WorldWideScience

Sample records for metallic reinforcing screens

  1. Piezoelectric ceramic-reinforced metal matrix composites

    OpenAIRE

    2004-01-01

    Composite materials comprising piezoelectric ceramic particulates dispersed in a metal matrix are capable of vibration damping. When the piezoelectric ceramic particulates are subjected to strain, such as the strain experienced during vibration of the material, they generate an electrical voltage that is converted into Joule heat in the surrounding metal matrix, thereby dissipating the vibrational energy. The piezoelectric ceramic particulates may also act as reinforcements to improve the mec...

  2. Ferroelastic ceramic-reinforced metal matrix composites

    OpenAIRE

    2006-01-01

    Composite materials comprising ferroelastic ceramic particulates dispersed in a metal matrix are capable of vibration damping. When the ferroelastic ceramic particulates are subjected to stress, such as the cyclic stress experienced during vibration of the material, internal stresses in the ceramic cause the material to deform via twinning, domain rotation or domain motion thereby dissipating the vibrational energy. The ferroelastic ceramic particulates may also act as reinforcements to impro...

  3. Reinforcement of Aluminum Castings with Dissimilar Metals

    Energy Technology Data Exchange (ETDEWEB)

    Han, Q

    2004-01-07

    The project ''Reinforcement of Aluminum Casting with Dissimilar Metal'' was a Cooperative Research and Development Agreements (CRADAs) between Oak Ridge National Laboratory (ORNL) and Cummins Inc. This project, technologies have been developed to reinforce aluminum castings with steel insert. Defect-free bond between the steel insert and the aluminum casting has been consistently obtained. The push-out experiment indicated that the bond strength is higher than that of the Al-Fin method. Two patents have been granted to the project team that is comprised of Cummins Inc. and ORNL. This report contains four sections: the coating of the steel pins, the cast-in method, microstructure characterization, and the bond strength. The section of the coating of the steel pins contains coating material selection, electro-plating technique for plating Cu and Ni on steel, and diffusion bonding of the coatings to the steel. The section of cast-in method deals with factors that affecting the quality of the metallurgical bond between the coated steel and the aluminum castings. The results of microstructure characteristics of the bonding are presented in the microstructure characterization section. A push-out experiment and the results obtained using this method is described in the section of bond strength/mechanical property.

  4. Carbide-reinforced metal matrix composite by direct metal deposition

    Science.gov (United States)

    Novichenko, D.; Thivillon, L.; Bertrand, Ph.; Smurov, I.

    Direct metal deposition (DMD) is an automated 3D laser cladding technology with co-axial powder injection for industrial applications. The actual objective is to demonstrate the possibility to produce metal matrix composite objects in a single-step process. Powders of Fe-based alloy (16NCD13) and titanium carbide (TiC) are premixed before cladding. Volume content of the carbide-reinforced phase is varied. Relationships between the main laser cladding parameters and the geometry of the built-up objects (single track, 2D coating) are discussed. On the base of parametric study, a laser cladding process map for the deposition of individual tracks was established. Microstructure and composition of the laser-fabricated metal matrix composite objects are examined. Two different types of structures: (a) with the presence of undissolved and (b) precipitated titanium carbides are observed. Mechanism of formation of diverse precipitated titanium carbides is studied.

  5. Metal Matrix Composites Reinforced by Nano-Particles—A Review

    Directory of Open Access Journals (Sweden)

    Riccardo Casati

    2014-03-01

    Full Text Available Metal matrix composites reinforced by nano-particles are very promising materials, suitable for a large number of applications. These composites consist of a metal matrix filled with nano-particles featuring physical and mechanical properties very different from those of the matrix. The nano-particles can improve the base material in terms of wear resistance, damping properties and mechanical strength. Different kinds of metals, predominantly Al, Mg and Cu, have been employed for the production of composites reinforced by nano-ceramic particles such as carbides, nitrides, oxides as well as carbon nanotubes. The main issue of concern for the synthesis of these materials consists in the low wettability of the reinforcement phase by the molten metal, which does not allow the synthesis by conventional casting methods. Several alternative routes have been presented in literature for the production of nano-composites. This work is aimed at reviewing the most important manufacturing techniques used for the synthesis of bulk metal matrix nanocomposites. Moreover, the strengthening mechanisms responsible for the improvement of mechanical properties of nano-reinforced metal matrix composites have been reviewed and the main potential applications of this new class of materials are envisaged.

  6. Carbon nanotube reinforced metal binder for diamond cutting tools

    DEFF Research Database (Denmark)

    Sidorenko, Daria; Mishnaevsky, Leon; Levashov, Evgeny

    2015-01-01

    The potential of carbon nanotube reinforcement of metallic binders for the improvement of quality and efficiency of diamond cutting wheels is studied. The effect of multi-walled carbon nanotube (MWCNT) reinforcement on the mechanical properties i.e. hardness, Young modulus, strength and deformation...... of grain size of the structural constituents of the binder, what in turn leads to the improved simultaneously hardness, Young modulus, plastic extension, bending strength and performances of the metallic binders. Comparing service properties of diamond end-cutting drill bits with and without MWCNT one...

  7. Strain gradient plasticity effects in whisker-reinforced metals

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof

    2002-01-01

    A metal reinforced by fibers in the micron range is studied using the strain gradient plasticity theory of Fleck and Hutchinson (2001). Cell-model analyzes are used to study the influence of the material length parameters numerically. Different higher order boundary conditions are considered...... at the fiber-matrix interface. The results are presented as overall stress-strain curves for the whisker-reinforced metal, and also contour plots of effective plastic strain are shown. The strain gradient plasticity theory predicts a significant stiffening effect when compared to conventional models...

  8. Moment Capacity of Timber Reinforced with Punched Metal Plate Fasteners

    DEFF Research Database (Denmark)

    Nielsen, Jacob; Ellegaard, Peter

    When designing timber trusses it is often found that the cross section controlling the dimensions of the top chord is located at a joint with a moment peak. However, the timber volume affected by the moment peak is rather limited and by embedding a punched metal plate in this area a reinforcement...... of the section is obtained, resulting in a more economic truss design. In order to develop design methods for sections with plate reinforcement, bending tests have been made. The timber is Swedish spruce of strength class K-18(S8) and K-24(S10) with a thickness of 45 mm. The punched metal plate is from Gang...

  9. Graphene-Reinforced Metal and Polymer Matrix Composites

    Science.gov (United States)

    Kasar, Ashish K.; Xiong, Guoping; Menezes, Pradeep L.

    2018-06-01

    Composites have tremendous applicability due to their excellent capabilities. The performance of composites mainly depends on the reinforcing material applied. Graphene is successful as an efficient reinforcing material due to its versatile as well as superior properties. Even at very low content, graphene can dramatically improve the properties of polymer and metal matrix composites. This article reviews the fabrication followed by mechanical and tribological properties of metal and polymer matrix composites filled with different kinds of graphene, including single-layer, multilayer, and functionalized graphene. Results reported to date in literature indicate that functionalized graphene or graphene oxide-polymer composites are promising materials offering significantly improved strength and frictional properties. A similar trend of improved properties has been observed in case of graphene-metal matrix composites. However, achieving higher graphene loading with uniform dispersion in metal matrix composites remains a challenge. Although graphene-reinforced composites face some challenges, such as understanding the graphene-matrix interaction or fabrication techniques, graphene-reinforced polymer and metal matrix composites have great potential for application in various fields due to their outstanding properties.

  10. Reinforced magnesium composites by metallic particles for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Vahid, Alireza; Hodgson, Peter [Institute for Frontier Materials, Deakin University, Geelong, Victoria 3217 (Australia); Li, Yuncang, E-mail: yuncang.li@rmit.edu.au [Institute for Frontier Materials, Deakin University, Geelong, Victoria 3217 (Australia); School of Engineering, RMIT University, Melbourne, Victoria 3001 (Australia)

    2017-02-08

    Pure magnesium (Mg) implants have unsatisfactory mechanical properties, particularly in loadbearing applications. Particulate-reinforced Mg composites are known as promising materials to provide higher strength implants compared to unreinforced metals. In the current work biocompatible niobium (Nb) and tantalum (Ta) particles are selected as reinforcement, and Mg-Nb and Mg-Ta composites fabricated via a powder metallurgy process associated with the ball milling technique. The effect of Nb and Ta contents on the microstructure and mechanical properties of Mg matrix was investigated. There was a uniform distribution of reinforcements in the Mg matrix with reasonable integrity and no intermetallic formation. The compressive mechanical properties of composites vary with reinforcement contents. The optimal parameters to fabricate biocompatible Mg composites and the optimal composition with appropriate strength, hardness and ductility are recommended.

  11. Compressive behavior of wire reinforced bulk metallic glass matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Yub [Department of Materials Science, M/C 138-78, California Institute of Technology, Pasadena, CA 91125 (United States); Clausen, Bjorn [Lujan Neutron Science Center, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Uestuendag, Ersan [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States)]. E-mail: ustundag@iastate.edu; Choi-Yim, Haein [Department of Materials Science, M/C 138-78, California Institute of Technology, Pasadena, CA 91125 (United States); Aydiner, C. Can [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States); Bourke, Mark A.M. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2005-06-15

    Bulk metallic glasses (BMGs) possess a unique set of mechanical properties that make them attractive structural materials. However, when loaded without constraint, BMGs fracture catastrophically due to formation of macroscopic shear bands and this behavior reduces their reliability. To address this issue, BMG matrix composites have been developed. In this investigation, neutron diffraction was used during uniaxial compressive loading to measure the internal strains in the second phases of various BMG composites reinforced with Ta, Mo, or stainless steel wires. The diffraction data were then employed to develop a finite element model that deduced the in situ constitutive behavior of each phase. It was found that the reinforcements yielded first and started transferring load to the matrix, which remained elastic during the whole experiment. While the present composites exhibited enhanced ductility, largely due to their ductile reinforcements, they yielded at applied stresses lower than those found in W reinforced composites.

  12. Strain gradient plasticity effects in whisker-reinforced metals

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof

    2003-01-01

    A metal reinforced by fibers in the micron range is studied using the strain gradient plasticity theory of Fleck and Hutchinson (J. Mech. Phys. Solids 49 (2001) 2245). Cell-model analyses are used to study the influence of the material length parameters numerically, for both a single parameter...

  13. Compressive yielding of tungsten fiber reinforced bulk metallic glass composites

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, B.; Lee, S.-Y.; Uestuendag, E.; Aydiner, C.C.; Conner, R.D.; Bourke, M.A.M

    2003-07-15

    In-situ uniaxial compression tests were conducted on four tungsten fiber reinforced bulk metallic glass matrix composites using neutron diffraction. The results were interpreted with a finite element model. Both phases were seen to approximately obey the von Mises yield criterion. The fibers were observed to yield first and then transfer load to the matrix.

  14. Compressive yielding of tungsten fiber reinforced bulk metallic glass composites

    International Nuclear Information System (INIS)

    Clausen, B.; Lee, S.-Y.; Uestuendag, E.; Aydiner, C.C.; Conner, R.D.; Bourke, M.A.M.

    2003-01-01

    In-situ uniaxial compression tests were conducted on four tungsten fiber reinforced bulk metallic glass matrix composites using neutron diffraction. The results were interpreted with a finite element model. Both phases were seen to approximately obey the von Mises yield criterion. The fibers were observed to yield first and then transfer load to the matrix

  15. Load transfer in short fibre reinforced metal matrix composites

    International Nuclear Information System (INIS)

    Garces, Gerardo; Bruno, Giovanni; Wanner, Alexander

    2007-01-01

    The internal load transfer and the deformation behaviour of aluminium-matrix composites reinforced with 2D-random alumina (Saffil) short fibres was studied for different loading modes. The evolution of stress in the metallic matrix was measured by neutron diffraction during in situ uniaxial deformation tests. Tensile and compressive tests were performed with loading axis parallel or perpendicular to the 2D-reinforcement plane. The fibre stresses were computed based on force equilibrium considerations. The results are discussed in light of a model recently established by the co-authors for composites with visco-plastic matrix behaviour and extended to the case of plastic deformation in the present study. Based on that model, the evolution of internal stresses and the macroscopic stress-strain were simulated. Comparison between the experimental and computational results shows a qualitative agreement in all relevant aspects

  16. Screening life cycle assessment study of a sisal fibre reinforced micro-concrete structural insulated panel

    CSIR Research Space (South Africa)

    Ampofo-Anti, N

    2013-12-01

    Full Text Available First international conference on composites, biocomposites and nanocomposites, DUT, Durban, South Africa, 2-4 December 2013 SCREENING LIFE CYCLE ASSESSMENT STUDY OFA SISAL FIBRE REINFORCED MICRO-CONCRETE STRUCTURAL INSULATED PANEL Naa Lamkai Ampofo...

  17. Computational screening of mixed metal halide ammines

    DEFF Research Database (Denmark)

    Jensen, Peter Bjerre; Lysgaard, Steen; Quaade, Ulrich

    2013-01-01

    Metal halide ammines, e.g. Mg(NH3)6Cl2 and Sr(NH3)8Cl2, can reversibly store ammonia, with high volumetric hydrogen storage capacities. The storage in the halide ammines is very safe, and the salts are therefore highly relevant as a carbon-free energy carrier in future transportation infrastructure...... selection. The GA is evolving from an initial (random) population and selecting those with highest fitness, a function based on e.g. stability, release temperature and storage capacity. The search space includes all alkaline, alkaline earth, 3d and 4d metals and the four lightest halides. In total...... the search spaces consists of millions combinations, which makes a GA ideal, to reduce the number of necessary calculations. We are screening for a one step release from either a hexa or octa ammine, and we have found promising candidates, which will be further investigated ? both computationally...

  18. Electrochemical corrosion of carbon-fiber-reinforced plastic-metal electrode couples in corrosion media

    International Nuclear Information System (INIS)

    Chukalovskaya, T.V.; Shcherbakov, A.I.; Chigirinskaya, L.A.; Bandurkin, V.V.; Medova, I.L.; Chukalovskij, P.A.

    1995-01-01

    Polarization diagrams, obtained for carbon-fiber-reinforced plastic(cathode)-metallic material(anode) contact couples are analyzed to predict the corrosion behaviour of some technical metals and alloys (carbon steel, stainless steels, brass, aluminium, titanium) in contact with carbon-fiber-reinforced plastic in differen agressive media (H 2 SO 4 , HCl, H 3 PO 4 , NaOH solutions in wide temperature and concentration range, synthetic seawater at 30 and 50 deg C). The predicted behaviour was supported by direct investigation into carbon-fiber-reinforced plastic-titanium and carbon-fiber-reinforced plastic-aluminium contact couples at different square ratios. 6 refs.; 4 figs

  19. Milling of Nanoparticles Reinforced Al-Based Metal Matrix Composites

    Directory of Open Access Journals (Sweden)

    Alokesh Pramanik

    2018-03-01

    Full Text Available This study investigated the face milling of nanoparticles reinforced Al-based metal matrix composites (nano-MMCs using a single insert milling tool. The effects of feed and speed on machined surfaces in terms of surface roughness, surface profile, surface appearance, chip surface, chip ratio, machining forces, and force signals were analyzed. It was found that surface roughness of machined surfaces increased with the increase of feed up to the speed of 60 mm/min. However, at the higher speed (100–140 mm/min, the variation of surface roughness was minor with the increase of feed. The machined surfaces contained the marks of cutting tools, lobes of material flow in layers, pits and craters. The chip ratio increased with the increase of feed at all speeds. The top chip surfaces were full of wrinkles in all cases, though the bottom surfaces carried the evidence of friction, adhesion, and deformed material layers. The effect of feed on machining forces was evident at all speeds. The machining speed was found not to affect machining forces noticeably at a lower feed, but those decreased with the increase of speed for the high feed scenario.

  20. Mechanical improvement of metal reinforcement rings for a finite ring-shaped superconducting bulk

    Science.gov (United States)

    Huang, Chen-Guang; Zhou, You-He

    2018-03-01

    As a key technique, reinforcement of type-II superconducting bulks with metal rings can efficiently improve their mechanical properties to enhance the maximum trapped field. In this paper, we study the magnetostrictive and fracture behaviors of a finite superconducting ring bulk reinforced by three typical reinforcing structures composed of metal rings during the magnetizing process by means of the minimization of magnetic energy and the finite element method. After a field-dependent critical current density is adopted, the magnetostriction, pinning-induced stress, and crack tip stress intensity factor are calculated considering the demagnetization effects. The results show that the mechanical properties of the ring bulk are strongly dependent on the reinforcing structure and the material and geometrical parameters of the metal rings. Introducing the metal ring can significantly reduce the hoop stress, and the reduction effect by internal reinforcement is much improved relative to external reinforcement. By comparison, bilateral reinforcement seems to be the best candidate structure. Only when the metal rings have particular Young's modulus and radial thickness will they contribute to improve the mechanical properties the most. In addition, if an edge crack is pre-existing in the ring bulk, the presence of metal rings can effectively avoid crack propagation since it reduces the crack tip stress intensity factor by nearly one order of magnitude.

  1. Wear Characterization of Aluminium/Basalt Fiber Reinforced Metal Matrix Composites - A Novel Material

    Directory of Open Access Journals (Sweden)

    P. Amuthakkannan

    2017-06-01

    Full Text Available Aluminum alloy based metal matrix composite participate have a wider applications in wear resistance applications. Attempt made in current study is that, basalt fiber reinforced aluminum metal matrix composite have been prepared using stir casting method. Different weight percentage of basalt fiber reinforced with Al (6061 metal matrix composites are used to study the wear resistance of the composites. For wear study, percentage of reinforcement, normal load and sliding velocity are the considered as important parameters. To study the effect of basalt fiber reinforcement on the dry sliding wear of Al6061 alloy composites the Pin On wear tester is used. Initially hardness of the composites was tested, it was found that increasing reinforcement in the composite hardness value of the composites also increased. Based on the Grey relation analysis (GRA the effects of wear resistance of the composites were studied.

  2. Metallic Glasses as Potential Reinforcements in Al and Mg Matrices: A Review

    Directory of Open Access Journals (Sweden)

    S. Jayalakshmi

    2018-04-01

    Full Text Available Development of metal matrix composites (MMCs with metallic glass/amorphous alloy reinforcements is an emerging research field. As reinforcements, metallic glasses with their high strength (up to ~2 GPa and high elastic strain limit (~2% can provide superior mechanical properties. Being metallic in nature, the glassy alloys can ensure better interfacial properties when compared to conventional ceramic reinforcements. Given the metastable nature of metallic glasses, lightweight materials such as aluminum (Al and magnesium (Mg with relatively lower melting points are suitable matrix materials. Synthesis of these advanced composites is a challenge as selection of processing method and appropriate reinforcement type (which does not allow devitrification of the metallic glass during processing is important. Non-conventional techniques such as high frequency induction sintering, bidirectional microwave sintering, friction stir processing, accumulative roll-bonding, and spark plasma sintering are being explored to produce these novel materials. In this paper, an overview on the synthesis and properties of aluminum and magnesium based composites with glassy reinforcement produced by various unconventional methods is presented. Evaluation of properties of the produced composites indicate: (i retention of amorphous state of the reinforcement after processing; (ii significant improvement in hardness and strength; (iii improvement/retention of ductility; and (iv high wear resistance and low coefficient of friction. Further, a comparative understanding of the properties highlights that the selection of the processing method is important in producing high performance composites.

  3. Influence of tool pin in friction stir welding on activated carbon reinforced aluminium metal matrix composite

    Science.gov (United States)

    DijuSamuel, G.; Raja Dhas, J. Edwin

    2017-10-01

    This paper focus on impact of tool pin in friction stir welding on activated carbon reinforced aluminium metal matrix composite. For fabrication of metal matrix composite AA6061 is used as matrix and activated carbon is used as reinforcement and it is casted using modified stir casting technique. After casting metal matrix composite has undergone various microstructure tests like SEM,EDAX and XRD. FSW is carried out in this metal matrix composite by choosing various tool pin profile like square,round,Threaded round, hexagon and taper. The quality of welded plates is measured in terms of ultimate tensile strength and hardness.

  4. Calculating the Carrying Capacity of Flexural Prestressed Concrete Beams with Non-Metallic Reinforcement

    Directory of Open Access Journals (Sweden)

    Mantas Atutis

    2011-04-01

    Full Text Available The article reviews moment resistance design methods of prestressed concrete beams with fibre-reinforced polymer (FRP reinforcement. FRP tendons exhibit linear elastic response to rupture without yielding and thus failure is expected to be brittle. The structural behaviour of beams prestressed with FRP tendons is different from beams with traditional steel reinforcement. Depending on the reinforcement ratio, the flexural behaviour of the beam can be divided into several groups. The numerical results show that depending on the nature of the element failure, moment resistance calculation results are different by using reviewed methods. It was found, that the use of non-metallic reinforcement in prestressed concrete structures is effective: moment capacity is about 5% higher than that of the beams with conventional steel reinforcement.Article in Lithuanian

  5. Review on preparation techniques of particle reinforced metal matrix composites

    Directory of Open Access Journals (Sweden)

    HAO Bin

    2006-02-01

    Full Text Available This paper reviews the investigation status of the techniques for preparation of metal matrix composites and the research outcomes achieved recently. The mechanisms, characteristics, application ranges and levels of development of these preparation techniques are analyzed. The advantages and the disadvantages of each technique are synthetically evaluated. Lastly, the future directions of research and the prospects for the preparation techniques of metal matrix composites are forecasted.

