WorldWideScience

Sample records for metalloids arsenic antimony

  1. Arsenic and Antimony Transporters in Eukaryotes

    Directory of Open Access Journals (Sweden)

    Ewa Maciaszczyk-Dziubinska

    2012-03-01

    Full Text Available Arsenic and antimony are toxic metalloids, naturally present in the environment and all organisms have developed pathways for their detoxification. The most effective metalloid tolerance systems in eukaryotes include downregulation of metalloid uptake, efflux out of the cell, and complexation with phytochelatin or glutathione followed by sequestration into the vacuole. Understanding of arsenic and antimony transport system is of high importance due to the increasing usage of arsenic-based drugs in the treatment of certain types of cancer and diseases caused by protozoan parasites as well as for the development of bio- and phytoremediation strategies for metalloid polluted areas. However, in contrast to prokaryotes, the knowledge about specific transporters of arsenic and antimony and the mechanisms of metalloid transport in eukaryotes has been very limited for a long time. Here, we review the recent advances in understanding of arsenic and antimony transport pathways in eukaryotes, including a dual role of aquaglyceroporins in uptake and efflux of metalloids, elucidation of arsenic transport mechanism by the yeast Acr3 transporter and its role in arsenic hyperaccumulation in ferns, identification of vacuolar transporters of arsenic-phytochelatin complexes in plants and forms of arsenic substrates recognized by mammalian ABC transporters.

  2. Arsenic and Antimony Transporters in Eukaryotes

    Science.gov (United States)

    Maciaszczyk-Dziubinska, Ewa; Wawrzycka, Donata; Wysocki, Robert

    2012-01-01

    Arsenic and antimony are toxic metalloids, naturally present in the environment and all organisms have developed pathways for their detoxification. The most effective metalloid tolerance systems in eukaryotes include downregulation of metalloid uptake, efflux out of the cell, and complexation with phytochelatin or glutathione followed by sequestration into the vacuole. Understanding of arsenic and antimony transport system is of high importance due to the increasing usage of arsenic-based drugs in the treatment of certain types of cancer and diseases caused by protozoan parasites as well as for the development of bio- and phytoremediation strategies for metalloid polluted areas. However, in contrast to prokaryotes, the knowledge about specific transporters of arsenic and antimony and the mechanisms of metalloid transport in eukaryotes has been very limited for a long time. Here, we review the recent advances in understanding of arsenic and antimony transport pathways in eukaryotes, including a dual role of aquaglyceroporins in uptake and efflux of metalloids, elucidation of arsenic transport mechanism by the yeast Acr3 transporter and its role in arsenic hyperaccumulation in ferns, identification of vacuolar transporters of arsenic-phytochelatin complexes in plants and forms of arsenic substrates recognized by mammalian ABC transporters. PMID:22489166

  3. Geomicrobial interactions with arsenic and antimony

    Science.gov (United States)

    Oremland, Ronald S.

    2015-01-01

    Although arsenic and antimony are generally toxic to life, some microorganisms exist that can metabolize certain forms of these elements. Some can use arsenite or stibnite as potential or sole energy sources, whereas others can use aresenate and antimonite (as was discovered only recently) as terminal electron acceptors. Still other microbes can metabolize arsenic and antimony compounds to detoxify them. These reactions are important from a geomicrobial standpoint because they indicate that a number of microbes contribute to arsenic and antimony mobilization or immobilization in the environment and play a role in arsenic and antimony cycles. Recent reviews include five on prokaryotes and arsenic metabolism, a review with an arsenic perspective on biomining, and a series on environmental antimony, including one about antimony and its interaction with microbiota.

  4. Comparative phytotoxicity of methylated and inorganic arsenic- and antimony species to Lemna minor, Wolffia arrhiza and Selenastrum capricornutum

    NARCIS (Netherlands)

    Duester, L.; van der Geest, H.G.; Moelleken, S.; Hirner, A.V.; Kueppers, K.

    2011-01-01

    The alkylation of metalloids through the transfer of methyl groups is an important factor in the biogeochemical cycling of elements like arsenic and antimony. In the environment, many different organic and inorganic forms of these elements can therefore be found in soils, sediments or organisms.

  5. Antimony and arsenic exhibit contrasting spatial distributions in the sediment and vegetation of a contaminated wetland.

    Science.gov (United States)

    Warnken, Jan; Ohlsson, Rohana; Welsh, David T; Teasdale, Peter R; Chelsky, Ariella; Bennett, William W

    2017-08-01

    Antimony is a priority environmental contaminant that is relatively poorly studied compared to other trace metal(loid)s. In particular, the behaviour of antimony in wetland sediments, where anaerobic conditions often dominate, has received considerably less attention compared to well-drained terrestrial soil environments. Here we report the results of a spatial assessment of antimony in the sediments and vegetation of a freshwater wetland exposed to stibnite tailings for the past forty years. The concentration of antimony in the sediment decreased rapidly with distance from the tailings deposit, from a maximum of ∼22,000 mg kg -1 to ∼1000 mg kg -1 at a distance of ∼150 m. In contrast, arsenic was distributed more evenly across the wetland, indicating that it was more mobile under the prevailing hypoxic/anoxic conditions. Less clear trends were observed in the tissues of wetland plants, with the concentrations of antimony in waterlilies (2.5-195 mg kg -1 ) showing no clear trends with distance from the tailings deposit, and no correlation with sediment concentrations. Sedges and Melaleuca sp. trees had lower antimony concentrations (<25 mg kg -1 and 5 mg kg -1 , respectively) compared to waterlilies, but showed a non-significant trend of higher concentrations closer to the tailings. For all vegetation types sampled, antimony concentrations were consistently lower than arsenic concentrations (Sb:As = 0.27-0.31), despite higher concentrations of antimony in the sediment. Overall, the results of this study highlight clear differences in the behaviour of antimony and arsenic in freshwater wetlands, which should be considered during the management and remediation of such sites. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Determining arsenic in elemental antimony containing selenium and tellurium

    International Nuclear Information System (INIS)

    Mogileva, M.G.; Kozlova, E.L.

    1986-01-01

    The authors have developed a method of determining arsenic in metallic antimony containing selenium, tellurium, and mercury, in which they isolated it in elementary form for separation from the antimony and the associated elements (silicon and phosphorus), followed by colorimetric determination of the arsenic from arsenic-molbdenum blue. The reducing agents to reduce the arsenic were sodium hypophosphite and tin(II) chloride, which do not reduce antimony and which do not interfere with the determination. This method of determining arsenic in metallic antimony without preliminary separation of the selenium and tellurium is in no way inferior in accuracy to the method given in All-Union State Standard (GOST) 1367.4-83

  7. Behavior of arsenic impurity at antimony electric precipitation

    International Nuclear Information System (INIS)

    Kim, G.N.; Rakhmanov, A.

    2001-01-01

    In the paper the arsenic impurity electrochemical behavior and it purification from antimony by electric precipitation out of fluoride solutions was studied. For this the arsenic sample with mass 0.003-0.006 g has been irradiated at the WWR-SM nuclear reactor during 3-5 hour in the thermal neutron flux 10 13 n/cm 2 s, after 24 h keeping the sample has being dissolved in the concentrated nitric acid, and then it has been evaporated several times with distillation water addition up to wet precipitation state. It is shown, that arsenic impurity behavior character in the antimony electric precipitation out to fluoride electrolyte depends on the electrolyte content, electrolysis conditions, arsenic valency state in arsenic impurity existence in the five-valency state its joint electric reduction with antimony is practically not observing. In the case the arsenic being in three-valency state, it joint electric reduction with antimony is taking place. In this time the electrolytic antimony contents arsenic impurities less in dozen time than initial material

  8. Chronic Arsenic Toxicity: Statistical Study of the Relationships Between Urinary Arsenic, Selenium and Antimony

    OpenAIRE

    Analía Boemo, BS; Irene María Lomniczi, PhD; Elsa Mónica Farfán Torres, PhD

    2012-01-01

    Background. The groundwater of Argentina’s Chaco plain presents arsenic levels above those suitable for human consumption. Studies suggest skin disorders among local populations caused by arsenic intake. The relationship between urinary arsenic and arsenic in drinking water is well known, but urinary arsenic alone is not enough for risk assessment due to modulating factors such as the intake of selenium and antimony. Objectives. Determining the relationship between urinary arsenic, seleniu...

  9. Chronic exposure to arsenic in drinking water can lead to resistance to antimonial drugs in a mouse model of visceral leishmaniasis.

    Science.gov (United States)

    Perry, Meghan R; Wyllie, Susan; Raab, Andrea; Feldmann, Joerg; Fairlamb, Alan H

    2013-12-03

    The Indian subcontinent is the only region where arsenic contamination of drinking water coexists with widespread resistance to antimonial drugs that are used to treat the parasitic disease visceral leishmaniasis. We have previously proposed that selection for parasite resistance within visceral leishmaniasis patients who have been exposed to trivalent arsenic results in cross-resistance to the related metalloid antimony, present in the pentavalent state as a complex in drugs such as sodium stibogluconate (Pentostam) and meglumine antimonate (Glucantime). To test this hypothesis, Leishmania donovani was serially passaged in mice exposed to arsenic in drinking water at environmentally relevant levels (10 or 100 ppm). Arsenic accumulation in organs and other tissues was proportional to the level of exposure and similar to that previously reported in human liver biopsies. After five monthly passages in mice exposed to arsenic, isolated parasites were found to be completely refractory to 500 μg · mL(-1) Pentostam compared with the control passage group (38.5 μg · mL(-1)) cultured in vitro in mouse peritoneal macrophages. Reassessment of resistant parasites following further passage for 4 mo in mice without arsenic exposure showed that resistance was stable. Treatment of infected mice with Pentostam confirmed that resistance observed in vitro also occurred in vivo. We conclude that arsenic contamination may have played a significant role in the development of Leishmania antimonial resistance in Bihar because inadequate treatment with antimonial drugs is not exclusive to India, whereas widespread antimonial resistance is.

  10. Neutron activation analysis of arsenic and antimony in human hair

    International Nuclear Information System (INIS)

    Kanda, Yukio; Isono, Hideo; Kozuka, Hiroshi.

    1975-01-01

    A radiochemical neutron activation method for the determination of trace amounts of arsenic and antimony in human hair samples is studied. The sample of hair (100 mg) irradiated for 5 hours with a neutron flux of 2.1x10 12 n/cm 2 s was decomposed with a sulfuric-nitric acid mixture after addition of each 5 mg of arsenic and antimony as carrier. Arsine and stibine were evolved from the solution of decomposed hair by reduction with 3 g of granular zinc and were absorbed in 0.1N iodine solution for half an hour. Metal arsenic was separated from iodine solution by precipitation with sodium hypophosphite, followed by precipitation of antimony as sulfide with thioacetamide. These precipitates were dissolved and their gamma-ray spectra were measured with a well type 3''x3'' NaI(TI) detector equipped with a 200 channel pulse-height analyzer. After the measurement of gamma-ray spectra, the chemical yields were determined by colorimetric methods. The relative standard deviations were 7% and 4% for 0.01 μg As and 0.024 μg Sb, respectively. The sensitivity of this method was estimated to be 1x10 -3 μg for arsenic and 2x10 -3 μg for antimony. (auth.)

  11. Application of Hyphenated Techniques in Speciation Analysis of Arsenic, Antimony, and Thallium

    Directory of Open Access Journals (Sweden)

    Rajmund Michalski

    2012-01-01

    Full Text Available Due to the fact that metals and metalloids have a strong impact on the environment, the methods of their determination and speciation have received special attention in recent years. Arsenic, antimony, and thallium are important examples of such toxic elements. Their speciation is especially important in the environmental and biomedical fields because of their toxicity, bioavailability, and reactivity. Recently, speciation analytics has been playing a unique role in the studies of biogeochemical cycles of chemical compounds, determination of toxicity and ecotoxicity of selected elements, quality control of food products, control of medicines and pharmaceutical products, technological process control, research on the impact of technological installation on the environment, examination of occupational exposure, and clinical analysis. Conventional methods are usually labor intensive, time consuming, and susceptible to interferences. The hyphenated techniques, in which separation method is coupled with multidimensional detectors, have become useful alternatives. The main advantages of those techniques consist in extremely low detection and quantification limits, insignificant interference, influence as well as high precision and repeatability of the determinations. In view of their importance, the present work overviews and discusses different hyphenated techniques used for arsenic, antimony, and thallium species analysis, in different clinical, environmental and food matrices.

  12. Application of Hyphenated Techniques in Speciation Analysis of Arsenic, Antimony, and Thallium

    Science.gov (United States)

    Michalski, Rajmund; Szopa, Sebastian; Jabłońska, Magdalena; Łyko, Aleksandra

    2012-01-01

    Due to the fact that metals and metalloids have a strong impact on the environment, the methods of their determination and speciation have received special attention in recent years. Arsenic, antimony, and thallium are important examples of such toxic elements. Their speciation is especially important in the environmental and biomedical fields because of their toxicity, bioavailability, and reactivity. Recently, speciation analytics has been playing a unique role in the studies of biogeochemical cycles of chemical compounds, determination of toxicity and ecotoxicity of selected elements, quality control of food products, control of medicines and pharmaceutical products, technological process control, research on the impact of technological installation on the environment, examination of occupational exposure, and clinical analysis. Conventional methods are usually labor intensive, time consuming, and susceptible to interferences. The hyphenated techniques, in which separation method is coupled with multidimensional detectors, have become useful alternatives. The main advantages of those techniques consist in extremely low detection and quantification limits, insignificant interference, influence as well as high precision and repeatability of the determinations. In view of their importance, the present work overviews and discusses different hyphenated techniques used for arsenic, antimony, and thallium species analysis, in different clinical, environmental and food matrices. PMID:22654649

  13. Redox substoichiometric isotope dilution analysis of metallic arsenic for antimony

    International Nuclear Information System (INIS)

    Kambara, Tomihisa; Yoshioka, Hiroe; Suzuki, Junsuke; Shibata, Yasue.

    1979-01-01

    In 1 M HCl solution Sb(III) reacts with N-benzoyl-N-phenylhydroxylamine (BPHA) to form a complex extractable into chloroform while the extraction of Sb(V) is negligible. The redox substoichiometric isotope dilution analysis based on this reaction was applied to the determination of antimony in metallic arsenic. After the dissolution of metallic arsenic, Sb(V) was separated from As(V) by a tribenzylamine extraction from 8 M HCl solution and the extracted Sb(V) was stripped into 0.5 M NaOH solution. Thereafter, all the Sb(V) were completely reduced to Sb(III) by bubbling SO 2 gas through 3 M HCl solution. As the substoichiometric reaction, the oxidation of Sb(III) to Sb(V) by a substoichiometric amount of potassium dichromate was used, followed by separation of these species by the BPHA extraction of Sb(III). The substoichiometric oxidation of Sb(III) was found to be quantitative over HCl concentration range from 0.8 to 1.2 M. The amount of antimony was determined by isotope dilution analysis using the method of carrier amount variation. By the present method the determination of as small as 0.36 μg antimony was accomplished with a good accuracy (relative error; 5.6%) and also the method was successfully applied to the determination of antimony in arsenic samples containing known amounts of Sb(III) and in metallic arsenic. The present method gives reliable results with the good accuracy and precision. (author)

  14. Extraction of antimony and arsenic from sulphidic concentrates

    Directory of Open Access Journals (Sweden)

    BalហPeter

    2000-09-01

    Full Text Available The efficiency of both mineral processing and extractive metallurgy of minerals depends on the separation of individual mineral components and on the exposure of their surface. The production of flotation concentrates, with particle sizes of tens of microns, is not sufficient for many hydrometallurgical processes to operate at their optimum. As a consequence, metallurgical plants require for the effective processing high temperatures and pressures and some sort of concentrate pretreatment. Mechanical activation is an innovative procedure where an improvement in hydrometallurgical processes can be attained via a combination of new surface area and formation of crystalline defects in minerals. The lowering of reaction temperatures, the increase of rate and amount of solubility, preparation of water soluble compounds, the necessity for simpler and less expensive reactors and shorter reaction times are some of the advantages of mechanical activation. The environmental aspects of these processes are particularly attractive.This paper is devoted to the examples of application of mechanochemical treatment in the processing of sulfidic concentrates. The sulphide concentrates of various origin (Peru, Chile, Slovakia were succesfully tested for antimony and arsenic extraction. The mechanochemical treatment improve the degree of recovery and the rate of leaching of both metals. Two modes of mechanochemical treatment were tested: the mechanical activation before leaching and the mechanochemical leaching which integrates mechanical activation and leaching into a common step. The flowsheet consisted of mechanochemical leaching in an attritor and further operations as filtration, cementation, antimony precipitation, crystallization and arsenic precipitation. The pilot plant unit was designed for 500 kg per day feed of tetrahedrite concentrate. For the antimony extraction, electrowinning has also been considered. The residue which is a CuAgAu concentrate was

  15. Comparison of accumulation of four metalloids in Allium sativum.

    Science.gov (United States)

    Ogra, Yasumitsu; Awaya, Yumi; Anan, Yasumi

    2015-05-01

    In this study, we evaluated the accumulation and metabolism of four metalloids: arsenic (As), selenium (Se), antimony (Sb), and tellurium (Te) in garlic to determine whether garlic can be used for the phytoremediation of those metalloids. Garlic was able to efficiently accumulate As and Se, the two-fourth-period metalloids. However, it was not able to accumulate Sb and Te, the two-fifth-period metalloids, because their bioaccumulation factors were below one. Speciation analyses revealed that four metalloids could be metabolized in garlic, although their metabolites could not be identified yet. Results also suggested that garlic was able to distinguish the metalloids in groups 15 and 16 and the fourth and fifth periods, i.e., As, Se, Sb, and Te. Therefore, garlic is one of the potential plants for the phytoremediation of the fourth-period metalloids.

  16. Liquid-liquid extraction of arsenic, antimony, selenium and tellurium by zinc diethyldithiocarbamate

    International Nuclear Information System (INIS)

    Bajo, S.; Wyttenbach, A.

    1978-03-01

    The authors report the solvent extraction, oxidation, reduction, extraction in the presence of iron, and reextraction of arsenic, antimony, selenium and tellurium. These processes were studied using radioactive tracers. (G.T.H.)

  17. Effects of nutrient and lime additions in mine site rehabilitation strategies on the accumulation of antimony and arsenic by native Australian plants.

    Science.gov (United States)

    Wilson, Susan C; Leech, Calvin D; Butler, Leo; Lisle, Leanne; Ashley, Paul M; Lockwood, Peter V

    2013-10-15

    The effects of nutrient and lime additions on antimony (Sb) and arsenic (As) accumulation by native Australian and naturalised plants growing in two contaminated mine site soils (2,735 mg kg(-1) and 4,517 mg kg(-1) Sb; 826 mg kg(-1) and 1606 As mgkg(-1)) was investigated using a glasshouse pot experiment. The results indicated an increase in soil solution concentrations with nutrient addition in both soils and also with nutrient+lime addition for Sb in one soil. Metalloid concentrations in plant roots were significantly greater than concentrations in above ground plant parts. The metalloid transfer to above ground plant parts from the roots and from the soil was, however, low (ratio of leaf concentration/soil concentration≪1) for all species studied. Eucalyptus michaeliana was the most successful at colonisation with lowest metalloid transfer to above ground plant parts. Addition of nutrients and nutrients+lime to soils, in general, increased plant metalloid accumulation. Relative As accumulation was greater than that of Sb. All the plant species studied were suitable for consideration in the mine soil phytostabilisation strategies but lime additions should be limited and longer term trials also recommended. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Arsenic and antimony removal from drinking water by adsorption on granular ferric oxide.

    Science.gov (United States)

    Sazakli, Eleni; Zouvelou, Stavroula V; Kalavrouziotis, Ioannis; Leotsinidis, Michalis

    2015-01-01

    Arsenic and antimony occur in drinking water due to natural weathering or anthropogenic activities. There has been growing concern about their impact on health. The aim of this study was to assess the efficiency of a granular ferric oxide adsorbent medium to remove arsenic and antimony from drinking water via rapid small-scale column tests (RSSCTs). Three different water matrices - deionized, raw water treated with a reverse osmosis domestic device and raw water - were spiked with arsenic and/or antimony to a concentration of 100 μg L⁻¹. Both elements were successfully adsorbed onto the medium. The loadings until the guideline value was exceeded in the effluent were found to be 0.35-1.63 mg g⁻¹ for arsenic and 0.12-2.11 mg g⁻¹ for antimony, depending on the water matrix. Adsorption of one element was not substantially affected by the presence of the other. Aeration did not affect significantly the adsorption capacity. Granular ferric oxide could be employed for the simultaneous removal of arsenic and antimony from drinking water, whereas full-scale systems should be assessed via laboratory tests before their implementation.

  19. Identification of Antimony- and Arsenic-Oxidizing Bacteria Associated with Antimony Mine Tailing

    Science.gov (United States)

    Hamamura, Natsuko; Fukushima, Koh; Itai, Takaaki

    2013-01-01

    Antimony (Sb) is a naturally occurring toxic element commonly associated with arsenic (As) in the environment and both elements have similar chemistry and toxicity. Increasing numbers of studies have focused on microbial As transformations, while microbial Sb interactions are still not well understood. To gain insight into microbial roles in the geochemical cycling of Sb and As, soils from Sb mine tailing were examined for the presence of Sb- and As-oxidizing bacteria. After aerobic enrichment culturing with AsIII (10 mM) or SbIII (100 μM), pure cultures of Pseudomonas- and Stenotrophomonas-related isolates with SbIII oxidation activities and a Sinorhizobium-related isolate capable of AsIII oxidation were obtained. The AsIII-oxidizing Sinorhizobium isolate possessed the aerobic arsenite oxidase gene (aioA), the expression of which was induced in the presence of AsIII or SbIII. However, no SbIII oxidation activity was detected from the Sinorhizobium-related isolate, suggesting the involvement of different mechanisms for Sb and As oxidation. These results demonstrate that indigenous microorganisms associated with Sb mine soils are capable of Sb and As oxidation, and potentially contribute to the speciation and mobility of Sb and As in situ. PMID:23666539

  20. [Pollution characteristics of antimony, arsenic and mercury in human hair at Xikuangshan antimony mining area and Guiyang City, China].

    Science.gov (United States)

    Liu, Bi-Jun; Wu, Feng-Chang; Deng, Qiu-Jing; Mo, Chang-Li; Zhu, Jing; Zeng, Li; Fu, Zhi-You; Li, Wen

    2009-03-15

    The concentration levels of antimony, arsenic and mercury in human hair collected from Xikuangshan antimony mining area and Guiyang City were determined by hydride generation-atomic fluorescence spectrometry after having been digested by nitric acid and perchloric acid. The contents of Sb, As and Hg are 15.9, 4.21, 1.79 microg/g in the samples from Xikuangshan antimony mining area and 0.532, 0.280, 0.338 microg/g in the samples from Guiyang City respectively. The contents of Sb, As and Hg in human hair of Xikuangshan antimony area are much higher than those of Guiyang City. The independent-samples t-test shows that there are no marked differences in the contents of Sb and As between male and female hair samples from both Xikuangshan antimony mining area and Guiyang City (p > 0.05), while Hg contents in male hair are apparently higher than those in female hair from Guiyang City (p mining area may significantly affect human health than in the un-mining areas.

  1. Simultaneous analysis of arsenic, antimony, selenium and tellurium in environmental samples using hydride generation ICPMS

    International Nuclear Information System (INIS)

    Jankowski, L.M.; Breidenbach, R.; Bakker, I.J.I.; Epema, O.J.

    2009-01-01

    Full text: A quantitative method for simultaneous analysis of arsenic, antimony, selenium and tellurium in environmental samples is being developed using hydride generation ICPMS. These elements must be first transformed into hydride-forming oxidation states. This is particularly challenging for selenium and antimony because selenium is susceptible to reduction to the non-hydride-forming elemental state and antimony requires strong reducing conditions. The effectiveness of three reducing agents (KI, thiourea, cysteine) is studied. A comparison is made between addition of reducing agent to the sample and addition of KI to the NaBH 4 solution. Best results were obtained with the latter approach. (author)

  2. Aquaglyceroporins: generalized metalloid channels

    Science.gov (United States)

    Mukhopadhyay, Rita; Bhattacharjee, Hiranmoy; Rosen, Barry P.

    2014-01-01

    Background: Aquaporins (AQPs), members of a superfamily of transmembrane channel proteins, are ubiquitous in all domains of life. They fall into a number of branches that can be functionally categorized into two major sub-groups: i) orthodox aquaporins, which are water-specific channels, and ii) aquaglyceroporins, which allow the transport of water, non-polar solutes, such as urea or glycerol, the reactive oxygen species hydrogen peroxide, and gases such as ammonia, carbon dioxide and nitric oxide and, as described in this review, metalloids. Scope of Review: This review summarizes the key findings that AQP channels conduct bidirectional movement of metalloids into and out of cells. Major Conclusions: As(OH)3 and Sb(OH)3 behave as inorganic molecular mimics of glycerol, a property that allows their passage through AQP channels. Plant AQPs also allow the passage of boron and silicon as their hydroxyacids, boric acid (B(OH)3) and orthosilicic acid (Si(OH)4), respectively. Genetic analysis suggests that germanic acid (GeO2) is also a substrate. While As(III), Sb(III) and Ge(IV) are toxic metalloids, borate (B(III)) and silicate (Si(IV)) are essential elements in higher plants. General Significance: The uptake of environmental metalloids by aquaporins provides an understanding of (i) how toxic elements such as arsenic enter the food chain; (ii) the delivery of arsenic and antimony containing drugs in the treatment of certain forms of leukemia and chemotherapy of diseases caused by pathogenic protozoa; and (iii) the possibility that food plants such as rice could be made safer by genetically modifying them to exclude arsenic while still accumulating boron and silicon. PMID:24291688

  3. Antimony

    DEFF Research Database (Denmark)

    Bredsdorff, Lea; Nielsen, Elsa

    The Danish Environmental Protection Agency has requested an evaluation of health hazards by exposure to antimony. This resulted in the present report which includes estimation of a quality criterion in soil for antimony....

  4. Conceptual design for treatment of mining and metallurgical wastewaters which contains arsenic and antimony

    Directory of Open Access Journals (Sweden)

    Željko Kamberović

    2012-12-01

    Full Text Available This paper presents a preliminary design for treatment of mining and metallurgical wastewaters (MMW from the basin of antimony “Zajača“, which contains high concentrations of arsenic and antimony. MMW have been investigated in laboratory, due to large difference in concentrations of pollutants. Metallurgical wastewaters were treated using iron (II-sulfate and lime milk used to adjust the pH value at 7. After chemical treatment of metallurgical wastewater and its joining with mining wastewater, residual amount of arsenic in water was below maximum allowed concentrations, while the concentration of antimony, remained above the maximum allowed value. The final phase of purification process was performed using ion exchange resin. After treatment of MMW, they can be used as technical water in the smelting process of secondary raw lead materials.

  5. Antimony

    Science.gov (United States)

    Seal, Robert R.; Schulz, Klaus J.; DeYoung,, John H.; Sutphin, David M.; Drew, Lawrence J.; Carlin, James F.; Berger, Byron R.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Antimony is an important mineral commodity used widely in modern industrialized societies. The element imparts strength, hardness, and corrosion resistance to alloys that are used in many areas of industry, including in lead-acid storage batteries. Antimony’s leading use is as a fire retardant in safety equipment and in household goods, such as mattresses. The U.S. Government has considered antimony to be a critical mineral mainly because of its use in military applications. The great majority of the world’s antimony comes from China, and much of the remainder is shipped to China for smelting. Antimony resources are unevenly distributed around the world. China has the bulk of the world’s identified resources; other countries that have identified antimony resources include Bolivia, Canada, Mexico, Russia, South Africa, Tajikistan, and Turkey. Resources in the United States are located mainly in Alaska, Idaho, Montana, and Nevada. The most significant antimony mineral deposits occur in geologic environments with a thick sequence of siliciclastic sedimentary rocks in areas with significant fault and fracture systems. The most common antimony ore mineral is stibnite (Sb2 S3 ), but more than 100 other minerals also contain antimony. The presence of antimony in surface waters and groundwaters results primarily from rock weathering, soil runoff, and anthropogenic sources. Global emissions of antimony to the atmosphere average 6,100 metric tons per year. Empirical data suggest that the acid-generating potential of antimony mine waste is low.

  6. Differences in antimony and arsenic releases from lead smelter fly ash in soils

    Czech Academy of Sciences Publication Activity Database

    Ettler, V.; Mihaljevič, M.; Šebek, O.; Valigurova, R.; Klementová, Mariana

    2012-01-01

    Roč. 72, Supp. 4 (2012), s. 15-22 ISSN 0009-2819 Institutional research plan: CEZ:AV0Z40320502 Keywords : Antimony * Arsenic * Lead smelting * Fly ash * Soil * Mobility Subject RIV: CA - Inorganic Chemistry Impact factor: 1.351, year: 2012

  7. Diel variation of arsenic, molybdenum and antimony in a stream draining natural As geochemical anomaly

    Czech Academy of Sciences Publication Activity Database

    Drahota, P.; Nováková, B.; Matoušek, Tomáš; Mihaljevič, M.; Rohovec, Jan; Filippi, Michal

    2013-01-01

    Roč. 31, APR (2013), s. 84-93 ISSN 0883-2927 Institutional research plan: CEZ:AV0Z30130516 Institutional support: RVO:68081715 ; RVO:67985831 Keywords : arsenic * molybdenum * antimony * trace elements * diel cycle Subject RIV: CB - Analytical Chemistry, Separation; DD - Geochemistry (GLU-S) Impact factor: 2.021, year: 2013

  8. Microbial antimony biogeochemistry: Enzymes, regulation, and related metabolic pathways

    Science.gov (United States)

    Li, Jingxin; Qian Wang,; Oremland, Ronald S.; Kulp, Thomas R.; Rensing, Christopher; Wang, Gejiao

    2016-01-01

    Antimony (Sb) is a toxic metalloid that occurs widely at trace concentrations in soil, aquatic systems, and the atmosphere. Nowadays, with the development of its new industrial applications and the corresponding expansion of antimony mining activities, the phenomenon of antimony pollution has become an increasingly serious concern. In recent years, research interest in Sb has been growing and reflects a fundamental scientific concern regarding Sb in the environment. In this review, we summarize the recent research on bacterial antimony transformations, especially those regarding antimony uptake, efflux, antimonite oxidation, and antimonate reduction. We conclude that our current understanding of antimony biochemistry and biogeochemistry is roughly equivalent to where that of arsenic was some 20 years ago. This portends the possibility of future discoveries with regard to the ability of microorganisms to conserve energy for their growth from antimony redox reactions and the isolation of new species of “antimonotrophs.”

  9. A NOVEL METHOD OF THE HYDRIDE SEPARATION FOR THE DETERMINATION OF ARSENIC AND ANTIMONY BY AAS

    Directory of Open Access Journals (Sweden)

    Ganden Supriyanto

    2010-06-01

    Full Text Available A novel method is proposed for the hydride separation when determinining of arsenic and antimony by AAS. A chromatomembrane cell was used as preconcentration-, extraction- and separation-manifold instead of the U-tube phase separator, which is normally fitted in continuous flow vapour systems generating conventionaly the hydrides. The absorbances of the hydrides produced were measured by an atomic absorption spectrophotometer at 193.7 nm and 217.6 nm. Under optimized analytical conditions, the calibration plot for arsenic was linear from 50 to 500 ng.mL-1 (r2 = 0.9982. The precision for three subsequent measurements of 500 ng.mL-1 arsenic gave rise to a relative standard deviation of 0.4%. The detection limit was 15 ng.mL-1, which is much lower compared with that of the conventional hydride system (2000 ng.mL-1. A similar result was observed in case of antimony: the detection limit was 8 ng.mL-1 when the proposed method was applied. Consequently, the sensitivity of the novel method surpasses systems with conventional hydride generation, i.e. the precision and the acuracy increase whereas the standard deviation and the detection limit decrease. The proposed method was applied in pharmacheutial analysis and the certified As-content of a commercial product was very sufficiently confirmed.   Keywords: Chromatomembrane Cell, Hydride separation, Arsenic detection, Antimony detection, AAS

  10. How Saccharomyces cerevisiae copes with toxic metals and metalloids.

    Science.gov (United States)

    Wysocki, Robert; Tamás, Markus J

    2010-11-01

    Toxic metals and metalloids are widespread in nature and can locally reach fairly high concentrations. To ensure cellular protection and survival in such environments, all organisms possess systems to evade toxicity and acquire tolerance. This review provides an overview of the molecular mechanisms that contribute to metal toxicity, detoxification and tolerance acquisition in budding yeast Saccharomyces cerevisiae. We mainly focus on the metals/metalloids arsenic, cadmium, antimony, mercury, chromium and selenium, and emphasize recent findings on sensing and signalling mechanisms and on the regulation of tolerance and detoxification systems that safeguard cellular and genetic integrity.

  11. Transport routes of metalloids into and out of the cell: a review of the current knowledge.

    Science.gov (United States)

    Zangi, Ronen; Filella, Montserrat

    2012-04-15

    Except for their extra- and intra-cellular interfaces, cell membranes are hydrophobic and inhibit the transport of hydrophilic molecules. Metalloids in aqueous solutions form chemical species with oxygen and hydroxyl groups and, therefore, exist as hydrophilic neutral polar solutes or as hydrophilic anions. This characteristic of metalloids introduces a large barrier for their passage through the cell membrane via unaided diffusion. The necessity for an uptake mechanism for metalloids arises from the requirement of these species for the maintenance of life, such as the need of boron for plant cells. Conversely, the transport of these species out of the cell is necessary because some metalloids are toxic, such as arsenic and antimony, and their entrance into the cell is undesirable. The undesired uptake of these toxic species is possible via pathways designed for the uptake of other structurally and chemically similar essential compounds. Therefore, the extrusion of arsenic and antimony out of the cell is an example of a detoxification mechanism. As a consequence of the hydrophobic character of the cell membrane in all living systems, the main route for the uptake and efflux of metalloids is facilitated by transmembrane proteins, driven either by concentration gradients or by energy-fueled pumps. However, metalloids forming or embedded in nano-sized particles escape the need to cross the cell membrane because these particles can be taken into the cell by endocytosis. Here, we review the uptake and efflux pathways of boron, silicon, arsenic, and antimony through the cell membranes of different organisms and the protein channels involved in these processes. In particular, passive diffusion via aquaglyceroporins, active transport via primary and secondary ion pumps, extrusion into vacuoles of metalloid-thiol conjugates via ATP-binding cassette, the efflux of methylated metalloids, and endocytosis are summarized. Copyright © 2012 Elsevier Ireland Ltd. All rights

  12. Response of Soil Microbial Communities to Elevated Antimony and Arsenic Contamination Indicates the Relationship between the Innate Microbiota and Contaminant Fractions.

    Science.gov (United States)

    Sun, Weimin; Xiao, Enzong; Xiao, Tangfu; Krumins, Valdis; Wang, Qi; Häggblom, Max; Dong, Yiran; Tang, Song; Hu, Min; Li, Baoqin; Xia, Bingqing; Liu, Wei

    2017-08-15

    Mining of sulfide ore deposits containing metalloids, such as antimony and arsenic, has introduced serious soil contamination around the world, posing severe threats to food safety and human health. Hence, it is important to understand the behavior and composition of the microbial communities that control the mobilization or sequestration of these metal(loid)s. Here, we selected two sites in Southwest China with different levels of Sb and As contamination to study interactions among various Sb and As fractions and the soil microbiota, with a focus on the microbial response to metalloid contamination. Comprehensive geochemical analyses and 16S rRNA gene amplicon sequencing demonstrated distinct soil taxonomic inventories depending on Sb and As contamination levels. Stochastic gradient boosting indicated that citric acid extractable Sb(V) and As(V) contributed 5% and 15%, respectively, to influencing the community diversity. Random forest predicted that low concentrations of Sb(V) and As(V) could enhance the community diversity but generally, the Sb and As contamination impairs microbial diversity. Co-occurrence network analysis indicated a strong correlation between the indigenous microbial communities and various Sb and As fractions. A number of taxa were identified as core genera due to their elevated abundances and positive correlation with contaminant fractions (total Sb and As concentrations, bioavailable Sb and As extractable fractions, and Sb and As redox species). Shotgun metagenomics indicated that Sb and As biogeochemical redox reactions may exist in contaminated soils. All these observations suggest the potential for bioremediation of Sb- and As-contaminated soils.

  13. Determination by neutron activation analysis of loss of arsenic, antimony, bromine and mercury during lyophilization

    International Nuclear Information System (INIS)

    Carlson, M.; Litman, R.

    1978-01-01

    Neutron activation analysis has been used to monitor the loss of arsenic, as dimethylarsinic acid, (CH 3 ) 2 AsOOH, or as sodium arsenate (Na 2 HAsO 4 .7H 2 O), antimony (as potassium antimony, tartrate, KSbC 4 O 7 .1/2H 2 O) and bromine (as bromide ion) during lyophilization of acidified and neutral aqueous synthetic and environmental samples. Losses of Sb and As ranged from zero to 60%, while losses of bromine were constant (at 91%) in acidic solutions. The variable losses of As and Sb were due solely to the presence of and partial decomposition of the (CH 3 ) 2 AsOOH. Electrochemical oxidation of Br - to Br 2 is responsible for the high losses of bromine. In addition losses of mercury (as methylmercuric chloride) were 1O0% in both acidic and neutral aqueous synthetic samples during lyophilization. (author)

  14. Determination of arsenic, selenium and antimony by neutron activation analysis. Application to hair samples

    International Nuclear Information System (INIS)

    Das, H.A.; Hoede, D.; Nieuwendijk, B.J.T.; Sloot, H.A. van der; Teunissen, G.J.A.; Woittiez, J.R.W.

    1983-04-01

    A fast rabbit system for instrumental activation analysis with reactor neutrons is described. Its use in the determination of selenium in hair is discussed. A survey is given of the correction factors which are inherent to the use of short-lived radionuclides. An alternative to INAA is NAA based on the separation of arsenic, selenium and antimony by hydride evaporation and adsorption to active carbon. Data for some Standard Reference Materials are given. This work was done under research contract 2440/RI/RB with the IAEA

  15. Supercritical water treatment of heavy metal and arsenic metalloid-bioaccumulating-biomass.

    Science.gov (United States)

    Li, Jianxin; Chen, Jinbo; Chen, Shan

    2018-08-15

    Hyperaccumulator biomass, as a promising resource for renewable energy that can be converted into valuable fuel productions with high conversion efficiency, must be considered as hazardous materials and be carefully treated before further reuse due to the high contents of heavy metals. In this study, Pteris vittata L., an As-hyperaccumulator biomass was treated by an effective and environmental friendly method-supercritical water gasification (SCWG) using a bench-scale batch reactor. The contents of heavy metals (Cd, Pb and Zn) and arsenic metalloid in solid, liquid and gaseous products during SCWG process were thoroughly investigated. The speciation fractions including exchangeable, reducible, oxidizable and residual fractions of each heavy metal as the proportion of the total contents in solid residue were presented and the transformations trend of these heavy metals during the SCWG process was especially demonstrated. The significant operating parameters, including reaction temperature (395-445 °C), pressure (21-27 MPa) and residence time (0-40 min) were varied to explore their effects on the contents and forms. Moreover, the environmental risks of heavy metals in solid residues were evaluated based on risk assessment code, taking into consideration the speciation fractions and bioavailability. It was highlighted that although heavy metals particularly Pb and Zn tended to accumulate in solid residues with a maximum increment of about 50% in the total content, they were mostly converted to more stable oxidizable and residual fractions, and thus the ecotoxicity and bioavailability were greatly mitigated with no obvious increase in direct toxicity fractions. Each tested heavy metal presented no or low risk to the environments after SCWG treatments, meaning that the environmental pollution levels were markedly reduced with no or low risk to the environment. This study highlights the remarkable ability of SCWG for the heavy metal stabilization. Copyright

  16. Investigation of biomethylation of arsenic and tellurium during composting

    International Nuclear Information System (INIS)

    Diaz-Bone, Roland A.; Raabe, Maren; Awissus, Simone; Keuter, Bianca; Menzel, Bernd; Kueppers, Klaus; Widmann, Renatus; Hirner, Alfred V.

    2011-01-01

    Though the process of composting features a high microbiological activity, its potential to methylate metals and metalloids has been little investigated so far in spite of the high impact of this process on metal(loid) toxicity and mobility. Here, we studied the biotransformation of arsenic, tellurium, antimony, tin and germanium during composting. Time resolved investigation revealed a highly dynamic process during self-heated composting with markedly differing time patterns for arsenic and tellurium species. Extraordinary high concentrations of up to 150 mg kg -1 methylated arsenic species as well as conversion rates up to 50% for arsenic and 5% for tellurium were observed. In contrast, little to no conversion was observed for antimony, tin and germanium. In addition to experiments with metal(loid) salts, composting of arsenic hyperaccumulating ferns Pteris vittata and P. cretica grown on As-amended soils was studied. Arsenic accumulated in the fronds was efficiently methylated resulting in up to 8 mg kg -1 methylated arsenic species. Overall, these studies indicate that metal(loid)s can undergo intensive biomethylation during composting. Due to the high mobility of methylated species this process needs to be considered in organic waste treatment of metal(loid) contaminated waste materials.

  17. Direct separation of arsenic and antimony oxides by high-temperature filtration with porous FeAl intermetallic.

    Science.gov (United States)

    Zhang, Huibin; Liu, Xinli; Jiang, Yao; Gao, Lin; Yu, Linping; Lin, Nan; He, Yuehui; Liu, C T

    2017-09-15

    A temperature-controlled selective filtration technology for synchronous removal of arsenic and recovery of antimony from the fume produced from reduction smelting process of lead anode slimes was proposed. The chromium (Cr) alloyed FeAl intermetallic with an asymmetric pore structure was developed as the high-temperature filter material after evaluating its corrosive resistance, structural stability and mechanical properties. The results showed that porous FeAl alloyed with 20wt.% Cr had a long term stability in a high-temperature sulfide-bearing environment. The separation of arsenic and antimony trioxides was realized principally based on their disparate saturated vapor pressures at specific temperature ranges and the asymmetric membrane of FeAl filter elements with a mean pore size of 1.8μm. Pilot-scale filtration tests showed that the direct separation of arsenic and antimony can be achieved by a one-step or two-step filtration process. A higher removal percentage of arsenic can reach 92.24% at the expense of 6∼7% loss of antimony in the two-step filtration process at 500∼550°C and 300∼400°C. The FeAl filters had still good permeable and mechanical properties with 1041h of uninterrupted service, which indicates the feasibility of this high-temperature filtration technology. Copyright © 2017. Published by Elsevier B.V.

  18. Sorption of V and VI group metalloids (As, Sb, Te on modified peat sorbents

    Directory of Open Access Journals (Sweden)

    Ansone-Bertina Linda

    2016-01-01

    Full Text Available The present work investigates arsenic, antimony and tellurium sorption using iron modified peat. The results were obtained using batch tests and the sorption was studied as a function of initial metalloid concentration, pH and sorption time, as well as the presence of competing substances. The obtained results indicate that modification of peat with Fe compounds significantly enhances the sorption capacity of the sorbents used for sorption of arsenic, antimony and tellurium. The optimal pH interval for the sorption of Sb(III is 6.5–9 and for As(V and Sb(V – 3–6, while As(III and tellurium sorption using Fe-modified peat is favourable in a wider interval of 3–9. The presence of competing ions as well as HA affect sorption of metalloids on Fe-modified peat. A minor impact on the reduction of metalloid sorption was detected in the presence of nitrate, sulphate, carbonate and tartrate ions, while in the presence of phosphate and HA the sorption ability of metalloids can be considerably reduced. The obtained results of kinetic experiments indicate that sorption of metalloids on Fe-modified peat mainly occurs relying on mechanisms of physical sorption processes.

  19. Partitioning geochemistry of arsenic and antimony, El Tatio Geyser Field, Chile

    Energy Technology Data Exchange (ETDEWEB)

    Landrum, J.T. [Department of Geological Sciences, The University of Texas, Austin, TX 78759 (United States); Bennett, P.C., E-mail: pbennett@mail.utexas.edu [Department of Geological Sciences, University of Texas, Austin, TX 78759 (United States); Engel, A.S. [Department of Geology and Geophysics, Louisiana State University, Baton Rouge, LA 70803 (United States); Alsina, M.A.; Pasten, P.A. [Departamento de Ingenieria Hidraulica y Ambiental, Pontificia Universidad Catolica de Chile, Santiago (Chile); Milliken, K. [Department of Geological Sciences, University of Texas, Austin, TX 78759 (United States)

    2009-04-15

    The abundance of As and Sb in aqueous, mineral and biological reservoirs was examined at El Tatio Geyser Field, a unique hydrothermal basin located in the Atacama Desert region of Chile. Here the concentration of total As and Sb in hydrothermal springs and discharge streams are the highest reported for a natural surface water, and the geyser basin represents a significant source of toxic elements for downstream users across Region II, Chile. The geyser waters are near neutral Na:Cl type with {approx}0.45 and 0.021 mmol L{sup -1} total As and Sb, respectively, primarily in the reduced (III) redox state at the discharge with progressive oxidation downstream. The ferric oxyhydroxides associated with the microbial mats and some mineral precipitates accumulate substantial As that was identified as arsenate by XAS analysis (>10 wt% in the mats). This As is easily mobilized by anion exchange or mild dissolution of the HFO, and the ubiquitous microbial mats represent a significant reservoir of As in this system. Antimony, in contrast, is not associated with the mineral ferric oxides or the biomats, but is substantially enriched in the silica matrix of the geyserite precipitates, up to 2 wt% as Sb{sub 2}O{sub 3}. Understanding the mobility and partitioning behavior of these metalloids is critical for understanding their eventual impact on regional water management.

  20. Arsenic exposure and outcomes of antimonial treatment in visceral leishmaniasis patients in Bihar, India: a retrospective cohort study.

    Directory of Open Access Journals (Sweden)

    Meghan R Perry

    2015-03-01

    Full Text Available In the late twentieth century, emergence of high rates of treatment failure with antimonial compounds (SSG for visceral leishmaniasis (VL caused a public health crisis in Bihar, India. We hypothesize that exposure to arsenic through drinking contaminated groundwater may be associated with SSG treatment failure due to the development of antimony-resistant parasites.A retrospective cohort design was employed, as antimony treatment is no longer in routine use. The study was performed on patients treated with SSG between 2006 and 2010. Outcomes of treatment were assessed through a field questionnaire and treatment failure used as a proxy for parasite resistance. Arsenic exposure was quantified through analysis of 5 water samples from within and surrounding the patient's home. A logistic regression model was used to evaluate the association between arsenic exposure and treatment failure. In a secondary analysis survival curves and Cox regression models were applied to assess the risk of mortality in VL patients exposed to arsenic.One hundred and ten VL patients treated with SSG were analysed. The failure rate with SSG was 59%. Patients with high mean local arsenic level had a non-statistically significant higher risk of treatment failure (OR = 1.78, 95% CI: 0.7-4.6, p = 0.23 than patients using wells with arsenic concentration <10 μg/L. Twenty one patients died in our cohort, 16 directly as a result of VL. Arsenic levels ≥ 10 μg/L increased the risk of all-cause (HR 3.27; 95% CI: 1.4-8.1 and VL related (HR 2.65; 95% CI: 0.96-7.65 deaths. This was time dependent: 3 months post VL symptom development, elevated risks of all-cause mortality (HR 8.56; 95% CI: 2.5-29.1 and of VL related mortality (HR 9.27; 95% CI: 1.8-49.0 were detected.This study indicates a trend towards increased treatment failure in arsenic exposed patients. The limitations of the retrospective study design may have masked a strong association between arsenic exposure and selection

  1. Determination of arsenic antimony and selenium in water by neutron activation and coprecipitation with bismuth sulfide

    International Nuclear Information System (INIS)

    Bertini, L.M.; Cohen, I.M.

    1984-01-01

    A method was developed for determination of arsenic, antimony and selenium in water samples, based on neutron activation and separation by coprecipitation with bismuth sulfide. Experiments performed with the aid of radioactive tracers proved that As(III), Sb(III) and Se, either as Se(IV) or Se(VI), were quantitatively coprecipitated in 1.2 N HCl, provided they were present in masses larger than 10 ng, 50 ng, and 20 ng, respectively; 24 Na and 82 Br were collected at minimum percentages (0.5 and 2) when using hold-back carriers, whereas no appreciable coprecipitation of 32 P was observed. Interferences by other trace elements were also investigated, finding that they were negligible in most of the cases. The method was applied to the analysis of underground water samples from the province of Cordoba (Republica Argentina). The characteristics of this method and the results are discussed. 12 references, 2 tables

  2. Sulfur redox chemistry governs diurnal antimony and arsenic cycles at Champagne Pool, Waiotapu, New Zealand

    Science.gov (United States)

    Ullrich, Maria K.; Pope, James G.; Seward, Terry M.; Wilson, Nathaniel; Planer-Friedrich, Britta

    2013-07-01

    Champagne Pool, a sulfidic hot spring in New Zealand, exhibits distinct diurnal variations in antimony (Sb) and arsenic (As) concentrations, with daytime high and night-time low concentrations. To identify the underlying mobilization mechanisms, five sites along the drainage channel of Champagne Pool were sampled every 2 h during a 24 h period. Temporal variations in elemental concentrations and Sb, As, and sulfur (S) speciation were monitored in the discharging fluid. Total trace element concentrations in filtered and unfiltered samples were analyzed using ICP-MS, and Sb, As and S species were determined by IC-ICP-MS. Sulfur speciation in the drainage channel was dominated by thiosulfate and sulfide at night, while sulfate dominated during the day. The distinct diurnal changes suggest that the transformations are caused by phototrophic sulfur-oxidizing bacteria. These bacteria metabolize thiosulfate and sulfide in daylight to form sulfate and, as suggested by modeling with PhreeqC, elemental sulfur. Sulfide consumption during the day results in undersaturation of antimony sulfides, which triggers the additional release of dissolved Sb. For As, diurnal cycles were much more pronounced in speciation than in total concentrations, with di- and trithioarsenate forming at night due to excess sulfide, and monothioarsenate forming from arsenite and elemental sulfur during the day. Sulfur speciation was thus found to control Sb and As in terms of both solubility and speciation.

  3. Metalloido-porins: Essentiality of Nodulin 26-like intrinsic proteins in metalloid transport.

    Science.gov (United States)

    Pommerrenig, Benjamin; Diehn, Till Arvid; Bienert, Gerd Patrick

    2015-09-01

    Metalloids are a group of physiologically important elements ranging from the essential to the highly toxic. Arsenic, antimony, germanium, and tellurium are highly toxic to plants themselves and to consumers of metalloid-contaminated plants. Boron, silicon, and selenium fulfill essential or beneficial functions in plants. However, when present at high concentrations, boron and selenium cause toxicity symptoms that are detrimental to plant fitness and yield. Consequently, all plants require efficient membrane transport systems to control the uptake and extrusion of metalloids into or out of the plant and their distribution within the plant body. Several Nodulin 26-like intrinsic proteins (NIPs) that belong to the aquaporin plant water channel protein family facilitate the diffusion of uncharged metalloid species. Genetic, physiological, and molecular evidence is that NIPs from primitive to higher plants not only transport all environmentally important metalloids, but that these proteins have a major role in the uptake, translocation, and extrusion of metalloids in plants. As most of the metalloid-permeable NIP aquaporins are impermeable or are poorly permeable to water, these NIP channel proteins should be considered as physiologically essential metalloido-porins. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  4. Arsenic and antimony geochemistry of mine wastes, associated waters and sediments at the Giant Mine, Yellowknife, Northwest Territories, Canada

    International Nuclear Information System (INIS)

    Fawcett, Skya E.; Jamieson, Heather E.; Nordstrom, D. Kirk; McCleskey, R. Blaine

    2015-01-01

    Highlights: • Antimony and arsenic were speciated in sediments and pore waters near Giant Mine. • Sediments will continue to be a source of arsenic and antimony to overlying water. • Aquatic vegetation traps contaminated sediment and takes up antimony and arsenic. - Abstract: Elevated levels of arsenic (As) and antimony (Sb) in water and sediments are legacy residues found downstream from gold-mining activities at the Giant Mine in Yellowknife, Northwest Territories (NWT), Canada. To track the transport and fate of As and Sb, samples of mine-waste from the mill, and surface water, sediment, pore-water, and vegetation downstream of the mine were collected. Mine waste, pore-water, and sediment samples were analyzed for bulk chemistry, and aqueous and solid-state speciation. Sediment and vegetation chemistry were evaluated using scanning electron microscope imaging, synchrotron-based element mapping and electron microprobe analysis. The distributions of As and Sb in sediments were similar, yet their distributions in the corresponding pore-waters were mostly dissimilar, and the mobility of As was greater than that of Sb. Competition for sorption sites is the most likely cause of elevated Sb concentrations in relatively oxidized pore-water and surface water. The aqueous and solid-state speciation of As and Sb also differed. In pore-water, As(V) dominated in oxidizing environments and As(III) in reducing environments. In contrast, the Sb(V) species dominated in all but one pore-water sample, even under reducing conditions. Antimony(III) appears to preferentially precipitate or adsorb onto sulfides as evidenced by the prevalence of an Sb(III)-S secondary solid-phase and the lack of Sb(III)(aq) in the deeper zones. The As(V)–O solid phase became depleted with depth below the sediment–water interface, and the Sb(V)–O phase persisted under relatively reducing conditions. In the surficial zone at a site populated by Equisetum fluviatile (common horsetail), As and

  5. Intrinsic and extrinsic diffusion of phosphorus, arsenic, and antimony in germanium

    International Nuclear Information System (INIS)

    Brotzmann, Sergej; Bracht, Hartmut

    2008-01-01

    Diffusion experiments of phosphorus (P), arsenic (As), and antimony (Sb) in high purity germanium (Ge) were performed at temperatures between 600 and 920 deg. C. Secondary ion mass spectrometry and spreading resistance profiling were applied to determine the concentration profiles of the chemically and electrically active dopants. Intrinsic and extrinsic doping conditions result in a complementary error function and box-shaped diffusion profiles, respectively. These profiles demonstrate enhanced dopant diffusion under extrinsic doping. Accurate modeling of dopant diffusion is achieved on the basis of the vacancy mechanism taking into account singly negatively charged dopant-vacancy pairs and doubly negatively charged vacancies. The activation enthalpy and pre-exponential factor for dopant diffusion under intrinsic condition were determined to 2.85 eV and 9.1 cm 2 s -1 for P, 2.71 eV and 32 cm 2 s -1 for As, and 2.55 eV and 16.7 cm 2 s -1 for Sb. With increasing atomic size of the dopants the activation enthalpy decreases. This is attributed to differences in the binding energy of the dopant-vacancy pairs

  6. Adsorption combined with superconducting high gradient magnetic separation technique used for removal of arsenic and antimony.

    Science.gov (United States)

    Qi, Zenglu; Joshi, Tista Prasai; Liu, Ruiping; Li, Yiran; Liu, Huijuan; Qu, Jiuhui

    2018-02-05

    Manganese iron oxide (MnFe 2 O 4 ), an excellent arsenic(As)/antimony(Sb) removal adsorbent, is greatly restricted for the solid-liquid separation. Through the application of superconducting high gradient magnetic separation (HGMS) technique, we herein constructed a facility for the in situ solid-liquid separation of micro-sized MnFe 2 O 4 adsorbent in As/Sb removal process. To the relative low initial concentration 50.0μgL -1 , MnFe 2 O 4 material sorbent can still decrease As or Sb below US EPA's drinking water standard limit. The separation of MnFe 2 O 4 was mainly relied on the flow rate and the amount of steel wools in the HGMS system. At a flow rate 1Lmin -1 and 5% steel wools filling rate, the removal efficacies of As and Sb in natural water with the system were achieved to be 94.6% and 76.8%, respectively. At the meantime, nearly 100% micro-sized MnFe 2 O 4 solid in the continuous field was readily to be separated via HGMS system. In a combination with the experiment results and finite element simulation, the separation was seemed to be independent on the magnetic field intensity, and the maximum separation capacities in various conditions were well predicted using the Thomas model (R 2 =0.87-0.99). Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Prediction of arsenic and antimony transporter major intrinsic proteins from the genomes of crop plants.

    Science.gov (United States)

    Azad, Abul Kalam; Ahmed, Jahed; Alum, Md Asraful; Hasan, Md Mahbub; Ishikawa, Takahiro; Sawa, Yoshihiro

    2018-02-01

    Major intrinsic proteins (MIPs), commonly known as aquaporins, transport water and non-polar small solutes. Comparing the 3D models and the primary selectivity-related motifs (two Asn-Pro-Ala (NPA) regions, the aromatic/arginine (ar/R) selectivity filter, and Froger's positions (FPs)) of all plant MIPs that have been experimentally proven to transport arsenic (As) and antimony (Sb), some substrate-specific signature sequences (SSSS) or specificity determining sites (SDPs) have been predicted. These SSSS or SDPs were determined in 543 MIPs found in the genomes of 12 crop plants; the As and Sb transporters were predicted to be distributed in noduline-26 like intrinsic proteins (NIPs), and every plant had one or several As and Sb transporter NIPs. Phylogenetic grouping of the NIP subfamily based on the ar/R selectivity filter and FPs were linked to As and Sb transport. We further determined the group-wise substrate selectivity profiles of the NIPs in the 12 crop plants. In addition to two NPA regions, the ar/R filter, and FPs, certain amino acids especially in the pore line, loop D, and termini contribute to the functional distinctiveness of the NIP groups. Expression analysis of transcripts in different organs indicated that most of the As and Sb transporter NIPs were expressed in roots. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Increased biliary excretion of glutathione is generated by the glutathione-dependent hepatobiliary transport of antimony and bismuth.

    Science.gov (United States)

    Gyurasics, A; Koszorús, L; Varga, F; Gregus, Z

    1992-10-06

    We have recently demonstrated that the hepatobiliary transport of arsenic is glutathione-dependent and is associated with a profound increase in biliary excretion of glutathione (GSH), hepatic GSH depletion and diminished GSH conjugation (Gyurasics A, Varga F and Gregus Z, Biochem Pharmacol 41: 937-944 and Gyurasics A, Varga F and Gregus Z, Biochem Pharmacol 42: 465-468, 1991). The present studies in rats aimed to determine whether antimony and bismuth, other metalloids in group Va of the periodic table, also possess similar properties. Antimony potassium tartrate (25-100 mumol/kg, i.v.) and bismuth ammonium citrate (50-200 mumol/kg, i.v.) increased up to 50- and 4-fold, respectively, the biliary excretion of non-protein thiols (NPSH). This resulted mainly from increased hepatobiliary transport of GSH as suggested by a close parallelism in the biliary excretion of NPSH and GSH after antimony or bismuth administration. Within 2 hr, rats excreted into bile 55 and 3% of the dose of antimony (50 mumol/kg, i.v.) and bismuth (150 mumol/kg, i.v.), respectively. The time courses of the biliary excretion of these metalloids and NPSH or GSH were strikingly similar suggesting co-ordinate hepatobiliary transport of the metalloids and GSH. However, at the peak of their excretion, each molecule of antimony or bismuth resulted in a co-transport of approximately three molecules of GSH. Diethyl maleate, indocyanine green and sulfobromophthalein (BSP), which decreased biliary excretion of GSH, significantly diminished excretion of antimony and bismuth into bile indicating that hepatobiliary transport of these metalloids is GSH-dependent. Administration of antimony, but not bismuth, decreased hepatic GSH level by 30% and reduced the GSH conjugation and biliary excretion of BSP. These studies demonstrate that the hepatobiliary transport of trivalent antimony and bismuth is GSH-dependent similarly to the hepatobiliary transport of trivalent arsenic. Proportionally to their biliary

  9. SYSTEM OPTIMIZATION FOR THE AUTOMATIC SIMULTANEOUS DETERMINATION OF ARSENIC, SELENIUM, AND ANTIMONY, USING HYDRIDE GENERATION INTRODUCTION TO AN INDUCTIVELY COUPLED PLASMA.

    Science.gov (United States)

    Pyen, Grace S.; Browner, Richard F.; Long, Stephen

    1986-01-01

    A fixed-size simplex has been used to determine the optimum conditions for the simultaneous determination of arsenic, selenium, and antimony by hydride generation and inductively coupled plasma emission spectrometry. The variables selected for the simplex were carrier gas flow rate, rf power, viewing height, and reagent conditions. The detection limit for selenium was comparable to the preoptimized case, but there were twofold and fourfold improvements in the detection limits for arsenic and antimony, respectively. Precision of the technique was assessed with the use of artificially prepared water samples.

  10. Monitoring of copper, arsenic and antimony levels in agricultural soils impacted and non-impacted by mining activities, from three regions in Chile.

    Science.gov (United States)

    De Gregori, Ida; Fuentes, Edwar; Rojas, Mariela; Pinochet, Hugo; Potin-Gautier, Martine

    2003-04-01

    This paper reports a comparative study of the concentration of three important environmental elements that are often found together in mineral deposits and then associated with mining activities; copper, arsenic and antimony. These elements were determined in 26 different agricultural soils from regions I, II and V in Chile, zones where the most important and biggest copper industries of this country are located. As background levels of these elements in soils have not been well established, in this study, both, impacted and non-impacted agricultural soils from different regions were considered. The relationships between the concentrations of these elements in soils were also examined. The concentration ranges for copper, arsenic and antimony were 11-530; 2.7-202 and 0.42-11 mg kg(-1) respectively. The copper concentrations in non-polluted soils from the north and central zone of Chile were similar. However, three sites from the north region have copper concentration as higher as 100 mg kg(-1), values that exceed the critical concentration for copper in soils. The concentration of arsenic and antimony in the north soils were higher than in non-impacted ones and, in the case of arsenic, greatly exceeded the world average concentration reported for this element in soils. The highest arsenic and antimony concentrations were found in Calama and Quillagua soils, two different sites in the Loa valley. The arsenic/antimony concentration ratio was higher in Quillagua soil. The high concentrations of three elements determined in impacted soils from region V (Puchuncaví and Catemu valleys) clearly shows the impact produced in this zone by the industrial and mining activities developed in their proximities. At Puchuncaví valley a clear decrease was observed in copper, arsenic and antimony concentrations in soils on the function of the distance from the industrial complex "Las Ventanas", and all concentrations exceeded the reported critical values for this matrix. Instead at

  11. Evaluation of the Content of Antimony, Arsenic, Bismuth, Selenium, Tellurium and Their Inorganic Forms in Commercially Baby Foods.

    Science.gov (United States)

    Ruiz-de-Cenzano, M; Rochina-Marco, A; Cervera, M L; de la Guardia, M

    2017-12-01

    Baby foods, from the Spanish market and prepared from meat, fish, vegetables, cereals, legumes, and fruits, were analyzed to obtain the concentration of antimony (Sb), arsenic (As), bismuth (Bi), and tellurium (Te) as toxic elements and selenium (Se) as essential element. An analytical procedure was employed based on atomic fluorescence spectroscopy which allowed to obtain accurate data at low levels of concentration. Values of 14 commercial samples, expressed in nanograms per gram fresh weight, ranged for Sb 0.66-6.9, As 4.5-242, Te 1.35-2.94, Bi 2.18-4.79, and Se 5.4-109. Additionally, speciation studies were performed based on data from a non-chromatographic screening method. It was concluded that tellurium and bismuth were mainly present as inorganic forms and selenium as organic form, and antimony and arsenic species depend on the ingredients of each baby food. Risk assessment considerations were made by comparing dietary intake of the aforementioned elements through the consumption of one baby food portion a day and recommended or tolerable guideline values.

  12. Arsenic, Antimony, Chromium, and Thallium Speciation in Water and Sediment Samples with the LC-ICP-MS Technique

    Directory of Open Access Journals (Sweden)

    Magdalena Jabłońska-Czapla

    2015-01-01

    Full Text Available Chemical speciation is a very important subject in the environmental protection, toxicology, and chemical analytics due to the fact that toxicity, availability, and reactivity of trace elements depend on the chemical forms in which these elements occur. Research on low analyte levels, particularly in complex matrix samples, requires more and more advanced and sophisticated analytical methods and techniques. The latest trends in this field concern the so-called hyphenated techniques. Arsenic, antimony, chromium, and (underestimated thallium attract the closest attention of toxicologists and analysts. The properties of those elements depend on the oxidation state in which they occur. The aim of the following paper is to answer the question why the speciation analytics is so important. The paper also provides numerous examples of the hyphenated technique usage (e.g., the LC-ICP-MS application in the speciation analysis of chromium, antimony, arsenic, or thallium in water and bottom sediment samples. An important issue addressed is the preparation of environmental samples for speciation analysis.

  13. Coupled S and Sr isotope evidences for elevated arsenic concentrations in groundwater from the world's largest antimony mine, Central China

    Science.gov (United States)

    Wen, Bing; Zhou, Aiguo; Zhou, Jianwei; Liu, Cunfu; Huang, Yuliu; Li, Ligang

    2018-02-01

    The Xikuangshan(XKS) mine, the world's largest antimony mine, was chosen for a detailed arsenic hydrogeochemical study because of the elevated arsenic in bedrock aquifers used by local residents. Hydrochemical data, δ34S values of dissolved SO42- and 87Sr/86Sr ratios have been analyzed to identify the predominant geochemical processes that control the arsenic mobilization within the aquifers. Groundwater samples can be divided into three major types: low arsenic groundwater (0-50 μg/L), high arsenic groundwater (50-1000 μg/L) and anomalous high arsenic groundwater (>1000 μg/L). Arsenic occurs under oxidizing conditions at the XKS Sb mine as the HAsO42- anion. The Ca/Na ratio correlates significantly with HCO3-/Na and Sr/Na ratios, indicating that carbonate dissolution and silicate weathering are the dominant processes controlling groundwater hydrochemistry. The δ34S values of the groundwater indicate that dissolved SO42- in groundwater is mainly sourced from the oxidation of sulfide minerals, and elevated As concentrations in groundwater are influenced by the mixing of mine water and surface water. Furthermore, the δ34S values are not correlated with dissolved As concentrations and Fe concentrations, suggesting that the reduction dissolution of Fe(III) hydroxides is not the dominant process controlling As mobilization. The 87Sr/86Sr ratios imply that elevated As concentrations in groundwater are primarily derived from the interaction with the stibnite and silicified limestone. More specifically, the excess-Na ion, the feature of Ca/Na ratio, and the spatial association of elevated As concentrations in groundwater collectively suggest that high and anomalous high arsenic groundwater are associated with smelting slags and, in particular, the arsenic alkali residue. In general, the hydrochemistry analysis, especially the S and Sr isotope evidences elucidate that elevated As concentrations and As mobilization are influenced by several geochemical processes

  14. Determination of concentration levels of arsenic, gold and antimony in particle-size fractions of gold ore using Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Nyarku, M.

    2009-02-01

    Instrumental Neutron Activation Analysis (INAA) has been used to quantify the concentrations of arsenic, gold and antimony in particle-size fractions of a gold ore. The ore, which was taken from the Ahafo project site of Newmont Ghana Gold Ltd, was first fractionated into fourteen (14) particle-size fractions using state-of-the-art analytical sieve machine. The minimum sieve mesh size used was 36 microns and grains >2000 microns were not considered for analysis. Results of the sieving were analysed with easysieve software. The < 36 microns sub fraction was found to be the optimum, hosting bulk of all three elements. For arsenic, the element was found to be highly concentrated in < 36 to +100 microns size fractions and erratically distributed from +150 microns fraction and above. For gold, in exception of the sub fraction <36 which had exceptionally high concentration, the element is distributed in all the size fractions but slightly 'plays out' in the +150 to +400 microns fractions. Antimony occurrence in the sample was relatively high in <36 microns size fraction followed by 600 - 800, 800 - 1000, 400 - 600 and 36 - 40 microns size fractions in that order. Gold content in the sample was far higher than that of arsenic and antimony. Gold concentration in the composite sample was in the range 564 - 8420 ppm. Arsenic levels were higher as compared to antimony. The range of arsenic concentration in the composite sample was 14.33 - 186.92 ppm. Antimony concentration was in the range 1.09 - 9.48 ppm. (au)

  15. Bioaccumulation trends of arsenic and antimony in a freshwater ecosystem affected by mine drainage

    Science.gov (United States)

    Dovick, Meghan A.; Kulp, Thomas R.; Arkle, Robert .; Pilliod, David S.

    2015-01-01

    We compared As and Sb bioaccumulation and biomagnification when these metalloids co-occurred at varying environmental concentrations in a stream and wetlands near a contaminated mine site in Idaho (USA). We measured As and Sb concentrations in water and substrate samples, and in tissues of organisms representing several trophic levels. Bioaccumulation of both As and Sb was observed in stream organisms with the following trend of bio-diminution with increasing trophic level: primary producers > tadpoles > macroinvertebrates > trout. We also note reductions in metalloid concentrations in one of two stream remediation reaches engineered within the past 17 years to ameliorate metalloid contamination in the stream. Several wetlands contained thick microbial mats and were highly populated with boreal toad tadpoles that fed on them. The mats were extremely contaminated (up to 76 564 mg kg–1 As and 675 mg kg–1 Sb) with amorphous As- and Sb-bearing minerals that we interpret as biogenic precipitates from geomicrobiological As- and Sb-cycling. Ingested mat material provided a direct source of metalloids to tadpoles, and concentrations of 3867 mg kg–1 (As) and 375 mg kg–1 (Sb) reported here represent the highest whole body As and Sb levels ever reported in living tadpoles. The bulk of tadpole metalloid burden remained in the gut despite attempts to purge the tadpoles prior to analysis. This study adds to a number of recent investigations reporting bioaccumulation, but not biomagnification, of As and Sb in food webs. Moreover, our results suggest that tadpoles, in particular, may be more resistant to metalloid contamination than previously assumed.

  16. Determination of arsenic, antimony, bismuth, cadmium, copper, lead, molybdenum, silver and zinc in geological materials by atomic-absorption spectrometry

    Science.gov (United States)

    Viets, J.G.; O'Leary, R. M.; Clark, Robert J.

    1984-01-01

    Arsenic, antimony, bismuth, cadmium, copper, lead, molybdenum, silver and zinc are very useful elements in geochemical exploration. In the proposed method, geological samples are fused with potassium pyrosulphate and the fusate is dissolved in a solution of hydrochloric acid, ascorbic acid and potassium iodide. When this solution is shaken with a 10% V/V Aliquat 336 - isobutyl methyl ketone organic phase, the nine elements of interest are selectively partitioned in the organic phase. All nine elements can then be determined in the organic phase using flame atomic-absorption spectrometry. The method is rapid and allows the determination of Ag and Cd at levels down to 0.1 p.p.m., Cu, Mo, and Zn down to 0.5 p.p.m., Pb, Bi and Sb down to 1 p.p.m. and As down to 5 p.p.m. in geological materials.

  17. The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: A critical review

    International Nuclear Information System (INIS)

    Wilson, Susan C.; Lockwood, Peter V.; Ashley, Paul M.; Tighe, Matthew

    2010-01-01

    This article provides a critical review of the environmental chemistry of inorganic antimony (Sb) in soils, comparing and contrasting findings with those of arsenic (As). Characteristics of the Sb soil system are reviewed, with an emphasis on speciation, sorption and phase associations, identifying differences between Sb and As behaviour. Knowledge gaps in environmentally relevant Sb data for soils are identified and discussed in terms of the limitations this imposes on understanding the fate, behaviour and risks associated with Sb in environmental soil systems, with particular reference to mobility and bioavailability. - A critical and comparative review of Sb and As chemistry and associations in soil systems identifies research directions needed for better understanding of risks.

  18. Arsenic Methyltransferase

    Science.gov (United States)

    The metalloid arsenic enters the environment by natural processes (volcanic activity, weathering of rocks) and by human activity (mining, smelting, herbicides and pesticides). Although arsenic has been exploited for homicidal and suicidal purposes since antiquity, its significan...

  19. An improved method for the determination of trace levels of arsenic and antimony in geological materials by automated hydride generation-atomic absorption spectroscopy

    Science.gov (United States)

    Crock, J.G.; Lichte, F.E.

    1982-01-01

    An improved, automated method for the determination of arsenic and antimony in geological materials is described. After digestion of the material in sulfuric, nitric, hydrofluoric and perchloric acids, a hydrochloric acid solution of the sample is automatically mixed with reducing agents, acidified with additional hydrochloric acid, and treated with a sodium tetrahydroborate solution to form arsine and stibine. The hydrides are decomposed in a heated quartz tube in the optical path of an atomic absorption spectrometer. The absorbance peak height for arsenic or antimony is measured. Interferences that exist are minimized to the point where most geological materials including coals, soils, coal ashes, rocks and sediments can be analyzed directly without use of standard additions. The relative standard deviation of the digestion and the instrumental procedure is less than 2% at the 50 ??g l-1 As or Sb level. The reagent-blank detection limit is 0.2 ??g l-1 As or Sb. ?? 1982.

  20. Aquaglyceroporins: ancient channels for metalloids

    Science.gov (United States)

    Bhattacharjee, Hiranmoy; Mukhopadhyay, Rita; Thiyagarajan, Saravanamuthu; Rosen, Barry P

    2008-01-01

    The identification of aquaglyceroporins as uptake channels for arsenic and antimony shows how these toxic elements can enter the food chain, and suggests that food plants could be genetically modified to exclude arsenic while still accumulating boron and silicon. PMID:19014407

  1. Investigating concentration distributions of arsenic, gold and antimony in grain-size fractions of gold ore using instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Nyarku, M.; Nyarko, B.J.B.; Serfor-Armah, Y.; Osae, S.

    2010-01-01

    Instrumental neutron activation analysis (INAA) has been used to quantify concentrations of arsenic (As), gold (Au) and antimony (Sb) in grain-size fractions of a gold ore. The ore, which was taken from the Ahafo project site of Newmont Ghana Gold Ltd., was fractionated into 14 grain-size fractions using state-of-the-art analytical sieve machine. The minimum sieve mesh size used was 36 μm and grains >2000 μm were not considered for analysis. Result of the sieving was analysed with easysieve (registered) software. The<36 μm subfraction was found to be the optimum, hosting bulk of all three elements. Arsenic was found to be highly concentrated in<36-100 μm size fractions and erratically distributed in from 150 μm fraction and above. For gold, with the exception of the subfraction <36 μm which had exceptionally high concentration, the element was found to be approximately equally distributed in all the size fractions but slightly 'played out' in 150-400 μm size fractions. Antimony occurrence in the sample was relatively high in <36 μm size fraction followed by 600, 800, 400 and 36 μm size fractions in that order. Gold content in the sample was comparatively far greater than arsenic and antimony; this is indicative of level of gold mineralization in the concession where the sample ore was taken. The concentration of gold in the composite sample was in the range 564-8420 ppm as compared to 14.33-186.92 ppm for arsenic and 1.09-9.48 ppm for antimony. Elemental concentrations were correlated with each other and with grain-size fractions and the relationships between these descriptive parameters were established.

