaptation may be both repeatable across members of a gene family and predictable based on functional considerations. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  20. Matrix metalloproteinase 2 genotype is associated with nonanastomotic biliary strictures after orthotopic liver transplantation

    NARCIS (Netherlands)

    Ten Hove, W. Rogier; Korkmaz, Kerem S.; den Dries, Sanna Op; de Rooij, Bert-Jan F.; van Hoek, Bart; Porte, Robert J.; van der Reijden, Johan J.; Coenraad, Minneke J.; Dubbeld, Jeroen; Hommes, Daniel W.; Verspaget, Hein W.

    Background: Nonanastomotic biliary strictures (NAS) are a serious complication after orthotopic liver transplantation (OLT). Matrix metalloproteinases (MMPs) are involved in connective tissue remodelling in chronic liver disease and complications after OLT. Aim: To evaluate the relationship between