  6. Strength and deformability of concrete beams reinforced by non-metallic fiber and composite rebar

    Science.gov (United States)

    Kudyakov, K. L.; Plevkov, V. S.; Nevskii, A. V.

    2015-01-01

    Production of durable and high-strength concrete structures with unique properties has always been crucial. Therefore special attention has been paid to non-metallic composite and fiber reinforcement. This article describes the experimental research of strength and deformability of concrete beams with dispersed and core fiber-based reinforcement. As composite reinforcement fiberglass reinforced plastic rods with diameters 6 mm and 10 mm are used. Carbon and basalt fibers are used as dispersed reinforcement. The developed experimental program includes designing and production of flexural structures with different parameters of dispersed fiber and composite rebar reinforcement. The preliminary testing of mechanical properties of these materials has shown their effectiveness. Structures underwent bending testing on a special bench by applying flexural static load up to complete destruction. During the tests vertical displacements were recorded, as well as value of actual load, slippage of rebars in concrete, crack formation. As a result of research were obtained structural failure and crack formation graphs, value of fracture load and maximum displacements of the beams at midspan. Analysis of experimental data showed the effectiveness of using dispersed reinforcement of concrete and the need for prestressing of fiberglass composite rebar.

  7. Dual energy CT inspection of a carbon fibre reinforced plastic composite combined with metal components

    Czech Academy of Sciences Publication Activity Database

    Vavřík, Daniel; Jakůbek, J.; Kumpová, Ivana; Pichotka, M.

    6, Part B, November (2016), s. 47-55 ISSN 2214-6571 R&D Projects: GA MŠk(CZ) LO1219; GA ČR(CZ) GA15-07210S Keywords : dual energy computed tomography * carbon fibre reinforced plastic composite * metal artefact suppression Subject RIV: JI - Composite Material s http://www.sciencedirect.com/science/article/pii/S2214657116300107

  8. Predicting Mechanical Properties of Metal Matrix Syntactic Foams Reinforced with Ceramic Spheres

    Science.gov (United States)

    2012-01-01

    predicting the properties of interest listed above. Kiser et al. [12] extended a metal foam model to account for ceramic reinforcement to predict the...Daoud A. J Alloys Compd. 2009; 487:618. 11. Drury WJ, Rickles SA, Sanders Jr TH, Cochran JK. In Light-Weight Alloys for Aerospace Applications, ed. Loe

  9. Behavior of fiber reinforced metal laminates at high strain rate

    Science.gov (United States)

    Newaz, Golam; Sasso, Marco; Amodio, Dario; Mancini, Edoardo

    2018-05-01

    Carbon Fiber Reinforced Aluminum Laminate (CARALL) is a good system for energy absorption through plastic deformation in aluminum and micro-cracking in the composite layers. Moreover, CARALL FMLs also provide excellent impact resistance due to the presence of aluminum layer. The focus of this research is to characterize the CARALL behavior under dynamic conditions. High strain rate tests on sheet laminate samples have been carried out by means of direct Split Hopkinson Tension Bar. The sample geometry and the clamping system were optimized by FEM simulations. The clamping system has been designed and optimized in order reduce impedance disturbance due to the fasteners and to avoid the excessive plastic strain outside the gauge region of the samples.

  10. Metallic-fibre-reinforced ceramic-matrix composite

    International Nuclear Information System (INIS)

    Prevost, F.; Schnedecker, G.; Boncoeur, M.

    1994-01-01

    A refractory metal wire cloth is embedded in an oxide ceramic matrix, using a plasma spraying technology, in order to elaborate composite plates. When mechanically tested, the composite fails with a pseudo-ductile fracture mode whereas the ceramic alone is originally brittle. It exhibits a higher fracture strength, and remains in the form of a single piece even when straining is important. No further heat treatment is needed after the original processing to reach these characteristics. (authors). 2 figs., 2 refs

  11. Solid-State Recycling of Light Metal Reinforced Inclusions by Equal Channel Angular Pressing: A Review

    Directory of Open Access Journals (Sweden)

    Al-Alimi Sami.

    2017-01-01

    Full Text Available Solid-state recycling of light metals reinforced inclusions through hot Equal Channel Angular Pressing (ECAP is performed to directly recycle metal scraps and reduce cost of material in engineering applications. The ECAP is one of the most important method in severe plastic deformation (SPD that can convert light metals into finished products. This paper reviews several experimental and numerical works that have been done to investigate the effects of the ECAP parameters such as die angles, material properties, outer corner angle, friction coefficient, temperature, size of chips, pressing force, ram speed and direct effects of number of passes on the strain distributions. It also includes the performance enhancement of aluminium matrix composite reinforced ceramic-based particles that derived from direct recycled aluminium chips for sustainable manufacturing practices.

  12. Effect of reinforcement on the cutting forces while machining metal matrix composites–An experimental approach

    Directory of Open Access Journals (Sweden)

    Ch. Shoba

    2015-12-01

    Full Text Available Hybrid metal matrix composites are of great interest for researchers in recent years, because of their attractive superior properties over traditional materials and single reinforced composites. The machinabilty of hybrid composites becomes vital for manufacturing industries. The need to study the influence of process parameters on the cutting forces in turning such hybrid composite under dry environment is essentially required. In the present study, the influence of machining parameters, e.g. cutting speed, feed and depth of cut on the cutting force components, namely feed force (Ff, cutting force (Fc, and radial force (Fd has been investigated. Investigations were performed on 0, 2, 4, 6 and 8 wt% Silicon carbide (SiC and rice husk ash (RHA reinforced composite specimens. A comparison was made between the reinforced and unreinforced composites. The results proved that all the cutting force components decrease with the increase in the weight percentage of the reinforcement: this was probably due to the dislocation densities generated from the thermal mismatch between the reinforcement and the matrix. Experimental evidence also showed that built-up edge (BUE is formed during machining of low percentage reinforced composites at high speed and high depth of cut. The formation of BUE was captured by SEM, therefore confirming the result. The decrease of cutting force components with lower cutting speed and higher feed and depth of cut was also highlighted. The related mechanisms are explained and presented.

  13. Experimental Exploration of Metal Cable as Reinforcement in 3D Printed Concrete.

    Science.gov (United States)

    Bos, Freek P; Ahmed, Zeeshan Y; Jutinov, Evgeniy R; Salet, Theo A M

    2017-11-16

    The Material Deposition Method (MDM) is enjoying increasing attention as an additive method to create concrete mortar structures characterised by a high degree of form-freedom, a lack of geometrical repetition, and automated construction. Several small-scale structures have been realised around the world, or are under preparation. However, the nature of this construction method is unsuitable for conventional reinforcement methods to achieve ductile failure behaviour. Sometimes, this is solved by combining printing with conventional casting and reinforcing techniques. This study, however, explores an alternative strategy, namely to directly entrain a metal cable in the concrete filament during printing to serve as reinforcement. A device is introduced to apply the reinforcement. Several options for online reinforcement media are compared for printability. Considerations specific to the manufacturing process are discussed. Subsequently, pull-out tests on cast and printed specimens provide an initial characterisation of bond behaviour. Bending tests furthermore show the potential of this reinforcement method. The bond stress of cables in printed concrete was comparable to values reported for smooth rebar but lower than that of the same cables in cast concrete. The scatter in experimental results was high. When sufficient bond length is available, ductile failure behaviour for tension parallel to the filament direction can be achieved, even though cable slip occurs. Further improvements to the process should pave the way to achieve better post-crack resistance, as the concept in itself is feasible.

  14. Advances in Thermal Spray Deposition of Billets for Particle Reinforced Light Metals

    International Nuclear Information System (INIS)

    Wenzelburger, Martin; Zimmermann, Christian; Gadow, Rainer

    2007-01-01

    Forming of light-metals in semi-solid state offers some advantages like low process temperatures, improved mould durability, good flow behavior and fine, globular microstructure of the final material. By the introduction of ceramic particles, increased elastic modulus and yield strength as well as wear resistance and creep behavior can be obtained. By semi-solid forging or semi-solid casting, particle reinforced metals (PRM) can be produced with improved matrix microstructure and beneficial forming process parameters compared to conventional MMC manufacturing techniques. The production of this kind of light metal matrix composites requires the supply of dense semi-finished parts with well defined volume fractions of homogeneously distributed particulate reinforcement. A manufacturing method for cylindrical light metal billets is described that applies thermal spraying as a build-up process for simultaneous deposition of matrix and reinforcement phase with cored wires as spraying material. Thermal spraying leads to small grain sizes and prevents dendrite formation. However, long process cycle times lead to billet heating and recrystallization of the matrix microstructure. In order to preserve small grain sizes that enable semi-solid forming, the thermal spraying process was analyzed by in-flight particle analysis and thermography. As a consequence, the deposition process was optimized by adaptation of the thermal spraying parameters and by application of additional cooling, leading to lower billet temperatures and finer PRM billet microstructure

  15. Overall mechanical properties of fiber-reinforced metal matrix composites for fusion applications

    International Nuclear Information System (INIS)

    You, J.H.; Bolt, H.

    2002-01-01

    The high-temperature strength and creep properties are among the crucial criteria for the structural materials of plasma facing components (PFC) of fusion reactors, as they will be subjected to severe thermal stresses. The fiber-reinforced metal matrix composites are a potential heat sink material for the PFC application, since the combination of different material properties can lead to versatile performances. In this article, the overall mechanical properties of two model composites based on theoretical predictions are presented. The matrix materials considered were a precipitation hardened CuCrZr alloy and reduced activation martensitic steel 'Eurofer'. Continuous SiC fibers were used for the reinforcement. The results demonstrate that yield stress, ultimate tensile strength, work hardening rate and creep resistance could be extensively improved by the fiber reinforcement up to fiber content of 40 vol.%. The influence of the residual stresses on the plastic behavior of the composites is also discussed

  16. Transport and screen blockage characteristics of reflective metallic insulation materials

    International Nuclear Information System (INIS)

    Brocard, D.N.

    1984-01-01

    In the event of a LOCA within a nuclear power plant, it is possible for insulation debris to be generated by the break jet. Such debris has the potential for PWR sump screen (or BWR RHR suction inlet) blockage and thus can affect the long-term recirculation capability. In addition to the variables of break jet location and orientation, the types and quantities of debris which could be generated are dependent on the insulation materials employed. This experimental investigation was limited to reflective metallic insulation and components thereof. The study was aimed at determining the flow velocities needed to transport the insulation debris to the sump screens and the resulting modes of screen blockage. The tests revealed that thin metallic foils (0.0025 in. and 0.004 in.) could transport at low flow velocities, 0.2 to 0.5 ft/sec. Thicker foils (0.008 in.) transported at higher velocities, 0.4 to 0.8 ft/sec, and as fabricated half cylinder insulation units required velocities in excess of 1.0 ft/sec for transport. The tests also provided information on screen blockage patterns that showed blockage could occur at the lower portion of the screen as foils readily flipped on the screen when reaching it

  17. Interfacial fracture of the fibre-metal laminates based on fibre reinforced thermoplastics

    International Nuclear Information System (INIS)

    Abdullah, M.R.; Prawoto, Y.; Cantwell, W.J.

    2015-01-01

    As the adhesion quality plays an important role in determining the mechanical performance and environmental stability of most types of fibre-metal laminates (FMLs), investigating the interfacial fracture properties becomes one of the key factors for the improvement. Adhesion of a self-reinforced polypropylene (SRPP) and glass fibre reinforced polypropylene (GFPP) based FML is evaluated experimentally. Single Cantilever Beam (SCB) tests were performed to access interfacial fracture energy (G c ) of the bi-material laminates and their associated interlayer materials. Simulations mimicking the experiments were also performed. The energy needed to fracture was obtained experimentally and also via stress intensity factor from the simulations. The test results show that good adhesion between the aluminium and fibre reinforced thermoplastics can be achieved using a sulphuric acid anodising surface pre-treatment. Further examination has shown that the edges of the test samples highlighted the presence of significant fibre bridging in the SRPP and plastics deformation in the GFPP. - Highlights: • Adhesion of a self-reinforced polypropylene and glass fibre reinforced polypropylene is evaluated. • Single Cantilever Beam tests were performed to access interfacial fracture energy. • The energy needed to fracture was obtained experimentally and also via stress intensity factor from the simulations. • The test results show that best adhesion is achieved using a sulphuric acid anodizing surface pre-treatment

  18. Buckling behavior of fiber reinforced plastic–metal hybrid-composite beam

    International Nuclear Information System (INIS)

    Eksi, Secil; Kapti, Akin O.; Genel, Kenan

    2013-01-01

    Highlights: ► We developed a new plastic–metal hybrid-composite tubular beam structure. ► This structure offers innovative design solutions with weight reduction. ► It prevents premature buckling without adding significant weight to the structure. ► The composite interaction gives better mechanical properties to the products. ► Buckling and bending loads of the beam increased 3.2 and 7.6 times, respectively. - Abstract: It is known that the buckling is characterized by a sudden failure of a structural member subjected to high compressive load. In this study, the buckling behavior of the aluminum tubular beam (ATB) was analyzed using finite element (FE) method, and the reinforcing arrangements as well as its combinations were decided for the composite beams based on the FE results. Buckling and bending behaviors of thin-walled ATBs with internal cast polyamide (PA6) and external glass and carbon fiber reinforcement polymers (GFRPs and CFRPs) were investigated systematically. Experimental studies showed that the 219% increase in buckling load and 661% in bending load were obtained with reinforcements. The use of plastics and metal together as a reinforced structure yields better mechanical performance properties such as high resistance to buckling and bending loads, dimensional stability and high energy absorption capacity, including weight reduction. While the thin-walled metallic component provides required strength and stiffness, the plastic component provides the support necessary to prevent premature buckling without adding significant weight to the structure. It is thought that the combination of these materials will offer a promising new focus of attention for designers seeking more appropriate composite beams with high buckling loads beside light weight. The developed plastic–metal hybrid-composite structure is promising especially for critical parts serving as a support member of vehicles for which light weight is a critical design

  19. Earthquake Response of Reinforced Concrete Building Retrofitted with Geopolymer Concrete and X-shaped Metallic Damper

    Science.gov (United States)

    Madheswaran, C. K.; Prakash vel, J.; Sathishkumar, K.; Rao, G. V. Rama

    2017-06-01

    A three-storey half scale reinforced concrete (RC) building is fixed with X-shaped metallic damper at the ground floor level, is designed and fabricated to study its seismic response characteristics. Experimental studies are carried out using the (4 m × 4 m) tri-axial shake-table facility to evaluate the seismic response of a retrofitted RC building with open ground storey (OGS) structure using yielding type X-shaped metallic dampers (also called as Added Damping and Stiffness-ADAS elements) and repairing the damaged ground storey columns using geopolymer concrete composites. This elasto-plastic device is normally incorporated within the frame structure between adjacent floors through chevron bracing, so that they efficiently enhance the overall energy dissipation ability of the seismically deficient frame structure under earthquake loading. Free vibration tests on RC building without and with yielding type X-shaped metallic damper is carried out. The natural frequencies and mode shapes of RC building without and with yielding type X-shaped metallic damper are determined. The retrofitted reinforced concrete building is subjected to earthquake excitations and the response from the structure is recorded. This work discusses the preparation of test specimen, experimental set-up, instrumentation, method of testing of RC building and the response of the structure. The metallic damper reduces the time period of the structure and displacement demands on the OGS columns of the structure. Nonlinear time history analysis is performed using structural analysis package, SAP2000.

  20. Investigation of the resistance of several new metallic reinforcing bars to chloride-induced corrosion in concrete.

    Science.gov (United States)

    2003-01-01

    The Virginia Department of Transportation recently initiated a search for metallic reinforcing bars that are not only more durable and corrosion resistant than the epoxy-coated bars currently used, but also economical. In the last few years, several ...

  1. Mechanical characterization of SiC particulate & E-glass fiber reinforced Al 3003 hybrid metal matrix composites

    Science.gov (United States)

    Narayana, K. S. Lakshmi; Shivanand, H. K.

    2018-04-01

    Metal matrix composites constitute a class of low cost high quality materials which offer high performance for various industrial applications. The orientation of this research is towards the study of mechanical properties of as cast silicon carbide (SiC) particulates and Short E-Glass fibers reinforced Aluminum matrix composites (AMCs). The Hybrid metal matrix composite is developed by reinforcing SiC particulates of 100 microns and short E-Glass fibers of 2-3 mm length with Al 3003 in different compositions. The vortex method of stir casting was employed, in which the reinforcements were introduced into the vortex created by the molten metal by means of mechanical stirrer. The mechanical properties of the prepared metal matrix composites were analyzed. From the studies it was noticed that an improvement in mechanical properties of the reinforced alloys compared to unreinforced alloys.

  2. Additive Manufacturing and Characterization of Polylactic Acid (PLA) Composites Containing Metal Reinforcements

    Science.gov (United States)

    Kuentz, Lily; Salem, Anton; Singh, M.; Halbig, M. C.; Salem, J. A.

    2016-01-01

    Additive manufacturing of polymeric systems using 3D printing has become quite popular recently due to rapid growth and availability of low cost and open source 3D printers. Two widely used 3D printing filaments are based on polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS) systems. PLA is much more environmentally friendly in comparison to ABS since it is made from renewable resources such as corn, sugarcane, and other starches as precursors. Recently, polylactic acid-based metal powder containing composite filaments have emerged which could be utilized for multifunctional applications. The composite filaments have higher density than pure PLA, and the majority of the materials volume is made up of polylactic acid. In order to utilize functionalities of composite filaments, printing behavior and properties of 3-D printed composites need to be characterized and compared with the pure PLA materials. In this study, pure PLA and composite specimens with different metallic reinforcements (Copper, Bronze, Tungsten, Iron, etc) were 3D printed at various layer heights and resulting microstructures and properties were characterized. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) behavior of filaments with different reinforcements were studied. The microscopy results show an increase in porosity between 3-D printed regular PLA and the metal composite PLA samples, which could produce weaker mechanical properties in the metal composite materials. Tensile strength and fracture toughness behavior of specimens as a function of print layer height will be presented.

  3. Mechanical properties of sheet metal components with local reinforcement produced by additive manufacturing

    Science.gov (United States)

    Ünsal, Ismail; Hama-Saleh, R.; Sviridov, Alexander; Bambach, Markus; Weisheit, A.; Schleifenbaum, J. H.

    2018-05-01

    New technological challenges like electro-mobility pose an increasing demand for cost-efficient processes for the production of product variants. This demand opens the possibility to combine established die-based manufacturing methods and innovative, dieless technologies like additive manufacturing [1, 2]. In this context, additive manufacturing technologies allow for the weight-efficient local reinforcement of parts before and after forming, enabling manufacturers to produce product variants from series parts [3]. Previous work by the authors shows that the optimal shape of the reinforcing structure can be determined using sizing optimization. Sheet metal parts can then be reinforced using laser metal deposition. The material used is a pearlite-reduced, micro-alloyed steel (ZE 630). The aim of this paper is to determine the effect of the additive manufacturing process on the material behavior and the mechanical properties of the base material and the resulting composite material. The parameters of the AM process are optimized to reach similar material properties in the base material and the build-up volume. A metallographic analysis of the parts is presented, where the additive layers, the base material and also the bonding between the additive layers and the base material are analyzed. The paper shows the feasibility of the approach and details the resulting mechanical properties and performance.

  4. Interfacial reaction in cast WC particulate reinforced titanium metal matrix composites coating produced by laser processing

    Science.gov (United States)

    Liu, Dejian; Hu, Peipei; Min, Guoqing

    2015-06-01

    Laser injection of ceramic particle was conducted to produce particulate reinforced metal matrix composites (MMCs) coating on Ti-6Al-4V alloy. Cast WC particle (WCp) was used as injection reinforcement to avoid excessive release of carbon atoms into the melt pool. The interfaces and boundaries between WC and Ti matrix were investigated by electron microscopy study. Compared with single crystal WCp, cast WCp was an appropriate solution to control the reaction products (TiC) in the matrix and the total amount of reaction products was significantly reduced. Irregular-shape reaction layers were formed around cast WCp. The reaction layers consist of a W2C layer and a mixed layer of W and TiC. Such reaction layers are effective in load transfer under an external load.