  2. The Potential Use of Vetiveria zizanioides for the Phytoremediation of Antimony, Arsenic and Their Co-Contamination.

    Science.gov (United States)

    Mirza, Nosheen; Mubarak, Hussani; Chai, Li-Yuan; Yong, Wang; Khan, Muhammad Jamil; Khan, Qudrat Ullah; Hashmi, Muhammad Zaffar; Farooq, Umar; Sarwar, Rizwana; Yang, Zhi-Hui

    2017-10-01

    Antimony (Sb) and arsenic (As) contaminations are the well reported and alarming issues of various contaminated smelting and mining sites all over the world, especially in China. The present hydroponic study was to assess the capacity of Vetiveria zizanioides for Sb, As and their interactive accumulations. The novelty of the present research is this that the potential of V. zizanioides for Sb and As alone and their interactive accumulation are unaddressed. This is the first report about the interactive co-accumulation of Sb and As in V. zizanioides. Highest applied Sb and As contaminations significantly inhibited the plant growth. Applied Sb and As alone significantly increased their concentrations in the roots/shoot of V. zizanioides. While co-contamination of Sb and As steadily increased their concentrations, in the plant. The co-contamination of Sb and As revealed a positive correlation between the two, as they supplemented the uptake and accumulation of each other. The overall translocation (TF) and bioaccumulation factors (BF) of Sb in V. zizanioides, were 0.75 and 4. While the TF and BF of As in V. zizanioides, were 0.86 and 10. V. zizanioides proved as an effective choice for the phytoremediation and ecosystem restoration of Sb and As contaminated areas.

  3. Oral bioavailability of arsenic, antimony and a selection of metals in ashes; Oral biotillgaenglighet av arsenik, antimon och ett urval av metaller i askor

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, Christel; Bendz, David; Jones, Celia

    2008-06-15

    In an earlier study, financed by Varmeforsk, 'Q4-238 Environmental guidelines for reuse of ash in civil engineering applications', the total content of arsenic and lead was shown to determine whether or not reuse of some of the ashes in construction work is feasible. The model used to calculate the guidelines uses the total concentration of metals to evaluate the health risks resulting from exposure to the ashes. The use of total concentration can lead to overly conservative risk assessments if a significant fraction of the total metal content is not bioavailable. Better precision in the risk assessment can be given by the use of the bioavailable fraction of arsenic and lead in the model. As a result, ashes which are rejected on the basis of total metal concentration may be acceptable for use in engineering construction when the assessment is based on the bioavailable fraction. The purpose of the study was to (i) compile information on the oral bioavailability of arsenic, antimony and a selection of metals in ashes and similar materials, and on in vitro methods for determination of oral bioavailability, and (ii) experimentally estimate oral bioavailability of arsenic, antimony and some metals in a selection of ashes by analysis of the gastrointestinal bioaccessibility of these elements. The investigated elements were antimony, arsenic, lead, cadmium, copper, chromium, nickel and zinc. In the literature study performed within the project a number of static and dynamic in vitro methods simulating gastrointestinal processes of contaminants were compiled. The methods include one or several segments, i.e. mouth, stomach and intestine. Among the compiled methods, the RIVM (Rijksinstituut voor volksgesundheid en milieu) in vitro method was used in the experimental part of the project. The advantages with the method was that: the method to a high degree mimicked the human gastrointestinal processes (the method included three segments mouth, stomach, and intestine

  4. Mineral Resource of the Month: Antimony

    Science.gov (United States)

    Guberman, David E.

    2015-01-01

    Antimony is a lustrous silvery-white semimetal or metalloid. Archaeological and historical studies indicate that antimony and its mineral sulfides have been used by humans for at least six millennia. The alchemist Basil Valentine is sometimes credited with “discovering” the element; he described the extraction of metallic antimony from stibnite in his treatise “The Triumphal Chariot of Antimony,” published sometime between 1350 and 1600. In the early 18th century, Jöns Jakob Berzelius chose the periodic symbol for antimony (Sb) based on stibium, which is the Latin name for stibnite.

  5. The use of masking agents in the determination, by hydride generation and atomic-absorption spectrophotometry, of arsenic, antimony, selenium, tellurium, and bismuth in the presence of noble metals

    International Nuclear Information System (INIS)

    Kellerman, S.P.

    1982-01-01

    The effectiveness of thiosemicarbazide, tellurium, and potassium iodide as masking agents to eliminate interferences was assessed. Thiosemicarbazide was found to be effective in eliminating or reducing the interferences on arsenic, antimony, and bismuth, and tellurium reduced the interferences on selenium. The interferences on tellurium could not be eliminated. Arsenic, antimony, selenium, and bismuth were determined in metal sulphide concentrates that were spiked with the noble metals (defined here as gold plus all the platinum-group metals except osmium). The relative standard deviations for arsenic, antimony, bismuth, and selenium were 0,061, 0,017, 0,029, and 0,145 respectively. The values obtained for all the analytes agreed favourably with the preferred values for two in-house reference samples. The laboratory method is detailed in an appendix

  6. Cuz1/Ynl155w, a Zinc-dependent Ubiquitin-binding Protein, Protects Cells from Metalloid-induced Proteotoxicity*

    Science.gov (United States)

    Hanna, John; Waterman, David; Isasa, Marta; Elsasser, Suzanne; Shi, Yuan; Gygi, Steven; Finley, Daniel

    2014-01-01

    Protein misfolding is a universal threat to cells. The ubiquitin-proteasome system mediates a cellular stress response capable of eliminating misfolded proteins. Here we identify Cuz1/Ynl155w as a component of the ubiquitin system, capable of interacting with both the proteasome and Cdc48. Cuz1/Ynl155w is regulated by the transcription factor Rpn4, and is required for cells to survive exposure to the trivalent metalloids arsenic and antimony. A related protein, Yor052c, shows similar phenotypes, suggesting a multicomponent stress response pathway. Cuz1/Ynl155w functions as a zinc-dependent ubiquitin-binding protein. Thus, Cuz1/Ynl155w is proposed to protect cells from metalloid-induced proteotoxicity by delivering ubiquitinated substrates to Cdc48 and the proteasome for destruction. PMID:24297164

  7. Arsenic and antimony geochemistry of mine wastes, associated waters and sediments at the Giant Mine, Yellowknife, Northwest Territories, Canada

    Science.gov (United States)

    Fawcett, Skya E.; Jamieson, Heather E.; Nordstrom, D. Kirk; McCleskey, R. Blaine

    2015-01-01

    Elevated levels of arsenic (As) and antimony (Sb) in water and sediments are legacy residues found downstream from gold-mining activities at the Giant Mine in Yellowknife, Northwest Territories (NWT), Canada. To track the transport and fate of As and Sb, samples of mine-waste from the mill, and surface water, sediment, pore-water, and vegetation downstream of the mine were collected. Mine waste, pore-water, and sediment samples were analyzed for bulk chemistry, and aqueous and solid-state speciation. Sediment and vegetation chemistry were evaluated using scanning electron microscope imaging, synchrotron-based element mapping and electron microprobe analysis. The distributions of As and Sb in sediments were similar, yet their distributions in the corresponding pore-waters were mostly dissimilar, and the mobility of As was greater than that of Sb. Competition for sorption sites is the most likely cause of elevated Sb concentrations in relatively oxidized pore-water and surface water. The aqueous and solid-state speciation of As and Sb also differed. In pore-water, As(V) dominated in oxidizing environments and As(III) in reducing environments. In contrast, the Sb(V) species dominated in all but one pore-water sample, even under reducing conditions. Antimony(III) appears to preferentially precipitate or adsorb onto sulfides as evidenced by the prevalence of an Sb(III)-S secondary solid-phase and the lack of Sb(III)(aq) in the deeper zones. The As(V)–O solid phase became depleted with depth below the sediment–water interface, and the Sb(V)–O phase persisted under relatively reducing conditions. In the surficial zone at a site populated by Equisetum fluviatile (common horsetail), As and Sb were associated with organic material and appeared mobile in the root zone. In the zone below active plant growth, As and Sb were associated primarily with inorganic phases suggesting a release and reprecipitation of these elements upon plant death. The co-existence of reduced

  8. Three Birds with One Fe3O4 Nanoparticle: Integration of Microwave Digestion, Solid Phase Extraction, and Magnetic Separation for Sensitive Determination of Arsenic and Antimony in Fish.

    Science.gov (United States)

    Jia, Yun; Yu, Huimin; Wu, Li; Hou, Xiandeng; Yang, Lu; Zheng, Chengbin

    2015-06-16

    An environmentally friendly and fast sample treatment approach that integrates accelerated microwave digestion (MWD), solid phase extraction, and magnetic separation into a single step was developed for the determination of arsenic and antimony in fish samples by using Fe3O4 magnetic nanoparticles (MNPs). Compared to conventional microwave digestion, the consumption of HNO3 was reduced significantly to 12.5%, and the digestion time and temperature were substantially decreased to 6 min and 80 °C, respectively. This is largely attributed to Fe3O4 magnetic nanoparticles being a highly effective catalyst for rapid generation of oxidative radicals from H2O2, as well as an excellent absorber of microwave irradiation. Moreover, potential interferences from sample matrices were eliminated because the As and Sb species adsorbed on the nanoparticles were efficiently separated from the digests with a hand-held magnet prior to analysis. Limits of detection for arsenic and antimony were in the range of 0.01-0.06 μg g(-1) and 0.03-0.08 μg g(-1) by using hydride generation atomic fluorescence spectrometry, respectively, and further improved to 0.002-0.005 μg g(-1) and 0.005-0.01 μg g(-1) when inductively coupled plasma mass spectrometry was used as a detector. The precision of replicate measurements (n = 9) was better than 6% by analyzing 0.1 g test sample spiked with 1 μg g(-1) arsenic and antimony. The proposed method was validated by analysis of two certified reference materials (DORM-3 and DORM-4) with good recoveries (90%-106%).

  9. Mine waste acidic potential and distribution of antimony and arsenic in waters of the Xikuangshan mine, China

    International Nuclear Information System (INIS)

    Zhou, Jianwei; Nyirenda, Mathews T.; Xie, Lina; Li, Yi; Zhou, Baolong; Zhu, Yue; Liu, Huilin

    2017-01-01

    The Xikuangshan (XKS) mine in China has vast quantities of waste material and reported antimony (Sb) and arsenic (As) contamination of water in the mine area. This study estimated the potential of acid mine drainage (AMD) generation by waste material at XKS mine by using paste pH, acid base accounting and net acid generation geochemical static tests. Distribution of Sb and As in surface and groundwater in relation to mine waste AMD producing potential was also investigated. Thirty four (34) water samples and representative samples of three mine wastes from different periods (fresh, 10 and 50 years) were collected for this study: waste rock, smelting slag and tailings. The AMD prediction shows that waste rock (from 10 year period) is acid producing while the fresh mine waste had alkaline paste pH indicating the presence of reactive carbonates. Hence AMD generation may have occurred after a long time due to dissolution of carbonates. Water analysis found Sb with higher concentration than As with means of 3.74 mg/L and 0.19 mg/L respectively. Highest Sb and As concentrations were observed in the North mine along the water flow path from waste heaps and tailing pond; Mine water in the South mine also had elevated Sb and As concentrations. Mining activities at the XKS mine have accelerated Sb and As releases because of the disturbed natural equilibrium. Proper mine waste management and collection and treatment of outflow from the waste rock heaps and tailing ponds seem to be a promising mitigation options. - Highlights: • High levels of Sb and As were detected in alkaline water at Xikuangshan mine. • Static test showed that mine waste aged over 10 years was acid generating. • Mine waste influenced the high concentration of Sb and As in water. • The Sb/As ratios in water favored Sb because of high Sb content in the ore body.

  10. Simultaneous determination of arsenic, selenium and antimony species using HPLC/ICP-MS

    Energy Technology Data Exchange (ETDEWEB)

    Lindemann, T.; Prange, A.; Neidhart, B. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Physikalische und Chemische Analytik; Dannecker, W. [Univ. of Hamburg (Germany). Inst. for Inorganic and Applied Chemistry

    1999-07-01

    A new method for the simultaneous separation and determination of four arsenic species [As(III), As(V), monomethylarsonic acid and dimethylarsinic acid], three selenium species [Se(IV), Se(VI) and selenomethionine] as well as Sb(III) and Sb(V) is presented. The speciation was achieved by on-line coupling of anion exchange high-performance liquid chromatography (HPLC) with inductively coupled plasma mass spectrometry (ICP-MS). Chromatographic parameters such as the composition and pH of the mobile phase were optimised. Limits of detection are below 4.5 {mu}g L{sup -1} (as element) for Sb(III) and the selenium species and below 0.5 {mu}g L{sup -1} for the other species. Precisions of retention times were better than 2% RSD and of peak areas better than 8% RSD for all the species investigated. (orig.) With 5 figs., 3 tabs., 41 refs.

  11. Arsenic transport by zebrafish aquaglyceroporins

    Directory of Open Access Journals (Sweden)

    Landfear Scott M

    2009-11-01

    Full Text Available Abstract Background Arsenic is one of the most ubiquitous toxins and endangers the health of tens of millions of humans worldwide. It is a mainly a water-borne contaminant. Inorganic trivalent arsenic (AsIII is one of the major species that exists environmentally. The transport of AsIII has been studied in microbes, plants and mammals. Members of the aquaglyceroporin family have been shown to actively conduct AsIII and its organic metabolite, monomethylarsenite (MAsIII. However, the transport of AsIII and MAsIII in in any fish species has not been characterized. Results In this study, five members of the aquaglyceroporin family from zebrafish (Danio rerio were cloned, and their ability to transport water, glycerol, and trivalent arsenicals (AsIII and MAsIII and antimonite (SbIII was investigated. Genes for at least seven aquaglyceroporins have been annotated in the zebrafish genome project. Here, five genes which are close homologues to human AQP3, AQP9 and AQP10 were cloned from a zebrafish cDNA preparation. These genes were named aqp3, aqp3l, aqp9a, aqp9b and aqp10 according to their similarities to the corresponding human AQPs. Expression of aqp9a, aqp9b, aqp3, aqp3l and aqp10 in multiple zebrafish organs were examined by RT-PCR. Our results demonstrated that these aquaglyceroporins exhibited different tissue expression. They are all detected in more than one tissue. The ability of these five aquaglyceroporins to transport water, glycerol and the metalloids arsenic and antimony was examined following expression in oocytes from Xenopus leavis. Each of these channels showed substantial glycerol transport at equivalent rates. These aquaglyceroporins also facilitate uptake of inorganic AsIII, MAsIII and SbIII. Arsenic accumulation in fish larvae and in different tissues from adult zebrafish was studied following short-term arsenic exposure. The results showed that liver is the major organ of arsenic accumulation; other tissues such as gill, eye

  12. Optimization of chemical and instrumental parameters in hydride generation laser-induced breakdown spectrometry for the determination of arsenic, antimony, lead and germanium in aqueous samples.

    Science.gov (United States)

    Yeşiller, Semira Unal; Yalçın, Serife

    2013-04-03

    A laser induced breakdown spectrometry hyphenated with on-line continuous flow hydride generation sample introduction system, HG-LIBS, has been used for the determination of arsenic, antimony, lead and germanium in aqueous environments. Optimum chemical and instrumental parameters governing chemical hydride generation, laser plasma formation and detection were investigated for each element under argon and nitrogen atmosphere. Arsenic, antimony and germanium have presented strong enhancement in signal strength under argon atmosphere while lead has shown no sensitivity to ambient gas type. Detection limits of 1.1 mg L(-1), 1.0 mg L(-1), 1.3 mg L(-1) and 0.2 mg L(-1) were obtained for As, Sb, Pb and Ge, respectively. Up to 77 times enhancement in detection limit of Pb were obtained, compared to the result obtained from the direct analysis of liquids by LIBS. Applicability of the technique to real water samples was tested through spiking experiments and recoveries higher than 80% were obtained. Results demonstrate that, HG-LIBS approach is suitable for quantitative analysis of toxic elements and sufficiently fast for real time continuous monitoring in aqueous environments. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Stability studies of arsenic, selenium, antimony and tellurium species in water, urine, fish and soil extracts using HPLC/ICP-MS

    Energy Technology Data Exchange (ETDEWEB)

    Lindemann, T.; Prange, A.; Neidhart, B. [GKSS Research Centre, Geesthacht (Germany). Inst. of Physical and Chemical Analysis; Dannecker, W. [Hamburg Univ. (Germany). Inst. fuer Anorganische und Angewandte Chemie

    2000-10-01

    The stability of arsenic, selenium, antimony and tellurium species in water and urine (NIST SRM 2670n) as well as in extracts of fish and soil certified reference materials (DORM-2 and NIST SRM 2710) has been investigated. Stability studies were carried out with As(III), As(V), arsenobetaine, monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), phenylarsonic acid (PAA), Se(IV), Se(VI), selenomethionine, Sb(III), Sb(V) and Te(VI). Speciation analysis was performed by on-line coupling of anion exchange high-performance liquid chromatography (HPLC) with inductively coupled plasma mass spectrometry (ICP-MS). Best storage of aqueous mixtures of the examined species was achieved at 3 C whereas at -20 C species transformation especially of selenomethionine and Sb(V) took place and a new selenium species appeared within a period of 30 days. Losses and species transformations during extraction processes were investigated. Extraction of the spiked fish material with methanol/water led to partial conversion of Sb(III), Sb(V) and selenomethionine to two new antimony and one new selenium species. The other arsenic, selenium and tellurium species were almost quantitatively extracted. For soil spiked with MMA, PAA, Se(IV) and Sb(III), recoveries after extraction with water and sulfuric acid (0.01 mol/L) were below 20%. (orig.)

  14. The accumulation and subcellular distribution of arsenic and antimony in four fern plants.

    Science.gov (United States)

    Feng, R; Wang, X; Wei, C; Tu, S

    2015-01-01

    In the present study, Pteris cretica 'Albo-Lineata' (PC), Pteris fauriei (PF), Humata tyermanii Moore (HT), and Pteris ensiformis Burm (PE), were selected to explore additional plant materials for the phytoremediation of As and Sb co-contamination. To some extent, the addition of As and Sb enhanced the growth of HT, PE, and PF. Conversely, the addition of As and Sb negatively affected the growth of PC and was accompanied with the accumulation of high levels of As and Sb in the roots. The highest concentration of Sb was recorded as 6405 mg kg(-1) in the roots of PC, and that for As was 337 mg kg(-1) in the rhizome of PF. To some degree, As and Sb stimulated the uptake of each other in these ferns. Arsenic was mainly stored in the cytoplasmic supernatant (CS) fraction, followed by the cell wall (CW) fraction. In contrast, Sb was mainly found in the CW fraction and, to a lesser extent, in the CS fraction, suggesting that the cell wall and cytosol play different roles in As and Sb accumulation by fern plants. This study demonstrated that these fern plants show a good application potential in the phytoremediation of As and Sb co-contaminated environments.

  15. Arsenic and Antimony Removal from Drinking Water by Point-of-Entry Reverse Osmosis Coupled with Dual Plumbing Distribution - U.S. EPA Demonstration Project at Carmel Elementary School in Carmel, ME -Final Performance Evaluation Report

    Science.gov (United States)

    This report documents the activities performed for and the results obtained from the arsenic and antimony removal treatment technology demonstration project at the Carmel Elementary School (CES) in Carmel, ME. An innovative approach of employing point of entry (POE) reverse osmo...

  16. Arsenic and Antimony Removal from Drinking Water by Adsorptive Media - U.S. EPA Demonstration Project at South Truckee Meadows General Improvement District (STMGID), NV, Final Performance Evaluation Report

    Science.gov (United States)

    This report documents the activities performed during and the results obtained from the operation of an arsenic and antimony removal technology demonstrated at the South Truckee Meadows General Improvement District (STMGID) in Washoe County, NV. The objectives of the project wer...

  17. Trapping interference effects of arsenic, antimony and bismuth hydrides in collection of selenium hydride within iridium-modified transversally-heated graphite tube atomizer

    Energy Technology Data Exchange (ETDEWEB)

    Furdikova, Zuzana [Department of Environmental Chemistry and Technology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, CZ-61200 Brno (Czech Republic); Institute of Analytical Chemistry of the Academy of Sciences of the Czech Republic v.v.i., Veveri 97, CZ-60200, Brno (Czech Republic); Docekal, Bohumil [Institute of Analytical Chemistry of the Academy of Sciences of the Czech Republic v.v.i., Veveri 97, CZ-60200, Brno (Czech Republic)], E-mail: docekal@iach.cz

    2009-04-15

    Interference effects of co-generated hydrides of arsenic, antimony and bismuth on trapping behavior of selenium hydride (analyte) within an iridium-modified, transversely heated graphite tube atomizer (THGA) were investigated. A twin-channel hydride generation system was used for independent separate generation and introduction of analyte and interferent hydrides, i.e. in a simultaneous and/or sequential analyte-interferent and interferent-analyte mode of operation. The influence of the analyte and modifier mass, interferent amount, trapping temperature and composition of the gaseous phase was studied. A simple approach for the elimination of mutual interference effects by modification of the gaseous phase with oxygen in a substoichiometric ratio to chemically generated hydrogen is proposed and the suppression of these interference effects is demonstrated. A hypothesis on the mechanism of trapping and mutual interference effects is drawn.

  18. Dissimilatory antimonate reduction and production of antimony trioxide microcrystals by a novel microorganism.

    Science.gov (United States)

    Abin, Christopher A; Hollibaugh, James T

    2014-01-01

    Antimony (Sb) is a metalloid that has been exploited by humans since the beginning of modern civilization. The importance of Sb to such diverse industries as nanotechnology and health is underscored by the fact that it is currently the ninth-most mined metal worldwide. Although its toxicity mirrors that of its Group 15 neighbor arsenic, its environmental chemistry is very different, and, unlike arsenic, relatively little is known about the fate and transport of Sb, especially with regard to biologically mediated redox reactions. To further our understanding of the interactions between microorganisms and Sb, we have isolated a bacterium that is capable of using antimonate [Sb(V)] as a terminal electron acceptor for anaerobic respiration, resulting in the precipitation of antimonite [Sb(III)] as microcrystals of antimony trioxide. The bacterium, designated strain MLFW-2, is a sporulating member of a deeply branching lineage within the order Bacillales (phylum Firmicutes). This report provides the first unequivocal evidence that a bacterium is capable of conserving energy for growth and reproduction from the reduction of antimonate. Moreover, microbiological antimonate reduction may serve as a novel route for the production of antimony trioxide microcrystals of commercial significance to the nanotechnology industry.

  19. The occurrence and distribution of high-arsenic, selenium, tin and antimony in bottom sediments of Burullus lagoon and its effects on human health, Egypt

    Science.gov (United States)

    El-Badry, Abd El-Monsef Ahmed; Khalifa, Moataz M.

    2017-12-01

    Burullus lagoon is one of four natural water bodies known as northern Egyptian delta lakes. The lagoon extended maximum long of 53 km long and maximum width 13 km with an area about 420 km2. The pollution of bottom sediment of the Burullus lagoon is indicative of both water and food web quality in general. A few research were carried out related to study of arsenic, selenium, tin and antimony. The main objective of this study is assessment of environmental effects of arsenic, selenium, tin and antimony metals, twenty-one samples were collect from bottom sediments sample among sites covering the Burullus Lagoon during summer 2014, and analyzed by using simultaneous inductively coupled plasma emission spectrometer. The contamination with these metals was evaluate by applying index of contamination factor (CF) and geoaccumulation (Igeo). The relative order of abundance of the potentially toxic metals in the lagoon's sediment is Se > Sn > Sb > As The territory around inlet and southeastern drain show considerable pollution by the studied toxic metals. The main reason for such pollution resulting from industrial activities and agricultural drains. The disregards of the anthropogenic activities are the main reason of pollution in the studied lagoon. Construction of special units for treatment and purification of all types of drainage and wastewater (agricultural, industrial). Successive analysis of lake water to assess the amount of pollutants to make suitable decisions. Take an action to prohibit throwing of wastes in the lagoon. Consumption of the lake water for agricultural and industrial must be under control in order to decrease water pollution.

  20. Antimony Toxicity

    OpenAIRE

    Sundar, Shyam; Chakravarty, Jaya

    2010-01-01

    Antimony toxicity occurs either due to occupational exposure or during therapy. Occupational exposure may cause respiratory irritation, pneumoconiosis, antimony spots on the skin and gastrointestinal symptoms. In addition antimony trioxide is possibly carcinogenic to humans. Improvements in working conditions have remarkably decreased the incidence of antimony toxicity in the workplace. As a therapeutic, antimony has been mostly used for the treatment of leishmaniasis and schistosomiasis. The...

  1. Nature's refineries — Metals and metalloids in arc volcanoes

    Science.gov (United States)

    Henley, R.W.; Berger, Byron R.

    2013-01-01

    Chemical data for fumaroles and for atmospheric gas and ash plumes from active arc volcanoes provide glimpses of the rates of release of metal and metalloids, such as Tl and Cd, from shallow and mid-crust magmas. Data from copper deposits formed in ancient volcanoes at depths of up to about 1500 m in the fractures below paleo-fumaroles, and at around 2000–4000 m in association with sub-volcanic intrusions (porphyry copper deposits) provide evidence of sub-surface deposition of Cu–Au–Ag–Mo and a range of other minor elements including Te, Se, As and Sb. These deposits, or ‘sinks’, of metals consistently record sustained histories of magmatic gas streaming through volcanic systems interspersed by continuing intrusive and eruptive activity. Here we integrate data from ancient and modern volcanic systems and show that the fluxes of metals and metalloids are controlled by a) the maintenance of fracture permeability in the stressed crust below volcanoes and b) the chemical processes that are triggered as magmatic gas, initially undersaturated with metals and metalloids, expands from lithostatic to very low pressure conditions through fracture arrays. The recognition of gas streaming may also account for the phenomenon of ‘excess degassing’, and defines an integral, but generally understated, component of active volcanic systems – a volcanic gas core – that is likely to be integral to the progression of eruptions to Plinean state.Destabilization of solvated molecular metal and metalloid species in magmatic gas mixtures and changes in their redox state are triggered, as it expands to the surface by abrupt pressure drops, or throttles' in the fracture array that guides expansion to the surface. The electronically harder, low electronegativity metals, such as copper and iron, deposit rapidly in response to expansion followed more slowly by arsenic with antimony as sulfosalts. Heavy, large radius, softer elements such as bismuth, lead, and thallium

  2. Antimony smelting process generating solid wastes and dust: characterization and leaching behaviors.

    Science.gov (United States)

    Guo, Xuejun; Wang, Kunpeng; He, Mengchang; Liu, Ziwei; Yang, Hailin; Li, Sisi

    2014-07-01

    A large amount of solid waste has been produced by the antimony smelting process in the "World Capital of Antimony", Xikuangshan area in China. This study comprehensively investigated the physical and chemical characteristics of the various solid wastes, as well as the leaching behavior of the solid wastes, which included water-quenched slag, arsenic-alkali residue, desulfurized slag and blast furnace dust. These four types of waste were enriched in a variety of heavy metals and metalloids and more specifically with As and Sb levels up to 8.6 × 10⁴ and 3.16×10⁵ mg/kg, respectively, in arsenic-alkali residue. For desulfurized slag and water-quenched slag, the leaching concentration of Sb significantly exceeded the acceptable limits during the leaching tests using the toxicity characteristic leaching procedure and the synthetic precipitation leaching procedure. In addition, As leaching in arsenic-alkali residue was extraordinarily hazardous, being three orders of magnitude higher than the regulatory level of As. According to the results of the extraction tests, all the tested wastes were classified as hazardous waste. Copyright © 2014. Published by Elsevier B.V.

  3. Diffusive Gradients in Thin Films Reveals Differences in Antimony and Arsenic Mobility in a Contaminated Wetland Sediment during an Oxic-Anoxic Transition.

    Science.gov (United States)

    Arsic, Maja; Teasdale, Peter R; Welsh, David T; Johnston, Scott G; Burton, Edward D; Hockmann, Kerstin; Bennett, William W

    2018-02-06

    Antimony (Sb) and arsenic (As) are priority environmental contaminants that often co-occur at mining-impacted sites. Despite their chemical similarities, Sb mobility in waterlogged sediments is poorly understood in comparison to As, particularly across the sediment-water interface (SWI) where changes can occur at the millimeter scale. Combined diffusive gradients in thin films (DGT) and diffusive equilibration in thin films (DET) techniques provided a high resolution, in situ comparison between Sb, As, and iron (Fe) speciation and mobility across the SWI in contaminated freshwater wetland sediment mesocosms under an oxic-anoxic-oxic transition. The shift to anoxic conditions released Fe(II), As(III), and As(V) from the sediment to the water column, consistent with As release being coupled to the reductive dissolution of iron(III) (hydr)oxides. Conversely, Sb(III) and Sb(V) effluxed to the water column under oxic conditions and fluxed into the sediment under anoxic conditions. Porewater DGT-DET depth profiles showed apparent decoupling between Fe(II) and Sb release, as Sb was primarily mobilized across the SWI under oxic conditions. Solid-phase X-ray absorption spectroscopy (XAS) revealed the presence of an Sb(III)-S phase in the sediment that increased in proportion with depth and the transition from oxic to anoxic conditions. The results of this study showed that Sb mobilization was decoupled from the Fe cycle and was, therefore, more likely linked to sulfur and/or organic carbon (e.g., most likely authigenic antimony sulfide formation or Sb(III) complexation by reduced organic sulfur functional groups).

  4. The evolution of December 2004 tsunami deposits: temporal and spatial distribution of potentially toxic metalloids.

    Science.gov (United States)

    Kozak, Lidia; Niedzielski, Przemysław

    2013-11-01

    The article presents the results of research into the content of metalloid fractions in the tsunami deposits from southern Thailand. The following fractions, which are potentially most easily released from deposits to the environment, have been distinguished: the water soluble fraction, the exchangeable fraction extracted with the phosphate buffer and the fraction eluted with the solution of hydrochloric acid. The analytical technique atomic absorption spectrometry with hydride generation was applied. Spatial variability of the metalloid fractions in deposits and changes occurring in deposits over a period of several years of observation were determined. Based on the statistical analysis of the results, an attempt was made to determine the post-depositional release of deposits components to the environment. Based on the conducted research, the 4 years forming process of the arsenic, antimony and selenium occurrence after the deposition of sediments on land were described, as well as the balance in the amount of deposit components released to the environment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Antimony Toxicity

    Directory of Open Access Journals (Sweden)

    Shyam Sundar

    2010-12-01

    Full Text Available Antimony toxicity occurs either due to occupational exposure or during therapy. Occupational exposure may cause respiratory irritation, pneumoconiosis, antimony spots on the skin and gastrointestinal symptoms. In addition antimony trioxide is possibly carcinogenic to humans. Improvements in working conditions have remarkably decreased the incidence of antimony toxicity in the workplace. As a therapeutic, antimony has been mostly used for the treatment of leishmaniasis and schistosomiasis. The major toxic side-effects of antimonials as a result of therapy are cardiotoxicity (~9% of patients and pancreatitis, which is seen commonly in HIV and visceral leishmaniasis co-infections. Quality control of each batch of drugs produced and regular monitoring for toxicity is required when antimonials are used therapeutically.

  6. Arsenic transforming abilities of groundwater bacteria and the combined use of Aliihoeflea sp. strain 2WW and goethite in metalloid removal

    NARCIS (Netherlands)

    Corsini, A.; Zaccheo, P.; Muyzer, G.; Andreoni, V.; Cavalca, L.

    2014-01-01

    Several technologies have been developed for lowering arsenic in drinking waters below the World Health Organization limit of 10 μg/L. When in the presence of the reduced form of inorganic arsenic, i.e. arsenite, one options is pre-oxidation of arsenite to arsenate and adsorption on iron-based

  7. Antimony Adsorption from Zarshouran Gold Mineral Processing Plant Wastewater by Nano Zero Valent Iron Coated on Bentonite

    Directory of Open Access Journals (Sweden)

    nader nosrati

    2015-03-01

    Full Text Available The effluent from Zarshouran gold mineral processing plant contains high quantities of arsenic, antimony, mercury, and bismuth. These metals and metalloids are soluble in water and very toxic when they enter the environment. Their solubility in water causes the polluted area to extend beyond their point of origin. In this article, different methods of antimony removal from water and wastewater were reviewed and the zero-valent iron nanoparticles coated on Bentonite were selected as an effective and low cost material for removing antimony from wastewater. For the purposes of this study, zero-valent iron nanoparticles of 40-100 nanometers in size were synthesized by dropwise addition of sodium borohydride solution to an Iron (III aqueous solution at  ambient temperature and mixed with nitrogen gas. To avoid particle agglomeration and to enhance the product’s environmentally safe application, the  nanoparticles were coated on Bentonite and characterized by SEM/EDAX and BET. The experiments were carried out by intense mixing of the adsorbent with 10ml of real/synthtic wastewater samples in 20ml bottles.  The effects of pH, contact time, temperature, and adsorbent dosage on antimony removal efficiency were investigated under intense mixing using a magnetic mixer. Finally, the effluents were filtered upon completion of the experiments and used for atomic adsorption analysis. The results of the experiments showed that the adsorption isotherms of the synthesized nanoparticles obeyed the Langmuir and Freundlich models. The experiments carried out on real samples showed that antimony adsorption capacity for B-nZVI was 2.6 mg/g of the adsorbent and that the highest antimony removal efficiency was 99.56%.

  8. Environmental Source of Arsenic Exposure

    OpenAIRE

    Chung, Jin-Yong; Yu, Seung-Do; Hong, Young-Seoub

    2014-01-01

    Arsenic is a ubiquitous, naturally occurring metalloid that may be a significant risk factor for cancer after exposure to contaminated drinking water, cigarettes, foods, industry, occupational environment, and air. Among the various routes of arsenic exposure, drinking water is the largest source of arsenic poisoning worldwide. Arsenic exposure from ingested foods usually comes from food crops grown in arsenic-contaminated soil and/or irrigated with arsenic-contaminated water. According to a ...

  9. Determination of the oxidation states of metals and metalloids: An analytical review

    Science.gov (United States)

    Vodyanitskii, Yu. N.

    2013-12-01

    The hazard of many heavy metals/metalloids in the soil depends on their oxidation state. The problem of determining the oxidation state has been solved due to the use of synchrotron radiation methods with the analysis of the X-ray absorption near-edge structure (XANES). The determination of the oxidation state is of special importance for some hazardous heavy elements (arsenic, antimony, selenium, chromium, uranium, and vanadium). The mobility and hazard of each of these elements depend on its oxidation state. The mobilities are higher at lower oxidation states of As, Cr, V, and Se and at higher oxidation states of Sb and U. The determination of the oxidation state of arsenic has allowed revealing its fixation features in the rhizosphere of hydrophytes. The known oxidation states of chromium and uranium are used for the retention of these elements on geochemical barriers. Different oxidation states have been established for vanadium displacing iron in goethite. The determination of the oxidation state of manganese in the rhizosphere and the photosynthetic apparatus of plants is of special importance for agricultural chemists.

  10. Determination and evaluation of the metals and metalloids in the Chapeu-de-couro (Echinodorus macrophyllus (Kunth) Micheli).

    Science.gov (United States)

    Barbosa, Uenderson Araujo; dos Santos, Ivanice Ferreira; dos Santos, Ana Maria Pinto; dos Santos, Debora Correia; da Costa, Grenivel Mota

    2013-09-01

    The Chapeu-de-couro (Echinodorus macrophyllus (Kunth) Micheli) is a native plant from Brazil, which has been mainly used in medicinal application being a potent antirheumatic and diuretic, in the production of soft drinks, and also in the ornamentation of aquariums. In this paper, the metals and metalloids for the leaves of chapeu-de-couro collected in the Paraguacu River from the city Cachoeira, Bahia State, Brazil, was determined and evaluated using multivariate analysis. The samples were digested using nitric acid and hydrogen peroxide and were analyzed using inductively coupled plasma mass spectrometry. The accuracy of the method was confirmed by analysis of a certified reference material of apple leaves, furnished by National Institute of Standard and Technology. The study involved 15 samples of the Paraguacu River. The results expressed as milligrams of element per kilogram of sample demonstrated that the concentration ranges varied: 1.39-5.27 for chromium, 44.85-165.39 for manganese, 0.55-0.84 for arsenic, 0.01-3.94 for antimony, and 0.18-0.31 for lead. The principal component analysis and hierarchical cluster analysis evidenced that the concentrations of the metals and metalloids varied according with the variations in the water of the Paraguacu.

  11. Mineralogical controls on antimony and arsenic mobility during tetrahedrite-tennantite weathering at historic mine sites Špania Dolina-Piesky and Lubietová-Svätodušná, Slovakia

    Energy Technology Data Exchange (ETDEWEB)

    Bor,; #269; inová rAdková, AnežkA; Jamieson, Heather; Lalinská-Voleková, Bronislava; Majzlan, Juraj; Števko, Martin; Chovan, Martin

    2018-01-01

    The legacy of copper (Cu) mining at Špania Dolina-Piesky and Lubietová-Svätodušná (central Slovakia) is waste rock and soil, surface waters, and groundwaters contaminated with antimony (Sb), arsenic (As), Cu, and other metals. Copper ore is hosted in chalcopyrite (CuFeS2) and sulfosalt solid-solution tetrahedrite-tennantite {Cu6[Cu4(Fe,Zn)2]Sb4S13–Cu6[Cu4(Fe,Zn)2]As4S13} that show wide-spread oxidation characteristic by olive-green color secondary minerals. Tetrahedrite-tennantite can be a significant source of As and Sb contamination. Synchrotron-based μ-XRD, μ-XRF, and μ-XANES combined with electron microprobe analyses have been used to determine the mineralogy, chemical composition, element distribution, and Sb speciation in tetrahedrite-tennantite oxidation products in waste rock. Our results show that the mobility of Sb is limited by the formation of oxidation products such as tripuhyite and roméite group mineral containing 36.54 wt% Sb for samples where the primary mineral chemical composition is close to tetrahedrite end-member. Antimony K-edge μ-XANES spectra of these oxidation products indicate that the predominant Sb oxidation state is 5+. Arsenic and Cu are also hosted by amorphous phases containing 6.23 wt% Sb on average and these are intergrown with tripuhyite and roméite. Antimony in this environment is not very mobile, meaning it is not easily released from solid phases to water, especially compared to As, Cu, and S. For samples where the primary sulfosalt is close to tennantite composition, the oxidation products associated with tennantite relicts contain 2.43 wt% Sb and are amorphous. The variable solubility of the secondary minerals that have been identified is expected to influence mobility of Sb and As in near-surface environment.

  12. Simultaneous oxidation of arsenic and antimony at low and circumneutral pH, with and without microbial catalysis

    Science.gov (United States)

    Asta, Maria P.; Nordstrom, D. Kirk; McCleskey, R. Blaine

    2012-01-01

    Arsenic and Sb are common mine-water pollutants and their toxicity and fate are strongly influenced by redox processes. In this study, simultaneous Fe(II), As(III) and Sb(III) oxidation experiments were conducted to obtain rates under laboratory conditions similar to those found in the field for mine waters of both low and circumneutral pH. Additional experiments were performed under abiotic sterile conditions to determine the biotic and abiotic contributions to the oxidation processes. The results showed that under abiotic conditions in aerated Fe(III)–H2SO4 solutions, Sb(III) oxidizes slightly faster than As(III). The oxidation rates of both elements were accelerated by increasing As(III), Sb(III), Fe(III), and Cl− concentrations in the presence of light. For unfiltered circumneutral water from the Giant Mine (Yellowknife, NWT, Canada), As(III) oxidized at 15–78 μmol/L/h whereas Sb(III) oxidized at 0.03–0.05 μmol/L/h during microbial exponential growth. In contrast, As(III) and Sb(III) oxidation rates of 0.01–0.03 and 0.01–0.02 μmol/L/h, respectively, were obtained in experiments performed with acid unfiltered mine waters from the Iberian Pyritic Belt (SW Spain). These results suggest that the Fe(III) formed from microbial oxidation abiotically oxidized As(III) and Sb(III). After sterile filtration of both mine water samples, neither As(III), Sb(III), nor Fe(II) oxidation was observed. Hence, under the experimental conditions, bacteria were catalyzing As and Sb oxidation in the Giant Mine waters and Fe oxidation in the acid waters of the Iberian Pyrite Belt.

  13. SELENIUM MODIFIES THE METABOLISM AND TOXICITY OF ARSENIC IN PRIMARY RAT HEPATOCYTES

    Science.gov (United States)

    ABSTRACTSelenium Modifies the Metabolism and Toxicity of Arsenic in Primary Rat Hepatocytes. Miroslav Styblo, David J. Thomas (2000) Toxicol. Appl. Pharmacol. Arsenic and selenium are metalloids with similar chemical properties and metabolic fates. Inorganic arsenic (iAs...

  14. Arsenic

    Science.gov (United States)

    ... for drinking-water quality Chemical hazards in drinking-water: arsenic Evaluations of the Joint FAO/WHO Expert Committee ... Africa Americas South-East Asia Europe Eastern Mediterranean Western ...

  15. Effects of ferrous sulfate amendment and water management on rice growth and metal(loid) accumulation in arsenic and lead co-contaminated soil.

    Science.gov (United States)

    Zou, Lina; Zhang, Shu; Duan, Dechao; Liang, Xinqiang; Shi, Jiyan; Xu, Jianming; Tang, Xianjin

    2018-03-01

    Arsenic (As) and lead (Pb) commonly co-exist with high concentrations in paddy soil mainly due to human activities in south of China. This study investigates the effect of ferrous sulfate (FeSO 4 ) amendment and water management on rice growth and arsenic (As) and lead (Pb) accumulation in rice plants. A paddy soil co-contaminated with As and Pb was chosen for the pot experiment with three FeSO 4 levels (0, 0.25, and 1%, on a dry weight basis) and two water managements (flooded, non-flooded). The concentrations of As and Pb in iron plaques and rice plants were determined. Application of FeSO 4 and non-flooded conditions significantly accelerated the growth of rice plants. With the addition of FeSO 4 , iron plaques were significantly promoted and most of the As and Pb were sequestered in the iron plaques. The addition of 0.25% FeSO 4 and non-flooded conditions did not significantly change the accumulation of As and Pb in rice grains. The practice also significantly decreased the translocation factor (TF) of As and Pb from roots to above-ground parts which might have been aided by the reduction of As and Pb availability in soil, the preventing effect of rice roots, and the formation of more reduced glutathione (GSH). Flooded conditions decreased the Pb concentration in rice plants, but increased As accumulation. Moreover, rice grew thin and weak and even died under flooded conditions. Overall, an appropriate FeSO 4 dose and non-flooded conditions might be feasible for rice cultivation, especially addressing the As issue in the co-contaminated soil. However, further detailed studies to decrease the accumulation of Pb in edible parts and the field application in As and Pb co-contaminated soil are recommended.

  16. Linking Arsenic Metabolism and Toxic Effects

    Science.gov (United States)

    Although arsenic has been long recognized as a toxicant and a carcinogen, the molecular basis for few of its adverse effects are well understood. Like other metalloids, arsenic undergoes extensive metabolism involving oxidation state changes and formation of methyl-arsenic bonds ...

  17. Voltammetric detection of antimony in natural water on cathodically pretreated microcrystalline boron doped diamond electrode: A possibility how to eliminate interference of arsenic without surface modification.

    Science.gov (United States)

    Lukáčová-Chomisteková, Zuzana; Culková, Eva; Bellová, Renata; Melicherčíková, Danica; Durdiak, Jaroslav; Beinrohr, Ernest; Rievaj, Miroslav; Tomčík, Peter

    2018-02-01

    Very simple and fast electroanalytical method for the detection Sb(III) on chemically unmodified boron-doped diamond electrode (BDDE) has been developed. Voltammetric behavior of antimony was investigated in various acidic supporting electrolytes and the most suitable medium for the determination of Sb(III) on bare BDDE has been 6molL -1 HClO 4 solution. The analytical performance was studied with differential pulse anodic stripping voltammetry (DPASV) with optimized conditions (deposition potential -1V vs. Ag/ AgCl and deposition time 240s). An analysis of possible effects due to the presence of other metal ions (especially As(III)) in the solution was eliminated using NaH 2 PO 4 as supporting electrolyte with addition EDTA as selective complexing agent for Sb(III). Speciation of antimony was also investigated. The detection limit of this analytical strategy achieved value of 1.08 × 10 -7 molL -1 . The proposed method was validated and applied for natural water from former antimony mines as real samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Sorption of antimony on human teeth

    International Nuclear Information System (INIS)

    Nofal, M.; Amin, H.; Alian, G.

    1997-01-01

    The study of the uptake of toxic elements on human teeth represents an interesting research area, as the fate of these elements when present in the human food is of health significance. Since antimony is one of the common toxic elements and since, the chemical behaviour of antimony is similar to that of arsenic, one of the most important toxic elements commonly encountered in cases of food poisoning, it has been decided to investigate its uptake on human teeth and on other restoration materials. The radioactive tracer technique was used to evaluate the concentration of antimony sorbed on teeth. This tracer was obtained by irradiation of antimony metal in the reactor, subsequent dissolution in concentrated sulphuric acid, evaporation to dryness and making the solution 6 M in Hydrochloric acid (1). Antimony prepared in this way is in the trivalent state (Sb III). Sorption was studied in water, tea, coffee, red tea and chicken soup. The highest sorption was achieved from water and chicken soup and least sorption was noticed in case of coffee. The results are presented in the form of the depletion of the radioactivity (A) of antimony with time in presence of a tooth in water and other drinks

  19. Effect of antimony substitution in iron pnictide compounds

    OpenAIRE

    Schmidt, D.; Braun, H. F.

    2015-01-01

    In the present study we have examined the effect of negative chemical pressure in iron pnictides. We have synthesized substitution series replacing arsenic by antimony in a number of 1111- and 122-iron arsenides and present their crystallographic and physical properties. The SDW transition temperature in LaFeAs$_{\\mathrm{1-x}}$Sb$_{\\mathrm{x}}$O decreases with increasing antimony content, while the superconducting transition temperature in LaFeAs$_{\\mathrm{1-x}}$Sb$_{\\mathrm{x}}$O$_{\\mathrm{0...

  20. Controls on the Mobility of Antimony in Mine Waste from Three Deposit Types

    Science.gov (United States)

    Jamieson, H.; Radková, A. B.; Fawcett, S.

    2017-12-01

    Antimony can be considered both a critical metal and an environmental hazard, with a toxicity similar to arsenic. It is concentrated in stibnite deposits, but also present in polymetallic and precious metal ores, frequently accompanied by arsenic. We have studied the mineralogical controls on the mobility of antimony in three types of mine waste: stibnite tailings from an antimony mine, tetrahedrite-bearing waste rock from copper mining, and gold mine tailings and ore roaster waste. Our results demonstrate that the tendency of antimony to leach into the aqueous environment or remain sequestered in solid phases depends on the primary host minerals and conditions governing the precipitation of secondary antimony-hosting phases. In tailings at the Beaver Brook antimony mine in Newfoundland, Canada, stibnite oxidizes rapidly, and secondary minerals such as the relatively insoluble Sb-Fe tripuhyite-like phase and Sb-bearing goethite. However, under dry conditions, the most important secondary Sb host is the Mg-Sb hydroxide brandholzite, but this easily soluble mineral disappears when it rains. Antimony that was originally hosted in tetrahedrite, a complex multi-element sulfosalt, in the historic waste rock piles at Špania Dolina-Piesky, Slovakia, is not as mobile as Cu and As during weathering but reprecipiates to a mixture of tripuhyite and romeite. Finally, the original antimony-hosting minerals, both stibnite and sulphosalts, in the gold ore at Giant Mine, Yellowknife, Canada were completely destroyed during ore roasting. In tailings-contaminated sediments, antimony persists in roaster-generated iron oxide phases, except under reducing conditions where some of the antimony forms a Sb-S phase. The combined presence of antimony and arsenic in mine waste complicates risk assessment but in general, our findings suggest that antimony is less mobile than arsenic in the environment.

  1. Antimony distribution and environmental mobility at an historic antimony smelter site, New Zealand

    International Nuclear Information System (INIS)

    Wilson, N.J.; Craw, D.; Hunter, K.

    2004-01-01

    A historic antimony smelter site at Endeavour Inlet, New Zealand has smelter residues with up to 17 wt.% antimony. Residues include coarse tailings (cm scale particles, poorly sorted), sand tailings (well sorted) and smelter slag (blocks up to 30 cm across). All of this material has oxidised to some degree over the ca. 100 years since the site was abandoned. Oxidation has resulted in acidification of the residues down to pH 2-5. Smelter slag contains pyrrhotite (FeS) and metallic antimony, and oxidation is restricted to surfaces only. The coarse tailings are the most oxidised, and few sulfide grains persist. Unoxidised sand tailings contain 10-20 vol.% stibnite (Sb 2 S 3 ) containing up to 5% As, with subordinate arsenopyrite (FeAsS), and minor pyrite (FeS 2 ). The sand tailings are variably oxidised on a scale of 2-10 cm, but original depositional layering is preserved during oxidation and formation of senarmontite (Sb 2 O 3 ). Oxidation of sand tailings has resulted in localised mobility of both Sb and As on the cm scale, resulting in redistribution of these metalloids with iron oxyhydroxide around sand grain boundaries. Experiments demonstrate that Sb mobility decreases with time on a scale of days. Attenuation of both As and Sb occurs due to adsorption on to iron oxyhydroxides which are formed during oxidation of the smelter residues. There is no detectable loss of Sb or As from the smelter site into the adjacent river, <50 m away, which has elevated Sb (ca. 20 μg/l) and As (ca. 7 μg /l) from mineralised rocks upstream. Despite the high concentrations of Sb and As in the smelter residues, these metalloids are not being released into the environment. - High levels of antimony in primitive smelter soils remain largely immobile on the metre scale

  2. Blood and urinary levels of metals and metalloids in the general adult population of Northern France: The IMEPOGE study, 2008-2010.

    Science.gov (United States)

    Nisse, Catherine; Tagne-Fotso, Romuald; Howsam, Mike; Richeval, Camille; Labat, Laurence; Leroyer, Ariane

    2017-04-01

    The assessment of human chemical risks related to occupational or environmental exposure to pollutants requires the use of both accurate exposure indicators and reference values. The objective of this study was to evaluate the blood and urinary levels of various metals and metalloids in a sample of adults aged 20-59 years of the general population of Northern France, a formerly heavily industrialised area that retains some industrial activity. A cross-sectional study was conducted between 2008 and 2010, enrolling 2000 residents of Northern France. The quota method was used to guarantee the representativeness of the participants on a sex, age, social category and smoking status basis, according to the census done by the French National Institute of Statistics and Economic Studies. The levels of 14 metals: aluminium (Al), antimony (Sb), total arsenic (As), beryllium (Be), cadmium (Cd), cobalt (Co), chromium (Cr), mercury (Hg), manganese (Mn), nickel (Ni), lead (Pb), thallium (Tl), vanadium (V) and zinc (Zn) were quantified by ICP-MS in urine and blood samples. A total of 982 men and 1018 women participated, allowing the analysis of 1992 blood and 1910 urine samples. Some metal(loid)s were detected in over 99% of the blood (Cd, Co, Mn, Ni, Pb) and urine (As, Co, Pb, Zn) samples and the remaining metals in 84-99% of the samples, with the exception of blood V (19%), blood Be (57%) and urine Be (58%). Mean blood levels of Pb and Zn were significantly higher in men, and Mn, Co and Cr in women. In urine, mean Pb, Tl and Sb concentrations were significantly higher in men, and Al and Co in women. Current smokers had significantly higher mean levels of blood Cd and Pb and lower blood Co, Mn and Hg. In urine (adjusted on urinary creatinine), the smokers had higher mean levels of Cd, Pb, V and Zn and lower mean levels of As, Co, and Hg. Overall, the mean urinary levels of most metal(loid)s found in the general population of Northern France were higher than those found in the

  3. Role of complex organic arsenicals in food in aggregate exposure to arsenic

    Science.gov (United States)

    For much of the world’s population, food is the major source of exposure to arsenic. Exposure to this non-essential metalloid at relatively low levels has been linked to a wide range of adverse health effects. Thus, evaluating foods as sources of exposure to arsenic is important ...

  4. Antimony in aquatic systems

    OpenAIRE

    Filella, Montserrat; Belzile, Nelson; Chen, Yuwei; Elleouet, C.; May, P. M.; Mavrocordatos, D.; Nirel, P.; Porquet, A.; Quentel, F.; Silver, S.

    2003-01-01

    Antimony is ubiquitous in the environment. In spite of its proven toxicity, it has received scant attention so far. This communication presents an overview of current knowledge as well as the early results of a concerted, multidisciplinary effort to unveil antimony behaviour and fate in natural aquatic systems.

  5. Antimony bioavailability in mine soils

    International Nuclear Information System (INIS)

    Flynn, Helen C.; Meharg, Andy A.; Bowyer, Phillipa K.; Paton, Graeme I.

    2003-01-01

    Antimony has low bioavailability in mining and smelting contaminated soils and bacterial biosensors are not suitable for its detection. - Five British former mining and smelting sites were investigated and found to have levels of total Sb of up to 700 mg kg -1 , indicating high levels of contamination which could be potentially harmful. However, this level of Sb was found to be biologically unavailable over a wide range of pH values, indicating that Sb is relatively unreactive and immobile in the surface layers of the soil, remaining where it is deposited rather than leaching into lower horizons and contaminating ground water. Sb, sparingly soluble in water, was unavailable to the bacterial biosensors tested. The bioluminescence responses were correlated to levels of co-contaminants such as arsenic and copper, rather than to Sb concentrations. This suggests that soil contamination by Sb due to mining and smelting operations is not a severe risk to the environment or human health provided that it is present as immobile species and contaminated sites are not used for purposes which increase the threat of exposure to identified receptors. Co-contaminants such as arsenic and copper are more bioavailable and may therefore be seen as a more significant risk

  6. Arsenic pollution sources.

    Science.gov (United States)

    Garelick, Hemda; Jones, Huw; Dybowska, Agnieszka; Valsami-Jones, Eugenia

    2008-01-01

    Arsenic is a widely dispersed element in the Earth's crust and exists at an average concentration of approximately 5 mg/kg. There are many possible routes of human exposure to arsenic from both natural and anthropogenic sources. Arsenic occurs as a constituent in more than 200 minerals, although it primarily exists as arsenopyrite and as a constituent in several other sulfide minerals. The introduction of arsenic into drinking water can occur as a result of its natural geological presence in local bedrock. Arsenic-containing bedrock formations of this sort are known in Bangladesh, West Bengal (India), and regions of China, and many cases of endemic contamination by arsenic with serious consequences to human health are known from these areas. Significant natural contamination of surface waters and soil can arise when arsenic-rich geothermal fluids come into contact with surface waters. When humans are implicated in causing or exacerbating arsenic pollution, the cause can almost always be traced to mining or mining-related activities. Arsenic exists in many oxidation states, with arsenic (III) and (V) being the most common forms. Similar to many metalloids, the prevalence of particular species of arsenic depends greatly on the pH and redox conditions of the matrix in which it exists. Speciation is also important in determining the toxicity of arsenic. Arsenic minerals exist in the environment principally as sulfides, oxides, and phosphates. In igneous rocks, only those of volcanic origin are implicated in high aqueous arsenic concentrations. Sedimentary rocks tend not to bear high arsenic loads, and common matrices such as sands and sandstones contain lower concentrations owing to the dominance of quartz and feldspars. Groundwater contamination by arsenic arises from sources of arsenopyrite, base metal sulfides, realgar and orpiment, arsenic-rich pyrite, and iron oxyhydroxide. Mechanisms by which arsenic is released from minerals are varied and are accounted for by

  7. Influence of Organic Matter - Mineral Interfacial Reactions on Metal(loid) Speciation and Bioaccessibility

    Science.gov (United States)

    Chorover, J.; Kong, S.; Root, R. A.; Thomas, A.

    2015-12-01

    Bioaccessibility of contaminant metals in geomedia is often measured on the basis of kinetic release to solution during in vitro reaction with biofluid simulants. We postulate that development of a predictive-mechanistic understanding of bioaccessibility requires knowledge of metal(loid) molecular speciation upon sample introduction, as well as its change over the course of the in vitro reaction. Our results - including data from batch, column, mesocosm and field studies pertaining to arsenic, lead, and zinc contaminated materials - indicate the strong influence of organic matter and associated biological activity on metal(loid) speciation in mine tailings and related model systems. Furthermore, presence/absence of organic matter during bioassays affects the kinetics of metal(loid) release into biofluid simulants through multiple mechanisms.

  8. Environmental source of arsenic exposure.

    Science.gov (United States)

    Chung, Jin-Yong; Yu, Seung-Do; Hong, Young-Seoub

    2014-09-01

    Arsenic is a ubiquitous, naturally occurring metalloid that may be a significant risk factor for cancer after exposure to contaminated drinking water, cigarettes, foods, industry, occupational environment, and air. Among the various routes of arsenic exposure, drinking water is the largest source of arsenic poisoning worldwide. Arsenic exposure from ingested foods usually comes from food crops grown in arsenic-contaminated soil and/or irrigated with arsenic-contaminated water. According to a recent World Health Organization report, arsenic from contaminated water can be quickly and easily absorbed and depending on its metabolic form, may adversely affect human health. Recently, the US Food and Drug Administration regulations for metals found in cosmetics to protect consumers against contaminations deemed deleterious to health; some cosmetics were found to contain a variety of chemicals including heavy metals, which are sometimes used as preservatives. Moreover, developing countries tend to have a growing number of industrial factories that unfortunately, harm the environment, especially in cities where industrial and vehicle emissions, as well as household activities, cause serious air pollution. Air is also an important source of arsenic exposure in areas with industrial activity. The presence of arsenic in airborne particulate matter is considered a risk for certain diseases. Taken together, various potential pathways of arsenic exposure seem to affect humans adversely, and future efforts to reduce arsenic exposure caused by environmental factors should be made.

  9. Environmental Source of Arsenic Exposure

    Directory of Open Access Journals (Sweden)

    Jin-Yong Chung

    2014-09-01

    Full Text Available Arsenic is a ubiquitous, naturally occurring metalloid that may be a significant risk factor for cancer after exposure to contaminated drinking water, cigarettes, foods, industry, occupational environment, and air. Among the various routes of arsenic exposure, drinking water is the largest source of arsenic poisoning worldwide. Arsenic exposure from ingested foods usually comes from food crops grown in arsenic-contaminated soil and/or irrigated with arsenic-contaminated water. According to a recent World Health Organization report, arsenic from contaminated water can be quickly and easily absorbed and depending on its metabolic form, may adversely affect human health. Recently, the US Food and Drug Administration regulations for metals found in cosmetics to protect consumers against contaminations deemed deleterious to health; some cosmetics were found to contain a variety of chemicals including heavy metals, which are sometimes used as preservatives. Moreover, developing countries tend to have a growing number of industrial factories that unfortunately, harm the environment, especially in cities where industrial and vehicle emissions, as well as household activities, cause serious air pollution. Air is also an important source of arsenic exposure in areas with industrial activity. The presence of arsenic in airborne particulate matter is considered a risk for certain diseases. Taken together, various potential pathways of arsenic exposure seem to affect humans adversely, and future efforts to reduce arsenic exposure caused by environmental factors should be made.

  10. Influence of mycorhization and soil organic matters on lead and antimony transfers to vegetables cultivated in urban gardens: environmental and sanitary consequences

    Science.gov (United States)

    Pierart, Antoine; Braud, Armelle; Lebeau, Thierry; Séjalon-Delmas, Nathalie; Dumat, Camille

    2014-05-01

    . References: Feng, R., Wei, C., Tu, S., Ding, Y., Wang, R., Guo, J., 2013. The uptake and detoxification of antimony by plants: a review. Environ. Exp. Bot. 96, 28-34. Foucault, Y., Lévêque, T., Xiong, T., Schreck, E., Austruy, A., Shahid, M., Dumat, C., 2013. Green manure plants for remediation of soils polluted by metals and metalloids: Ecotoxicity and human bioavailability assessment. Chemosphere 93, 1430-1435. Gu, H.H., Li, F.P., Yu, Q., Gao, Y.Q., Yuan, X.T., 2013. The Roles of Arbuscular Mycorrhizal Fungus Glomus mosseae and Festuca arundinacea in Phytostabilization of Lead/Zinc Tailings. Adv. Mater. Res. 699, 245-250. Lebeau, T., Braud, A., Jézéquel, K., 2008. Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: A review. Environ. Pollut. 153, 497-522. Sharma, A., Sharma, H., 2013. Role of Vesicular Arbuscular Mycorrhiza in the Mycoremediation of Heavy Toxic Metals From Soil. Int J LifeSc Bt Pharm Res 2, 2418-2431. Wu, F., Fu, Z., Liu, B., Mo, C., Chen, B., Corns, W., Liao, H., 2011. Health risk associated with dietary co-exposure to high levels of antimony and arsenic in the world's largest antimony mine area. Sci. Total Environ. 409, 3344-3351. Xiong, T., Austruy, A., Dappe, V., Leveque, T., Sobanska, S., Foucault, Y., Dumat, C., 2013. Phytotoxicity and bioaccessibility of metals for vegetables exposed to atmosphere fine particles in polluted urban areas". Urban Environmental Pollution, Asian Edition, 17-20, Beijing, China.

  11. History of Arsenic as a Poison and Medicinal

    Science.gov (United States)

    Since ancient times, human exposure to the metalloid arsenic has been both intentional and unintentional. The intentional exposure to arsenic has been to inflict harm on others as well as to be a curative agent for those who are ill. The unintentional exposure has either been f...

  12. Antimony: a flame fighter

    Science.gov (United States)

    Wintzer, Niki E.; Guberman, David E.

    2015-01-01

    Antimony is a brittle, silvery-white semimetal that conducts heat poorly. The chemical compound antimony trioxide (Sb2O3) is widely used in plastics, rubbers, paints, and textiles, including industrial safety suits and some children’s clothing, to make them resistant to the spread of flames. Also, sodium antimonate (NaSbO3) is used during manufacturing of high-quality glass, which is found in cellular phones.

  13. Novel Arsenic Nanoparticles Are More Effective and Less Toxic than As (III) to Inhibit Extracellular and Intracellular Proliferation of Leishmania donovani

    Science.gov (United States)

    Chakraborty, Sudipta; Bhar, Kaushik; Saha, Sandip; Chakrabarti, Rajarshi; Pal, Anjali

    2014-01-01

    Visceral leishmaniasis, a vector-borne tropical disease that is threatening about 350 million people worldwide, is caused by the protozoan parasite Leishmania donovani. Metalloids like arsenic and antimony have been used to treat diseases like leishmaniasis caused by the kinetoplastid parasites. Arsenic (III) at a relatively higher concentration (30 μg/mL) has been shown to have antileishmanial activity, but this concentration is reported to be toxic in several experimental mammalian systems. Nanosized metal (0) particles have been shown to be more effective than their higher oxidation state forms. There is no information so far regarding arsenic nanoparticles (As-NPs) as an antileishmanial agent. We have tested the antileishmanial properties of the As-NPs, developed for the first time in our laboratory. As-NPs inhibited the in vitro growth, oxygen consumption, infectivity, and intramacrophage proliferation of L. donovani parasites at a concentration which is about several fold lower than that of As (III). Moreover, this antileishmanial activity has comparatively less cytotoxic effect on the mouse macrophage cell line. It is evident from our findings that As-NPs have more potential than As (III) to be used as an antileishmanial agent. PMID:25614827

  14. Enrichment of Gold in Antimony Matte by Direct Smelting of Refractory Gold Concentrate

    Science.gov (United States)

    Yang, Tianzu; Xie, Boyi; Liu, Weifeng; Zhang, Duchao; Chen, Lin

    2018-04-01

    Conventional cyanidation technology achieves low gold recovery when used to process refractory gold concentrate. Based on the geochemical characteristics of gold deposit mineralization, a new method is proposed herein for gold enrichment in antimony matte by smelting of refractory gold concentrate. The effects of the FeO/SiO2 and CaO/SiO2 ratios, smelting temperature, and smelting time on the gold recovery were investigated in detail. The optimum conditions were determined to be FeO/SiO2 ratio of 1.2, CaO/SiO2 ratio of 0.4, smelting temperature of 1200°C, and smelting time of 45 min. The gold content in antimony matte and smelting slag was 96.68 and 1.13 g/t, respectively. The gold, antimony, and arsenic recovery was 97.72%, 26.89%, and 6.56%, respectively, with most of the antimony and arsenic volatilized into dust. Mineral liberation analyzer results showed that the antimony matte mainly consisted of FeS and FeO, with three phases, viz. FeAs, SbAs, and AuSb, embedded between them, indicating that gold was easily enriched with antimony and arsenic during smelting of refractory gold concentrate.

  15. Enrichment of Gold in Antimony Matte by Direct Smelting of Refractory Gold Concentrate

    Science.gov (United States)

    Yang, Tianzu; Xie, Boyi; Liu, Weifeng; Zhang, Duchao; Chen, Lin

    2018-06-01

    Conventional cyanidation technology achieves low gold recovery when used to process refractory gold concentrate. Based on the geochemical characteristics of gold deposit mineralization, a new method is proposed herein for gold enrichment in antimony matte by smelting of refractory gold concentrate. The effects of the FeO/SiO2 and CaO/SiO2 ratios, smelting temperature, and smelting time on the gold recovery were investigated in detail. The optimum conditions were determined to be FeO/SiO2 ratio of 1.2, CaO/SiO2 ratio of 0.4, smelting temperature of 1200°C, and smelting time of 45 min. The gold content in antimony matte and smelting slag was 96.68 and 1.13 g/t, respectively. The gold, antimony, and arsenic recovery was 97.72%, 26.89%, and 6.56%, respectively, with most of the antimony and arsenic volatilized into dust. Mineral liberation analyzer results showed that the antimony matte mainly consisted of FeS and FeO, with three phases, viz. FeAs, SbAs, and AuSb, embedded between them, indicating that gold was easily enriched with antimony and arsenic during smelting of refractory gold concentrate.

  16. Using Systems Biology Approaches to Elucidate the Mechanisms of Arsenic Reduction in Shewanella Sp. ANA-3

    OpenAIRE

    Watson, Ruth Pamela Tilus

    2015-01-01

    Arsenic is a naturally occurring ubiquitous metalloid that is usually associated with Iron, sulfur and other compounds in the earth’s crust. In some places around the world the bio-geochemical conditions can cause the mineral bound form of arsenic (arsenate) to be reduced to a more water-soluble form (arsenite). In its reduced state, arsenic can seep from the soil down into ground water aquifers and contaminate drinking water supplies. The effects of drinking arsenic tainted water are devasta...

  17. Evaluation of silkworm excrement and mushroom dreg for the remediation of multiple heavy metal/metalloid contaminated soil using pakchoi.

    Science.gov (United States)

    Wang, Ruigang; Guo, Junkang; Xu, Yingming; Ding, Yongzhen; Shen, Yue; Zheng, Xiangqun; Feng, Renwei

    2016-02-01

    The economical, environmental friendly and efficient materials to remediate the pollution with multiple heavy metals and metalloids are scarce. Silkworm excrement (SE) and mushroom dregs (MD) are two types of agricultural wastes, and they are widely used to improve the soil fertility in many regions of China. A pot experiment with sixteen treatments was set up to assess the possibility of using SE and MD to stabilize heavy metals and metalloids and reduce their uptake in pakchoi cultivated in slightly contaminated soils with arsenic (As), cadmium (Cd), lead (Pb) and zinc (Zn). The results showed that the single addition of SE obviously stimulated the growth of pakchoi, reduced the contents of all tested heavy metals and metalloids in the edible part of pakchoi and availability of Zn and Cd in soil. The single MD treatment showed an inferior ability to enhance the growth and reduce the contents of heavy metals and metalloids in the edible part of pakchoi. The combined utilization of SE and MD appeared not to show better effects than their individual treatment when using them to remediate this contaminated soil. Some potential mechanisms on the stimulation on pakchoi growth and decreasing the accumulation of heavy metals and metalloids in pakchoi subjected to SE were suggested, including: (1) enhancing soil pH to impact the availability of heavy metals and metalloids; (2) improve the fertility of soil; (3) sulfhydryl groups of organic materials in SE play a role in conjugating heavy metals and metalloids to affect their availability in soil; and (4) stimulating the growth of pakchoi so as to show a "dilution effect" of heavy metals and metalloids. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Dietary compounds as modulators of metals and metalloids toxicity.

    Science.gov (United States)

    Jadán-Piedra, Carlos; Chiocchetti, Gabriela Matuoka; Clemente, María Jesús; Vélez, Dinoraz; Devesa, Vicenta

    2017-07-07

    A large part of the population is exposed to metals and metalloids through the diet. Most of the in vivo studies on its toxicokinetics and toxicity are conducted by means of exposure through drinking water or by intragastric or intraperitoneal administration of aqueous standards, and therefore they do not consider the effect of the food matrix on the exposure. Numerous studies show that some components of the diet can modulate the toxicity of these food contaminants, reducing their effect on a systemic level. Part of this protective role may be due to a reduction of intestinal absorption and subsequent tissue accumulation of the toxic element, although it may also be a consequence of their ability to counteract the toxicity directly by their antioxidant and/or anti-inflammatory activity, among other factors. The present review provides a compilation of existing information about the effect that certain components of the diet have on the toxicokinetics and toxicity of the metals and metalloids of greatest toxicological importance that are present in food (arsenic, cadmium, lead, and mercury), and of their most toxic chemical species.

  19. Distribution and transfer of potentially toxic metal(loid)s in Juncus effusus from the indigenous zinc smelting area, northwest region of Guizhou Province, China.

    Science.gov (United States)

    Peng, Yishu; Chen, Jun; Wei, Huairui; Li, Shibin; Jin, Tao; Yang, Ruidong

    2018-05-15

    We collected samples (i.e., the aerial parts and roots of Juncus effusus and their growth media) in the indigenous zinc smelting area in the northwest region of Guizhou Province, China, and we measured and analyzed potentially toxic metal(loid)s (arsenic, As; cadmium, Cd; chromium, Cr; copper, Cu; mercury, Hg; lead, Pb and zinc, Zn) in these samples. The results include the following: First, there is a high concentration of one or more potentially toxic metal(loid)s in the slag and surrounding soil in the research area. This situation might be caused by metal(loid) damage or contamination due to the circumstances. Additionally, Juncus effusus in the indigenous zinc smelting area are contaminated by some potentially toxic metal(loid)s; since they are used for Chinese medical materials, it is especially significant that their As, Cd and Pb concentrations are greater than their limited standard values. Finally, both the bioconcentration factors and transfer factors for most potentially toxic metal(loid)s in Juncus effusus are less than 1 in the study area. Therefore, we suggest that Juncus effusus could be used for phytostabilization or as a pioneer plant for phytoremediation of potentially toxic metal(loid)s because it has a tolerance and exclusion mechanism for these metal(loid)s in the research district. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. THE ATOMIC WEIGHT OF ANTIMONY

    Institute of Scientific and Technical Information of China (English)

    张青莲; 钱秋宇; 赵墨田

    1989-01-01

    With enriched antimony isotopes of 99.224 atom% 121Sb and 99.528 atom% 123Sb, twotracer solutions were prepared, whose antimony content was ascertained by the isotopicdilution analysis utilizing an accurately assayed laboratory standard. Mass spectrometricmeasurements were made on a Finnigan MAT- 261 instrument to find the ratio of masses121 and 123. Five synthetic mixtures formed from the tracers served to determine thecorrection factor of mass discrimination. The isotopic abundances thus found for the anti-mony in the mineral stibnite together with the known nuclidic masses yield an accurateatomic weight of antimony as 121 .7575± 0 .0009.

  1. Oligosilanylated Antimony Compounds

    OpenAIRE

    Zitz, Rainer; Gatterer, Karl; Reinhold, Crispin R. W.; M?ller, Thomas; Baumgartner, Judith; Marschner, Christoph

    2015-01-01

    By reactions of magnesium oligosilanides with SbCl3, a number of oligosilanylated antimony compounds were obtained. When oligosilanyl dianions were used, either the expected cyclic disilylated halostibine was obtained or alternatively the formation of a distibine was observed. Deliberate formation of the distibine from the disilylated halostibine was achieved by reductive coupling with C8K. Computational studies of Sb?Sb bond energies, barriers of pyramidal inversion at Sb, and the conformati...

  2. Sequestration of arsenic in ombrotrophic peatlands

    Science.gov (United States)

    Rothwell, James; Hudson-Edwards, Karen; Taylor, Kevin; Polya, David; Evans, Martin; Allott, Tim

    2014-05-01

    Peatlands can be important stores of arsenic but we are lacking spectroscopic evidence of the sequestration pathways of this toxic metalloid in peatland environments. This study reports on the solid-phase speciation of anthropogenically-derived arsenic in atmospherically contaminated peat from the Peak District National Park (UK). Surface and sub-surface peat samples were analysed by synchrotron X-ray absorption spectroscopy on B18 beamline at Diamond Light Source (UK). The results suggest that there are contrasting arsenic sequestration mechanisms in the peat. The bulk arsenic speciation results, in combination with strong arsenic-iron correlations at the surface, suggest that iron (hydr)oxides are key phases for the immobilisation of arsenic at the peat surface. In contrast, the deeper peat samples are dominated by arsenic sulphides (arsenopyrite, realgar and orpiment). Given that these peats receive inputs solely from the atmosphere, the presence of these sulphide phases suggests an in-situ authigenic formation. Redox oscillations in the peat due to a fluctuating water table and an abundant store of legacy sulphur from historic acid rain inputs may favour the precipitation of arsenic sequestering sulphides in sub-surface horizons. Oxidation-induced loss of these arsenic sequestering sulphur species by water table drawdown has important implications for the mobility of arsenic and the quality of waters draining peatlands.

  3. Induction of Human Squamous Cell-Type Carcinomas by Arsenic

    International Nuclear Information System (INIS)

    Martinez, V. D.; Becker-Santos, D. D.; Vucic, E. A.; Lam, S.; Lam, W. L.

    2011-01-01

    Arsenic is a potent human carcinogen. Around one hundred million people worldwide have potentially been exposed to this metalloid at concentrations considered unsafe. Exposure occurs generally through drinking water from natural geological sources, making it difficult to control this contamination. Arsenic biotransformation is suspected to have a role in arsenic-related health effects ranging from acute toxicities to development of malignancies associated with chronic exposure. It has been demonstrated that arsenic exhibits preference for induction of squamous cell carcinomas in the human, especially skin and lung cancer. Interestingly, keratins emerge as a relevant factor in this arsenic-related squamous cell-type preference. Additionally, both genomic and epi genomic alterations have been associated with arsenic-driven neoplastic process. Some of these aberrations, as well as changes in other factors such as keratins, could explain the association between arsenic and squamous cell carcinomas in humans.