  5. Tensile flow stress of ceramic particle-reinforced metal in the presence of particle cracking

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, R. [Ecole Polytechnique Federale de Lausanne (EPFL), Laboratory for Mechanical Metallurgy, CH-1015 Lausanne (Switzerland); Rossoll, A. [Ecole Polytechnique Federale de Lausanne (EPFL), Laboratory for Mechanical Metallurgy, CH-1015 Lausanne (Switzerland)], E-mail: andreas.rossoll@epfl.ch; Weber, L. [Ecole Polytechnique Federale de Lausanne (EPFL), Laboratory for Mechanical Metallurgy, CH-1015 Lausanne (Switzerland); Bourke, M.A.M. [Los Alamos National Laboratory (LANL), LANSCE-12, P.O. Box 1663, MS H805, Los Alamos, NM 87545 (United States); Dunand, D.C. [Northwestern University, Department of Materials Science and Engineering, Evanston, IL 60208 (United States); Mortensen, A. [Ecole Polytechnique Federale de Lausanne (EPFL), Laboratory for Mechanical Metallurgy, CH-1015 Lausanne (Switzerland)

    2008-10-15

    A simplified model is proposed to quantify the effect of damage in the form of particle cracking on the elastic and plastic behaviour of particle-reinforced metal matrix composites under uniaxial tensile loading: cracked particles are simply replaced, in a mean-field model, with as much matrix. Pure aluminium reinforced with 44 vol.% alumina particles, tested in tension and unloaded at periodic plastic deformations, is analysed by neutron diffraction during each reloading elastic step, at 30%, 50%, 70% and 90% of the tensile flow stress. The data give the evolution of the elastic matrix strains in the composite and also measure the progress of internal damage by particle cracking. The test gives (i) the evolution of the in situ matrix flow stress, and (ii) the evolution of load partitioning during elastic deformation with increasing composite damage. Predictions of the present model compare favourably with relevant results in the literature, and with results from the present neutron diffraction experiments.

  6. Investigation of Selective Laser Melting Surface Alloyed Aluminium Metal Matrix Dispersive Reinforced Layers

    Science.gov (United States)

    Kamburov, V. V.; Dimitrova, R. B.; Kandeva, M. K.; Sofronov, Y. P.

    2018-01-01

    The aim of the paper is to investigate the improvement of mechanical properties and in particular wear resistance of laser surface alloyed dispersive reinforced thin layers produced by selective laser melting (SLM) technology. The wear resistance investigation of aluminium matrix composite layers in the conditions of dry friction surface with abrasive particles and nanoindentation tests were carried out. The process parameters (as scan speed) and their impact on the wear resistant layers have been evaluated. The alloyed layers containing metalized SiC particles were studied by Optical and Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray microanalysis (EDX). The obtained experimental results of the laser alloyed thin layers show significant development of their wear resistance and nanohardness due to the incorporated reinforced phase of electroless nickel coated SiC particles.

  7. Tensile flow stress of ceramic particle-reinforced metal in the presence of particle cracking

    International Nuclear Information System (INIS)

    Mueller, R.; Rossoll, A.; Weber, L.; Bourke, M.A.M.; Dunand, D.C.; Mortensen, A.

    2008-01-01

    A simplified model is proposed to quantify the effect of damage in the form of particle cracking on the elastic and plastic behaviour of particle-reinforced metal matrix composites under uniaxial tensile loading: cracked particles are simply replaced, in a mean-field model, with as much matrix. Pure aluminium reinforced with 44 vol.% alumina particles, tested in tension and unloaded at periodic plastic deformations, is analysed by neutron diffraction during each reloading elastic step, at 30%, 50%, 70% and 90% of the tensile flow stress. The data give the evolution of the elastic matrix strains in the composite and also measure the progress of internal damage by particle cracking. The test gives (i) the evolution of the in situ matrix flow stress, and (ii) the evolution of load partitioning during elastic deformation with increasing composite damage. Predictions of the present model compare favourably with relevant results in the literature, and with results from the present neutron diffraction experiments

  8. A high-performance, flexible and robust metal nanotrough-embedded transparent conducting film for wearable touch screen panels

    Science.gov (United States)

    Im, Hyeon-Gyun; An, Byeong Wan; Jin, Jungho; Jang, Junho; Park, Young-Geun; Park, Jang-Ung; Bae, Byeong-Soo

    2016-02-01

    We report a high-performance, flexible and robust metal nanotrough-embedded transparent conducting hybrid film (metal nanotrough-GFRHybrimer). Using an electro-spun polymer nanofiber web as a template and vacuum-deposited gold as a conductor, a junction resistance-free continuous metal nanotrough network is formed. Subsequently, the metal nanotrough is embedded on the surface of a glass-fabric reinforced composite substrate (GFRHybrimer). The monolithic composite structure of our transparent conducting film allows simultaneously high thermal stability (24 h at 250 °C in air), a smooth surface topography (Rrms touch screen panel (TSP) is fabricated using the transparent conducting films. The flexible TSP device stably operates on the back of a human hand and on a wristband.We report a high-performance, flexible and robust metal nanotrough-embedded transparent conducting hybrid film (metal nanotrough-GFRHybrimer). Using an electro-spun polymer nanofiber web as a template and vacuum-deposited gold as a conductor, a junction resistance-free continuous metal nanotrough network is formed. Subsequently, the metal nanotrough is embedded on the surface of a glass-fabric reinforced composite substrate (GFRHybrimer). The monolithic composite structure of our transparent conducting film allows simultaneously high thermal stability (24 h at 250 °C in air), a smooth surface topography (Rrms touch screen panel (TSP) is fabricated using the transparent conducting films. The flexible TSP device stably operates on the back of a human hand and on a wristband. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07657a

  9. Screened Coulomb interactions in metallic alloys. I. Universal screening in the atomic-sphere approximation

    DEFF Research Database (Denmark)

    Ruban, Andrei; Skriver, Hans Lomholt

    2002-01-01

    We have used the locally self-consistent Green's-function (LSGF) method in supercell calculations to establish the distribution of the net charges assigned to the atomic spheres of the alloy components in metallic alloys with different compositions and degrees of order. This allows us to determine......-site local interaction zone. We demonstrate that the basic mechanism that governs the charge distribution is the screening of the net charges of the alloy components that makes the direct Coulomb interactions short ranged. In the atomic-sphere approximation, this screening appears to be almost independent...

  10. Process for the manufacture of seamless metal-clad fiber-reinforced organic matrix composite structures

    Science.gov (United States)

    Bluck, Raymond M. (Inventor); Bush, Harold G. (Inventor); Johnson, Robert R. (Inventor)

    1991-01-01

    A process for producing seamless metal-clad composite structures includes providing a hollow, metallic inner member and an outer sleeve to surround the inner member and define an inner space therebetween. A plurality of continuous reinforcing fibers is attached to the distal end of the outside diameter of the inner member, and the inner member is then introduced, distal end first, into one end of the outer sleeve. The inner member is then moved, distal end first, into the outer sleeve until the inner member is completely enveloped by the outer sleeve. A liquid matrix material is then injected into the space containing the reinforcing fibers between the inner member and the outer sleeve. Next a pressurized heat transfer medium is passed through the inner member to cure the liquid matrix material. Finally, the wall thickness of both the inner member and the outer sleeve are reduced to desired dimensions by chemical etching, which adjusts the thermal expansion coefficient of the metal-clad composite structure to a desired value.

  11. Micro structural analysis of nanocomposite of metallic matrix of aluminum reinforced by 2% of NTC

    International Nuclear Information System (INIS)

    Dias, Fabio Saldanha; LavaredaCarlos Romulo; Mendes, Luiz Fernando; Queiroz, Jennyson Luz

    2016-01-01

    The study of based on aluminum materials has a high importance level, mainly when is intense wanted in automobile and aerospace industry to transform in light and high perform parts. Aluminum has low specific weight and easiness to join with other materials and these qualities can supply excellent properties and lots of technological applications. Components based on aluminum represents good examples to develop optimized micro structures during the fabrication process that can be basic on properties mechanical performance. As a result this work analyses the micro structure's composites with metallic matrix reinforced by 2% of Multi-Walled Carbon Nanotubes manufactured by aluminum splinters mixed to CNT (author)

  12. Screen-printed electrode for alkali-metal thermoelectric converter

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, T.; Shibata, K.; Tsuchida, K.; Kato, A. (Kyushu Univ., Fukuoka (Japan). Faculty of Engineering)

    1992-06-01

    An alkali-metal thermoelectric converter (AMTEC) is a device for the direct conversion of thermal to electric energy. An AMTEC contains sodium as working fluid and is divided into a high-temperature region (900-1300 K) and a low-temperature region (400-800 K) by [beta]''-alumina solid electrolyte. A high-performance electrode for an AMTEC must have good electrical conductivity, make a strong physical bond with low contact resistance to [beta]''-alumina, be highly permeable to sodium vapour, resist corrosion by sodium and have a low rate of evaporation at the operating temperature of the AMTEC. We have previously investigated the interaction of nitrides and carbides of some transition-metals (groups IV, V and VI) with [beta],[beta]''-alumina or liquid sodium (about 700degC) with the objective of finding a better electrode material for an AMTEC. The results showed that TiN, TiC, NbN and NbC were good candidates for AMTEC electrodes. We also showed that porous TiN film with low resistance can be prepared by the screen-printing method. In the present work the porous NbN film was prepared by the screen-printing method and the performance as the electrode of an AMTEC was examined. For comparison, the performance of TiN and Mo electrodes prepared by the screen-printing method was also examined. (author).

  13. Thermally sprayed prepregs for thixoforging of UD fiber reinforced light metal MMCs

    Science.gov (United States)

    Silber, Martin; Wenzelburger, Martin; Gadow, Rainer

    2007-04-01

    Low density and good mechanical properties are the basic requirements for lightweight structures in automotive and aerospace applications. With their high specific strength and strain to failure values, aluminum alloys could be used for such applications. Only the insufficient stiffness and thermal and fatigue strength prevented their usage in high-end applications. One possibility to solve this problem is to reinforce the light metal with unidirectional fibers. The UD fiber allows tailoring of the reinforcement to meet the direction of the component's load. In this study, the production of thermally sprayed prepregs for the manufacturing of continuous fiber reinforced MMC by thixoforging is analysed. The main aim is to optimize the winding procedure, which determines the fiber strand position and tension during the coating process. A method to wind and to coat the continuous fibers with an easy-to-use handling technique for the whole manufacturing process is presented. The prepregs were manufactured by producing arc wire sprayed AlSi6 coatings on fibers bundles. First results of bending experiments showed appropriate mechanical properties.

  14. Influence of thermal residual stress on behaviour of metal matrix composites reinforced with particles

    Science.gov (United States)

    Guzmán, R. E.; Hernández Arroyo, E.

    2016-02-01

    The properties of a metallic matrix composites materials (MMC's) reinforced with particles can be affected by different events occurring within the material in a manufacturing process. The existence of residual stresses resulting from the manufacturing process of these materials (MMC's) can markedly differentiate the curves obtained in tensile tests obtained from compression tests. One of the themes developed in this work is the influence of residual stresses on the mechanical behaviour of these materials. The objective of this research work presented is numerically estimate the thermal residual stresses using a unit cell model for the Mg ZC71 alloy reinforced with SiC particles with volume fraction of 12% (hot-forging technology). The MMC's microstructure is represented as a three dimensional prismatic cube-shaped with a cylindrical reinforcing particle located in the centre of the prism. These cell models are widely used in predicting stress/strain behaviour of MMC's materials, in this analysis the uniaxial stress/strain response of the composite can be obtained through the calculation using the commercial finite-element code.

  15. Nonlocal plasticity effects on fibre debonding in a whisker-reinforced metal

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Tvergaard, Viggo

    2002-01-01

    Numerical cell-model analyses for the matrix-fibre debonding in a metal matrix composite are used to study the effect of a characteristic material length in the plasticity description of the matrix material deformations. Characteristic material lengths are already present in the model problem...... in the problem. The nonlocal plasticity effect tends to increase the stress level at a given overall strain, which clearly tends to promote the onset of debonding......., in the form of fibre sizes and the length associated with the debonding process, so the nonlocal plasticity model brings in an additional material length. The analyses for metal reinforced by aligned short fibres are used to obtain an understanding of the interaction of the different length scales...

  16. Dry Sliding Friction and Wear Studies of Fly Ash Reinforced AA-6351 Metal Matrix Composites

    Directory of Open Access Journals (Sweden)

    M. Uthayakumar

    2013-01-01

    Full Text Available Fly ash particles are potentially used in metal matrix composites due to their low cost, low density, and availability in large quantities as waste by-products in thermal power plants. This study describes multifactor-based experiments that were applied to research and investigation on dry sliding wear system of stir-cast aluminum alloy 6351 with 5, 10, and 15 wt.% fly ash reinforced metal matrix composites (MMCs. The effects of parameters such as load, sliding speed, and percentage of fly ash on the sliding wear, specific wear rate, and friction coefficient were analyzed using Grey relational analysis on a pin-on-disc machine. Analysis of variance (ANOVA was also employed to investigate which design parameters significantly affect the wear behavior of the composite. The results showed that the applied load exerted the greatest effect on the dry sliding wear followed by the sliding velocity.

  17. Performance and properties of anodes reinforced with metal oxide nanoparticles for molten carbonate fuel cells

    Science.gov (United States)

    Accardo, Grazia; Frattini, Domenico; Yoon, Sung Pil; Ham, Hyung Chul; Nam, Suk Woo

    2017-12-01

    Development of electrode materials for molten carbonate fuel cells is a fundamental issue as a balance between mechanical and electrochemical properties is required due to the particular operating environments of these cells. As concern the anode, a viable strategy is to use nano-reinforced particles during electrodes' fabrication. Candidate nanomaterials comprise, but are not limited to, ZrO2, CeO2, TiO2, Ti, Mg, Al, etc. This work deals with the characterization and test of two different types of hard oxide nanoparticles as reinforce for NiAl-based anodes in molten carbonate fuel cells. Nano ceria and nano zirconia are compared each other and single cell test performances are presented. Compared to literature, the use of hard metal oxide nanoparticles allows good performance and promising perspectives with respect to the use a third alloying metal. However, nano zirconia performed slightly better than nano ceria as polarization and power curves are higher even if nano ceria has the highest mechanical properties. This means that the choice of nanoparticles to obtain improved anodes performance and properties is not trivial and a trade-off between relevant properties plays a key role.

  18. Metallic Reinforcement of Direct Squeeze Die Casting Aluminum Alloys for Improved Strength and Fracture Resistance

    Energy Technology Data Exchange (ETDEWEB)

    D. Schwam: J.F. Wallace: Y. Zhu: J.W. Ki

    2004-10-01

    The utilization of aluminum die casting as enclosures where internal equipment is rotating inside of the casting and could fracture requires a strong housing to restrain the fractured parts. A typical example would be a supercharger. In case of a failure, unless adequately contained, fractured parts could injure people operating the equipment. A number of potential reinforcement materials were investigated. The initial work was conducted in sand molds to create experimental conditions that promote prolonged contact of the reinforcing material with molten aluminum. Bonding of Aluminum bronze, Cast iron, and Ni-resist inserts with various electroplated coatings and surface treatments were analyzed. Also toughening of A354 aluminum cast alloy by steel and stainless steel wire mesh with various conditions was analyzed. A practical approach to reinforcement of die cast aluminum components is to use a reinforcing steel preform. Such performs can be fabricated from steel wire mesh or perforated metal sheet by stamping or deep drawing. A hemispherical, dome shaped casting was selected in this investigation. A deep drawing die was used to fabricate the reinforcing performs. The tendency of aluminum cast enclosures to fracture could be significantly reduced by installing a wire mesh of austenitic stainless steel or a punched austenitic stainless steel sheet within the casting. The use of reinforcements made of austenitic stainless steel wire mesh or punched austenitic stainless steel sheet provided marked improvement in reducing the fragmentation of the casting. The best strengthening was obtained with austenitic stainless steel wire and with a punched stainless steel sheet without annealing this material. Somewhat lower results were obtained with the annealed punched stainless steel sheet. When the annealed 1020 steel wire mesh was used, the results were only slightly improved because of the lower mechanical properties of this unalloyed steel. The lowest results were

  19. Thermodynamic screening of metal-substituted MOFs for carbon capture.

    Science.gov (United States)

    Koh, Hyun Seung; Rana, Malay Kumar; Hwang, Jinhyung; Siegel, Donald J

    2013-04-07

    Metal-organic frameworks (MOFs) have emerged as promising materials for carbon capture applications due to their high CO2 capacities and tunable properties. Amongst the many possible MOFs, metal-substituted compounds based on M-DOBDC and M-HKUST-1 have demonstrated amongst the highest CO2 capacities at the low pressures typical of flue gasses. Here we explore the possibility for additional performance tuning of these compounds by computationally screening 36 metal-substituted variants (M = Be, Mg, Ca, Sr, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, W, Sn, and Pb) with respect to their CO2 adsorption enthalpy, ΔH(T=300K). Supercell calculations based on van der Waals density functional theory (vdW-DF) yield enthalpies in good agreement with experimental measurements, out-performing semi-empirical (DFT-D2) and conventional (LDA & GGA) functionals. Our screening identifies 13 compounds having ΔH values within the targeted thermodynamic window -40 ≤ ΔH ≤ -75 kJ mol(-1): 8 are based on M-DODBC (M = Mg, Ca, Sr, Sc, Ti, V, Mo, and W), and 5 on M-HKUST-1 (M = Be, Mg, Ca, Sr and Sc). Variations in the electronic structure and the geometry of the structural building unit are examined and used to rationalize trends in CO2 affinity. In particular, the partial charge on the coordinatively unsaturated metal sites is found to correlate with ΔH, suggesting that this property may be used as a simple performance descriptor. The ability to rapidly distinguish promising MOFs from those that are "thermodynamic dead-ends" will be helpful in guiding synthesis efforts towards promising compounds.

  20. Microstructure characteristics of nickel reinforced metal matrix composites (Ni/AC8A) by low-pressure metal infiltration process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun Jun; Rong, Hua Wei; Jun, Ji Ang; Park, Sung Ho; Huh, Sun Chul; Park, Won Jo [Gyeongsang National University, Jinju (Korea, Republic of)

    2009-07-01

    MMCs(Metal Matrix Composites) can obtain mechanical characteristics of application purposes that a single material is difficult to obtain. Al alloy composite material that nickel is added by reinforcement is used for piston of diesel engine, because high temperature properties, strength, corrosion resistant are improved excellently than existent Al alloy. And, in case of processing, interface between Ni and Al improves wear resistant by intermetallic compound of high hardness. Also, in the world, industrial circles are proceeding research to apply excellent composite material. Existent process methods of MMC using preform were manufactured by high-pressure. But, it cause deformation of preform or fault of completed MMC. Using low-pressure as infiltration pressure can prevent this problem, and there is an advantage that is able to reduce the cost of production by small scale of production equipment. Accordingly, process methods of MMC have to consider low-pressure infiltration for the strength of preform, and nowadays, there are many studies about reducing infiltration pressure. In this study produced Al composite material that Ni is added by reinforcement by low-pressure infiltration, and observed microstructure of completed MMCs.

  1. Fabrication and physical properties of glass-fiber-reinforced thermoplastics for non-metal-clasp dentures.

    Science.gov (United States)

    Nagakura, Manamu; Tanimoto, Yasuhiro; Nishiyama, Norihiro

    2017-11-01

    Recently, non-metal-clasp dentures (NMCDs) made from thermoplastic resins such as polyamide, polyester, polycarbonate, and polypropylene have been used as removable partial dentures (RPDs). However, the use of such RPDs can seriously affect various tissues because of their low rigidity. In this study, we fabricated high-rigidity glass-fiber-reinforced thermoplastics (GFRTPs) for use in RPDs, and examined their physical properties such as apparent density, dynamic hardness, and flexural properties. GFRTPs made from E-glass fibers and polypropylene were fabricated using an injection-molding. The effects of the fiber content on the GFRTP properties were examined using glass-fiber contents of 0, 5, 10, 20, 30, 40, and 50 mass%. Commercially available denture base materials and NMCD materials were used as controls. The experimental densities of GFRTPs with various fiber contents agreed with the theoretical densities. Dynamic micro-indentation tests confirmed that the fiber content does not affect the GFRTP surface properties such as dynamic hardness and elastic modulus, because most of the reinforcing glass fibers are embedded in the polypropylene. The flexural strength increased from 55.8 to 217.6 MPa with increasing glass-fiber content from 0 to 50 mass%. The flexural modulus increased from 1.75 to 7.42 GPa with increasing glass-fiber content from 0 to 50 mass%, that is, the flexural strength and modulus of GFRTP with a fiber content of 50 mass% were 3.9 and 4.2 times, respectively, those of unreinforced polypropylene. These results suggest that fiber reinforcement has beneficial effects, and GFRTPs can be used in NMCDs because their physical properties are better than those of controls. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2254-2260, 2017. © 2016 Wiley Periodicals, Inc.

  2. Fatigue damage and fracture behavior of tungsten fiber reinforced Zr-based metallic glassy composite

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Zhang, Z.F. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)]. E-mail: zhfzhang@imr.ac.cn; Wang, Z.G. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Qiu, K.Q. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Zhang, H.F. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Zang, Q.S. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Hu, Z.Q. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2006-02-25

    The fatigue life, damage and fracture behavior of tungsten fiber reinforced metallic glass Zr{sub 41.25}Ti{sub 13.75}Ni{sub 10}Cu{sub 12.5}Be{sub 22.5} composites are investigated under cyclic push-pull loading. It is found that the fatigue life of the composite increases with increasing the volume fraction of tungsten fibers. Similar to crystalline metals, the regions of crack initiation, propagation and overload fracture can be discerned on the fracture surface of the specimen. Fatigue crack normally initiates in the metallic glass matrix at the outer surface of the composite specimen and propagates predominantly in the matrix. Different crack front profile around the tungsten fibers and fiber pullout demonstrate that fatigue crack may propagate around the fiber, leading to bridging of the crack faces by the unbroken fiber and hence improved fatigue crack-growth resistance. Locally decreased effective stiffness in the region where fiber distribution is sparse may provide preferential crack path in the composite. A proposed model was exercised to elucidate different tungsten fiber fracture morphologies in the fatigue crack propagation and overload fracture regions in the light of Poisson's ratio effect during fatigue loading.

  3. Fatigue damage and fracture behavior of tungsten fiber reinforced Zr-based metallic glassy composite

    International Nuclear Information System (INIS)

    Zhang, H.; Zhang, Z.F.; Wang, Z.G.; Qiu, K.Q.; Zhang, H.F.; Zang, Q.S.; Hu, Z.Q.

    2006-01-01

    The fatigue life, damage and fracture behavior of tungsten fiber reinforced metallic glass Zr 41.25 Ti 13.75 Ni 10 Cu 12.5 Be 22.5 composites are investigated under cyclic push-pull loading. It is found that the fatigue life of the composite increases with increasing the volume fraction of tungsten fibers. Similar to crystalline metals, the regions of crack initiation, propagation and overload fracture can be discerned on the fracture surface of the specimen. Fatigue crack normally initiates in the metallic glass matrix at the outer surface of the composite specimen and propagates predominantly in the matrix. Different crack front profile around the tungsten fibers and fiber pullout demonstrate that fatigue crack may propagate around the fiber, leading to bridging of the crack faces by the unbroken fiber and hence improved fatigue crack-growth resistance. Locally decreased effective stiffness in the region where fiber distribution is sparse may provide preferential crack path in the composite. A proposed model was exercised to elucidate different tungsten fiber fracture morphologies in the fatigue crack propagation and overload fracture regions in the light of Poisson's ratio effect during fatigue loading

  4. Microstructures and properties of ceramic particle-reinforced metal matrix composite layers produced by laser cladding

    Science.gov (United States)

    Zhang, Qingmao; He, Jingjiang; Liu, Wenjin; Zhong, Minlin

    2005-01-01

    Different weight ratio of titanium, zirconium, WC and Fe-based alloy powders were mixed, and cladded onto a medium carbon steel substrate using a 3kW continuous wave CO2 laser, aiming at producing Ceramic particles- reinforced metal matrix composites (MMCs) layers. The microstructures of the layers are typical hypoeutectic, and the major phases are Ni3Si2, TiSi2, Fe3C, FeNi, MC, Fe7Mo3, Fe3B, γ(residual austenite) and M(martensite). The microstructure morphologies of MMCs layers are dendrites/cells. The MC-type reinforcements are in situ synthesis Carbides which main compositions consist of transition elements Zr, Ti, W. The MC-type particles distributed within dendrite and interdendritic regions with different volume fractions for single and overlapping clad layers. The MMCs layers are dense and free of cracks with a good metallurgical bonding between the layer and substrate. The addition ratio of WC in the mixtures has the remarkable effect on the microhardness of clad layers.

  5. Semi-solid metal forming of beryllium-reinforced aluminum alloys

    International Nuclear Information System (INIS)

    Haws, W.; Lane, L.; Marder, J.; Nicholas, N.

    1995-01-01

    A Powder Metallurgy (PM) based, Semi-Solid Metal (SSM) forming process has been developed to produce low cost near-net shapes of beryllium-reinforced aluminum alloys. Beryllium acts as a reinforcing additive to the aluminum, in which there is nearly no mutual solid solubility. The modulus of elasticity of the alloy dramatically increases, while the density and thermal expansion coefficient decrease with increasing beryllium content. The material is suitable for complex thermal management and vibration resistance applications, as well as for airborne components which are density and stiffness sensitive. The forming process involves heating a blank of the material to a temperature at which the aluminum is semi-solid and the beryllium is solid. The semi-solid blank is then injected without turbulence into a permanent mold. High quality, near net shape components can be produced which are functionally superior to those produced by other permanent mold processes. Dimensional accuracy is equivalent to or better than that obtained in high pressure die casting. Cost effectiveness is the primary advantage of this technique compared to other forming processes. The advantages and limitations of the process are described. Physical and mechanical property data are presented, as well as directions for future investigation

  6. Freezing of liquid alkali metals as screened ionic plasmas

    International Nuclear Information System (INIS)

    Badirkhan, Z.; Rovere, M.; Tosi, M.P.

    1990-08-01

    The relationship between Wigner crystallization of the classical ionic plasma and the liquid-solid transition of alkali metals is examined within the density wave theory of freezing. Freezing of the classical plasma on a rigid neutralizing background into the bcc structure is first re-evaluated, in view of recent progress in the determination of its thermodynamic functions by simulation and of the known difficulties of the theory relating to the order parameter at the (200) star of reciprocal lattice vectors. Freezing into the fcc structure is also considered in this context and found to be unfavoured. On allowing for long-wavelength deformability of the background, the ensuing appearance of a volume change on freezing into the bcc structure is accompanied by reduced stability of the fluid phase and by an increase in the entropy of melting. Freezing of alkali metals into the bcc structure is next evaluated, taking their ionic pair structure as that of an ionic plasma reference fluid screened by conduction electrons and asking that the correct ionic coupling strength at liquid-solid coexistence should be approximately reproduced. The ensuring values of the volume and entropy changes across the phase transition, as estimated from the theory by two alternative routes, are in reasonable agreement with experiment. The order parameters of the phase transition, excepting the (200) one, conform rather closely to a Gaussian behaviour and yield a Lindemann ratio in reasonable agreement with the empirical value for melting of bcc crystals. It is suggested that ionic ordering at the (200) star in the metal may be (i) assisted by medium range ordering in the conduction electrons, as indicated by differences in X-ray and neutron diffraction intensities from the liquid, and/or (ii) quite small in the hot bcc solid. Such a possible premelting behaviour of bcc metals should be worth testing experimentally by diffraction. (author). 48 refs, 1 fig., 1 tab

  7. Microstructure and Mechanical Behavior of Microwave Sintered Cu50Ti50 Amorphous Alloy Reinforced Al Metal Matrix Composites

    Science.gov (United States)

    Reddy, M. Penchal; Ubaid, F.; Shakoor, R. A.; Mohamed, A. M. A.

    2018-06-01

    In the present work, Al metal matrix composites reinforced with Cu-based (Cu50Ti50) amorphous alloy particles synthesized by ball milling followed by a microwave sintering process were studied. The amorphous powders of Cu50Ti50 produced by ball milling were used to reinforce the aluminum matrix. They were examined by x-ray diffraction (XRD), scanning electron microscopy (SEM), microhardness and compression testing. The analysis of XRD patterns of the samples containing 5 vol.%, 10 vol.% and 15 vol.% Cu50Ti50 indicates the presence of Al and Cu50Ti50 peaks. SEM images of the sintered composites show the uniform distribution of reinforced particles within the matrix. Mechanical properties of the composites were found to increase with an increasing volume fraction of Cu50Ti50 reinforcement particles. The hardness and compressive strength were enhanced to 89 Hv and 449 MPa, respectively, for the Al-15 vol.% Cu50Ti50 composites.

  8. Mass optimization of a small pressure vessel using metal/FRP (fiber reinforced polymers) hybrid structures

    International Nuclear Information System (INIS)

    Nisar, J.A.; Abdullah, A.N.; Iqbal, N.

    2004-01-01

    In hybrid pressure vessels, composite (Fiber) is wound over a metallic liner (Steel/Aluminum) in hoop direction. In this concept of hybrid pressure vessel structure, metallic liner takes all the axial loads and fiber reinforced polymers (FRP/sub s/) takes load in circumferential (Hoop) direction. Hybrid structures combine the relatively high shear stiffness and ductility of metal alloy with high specific stiffness, strength and fatigue properties of FRP/sub s/. The relatively simple methods for producing hybrid structures circumvent the need for the complex and expensive equipment that is used for advanced composites processing. This paper presents an efficient way of designing a hybrid pressure vessel where prime concern is weight reduction over an equivalent aluminum structure and investigates various methodologies regarding combinations of metals and FRP/sub s/ for optimization of a given pressure vessel. For this purpose we adopted two different methods of simulation one is computer simulation using ANSYS and other is experimental verification by hydrostatic testing of manufactured pressure vessel. Two different pressure vessels one with aluminum liner and other with steel liner were fabricated. Kevlar 49/epoxy was wrapped around the liners in hoop direction. Both the pressure vessels were put into hydrostatic test. Strains were measured during the test and then converted into corresponding stresses. Results of hydrostatic test were quite in favor of the ANSYS results. In this way we have successfully designed, manufactured and tested the Hybrid pressure vessel saving almost 40% weight in case of aluminum liner and 43.6% in case of steel liner. (author)

  9. Crack and wear behavior of SiC particulate reinforced aluminium based metal matrix composite fabricated by direct metal laser sintering process

    International Nuclear Information System (INIS)

    Ghosh, Subrata Kumar; Saha, Partha

    2011-01-01

    In this investigation, crack density and wear performance of SiC particulate (SiCp) reinforced Al-based metal matrix composite (Al-MMC) fabricated by direct metal laser sintering (DMLS) process have been studied. Mainly, size and volume fraction of SiCp have been varied to analyze the crack and wear behavior of the composite. The study has suggested that crack density increases significantly after 15 volume percentage (vol.%) of SiCp. The paper has also suggested that when size (mesh) of reinforcement increases, wear resistance of the composite drops. Three hundred mesh of SiCp offers better wear resistance; above 300 mesh the specific wear rate increases significantly. Similarly, there has been no improvement of wear resistance after 20 vol.% of reinforcement. The scanning electron micrographs of the worn surfaces have revealed that during the wear test SiCp fragments into small pieces which act as abrasives to result in abrasive wear in the specimen.

  10. Reinforced sulphur concrete

    NARCIS (Netherlands)

    2014-01-01

    Reinforced sulphur concrete wherein one or more metal reinforcing members are in contact with sulphur concrete is disclosed. The reinforced sulphur concrete comprises an adhesion promoter that enhances the interaction between the sulphur and the one or more metal reinforcing members.

  11. Fracture toughness of Ceramic-Fiber-Reinforced Metallic-Intermetallic-Laminate (CFR-MIL) composites

    International Nuclear Information System (INIS)

    Vecchio, Kenneth S.; Jiang, Fengchun

    2016-01-01

    Novel Ceramic-Fiber-Reinforced-Metal-Intermetallic-Laminate (CFR-MIL) composites, Ti–Al 3 Ti–Al 2 O 3 –Al, were synthesized by reactive foil sintering in air. Microstructure controlled material architectures were achieved with continuous Al 2 O 3 fibers oriented in 0° and 90° layers to form fully dense composites in which the volume fractions of all four component phases can be tailored. Bend fracture specimens were cut from the laminate plates in divider orientation, and bend tests were performed to study the fracture behavior of CFR-MIL composites under three-point and four-point bending loading conditions. The microstructures and fractured surfaces of the CFR-MIL composites were examined using optical microscopy and scanning electron microscopy to establish a correlation between the fracture toughness, fracture surface morphology and microstructures of CFR-MIL composites. The fracture and toughening mechanisms of the CFR-MIL composites are also addressed. The present experimental results indicate that the fracture toughness of CFR-MIL composites determined by three- and four-point bend loading configurations are quite similar, and increased significantly compared to MIL composites without ceramic fiber reinforcement. The interface cracking behavior is related to the volume fraction of the brittle Al 3 Ti phase and residual ductile Al, but the fracture toughness values appear to be insensitive to the ratio of these two phases. The toughness appears to be dominated by the ductility/strength of the Ti layers and the strength and crack bridging effect of the ceramic fibers.

  12. Effect of clustering on the mechanical properties of SiC particulate-reinforced aluminum alloy 2024 metal matrix composites

    International Nuclear Information System (INIS)

    Hong, Soon-Jik; Kim, Hong-Moule; Huh, Dae; Suryanarayana, C.; Chun, Byong Sun

    2003-01-01

    Al 2024-SiC metal matrix composite (MMC) powders produced by centrifugal atomization were hot extruded to investigate the effect of clustering on their mechanical properties. Fracture toughness and tension tests were conducted on specimens reinforced with different volume fractions of SiC. A model was proposed to suggest that the strength of the MMCs could be estimated from the load transfer model approach that takes into consideration the extent of clustering. This model has been successful in predicting the experimentally observed strength and fracture toughness values of the Al 2024-SiC MMCs. On the basis of experimental observations, it is suggested that the strength of particulate-reinforced MMCs may be calculated from the relation: σ y =σ m V m +σ r (V r -V c )-σ r V c , where σ and V represent the yield strength and volume fraction, respectively, and the subscripts m, r, and c represent the matrix, reinforcement, and clusters, respectively

  13. Application of the Perceptual Factors, Enabling and Reinforcing Model on Pap Smaear Screening in Iranian Northern Woman

    Directory of Open Access Journals (Sweden)

    Abolhassan Naghibi

    2016-03-01

    Full Text Available Background and Purpose: Cervical cancer is the most prevalent cancer among women in the world. Cervical cancer is no symptoms and can be treated if diagnosed in the first stage of the disease. The aim of this study was to survey the affecting factors of the Pap smears test on perceptual factors, enabling and reinforcing (PEN-3 model constructs in women. Materials and Methods: This study was a descriptive cross-sectional study. The sample size was 416 married women with random sampling. The questionnaire had 50 questions based on PEN-3 model structures. Data were analyzed by descriptive statistics and logistic regression method in software SPSS 20. Results: The mean age of women was 32.70 ± 21.00 years. The knowledge of risk factors and screening methods for cervical cancer was 37.2. About 40% of women had a history of Pap smears. The most important of perception factors were effective, family history of the disease, encourage people to Pap smear, and fear of detecting of cervical cancer. The most important enabling factors were the presence of expert health personnel to provide training and Pap smear test (50.3%, lack of time and too busy to do Pap smear test (23.2%. The reinforcing factors were the media advice (41.3%, doctor’s advice (32.5% and neglect and forgetfulness (36.2%. Conclusion: This study has shown the Pap smear screening behavior affected by personal factors, family, cultural and economic. Application of PEN-3 can effective in planning and designing intervention programs for cervical cancer screening.

  14. Performance of hybrid nano-micro reinforced mg metal matrix composites brake calliper: simulation approach

    Science.gov (United States)

    Fatchurrohman, N.; Chia, S. T.

    2017-10-01

    Most commercial vehicles use brake calliper made of grey cast iron (GCI) which possesses heavy weight. This contributes to the total weight of the vehicle which can lead to higher fuel consumption. Another major problem is GCI calliper tends to deflect during clamping action, known as “bending of bridge”. This will result in extended pedal travel. Magnesium metal matrix composites (Mg-MMC) has a potential application in the automotive industry since it having a lower density, higher strength and very good modulus of elasticity as compared to GCI. This paper proposed initial development of hybrid Mg-MMC brake calliper. This was achieved by analyzing the performance of hybrid nano-micro reinforced Mg-MMC and comparing with the conventional GCI brake calliper. It was performed using simulation in ANSYS, a finite element analysis (FEA) software. The results show that hybrid Mg-MMC has better performance in terms of reduction the weight of the brake calliper, reduction in total deformation/deflection and better ability to withstand equivalent elastic strain.

  15. Chemical and microstructural changes at high temperature in tungsten wire reinforced metal-matrix composite materials

    International Nuclear Information System (INIS)

    Eaton, H.C.; Norden, H.

    1985-01-01

    Tungsten wire reinforced metal-matrix composites have been developed as a gas turbine blade material. Initially it was thought desirable to employ nickel or iron based superalloys as the matrix material due to their demonstrated reliability in applications where a high degree of dimensional stability, and thermal and mechanical fatigue resistance are required. It has been found, however, that deleterious fiber/matrix interactions occur in these systems under in-service conditions. These interactions seriously degrade the mechanical properties, and there is an effective lowering of the recrystallization temperature of the tungsten to the degree that grain structure changes can take place at unusually low temperatures. The present communication reports a study of the early stages of these interactions. Several microscopic and analytical techniques are used: TEM, SIMS, FIM, and the field ion atom probe. The nickel/tungsten interaction is thought to involve solute atom transport along grain boundaries. The grain boundary chemistry after short exposures to nickel at 1100 0 C is determined. In this manner the precursor interaction mechanisms are observed. These observations suggest that the strong nickel/tungsten grain boundary interactions do not involve the formation of distinct alloy phases, but instead involve rapid diffusion of essentially unalloyed nickel along the grain boundaries

  16. Control of Porosity and Pore Size of Metal Reinforced Carbon Nanotube Membranes

    Directory of Open Access Journals (Sweden)

    Stephen Gray

    2010-12-01

    Full Text Available Membranes are crucial in modern industry and both new technologies and materials need to be designed to achieve higher selectivity and performance. Exotic materials such as nanoparticles offer promising perspectives, and combining both their very high specific surface area and the possibility to incorporate them into macrostructures have already shown to substantially increase the membrane performance. In this paper we report on the fabrication and engineering of metal-reinforced carbon nanotube (CNT Bucky-Paper (BP composites with tuneable porosity and surface pore size. A BP is an entangled mesh non-woven like structure of nanotubes. Pure CNT BPs present both very high porosity (>90% and specific surface area (>400 m2/g. Furthermore, their pore size is generally between 20–50 nm making them promising candidates for various membrane and separation applications. Both electro-plating and electroless plating techniques were used to plate different series of BPs and offered various degrees of success. Here we will report mainly on electroless plated gold/CNT composites. The benefit of this method resides in the versatility of the plating and the opportunity to tune both average pore size and porosity of the structure with a high degree of reproducibility. The CNT BPs were first oxidized by short UV/O3 treatment, followed by successive immersion in different plating solutions. The morphology and properties of these samples has been investigated and their performance in air permeation and gas adsorption will be reported.

  17. Macro-mechanical material model for fiber reinforced metal matrix composites

    CERN Document Server

    Banks-Sills, L

    1999-01-01

    The stress-strain behavior of a metal matrix composite reinforced with unidirectional, continuous and periodic fibers is investigated. Three-dimensional micro-mechanical analyses of a unit cell by means of the finite element method $9 and homogenization-localization are carried out. These calculations allow the determination of material behavior of the in-plane, as well as the fiber directions. The fibers are assumed to be elastic and the matrix elasto-plastic. $9 The matrix material is governed by a von Mises yield surface, isotropic hardening and an associated flow rule. With the aid of these analyses, the foundation to a macro-mechanical material model is presented which is employed to $9 consider an elementary problem. The model includes an anisotropic yield surface with isotropic hardening and an associated flow rule. A beam in bending containing square fibers under plane strain conditions is analyzed by means of $9 the model. Two cases are considered: one in which the fibers are symmetric with respect t...

  18. Fracture resistance of metal-free composite crowns-effects of fiber reinforcement, thermal cycling, and cementation technique.