  4. Arsenic (+3 oxidation state) methyltransferase and the inorganic arsenic methylation phenotype

    International Nuclear Information System (INIS)

    Li Jiaxin; Waters, Stephen B.; Drobna, Zuzana; Devesa, Vicenta; Styblo, Miroslav; Thomas, David J.

    2005-01-01

    Inorganic arsenic is enzymatically methylated; hence, its ingestion results in exposure to the parent compound and various methylated arsenicals. Both experimental and epidemiological evidences suggest that some of the adverse health effects associated with chronic exposure to inorganic arsenic may be mediated by these methylated metabolites. If i As methylation is an activation process, then the phenotype for inorganic arsenic methylation may determine risk associated with exposure to this metalloid. We examined inorganic arsenic methylation phenotypes and arsenic (+3 oxidation state) methyltransferase genotypes in four species: three that methylate inorganic arsenic (human (Homo sapiens), rat (Rattus norwegicus), and mouse (Mus musculus)) and one that does not methylate inorganic arsenic (chimpanzee, Pan troglodytes). The predicted protein products from arsenic (+3 oxidation state) methyltransferase are similar in size for rat (369 amino acid residues), mouse (376 residues), and human (375 residues). By comparison, a 275-nucleotide deletion beginning at nucleotide 612 in the chimpanzee gene sequence causes a frameshift that leads to a nonsense mutation for a premature stop codon after amino acid 205. The null phenotype for inorganic arsenic methylation in the chimpanzee is likely due to the deletion in the gene for arsenic (+3 oxidation state) methyltransferase that yields an inactive truncated protein. This lineage-specific loss of function caused by the deletion event must have occurred in the Pan lineage after Homo-Pan divergence about 5 million years ago

  5. Efficiency of manganese dioxide for the removal of antimony from aqueous solutions

    International Nuclear Information System (INIS)

    Hasany, S.M.; Najamuddin; Ikram, M.

    1993-01-01

    The sorption of antimony onto manganese dioxide from aqueous solution has been investigated as a function of shaking time, composition of electrolyte, concentration of sorbent and sorbate, Maximum sorption of antimony has been achieved from deionized water after 15 minutes shaking at 45 cm/sup 3/g/sup -1/ V/W ratio. The influence of different anions and cations on the sorption has also been examined. EDTA, tartrate, citrate and Fe(II) decreased the sorption significantly. Among the metal ions tested only Se (IV) has shown strong sorption than antimony whereas Co(II), Hf (IV) and Te(IV) indicated low sorption affinity under similar experimental conditions. The sorption of antimony was also tested by different isotherms. The data fitted only to Freyndlich and D-R models. The sorption capacity of 7.71 m mole g/sup -1/, mean energy of sorption of 8.9 kJ mole/sup -1/ and of B = 0.00632 mole/sup 2/kJ/sup -2/ have been system. It is concluded that manganese dioxide can be used for the removal of antimony from industrial effluents and for its recovery from very dilute solutions. The oxide can also be applied for the separation of antimony, selenium and arsenic from Te(IV). (author)

  6. ASSESSING SOIL ARSENIC BIOAVAILABILITY IN THE LABORATORY MOUSE

    Science.gov (United States)

    Variation among soils in the bioavailability of arsenic can be a critical determinant of the risk posed by exposure to these soils. Although in vitro techniques can provide vital data on aspects of bioavailability of metals and metalloids from soils, these results must be valida...

  7. Determination of antimony in antimony oxide by EDXRF and NAA

    International Nuclear Information System (INIS)

    Ghosh, M.; Swain, K.K.; Wagh, D.N.; Verma, R.

    2015-01-01

    It is proposed to use 124 Sb - 9 Be neutron source for starting Proto Type Fast Breeder Reactor, IGCAR, Kalpakkam. 124 Sb (γ-ray energy = 1.69 MeV; t 1/2 = 60 d) is obtained by irradiating antimony oxide and as per specification, antimony content in the oxide should be ≥ 83.0 % i.e antimony should be in the form of trioxide. Although gravimetry is the most precise and accurate method for % level analysis, it is tedious and time consuming. In this work, the study reported the determination of antimony by energy dispersive X-ray fluorescence (EDXRF) spectrometry and validation of the result by neutron activation analysis (NAA) technique. Antimony oxide encapsulated in stainless steel tube (internal diameter = 0.5 mm) was received from BHAVINI, Kalpakkam. X-ray diffraction (XRD) measurement indicated that the sample was antimony trioxide. For EDXRF analysis, calibration standards were prepared by mixing spectroscopic grade antimony trioxide with microcrystalline cellulose (2.5 to 20 mg g -1 of antimony) and pellets were made by using hydraulic press. Sample pellets were also prepared by mixing with microcrystalline cellulose. EDXRF measurement was carried out using Jordan Valley, EX-3600 M spectrometer with a Rhodium X-ray source. Characteristic K α X-ray of Sb (26.35 keV) was used for quantification. A typical XRF spectrum of the sample is shown after XRF analysis, sample and standard pellets were sealed in clean polyethylene bags and were irradiated in AHWR critical facility reactor, BARC for 4 h. Gamma ray measurement of irradiated samples were carried out using HPGe detector and 564.2 keV gamma ray of 122 Sb was used for quantification

  8. Exiguobacterium mediated arsenic removal and its protective effect against arsenic induced toxicity and oxidative damage in freshwater fish, Channa striata

    Directory of Open Access Journals (Sweden)

    Neha Pandey

    2015-01-01

    Full Text Available Arsenic is a toxic metalloid existing widely in the environment, and its removal from contaminated water has become a global challenge. The use of bacteria in this regard finds a promising solution. In the present study, Exiguobacterium sp. As-9, which is an arsenic resistant bacterium, was selected with respect to its arsenic removal efficiency. Quantification of arsenic in the water treated with bacterium showed that Exiguobacterium efficiently removed up to 99% of arsenic in less than 20 h. In order to reveal the possible effect of this bacterium in removal of arsenic from water and protecting fishes from the detrimental effects of arsenic, we initiated a range of studies on fresh water fish, Channa striata. It was observed that the fishes introduced into bacteria treated water displayed no symptoms of arsenic toxicity which was marked by a decreased oxidative damage, whereas the fishes exposed to arsenic revealed a significant (p < 0.05 increase in the oxidative stress together with the elevated levels of malondialdehyde. Determination of the bioaccumulation of arsenic in the liver tissues of C. striata using hydride generation atomic absorption spectrophotometry (HG-AAS revealed an increased As(III accumulation in the fishes exposed to arsenic whereas the arsenic level in the control and bacteria treated fishes were found below the detectable limit. In conclusion, this study presents the strategies of bacterial arsenic removal with possible directions for future research.

  9. Heavy metals and metalloids as a cause for protein misfolding and aggregation.

    Science.gov (United States)

    Tamás, Markus J; Sharma, Sandeep K; Ibstedt, Sebastian; Jacobson, Therese; Christen, Philipp

    2014-02-25

    While the toxicity of metals and metalloids, like arsenic, cadmium, mercury, lead and chromium, is undisputed, the underlying molecular mechanisms are not entirely clear. General consensus holds that proteins are the prime targets; heavy metals interfere with the physiological activity of specific, particularly susceptible proteins, either by forming a complex with functional side chain groups or by displacing essential metal ions in metalloproteins. Recent studies have revealed an additional mode of metal action targeted at proteins in a non-native state; certain heavy metals and metalloids have been found to inhibit the in vitro refolding of chemically denatured proteins, to interfere with protein folding in vivo and to cause aggregation of nascent proteins in living cells. Apparently, unfolded proteins with motile backbone and side chains are considerably more prone to engage in stable, pluridentate metal complexes than native proteins with their well-defined 3D structure. By interfering with the folding process, heavy metal ions and metalloids profoundly affect protein homeostasis and cell viability. This review describes how heavy metals impede protein folding and promote protein aggregation, how cells regulate quality control systems to protect themselves from metal toxicity and how metals might contribute to protein misfolding disorders.

  10. Arsenic, Anaerobes, and Astrobiology

    Science.gov (United States)

    Stolz, J. F.; Oremland, R. S.; Switzer Blum, J.; Hoeft, S. E.; Baesman, S. M.; Bennett, S.; Miller, L. G.; Kulp, T. R.; Saltikov, C.

    2013-12-01

    , Ganymede, Titan or Enceladus (formed by cryo-concentration), arsenotrophy could serve as a credible means of microbial energy conservation. Regrettably, the direct search for arsenic biomarkers is restricted because only one stable isotope exists (75As), which rules out the use of stable isotopic ratios in this regard. However, antimony oxyanions often co-occur with arsenic in the environment. Its two stable isotopes (123Sb and 121Sb) hold the potential to be exploited as a proxy isotopic biomarker for the fingerprint of microbial arsenotrophy. Whether such an approach is feasible needs to be investigated.

  11. Relationships between seminal plasma metals/metalloids and semen quality, sperm apoptosis and DNA integrity.

    Science.gov (United States)

    Wang, Yi-Xin; Wang, Peng; Feng, Wei; Liu, Chong; Yang, Pan; Chen, Ying-Jun; Sun, Li; Sun, Yang; Yue, Jing; Gu, Long-Jie; Zeng, Qiang; Lu, Wen-Qing

    2017-05-01

    This study aimed to investigate the relationships between environmental exposure to metals/metalloids and semen quality, sperm apoptosis and DNA integrity using the metal/metalloids levels in seminal plasma as biomarkers. We determined 18 metals/metalloids in seminal plasma using an inductively coupled plasma-mass spectrometry among 746 men recruited from a reproductive medicine center. Associations of these metals/metalloids with semen quality (n = 746), sperm apoptosis (n = 331) and DNA integrity (n = 404) were evaluated using multivariate linear and logistic regression models. After accounting for multiple comparisons and confounders, seminal plasma arsenic (As) quartiles were negatively associated with progressive and total sperm motility using multivariable linear regression analysis, which were in accordance with the trends for increased odds ratios (ORs) for below-reference semen quality parameters in the logistic models. We also found inverse correlations between cadmium (Cd) quartiles and progressive and total sperm motility, whereas positive correlations between zinc (Zn) quartiles and sperm concentration, between copper (Cu) and As quartiles and the percentage of tail DNA, between As and selenium (Se) quartiles and tail extent and tail distributed moment, and between tin (Sn) categories and the percentage of necrotic spermatozoa (all P trend <0.05). These relationships remained after the simultaneous consideration of various elements. Our results indicate that environmental exposure to As, Cd, Cu, Se and Sn may impair male reproductive health, whereas Zn may be beneficial to sperm concentration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Roles for root iron plaque in sequestration and uptake of heavy metals and metalloids in aquatic and wetland plants.

    Science.gov (United States)

    Tripathi, Rudra D; Tripathi, Preeti; Dwivedi, Sanjay; Kumar, Amit; Mishra, Aradhana; Chauhan, Puneet S; Norton, Gareth J; Nautiyal, Chandra S

    2014-10-01

    Toxic metal(loid) contamination of soil and sediment poses long term risk to soil and human health through plant-human or plant-animal-human food chain pathways. Iron plaque (IP) formation is frequent in aquatic and wetland plant species and is responsible for the sequestration of various metal(loids). The presence of IP may act as a buffer or barrier and may thus enhance or reduce the uptake of potentially phytotoxic metals and metalloids by plants. If IP acts as a barrier, then low IP producing macrophytes/aquatic plants may be better accumulators of toxic metals and may find use in constructed wetlands for remediation of pollutants, while high IP forming edible plant species could be safer for human consumption. Conversely, if IP acts as a buffer for mineral nutrients and toxic elements then those cultivars may be rich in nutrients, but may also cause toxicity. However, an ecotoxicological risk is also inevitable if IP rich macrophyte roots containing heavy metals are consumed by herbivores. In this review, we summarize the current understanding about the role of IP in metal and metalloid sequestration, uptake, and transport. Furthermore, we will address the role of root IP in Oryza sativa for arsenic (As) sequestration leading to lower grain As translocation, reducing the risk of human exposure.

  13. Urinary arsenic speciation and its correlation with 8-OHdG in Chinese residents exposed to arsenic through coal burning

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.; Pi, J.B.; Li, B.; Xu, Y.Y.; Jin, Y.P.; Sun, G.F. [China Medical University, Shenyang (China). Dept. for Occupational & Environmental Health

    2008-10-15

    In contrast to arsenicosis caused by consumption of water contaminated by naturally occurring inorganic arsenic, human exposure to this metalloid through coal burning has been rarely reported. In this study, arsenic speciation and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels in urine were determined in the Chinese residents exposed to arsenic through coal burning in Guizhou, China, an epidemic area of chronic arsenic poisoning caused by coal burning. The urinary concentrations of inorganic arsenic (iAs), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) and total arsenic (tAs) of high-arsenic exposed subjects were significantly higher than those of low-arsenic exposed residents. A biomarker of oxidative DNA damage, urinary 8-OHdG level was significantly higher in high-arsenic exposed subjects than that of low exposed. Significant positive correlations were found between 8-OHdG levels and concentrations of iAs, MMA, DMA and tAs, respectively. In addition, a significant negative correlation was observed between 8-OHdG levels and the secondary methylation ratio (DMA/(MMA + DMA)). The results suggest that chronic arsenic exposure through burning coal rich in arsenic is associated with oxidative DNA damages, and that secondary methylation capacity is potentially related to the susceptibility of individuals to oxidative DNA damage induced by arsenic exposure through coal burning in domestic living.

  14. Laboratory dust generation and size-dependent characterization of metal and metalloid-contaminated mine tailings deposits

    Energy Technology Data Exchange (ETDEWEB)

    Gonzales, Patricia; Felix, Omar [Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, AZ 85721 (United States); Alexander, Caitlin; Lutz, Eric [Division of Community, Environment, and Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, 1656 E. Mabel St., Tucson, AZ 85724 (United States); Ela, Wendell [Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, AZ 85721 (United States); Eduardo Sáez, A., E-mail: esaez@arizona.edu [Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, AZ 85721 (United States)

    2014-09-15

    Highlights: • A laboratory dust fractionator was developed for the production of respirable dust. • The size-dependent distribution of arsenic and lead in mine tailings dust is reported. • Metal and metalloid contaminants are enriched in particles smaller than 10 μm. • Lead isotope signatures show spread of mine tailings particles onto surrounding soils. - Abstract: The particle size distribution of mine tailings material has a major impact on the atmospheric transport of metal and metalloid contaminants by dust. Implications to human health should be assessed through a holistic size-resolved characterization involving multidisciplinary research, which requires large uniform samples of dust that are difficult to collect using conventional atmospheric sampling instruments. To address this limitation, we designed a laboratory dust generation and fractionation system capable of producing several grams of dust from bulk materials. The equipment was utilized in the characterization of tailings deposits from the arsenic and lead-contaminated Iron King Superfund site in Dewey-Humboldt, Arizona. Results show that metal and metalloid contaminants are more concentrated in particles of <10 μm aerodynamic diameter, which are likely to affect surrounding communities and ecosystems. In addition, we traced the transport of contaminated particles from the tailings to surrounding soils by identifying Pb and Sr isotopic signatures in soil samples. The equipment and methods developed for this assessment ensure uniform samples for further multidisciplinary studies, thus providing a tool for comprehensive representation of emission sources and associated risks of exposure.

  15. Laboratory dust generation and size-dependent characterization of metal and metalloid-contaminated mine tailings deposits

    International Nuclear Information System (INIS)

    Gonzales, Patricia; Felix, Omar; Alexander, Caitlin; Lutz, Eric; Ela, Wendell; Eduardo Sáez, A.

    2014-01-01

    Highlights: • A laboratory dust fractionator was developed for the production of respirable dust. • The size-dependent distribution of arsenic and lead in mine tailings dust is reported. • Metal and metalloid contaminants are enriched in particles smaller than 10 μm. • Lead isotope signatures show spread of mine tailings particles onto surrounding soils. - Abstract: The particle size distribution of mine tailings material has a major impact on the atmospheric transport of metal and metalloid contaminants by dust. Implications to human health should be assessed through a holistic size-resolved characterization involving multidisciplinary research, which requires large uniform samples of dust that are difficult to collect using conventional atmospheric sampling instruments. To address this limitation, we designed a laboratory dust generation and fractionation system capable of producing several grams of dust from bulk materials. The equipment was utilized in the characterization of tailings deposits from the arsenic and lead-contaminated Iron King Superfund site in Dewey-Humboldt, Arizona. Results show that metal and metalloid contaminants are more concentrated in particles of <10 μm aerodynamic diameter, which are likely to affect surrounding communities and ecosystems. In addition, we traced the transport of contaminated particles from the tailings to surrounding soils by identifying Pb and Sr isotopic signatures in soil samples. The equipment and methods developed for this assessment ensure uniform samples for further multidisciplinary studies, thus providing a tool for comprehensive representation of emission sources and associated risks of exposure

  16. Arsenic-transforming microbes and their role in biomining processes

    OpenAIRE

    Drewniak, L.; Sklodowska, A.

    2013-01-01

    It is well known that microorganisms can dissolve different minerals and use them as sources of nutrients and energy. The majority of rock minerals are rich in vital elements (e.g., P, Fe, S, Mg and Mo), but some may also contain toxic metals or metalloids, like arsenic. The toxicity of arsenic is disclosed after the dissolution of the mineral, which raises two important questions: (1) why do microorganisms dissolve arsenic-bearing minerals and release this metal into the environment in a tox...

  17. Hijacking membrane transporters for arsenic phytoextraction

    Science.gov (United States)

    LeBlanc, Melissa S.; McKinney, Elizabeth C.; Meagher, Richard B.; Smith, Aaron P.

    2012-01-01

    Arsenic is a toxic metalloid and recognized carcinogen. Arsenate and arsenite are the most common arsenic species available for uptake by plants. As an inorganic phosphate (Pi) analog, arsenate is acquired by plant roots through endogenous Pi transport systems. Inside the cell, arsenate is reduced to the thiol-reactive form arsenite. Glutathione (GSH)-conjugates of arsenite may be extruded from the cell or sequestered in vacuoles by members of the ATP-binding cassette (ABC) family of transporters. In the present study we sought to enhance both plant arsenic uptake through Pi transporter overexpression, and plant arsenic tolerance through ABC transporter overexpression. We demonstrate that Arabidopsis thaliana plants overexpressing the high-affinity Pi transporter family members, AtPht1;1 or AtPht1;7, are hypersensitive to arsenate due to increased arsenate uptake. These plants do not exhibit increased sensitivity to arsenite. Co-overexpression of the yeast ABC transporter YCF1 in combination with AtPht1;1 or AtPht1;7 suppresses the arsenate-sensitive phenotype while further enhancing arsenic uptake. Taken together, our results support an arsenic transport mechanism in which arsenate uptake is increased through Pi transporter overexpression, and arsenic tolerance is enhanced through YCF1-mediated vacuolar sequestration. This work substantiates the viability of coupling enhanced uptake and vacuolar sequestration as a means for developing a prototypical engineered arsenic hyperaccumulator. PMID:23108027

  18. Absorption of foliar-applied arsenic by the arsenic hyperaccumulating fern (Pteris vittata L.)

    Energy Technology Data Exchange (ETDEWEB)

    Bondada, Bhaskar R.; Tu, Shuxin; Ma, Lena Q

    2004-10-01

    The fact that heavy metals can enter various domains of the plant system through foliar pathways spurred us to explore if the fronds of the Chinese brake fern (Pteris vittata L.), a hyperaccumulator of arsenic, a carcinogenic metalloid, was proficient in absorbing arsenic in the form of sprays. The specific objective of this study was to investigate the impact of frond age, form of arsenic, and time of application on the absorption of foliar-applied arsenic by the brake fern; also examined were the effects of foliar sprays on surface ultrastructure and arsenic speciation in the frond following absorption. Foliar sprays of different arsenic concentrations (0, 50, 100, 200, and 400 ppm) were applied to young and fertile fronds. A positive linear relationship existed between arsenic concentration and absorption; the arsenic concentration of fronds increased from 50 to 200 ppm. Time-course analysis with excised pinnae indicated an initial linear increase followed by a plateau at 48 h. The young fronds with immature sori absorbed more arsenic (3100 ppm) than the fertile mature fronds (890 ppm). In the frond, the arsenic absorption was greatest in the lamina of the pinnae followed by the sori and the rachis. Applying arsenic during night (20:00-22:00 h) or afternoon (12:00-14:00 h) resulted in greater absorption of arsenic than the application in the morning (08:00-10:00 h). The arsenic absorption was greater through abaxial surfaces than through adaxial surfaces. The brake fern absorbed more arsenic when it was applied in the form of arsenite. Regardless of the form of arsenic and the surface it was applied to, arsenic occurred as arsenite, the reduced and the most toxic form of arsenic, after having been absorbed by the fronds. Scanning electron microscopy revealed no surface morphological alterations following all arsenic sprays. The study unequivocally illustrated that the Chinese brake fern absorbed foliar-applied arsenic with great efficiency. Consequently, the

  19. Absorption of foliar-applied arsenic by the arsenic hyperaccumulating fern (Pteris vittata L.)

    International Nuclear Information System (INIS)

    Bondada, Bhaskar R.; Tu, Shuxin; Ma, Lena Q.

    2004-01-01

    The fact that heavy metals can enter various domains of the plant system through foliar pathways spurred us to explore if the fronds of the Chinese brake fern (Pteris vittata L.), a hyperaccumulator of arsenic, a carcinogenic metalloid, was proficient in absorbing arsenic in the form of sprays. The specific objective of this study was to investigate the impact of frond age, form of arsenic, and time of application on the absorption of foliar-applied arsenic by the brake fern; also examined were the effects of foliar sprays on surface ultrastructure and arsenic speciation in the frond following absorption. Foliar sprays of different arsenic concentrations (0, 50, 100, 200, and 400 ppm) were applied to young and fertile fronds. A positive linear relationship existed between arsenic concentration and absorption; the arsenic concentration of fronds increased from 50 to 200 ppm. Time-course analysis with excised pinnae indicated an initial linear increase followed by a plateau at 48 h. The young fronds with immature sori absorbed more arsenic (3100 ppm) than the fertile mature fronds (890 ppm). In the frond, the arsenic absorption was greatest in the lamina of the pinnae followed by the sori and the rachis. Applying arsenic during night (20:00-22:00 h) or afternoon (12:00-14:00 h) resulted in greater absorption of arsenic than the application in the morning (08:00-10:00 h). The arsenic absorption was greater through abaxial surfaces than through adaxial surfaces. The brake fern absorbed more arsenic when it was applied in the form of arsenite. Regardless of the form of arsenic and the surface it was applied to, arsenic occurred as arsenite, the reduced and the most toxic form of arsenic, after having been absorbed by the fronds. Scanning electron microscopy revealed no surface morphological alterations following all arsenic sprays. The study unequivocally illustrated that the Chinese brake fern absorbed foliar-applied arsenic with great efficiency. Consequently, the

  20. Evaluation of the efficiency of the processes of purification of antimony to semiconductor grade purity

    International Nuclear Information System (INIS)

    Walis, L.; Rowinska, L.; Panczyk, E.

    1992-01-01

    A complex of techniques for purification of antimony from arsenic has been examined with the aid of radiotracer 76 As. The investigated processes comprised vacuum distillation, zone melting and remelting of the metal under artificial slags. The purification efficiencies for the above processes were high and amounted to 94% (for 30% of the charge), 50% (for 50% of the charge) and 99.5% (for 60% of the charge), respectively. Attempts were made to determine the kinetics of the separation of arsenic from antimony by distillation. The application of the radioactive tracer made it possible to determine rapidly the distribution of impurities after each stage of the process within a wide concentration range (10 -2 -10 -7 g/g). (author). 7 refs, 4 figs, 6 tabs

  1. Uptake and Transformation of Methylated and Inorganic Antimony in Plants.

    Science.gov (United States)

    Ji, Ying; Mestrot, Adrien; Schulin, Rainer; Tandy, Susan

    2018-01-01

    Used as a hardening agent in lead bullets, antimony (Sb) has become a major contaminant in shooting range soils of some countries including Switzerland. Soil contamination by Sb is also an environmental problem in countries with Sb-mining activities such as China and Bolivia. Because of its toxicity and relatively high mobility, there is concern over the risk of Sb transfer from contaminated soils into plants, and thus into the food chain. In particular there is very little information on the environmental behavior of methylated antimony, which can be produced by microbial biomethylation of inorganic Sb in contaminated soils. Using a new extraction and high-performance liquid chromatography inductively coupled plasma mass spectrometry (HPLC-ICP-MS) method, we investigated antimony speciation in roots and shoots of wheat, fescue, rye, and ryegrass plants exposed to trimethyl antimony(V) (TMSb), antimonite (Sb(III)), and antimonate (Sb(V)) in hydroponics. The total root Sb concentrations followed the order Sb(III) treatment > Sb(V) treatment > TMSb treatment, except for fescue. Shoot Sb concentrations, however, did not differ among the three treatments. In the Sb(V) treatment small quantities of TMSb were found in the roots, whereas no TMSb was detected in the roots of Sb(III)-treated plants. In contrast, similar concentrations of TMSb were found in the shoots in both inorganic Sb treatments. The results indicate that biomethylation of Sb may occur in plants. In the TMSb treatment TMSb was the major Sb species, but the two inorganic Sb species were also found both in shoots and roots along with some unknown Sb species, suggesting that also TMSb demethylation may occur within plant tissues. The results furthermore indicate that methylated Sb is more mobile in plants than inorganic Sb species. Knowledge about this is important in risk assessments of Sb-contaminated sites, as methylation may render Sb more toxic than inorganic Sb, as it is known for arsenic (As).

  2. Arsenic in the environment: enrichments in the Slovenian soils

    Directory of Open Access Journals (Sweden)

    Mateja Gosar

    2005-12-01

    Full Text Available Arsenic, a toxic element with metalloid properties, is found in detectable concentrations in environmental samples. In nature it is enriched in metal (sulphide ore deposits, mainly as arsenides of Cu, Ni and Fe. Arsenic compounds are used mainly in agricultureand forestry as pesticides and herbicides. The ecosystem can be contaminated with arsenic via both natural and anthropogenic sources. Uses of arsenic contaminated water present so far the greatest health hazard. Occurrences of mining related arsenic problems havealso been recorded in many parts of the world.The impact of mining and metallurgic industry with regard to arsenic contents in soils in some potentially contaminated areas in Slovenia is discussed. Enriched contents of arsenic were found in Mežica. Arsenic correlates very well with lead, zinc and other heavymetals which are enriched as a result of long lasting lead production in the area. Also in Celje and Jesenice arsenic has the same distribution pattern as other anthropogenically introduced pollutants. In Idrija there are some slightly arsenic enriched areas, but there is no correlation with mercury, so the origin of arsenic in not clear yet.

  3. Tin-antimony oxide oxidation catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Berry, Frank J. [Open University, Department of Chemistry (United Kingdom)

    1998-12-15

    Tin-antimony oxide catalysts for the selective oxidation of hydrocarbons have been made by precipitation techniques. The dehydration of the amorphous dried precipitate by calcination at increasingly higher temperatures induces the crystallisation of a rutile-related tin dioxide-type phase and the segregation of antimony oxides which volatilise at elevated temperatures. The rutile-related tin dioxide-type phase contains antimony(V) in the bulk and antimony(III) in the surface. Specific catalytic activity for the oxidative dehydrogenation of butene to butadiene is associated with materials with large concentrations of antimony(III) in the surface.

  4. Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters

    Science.gov (United States)

    Song, Won-Yong; Park, Jiyoung; Mendoza-Cózatl, David G.; Suter-Grotemeyer, Marianne; Shim, Donghwan; Hörtensteiner, Stefan; Geisler, Markus; Weder, Barbara; Rea, Philip A.; Rentsch, Doris; Schroeder, Julian I.; Lee, Youngsook; Martinoia, Enrico

    2010-01-01

    Arsenic is an extremely toxic metalloid causing serious health problems. In Southeast Asia, aquifers providing drinking and agricultural water for tens of millions of people are contaminated with arsenic. To reduce nutritional arsenic intake through the consumption of contaminated plants, identification of the mechanisms for arsenic accumulation and detoxification in plants is a prerequisite. Phytochelatins (PCs) are glutathione-derived peptides that chelate heavy metals and metalloids such as arsenic, thereby functioning as the first step in their detoxification. Plant vacuoles act as final detoxification stores for heavy metals and arsenic. The essential PC–metal(loid) transporters that sequester toxic metal(loid)s in plant vacuoles have long been sought but remain unidentified in plants. Here we show that in the absence of two ABCC-type transporters, AtABCC1 and AtABCC2, Arabidopsis thaliana is extremely sensitive to arsenic and arsenic-based herbicides. Heterologous expression of these ABCC transporters in phytochelatin-producing Saccharomyces cerevisiae enhanced arsenic tolerance and accumulation. Furthermore, membrane vesicles isolated from these yeasts exhibited a pronounced arsenite [As(III)]–PC2 transport activity. Vacuoles isolated from atabcc1 atabcc2 double knockout plants exhibited a very low residual As(III)–PC2 transport activity, and interestingly, less PC was produced in mutant plants when exposed to arsenic. Overexpression of AtPCS1 and AtABCC1 resulted in plants exhibiting increased arsenic tolerance. Our findings demonstrate that AtABCC1 and AtABCC2 are the long-sought and major vacuolar PC transporters. Modulation of vacuolar PC transporters in other plants may allow engineering of plants suited either for phytoremediation or reduced accumulation of arsenic in edible organs. PMID:21078981

  5. Improved Density Functional Tight Binding Potentials for Metalloid Aluminum Clusters

    Science.gov (United States)

    2016-06-01

    unlimited IMPROVED DENSITY-FUNCTIONAL TIGHT BINDING POTENTIALS FOR METALLOID ALUMINUM CLUSTERS by Joon H. Kim June 2016 Thesis Advisor...DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE IMPROVED DENSITY-FUNCTIONAL TIGHT BINDING POTENTIALS FOR METALLOID ALUMINUM CLUSTERS 5. FUNDING...repulsive potentials for use in density-functional tight binding (DFTB) simulations of low-valence aluminum metalloid clusters . These systems are under

  6. First principles calculation of two dimensional antimony and antimony arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Pillai, Sharad Babu, E-mail: sbpillai001@gmail.com; Narayan, Som; Jha, Prafulla K. [Department. of Physics, Faculty of Science, The M. S. University of Baroda, Vadodara-390002 (India); Dabhi, Shweta D. [Department of Physics, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar-364001 (India)

    2016-05-23

    This work focuses on the strain dependence of the electronic properties of two dimensional antimony (Sb) material and its alloy with As (SbAs) using density functional theory based first principles calculations. Both systems show indirect bandgap semiconducting character which can be transformed into a direct bandgap material with the application of relatively small strain.

  7. The filter feeder Dreissena polymorpha affects nutrient, silicon, and metal(loid) mobilization from freshwater sediments.

    Science.gov (United States)

    Schaller, Jörg; Planer-Friedrich, Britta

    2017-05-01

    Organic sediments in aquatic ecosystems are well known sinks for nutrients, silicon, and metal(loid)s. Organic matter-consuming organisms like invertebrate shredders, grazers, and bioturbators significantly affect element fixation or remobilization by changing redox conditions or binding properties of organic sediments. Little is known about the effect of filter feeders, like the zebra mussel Dreissena polymorpha, an invasive organism in North American and European freshwater ecosystems. A laboratory batch experiment exposing D. polymorpha (∼1200 organisms per m 2 ) to organic sediment from a site contaminated with arsenic, copper, lead, and uranium revealed a significant uptake and accumulation of arsenic, copper, iron, and especially uranium both into the soft body tissues and the seashell. This is in line with previous observations of metal(loid) accumulation from biomonitoring studies. Regarding its environmental impact, D. polymorpha significantly contributed to mobilization of silicon, iron, phosphorus, arsenic, and copper and to immobilization of uranium (p < 0.001), probably driven by redox conditions, microbial activity within the gut system, or active control of element homeostasis. No net mobilization or immobilization was observed for zinc and lead, because of their low mobility at the prevailing pH of 7.5-8.5. The present results suggest that D. polymorpha can both ameliorate (nutrient mobilization, immobilization of toxicants mobile under oxic conditions) or aggravate negative effects (mobilization of toxicants mobile under reducing conditions) in ecosystems. Relating the results of the present study to observed population densities in natural freshwater ecosystems suggests a significant influence of D. polymorpha on element cycling and needs to be considered in future studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Arsenic pollution in the Yellowknife area from gold smelter activities

    International Nuclear Information System (INIS)

    Hutchinson, T.C.; Aufreiter, S.; Hancock, R.G.V.

    1982-01-01

    Gold mined at Yelloknife in the North West Territories of Canada is associated with arsenopyrite ores which necessitates the oxidation of the arsenic and sulphur by roasting at two Yellowknife smelters. As 2 O 3 and SO 2 are emitted into the atmosphere, and despite improvements in emission control, significant emissions still occur. In order to asses the arsenic contamination in the local environment and the potential exposures to man, soil samples and samples of the native vegetation were collected in and around Yellowknife and the two smelters. Arsenic and antimony analyses were done by instrumental neutron activation analysis using the SLOWPOKE facility at University of Toronto. Zinc, copper, lead and cadmium analyses were done by atomic adsorption spectrophotometry. Arsenic was found to be accumulated in the soils in the vicinity of the two smelters to levels of several thousand ppm. Antimony levels were about 10% of arsenic and were highly correlated with arsenic. Zinc occured to 500 ppm around the smelters. Soil arsenic levels are sufficiently high to inhibit root growth in soils over a very extensive area. (author)

  9. Low-level environmental metals and metalloids and incident pregnancy loss.

    Science.gov (United States)

    Buck Louis, Germaine M; Smarr, Melissa M; Sundaram, Rajeshwari; Steuerwald, Amy J; Sapra, Katherine J; Lu, Zhaohui; Parsons, Patrick J

    2017-04-01

    Environmental exposure to metals and metalloids is associated with pregnancy loss in some but not all studies. We assessed arsenic, cadmium, mercury, and lead concentrations in 501 couples upon trying for pregnancy and followed them throughout pregnancy to estimate the risk of incident pregnancy loss. Using Cox proportional hazard models, we estimated hazard ratios (HR) and 95% confidence intervals (CIs) for pregnancy loss after covariate adjustment for each partner modeled individually then we jointly modeled both partners' concentrations. Incidence of pregnancy loss was 28%. In individual partner models, the highest adjusted HRs were observed for female and male blood cadmium (HR=1.08; CI 0.81, 1.44; HR=1.09; 95% CI 0.84, 1.41, respectively). In couple based models, neither partner's blood cadmium concentrations were associated with loss (HR=1.01; 95% CI 0.75, 1.37; HR=0.92; CI 0.68, 1.25, respectively). We observed no evidence of a significant relation between metal(loids) at these environmentally relevant concentrations and pregnancy loss. Published by Elsevier Inc.

  10. Health risk assessment of heavy metals and metalloid in drinking water from communities near gold mines in Tarkwa, Ghana.

    Science.gov (United States)

    Bortey-Sam, Nesta; Nakayama, Shouta M M; Ikenaka, Yoshinori; Akoto, Osei; Baidoo, Elvis; Mizukawa, Hazuki; Ishizuka, Mayumi

    2015-07-01

    Concentrations of heavy metals and metalloid in borehole drinking water from 18 communities in Tarkwa, Ghana, were measured to assess the health risk associated with its consumption. Mean concentrations of heavy metals (μg/L) exceeded recommended values in some communities. If we take into consideration the additive effect of heavy metals and metalloid, then oral hazard index (HI) results raise concerns about the noncarcinogenic adverse health effects of drinking groundwater in Huniso. According to the US Environmental Protection Agency's (USEPA) guidelines, HI values indicating noncarcinogenic health risk for adults and children in Huniso were 0.781 (low risk) and 1.08 (medium risk), respectively. The cancer risk due to cadmium (Cd) exposure in adults and children in the sampled communities was very low. However, the average risk values of arsenic (As) for adults and children through drinking borehole water in the communities indicated medium cancer risk, but high cancer risk in some communities such as Samahu and Mile 7. Based on the USEPA assessment, the average cancer risk values of As for adults (3.65E-05) and children (5.08E-05) indicated three (adults) and five (children) cases of neoplasm in a hundred thousand inhabitants. The results of this study showed that residents in Tarkwa who use and drink water from boreholes could be at serious risk from exposure to these heavy metals and metalloid.

  11. Decreased vaccine antibody titers following exposure to multiple metals and metalloids in e-waste-exposed preschool children.

    Science.gov (United States)

    Lin, Xinjiang; Xu, Xijin; Zeng, Xiang; Xu, Long; Zeng, Zhijun; Huo, Xia

    2017-01-01

    We explored acquired immunity resulting from vaccination in 3 to 7-year-old children, chronically exposed to multiple heavy metals and metalloids, in an e-waste recycling area (Guiyu, China). Child blood levels of ten heavy metals and metalloids, including lead (Pb), arsenic (As), mercury (Hg), chromium (Cr), cadmium (Cd), manganese (Mn), nickel (Ni), copper (Cu), zinc (Zn) and selenium (Se), and seven vaccine antibodies (diphtheria, pertussis, tetanus, hepatitis B, Japanese encephalitis, polio, measles) were measured. The exposed group had higher levels of blood Pb, Mn, Cu, Zn and Cr compared to the reference group (P 10 μg/dL) and high blood Cu and Zn (upper median value of each group) to be inversely associated with seven antibody titers. Antibody titers increased with age, BMI, high blood Mn (>15 μg/L), and high blood Cd and Ni (upper median value of each group). Results suggest multiple heavy metal and metalloid exposure, especially to Pb, Zn and Cu, may be a risk factor inhibiting the development of child immunity, resulting in decreased child antibody levels against vaccines. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. A Market Basket Survey of Horticultural Fruits for Arsenic and Trace Metal Contamination in Southeast Nigeria and Potential Health Risk Implications

    OpenAIRE

    Chigozie Damian Ezeonyejiaku; Maximilian Obinna Obiakor

    2017-01-01

    Background. Elevated arsenic and trace metal contamination of the terrestrial food chain represents one of the most significant environmental risk exposures for human populations in developing countries. Metalloid and metal contamination in horticultural crop produce such as fruit is a public health concern in Nigeria. Local fruits are cheap sources of vitamins and minerals for the resident population and pose an important dietary threat of metal(loid) toxicity through consumption. Objecti...

  13. Comparison Study on the Estimation of the Spatial Distribution of Regional Soil Metal(loids Pollution Based on Kriging Interpolation and BP Neural Network

    Directory of Open Access Journals (Sweden)

    Zhenyi Jia

    2017-12-01

    Full Text Available Soil pollution by metal(loids resulting from rapid economic development is a major concern. Accurately estimating the spatial distribution of soil metal(loid pollution has great significance in preventing and controlling soil pollution. In this study, 126 topsoil samples were collected in Kunshan City and the geo-accumulation index was selected as a pollution index. We used Kriging interpolation and BP neural network methods to estimate the spatial distribution of arsenic (As and cadmium (Cd pollution in the study area. Additionally, we introduced a cross-validation method to measure the errors of the estimation results by the two interpolation methods and discussed the accuracy of the information contained in the estimation results. The conclusions are as follows: data distribution characteristics, spatial variability, and mean square errors (MSE of the different methods showed large differences. Estimation results from BP neural network models have a higher accuracy, the MSE of As and Cd are 0.0661 and 0.1743, respectively. However, the interpolation results show significant skewed distribution, and spatial autocorrelation is strong. Using Kriging interpolation, the MSE of As and Cd are 0.0804 and 0.2983, respectively. The estimation results have poorer accuracy. Combining the two methods can improve the accuracy of the Kriging interpolation and more comprehensively represent the spatial distribution characteristics of metal(loids in regional soil. The study may provide a scientific basis and technical support for the regulation of soil metal(loid pollution.

  14. Comparison Study on the Estimation of the Spatial Distribution of Regional Soil Metal(loid)s Pollution Based on Kriging Interpolation and BP Neural Network.

    Science.gov (United States)

    Jia, Zhenyi; Zhou, Shenglu; Su, Quanlong; Yi, Haomin; Wang, Junxiao

    2017-12-26

    Soil pollution by metal(loid)s resulting from rapid economic development is a major concern. Accurately estimating the spatial distribution of soil metal(loid) pollution has great significance in preventing and controlling soil pollution. In this study, 126 topsoil samples were collected in Kunshan City and the geo-accumulation index was selected as a pollution index. We used Kriging interpolation and BP neural network methods to estimate the spatial distribution of arsenic (As) and cadmium (Cd) pollution in the study area. Additionally, we introduced a cross-validation method to measure the errors of the estimation results by the two interpolation methods and discussed the accuracy of the information contained in the estimation results. The conclusions are as follows: data distribution characteristics, spatial variability, and mean square errors (MSE) of the different methods showed large differences. Estimation results from BP neural network models have a higher accuracy, the MSE of As and Cd are 0.0661 and 0.1743, respectively. However, the interpolation results show significant skewed distribution, and spatial autocorrelation is strong. Using Kriging interpolation, the MSE of As and Cd are 0.0804 and 0.2983, respectively. The estimation results have poorer accuracy. Combining the two methods can improve the accuracy of the Kriging interpolation and more comprehensively represent the spatial distribution characteristics of metal(loid)s in regional soil. The study may provide a scientific basis and technical support for the regulation of soil metal(loid) pollution.

  15. Arsenic Mobility and Availability in Sediments by Application of BCR Sequential Extractions Method

    International Nuclear Information System (INIS)

    Larios, R.; Fernandez, R.; Rucandio, M. I.

    2011-01-01

    Arsenic is a metalloid found in nature, both naturally and due to anthropogenic activities. Among them, mining works are an important source of arsenic release to the environment. Asturias is a region where important mercury mines were exploited, and in them arsenic occurs in para genesis with mercury minerals. The toxicity and mobility of this element depends on the chemical species it is found. Fractionation studies are required to analyze the mobility of this metalloid in soils and sediments. Among them, the proposed by the Bureau Community of Reference (BCR) is one of the most employed. This method attempts to divide up, by operationally defined stages, the amount of this element associated with carbonates (fraction 1), iron and manganese oxy hydroxides (fraction 2), organic matter and sulphides (fraction 3), and finally as the amount associated residual fraction to primary and secondary minerals, that is, from the most labile fractions to the most refractory ones. Fractionation of arsenic in sediments from two mines in Asturias were studied, La Soterrana and Los Rueldos. Sediments from La Soterrana showed high levels of arsenic in the non-residual phases, indicating that the majority of arsenic has an anthropogenic origin. By contrast, in sediments from Los Rueldos most of the arsenic is concentrated in the residual phase, indicating that this element remains bound to very refractory primary minerals, as is also demonstrated by the strong correlation of arsenic fractionation and the fractionation of elements present in refractory minerals, such as iron, aluminum and titanium. (Author) 51 refs.

  16. Mineral resource of the month: antimony

    Science.gov (United States)

    ,

    2008-01-01

    The article describes the characteristics and industrial uses of antimony. Antimony, which is produced as a byproduct of mining other metals such as gold, lead or silver, is used in everything from flame retardants, batteries, ceramics and glass. It is also used in glass for television picture tubes, computer monitors, pigments and catalysts.

  17. Hyperaccumulators of metal and metalloid trace elements: facts and fiction.

    NARCIS (Netherlands)

    van der Ent, A.; Baker, A.J.M.; Reeves, R.D.; Pollard, A.J.; Schat, H.

    2012-01-01

    Background: Plants that accumulate metal and metalloid trace elements to extraordinarily high concentrations in their living biomass have inspired much research worldwide during the last decades. Hyperaccumulators have been recorded and experimentally confirmed for elements such as nickel, zinc,

  18. Leaching capacity of metals-metalloids and recovery of valuable materials from waste LCDs.

    Science.gov (United States)

    Savvilotidou, Vasiliki; Hahladakis, John N; Gidarakos, Evangelos

    2015-11-01

    The purpose of Directive 2012/19/EU which is related to WEEE (Waste Electrical and Electronic Equipment), also known as "e-waste", is to contribute to their sustainable production and consumption that would most possibly be achieved by their recovery, recycling and reuse. Under this perspective, the present study focused on the recovery of valuable materials, metals and metalloids from LCDs (Liquid Crystal Displays). Indium (In), arsenic (As) and stibium (Sb) were selected to be examined for their Leaching Capacity (R) from waste LCDs. Indium was selected mainly due to its rarity and preciousness, As due to its high toxicity and wide use in LCDs and Sb due to its recent application as arsenic's replacement to improve the optimal clarity of a LCD screen. The experimental procedure included disassembly of screens along with removal and recovery of polarizers via thermal shock, cutting, pulverization and digestion of the shredded material and finally leaching evaluation of the aforementioned elements. Leaching tests were conducted under various temperatures, using various solid:liquid (S/L) ratios and solvents (acid mixtures), to determine the optimal conditions for obtaining the maximum leaching capacities. The examined elements exhibited different leaching behaviors, mainly due to the considerable diversity in their inherent characteristic properties. Indium demonstrated the highest recovery percentages (approximately 60%), while the recovery of As and Sb was unsuccessful, obtaining poor leaching percentages (0.16% and 0.5%, respectively). Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. [Distributions and influencing factors of total dissolved inorganic antimony in the coastal area of Zhejiang and Fujian].

    Science.gov (United States)

    Zhang, Xu-Zhou; Ren, Jing-Ling; Liu, Zong-Guang; Fan, Xiao-Peng; Liu, Cheng-Gang; Wu, Ying

    2014-02-01

    Antimony has been ubiquitously present in the aquatic environment as a toxic and rare metalloid element. The contamination of antimony and its compounds in the environment is increasingly severe, so it has been received extensive attention by the international scientific community. The cruise was carried out in the coastal area of Zhejiang and Fujian provinces in the East China Sea (ECS) in May 2008. The concentrations of total dissolved inorganic antimony (TDISb) were measured by Hydride Generation-Atomic Fluorescence (HG-AFS). The concentration ranges of TDISb in the surface and bottom layer were 0.68-5.64 nmol x L(-1) and 0.71-5.25 nmol x L(-1) with averages of 2.25 and 1.79 nmol x L(-1), respectively. The concentration of TDISb in the study area was lower than the environmental quality standards for surface water of China and drinking water standards of World Health Organization (about 41.08 nmol x L(-1)), indicating that it remained at the pristine level. The concentration of TDISb decreased gradually from the coastal area to the central ECS shelf with higher concentration in the surface layer than the bottom. Water mass mixing, adsorption/desorption behavior on the surface of the suspended particulate matters (SPM) and biological activities were the main influence factors of TDISb biogeochemistry in the study area.

  20. Comparative proteomic analysis reveals heart toxicity induced by chronic arsenic exposure in rats

    International Nuclear Information System (INIS)

    Huang, Qingyu; Xi, Guochen; Alamdar, Ambreen; Zhang, Jie; Shen, Heqing

    2017-01-01

    Arsenic is a widespread metalloid in the environment, which poses a broad spectrum of adverse effects on human health. However, a global view of arsenic-induced heart toxicity is still lacking, and the underlying molecular mechanisms remain unclear. By performing a comparative quantitative proteomic analysis, the present study aims to investigate the alterations of proteome profile in rat heart after long-term exposure to arsenic. As a result, we found that the abundance of 81 proteins were significantly altered by arsenic treatment (35 up-regulated and 46 down-regulated). Among these, 33 proteins were specifically associated with cardiovascular system development and function, including heart development, heart morphology, cardiac contraction and dilation, and other cardiovascular functions. It is further proposed that the aberrant regulation of 14 proteins induced by arsenic would disturb cardiac contraction and relaxation, impair heart morphogenesis and development, and induce thrombosis in rats, which is mediated by the Akt/p38 MAPK signaling pathway. Overall, these findings will augment our knowledge of the involved mechanisms and develop useful biomarkers for cardiotoxicity induced by environmental arsenic exposure. - Highlights: • Arsenic exposure has been associated with a number of adverse health effects. • The molecular mechanisms involved in arsenic-induced cardiotoxicity remain unclear. • Differential proteins were identified in arsenic-exposed rat heart by proteomics. • Arsenic induces heart toxicity through the Akt/p38 MAPK signaling pathway. - Label-free quantitative proteomic analysis of rat heart reveals putative mechanisms and biomarkers for arsenic-induced cardiotoxicity.

  1. Roles of biomarkers in evaluating interactions among mixtures of lead, cadmium and arsenic

    International Nuclear Information System (INIS)

    Wang Gensheng; Fowler, Bruce A.

    2008-01-01

    Human exposure to environmental chemicals is most correctly characterized as exposure to mixtures of these agents. The metals/metalloids, lead (Pb), cadmium (Cd), and arsenic (As), are among the leading toxic agents detected in the environment. Exposure to these elements, particularly at chronic low dose levels, is still a major public health concern. Concurrent exposure to Pb, Cd, or As may produce additive or synergistic interactions or even new effects that are not seen in single component exposures. Evaluating these interactions on a mechanistic basis is essential for risk assessment and management of metal/metalloid mixtures. This paper will review a number of individual studies that addressed interactions of these metals/metalloids in both experimental and human exposure studies with particular emphasis on biomarkers. In general, co-exposure to metal/metalloid mixtures produced more severe effects at both relatively high dose and low dose levels in a biomarker-specific manner. These effects were found to be mediated by dose, duration of exposure and genetic factors. While traditional endpoints, such as morphological changes and biochemical parameters for target organ toxicity, were effective measures for evaluating the toxicity of high dose metal/metalloid mixtures, biomarkers for oxidative stress, altered heme biosynthesis parameters, and stress proteins showed clear responses in evaluating toxicity of low dose metal/metalloid mixtures. Metallothionein, heat shock proteins, and glutathione are involved in regulating interactive effects of metal/metalloid mixtures at low dose levels. These findings suggest that further studies on interactions of these metal/metalloid mixtures utilizing biomarker endpoints are highly warranted

  2. Field-portable-XRF reveals the ubiquity of antimony in plastic consumer products.

    Science.gov (United States)

    Turner, Andrew; Filella, Montserrat

    2017-04-15

    Very little systematic information exists on the occurrence and concentrations of antimony (Sb) in consumer products. In this study, a Niton XL3t field-portable-X-ray fluorescence (FP-XRF) spectrometer was deployed in situ and in the laboratory to provide quantitative information on Sb dissipated in plastic items and fixtures (including rubber, textile and foamed materials) from the domestic, school, vehicular and office settings. The metalloid was detected in 18% of over 800 measurements performed, with concentrations ranging from about 60 to 60,000μgg -1 . The highest concentrations were encountered in white, electronic casings and in association with similar concentrations of Br, consistent with the use of antimony oxides (e.g. Sb 2 O 3 ) as synergistic flame retardants. Concentrations above 1000μgg -1 , and with or without Br, were also encountered in paints, piping and hosing, adhesives, whiteboards, Christmas decorations, Lego blocks, document carriers, garden furniture, upholstered products and interior panels of private motor vehicles. Lower concentrations of Sb were encountered in a wide variety of items but its presence (without Br) in food tray packaging, single-use drinks bottles, straws and small toys were of greatest concern from a human health perspective. While the latter observations are consistent with the use of antimony compounds as catalysts in the production of polyethylene terephthalate, co-association of Sb and Br in many products not requiring flame retardancy suggests that electronic casings are widely recycled. Further research is required into the mobility of Sb when dissipated in new, recycled and aged polymeric materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Biosorbents for Removing Hazardous Metals and Metalloids

    Directory of Open Access Journals (Sweden)

    Katsutoshi Inoue

    2017-07-01

    Full Text Available Biosorbents for remediating aquatic environmental media polluted with hazardous heavy metals and metalloids such as Pb(II, Cr(VI, Sb(III and V, and As(III and V were prepared from lignin waste, orange and apple juice residues, seaweed and persimmon and grape wastes using simple and cheap methods. A lignophenol gel such as lignocatechol gel was prepared by immobilizing the catechol functional groups onto lignin from sawdust, while lignosulfonate gel was prepared directly from waste liquor generated during pulp production. These gels effectively removed Pb(II. Orange and apple juice residues, which are rich in pectic acid, were easily converted using alkali (e.g., calcium hydroxide into biosorbents that effectively removed Pb(II. These materials also effectively removed Sb(III and V and As(III and V when these were preloaded with multi-valent metal ions such as Zr(IV and Fe(III. Similar biosorbents were prepared from seaweed waste, which is rich in alginic acid. Other biosorbents, which effectively removed Cr(VI, were prepared by simply treating persimmon and grape wastes with concentrated sulfuric acid.

  4. Facultative hyperaccumulation of heavy metals and metalloids.

    Science.gov (United States)

    Pollard, A Joseph; Reeves, Roger D; Baker, Alan J M

    2014-03-01

    Approximately 500 species of plants are known to hyperaccumulate heavy metals and metalloids. The majority are obligate metallophytes, species that are restricted to metalliferous soils. However, a smaller but increasing list of plants are "facultative hyperaccumulators" that hyperaccumulate heavy metals when occurring on metalliferous soils, yet also occur commonly on normal, non-metalliferous soils. This paper reviews the biology of facultative hyperaccumulators and the opportunities they provide for ecological and evolutionary research. The existence of facultative hyperaccumulator populations across a wide edaphic range allows intraspecific comparisons of tolerance and uptake physiology. This approach has been used to study zinc and cadmium hyperaccumulation by Noccaea (Thlaspi) caerulescens and Arabidopsis halleri, and it will be instructive to make similar comparisons on species that are distributed even more abundantly on normal soil. Over 90% of known hyperaccumulators occur on serpentine (ultramafic) soil and accumulate nickel, yet there have paradoxically been few experimental studies of facultative nickel hyperaccumulation. Several hypotheses suggested to explain the evolution of hyperaccumulation seem unlikely when most populations of a species occur on normal soil, where plants cannot hyperaccumulate due to low metal availability. In such species, it may be that hyperaccumulation is an ancestral phylogenetic trait or an anomalous manifestation of physiological mechanisms evolved on normal soils, and may or may not have direct adaptive benefits. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. FIRST REPORT ON OTOTOXICITY OF MEGLUMINE ANTIMONIATE

    Directory of Open Access Journals (Sweden)

    Cláudia Maria Valete-Rosalino

    2014-09-01

    Full Text Available Introduction: Pentavalent antimonials are the first drug of choice in the treatment of tegumentary leishmaniasis. Data on ototoxicity related with such drugs is scarcely available in literature, leading us to develop a study on cochleovestibular functions. Case Report: A case of a tegumentary leishmaniasis patient, a 78-year-old man who presented a substantial increase in auditory threshold with tinnitus and severe rotatory dizziness during the treatment with meglumine antimoniate, is reported. These symptoms worsened in two weeks after treatment was interrupted. Conclusion: Dizziness and tinnitus had already been related to meglumine antimoniate. However, this is the first well documented case of cochlear-vestibular toxicity related to meglumine antimoniate.

  6. A comparative study of ion exchange properties of antimony (III) tungstoselenite with those of antimony (III) tungstate and antimony (III) selenite

    International Nuclear Information System (INIS)

    Janardanan, C.; Nair, S.M.K.

    1996-01-01

    A new inorganic ion exchanger, antimony (III) tungstoselenite, has been prepared and characterised. Its exchange capacity and distribution coefficients for various metal ions and the effects of temperature and electrolyte concentrations on ion exchange capacity have been compared with antimony (III) tungstate and antimony (III) selenite. Six binary separations using the exchanger have been carried out. (author). 7 refs., 1 tab

  7. Speciation of antimony in polyethylene terephthalate bottles

    International Nuclear Information System (INIS)

    Martin, R.R.; Ablett, J.; Shotyk, W.S.; Naftel, S.; Northrup, P.

    2010-01-01

    Antimony contamination has been reported in drinking water from polyethylene terephthalate (PET) bottles. Micro-X-ray fluorescence (XRF) analysis has been used to identify the distribution and chemical form of residual antimony used as a catalyst in the manufacture of PET bottles. The results are consistent with clusters of Sb(III) having dimensions of the order of tens of micrometers, clearly showing the ability of synchrotron radiation analyses to both map elemental distribution and determine oxidation state.

  8. Traffic-related distribution of antimony in roadside soils.

    Science.gov (United States)

    Földi, Corinna; Sauermann, Simon; Dohrmann, Reiner; Mansfeldt, Tim

    2018-06-01

    Vehicular emissions have become one of the main source of pollution of urban soils; this highlights the need for more detailed research on various traffic-related emissions and related distribution patterns. Since the banning of asbestos in the European Union, its substitution with antimony (Sb) in brake linings has led to increased inputs of this toxic metalloid to environmental compartments. The objective of this study was to provide detailed information about the spatial distribution patterns of Sb and to assess its mobility and bioavailability. Roadside soils along an arterial road (approx. 9000 vehicles per day) in Cologne (Germany) were studied along five transects, at four soil depths and at seven sampling points set at varying distances from the road (n = 140). For all samples, comprehensive soil characterization was performed and inverse aqua regia-extractable trace metal content was determined being pseudo-total contents. Furthermore, for one transect, also total Sb and a chemical sequential extraction procedure was applied (n = 28). Pseudo-total Sb for all transects decreased significantly with soil depth and distance from the road, reflecting a distribution pattern similar to that of other trace metals associated with brake lining emissions. Conversely, metals associated with exhaust emissions showed a convex distribution. The geochemical fractionation of Sb revealed the following trends: i) non-specifically sorbed Sb was <5%; ii) specifically sorbed Sb was only detected within 1 m distance from the road and decreased with depth; iii) Sb associated with poorly-crystalline Fe oxides decreased with distance from the road; and iv) content of Sb bounded to well-crystalline Fe oxides, and Sb present in the residual fraction remained relatively constant at each depth. Consequently, roadside soils appear to inhibit brake lining-related Sb contamination, with significant but rather low ecotoxicological potential for input into surface and groundwater

  9. Preparation and properties of antimony thin film anode materials

    Institute of Scientific and Technical Information of China (English)

    SU Shufa; CAO Gaoshao; ZHAO Xinbing

    2004-01-01

    Metallic antimony thin films were deposited by magnetron sputtering and electrodeposition. Electrochemical properties of the thin film as anode materials for lithium-ion batteries were investigated and compared with those of antimony powder. It was found that both magnetron sputtering and electrodeposition are easily controllable processes to deposit antimony films with fiat charge/discharge potential plateaus. The electrochemical performances of antimony thin films, especially those prepared with magnetron sputtering, are better than those of antimony powder. The reversible capacities of the magnetron sputtered antimony thin film are above 400 mA h g-1 in the first 15 cycles.

  10. Antimony-Induced Neurobehavioral and Biochemical Perturbations in Mice.

    Science.gov (United States)

    Tanu, Tanzina; Anjum, Adiba; Jahan, Momotaj; Nikkon, Farjana; Hoque, Mominul; Roy, Apurba Kumar; Haque, Azizul; Himeno, Seiichiro; Hossain, Khaled; Saud, Zahangir Alam

    2018-03-08

    Groundwater used for drinking has been contaminated with naturally occurring inorganic arsenic and other metals, and metal-contaminated drinking water is the biggest threat to public health in Bangladesh. Toxic metals present in the drinking water have a strong relationship with chronic diseases in humans. Antimony (Sb), a naturally occurring metal, has been reported to be present in the drinking water along with other heavy metals in Bangladesh. Although Sb is present in the environment, very little attention has been given to the toxic effects of Sb. The present study was designed to investigate the in vivo effects of Sb on neurobehavioral changes like anxiety, learning and memory impairment, and blood indices related to organ dysfunction. Mice exposed to antimony potassium-tartrate hydrate (Sb) (10 mg/kg body weight) significantly (p < 0.05) decreased the time spent in open arms while increased the time spent in closed arms compared to the control mice in elevated plus maze. The mean latency time of control group to find the platform decreased (p < 0.05) significantly during 7 days learning as compared to Sb-treated group in Morris water maze test, and Sb-exposed group spent significantly (p < 0.05) less time in the desired quadrant as compared to the control group in probe trial. Sb treatment also significantly altered blood indices related to liver and kidney dysfunction. Additionally, Sb-induced biochemical alterations were associated with significant perturbations in histological architecture of liver and kidney of Sb-exposed mice. These data suggest that Sb has a toxic effect on neurobehavioral and biochemical changes in mice.

  11. Treatability study of arsenic, fluoride and nitrate from drinking water by adsorption process

    International Nuclear Information System (INIS)

    Abbas, N.; Irfan, M.; Butt, M.T.

    2014-01-01

    Natural contamination of nitrate, fluoride, arsenic and dissolved salts in ground water sources is the main health menace at present in different parts of Pakistan. The metalloids especially arsenic, fluoride and nitrate pose severe health hazards to human being. The present research work investigated the removal techniques for arsenic, fluoride and nitrate from drinking water by adsorption process. Ion exchange resins, activated carbon and activated alumina were used for removal of selected contaminants. These adsorbents were evaluated by comparing their removal efficiency as well as requisite operator skills. The result of activated alumina was found good as compared to activated carbon, mix bed resins and ion exchange resins (IRA-400) for maximum removal of arsenic, nitrate and fluoride. The removal efficiency of arsenic, fluoride and nitrate were found 96%, 99%, 98% respectively in case of activated alumina. The advantage of adsorption process is easy to use and relatively cheaper as compared to other treatment methodologies. (author)

  12. Physical, Chemical, and Biological Methods for the Removal of Arsenic Compounds

    Directory of Open Access Journals (Sweden)

    K. T. Lim

    2014-01-01

    Full Text Available Arsenic is a toxic metalloid which is widely distributed in nature. It is normally present as arsenate under oxic conditions while arsenite is predominant under reducing condition. The major discharges of arsenic in the environment are mainly due to natural sources such as aquifers and anthropogenic sources. It is known that arsenite salts are more toxic than arsenate as it binds with vicinal thiols in pyruvate dehydrogenase while arsenate inhibits the oxidative phosphorylation process. The common mechanisms for arsenic detoxification are uptaken by phosphate transporters, aquaglyceroporins, and active extrusion system and reduced by arsenate reductases via dissimilatory reduction mechanism. Some species of autotrophic and heterotrophic microorganisms use arsenic oxyanions for their regeneration of energy. Certain species of microorganisms are able to use arsenate as their nutrient in respiratory process. Detoxification operons are a common form of arsenic resistance in microorganisms. Hence, the use of bioremediation could be an effective and economic way to reduce this pollutant from the environment.

  13. Arsenic: A Review of the Element's Toxicity, Plant Interactions, and Potential Methods of Remediation.

    Science.gov (United States)

    Hettick, Bryan E; Cañas-Carrell, Jaclyn E; French, Amanda D; Klein, David M

    2015-08-19

    Arsenic is a naturally occurring element with a long history of toxicity. Sites of contamination are found worldwide as a result of both natural processes and anthropogenic activities. The broad scope of arsenic toxicity to humans and its unique interaction with the environment have led to extensive research into its physicochemical properties and toxic behavior in biological systems. The purpose of this review is to compile the results of recent studies concerning the metalloid and consider the chemical and physical properties of arsenic in the broad context of human toxicity and phytoremediation. Areas of focus include arsenic's mechanisms of human toxicity, interaction with plant systems, potential methods of remediation, and protocols for the determination of metals in experimentation. This assessment of the literature indicates that controlling contamination of water sources and plants through effective remediation and management is essential to successfully addressing the problems of arsenic toxicity and contamination.

  14. Comparative proteomic analysis reveals heart toxicity induced by chronic arsenic exposure in rats

    DEFF Research Database (Denmark)

    Huang, Qingyu; Xi, Guochen; Alamdar, Ambreen

    2017-01-01

    Arsenic is a widespread metalloid in the environment, which poses a broad spectrum of adverse effects on human health. However, a global view of arsenic-induced heart toxicity is still lacking, and the underlying molecular mechanisms remain unclear. By performing a comparative quantitative...... proteomic analysis, the present study aims to investigate the alterations of proteome profile in rat heart after long-term exposure to arsenic. As a result, we found that the abundance of 81 proteins were significantly altered by arsenic treatment (35 up-regulated and 46 down-regulated). Among these, 33...... proteins were specifically associated with cardiovascular system development and function, including heart development, heart morphology, cardiac contraction and dilation, and other cardiovascular functions. It is further proposed that the aberrant regulation of 14 proteins induced by arsenic would disturb...

  15. Health concerns of heavy metals and metalloids.

    Science.gov (United States)

    Cooksey, Chris

    2012-01-01

    There is a long history and an overwhelming amount of data on the toxicity of heavy metal compounds. Here a brief look is taken of some aspects of the toxicity of lead, cadmium, mercury and arsenic, chosen for their historical importance and environmental significance, highlighting especially the contrast between the acute and chronic toxicity of purely inorganic species and their organic derivatives. For further details of other toxic metal compounds, the reader might like to consult "Elements of murder: a history of poison" by John Emsley (2005, Oxford University Press).

  16. Arsenic Hyperaccumulation Strategies: An Overview

    Directory of Open Access Journals (Sweden)

    Zahra Souri

    2017-07-01

    Full Text Available Arsenic (As pollution, which is on the increase around the world, poses a growing threat to the environment. Phytoremediation, an important green technology, uses different strategies, including As uptake, transport, translocation, and detoxification, to remediate this metalloid. Arsenic hyperaccumulator plants have developed various strategies to accumulate and tolerate high concentrations of As. In these plants, the formation of AsIII complexes with GSH and phytochelatins and their transport into root and shoot vacuoles constitute important mechanisms for coping with As stress. The oxidative stress induced by reactive oxygen species (ROS production is one of the principal toxic effects of As; moreover, the strong antioxidative defenses in hyperaccumulator plants could constitute an important As detoxification strategy. On the other hand, nitric oxide activates antioxidant enzyme and phytochelatins biosynthesis which enhances As stress tolerance in plants. Although several studies have focused on transcription, metabolomics, and proteomic changes in plants induced by As, the mechanisms involved in As transport, translocation, and detoxification in hyperaccumulator plants need to be studied in greater depth. This review updates recent progress made in the study of As uptake, translocation, chelation, and detoxification in As hyperaccumulator plants.

  17. Antimony in the Contaminated Site of El Triunfo, Baja California Sur, Mexico

    Directory of Open Access Journals (Sweden)

    Marmolejo-Rodríguez A. J.

    2013-04-01

    Full Text Available Antimony has properties similar to arsenic with some of its compounds toxic to humans. Therefore it is necessary to control the wastes accumulated by anthropogenic activities, such as mining, where it is in tailings to be released to the environment. According to the Environment Protection Agency, the maximum value in sediments is 11.2 mg Sb kg–1 and the Earth’s crust average is 0.2 mg Sb kg–1. In this semiarid area, the drainage basin El Carrizal is impacted with wastes of an abandoned gold mine at the Mining District El Triunfo (MD – ET which have tailings with 17,600 mg kg–1 of antimony. In the main dry river (arroyo, the Sb content is between 0.6 and 122 mg kg–1. This element is transported from the source throughout the fluvial basin to discharge into the Pacific Ocean. In the arroyo mouth we collected one sedimentary core and the sediment from dunes (28.6 – 45.7 and 6.43 – 7.74 mg Sb kg–1. This research concluded the antimony is enriched in this semiarid system, with Normalized Enrichment Factors severely enriched mainly in arroyo sediments close to the MD-ET

  18. A review of the epidemiologic literature on the role of environmental arsenic exposure and cardiovascular diseases

    International Nuclear Information System (INIS)

    Wang, C.-H.; Hsiao, C.K.; Chen, C.-L.; Hsu, L.-I; Chiou, H.-Y.; Chen, S.-Y.; Hsueh, Y.-M.; Wu, M.-M.; Chen, C.-J.

    2007-01-01

    Cardiovascular disease is the leading cause of mortality worldwide. Arsenic is a ubiquitous metalloid in the crust of the earth. Chronic arsenic poisoning is becoming an emerging epidemic in Asia. Epidemiological studies have shown that chronic arsenic poisoning through ingestion of arsenic-contaminated water is associated with various cardiovascular diseases in dose-response relationships. These cardiovascular disorders include carotid atherosclerosis detected by ultrasonography, impaired microcirculation, prolonged QT interval and increased QT dispersion in electrocardiography, and clinical outcomes such as hypertension, blackfoot disease (a unique peripheral vascular disease endemic in southwestern Taiwan), coronary artery disease and cerebral infarction. Chronic arsenic poisoning is an independent risk factor for cardiovascular disease. The adverse cardiovascular effects of long-term arsenic exposure may be persistent and/or irreversible. Arsenic-induced cardiovascular diseases in human population may result from the interaction among genetic, environment and nutritional factors. The major adverse cardiovascular effect of chronic arsenic poisoning has been established qualitatively and quantitatively in the high arsenic exposure areas, but the low-dose effect of arsenic on cardiovascular diseases remains to be explored. Cardiovascular death is the major cause of mortality worldwide, and a small increased risk may imply a large quantity of excess mortality

  19. Two facets of world arsenic problem solution: crop poisoning restriction and enforcement of phytoremediation.

    Science.gov (United States)

    Kofroňová, Monika; Mašková, Petra; Lipavská, Helena

    2018-05-07

    This review provides insights into As toxicity in plants with focus on photosynthesis and sugar metabolism as important arsenic targets and simultaneously defence tools against accompanying oxidative stress. Heavy metal contamination is a great problem all over the world. Arsenic, a metalloid occurring naturally in the Earth's crust, also massively spreads out in the environment by human activities. Its accumulation in crops poses a severe health risk to humans and animals. Besides the restriction of human-caused contamination, there are two basic ways how to cope with the problem: first, to limit arsenic accumulation in harvestable parts of the crops; second, to make use of some arsenic hyperaccumulating plants for phytoremediation of contaminated soils and waters. Progress in the use of both strategies depends strongly on the level of our knowledge on the physiological and morphological processes resulting from arsenic exposure. Arsenic uptake is mediated preferentially by P and Si transporters and its accumulation substantially impairs plant metabolism at numerous levels including damages through oxidative stress. Rice is a predominantly studied crop where substantial progress has been made in understanding of the mechanisms of arsenic uptake, distribution, and detoxification, though many questions still remain. Full exploitation of plant potential for soil and water phytoremediations also requires deep understanding of the plant response to this toxic metalloid. The aim of this review is to summarize data regarding the effect of arsenic on plant physiology with a focus on mechanisms providing increased arsenic tolerance and/or hyperaccumulation. The emphasis is placed on the topic unjustifiably neglected in the previous reviews - i.e., carbohydrate metabolism, tightly connected to photosynthesis, and beside others involved in plant ability to cope with arsenic-induced oxidative and nitrosative stresses.

  20. 40 CFR 721.4668 - Hydrated alkaline earth metal salts of metalloid oxyanions.

    Science.gov (United States)

    2010-07-01

    ... metalloid oxyanions. 721.4668 Section 721.4668 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.4668 Hydrated alkaline earth metal salts of metalloid oxyanions. (a... hydrated alkaline earth metal salts of metalloid oxyanions (PMN P-94-1557) is subject to reporting under...

  1. Antimony measurement in high pressure reactor water loop

    International Nuclear Information System (INIS)

    Svarc, V.; Dudjakova, K.; Martykan, M.; Sus, F.; Kysela, J.

    2005-01-01

    RVS 3 loop is highly contaminated due to antimony main circulating pump bearings. Antimony is one of the major contaminant in PWR units. Different technologies to remove Sb from the systems have been tried. (N.T.)

  2. High levels of antimony in dust from e-waste recycling in southeastern China

    International Nuclear Information System (INIS)

    Bi, Xiangyang; Li, Zhonggen; Zhuang, Xiaochun; Han, Zhixuan; Yang, Wenlin

    2011-01-01

    Environmental contamination due to uncontrolled e-waste recycling is an emerging global issue. Antimony (Sb) is a toxic element used in semiconductor components and flame retardants for circuit board within electronic equipment. When e-waste is recycled, Sb is released and contaminates the surrounding environment; however, few studies have characterized the extent of this problem. In this study, we investigated Sb and arsenic (As) distributions in indoor dust from 13 e-waste recycling villages in Guiyu, Guangdong Province, southeastern China. Results revealed significantly elevated concentrations of Sb (6.1-232 mg/kg) in dust within all villages, which were 3.9-147 times higher than those from the non e-waste sites, indicating e-waste recycling was an important source of Sb pollution. On the contrary, As concentrations (5.4-17.7 mg/kg) in e-waste dusts were similar to reference values from the control sites. Therefore, dusts emitted from e-waste recycling may be characterized by high Sb/As ratios, which may help identify the contamination due to the e-waste recycling activities. - Highlights: → Antimony and arsenic concentrations in dust from e-waste recycling were investigated. → E-waste recycling is an important emerging source of Sb pollution. → Sb/As ratios may help identify the e-waste contamination.

  3. High levels of antimony in dust from e-waste recycling in southeastern China

    Energy Technology Data Exchange (ETDEWEB)

    Bi, Xiangyang, E-mail: bixy@cug.edu.cn [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); Faculty of Earth Science, China University of Geosciences, Wuhan 430074 (China); Li, Zhonggen [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002 (China); Zhuang, Xiaochun [Faculty of Materials Science and Chemical Engineering, China University of Geosciences, Wuhan 430074 (China); Han, Zhixuan [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); Faculty of Earth Science, China University of Geosciences, Wuhan 430074 (China); Yang, Wenlin [Faculty of Earth Science, China University of Geosciences, Wuhan 430074 (China)

    2011-11-01

    Environmental contamination due to uncontrolled e-waste recycling is an emerging global issue. Antimony (Sb) is a toxic element used in semiconductor components and flame retardants for circuit board within electronic equipment. When e-waste is recycled, Sb is released and contaminates the surrounding environment; however, few studies have characterized the extent of this problem. In this study, we investigated Sb and arsenic (As) distributions in indoor dust from 13 e-waste recycling villages in Guiyu, Guangdong Province, southeastern China. Results revealed significantly elevated concentrations of Sb (6.1-232 mg/kg) in dust within all villages, which were 3.9-147 times higher than those from the non e-waste sites, indicating e-waste recycling was an important source of Sb pollution. On the contrary, As concentrations (5.4-17.7 mg/kg) in e-waste dusts were similar to reference values from the control sites. Therefore, dusts emitted from e-waste recycling may be characterized by high Sb/As ratios, which may help identify the contamination due to the e-waste recycling activities. - Highlights: {yields} Antimony and arsenic concentrations in dust from e-waste recycling were investigated. {yields} E-waste recycling is an important emerging source of Sb pollution. {yields} Sb/As ratios may help identify the e-waste contamination.