    Science.gov (United States)

    Lehmann, Franziska; Eickemeyer, Grit; Rammelsberg, Peter

    2004-09-01

    The improved mechanical properties of contemporary composites have resulted in their extensive use for the restoration of posterior teeth. However, the influence of fiber reinforcement, cementation technique, and physical stress on the fracture resistance of metal-free crowns is unknown. This in vitro study evaluated the effect of fiber reinforcement, physical stress, and cementation methods on the fracture resistance of posterior metal-free Sinfony crowns. Ninety-six extracted human third molars received a standardized tooth preparation: 0.5-mm chamfer preparation and occlusal reduction of 1.3 to 1.5 mm. Sinfony (nonreinforced crowns, n=48) and Sinfony-Vectris (reinforced crowns, n=48) crowns restoring original tooth contour were prepared. Twenty-four specimens of each crown type were cemented, using either glass ionomer cement (GIC) or resin cement. Thirty-two crowns (one third) were stored in humidity for 48 hours. Another third was exposed to 10,000 thermal cycles (TC) between 5 degrees C and 55 degrees C. The remaining third was treated with thermal cycling and mechanical loading (TCML), consisting of 1.2 million axial loads of 50 N. The artificial crowns were then vertically loaded with a steel sphere until failure occurred. Significant differences in fracture resistance (N) between experimental groups were assessed by nonparametric Mann-Whitney U-test (alpha=.05). Fifty percent of the Sinfony and Sinfony-Vectris crowns cemented with glass ionomer cement loosened after thermal cycling. Thermal cycling resulted in a significant reduction in the mean fracture resistance for Sinfony crowns cemented with GIC, from 2037 N to 1282 N (P=.004). Additional fatigue produced no further effects. Fiber reinforcement significantly increased fracture resistance, from 1555 N to 2326 N (P=.001). The minimal fracture resistance was above 600 N for all combinations of material, cement and loading. Fracture resistance of metal-free Sinfony crowns was significantly increased by

  19. Practical considerations and effects of metallic screen fluorescence and backscatter control in gamma computed radiography

    International Nuclear Information System (INIS)

    Mango, Steven

    2016-01-01

    It is a fairly common misconception that the role of metallic screens used with computed radiography is primarily that of scatter control, and that any amplification of the image signal is minimal. To the contrary, this paper shows how the physical interaction between gamma rays and front metallic screens can yield a significant boost in signal and whether that increased signal is, in fact, beneficial or detrimental to image quality. For rear metallic screens, this signal boost is differentiated from backscatter, and image quality considerations should be more carefully thought out because of the separation between the screen and the imaging layer provided by the imaging plate support. Various physical interactions are explained, and a series of practical experiments show the various changes in signal level and image quality with various thicknesses of lead and copper screens. Recommendations are made for the configuration of the imaging plate and screens for optimum image quality and for the control and monitoring of scatter.

  20. Characterization and modeling of three-dimensional self-healing shape memory alloy-reinforced metal-matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Manuel, Michele Viola [University of Florida, Gainesville; Zhu, Pingping [Northwestern University, Evanston; Newman, John A. [NASA Langely Research Center (LaRC), Virginia; Wright, M Clara [NASA Kennedy Space Center, FL; Brinson, L Catherine [Northwestern University, Evanston; Kesler, Michael S. [ORNL

    2016-09-10

    In this paper, three-dimensional metal-matrix composites (MMCs) reinforced by shape memory alloy (SMA) wires are modeled and simulated, by adopting an SMA constitutive model accounting for elastic deformation, phase transformation and plastic behavior. A modeling method to create composites with pre-strained SMA wires is also proposed to improve the self-healing ability. Experimental validation is provided with a composite under three-point bending. This modeling method is applied in a series of finite element simulations to investigate the self-healing effects in pre-cracked composites, especially the role of the SMA reinforcement, the softening property of the matrix, and the effect of pre-strain in the SMA. The results demonstrate that SMA reinforcements provide stronger shape recovery ability than other, non-transforming materials. The softening property of the metallic matrix and the pre-strain in SMA are also beneficial to help crack closure and healing. This modeling approach can serve as an efficient tool to design SMA-reinforced MMCs with optimal self-healing properties that have potential applications in components needing a high level of reliability.

  1. The erosion performance of particle reinforced metal matrix composite coatings produced by co-deposition cold gas dynamic spraying

    Science.gov (United States)

    Peat, Tom; Galloway, Alexander; Toumpis, Athanasios; McNutt, Philip; Iqbal, Naveed

    2017-02-01

    This work reports on the erosion performance of three particle reinforced metal matrix composite coatings, co-deposited with an aluminium binder via cold-gas dynamic spraying. The deposition of ceramic particles is difficult to achieve with typical cold spray techniques due to the absence of particle deformation. This issue has been overcome in the present study by simultaneously spraying the reinforcing particles with a ductile metallic binder which has led to an increased level of ceramic/cermet particles deposited on the substrate with thick (>400 μm) coatings produced. The aim of this investigation was to evaluate the erosion performance of the co-deposited coatings within a slurry environment. The study also incorporated standard metallographic characterisation techniques to evaluate the distribution of reinforcing particles within the aluminium matrix. All coatings exhibited poorer erosion performance than the uncoated material, both in terms of volume loss and mass loss. The Al2O3 reinforced coating sustained the greatest amount of damage following exposure to the slurry and recorded the greatest volume loss (approx. 2.8 mm3) out of all of the examined coatings. Despite the poor erosion performance, the WC-CoCr reinforced coating demonstrated a considerable hardness increase over the as-received AA5083 (approx. 400%) and also exhibited the smallest free space length between adjacent particles. The findings of this study reveal that the removal of the AA5083 matrix by the impinging silicon carbide particles acts as the primary wear mechanism leading to the degradation of the coating. Analysis of the wear scar has demonstrated that the damage to the soft matrix alloy takes the form of ploughing and scoring which subsequently exposes carbide/oxide particles to the impinging slurry.

  2. Characterization of Al-Cu alloy reinforced fly ash metal matrix ...

    African Journals Online (AJOL)

    The Al-4.5wt%Cu reinforced 3, 6, 9 and 12wt%fly ash composite was squeeze casted with an applied pressure of 120MPa. The results showed that hardness tensile compression and impact values were increased by increasing weight percentage of fly ash reinforcements during squeeze casting. Porosity and other casting ...

  3. Dynamic screening and electron dynamics in low-dimensional metal systems

    International Nuclear Information System (INIS)

    Silkin, V.M.; Quijada, M.; Vergniory, M.G.; Alducin, M.; Borisov, A.G.; Diez Muino, R.; Juaristi, J.I.; Sanchez-Portal, D.; Chulkov, E.V.; Echenique, P.M.

    2007-01-01

    Recent advances in the theoretical description of dynamic screening and electron dynamics in metallic media are reviewed. The time-dependent building-up of screening in different situations is addressed. Perturbative and non-perturbative theories are used to study electron dynamics in low-dimensional systems, such as metal clusters, image states, surface states and quantum wells. Modification of the electronic lifetimes due to confinement effects is analyzed as well

  4. Screen-Printed Electrodes Modified with "Green" Metals for Electrochemical Stripping Analysis of Toxic Elements.

    Science.gov (United States)

    Economou, Anastasios

    2018-03-29

    This work reviews the field of screen-printed electrodes (SPEs) modified with "green" metals for electrochemical stripping analysis of toxic elements. Electrochemical stripping analysis has been established as a useful trace analysis technique offering many advantages compared to competing optical techniques. Although mercury has been the preferred electrode material for stripping analysis, the toxicity of mercury and the associated legal requirements in its use and disposal have prompted research towards the development of "green" metals as alternative electrode materials. When combined with the screen-printing technology, such environment-friendly metals can lead to disposable sensors for trace metal analysis with excellent operational characteristics. This review focuses on SPEs modified with Au, Bi, Sb, and Sn for stripping analysis of toxic elements. Different modification approaches (electroplating, bulk modification, use of metal precursors, microengineering techniques) are considered and representative applications are described. A developing related field, namely biosensing based on stripping analysis of metallic nanoprobe labels, is also briefly mentioned.

  5. Nonequilibrium Alloying of Aluminum for Improving the Corrosion Resistance of Graphite-Reinforced Metal Matrix Composites

    National Research Council Canada - National Science Library

    Shaw, Barbara

    1994-01-01

    .... Unfortunately, MMCs, especially Gr reinforced composites, are extremely susceptible to corrosion with severe attack in chloride-containing environments occurring in as little time as several weeks for Gr/Al composites...

  6. Effect of the metallic glass volume fraction on the mechanical properties of Zr-based metallic glass reinforced with porous W composite

    International Nuclear Information System (INIS)

    Zhang, X.Q.; Wang, L.; Xue, Y.F.; Cheng, X.W.; Wang, Y.D.; Nie, Z.H.; Zhang, H.F.; Fu, H.M.; Ma, L.L.; Ren, Y.

    2013-01-01

    The mechanical properties of both as-cast and as-extruded Zr-based metallic glass reinforced with tungsten composites with 33, 28, and 21 vol. % of metallic glass were investigated under quasi-static compression at strain rates from 10 −4 s −1 to 10 −1 s −1 . These two types of composites exhibited a strain rate sensitivity exponent that increased with the increase of the tungsten volume fraction. Compared to the composites with 33 and 21 vol. % of the metallic glass, the two types of composites with 28 vol. % of the metallic glass phase exhibited superior fracture energies. The in-situ compression test on the as-cast composites using high-energy synchrotron X-ray diffraction (HEXRD) revealed that the yield stress of the tungsten phase increased with a decrease in the metallic glass volume fraction. The as-cast composite with 28 vol. % of the metallic glass exhibited relatively great mechanical properties compared to the composites that contained 33 and 21 vol. % of the metallic glass. This result was attributed to the great coupling of the load distribution between the two phases and the high lattice strain in the tungsten phase.

  7. Development of an in-situ multi-component reinforced Al-based metal matrix composite by direct metal laser sintering technique — Optimization of process parameters

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Subrata Kumar, E-mail: subratagh82@gmail.com [Department of Mechanical Engineering, National Institute of Technology Agartala, Tripura 799055 (India); Bandyopadhyay, Kaushik; Saha, Partha [Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India)

    2014-07-01

    In the present investigation, an in-situ multi-component reinforced aluminum based metal matrix composite was fabricated by the combination of self-propagating high-temperature synthesis and direct metal laser sintering process. The different mixtures of Al, TiO{sub 2} and B{sub 4}C powders were used to initiate and maintain the self-propagating high-temperature synthesis by laser during the sintering process. It was found from the X-ray diffraction analysis and scanning electron microscopy that the reinforcements like Al{sub 2}O{sub 3}, TiC, and TiB{sub 2} were formed in the composite. The scanning electron microscopy revealed the distribution of the reinforcement phases in the composite and phase identities. The variable parameters such as powder layer thickness, laser power, scanning speed, hatching distance and composition of the powder mixture were optimized for higher density, lower porosity and higher microhardness using Taguchi method. Experimental investigation shows that the density of the specimen mainly depends upon the hatching distance, composition and layer thickness. On the other hand, hatching distance, layer thickness and laser power are the significant parameters which influence the porosity. The composition, laser power and layer thickness are the key influencing parameters for microhardness. - Highlights: • The reinforcements such as Al{sub 2}O{sub 3}, TiC, and TiB{sub 2} were produced in Al-MMC through SHS. • The density is mainly influenced by the material composition and hatching distance. • Hatching distance is the major influencing parameter on porosity. • The material composition is the significant parameter to enhance the microhardness. • The SEM micrographs reveal the distribution of TiC, TiB{sub 2} and Al{sub 2}O{sub 3} in the composite.

  8. Development of an in-situ multi-component reinforced Al-based metal matrix composite by direct metal laser sintering technique — Optimization of process parameters

    International Nuclear Information System (INIS)

    Ghosh, Subrata Kumar; Bandyopadhyay, Kaushik; Saha, Partha

    2014-01-01

    In the present investigation, an in-situ multi-component reinforced aluminum based metal matrix composite was fabricated by the combination of self-propagating high-temperature synthesis and direct metal laser sintering process. The different mixtures of Al, TiO 2 and B 4 C powders were used to initiate and maintain the self-propagating high-temperature synthesis by laser during the sintering process. It was found from the X-ray diffraction analysis and scanning electron microscopy that the reinforcements like Al 2 O 3 , TiC, and TiB 2 were formed in the composite. The scanning electron microscopy revealed the distribution of the reinforcement phases in the composite and phase identities. The variable parameters such as powder layer thickness, laser power, scanning speed, hatching distance and composition of the powder mixture were optimized for higher density, lower porosity and higher microhardness using Taguchi method. Experimental investigation shows that the density of the specimen mainly depends upon the hatching distance, composition and layer thickness. On the other hand, hatching distance, layer thickness and laser power are the significant parameters which influence the porosity. The composition, laser power and layer thickness are the key influencing parameters for microhardness. - Highlights: • The reinforcements such as Al 2 O 3 , TiC, and TiB 2 were produced in Al-MMC through SHS. • The density is mainly influenced by the material composition and hatching distance. • Hatching distance is the major influencing parameter on porosity. • The material composition is the significant parameter to enhance the microhardness. • The SEM micrographs reveal the distribution of TiC, TiB 2 and Al 2 O 3 in the composite

  9. Strength and deformability of compressed concrete elements with various types of non-metallic fiber and rods reinforcement under static loading

    Science.gov (United States)

    Nevskii, A. V.; Baldin, I. V.; Kudyakov, K. L.

    2015-01-01

    Adoption of modern building materials based on non-metallic fibers and their application in concrete structures represent one of the important issues in construction industry. This paper presents results of investigation of several types of raw materials selected: basalt fiber, carbon fiber and composite fiber rods based on glass and carbon. Preliminary testing has shown the possibility of raw materials to be effectively used in compressed concrete elements. Experimental program to define strength and deformability of compressed concrete elements with non-metallic fiber reinforcement and rod composite reinforcement included design, manufacture and testing of several types of concrete samples with different types of fiber and longitudinal rod reinforcement. The samples were tested under compressive static load. The results demonstrated that fiber reinforcement of concrete allows increasing carrying capacity of compressed concrete elements and reducing their deformability. Using composite longitudinal reinforcement instead of steel longitudinal reinforcement in compressed concrete elements insignificantly influences bearing capacity. Combined use of composite rod reinforcement and fiber reinforcement in compressed concrete elements enables to achieve maximum strength and minimum deformability.

  10. Fracture Toughness of Carbon Nanotube-Reinforced Metal- and Ceramic-Matrix Composites

    International Nuclear Information System (INIS)

    Chen, Y.L.; Liu, B.; Hwang, K.C.; Chen, Y.L.; Huang, Y.

    2011-01-01

    Hierarchical analysis of the fracture toughness enhancement of carbon nanotube- (CNT-) reinforced hard matrix composites is carried out on the basis of shear-lag theory and fracture mechanics. It is found that stronger CNT/matrix interfaces cannot definitely lead to the better fracture toughness of these composites, and the optimal interfacial chemical bond density is that making the failure mode just in the transition from CNT pull-out to CNT break. For hard matrix composites, the fracture toughness of composites with weak interfaces can be improved effectively by increasing the CNT length. However, for soft matrix composite, the fracture toughness improvement due to the reinforcing CNTs quickly becomes saturated with an increase in CNT length. The proposed theoretical model is also applicable to short fiber-reinforced composites.

  11. Demonstration test on manufacturing steel bars for concrete reinforcement for recycling of reactor decommissioning metal scrap

    International Nuclear Information System (INIS)

    Sakurai, D.; Anabuki, Y.

    1993-01-01

    To prove the possibility of recycling the steel scrap resulting from decommissioning of a nuclear power plant, this salvaged steel would be formed into steel bars for concrete reinforcement, as the restricted use and limited use at nuclear plants. The shifting behavior of radioactive isotopes (RI) in the melting process was confirmed through the laboratory hot test using the RI. Then, the demonstration cold test for steel bars for reinforcement using the nonradioactive isotope was conducted in on-line production facilities. In this test the quality of steel bars and uniform distribution of RI were proven and material balance and operational data were obtained. These data show the recycling to steel bars for concrete reinforcement is applicable from economical and safety aspects

  12. Fracture Toughness of Carbon Nanotube-Reinforced Metal- and Ceramic-Matrix Composites

    Directory of Open Access Journals (Sweden)

    Y. L. Chen

    2011-01-01

    Full Text Available Hierarchical analysis of the fracture toughness enhancement of carbon nanotube- (CNT- reinforced hard matrix composites is carried out on the basis of shear-lag theory and facture mechanics. It is found that stronger CNT/matrix interfaces cannot definitely lead to the better fracture toughness of these composites, and the optimal interfacial chemical bond density is that making the failure mode just in the transition from CNT pull-out to CNT break. For hard matrix composites, the fracture toughness of composites with weak interfaces can be improved effectively by increasing the CNT length. However, for soft matrix composite, the fracture toughness improvement due to the reinforcing CNTs quickly becomes saturated with an increase in CNT length. The proposed theoretical model is also applicable to short fiber-reinforced composites.

  13. Tensile and Compressive Responses of Ceramic and Metallic Nanoparticle Reinforced Mg Composites

    Directory of Open Access Journals (Sweden)

    Quy Bau Nguyen

    2013-05-01

    Full Text Available In the present study, room temperature mechanical properties of pure magnesium, Mg/ZrO2 and Mg/(ZrO2 + Cu composites with various compositions are investigated. Results revealed that the use of hybrid (ZrO2 + Cu reinforcements in Mg led to enhanced mechanical properties when compared to that of single reinforcement (ZrO2. Marginal reduction in mechanical properties of Mg/ZrO2 composites were observed mainly due to clustering of ZrO2 particles in Mg matrix and lack of matrix grain refinement. Addition of hybrid reinforcements led to grain size reduction and uniform distribution of hybrid reinforcements, globally and locally, in the hybrid composites. Macro- and micro- hardness, tensile strengths and compressive strengths were all significantly increased in the hybrid composites. With respect to unreinforced magnesium, failure strain was almost unchanged under tensile loading while it was reduced under compressive loading for both Mg/ZrO2 and Mg/(ZrO2 + Cu composites.

  14. Screening of sunflower cultivars for metal phytoextraction in a contaminated field prior to mutagenesis.

    Science.gov (United States)

    Nehnevajova, Erika; Herzig, Rolf; Federer, Guido; Erismann, Karl-Hans; Schwitzguébel, Jean-Paul

    2005-01-01

    Sunflower can be used for the remediation of metal-contaminated soils. Its high biomass production makes this plant species interestingfor phytoextraction and using sunflower oil for a technical purpose may improve the economic balance of phytoremediation. The aim of the present field study was to screen 15 commercial cultivars of Helianthus annuus L. grown on metal-contaminated soil, to find out the variety with the highest metal extraction, which can be further improved by mutation or in vitro breeding procedures. Two different fertilizers (ammonium sulphate and ammonium nitrate) were also used to enhance the bioavailability of metals in soil Highly significant differences were observed within tested varieties for metal accumulation and extraction efficiency. Furthermore, ammonium nitrate increased cadmium extraction, whereas ammonium sulphate enhanced zinc and lead uptake in most tested cultivars. In this field-based sunflower screening, we found enhanced cumulative Cd, Zn, and Pb extraction efficiency by a factor 4.4 for Salut cultivar. We therefore emphasize that prior to any classical breeding or genetic engineering enhancing metal uptake potential, a careful screening of various genotypes should be done to select the cultivar with the naturally highest metal uptake and to start the genetic improvement with the best available plant material.

  15. Processing and characterization of laser sintered hybrid B4C/cBN reinforced Ti-based metal matrix composite

    Science.gov (United States)

    Gupta, Ankit; Hussain, Manowar; Misra, Saurav; Das, Alok Kumar; Mandal, Amitava

    2018-06-01

    The purpose of this study is to make a boron carbide (B4C) and cubic boron nitride (cBN) reinforced Ti6Al4V metal matrix composites (MMC's) by direct metal laser sintering (DMLS) technique using the continuous wave (CW) SPI fiber laser and to check the feasibility of the formation of three dimensional objects by this process. For this study, the process parameters like laser power density (3.528-5.172 W/cm2 (×104), scanning speed (3500-4500 mm/min), composition of the reinforced materials B4C (5-25% by volume) and cBN (3% by volume) were taken as input variables and hatching gap (0.2 mm), spot diameter (0.4 mm), layer thickness (0.4 mm) were taken as constant. It was analyzed that surface characteristic, density and the mechanical properties of sintered samples were greatly influenced by varying the input process parameters. Field emission scanning electron microscopy (FESEM), Energy dispersive X-ray spectroscopy (EDX) and X-Ray diffraction (XRD) were performed for microstructural analysis, elemental analysis, and recognition of intermetallic compounds respectively. Mechanical properties like micro-hardness & wear rate were examined by Vickers micro-hardness tester & pin on disc arrangement respectively. From hardness tests, it was observed that hardness property of the sintered specimens was increased as compared to the parent material. The XRD results show that there is a good affinity between Ti6Al4V-B4C-cBN to produce various intermetallic compounds which themselves enhance the mechanical properties of the samples. From FESEM analysis, we can conclude that there is a uniform distribution of reinforcements in the titanium alloy matrix. Furthermore, the coefficient of friction (COF) was characterized by the irregular pattern and it tends to decrease with an increase in the volume % of reinforcement. The results obtained in this work may be useful in preparing the MMC's with improved mechanical properties and overall characteristics.

  16. Numerical Modeling of Fiber-Reinforced Metal Matrix Composite Processing by the Liquid Route: Literature Contribution

    Science.gov (United States)

    Lacoste, Eric; Arvieu, Corinne; Mantaux, Olivier

    2018-04-01

    One of the technologies used to produce metal matrix composites (MMCs) is liquid route processing. One solution is to inject a liquid metal under pressure or at constant rate through a fibrous preform. This foundry technique overcomes the problem of the wettability of ceramic fibers by liquid metal. The liquid route can also be used to produce semiproducts by coating a filament with a molten metal. These processes involve physical phenomena combined with mass and heat transfer and phase change. The phase change phenomena related to solidification and also to the melting of the metal during the process notably result in modifications to the permeability of porous media, in gaps in impregnation, in the appearance of defects (porosities), and in segregation in the final product. In this article, we provide a state-of-the-art review of numerical models and simulation developed to study these physical phenomena involved in MMC processing by the liquid route.

  17. X-ray microtomography of damage in particle-reinforced metal matrix composites

    International Nuclear Information System (INIS)

    Mummery, P.M.; Derby, B.; Anderson, P.; Davis, G.; Elliott, J.C.

    1993-01-01

    The damage which occurs on plastic straining of silicon carbide particle-reinforced aluminium alloys has been characterised using x-ray microtomography. The technique is used to provide density measurements as a function of strain in addition to imaging the internal structure with a resolution of ∼15μm. This allows a much more accurate determination of microstructural damage in terms of void growth than is available from measurements of density using buoyancy methods or from elastic modulus decrease. These data can be combined with acoustic emission measurements during straining to allow damage nucleation and growth contributions to be separated. (orig.)

  18. Evaluation of Mechanical Properties of MWCNT / Nanoclay Reinforced Aluminium alloy Metal Matrix Composite

    Science.gov (United States)

    Ratna Kumar, P. S. Samuel; Robinson Smart, D. S.; Alexis, S. John

    2018-04-01

    Aluminium alloy 5083 (AA5083) is a widely used material in aerospace, marine, defence and structural applications were mechanical and corrosion resistance property plays a vital role. For the present work, MWCNT / Nanoclay (montmorillonite (MMT) K10) mixed with AA5083 for different composition in weight percentage to enhance the mechanical property. Semi-solid state casting method (Compo-casting) was used to fabricate the composite materials. By using Field-emission scanning electron microscope (FESEM) the uniform dispersion of the reinforcement and microstructure were studied. Finally, the addition of Nanoclay shows decrease in tensile strength compared to the AA5083 / MWCNT composites and hardness value of the composites (AA5083 / MWCNT and AA5083 / Nanoclay) was found to increase significantly.

  19. Interactions between tungsten carbide (WC) particulates and metal matrix in WC-reinforced composites

    International Nuclear Information System (INIS)

    Lou, D.; Hellman, J.; Luhulima, D.; Liimatainen, J.; Lindroos, V.K.

    2003-01-01

    A variety of experimental techniques have been used to investigate the interactions between tungsten carbide (WC-Co 88/12) particulates and the matrix in some new wear resistant cobalt-based superalloy and steel matrix composites produced by hot isostatic pressing. The results show that the chemical composition of the matrix has a strong influence on the interface reaction between WC and matrix and the structural stability of the WC particulates in the composite. Some characteristics of the interaction between matrix and reinforcement are explained by the calculation of diffusion kinetics. The three-body abrasion wear resistance of the composites has been examined based on the ASTM G65-91 standard procedure. The wear behavior of the best composites of this study shows great potential for wear protection applications

  20. Screen-printed electrodes for environmental monitoring of heavy metal ions: a review

    International Nuclear Information System (INIS)

    Barton, John; González García, María Begoña; Hernández Santos, David; Fanjul-Bolado, Pablo; Ribotti, Alberto; Magni, Paolo; McCaul, Margaret; Diamond, Dermot

    2016-01-01

    Heavy metals such as lead, mercury, cadmium, zinc and copper are among the most important pollutants because of their non-biodegradability and toxicity above certain thresholds. Here, we review methods for sensing heavy metal ions (HMI) in water samples using screen-printed electrodes (SPEs) as transducers. The review (with 107 refs.) starts with an introduction into the topic, and this is followed by sections on (a) mercury-coated SPEs, (b) bismuth-coated SPEs, (c) gold-coated SPEs (d) chemically modified and non-modified carbon SPEs, (e) enzyme inhibition-based SPEs, and (f) an overview of commercially available electrochemical portable heavy metal analyzers. The review reveals the significance of SPEs in terms of decentralized and of in situ analysis of heavy metal ions in environmental monitoring. (author)

  1. Computer Simulation of Cure Process of an Axisymmetric Rubber Article Reinforced by Metal Plates Using Extended ABAQUS Code

    Directory of Open Access Journals (Sweden)

    M.H.R. Ghoreishy

    2013-01-01

    Full Text Available Afinite element model is developed for simulation of the curing process of a thick axisymmetric rubber article reinforced by metal plates during the molding and cooling stages. The model consists of the heat transfer equation and a newly developed kinetics model for the determination of the state of cure in the rubber. The latter is based on the modification of the well-known Kamal-Sourour model. The thermal contact of the rubber with metallic surfaces (inserts and molds and the variation of the thermal properties (conductivity and specific heat with temperature and state-of-cure are taken into consideration. The ABAQUS code is used in conjunction with an in-house developed user subroutine to solve the governing equations. Having compared temperature profile and variation of the state-of-cure with experimentally measured data, the accuracy and applicability of the model is confirmed. It is also shown that this model can be successfully used for the optimization of curing process which gives rise to reduction of the molding time.

  2. Evaluation of a metal shear web selectively reinforced with filamentary composites for space shuttle application. Phase 1 summary report: Shear web design development

    Science.gov (United States)

    Laakso, J. H.; Zimmerman, D. K.

    1972-01-01

    An advanced composite shear web design concept was developed for the Space Shuttle orbiter main engine thrust beam structure. Various web concepts were synthesized by a computer-aided adaptive random search procedure. A practical concept is identified having a titanium-clad + or - 45 deg boron/epoxy web plate with vertical boron/epoxy reinforced aluminum stiffeners. The boron-epoxy laminate contributes to the strength and stiffness efficiency of the basic web section. The titanium-cladding functions to protect the polymeric laminate parts from damaging environments and is chem-milled to provide reinforcement in selected areas. Detailed design drawings are presented for both boron/epoxy reinforced and all-metal shear webs. The weight saving offered is 24% relative to all-metal construction at an attractive cost per pound of weight saved, based on the detailed designs. Small scale element tests substantiate the boron/epoxy reinforced design details in critical areas. The results show that the titanium-cladding reliably reinforces the web laminate in critical edge load transfer and stiffener fastener hole areas.

  3. Screening of catalytic oxygen reduction reaction activity of metal-doped graphene by density functional theory

    International Nuclear Information System (INIS)

    Chen, Xin; Chen, Shuangjing; Wang, Jinyu

    2016-01-01

    Highlights: • The screened M-G structures are very thermodynamically stable, and the stability is even higher than that of the corresponding bulk metal surfaces. • The binding energies of ORR intermediates suggest that they are not linear dependence, which are different form the cases found on some metal-based catalysts. • The Au-, Co-, and Ag-G structures could be used as the ORR catalysts. - Abstract: Graphene doping is a promising direction for developing effective oxygen reduction reaction (ORR) catalysts. In this paper, we computationally investigated the ORR performance of 10 kinds of metal-doped graphene (M-G) catalysts, namely, Al-, Si-, Mn-, Fe-, Co-, Ni-, Pd-, Ag-, Pt-, and Au-G. The results shown that the binding energies of the metal atoms incorporated into the graphene vacancy are higher than their bulk cohesive energies, indicating the formed M-G catalysts are even more stable than the corresponding bulk metal surfaces, and thus avoid the metals dissolution in the reaction environment. We demonstrated that the linear relation among the binding energies of the ORR intermediates that found on metal-based materials does not hold for the M-G catalysts, therefore a single binding energy of intermediate alone is not sufficient to evaluate the ORR activity of an arbitrary catalyst. By analysis of the detailed ORR processes, we predicted that the Au-, Co-, and Ag-G materials can be used as the ORR catalysts.

  4. EXPERIMENTAL INVESTIGATION ON TRIBOLOGICAL CHARACTERISTICS OF SILICON NITRIDE REINFORCED ALUMINIUM METAL MATRIX COMPOSITES

    Directory of Open Access Journals (Sweden)

    D. BHUVANESH

    2017-05-01

    Full Text Available Aluminium alloy (LM25 reinforced with silicon nitride was fabricated by liquid metallurgy route. The fabricated composite was investigated for dry sliding wear behaviour by conducting experiments using pin-on-disc tribometer. Set of experiments were planned using Taguchi’s technique and data analysis was carried out using L27 orthogonal array. Analysis of Variance (ANOVA technique was used to determine the significance of parameter with respect to wear rate. Signal-to-Noise ratio was employed to detect the most and least influential parameter as well as their level of influence. ‘Smaller the wear’ characteristic was chosen for the analysis of dry sliding wear. Results implied that, the load has the primary effect on the wear succeeded by the effect of sliding velocity and sliding distance. Scanning Electronic Microscopic studies were carried out on worn surfaces to understand the wear mechanism.Tribological results indicated that LM25 aluminium alloy could be better utilized as a material for piston, rotor and bearings for long life in low speed applications.

  5. Modeling nanoscale gas sensors under realistic conditions: Computational screening of metal-doped carbon nanotubes

    DEFF Research Database (Denmark)

    García Lastra, Juan Maria; Mowbray, Duncan; Thygesen, Kristian Sommer

    2010-01-01

    We use computational screening to systematically investigate the use of transition-metal-doped carbon nanotubes for chemical-gas sensing. For a set of relevant target molecules (CO, NH3, and H2S) and the main components of air (N2, O2, and H2O), we calculate the binding energy and change in condu......We use computational screening to systematically investigate the use of transition-metal-doped carbon nanotubes for chemical-gas sensing. For a set of relevant target molecules (CO, NH3, and H2S) and the main components of air (N2, O2, and H2O), we calculate the binding energy and change...... the change in the nanotube resistance per doping site as a function of the target molecule concentration assuming charge transport in the diffusive regime. Our analysis points to Ni-doped nanotubes as candidates for CO sensors working under typical atmospheric conditions....

  6. High-throughput screening of metal-porphyrin-like graphenes for selective capture of carbon dioxide

    OpenAIRE

    Hyeonhu Bae; Minwoo Park; Byungryul Jang; Yura Kang; Jinwoo Park; Hosik Lee; Haegeun Chung; ChiHye Chung; Suklyun Hong; Yongkyung Kwon; Boris I. Yakobson; Hoonkyung Lee

    2016-01-01

    Nanostructured materials, such as zeolites and metal-organic frameworks, have been considered to capture CO2. However, their application has been limited largely because they exhibit poor selectivity for flue gases and low capture capacity under low pressures. We perform a high-throughput screening for selective CO2 capture from flue gases by using first principles thermodynamics. We find that elements with empty d orbitals selectively attract CO2 from gaseous mixtures under low CO2 pressures...

  7. A new method for soldering particle-reinforced aluminum metal matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jinbin; Mu, Yunchao [Zhongyuan University of Technology, Zhengzhou 450007 (China); Luo, Xiangwei [Zhengzhou University, Zhengzhou 450002 (China); Niu, Jitai, E-mail: niujitai@163.com [Zhongyuan University of Technology, Zhengzhou 450007 (China)

    2012-12-01

    Highlights: Black-Right-Pointing-Pointer Soldering of 55% SiCp/Al composite and Kovar is first achieved in the world. Black-Right-Pointing-Pointer The nickel plating is required on the surface of the composites before soldering. Black-Right-Pointing-Pointer Low welding temperature is set to avoid overheating of the matrix. Black-Right-Pointing-Pointer Chemical and metallurgical bonding of composites and Kovar is carried out. Black-Right-Pointing-Pointer High tension strength of 225 MPa in soldering seam has been obtained. - Abstract: Soldering of aluminum metal matrix composites (Al-SiC) to other structural materials, or even to themselves, has proved unsuccessful mainly due to the poor wetting of these composites by conventional soldering alloys. This paper reports a new approach, which improves the wetting properties of these composites by molting solder alloys to promote stronger bonds. The new approach relies on nickel-plating of the composite's faying surface prior to application of a solder alloy. Based on this approach, an aluminum metal matrix composite containing 55 vol.% SiC particles is successfully soldered to a Fe-Ni-Co alloy (commercially known as Kovar 4J29). The solder material is a zinc-based alloy (Zn-Cd-Ag-Cu) with a melting point of about 400 Degree-Sign C. Microscopic examinations of the aluminum metal matrix composites (Al-MMCs)-Kovar interfaces show that the nickel-plating, prior to soldering, could noticeably enhance the reaction between the molten solder and composites. The fractography of the shear-tested samples revealed that fracture occurs within the composite (i.e. cohesive failure), indicating a good adhesion between the solder alloy and the Al-SiC composite.

  8. A new method for soldering particle-reinforced aluminum metal matrix composites

    International Nuclear Information System (INIS)

    Lu, Jinbin; Mu, Yunchao; Luo, Xiangwei; Niu, Jitai

    2012-01-01

    Highlights: ► Soldering of 55% SiCp/Al composite and Kovar is first achieved in the world. ► The nickel plating is required on the surface of the composites before soldering. ► Low welding temperature is set to avoid overheating of the matrix. ► Chemical and metallurgical bonding of composites and Kovar is carried out. ► High tension strength of 225 MPa in soldering seam has been obtained. - Abstract: Soldering of aluminum metal matrix composites (Al–SiC) to other structural materials, or even to themselves, has proved unsuccessful mainly due to the poor wetting of these composites by conventional soldering alloys. This paper reports a new approach, which improves the wetting properties of these composites by molting solder alloys to promote stronger bonds. The new approach relies on nickel-plating of the composite's faying surface prior to application of a solder alloy. Based on this approach, an aluminum metal matrix composite containing 55 vol.% SiC particles is successfully soldered to a Fe–Ni–Co alloy (commercially known as Kovar 4J29). The solder material is a zinc-based alloy (Zn–Cd–Ag–Cu) with a melting point of about 400 °C. Microscopic examinations of the aluminum metal matrix composites (Al-MMCs)–Kovar interfaces show that the nickel-plating, prior to soldering, could noticeably enhance the reaction between the molten solder and composites. The fractography of the shear-tested samples revealed that fracture occurs within the composite (i.e. cohesive failure), indicating a good adhesion between the solder alloy and the Al–SiC composite.

  9. Mechanical properties of aluminium based metal matrix composites reinforced with graphite nanoplatelets

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Syed Nasimul, E-mail: syedn@nitrkl.ac.in; Kumar, Lailesh

    2016-06-14

    In this work Al-matrix composites reinforced by exfoliated graphite nanoplatelets (xGnP) is fabricated by powder metallurgy route and their microstructure, mechanical properties and sliding wear behaviour were investigated. Here, xGnP has been synthesized from the thermally exfoliated graphite produced from a graphite intercalation compound (GIC) through rapid evaporation of the intercalant at an elevated temperature. The xGnP synthesized was characterized using scanning electron microscope (SEM), high-resolution transmission electron microscope (HRTEM), x-ray diffraction (XRD), atomic force microscopy (AFM), x-ray photoelectron spectroscopy (XPS), differential scanning calorimetry and thermogravimetric analysis (DSC/TGA), Raman spectroscopy and Fourier transform infrared spectroscopy (FTIR). The Al and xGnP powder mixtures were consolidated under a load of 565 MPa followed by sintering at 550 °C for 2 h in an inert atmosphere. Al-1, 2, 3 and 5 wt% xGnP nanocomposites were developed. Results of the wear test show that there was a significant improvement in the wear resistance of the composites up to the addition of 3 wt% of xGnP in the Al matrix. The hardness of the various Al-xGnP composites also shows improvement upto the addition of 1 wt% xGnP beyond which there was a decrease in the hardness of the composites. The tensile strength of the Al-xGnP composites continuously reduced with the addition of xGnP due to the formation of Al{sub 4}C{sub 3} particles at the interface of the Al and xGnP in the composite.

  10. Metal-Matrix Hardmetal/Cermet Reinforced Composite Powders for Thermal Spray

    Directory of Open Access Journals (Sweden)

    Dmitri GOLJANDIN

    2012-03-01

    Full Text Available Recycling of materials is becoming increasingly important as industry response to public demands, that resources must be preserved and environment protected. To produce materials competitive in cost with primary product, secondary producers have to pursue new technologies and other innovations. For these purposes different recycling technologies for composite materials (oxidation, milling, remelting etc are widely used. The current paper studies hardmetal/cermet powders produced by mechanical milling technology. The following composite materials were studied: Cr3C2-Ni cermets and WC-Co hardmetal. Different disintegrator milling systems for production of powders with determined size and shape were used. Chemical composition of produced powders was analysed.  To estimate the properties of recycled hardmetal/cermet powders, sieving analysis, laser granulometry and angularity study were conducted. To describe the angularity of milled powders, spike parameter–quadric fit (SPQ was used and experiments for determination of SPQ sensitivity and precision to characterize particles angularity were performed. Images used for calculating SPQ were taken by SEM processed with Omnimet Image Analyser 22. The graphs of grindability and angularity were composed. Composite powders based on Fe- and Ni-self-fluxing alloys for thermal spray (plasma and HVOF were produced. Technological properties of powders and properties of thermal sprayed coatings from studied powders were investigated. The properties of spray powders reinforced with recycled hardmetal and cermet particles as alternatives for cost-sensitive applications were demonstrated.DOI: http://dx.doi.org/10.5755/j01.ms.18.1.1348

  11. Bamboo Fibre-reinforced Semi-Metallic Brake Friction Materials for Automotive Applications

    Directory of Open Access Journals (Sweden)

    Talib R. J.

    2016-01-01

    Full Text Available Three friction material formulations composed of bamboo fiber along with binder, friction modifiers and filler have been prepared through powder metallurgy process. Sample F1 and F2 are composed of 10 wt. % of copper and barium, respectively, while the other ingredients in both formulations have the same wt. %. The wt. % of bamboo fiber in sample F3 is, however, increased by 100%, while the compositions of the other ingredients are proportionally decreased. The samples were examined for their porosity, hardness, and friction and wear properties using hot bath, Rockwell hardness tester, and CHASE friction dynamometer, respectively. The test results are compared with those of a commercial sample as the benchmark. Normal and hot frictions of all the three samples developed comply with the requirements specified by Automotive Manufacturer Equipment Companies Agency (AMECA. However, sample F3 which is composed of 20 wt. % of bamboo fiber does not comply with the minimum requirement of friction coefficient. Whereas, sample F2, which is composed of 10 wt. % of bamboo fiber and 10 wt. % of barium, has lower friction coefficient than the commercial sample, and has a sudden drop in friction coefficient at a temperature of 500°F. Out of three developed samples, sample F1, which is composed of 10 wt. % of bamboo fiber and 10 wt. % of copper, complies with all the requirements and has higher friction coefficient than the commercial sample, and has higher fade resistance. Thus, it could be postulated that bamboo fiber could be used as a reinforcing fiber with composition of 10 wt. %.

  12. Immobilized metal-affinity chromatography protein-recovery screening is predictive of crystallographic structure success

    International Nuclear Information System (INIS)

    Choi, Ryan; Kelley, Angela; Leibly, David; Nakazawa Hewitt, Stephen; Napuli, Alberto; Van Voorhis, Wesley

    2011-01-01

    An overview of the methods used for high-throughput cloning and protein-expression screening of SSGCID hexahistidine recombinant proteins is provided. It is demonstrated that screening for recombinant proteins that are highly recoverable from immobilized metal-affinity chromatography improves the likelihood that a protein will produce a structure. The recombinant expression of soluble proteins in Escherichia coli continues to be a major bottleneck in structural genomics. The establishment of reliable protocols for the performance of small-scale expression and solubility testing is an essential component of structural genomic pipelines. The SSGCID Protein Production Group at the University of Washington (UW-PPG) has developed a high-throughput screening (HTS) protocol for the measurement of protein recovery from immobilized metal-affinity chromatography (IMAC) which predicts successful purification of hexahistidine-tagged proteins. The protocol is based on manual transfer of samples using multichannel pipettors and 96-well plates and does not depend on the use of robotic platforms. This protocol has been applied to evaluate the expression and solubility of more than 4000 proteins expressed in E. coli. The UW-PPG also screens large-scale preparations for recovery from IMAC prior to purification. Analysis of these results show that our low-cost non-automated approach is a reliable method for the HTS demands typical of large structural genomic projects. This paper provides a detailed description of these protocols and statistical analysis of the SSGCID screening results. The results demonstrate that screening for proteins that yield high recovery after IMAC, both after small-scale and large-scale expression, improves the selection of proteins that can be successfully purified and will yield a crystal structure

  13. Heavy nuclide synthesis by neutrons in astrophysics and by screened protons in host metals

    International Nuclear Information System (INIS)

    Hora, H.; Miley, G.H.