  4. Antimony trioxide-induced apoptosis is dependent on SEK1/JNK signaling.

    Science.gov (United States)

    Mann, Koren K; Davison, Kelly; Colombo, Myrian; Colosimo, April L; Diaz, Zuanel; Padovani, Alessandra M S; Guo, Qi; Scrivens, P James; Gao, Wenli; Mader, Sylvie; Miller, Wilson H

    2006-01-05

    Very little is known concerning the toxicity of antimony, despite its commercial use as a flame retardant and medical use as a treatment for parasitic infections. Our previous studies show that antimony trioxide (Sb(2)O(3)) induces growth inhibition in patient-derived acute promyelocytic leukemia (APL) cell lines, a disease in which a related metal, arsenic trioxide (As(2)O(3)), is used clinically. However, signaling pathways initiated by Sb(2)O(3) treatment remain undefined. Here, we show that Sb(2)O(3) treatment of APL cells is associated with increased apoptosis as well as differentiation markers. Sb(2)O(3)-induced reactive oxygen species (ROS) correlated with increased apoptosis. In addition, when we decreased the buffering capacity of the cell by depleting glutathione, ROS production and apoptosis was enhanced. Arsenic-resistant APL cells with increased glutathione levels exhibited increased cross-resistance to Sb(2)O(3). Based on studies implicating c-jun kinase (JNK) in the mediation of the response to As(2)O(3), we investigated the role for JNK in Sb(2)O(3)-induced apoptosis. Sb(2)O(3) activates JNK and its downstream target, AP-1. In fibroblasts with a genetic deletion in SEK1, an upstream regulator of JNK, Sb(2)O(3)-induced growth inhibition as well as JNK activation was decreased. These data suggest roles for ROS and the SEK1/JNK pathway in the cytotoxicity associated with Sb(2)O(3) exposure.

  5. Health and ecological risk assessment of heavy metals pollution in an antimony mining region: a case study from South China.

    Science.gov (United States)

    Fei, Jiang-Chi; Min, Xiao-Bo; Wang, Zhen-Xing; Pang, Zhi-Hua; Liang, Yan-Jie; Ke, Yong

    2017-12-01

    In recent years, international research on the toxicity of the heavy metal, antimony, has gradually changed focus from early medical and pharmacological toxicology to environmental toxicology and ecotoxicology. However, little research has been conducted for sources identification and risk management of heavy metals pollution by long-term antimony mining activities. In this study, a large number of investigations were conducted on the temporal and spatial distribution of antimony and related heavy metal contaminants (lead, zinc, and arsenic), as well as on the exposure risks for the population for the Yuxi river basin in the Hunan province, China. The scope of the investigations included mine water, waste rock, tailings, agricultural soil, surface water, river sediments, and groundwater sources of drinking water. Health and ecological risks from exposure to heavy metal pollution were evaluated. The main pollution sources of heavy metals in the Yuxi River basin were analyzed. Remediation programs and risk management strategies for heavy metal pollution were consequently proposed. This article provides a scientific basis for the risk assessment and management of heavy metal pollution caused by antimony basin ore mining.

  6. Arsenic: bioaccessibility from seaweed and rice, dietary exposure calculations and risk assessment.

    Science.gov (United States)

    Brandon, Esther F A; Janssen, Paul J C M; de Wit-Bos, Lianne

    2014-01-01

    Arsenic is a metalloid that occurs in food and the environment in different chemical forms. Inorganic arsenic is classified as a class I carcinogen. The inorganic arsenic intake from food and drinking water varies depending on the geographic arsenic background. Non-dietary exposure to arsenic is likely to be of minor importance for the general population within the European Union. In Europe, arsenic in drinking water is on average low, but food products (e.g. rice and seaweed) are imported from all over the world including from regions with naturally high arsenic levels. Therefore, specific populations living in Europe could also have a high exposure to inorganic arsenic due to their consumption pattern. Current risk assessment is based on exposure via drinking water. For a good estimation of the risks of arsenic in food, it is important to investigate if the bioavailability of inorganic arsenic from food is different from drinking water. The present study further explores the issue of European dietary exposure to inorganic arsenic via rice and seaweed and its associated health risks. The bioavailability of inorganic arsenic was measured in in vitro digestion experiments. The data indicate that the bioavailability of inorganic arsenic is similar for rice and seaweed compared with drinking water. The calculated dietary intake for specific European Union populations varied between 0.44 and 4.51 µg kg⁻¹ bw day⁻¹. The margins of exposure between the inorganic intake levels and the BMDL0.5 values as derived by JECFA are low. Decreasing the intake of inorganic arsenic via Hijiki seaweed could be achieved by setting legal limits similar to those set for rice by the Codex Alimentarius Commission in July 2014.

  7. Spatial clustering of metal and metalloid mixtures in unregulated water sources on the Navajo Nation - Arizona, New Mexico, and Utah, USA.

    Science.gov (United States)

    Hoover, Joseph H; Coker, Eric; Barney, Yolanda; Shuey, Chris; Lewis, Johnnye

    2018-08-15

    Contaminant mixtures are identified regularly in public and private drinking water supplies throughout the United States; however, the complex and often correlated nature of mixtures makes identification of relevant combinations challenging. This study employed a Bayesian clustering method to identify subgroups of water sources with similar metal and metalloid profiles. Additionally, a spatial scan statistic assessed spatial clustering of these subgroups and a human health metric was applied to investigate potential for human toxicity. These methods were applied to a dataset comprised of metal and metalloid measurements from unregulated water sources located on the Navajo Nation, in the southwest United States. Results indicated distinct subgroups of water sources with similar contaminant profiles and that some of these subgroups were spatially clustered. Several profiles had metal and metalloid concentrations that may have potential for human toxicity including arsenic, uranium, lead, manganese, and selenium. This approach may be useful for identifying mixtures in water sources, spatially evaluating the clusters, and help inform toxicological research investigating mixtures. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Potential of rice husks for antimony removal

    International Nuclear Information System (INIS)

    Khalid, Nasir; Ahmad, Shujaat; Toheed, Aqidat; Ahmed, Jamil

    2000-01-01

    The adsorption behavior of rice husks for antimony ions from aqueous solutions has been investigated as a function of appropriate electrolyte, equilibration time, hydrogen ions, amount of adsorbent, concentration of adsorbate, effect of diverse ions and temperature. The best conditions in which this material can be used as adsorbent have been explored. The radiotracer technique was employed to determine the distribution of antimony ( 122 Sb) using a batch method. Maximum adsorption was observed at 0.01 mol L -1 acid solutions (HNO 3 , HCl, H 2 SO 4 and HClO 4 ) using 1.0 g of adsorbent for 1.92x10 -5 mol L -1 antimony concentration in 10 min equilibration time. Studies show that the adsorption decreases with the increase in the concentrations of all the acids. The adsorption data follow the Freundlich isotherm over the range of 1.92x10 -5 to 2.05x10 -4 mol L -1 antimony concentration. The characteristic Freundlich constants i.e., 1/n=0.82±0.05 and K=4.61±0.07 m mol g -1 have been computed for the sorption system. The uptake of antimony increases with the rise in temperature (299-323 K). Thermodynamic quantities i.e., ΔG 0 , ΔS 0 and ΔH 0 have also been calculated for the system. The sorption process was found to be endothermic

  9. Perspectives of antimony compounds in oncology

    Institute of Scientific and Technical Information of China (English)

    Pankaj SHARMA; Diego PEREZ; Armando CABRERA; Nee ROSAS; Jose Luis ARIAS

    2008-01-01

    Antimony, a natural element that has been used as a drug for over more than 100 years, has remarkable therapeutic efficacy in patients with acute promyelocytic leukemia. This review focuses on recent advances in developing antimony anti- cancer agents with an emphasis on antimony coordination complexes, Sb (Ⅲ) and Sb (V). These complexes, which include many organometallic complexes, may provide a broader spectrum of antitumoral activity. They were compared with classical platinum anticancer drugs. The review covers the literature data pub- lished up to 2007. A number of antimonials with different antitumoral activities are known and have diverse applications, even though little research has been done on their possibilities. It might be feasible to develop more specific and effective inhibitors for phosphatase-targeted, anticancer therapeutics through the screen- ing of sodium stibogluconate (SSG) and potassium antimonyltartrate-related compounds, which are comprised of antimony conjugated to different organic moieties. For example, SSG appears to be a better inhibitor than suramin which is a compound known for its antineoplastic activity against several types of cancers.

  10. Antimony (SbIII) reduces growth, declines photosynthesis, and modifies leaf tissue anatomy in sunflower (Helianthus annuus L.).

    Science.gov (United States)

    Vaculík, Marek; Mrázová, Anna; Lux, Alexander

    2015-12-01

    The role of antimony (Sb)--a non-essential trace metalloid--in physiological processes running in crops is still poorly understood. Present paper describes the effect of Sb tartrate (SbIII) on growth, Sb uptake, photosynthesis, photosynthetic pigments, and leaf tissue organization in young sunflower plants grown in hydroponics. We found that growth of below- and aboveground part was reduced with increasing concentration of Sb in the medium. Although Sb was mostly taken up by sunflower roots and only small part (1-2%) was translocated to the shoots, decline in photosynthesis, transpiration, and decreased content of photosynthetic pigments were observed. This indicates that despite relatively low mobility of Sb in root-shoot system, Sb in shoot noticeably modifies physiological status and reduced plant growth. Additionally, leaf anatomical changes indicated that Sb reduced the size of intercellular spaces and made leaf tissue more compact.

  11. Extraction of antimony from nitric acid solutions using tributyl phosphate. II. Tributyl phosphate-antimony(V)-nitric acid system

    International Nuclear Information System (INIS)

    Lakaev, V.S.; Smelov, V.S.

    1989-01-01

    The extraction of pentavalent antimony from nitric acid solutions using tributyl phosphate has been investigated. A possible mechanism for the extraction of antimony(V) has been determined and the (pre)concentration constant for the process has been calculated. The composition of the extracted antimony(V) complex has been deduced. A negative effect of temperature on the distribution coefficient for antimony(V) has also been demonstrated

  12. ANTIMONY INDUCED CRYSTALLIZATION OF AMORPHOUS SILICON

    Institute of Scientific and Technical Information of China (English)

    Y. Wang; H.Z. Li; C.N. Yu; G.M. Wu; I. Gordon; P. Schattschneider; O. Van Der Biest

    2007-01-01

    Antimony induced crystallization of PVD (physics vapor deposition) amorphous silicon can be observed on sapphire substrates. Very large crystalline regions up to several tens of micrometers can be formed. The Si diffraction patterns of the area of crystallization can be observed with TEM (transmission electron microscopy). Only a few and much smaller crystals of the order of 1μm were formed when the antimony layer was deposited by MBE(molecular beam epitaxy) compared with a layer formed by thermal evaporation. The use of high vacuum is essential in order to observe any Sb induced crystallization at all. In addition it is necessary to take measures to limit the evaporation of the antimony.

  13. Microbial contributions to coupled arsenic and sulfur cycling in the acid-sulfide hot spring Champagne Pool, New Zealand.

    Science.gov (United States)

    Hug, Katrin; Maher, William A; Stott, Matthew B; Krikowa, Frank; Foster, Simon; Moreau, John W

    2014-01-01

    Acid-sulfide hot springs are analogs of early Earth geothermal systems where microbial metal(loid) resistance likely first evolved. Arsenic is a metalloid enriched in the acid-sulfide hot spring Champagne Pool (Waiotapu, New Zealand). Arsenic speciation in Champagne Pool follows reaction paths not yet fully understood with respect to biotic contributions and coupling to biogeochemical sulfur cycling. Here we present quantitative arsenic speciation from Champagne Pool, finding arsenite dominant in the pool, rim and outflow channel (55-75% total arsenic), and dithio- and trithioarsenates ubiquitously present as 18-25% total arsenic. In the outflow channel, dimethylmonothioarsenate comprised ≤9% total arsenic, while on the outflow terrace thioarsenates were present at 55% total arsenic. We also quantified sulfide, thiosulfate, sulfate and elemental sulfur, finding sulfide and sulfate as major species in the pool and outflow terrace, respectively. Elemental sulfur concentration reached a maximum at the terrace. Phylogenetic analysis of 16S rRNA genes from metagenomic sequencing revealed the dominance of Sulfurihydrogenibium at all sites and an increased archaeal population at the rim and outflow channel. Several phylotypes were found closely related to known sulfur- and sulfide-oxidizers, as well as sulfur- and sulfate-reducers. Bioinformatic analysis revealed genes underpinning sulfur redox transformations, consistent with sulfur speciation data, and illustrating a microbial role in sulfur-dependent transformation of arsenite to thioarsenate. Metagenomic analysis also revealed genes encoding for arsenate reductase at all sites, reflecting the ubiquity of thioarsenate and a need for microbial arsenate resistance despite anoxic conditions. Absence of the arsenite oxidase gene, aio, at all sites suggests prioritization of arsenite detoxification over coupling to energy conservation. Finally, detection of methyl arsenic in the outflow channel, in conjunction with

  14. The Effects of Arbuscular-Mycorrhizal Fungi and Phosphorous on Arsenic Uptake by Sunflower Plant in Soils Spiked with Arsenite and Arsenate

    Directory of Open Access Journals (Sweden)

    Saeed Bagherifam

    2017-01-01

    Full Text Available Introduction: Arsenic is a highly toxic metalloid in group 15 of periodic table. The information on environmental behaviour of arsenic, however, is still scarce. Contamination of soils and water with arsenic and antimony due to their widespread industrial application and mining activities has raised serious environmental concerns. Nearly all Arsenic-contaminated soils results from human activities and it has different environmental and sociological impacts. Various strategies and methods have been proposed for environmental management and remediation of contaminated soils. Among all methods, the phytoremediation is receiving more attention due to its cost effective and environmental friendly characteristics. In the case of arsenic contaminated soils, there are effective factors such as soil fertility, nutrients content and microorganisms function, which can improve the uptake of As by plants. Up to now, several studies have been evaluated the effects of symbiotic fungal association in plants on increasing nutrients and toxic elements uptake. Many of authors reported that the mycorrhizal symbiosis increases the uptake of toxic elements in root and shoot of plants and consequently improve the efficacy of phytostabilization and phytoextraction processes. There are conflicting results about the effect of arbuscular- mycorrhizal fungi (AMF on As uptake by various plants. Chen et al. (4 found that Glomus mosseae symbiosis with plant reduces As concentration and enhance phosphorus content in shoot and root of plant. Whilst Cozzolino et al. (7 reported that the AMF increases as concentration in shoot and root of cabbage. Phosphorus has important role on mycorrhizal symbiosis and also As uptake by plants. Therefore, current study was conducted to evaluated effect of Glomus intraradices and Glomus mosseae symbiosis with sunflower and also soil phosphorus concentration on uptake of arsenic from arsenite and arsenate contaminated soils. Materials and

  15. Neutrons and antimony physical measurements and interpretations

    International Nuclear Information System (INIS)

    Smith, A. B.

    2000-01-01

    New experimental information for the elastic and inelastic scattering of ∼ 4--10 MeV neutrons from elemental antimony is presented. The differential measurements are made at ∼ 40 or more scattering angles and at incident neutron-energy intervals of ∼ 0.5 MeV. The present experimental results, those previously reported from this laboratory and as found in the literature are comprehensively interpreted using spherical optical-statistical and dispersive-optical models. Direct vibrational processes via core-excitation, isospin and shell effects are discussed. Antimony models for applications are proposed and compared with global, regional, and specific models reported in the literature

  16. Evolution of Metal(Loid) Binding Sites in Transcriptional Regulators

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez, E.; Thiyagarajan, S.; Cook, J.D.; Stemmler, T.L.; Gil, J.A.; Mateos, L.M.; Rosen, B.P.

    2009-05-22

    Expression of the genes for resistance to heavy metals and metalloids is transcriptionally regulated by the toxic ions themselves. Members of the ArsR/SmtB family of small metalloregulatory proteins respond to transition metals, heavy metals, and metalloids, including As(III), Sb(III), Cd(II), Pb(II), Zn(II), Co(II), and Ni(II). These homodimeric repressors bind to DNA in the absence of inducing metal(loid) ion and dissociate from the DNA when inducer is bound. The regulatory sites are often three- or four-coordinate metal binding sites composed of cysteine thiolates. Surprisingly, in two different As(III)-responsive regulators, the metalloid binding sites were in different locations in the repressor, and the Cd(II) binding sites were in two different locations in two Cd(II)-responsive regulators. We hypothesize that ArsR/SmtB repressors have a common backbone structure, that of a winged helix DNA-binding protein, but have considerable plasticity in the location of inducer binding sites. Here we show that an As(III)-responsive member of the family, CgArsR1 from Corynebacterium glutamicum, binds As(III) to a cysteine triad composed of Cys{sup 15}, Cys{sup 16}, and Cys{sup 55}. This binding site is clearly unrelated to the binding sites of other characterized ArsR/SmtB family members. This is consistent with our hypothesis that metal(loid) binding sites in DNA binding proteins evolve convergently in response to persistent environmental pressures.

  17. Synthesis and application of antimony pent(isooctyl thioglycollate)

    Institute of Scientific and Technical Information of China (English)

    LIU You-nian; LI Hong-bing; SHU Wan-gen; CHEN Qi-yuan

    2005-01-01

    A new type of thermal stabilizer, antimony pent(isooctyl thioglycollate)(Sb(SCH2COOC8H17)5), was synthesized by using antimony trioxide, isooctanol and thioglycolic acid in 2 steps. Firstly, antimony trioxide was oxidized into colloidal antimony peroxide. Then antimony peroxide and isooctyl thioglycollate reacted stoichiometrically for 2 h with the yield of 87%. This compound was used as thermal stabilizer for polyvinyl chloride(PVC). The results show that the thermal stability time is 52 min at 200 ℃ by heat-ageing oven test when adding 2.5% thermal stabilizer to PVC resin. Compared with antimony tris(isooctyl thiolycollate), the initial thermal stability of antimony pent(isooctyl thioglycollate) is better than that of antimony tris(isooctyl thioglycollate), while the long-term thermal stability time is shorter than that of antimony tris(isooctyl thioglycollate). Meanwhile, the synergism of antimony pent(isooctyl thioglycollate) with calcium stearate was studied, indicating that when the mass ratio of antimony pent(isooctyl thioglycollate) to calcium stearate is 2:1, the thermal stability time of PVC is 58 min.

  18. Effect of precipitation route on the properties of antimony trioxide

    International Nuclear Information System (INIS)

    Abdullah, Abdul Halim; Noor, Nor Hayati Mohd; Ramli, Irmawati; Hashim, Mansor

    2008-01-01

    Antimony trioxide was prepared, using antimony potassium tartarate as starting material, via forward and reverse precipitation technique. The characteristics of the resulting antimony oxides were determined by BET surface area method, differential thermogravimetry analysis (DTG), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR) and SEM. The DTG curves for all uncalcined samples showed only a single endothermic peak which indicated that the sample is antimony trioxide. Unlike forward precipitation technique which resulted in a single antimony trioxide phase which is senarmontite, reverse precipitation technique produced antimony trioxide with both senarmontite and valentinite phase. Upon calcinations at 723 K, a small amount of Sb 2 O 4 with cervantite phase was formed at the expense of Sb 2 O 3 senarmontite phase as detected from the XRD pattern and infrared spectrum of RSb. The effect of preparation route on the properties of the antimony trioxide produced was clearly demonstrated

  19. Chlorination of antimony and its volatilization treatment of waste antimony-uranium composite oxide catalyst

    International Nuclear Information System (INIS)

    Sawada, K.; Enokida, Y.

    2011-01-01

    For the waste antimony-uranium composite oxide catalyst, the chlorination of antimony and its volatilization treatment were proposed, and evaluated using hydrogen chloride gas at 873-1173 K. During the treatment, the weight loss of the composite oxide sample, which resulted from the volatilization of antimony, was confirmed. An X-ray diffraction analysis showed that uranium oxide, U 3 O 8 , was formed during the reaction. After the treatment at 1173 K for 1 h, almost all the uranium contained in the waste catalyst was dissolved by a 3 M nitric acid solution at 353 K within 10 min, although that of the non-treated catalyst was less than 0.1%. It was found that the chlorination and volatilization treatment was effective to separate antimony from the composite oxide catalyst and change uranium into its removable form. (orig.)

  20. Etude des interactions entre la plante Arabidopsis thaliana (L.) Heynh et le ver de terre Aporrectodea caliginosa (Savigny) : application à la phytoremédiation de l'arsenic et de l'antimoine

    OpenAIRE

    Jana , Ulrike

    2009-01-01

    Arsenic and antimony do not belong to the major pollutants of the environment but are offen foun associated with other contaminants. In France, more specifically in Auvergne region, a large number of old mining site where antimony was extracted are currently abandoned. As they present several risks for the neighbourhood populations, their habilitaion appears to be essential. The main idea if this PhD work is to test a catalysor: the earthworms in order to increase phytoremédiation efficacity....

  1. Arsenic in Food

    Science.gov (United States)

    ... Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco Products Food Home Food Foodborne Illness & Contaminants Metals Arsenic Share ... of the Method used to Measure Arsenic in Foods Inductively Coupled Plasma-Mass Spectrometric Determination of Arsenic, ...

  2. Potent heme-degrading action of antimony and antimony-containing parasiticidal agents.

    Science.gov (United States)

    Drummond, G S; Kappas, A

    1981-02-01

    The ability of antimony and antimony-containing parasiticidal agents to enhance the rate of heme degradation in liver and kidney was investigated. Trivalent antimony was shown to be an extremely potent inducer of heme oxygenase, the initial and rate-limiting enzyme in heme degradation, in both organs, whereas the pentavalent form was a weak inducer of this enzyme. The ability of antimony to induce heme oxygenase was dose-dependent, independent of the salt used, and not a result of a direct activation of the enzyme in vitro. Concomitant with heme oxygenase induction by antimony, microsomal heme and cytochrome P-450 contents decreased, the cyto-chrome P-450-dependent mixed function oxidase system was impaired, and delta-ami-nolevulinate synthase (ALAS), the rate-limiting enzyme of heme synthesis, underwent the sequential changes-initial inhibition followed by rebound induction-usually associated with the administration of transition elements such as cobalt. Antimony induction of heme oxygenase however, unlike the enzyme induction elicited by cobalt, was not prevented either by cysteine administered orally or as a cysteine metal complex, or by simultaneous zinc administration. Desferoxamine also did not block heme oxygenase induction by antimony, but this chelator did prevent the rebound increase in ALAS activity associated with antimony or cobalt treatment. Antimony-containing parasiticidal drugs were also potent inducers of heme oxygenase in liver and kidney. The heme degradative action of these drugs may be related in part to the jaundice commonly associated with the prolonged therapeutic use of these agents. The heme-oxygenase-inducing action of antimony-containing parasiticidal drugs is a newly defined biological property of these compounds. The relation between the parasiticidal and the heme-oxygenase-inducing actions of such drugs is unknown. However, certain parasites contain hemoproteins or require heme compounds during their life cycle. It may therefore be

  3. Contrasting controls on arsenic and lead budgets for a degraded peatland catchment in Northern England

    International Nuclear Information System (INIS)

    Rothwell, James J.; Taylor, Kevin G.; Evans, Martin G.; Allott, Timothy E.H.

    2011-01-01

    Atmospheric deposition of trace metals and metalloids from anthropogenic sources has led to the contamination of many European peatlands. To assess the fate and behaviour of previously deposited arsenic and lead, we constructed catchment-scale mass budgets for a degraded peatland in Northern England. Our results show a large net export of both lead and arsenic via runoff (282 ± 21.3 gPb ha -1 y -1 and 60.4 ± 10.5 gAs ha -1 y -1 ), but contrasting controls on this release. Suspended particulates account for the majority of lead export, whereas the aqueous phase dominates arsenic export. Lead release is driven by geomorphological processes and is a primary effect of erosion. Arsenic release is driven by the formation of a redox-dynamic zone in the peat associated with water table drawdown, a secondary effect of gully erosion. Degradation of peatland environments by natural and anthropogenic processes has the potential to release the accumulated pool of legacy contaminants to surface waters. - Highlights: → The fluvial outputs of arsenic and lead in the degraded peatland are an order-of-magnitude greater than atmospheric inputs. → The particulate phase dominates fluvial lead export, whereas the aqueous phase dominates fluvial arsenic export. → Lead export is a primary effect of peat erosion, whereas arsenic export is a secondary effect of peat erosion. - Degraded peatlands can be significant sources of previously deposited arsenic and lead

  4. Arsenic: it's extent of pollution and toxicosis: An animal perspective

    Directory of Open Access Journals (Sweden)

    Tapan Kumar Das

    2013-02-01

    Full Text Available Arsenic poisoning is now considered as one of the biggest environmental disaster and a major public health issue. Incidence of arsenicpoisoning has been reported from many parts of the world. While Bangladesh and West Bengal (India account for the most of the incidence, occasional reports from Mexico, Taiwan and mainland China have also appeared.It is a natural metalloid found in low concentrations in virtually every part of the environment as it is used in a wide variety of industrial applications, from computers to fireworks. Ground water arsenic is the major source of poisoning in animals and human. About 80% of ingested arsenic is absorbed and metabolized in liver and then excreted through urine and faeces while upon chronic exposure, it is deposited in liver, kidney and skin. Human populations are also being exposed to this poison by consuming the milk of affected animal.Inorganic forms of arsenic are more toxic compared to organic forms. Acute toxicity is rare in nature in comparison to chronic toxicity, which is prevalent in contaminated areas. Most non-ruminants are more susceptible to intoxication than ruminants. Chronic exposure of arsenic in animals and human beings causes severe adverse effects in the form of lowered immunity, diseases and production performances. [Vet World 2013; 6(1.000: 53-58

  5. Preparation of antimony-doped nanoparticles by hydrothermal method

    Institute of Scientific and Technical Information of China (English)

    JIANG Ming-xi; YANG Tian-zu; GU Ying-ying; DU Zuo-juan; LIU Jian-ling

    2005-01-01

    Antimony-doped tin oxide(ATO) nanoparticles were prepared by the mild hydrothermal method at 200 ℃ using sodium stannate, antimony oxide, sodium hydroxide and sulfuric acid as the starting materials. The doped powders were examined by differential thermal analysis(DTA), X-ray diffractometry(XRD) and transmission electron microscopy(TEM). The doping levels of antimony were determined by volumetric method and iodimetry.The results show that antimony is incorporated into the crystal lattice of tin oxide and the doping levels of antimony in the resulting powders are 2.4%, 4.3 % and 5.1 % (molar fraction). The mean particle size of ATO nanoparticles is in the range of 25 - 30 nm. The effects of antimony doping level on the crystalline size and crystallinity were also discussed.

  6. In vitro antileishmanial properties of neutron-irradiated meglumine antimoniate

    Energy Technology Data Exchange (ETDEWEB)

    Borborema, Samanta Etel Treiger; Nascimento, Nanci do [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), SP (Brazil). Lab. de Biologia Molecular]. E-mail: samanta@usp.br; Osso Junior, Joao Alberto [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), SP (Brazil). Centro de Radiofarmacia]. E-mail: jaosso@ipen.br; Andrade Junior, Heitor Franco de [Instituto de Medicina Tropical de Sao Paulo (IMT-SP), SP (Brazil). Lab. de Protozoologia]. E-mail:hfandrad@usp.br

    2005-10-15

    Pentavalent antimony, as meglumine antimoniate (Glucantime) or sodium stibogluconate (Pentostam), is the main treatment for leishmaniasis, a complex of diseases caused by the protozoan Leishmania, and an endemic and neglected threat in Brazil. Despite over half a century of clinical use, their mechanism of action, toxicity and pharmacokinetic data remain unknown. The analytical methods for determination of antimony in biological systems remain complex and have low sensitivity. Radiotracer studies have a potential in pharmaceutical development. The aim of this study was to obtain a radiotracer for antimony, with suitable physical and biological properties. Meglumine antimoniate was neutron irradiated inside the IEA-R1 nuclear reactor, producing two radioisotopes {sup 122} Sb and {sup 124} Sb, with high radionuclidic purity and good specific activity. This compound showed the same antileishmanial activity as the native compound. The use of the radiotracers, easily created by neutron irradiation, could be an interesting tool to solve important questions in antimonial pharmacology. (author)

  7. Remediation of heavy metal(loid)s contaminated soils--to mobilize or to immobilize?

    Science.gov (United States)

    Bolan, Nanthi; Kunhikrishnan, Anitha; Thangarajan, Ramya; Kumpiene, Jurate; Park, Jinhee; Makino, Tomoyuki; Kirkham, Mary Beth; Scheckel, Kirk

    2014-02-15

    Unlike organic contaminants, metal(loid)s do not undergo microbial or chemical degradation and persist for a long time after their introduction. Bioavailability of metal(loid)s plays a vital role in the remediation of contaminated soils. In this review, the remediation of heavy metal(loid) contaminated soils through manipulating their bioavailability using a range of soil amendments will be presented. Mobilizing amendments such as chelating and desorbing agents increase the bioavailability and mobility of metal(loid)s. Immobilizing amendments such of precipitating agents and sorbent materials decrease the bioavailabilty and mobility of metal(loid)s. Mobilizing agents can be used to enhance the removal of heavy metal(loid)s though plant uptake and soil washing. Immobilizing agents can be used to reduce the transfer to metal(loid)s to food chain via plant uptake and leaching to groundwater. One of the major limitations of mobilizing technique is susceptibility to leaching of the mobilized heavy metal(loid)s in the absence of active plant uptake. Similarly, in the case of the immobilization technique the long-term stability of the immobilized heavy metal(loid)s needs to be monitored. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Uptake, translocation and transformation of antimony in rice (Oryza sativa L.) seedlings

    International Nuclear Information System (INIS)

    Cai, Fei; Ren, Jinghua; Tao, Shu; Wang, Xilong

    2016-01-01

    Antimony (Sb), as a toxic metalloid, has been gaining increasing research concerns due mainly to its severe pollution in many places. Rice has been identified to be the dominant intake route of Sb by residents close to the Sb mining areas. A hydroponic experiment was conducted to investigate the difference in uptake, translocation and transformation of Sb in rice seedlings of four cultivars exposed to 0.2 or 1.0 mg/L of Sb(V). The results showed that mass concentration of iron plaque (mg/kg FW) formed at the root surfaces of cultivar N was the highest among all tested cultivars at both low and high exposure levels of Sb(V). The accumulated Sb concentration in iron plaque significantly increased with an increase in mass concentration of iron plaque formed at the rice root. The total amount of iron plaque (mg/pot) at rice root generally increased with increasing exposed Sb(V) concentration, which was closely associated with the increasing lipid peroxidation in roots. Concentration percentage of Sb in rice root significantly reduced as the corresponding value in the iron plaque increased, suggesting that iron plaque formation strongly suppressed uptake of Sb by rice root. Sb concentration in rice tissues followed an order: root > stem, leaf. The japonica rice (cultivars N and Z) exhibited a stronger translocation tendency of Sb from root to stem than indica hybrid rice (cultivars F and G). Translocation of Sb from root of cultivar F to its stem and leaf was sharply enhanced with increasing Sb exposure concentration. Sb(V) could be reduced to Sb(III) in rice tissues, especially in stems (10–26% of the total Sb). For the sake of food safety, the difference in uptake, translocation and transformation of Sb in rice species planted in Sb-contaminated soils should be taken into consideration. - Highlights: • Sb(V) caused lipid peroxidation and increased iron plaque formation at root surface. • The iron plaque may suppress uptake of Sb by rice. • Cultivars

  9. Electrical properties of cadmium telluride films doped with antimony

    International Nuclear Information System (INIS)

    Atdaev, B.S.; Garyagdyev, G.; Grin', V.F.; Noskov, A.I.

    1989-01-01

    Effect of cadmium telluride doping with antimony on electric and photoelectric properties is investigated. Temperature dependence of dark (σ d ) and photoconductivity (σ p ) during excitation from the range of proper absorption in the temperature range 77-300 K and spectral distribution of photoconductivity at 300 K are investigated. It is shown that in the process of doping antimony diffusses intensively over CdTe grain boundaries, decreasing potential barriers between them and due to diffusion into CdTe grains it changes their electrical properties. The acceptor character of antimony impurity can be caused by antimony diffusion into tellurium sublattice owing to proximity of their ionic and covalent radii

  10. The exposure to and health effects of antimony

    DEFF Research Database (Denmark)

    Cooper, Ross G.; Harrison, Adrian Paul

    2009-01-01

    . Antimony toxicity is dependent on the exposure dose, duration, route (breathing, eating, drinking, or skin contact), other chemical exposures, age, sex, nutritional status, family traits, life style, and state of health. Chronic exposure to antimony in the air at levels of 9 mg/m3 may exacerbate irritation...... of the eyes, skin, and lungs. Long-term inhalation of antimony can potentiate pneumoconiosis, altered electrocardiograms, stomach pain, diarrhea, vomiting, and stomach ulcers, results which were confirmed in laboratory animals. Although there were investigations of the effect of antimony in sudden infant...

  11. ARSENIC REMOVAL FROM DRINKING WATER BY ADSORPTIVE MEDIA. U.S. EPA DEMONSTRATION PROJECT AT SOUTH TRUCKEE MEADOWS GENERAL IMPROVEMENT DISTRICT (STMIG), NV. INTERIM EVALUATION REPORT

    Science.gov (United States)

    This report documents the activities performed during and the results obtained from the first 32 weeks of operation of an arsenic and antimony removal technology currently being demonstrated at the South Truckee Meadows General Improvement District (STMGID) in Washoe County, NV. ...

  12. Protection of cesium-antimony photocathodes

    International Nuclear Information System (INIS)

    Buzulutskov, A.; Breskin, A.; Chechik, R.; Prager, M.; Shefer, E.

    1996-06-01

    In order to operate gaseous photomultipliers in the visible range it was suggested to protect sensitive photocathodes against contact to air and counting gases by their coating with a thin solid dielectric film. We present data on coating of cesium- antimony photocathodes with alkali-halide (NaI, CsI, CsF, NaF), oxide (SiO) and organic (hexatriacontane, calcium stearate) films. The photoelectron transmission through these films and their protection capability have been studied in detail. Cesium-antimony photocathodes are shown to withstand exposure to considerable doses of oxygen and dry air when coated with Nal films. This opens ways to their operation in gas media. (authors), 11 refs., 6 figs

  13. Microbial diversity and community structure in an antimony-rich tailings dump.

    Science.gov (United States)

    Xiao, Enzong; Krumins, Valdis; Dong, Yiran; Xiao, Tangfu; Ning, Zengping; Xiao, Qingxiang; Sun, Weimin

    2016-09-01

    To assess the impact of antimony (Sb) on microbial community structure, 12 samples were taken from an Sb tailings pile in Guizhou Province, Southwest China. All 12 samples exhibited elevated Sb concentrations, but the mobile and bioaccessible fractions were small in comparison to total Sb concentrations. Besides the geochemical analyses, microbial communities inhabiting the tailing samples were characterized to investigate the interplay between the microorganisms and environmental factors in mine tailings. In all samples, Proteobacteria and Actinobacteria were the most dominant phyla. At the genus level, Thiobacillus, Limnobacter, Nocardioides, Lysobacter, Phormidium, and Kaistobacter demonstrated relatively high abundances. The two most abundant genera, Thiobacillus and Limnobacter, are characterized as sulfur-oxidizing bacteria and thiosulfate-oxidizing bacteria, respectively, while the genus Lysobacter contains arsenic (As)-resistant bacteria. Canonical correspondence analysis (CCA) indicates that TOC and the sulfate to sulfide ratio strongly shaped the microbial communities, suggesting the influence of the environmental factors in the indigenous microbial communities.

  14. EVALUAION OF NEUTRON DATA FOR NATURAL ANTIMONY

    Institute of Scientific and Technical Information of China (English)

    1991-01-01

    <正> The complete neutron nuclear data of natural antimony have been per-formed for CENDL-2 in neutron energy range from 10-5eV to 20 MeV.Someof the data have been calculated by means of theoretical model.A good agree-ment was obtained with measured values.The recommended data were com-pared with the evaluations of JENDL-3 and ENDF/B-6.

  15. Identification of Potential Biomarkers for Antimony Susceptibility ...

    Indian Academy of Sciences (India)

    Identification of Potential Biomarkers for Antimony Susceptibility/Resistance in L. donovani Rentala Madhubala School of Life Sciences Jawaharlal Nehru University New Delhi, India · Slide 2 · Slide 3 · Slide 4 · Slide 5 · Slide 6 · Slide 7 · Slide 8 · Slide 9 · Slide 10 · Slide 11 · Slide 12 · Slide 13 · Slide 14 · Slide 15 · Slide 16.

  16. The environmental geochemistry of Arsenic – An overview

    Science.gov (United States)

    Bowell, Robert J.; Alpers, Charles N.; Jamieson, Heather E.; Nordstrom, D. Kirk; Majzlan, Juraj

    2014-01-01

    Arsenic is one of the most prevalent toxic elements in the environment. The toxicity, mobility, and fate of arsenic in the environment are determined by a complex series of controls dependent on mineralogy, chemical speciation, and biological processes. The element was first described by Theophrastus in 300 B.C. and named arsenikon (also arrhenicon; Caley and Richards 1956) referring to its “potent” nature, although it was originally considered an alternative form of sulfur (Boyle and Jonasson 1973). Arsenikon is believed to be derived from the earlier Persian, zarnik (online etymology dictionary, http://www.etymonline.com/index.php?term=arsenic). It was not until the thirteenth century that an alchemist, Albertus Magnus, was able to isolate the element from orpiment, an arsenic sulfide (As2S3). The complex chemistry required to do this led to arsenic being considered a “bastard metal” or what we now call a “metalloid,” having properties of both metals and non-metals. As a chemical element, arsenic is widely distributed in nature and can be concentrated in many different ways. In the Earth’s crust, arsenic is concentrated by magmatic and hydrothermal processes and has been used as a “pathfinder” for metallic ore deposits, particularly gold, tin, copper, and tungsten (Boyle and Jonasson 1973; Cohen and Bowell 2014). It has for centuries been considered a potent toxin, is a common poison in actual and fictional crimes, and has led to significant impacts on human health in many areas of the world (Cullen 2008; Wharton 2010).

  17. Biochemical mechanisms of signaling: perspectives in plants under arsenic stress.

    Science.gov (United States)

    Islam, Ejazul; Khan, Muhammad Tahir; Irem, Samra

    2015-04-01

    Plants are the ultimate food source for humans, either directly or indirectly. Being sessile in nature, they are exposed to various biotic and abiotic stresses because of changing climate that adversely effects their growth and development. Contamination of heavy metals is one of the major abiotic stresses because of anthropogenic as well as natural factors which lead to increased toxicity and accumulation in plants. Arsenic is a naturally occurring metalloid toxin present in the earth crust. Due to its presence in terrestrial and aquatic environments, it effects the growth of plants. Plants can tolerate arsenic using several mechanisms like phytochelation, vacuole sequestration and activation of antioxidant defense systems. Several signaling mechanisms have evolved in plants that involve the use of proteins, calcium ions, hormones, reactive oxygen species and nitric oxide as signaling molecules to cope with arsenic toxicity. These mechanisms facilitate plants to survive under metal stress by activating their defense systems. The pathways by which these stress signals are perceived and responded is an unexplored area of research and there are lots of gaps still to be filled. A good understanding of these signaling pathways can help in raising the plants which can perform better in arsenic contaminated soil and water. In order to increase the survival of plants in contaminated areas there is a strong need to identify suitable gene targets that can be modified according to needs of the stakeholders using various biotechnological techniques. This review focuses on the signaling mechanisms of plants grown under arsenic stress and will give an insight of the different sensory systems in plants. Furthermore, it provides the knowledge about several pathways that can be exploited to develop plant cultivars which are resistant to arsenic stress or can reduce its uptake to minimize the risk of arsenic toxicity through food chain thus ensuring food security. Copyright © 2015

  18. Synthesis of Antimony Doped Amorphous Carbon Films

    Science.gov (United States)

    Okuyama, H.; Takashima, M.; Akasaka, H.; Ohtake, N.

    2013-06-01

    We report the effects of antimony (Sb) doping on the electrical and optical properties of amorphous carbon (a-C:H) films grown on silicon and copper substrates by magnetron sputtering deposition. For film deposition, the mixture targets fabricated from carbon and antimony powders was used. The atomic concentration of carbon, hydrogen, and antimony, in the film deposited from the 1.0 mol% Sb containing target were 81, 17, 2 at.%, respectively. These elements were homogeneously distributed in the film. On the structural effect, the average continuous sp2 carbon bonding networks decreased with Sb concentration increasing, and defects in the films were increased with the Sb incorporation because atomic radius of Sb atoms is twice larger size than that of carbon. The optical gap and the electrical resistivity were carried out before and after the Sb doping. The results show that optical gap dropped from 3.15 to 3.04 eV corresponding to non-doping to Sb-doping conditions, respectively. The electrical resistivity reduced from 10.5 to 1.0 MΩm by the Sb doping. These results suggest the doping level was newly formed in the forbidden band.

  19. Synthesis of Antimony Doped Amorphous Carbon Films

    International Nuclear Information System (INIS)

    Okuyama, H; Takashima, M; Akasaka, H; Ohtake, N

    2013-01-01

    We report the effects of antimony (Sb) doping on the electrical and optical properties of amorphous carbon (a-C:H) films grown on silicon and copper substrates by magnetron sputtering deposition. For film deposition, the mixture targets fabricated from carbon and antimony powders was used. The atomic concentration of carbon, hydrogen, and antimony, in the film deposited from the 1.0 mol% Sb containing target were 81, 17, 2 at.%, respectively. These elements were homogeneously distributed in the film. On the structural effect, the average continuous sp 2 carbon bonding networks decreased with Sb concentration increasing, and defects in the films were increased with the Sb incorporation because atomic radius of Sb atoms is twice larger size than that of carbon. The optical gap and the electrical resistivity were carried out before and after the Sb doping. The results show that optical gap dropped from 3.15 to 3.04 eV corresponding to non-doping to Sb-doping conditions, respectively. The electrical resistivity reduced from 10.5 to 1.0 MΩm by the Sb doping. These results suggest the doping level was newly formed in the forbidden band.

  20. Vermiremediation of metal(loid)s via Eichornia crassipes phytomass extraction: A sustainable technique for plant amelioration.

    Science.gov (United States)

    Majumdar, Arnab; Barla, Anil; Upadhyay, Munish Kumar; Ghosh, Dibyarpita; Chaudhuri, Punarbasu; Srivastava, Sudhakar; Bose, Sutapa

    2018-08-15

    Eichhornia crassipes (water hyacinth), imparts deficiency of soluble arsenic and other toxic metal (loid)s through rhizofiltration and phytoaccumulation. Without proper management strategy, this phytoremediation of metal (loid)s might fail and get reverted back to the environment, contaminating the nearby water bodies. This study, focused on bio-conversion of phytoremediating hyacinths, spiked with 100 times and greater arsenic, lead and cadmium concentrations than the average water contamination, ranging in 58.81 ± 0.394, 16.74 ± 0.367, 12.18 ± 0.153 mg Kg -1 arsenic, 18.95 ± 0.212, 9.53 ± 0.054, 6.83 ± 0.306 mg kg -1 lead and 2.79 ± 0.033, 1.39 ± 0.025, 0.92 ± 0.045 mg kg -1 cadmium, respectively in root, shoot and leaves, proving it's phytoaccumulation capacity. Next, these hyacinths has been used as a source of organic supplement for preparing vermicompost using Eisenia fetida following analysis of total metal content and sequential extraction. Control soil was having 134.69 ± 2.47 mg kg -1 arsenic in compare to 44.6 ± 0.91 mg kg -1 at premature stage of compost to 23.9 ± 1.55 mg kg -1 at mature compost indicating sustainable fate of phytoremediated vermicompost. This vermiremediation of arsenic and other toxic elements, restricted the bioavailability of soil pollutants. Furthermore, processed compost amended as organic fertilizer, growing chickpea, coriander, tomato and chilli plant, resulted in negligible metal(loid)s in treated samples, enhancing also plant's growth and production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Variations of arsenic species content in edible Boletus badius growing at polluted sites over four years.

    Science.gov (United States)

    Mleczek, Mirosław; Niedzielski, Przemysław; Rzymski, Piotr; Siwulski, Marek; Gąsecka, Monika; Kozak, Lidia

    2016-07-02

    The content of arsenic (As) in mushrooms can vary depending on the concentration level of this metalloid in the soil/substrate. The present study evaluated the content of arsenic in Boletus badius fruiting bodies collected from polluted and non-polluted sites in relation to the content of this element in overgrown substrate. It was found that mushrooms from the arsenic-polluted sites contained mean concentrations from 49 to 450 mg As kg(-1) dry matter (d.m.), with the greatest content found for specimens growing in close proximity of sludge deposits (490±20 mg As kg(-1)d.m.). The mean content of total arsenic in mushrooms from clean sites ranged from 0.03 to 0.37 mg kg(-1) It was found that B. badius could tolerate arsenic in soil substrate at concentrations of up to 2500 mg kg(-1), at least. In different years of investigation, shifts in particular arsenic forms, as well as a general increase in the accumulation of organic arsenic content, were observed. The results of this study clearly indicate that B. badius should not be collected for culinary purposes from any sites that may be affected by pollution.

  2. Use of human metabolic studies and urinary arsenic speciation is assessing arsenic exposure

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L.R.; Farmer, J.G. (Memphis State Univ., TN (United States) Univ. of Edinburgh (United Kingdom))

    1991-01-01

    The use of hair and nail analyses to assess human exposure to the trace metalloid arsenic (As) is hindered by the possibility of external contamination. Even though urine represents the major excretory route, its use as an indicator of exposure is limited when no distinction is made between the nontoxic organoarsenical (arsenobetaine) excreted following the consumption of seafood and the toxic inorganic forms of As and related metabolites. The development of analytical techniques capable of separating the different chemical species of As in urine have shown that the ingestion of inorganic As (AsV or AsIII) by animals and man triggers an in vivo reduction/methylation process resulting in excretion of the less toxic species, monomethylarsonic acid (MMAA) and dimethylarsinic acid (DMAA). This paper establishes the uptake, bio-transformation and elimination patterns reflected in urinary As following carefully controlled experimental exposure.

  3. Arsenic Mobility and Availability in Sediments by Application of BCR Sequential Extractions Method; Movilidad y Disponibilidad de Arsenico en Sedimentos Mediante la Aplicacion del Metodo de Extracciones Secuenciales BCR

    Energy Technology Data Exchange (ETDEWEB)

    Larios, R.; Fernandez, R.; Rucandio, M. I.

    2011-05-13

    Arsenic is a metalloid found in nature, both naturally and due to anthropogenic activities. Among them, mining works are an important source of arsenic release to the environment. Asturias is a region where important mercury mines were exploited, and in them arsenic occurs in para genesis with mercury minerals. The toxicity and mobility of this element depends on the chemical species it is found. Fractionation studies are required to analyze the mobility of this metalloid in soils and sediments. Among them, the proposed by the Bureau Community of Reference (BCR) is one of the most employed. This method attempts to divide up, by operationally defined stages, the amount of this element associated with carbonates (fraction 1), iron and manganese oxy hydroxides (fraction 2), organic matter and sulphides (fraction 3), and finally as the amount associated residual fraction to primary and secondary minerals, that is, from the most labile fractions to the most refractory ones. Fractionation of arsenic in sediments from two mines in Asturias were studied, La Soterrana and Los Rueldos. Sediments from La Soterrana showed high levels of arsenic in the non-residual phases, indicating that the majority of arsenic has an anthropogenic origin. By contrast, in sediments from Los Rueldos most of the arsenic is concentrated in the residual phase, indicating that this element remains bound to very refractory primary minerals, as is also demonstrated by the strong correlation of arsenic fractionation and the fractionation of elements present in refractory minerals, such as iron, aluminum and titanium. (Author) 51 refs.

  4. Remediation of Heavy Metal(loid)s Contaminated Soils – To Mobilize or To Immobilize?

    Science.gov (United States)

    Unlike organic contaminants, metal(loid)s do not undergo microbial or chemical degradation and persist for a long time after their introduction. Bioavailability of metal(loid)s plays a vital role in the remediation of contaminated soils. In this review, the remediation of heavy ...

  5. Heavy metals and metalloids in egg contents and eggshells of passerine birds from Arizona

    International Nuclear Information System (INIS)

    Mora, Miguel A.

    2003-01-01

    High concentrations of Sr in eggshells may be associated with lower hatching success of some passerine birds. - Concentrations of inorganic elements were determined in eggs of passerine birds including the endangered southwestern willow flycatcher (Empidonax traillii extimus) from four regions in Arizona. The main aim of the study was to determine the distribution of metals in egg contents and eggshells, with emphasis on the deposition of Sr in eggshells. Seventy eggs of 11 passerine species were collected at four nesting locations during 2000. Aluminum, Ba, Cr, Cu, Mn, Se, Sr, and Zn, were detected primarily in egg contents of all bird species. Arsenic, Ni, Pb, and V were detected primarily in eggshells. A proportion of most inorganic elements accumulated in the eggshell. Concentrations of Ba, Cu, Mn, Se, Sr, and Zn in egg contents and As, Ba, Cu, and V in eggshells of yellow-breasted chats (Icteria virens) were similar among locations. However, concentrations of Mn, Ni, Sr, and Zn in eggshells were significant different among locations. Except for Cu, Mn, Se, and Zn, concentrations of inorganic elements were 2-35 times greater in eggshells than in eggs. Most concentrations of metals and metalloids in eggs and eggshells of all the bird species were below levels known to affect reproduction or that have other deleterious effects. However, I found somewhat elevated concentrations of Sr in eggshells (highest mean=1505 μg/g dw, n=3) of yellow-breasted chats and willow flycatchers, and in egg contents of yellow warblers (Dendroica petechia) and song sparrows (Melospiza melodia). Whether current observed concentrations of Sr in eggshells are affecting nesting birds in Arizona remains to be determined. Strontium and other metals could be associated with lower hatching success in some areas. This study shows that a proportion of many inorganic elements accumulates in the eggshell and that the potential effects on the proper structure and functioning of the eggshell

  6. Heavy metals and metalloids in egg contents and eggshells of passerine birds from Arizona

    Science.gov (United States)

    Mora, Miguel A.

    2003-01-01

    Concentrations of inorganic elements were determined in eggs of passerine birds including the endangered southwestern willow flycatcher (Empidonax traillii extimus) from four regions in Arizona. The main aim of the study was to determine the distribution of metals in egg contents and eggshells, with emphasis on the deposition of Sr in eggshells. Seventy eggs of 11 passerine species were collected at four nesting locations during 2000. Aluminum, Ba, Cr, Cu, Mn, Se, Sr, and Zn, were detected primarily in egg contents of all bird species. Arsenic, Ni, Pb, and V were detected primarily in eggshells. A proportion of most inorganic elements accumulated in the eggshell. Concentrations of Ba, Cu, Mn, Se, Sr, and Zn in egg contents and As, Ba, Cu, and V in eggshells of yellow-breasted chats (Icteria virens) were similar among locations. However, concentrations of Mn, Ni, Sr, and Zn in eggshells were significant different among locations. Except for Cu, Mn, Se, and Zn, concentrations of inorganic elements were 2–35 times greater in eggshells than in eggs. Most concentrations of metals and metalloids in eggs and eggshells of all the bird species were below levels known to affect reproduction or that have other deleterious effects. However, I found somewhat elevated concentrations of Sr in eggshells (highest mean=1505 μg/g dw, n=3) of yellow-breasted chats and willow flycatchers, and in egg contents of yellow warblers (Dendroica petechia) and song sparrows (Melospiza melodia). Whether current observed concentrations of Sr in eggshells are affecting nesting birds in Arizona remains to be determined. Strontium and other metals could be associated with lower hatching success in some areas. This study shows that a proportion of many inorganic elements accumulates in the eggshell and that the potential effects on the proper structure and functioning of the eggshell should not be ignored.

  7. 21 CFR 862.3110 - Antimony test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Antimony test system. 862.3110 Section 862.3110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test Systems § 862.3110 Antimony test system. (a) Identification. A...

  8. 40 CFR 721.5547 - Antimony double oxide.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Antimony double oxide. 721.5547 Section 721.5547 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.5547 Antimony double oxide. (a)...

  9. Determination of antimony trioxide in fire-retardant conveyor belts

    Energy Technology Data Exchange (ETDEWEB)

    Rytych-Witwicka, B.; Szmyd, E.

    1976-12-01

    Two methods for the determination of antimony trioxide in rubber and pvc are described. One is a colorimetric method based on the reaction of antimony with rhodamine B; the other is a polarographic method. The results of the two methods show a satisfactory consistency and the methods themselves appear rapid and effective.

  10. The presence of antimony in various dental filling materials

    International Nuclear Information System (INIS)

    Molokhia, Anat; Combe, E.C.; Lilley, J.D.

    1985-01-01

    Antimony was determined in a number of non-metallic dental materials currently used for tooth restoration. The method applied was instrumental neutron activation analysis. The concentration of antimony in some of the brands tested was found to be as high as 900 fold that in the normal hard dental tissues. (author)

  11. Risk Assessment and Source Identification of 17 Metals and Metalloids on Soils from the Half-Century Old Tungsten Mining Areas in Lianhuashan, Southern China.

    Science.gov (United States)

    Guo, Li; Zhao, Weituo; Gu, Xiaowen; Zhao, Xinyun; Chen, Juan; Cheng, Shenggao

    2017-11-29

    Background: Mining activities always emit metal(loid)s into the surrounding environment, where their accumulation in the soil may pose risks and hazards to humans and ecosystems. Objective : This paper aims to determine of the type, source, chemical form, fate and transport, and accurate risk assessment of 17 metal(loid) contaminants including As, Cd, Cu, Ni, Pb, Zn, Cr, Ag, B, Bi, Co, Mo, Sb, Ti, V, W and Sn in the soils collected from an abandoned tungsten mining area, and to guide the implementing of appropriate remediation strategies. Methods : Contamination factors ( CFs ) and integrated pollution indexes ( IPIs ) and enrichment factors ( EFs ) were used to assess their ecological risk and the sources were identified by using multivariate statistics analysis, spatial distribution investigation and correlation matrix. Results : The IPI and EF values indicated the soils in the mine site and the closest downstream one were extremely disturbed by metal(loid)s such as As, Bi, W, B, Cu, Pb and Sn, which were emitted from the mining wastes and acid drainages and delivered by the runoff and human activities. Arsenic contamination was detected in nine sites with the highest CF values at 24.70 next to the mining site. The Cd contamination scattered in the paddy soils around the resident areas with higher fraction of bioavailable forms, primarily associated with intense application of phosphorus fertilizer. The lithogenic elements V, Ti, Ag, Ni, Sb, Mo exhibit low contamination in all sampling points and their distribution were depended on the soil texture and pedogenesis process. Conclusions : The long term historical mining activities have caused severe As contamination and higher enrichment of the other elements of orebody in the local soils. The appropriate remediation treatment approach should be proposed to reduce the bioavailability of Cd in the paddy soils and to immobilize As to reclaim the soils around the mining site. Furthermore, alternative fertilizing way

  12. Environmental occurrence of arsenic in Colombia: A review

    International Nuclear Information System (INIS)

    Alonso, David L.; Latorre, Sergio; Castillo, Elianna; Brandão, Pedro F.B.

    2014-01-01

    The international literature on the presence of arsenic (As) in Latin America does not disclose the true magnitude of the presence of As in Colombia. In this paper, we summarize the literature on As occurrence in Colombia. The data reveal that As is present in matrices such as soil, sediments and water and in the food chain. Some of the As concentrations exceed the limits specified by national and international regulations. Arsenic higher concentrations are associated with mining regions (e.g., soils, up to 148 mg/kg; sediments, up to 1400 mg/kg) and agricultural areas (e.g., vegetables, up to 5.40 mg/kg; irrigation water, up to 255 μg/L), and underscore the potential human and environmental risks associated with the presence of As in the country. This review highlights the importance of focusing research on understanding the occurrence, origin and distribution of As in Colombia to better understand its environmental and public health impact. -- Highlights: • Information about arsenic (As) studies in Colombia is provided. • Occurrence of As in Colombia. • Compilation help to increase knowledge of As presence in Latin America. • Need for more research on the occurrence, origin, distribution, speciation and remediation of As in Colombia. -- This review communicates the untold story of arsenic in Colombia and draws attention to the need for more rigorous research on the metalloid. It also contributes to the information available on As in Latin America

  13. Arsenic and skin cancer – Case report with chemoprevention

    Directory of Open Access Journals (Sweden)

    Uwe Wollina

    2016-04-01

    Full Text Available ABSTRACT Introduction: Arsenic is a potentially hazardous metalloid that can cause skin cancer. We want to demonstrate a case of chronic arsenicosis and the potential of chemoprevention with retinoids. Case Report: This is a case report of a 72-year-old male patient who was exposed to arsenics by dust and direct skin contact over 3 years in a chemical plant in the late fourties. He developed multiple arsenic keratosis clincialll resembling actinic keratoses, Bowen’s disease and palmar minute keratoses. To prevent a transformation into invasive cancer and to lower the burden of precancerous and in situ cancer lesions, he was treated orally with acitretin 20 mg/day. During 9 months of chemopreventive retinoid therapy a partial response of pre-existent skin lesions was noted. Treatment was well tolerated. During follow-up of 5 years no invasive malignancy developed. Conclusions: Intense exposure to arsenics during a relatively short period of 3 years bears a life-long health hazard with the delayed development of multiple in situ carcinomas and precancerous lesions. Chemoprevention with retinoids can induce a partial response.

  14. Pharmacokinetic of antimony in mice with cutaneous Leishmaniasis

    International Nuclear Information System (INIS)

    Borborema, Samanta E.T.; Nascimento, Nanci do; Osso Junior, Joao A.

    2007-01-01

    Cutaneous Leishmaniasis (CL) remains a major world health problem, with about 1.5 million new cases each year. Caused by protozoa Leishmania, in South America, this infection can vary from a chronic skin ulcer, to an erosive mucosal disease and severe facial disfigurement. Pentavalent antimony (Sb +5 ) as sodium stibogluconate (Pentostam) or meglumine antimoniate (Glucantime) are main drugs for treating most forms of human leishmaniasis. For six decades, despite the recent developments, the effective therapy to cutaneous leishmaniasis has been based on long parenteral courses of such drugs, even though these are fairly costly, toxic and inconvenient to use, without adequate knowledge on their pharmacokinetics or mechanism of action. Pharmacokinetics studies could be based on bioactive traceable drugs, usually with radioactive isotopes, but antimony radioisotopes are unavailable commercially. Neutron irradiation is a powerful tool in the analysis of mineral content of samples, for antimony, there are at least two main isotopes that could be formed after neutron irradiation in nuclear reactor. The aim of the present study was to construct antimony salts with those radioisotopes to obtain tracers to compare the pharmacokinetic and the tissue distribution of neutron irradiated meglumine antimoniate in healthy and cutaneous leishmaniasis experimentally infected mice. Meglumine antimoniate, (Glucantime, Aventis, S.P, Brazil), was neutron irradiated inside the IEA-R1 nuclear reactor (IPEN/CNEN-SP), producing two radioisotopes 122 Sb and 124 Sb. Its biodistribution was verified in BALB/c mice experimentally infected with Leishmania (Leishmania) Amazonensis, which received a single intraperitoneal dose of the drug. At different times after injection, the tissues and blood were excised and activity measured in a NaI (Tl) scintillation counter. Compared with the healthy mice, experimentally infected mice had significantly lower maximum concentration of antimony and high

  15. Pharmacokinetic of antimony in mice with cutaneous Leishmaniasis

    Energy Technology Data Exchange (ETDEWEB)

    Borborema, Samanta E.T.; Nascimento, Nanci do [Instituto de Pesquisas Energeticas e Nucleares IPEN/CNEN-SP, Sao Paulo, SP (Brazil). Lab. de Biologia Molecular]. E-mails: samanta@usp.br; nnascime@ipen.br; Andrade Junior, Heitor F. de [Instituto de Pesquisas Energeticas e Nucleares IPEN/CNEN-SP, Sao Paulo, SP (Brazil). Lab. de Biologia Molecular; Instituto de Medicina Tropical de Sao Paulo, Sao Paulo, SP (Brazil); E-mail: hfandrad@usp.br; Osso Junior, Joao A. [Instituto de Pesquisas Energeticas e Nucleares IPEN/CNEN-SP, Sao Paulo, SP (Brazil). Centro de Radiofarmacia]. E-mail: jaosso@ipen.br

    2007-07-01

    Cutaneous Leishmaniasis (CL) remains a major world health problem, with about 1.5 million new cases each year. Caused by protozoa Leishmania, in South America, this infection can vary from a chronic skin ulcer, to an erosive mucosal disease and severe facial disfigurement. Pentavalent antimony (Sb{sup +5}) as sodium stibogluconate (Pentostam) or meglumine antimoniate (Glucantime) are main drugs for treating most forms of human leishmaniasis. For six decades, despite the recent developments, the effective therapy to cutaneous leishmaniasis has been based on long parenteral courses of such drugs, even though these are fairly costly, toxic and inconvenient to use, without adequate knowledge on their pharmacokinetics or mechanism of action. Pharmacokinetics studies could be based on bioactive traceable drugs, usually with radioactive isotopes, but antimony radioisotopes are unavailable commercially. Neutron irradiation is a powerful tool in the analysis of mineral content of samples, for antimony, there are at least two main isotopes that could be formed after neutron irradiation in nuclear reactor. The aim of the present study was to construct antimony salts with those radioisotopes to obtain tracers to compare the pharmacokinetic and the tissue distribution of neutron irradiated meglumine antimoniate in healthy and cutaneous leishmaniasis experimentally infected mice. Meglumine antimoniate, (Glucantime, Aventis, S.P, Brazil), was neutron irradiated inside the IEA-R1 nuclear reactor (IPEN/CNEN-SP), producing two radioisotopes {sup 122}Sb and {sup 124}Sb. Its biodistribution was verified in BALB/c mice experimentally infected with Leishmania (Leishmania) Amazonensis, which received a single intraperitoneal dose of the drug. At different times after injection, the tissues and blood were excised and activity measured in a NaI (Tl) scintillation counter. Compared with the healthy mice, experimentally infected mice had significantly lower maximum concentration of antimony

  16. Antimony-121 Moessbauer spectra of antimony(III) compounds with a stereochemically active lone pair

    International Nuclear Information System (INIS)

    Takeda, Masuo; Takahashi, Masashi; Ohyama, Ryuhichi

    1986-01-01

    The Sb-121 Moessbauer parameters at 20 K for 23 antimony(III) compounds were obtained and the data are discussed in terms of known crystal structures. The isomer shifts and quadrupole coupling constants depend strongly on the type of configuration around the Sb(III) atoms with stereochemically active lone pair electrons. (Auth.)

  17. Effect of antimony on lead-acid battery negative

    International Nuclear Information System (INIS)

    Mahato, B.K.; Bullock, K.R.; Strebe, J.L.; Wilkinson, D.F.

    1985-01-01

    The role of antimony on the lead-acid battery negative in terms of its effect on charge efficiency, its effect on gassing overpotential, its interactive influence with lignin expander in controlling the charge efficiency, and its retentive behavior or purging characteristics as SbH 3 in the overcharge gas stream was investigated. Linear potential sweep (LPS) cycling of Plante-type lead electrodes were used to determine the effect of antimony on gassing overpotential and to monitor its concentration either in the active material or the exit gas stream. Results showed a significant contribution of antimony in decreasing charge efficiency and an overwhelming role of lignin expander in suppressing the effect of antimony on charge efficiency. The critical lead-electrode potential for purging antimony from the electrode is close to -1275 mV (vs. Hg/Hg 2 SO 4 )

  18. Antimony removal from aqueous solutions using Zirconium hydroxide

    International Nuclear Information System (INIS)

    Petrescu, D.; Velciu, L.; Bucur, C.

    2016-01-01

    In this paper it is presented an experimental test for non-radioactive antimony removal from aqueous solutions using zirconium hydroxide powder. Also, it was studied how the temperature and pH influences antimony adsorption onto zirconium hydroxide surface. After the adsorption, solutions were filtered on Cellulose Mixed Ester Membrane with 0.2 μm pore size to remove the zirconium powder and then the aqueous solutions were sent to Inductively Coupled Plasma Optic Emission Spectrometry (ICP-OES) for quantitative analysis of Sb. Zirconium hydroxide powders were examined by optical microscopy. For the solutions that were tested at pH 4.5 and 10.2 the antimony concentration dropped below the detection limit of ICP-OES device, proof of antimony adsorption on zirconium hydroxide. Also, for the other tested solutions which had pH=12 the antimony concentration reduced with 77% and 80%. The temperature had no influence upon adsorption mechanism. (authors)

  19. Microbial contributions to coupled arsenic and sulfur cycling in the acid-sulfide hot spring Champagne Pool, New Zealand

    Directory of Open Access Journals (Sweden)

    Katrin eHug

    2014-11-01

    Full Text Available Acid-sulfide hot springs are analogs of early Earth geothermal systems where microbial metal(loid resistance likely first evolved. Arsenic is a metalloid enriched in the acid-sulfide hot spring Champagne Pool (Waiotapu, New Zealand. Arsenic speciation in Champagne Pool follows reaction paths not yet fully understood with respect to biotic contributions and coupling to biogeochemical sulfur cycling. Here we present quantitative arsenic speciation from Champagne Pool, finding arsenite dominant in the pool, rim and outflow channel (55-75% total arsenic, and dithio- and trithioarsenates ubiquitously present as 18-25% total arsenic. In the outflow channel, dimethylmonothioarsenate comprised ≤9% total arsenic, while on the outflow terrace thioarsenates were present at 55% total arsenic. We also quantified sulfide, thiosulfate, sulfate and elemental sulfur, finding sulfide and sulfate as major species in the pool and outflow terrace, respectively. Elemental sulfur reached a maximum at the terrace. Phylogenetic analysis of 16S rRNA genes from metagenomic sequencing revealed the dominance of Sulfurihydrogenibium at all sites and an increased archaeal population at the rim and outflow channel. Several phylotypes were found closely related to known sulfur- and sulfide-oxidizers, as well as sulfur- and sulfate-reducers. Bioinformatic analysis revealed genes underpinning sulfur redox transformations, consistent with sulfur speciation data, and illustrating a microbial role in sulfur-dependent transformation of arsenite to thioarsenate. Metagenomic analysis also revealed genes encoding for arsenate reductase at all sites, reflecting the ubiquity of thioarsenate and a need for microbial arsenate resistance despite anoxic conditions. Absence of the arsenite oxidase gene, aio, at all sites suggests prioritization of arsenite detoxification over coupling to energy conservation. Finally, detection of methyl arsenic in the outflow channel, in conjunction with

  20. Characterization of the cytosolic distribution of priority pollutant metals and metalloids in the digestive gland cytosol of marine mussels: seasonal and spatial variability.

    Science.gov (United States)

    Strižak, Zeljka; Ivanković, Dušica; Pröfrock, Daniel; Helmholz, Heike; Cindrić, Ana-Marija; Erk, Marijana; Prange, Andreas

    2014-02-01

    Cytosolic profiles of several priority pollutant metals (Cu, Cd, Zn, Pb) and metalloid As were analyzed in the digestive gland of the mussel (Mytilus galloprovincialis) sampled at locations with different environmental pollution levels along the Croatian coast in the spring and summer season. Size-exclusion chromatography (SEC) connected to inductively coupled plasma mass spectrometry (ICP-MS) was used to determine selected elements bound to cytosolic biomolecules separated based on their molecular size. Copper, cadmium and zinc eluted mostly associated with high molecular weight (HMW) and medium molecular weight (MMW) biomolecules, but with a more prominent elution in the MMW peak at polluted locations which were probably associated with the 20 kDa metallothionein (MT). Elution of all three metals within this peak was also strongly correlated with cytosolic Cd as strong inducer of MT. Lead mostly eluted in HMW biomolecule range, but in elevated cytosolic Pb concentrations, significant amount eluted in low molecular weight (LMW) biomolecules. Arsenic, on the other hand eluted almost completely in LMW range, but we could not distinguish specific molecular weight biomolecules which would be predominant in detoxification mechanism. Seasonal variability in element abundance within specific peaks was present, although not in the same extent, for all elements and locations, especially for As. The results confirm the suitability of the distribution of selected metals/metalloids among different cytosolic ligands as potential indicator for metal exposure. Obtained findings can also serve as guidelines for further separation and characterization of specific cytosolic metal-binding biomolecules. © 2013.

  1. Fatigue and wear of metalloid-ion-implanted metals

    International Nuclear Information System (INIS)

    Hohmuth, K.; Richter, E.; Rauschenbach, B.; Blochwitz, C.

    1985-01-01

    The effect of metalloid ion implantation on the fatigue behaviour and wear of nickel and two steels has been investigated. These metals were implanted with boron, carbon and nitrogen ions at energies from 30 to 60 keV and with doses from 1 X 10 16 to 1 X 10 18 ions cm -2 at room temperature. The mechanical behaviour of fatigued nickel was studied in push-pull tests at room temperature. Wear measurements were made using a pin-and-disc technique. The surface structure, dislocation arrangement and modification of the implantation profile resulting from mechanical tests on metals which had been implanted with metalloid ions were examined using high voltage electron microscopy, transmission high energy electron diffraction, scanning electron microscopy and Auger electron spectroscopy. It is reported that nitrogen and boron ion implantation improves the fatigue lifetime, changes the number and density of the slip bands and modifies the dislocation arrangements in nickel. The cyclic deformation leads to recrystallization of the boron-ion-induced amorphous structure of nickel and to diffusion of the boron and nitrogen in the direction of the surface. The wear behaviour of steels was improved by implantation of mass-separated ions and by implantation of ions without mass separation. (Auth.)

  2. Bioaccumulation of Antimony and Arsenic in Vegetables and Health Risk Assessment in the Superlarge Antimony-Mining Area, China

    Directory of Open Access Journals (Sweden)

    Defang Zeng

    2015-01-01

    Full Text Available Heavy metal pollution in soils caused by mining and smelting has attracted worldwide attention for its potential health risks to residents. This paper studies the concentrations and accumulations of Sb and As in both soils and vegetables and the human health risks of Sb and As in vegetables from Xikuangshan (XKS Sb mine, Hunan, China. Results showed that the soils were severely polluted by Sb and As; Sb and As have significant positive correlation. Sb and As concentrations in vegetables were quite different: Coriandrum sativum L. was the highest in Sb, Allium fistulosum L. was the highest in As, and Brassica pekinensis L. was the lowest in both Sb and As; Daucus carota L. and Coriandrum sativum L. showed advantage in accumulating Sb and As; Coriandrum sativum L. had higher capacity of redistributing Sb and As within the plant. Health risk assessment results showed that the hazard quotient (HQ values of Sb and As in vegetables were in the ranges of 1.61–3.33 and 0.09–0.39, respectively; the chronic daily intake (CDI and hazard quotient (HQ values of Sb were over the safe limit recommended by FAO and WHO, indicating that long-term consumption of vegetables from the surrounding soils of XKS mine may bring health risks to residents.

  3. Liquid liquid phase distribution equilibria of arsenic and its application to water samples

    International Nuclear Information System (INIS)

    Khan, A.; Ahmed, S.; Rusheed, A.

    1999-01-01

    The presence of arsenic, a toxic element, in the environment, especially in water is a serious pollution problem. The treatment of such contaminated water by ion-exchange or absorption on natural materials is time consuming and/or expensive. The removal of arsenic using 2-benzyl pyridine in benzene and its application to polluted water is described. The present technique reported herein concentrates the arsenic, up to 500 fold or even better. The time required for equilibration is only three minutes or less. No special reagent or solution is required for stripping of arsenic and simple water serves this purpose. The partition coefficients are maximal for concentrated acid solutions which are 10 M HCl +0.1 The presence of arsenic, a toxic element, in the environment, especially in water is a serious pollution problem. The treatment of such contaminated water by ion-exchange or absorption on natural materials is time consuming M KI. Arsenic can be selectively separated from associated copper, cobalt, nickel, iron, chromium and antimony. The method may find its application for the removal/ recovery of arsenic from contaminated soil, residues of incinerator and waste water from smelting of gold, silver and copper ores. (author)

  4. Arsenic: natural and anthropogenic

    National Research Council Canada - National Science Library

    Matschullat, Jörg; Deschamps, Eleonora

    2011-01-01

    .... Based on state-of-the-art investigations into the global arsenic cycle, the related human toxicology and available remediation technologies, it assesses arsenic in all the environmental compartments...

  5. ARSENIC RESEARCH AT GWERD

    Science.gov (United States)

    Abstract - The presentation will summarize the arsenic research program at the Ground Water & Ecosystems Restoration Division of the National Risk Management Research Laboratory of USEPA. Topics include use of permeable reactive barriers for in situ arsenic remediation in ground...

  6. Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils.

    Science.gov (United States)

    Park, Jin Hee; Lamb, Dane; Paneerselvam, Periyasamy; Choppala, Girish; Bolan, Nanthi; Chung, Jae-Woo

    2011-01-30

    As land application becomes one of the important waste utilization and disposal practices, soil is increasingly being seen as a major source of metal(loid)s reaching food chain, mainly through plant uptake and animal transfer. With greater public awareness of the implications of contaminated soils on human and animal health there has been increasing interest in developing technologies to remediate contaminated sites. Bioremediation is a natural process which relies on soil microorganisms and higher plants to alter metal(loid) bioavailability and can be enhanced by addition of organic amendments to soils. Large quantities of organic amendments, such as manure compost, biosolid and municipal solid wastes are used as a source of nutrients and also as a conditioner to improve the physical properties and fertility of soils. These organic amendments that are low in metal(loid)s can be used as a sink for reducing the bioavailability of metal(loid)s in contaminated soils and sediments through their effect on the adsorption, complexation, reduction and volatilization of metal(loid)s. This review examines the mechanisms for the enhanced bioremediation of metal(loid)s by organic amendments and discusses the practical implications in relation to sequestration and bioavailability of metal(loid)s in soils. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Iron interference in arsenic absorption by different plant species, analysed by neutron activation, k0-method

    International Nuclear Information System (INIS)

    Uemura, George; Matos, Ludmila Vieira da Silva; Silva, Maria Aparecida da; Menezes, Maria Angela de Barros Correia

    2009-01-01

    Natural arsenic contamination is a cause for concern in many countries of the world including Argentina, Bangladesh, Chile, China, India, Mexico, Thailand, United States of America and also in Brazil, specially in the Iron Quadrangle area, where mining activities have been contributing to aggravate natural contamination. Among other elements, iron is capable to interfere with the arsenic absorption by plants; iron ore has been proposed to remediate areas contaminated by the mentioned metalloid. In order to verify if iron can interfere with arsenic absorption by different taxa of plants, specimens of Brassicacea and Equisetaceae were kept in a 1/4 Murashige and Skoog basal salt solution (M and S), with 10 μgL -1 of arsenic acid. And varying concentrations of iron. The specimens were analysed by neutron activation analysis, k 0 -method, a routine technique in CDTN, and also very appropriate for arsenic studies. The preliminary results were quite surprising, showing that iron can interfere with arsenic absorption by plants, but in different ways, according to the species studied. (author)

  8. Comparative proteomic analysis reveals heart toxicity induced by chronic arsenic exposure in rats.

    Science.gov (United States)

    Huang, Qingyu; Xi, Guochen; Alamdar, Ambreen; Zhang, Jie; Shen, Heqing

    2017-10-01

    Arsenic is a widespread metalloid in the environment, which poses a broad spectrum of adverse effects on human health. However, a global view of arsenic-induced heart toxicity is still lacking, and the underlying molecular mechanisms remain unclear. By performing a comparative quantitative proteomic analysis, the present study aims to investigate the alterations of proteome profile in rat heart after long-term exposure to arsenic. As a result, we found that the abundance of 81 proteins were significantly altered by arsenic treatment (35 up-regulated and 46 down-regulated). Among these, 33 proteins were specifically associated with cardiovascular system development and function, including heart development, heart morphology, cardiac contraction and dilation, and other cardiovascular functions. It is further proposed that the aberrant regulation of 14 proteins induced by arsenic would disturb cardiac contraction and relaxation, impair heart morphogenesis and development, and induce thrombosis in rats, which is mediated by the Akt/p38 MAPK signaling pathway. Overall, these findings will augment our knowledge of the involved mechanisms and develop useful biomarkers for cardiotoxicity induced by environmental arsenic exposure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Structural and electrical characterization of zinc oxide doped with antimony

    Directory of Open Access Journals (Sweden)

    G. Juárez Díaz

    2014-08-01

    Full Text Available In this work we report the results of structural and electrical characterization realized on zinc oxide single crystal samples with (001 orientation, which were doped with antimony. Doping was carried out by antimony thermal diffusion at 1000 °C for periods of 1 and 2 hours under nitrogen environment from a solid source formed by antimony oxide. Electrical characterization by I-V curves and Hall effect shown an increase in acceptor concentration which demonstrates that doping is effective and create holes in zinc oxide samples.