    2000-01-01

    The similarity of the abundance of heavy nuclei in the Universe with that of the nuclei produced in the fully reproducible reactions of protons in host metals like palladium, nickel or others is evident and can be described by the same exponential function of the distribution probability N(Z) depending on the proton number Z of the nuclides. This agrees with the earlier derived consequence of a 3 n relation for magic numbers and an alternative foundation of the nuclear shell model. Compared to femtometer-attosecond reactions in the big bang, the low energy nuclear reactions in the host metals have picometer distances and megasecond duration. For this picometer distance, a combination of the swimming electron layer and Debye screening model with a metal-plasma dielectric model is presented. (author)

  14. Quantum mechanical ab initio simulation of the electron screening effect in metal deuteride crystals

    Energy Technology Data Exchange (ETDEWEB)

    Huke, A.; Chun, S.M.; Biller, A.; Heide, P. [Technische Universitaet Berlin, Institut fuer Optik und Atomare Physik, Berlin (Germany); Czerski, K. [Technische Universitaet Berlin, Institut fuer Optik und Atomare Physik, Berlin (Germany); University of Szczecin, Institute of Physics, Szczecin (Poland)

    2008-02-15

    In antecedent experiments the electron screening energies of the d+d reactions in metallic environments have been determined to be enhanced by an order of magnitude in comparison to the case of gaseous deuterium targets. The analytical models describing averaged material properties have not been able to explain the experimental results so far. Therefore, a first effort has been undertaken to simulate the dynamics of reacting deuterons in a metallic lattice by means of an ab initio Hartree-Fock calculation of the total electrostatic force between the lattice and the successively approaching deuterons via path integration. The calculations have been performed for Li and Ta, clearly showing a migration of electrons from host metallic to the deuterium atoms. However, in order to avoid more of the necessary simplifications in the model the utilization of a massive parallel supercomputer would be required. (orig.) 3.

  15. A rapid screening method for heavy metals in biological materials by emission spectroscopy.

    Science.gov (United States)

    Blacklock, E C; Sadler, P A

    1981-06-02

    A semi-quantitative screening method for heavy metals in biological material is described. The metals are complexed with ammonium pyrrolidine dithiocarbamate, sodium diethyl dithiocarbamate and potassium sodium tartrate. The solutions are adjusted to pH 4 and then extracted into chloroform. The chloroform phase is evaporated onto a matrix mixture of lithium fluoride and graphite. The sample is analysed by direct current arc emission spectroscopy using a 3 metre grating spectrograph. The spectra are recorded on a photographic plate. The method is developed on aqueous and spiked samples and then applied to in vivo samples containing toxic levels of heavy metals. Atomic absorption spectroscopy is used to check standard concentrations and to monitor the efficiency of the extraction procedure.

  16. Metal screen retention for thoron daughter free atoms and atoms attached to condensation nuclei

    International Nuclear Information System (INIS)

    Cash, W.; Webb, J.; Fitts, D.; Skrable, K.W.; Chabot, G.E.

    1978-01-01

    Metal support screens available in a 47 mm commercial filter holder (model F3052-4, available from Scientific Products, Bedford, MA) assembly were tested for retention of thoron daughter atoms and atoms attached to condensation nuclei as a function of the flow rate of the carrier air stream. Sources of Pb-212 were generated on the surface of a metal disk by exposing the disk to thoron emanation generated from a special preparation of Th-228. This source of Pb-212, in transient equilibrium with its daughters, was placed in a flow through chamber connected in series to two of the metal screens backed by a glass fiber filter. Most of the recoil product radioactivity emitted from the Pb-212 source and collected on the screens was due to single atoms of Tl-208, which is born by alpha decay of Bi-212 with a recoil energy of 116 keV. Some free atoms of Bi-212 were also observed. Alpha autoradiographs of Filter samples placed on the downstream side of the two metal screens gave proof of the existence of Pb-212 aggregates through their alpha star images. These aggregate recoil particles were found to have a much higher penetration through the screens than free atoms of Tl-208 and Bi-212. Penetration of Tl-208 atoms and ions decreased exponentially as the inverse of the carrier air flow rate. Penetration varied from 0.047 at 0.088 cfm to 0.661 at 2.47 cfm. Atoms of Pb-212 attached to condensation nuclei were obtained by passing thoron into a reaction chamber containing naturally occurring condensation nuclei from the laboratory. The retention for these attached species varied both as a function of the flow rate and the age of the aerosol. The maximum retention varied from 0.525% at 6.38 cfm to 3.5% at 0.636 cfm for respective delay times of 120 and 30 minutes post the introduction of the thoron into the reaction chamber. A system consisting of a single screen backed by a glass fiber filter may be used to obtain the numbers of radon or thoron daughter free atoms and attached

  17. Design feasibility study of a divertor component reinforced with fibrous metal matrix composite laminate

    International Nuclear Information System (INIS)

    You, J.-H.

    2005-01-01

    Fibrous metal matrix composites possess advanced mechanical properties compared to conventional alloys. It is expected that the application of these composites to a divertor component will enhance the structural reliability. A possible design concept would be a system consisting of tungsten armour, copper composite interlayer and copper heat sink where the composite interlayer is locally inserted into the highly stressed domain near the bond interface. For assessment of the design feasibility of the composite divertor concept, a non-linear multi-scale finite element analysis was performed. To this end, a micro-mechanics algorithm was implemented into a finite element code. A reactor-relevant heat flux load was assumed. Focus was placed on the evolution of stress state, plastic deformation and ductile damage on both macro- and microscopic scales. The structural response of the component and the micro-scale stress evolution of the composite laminate were investigated

  18. Design feasibility study of a divertor component reinforced with fibrous metal matrix composite laminate

    Energy Technology Data Exchange (ETDEWEB)

    You, J.-H. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstr. 2, D-85748 Garching (Germany)]. E-mail: j.h.you@ipp.mpg.de

    2005-01-01

    Fibrous metal matrix composites possess advanced mechanical properties compared to conventional alloys. It is expected that the application of these composites to a divertor component will enhance the structural reliability. A possible design concept would be a system consisting of tungsten armour, copper composite interlayer and copper heat sink where the composite interlayer is locally inserted into the highly stressed domain near the bond interface. For assessment of the design feasibility of the composite divertor concept, a non-linear multi-scale finite element analysis was performed. To this end, a micro-mechanics algorithm was implemented into a finite element code. A reactor-relevant heat flux load was assumed. Focus was placed on the evolution of stress state, plastic deformation and ductile damage on both macro- and microscopic scales. The structural response of the component and the micro-scale stress evolution of the composite laminate were investigated.

  19. Corrosion of Continuous Fiber Reinforced Aluminum Metal Matrix Composites (CF-AMCs)

    Science.gov (United States)

    Tiwari, Shruti

    The first objective of this research is to study the atmospheric corrosion behavior of continuous reinforced aluminum matrix composites (CF-AMCs). The materials used for this research were alumina (Al2O3) and nickel (Ni) coated carbon (C) fibers reinforced AMCs. The major focus is to identify the correlation between atmospheric parameters and the corrosion rates of CF-AMCs in the multitude of microclimates and environments in Hawai'i. The micro-structures of CF-AMCs were obtained to correlate the microstructures with their corrosion performances. Also electrochemical polarization experiments were conducted in the laboratory to explain the corrosion mechanism of CF-AMCs. In addition, CF-AMCs were exposed to seven different test sites for three exposure periods. The various climatic conditions like temperature (T), relative humidity (RH), rainfall (RF), time of wetness (TOW), chloride (Cl- ) and sulfate (SO42-) deposition rate, and pH were monitored for three exposure period. Likewise, mass losses of CF-AMCs at each test site for three exposure periods were determined. The microstructure of the CF-AMCS showed that Al/C/50f MMCs contained a Ni-rich phase in the matrix, indicating that the Ni coating on the C fiber dissolved in the matrix. The intermetallic phases obtained in Al-2wt% Cu/Al 2O3/50f-T6 MMC and Al-2wt%-T6 monolith were rich in Cu and Fe. The intermetallic phases obtained in Al 7075/Al2O3/50f-T6 MMC and Al 7075-T6 monolith also contained traces of Mg, Zn, Ni, and Si. Electrochemical polarization experiment indicated that the Al/Al 2O3/50f Al-2wt% Cu/Al2O3/50f-T6 and Al 7075/Al2O3/50f-T6 MMC showed similar corrosion trends as their respective monoliths pure Al, Al-2wt%-T6 and Al 7075-T6 in both aerated and deaerated condition. Al2O3 fiber, being an insulator, did not have a great effect on the polarization behavior of the composites. Al/C/50f MMCs corroded at a much faster rate as compared to pure Al monolith due to the galvanic effect between C and Al

  20. Screens

    OpenAIRE

    2016-01-01

    This Sixth volume in the series The Key Debates. Mutations and Appropriations in European Film Studies investigates the question of screens in the context both of the dematerialization due to digitalization and the multiplication of media screens. Scholars offer various infomations and theories of topics such as the archeology of screen, film and media theories, contemporary art, pragmatics of new ways of screening (from home video to street screening).

  1. Synchrotron X-ray diffraction measurements of internal stresses during loading of steel-based metal matrix composites reinforced with TiB2 particles

    International Nuclear Information System (INIS)

    Bacon, D.H.; Edwards, L.; Moffatt, J.E.; Fitzpatrick, M.E.

    2011-01-01

    Highlights: → Synchrotron X-ray diffraction was used to measure internal stresses in Fe-TiB 2 MMCs. → Samples of the MMCs were loaded to failure in situ in the X-ray beam. → The results show good elastic load transfer from the matrix to the reinforcement. → There is good agreement with the predicted elastic stresses from Eshelby modeling. → During plastic deformation there is increasing load transfer to the reinforcement. - Abstract: High-energy synchrotron X-ray diffraction was used to measure the internal strain evolution in the matrix and reinforcement of steel-based metal matrix composites reinforced with particulate titanium diboride (TiB 2 ). Two systems were studied: a 316L matrix with 25% TiB 2 by volume and a W1.4418 matrix with 10% reinforcement. In situ loading experiments were performed, where the materials were loaded uniaxially in the X-ray beam. The results show the strain partitioning between the phases in the elastic regime, and the evolution of the strain partitioning once plasticity occurs. The results are compared with results from Eshelby modelling, and very good agreement is seen between the measured and modelled response for elastic loading of the material. Heat treatment of the 316-based material did not affect the elastic internal strain response.

  2. Screening of seaweeds in the East China Sea as potential bio-monitors of heavy metals.

    Science.gov (United States)

    Pan, Yaoru; Wernberg, Thomas; de Bettignies, Thibaut; Holmer, Marianne; Li, Ke; Wu, Jiaping; Lin, Fang; Yu, Yan; Xu, Jiang; Zhou, Chaosheng; Huang, Zhixing; Xiao, Xi

    2018-03-30

    Seaweeds are good bio-monitors of heavy metal pollution and have been included in European coastal monitoring programs. However, data for seaweed species in China are scarce or missing. In this study, we explored the potential of seaweeds as bio-monitor by screening the natural occurring seaweeds in the "Kingdom of seaweed and shellfish" at Dongtou Islands, the East China Sea. Totally, 12 seaweed species were collected from six sites, with richness following the sequence of Rhodophyta > Phaeophyta > Chlorophyta. The concentration of heavy metals (Cu, Cr, Ni, Zn, Pb, Cd, As) in the seaweeds was determined, and the bioaccumulation coefficient was calculated. A combination of four seaweeds, Pachydictyon coriaceum, Gelidium divaricatum, Sargassum thunbergii, and Pterocladiella capillacea, were proposed as bio-monitors due to their high bioaccumulation capabilities of specific heavy metals in the East China Sea and hence hinted the importance of using seaweed community for monitoring of pollution rather than single species. Our results provide first-hand data for the selection of bio-monitor species for heavy metals in the East China Sea and contribute to selection of cosmopolitan bio-monitor communities over geographical large area, which will benefit the establishment of monitoring programs for coastal heavy metal contamination.

  3. High-throughput screening of metal-porphyrin-like graphenes for selective capture of carbon dioxide.

    Science.gov (United States)

    Bae, Hyeonhu; Park, Minwoo; Jang, Byungryul; Kang, Yura; Park, Jinwoo; Lee, Hosik; Chung, Haegeun; Chung, ChiHye; Hong, Suklyun; Kwon, Yongkyung; Yakobson, Boris I; Lee, Hoonkyung

    2016-02-23

    Nanostructured materials, such as zeolites and metal-organic frameworks, have been considered to capture CO2. However, their application has been limited largely because they exhibit poor selectivity for flue gases and low capture capacity under low pressures. We perform a high-throughput screening for selective CO2 capture from flue gases by using first principles thermodynamics. We find that elements with empty d orbitals selectively attract CO2 from gaseous mixtures under low CO2 pressures (~10(-3) bar) at 300 K and release it at ~450 K. CO2 binding to elements involves hybridization of the metal d orbitals with the CO2 π orbitals and CO2-transition metal complexes were observed in experiments. This result allows us to perform high-throughput screening to discover novel promising CO2 capture materials with empty d orbitals (e.g., Sc- or V-porphyrin-like graphene) and predict their capture performance under various conditions. Moreover, these findings provide physical insights into selective CO2 capture and open a new path to explore CO2 capture materials.

  4. High-throughput screening of metal-porphyrin-like graphenes for selective capture of carbon dioxide

    Science.gov (United States)

    Bae, Hyeonhu; Park, Minwoo; Jang, Byungryul; Kang, Yura; Park, Jinwoo; Lee, Hosik; Chung, Haegeun; Chung, Chihye; Hong, Suklyun; Kwon, Yongkyung; Yakobson, Boris I.; Lee, Hoonkyung

    2016-02-01

    Nanostructured materials, such as zeolites and metal-organic frameworks, have been considered to capture CO2. However, their application has been limited largely because they exhibit poor selectivity for flue gases and low capture capacity under low pressures. We perform a high-throughput screening for selective CO2 capture from flue gases by using first principles thermodynamics. We find that elements with empty d orbitals selectively attract CO2 from gaseous mixtures under low CO2 pressures (~10-3 bar) at 300 K and release it at ~450 K. CO2 binding to elements involves hybridization of the metal d orbitals with the CO2 π orbitals and CO2-transition metal complexes were observed in experiments. This result allows us to perform high-throughput screening to discover novel promising CO2 capture materials with empty d orbitals (e.g., Sc- or V-porphyrin-like graphene) and predict their capture performance under various conditions. Moreover, these findings provide physical insights into selective CO2 capture and open a new path to explore CO2 capture materials.

  5. Density functional theory based screening of ternary alkali-transition metal borohydrides: A computational material design project

    DEFF Research Database (Denmark)

    Hummelshøj, Jens Strabo; Landis, David; Voss, Johannes

    2009-01-01

    We present a computational screening study of ternary metal borohydrides for reversible hydrogen storage based on density functional theory. We investigate the stability and decomposition of alloys containing 1 alkali metal atom, Li, Na, or K (M1); and 1 alkali, alkaline earth or 3d/4d transition...

  6. Heterointerface Screening Effects between Organic Monolayers and Monolayer Transition Metal Dichalcogenides

    KAUST Repository

    Zheng, Yu Jie; Huang, Yu Li; Chen, Yifeng; Zhao, Weijie; Eda, Goki; Spataru, Catalin D.; Zhang, Wenjing; Chang, Yung-Huang; Li, Lain-Jong; Chi, Dongzhi; Quek, Su Ying; Wee, Andrew Thye Shen

    2016-01-01

    © 2016 American Chemical Society. The nature and extent of electronic screening at heterointerfaces and their consequences on energy level alignment are of profound importance in numerous applications, such as solar cells, electronics etc. The increasing availability of two-dimensional (2D) transition metal dichalcogenides (TMDs) brings additional opportunities for them to be used as interlayers in "van der Waals (vdW) heterostructures" and organic/inorganic flexible devices. These innovations raise the question of the extent to which the 2D TMDs participate actively in dielectric screening at the interface. Here we study perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) monolayers adsorbed on single-layer tungsten diselenide (WSe2), bare graphite, and Au(111) surfaces, revealing a strong dependence of the PTCDA HOMO-LUMO gap on the electronic screening effects from the substrate. The monolayer WSe2 interlayer provides substantial, but not complete, screening at the organic/inorganic interface. Our results lay a foundation for the exploitation of the complex interfacial properties of hybrid systems based on TMD materials.

  7. Heterointerface Screening Effects between Organic Monolayers and Monolayer Transition Metal Dichalcogenides

    KAUST Repository

    Zheng, Yu Jie

    2016-01-21

    © 2016 American Chemical Society. The nature and extent of electronic screening at heterointerfaces and their consequences on energy level alignment are of profound importance in numerous applications, such as solar cells, electronics etc. The increasing availability of two-dimensional (2D) transition metal dichalcogenides (TMDs) brings additional opportunities for them to be used as interlayers in "van der Waals (vdW) heterostructures" and organic/inorganic flexible devices. These innovations raise the question of the extent to which the 2D TMDs participate actively in dielectric screening at the interface. Here we study perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) monolayers adsorbed on single-layer tungsten diselenide (WSe2), bare graphite, and Au(111) surfaces, revealing a strong dependence of the PTCDA HOMO-LUMO gap on the electronic screening effects from the substrate. The monolayer WSe2 interlayer provides substantial, but not complete, screening at the organic/inorganic interface. Our results lay a foundation for the exploitation of the complex interfacial properties of hybrid systems based on TMD materials.

  8. A review of metal (Pb and Zn) sensitive and pH tolerant bioassay organisms for risk screening of metal-contaminated acidic soils

    International Nuclear Information System (INIS)

    Chapman, E.Emily V.; Dave, Göran; Murimboh, John D.

    2013-01-01

    To improve risk estimates at the screening stage of Ecological Risk Assessment (ERA), short duration bioassays tailored to undisturbed soil cores from the contaminated site could be useful. However, existing standardized bioassays use disturbed soil samples and often pH sensitive organisms. This is a problem as naturally acidic soils are widespread. Changing soil properties to suit the test organism may change metal bioavailability, leading to erroneous risk estimates. For bioassays in undisturbed soil cores to be effective, species able to withstand natural soil properties must be identified. This review presents a critical examination of bioassay species' tolerance of acidic soils and sensitivity to metal contaminants such as Pb and Zn. Promising organisms include; Dendrobaena octaedra, Folsomia candida, Caenorhabditis elegans, Oppia nitens, Brassica rapa, Trifolium pratense, Allium cepa, Quercus rubra and Acer rubrum. The MetSTICK test and the Bait lamina test were also identified as suitable microorganism tests. -- Highlights: •Risk screening of metal contaminated soils should consider metal bioavailability. •Metal bioavailability is dependent on soil properties such as pH. •Many standardized bioassay organisms are sensitive to acidic soils. •This review identifies acid tolerant and metal sensitive bioassays and species. •The identified tests can improve risk screening of acidic metal contaminated soil. -- This review identifies bioassay species able to withstand naturally acidic soils while being sensitive to metal contaminants

  9. Electrostatic energy and screened charge interaction near the surface of metals with different Fermi surface shape

    Science.gov (United States)

    Gabovich, A. M.; Il'chenko, L. G.; Pashitskii, E. A.; Romanov, Yu. A.

    1980-04-01

    Using the Poisson equation Green function for a self-consistent field in a spatially inhomogeneous system, expressions for the electrostatic energy and screened charge interaction near the surface of a semi-infinite metal and a thin quantizing film are derived. It is shown that the decrease law and Friedel oscillation amplitude of adsorbed atom indirect interaction are determined by the electron spectrum character and the Fermi surface shape. The results obtained enable us to explain, in particular, the submonolayer adsorbed film structure on the W and Mo surfaces.

  10. Use of fluorescent-metal intensifying screens with RT-type films for X-ray radiography using pulse devices

    International Nuclear Information System (INIS)

    Morgovskij, L.Ya.; Khakim'yanov, R.R.

    1985-01-01

    A study was made on characteristics of combination of fluorescent-metal Kyokko SMP-308 (Japan) and RCF (Agfa-Gevert) screens with domestic X-ray RT-1, RT-2, RT-5 films. Pulse X-ray MIRA-3D and NORA devices at 200 kV voltage amplitude in X-ray tube were used as radiation source. Testing was conducted for steel samples of 5-40 mm thickness. Comparative exposures for various film combinations with fluorescent-metal screens, fluorescent VP-2 screens and lead foils of 27 μm thickness were determined at that. It is shown that fluorescent-metal screens can be successfully applied with domestic X-ray technical films. They enable to decrease exposure by one order with insignificant deterioration of sensitivity. It is important for testing of pipeline welds

  11. Defense by-products production and utilization program: noble metal recovery screening experiments

    International Nuclear Information System (INIS)

    Hazelton, R.F.; Jensen, G.A.; Raney, P.J.