  10. Annual and seasonal variability of metals and metalloids in urban and industrial soils in Alcalá de Henares (Spain).

    Science.gov (United States)

    Peña-Fernández, A; Lobo-Bedmar, M C; González-Muñoz, M J

    2015-01-01

    Contamination of urban and industrial soils with trace metals has been recognized as a major concern at local, regional and global levels due to their implication on human health. In this study, concentrations of aluminum (Al), arsenic (As), beryllium (Be), cadmium (Cd), chromium (Cr), manganese (Mn), nickel (Ni), lead (Pb), tin (Sn), thallium (Tl), vanadium (V) and zinc (Zn) were determined in soil samples collected in Alcalá de Henares (Madrid, Spain) in order to evaluate the annual and seasonal variation in their levels. The results show that the soils of the industrial area have higher metals concentrations than the urban area. Principal component analysis (PCA) revealed that the two principal sources of trace metal contamination, especially Cd, Cu, Pb, and Zn in the urban soils of Alcalá can be attributed to traffic emissions, while As, Ni and Be primarily originated from industrial discharges. The seasonal variation analysis has revealed that the emission sources in the industrial area remain constant with time. However, in urban areas, both emissions and emission pathways significantly increase over time due to ongoing development. Currently, there is no hypothesis that explains the small seasonal fluctuations of trace metals in soils, since there are many factors affecting this. Owing to the fact that urban environments are becoming the human habitat, it would therefore be advisable to monitor metals and metalloids in urban soils because of the potential risks to human health. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. RETROSPECTIVE STUDY OF METHYLMERCURY AND OTHER METAL(LOID)S IN MADAGASCAR UNPOLISHED RICE (Oryza sativa L.)

    Science.gov (United States)

    Rothenberg, Sarah E.; Mgutshini, Noma L.; Bizimis, Michael; Johnson-Beebout, Sarah E.; Ramanantsoanirina, Alain

    2014-01-01

    The rice ingestion rate in Madagascar is among the highest globally; however studies concerning metal(loid) concentrations in Madagascar rice are lacking. For Madagascar unpolished rice (n=51 landraces), levels of toxic elements (e.g., total mercury, methylmercury, arsenic and cadmium) as well as essential micronutrients (e.g., zinc and selenium) were uniformly low, indicating potentially both positive and negative health effects. Aside from manganese (Wilcoxon rank sum, p<0.01), no significant differences in concentrations for all trace elements were observed between rice with red bran (n=20) and brown bran (n=31) (Wilcoxon rank sum, p=0.06–0.91). Compared to all elements in rice, rubidium (i.e., tracer for phloem transport) was most positively correlated with methylmercury (Pearson's r=0.33, p<0.05) and total mercury (r=0.44, p<0.05), while strontium (i.e., tracer for xylem transport) was least correlated with total mercury and methylmercury (r<0.01 for both), suggesting inorganic mercury and methylmercury were possibly more mobile in phloem compared to xylem. PMID:25463705

  12. Arsenic bioavailability in soils before and after soil washing: the use of Escherichia coli whole-cell bioreporters.

    Science.gov (United States)

    Yoon, Youngdae; Kang, Yerin; Chae, Yooeun; Kim, Sunghoon; Lee, Youngshim; Jeong, Seung-Woo; An, Youn-Joo

    2016-02-01

    We investigated the quantification of bioavailable arsenic in contaminated soils and evaluation of soil-washing processes in the aspect of bioavailability using a novel bacterial bioreporter developed in present study. The whole-cell bioreporter (WCB) was genetically engineered by fusing the promoter of nik operon from Escherichia coli and green fluorescent protein as a sensing domain and reporter domain. Among eight well-known hazardous heavy metals and metalloid, this system responded specifically to arsenic, thereby inferring association of As(III) with NikR inhibits the repression. Moreover, the response was proportional to the concentration of As(III), thereby it was capable to determine the amount of bioavailable arsenic quantitatively in contaminated soils. The bioavailable portion of arsenic was 5.9 (3.46-10.96) and 0.9 (0.27-1.74) % of total from amended and site soils, respectively, suggesting the bioavailability of arsenic in soils was related to the soil properties and duration of aging. On the other hand, only 1.37 (0.21-2.97) % of total arsenic was extracted into soil solutions and 19.88 (11.86-28.27) % of arsenic in soil solution was bioavailable. This result showed that the soluble arsenic is not all bioavailable and most of bioavailable arsenic in soils is water non-extractable. In addition, the bioavailable arsenic was increased after soil-washing while total amount was decreased, thereby suggesting the soil-washing processes release arsenic associated with soil materials to be bioavailable. Therefore, it would be valuable to have a tool to assess bioavailability and the bioavailability should be taken into consideration for soil remediation plans.

  13. Carbon dioxide triggered metal(loid) mobilisation in a mofette

    DEFF Research Database (Denmark)

    Beulig, Felix

    2014-01-01

    Carbon capture and geologic storage is a frequently discussed option to reduce atmospheric CO2 concentrations with the long-term risk of leakage from storage sites to overlying aquifers and soils. We chose natural CO2 exhalations, so-called mofettes, in a wetland area in the Czech Republic...... as analogues to follow the fate of metal(loid)s under CO2-saturated conditions. Compared to the reference fluvisol at the study site, mofette soils exhibited lower pH (4.9 ± 0.05) and redox potential (300 ± 40 mV), as well as higher organic carbon contents. Poorly crystalline and crystalline Fe (hydr...... to complexation and/or adsorption to organic carbon and the small amount of Fe (hydr)oxides. A one-month-in-situ mobilisation experiment showed mobilisation of all investigated elements to the aqueous phase suggesting that desorption is the faster and initially dominating process while resorption is a secondary...

  14. Metals, Metalloids and Radionuclides in the Baltic Sea Ecosystem

    International Nuclear Information System (INIS)

    Szefer, P.

    2002-01-01

    The state of knowledge of the distribution, bioavailability, biomagnification, discrimination, fate and sources of chemical pollutants (metals, metalloids, radionuclides and nutrients) in all compartments (atmosphere, water, deposits, biota) of the Baltic environment is presented. Particular components of the Baltic ecosystem are considered as potential monitors of pollutants. Budgets of chemical elements and the ecological status of the Baltic Sea in the past, present and future are presented. Estimates of health risks to man in respect to some toxic metals and radionuclides in fish and seafood are briefly discussed. The content of the book makes possible the identification of gaps in our environmental knowledge of the Baltic Sea, with certain sections establishing possible priorities, key areas or strategies for future research

  15. Identification of an S-adenosylmethionine (SAM) dependent arsenic methyltransferase in Danio rerio

    Energy Technology Data Exchange (ETDEWEB)

    Hamdi, Mohamad [Department of Biological Sciences, Oakland University, Rochester, MI 48309 (United States); Yoshinaga, Masafumi; Packianathan, Charles; Qin, Jie [Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, FL33199 (United States); Hallauer, Janell; McDermott, Joseph R. [Department of Biological Sciences, Oakland University, Rochester, MI 48309 (United States); Yang, Hung-Chi [Department of Medical Biotechnology and Laboratory Sciences, Chang-Gung University, Tao-Yuan, Kwei-San 333, Taiwan (China); Tsai, Kan-Jen [School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan (China); Liu, Zijuan, E-mail: liu2345@oakland.edu [Department of Biological Sciences, Oakland University, Rochester, MI 48309 (United States)

    2012-07-15

    Arsenic methylation is an important cellular metabolic process that modulates arsenic toxicity and carcinogenicity. Biomethylation of arsenic produces a series of mono-, di- and tri-methylated arsenic metabolites that can be detected in tissues and excretions. Here we report that zebrafish exposed to arsenite (As{sup III}) produces organic arsenicals, including MMA{sup III}, MMA{sup V} and DMA{sup V} with characteristic tissue ratios, demonstrating that an arsenic methylation pathway exists in zebrafish. In mammals, cellular inorganic arsenic is methylated by a SAM-dependent arsenic methyltransferase, AS3MT. A zebrafish arsenic methyltransferase homolog, As3mt, was identified by sequence alignment. Western blotting analysis showed that As3mt was universally expressed in zebrafish tissues. Prominent expression in liver and intestine correlated with methylated arsenic metabolites detected in those tissues. As3mt was expressed in and purified from Escherichia coli for in vitro functional studies. Our results demonstrated that As3mt methylated As{sup III} to DMA{sup V} as an end product and produced MMA{sup III} and MMA{sup V} as intermediates. The activity of As3mt was inhibited by elevated concentrations of the substrate As{sup III} as well as the metalloid selenite, which is a well-known antagonistic micronutrient of arsenic toxicity. The activity As3mt was abolished by substitution of either Cys160 or Cys210, which corresponds to conserved cysteine residues in AS3MT homologs, suggesting that they are involved in catalysis. Expression in zebrafish of an enzyme that has a similar function to human and rodent orthologs in catalyzing intracellular arsenic biomethylation validates the applicability of zebrafish as a valuable vertebrate model for understanding arsenic-associated diseases in humans. -- Highlights: ► Zebrafish methylated As{sup III} to MMA{sup III}, MMA{sup V} and DMA{sup V}. ► A zebrafish arsenic methyltransferase (As3mt) was purified in E. coli.

  16. How can we adapt to geological scarcity of antimony? Investigation of antimony's substitutability and of other measures to achieve a sustainable use

    NARCIS (Netherlands)

    Henckens, M.L.C.M.; Driessen, P.P.J.; Worrell, E.

    Abstract Antimony is an element that is applied in many useful applications for mankind. However, antimony resources are very scarce, when comparing the current extraction rates with the availability of antimony containing ores. From an inter-temporal sustainability perspective, current generations

  17. Tissue distribution of residual antimony in rats treated with multiple doses of meglumine antimoniate

    Directory of Open Access Journals (Sweden)

    Deise Riba Coelho

    2014-07-01

    Full Text Available Meglumine antimoniate (MA and sodium stibogluconate are pentavalent antimony (SbV drugs used since the mid-1940s. Notwithstanding the fact that they are first-choice drugs for the treatment of leishmaniases, there are gaps in our knowledge of their toxicological profile, mode of action and kinetics. Little is known about the distribution of antimony in tissues after SbV administration. In this study, we evaluated the Sb content of tissues from male rats 24 h and three weeks after a 21-day course of treatment with MA (300 mg SbV/kg body wt/d, subcutaneous. Sb concentrations in the blood and organs were determined by inductively coupled plasma-mass spectrometry. In rats, as with in humans, the Sb blood levels after MA dosing can be described by a two-compartment model with a fast (t1/2 = 0.6 h and a slow (t1/2 >> 24 h elimination phase. The spleen was the organ that accumulated the highest amount of Sb, while bone and thyroid ranked second in descending order of tissues according to Sb levels (spleen >> bone, thyroid, kidneys > liver, epididymis, lungs, adrenals > prostate > thymus, pancreas, heart, small intestines > skeletal muscle, testes, stomach > brain. The pathophysiological consequences of Sb accumulation in the thyroid and Sb speciation in the liver, thyroid, spleen and bone warrant further studies.

  18. Inorganic arsenic impairs differentiation and functions of human dendritic cells

    Energy Technology Data Exchange (ETDEWEB)

    Macoch, Mélinda; Morzadec, Claudie [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes (France); Fardel, Olivier [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes (France); Pôle Biologie, Centre Hospitalier Universitaire (CHU) Rennes, 2 rue Henri Le Guilloux, 35033 Rennes (France); Vernhet, Laurent, E-mail: laurent.vernhet@univ-rennes1.fr [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes (France)

    2013-01-15

    Experimental studies have demonstrated that the antileukemic trivalent inorganic arsenic prevents the development of severe pro-inflammatory diseases mediated by excessive Th1 and Th17 cell responses. Differentiation of Th1 and Th17 subsets is mainly regulated by interleukins (ILs) secreted from dendritic cells (DCs) and the ability of inorganic arsenic to impair interferon-γ and IL-17 secretion by interfering with the physiology of DCs is unknown. In the present study, we demonstrate that high concentrations of sodium arsenite (As(III), 1–2 μM) clinically achievable in plasma of arsenic-treated patients, block differentiation of human peripheral blood monocytes into immature DCs (iDCs) by inducing their necrosis. Differentiation of monocytes in the presence of non-cytotoxic concentrations of As(III) (0.1 to 0.5 μM) only slightly impacts endocytotic activity of iDCs or expression of co-stimulatory molecules in cells activated with lipopolysaccharide. However, this differentiation in the presence of As(III) strongly represses secretion of IL-12p70 and IL-23, two major regulators of Th1 and Th17 activities, from iDCs stimulated with different toll-like receptor (TLR) agonists in metalloid-free medium. Such As(III)-exposed DCs also exhibit reduced mRNA levels of IL12A and/or IL12B genes when activated with TLR agonists. Finally, differentiation of monocytes with non-cytotoxic concentrations of As(III) subsequently reduces the ability of activated DCs to stimulate the release of interferon-γ and IL-17 from Th cells. In conclusion, our results demonstrate that clinically relevant concentrations of inorganic arsenic markedly impair in vitro differentiation and functions of DCs, which may contribute to the putative beneficial effects of the metalloid towards inflammatory autoimmune diseases. Highlights: ► Inorganic arsenic impairs differentiation and functions of human dendritic cells (DCs) ► Arsenite (> 1 μM) blocks differentiation of dendritic cells by

  19. Inorganic arsenic impairs differentiation and functions of human dendritic cells

    International Nuclear Information System (INIS)

    Macoch, Mélinda; Morzadec, Claudie; Fardel, Olivier; Vernhet, Laurent

    2013-01-01

    Experimental studies have demonstrated that the antileukemic trivalent inorganic arsenic prevents the development of severe pro-inflammatory diseases mediated by excessive Th1 and Th17 cell responses. Differentiation of Th1 and Th17 subsets is mainly regulated by interleukins (ILs) secreted from dendritic cells (DCs) and the ability of inorganic arsenic to impair interferon-γ and IL-17 secretion by interfering with the physiology of DCs is unknown. In the present study, we demonstrate that high concentrations of sodium arsenite (As(III), 1–2 μM) clinically achievable in plasma of arsenic-treated patients, block differentiation of human peripheral blood monocytes into immature DCs (iDCs) by inducing their necrosis. Differentiation of monocytes in the presence of non-cytotoxic concentrations of As(III) (0.1 to 0.5 μM) only slightly impacts endocytotic activity of iDCs or expression of co-stimulatory molecules in cells activated with lipopolysaccharide. However, this differentiation in the presence of As(III) strongly represses secretion of IL-12p70 and IL-23, two major regulators of Th1 and Th17 activities, from iDCs stimulated with different toll-like receptor (TLR) agonists in metalloid-free medium. Such As(III)-exposed DCs also exhibit reduced mRNA levels of IL12A and/or IL12B genes when activated with TLR agonists. Finally, differentiation of monocytes with non-cytotoxic concentrations of As(III) subsequently reduces the ability of activated DCs to stimulate the release of interferon-γ and IL-17 from Th cells. In conclusion, our results demonstrate that clinically relevant concentrations of inorganic arsenic markedly impair in vitro differentiation and functions of DCs, which may contribute to the putative beneficial effects of the metalloid towards inflammatory autoimmune diseases. Highlights: ► Inorganic arsenic impairs differentiation and functions of human dendritic cells (DCs) ► Arsenite (> 1 μM) blocks differentiation of dendritic cells by

  20. Zhao Tiancong——A MONUMENT TO ANTIMONY IN CHINA

    Institute of Scientific and Technical Information of China (English)

    1992-01-01

    Professor Zhao Tiancong is a famous specialist of our country in nonferrous merallurgy field and a doctoral teacher of Central South University of Technology. He has been devoting diligently his life to the development of the antimony metallurgy.

  1. Thermodynamic Behavior of Lead-Antimony Alloy in Vacuum Distillation

    Institute of Scientific and Technical Information of China (English)

    1989-01-01

    The distribution of metals in Pb-Sb ailoy during vacuum distillation was calculated.The composition curve of vapor-liquid phases determined by this work is different from those of. other researchers.The curve intersects the diagonal at C.The compositions of vapor and liquid at C are identical.The antimony content of vapor on the left of C is less than that of liquid,and the vapor on the right-side of C contains more antimony.These characteristics can be applied to the elimination of antimony from crude lead or the elimination of lead from crude antimony.The position of C moves rightwards with temperature increment.The discrepency among the compositions of C suggested by diffrent authors was explained.

  2. Interplay of single particle and collective excitations in antimony nuclei

    International Nuclear Information System (INIS)

    Stan-Sion, C.

    1987-01-01

    The antimony nuclei are considered classical examples for coexisting spherical and well-deformed structures. The electromagnetic moment measurements presented in this paper provide direct evidence for shape coexistence. 8 refs., 3 figs. (M.F.W.)

  3. Short-Lived Antimony and Arsenic Isotopes Formed in Fission; Radioantimoine et Radioarsenic a Courte Periode Produits par la Fission; 041a 041e 0420 041e 0422 041a 041e 0416 0418 0412 0423 0429 0418 0415 0418 0417 041e 0422 041e 041f 042b 0421 0423 0420 042c 041c 042b 0418 041c 042b 0428 042c 042f 041a 0410 , 041e 0411 0420 0410 0417 041e 0412 0410 0412 0428 0418 0415 0421 042f 041f 0420 0418 0414 0415 - 041b 0415 041d 0418 0418 ; Isotopos de Periodo Corto del Antimonio y del Arsenico Formados por Fision

    Energy Technology Data Exchange (ETDEWEB)

    Tomlinson, L. [Atomic Energy Research Establishment, Harwell, Berks. (United Kingdom)

    1965-07-15

    The application of a new technique for the rapid separation of short-lived antimony and arsenic isotopes from fission products is described. The gamma spectra of Sb{sup 128}, Sb{sup 129} and Sb{sup 150} have been measured and previous observations con-firmed. A new delayed-neutron activity of 2-s half-life has been detected. The experimental data indicate that this activity is due to two isotopes, one of antimony and the other of arsenic. These are tentatively as-signed to Sb{sup 135} and one of the isotopes As{sup 85-87}. (author) [French] L'auteur expose Inapplication d'une methode nouvelle visant a separer rapidement le radioantimoine et le radioarsenic a courte periode des autres produits de fission. II a mesure les spectres gamma de {sup 128}Sb, {sup 129}Sb et {sup 130}Sb et obtenu confirmation d'observations precedentes. L'auteur a decele une nouvelle activite emettant des neutrons retardes et ayant une periode de 2 s. Selon des donnees ex peri mentales, cette activite est due a deux radioisotopes: un radioantimoine et un radioarsenic que l'auteur identifie provisoirement comme etant {sup 135}Sb et l'un des radioisotopes {sup 85-87}As. (author) [Spanish] El autor describe la aplicacion de una nueva tecnica para separar rapidamente los isotopos de periodo coito del antimonio y del arsenico de los productos de fision. Se han medido el espectro gamma del {sup 128}Sb, {sup 129}Sb y {sup 130}Sb y se han confirmado las observaciones anteriores. Se ha detectado una nueva actividad neurronica retardada cuyo periodo es de 2 s. Los resultados experimentales indican que esta actividad se debe a dos isotopos, uno del antimonio y otro del arsenico, que se suponen son el {sup 135}Sb, y uno de los isotopos {sup 85-87}As, respectivamente. (author) [Russian] Opisyvaetsja primenenie novogo metoda bystrogo otdelenija korotkozhivushih izotopov sur my i mysh'jaka ot produktov delenija. Provedeno izmerenie gamma-spektrov sur'my-128, 129 i 130, podtverzhdajutsja rezul

  4. Phytoremediation of arsenic from the contaminated soil using transgenic tobacco plants expressing ACR2 gene of Arabidopsis thaliana.

    Science.gov (United States)

    Nahar, Noor; Rahman, Aminur; Nawani, Neelu N; Ghosh, Sibdas; Mandal, Abul

    2017-11-01

    We have cloned, characterized and transformed the AtACR2 gene (arsenic reductase 2) of Arabidopsis thaliana into the genome of tobacco (Nicotiana tabacum, var Sumsun). Our results revealed that the transgenic tobacco plants are more tolerant to arsenic than the wild type ones. These plants can grow on culture medium containing 200μM arsenate, whereas the wild type can barely survive under this condition. Furthermore, when exposed to 100μM arsenate for 35days the amount of arsenic accumulated in the shoots of transgenic plants was significantly lower (28μg/g d wt.) than that found in the shoots of non-transgenic controls (40μg/g d wt.). However, the arsenic content in the roots of transgenic plants was significantly higher (2400μg/g d. wt.) than that (2100μg/g d. wt.) observed in roots of wild type plants. We have demonstrated that Arabidopsis thaliana AtACR2 gene is a potential candidate for genetic engineering of plants to develop new crop cultivars that can be grown on arsenic contaminated fields to reduce arsenic content of the soil and can become a source of food containing no arsenic or exhibiting substantially reduced amount of this metalloid. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. VOLATILE ORGANO-METALLOIDS IN BIO-SOLID MATERIALS: ANALYSIS BY VACUUM DISTILLATION-GC/MS

    Science.gov (United States)

    An analytical method based on vacuum distillation-gas chromatography-mass spectrometry (VD-GC-MS)was developed for determining volatile organo-metalloid contaminants in bio-solid materials. Methodperformance was evaluated for dimethylselenide (DMSe), dimethyldisel...

  6. Antimony and sleep-related disorders: NHANES 2005-2008.

    Science.gov (United States)

    Scinicariello, Franco; Buser, Melanie C; Feroe, Aliya G; Attanasio, Roberta

    2017-07-01

    Antimony is used as a flame-retardant in textiles and plastics, in semiconductors, pewter, and as pigments in paints, lacquers, glass and pottery. Subacute or chronic antimony poisoning has been reported to cause sleeplessness. The prevalence of short sleep duration (sleep apnea (OSA) affects 12-28 million US adults. Insufficient sleep and OSA have been linked to the development of several chronic conditions including diabetes, cardiovascular disease, obesity and depression, conditions that pose serious public health threats. To investigate whether there is an association between antimony exposure and sleep-related disorders in the US adult population using the National Health and Nutrition Examination Survey (NHANES) 2005-2008. We performed multivariate logistic regression to analyze the association of urinary antimony with several sleep disorders, including insufficient sleep and OSA, in adult (ages 20 years and older) participants of NHANES 2005-2008 (n=2654). We found that participants with higher urinary antimony levels had higher odds to experience insufficient sleep (≤6h/night) (OR 1.73; 95%CI; 1.04, 2.91) as well as higher odds to have increased sleep onset latency (>30min/night). Furthermore, we found that higher urinary antimony levels in participants were associated with OSA (OR 1.57; 95%CI; 1.05, 2.34), sleep problems, and day-time sleepiness. In this study, we found that urinary antimony was associated with higher odds to have insufficient sleep and OSA. Because of the public health implications of sleep disorders, further studies, especially a prospective cohort study, are warranted to evaluate the association between antimony exposure and sleep-related disorders. Copyright © 2017. Published by Elsevier Inc.

  7. Uptake, translocation and transformation of antimony in rice (Oryza sativa L.) seedlings.

    Science.gov (United States)

    Cai, Fei; Ren, Jinghua; Tao, Shu; Wang, Xilong

    2016-02-01

    Antimony (Sb), as a toxic metalloid, has been gaining increasing research concerns due mainly to its severe pollution in many places. Rice has been identified to be the dominant intake route of Sb by residents close to the Sb mining areas. A hydroponic experiment was conducted to investigate the difference in uptake, translocation and transformation of Sb in rice seedlings of four cultivars exposed to 0.2 or 1.0 mg/L of Sb(V). The results showed that mass concentration of iron plaque (mg/kg FW) formed at the root surfaces of cultivar N was the highest among all tested cultivars at both low and high exposure levels of Sb(V). The accumulated Sb concentration in iron plaque significantly increased with an increase in mass concentration of iron plaque formed at the rice root. The total amount of iron plaque (mg/pot) at rice root generally increased with increasing exposed Sb(V) concentration, which was closely associated with the increasing lipid peroxidation in roots. Concentration percentage of Sb in rice root significantly reduced as the corresponding value in the iron plaque increased, suggesting that iron plaque formation strongly suppressed uptake of Sb by rice root. Sb concentration in rice tissues followed an order: root > stem, leaf. The japonica rice (cultivars N and Z) exhibited a stronger translocation tendency of Sb from root to stem than indica hybrid rice (cultivars F and G). Translocation of Sb from root of cultivar F to its stem and leaf was sharply enhanced with increasing Sb exposure concentration. Sb(V) could be reduced to Sb(III) in rice tissues, especially in stems (10-26% of the total Sb). For the sake of food safety, the difference in uptake, translocation and transformation of Sb in rice species planted in Sb-contaminated soils should be taken into consideration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. New Sorbents for Removing Arsenic From Water

    Science.gov (United States)

    McConchie, D. M.; Genc-Fuhrman, H.; Clark, M. W.; Caldicott, W.; Davies-McConchie, F. G.

    2004-12-01

    Elevated concentrations of arsenic in the drinking water used in many countries, including some of the poorest developing countries, and recognition that consuming this water can have serious consequences for human health, have led to increased investigations of ways to obtain safe water supplies. Finding new groundwater resources is a possible solution but this is a costly strategy that has no guarantee of success, particularly in areas where water is already a scarce commodity. The alternative is to treat water that is already available, but existing technologies are usually too expensive, too difficult to operate and maintain, or not completely effective when used in less developed countries or remote areas. There is therefore, an urgent need to find a simple and effective but inexpensive sorbent for arsenic that can be used to treat large volumes of water under less than ideal conditions. In this paper we present the results of field and laboratory trials that used a new, highly cost-effective, sorbent to remove arsenic from contaminated water. BauxsolT is the name given to the cocktail of minerals prepared by treating caustic bauxite refinery residues with Mg and Ca to produce a substance with a reaction pH of about 8.5, a high acid neutralizing capacity and an excellent ability to trap trace metals, metalloids and some other ionic species. The trapped ions are tightly bound by processes that include; precipitation of low solubility neoformational minerals, isomorphous substitution, solid-state diffusion, and adsorption; it is also an excellent flocculant. Although ordinary BauxsolT has an excellent ability to bind arsenate, and to a lesser extent arsenite, this ability can be further increased for particular water types by using activated BauxsolT or BauxsolT combined with small amounts of other reagents. Field trials conducted at the Gilt Edge Mine, South Dakota, showed that the addition of BauxsolT to highly sulfidic waste rock reduced the arsenic

  9. Electron irradiation effects in amorphous antimony thin films obtained by cluster-beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, G.; Treilleux, M.; Santos Aires, F.; Cabaud, B.; Melinon, P.; Hoareau, A. (Lyon-1 Univ., 69 - Villeurbanne (France))

    1991-03-01

    In order to understand the differences existing between films obtained with a classical molecular beam deposition (MBD) and the new low-energy cluster beam deposition (LECBD), transmission electron microscopy has been used to characterize the first stages of antimony LECBD. Antimony deposits are discontinuous and amorphous up to 2 nm in thickness. They are formed with isolated amorphous antimony particles surrounded by an amorphous antimony oxide shell. Moreover, under electron beam exposure in the microscope, an amorphous-crystal transformation has been observed in the oxide shell. Electron irradiation induces the formation of a crystallized antimony oxide (Sb{sub 2}O{sub 3}) around the amorphous antimony core. (author).

  10. Arsenic in groundwater: a summary of sources and the biogeochemical and hydrogeologic factors affecting arsenic occurrence and mobility

    Science.gov (United States)

    Barringer, Julia L.; Reilly, Pamela A.; Bradley, Paul M.

    2013-01-01

    Arsenic (As) is a metalloid element (atomic number 33) with one naturally occurring isotope of atomic mass 75, and four oxidation states (-3, 0, +3, and +5) (Smedley and Kinniburgh, 2002). In the aqueous environment, the +3 and +5 oxidation states are most prevalent, as the oxyanions arsenite (H3AsO3 or H2AsO3- at pH ~9-11) and arsenate (H2AsO4- and HAsO42- at pH ~4-10) (Smedley and Kinniburgh, 2002). In soils, arsine gases (containing As3-) may be generated by fungi and other organisms (Woolson, 1977). The different forms of As have different toxicities, with arsine gas being the most toxic form. Of the inorganic oxyanions, arsenite is considered more toxic than arsenate, and the organic (methylated) arsenic forms are considered least toxic (for a detailed discussion of toxicity issues, the reader is referred to Mandal and Suzuki (2002)). Arsenic is a global health concern due to its toxicity and the fact that it occurs at unhealthful levels in water supplies, particularly groundwater, in more than 70 countries (Ravenscroft et al., 2009) on six continents.

  11. Establishing the importance of human health risk assessment for metals and metalloids in urban environments.

    Science.gov (United States)

    Peña-Fernández, A; González-Muñoz, M J; Lobo-Bedmar, M C

    2014-11-01

    Rapid development, industrialisation, and urbanisation have resulted in serious contamination of soil by metals and metalloids from anthropogenic sources in many areas of the world, either directly or indirectly. Exponential urban and economic development has resulted in human populations settling in urban areas and as a result being exposed to these pollutants. Depending on the nature of the contaminant, contaminated urban soils can have a deleterious effect on the health of exposed populations and may require decontamination, recovery, remediation and restoration. Therefore, human health risk assessments in urban environments are very important. In the case of Spain, there are few studies regarding risk assessment of trace elements in urban soils, and those that exist have been derived mainly from areas potentially exposed to industrial contamination or in the vicinity of point pollution. The present study analysed Al, As, Be, Cd, Cr, Cu, Hg, Mn, Ni, Pb, Sn, Ti, Tl, V and Zn soil concentrations in and around the city of Alcalá de Henares (35 km NE of Madrid). Soil samples were collected in public parks and recreation areas within the city and in an industrial area on the periphery of the city. From these results, an assessment of the health risk for the population was performed following the methodology described by the US EPA (1989). In general, it was observed that there could be a potential increased risk of developing cancer over a lifetime from exposure to arsenic (As) through ingestion of the soils studied (oral intake), as well as an increased risk of cancer due to inhalation of chromium (Cr) present in re-suspended soils from the industrial area. Our group has previously reported (Granero and Domingo, 2002; Peña-Fernández et al., 2003) that there was an increased risk of developing cancer following exposure to As in the same soils in a previous study. Therefore, it is necessary to reduce the levels of contaminants in these soils, especially As and Cr

  12. Arsenic in your food: potential health hazards from arsenic found in rice

    Directory of Open Access Journals (Sweden)

    Munera-Picazo S

    2015-01-01

    Full Text Available Sandra Munera-Picazo,1 Marina Cano-Lamadrid,1 María Concepción Castaño-Iglesias,2 Francisco Burló,1 Ángel A Carbonell-Barrachina11Food Quality and Safety Group, Department of Agro-Food Technology, Universidad Miguel Hernández, Orihuela, 2Servicio de Pediatría, Hospital Universitario San Juan de Alicante, Alicante, SpainAbstract: Rice is a staple food for over half of the world population, but there is some concern about the occurrence of arsenic (As in this cereal and the possible overexposure to this metalloid. Recently, the Codex Alimentarius Commission established a maximum limit of 200 µg kg–1 for inorganic arsenic (iAs in rice. Because the maximum content of As in water has been reduced to 10 µg L–1, intoxication through rice and rice-based products can be considered an important source of As poisoning. The chronic effects of this iAs exposure can be lung and bladder cancer, skin lesions, or other noncarcinogenic diseases. There is clear evidence of high levels of iAs in rice and rice-based products. Different solutions for the reduction of As intake are proposed at different levels: 1 during the plant-growing process through agronomic practices, 2 pretreatment of rice before its use in the food industry, 3 optimization of the conditions of unit operations during processing, and 4 by cooking.Keywords: arsenic speciation, food safety, dietary exposure, Oryza sativa

  13. Cloud point extraction combined with electrothermal atomic absorption spectrometry for the speciation of antimony(III) and antimony(V) in food packaging materials

    International Nuclear Information System (INIS)

    Jiang Xiuming; Wen Shengping; Xiang Guoqiang

    2010-01-01

    A simple, sensitive method for the speciation of inorganic antimony by cloud point extraction combined with electrothermal atomic absorption spectrometry (ETAAS) is presented and evaluated. The method based on the fact that formation of a hydrophobic complex of antimony(III) with ammonium pyrrolidine dithiocarbamate (APDC) at pH 5.0 and subsequently the hydrophobic complex enter into surfactant-rich phase, whereas antimony(V) remained in aqueous solutions. Antimony(III) in surfactant-rich phase was analyzed by ETAAS after dilution by 0.2 mL nitric acid in methanol (0.1 M), and antimony(V) was calculated by subtracting antimony(III) from the total antimony after reducing antimony(V) to antimony(III) by L-cysteine. The main factors affecting the cloud point extraction, such as pH, concentration of APDC and Triton X-114, equilibrium temperature and incubation time, sample volume were investigated in detail. Under the optimum conditions, the detection limit (3σ) of the proposed method was 0.02 ng mL -1 for antimony(III), and the relative standard deviation was 7.8% (c = 1.0 ng mL -1 , n = 7). The proposed method was successfully applied to speciation of inorganic antimony in the leaching solutions of different food packaging materials with satisfactory results.

  14. Uptake and accumulation of potentially toxic elements in colonized plant species around the world's largest antimony mine area, China.

    Science.gov (United States)

    Long, Jiumei; Tan, Di; Deng, Sihan; Lei, Ming

    2018-04-11

    To provide information on reclamation of multi-heavy metal polluted soils with conception of phytostabilization, a field survey on the uptake and accumulation of potentially toxic elements such as antimony (Sb), arsenic (As), lead (Pb), cadmium (Cd), copper (Cu), and zinc (Zn) in colonized plant species around the world's largest antimony mine area, China, was conducted. Samples including leaves and shoots (including roots and stems) of colonized plants as well as rhizospheric soils were collected from eight sampling zones in the studied area. The results showed that the contents of Cu, Zn, and Pb in rhizospheric soils below plants were comparable to the corresponding background values of Hunan province, otherwise Sb, Cd, and As contents were extremely high (17-106, 17-87, and 3-7 times of the corresponding background values). The highest concentration of Sb was found in Aster subulatus (410 mg kg -1 ); Cd, As, and Zn were in Herba bidentis bipinnatae (10.9, 264, and 265 mg kg -1 , respectively); and Cu was in Artemisia lavandulaefolia (27.1 mg kg -1 ). It also exhibited that all the contents of As in leaves were several times of those in shoots of plants, Cd and other heavy metals showed in a similar pattern in several studied species, implying that the uptake route of these heavy metals via foliar might contribute to the accumulation. With high bioconcentration factors of heavy metals (more than 1, except for Zn), together with the growth abundance, Herba bidentis bipinnatae was considered as the most suitable colonized species for phytostabilization of the multi-heavy metal pollution in soils on this antimony mine area.

  15. Arsenic-induced oxidative myocardial injury: protective role of arjunolic acid

    Energy Technology Data Exchange (ETDEWEB)

    Manna, Prasenjit; Sinha, Mahua; Sil, Parames C. [Bose Institute, Department of Chemistry, Kolkata, West Bengal (India)

    2008-03-15

    Arsenic, one of the most harmful metalloids, is ubiquitous in the environment. The present study has been carried out to investigate the protective role of a triterpenoid saponin, arjunolic acid (AA) against arsenic-induced cardiac oxidative damage. In the study, NaAsO{sub 2} was chosen as the source of arsenic. The free radical scavenging activity and the effect of AA on the intracellular antioxidant power were determined from its 2,2-diphenyl-1-picryl hydrazyl radical scavenging ability and ferric reducing/antioxidant power assay, respectively. Oral administration of NaAsO{sub 2} at a dose of 10 mg/kg body weight for 2 days caused significant accumulation of arsenic in cardiac tissues of the experimental mice in association with the reduction in cardiac antioxidant enzymes activities, namely superoxide dismutase, catalase, glutathione-S-transferase, glutathione reductase and glutathione peroxidase. Arsenic intoxication also decreased the cardiac glutathione (GSH) and total thiol contents and increased the levels of oxidized glutathione (GSSG), lipid peroxidation end products and protein carbonyl content. Treatment with AA at a dose of 20 mg/kg body weight for 4 days prior to NaAsO{sub 2} intoxication protected the cardiac tissue from arsenic-induced oxidative impairment. In addition to oxidative stress, arsenic administration increased total cholesterol level as well as the reduced high-density lipoprotein cholesterol level in the sera of the experimental mice. AA pretreatment, however, could prevent this hyperlipidemia. Histological studies on the ultrastructural changes in cardiac tissue supported the protective activity of AA also. Combining all, results suggest that AA could protect cardiac tissues against arsenic-induced oxidative stress probably due to its antioxidant property. (orig.)

  16. Arsenic trioxide mediates HAPI microglia inflammatory response and subsequent neuron apoptosis through p38/JNK MAPK/STAT3 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Jiamin [Department of Environmental Health, School of Public Health, Nantong University, Nantong, Jiangsu 226001 (China); Yang, Jianbing [Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001 (China); Zhang, Yan [Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001 (China); Li, Ting [Department of Environmental Health, School of Public Health, Nantong University, Nantong, Jiangsu 226001 (China); Wang, Cheng [Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001 (China); Xu, Lingfei; Hu, Qiaoyun; Wang, Xiaoke; Jiang, Shengyang [Department of Environmental Health, School of Public Health, Nantong University, Nantong, Jiangsu 226001 (China); Nie, Xiaoke [Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001 (China); Chen, Gang, E-mail: chengang@ntu.edu.cn [Department of Environmental Health, School of Public Health, Nantong University, Nantong, Jiangsu 226001 (China)

    2016-07-15

    Arsenic is a widely distributed toxic metalloid all over the world. Inorganic arsenic species are supposed to affect astrocytic functions and to cause neuron apoptosis in CNS. Microglias are the key cell type involved in innate immune responses in CNS, and microglia activation has been linked to inflammation and neurotoxicity. In this study, using ELISA, we showed that Arsenic trioxide up-regulated the expression and secretion of IL-1β in a dose-dependent manner and a time-dependent manner in cultured HAPI microglia cells. The secretion of IL-1β caused the apoptosis of SH-SY5Y. These pro-inflammatory responses were inhibited by the STAT3 blocker, AG490 and P38/JNK MAPK blockers SB202190, SP600125. Further, Arsenic trioxide exposure could induce phosphorylation and activation of STAT3, and the translocation of STAT3 from the cytosol to the nucleus in this HAPI microglia cell line. Thus, the STAT3 signaling pathway can be activated after Arsenic trioxide treatment. However, P38/JNK MAPK blockers SB202190, SP600125 also obviously attenuated STAT3 activation and transnuclear transport induced by Arsenic trioxide. In concert with these results, we highlighted that the secretion of IL-1β and STAT3 activation induced by Arsenic trioxide can be mediated by elevation of P38/JNK MAPK in HAPI microglia cells and then induced the toxicity of neurons. - Highlights: • Arsenic trioxide exposure induced expression of IL-β in HAPI microglia. • Arsenic trioxide exposure induced activation of MAPK pathways in HAPI microglia. • Arsenic trioxide exposure induced activation of STAT3 pathways in HAPI microglia. • The expression of IL-β though P38/JNK MAPK/STAT3 pathways in HAPI microglia.

  17. Arsenic trioxide mediates HAPI microglia inflammatory response and subsequent neuron apoptosis through p38/JNK MAPK/STAT3 pathway

    International Nuclear Information System (INIS)

    Mao, Jiamin; Yang, Jianbing; Zhang, Yan; Li, Ting; Wang, Cheng; Xu, Lingfei; Hu, Qiaoyun; Wang, Xiaoke; Jiang, Shengyang; Nie, Xiaoke; Chen, Gang

    2016-01-01

    Arsenic is a widely distributed toxic metalloid all over the world. Inorganic arsenic species are supposed to affect astrocytic functions and to cause neuron apoptosis in CNS. Microglias are the key cell type involved in innate immune responses in CNS, and microglia activation has been linked to inflammation and neurotoxicity. In this study, using ELISA, we showed that Arsenic trioxide up-regulated the expression and secretion of IL-1β in a dose-dependent manner and a time-dependent manner in cultured HAPI microglia cells. The secretion of IL-1β caused the apoptosis of SH-SY5Y. These pro-inflammatory responses were inhibited by the STAT3 blocker, AG490 and P38/JNK MAPK blockers SB202190, SP600125. Further, Arsenic trioxide exposure could induce phosphorylation and activation of STAT3, and the translocation of STAT3 from the cytosol to the nucleus in this HAPI microglia cell line. Thus, the STAT3 signaling pathway can be activated after Arsenic trioxide treatment. However, P38/JNK MAPK blockers SB202190, SP600125 also obviously attenuated STAT3 activation and transnuclear transport induced by Arsenic trioxide. In concert with these results, we highlighted that the secretion of IL-1β and STAT3 activation induced by Arsenic trioxide can be mediated by elevation of P38/JNK MAPK in HAPI microglia cells and then induced the toxicity of neurons. - Highlights: • Arsenic trioxide exposure induced expression of IL-β in HAPI microglia. • Arsenic trioxide exposure induced activation of MAPK pathways in HAPI microglia. • Arsenic trioxide exposure induced activation of STAT3 pathways in HAPI microglia. • The expression of IL-β though P38/JNK MAPK/STAT3 pathways in HAPI microglia.

  18. Total and bioavailable arsenic concentration in arid soils and its uptake by native plants from the pre-Andean zones in Chile.

    Science.gov (United States)

    Díaz, O; Tapia, Y; Pastene, R; Montes, S; Núñez, N; Vélez, D; Montoro, R

    2011-06-01

    Arsenic is the most important contaminant of the environment in northern Chile. Soil samples and plant organs from three native plant species, Pluchea absinthioides, Atriplex atacamensis and Lupinus microcarpus, were collected from arid zones in order to determine the total and bioavailable arsenic concentrations in soils and to assess the bioconcentration factor (BCF) and transport index (Ti) of arsenic in the plants. Total arsenic concentrations in soils (pH 8.3-8.5) where A. atacamensis and P. absinthioides were collected, reached levels considered to be contaminated (54.3 ± 15.4 and 52.9 ± 9.9 mg kg⁻¹, respectively), and these values were approximately ten times higher than in soils (pH 7.6) where L. microcarpus was collected. Bioavailable arsenic ranged from 0.18 to 0.42% of total arsenic concentration. In the three plant species, arsenic concentration in leaves were significantly (p ≤ 0.05) higher than in roots. L. microcarpus showed the highest arsenic concentration in its leaves (9.7 ± 1.6 mg kg⁻¹) and higher values of BCF (1.8) and Ti (6.1), indicating that this species has a greater capacity to accumulate and translocate the metalloid to the leaf than do the other species.

  19. Sorbents for effective removal of radioactive antimony during chemical decontamination

    International Nuclear Information System (INIS)

    Nishad, Padala Abdul; Bhaskarapillai, Anupkumar; Velmurugan, Sankaralingam

    2014-01-01

    Removal of radioactive antimony is a challenging problem. Often, during decontamination, they get mobilized around the system and redeposit in different areas thus offsetting the reduction in the radiation field obtained by removing other activities such as 60 Co. Thus, there is a clear need for better antimony removing materials/strategies for effective reactor decontamination. In this regard, six commercially available sorbents namely, Tulsion A33 (strong base anion (-OH) resin), Amberlite IRC-718 (chelating resin), Radex ® Sb-1000, nano TiO 2 -special grade (Inorganic type IX), Chitosan (biosorbent) and Aeroxide p25 (nano TiO 2 , Inorganic type IX) were evaluated for their antimony sorption properties. Radex ® and TiO 2 based materials were found to be more effective in removing both Sb(V) and Sb(III). Solution pH was seen to significantly influence the antimony sorption and the effect was more prominent in anion resin, when tested under column conditions. Apart from the commercial sorbents, we have synthesised a robust high performing sorbent (TA-Chitosan beads) in the form of stable beads, using nano-TiO 2 and chitosan. The beads were found to retain the antimony sorption properties of the nano-TiO 2 , while adapting a physical format suitable for large scale operations. The sorbent exhibited almost complete sorption of antimony both in low (ppb level) as well as high concentrations of antimony. The suitability of the beads for use in column mode has been established and its radiation stability was probed in detail. The beads were found to be stable to irradiations as ascertained from the TOC values and unchanged sorption properties. The sorption properties of the CHITA beads in typical decontamination formulation containing mixture of complexing agents have been investigated in detail. (author)

  20. Complex processing of antimony-mercury gold concentrates of Dzhizhikrut Deposit

    International Nuclear Information System (INIS)

    Abdusalyamova, M.N.; Gadoev, S.A.; Dreisinger, D.; Solozhenkin, P.M.

    2013-01-01

    Present article is devoted to complex processing of antimony-mercury gold concentrates of Dzhizhikrut Deposit. The purpose of research was obtaining the metallic mercury and antimony with further gold and thallium extraction.

  1. Perturbations in immune responses induced by concurrent subchronic exposure to arsenic and endosulfan

    International Nuclear Information System (INIS)

    Aggarwal, Manoj; Naraharisetti, Suresh Babu; Dandapat, S.; Degen, G.H.; Malik, J.K.

    2008-01-01

    The metalloid arsenic and the chlorinated insecticide endosulfan are common environmental contaminants. Humans, animals, and birds are exposed to these chemicals through water and food. Although health effects due to either arsenic or endosulfan exposure are documented, the toxicological impact of co-exposure to these environmental pollutants is unpredictable and unknown. The present study was undertaken to assess whether concurrent exposure to arsenic and endosulfan induces significant alterations in immunological functions. Day-old chicks were exposed to 3.7 ppm of arsenic via drinking water and to 30 ppm of endosulfan-mixed feed either individually or concurrently for up to 60 days. All the chicks were vaccinated with Ranikhet disease virus (F-strain; RD-F) on days 1 and 30. During the course of study and at term, parameters of cellular and humoral immunity were determined. None of the treatments altered the absolute body weight or body weight gain, except arsenic significantly reduced weight gain on day 60. Absolute, but not the relative, weights of spleen, thymus and bursa of Fabricius were significantly reduced in all the treatment groups. The metalloid and insecticide combination significantly depressed the ability of peripheral blood and splenic lymphocytes to proliferate in response to antigen RD-F and mitogen Con A. The delayed type hypersensitivity response to 2,4-dinitro-1-chlorobenzene or to PHA-P was also significantly decreased. Nitric oxide production by RD-F or lipopolysaccharide-stimulated peripheral blood and splenic mononuclear cells was significantly suppressed following concurrent exposure to arsenic and endosulfan. Furthermore, the combined exposure also decreased the antibody response to RD-F. The suppression of cellular and humoral immune responses was also evident following administration of individual compounds, and it was not exacerbated following concurrent exposure. To our knowledge, this is the first report describing the suppression

  2. Solubility behaviour of antimony(III) and antimony(V) solids in basic aqueous solutions at 300oC

    International Nuclear Information System (INIS)

    Lemire, R.J.; Tosello, N.B.; Halliday, J.D.

    1999-12-01

    The major contributions of the isotopes 122 Sb and 124 Sb to activity transport in a CANDU reactor primary heat transport system (HTS), have been associated with oxygen ingress during reactor shutdown. As part of a program to minimize the release and redeposition of these isotopes, the solubilities of antimony(III) and (V) oxides and salts have been measured in basic solutions at temperatures from 25 to 300 o C. The results provide information on the charge and the stability as a function of temperature of antimony solution species and, hence, a guide to the trends in the temperature dependence of the solubilities of antimony solids. In solutions in which oxidation of antimony(III) to antimony(V) is minimized, the solubility of Sb 2 O 3 increases by about two orders of magnitude between 25 and 200 o C, and then levels out or decreases slightly. At 250 o C, in oxidizing solutions, Sb 2 O 5 ·xH 2 O and simple sodium antimonate(V) were found to be unstable in sodium hydroxide solutions with respect to the solid, Na 2α [H(H 2 O)] 2-2α Sb 2 O 6 , which has a pyrochlore structure. The solubility of this partially protonated sodium antimonate increases from 25 to 200 o C and decreases at temperatures above 250 o C. These solubility changes for the antimony (V) solids reflect changes in the stability of the anionic antimony solution species (SbO 3 - or Sb(OH) 6 - ), even though the compositions of antimony-containing solids in basic oxidizing solutions are strongly dependent on the cations and their aqueous phase concentrations. All solids used in the present experiments would be expected to generate total solution antimony concentrations ≥ 0.00005 mol·dm -3 in any neutral or basic aqueous solutions (assuming no added sodium salts). Therefore, under HTS conditions, precipitation of any antimony oxides or mixed oxides is unlikely. It cannot be ruled out that hydrated Sb 2 O 5 (especially the pyrochlore form) might be less soluble in near-neutral, low

  3. Bioaccumulation and phyto-translocation of arsenic, chromium and zinc by Jatropha curcas L.: impact of dairy sludge and biofertilizer.

    Science.gov (United States)

    Yadav, Santosh Kumar; Juwarkar, Asha A; Kumar, G Phani; Thawale, Prashant R; Singh, Sanjeev K; Chakrabarti, Tapan

    2009-10-01

    The present study was planned to remediate the metalloid and metal contaminated soil by using non-edible and economic plant species Jatropha curcas L. The experiment was conducted on pots to improve the survival rate, metal tolerance and growth response of the plant on soil; having different concentrations of arsenic, chromium and zinc. The soil was amended with dairy sludge and bacterial inoculum (Azotobacter chroococcum) as biofertilizer. The results of the study showed that the bioaccumulation potential was increased with increase in metalloid and metal concentration in soil system. Application of dairy sludge significantly reduces the DTPA-extractable As, Cr and Zn concentration in soil. The application of organic amendment stabilizes the As, Cr and Zn and reduced their uptake in plant tissues.

  4. Biosorbents for Removing Hazardous Metals and Metalloids

    Science.gov (United States)

    Inoue, Katsutoshi; Parajuli, Durga; Ghimire, Kedar Nath; Biswas, Biplob Kumar; Kawakita, Hidetaka; Oshima, Tatsuya; Ohto, Keisuke

    2017-01-01

    Biosorbents for remediating aquatic environmental media polluted with hazardous heavy metals and metalloids such as Pb(II), Cr(VI), Sb(III and V), and As(III and V) were prepared from lignin waste, orange and apple juice residues, seaweed and persimmon and grape wastes using simple and cheap methods. A lignophenol gel such as lignocatechol gel was prepared by immobilizing the catechol functional groups onto lignin from sawdust, while lignosulfonate gel was prepared directly from waste liquor generated during pulp production. These gels effectively removed Pb(II). Orange and apple juice residues, which are rich in pectic acid, were easily converted using alkali (e.g., calcium hydroxide) into biosorbents that effectively removed Pb(II). These materials also effectively removed Sb(III and V) and As(III and V) when these were preloaded with multi-valent metal ions such as Zr(IV) and Fe(III). Similar biosorbents were prepared from seaweed waste, which is rich in alginic acid. Other biosorbents, which effectively removed Cr(VI), were prepared by simply treating persimmon and grape wastes with concentrated sulfuric acid. PMID:28773217

  5. Simple and effective method for nuclear tellurium isomers separation from antimony cyclotron targets

    International Nuclear Information System (INIS)

    Bondarevskij, S.I.; Eremin, V.V.

    1999-01-01

    Simple and effective method of generation of tellurium nuclear isomers from irradiated on cyclotron metallic antimony is suggested. Basically this method consists in consideration of the big difference in volatilities of metallic forms of antimony, tin and tellurium. Heating of the tin-antimony alloy at 1200 K permits to separate about 90 % of produced quantity of 121m Te and 123m Te (in this case impurity of antimony radionuclides is not more than 1 % on activity) [ru

  6. Blocking of indium incorporation by antimony in III-V-Sb nanostructures

    International Nuclear Information System (INIS)

    Sanchez, A M; Beltran, A M; Ben, T; Molina, S I; Beanland, R; Gass, M H; De la Pena, F; Walls, M; Taboada, A G; Ripalda, J M

    2010-01-01

    The addition of antimony to III-V nanostructures is expected to give greater freedom in bandgap engineering for device applications. One of the main challenges to overcome is the effect of indium and antimony surface segregation. Using several very high resolution analysis techniques we clearly demonstrate blocking of indium incorporation by antimony. Furthermore, indium incorporation resumes when the antimony concentration drops below a critical level. This leads to major differences between nominal and actual structures.

  7. The investigation of antimony extraction with tributyl phosphate from nitric acid solutions

    International Nuclear Information System (INIS)

    Lakaev, V.S.; Smelov, V.S.

    1988-01-01

    Experimental data on trivalent antimony extraction with tributyl phosphate from nitric acid solutions containing (3.2-4.3)x10 -6 mol/l of antimony-125 isotope are presented. Possible mechanism of antimony (3) extraction is determined and the concentration constant for this process is calculated. Effect of temperature on the extraction of trivalent antimony is estimated. The values of enthalpy, free enthalpy and entropy are determined

  8. Arsenic Uptake and Translocation in Plants.

    Science.gov (United States)

    Li, Nannan; Wang, Jingchao; Song, Won-Yong

    2016-01-01

    Arsenic (As) is a highly toxic metalloid that is classified as a non-threshold class-1 carcinogen. Millions of people worldwide suffer from As toxicity due to the intake of As-contaminated drinking water and food. Reducing the As concentration in drinking water and food is thus of critical importance. Phytoremediation of soil contaminated with As and the reduction of As contamination in food depend on a detailed understanding of As uptake and transport in plants. As transporters play essential roles in As uptake, translocation and accumulation in plant cells. In this review, we summarize the current understanding of As transport in plants, with an emphasis on As uptake, mechanisms of As resistance and the long-distance translocation of As, especially the accumulation of As in grains through phloem-mediated transport. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Thermodynamic analysis of separating lead and antimony in chloride system

    Institute of Scientific and Technical Information of China (English)

    CHEN Jin-zhong; CAO Hua-zhen; LI Bo; YUAN Hai-jun; ZHENG Guo-qu; YANG Tian-zu

    2009-01-01

    In chloride system, thermodynamic analysis is a useful guide to separate lead and antimony as well as to understand the separation mechanism. An efficient and feasible way for separating lead and antimony was discussed. The relationships of [Pb2+][Cl-]2-lg[Cl]T and E-lg[Cl]T in Pb-Sb-Cl-H2O system were studied, and the solubilities of lead chloride at different antimony concentrations were calculated based on principle of simultaneous equilibrium. The results show that insoluble salt PbCl2 will only exist stably in a certain concentration range of chlorine ion. This concentration range of chlorine ion expands a little with increasing the concentration of antimony in the system while narrows as the system acidity increases. The solubility of Pb2+ in solution decreases with increasing the concentration of antimony in the system, whereas increases with increasing the concentration of total chlorine. The concentration range of total chlorine causing lead solubility less than 0.005 mol/L increases monotonically.

  10. Martensite transformation in antimony implanted stainless steel

    International Nuclear Information System (INIS)

    Johnson, E.; Littmark, U.; Johansen, A.; Christodoulides, C.

    1981-01-01

    The authors have used Rutherford backscattering analysis (RBS) and transmission electron microscopy (TEM) and diffraction to investigate austenitic stainless steel crystals implanted at room temperature with 80 keV Sb + ions to a fluence of 5 x 10 20 ions/m 2 , thus providing implantation with a heavy group V element. RBS channeling spectra from implanted crystals show a damage peak which approaches the height of the random level and therefore indicates a very high degree of disorder in the implanted layers. The distribution of the disorder extends to a depth 3-5 times the depth of the primary radiation damage. The Sb peaks under channeling as well as random conditions are indistinguishable, confirming that substitutionality during implantation is negligible. To establish the nature of the disorder which cannot be assessed from the RBS analysis alone, and in particular to assess whether an amorphous alloy is formed in the implanted layer as indicated from the RBS spectra, samples implanted under similar conditions were investigated in the TEM. Significant extra spots in the patterns can be ascribed to the presence of a radiation induced b.c.c. phase of martensitic origin. The result that a significant amount of martensite can be induced by antimony implantation seems to indicate that the main driving force for the transition is due to damage induced stress concentrations. (Auth.)

  11. Metal(loid) allocation and nutrient retranslocation in Pinus halepensis trees growing on semiarid mine tailings

    Energy Technology Data Exchange (ETDEWEB)

    Parraga-Aguado, Isabel, E-mail: isabel.parraga@upct.es [Universidad Politecnica de Cartagena, Departamento de Ciencia y Tecnología Agraria Paseo Alfonso XIII, Cartagena 48. 30203 (Spain); Querejeta, Jose-Ignacio [Water and Soil Conservation Department, Centro de Edafología y Biología Aplicada del Segura CEBAS-CSIC Campus Universitario de Espinardo, PO Box 164, Espinardo-Murcia ES-30100 (Spain); González-Alcaraz, María Nazaret; Conesa, Hector M. [Universidad Politecnica de Cartagena, Departamento de Ciencia y Tecnología Agraria Paseo Alfonso XIII, Cartagena 48. 30203 (Spain)

    2014-07-01

    The goal of this study was to evaluate internal metal(loid) cycling and the risk of metal(loid) accumulation in litter from Pinus halepensis trees growing at a mine tailing disposal site in semiarid Southeast Spain. Internal nutrient retranslocation was also evaluated in order to gain insight into the ability of pine trees to cope with the low-fertility soil conditions at the tailings. We measured metal(loid) concentrations in the foliage (young and old needles), woody stems and fresh leaf litter of pine trees growing on tailings. The nutrient status and stable isotope composition of pine foliage (δ{sup 13}C, δ{sup 15}N, δ{sup 18}O as indicators of photosynthesis and water use efficiency) were also analyzed. Tailing soil properties in vegetation patches and in adjacent bare soil patches were characterized as well. Significant amounts of metal(loid)s such us Cd, Cu, Pb and Sb were immobilized in the woody stems of Pinus halepensis trees growing on tailings. Leaf litterfall showed high concentrations of As, Cd, Sb, Pb and Zn, which thereby return to the soil. However, water extractable metal(loid) concentrations in tailing soils were similar between vegetation patches (mineral soil under the litter layer) and bare soil patches. The pines growing on mine tailings showed very low foliar P concentrations in all leaf age classes, which suggests severe P deficiency. Young (current year) needles showed lower accumulation of metal(loid)s, higher nutrient concentrations (P and K), and higher water use efficiency (as indicated by and δ{sup 13}C and δ{sup 18}O data) than older needles. Substantial nutrient resorption occurred before leaf litterfall, with 46% retranslocation efficiency for P and 89% for K. In conclusion, phytostabilization of semiarid mine tailings with Pinus halepensis is feasible but would require careful monitoring of the trace elements released from litterfall, in order to assess the long term risk of metal(loid) transfer to the food chain

  12. Metal(loid) allocation and nutrient retranslocation in Pinus halepensis trees growing on semiarid mine tailings

    International Nuclear Information System (INIS)

    Parraga-Aguado, Isabel; Querejeta, Jose-Ignacio; González-Alcaraz, María Nazaret; Conesa, Hector M.

    2014-01-01

    The goal of this study was to evaluate internal metal(loid) cycling and the risk of metal(loid) accumulation in litter from Pinus halepensis trees growing at a mine tailing disposal site in semiarid Southeast Spain. Internal nutrient retranslocation was also evaluated in order to gain insight into the ability of pine trees to cope with the low-fertility soil conditions at the tailings. We measured metal(loid) concentrations in the foliage (young and old needles), woody stems and fresh leaf litter of pine trees growing on tailings. The nutrient status and stable isotope composition of pine foliage (δ 13 C, δ 15 N, δ 18 O as indicators of photosynthesis and water use efficiency) were also analyzed. Tailing soil properties in vegetation patches and in adjacent bare soil patches were characterized as well. Significant amounts of metal(loid)s such us Cd, Cu, Pb and Sb were immobilized in the woody stems of Pinus halepensis trees growing on tailings. Leaf litterfall showed high concentrations of As, Cd, Sb, Pb and Zn, which thereby return to the soil. However, water extractable metal(loid) concentrations in tailing soils were similar between vegetation patches (mineral soil under the litter layer) and bare soil patches. The pines growing on mine tailings showed very low foliar P concentrations in all leaf age classes, which suggests severe P deficiency. Young (current year) needles showed lower accumulation of metal(loid)s, higher nutrient concentrations (P and K), and higher water use efficiency (as indicated by and δ 13 C and δ 18 O data) than older needles. Substantial nutrient resorption occurred before leaf litterfall, with 46% retranslocation efficiency for P and 89% for K. In conclusion, phytostabilization of semiarid mine tailings with Pinus halepensis is feasible but would require careful monitoring of the trace elements released from litterfall, in order to assess the long term risk of metal(loid) transfer to the food chain. - Highlights: • Significant

  13. Effects of different drying processes on the concentrations of metals and metalloids in plant materials

    International Nuclear Information System (INIS)

    Anawar, H.M.; Canha, N.; Freitas, M.C; Santa Regina, I.; Garcia-Sanchez, A.

    2011-01-01

    The drying process of fresh plant materials may affect the porous structure, dehydration and a number of quality characteristics of these materials. Therefore, this study has investigated the effect of different drying processes on the variation of metal and metalloid concentrations in the dried plant materials. Seven varieties of native plant species collected from Sao Domingos mine were analyzed by instrumental neutron activation analysis (INAA) to investigate the effects of freeze-drying (FD), ambient air-drying (AAD) and oven-drying (OD) process on the concentrations of metals and metalloids in the plant biomass. Comparison of ambient air-dried, oven-dried and freeze-dried preparations allows a phenomenological description of the dehydration artefacts. In the quantitative analysis of metals and metalloids, FD and OD plant samples show the higher concentrations of metals and metalloids when compared to those in the AAD plant biomass. The freeze-drying process is comparatively reliable for determination of metals and metalloids concentrations in plant materials. (author)

  14. Metals and metalloids in PM10 in Nandan County, Guangxi, China, and the health risks posed.

    Science.gov (United States)

    Guo, Guanghui; Song, Bo; Xia, Deshang; Yang, Zijie; Wang, Fopeng

    2018-03-16

    Intense mining, smelting, and tailing activities of polymetallic ore deposits have affected the environment in Nandan County, Guangxi, China. Samples of particulates with aerodynamic diameters low or equal 10 μm (PM 10 ) were collected in Nandan County to investigate the concentrations of and health risks posed by 17 metals and metalloids in the PM 10 . The metal and metalloid concentrations were lower than those found in other industrial cities. The mean Cr concentration was 7.48 ng/m 3 . Significant higher metal and metalloid concentrations were found in PM 10 from mining areas (Dachang and Chehe) than from the control area (Liuzhai) (p metalloids in PM 10 at all the sites were low, but the non-carcinogenic risks posed to children by all the metals and metalloids together exceeded the safe level (i.e., risk value > 1). The carcinogenic risks posed by Cd, Ni, and Pb were negligible at all sites, while As, Co, and Cr posed potential carcinogenic risks to the residents.

  15. Effect doses for protection of human health predicted from physicochemical properties of metals/metalloids.

    Science.gov (United States)

    Wang, Ying; Wu, Fengchang; Liu, Yuedan; Mu, Yunsong; Giesy, John P; Meng, Wei; Hu, Qing; Liu, Jing; Dang, Zhi

    2018-01-01

    Effect doses (EDs) of metals/metalloids, usually obtained from toxicological experiments are required for developing environmental quality criteria/standards for use in assessment of hazard or risks. However, because in vivo tests are time-consuming, costly and sometimes impossible to conduct, among more than 60 metals/metalloids, there are sufficient data for development of EDs for only approximately 25 metals/metalloids. Hence, it was deemed a challenge to derive EDs for additional metals by use of alternative methods. This study found significant relationships between EDs and physicochemical parameters for twenty-five metals/metalloids. Elements were divided into three classes and then three individual empirical models were developed based on the most relevant parameters for each class. These parameters included log-βn, ΔE 0 and X m 2 r, respectively (R 2  = 0.988, 0.839, 0.871, P metalloids. Here, these alternative models for deriving thresholds of toxicity that could be used to perform preliminarily, screen-level health assessments for metals are presented. Copyright © 2017. Published by Elsevier Ltd.

  16. Toxic Substances Portal- Arsenic

    Science.gov (United States)

    ... is found at low levels in breast milk. top How can families reduce their risk for exposure to arsenic? If you use arsenic-treated wood in home projects, you should wear dust masks, gloves, and protective clothing to decrease exposure to sawdust. ...

  17. Arsenical poisoning of racehorses

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, G.N.; Fawell, E.V.; Brown, J.K.

    1964-03-07

    A case of arsenic poisoning in a training stable of Thoroughbred racehorses is described. This was due to the accidental spilling of an arsenical rat poison into the corn bin. Nine horses were affected. The mortality rate was 100 per cent. 1 table.

  18. REACTION PRODUCTS AND CORROSION OF MOLYBDENUM ELECTRODE IN GLASS MELT CONTAINING ANTIMONY OXIDES AND SODIUM SULFATE

    Directory of Open Access Journals (Sweden)

    JIŘÍ MATĚJ

    2012-09-01

    Full Text Available The products on the interface of a molybdenum electrode and glass melt were investigated primarily at 1400°C in three model glass melts without ingredients, with 1 % Sb2O3 and with 1 % Sb2O3 and 0.5 % SO3 (wt. %, both under and without load by alternating current. Corrosion of the molybdenum electrode in glass melt without AC load is higher by one order of magnitude if antimony oxides are present. The corrosion continues to increase if sulfate is present in addition to antimony oxides. Isolated antimony droplets largely occur on the electrode-glass melt interface, and numerous droplets are also dissipated in the surrounding glass if only antimony oxides are present in the glass melt. A comparatively continuous layer of antimony occurs on the interface if SO3 is also present, antimony being always in contact with molybdenum sulfide. Almost no antimony droplets are dissipated in the glass melt. The total amount of precipitated antimony also increases. The presence of sulfide on the interface likely facilitates antimony precipitation. The reaction of molybdenum with antimony oxides is inhibited in sites covered by an antimony layer. The composition of sulfide layers formed at 1400°C approximates that of Mo2S3. At 1100°C, the sulfide composition approximates that of MoS4. Corrosion multiplies in the glass melt without additions through the effect of AC current, most molybdenum being separated in the form of metallic particles. Corrosion also increases in the glass melt containing antimony oxides. This is due to increased corrosion in the neighborhood of the separated antimony droplets. This mechanism also results in the loosening of molybdenum particles. The amount of precipitated antimony also increases through the effect of the AC current. AC exerts no appreciable effect on either corrosion, the character of the electrode-glass interface, or antimony precipitation in the glass melt containing SO3.

  19. Antimony Resistance in Leishmania, Focusing on Experimental Research

    Directory of Open Access Journals (Sweden)

    Fakhri Jeddi

    2011-01-01

    Full Text Available Leishmaniases are parasitic diseases that spread in many countries with a prevalence of 12 million cases. There are few available treatments and antimonials are still of major importance in the therapeutic strategies used in most endemic regions. However, resistance toward these compounds has recently emerged in areas where the replacement of these drugs is mainly limited by the cost of alternative molecules. In this paper, we reviewed the studies carried out on antimonial resistance in Leishmania. Several common limitations of these works are presented before prevalent approaches to evidence antimonial resistance are related. Afterwards, phenotypic determination of resistance is described, then confronted to clinical outcome. Finally, we detail molecular mechanisms and targets involved in resistance and already identified in vitro within selected mutant strains or in clinical isolates.

  20. Arsenic downregulates tight junction claudin proteins through p38 and NF-κB in intestinal epithelial cell line, HT-29

    International Nuclear Information System (INIS)

    Jeong, Chang Hee; Seok, Jin Sil; Petriello, Michael C.; Han, Sung Gu

    2017-01-01

    Arsenic is a naturally occurring metalloid that often is found in foods and drinking water. Human exposure to arsenic is associated with the development of gastrointestinal problems such as fluid loss, diarrhea and gastritis. Arsenic is also known to induce toxic responses including oxidative stress in cells of the gastrointestinal track. Tight junctions (TJs) regulate paracellular permeability and play a barrier role by inhibiting the movement of water, solutes and microorganisms in the paracellular space. Since oxidative stress and TJ damage are known to be associated, we examined whether arsenic produces TJ damage such as downregulation of claudins in the human colorectal cell line, HT-29. To confirm the importance of oxidative stress in arsenic-induced TJ damage, effects of the antioxidant compound (e.g., N-acetylcysteine (NAC)) were also determined in cells. HT-29 cells were treated with arsenic trioxide (40 μM, 12 h) to observe the modified expression of TJ proteins. Arsenic decreased expression of TJ proteins (i.e., claudin-1 and claudin-5) and transepithelial electrical resistance (TEER) whereas pretreatment of NAC (5–10 mM, 1 h) attenuated the observed claudins downregulation and TEER. Arsenic treatment produced cellular oxidative stress via superoxide generation and lowering glutathione (GSH) levels, while NAC restored cellular GSH levels and decreased oxidative stress. Arsenic increased phosphorylation of p38 and nuclear translocation of nuclear factor-kappa B (NF-κB) p65, while NAC attenuated these intracellular events. Results demonstrated that arsenic can damage intestinal epithelial cells by proinflammatory process (oxidative stress, p38 and NF-κB) which resulted in the downregulation of claudins and NAC can protect intestinal TJs from arsenic toxicity.

  1. Effect of transient wave forcing on the behavior of arsenic in a sandy nearshore aquifer

    Science.gov (United States)

    Rakhimbekova, S.; O'Carroll, D. M.; Robinson, C. E.

    2016-12-01

    Waves cause large quantities of coastal water to recirculate across the groundwater-coastal water interface in addition to inducing complex groundwater flows in the nearshore aquifer. Due to the distinct chemical composition of recirculating coastal water compared with discharging terrestrial groundwater, wave-induced recirculations and flows can alter geochemical gradients in the nearshore aquifer which may subsequently affect the mobilization and transport of reactive pollutants (e.g., arsenic). The impact of seasonal geochemical and hydrological variability on the occurrence and mobility of arsenic near the groundwater-surface water interface has been shown previously in riverine settings, however, the impact of high frequency geochemical variations (e.g., varying wave conditions) on arsenic mobility in groundwater-surface water environments is unclear. The objective of the study was to assess the impact of intensified wave conditions on the behavior of arsenic in a nearshore aquifer to determine the factors regulating its mobility and transport to receiving coastal waters. Field investigations were conducted at a permeable beach on the Great Lakes during a period of intensified wave conditions (wave event). High spatial resolution pore water sampling captured the geochemical conditions in the nearshore aquifer prior to the wave event, immediately after the wave event and over a recovery period of 3 weeks following the wave event. Shifts in pH and redox potential (ORP) gradients in response to varying wave conditions caused shifts in the iron and arsenic distributions in the aquifer. Sediment analysis was combined with the pore water distributions to assess the release of sediment-bound arsenic in response to the varying wave conditions. Insight into the effect of transient forcing on arsenic mobility and transport in groundwater-surface water environments is important for evaluating the potential risks associated with this toxic metalloid. The findings of this

  2. Risk Assessment and Source Identification of 17 Metals and Metalloids on Soils from the Half-Century Old Tungsten Mining Areas in Lianhuashan, Southern China

    Directory of Open Access Journals (Sweden)

    Li Guo

    2017-11-01

    Full Text Available Background: Mining activities always emit metal(loids into the surrounding environment, where their accumulation in the soil may pose risks and hazards to humans and ecosystems. Objective: This paper aims to determine of the type, source, chemical form, fate and transport, and accurate risk assessment of 17 metal(loid contaminants including As, Cd, Cu, Ni, Pb, Zn, Cr, Ag, B, Bi, Co, Mo, Sb, Ti, V, W and Sn in the soils collected from an abandoned tungsten mining area, and to guide the implementing of appropriate remediation strategies. Methods: Contamination factors (CFs and integrated pollution indexes (IPIs and enrichment factors (EFs were used to assess their ecological risk and the sources were identified by using multivariate statistics analysis, spatial distribution investigation and correlation matrix. Results: The IPI and EF values indicated the soils in the mine site and the closest downstream one were extremely disturbed by metal(loids such as As, Bi, W, B, Cu, Pb and Sn, which were emitted from the mining wastes and acid drainages and delivered by the runoff and human activities. Arsenic contamination was detected in nine sites with the highest CF values at 24.70 next to the mining site. The Cd contamination scattered in the paddy soils around the resident areas with higher fraction of bioavailable forms, primarily associated with intense application of phosphorus fertilizer. The lithogenic elements V, Ti, Ag, Ni, Sb, Mo exhibit low contamination in all sampling points and their distribution were depended on the soil texture and pedogenesis process. Conclusions: The long term historical mining activities have caused severe As contamination and higher enrichment of the other elements of orebody in the local soils. The appropriate remediation treatment approach should be proposed to reduce the bioavailability of Cd in the paddy soils and to immobilize As to reclaim the soils around the mining site. Furthermore, alternative fertilizing

  3. Determination of antimony by using a quartz atom trap and electrochemical hydride generation atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Menemenlioglu, Ipek; Korkmaz, Deniz [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey); Ataman, O. Yavuz [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey)], E-mail: ataman@metu.edu.tr

    2007-01-15

    The analytical performance of a miniature quartz trap coupled with electrochemical hydride generator for antimony determination is described. A portion of the inlet arm of the conventional quartz tube atomizer was used as an integrated trap medium for on-line preconcentration of electrochemically generated hydrides. This configuration minimizes transfer lines and connections. A thin-layer of electrochemical flow through cell was constructed. Lead and platinum foils were employed as cathode and anode materials, respectively. Experimental operation conditions for hydride generation as well as the collection and revolatilization conditions for the generated hydrides in the inlet arm of the quartz tube atomizer were optimized. Interferences of copper, nickel, iron, cobalt, arsenic, selenium, lead and tin were examined both with and without the trap. 3{sigma} limit of detection was estimated as 0.053 {mu}g l{sup -1} for a sample size of 6.0 ml collected in 120 s. The trap has provided 18 fold sensitivity improvement as compared to electrochemical hydride generation alone. The accuracy of the proposed technique was evaluated with two standard reference materials; Trace Metals in Drinking Water, Cat CRM-TMDW and Metals on Soil/Sediment 4, IRM-008.

  4. Antimony recycling in the United States in 2000

    Science.gov (United States)

    Carlin, James F.

    2006-01-01

    The importance of recycling has become more obvious as concerns about the environment and import dependence have grown in recent years. When materials are recycled, fewer natural resources are consumed, and less waste products go to landfills or pollute the water and air. This study, one of a series of reports on metals recycling in 2000, discusses the flow of antimony from mining through its uses and disposal with emphasis on recycling. In 2000, the recycling efficiency for antimony was estimated to be 89 percent, and the recycling rate was about 20 percent.

  5. Standardization of intralesional meglumine antimoniate treatment for cutaneous leishmaniasis.

    Science.gov (United States)

    Duque, Maria Cristina de Oliveira; Vasconcellos, Érica de Camargo Ferreira E; Pimentel, Maria Inês Fernandes; Lyra, Marcelo Rosandiski; Pacheco, Sandro Javier Bedoya; Marzochi, Mauro Celio de Almeida; Rosalino, Cláudia Maria Valete; Schubach, Armando de Oliveira

    2016-01-01

    Intralesional treatment for cutaneous leishmaniasis has been applied for over 30 years at the Oswaldo Cruz Foundation, Rio de Janeiro, with good therapeutic results and without relevant systemic toxicity. Meglumine antimoniate was injected subcutaneously, using a long medium-caliber needle (for example, 30mm × 0.8mm); patients received 1-3 injections, with 15-day intervals. The technique is described in detail sufficient to enable replication. The treatment of cutaneous leishmaniasis with intralesional meglumine antimoniate is a simple, effective, and safe technique, which may be used in basic healthcare settings.

  6. Lattice dynamics of femtosecond laser-excited antimony

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Fattah, Mahmoud Hanafy [Applied Research Center, Old Dominion University, Newport News, VA 23606 (United States); Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23529 (United States); Bugayev, Aleksey [Applied Research Center, Old Dominion University, Newport News, VA 23606 (United States); Elsayed-Ali, Hani E., E-mail: helsayed@odu.edu [Applied Research Center, Old Dominion University, Newport News, VA 23606 (United States); Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23529 (United States)

    2016-07-01

    Ultrafast electron diffraction is used to probe the lattice dynamics of femtosecond laser-excited antimony thin film. The temporal hierarchies of the intensity and position of diffraction orders are monitored. The femtosecond laser excitation of antimony film was found to lead to initial compression after the laser pulse, which gives way to tension vibrating at new equilibrium displacement. A damped harmonic oscillator model, in which the hot electron-blast force contributes to the driving force of oscillations in lattice spacing, is used to interpret the data. The electron–phonon energy-exchange rate and the electronic Grüneisen parameter were obtained.

  7. Preparation and characterization of antimony barium composite oxide photocatalysts

    Science.gov (United States)

    Han, X. P.; Yao, B. H.; Pan, Q. H.; Pen, C.; Zhang, C. L.

    2018-01-01

    In this paper, two kinds of antimony barium composite oxide photocatalysts have been prepared by two methods and characterized by XRD and SEM. The photocatalytic activity was evaluated by a photocatalytic reactor and an ultraviolet spectrophotometer. The results showed that-BaSb2O5•4H2O, BaSb2O6 two kinds of antimony barium composite oxide photocatalysts were successfully prepared in this experiment and they showed good photocatalytic properties. In addition, BaSb2O6 morphology showed more regular, microstructure and better catalytic performance.

  8. A comparative study of boron and arsenic (III) rejection from brackish water by reverse osmosis membranes

    KAUST Repository

    Teychene, Benoî t; Collet, Gaelle; Gallard, Hervé ; Croue, Jean Philippe

    2013-01-01

    This study aims to compare at lab-scale the rejection efficiency of several reverse osmosis membranes (RO) toward arsenic (III) and boron during the filtration of a synthetic brackish water. The effect of pH and operating conditions on the rejection of each RO membrane was studied. Two types of membrane were investigated: "brackish water" and "sea water" membranes. Our results showed that the metalloid rejection depends on the membrane type, pH and transmembrane pressure applied. Increasing pH above the dissociation constant (pKa) of each specie improves significantly the metalloid rejection by RO membranes, whatever the membrane type. Moreover, at identical operating conditions (pH, transmembrane pressure), results showed that the brackish water membranes have a higher water flux and exhibit lower metalloid rejection. The highest As(III) rejection value for the tested brackish water membranes was 99% obtained at pH = 9.6 and 40 bars, whereas it was found that the sea water RO membranes could highly reject As(III), more than 99%, even at low pH and low pressure (pH = 7.6 and 24 bars).Regarding Boron rejection, similar conclusions could be drawn. The sea water RO membranes exert higher removal, with a high rejection value above 96% over the tested conditions. More generally, this study showed that, whatever the operating conditions or the tested membranes, the boron and As(III) permeate concentrations are below the WHO guidelines. In addition, new data about the boron and arsenic permeability of each tested RO membrane was brought thanks to a theoretical calculation. © 2012 Elsevier B.V.

  9. A comparative study of boron and arsenic (III) rejection from brackish water by reverse osmosis membranes

    KAUST Repository

    Teychene, Benoît

    2013-02-01

    This study aims to compare at lab-scale the rejection efficiency of several reverse osmosis membranes (RO) toward arsenic (III) and boron during the filtration of a synthetic brackish water. The effect of pH and operating conditions on the rejection of each RO membrane was studied. Two types of membrane were investigated: "brackish water" and "sea water" membranes. Our results showed that the metalloid rejection depends on the membrane type, pH and transmembrane pressure applied. Increasing pH above the dissociation constant (pKa) of each specie improves significantly the metalloid rejection by RO membranes, whatever the membrane type. Moreover, at identical operating conditions (pH, transmembrane pressure), results showed that the brackish water membranes have a higher water flux and exhibit lower metalloid rejection. The highest As(III) rejection value for the tested brackish water membranes was 99% obtained at pH = 9.6 and 40 bars, whereas it was found that the sea water RO membranes could highly reject As(III), more than 99%, even at low pH and low pressure (pH = 7.6 and 24 bars).Regarding Boron rejection, similar conclusions could be drawn. The sea water RO membranes exert higher removal, with a high rejection value above 96% over the tested conditions. More generally, this study showed that, whatever the operating conditions or the tested membranes, the boron and As(III) permeate concentrations are below the WHO guidelines. In addition, new data about the boron and arsenic permeability of each tested RO membrane was brought thanks to a theoretical calculation. © 2012 Elsevier B.V.

  10. Champagne Pool (New Zealand) Thermophiles Yield Insights into the Evolution of Microbial Arsenic Resistance

    Science.gov (United States)

    Hug, K.; Krikowa, F.; Morgan, X.; Maher, W. A.; Stott, M. B.; Moreau, J. W.

    2011-12-01

    Arsenic is a highly toxic metalloid typically enriched in geothermal waters due to aqueous weathering of arsenic-bearing minerals. Investigation of enzymatic pathways by which thermophilic microorganisms cope with toxic arsenic levels may yield insights into the evolution of arsenic resistance mechanisms on the early Earth. At Wai-O-Tapu in the Taupo Volcanic Zone on the North Island of New Zealand, hot springs with temperatures of 30-90°C and elemental sulfur concentrations (expressed as equivalent sulfate) from 340 to 850 mg/l establish a range of environmental conditions. Total arsenic concentrations varied from 0.083 mg/l to 56 mg/l. Arsenic speciation analysis elucidated various biogeochemical arsenic transformations occurring within different springs. For example, in the Alum Cliff spring oxidizing conditions (Eh = 225 mV) were expected to stabilize dissolved arsenate (AsO43-). However, HPLC-ICPMS analyses yielded dissolved arsenate and arsenite (AsO33-) concentrations of 0.25 mg/l versus 43.3 mg/l, respectively, and point towards microbial arsenate reduction as the likely mechanism for arsenic redox transformation. 16S rRNA gene cloning of Alum Cliff DNA showed a predominantly archaeal population with the dominant clone "AC1_A1" most closely related (99% sequence similarity, NCBI BLAST°) to the uncultured Sulfolobus clone "ChP_97P" found in Champagne Pool (Childs et al., 2008). The closest isolated relative to AC1_A1 is Sulfolobus tokodaii str. TW with a sequence similarity of 94%. Arsenic speciation measurements from the Alum Cliff spring suggest that clone AC1_A1 features the arsenate reduction resistance mechanism, and we hypothesize therefore that an arsC (homolog or analog) provides this functionality. The organic arsenic species monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA), detected via HPLC-ICPMS at concentrations ranging from 1 μg/l to 12 μg/l in various springs, may also implicate microbial methyl-group transfers as an active

  11. Annual and seasonal variability of metals and metalloids in urban and industrial soils in Alcalá de Henares (Spain)

    International Nuclear Information System (INIS)

    Peña-Fernández, A.; Lobo-Bedmar, M.C.; González-Muñoz, M.J.

    2015-01-01

    Contamination of urban and industrial soils with trace metals has been recognized as a major concern at local, regional and global levels due to their implication on human health. In this study, concentrations of aluminum (Al), arsenic (As), beryllium (Be), cadmium (Cd), chromium (Cr), manganese (Mn), nickel (Ni), lead (Pb), tin (Sn), thallium (Tl), vanadium (V) and zinc (Zn) were determined in soil samples collected in Alcalá de Henares (Madrid, Spain) in order to evaluate the annual and seasonal variation in their levels. The results show that the soils of the industrial area have higher metals concentrations than the urban area. Principal component analysis (PCA) revealed that the two principal sources of trace metal contamination, especially Cd, Cu, Pb, and Zn in the urban soils of Alcalá can be attributed to traffic emissions, while As, Ni and Be primarily originated from industrial discharges. The seasonal variation analysis has revealed that the emission sources in the industrial area remain constant with time. However, in urban areas, both emissions and emission pathways significantly increase over time due to ongoing development. Currently, there is no hypothesis that explains the small seasonal fluctuations of trace metals in soils, since there are many factors affecting this. Owing to the fact that urban environments are becoming the human habitat, it would therefore be advisable to monitor metals and metalloids in urban soils because of the potential risks to human health. - Highlights: • Anthropogenic activities may affect the seasonal metal variation in Alcalá's soils. • Weather characteristics may also influence the seasonal metal variation in soils. • Alcalá's continual urban growth may have increased the levels of metals in its soils. • Metal variability in Alcalá's industrial soils might be dependent on their sources. • High soil metal content might make it difficult to identify temporal variation

  12. Annual and seasonal variability of metals and metalloids in urban and industrial soils in Alcalá de Henares (Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Peña-Fernández, A. [Departamento de Ciencias Biomédicas, Unidad de Toxicología, Universidad de Alcalá, Crta. Madrid-Barcelona Km, 33.6, 28871 Alcalá de Henares, Madrid (Spain); Lobo-Bedmar, M.C. [Instituto Madrileño de Investigación y Desarrollo Rural Agrario y Alimentario (IMIDRA), Finca el Encín, Crta. Madrid-Barcelona Km, 38.2, 28800 Alcalá de Henares, Madrid (Spain); González-Muñoz, M.J., E-mail: mariajose.gonzalez@uah.es [Departamento de Ciencias Biomédicas, Unidad de Toxicología, Universidad de Alcalá, Crta. Madrid-Barcelona Km, 33.6, 28871 Alcalá de Henares, Madrid (Spain)

    2015-01-15

    Contamination of urban and industrial soils with trace metals has been recognized as a major concern at local, regional and global levels due to their implication on human health. In this study, concentrations of aluminum (Al), arsenic (As), beryllium (Be), cadmium (Cd), chromium (Cr), manganese (Mn), nickel (Ni), lead (Pb), tin (Sn), thallium (Tl), vanadium (V) and zinc (Zn) were determined in soil samples collected in Alcalá de Henares (Madrid, Spain) in order to evaluate the annual and seasonal variation in their levels. The results show that the soils of the industrial area have higher metals concentrations than the urban area. Principal component analysis (PCA) revealed that the two principal sources of trace metal contamination, especially Cd, Cu, Pb, and Zn in the urban soils of Alcalá can be attributed to traffic emissions, while As, Ni and Be primarily originated from industrial discharges. The seasonal variation analysis has revealed that the emission sources in the industrial area remain constant with time. However, in urban areas, both emissions and emission pathways significantly increase over time due to ongoing development. Currently, there is no hypothesis that explains the small seasonal fluctuations of trace metals in soils, since there are many factors affecting this. Owing to the fact that urban environments are becoming the human habitat, it would therefore be advisable to monitor metals and metalloids in urban soils because of the potential risks to human health. - Highlights: • Anthropogenic activities may affect the seasonal metal variation in Alcalá's soils. • Weather characteristics may also influence the seasonal metal variation in soils. • Alcalá's continual urban growth may have increased the levels of metals in its soils. • Metal variability in Alcalá's industrial soils might be dependent on their sources. • High soil metal content might make it difficult to identify temporal variation.

  13. The metalloid arsenite induces nuclear export of Id3 possibly via binding to the N-terminal cysteine residues

    International Nuclear Information System (INIS)

    Kurooka, Hisanori; Sugai, Manabu; Mori, Kentaro; Yokota, Yoshifumi

    2013-01-01

    Highlights: •Sodium arsenite induces cytoplasmic accumulation of Id3. •Arsenite binds to closely spaced N-terminal cysteine residues of Id3. •N-terminal cysteines are essential for arsenite-induced nuclear export of Id3. •Nuclear export of Id3 counteracts its transcriptional repression activity. -- Abstract: Ids are versatile transcriptional repressors that regulate cell proliferation and differentiation, and appropriate subcellular localization of the Id proteins is important for their functions. We previously identified distinct functional nuclear export signals (NESs) in Id1 and Id2, but no active NES has been reported in Id3. In this study, we found that treatment with the stress-inducing metalloid arsenite led to the accumulation of GFP-tagged Id3 in the cytoplasm. Cytoplasmic accumulation was impaired by a mutation in the Id3 NES-like sequence resembling the Id1 NES, located at the end of the HLH domain. It was also blocked by co-treatment with the CRM1-specific nuclear export inhibitor leptomycin B (LMB), but not with the inhibitors for mitogen-activated protein kinases (MAPKs). Importantly, we showed that the closely spaced N-terminal cysteine residues of Id3 interacted with the arsenic derivative phenylarsine oxide (PAO) and were essential for the arsenite-induced cytoplasmic accumulation, suggesting that arsenite induces the CRM1-dependent nuclear export of Id3 via binding to the N-terminal cysteines. Finally, we demonstrated that Id3 significantly repressed arsenite-stimulated transcription of the immediate-early gene Egr-1 and that this repression activity was inversely correlated with the arsenite-induced nuclear export. Our results imply that Id3 may be involved in the biological action of arsenite

  14. Inhibition of DNA-double strand break repair by antimony compounds

    International Nuclear Information System (INIS)

    Takahashi, Sentaro; Sato, Hiroshi; Kubota, Yoshihisa; Utsumi, Hiroshi; Bedford, Joel S.; Okayasu, Ryuichi

    2002-01-01

    DNA double strand breaks (DSBs), induced by γ-irradiation in Chinese hamster ovary cells, were used to examine whether antimony compounds affect the repair of DNA damage. The cells were first incubated with antimony trichloride or antimony potassium tartrate (both Sb(III)) for 2 h, and then irradiated with γ-rays at a dose of 40 Gy. The DNA DSB was quantified with pulsed field gel electrophoresis immediately after irradiation (non-repair group) as well as at 30 min post-irradiation (repair group). The degree of repair inhibition was determined by the differences in the amount of DNA DSB between non-repair and repair groups. Both antimony compounds inhibited repair of DNA DSB in a dose dependent manner. In trichloride, 0.2 mM antimony significantly inhibited the rejoining of DSB, while 0.4 mM was necessary in potassium antimony tartrate. The mean lethal doses, D 0 , for the treatment with antimony trichloride and antimony potassium tartrate, were approximately 0.21 and 0.12 mM, respectively. This indicates that the repair inhibition by antimony trichloride occurred in the dose range near D 0 , but the antimony potassium tartrate inhibited the repair at doses where most cells lost their proliferating ability. This is the first report to indicate that antimony compounds may inhibit the repair of radiation-induced DNA DSB

  15. Effects of gamma-sterilization on DOC, uranium and arsenic remobilization from organic and microbial rich stream sediments

    International Nuclear Information System (INIS)

    Schaller, Joerg; Weiske, Arndt; Dudel, E. Gert

    2011-01-01

    Organic-rich sediments are known to be effective accumulators for uranium and arsenic. Much is known about the capacity for metal or metalloid fixation by microbes and organic compounds as well as inorganic sediment particles. Experiments investigating the effect of microbes on the process of metal fixation in sediments require sterilized sediments as control treatment which is often realized by gamma-sterilization. Only few studies show that gamma-sterilization has an effect on the remobilization of metal and metalloids and on their physico-chemical properties. These studies deal with sediments with negligible organic content whereas almost nothing is known about organic-rich sediments including a probably high microbial activity. In view of this, we investigated the effect of gamma-sterilization of organic-rich sediments on uranium and arsenic fixation and release. After ten days within an exposure experiment we found a significant higher remobilization of uranium and arsenic in sterile compared to unsterile treatments. In line with these findings the content of dissolved organic carbon (DOC), manganese, and iron increased to even significantly higher concentration in the sterile compared to unsterile treatment. Gamma-sterilization seems to change the physico-chemical properties of organic-rich sediments. Microbial activity is effectively eliminated. From increased DOC concentrations in overlaying water it is concluded that microbes are eventually killed with leaching of cellular compounds in the overlaying water. This decreases the adsorption capacity of the sediment and leads to enhanced uranium and arsenic remobilization. - Research highlight s : →Remobilization of uranium and arsenic is higher in gamma-sterile treatments. →DOC mobilization is also higher in sterilized treatment. →Adsorption capacity in sediments is reduced by release of DOC.

  16. Binational Arsenic Exposure Survey: Methodology and Estimated Arsenic Intake from Drinking Water and Urinary Arsenic Concentrations

    Directory of Open Access Journals (Sweden)

    Robin B. Harris

    2012-03-01

    Full Text Available The Binational Arsenic Exposure Survey (BAsES was designed to evaluate probable arsenic exposures in selected areas of southern Arizona and northern Mexico, two regions with known elevated levels of arsenic in groundwater reserves. This paper describes the methodology of BAsES and the relationship between estimated arsenic intake from beverages and arsenic output in urine. Households from eight communities were selected for their varying groundwater arsenic concentrations in Arizona, USA and Sonora, Mexico. Adults responded to questionnaires and provided dietary information. A first morning urine void and water from all household drinking sources were collected. Associations between urinary arsenic concentration (total, organic, inorganic and estimated level of arsenic consumed from water and other beverages were evaluated through crude associations and by random effects models. Median estimated total arsenic intake from beverages among participants from Arizona communities ranged from 1.7 to 14.1 µg/day compared to 0.6 to 3.4 µg/day among those from Mexico communities. In contrast, median urinary inorganic arsenic concentrations were greatest among participants from Hermosillo, Mexico (6.2 µg/L whereas a high of 2.0 µg/L was found among participants from Ajo, Arizona. Estimated arsenic intake from drinking water was associated with urinary total arsenic concentration (p < 0.001, urinary inorganic arsenic concentration (p < 0.001, and urinary sum of species (p < 0.001. Urinary arsenic concentrations increased between 7% and 12% for each one percent increase in arsenic consumed from drinking water. Variability in arsenic intake from beverages and urinary arsenic output yielded counter intuitive results. Estimated intake of arsenic from all beverages was greatest among Arizonans yet participants in Mexico had higher urinary total and inorganic arsenic concentrations. Other contributors to urinary arsenic concentrations should be evaluated.

  17. Self-standing nanoribbons of antimony selenide and antimony sulfide with well-defined size and band gap

    International Nuclear Information System (INIS)

    Vadapoo, Rajasekarakumar; Krishnan, Sridevi; Yilmaz, Hulusi; Marin, Carlos

    2011-01-01

    Sub-10 nm semiconducting nanostructures are crucial for the realization of nanoscale devices. Fabrication of nanostructures at this scale with homogeneous properties is challenging. Using ab initio calculations, we show that self-standing ribbons of antimony selenide and antimony sulfide of width 1.1 nm exhibit well-defined bandgaps of 1.66 and 2.16 eV, respectively. Molecular dynamics studies show that these ribbons are stable at 500 K. The one-dimensional (1D) heterostructure of these nanoribbons (Sb 2 Se 3 /Sb 2 S 3 ) along the [001] direction shows a straddling type behavior.

  18. Selective oxidation of propene on bismuth molybdate and mixed oxides of tin and antimony and of uranium and antimony

    International Nuclear Information System (INIS)

    Pendleton, P.; Taylor, D.

    1976-01-01

    Propene + 18 0 2 reactions have been studied in a static reaction system on bismuth molybdate and mixed oxides of tin and antimony and of uranium and antimony. The [ 16 0] acrolein content of the total acrolein formed and the proportion of 16 0 in the oxygen of the carbon dioxide by-product have been determined. The results indicate that for each catalyst the lattice is the only direct source of the oxygen in the aldehyde, and that lattice and/or gas phase oxygen is used in carbon dioxide formation. Oxygen anion mobility appears to be greater in the molybdate catalyst than in the other two. (author)

  19. Environmental biochemistry of arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Tamaki, S.; Frankenberger, W.T. Jr. (Department of Soil and Environmental Sciences, University of California, Riverside (United States))

    1992-01-01

    Microorganisms are involved in the redistribution and global cycling of arsenic. Arsenic can accumulate and can be subject to various biotransformations including reduction, oxidation, and methylation. Bacterial methylation of inorganic arsenic is coupled to the methane biosynthetic pathway in methanogenic bacteria under anaerobic conditions and may be a mechanism for arsenic detoxification. The pathway proceeds by reduction of arsenate to arsenite followed by methylation to dimethylarsine. Fungi are also able to transform inorganic and organic arsenic compounds into volatile methylarsines. The pathway proceeds aerobically by arsenate reduction to arsenite followed by several methylation steps producing trimethylarsine. Volatile arsine gases are very toxic to mammals because they destroy red blood cells (LD50 in rats; 3.0 mg kg-1). Further studies are needed on dimethylarsine and trimethylarsine toxicity tests through inhalation of target animals. Marine algae transform arsenate into non-volatile methylated arsenic compounds (methanearsonic and dimethylarsinic acids) in seawater. This is considered to be a beneficial step not only to the primary producers, but also to the higher trophic levels, since non-volatile methylated arsenic is much less toxic to marine invertebrates. Freshwater algae like marine algae synthesize lipid-soluble arsenic compounds and do not produce volatile methylarsines. Aquatic plants also synthesize similar lipid-soluble arsenic compounds. In terrestrial plants, arsenate is preferentially taken up 3 to 4 times the rate of arsenite. In the presence of phosphate, arsenate uptake is inhibited while in the presence of arsenate, phosphate uptake is only slightly inhibited. There is a competitive interaction between arsenate and phosphate for the same uptake system in terrestrial plants.

  20. Arsenic tolerant Trichoderma sp. reduces arsenic induced stress in chickpea (Cicer arietinum).

    Science.gov (United States)

    Tripathi, Pratibha; Singh, Poonam C; Mishra, Aradhana; Srivastava, Suchi; Chauhan, Reshu; Awasthi, Surabhi; Mishra, Seema; Dwivedi, Sanjay; Tripathi, Preeti; Kalra, Alok; Tripathi, Rudra D; Nautiyal, Chandra S

    2017-04-01

    Toxic metalloids including arsenic (As) can neither be eliminated nor destroyed from environment; however, they can be converted from toxic to less/non-toxic forms. The form of As species and their concentration determines its toxicity in plants. Therefore, the microbe mediated biotransformation of As is crucial for its plant uptake and toxicity. In the present study the role of As tolerant Trichoderma in modulating As toxicity in chickpea plants was explored. Chickpea plants grown in arsenate spiked soil under green house conditions were inoculated with two plant growth promoting Trichoderma strains, M-35 (As tolerant) and PPLF-28 (As sensitive). Total As concentration in chickpea tissue was comparable in both the Trichoderma treatments, however, differences in levels of organic and inorganic As (iAs) species were observed. The shift in iAs to organic As species ratio in tolerant Trichoderma treatment correlated with enhanced plant growth and nutrient content. Arsenic stress amelioration in tolerant Trichoderma treatment was also evident through rhizospheric microbial community and anatomical studies of the stem morphology. Down regulation of abiotic stress responsive genes (MIPS, PGIP, CGG) in tolerant Trichoderma + As treatment as compared to As alone and sensitive Trichoderma + As treatment also revealed that tolerant strain enhanced the plant's potential to cope with As stress as compared to sensitive one. Considering the bioremediation and plant growth promotion potential, the tolerant Trichoderma may appear promising for its utilization in As affected fields for enhancing agricultural productivity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Arsenic Removal from Aqueous Solutions by Salvadora persica Stem Ash

    Directory of Open Access Journals (Sweden)

    Ferdos Kord Mostafapour

    2013-01-01

    Full Text Available Arsenic is a naturally occurring metalloid, which is widely distributed in nature and is regarded as the largest mass poisoning in history. In the present study, the adsorption potential of Salvadora persica (S. persica stem ash in a batch system for the removal of As(V from aqueous solutions was investigated. Isotherm studies were carried out to evaluate the effect of contact time (20–240 min, pH (2–11, initial arsenic concentration (50–500 μg/L, and adsorbent dose on sorption efficiency. Maximum removal efficiency of 98.33% and 99.32% was obtained at pH 6, adsorbent dosage 3.5 g/L, initial As(V concentration 500 μg/L, and contact time 80 and 60 min for S. persica stem ash at 300 °C and 500 °C, respectively. Also, the adsorption equilibriums were analyzed by the Langmuir and Freundlich isotherm models. Such equilibriums showed that the adsorption data was well fitted with the Freundlich isotherm model for S. persica stem ash at both 300 °C and 500 °C (R2=0.8983 and 0.9274, resp.. According to achieved results, it was defined that S. persica stem ash can be used effectively for As(V removal from the aqueous environment.

  2. Genomic responses to arsenic in the cyanobacterium Synechocystis sp. PCC 6803.

    Directory of Open Access Journals (Sweden)

    Ana María Sánchez-Riego

    Full Text Available Arsenic is a ubiquitous contaminant and a toxic metalloid which presents two main redox states in nature: arsenite [As(III] and arsenate [As(V]. Arsenic resistance in Synechocystis sp. strain PCC 6803 is mediated by the arsBHC operon and two additional arsenate reductases encoded by the arsI1 and arsI2 genes. Here we describe the genome-wide responses to the presence of arsenate and arsenite in wild type and mutants in the arsenic resistance system. Both forms of arsenic produced similar responses in the wild type strain, including induction of several stress related genes and repression of energy generation processes. These responses were transient in the wild type strain but maintained in time in an arsB mutant strain, which lacks the arsenite transporter. In contrast, the responses observed in a strain lacking all arsenate reductases were somewhat different and included lower induction of genes involved in metal homeostasis and Fe-S cluster biogenesis, suggesting that these two processes are targeted by arsenite in the wild type strain. Finally, analysis of the arsR mutant strain revealed that ArsR seems to only control 5 genes in the genome. Furthermore, the arsR mutant strain exhibited hypersentivity to nickel, copper and cadmium and this phenotype was suppressed by mutation in arsB but not in arsC gene suggesting that overexpression of arsB is detrimental in the presence of these metals in the media.

  3. Ultrafast photoinduced structure phase transition in antimony single crystals

    NARCIS (Netherlands)

    Fausti, Daniele; Misochko, Oleg V.; van Loosdrecht, Paul H. M.

    2009-01-01

    Picosecond Raman scattering is used to study the photoinduced ultrafast dynamics in Peierls distorted antimony. We find evidence for an ultrafast nonthermal reversible structural phase transition. Most surprisingly, we find evidence that this transition evolves toward a lower symmetry in contrast to

  4. Antimony to Cure Visceral Leishmaniasis Unresponsive to Liposomal Amphotericin B.

    Directory of Open Access Journals (Sweden)

    Gloria Morizot

    2016-01-01

    Full Text Available We report on 4 patients (1 immunocompetent, 3 immunosuppressed in whom visceral leishmaniasis had become unresponsive to (or had relapsed after treatment with appropriate doses of liposomal amphotericin B. Under close follow-up, full courses of pentavalent antimony were administered without life-threatening adverse events and resulted in rapid and sustained clinical and parasitological cure.

  5. Vapor pressures of dimethylcadmium, trimethylbismuth, and tris(dimethylamino)antimony

    Czech Academy of Sciences Publication Activity Database

    Morávek, Pavel; Fulem, Michal; Pangrác, Jiří; Hulicius, Eduard; Růžička, K.

    2013-01-01

    Roč. 360, Dec (2013), s. 106-110 ISSN 0378-3812 R&D Projects: GA ČR GA13-15286S; GA MŠk(CZ) LM2011026 Institutional support: RVO:68378271 Keywords : vapor pressure * dimethylcadmium * trimethylbismuth * tris(dimethylamino)antimony * sublimation and vaporization enthalpy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.241, year: 2013

  6. Application of KWU antimony removal process at Gentilly-2

    International Nuclear Information System (INIS)

    Dundar, Y.; Odar, S.; Streit, K.; Allsop, H.; Guzonas, D.

    1996-09-01

    This paper describes the work performed to adapt the KWU PWR antimony removal process to CANDU plant conditions, and the application of the process at the Hydro Quebec unit, Gentilly-2. The results of the application will be presented and the 'lessons learned' will be discussed in detail. (author)

  7. The acidic properties of mixed tin and antimony oxide catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Irving, E.A.; Taylor, D.

    1978-01-01

    The acidic properties of mixed tin + antimony oxide catalysts were studied in the isomerization of 3,3-dimethyl-1-butene, cyclopropane, 1-butene, and cis-2-butene and the dehydration of isopropanol over the mixed oxides outgassed at room temperature and 698/sup 0/K. Only the zero-order portions of the reaction were used for calculations. With catalysts outgassed at room temperature, weakly acidic sites were present, and all the reactions probably occurred by a carbonium ion mechanism with Broensted acid sites as a source of protons. The rates increased with increasing antimony content to a maximum at approx. 50 at. % and then decreased with further increase in the antimony content. Outgassing of the catalysts at 698/sup 0/K increased the isomerization rate of 3,3-dimethyl-1-butene, but decreased those for cyclopropane and isopropanol due to poisoning by the propylene produced. For 1-butene and cis-2-butene and catalysts outgassed at 698/sup 0/K, only catalysts with less than 50Vertical Bar3< antimony were active. The catalysts were poisoned by treatment with bases or with sodium acetate. A proposed correlation between rates and acidity led to the conclusion that the catalyst composition corresponding to maximum acidity differs from that for maximum selective oxidation activity. Graphs and 10 references.

  8. Antimony content of macrofungi from clean and polluted areas

    Czech Academy of Sciences Publication Activity Database

    Borovička, J.; Řanda, Zdeněk; Jelínek, E.

    2006-01-01

    Roč. 64, č. 11 (2006), s. 1837-1844 ISSN 0045-6535 Institutional research plan: CEZ:AV0Z10480505 Keywords : mushrooms * antimony pollution * bioaccumulation Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.442, year: 2006

  9. 40 CFR 721.1930 - Butanoic acid, antimony (3=) salt.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Butanoic acid, antimony (3=) salt. 721.1930 Section 721.1930 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.1930 Butanoic acid,...

  10. Is it possible to avert arsenic effects on cells and tissues bypassing its toxicity and suppressive consequences of energy production? A hypothesis

    Directory of Open Access Journals (Sweden)

    Biplab Giri

    2017-01-01

    Full Text Available Arsenic, a sulfhydryl reactive metalloid, found primarily in two forms: arsenite and arsenate, causing several human health problems, is considered as a dreaded agent against public health. It mainly spreads through groundwater contamination and affects human mainly through drinking water. Arsenic contaminated groundwater is now a major threat in some parts of India (the river basin of Ganga and Brahmaputra and Bangladesh. The current authors belong to the region where arsenic poisoning and its consequences are spreading in an uncontrolled way. We are helpless to stop the spreading of geogenic groundwater arsenic contamination at present. Although most of the research on arsenic removal from drinking water and on toxicity profile has been carried out, very few preventive measures have been reported till date to balance the arsenic-induced cellular energy deficiency and oxidative stress-mediated cell death and cellular senescence. And, therefore, we need to think about alternative remedial to address such problems, which propel us to propose the current hypothesis that the adverse effects of energy imbalance due to arsenic toxicity in cells could be dodged by intake of moderate amount of alcohol. While pyruvate dehydrogenase complex is blocked by arsenic, glucose cannot be utilized through Kreb's cycle. However, alcohol can produce energy by bypassing the aerobic adenosine triphosphate (ATP production machinery. In addition, arsenic poisoning incurs cellular oxidative stress which needs to be scavenged further. So to meet this secondary problem, we also suggest consuming red grape juice (a potent antioxidant and cytoprotective agent in addition to alcohol (as per International Center for Alcohol Policies (ICAP Drinking Guidelines in our second part of the hypothesis. In conclusion, it can be suggested that the red wine which contains moderate amount of alcohol and high levels of red grape polyphenols, galic acid, resveratrol, and other

  11. Studies on the dissolution of antimony doped ferrites

    International Nuclear Information System (INIS)

    Keny, S.J.; Kumbhar, A.G.; Sanjukta, A.; Pandey, S.; Venkateswaran, G.; Ramanathan, S.

    2008-01-01

    Antimony (Sb) present in the PHT (primary heat transport) pump seals and bearings of PHWRs (Pressurized Heavy Water Reactor) is released during operation of the reactor and gets deposited on the in-core zircaloy surfaces. Neutron flux in the reactor core activates this Sb to 122 Sb (t 1/2 2.6 days) and 124 Sb (t 1/2 60 days). Release of this Sb (radioactive antimony) and its deposition on out of core surfaces occurs due to oxygen ingress in the system during shutdown periods and off normal conditions. Sb deposition on the magnetite bearing carbon steel surface of the PHT system results in increase of radiation fields. The consequence of this is low apparent decontamination factors observed after system decontamination. Once Sb is deposited on bare carbon steel (CS) surface or magnetite bearing carbon steel surface it is not amenable for removal by normal reductive decontamination process. It has to decay by its own half-life or has to be removed by oxidative dissolution. To understand the role of antimony and its removal on the ion exchange column, antimony doped ferrites were prepared and their dissolution in CNA (citric acid, NTA, Ascorbic acid; 1.4+1.4+1.7 mM) formulation was studied. The time taken for the dissolution of antimony-doped ferrites was found to increase with increasing Sb content in the ferrite. The point of zero charge (pzc) value of Sb substituted magnetite was determined to understand its adsorption on carbon steel surfaces of the PHT system. The pzc values for Fe 3 O 4 and Sb 2 O 3 , with H + / OH - as only potential determining ions in the aqueous medium, were 6.5 and 1.7 respectively. While, pzc of magnetite in typical decontamination formulations was below 3. The pzc for aqueous suspension of antimony-substituted magnetite (sintered at 1173 K) was 4.4. On the other hand, in CEA (citric acid, EDTA, Ascorbic acid) formulation up to a pH of 1.5, surface charge on the antimony-substituted magnetite was negative. Hence, even at this low pH, pzc

  12. Solvent extraction of indium, tin, arsenic, and antimony by non-phosphorous compounds

    International Nuclear Information System (INIS)

    Auchapt, J.M.; Tostain, Jacqueline.

    1975-12-01

    The extraction methods of In, Ti, Sn, As and Sb using non-phosphorous compounds are reviewed. This report is the continuation of the BIB-212 (pt.1) report concerned by Zn, Cd, Pb and Ag. So, the main elements of Zn ores are studied in these two reports [fr

  13. The determination of arsenic, selenium, antimony, and tin in complex environmental samples by hydride generation AAS

    International Nuclear Information System (INIS)

    Johnson, D.; Beach, C.

    1990-01-01

    Hydride generation techniques are used routinely for the determination of As, Se, Sb and Sn in water samples. Advantages include high sensitivity, simplicity, and relative freedom from interferences. Continuous-flow designs greatly reduce analysis time as well as improve precision and allow for automation. However the accurate analysis of more complex environmental samples such as industrial sludges, soil samples, river sediments, and fly ash remains difficult. Numerous contributing factors influence the accuracy of the hydride technique. Sample digestion methods and sample preparation procedures are of critical importance. The digestion must adequately solubilize the elements of interest without loss by volatilization. Sample preparation procedures that guarantee the proper analyte oxidation state and eliminate the nitric acid and inter-element interferences are needed. In this study, difficult environmental samples were analyzed for As, Se, Sb, and Sn by continuous flow hydride generation. Sample preparation methods were optimized to eliminate interferences. The results of spike recovery studies will be presented. Data from the analysis of the same samples by graphite furnace AAS will be presented for comparison of accuracy, precision, and analysis time

  14. Ab initio study of the adsorption of antimony and arsenic on the Si(110) surface

    International Nuclear Information System (INIS)

    Huitzil-Tepanecatl, Arely; Cocoletzi, Gregorio H.; Takeuchi, Noboru

    2010-01-01

    We have performed first principles total energy calculations to investigate the adsorption of Sb and As adatoms on the Si(110) surface using a (2 x 3) supercell. The energetics and atomic structures have been investigated in four atomic configurations. One structure is obtained by placing 1/3 of a monolayer (ML) of Sb (As) atoms on the Si(110) surface. The other three geometries are obtained by depositing 1 ML of Sb (As) atoms on the surface. In the first case the structure is formed by four trimers, in the second case the geometry is formed by zigzag atomic chains and in the third case the structure contains 'microfacets'. The energetics results of the Sb adsorption show that for low coverage the tetrahedrons formed by the adsorption of 1/3 ML is the most stable configuration, while in the monolayer region the zigzag atomic chain is the most stable structure. However, the total energies of the trimer and microfacet structures are slightly higher, indicating that under some conditions, they may be formed. In an experimental report it has been suggested that the adsorption of 1/3 and 1 ML of Sb corresponds to the low and high coverage in the experiments of Zotov et al. [A. V. Zotov, V. G. Lifshifts, and A. N. Demidchik, Surf. Sci. 274, L583 (1992)]. On the other hand, our results of the As adsorption show that for low coverage, the tetrahedrons in the adsorption of 1/3 ML also give the most stable configuration. However, at the 1 ML coverage, a structure formed by microfacets is the most stable structure, in agreement with previous results.

  15. Fate of antimony and arsenic in contaminated waters at the abandoned Su Suergiu mine (Sardinia, Italy)

    Science.gov (United States)

    Cidu, Rosa; Dore, Elisabetta; Biddau, Riccardo; Nordstrom, D. Kirk

    2018-01-01

    We investigated the fate of Sb and As downstream of the abandoned Su Suergiu mine (Sardinia, Italy) and surrounding areas. The mined area is a priority in the Sardinian remediation plan for contaminated sites due to the high concentrations of Sb and As in the mining-related wastes, which may impact the Flumendosa River that supplies water for agriculture and domestic uses. Hydrogeochemical surveys conducted from 2005 to 2015 produced time-series data and downstream profiles of water chemistry at 46 sites. Water was sampled at: springs and streams unaffected by mining; adits and streams in the mine area; drainage from the slag heaps; stream water downstream of the slag drainages; and the Flumendosa River downstream from the confluence of the contaminated waters. At specific sites, water sampling was repeated under different flow conditions, resulting in a total of 99 samples. The water samples were neutral to slightly alkaline. Elevated Sb (up to 30 mg L−1) and As (up to 16 mg L−1) concentrations were observed in water flowing from the slag materials from where the Sb ore was processed. These slag materials were the main Sb and As source at Su Suergiu. A strong base, Na-carbonate, from the foundry wastes, had a major influence on mobilizing Sb and As. Downstream contamination can be explained by considering that: (1) the predominant aqueous species, Sb(OH)6 − and HAsO4 −2, are not favored in sorption processes at the observed pH conditions; (2) precipitation of Sb- and As-bearing solid phases was not observed, which is consistent with modeling results indicating undersaturation; and (3) the main decrease in dissolved Sb and As concentrations was by dilution. Dissolved As concentrations in the Flumendosa River did not generally exceed the EU limit of 10 µg L−1, whereas dissolved Sb in the river downstream of the contamination source always exceeded the EU limit of 5 µg L−1. Recent actions aimed at retaining runoff from the slag heaps are apparently not sufficiently mitigating contamination in the Flumendosa River.

  16. Ab initio study of the adsorption of antimony and arsenic on the Si(110) surface

    Energy Technology Data Exchange (ETDEWEB)

    Huitzil-Tepanecatl, Arely [Postgrado en Fisica Aplicada, Facultad de Ciencias Fisico-Matematicas, BUAP, Apartado Postal 52, Puebla 72000 (Mexico); Cocoletzi, Gregorio H., E-mail: cocoletz@sirio.ifuap.buap.m [Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Km. 107 Carretera Tijuana-Ensenada, Codigo Postal 22860, Apartado Postal 2732 Ensenada, Baja California (Mexico); Centro de Nanociencia y Nanotecnologia, Universidad Nacional Autonoma de Mexico, Apartado Postal 2681, Ensenada, Baja California, 22800 (Mexico); Instituto de Fisica, Universidad Autonoma de Puebla, Apartado Postal J-48, Puebla 72570 (Mexico); Takeuchi, Noboru [Centro de Nanociencia y Nanotecnologia, Universidad Nacional Autonoma de Mexico, Apartado Postal 2681, Ensenada, Baja California, 22800 (Mexico)

    2010-10-29

    We have performed first principles total energy calculations to investigate the adsorption of Sb and As adatoms on the Si(110) surface using a (2 x 3) supercell. The energetics and atomic structures have been investigated in four atomic configurations. One structure is obtained by placing 1/3 of a monolayer (ML) of Sb (As) atoms on the Si(110) surface. The other three geometries are obtained by depositing 1 ML of Sb (As) atoms on the surface. In the first case the structure is formed by four trimers, in the second case the geometry is formed by zigzag atomic chains and in the third case the structure contains 'microfacets'. The energetics results of the Sb adsorption show that for low coverage the tetrahedrons formed by the adsorption of 1/3 ML is the most stable configuration, while in the monolayer region the zigzag atomic chain is the most stable structure. However, the total energies of the trimer and microfacet structures are slightly higher, indicating that under some conditions, they may be formed. In an experimental report it has been suggested that the adsorption of 1/3 and 1 ML of Sb corresponds to the low and high coverage in the experiments of Zotov et al. [A. V. Zotov, V. G. Lifshifts, and A. N. Demidchik, Surf. Sci. 274, L583 (1992)]. On the other hand, our results of the As adsorption show that for low coverage, the tetrahedrons in the adsorption of 1/3 ML also give the most stable configuration. However, at the 1 ML coverage, a structure formed by microfacets is the most stable structure, in agreement with previous results.

  17. Dredging Operations Technical Support Program. Transformation, Fixation, and Mobilization of Arsenic and Antimony in Contaminated Sediments.

    Science.gov (United States)

    1984-01-01

    and Edwards (1977) reported that whole cells of :ethaogenic bacteria in variod anaerobic environments ( rumen fluid, sewage sludge) nproduced...sediments were studied with emphasis placed on short- and long-term 14 leaching and sediment conditions that affect mobilization. -; Under anaerobic ...conditions, arsenate [As(V)] was reduced to arsenite [As(III)] in a wide range of sediments. In anaerobic Texas City sediment slur- ries, 70% of added As(V

  18. Arsenic speciation results

    Data.gov (United States)

    U.S. Environmental Protection Agency — Linear combination fitting results of synchrotron data to determine arsenic speciation in soil samples. This dataset is associated with the following publication:...

  19. Arsenic Trioxide Injection

    Science.gov (United States)

    ... people who have not been helped by other types of chemotherapy or whose condition has improved but then worsened following treatment with other types of chemotherapy. Arsenic trioxide is in a class of medications ...

  20. Paper on Arsenic

    African Journals Online (AJOL)

    Hiren

    The current study was undertaken to determine the effects of arsenic on ... concentration caused reduction in plant growth along with induction of few antioxidants. ... esculentum, a herbaceous monocot plant, towards reactive oxygen species.

  1. A novel approach for predicting the uptake and toxicity of metallic and metalloid ions

    Science.gov (United States)

    Wang, Peng

    2011-01-01

    Electrostatic nature of plant plasma membrane (PM) plays significant roles in the ion uptake and toxicity. Electrical potential at the PM exterior surface (ψ0o) influences ion distribution at the PM exterior surface, and the depolarization of ψ0o negativity increases the electrical driving force for cation transport, but decreases the driving force for anion transport across the PMs. Assessing environmental risks of toxic ions has been a difficult task because the ion concentration (activity) in medium is not directly corrected to its potential effects. Medium characteristics like the content of major cations have important influences on the bioavailability and toxicity of ions in natural waters and soils. Models such as the Free Ion Activity Model (FIAM) and the Biotic Ligand Model (BLM), as usually employed, neglect the ψ0o and hence often lead to false conclusions about interaction mechanisms between toxic ions and major cations for biology. The neglect of ψ0o is not inconsistent with its importance, and possibly reflects the difficulty in the measurement of ψ0o. Based on the dual effects of the ψ0o, electrostatic models were developed to better predict the uptake and toxicity of metallic and metalloid ions. These results suggest that the electrostatic models provides a more robust mechanistic framework to assess metal(loid) ecotoxicity and predict critical metal(loid) concentrations linked to a biological effect, indicating its potential utility in risk assessment of metal(loid)s in water and terrestrial ecosystems. PMID:21386661

  2. Expression profiling of Crambe abyssinica under arsenate stress identifies genes and gene networks involved in arsenic metabolism and detoxification

    Directory of Open Access Journals (Sweden)

    Kandasamy Suganthi

    2010-06-01

    Full Text Available Abstract Background Arsenic contamination is widespread throughout the world and this toxic metalloid is known to cause cancers of organs such as liver, kidney, skin, and lung in human. In spite of a recent surge in arsenic related studies, we are still far from a comprehensive understanding of arsenic uptake, detoxification, and sequestration in plants. Crambe abyssinica, commonly known as 'abyssinian mustard', is a non-food, high biomass oil seed crop that is naturally tolerant to heavy metals. Moreover, it accumulates significantly higher levels of arsenic as compared to other species of the Brassicaceae family. Thus, C. abyssinica has great potential to be utilized as an ideal inedible crop for phytoremediation of heavy metals and metalloids. However, the mechanism of arsenic metabolism in higher plants, including C. abyssinica, remains elusive. Results To identify the differentially expressed transcripts and the pathways involved in arsenic metabolism and detoxification, C. abyssinica plants were subjected to arsenate stress and a PCR-Select Suppression Subtraction Hybridization (SSH approach was employed. A total of 105 differentially expressed subtracted cDNAs were sequenced which were found to represent 38 genes. Those genes encode proteins functioning as antioxidants, metal transporters, reductases, enzymes involved in the protein degradation pathway, and several novel uncharacterized proteins. The transcripts corresponding to the subtracted cDNAs showed strong upregulation by arsenate stress as confirmed by the semi-quantitative RT-PCR. Conclusions Our study revealed novel insights into the plant defense mechanisms and the regulation of genes and gene networks in response to arsenate toxicity. The differential expression of transcripts encoding glutathione-S-transferases, antioxidants, sulfur metabolism, heat-shock proteins, metal transporters, and enzymes in the ubiquitination pathway of protein degradation as well as several unknown

  3. Expression profiling of Crambe abyssinica under arsenate stress identifies genes and gene networks involved in arsenic metabolism and detoxification

    Science.gov (United States)

    2010-01-01

    Background Arsenic contamination is widespread throughout the world and this toxic metalloid is known to cause cancers of organs such as liver, kidney, skin, and lung in human. In spite of a recent surge in arsenic related studies, we are still far from a comprehensive understanding of arsenic uptake, detoxification, and sequestration in plants. Crambe abyssinica, commonly known as 'abyssinian mustard', is a non-food, high biomass oil seed crop that is naturally tolerant to heavy metals. Moreover, it accumulates significantly higher levels of arsenic as compared to other species of the Brassicaceae family. Thus, C. abyssinica has great potential to be utilized as an ideal inedible crop for phytoremediation of heavy metals and metalloids. However, the mechanism of arsenic metabolism in higher plants, including C. abyssinica, remains elusive. Results To identify the differentially expressed transcripts and the pathways involved in arsenic metabolism and detoxification, C. abyssinica plants were subjected to arsenate stress and a PCR-Select Suppression Subtraction Hybridization (SSH) approach was employed. A total of 105 differentially expressed subtracted cDNAs were sequenced which were found to represent 38 genes. Those genes encode proteins functioning as antioxidants, metal transporters, reductases, enzymes involved in the protein degradation pathway, and several novel uncharacterized proteins. The transcripts corresponding to the subtracted cDNAs showed strong upregulation by arsenate stress as confirmed by the semi-quantitative RT-PCR. Conclusions Our study revealed novel insights into the plant defense mechanisms and the regulation of genes and gene networks in response to arsenate toxicity. The differential expression of transcripts encoding glutathione-S-transferases, antioxidants, sulfur metabolism, heat-shock proteins, metal transporters, and enzymes in the ubiquitination pathway of protein degradation as well as several unknown novel proteins serve as

  4. Increased thiol levels in antimony-resistant Leishmania infantum isolated from treatment-refractory visceral leishmaniasis in Brazil.

    Science.gov (United States)

    Magalhães, Lucas S; Bomfim, Lays Gs; Mota, Sthefanne G; Cruz, Geydson S; Corrêa, Cristiane B; Tanajura, Diego M; Lipscomb, Michael W; Borges, Valéria M; Jesus, Amélia R de; Almeida, Roque P de; Moura, Tatiana R de

    2018-02-01

    BACKGROUND Treatment-refractory visceral leishmaniasis (VL) has become an important problem in many countries. OBJECTIVES We evaluated the antimony-resistance mechanisms of Leishmania infantum isolated from VL patients refractory or responsive to treatment with pentavalent antimony. METHODS Strains isolated from antimony-refractory patients (in vitro antimony-resistant isolates) and antimony-responsive patients (in vitro antimony-sensitive isolates) were examined. Morphological changes were evaluated by transmission electron microscopy after trivalent antimony exposure. P-glycoprotein (P-gp) efflux pump activity was evaluated using the pump-specific inhibitor verapamil hydrochloride, and the role of thiol in trivalent antimony resistance was investigated using the enzymatic inhibitor L-buthionine sulfoximine. FINDINGS Antimony treatment induced fewer alterations in the cellular structure of L. infantum resistant isolates than in that of sensitive isolates. P-gp efflux activity was not involved in antimony resistance in these isolates. Importantly, the resistant isolates contained higher levels of thiol compared to the sensitive isolates, and inhibition of thiol synthesis in the resistant isolates recovered their sensitivity to trivalent antimony treatment, and enhanced the production of reactive oxygen species in promastigotes exposed to the drug. MAIN CONCLUSIONS Our results demonstrate that isolates from patients with antimony-refractory VL exhibited higher thiol levels than antimony-sensitive isolates. This indicates that redox metabolism plays an important role in the antimony-resistance of New World VL isolates.

  5. Setting water quality criteria in China: approaches for developing species sensitivity distributions for metals and metalloids.

    Science.gov (United States)

    Liu, Yuedan; Wu, Fengchang; Mu, Yunsong; Feng, Chenglian; Fang, Yixiang; Chen, Lulu; Giesy, John P

    2014-01-01

    Both nonparametric and parametric approaches were used to construct SSDs for use in ecological risk assessments. Based on toxicity to representative aquatic species and typical water contaminants of metals and metalloids in China, nonparametric methods based on the bootstrap were statistically superior to the parametric curve-fitting approaches. Knowing what the SSDs for each targeted species are might help in selecting efficient indicator species to use for water quality monitoring. The species evaluated herein showed sensitivity variations to different chemical treatments that were used in constructing the SSDs. For example, D. magna was more sensitive than most species to most chemical treatments, whereas D. rerio was sensitive to Hg and Pb but was tolerant to Zn. HC5 values, derived for the pollutants in this study for protecting Chinese species, differed from those published by the USEPA. Such differences may result from differences in geographical conditions and biota between China and the United States. Thus, the degree of protection desired for aquatic organisms should be formulated to fit local conditions. For approach selection, we recommend all approaches be considered and the most suitable approaches chosen. The selection should be based on the practical information needs of the researcher (viz., species composition, species sensitivity, and geological characteristics of aquatic habitats), since risk assessments usually are focused on certain substances, species, or monitoring sites. We used Tai Lake as a typical freshwater lake in China to assess the risk of metals and metalloids to the aquatic species. We calculated hazard quotients for the metals and metalloids that were found in the water of this lake. Results indicated the decreasing ecological risk of these contaminants in the following order: Hg metalloids to aquatic species. Based on the MEC and HC5 derived from SSDs by nonparametric and parametric approaches together, the risk levels of metals

  6. Arsenic (Environmental Health Student Portal)

    Science.gov (United States)

    ... Water Waterborne Diseases & Illnesses Water Cycle Water Treatment Videos Games Experiments For Teachers Home Chemicals Arsenic Print this ... human activities, such as mining, farming, and other industries. This can be dangerous, because arsenic is poisonous ...

  7. Evaluation of the potential of Pistia stratiotes L. (water lettuce for bioindication and phytoremediation of aquatic environments contaminated with arsenic

    Directory of Open Access Journals (Sweden)

    FS Farnese

    Full Text Available Specimens of Pistia stratiotes were subjected to five concentrations of arsenic (As for seven days. Growth, As absorption, malondialdehyde (MDA content, photosynthetic pigments, enzymatic activities, amino acids content and anatomical changes were assessed. Plant arsenic accumulation increased with increasing metalloid in the solution, while growth rate and photosynthetic pigment content decreased. The MDA content increased, indicating oxidative stress. Enzymatic activity and amino acids content increased at the lower doses of As, subsequently declining in the higher concentrations. Chlorosis and necrosis were observed in the leaves. Leaves showed starch accumulation and increased thickness of the mesophyll. In the root system, there was a loss and darkening of roots. Cell layers formed at the insertion points on the root stems may have been responsible for the loss of roots. These results indicate that water lettuce shows potential for bioindication and phytoremediation of As-contaminated aquatic environments.

  8. Evaluation of the potential of Pistia stratiotes L. (water lettuce) for bioindication and phytoremediation of aquatic environments contaminated with arsenic.

    Science.gov (United States)

    Farnese, F S; Oliveira, J A; Lima, F S; Leão, G A; Gusman, G S; Silva, L C

    2014-08-01

    Specimens of Pistia stratiotes were subjected to five concentrations of arsenic (As) for seven days. Growth, As absorption, malondialdehyde (MDA) content, photosynthetic pigments, enzymatic activities, amino acids content and anatomical changes were assessed. Plant arsenic accumulation increased with increasing metalloid in the solution, while growth rate and photosynthetic pigment content decreased. The MDA content increased, indicating oxidative stress. Enzymatic activity and amino acids content increased at the lower doses of As, subsequently declining in the higher concentrations. Chlorosis and necrosis were observed in the leaves. Leaves showed starch accumulation and increased thickness of the mesophyll. In the root system, there was a loss and darkening of roots. Cell layers formed at the insertion points on the root stems may have been responsible for the loss of roots. These results indicate that water lettuce shows potential for bioindication and phytoremediation of As-contaminated aquatic environments.

  9. Assessing the bioavailability and bioaccessibility of metals and metalloids.

    Science.gov (United States)

    Ng, Jack C; Juhasz, Albert; Smith, Euan; Naidu, Ravi

    2015-06-01

    Bioavailability (BA) determines the potential harm of a contaminant that exerts on the receptor. However, environmental guidelines for site contamination assessment are often set assuming the contaminant is 100 % bioavailable. This conservative approach to assessing site risk may result in the unnecessary and expensive remediation of a contaminated site. The National Environmental Protection Measures in Australia has undergone a statutory 5-year review that recommended that contaminant bioavailability and bioaccessibility (BAC) measures be adopted as part of the contaminated site risk assessment process by the National Environment Protection Council. We undertook a critical review of the current bioavailability and bioaccessibility approaches, methods and their respective limitations. The 'gold' standard to estimate the portion of a contaminant that reaches the system circulatory system (BA) of its receptor is to determine BA in an in vivo system. Various animal models have been utilised for this purpose. Because of animal ethics issues, and the expenses associated with performing in vivo studies, several in vitro methods have been developed to determine BAC as a surrogate model for the estimation of BA. However, few in vitro BAC studies have been calibrated against a reliable animal model, such as immature swine. In this review, we have identified suitable methods for assessing arsenic and lead BAC and proposed a decision tree for the determination of contaminant bioavailability and bioaccessibility for health risk assessment.

  10. Acute and chronic arsenic toxicity

    OpenAIRE

    Ratnaike, R

    2003-01-01

    Arsenic toxicity is a global health problem affecting many millions of people. Contamination is caused by arsenic from natural geological sources leaching into aquifers, contaminating drinking water and may also occur from mining and other industrial processes. Arsenic is present as a contaminant in many traditional remedies. Arsenic trioxide is now used to treat acute promyelocytic leukaemia. Absorption occurs predominantly from ingestion from the small intestine, though minimal absorption o...

  11. Effects of antimony additions on the fracture of nickel at 600 C

    International Nuclear Information System (INIS)

    White, C.L.; Padgett, R.A.

    1983-01-01

    Antimony additions (about 1 wt pct) are found to drastically lower tensile ductility and induce extensive intergranular cracking in nickel at 600 C. This effect is most pronounced at lower strain rates. These results are contrasted to results for pure nickel where ductility is high and failure occurs via plastic instability. Scanning electron microscopy revealed faceting of crack and cavity surfaces in the antimony doped nickel. Auger electron spectroscopy revealed segregation of antimony and (residual) sulfur to both grain boundaries and to the internal free surfaces of cracks and cavities. Inert ion sputter profiling showed that most of the antimony and sulfur enrichment on these surfaces is confined within a few atom layers of the interface. The embrittling influence of antimony is discussed in terms of the observed antimony and sulfur segregation to internal interfaces. Possible connections between the segregation and the observed embrittlement involve segregation effects on grain boundary sliding, grain boundary and surface diffusivities, and interfacial energetics

  12. In Vitro antileishmanial properties of neutron-irradiated meglumine antimoniate

    Directory of Open Access Journals (Sweden)

    Samanta Etel Treiger Borborema

    2005-10-01

    Full Text Available Pentavalent antimony, as meglumine antimoniate (Glucantime® or sodium stibogluconate (Pentostam® , is the main treatment for leishmaniasis, a complex of diseases caused by the protozoan Leishmania, and an endemic and neglected threat in Brazil. Despite over half a century of clinical use, their mechanism of action, toxicity and pharmacokinetic data remain unknown. The analytical methods for determination of antimony in biological systems remain complex and have low sensitivity. Radiotracer studies have a potential in pharmaceutical development. The aim of this study was to obtain a radiotracer for antimony, with suitable physical and biological properties. Meglumine antimoniate was neutron irradiated inside the IEA-R1 nuclear reactor, producing two radioisotopes 122Sb and 124Sb, with high radionuclidic purity and good specific activity. This compound showed the same antileishmanial activity as the native compound. The use of the radiotracers, easily created by neutron irradiation, could be an interesting tool to solve important questions in antimonial pharmacology.Os antimoniais pentavalentes, como o antimoniato de meglumina (Glucantime® ou estibogluconato de sódio (Pentostam® , são o principal tratamento para a leishmaniose, um complexo de doenças causadas pelo protozoário parasita Leishmania, uma doença endêmica e negligenciada no Brasil. Apesar do seu uso clínico por mais de meio século, seu mecanismo de ação, toxicidade e dados de farmacocinética permanecem desconhecidos. Os métodos analíticos para determinação de antimônio em sistemas biológicos são complexos e apresentam baixa sensibilidade. Estudos utilizando radiotraçadores têm papel potencial no desenvolvimento farmacológico. O objetivo deste estudo foi desenvolver um radiotraçador de antimônio, com propriedades físicas e biológicas adequadas. O antimoniato de meglumina foi irradiado por nêutrons no reator nuclear IEA-R1, produzindo dois radioisótopos: 122

  13. Arbuscular Mycorrhizal Fungi Community Structure, Abundance and Species Richness Changes in Soil by Different Levels of Heavy Metal and Metalloid Concentration

    Science.gov (United States)

    Krishnamoorthy, Ramasamy; Kim, Chang-Gi; Subramanian, Parthiban; Kim, Ki-Yoon; Selvakumar, Gopal; Sa, Tong-Min

    2015-01-01

    Arbuscular Mycorrhizal Fungi (AMF) play major roles in ecosystem functioning such as carbon sequestration, nutrient cycling, and plant growth promotion. It is important to know how this ecologically important soil microbial player is affected by soil abiotic factors particularly heavy metal and metalloid (HMM). The objective of this study was to understand the impact of soil HMM concentration on AMF abundance and community structure in the contaminated sites of South Korea. Soil samples were collected from the vicinity of an abandoned smelter and the samples were subjected to three complementary methods such as spore morphology, terminal restriction fragment length polymorphism (T-RFLP) and denaturing gradient gel electrophoresis (DGGE) for diversity analysis. Spore density was found to be significantly higher in highly contaminated soil compared to less contaminated soil. Spore morphological study revealed that Glomeraceae family was more abundant followed by Acaulosporaceae and Gigasporaceae in the vicinity of the smelter. T-RFLP and DGGE analysis confirmed the dominance of Funneliformis mosseae and Rhizophagus intraradices in all the study sites. Claroideoglomus claroideum, Funneliformis caledonium, Rhizophagus clarus and Funneliformis constrictum were found to be sensitive to high concentration of soil HMM. Richness and diversity of Glomeraceae family increased with significant increase in soil arsenic, cadmium and zinc concentrations. Our results revealed that the soil HMM has a vital impact on AMF community structure, especially with Glomeraceae family abundance, richness and diversity. PMID:26035444

  14. Multiscale Characterization and Quantification of Arsenic Mobilization and Attenuation During Injection of Treated Coal Seam Gas Coproduced Water into Deep Aquifers

    Science.gov (United States)

    Rathi, Bhasker; Siade, Adam J.; Donn, Michael J.; Helm, Lauren; Morris, Ryan; Davis, James A.; Berg, Michael; Prommer, Henning

    2017-12-01

    Coal seam gas production involves generation and management of large amounts of co-produced water. One of the most suitable methods of management is injection into deep aquifers. Field injection trials may be used to support the predictions of anticipated hydrological and geochemical impacts of injection. The present work employs reactive transport modeling (RTM) for a comprehensive analysis of data collected from a trial where arsenic mobilization was observed. Arsenic sorption behavior was studied through laboratory experiments, accompanied by the development of a surface complexation model (SCM). A field-scale RTM that incorporated the laboratory-derived SCM was used to simulate the data collected during the field injection trial and then to predict the long-term fate of arsenic. We propose a new practical procedure which integrates laboratory and field-scale models using a Monte Carlo type uncertainty analysis and alleviates a significant proportion of the computational effort required for predictive uncertainty quantification. The results illustrate that both arsenic desorption under alkaline conditions and pyrite oxidation have likely contributed to the arsenic mobilization that was observed during the field trial. The predictive simulations show that arsenic concentrations would likely remain very low if the potential for pyrite oxidation is minimized through complete deoxygenation of the injectant. The proposed modeling and predictive uncertainty quantification method can be implemented for a wide range of groundwater studies that investigate the risks of metal(loid) or radionuclide contamination.

  15. [Arsenic - Poison or medicine?].

    Science.gov (United States)

    Kulik-Kupka, Karolina; Koszowska, Aneta; Brończyk-Puzoń, Anna; Nowak, Justyna; Gwizdek, Katarzyna; Zubelewicz-Szkodzińska, Barbara

    2016-01-01

    Arsenic (As) is commonly known as a poison. Only a few people know that As has also been widely used in medicine. In the past years As and its compounds were used as a medicine for the treatment of such diseases as diabetes, psoriasis, syphilis, skin ulcers and joint diseases. Nowadays As is also used especially in the treatment of patients with acute promyelocytic leukemia. The International Agency for Research on Cancer (IARC) has recognized arsenic as an element with carcinogenic effect evidenced by epidemiological studies, but as previously mentioned it is also used in the treatment of neoplastic diseases. This underlines the specificity of the arsenic effects. Arsenic occurs widely in the natural environment, for example, it is present in soil and water, which contributes to its migration to food products. Long exposure to this element may lead to liver damages and also to changes in myocardium. Bearing in mind that such serious health problems can occur, monitoring of the As presence in the environmental media plays a very important role. In addition, the occupational risk of As exposure in the workplace should be identified and checked. Also the standards for As presence in food should be established. This paper presents a review of the 2015 publications based on the Medical database like PubMed and Polish Medical Bibliography. It includes the most important information about arsenic in both forms, poison and medicine. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  16. Determination of phosphorus contamination during antimony implantation by measurement and simulation

    International Nuclear Information System (INIS)

    Kuruc, M.; Hulenyi, L.; Kinder, R.

    2006-01-01

    Experimental determination of phosphorus cross-contamination during antimony implantation is presented. As a suitable structure for this experiment, a buried layer was employed which is created by implanting antimony followed by a long diffusion process. The samples implanted in different implanters were analysed by secondary ion mass spectrometry (SIMS), four-point probe and spreading resistance methods. The obtained results were compared with those calculated by program SUPREM-IV. Methods that can and cannot be used to determine phosphorus contamination during antimony implantation and to estimate the fluence of phosphorus being co-implanted with antimony are described in detail

  17. Correlation of CsK2Sb photocathode lifetime with antimony thickness

    Energy Technology Data Exchange (ETDEWEB)

    Mamun, M. A. [Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, Virginia 23529, USA; The Applied Research Center, Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA; Hernandez-Garcia, C. [Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA; Poelker, M. [Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA; Elmustafa, A. A. [Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, Virginia 23529, USA; The Applied Research Center, Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA

    2015-06-01

    CsK2Sb photocathodes with quantum efficiency on the order of 10% at 532 nm, and lifetime greater than 90 days at low voltage, were successfully manufactured via co-deposition of alkali species emanating from an effusion source. Photocathodes were characterized as a function of antimony layer thickness and alkali consumption, inside a vacuum chamber that was initially baked, but frequently vented without re-baking. Photocathode lifetime measured at low voltage is correlated with the antimony layer thickness. Photocathodes manufactured with comparatively thick antimony layers exhibited the best lifetime. We speculate that the antimony layer serves as a reservoir, or sponge, for the alkali.

  18. Investigation of antimony extraction from nitric acid solutions by tributyl phosphate

    International Nuclear Information System (INIS)

    Lakaev, V.S.; Smelov, V.S.

    1988-01-01

    The effect of iodide, hydrogen and pertechnetate ions on antimony extraction by tri-n-butyl phosphate (TBP) from aqueous nitric acid solutions under irradiated nuclear fuel processing is investigated at room temperature. The coefficients of antimony distribution are shown to increase at the presence of technetium ions 2-3 times and iodine ions - 100 and more times. Variation of hydrogen ion concentration does not affect antimony extraction. The schemes of the mechanism of antimony extraction at the pressence of iodide and pertechnetate ions are presented. Compositions of the formed compounds are given

  19. Correlation of CsK2Sb photocathode lifetime with antimony thickness

    Directory of Open Access Journals (Sweden)

    M. A. Mamun

    2015-06-01

    Full Text Available CsK2Sb photocathodes with quantum efficiency on the order of 10% at 532 nm, and lifetime greater than 90 days at low voltage, were successfully manufactured via co-deposition of alkali species emanating from an effusion source. Photocathodes were characterized as a function of antimony layer thickness and alkali consumption, inside a vacuum chamber that was initially baked, but frequently vented without re-baking. Photocathode lifetime measured at low voltage is correlated with the antimony layer thickness. Photocathodes manufactured with comparatively thick antimony layers exhibited the best lifetime. We speculate that the antimony layer serves as a reservoir, or sponge, for the alkali.

  20. Correlation of CsK{sub 2}Sb photocathode lifetime with antimony thickness

    Energy Technology Data Exchange (ETDEWEB)

    Mamun, M. A., E-mail: mmamu001@odu.edu; Elmustafa, A. A. [Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, Virginia 23529 (United States); The Applied Research Center, Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 (United States); Hernandez-Garcia, C.; Poelker, M. [Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 (United States)

    2015-06-01

    CsK{sub 2}Sb photocathodes with quantum efficiency on the order of 10% at 532 nm, and lifetime greater than 90 days at low voltage, were successfully manufactured via co-deposition of alkali species emanating from an effusion source. Photocathodes were characterized as a function of antimony layer thickness and alkali consumption, inside a vacuum chamber that was initially baked, but frequently vented without re-baking. Photocathode lifetime measured at low voltage is correlated with the antimony layer thickness. Photocathodes manufactured with comparatively thick antimony layers exhibited the best lifetime. We speculate that the antimony layer serves as a reservoir, or sponge, for the alkali.

  1. Antimony contamination, consequences and removal techniques: A review.

    Science.gov (United States)

    Li, Jiayu; Zheng, BoHong; He, Yangzhuo; Zhou, Yaoyu; Chen, Xiao; Ruan, Shan; Yang, Yuan; Dai, Chunhao; Tang, Lin

    2018-07-30

    A significant amount of antimony (Sb) enters into the environment every year because of the wide use of Sb compounds in industry and agriculture. The exposure to Sb, either direct consumption of Sb or indirectly, may be fatal to the human health because both antimony and antimonide are toxic. Firstly, the introduction of Sb chemistry, distribution and health threats are presented in this review, which is essential to the removal techniques. Then, we provide the recent and common techniques to remove Sb, including adsorption, coagulation/flocculation, membrane separation, electrochemical methods, ion exchange and extraction. Removal techniques concentrate on the advantages, drawbacks, economical efficiency and the recent achievements of each technique. We also take an overall consideration of experimental conditions, comparison criteria, and economic aspects. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Proton-activation technique for the determination of antimony

    International Nuclear Information System (INIS)

    Krivan, V.; Barth, P.

    1979-01-01

    Photon-activation analysis has been applied to the determination of antimony. Thick-target yields and analytical sensitivities are given for the indicator-radionuclides sup(119m)Te, sup(119g)Te, sup(121m)Te, sup(121g)Te, sup(123m)Te, sup(120m)Sb and sup(122g)Sb for proton energies between 9 and 25 MeV. In irradiations with a 5-μA beam for 5 hr, followed by a specific separation of the indicator-radionuclides, limits of detection at the ppm level can be achieved. Data are given for the most significant interfering reactions. Antimony was determined instrumentally in bismuth of very pure grade and the results are compared with those obtained from two independent techniques. (author)

  3. Correlation of Breastmilk Arsenic With Maternal, Infant Urinary Arsenic and Drinking Water Arsenic in an Arsenic Affected Area of Bangladesh

    Science.gov (United States)

    Alauddin, M.; Islam, M. R.; Milton, A. H.; Alauddin, S. T.; Mouly, T.; Behri, E.; Ayesha, A.; Akter, S.; Islam, M. M.

    2016-12-01

    About 97% of population in Bangladesh depend on groundwater as the principle source of drinking water and this water is highly contaminated with inorganic arsenic. Consumption of arsenic contaminated drinking water by pregnant women raises the prospect of early life exposure to inorganic arsenic for newborn which may be lead to adverse health effect in later life. This work was carried out in parts of Gopalganj district in Bangladesh, a region affected by arsenic contamination in groundwater. The objective of the work was to assess potential early life exposure to arsenic for infants through breastfeeding by mothers who were drinking water with arsenic levels ranging from 100 to 300 µg/l. A cohort of 30 mother-baby pairs were selected for the current study. Breastmilk samples from mothers, urine samples from each pair of subjects at 1, 6 and 9 month age of infant were collected and total arsenic were determined in these samples. In addition speciation of urinary arsenic and metabolites were carried out in 12 mother-baby pairs. Median level for breastmilk arsenic were 0.50 µg/l. Urinary arsenic of infants did not correlate with breastmilk arsenic with progressing age of infants. Maternal and infant urinary total arsenic at 1 month age of infant showed some positive correlation (r = 0.39). In infant urine major metabolite were dimethyl arsenic acid (DMA) (approximately 70%) indicating good methylating capacity for infants at 1 and 6 months of age. In conclusion, infants were not exposed to arsenic through breastfeeding even though mothers were exposed to significant levels of arsenic through drinking water.

  4. Informal E-waste recycling in developing countries: review of metal(loid)s pollution, environmental impacts and transport pathways.

    Science.gov (United States)

    Ackah, Michael

    2017-11-01

    Crude or primitive recycling practices are often adopted in material resource recovery from E-waste in developing nations. Significant human health and environmental impacts may occur because of such practices. Literature on metal(loid)s pollution during E-waste processing is fragmented. Here, I review the health and environmental impacts of E-waste recycling operations and transport pathways of metal(loid)s, dispersed during operations. This paper is organised into five sections. Section 1 relates to the background of global E-waste generation and legal/illegal trade, citing specific cases from Ghana and other developing nations. Section 2 provides a brief information on sources of metal(loid)s in E-waste. Section 3 describes characteristics of informal E-waste recycling operations in developing nations. Section 4 examines the health and environmental impacts in E-waste recycling while section 5 evaluates major transport pathways of metal(loid)s contaminants.

  5. In-Situ Analysis Of Metal(loid)s In Plants: State Of The Art And Artefacts

    Science.gov (United States)

    Metals and metalloids play important roles in plant function and metabolism. Likewise, plants subsequently introduce vital dietary nutrition to people and animals. Understanding the transport, localisation and speciation of these elements is critical for understanding availabil...

  6. Green manure plants for remediation of soils polluted by metals and metalloids: ecotoxicity and human bioavailability assessment.

    Science.gov (United States)

    Foucault, Y; Lévêque, T; Xiong, T; Schreck, E; Austruy, A; Shahid, M; Dumat, C

    2013-10-01

    Borage, white mustard and phacelia, green manure plants currently used in agriculture to improve soil properties were cultivated for 10 wk on various polluted soils with metal(loid) concentrations representative of urban brownfields or polluted kitchen gardens. Metal(loid) bioavailability and ecotoxicity were measured in relation to soil characteristics before and after treatment. All the plants efficiently grow on the various polluted soils. But borage and mustard only are able to modify the soil characteristics and metal(loid) impact: soil respiration increased while ecotoxicity, bioaccessible lead and total metal(loid) quantities in soils can be decreased respectively by phytostabilization and phytoextraction mechanisms. These two plants could therefore be used for urban polluted soil refunctionalization. However, plant efficiency to improve soil quality strongly depends on soil characteristics. Copyright © 2013. Published by Elsevier Ltd.

  7. Preparation and properties of organo(acetylacetonato)antimony(V) compounds

    NARCIS (Netherlands)

    Meinema, H.A.; Noltes, J.G.

    Organo(acetylacetonato)antimony(V) compounds of the types R2SbCl2Acac, R4SbAcac, PhSbCl3Acac and Cl4SbAcac have been synthesized. The compounds are monomeric in solution. IR and PMR data of these compounds, which contain a chelated Acac ligand have been discussed. Ph2SbCl2Acac shows abnormal

  8. Theoretical Analysis of Rydberg and Autoionizing State Spectra of Antimony

    Institute of Scientific and Technical Information of China (English)

    Shuang-Fei Lv; Ruohong Li; Feng-Dong Jia; Xiao-Kang Li; Jens Lassen; Zhi-Ping Zhong

    2017-01-01

    We calculate the Rydberg and autoionization Rydberg spectra of antimony (Sb) from first principles by relativistic multichannel theory within the framework of multichannel quantum defect theory.Our calculation can be used to classify and assign the atomic states described in recently reported three Rydberg series and four autoionizing states.The perturbation effects on line intensity,variation and line profile are discussed.Assignments of the perturber states and autoionizing states are presented.

  9. Distribution of liposome-encapsulated antimony in dogs

    Directory of Open Access Journals (Sweden)

    D.A. Schettini

    2003-02-01

    Full Text Available The achievement of complete cure in dogs with visceral leishmaniasis is currently a great challenge, since dogs are the main reservoir for the transmission of visceral leishmaniasis to humans and they respond poorly to conventional treatment with pentavalent antimonials. In order to improve the efficacy of treatment, we developed a novel formulation for meglumine antimoniate based on the encapsulation of this drug in freeze-dried liposomes (LMA. The aim of the present study was to evaluate the biodistribution of antimony (Sb in dogs following a single intravenous bolus injection of LMA. Four healthy male mongrel dogs received LMA at 3.8 mg Sb/kg body weight and were sacrificed 3, 48 and 96 h and 7 days later. Antimony was determined in the blood, liver, spleen and bone marrow. In the bone marrow, the highest Sb concentration was observed at 3 h (2.8 µg/g wet weight whereas in the liver and spleen it was demonstrated at 48 h (43.6 and 102.4 µg/g, respectively. In these organs, Sb concentrations decreased gradually and reached levels of 19.1 µg/g (liver, 28.1 µg/g (spleen and 0.2 µg/g (bone marrow after 7 days. Our data suggest that the critical organ for the treatment with LMA could be the bone marrow, since it has low Sb levels and, presumably, high rates of Sb elimination. A multiple dose treatment with LMA seems to be necessary for complete elimination of parasites from bone marrow in dogs with visceral leishmaniasis.

  10. High dose implantations of antimony for buried layer applications

    International Nuclear Information System (INIS)

    Gailliard, J.P.; Dupuy, M.; Garcia, M.; Roussin, J.C.

    1978-01-01

    Electrical and physical properties of high dose implantations of antimony in silicon have been studied for use in buried layer applications. The results have been obtained both on and oriented silicon wafers. Following implantations which lead to amorphization we perform an annealing at 600 0 C for 10 mn in order to recrystallize the layer. The observed electrical properties (μ, R) show that the concentration of electrically active antimony ions is greater than that predicted from the solubility of antimony in silicon. Further annealing (in the range 1050 0 - 1200 0 ) induces: firstly a precipitation of the Sb and secondly a diffusion and dissolution of the precipitates. There is a different evolution of the defects in the and silicon slices. T.E.M. reveals no defects in the wafers after one hour annealing at 1200 0 C, whereas defects and twins remain in wafers. Having obtained the evolution of R with time and temperature it is then determined the implantation and annealing conditions which lead to the low resistivity (R = 10) needed for buried layer applications. Results with very many industrially made devices are discussed

  11. Synthesis and tribological properties of antimony N, N-diethanoldithiocarbamate

    Institute of Scientific and Technical Information of China (English)

    李丽; 黄可龙; 瞿龙; 舒万艮

    2001-01-01

    Antimony N, N-diethanoldithiocarbamate was synthesized with diethanolamine, antimony trioxide and carbon disulfide. The influences of temperature, reaction time, solvents and their dosages were investigated, and the optimum synthesis conditions were: reaction temperature 15~20 ℃, reaction time 2.5 h, 250 mL CH3OH as solvent and the hot CH3OH as recrystallization solvent. Element analysis, IR, 1HNMR and 13CNMR spectra were used to study its chemical composition and molecular structure. Antimony N, N-diethanol-dithiocarbamate was added in the base oil, and its properties of wear resistance and extreme pressure were studied by FB, FD and WSD. The synthesis product behaves per fectly as wear resistance and extreme pressure additive and its extreme pressure property is superior to its wear resistance property. The mechanism of tribological action was discussed by using XPS and AES spectra, and the reason of good wear resistance and extreme pressure properties is that the synthesis product decompose element C, S and N.

  12. Study on antimony oxide self-assembled inside HZSM-5

    International Nuclear Information System (INIS)

    Li Bin; Li Shijie; Wang Yingxia; Li Neng; Liu Xiyao; Lin Bingxiong

    2005-01-01

    Sb/ZSM-5 was obtained by solid-state reaction with the mixture of Sb 2 O 3 and zeolite HZSM-5 under a dry nitrogen flow at 773K. Characterization of the treated zeolite was undertaken with XRD, 27 Al MAS NMR, BET, TGA and FT-IR. The results revealed that part of the antimony oxides migrated into the channels of zeolite, and decreased the Bronsted acid sites in Sb/ZSM-5 remarkably. The other part of antimony oxides together with the amorphous alumino-silicate in the products distributed on the external surface of zeolite ZSM-5 and modified it, while the framework of ZSM-5 in crystal phase was retained. The structure of occluded antimony oxide inside the channels of ZSM-5 was studied by XRD Rietveld method. The result showed that their structure can be described as a chain of non-perfect [Sb 5 O 5 (H 2 O) 2 ] n 5n+ , which is parallel to the straight channel of ZSM-5. There is about 0.6 [Sb 5 O 5 (H 2 O) 2 ] 5+ unit in every cell of the ZSM-5 on an average

  13. Research on the Characteristics and Mechanism of the Cumulative Release of Antimony from an Antimony Smelting Slag Stacking Area under Rainfall Leaching

    Science.gov (United States)

    Zhou, Yingying; Deng, Renjian

    2017-01-01

    We aimed to study the characteristics and the mechanism of the cumulative release of antimony at an antimony smelting slag stacking area in southern China. A series of dynamic and static leaching experiments to simulate the effects of rainfall were carried out. The results showed that the release of antimony from smelting slag increased with a decrease in the solid-liquid ratio, and the maximum accumulated release was found to be 42.13 mg Sb/kg waste and 34.26 mg Sb/kg waste with a solid/liquid ratio of 1 : 20; the maximum amount of antimony was released within 149–420 μm size fraction with 7.09 mg/L of the cumulative leaching. Also, the antimony release was the greatest and most rapid at pH 7.0 with the minimum release found at pH 4.0. With an increase in rainfall duration, the antimony release increased. The influence of variation in rainfall intensity on the release of antimony from smelting slag was small. PMID:28804669

  14. ARSENIC SPECIATION ANALYSIS IN HUMAN SALIVA

    Science.gov (United States)

    Background: Determination of arsenic species in human saliva is potentially useful for biomonitoring of human exposure to arsenic and for studying arsenic metabolism. However, there is no report on the speciation analysis of arsenic in saliva. Methods: Arsenic species in saliva ...

  15. Antimony leaching from polyethylene terephthalate (PET) plastic used for bottled drinking water.

    Science.gov (United States)

    Westerhoff, Paul; Prapaipong, Panjai; Shock, Everett; Hillaireau, Alice

    2008-02-01

    Antimony is a regulated contaminant that poses both acute and chronic health effects in drinking water. Previous reports suggest that polyethylene terephthalate (PET) plastics used for water bottles in Europe and Canada leach antimony, but no studies on bottled water in the United States have previously been conducted. Nine commercially available bottled waters in the southwestern US (Arizona) were purchased and tested for antimony concentrations as well as for potential antimony release by the plastics that compose the bottles. The southwestern US was chosen for the study because of its high consumption of bottled water and elevated temperatures, which could increase antimony leaching from PET plastics. Antimony concentrations in the bottled waters ranged from 0.095 to 0.521 ppb, well below the US Environmental Protection Agency (USEPA) maximum contaminant level (MCL) of 6 ppb. The average concentration was 0.195+/-0.116 ppb at the beginning of the study and 0.226+/-0.160 ppb 3 months later, with no statistical differences; samples were stored at 22 degrees C. However, storage at higher temperatures had a significant effect on the time-dependent release of antimony. The rate of antimony (Sb) release could be fit by a power function model (Sb(t)=Sb 0 x[Time, h]k; k=8.7 x 10(-6)x[Temperature ( degrees C)](2.55); Sb 0 is the initial antimony concentration). For exposure temperatures of 60, 65, 70, 75, 80, and 85 degrees C, the exposure durations necessary to exceed the 6 ppb MCL are 176, 38, 12, 4.7, 2.3, and 1.3 days, respectively. Summertime temperatures inside of cars, garages, and enclosed storage areas can exceed 65 degrees C in Arizona, and thus could promote antimony leaching from PET bottled waters. Microwave digestion revealed that the PET plastic used by one brand contained 213+/-35 mgSb/kg plastic; leaching of all the antimony from this plastic into 0.5L of water in a bottle could result in an antimony concentration of 376 ppb. Clearly, only a small

  16. Heavy weight vehicle traffic and its relationship with antimony content in human blood.

    Science.gov (United States)

    Quiroz, Waldo; De Gregori, Ida; Basilio, Paola; Bravo, Manuel; Pinto, Marcela; Lobos, Maria Gabriela

    2009-05-01

    Brake pads systems are nowadays considered as one of the most important sources of antimony in airborne particulate matter. One way that antimony can enter the body is through the lungs and specially by the interaction of antimony with -SH groups present in erythrocyte membrane cells. In spite of that, there are no studies about antimony enrichment in blood of workers exposed to high vehicle traffic. Port workers are generally exposed to heavy weight vehicle traffic. In Chile the biggest marine port is found in Valparaíso City. In this study antimony in whole blood and its fractions (erythrocytes-plasma and erythrocytes membranes-cytoplasm) of 45 volunteers were determined. The volunteers were port workers from Valparaíso city, and two control groups, one from Valparaíso and another from Quebrada Alvarado, the latter being a rural area located about 100 Km away from Valparaíso. The results demonstrate that port workers are highly impacted by antimony emissions from heavy weight vehicle traffic showing an average concentration of 27 +/- 9 ng Sb kg(-1), 5-10 times higher than the concentration of antimony in the blood of control groups. These are the highest antimony levels in blood ever reported in the literature. The highest antimony percentages (>60%) were always found in the erythrocyte fractions. However, the exposure degree to vehicle traffic is significant over antimony distribution in plasma, erythrocytes and cytoplasm. This results shows that the antimony mass in the erythrocyte membranes, was approximately constant at 1.0 +/- 0.1 ng Sb g(-1) of whole blood in all blood samples analyzed.

  17. Complexation of HSA with different forms of antimony (Sb): An application of fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Song, Wenjuan; Zhang, Daoyong; Pan, Xiangliang; Lee, Duu-Jong

    2013-01-01

    Antimony (Sb) pollution has been of a great environmental concern in some areas in China. Sb enters human body via drinking water, inhalation and food chain, unavoidably interacts with human serum albumin (HSA) in blood plasma, and consequently does harm to human health. The harmful effects of Sb on human health depend on the Sb species and their binding ability to HSA. In the present study, binding of three forms of Sb with HSA was investigated by excitation-emission matrix (EEM) spectroscopy. All of antimony potassium tartrate, antimony trichloride and potassium pyroantimonate quenched fluorescence of HSA. Values of conditional stability constant K a (×10 5 /M) for Sb and HSA systems were 8.13–9.12 for antimony potassium tartrate, 2.51–4.27 for antimony trichloride and 3.63–9.77 for potassium pyroantimonate. The binding constant K b (×10 4 /M) values of HSA with antimony potassium tartrate, antimony trichloride and potassium pyroantimonate were 0.02–0.07, 3.55–5.01, and 0.07–1.08, respectively. There was one independent class of binding site for antimony trichloride towards HSA. There was more than one Sb binding site and negative cooperativity between multiple binding sites for potassium pyroantimonate and antimony potassium tartrate towards HSA. The binding ability of HSA to complex Sb followed the order: antimony trichloride>potassium pyroantimonate>antimony potassium tartrate. -- Highlights: ► The first study reporting interaction of Sb with HSA. ► Sb can effectively quench the fluorescence of HSA. ► The binding ability of HSA to Sb was dependent on the form of Sb. ► Binding differences indicate differences in toxicity of various forms Sb to human. ► HAS-Sb binding parameters are important for understanding toxicity of Sb

  18. Complexation of HSA with different forms of antimony (Sb): An application of fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Song, Wenjuan [State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011 (China); Zhang, Daoyong [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002 (China); Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Pan, Xiangliang, E-mail: xlpan@ms.xjb.ac.cn [State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011 (China); Lee, Duu-Jong [State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011 (China); Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China)

    2013-04-15

    Antimony (Sb) pollution has been of a great environmental concern in some areas in China. Sb enters human body via drinking water, inhalation and food chain, unavoidably interacts with human serum albumin (HSA) in blood plasma, and consequently does harm to human health. The harmful effects of Sb on human health depend on the Sb species and their binding ability to HSA. In the present study, binding of three forms of Sb with HSA was investigated by excitation-emission matrix (EEM) spectroscopy. All of antimony potassium tartrate, antimony trichloride and potassium pyroantimonate quenched fluorescence of HSA. Values of conditional stability constant K{sub a} (×10{sup 5}/M) for Sb and HSA systems were 8.13–9.12 for antimony potassium tartrate, 2.51–4.27 for antimony trichloride and 3.63–9.77 for potassium pyroantimonate. The binding constant K{sub b} (×10{sup 4}/M) values of HSA with antimony potassium tartrate, antimony trichloride and potassium pyroantimonate were 0.02–0.07, 3.55–5.01, and 0.07–1.08, respectively. There was one independent class of binding site for antimony trichloride towards HSA. There was more than one Sb binding site and negative cooperativity between multiple binding sites for potassium pyroantimonate and antimony potassium tartrate towards HSA. The binding ability of HSA to complex Sb followed the order: antimony trichloride>potassium pyroantimonate>antimony potassium tartrate. -- Highlights: ► The first study reporting interaction of Sb with HSA. ► Sb can effectively quench the fluorescence of HSA. ► The binding ability of HSA to Sb was dependent on the form of Sb. ► Binding differences indicate differences in toxicity of various forms Sb to human. ► HAS-Sb binding parameters are important for understanding toxicity of Sb.

  19. LUMINESCENT PROPERTIES OF SILICATE GLASSES WITH CERIUM IONS AND ANTIMONY

    Directory of Open Access Journals (Sweden)

    A. M. Klykova

    2014-05-01

    Full Text Available The paper deals with the results of an experimental study of luminescence excitation spectra and luminescence of silicate glasses containing cerium ions and antimony. The aim of this work was to study the features of the luminescence and the effect of UV irradiation and heat treatment on luminescence and the state of cerium ions and antimony in glass. We investigated glass system Na2O-ZnO-Al2O3-SiO2-NaF-NaBr with additives CeO2 and Sb2O3. Synthesis was carried out in platinum crucibles in the air at 14500C. The samples were polished glass plates with a thickness of 0.5-1 mm. UV irradiation was carried out with a mercury lamp having a wide range of radiation in the spectral range 240-390 nm. It was conducted in a Nabertherm muffle furnaces. Luminescence spectra and excitation spectra were measured using a spectrofluorimeter MPF-44A (PerkinElmer at the room temperature. Measured luminescence spectra were corrected in view of the spectral sensitivity of the photodetector for spectrofluorimeter. Adjustment of the excitation spectra for the spectral dependence of the intensity of the excitation source was not carried out. During the experiments it was found that in silicate glasses Sb3+ ions can exist in two energy states, which corresponds to a different environment with oxygen ions. Heat treatment of these glasses in an oxidizing atmosphere leads to an increase in ion concentration of Sb3+ ions with a greater amount of oxygen in the environment. In glasses containing antimony and cerium ions, ultraviolet irradiation causes a change in the valence of cerium ions and antimony, which is accompanied by luminescence quenching. Subsequent heat treatment of glass leads to the inverse processes and restore luminescence excitation spectra. The study of fluorescent properties of silicate glasses with cerium and antimony ions led to the conclusion of the practical significance of this work. Promising multifunctional materials can be created on the basis of

  20. Structure and properties of transition metal-metalloid glasses based on refractory metals

    International Nuclear Information System (INIS)

    Johnson, W.L.; Williams, A.R.

    1979-01-01

    The structure and properties of several new transition metal-metalloid (TM/sub 1-x/M/sub x/) metallic glasses based on refractory transition metals (e.g. Mo, W, Ru etc.) have been systemically investigated as a function of composition. The structure of the alloys has been investigated by x-ray diffraction methods and measurements of superconducting properties, electrical resistivity, density, hardness, and mechanical behavior were made. These data are used in developing a novel description of the structure of TM/sub 1-x/M/sub x/ glasses. The experimental evidence suggests that an ideal amorphous phase forms at a specific composition x/sub c/ and that this phase has a well defined atomic short range order. For metallic glasses having x x/sub c/. This novel picture can explain the variation of many properties of these glasses with metalloid concentration

  1. Determination of physiological, taxonomic, and molecular characteristics of a cultivable arsenic-resistant bacterial community.

    Science.gov (United States)

    Cordi, A; Pagnout, C; Devin, S; Poirel, J; Billard, P; Dollard, M A; Bauda, P

    2015-09-01

    A collection of 219 bacterial arsenic-resistant isolates was constituted from neutral arsenic mine drainage sediments. Isolates were grown aerobically or anaerobically during 21 days on solid DR2A medium using agar or gelan gum as gelling agent, with 7 mM As(III) or 20 mM As(V) as selective pressure. Interestingly, the sum of the different incubation conditions used (arsenic form, gelling agent, oxygen pressure) results in an overall increase of the isolate diversity. Isolated strains mainly belonged to Proteobacteria (63%), Actinobacteria (25%), and Bacteroidetes (10%). The most representative genera were Pseudomonas (20%), Acinetobacter (8%), and Serratia (15%) among the Proteobacteria; Rhodococcus (13%) and Microbacterium (5%) among Actinobacteria; and Flavobacterium (13%) among the Bacteroidetes. Isolates were screened for the presence of arsenic-related genes (arsB, ACR3(1), ACR3(2), aioA, arsM, and arrA). In this way, 106 ACR3(1)-, 74 arsB-, 22 aioA-, 14 ACR3(2)-, and one arsM-positive PCR products were obtained and sequenced. Analysis of isolate sensitivity toward metalloids (arsenite, arsenate, and antimonite) revealed correlations between taxonomy, sensitivity, and genotype. Antimonite sensitivity correlated with the presence of ACR3(1) mainly present in Bacteroidetes and Actinobacteria, and arsenite or antimonite resistance correlated with arsB gene presence. The presence of either aioA gene or several different arsenite carrier genes did not ensure a high level of arsenic resistance in the tested conditions.

  2. Effect of temperature during ion sputtering on the surface segregation rate of antimony in an iron-antimony alloy at higher temperatures

    International Nuclear Information System (INIS)

    Oku, M.; Hirokawa, K.; Kimura, H.; Suzuki, S.

    1986-01-01

    The surface segregation of antimony in an iron-0.23 at% antimony alloy was studied by XPS. The segregation rate in the temperature range between 800 and 900 K depends on the temperature during sputtering with argon ion of kinetic energy of 1 keV. The sputtering at room temperature or 473 K gives higher values of the segregation rate than those at 673 K. Both cases give the activation energy of 170 kJmol -1 for the surface segregation rate. The segregation of antimony is not observed after the sample is heated at 1000 K. (author)

  3. Spatial Characteristics, Health Risk Assessment and Sustainable Management of Heavy Metals and Metalloids in Soils from Central China

    Directory of Open Access Journals (Sweden)

    Fei Li

    2018-01-01

    Full Text Available The contents of seven toxic metals (Cu, Cr, Cd, Zn, Pb, Hg and As in soils from Central China, including Henan Province, Hubei Province and Hunan Province, were collected from published papers from 2007 to 2017. The geoaccumulation index, health risk assessment model and statistics were adopted to study the spatial contamination pattern, to assess the human health risks and to identify the priority control pollutants. The concentrations of soil metals in Central China, especially Cd (1.31 mg/kg, Pb (44.43 mg/kg and Hg (0.19 mg/kg, surpassed their corresponding background values, and the Igeo values of Cd and Hg varied the most, ranging from the unpolluted level to the extremely polluted level. The concentrations of toxic metals were higher in the southern and northern parts of Central China, contrasting to the lowest contents in the middle parts. For non-carcinogenic risk, the hazard index (HI values for the children in Hubei Province (1.10 and Hunan Province (1.41 exceeded the safe level of one, with higher health risks to children than adults, and the hazard quotient (HQ values of the three exposure pathways for both children and adults in Central China decreased in the following order: ingestion > dermal contact > inhalation. For carcinogenic risk (CR, the CR values for children in Hubei Province (2.55 × 10−4, Hunan Province (3.44 × 10−4 and Henan Province (1.69 × 10−4, and the CR for adults in Hubei Province (3.67 × 10−5, Hunan Province (4.92 × 10−5 and Henan Province (2.45 × 10−5 exceeded the unacceptable level (10−4 and acceptable level (10−6, respectively. Arsenic (As appeared to be the main metalloid for both children and adults causing the high carcinogenic risk. For sustainable development in Central China, special attention should be paid to Cd, Hg, Cr, Pb and As, identified as the priority control soil metals. Importance should also be attached to public education, source control, and the remediation of the

  4. Toxicology of metals and metalloids: Promising issues for future studies in environmental health and toxicology.

    Science.gov (United States)

    Barbosa, Fernando

    2017-01-01

    The function and behavior of chemical elements in ecosystems and in human health probably comprise one of the most studied issues and a theme of great interest and fascination in science. Hot topics are emerging on an annual basis in this field. Bearing this in mind, some promising themes to explore in the field of metals and metalloids in the environment and in toxicology are highlighted and briefly discussed herein.

  5. Arsenic stability and mobilization in soil at an amenity grassland overlying chemical waste (St. Helens, UK)

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, William [School of Biological and Earth Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF (United Kingdom)], E-mail: w.hartley@ljmu.ac.uk; Dickinson, Nicholas M. [School of Biological and Earth Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF (United Kingdom); Clemente, Rafael [Department of Soil and Water Conservation and Organic Waste Management, Centro de Edafologia y Biologia Aplicada del Segura, CSIC, Apartado 4195, 30080 Murcia (Spain); French, Christopher [School of Biological and Earth Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF (United Kingdom); Piearce, Trevor G. [Biological Sciences Division, Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Sparke, Shaun; Lepp, Nicholas W. [School of Biological and Earth Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF (United Kingdom)

    2009-03-15

    A 6.6 ha grassland, established on a former chemical waste site adjacent to a residential area, contains arsenic (As) in surface soil at concentrations 200 times higher than UK Soil Guideline Values. The site is not recognized as statutory contaminated land, partly on the assumption that mobility of the metalloid presents a negligible threat to human health, groundwater and ecological receptors. Evidence for this is evaluated, based on studies of the effect of organic (green waste compost) and inorganic (iron oxides, lime and phosphate) amendments on As fractionation, mobility, plant uptake and earthworm communities. Arsenic mobility in soil was low but significantly related to dissolved organic matter and phosphate, with immobilization associated with iron oxides. Plant uptake was low and there was little apparent impact on earthworms. The existing vegetation cover reduces re-entrainment of dust-blown particulates and pathways of As exposure via this route. Minimizing risks to receptors requires avoidance of soil exposure, and no compost or phosphate application. - Stabilization of alkali industry waste requires careful management to minimise soil arsenic mobilization and dispersal to the wider environment.

  6. Research approaches to address uncertainties in the risk assessment of arsenic in drinking water

    International Nuclear Information System (INIS)

    Hughes, Michael F.; Kenyon, Elaina M.; Kitchin, Kirk T.

    2007-01-01

    Inorganic arsenic (iAs), an environmental drinking water contaminant, is a human toxicant and carcinogen. The public health community has developed recommendations and regulations that limit human exposure to iAs in drinking water. Although there is a vast amount of information available to regulators on the exposure, disposition and the health-related effects of iAs, there is still critical information about the toxicology of this metalloid that is needed. This necessary information includes identification of the chemical species of arsenic that is (are) the active toxicant(s), the mode(s) of action for its various toxicities and information on potentially susceptible populations. Because of these unknown factors, the risk assessment of iAs still incorporates default assumptions, leading to uncertainties in the overall assessment. The characteristics of a scientifically defensible risk assessment for iAs are that it must: (1) quantitatively link exposure and target tissue dose of active metabolites to key events in the mode of action for major health effects and (2) identify sources of variation in susceptibility to arsenic-induced health effects and quantitatively evaluate their impact wherever possible. Integration of research to address these goals will better protect the health of iAs-exposed populations

  7. Continuous leaching modifies the surface properties and metal(loid) sorption of sludge-derived biochar.

    Science.gov (United States)

    Feng, Mingyu; Zhang, Weihua; Wu, Xueyong; Jia, Yanming; Jiang, Chixiao; Wei, Hang; Qiu, Rongliang; Tsang, Daniel C W

    2018-06-01

    After the application of sludge derived biochar (SDBC) for soil stabilization, it is subjected to continuous leaching that may change its surface properties and metal(loid) immobilization performance. This study simulated the continuous leaching through the fresh SDBC sample in columns with unsaturated and saturated zones under flushing with 0.01M NaNO 3 solution (pH5.5) and acidic solution (pH adjusted to 3.2 by HNO 3 :H 2 SO 4 =1:2), respectively. The resultant changes were assessed in terms of the SDBC surface characteristics and metal(loid) sorption capacities. Continuous leaching was found to gradually decrease the density of basic functional groups and increase the density of carboxyl groups as well as cation exchange capacity on the SDBC surface. It was attributed to the surface acidification and oxidation process by the leaching process, yet it occurred to a lesser extent than the atmospheric exposure. Continuous leaching increased Pb(II), Cr(VI), and As(III) sorption capacity of the SDBC, probably because the increase in carboxyl groups promoted inner-sphere complexation and Fe oxidation as revealed by spectroscopic analysis. It was noteworthy that the SDBC in the unsaturated and saturated zones under continuous leaching displayed distinctive effects on metal(loid) sorption capacity than the atmospheric exposure. Future investigations are needed for understanding the fate and interactions of the SDBC under varying redox conditions and intermittent leaching process. Copyright © 2017. Published by Elsevier B.V.

  8. The glass-forming ability of model metal-metalloid alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kai; Liu, Yanhui; Schroers, Jan [Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520 (United States); Center for Research on Interface Structures and Phenomena, Yale University, New Haven, Connecticut 06520 (United States); Shattuck, Mark D. [Department of Physics and Benjamin Levich Institute, The City College of the City University of New York, New York, New York 10031 (United States); Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520 (United States); O’Hern, Corey S. [Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520 (United States); Center for Research on Interface Structures and Phenomena, Yale University, New Haven, Connecticut 06520 (United States); Department of Physics, Yale University, New Haven, Connecticut 06520 (United States); Department of Applied Physics, Yale University, New Haven, Connecticut 06520 (United States)

    2015-03-14

    Bulk metallic glasses (BMGs) are amorphous alloys with desirable mechanical properties and processing capabilities. To date, the design of new BMGs has largely employed empirical rules and trial-and-error experimental approaches. Ab initio computational methods are currently prohibitively slow to be practically used in searching the vast space of possible atomic combinations for bulk glass formers. Here, we perform molecular dynamics simulations of a coarse-grained, anisotropic potential, which mimics interatomic covalent bonding, to measure the critical cooling rates for metal-metalloid alloys as a function of the atomic size ratio σ{sub S}/σ{sub L} and number fraction x{sub S} of the metalloid species. We show that the regime in the space of σ{sub S}/σ{sub L} and x{sub S} where well-mixed, optimal glass formers occur for patchy and LJ particle mixtures, coincides with that for experimentally observed metal-metalloid glass formers. Thus, our simple computational model provides the capability to perform combinatorial searches to identify novel glass-forming alloys.

  9. Metals and metalloids treatment in contaminated neutral effluents using modified materials.

    Science.gov (United States)

    Calugaru, Iuliana Laura; Neculita, Carmen Mihaela; Genty, Thomas; Zagury, Gérald J

    2018-04-15

    Circumneutral surface water and groundwater can contain hazardous concentrations of metals and metalloids that can threaten organisms in surrounding ecosystems. Extensive research has been conducted over the past two decades to prevent, limit, and treat water pollution. Among the currently available treatment options is the use of natural and residual materials, which is generally regarded as effective and inexpensive. The modification of such materials enhances the removal capacity of metals and metalloids, as well as the physical and chemical stability of the materials and resulting sludge (after treatment). This paper reviews several modified materials that have produced and evaluated in the past twenty years to treat various contaminants in water under specific conditions. Important factors on performance improvement following the modifications are emphasized. Sorption capacity and kinetics, and element removal mechanisms are also discussed. Element recovery, material regeneration, water reuse, evaluation of treatment efficiency for real effluents are also considered, as well as the applicability of these materials in both active and passive treatment systems. Modified natural and residual materials are a promising option for the treatment of metals and metalloids in circumneutral contaminated waters. However, further research is necessary to evaluate their field-scale performance and to properly assess treatment costs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Spin-exchange interaction between transition metals and metalloids in soft-ferromagnetic metallic glasses

    Science.gov (United States)

    Das, Santanu; Choudhary, Kamal; Chernatynskiy, Aleksandr; Choi Yim, Haein; Bandyopadhyay, Asis K.; Mukherjee, Sundeep

    2016-06-01

    High-performance magnetic materials have immense industrial and scientific importance in wide-ranging electronic, electromechanical, and medical device technologies. Metallic glasses with a fully amorphous structure are particularly suited for advanced soft-magnetic applications. However, fundamental scientific understanding is lacking for the spin-exchange interaction between metal and metalloid atoms, which typically constitute a metallic glass. Using an integrated experimental and molecular dynamics approach, we demonstrate the mechanism of electron interaction between transition metals and metalloids. Spin-exchange interactions were investigated for a Fe-Co metallic glass system of composition [(Co1-x Fe x )0.75B0.2Si0.05]96Cr4. The saturation magnetization increased with higher Fe concentration, but the trend significantly deviated from simple rule of mixtures. Ab initio molecular dynamics simulation was used to identify the ferromagnetic/anti-ferromagnetic interaction between the transition metals and metalloids. The overlapping band-structure and density of states represent ‘Stoner type’ magnetization for the amorphous alloys in contrast to ‘Heisenberg type’ in crystalline iron. The enhancement of magnetization by increasing iron was attributed to the interaction between Fe 3d and B 2p bands, which was further validated by valence-band study.

  11. Integrated phytobial remediation for sustainable management of arsenic in soil and water.

    Science.gov (United States)

    Roy, Madhumita; Giri, Ashok K; Dutta, Sourav; Mukherjee, Pritam

    2015-02-01

    Arsenic (As), cited as the most hazardous substance by the U.S. Agency for Toxic Substance and Disease Registry (ATSDR, 2005), is an ubiquitous metalloid which when ingested for prolonged periods cause extensive health effects leading to ultimate untimely death. Plants and microbes can help mitigate soil and groundwater As problem since they have evolved elaborate detoxification machineries against this toxic metalloid as a result of their coexistence with this since the origin of life on earth. Utilization of the phytoremediation and bioremediation potential of the plants and microbes, respectively, is now regarded as two innovative tools that encompass biology, geology, biotechnology and allied sciences with cutting edge applications for sustainable mitigation of As epidemic. Discovery of As hyperaccumulating plants that uptake and concentrate large amounts of this toxic metalloid in their shoots or roots offered new hope to As phytoremediation, solar power based nature's own green remediation. This review focuses on how phytoremediation and bioremediation can be merged together to form an integrated phytobial remediation which could synergistically achieve the goal of large scale removal of As from soil, sediment and groundwater and overcome the drawbacks of the either processes alone. The review also points to the feasibility of the introduction of transgenic plants and microbes that bring new hope for more efficient treatment of As. The review identifies one critical research gap on the importance of remediation of As contaminated groundwater not only for drinking purpose but also for irrigation purpose and stresses that more research should be conducted on the use of constructed wetland, one of the most suitable areas of application of phytobial remediation. Finally the review has narrowed down on different phytoinvestigation and phytodisposal methods, which constitute the most essential and the most difficult part of pilot scale and field scale applications

  12. Arsenic mobilization in sediments

    DEFF Research Database (Denmark)

    Bennett, W. W.; Teasdale, P. R.; Panther, J. G.

    2012-01-01

    We have recently developed Diffusive Gradients in Thin films (DGT) and Diffusive Equilibrium in Thin films (DET) techniques that permit the measurement of high-resolution porewater distributions of As(III), total inorganic arsenic and Fe(II). These novel techniques were utilized to investigate th...

  13. Leishmania donovani isolates with antimony-resistant but not -sensitive phenotype inhibit sodium antimony gluconate-induced dendritic cell activation.

    Directory of Open Access Journals (Sweden)

    Arun Kumar Haldar

    2010-05-01

    Full Text Available The inability of sodium antimony gluconate (SAG-unresponsive kala-azar patients to clear Leishmania donovani (LD infection despite SAG therapy is partly due to an ill-defined immune-dysfunction. Since dendritic cells (DCs typically initiate anti-leishmanial immunity, a role for DCs in aberrant LD clearance was investigated. Accordingly, regulation of SAG-induced activation of murine DCs following infection with LD isolates exhibiting two distinct phenotypes such as antimony-resistant (Sb(RLD and antimony-sensitive (Sb(SLD was compared in vitro. Unlike Sb(SLD, infection of DCs with Sb(RLD induced more IL-10 production and inhibited SAG-induced secretion of proinflammatory cytokines, up-regulation of co-stimulatory molecules and leishmanicidal effects. Sb(RLD inhibited these effects of SAG by blocking activation of PI3K/AKT and NF-kappaB pathways. In contrast, Sb(SLD failed to block activation of SAG (20 microg/ml-induced PI3K/AKT pathway; which continued to stimulate NF-kappaB signaling, induce leishmanicidal effects and promote DC activation. Notably, prolonged incubation of DCs with Sb(SLD also inhibited SAG (20 microg/ml-induced activation of PI3K/AKT and NF-kappaB pathways and leishmanicidal effects, which was restored by increasing the dose of SAG to 40 microg/ml. In contrast, Sb(RLD inhibited these SAG-induced events regardless of duration of DC exposure to Sb(RLD or dose of SAG. Interestingly, the inhibitory effects of isogenic Sb(SLD expressing ATP-binding cassette (ABC transporter MRPA on SAG-induced leishmanicidal effects mimicked that of Sb(RLD to some extent, although antimony resistance in clinical LD isolates is known to be multifactorial. Furthermore, NF-kappaB was found to transcriptionally regulate expression of murine gammaglutamylcysteine synthetase heavy-chain (mgammaGCS(hc gene, presumably an important regulator of antimony resistance. Importantly, Sb(RLD but not Sb(SLD blocked SAG-induced mgammaGCS expression in DCs by

  14. Napoleon Bonaparte's exposure to arsenic during 1816.

    Science.gov (United States)

    Leslie, A C; Smith, H

    1978-12-11

    Analysis of hair from Napoleon showed that he was exposed to considerable amounts of arsenic during 1816. The distribution pattern of the arsenic in the hair is similar to that found after the daily ingestion of excessive amounts of arsenic.

  15. 40 CFR 421.140 - Applicability: Description of the primary antimony subcategory.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability: Description of the primary antimony subcategory. 421.140 Section 421.140 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary Antimony Subcategory § 421.140...

  16. 40 CFR 440.90 - Applicability; description of the antimony ore subcategory.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Applicability; description of the antimony ore subcategory. 440.90 Section 440.90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Antimony Ore Subcategory § 440.90 Applicability;...

  17. Investigation of the effect of some parameters on the degree of leaching antimony from stibnite

    Directory of Open Access Journals (Sweden)

    Remeteiová Dagmar

    1998-12-01

    Full Text Available The paper presents results of experiments of agitation leaching of antimony from stibnite in alkaline solutions of Na2S +NaOH. The influence of different solution solutions ratio of the reacting phases and of different rate of stirring on the degree of leaching of antimony was investigated.

  18. Tin dioxide sol-gel derived films doped with platinum and antimony deposited on porous silicon

    NARCIS (Netherlands)

    Savaniu, C.; Arnautu, A.; Cobianu, C.; Craciun, G.; Flueraru, C.; Zaharescu, M.; Parlog, C.; Paszti, F.; van den Berg, Albert

    1999-01-01

    SnO2 sol-gel derived thin films doped simultaneously with Pt and Sb are obtained and reported for the first time. The Sn sources were tin(IV) ethoxide or tin(II) ethylhexanoate, while hexachloroplatinic acid (H2PtCl6) and antimony chloride (SbCl3) were used as platinum and antimony sources,

  19. Removing antimony from waste lead storage batteries alloy by vacuum displacement reaction technology.

    Science.gov (United States)

    Liu, Tiantian; Qiu, Keqiang

    2018-04-05

    With the wide application of lead acid battery, spent lead acid battery has become a serious problem to environmental protection and human health. Though spent battery can be a contaminant if not handled properly, it is also an important resource to obtain refined lead. Nowadays, the Sb-content in lead storage batteries is about 0.5-3 wt%, which is higher than the Sb-content in the crude lead. However, there are few reports about the process of removing antimony from high-antimony lead bullion. In this study, vacuum displacement reaction technology, a new process for removing antimony from high-antimony lead melts, was investigated. During this process, lead oxide was added to the system and antimony from lead melts was converted into antimony trioxide, which easily was evaporated under vacuum so that antimony was removed from lead melts. The experimental results demonstrated that Sb-content in lead melts decreased from 2.5% to 23 ppm under following conditions: mass ratio of PbO/lead bullion of 0.33, residual gas pressure of 30 Pa, melt temperature of 840 °C, reaction time of 60 min. The distillate gotten can be used as by-product to produce antimony white. Moreover, this study is of importance to recycling of waste lead storage batteries alloy. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Electrodeposition of antimony, tellurium and their alloys from molten acetamide mixtures

    NARCIS (Netherlands)

    Nguyen, H.P.; Peng, X.; Murugan, G.; Vullers, R.J.M.; Vereecken, P.M.; Fransaer, J.

    2013-01-01

    We examine the electrodeposition of antimony (Sb), tellurium (Te) and their alloys from molten mixtures of acetamide - antimony chloride and tellurium chloride. The binary mixtures of acetamide with SbCl3 and TeCl 4 exhibit eutectic formation with large depressions of freezing points to below room

  1. Leishmania donovani: an in vitro study of antimony-resistant amphotericin B-sensitive isolates

    DEFF Research Database (Denmark)

    Sharief, Abdalla Hassan; Gasim Khalil, Eltahir Awad; Theander, Thor G

    2006-01-01

    Drug sensitivity of clinically antimony-unresponsive Leishmania donovani isolates from Eastern Sudan was evaluated in an in vitro culture system against sodium stibogluconate (Pentostam) and Amphotericin B. Eight isolates, six from antimony-resistant and two from clinically responsive patients were...

  2. Comparison of modification with strontium and the refining with antimony in A 356 aluminium alloys

    International Nuclear Information System (INIS)

    Fuoco, Ricardo; Correa, Edison Roberto; Correa, Alzira V.O.; Bocalini Junior, Mario

    1992-01-01

    Strontium and Antimony treated A356 aluminium alloy samples were metallographically characterized in the as cast and solution and aged conditions. Antimony treated alloy has shown slower spheroidizing kinetics of the Silicon particles during solution treatment, lower porosity level and higher tensile strength and elongation than Strontium treated one. (author)

  3. Assessment of Industrial Antimony Exposure and Immunologic Function for Workers in Taiwan.

    Science.gov (United States)

    Wu, Chin-Ching; Chen, Yi-Chun

    2017-06-26

    This study investigated antimony exposure among employees in industries in Taiwan and evaluated whether their immunologic markers were associated with antimony exposure. We recruited 91 male workers and 42 male office administrators from 2 glass manufacturing plants, 1 antimony trioxide manufacturing plants, and 2 engineering plastic manufacturing plants. Air samples were collected at worksites and administrative offices, and each participant provided specimens of urine, blood, and hair to assay antimony levels. We also determined white blood cells, lymphocyte, and monocyte, IgA, IgE, and IgG in blood specimens. The mean antimony concentration in the air measured at worksites was much higher in the antimony trioxide plant (2.51 ± 0.57 mg/m³) than in plastic plants (0.21 ± 0.06 mg/m³) and glass plants (0.14 ± 0.01 mg/m³). Antimony levels in blood, urine, and hair measured for participants were correlated with worksites and were higher in workers than in administrators. The mean serum IgG, IgA, and IgE levels were lower in workers than in administrators ( p industrial plants than for administrators. This study suggests serum IgG, IgA, and IgE levels are negatively associated with antimony exposure.

  4. Surface area of antimony oxide by isotope exchange and other methods

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Y.K.; Acharya, B.V.; Rangamannar, B.

    1985-06-17

    Specific surface areas of antimony oxide samples, one commercial, the other prepared from antimony trichloride were measured by heterogeneous isotope exchange, gas adsorption, air permeability and microscopic methods. Specific surface areas obtained by these four methods for the two samples were compared and the observed differences are explained.

  5. Arsenic affects the production of glucosinolate, thiol and phytochemical compounds: A comparison of two Brassica cultivars.

    Science.gov (United States)

    Pandey, Chandana; Augustine, Rehna; Panthri, Medha; Zia, Ismat; Bisht, Naveen C; Gupta, Meetu

    2017-02-01

    Arsenic (As), a non-essential metalloid, severely affects the normal functioning of plants, animals and humans. Plants play a crucial role in metabolic, physiological and numerous detoxification mechanisms to cope up with As induced stress. This study aimed to examine the differential response in two Brassica juncea cultivars, Varuna and Pusa Jagannath (PJn) exposed to different doses of As (50, 150, 300 μM) for 48 h duration. Change in morphological traits, concentration of individual as well as total GSL, sulfur related thiol proteins, sulfur content, and phytochemicals were analyzed in both cultivars. Accumulation pattern of As showed dose dependent accumulation in both the cultivars, being more in PJn. Our finding revealed that both cultivars were tolerant at low concentrations of As, while at higher concentration Varuna excelled over PJn. The increased tolerance of Varuna cultivar exposed to 150 and 300 μM concentration of As, correlated with its increased thiol related proteins, sulfur content and phytochemicals, which serves as defence strategy in the plant against oxidative stress. Differential pattern of total as well as individual GSLs content was observed in both Varuna and PJn cultivars. Varuna cultivar showed higher level of total and aliphatic GSLs, which serves as defence compound with other detoxification machineries to combat As stress. Our findings provide foundation for developing metalloid tolerant crops by analyzing the role of different genes involved in GSL mechanism and signaling pathways in different organs of plant. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Glutathione S-Transferases: Role in Combating Abiotic Stresses Including Arsenic Detoxification in Plants

    Directory of Open Access Journals (Sweden)

    Smita Kumar

    2018-06-01

    Full Text Available Arsenic (As, naturally occurring metalloid and a potential hazardous material, is found in low concentrations in the environment and emerges from natural sources and anthropogenic activities. The presence of As in ground water, which is used for irrigation, is a matter of great concern since it affects crop productivity and contaminates food chain. In plants, As alters various metabolic pathways in cells including the interaction of substrates/enzymes with the sulfhydryl groups of proteins and the replacement of phosphate in ATP for energy. In addition, As stimulates the generation of free radicals and reactive oxygen species (ROS, resulting in oxidative stress. Glutathione S-transferases (GSTs quench reactive molecules with the addition of glutathione (GSH and protect the cell from oxidative damage. GSTs are a multigene family of isozymes, known to catalyze the conjugation of GSH to miscellany of electrophilic and hydrophobic substrates. GSTs have been reported to be associated with plant developmental processes and are responsive to multitude of stressors. In past, several studies suggested involvement of plant GST gene family in As response due to the requirement of sulfur and GSH in the detoxification of this toxic metalloid. This review provides updated information about the role of GSTs in abiotic and biotic stresses with an emphasis on As uptake, metabolism, and detoxification in plants. Further, the genetic manipulations that helped in enhancing the understanding of the function of GSTs in abiotic stress response and heavy metal detoxification has been reviewed.

  7. Pilot plant studies on the extraction of antimony metal from lower grade krinj stibnite ore

    International Nuclear Information System (INIS)

    Rehman, W.; Riaz, M.; Ishaq, M.

    2013-01-01

    Antimony is a silvery white, brittle and crystalline solid which is extensively consumed in lead acid batteries, antimonial lead alloys, flame retardants and a variety of metallic products. The antimony content of commercial ores range from 5-60% and determines the method of extraction, either pyrometallurgical or hydrometallurgical. The present study focuses on pilot plant scale extraction of antimony metal from lower grade stibnite ore of Krinj (Chitral) without the use of iron scrap, thus eliminating the second step of iron removal in conventional direct reduction method. A tilting gas fired furnace with digital temperature control system and a heat recuperator was designed to optimize the operating parameters for extraction of antimony metal. Weight ratios of flux and reductant, operating time and operating temperature were optimized. Highest percentage recovery and purity were achieved using soda ash as a flux, at a temperature of 900 degree C for 2 hours. (author)

  8. Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency.

    Science.gov (United States)

    Wen, Xixing; Chen, Chao; Lu, Shuaicheng; Li, Kanghua; Kondrotas, Rokas; Zhao, Yang; Chen, Wenhao; Gao, Liang; Wang, Chong; Zhang, Jun; Niu, Guangda; Tang, Jiang

    2018-06-05

    Antimony selenide is an emerging promising thin film photovoltaic material thanks to its binary composition, suitable bandgap, high absorption coefficient, inert grain boundaries and earth-abundant constituents. However, current devices produced from rapid thermal evaporation strategy suffer from low-quality film and unsatisfactory performance. Herein, we develop a vapor transport deposition technique to fabricate antimony selenide films, a technique that enables continuous and low-cost manufacturing of cadmium telluride solar cells. We improve the crystallinity of antimony selenide films and then successfully produce superstrate cadmium sulfide/antimony selenide solar cells with a certified power conversion efficiency of 7.6%, a net 2% improvement over previous 5.6% record of the same device configuration. We analyze the deep defects in antimony selenide solar cells, and find that the density of the dominant deep defects is reduced by one order of magnitude using vapor transport deposition process.

  9. Alkaline sulfide pretreatment of an antimonial refractory Au-Ag ore for improved cyanidation

    Science.gov (United States)

    Alp, Ibrahim; Celep, Oktay; Deveci, Haci

    2010-11-01

    This paper presents the alkaline sulfide pretreatment of an antimonial refractory gold and silver ore. In the ore, gold occurs mainly as gold-silver alloys and as associated with quartz and framboidal pyrite grains, and, to a small extent, as the inclusions within antimonial sulfides. Silver is present extensively as antimonial sulfides such as andorite. Alkaline sulfide pretreatment was shown to allow the decomposition of the antimonial sulfide minerals (up to 98% Sb removal) and to remarkably improve the amenability of gold (e.g., from leaching. An increase in reagent concentration (1-4 mol/L Na2S or NaOH) and temperature (20-80°C), and a decrease in particle size seem to produce an enhancing effect on metal extraction. These findings suggest that alkaline sulfide leaching can be suitably used as a chemical pretreatment method prior to the conventional cyanidation for antimonial refractory gold and silver ores.

  10. Use of Endophytic and Rhizosphere Bacteria To Improve Phytoremediation of Arsenic-Contaminated Industrial Soils by Autochthonous Betula celtiberica.

    Science.gov (United States)

    Mesa, Victoria; Navazas, Alejandro; González-Gil, Ricardo; González, Aida; Weyens, Nele; Lauga, Béatrice; Gallego, Jose Luis R; Sánchez, Jesús; Peláez, Ana Isabel

    2017-04-15

    The aim of this study was to investigate the potential of indigenous arsenic-tolerant bacteria to enhance arsenic phytoremediation by the autochthonous pseudometallophyte Betula celtiberica The first goal was to perform an initial analysis of the entire rhizosphere and endophytic bacterial communities of the above-named accumulator plant, including the cultivable bacterial species. B. celtiberica 's microbiome was dominated by taxa related to Flavobacteriales , Burkholderiales , and Pseudomonadales , especially the Pseudomonas and Flavobacterium genera. A total of 54 cultivable rhizobacteria and 41 root endophytes, mainly affiliated with the phyla Proteobacteria , Bacteroidetes , Firmicutes , and Actinobacteria , were isolated and characterized with respect to several potentially useful features for metal plant accumulation, such as the ability to promote plant growth, metal chelation, and/or mitigation of heavy-metal stress. Seven bacterial isolates were further selected and tested for in vitro accumulation of arsenic in plants; four of them were finally assayed in field-scale bioaugmentation experiments. The exposure to arsenic in vitro caused an increase in the total nonprotein thiol compound content in roots, suggesting a detoxification mechanism through phytochelatin complexation. In the contaminated field, the siderophore and indole-3-acetic acid producers of the endophytic bacterial consortium enhanced arsenic accumulation in the leaves and roots of Betula celtiberica , whereas the rhizosphere isolate Ensifer adhaerens strain 91R mainly promoted plant growth. Field experimentation showed that additional factors, such as soil arsenic content and pH, influenced arsenic uptake in the plant, attesting to the relevance of field conditions in the success of phytoextraction strategies. IMPORTANCE Microorganisms and plants have developed several ways of dealing with arsenic, allowing them to resist and metabolize this metalloid. These properties form the basis of

  11. Preparation of thin arsenic and radioarsenic targets for neutron capture studies

    International Nuclear Information System (INIS)

    Fassbender, M.; Bach, H.; Bond, E.; Nortier, F.M.; Vieira, D.

    2009-01-01

    A simple method for the electrodeposition of elemental arsenic (As) on a metal backing from aqueous solutions has been developed. The method was successfully applied to stable As ( 75 As). Thin (2.5 mg cm -2 ) coherent, smooth layers of the metalloid on Ti foils (2.5 μm thickness) were obtained. Electrodeposits served as targets for 75 As(n,γ) 76 As neutron capture experiments at Los Alamos Neutron Science Center (LANSCE). Respective 73 As(n,γ) 74 As experiments are planned for the near future, and 73 As targets will be prepared in a similar fashion utilizing the new electrodeposition method. The preparation of an 73 As (half-life 80.3 days) plating bath solution from proton irradiated germanium has been demonstrated. Germanium target irradiation was performed at the Los Alamos Isotope Production Facility (IPF). (author)

  12. Enhanced antimony(V) removal using synergistic effects of Fe hydrolytic flocs and ultrafiltration membrane with sludge discharge evaluation.

    Science.gov (United States)

    Ma, Baiwen; Wang, Xing; Liu, Ruiping; Qi, Zenglu; Jefferson, William A; Lan, Huachun; Liu, Huijuan; Qu, Jiuhui

    2017-09-15

    The integration of adsorbents with ultrafiltration (UF) membranes is a promising method for alleviating membrane fouling and reducing land use. However, a number of problems have become apparent concerning the granular adsorbents used currently, such as high running cost, high chance of causing membrane surface damage, low in situ chemical cleaning efficiency, etc. Herein, to overcome these disadvantages, loose in situ hydrolyzed flocs were directly injected into the membrane tank, providing strong adsorption ability at low cost. To test the feasibility of this method, the heavy metal pollutant antimony (Sb (V)) in a water plant was chosen at a test case, which is similar to arsenic and difficult to remove. We found that Fe-based flocs integrated with an UF membrane showed a large potential advantage in removing Sb(V), even after running for 110 days. We demonstrated that the observed slow transmembrane pressure development could be ascribed to the loose floc cake layer formed, even though some extracellular polymeric substances were induced during operation. We also found that the floc cake layer was easily removed by washing with feed water or dissolved by in situ chemical cleaning under strongly acidic conditions, and many primary membrane pores were clearly observed. In addition, a relative long sludge discharge interval was feasible for this technology and the effluent quality was good, including the turbidity, chromaticity and iron concentration. Based on the excellent performance, these flocs integrated with UF membranes indeed show potential for application in water treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Arsenic, microbes and contaminated aquifers

    Science.gov (United States)

    Oremland, Ronald S.; Stolz, John F.

    2005-01-01

    The health of tens of millions of people world-wide is at risk from drinking arsenic-contaminated well water. In most cases this arsenic occurs naturally within the sub-surface aquifers, rather than being derived from identifiable point sources of pollution. The mobilization of arsenic into the aqueous phase is the first crucial step in a process that eventually leads to human arsenicosis. Increasing evidence suggests that this is a microbiological phenomenon.

  14. Organic ligand-induced dissolution kinetics of antimony trioxide

    Institute of Scientific and Technical Information of China (English)

    Xingyun Hu; Mengchang He

    2017-01-01

    The influence of low-molecular-weight dissolved organic matter (LMWDOM) on the dissolution rate of Sb2O3 was investigated.Some representative LMWDOMs with carboxyl,hydroxyl,hydrosulfuryl and amidogen groups occurring naturally in the solution were chosen,namely oxalic acid,citric acid,tartaric acid,EDTA,salicylic acid,phthalandione,glycine,thiolactic acid,xylitol,glucose and catechol.These LMWDOMs were dissolved in inert buffers at pH =3.7,6.6 and 8.6 and added to powdered Sb2O3 in a stirred,thermostatted reactor (25℃).The addition of EDTA,tartaric acid,thiolactic acid,citric acid and oxalic acid solutions at pH 3.7 and catechol at pH 8.6 increased the rate of release of antimony.In the 10 mmol/L thiolactic acid solution,up to 97% by mass of the antimony was released after 120 min reaction.There was no effect on the dissolution of Sb2O3 for the other ligands.A weak correlation between dissolution rate with the dissociation constant of ligands and the stability of the dissolved complex was also found.All the results showed that the extent of the promoting effect of ligands on the dissolution of Sb2O3 was not determined by the stability of the dissolved complex,but by the dissociation constant of ligands and detachment rate of surface chelates from the mineral surface.This study can not only help in further understanding the effect of individual low-molecular-weight organic ligands,but also provides a reference to deduce the effect of natural organic matters with oxygen-bearing functional groups on the dissolution of antimony oxide minerals.

  15. Organic ligand-induced dissolution kinetics of antimony trioxide.

    Science.gov (United States)

    Hu, Xingyun; He, Mengchang

    2017-06-01

    The influence of low-molecular-weight dissolved organic matter (LMWDOM) on the dissolution rate of Sb 2 O 3 was investigated. Some representative LMWDOMs with carboxyl, hydroxyl, hydrosulfuryl and amidogen groups occurring naturally in the solution were chosen, namely oxalic acid, citric acid, tartaric acid, EDTA, salicylic acid, phthalandione, glycine, thiolactic acid, xylitol, glucose and catechol. These LMWDOMs were dissolved in inert buffers at pH=3.7, 6.6 and 8.6 and added to powdered Sb 2 O 3 in a stirred, thermostatted reactor (25°C). The addition of EDTA, tartaric acid, thiolactic acid, citric acid and oxalic acid solutions at pH3.7 and catechol at pH8.6 increased the rate of release of antimony. In the 10mmol/L thiolactic acid solution, up to 97% by mass of the antimony was released after 120min reaction. There was no effect on the dissolution of Sb 2 O 3 for the other ligands. A weak correlation between dissolution rate with the dissociation constant of ligands and the stability of the dissolved complex was also found. All the results showed that the extent of the promoting effect of ligands on the dissolution of Sb 2 O 3 was not determined by the stability of the dissolved complex, but by the dissociation constant of ligands and detachment rate of surface chelates from the mineral surface. This study can not only help in further understanding the effect of individual low-molecular-weight organic ligands, but also provides a reference to deduce the effect of natural organic matters with oxygen-bearing functional groups on the dissolution of antimony oxide minerals. Copyright © 2016. Published by Elsevier B.V.

  16. Comprehensive thermal and structural characterization of antimony-phosphate glass

    Science.gov (United States)

    Moustafa, S. Y.; Sahar, M. R.; Ghoshal, S. K.

    For the first time, we prepare new ternary glass systems of composition (95-x)Sb2O3-xP2O5-5MgO, where x = 45, 40, 35 mol%; (85-x)Sb2O3-xP2O5-15MgO, where x = 55, 35, 25 mol%; (75-x)Sb2O3-xP2O5-25MgO, where x = 45, 35, 25 mol%; and 60Sb2O3-(40-x)P2O5-xMgO, where x = 10, 20 mol% via melt-quenching method. Synthesized glasses are characterized using XRD, FESEM, EDX, and TG/DTA measurements. The influence of varying modifier concentrations on their thermal properties is evaluated. The XRD patterns confirmed the amorphous nature of samples. SEM images demonstrated interesting phase formation with ribbons-like texture. Five crystalline phases are evidenced in the ternary diagram which are antimony phosphate and antimony orthophosphate as major phases as well as magnesium phosphate, magnesium cyclo-tetraphosphate and cervantite as minor phases. EDX spectra detected the right elemental traces. Detailed thermal analysis of these glasses revealed their high-molecular polymer character for Sb2O3 content greater than 50 mol%. Three different glass transition temperatures are achieved around 276, 380-381 and 422-470 °C depending on the composition. Furthermore, the solidus and liquidus temperature are found to decrease with increasing Sb2O3 and increases for MgO contents till 15 mol% and then decrease, where the lowest recorded solidus temperature is 426 °C. This observation may open up new research avenues for antimony based ternary glasses and an exploitation of the derived results for optoelectronics applications, photonic devices and non-linear optical devices.

  17. Behavior of ruthenium, cesium and antimony during simulated HLLW vitrification

    International Nuclear Information System (INIS)

    Klein, M.; Weyers, C.; Goossens, W.R.A.

    1985-01-01

    The behavior of ruthenium, cesium, and antimony during the vitrification of simulated high-level radioactive liquid wastes (HLLW) in a liquid fed melter was studied on a laboratory scale and on a semi-pilot scale. In the laboratory melter of a 2.5 kg capacity, a series of tests with the simulate traced with 103 Ru, 134 Cs and 124 Sb, has shown that the Ru and Cs losses to the melter effluent are generally higher than 10% whereas the antimony losses remain lower than 0.4%. A wet purification system comprising in series, a dust scrubber, a condenser, an ejector venturi and an NOx washing column retains most of the activity present in the off-gas so that the release fractions for Ru at the absolute filter inlet ranges between 5.10 -3 to 5.10 -5 % of the Ru fed, for Cs the corresponding release fraction ranges between 3.10 -3 to 10 -4 % and for Sb the release fraction ranges between 1.7 10 -4 to 1.7 10 -5 %. The same experiments were performed at a throughput of 1 to 2 1 h -1 of simulated solution in the semi-pilot scale unit RUFUS. The RUFUS unit comprises a glass melter with a 50 kg molten glass capacity and the wet purification train comprises in series a dust scrubber, a condenser, an ejector venturi and an NOx washing column. The tracer tests were restricted to 103 Ru and 134 Cs since the laboratory tests had shown that the antimony losses were very low. The results of the tests are presented

  18. Antimony(3) ethylenediaminetetraacetate complexes with single- and doubly charged cations

    International Nuclear Information System (INIS)

    Davidovich, R.L.; Logvinova, V.B.; Kajdalova, T.A.

    1998-01-01

    The antimony(3) ethylenediaminetetraacetate complexes with alkaline and bivalent metals cations of the M + Sb(Edta) · H 2 O (M + = K, Rb, Cs, NH 4 ), M 2+ [Sb(Edta)] 2 · 8H 2 O (M 2+ = Mg, Ca, Sr, Co, Cd) composition are synthesized. Roentgenographic and IR-spectroscopic characteristics of the synthesized substances are determined. Two groups of the isostructural compounds: M + Sb(Edta) · H 2 O (M + = K, Rb, NH 4 ) and M 2+ [Sb(Edta)] 2 · 8H 2 O (M 2+ = Mg, Ca, Sr, Mn, Co, Cd) are established [ru

  19. Metabolism of antimony-124 in lactating dairy cows

    International Nuclear Information System (INIS)

    Bruwaene, R. van; Gerber, G.B.; Kirchmann, R.; Colard, J.

    1982-01-01

    Lactating cows received oral and intravenous administrations of radioactive antimony (III) chloride to study its intestinal and urinary excretion, secretion into milk and organ distribution. Milk samples were taken twice a day and the milk, feces and urine assayed using gamma spectroscopy. Cows administered orally were sacrificed at 102 days and those injected intravenously at 70 days. Distribution of 124 Sb in the organs was determined at the time of sacrifice. Excretion of 124 Sb occurs mainly via urine, little is secreted into milk. Highest organ concentrations are in the spleen, liver and bone. (U.K.)

  20. Evaluation of Neutron Nuclear Data for Natural Titanium and Antimony

    Institute of Scientific and Technical Information of China (English)

    1989-01-01

    <正> The evaluations of neutron data of natural titanium and antimony are performedin the energy range from 10-5 eV to 20 MeV.The following data are included:resonance parameters,cross sections of total,elastic seattering,nonelastic sea-ttering,inelastic seattering,(n,2n),(n,3n),and(n,X)(X=p,d,t,3He,α)reactions etc.The angular distributions and energy distributions of secondaryneutrons are also given.The reproduced cross sections from resolved and unresolved

  1. Electrostatically defined silicon quantum dots with counted antimony donor implants

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M., E-mail: msingh@sandia.gov; Luhman, D. R.; Lilly, M. P. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87175 (United States); Pacheco, J. L.; Perry, D.; Garratt, E.; Ten Eyck, G.; Bishop, N. C.; Wendt, J. R.; Manginell, R. P.; Dominguez, J.; Pluym, T.; Bielejec, E.; Carroll, M. S. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2016-02-08

    Deterministic control over the location and number of donors is crucial to donor spin quantum bits (qubits) in semiconductor based quantum computing. In this work, a focused ion beam is used to implant antimony donors in 100 nm × 150 nm windows straddling quantum dots. Ion detectors are integrated next to the quantum dots to sense the implants. The numbers of donors implanted can be counted to a precision of a single ion. In low-temperature transport measurements, regular Coulomb blockade is observed from the quantum dots. Charge offsets indicative of donor ionization are also observed in devices with counted donor implants.

  2. Glutathione and its dependent enzymes' modulatory responses to toxic metals and metalloids in fish--a review.

    Science.gov (United States)

    Srikanth, K; Pereira, E; Duarte, A C; Ahmad, I

    2013-04-01

    Toxic metals and metalloid are being rapidly added from multiple pathways to aquatic ecosystem and causing severe threats to inhabiting fauna including fish. Being common in all the type of aquatic ecosystems such as freshwater, marine and brackish water fish are the first to get prone to toxic metals and metalloids. In addition to a number of physiological/biochemical alterations, toxic metals and metalloids cause enhanced generation of varied reactive oxygen species (ROS) ultimately leading to a situation called oxidative stress. However, as an important component of antioxidant defence system in fish, the tripeptide glutathione (GSH) directly or indirectly regulates the scavenging of ROS and their reaction products. Additionally, several other GSH-associated enzymes such as GSH reductase (GR, EC 1.6.4.2), GSH peroxidase (EC 1.11.1.9), and GSH sulfotransferase (glutathione-S-transferase (GST), EC 2.5.1.18) cumulatively protect fish against ROS and their reaction products accrued anomalies under toxic metals and metalloids stress conditions. The current review highlights recent research findings on the modulation of GSH, its redox couple (reduced glutathione/oxidised glutathione), and other GSH-related enzymes (GR, glutathione peroxidase, GST) involved in the detoxification of harmful ROS and their reaction products in toxic metals and metalloids-exposed fish.

  3. Inorganic arsenic represses interleukin-17A expression in human activated Th17 lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Morzadec, Claudie; Macoch, Mélinda; Robineau, Marc; Sparfel, Lydie [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes (France); Fardel, Olivier [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes (France); Pôle Biologie, Centre Hospitalier Universitaire (CHU) Rennes, 2 rue Henri Le Guilloux, 35033 Rennes (France); Vernhet, Laurent, E-mail: laurent.vernhet@univ-rennes1.fr [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes (France)

    2012-08-01

    Trivalent inorganic arsenic [As(III)] is an efficient anticancer agent used to treat patients suffering from acute promyelocytic leukemia. Recently, experimental studies have clearly demonstrated that this metalloid can also cure lymphoproliferative and/or pro-inflammatory syndromes in different murine models of chronic immune-mediated diseases. T helper (Th) 1 and Th17 lymphocytes play a central role in development of these diseases, in mice and humans, especially by secreting the potent pro-inflammatory cytokine interferon-γ and IL-17A, respectively. As(III) impairs basic functions of human T cells but its ability to modulate secretion of pro-inflammatory cytokines by differentiated Th lymphocytes is unknown. In the present study, we demonstrate that As(III), used at concentrations clinically achievable in plasma of patients, has no effect on the secretion of interferon-γ from Th1 cells but almost totally blocks the expression and the release of IL-17A from human Th17 lymphocytes co-stimulated for five days with anti-CD3 and anti-CD28 antibodies, in the presence of differentiating cytokines. In addition, As(III) specifically reduces mRNA levels of the retinoic-related orphan receptor (ROR)C gene which encodes RORγt, a key transcription factor controlling optimal IL-17 expression in fully differentiated Th17 cells. The metalloid also blocks initial expression of IL-17 gene induced by the co-stimulation, probably in part by impairing activation of the JNK/c-Jun pathway. In conclusion, our results demonstrate that As(III) represses expression of the major pro-inflammatory cytokine IL-17A produced by human Th17 lymphocytes, thus strengthening the idea that As(III) may be useful to treat inflammatory immune-mediated diseases in humans. -- Highlights: ► Arsenic inhibits secretion of IL-17A from human naïve and memory Th17 lymphocytes. ► Arsenic represses early expression of IL-17A gene in human activated T lymphocytes. ► Arsenic interferes with activation of

  4. Potential human health risk by metal(loid)s, 234,238U and 210Po due to consumption of fish from the "Luis L. Leon" Reservoir (Northern México).

    Science.gov (United States)

    Luna-Porres, Mayra Y; Rodríguez-Villa, Marco A; Herrera-Peraza, Eduardo F; Renteria-Villalobos, Marusia; Montero-Cabrera, María E

    2014-06-25

    Concentrations of As, Cu, Fe, Hg, Pb and Zn and activity concentrations from 234,238U and 210Po in water, fillet, liver and gills were determined in three stocked fish species from the Luis L. Leon reservoir, located in Northern Mexico. The considered species were Lepomis cyanellus, Cyprinus carpio and Ictalurus furcatus. 238U and 234U activity concentration (AC) in fillet samples showed values of 0.007-0.014 and 0.01-0.02 Bq∙kg-1 wet weight (ww), respectively. Liver samples for L. cyanellus, C. carpio and I. furcatus present 210Po AC of 1.16-3.26, 0.70-1.13 and 0.93-1.37 Bq∙kg-1 ww. Arsenic, mercury and lead concentration intervals in fillet samples were 0.13-0.39, 0.005-0.126 and 0.009-0.08 mg∙kg-1 ww, respectively, while in gill samples they were 0.11-0.43, 0.002-0.039 and 0.02-0.26 mg∙kg-1 ww. The elemental Bioaccumulation Factor (BAF) for fish tissues with respect to their concentrations in water was determined. L. cyanellus showed the highest BAF values for As and total U, being BAFAs = 37 and 40 L∙kg-1 in fillet and gills, respectively, and BAFU total = 1.5 L∙kg-1 in fillet. I. furcatus showed the highest BAF values for Hg and Pb, being BAFHg = 40 and 13 L∙kg-1 in fillet and gills, and BAFPb = 6.5 and 22 L∙kg-1 in fillet and gills, respectively. Some metal(loid) concentrations are slightly higher than European regulations for fish fillets. The difference in concentrations of metal(loid)s in fillet among the studied species is probably due to their differences in diet and habitat.

  5. EFFECTS OF SILICON ON ALLEVIATING ARSENIC TOXICITY IN MAIZE PLANTS

    Directory of Open Access Journals (Sweden)

    Airon José da Silva

    2015-02-01

    Full Text Available Arsenic is a metalloid highly toxic to plants and animals, causing reduced plant growth and various health problems for humans and animals. Silicon, however, has excelled in alleviating stress caused by toxic elements in plants. The aim of this study was to investigate the effects of Si in alleviating As stress in maize plants grown in a nutrient solution and evaluate the potential of the spectral emission parameters and the red fluorescence (Fr and far-red fluorescence (FFr ratio obtained in analysis of chlorophyll fluorescence in determination of this interaction. An experiment was carried out in a nutrient solution containing a toxic rate of As (68 μmol L-1 and six increasing rates of Si (0, 0.25, 0.5, 1.0, 1.5, and 2.0 mmol L-1. Dry matter production and concentrations of As, Si, and photosynthetic pigments were then evaluated. Chlorophyll fluorescence was also measured throughout plant growth. Si has positive effects in alleviating As stress in maize plants, evidenced by the increase in photosynthetic pigments. Silicon application resulted in higher As levels in plant tissue; therefore, using Si for soil phytoremediation may be a promising choice. Chlorophyll fluorescence analysis proved to be a sensitive tool, and it can be successfully used in the study of the ameliorating effects of Si in plant protection, with the Fr/FFr ratio as the variable recommended for identification of temporal changes in plants.

  6. Solubility behaviour of antimony(III) and antimony(V) solids in basic aqueous solutions at 300{sup o}C

    Energy Technology Data Exchange (ETDEWEB)

    Lemire, R.J.; Tosello, N.B.; Halliday, J.D

    1999-12-01

    The major contributions of the isotopes {sup 122}Sb and {sup 124}Sb to activity transport in a CANDU reactor primary heat transport system (HTS), have been associated with oxygen ingress during reactor shutdown. As part of a program to minimize the release and redeposition of these isotopes, the solubilities of antimony(III) and (V) oxides and salts have been measured in basic solutions at temperatures from 25 to 300{sup o}C. The results provide information on the charge and the stability as a function of temperature of antimony solution species and, hence, a guide to the trends in the temperature dependence of the solubilities of antimony solids. In solutions in which oxidation of antimony(III) to antimony(V) is minimized, the solubility of Sb{sub 2}O{sub 3} increases by about two orders of magnitude between 25 and 200{sup o}C, and then levels out or decreases slightly. At 250{sup o}C, in oxidizing solutions, Sb{sub 2}O{sub 5}{center_dot}xH{sub 2}O and simple sodium antimonate(V) were found to be unstable in sodium hydroxide solutions with respect to the solid, Na{sub 2{alpha}}[H(H{sub 2}O)]{sub 2-2{alpha}}Sb{sub 2}O{sub 6}, which has a pyrochlore structure. The solubility of this partially protonated sodium antimonate increases from 25 to 200{sup o}C and decreases at temperatures above 250{sup o}C. These solubility changes for the antimony (V) solids reflect changes in the stability of the anionic antimony solution species (SbO{sub 3}{sup -} or Sb(OH){sub 6}{sup -}), even though the compositions of antimony-containing solids in basic oxidizing solutions are strongly dependent on the cations and their aqueous phase concentrations. All solids used in the present experiments would be expected to generate total solution antimony concentrations {>=} 0.00005 mol{center_dot}dm{sup -3} in any neutral or basic aqueous solutions (assuming no added sodium salts). Therefore, under HTS conditions, precipitation of any antimony oxides or mixed oxides is unlikely. It cannot be

  7. A Phytoremediation Strategy for Arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Meagher, Richard B.

    2005-06-01

    A Phytoremediation Strategy for Arsenic Progress Report May, 2005 Richard B. Meagher Principal Investigator Arsenic pollution affects the health of several hundred millions of people world wide, and an estimated 10 million Americans have unsafe levels of arsenic in their drinking water. However, few environmentally sound remedies for cleaning up arsenic contaminated soil and water have been proposed. Phytoremediation, the use of plants to extract and sequester environmental pollutants, is one new technology that offers an ecologically sound solution to a devastating problem. We propose that it is less disruptive to the environment to harvest and dispose of several thousand pounds per acre of contaminated aboveground plant material, than to excavate and dispose of 1 to 5 million pounds of contaminated soil per acre (assumes contamination runs 3 ft deep). Our objective is to develop a genetics-based phytoremediation strategy for arsenic removal that can be used in any plant species. This strategy requires the enhanced expression of several transgenes from diverse sources. Our working hypothesis is that organ-specific expression of several genes controlling the transport, electrochemical state, and binding of arsenic will result in the efficient extraction and hyperaccumulation of arsenic into aboveground plant tissues. This hypothesis is supported by theoretical arguments and strong preliminary data. We proposed six Specific Aims focused on testing and developing this arsenic phytoremediation strategy. During the first 18 months of the grant we made significant progress on five Specific Aims and began work on the sixth as summarized below. Specific Aim 1: Enhance plant arsenic resistance and greatly expand sinks for arsenite by expressing elevated levels of thiol-rich, arsenic-binding peptides. Hyperaccumulation of arsenic depends upon making plants that are both highly tolerant to arsenic and that have the capacity to store large amounts of arsenic aboveground

  8. Lung inflammation biomarkers and lung function in children chronically exposed to arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Olivas-Calderón, Edgar, E-mail: edgar_olivascalderon@hotmail.com [Department of Environmental Health, Biomedical Research Center, School of Medicine, University of Coahuila, Torreon, Coahuila (Mexico); School of Medicine, University Juarez of Durango, Gomez Palacio, Durango (Mexico); Recio-Vega, Rogelio, E-mail: rrecio@yahoo.com [Department of Environmental Health, Biomedical Research Center, School of Medicine, University of Coahuila, Torreon, Coahuila (Mexico); Gandolfi, A. Jay, E-mail: gandolfi@pharmacy.arizona.edu [Southwest Environmental Health Science Center, University of Arizona, Tucson, AZ (United States); Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ (United States); Lantz, R. Clark, E-mail: lantz@email.arizona.edu [Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ (United States); Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ (United States); González-Cortes, Tania, E-mail: taniagc2201@hotmail.com [Department of Environmental Health, Biomedical Research Center, School of Medicine, University of Coahuila, Torreon, Coahuila (Mexico); Gonzalez-De Alba, Cesar, E-mail: cesargonzalezalba@hotmail.com [Department of Environmental Health, Biomedical Research Center, School of Medicine, University of Coahuila, Torreon, Coahuila (Mexico); Froines, John R., E-mail: jfroines@ucla.edu [Center for Environmental and Occupational Health, School of Public Health, University of California at Los Angeles, Los Angeles, CA (United States); Espinosa-Fematt, Jorge A., E-mail: dr.jorge.espinosa@gmail.com [School of Medicine, University Juarez of Durango, Gomez Palacio, Durango (Mexico)

    2015-09-01

    Evidence suggests that exposure to arsenic in drinking water during early childhood or in utero has been associated with an increase in respiratory symptoms or diseases in the adulthood, however only a few studies have been carried out during those sensitive windows of exposure. Recently our group demonstrated that the exposure to arsenic during early childhood or in utero in children was associated with impairment in the lung function and suggested that this adverse effect could be due to a chronic inflammation response to the metalloid. Therefore, we designed this cross-sectional study in a cohort of children associating lung inflammatory biomarkers and lung function with urinary As levels. A total of 275 healthy children were partitioned into four study groups according with their arsenic urinary levels. Inflammation biomarkers were measured in sputum by ELISA and the lung function was evaluated by spirometry. Fifty eight percent of the studied children were found to have a restrictive spirometric pattern. In the two highest exposed groups, the soluble receptor for advanced glycation end products' (sRAGE) sputum level was significantly lower and matrix metalloproteinase-9 (MMP-9) concentration was higher. When the biomarkers were correlated to the urinary arsenic species, negative associations were found between dimethylarsinic (DMA), monomethylarsonic percentage (%MMA) and dimethylarsinic percentage (%DMA) with sRAGE and positive associations between %DMA with MMP-9 and with the MMP-9/tissue inhibitor of metalloproteinase (TIMP-1) ratio. In conclusion, chronic arsenic exposure of children negatively correlates with sRAGE, and positively correlated with MMP-9 and MMP-9/TIMP-1 levels, and increases the frequency of an abnormal spirometric pattern. Arsenic-induced alterations in inflammatory biomarkers may contribute to the development of restrictive lung diseases. - Highlights: • First study in children evaluating lung inflammatory biomarkers and As levels

  9. The Evaluation of the Corrosion Resistance of the Al-Si Alloys Antimony Alloyed

    Directory of Open Access Journals (Sweden)

    Svobodova J.

    2014-06-01

    Full Text Available This paper deals with the evaluation of the corrosion resistance of the Al-Si alloys alloyed with the different amount of antimony. Specifically it goes about the alloy AlSi7Mg0,3 which is antimony alloyed in the concentrations 0; 0,001; 0,005; 0,01 a 0,05 wt. % of antimony. The introduction of the paper is dedicated to the theory of the aluminium alloys corrosion resistance, testing and evaluation of the corrosion resistance. The influence of the antimony to the Al-Si alloys properties is described further in the introduction. The experimental part describes the experimental samples which were prepared for the experiment and further they were exposed to the loading in the atmospheric conditions for a period of the 3 months. The experimental samples were evaluated macroscopically and microscopically. The results of the experiment were documented and the conclusions in terms of the antimony impact to the corrosion resistance of the Al-Si alloy were concluded. There was compared the corrosion resistance of the Al-Si alloy antimony alloyed (with the different antimony content with the results of the Al-Si alloy without the alloying after the corrosion load in the atmospheric conditions in the experiment.

  10. The potential DNA toxic changes among workers exposed to antimony trioxide.

    Science.gov (United States)

    El Shanawany, Safaa; Foda, Nermine; Hashad, Doaa I; Salama, Naglaa; Sobh, Zahraa

    2017-05-01

    Occupational exposure to antimony has gained much interest when specific toxic effects were noticed among workers processing antimony. Thus, the aim of the present work was to investigate the potential DNA oxidative damage occurring among Egyptian workers occupationally exposed to antimony trioxide. The study was conducted on 25 subjects exposed to antimony trioxide while working in the polymerization process of polyester in Misrayon and Polyester Fiber Company, KafrEldawwar, Beheira, Egypt. Urinary antimony levels were assessed using inductive coupled plasma-optical emission spectrometry (ICP-OES) and considered as a biological exposure index. DNA damage and total oxidant capacity (TOC) were assessed using ELISA. DNA damage was detected in the form of increased apurinic/apyrimidinic (AP) sites among antimony trioxide-exposed workers compared to control subjects, but it could not be explained by oxidative mechanisms due to lack of significant correlation between DNA damage and measured TOC. Antimony trioxide might have a genotoxic impact on occupationally exposed workers which could not be attributed to oxidative stress in the studied cases.

  11. Investigation of Antimony Leaching from Bottles (PET into the Bottled Waters in Fars Province

    Directory of Open Access Journals (Sweden)

    Masoud Noshadi

    2015-05-01

    Full Text Available Polyethylene Terephthalate (PET is the most common material used in manufacturing mineral water bottles. Antimony trioxide (Sb2O3 used to form the PET containers may pollute water with their ingredients. In this research, graphite furnance atomic absorption spectrometry was used to investigate the effects of storage time (1 to 8 weeks, storage temperature (-20 to 80 °C, pH (6.3 to 8.3, exposure to sunlight, and UV radiation on leaching antimony from PET bottles into the mineral water of 15 bottled water brands available in Fars Province. Concentrations of antimony in the first and second weeks were lower than the maximum standard limit (5 ppb recommended by Iranian regulations. Antimony concentration in one sample (brand A rose above the standard limit after four weeks and in 3 samples (brands A, F, and J with antimony concentrations of 5.48, 5.08, and 5.06 µg/L, respectively exceeded the standard limit after 8 weeks. Sunlight, UV radiation, changes in pH, and storage at temperatures of -20 ℃, 60 ℃, and 80℃ were also found to increase antimony concentrations to levels above the maximum standard limit. Clearly, storing bottled mineral water in ambient conditions may lead to the release of antimony into bottled water, which is a serious threat to public health.

  12. In Vitro Antiparasitic and Apoptotic Effects of Antimony Sulfide Nanoparticles on Leishmania infantum

    Directory of Open Access Journals (Sweden)

    Saied Soflaei

    2012-01-01

    Full Text Available Visceral leishmaniasis is one of the most important sever diseases in tropical and subtropical countries. In the present study the effects of antimony sulfide nanoparticles on Leishmania infantum in vitro were evaluated. Antimony sulfide NPs (Sb2S5 were synthesized by biological method from Serratia marcescens bacteria. Then the cytotoxicity effects of different concentrations (5, 10, 25, 50, and 100 μg/mL of this nanoparticle were assessed on promastigote and amastigote stages of L. infantum. MTT method was used for verification results of promastigote assay. Finally, the percentages of apoptotic, necrotic, and viable cells were determined by flow cytometry. The results indicated the positive effectiveness of antimony sulfide NPs on proliferation of promastigote form. The IC50 (50% inhibitory concentration of antimony sulfide NPs on promastigotes was calculated 50 μg/mL. The cytotoxicity effect was dose-dependent means by increasing the concentration of antimony sulfide NPs, the cytotoxicity curve was raised and the viability curve of the parasite dropped simultaneously. Moreover, the IC50 of antimony sulfide NPs on amastigote stage was calculated 25 μg/mL. On the other hand, however, antimony sulfide NPs have a low cytotoxicity effect on uninfected macrophages but it can induce apoptosis in promastigote stage at 3 of 4 concentrations.

  13. Electrical conductivity of uranium-antimony oxide catalysts

    International Nuclear Information System (INIS)

    Golunski, S.E.; Nevell, T.G.; Hucknall, D.J.

    1985-01-01

    The relative ionic and electronic contributions to the electrical conductivity of a uranium-antimony oxide catalyst and of USbO 5 have been determined from measurements of a.c. and d.c. conductance. Under inert atmospheres (390 to 775 K) conduction in the catalyst (predominantly USb 3 O 10 together with small proportions of Sb 2 O 4 and USbO 5 ) is associated with both electronic and effectively charged atomic point defects. Only electronic conduction occurs in USbO 5 . Under oxygen (10 to 70 kPa, 493 to 682 K) both materials are n-type semiconductors at higher temperatures, but at lower temperatures semiconducting behaviour varies with the pressure of oxygen. Heating USbO 5 in oxygen induces an ionic contribution to conductivity. Ionic conduction in the catalyst is eliminated by heating in hydrogen or propene at 470 K but is restored by heating in oxygen. It is suggested that both charged oxygen vacancies and interstitial oxide ions are involved in interactions of gaseous components with uranium-antimony oxides. With alkenes, interstitial oxide ions give rise to the products of selective partial oxidation. (author)

  14. Thermal decomposition kinetics of antimony oxychloride in air

    Institute of Scientific and Technical Information of China (English)

    阳卫军; 唐谟堂; 金胜明

    2002-01-01

    The DTA and XRD techniques were employed to study thermal decomposition mechanism of antimony oxychloride SbOCl in the air. The thermal decomposition reaction occurs in four steps, and the former three steps as: SbOCl(s)→Sb4O5Cl2(s)+SbCl3(g)→Sb8O11Cl2(s)+SbCl3(g)→Sb2O3(s)+SbCl3(g). The forth step is the oxidation of Sb2O3 by air, Sb2O3(s)+O2→Sb2O4(s). The activation energy and the order of the thermal decomposition reaction of antimony oxychloride in three steps presented in DTA curves were calculated according to Kinssinger methods from DTA curves. The values of activation energy and the order are respectively 91.97kJ/mol, 0.73 in the first step, 131.14kJ/mol, 0.63 in the second step and 146.94kJ/mol, 1.58 in the third step.

  15. Bacterial Communities in the Groundwater of Xikuangshan Antimony Mine, China

    Science.gov (United States)

    Wu, M.; Wang, H.; Wang, N.; Wang, M.

    2017-12-01

    Xikuangshan (XKS) is the biggest antimony (Sb) mine around the word, which causes serious environmental contamination due to the mining actives. To fully understand the bacterial compositions in the groundwater around the mining area in XKS and their correlation with environmental factors, groundwater samples were collected and subject to 16S rDNA high throughput sequencing. Results indicated that Proteobacteria (especially Gamma-Proteobacteria) dominated bacterial communities in high-Sb groundwater samples, whereas Bacteroidetes predominated in low-Sb groundwater. Furthermore, antimony concentration was found to be the most significant factor shaping bacterial communities (P=0.002) with an explanation of 9.16% of the variation. Other factors such as pH, contents of Mg, Ca and orthophosphate were also observed to significantly correlate with bacterial communities. This was the first report to show the important impact of Sb concentration on bacterial community structure in the groundwater in the mining area. Our results will enhance the understanding of subsurface biogeochemical processes mediated by microbes.

  16. Electrical conductivity of uranium-antimony oxide catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Golunski, S.E.; Nevell, T.G. (Portsmouth Polytechnic (UK)); Hucknall, D.J. (Southampton Univ. (UK). Dept. of Chemistry)

    1985-05-01

    The relative ionic and electronic contributions to the electrical conductivity of a uranium-antimony oxide catalyst and of USbO/sub 5/ have been determined from measurements of a.c. and d.c. conductance. Under inert atmospheres (390 to 775 K) conduction in the catalyst (predominantly USb/sub 3/O/sub 10/ together with small proportions of Sb/sub 2/O/sub 4/ and USbO/sub 5/) is associated with both electronic and effectively charged atomic point defects. Only electronic conduction occurs in USbO/sub 5/. Under oxygen (10 to 70 kPa, 493 to 682 K) both materials are n-type semiconductors at higher temperatures, but at lower temperatures semiconducting behaviour varies with the pressure of oxygen. Heating USbO/sub 5/ in oxygen induces an ionic contribution to conductivity. Ionic conduction in the catalyst is eliminated by heating in hydrogen or propene at 470 K but is restored by heating in oxygen. It is suggested that both charged oxygen vacancies and interstitial oxide ions are involved in interactions of gaseous components with uranium-antimony oxides. With alkenes, interstitial oxide ions give rise to the products of selective partial oxidation.

  17. Implementation of ferric hydroxide-based media for removal of toxic metalloids

    Science.gov (United States)

    Szlachta, Małgorzata; Wójtowicz, Patryk

    2017-11-01

    Effective removal of inorganic arsenic species is possible by application of the sorption technique with the use of iron-based sorbents. This study investigates the removal of arsenic(III) and arsenic(V) from an aqueous solution by application of a granular ferric hydroxide-based sorbent. The performance of tested media was evaluated based on the batch and fixed-bed adsorption studies. The efficiency of the process was determined with various treatment times, adsorbent doses, initial concentrations of arsenic and various solution temperatures. The obtained adsorption data were fitted with pseudo-first and second-order kinetic models and Langmuir and Freundlich isotherm equations. It was observed that the overall arsenite removal was lower when compared to the arsenate, and all tested operating parameters influenced the process efficiency. The experiments under dynamic conditions showed high treatment capacity and stability of tested adsorbent over a long period of time.

  18. Behaviour of antimony during thermal treatment of Sb-rich halogenated waste

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J. [Laboratoire Gestion des Risques et Environnement, 25 rue de Chemnitz, 68200 Mulhouse (France); Dorge, S., E-mail: sophie.dorge@uha.fr [Laboratoire Gestion des Risques et Environnement, 25 rue de Chemnitz, 68200 Mulhouse (France); Trouve, G. [Laboratoire Gestion des Risques et Environnement, 25 rue de Chemnitz, 68200 Mulhouse (France); Venditti, D.; Durecu, S. [TREDI Departement de Recherche, Technopole de Nancy-Brabois, 9 avenue de la Foret de Haye, BP 184, 54505 Vandoeuvre-les-Nancy (France)

    2009-07-30

    Antimony compounds have a wide range of industrial applications, particularly as additives in flame retardants. To ensure environmentally friendly waste incineration of Sb-rich wastes, it is essential to strengthen the knowledge about the fate of antimony and the potential formation of harmful species. Investigations should be conducted particularly in relation with the main operational parameters controlling the process, chiefly temperature, residence time and air supply in the oven and in the post-combustion zone, prior final adapted cleaning of the flue-gas stream. Experimental studies focusing on antimony behaviour were undertaken through laboratory-scale thermal treatment at 850 deg. C and 1100 deg. C of a Sb-rich halogenated waste, originating from the sector of flame retardants formulation. The configuration of our laboratory experimental device allowed to achieve only low oxidative conditions in the waste bed, but high oxidative strength coupled with high temperature and sufficient gas residence time in the post-combustion zone, as prescribed during the incineration of hazardous wastes. Atomic absorption spectroscopy was used to assess the partition of antimony in the different compartments of the process. The oxidation degree of antimony in the gas-phase was determined by the use of electrochemical techniques, namely polarography coupled with anodic stripping voltamperometry. The partition of antimony between the residual ash and the gas-phase under moderate oxidative conditions in the waste bed was constant, whatever the temperature: the volatilization rate for antimony was {approx}64%, while a {approx}36% fraction remained in the residual bottom ashes. But interestingly, while at 850 {sup o}C, antimony was mainly present in the gas-phase at a +III oxidation degree, an increase in temperature of 250 {sup o}C favoured the presence of antimony to its highest oxidation degree +V in the flue-gas stream, a valence known to be involved in less toxic species.

  19. Behaviour of antimony during thermal treatment of Sb-rich halogenated waste

    International Nuclear Information System (INIS)

    Klein, J.; Dorge, S.; Trouve, G.; Venditti, D.; Durecu, S.

    2009-01-01

    Antimony compounds have a wide range of industrial applications, particularly as additives in flame retardants. To ensure environmentally friendly waste incineration of Sb-rich wastes, it is essential to strengthen the knowledge about the fate of antimony and the potential formation of harmful species. Investigations should be conducted particularly in relation with the main operational parameters controlling the process, chiefly temperature, residence time and air supply in the oven and in the post-combustion zone, prior final adapted cleaning of the flue-gas stream. Experimental studies focusing on antimony behaviour were undertaken through laboratory-scale thermal treatment at 850 deg. C and 1100 deg. C of a Sb-rich halogenated waste, originating from the sector of flame retardants formulation. The configuration of our laboratory experimental device allowed to achieve only low oxidative conditions in the waste bed, but high oxidative strength coupled with high temperature and sufficient gas residence time in the post-combustion zone, as prescribed during the incineration of hazardous wastes. Atomic absorption spectroscopy was used to assess the partition of antimony in the different compartments of the process. The oxidation degree of antimony in the gas-phase was determined by the use of electrochemical techniques, namely polarography coupled with anodic stripping voltamperometry. The partition of antimony between the residual ash and the gas-phase under moderate oxidative conditions in the waste bed was constant, whatever the temperature: the volatilization rate for antimony was ∼64%, while a ∼36% fraction remained in the residual bottom ashes. But interestingly, while at 850 o C, antimony was mainly present in the gas-phase at a +III oxidation degree, an increase in temperature of 250 o C favoured the presence of antimony to its highest oxidation degree +V in the flue-gas stream, a valence known to be involved in less toxic species.

  20. Synthesis, characterisation and electrochemical evaluation of reduced graphene oxide modified antimony nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Silwana, Bongiwe; Horst, Charlton van der [Natural Resources and the Environment (NRE), Council for Scientific and Industrial Research (CSIR), Stellenbosch 7600 (South Africa); SensorLab, Department of Chemistry, University of the Western Cape, Bellville 7535 (South Africa); Iwuoha, Emmanuel [SensorLab, Department of Chemistry, University of the Western Cape, Bellville 7535 (South Africa); Somerset, Vernon, E-mail: vsomerset@csir.co.za [Natural Resources and the Environment (NRE), Council for Scientific and Industrial Research (CSIR), Stellenbosch 7600 (South Africa)

    2015-10-01

    This paper demonstrates some aspects on the synthesis and characterisation of nanoparticles of metallic alloys using polyvinyl alcohol as a stabiliser, which combines high surface area and superior hybrid properties. The present experimental design was to synthesise a nanocomposite of reduced graphene oxide and antimony nanoparticles to be used as thin films for macro- and micro-carbon electrodes for enhancing sensing of different toxic metal pollutants in the environment. The synthetic process of reduced graphene oxide was done using the modified Hummers method while antimony pentachloride was reduced with sodium borohydride into nanoparticles of antimony using polyvinyl-alcohol as a stabiliser. The systematic investigation of morphology was done by scanning electron microscopy and high resolution-transmission electron microscope, which revealed the synthesis of a product, consists of reduced graphene oxide antimony nanoparticles. The electrochemical behaviour of the reduced graphene oxide antimony nanoparticles coated on a glassy carbon electrode was performed using voltammetric and impedance techniques. Electrochemical impedance measurements showed that the overall resistance, including the charge–transfer resistance, was smaller with reduced graphene oxide antimony nanoparticles than reduced graphene oxide and antimony nanoparticles, on their own. Evaluation of the reduced graphene oxide antimony nanoparticle sensor in the stripping voltammetry has shown a linear working range for concentration of platinum (II) between 6.0 × 10{sup −6}–5.4 × 10{sup −5} μg L{sup −1} with limit of detection of 6 × 10{sup −6} μg L{sup −1} (signal-to-noise ratio = 3), which is below the World Health Organisation guidelines for freshwater. - Highlights: • Reduced graphene oxide modified antimony nanoparticles were chemically synthesised. • TEM results show rGO-Sb nanoparticles with a diameter range of between 2 and 20 nm. • Impedance results confirm

  1. Segregation of antimony in InP in MOVPE

    Energy Technology Data Exchange (ETDEWEB)

    Weeke, Stefan

    2008-07-01

    In this work the segregation of antimony in indium phosphide in metal organic vapour phase epitaxy (MOVPE)was systematically investigated. Therefore phosphine stabilized InP surfaces were treated with tri-methyl-antimony (TMSb) in MOVPE. An antimony rich Sb/InP surface was established, showing a typical spectra for the antimonides observed in reflectance anisotropy spectroscopy (RAS).Adsorption and desorption of antimony are investigated, as well as the incorporation of Sb during overgrowth of the Sb/InP surface with InP. Therefore the growth parameters temperature, TMSb partial pressure and treatment time are varied and their influence investigated. The experiments are monitored in-situ with RAS, the achieved data is correlated with ex-situ characterisation such as X-ray diffraction (XRD) and secondary ion mass spectroscopy (SIMS). It is shown that under treatment with TMSb a stable Sb/InP surface is formed within seconds, which does not change under further TMSb treatment. This process is rarely influenced by the TMSb partial pressure. On the contrary, the desorption of Sb is a very slow process. Two main processes can be distinguished: The desorption of excess Sb from the surface and the formation of the MOVPE prepared InP (2 x 1) surface. The reaction velocity of adsorption and desorption increases with temperature. Above a critical value the increase of TMSb partial pressure has no influence on the time for desorption. During overgrowth of the Sb/InP surface the opposite temperature dependence is observed: with increasing growth temperature the typical spectra for antimonides is observed longer. An analysis of the grown samples with XRD and SIMS showed the formation of an InPSb double quantum well. One layer is formed at the interface, the second one 50 nm-120 nm deep in the InP. The location of the 2nd InPSb layer can be correlated with the vanishing of the Sb signature in RAS. The distance between the quantum wells increases with growth temperature, until it

  2. Segregation of antimony in InP in MOVPE

    International Nuclear Information System (INIS)

    Weeke, Stefan

    2008-01-01

    In this work the segregation of antimony in indium phosphide in metal organic vapour phase epitaxy (MOVPE)was systematically investigated. Therefore phosphine stabilized InP surfaces were treated with tri-methyl-antimony (TMSb) in MOVPE. An antimony rich Sb/InP surface was established, showing a typical spectra for the antimonides observed in reflectance anisotropy spectroscopy (RAS).Adsorption and desorption of antimony are investigated, as well as the incorporation of Sb during overgrowth of the Sb/InP surface with InP. Therefore the growth parameters temperature, TMSb partial pressure and treatment time are varied and their influence investigated. The experiments are monitored in-situ with RAS, the achieved data is correlated with ex-situ characterisation such as X-ray diffraction (XRD) and secondary ion mass spectroscopy (SIMS). It is shown that under treatment with TMSb a stable Sb/InP surface is formed within seconds, which does not change under further TMSb treatment. This process is rarely influenced by the TMSb partial pressure. On the contrary, the desorption of Sb is a very slow process. Two main processes can be distinguished: The desorption of excess Sb from the surface and the formation of the MOVPE prepared InP (2 x 1) surface. The reaction velocity of adsorption and desorption increases with temperature. Above a critical value the increase of TMSb partial pressure has no influence on the time for desorption. During overgrowth of the Sb/InP surface the opposite temperature dependence is observed: with increasing growth temperature the typical spectra for antimonides is observed longer. An analysis of the grown samples with XRD and SIMS showed the formation of an InPSb double quantum well. One layer is formed at the interface, the second one 50 nm-120 nm deep in the InP. The location of the 2nd InPSb layer can be correlated with the vanishing of the Sb signature in RAS. The distance between the quantum wells increases with growth temperature, until it

  3. Groundwater contamination with arsenic and other trace elements in an area of the Pampa, province of Cordoba, Argentina

    International Nuclear Information System (INIS)

    Nicolli, H.B.; Suriano, J.M.; Gomez Peral, M.A.; Ferpozzi, L.H.; Baleani, O.A.

    1989-01-01

    A geochemical study of the groundwater of the pampa in the province of Cordoba, Argentina, is reported. Physical-chemical parameters, dissolved solids, and seven trace elements were determined in 60 selected water samples. Systematic and accurate measurements of arsenic, fluorine, and vanadium were performed for the first time. The geographic distribution of the seven trace elements was mapped and its correlation with the anion-cation composition of the water was studied. Eighty-four percent of the water analyzed showed arsenic contents over 0.05 mg/l. The maxima for arsenic, fluorine, vanadium, and uranium contents were found in the western part of the study area, in waters dominated by alkali metal cations. Maximum selenium and antimony contents were found in the eastern part of the areas, whereas molybdenum distribution showed no relationship to the other groups. The movements of the subsoil have disturbed surface and subsurface drainage, thus influencing the water salinity and trace element contents. To investigate the origin of contamination, 54 loess samples were collected at wells in depths ranging from the surface down to the water table. This loess, which has a high proportion of volcanic components, mainly rhyolitic glass, exhibits a chemical composition corresponding to that of a dacite. The loess and volcanic glass show anomalous contents of all contaminant trace elements, mainly arsenic and selenium. For this reason, loess is considered to be the most important source of contamination of this ground water area. 30 refs., 6 figs., 9 tab

  4. TREATMENT TECHNOLOGIES FOR ARSENIC REMOVAL

    Science.gov (United States)

    The United States Environmental Protection Agency (US EPA) recently reduced the arsenic maximum contaminant level (MCL) from 0.050 mg/L to 0.010 mg/L. In order to increase arsenic outreach efforts, a summary of the new rule, related health risks, treatment technologies, and desig...

  5. Antimony susceptibility of Leishmania isolates collected over a 30-year period in Algeria.

    Science.gov (United States)

    Eddaikra, Naouel; Ait-Oudhia, Khatima; Kherrachi, Ihcen; Oury, Bruno; Moulti-Mati, Farida; Benikhlef, Razika; Harrat, Zoubir; Sereno, Denis

    2018-03-01

    In Algeria, the treatment of visceral and cutaneous leishmanioses (VL and CL) has been and continues to be based on antimony-containing drugs. It is suspected that high drug selective pressure might favor the emergence of chemoresistant parasites. Although treatment failure is frequently reported during antimonial therapy of both CL and VL, antimonial resistance has never been thoroughly investigated in Algeria. Determining the level of antimonial susceptibility, amongst Leishmania transmitted in Algeria, is of great importance for the development of public health policies. Within the framework of the knowledge about the epidemiology of VL and CL amassed during the last 30 years, we sampled Leishmania isolates to determine their susceptibility to antimony. We analyzed a total of 106 isolates including 88 isolates collected between 1976 and 2013 in Algeria from humans, dogs, rodents, and phlebotomines and 18 collected from dogs in France. All the Algerian isolates were collected in 14 localities where leishmaniasis is endemic. The 50% inhibitory concentrations (IC50) of potassium antimony tartrate (the trivalent form of antimony, Sb(III)) and sodium stibogluconate (the pentavalent form of antimony, Sb(V)) were determined in promastigotes and intramacrophage amastigotes, respectively. The epidemiological cutoff (ECOFF) that allowed us to differentiate between Leishmania species causing cutaneous or visceral leishmaniases that were susceptible (S+) or insusceptible (S-) to the trivalent form of antimony was determined. The computed IC50 cutoff values were 23.83 μg/mL and 15.91 μg/mL for VL and CL, respectively. We report a trend of increasing antimony susceptibility in VL isolates during the 30-year period. In contrast, an increase in the frequency of S- phenotypes in isolates causing CL was observed during the same period. In our study, the emergence of S- phenotypes correlates with the inclusion of L. killicki (syn: L. tropica) isolates that cause cutaneous

  6. Characteristic electron energy losses in monoatomic antimony films on (110) and (112) tungsten faces

    International Nuclear Information System (INIS)

    Gorodetskij, D.A.; Gorchinskij, A.D.; Shevlyakov, S.A.

    1981-01-01

    Complex investigations of antimony condensation on a monoatomical clean surface of tungsten monocrystals are carried out. The completion of a physical antimony monolayer has been controlled by the methods of Auger-electron spectroscopy and slow electron diffraction. It is shown that at submonolayer coatings a collectivization of valent electrons occurs leading to appearance of peaks of surface and volumetric plasmons in the energy losses spectrum. The anomalous cencentrational dependence of antimony ionization peak intensity has been found. The origin of previously unexplored peaks in the energy losses spectrum is discussed [ru

  7. Varicella zoster virus reactivation during or immediately following treatment of tegumentary leishmaniasis with antimony compounds

    Directory of Open Access Journals (Sweden)

    Andrea Barbieri Barros

    2014-07-01

    Full Text Available Antimony compounds are the cornerstone treatments for tegumentary leishmaniasis. The reactivation of herpes virus is a side effect described in few reports. We conducted an observational study to describe the incidence of herpes zoster reactivation during treatment with antimony compounds. The global incidence of herpes zoster is approximately 2.5 cases per 1,000 persons per month (or 30 cases per 1,000 persons per year. The estimated incidence of herpes zoster in patients undergoing antimony therapy is higher than previously reported.

  8. An investigation of inorganic antimony species and antimony associated with soil humic acid molar mass fractions in contaminated soils

    International Nuclear Information System (INIS)

    Steely, Sarah; Amarasiriwardena, Dulasiri; Xing Baoshan

    2007-01-01

    The presence of antimony compounds is often suspected in the soil of apple orchards contaminated with lead arsenate pesticide and in the soil of shooting ranges. Nitric acid (1 M) extractable Sb from the shooting range (8300 μg kg -1 ) and the apple orchard (69 μg kg -1 ) had considerably higher surface Sb levels than the control site ( -1 ), and Sb was confined to the top ∼30 cm soil layer. Sb(V) was the principal species in the shooting range and the apple orchard surface soils. Size exclusion chromatography-inductively coupled plasma-mass spectrometry (SEC-ICP-MS) analysis of humic acids isolated from the two contaminated soils demonstrated that Sb has complexed to humic acid molar mass fractions. The results also indicate that humic acids have the ability to arrest the mobility of Sb through soils and would be beneficial in converting Sb(III) to a less toxic species, Sb(V), in contaminated areas. - The soil surface and depth distribution Sb(V) and Sb(III) species in a contaminated apple orchard and a shooting range, and the effect soil humic acids on inorganic antimony species is reported

  9. Effects of lead, cadmium, arsenic, and mercury co-exposure on children's intelligence quotient in an industrialized area of southern China.

    Science.gov (United States)

    Pan, Shangxia; Lin, Lifeng; Zeng, Fan; Zhang, Jianpeng; Dong, Guanghui; Yang, Boyi; Jing, You; Chen, Shejun; Zhang, Gan; Yu, Zhiqiang; Sheng, Guoying; Ma, Huimin

    2018-04-01

    Exposure to metal(loid)s can lead to adverse effects on nervous system in children. However, little is known about the possible interaction effects of simultaneous exposure to multiple metal(loid)s on children's intelligence. In addition, relationship between blood lead concentrations (lead (Pb), cadmium (Cd), arsenic (As) and mercury (Hg) in blood (BPb, BCd, BAs, BHg) and urine (UPb, UCd, UAs, UHg) were assessed, as well as children's intelligence quotient (IQ). A significant decrease in IQ scores was identified in children from the industrialized town (p < .05), who had statistically higher geometric mean concentrations of BPb, BCd, UPb, UCd and UHg (65.89, 1.93, 4.04, 1.43 and 0.37 μg/L, respectively) compared with children from the reference town (37.21, 1.07, 2.14, 1.02 and 0.30 μg/L, respectively, p < .05). After adjusting confounders, only BPb had a significant negative association with IQ (B = -0.10, 95% confidence interval: -0.15 to -0.05, p < .001), which indicated that IQ decreased 0.10 points when BPb increased 1 μg/L. Significant negative interactions between BAs and BHg, positive interaction between UPb and UCd on IQ were observed (p < .10), and BPb <100 μg/L still negatively affected IQ (p < .05). Our findings suggest that although only BPb causes a decline in children's IQ when simultaneously exposed to these four metal(loid)s at relatively low levels, interactions between metal(loid)s on children's IQ should be paid special attention, and the reference standard in China of 100 μg/L BPb for children above 5 years old should be revised. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Arsenic concentrations in Chinese coals

    International Nuclear Information System (INIS)

    Wang Mingshi; Zheng Baoshan; Wang Binbin; Li Shehong; Wu Daishe; Hu Jun

    2006-01-01

    The arsenic concentrations in 297 coal samples were collected from the main coal-mines of 26 provinces in China were determined by molybdenum blue coloration method. These samples were collected from coals that vary widely in coal rank and coal-forming periods from the five main coal-bearing regions in China. Arsenic content in Chinese coals range between 0.24 to 71 mg/kg. The mean of the concentration of Arsenic is 6.4 ± 0.5 mg/kg and the geometric mean is 4.0 ± 8.5 mg/kg. The level of arsenic in China is higher in northeastern and southern provinces, but lower in northwestern provinces. The relationship between arsenic content and coal-forming period, coal rank is studied. It was observed that the arsenic contents decreases with coal rank in the order: Tertiary > Early Jurassic > Late Triassic > Late Jurassic > Middle Jurassic > Late Permian > Early Carboniferous > Middle Carboniferous > Late Carboniferous > Early Permian; It was also noted that the arsenic contents decrease in the order: Subbituminous > Anthracite > Bituminous. However, compared with the geological characteristics of coal forming region, coal rank and coal-forming period have little effect on the concentration of arsenic in Chinese coal. The average arsenic concentration of Chinese coal is lower than that of the whole world. The health problems in China derived from in coal (arsenism) are due largely to poor local life-style practices in cooking and home heating with coal rather than to high arsenic contents in the coal

  11. Multiple inorganic toxic substances contaminating the groundwater of Myingyan Township, Myanmar: arsenic, manganese, fluoride, iron, and uranium.

    Science.gov (United States)

    Bacquart, Thomas; Frisbie, Seth; Mitchell, Erika; Grigg, Laurie; Cole, Christopher; Small, Colleen; Sarkar, Bibudhendra

    2015-06-01

    In South Asia, the technological and societal shift from drinking surface water to groundwater has resulted in a great reduction of acute diseases due to water borne pathogens. However, arsenic and other naturally occurring inorganic toxic substances present in groundwater in the region have been linked to a variety of chronic diseases, including cancers, heart disease, and neurological problems. Due to the highly specific symptoms of chronic arsenic poisoning, arsenic was the first inorganic toxic substance to be noticed at unsafe levels in the groundwater of West Bengal, India and Bangladesh. Subsequently, other inorganic toxic substances, including manganese, uranium, and fluoride have been found at unsafe levels in groundwater in South Asia. While numerous drinking water wells throughout Myanmar have been tested for arsenic, relatively little is known about the concentrations of other inorganic toxic substances in Myanmar groundwater. In this study, we analyzed samples from 18 drinking water wells (12 in Myingyan City and 6 in nearby Tha Pyay Thar Village) and 2 locations in the Ayeyarwaddy River for arsenic, boron, barium, beryllium, cadmium, cobalt, chromium, copper, fluoride, iron, mercury, manganese, molybdenum, nickel, lead, antimony, selenium, thallium, uranium, vanadium, and zinc. Concentrations of arsenic, manganese, fluoride, iron, or uranium exceeded health-based reference values in most wells. In addition, any given well usually contained more than one toxic substance at unsafe concentrations. While water testing and well sharing could reduce health risks, none of the wells sampled provide water that is entirely safe with respect to inorganic toxic substances. It is imperative that users of these wells, and users of other wells that have not been tested for multiple inorganic toxic substances throughout the region, be informed of the need for drinking water testing and the health consequences of drinking water contaminated with inorganic toxic

  12. Thorium coprecipitation method for spectrophotometric determination of arsenic (III) and arsenic (V) in groundwaters

    International Nuclear Information System (INIS)

    Tamari, Yuzo; Yamamoto, Nobuki; Tsuji, Haruo; Kusaka, Yuzuru

    1989-01-01

    A new coprecipitation method for the spectrophotometry of arsenic (III) and arsenic (V) in groundwater has been developed. Arsenic (III) and arsenic (V) were coprecipitated with thorium (IV) hydroxide from 1000ml of groundwater at pH9. The precipitate was centrifuged and then dissolved with hydrochloric acid. Arsenic (III) was spectrophotometrically determined by the usual silver diethylditiocarbamate (Ag-DDTC) method after generating the arsenic to arsine with sodium tetrahydroborate under masking the thorium with EDTA-NaF at pH6. From another portion of the same groundwater, both arsenic (III) and arsenic (V) were determined by the Ag-DDTC method after reducing all the arsenic to arsine with sodium tetrahydroborate at pH less than 1 in the presence of the EDTA-NaF. The concentration of arsenic (V) was obtained by subtracting that of arsenic (III) from the total for arsenic. (author)

  13. The promotion on cell growth of androgen-dependent prostate cancer by antimony via mimicking androgen activity.

    Science.gov (United States)

    Zhang, Changwen; Li, Penghao; Wen, Yingwu; Feng, Guowei; Liu, Yu; Zhang, Yangyi; Xu, Yong; Zhang, Zhihong

    2018-05-15

    Antimony is a widely used heavier pnictogens in industry, and its toxicity has been a matter of concern. Although previous studies have suggested that antimony may have the function as either a tumor suppressor or an oncogene in several cancers, the molecular basis underlying antimony-mediated transformation is still unclear. In the current study, we attempt to elucidate the potential role of antimony in the development of prostate cancer. Our results showed that the concentration of antimony was much higher in serum of prostate cancer patients, and was closely associated with poor outcome of patients who underwent radical prostatectomy. Additionally, low dose of antimony could promote proliferation and invasion of androgen-dependent prostate cancer cell line LNCaP cells in vitro and in vivo. The mechanistic studies demonstrated that exposure to antimony triggered the phosphorylation of androgen receptor (AR), which transcriptionally regulates the expression of androgen-related targets, including PSA and NKX3.1. Overall, our results unearthed that antimony could promote tumor growth by mimicking androgen activity in androgen-dependent prostate cancer cells. Therefore, these findings expanded our understanding on the molecular mechanism of antimony in tumorigenesis and tumor progression of prostate cancer, and it appears to be an inspiring strategy to restrain prostate cancer by inhibiting antimony-induced androgen-like effects. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Production of selenium-72 and arsenic-72

    Science.gov (United States)

    Phillips, D.R.

    1994-12-06

    Methods and apparatus are described for producing selenium-72, separating it from its daughter isotope arsenic-72, and generating multiple portions of a solution containing arsenic-72 from a reusable parent substance comprised of selenium-72. The invention provides apparatus which can be located at a site where arsenic-72 is used, for purposes such as PET imaging, to produce arsenic-72 as needed, since the half-life of arsenic-72 is very short. 2 figures.

  15. [Arsenical keratosis treated by dermatome shaving].

    Science.gov (United States)

    Kjerkegaard, Ulrik Knap; Heje, Jens Martin; Vestergaard, Christian; Stausbøl-Grøn, Birgitte; Stolle, Lars Bjørn

    2014-05-05

    Cutaneous malignancy in association with arsenic exposure is a rare but well-documented phenomenon. Signs of chronic arsenic exposure are very rare in Denmark today. However, arsenic was used in the medical treatment of psoriasis vulgaris up till the 1980's and several patients suffer from this arsenic treatment today. This case report shows that arsenical keratosis can be treated by dermatome shaving, a superficial destructive therapy.

  16. Speciation of inorganic antimony in polyethylene terephthalate (PET) bottled water using hydride generation atomic absorption spectrophotometry (HG-AAS)

    International Nuclear Information System (INIS)

    Markwo, Ali

    2015-07-01

    Antimony (Sb) is a regulated drinking water contaminant that has been found to leach from polyethylene terephthalate (PET) plastic containers into the waters stored in them. The common inorganic species of antimony in water are Sb(III) and Sb(V), with the former being more toxic and the latter being more soluble. In order to assess the extent to which waters stored in PET bottles are contaminated with inorganic Sb and to further examine the effect of typical storage conditions on migration rates, speciation analysis of inorganic Sb using hydride generation atomic absorption spectrophotometry (HG-AAS) was undertaken on selected PET plastic bottled waters marketed in the Greater Accra Region of Ghana. Six brands of PET plastic bottled waters were obtained at source on the day of packaging, and analyses undertaken on samples of the waters stored in the plastic containers at intervals of four weeks for twelve weeks, under three carefully chosen storage conditions distinctive of bottled water usage. Selected physicochemical properties of samples of the waters stored in the plastic containers and total Sb of samples of the plastic containers were also determined to discover the effect of some physical properties and certain major ions, and the influence of the different quality PET plastic types on Sb migration respectively. The study revealed amounts of total Sb in the PET plastic containers of the 6 brands ranging from 123.46 mg/kg to 146.45 mg/kg. The selected physicochemical properties of the waters stored in the PET plastic containers considered were pH (6.78 – 7.43), Ca2+ (1.61 – 12.39 mg/L), Mg2+ (1.00 – 4.96 mg/L), HCO3− (6.18 – 55.41 mg/L) and TDS (8.70 – 70.40 mg/L)). PET bottled waters of 5 out of the 6 brands contained Sb (initial total Sb ranging from 1.11 – 14.65 μg/L) before storage. Total Sb concentrations of the waters stored in the plastic containers were observed to increase with storage time under all the three storage conditions for

  17. The Legacy of Arsenic Contamination from Giant Mine, Northern Canada: An Assessment of Impacts Based on Lake Water and Lake Sediment Core Analysis

    Science.gov (United States)

    Blais, J. M.; Korosi, J.

    2016-12-01

    The Giant Mine, which operated between 1948 and 2004 and located near the City of Yellowknife (Northwest Territories, Canada), has left a legacy of arsenic, antimony, and mercury contamination extending to the present day. Over 20,000 tonnes of arsenic trioxide dust was released from roaster stack emissions during its first 10 years of operations, leading to a significant contamination of the surrounding landscape. Here we present a summary of impacts by the recent contamination from Giant Mine on the surrounding region. A survey we conducted of 25 lakes of the region in 2010 revealed that most lake water within a 15 km radius of the roaster stack had arsenic concentrations in water > 10 mg/L, the standard for drinking water, with concentrations declining exponentially with increasing distance from the roaster stack. Sediment cores from lakes were collected near the Giant Mine roaster stack and radiometrically dated by 137Cs and excess 210Pb. Arsenic concentrations in these sediments increased by 1700% during the 1950s and 60s, consistent with the history of arsenic releases from roaster emissions. Correspondingly, pelagic diatoms and cladocerans were extirpated from one lake during this period, based on microfossil analysis of lake sediment deposits. Sediment core analysis further showed that this lake ecosystem has not recovered, even ten years after closure of the mine. Likely causes for the lack of recent recovery are explored with the use of sediment toxicity bioassays, using a novel paleo-ecotoxicological approach of using toxicity assessments of radiometrically dated lake sediment horizons.

  18. Comparison of sample preparation procedures on metal(loid) fractionation patterns in lichens.

    Science.gov (United States)

    Kroukamp, E M; Godeto, T W; Forbes, P B C

    2017-08-13

    The effects of different sample preparation strategies and storage on metal(loid) fractionation trends in plant material is largely underresearched. In this study, a bulk sample of lichen Parmotrema austrosinense (Zahlbr.) Hale was analysed for its total extractable metal(loid) content by ICP-MS, and was determined to be adequately homogenous (sample were prepared utilising a range of sample preservation techniques and subjected to a modified sequential extraction procedure or to total metal extraction. Both experiments were repeated after 1-month storage at 4 °C. Cryogenic freezing gave the best reproducibility for total extractable elemental concentrations between months, indicating this to be the most suitable method of sample preparation in such studies. The combined extraction efficiencies were >82% for As, Cu, Mn, Pb, Sr and Zn but poor for other elements, where sample preparation strategies 'no sample preparation' and 'dried in a desiccator' had the best extraction recoveries. Cryogenic freezing procedures had a significantly (p sample cleaning and preservation when species fractionation patterns are of interest. This study also shows that the assumption that species stability can be ensured through cryopreservation and freeze drying techniques needs to be revisited.

  19. Distribution of metal and metalloid elements in human scalp hair in Taiyuan, China.

    Science.gov (United States)

    Zhu, Yuen; Wang, Yuzhe; Meng, Fanjian; Li, Lifen; Wu, Shan; Mei, Xiaohui; Li, Hua; Zhang, Guixiang; Wu, Daishe

    2018-02-01

    This study investigated the levels of metal and metalloid elements (As, Ca, Cd, Cr, Cu, Fe, Hg, Mg, Ni, Pb, and Zn) in scalp hair samples collected from 161 people of different age and gender groups living in the six districts of Taiyuan, an industrial city with rich coal reserve in Shanxi province in China. Levels of most elements in the hair were high in the 26-40 age groups and increased with the length of residence. Calcium, Cr, Mg, Ni and Zn levels in the females' hair were significantly higher than those in the males' (p industrial and non-industrial districts because most of industry factories are in the upper wind position in Taiyuan, and contamination is prone to spread to non-industrial districts. The principal component analysis indicates that the main sources of these elements are mining activities, the neighboring stainless steel industry, and coal combustion. These results indicate that the industrial activities primarily contribute to the metal and metalloid pollution in Taiyuan, whereas numerous factors caused the metals accumulation in hair. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Factors of the accumulation of heavy metals and metalloids at geochemical barriers in urban soils

    Science.gov (United States)

    Kosheleva, N. E.; Kasimov, N. S.; Vlasov, D. V.

    2015-05-01

    The bulk contents and concentrations of mobile (extracted by an ammonium acetate buffer with EDTA) Cd, Pb, Sb, As, Bi, Zn, and Cu were determined in the surface horizons of urban soils in the Eastern administrative okrug of Moscow. The regression analysis showed that the accumulation of these metals and metalloids in the soils is controlled by the physicochemical soil properties and by number of anthropogenic factors and landscape conditions (geochemical position, type of loose deposits, character of land use, dust load, vehicle emissions, building pattern, percent of green areas, and the extent of sealed soils). The precipitation of studied elements on the geochemical barriers had the following regularities: Cd, Cu, and Zn accumulated on the alkaline barriers; Bi, Sb, As, Cu, Pb, and Zn, on chemisorption barriers; Sb, As, and Pb, on organomineral barriers; and Cd and Cu, on the sorption-sedimentation barriers. Technogenic transformation of the physicochemical properties of urban soils resulted in the increase of the mean bulk contents of heavy metals and metalloids by 33-99%; the portion of elements fixed on the geochemical barriers increased by 26-50%.

  1. Spatiotemporal distribution of airborne particulate metals and metalloids in a populated arid region

    Science.gov (United States)

    Prabhakar, Gouri; Sorooshian, Armin; Toffol, Emily; Arellano, Avelino F.; Betterton, Eric A.

    2014-08-01

    A statistical analysis of data from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network of aerosol samplers has been used to study the spatial and temporal concentration trends in airborne particulate metals and metalloids for southern Arizona. The study region is a rapidly growing area in southwestern North America characterized by high fine soil concentrations (among the highest in the United States), anthropogenic emissions from an area within the fastest growing region in the United States, and a high density of active and abandoned mining sites. Crustal tracers in the region are most abundant in the summer (April-June) followed by fall (October-November) as a result of dry meteorological conditions which favor dust emissions from natural and anthropogenic activity. A distinct day-of-week cycle is evident for crustal tracer mass concentrations, with the greatest amplitude evident in urban areas. There have been significant reductions since 1988 in the concentrations of toxic species that are typically associated with smelting and mining. Periods with high fine soil concentrations coincide with higher concentrations of metals and metalloids in the atmosphere, with the enhancement being higher at urban sites.

  2. Distribution of metals and metalloids in dried seaweeds and health risk to population in southeastern China.

    Science.gov (United States)

    Chen, Qing; Pan, Xiao-Dong; Huang, Bai-Fen; Han, Jian-Long

    2018-02-23

    Concern about metals and metalloids, especially heavy metals in seaweeds has risen due to potential health risk. This study investigated the distribution of 10 metals and metalloids in 295 dried seaweeds (brown and red) and estimated the possible health risk via hazard index (HI). Elements in seaweeds can be sequenced in descending order by mean values: Al > Mn > As > Cu > Cr > Ni > Cd > Se > Pb > Hg. The levels of Cd, Cu, Mn and Ni in red seaweeds were significantly higher than those in brown seaweeds (P < 0.01). Correlation analysis showed contents of Ni-Cr (r = 0.59, P < 0.01) in seaweeds had moderate positive correlations. Seaweeds from different geographical origins had diverse element distribution. Risk assessment showed that HI at mean level was less than the threshold of 1. It indicates that for the general people there is low health risk to these elements by the intake of seaweeds. Furthermore, in terms of the confirmative toxicity of some metals, such as Cd, Pb and Hg, surveillance of metals in seaweeds should be performed continuously.

  3. Possibilities of using neutron activation analysis to discovery antimony aureoles at near-surface deposits

    International Nuclear Information System (INIS)

    Voin, M.I.; Kuligin, V.M.; Rakovskij, Eh.E.

    1978-01-01

    Described is the technique for determining antimony in rock and ore samples by instrumental neutron activation method with the sensitivity of 0.5 g/t from the 0.3-0.5 g weighed amount. Antimony was determined using the photopeak of antimony-124 isotope with the energy of 1692 keV. For analysis, 0.1 g samples were packed in aluminium foil and irradiated for 22 hours by reactor neutron fluence of 1.2x10 13 neutron/cm 2 xs. After cooling for 7 days induced activity of samples was measured using multichannel analizer with semiconductor detector with sensitive zone volume of 40 cm 3 . Real sensitivity while determining antimony was 1g/t, mean square error in the content range of 1-10 g/t is 14%

  4. Antimony Trioxide (ATO) - Summary of External Peer Review and Public Comments and Disposition

    Science.gov (United States)

    This document summarizes the public and external peer review comments that the EPA’s Office of Pollution Prevention and Toxics (OPPT) received for the draft work plan risk assessment for Antimony Trioxide (ATO).

  5. NEW THIO S2- ADDUCTS WITH ANTIMONY (III AND V HALIDE: SYNTHESIS AND INFRARED STUDY

    Directory of Open Access Journals (Sweden)

    HASSAN ALLOUCH

    2013-12-01

    Full Text Available Five new S2- adducts with SbIII and SbV halides have been synthesized and studied by infrared. Discrete structures have been suggested, the environment around the antimony being tetrahedral, trigonal bipyramidal or octahedral.

  6. Distribution of antimony in the oxide layer formed by potentiostatic oxidation of Pb-Sb alloy

    Energy Technology Data Exchange (ETDEWEB)

    Arifuku, F.; Yoneyama, H.; Tamura, H.

    1979-09-01

    The distribution of antimony within the oxide films on Pb-Sb alloy prepared by potentiostatic oxidation in H/sub 2/SO/sub 4/ solutions was examined by SIMS. The study of oxide films prepared by applying different potentials for three hours showed that two types of film were obtained depending on whether the potential was more negative or more positive than 1.5 V. Antimony profiles were obtained for films at several stages in the initial growth. It was found that antimony was retained in the oxide film at 1.5 V during both nucleation and two- or three-dimensional growth of PbO/sub 2/ and at 1.6 V during the lateral overlaps of three-dimensional centers of PbO/sub 2/. Relationships between the antimony distribution profiles and the oxide film growth are discussed. 8 figures, 1 table.

  7. Co-doping with antimony to control phosphorous diffusion in germanium

    KAUST Repository

    Tahini, H. A.; Chroneos, Alexander; Grimes, R. W.; Schwingenschlö gl, Udo

    2013-01-01

    donor co-doping on the migration activation energies of vacancy-mediated diffusion processes. The migration energy barriers for phosphorous and antimony were found to be increased significantly when larger clusters involving two donor atoms and a vacancy

  8. Arsenic absorption by members of the Brassicacea family, analysed by neutron activation, k0-method - preliminary results

    International Nuclear Information System (INIS)

    Uemura, George; Matos, Ludmila Vieira da Silva; Silva, Maria Aparecida da; Ferreira, Alexandre Santos Martorano; Menezes, Maria Angela de Barros Correia

    2009-01-01

    Natural arsenic contamination is a cause for concern in many countries of the world including Argentina, Bangladesh, Chile, China, India, Mexico, Thailand and the United States of America and also in Brazil, specially in the Iron Quadrangle area, where mining activities has been contributing to aggravate natural contamination. Brassicacea is a plant family with edible species (arugula, cabbage, cauliflower, cress, kale, mustard, radish), ornamental ones (alysssum, field pennycress, ornamental cabbages and kales) and some species are known as metal and metalloid accumulators (Indian mustard, field pennycress), like chromium, nickel, and arsenic. The present work aimed at studying other taxa of the Brassicaceae family to verify their capability in absorbing arsenic, under controlled conditions, for possible utilisation in remediation activities. The analytical method chosen was neutron activation analysis, k 0 method, a routine technique at CDTN, and also very appropriate for arsenic studies. To avoid possible interference from solid substrates, like sand or vermiculite, attempts were carried out to keep the specimens in 1/4 Murashige and Skoog basal salt solution (M and S). Growth was stumped, plants withered and perished, showing that modifications in M and S had to be done. The addition of nickel and silicon allowed normal growth of the plant specimens, for periods longer than usually achieved (more than two months); yielding samples large enough for further studies with other techniques, like ICP-MS, and other targets, like speciation studies. The results of arsenic absorption are presented here and the need of nickel and silicon in the composition of M and S is discussed. (author)

  9. Arsenic absorption by members of the Brassicacea family, analysed by neutron activation, k{sub 0}-method - preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Uemura, George; Matos, Ludmila Vieira da Silva; Silva, Maria Aparecida da; Ferreira, Alexandre Santos Martorano; Menezes, Maria Angela de Barros Correia [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN-CNEN/MG), Belo Horizonte, MG (Brazil)], e-mail: george@cdtn.br, e-mail: menezes@cdtn.br

    2009-07-01

    Natural arsenic contamination is a cause for concern in many countries of the world including Argentina, Bangladesh, Chile, China, India, Mexico, Thailand and the United States of America and also in Brazil, specially in the Iron Quadrangle area, where mining activities has been contributing to aggravate natural contamination. Brassicacea is a plant family with edible species (arugula, cabbage, cauliflower, cress, kale, mustard, radish), ornamental ones (alysssum, field pennycress, ornamental cabbages and kales) and some species are known as metal and metalloid accumulators (Indian mustard, field pennycress), like chromium, nickel, and arsenic. The present work aimed at studying other taxa of the Brassicaceae family to verify their capability in absorbing arsenic, under controlled conditions, for possible utilisation in remediation activities. The analytical method chosen was neutron activation analysis, k{sub 0} method, a routine technique at CDTN, and also very appropriate for arsenic studies. To avoid possible interference from solid substrates, like sand or vermiculite, attempts were carried out to keep the specimens in 1/4 Murashige and Skoog basal salt solution (M and S). Growth was stumped, plants withered and perished, showing that modifications in M and S had to be done. The addition of nickel and silicon allowed normal growth of the plant specimens, for periods longer than usually achieved (more than two months); yielding samples large enough for further studies with other techniques, like ICP-MS, and other targets, like speciation studies. The results of arsenic absorption are presented here and the need of nickel and silicon in the composition of M and S is discussed. (author)

  10. Effect of organic matter amendment, arsenic amendment and water management regime on rice grain arsenic species

    International Nuclear Information System (INIS)

    Norton, Gareth J.; Adomako, Eureka E.; Deacon, Claire M.; Carey, Anne-Marie; Price, Adam H.; Meharg, Andrew A.

    2013-01-01

    Arsenic accumulation in rice grain has been identified as a major problem in some regions of Asia. A study was conducted to investigate the effect of increased organic matter in the soil on the release of arsenic into soil pore water and accumulation of arsenic species within rice grain. It was observed that high concentrations of soil arsenic and organic matter caused a reduction in plant growth and delayed flowering time. Total grain arsenic accumulation was higher in the plants grown in high soil arsenic in combination with high organic matter, with an increase in the percentage of organic arsenic species observed. The results indicate that the application of organic matter should be done with caution in paddy soils which have high soil arsenic, as this may lead to an increase in accumulation of arsenic within rice grains. Results also confirm that flooding conditions substantially increase grain arsenic. -- Highlights: ► High soil arsenic and organic matter caused a reduction in plant growth. ► A delayed flowering time was observed in high arsenic and organic matter soil. ► Total grain arsenic increased in high arsenic and organic matter soil. ► Percentage organic arsenic in the grain altered in arsenic and organic matter soil. -- The addition of high amounts of organic matter to soils led to an increase in total rice grain arsenic, as well as alteration in the percentage arsenic species in the rice grains

  11. Removal of lead from crude antimony by using NaPo3 as lead elimination reagent

    Directory of Open Access Journals (Sweden)

    Ye L.G.

    2015-01-01

    Full Text Available In order to solve the shortcomings when removing lead from crude antimony in the traditional antimony smelting, a new process was provided using NaPO3 as lead elimination reagent to yield phosphate slag, and it was removed by floating on the surface of the liquid antimony. Reaction mechanism was clarified by using the TG-DTA and XRD techniques and single factor experiments of removal lead from crude antimony were engaged. The results show that PbO and NaPO3 begin endothermic reaction at 863K (590°C, and the reaction mainly form NaPb4(PO43 and NaPbPO4 below 1123K (850°C and above 1123K (850°C, respectively. Sb2O3 and NaPO3 start the reaction at 773K (500°C and generate an antimonic salt compound. The reaction product of the mixture of PbO, Sb2O3 and NaPO3 show that NaPO3 reacted with PbO prior when NaPO3 was insufficient, amorphous antimony glass will be generated only when NaPO3 was adequate. Single factor experiments were taken with NaNO3 as oxidizing agent under argon, effect of reaction time, reaction temperature and dosage of NaPO3 and NaNO3 on smelting results. The average content of lead in refined antimony was 0.05340% and 98.85% of lead were removed under optimal conditions; the content of lead in antimony have meet the requirements of commercial antimony.

  12. Atomistic mechanisms governing structural stability change of zinc antimony thermoelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaolong [Frontier Institute of Science and Technology, Xi' an Jiaotong University, Xi' an 710054 (China); Lin, Jianping, E-mail: jaredlin@163.com [School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024 (China); Qiao, Guanjun [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Wang, Zhao, E-mail: zwangzhao@gmail.com [Frontier Institute of Science and Technology, Xi' an Jiaotong University, Xi' an 710054 (China); State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China)

    2015-01-05

    The structural stability of thermoelectric materials is a subject of growing importance for their energy harvesting applications. Here, we study the microscopic mechanisms governing the structural stability change of zinc antimony at its working temperature, using molecular dynamics combined with experimental measurements of the electrical and thermal conductivity. Our results show that the temperature-dependence of the thermal and electrical transport coefficients is strongly correlated with a structural transition. This is found to be associated with a relaxation process, in which a group of Zn atoms migrates between interstitial sites. This atom migration gradually leads to a stabilizing structural transition of the entire crystal framework, and then results in a more stable crystal structure of β–Zn{sub 4}Sb{sub 3} at high temperature.

  13. Antimony Accumulation Risk in Lettuce Grown in Brazilian Urban Gardens

    Directory of Open Access Journals (Sweden)

    Silvia Mancarella

    2016-08-01

    Full Text Available More than 80% of the Brazilian population inhabits urban areas. Diffused poverty and the lack of fresh vegetables have generated malnutrition and unbalanced diets. Thus, the interest in growing food locally, in urban allotments and community gardens, has increased. However, urban agriculture may present some risks caused by the urban pollution. Road traffic is considered the biggest source of heavy metals in urban areas. Hence, the objective of the study was the assessment of the accumulation of heavy metals in an urban garden in the city of Recife, at different distances from a road with high traffic burden. The results showed that the distance from the street decreased the accumulation of many potentially toxic elements. Furthermore, the human health risk was estimated, revealing that greater danger was associated with the accumulation of antimony. Concentration of other elements in the leaf tissues were within previously reported thresholds.

  14. Pump pulse duration dependence of coherent phonon amplitudes in antimony

    Energy Technology Data Exchange (ETDEWEB)

    Misochko, O. V., E-mail: misochko@issp.ac.ru [Russian Academy of Sciences, Institute of Solid State Physics (Russian Federation)

    2016-08-15

    Coherent optical phonons of A{sub 1k} and E{sub k} symmetry in antimony have been studied using the femtosecond pump–probe technique. By varying the pump-pulse duration and keeping the probe duration constant, it was shown that the amplitude of coherent phonons of both symmetries exponentially decreases with increasing pulse width. It was found that the amplitude decay rate for the fully symmetric phonons with larger frequency is greater than that of the doubly degenerate phonons, whereas the frequency and lifetime for coherent phonons of both symmetries do not depend on the pump-pulse duration. Based on this data, the possibility of separation between dynamic and kinematic contributions to the generation mechanism of coherent phonons is discussed.

  15. Silicon quantum dots with counted antimony donor implants

    Science.gov (United States)

    Singh, Meenakshi; Pacheco, Jose; Perry, Daniel; Wendt, Joel; Manginell, Ronald; Dominguez, Jason; Pluym, Tammy; Luhman, Dwight; Bielejec, Edward; Lilly, Michael; Carroll, Malcolm

    Antimony donor implants next to silicon quantum dots have been detected with integrated solid-state diode detectors with single ion precision. Devices with counted number of donors have been fabricated and low temperature transport measurements have been performed. Charge offsets, indicative of donor ionization and coupling to the quantum dot, have been detected in these devices. The number of offsets corresponds to 10-50% of the number of donors counted. We will report on tunneling time measurements and spin readout measurements on the donor offsets. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. The work was supported by Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  16. High-pressure Raman investigation of the semiconductor antimony oxide

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Aihui; Cao, Lihua [State Key Lab on High Power Semiconductor Laser, Changchun University of Science and Technology, 130022 Changchun (China); Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 130012 Changchun (China); Wan, Chunming [State Key Lab on High Power Semiconductor Laser, Changchun University of Science and Technology, 130022 Changchun (China); Ma, Yanmei [Department of Agronomy, Jilin University, 130062 Changchun (China)

    2011-05-15

    The in situ high-pressure behavior of the semiconductor antimony trioxide (Sb{sub 2}O{sub 3}) has been investigated by Raman spectroscopy techniques in a diamond anvil cell up to 20 GPa at room temperature. New peaks in the external lattice mode range emerged at a pressure above 8.6-15 GPa, suggesting that the structural phase transition occurred. The pressure dependence of Raman frequencies was obtained. The band at 139 cm{sup -1} (assigned to group mode) has a pressure dependence of -0.475 cm{sup -1}/GPa and reveals significant softening at high pressure. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Arsenic partitioning among particle-size fractions of mine wastes and stream sediments from cinnabar mining districts.

    Science.gov (United States)

    Silva, Veronica; Loredo, Jorge; Fernández-Martínez, Rodolfo; Larios, Raquel; Ordóñez, Almudena; Gómez, Belén; Rucandio, Isabel

    2014-10-01

    Tailings from abandoned mercury mines represent an important pollution source by metals and metalloids. Mercury mining in Asturias (north-western Spain) has been carried out since Roman times until the 1970s. Specific and non-specific arsenic minerals are present in the paragenesis of the Hg ore deposit. As a result of intensive mining operations, waste materials contain high concentrations of As, which can be geochemically dispersed throughout surrounding areas. Arsenic accumulation, mobility and availability in soils and sediments are strongly affected by the association of As with solid phases and granular size composition. The objective of this study was to examine phase associations of As in the fine grain size subsamples of mine wastes (La Soterraña mine site) and stream sediments heavily affected by acid mine drainage (Los Rueldos mine site). An arsenic-selective sequential procedure, which categorizes As content into seven phase associations, was applied. In spite of a higher As accumulation in the finest particle-size subsamples, As fractionation did not seem to depend on grain size since similar distribution profiles were obtained for the studied granulometric fractions. The presence of As was relatively low in the most mobile forms in both sites. As was predominantly linked to short-range ordered Fe oxyhydroxides, coprecipitated with Fe and partially with Al oxyhydroxides and associated with structural material in mine waste samples. As incorporated into short-range ordered Fe oxyhydroxides was the predominant fraction at sediment samples, representing more than 80% of total As.

  18. Role of Metabolic Genes in Blood Arsenic Concentrations of Jamaican Children with and without Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Mohammad H. Rahbar

    2014-08-01

    Full Text Available Arsenic is a toxic metalloid with known adverse effects on human health. Glutathione-S-transferase (GST genes, including GSTT1, GSTP1, and GSTM1, play a major role in detoxification and metabolism of xenobiotics. We investigated the association between GST genotypes and whole blood arsenic concentrations (BASC in Jamaican children with and without autism spectrum disorder (ASD. We used data from 100 ASD cases and their 1:1 age- and sex-matched typically developing (TD controls (age 2–8 years from Jamaica. Using log-transformed BASC as the dependent variable in a General Linear Model, we observed a significant interaction between GSTP1 and ASD case status while controlling for several confounding variables. However, for GSTT1 and GSTM1 we did not observe any significant associations with BASC. Our findings indicate that TD children who had the Ile/Ile or Ile/Val genotype for GSTP1 had a significantly higher geometric mean BASC than those with genotype Val/Val (3.67 µg/L vs. 2.69 µg/L, p < 0.01. Although, among the ASD cases, this difference was not statistically significant, the direction of the observed difference was consistent with that of the TD control children. These findings suggest a possible role of GSTP1 in the detoxification of arsenic.

  19. Temporal characterization of Arsenic in das Velhas River hydrographic basin waters, MG, Brazil for one decade (1998 - 2007

    Directory of Open Access Journals (Sweden)

    Mônica Maria Diniz Leão

    2009-12-01

    Full Text Available Arsenic, a metalloid with wide distribution in nature, can be found in natural environments in the forms of high toxicity. Monitoring conducted in the Basin of the das Velhas River, MG, demonstrates the occurrence of this metal in all sampling stations distributed over the water course and main tributaries. Thus, this study aims to evaluate the time trends of concentration of arsenic in water courses of the basin of das Velhas River, considering the data of twenty-nine monitoring stations from 1998 to 2007. The tests included the verification of seasonality, autocorrelation and temporal trend with the non-parametric tests of Mann-Kendall and Mann-Kendall seasonal. Eight sampling stations showed seasonality, with higher concentrations observed in rainy season. The autocorrelation was virtually nonexistent, which may be associated with low sample found in a monitoring program (three to six months. Only seven monitoring stations showed significant negative trend, indicating a reduction in the concentration of arsenic over the period studied. The results showed that the time trend studies have great relevance for the management of pollution of water resources from tracking data, providing subsidies for preventive and corrective measures differentiated between the stations and sampling periods of the year and also be used in evaluation of the effectiveness of these measures.

  20. Radiochemical studies of the separation of some chloro-complexes of tin, antimony, cadmium and indium

    International Nuclear Information System (INIS)

    Ramamoorthy, N.; Mani, R.S.

    1976-01-01

    Radioisotopes of tin, antimony, cadmium and indium such as tin-113, antimony-124, antimony-125, cadmium-109, cadmium-115, indium-113m and indium-111 find extensive applications as tracers in various fields. These isotopes are produced by irradiation of targets in a reactor or a cyclotron. It is usually observed that in addition to the nuclear reactions giving rise to the desired isotopes, side reactions also take place giving rise to radionuclidic contaminants. Thus, antimony-125, indium-114m and indium-114 will be present in the cyclotron produced indium-111. The authors have studied column chromatography over hydrous zirconia for the separation of antimony from tin and indium, and cadmium from indium. These studies have thrown light on the role and behaviour of antimony-125 present as an impurity in tin-113 during the preparation of tin-113-indium-113m generators and have indicated methods for the preparation of 115 Cd-sup(115m)In generators and for separation of 111 In from proton irradiated cadmium targets. (Authors)

  1. Exposure to antimony from polyethylene terephthalate (PET) trays used in ready-to-eat meals.

    Science.gov (United States)

    Haldimann, M; Blanc, A; Dudler, V

    2007-08-01

    Antimony residues, a result of the use of a polycondensation catalyst in the production of polyethylene terephthalate (PET) oven-proof trays, were analysed in ready-to-eat meals. The toxicity of antimony has raised concerns about consumer safety; therefore, the migration of small fractions of these residues into ready meals and foods as a result of cooking directly in the PET trays was studied. A straightforward approach of measuring real samples was selected to obtain accurate exposure data. Background antimony concentration was determined separately from a series of lunch meals, which ranged from not detectable to 3.4 microg kg(-1). Microwave and conventional oven-cooking caused a distinct increase in the concentration of antimony in food and ready meals of 0-17 and 8-38 microg kg(-1), respectively, depending, to a certain extent, on the industrial preparations. The migrated quantities of antimony corresponded to 3-13 microg. For comparison, PET roasting bags and ready-made dough products in PET baking dishes were also evaluated. About half of the products prepared at a temperature of 180 degrees C exceeded the specific migration limit set for food contact material by the European Commission. However, the migrated amounts of antimony relative to the accepted tolerable daily intake (TDI) show that exposure from this type of food is currently not of toxicological concern.

  2. Arsenic bioleaching in medical realgar ore and arsenic- bearing ...

    African Journals Online (AJOL)

    Oxidation of these two ores by sulfuric acid was insignificant, as maximum arsenic leaching ratios ... Poor water solubility and weak gastrointestinal absorption of coarse ..... Wu XH, Sun DH, Zhuang ZX, Wang XR, Gong HF, Hong. JX, Lee FSC.

  3. Evidence of arsenic release promoted by disinfection by-products within drinking-water distribution systems.

    Science.gov (United States)

    Andra, Syam S; Makris, Konstantinos C; Botsaris, George; Charisiadis, Pantelis; Kalyvas, Harris; Costa, Costas N

    2014-02-15

    Changes in disinfectant type could trigger a cascade of reactions releasing pipe-anchored metals/metalloids into finished water. However, the effect of pre-formed disinfection by-products on the release of sorbed contaminants (arsenic-As in particular) from drinking water distribution system pipe scales remains unexplored. A bench-scale study using a factorial experimental design was performed to evaluate the independent and interaction effects of trihalomethanes (TTHM) and haloacetic acids (HAA) on arsenic (As) release from either scales-only or scale-biofilm conglomerates (SBC) both anchored on asbestos/cement pipe coupons. A model biofilm (Pseudomonas aeruginosa) was allowed to grow on select pipe coupons prior experimentation. Either TTHM or HAA individual dosing did not promote As release from either scales only or SBC, detecting water. In the case of scales-only coupons, the combination of the highest spike level of TTHM and HAA significantly (pwater in pipe networks remains to be investigated in the field. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Determination of the long-term release of metal(loid)s from construction materials using DGTs.

    Science.gov (United States)

    Schmukat, A; Duester, L; Ecker, D; Heininger, P; Ternes, T A

    2013-09-15

    Long-term leaching experiments are crucial to estimate the potential release of dangerous substances from construction materials. The application of Diffuse Gradients in Thin film (DGT) in static-batch experiments was tested to study the long-term release of metal(loid)s from construction materials for hydraulic engineering, for half a year. Long-term release experiments are essential to improve calculations of the life-time release for this materials. DGTs in batch experiments were found to be a space and labour efficient application, which enabled (i) to study, in a non-invasive manner, the total release of nine metal(loid)s for half a year, (ii) to differentiate between release mechanisms and (iii) to study mechanisms which were contrary to the release or caused experimental artefacts in the batch experiments. For copper slag (test material) it was found that eight metal(loid)s were released over the whole time period of 184 d. Cu, Ni and Pb were found to be released, predominantly caused by (the) weathering of sulphide minerals. Only for Zn a surface depletion mechanism was identified. The results from the long-term batch experiments deliver new information on the release of metal(loid)s during the life cycle of construction materials with regard to river basin management objectives. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Arsenic removal in solution using non living bio masses of aquatic weed

    International Nuclear Information System (INIS)

    Marin A, M. J.

    2010-01-01

    Arsenic is a metalloid considered among the most dangerous to health. The As maximum level allowed of drinkable water is 0.01 mg/L established by the Who. Several techniques have been proposed to remove arsenic from water, among which are the sorption processes in economic biological materials, which has advantages for its high efficiency in dilute toxic removing from contaminated water, for these reason it is necessary to study new bio sorbents materials which are economic, simple and easy to apply in the treatment of contaminated areas. The aim of this project was evaluate the removal of As (V) in solution using two non living aquatic plants: water hyacinth (Eichhornia crassipes) and lesser duckweed (Lemna minor), characterize these materials and compare the efficiency between both; the parameters evaluated were the As (V) initial concentration in solution, contact time, ph value and the amount of biomass in contact with them. It describes the method to prepare the non living plants. The physicochemical characterization by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis was made. The results shown that cellulose is the main component confirmed by the techniques above mentioned. Surface characterization of Eichhornia crassipes and Lemna minor by specific surface area, shown 1.3521 m 2 /g and 0.6395 m 2 /g respectively, the hydration kinetic indicates that 24 h was the maximum hydration time for both plants; the point of zero charge determination by mass titration gives a ph=6.1 for the first plant and ph=7.1 for the second plant, finally the active site density obtained for the plants were of 8.57 sites/nm 2 and 12.47 sites/nm 2 . The point of zero charge was analyzed for know the ph from which the As (V) species are removal preferably. Tested contact processes between bio sorbent-As (V) were performed to assess the ability of bio masses to removal As (V) from aqueous solutions, investigated

  6. Toxic metal(loid) speciation during weathering of iron sulfide mine tailings under semi-arid climate

    Science.gov (United States)

    Root, Robert A.; Hayes, Sarah M.; Hammond, Corin M.; Maier, Raina M.; Chorover, Jon

    2015-01-01

    Toxic metalliferous mine-tailings pose a significant health risk to ecosystems and neighboring communities from wind and water dispersion of particulates containing high concentrations of toxic metal(loid)s (e.g., Pb, As, Zn). Tailings are particularly vulnerable to erosion before vegetative cover can be reestablished, i.e., decades or longer in semi-arid environments without intervention. Metal(loid) speciation, linked directly to bioaccessibility and lability, is controlled by mineral weathering and is a key consideration when assessing human and environmental health risks associated with mine sites. At the semi-arid Iron King Mine and Humboldt Smelter Superfund site in central Arizona, the mineral assemblage of the top 2 m of tailings has been previously characterized. A distinct redox gradient was observed in the top 0.5 m of the tailings and the mineral assemblage indicates progressive transformation of ferrous iron sulfides to ferrihydrite and gypsum, which, in turn weather to form schwertmannite and then jarosite accompanied by a progressive decrease in pH (7.3 to 2.3). Within the geochemical context of this reaction front, we examined enriched toxic metal(loid)s As, Pb, and Zn with surficial concentrations 41.1, 10.7, 39.3 mM kg-1 (3080, 2200, and 2570 mg kg-1), respectively. The highest bulk concentrations of As and Zn occur at the redox boundary representing a 1.7 and 4.2 fold enrichment relative to surficial concentrations, respectively, indicating the translocation of toxic elements from the gossan zone to either the underlying redox boundary or the surface crust. Metal speciation was also examined as a function of depth using X-ray absorption spectroscopy (XAS). The deepest sample (180 cm) contains sulfides (e.g., pyrite, arsenopyrite, galena, and sphalerite). Samples from the redox transition zone (25-54 cm) contain a mixture of sulfides, carbonates (siderite, ankerite, cerrusite, and smithsonite) and metal(loid)s sorbed to neoformed secondary Fe

  7. Association of oxidative stress with