    1986-03-01

    Isotopes of the platinum metals (rutheium, rhodium, and palladium) are produced during uranium fuel fission in nuclear reactors. The strategic values of these noble metals warrant considering their recovery from spent fuel should the spent fuel be processed after reactor discharge. A program to evaluate methods for ruthenium, rhodium, and palladium recovery from spent fuel reprocessing liquids was conducted at Pacific Northwest Laboratory (PNL). The purpose of the work reported in this docuent was to evaluate several recovery processes revealed in the patent and technical literature. Beaker-scale screening tests were initiated for three potential recovery processes: precipitation during sugar denitration of nitric acid reprocessing solutions after plutonium-uranium solvent extraction, adsorption using nobe metal selective chelates on active carbon, and reduction forming solid noble metal deposits on an amine-borane reductive resin. Simulated reprocessing plant solutions representing typical nitric acid liquids from defense (PUREX) or commercial fuel reprocessing facilities were formulated and used for evaluation of the three processes. 9 refs., 3 figs., 9 tabs

  12. Screening and prioritisation of chemical risks from metal mining operations, identifying exposure media of concern.

    Science.gov (United States)

    Pan, Jilang; Oates, Christopher J; Ihlenfeld, Christian; Plant, Jane A; Voulvoulis, Nikolaos

    2010-04-01

    Metals have been central to the development of human civilisation from the Bronze Age to modern times, although in the past, metal mining and smelting have been the cause of serious environmental pollution with the potential to harm human health. Despite problems from artisanal mining in some developing countries, modern mining to Western standards now uses the best available mining technology combined with environmental monitoring, mitigation and remediation measures to limit emissions to the environment. This paper develops risk screening and prioritisation methods previously used for contaminated land on military and civilian sites and engineering systems for the analysis and prioritisation of chemical risks from modern metal mining operations. It uses hierarchical holographic modelling and multi-criteria decision making to analyse and prioritise the risks from potentially hazardous inorganic chemical substances released by mining operations. A case study of an active platinum group metals mine in South Africa is used to demonstrate the potential of the method. This risk-based methodology for identifying, filtering and ranking mining-related environmental and human health risks can be used to identify exposure media of greatest concern to inform risk management. It also provides a practical decision-making tool for mine acquisition and helps to communicate risk to all members of mining operation teams.

  13. Influence of size and volume fraction of SiC particulates on properties of ex situ reinforced Al-4.5Cu-3Mg metal matrix composite prepared by direct metal laser sintering process

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Subrata Kumar [Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Midnapore (West), Kharagpur 721302, West Bengal (India); Saha, Partha, E-mail: psaha@mech.iitkgp.ernet.in [Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Midnapore (West), Kharagpur 721302, West Bengal (India); Kishore, Shyam [Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Midnapore (West), Kharagpur 721302, West Bengal (India)

    2010-07-15

    Direct metal laser sintering (DMLS) process has a great potential to prepare metal matrix composites (MMCs) in fabrication of arbitrary shaped jobs through rapid manufacturing. In the present work, silicon carbide particulates reinforced aluminium based metal matrix composite was developed by direct metal laser sintering process. Influences of SiC particulate (SiCp) on density, porosity and microhardness of the composite were investigated. It shows that SiCp having 300 mesh size provides higher density and lower porosity because of lower clustering effect. Higher microhardness was achieved at 1200 mesh of reinforcement because of lower grain size. Microhardness increases with increase of volume fraction of SiCp and higher value was achieved at high reinforcement content of 30 vol.%. Microstructure was studied through scanning electron microscopy (SEM) and X-ray elemental mapping. Interfacial microstructure was also investigated and cracks were found in number of cases due to difference between co-efficient of thermal expansion of matrix alloy and SiCp.

  14. Influence of size and volume fraction of SiC particulates on properties of ex situ reinforced Al-4.5Cu-3Mg metal matrix composite prepared by direct metal laser sintering process

    International Nuclear Information System (INIS)

    Ghosh, Subrata Kumar; Saha, Partha; Kishore, Shyam

    2010-01-01

    Direct metal laser sintering (DMLS) process has a great potential to prepare metal matrix composites (MMCs) in fabrication of arbitrary shaped jobs through rapid manufacturing. In the present work, silicon carbide particulates reinforced aluminium based metal matrix composite was developed by direct metal laser sintering process. Influences of SiC particulate (SiCp) on density, porosity and microhardness of the composite were investigated. It shows that SiCp having 300 mesh size provides higher density and lower porosity because of lower clustering effect. Higher microhardness was achieved at 1200 mesh of reinforcement because of lower grain size. Microhardness increases with increase of volume fraction of SiCp and higher value was achieved at high reinforcement content of 30 vol.%. Microstructure was studied through scanning electron microscopy (SEM) and X-ray elemental mapping. Interfacial microstructure was also investigated and cracks were found in number of cases due to difference between co-efficient of thermal expansion of matrix alloy and SiCp.

  15. Investigation of the Self-Healing Behavior of Sn-Bi Metal Matrix Composite Reinforced with NiTi Shape Memory Alloy Strips Under Flexural Loading

    Science.gov (United States)

    Poormir, Mohammad Amin; Khalili, Seyed Mohammad Reza; Eslami-Farsani, Reza

    2018-06-01

    Utilizing intelligent materials such as shape memory alloys as reinforcement in metal matrix composites is a novel method to mimic self-healing behavior. In this study, the bending behavior of a self-healing metal matrix composite made from Sn-13 wt.% Bi alloy as matrix and NiTi shape memory alloy (SMA) strips as reinforcement is investigated. Specimens were fabricated in different reinforcement vol.% (0.78, 1.55, 2.33) and in various pre-strains (0, 2, 6%) and were healed at three healing temperatures (170°C, 180°C, 190°C). Results showed that shape recovery was accomplished in all the specimens, but not all of them were able to withstand second loading after healing. Only specimens with 2.33 vol.% of SMA strips, 1.55 vol.% of SMA, and 6% pre-strain could endure bending force after healing, and they gained 35.31-51.83% of bending force self-healing efficiency.

  16. The challenge of screen printed Ag metallization on nano-scale poly-silicon passivated contacts for silicon solar cells

    Science.gov (United States)

    Jiang, Lin; Song, Lixin; Yan, Li; Becht, Gregory; Zhang, Yi; Hoerteis, Matthias

    2017-08-01

    Passivated contacts can be used to reduce metal-induced recombination for higher energy conversion efficiency for silicon solar cells, and are obtained increasing attentions by PV industries in recent years. The reported thicknesses of passivated contact layers are mostly within tens of nanometer range, and the corresponding metallization methods are realized mainly by plating/evaporation technology. This high cost metallization cannot compete with the screen printing technology, and may affect its market potential comparing with the presently dominant solar cell technology. Very few works have been reported on screen printing metallization on passivated contact solar cells. Hence, there is a rising demand to realize screen printing metallization technology on this topic. In this work, we investigate applying screen printing metallization pastes on poly-silicon passivated contacts. The critical challenge for us is to build low contact resistance that can be competitive to standard technology while restricting the paste penetrations within the thin nano-scale passivated contact layers. The contact resistivity of 1.1mohm-cm2 and the open circuit voltages > 660mV are achieved, and the most appropriate thickness range is estimated to be around 80 150nm.

  17. Performance Evaluation of PCD Insert 1600 Grade on Turning of Al 6061 Reinforced with 7.5% ZrB2 Metal Matrix Composite

    Directory of Open Access Journals (Sweden)

    Ramanathan M.

    2016-01-01

    Full Text Available Aluminum matrix composite is the innovation of high performance material technology and it has superior interfacial integrity and thermodynamic stability between the matrix and reinforcement. Making the engineering components from this composite material require subsequent machining operations. This paper presents the detailed experimental investigation of the machining behaviour in turning of Al 6061-7.5% ZrB2 Metal Matrix Composite (MMC by using Poly Crystalline Diamond (PCD insert of 1600 grade. The effect of ZrB2 reinforcement particles on machinability behaviour need to be studied. It is concluded that the feed rate has great influence on surface roughness and depth of cut has great influence on cutting force. The confirmation experiment indicates that there is a good agreement between the estimated value and experimental Value. Tool wear study also carried out for time duration of 15 minutes.

  18. The effect of TiB2 reinforcement on the mechanical properties of an Al-Cu-Li alloy-based metal-matrix composite

    Science.gov (United States)

    1991-01-01

    The addition of ceramic particles to aluminum based alloys can substantially improve mechanical properties, especially Young's modulus and room and elevated temperature strengths. However, these improvements typically occur at the expense of tensile ductility. The mechanical properties are evaluated to a metal matrix composite (MMC) consisting of an ultrahigh strength aluminum lithium alloy, Weldalite (tm) 049, reinforced with TiB2 particles produced by an in situ precipitation technique called the XD (tm) process. The results are compared to the behavior of a nonreinforced Weldalite 049 variant. It is shown that both 049 and 049-TiB2 show very attractive warm temperature properties e.g., 625 MPa yield strength at 150 C after 100 h at temperature. Weldalite 049 reinforced with a nominal 4 v pct. TiB2 shows an approx. 8 pct. increase in modulus and a good combination of strength (529 MPa UTS) and ductility (6.5 pct.) in the T3 temper. And the high ductility of Weldalite 049 in the naturally aged and underaged tempers makes the alloy a good, high strength matrix for ceramic reinforcement.

  19. Synthesis, spectroscopic characterization, biological screenings, DNA binding study and POM analyses of transition metal carboxylates

    Science.gov (United States)

    Uddin, Noor; Sirajuddin, Muhammad; Uddin, Nizam; Tariq, Muhammad; Ullah, Hameed; Ali, Saqib; Tirmizi, Syed Ahmed; Khan, Abdur Rehman

    2015-04-01

    This article contains the synthesis of a novel carboxylic acid derivative, its transition metal complexes and evaluation of biological applications. Six carboxylate complexes of transition metals, Zn(II) and Hg(II), have been successfully synthesized and characterized by FT-IR and NMR (1H, 13C). The ligand, HL, (4-[(2,6-Diethylphenyl)amino]-4-oxobutanoic acid) was also characterized by single crystal X-ray analysis. The complexation occurs via oxygen atoms of the carboxylate moiety. FT-IR date show the bidentate nature of the carboxylate moiety of the ligand as the Δν value in all complexes is less than that of the free ligand. The ligand and its complexes were screened for antifungal and antileishmanial activities. The results showed that the ligand and its complexes are active with few exceptions. UV-visible spectroscopy and viscometry results reveal that the ligand and its complexes interact with the DNA via intercalative mode of interaction. A new and efficient strategy to identify the pharmacophores and anti-pharmacophores sites in carboxylate derivatives for the antibacterial/antifungal activity using Petra, Osiris and Molinspiration (POM) analyses was also carried out.

  20. Base reinforcement of the provisional platform for the construction of piles screen on the Flix reservoir (Tarragona)

    International Nuclear Information System (INIS)

    Amo Sanz, P.; Diego Pereda, I.; Santalla Prieto, J.

    2014-01-01

    Decontamination works on Flix reservoir aimed at the removal of accumulated debris in the bed of the river Ebro, as result of historical discharge of pollutants by a chemical complex located there. The Flix reservoir currently retains in his base a lot of cubic meters of sludge from the solid fraction of the discharge of the aforementioned complex that sits on the right bank ( a non-negligible volume of alluvial substrate potentially affected by pollution from the sludge must be considered). The contaminants belong to there main groups: organo chlorines, heavy metals (particularly mercury) and radionuclides. they are in high concentrations, capable of transmitting contamination to the sediments and basement of the reservoir and the water flowing through the river. In the case of water, that transmission occurs in fact, and there is a register of episodes that have exceeded the limits of tolerance of aggressive components contained in the ecosystem. (Author)

  1. Analytic expressions for the dielectric screening function of strongly coupled electron liquids at metallic and lower densities

    International Nuclear Information System (INIS)

    Ishimaru, S.; Utsumi, K.

    1981-01-01

    We propose a fitting formula for the dielectric screening function of the degenerate electron liquids at metallic and lower densities which accurately reproduces the recent Monte Carlo results as well as those of the microscopic calculations, and which satisfies the self-consistency conditions in the compressibility sum rule and the short-range correlation

  2. An aviation security (AVSEC) screening demonstrator for the detection of non-metallic threats at 28-33 GHz

    Science.gov (United States)

    Salmon, Neil A.; Bowring, Nick; Hutchinson, Simon; Southgate, Matthew; O'Reilly, Dean

    2013-10-01

    The unique selling proposition of millimetre wave technology for security screening is that it provides a stand-off or portal scenario sensing capability for non-metallic threats. The capabilities to detect some non-metallic threats are investigated in this paper, whilst recommissioning the AVSEC portal screening system at the Manchester Metropolitan University. The AVSEC system is a large aperture (1.6 m) portal screening imager which uses spatially incoherent illumination at 28-33 GHz from mode scrambling cavities to illuminate the subject. The imaging capability is critically analysed in terms of this illumination. A novel technique for the measurement of reflectance, refractive index and extinction coefficient is investigated and this then use to characterise the signatures of nitromethane, hexane, methanol, bees wax and baking flour. Millimetre wave images are shown how these liquids in polycarbonate bottles and the other materials appear against the human body.

  3. Screening of metal-organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach.

    Science.gov (United States)

    Yazaydin, A Ozgür; Snurr, Randall Q; Park, Tae-Hong; Koh, Kyoungmoo; Liu, Jian; Levan, M Douglas; Benin, Annabelle I; Jakubczak, Paulina; Lanuza, Mary; Galloway, Douglas B; Low, John J; Willis, Richard R

    2009-12-30

    A diverse collection of 14 metal-organic frameworks (MOFs) was screened for CO(2) capture from flue gas using a combined experimental and modeling approach. Adsorption measurements are reported for the screened MOFs at room temperature up to 1 bar. These data are used to validate a generalized strategy for molecular modeling of CO(2) and other small molecules in MOFs. MOFs possessing a high density of open metal sites are found to adsorb significant amounts of CO(2) even at low pressure. An excellent correlation is found between the heat of adsorption and the amount of CO(2) adsorbed below 1 bar. Molecular modeling can aid in selection of adsorbents for CO(2) capture from flue gas by screening a large number of MOFs.

  4. Assessment of Sediment Heavy Metals Pollution Using Screening Methods (XRF, TGA/MS, XRPD and Earthworms Bioassay)

    Science.gov (United States)

    Findoráková, Lenka; Šestinová, Ol'ga; Hančul'ák, Jozef; Fedorová, Erika; Zorkovská, Anna

    2016-10-01

    The aim of this study is focused on the use of screening methods (TG/DTA coupled with MS, XRF, AAS, XRPD and earthworm bioassay) for sediments pollution assessing by heavy metals (Cu, Zn, Pb, Hg) coming from the former mining workloads in the central Spis, Eastern Slovakia. The screening methods (XRF, AAS) indicated pollution of studied sediments by Cu, Zn, Pb, Hg. The earthworms Dendrobaena veneta caused in some studied samples decrease of heavy metals concentration after their 7 days’ exposure in sediments. The other screening methods such as thermal analysis and XRPD analysis, does not confirm the specifically changes in physicochemical properties comparing the properties before and after 7 days’ earthworm's exposure.

  5. Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars

    International Nuclear Information System (INIS)

    Santos Utmazian, Maria Noel dos; Wieshammer, Gerlinde; Vega, Rosa; Wenzel, Walter W.

    2007-01-01

    We screened 20 different clones of willow and poplar species in hydroponic experiments for their metal resistance and accumulation properties. Plants were exposed for 4 weeks either to single additions of (μM) 4.45 Cd or 76.5 Zn, or a metal cocktail containing the same amounts of Cd and Zn along with 7.87 Cu and 24.1 Pb. Plant biomass, metal tolerance and metal accumulation pattern in roots and leaves varied greatly between clones. The leaf:root ratio of metal concentrations was clearly underestimated compared to soil experiments. The largest metal concentrations in leaves were detected in Salix dasyclados (315 mg Cd kg -1 d.m.) and a Salix smithiana clone (3180 mg Zn kg -1 d.m.) but these species showed low metal tolerance. In spite of smaller Cd and Zn concentrations, the metal-tolerant clones Salix matsudana, Salix fragilis-1, and Salix purpurea-1 hold promise for phytoextraction as they produced large biomass and metal contents in leaves. - Hydroponically grown willows and poplar clones accumulate up to (mg kg -1 d.w.) 315 Cd and 3180 Zn in leaves

  6. Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars

    Energy Technology Data Exchange (ETDEWEB)

    Santos Utmazian, Maria Noel dos [Department of Forest- and Soil Sciences, University of Natural Resources and Applied Life Sciences, Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna (Austria); Wieshammer, Gerlinde [Department of Forest- and Soil Sciences, University of Natural Resources and Applied Life Sciences, Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna (Austria); Vega, Rosa [Department of Forest- and Soil Sciences, University of Natural Resources and Applied Life Sciences, Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna (Austria); Wenzel, Walter W. [Department of Forest- and Soil Sciences, University of Natural Resources and Applied Life Sciences, Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna (Austria)]. E-mail: walter.wenzel@boku.ac.at

    2007-07-15

    We screened 20 different clones of willow and poplar species in hydroponic experiments for their metal resistance and accumulation properties. Plants were exposed for 4 weeks either to single additions of ({mu}M) 4.45 Cd or 76.5 Zn, or a metal cocktail containing the same amounts of Cd and Zn along with 7.87 Cu and 24.1 Pb. Plant biomass, metal tolerance and metal accumulation pattern in roots and leaves varied greatly between clones. The leaf:root ratio of metal concentrations was clearly underestimated compared to soil experiments. The largest metal concentrations in leaves were detected in Salix dasyclados (315 mg Cd kg{sup -1} d.m.) and a Salix smithiana clone (3180 mg Zn kg{sup -1} d.m.) but these species showed low metal tolerance. In spite of smaller Cd and Zn concentrations, the metal-tolerant clones Salix matsudana, Salix fragilis-1, and Salix purpurea-1 hold promise for phytoextraction as they produced large biomass and metal contents in leaves. - Hydroponically grown willows and poplar clones accumulate up to (mg kg{sup -1} d.w.) 315 Cd and 3180 Zn in leaves.

  7. Screen-Printed Electrodes Modified with “Green” Metals for Electrochemical Stripping Analysis of Toxic Elements

    Directory of Open Access Journals (Sweden)

    Anastasios Economou

    2018-03-01

    Full Text Available This work reviews the field of screen-printed electrodes (SPEs modified with “green” metals for electrochemical stripping analysis of toxic elements. Electrochemical stripping analysis has been established as a useful trace analysis technique offering many advantages compared to competing optical techniques. Although mercury has been the preferred electrode material for stripping analysis, the toxicity of mercury and the associated legal requirements in its use and disposal have prompted research towards the development of “green” metals as alternative electrode materials. When combined with the screen-printing technology, such environment-friendly metals can lead to disposable sensors for trace metal analysis with excellent operational characteristics. This review focuses on SPEs modified with Au, Bi, Sb, and Sn for stripping analysis of toxic elements. Different modification approaches (electroplating, bulk modification, use of metal precursors, microengineering techniques are considered and representative applications are described. A developing related field, namely biosensing based on stripping analysis of metallic nanoprobe labels, is also briefly mentioned.

  8. Combinatorial electrochemical cell array for high throughput screening of micro-fuel-cells and metal/air batteries.

    Science.gov (United States)

    Jiang, Rongzhong

    2007-07-01

    An electrochemical cell array was designed that contains a common air electrode and 16 microanodes for high throughput screening of both fuel cells (based on polymer electrolyte membrane) and metal/air batteries (based on liquid electrolyte). Electrode materials can easily be coated on the anodes of the electrochemical cell array and screened by switching a graphite probe from one cell to the others. The electrochemical cell array was used to study direct methanol fuel cells (DMFCs), including high throughput screening of electrode catalysts and determination of optimum operating conditions. For screening of DMFCs, there is about 6% relative standard deviation (percentage of standard deviation versus mean value) for discharge current from 10 to 20 mAcm(2). The electrochemical cell array was also used to study tin/air batteries. The effect of Cu content in the anode electrode on the discharge performance of the tin/air battery was investigated. The relative standard deviations for screening of metal/air battery (based on zinc/air) are 2.4%, 3.6%, and 5.1% for discharge current at 50, 100, and 150 mAcm(2), respectively.

  9. Infrared Dielectric Screening Determines the Low Exciton Binding Energy of Metal-Halide Perovskites.

    Science.gov (United States)

    Umari, Paolo; Mosconi, Edoardo; De Angelis, Filippo

    2018-02-01

    The performance of lead-halide perovskites in optoelectronic devices is due to a unique combination of factors, including highly efficient generation, transport, and collection of photogenerated charge carriers. The mechanism behind efficient charge generation in lead-halide perovskites is still largely unknown. Here, we investigate the factors that influence the exciton binding energy (E b ) in a series of metal-halide perovskites using accurate first-principles calculations based on solution of the Bethe-Salpeter equation, coupled to ab initio molecular dynamics simulations. We find that E b is strongly modulated by screening from low-energy phonons, which account for a factor ∼2 E b reduction, while dynamic disorder and rotational motion of the organic cations play a minor role. We calculate E b = 15 meV for MAPbI 3 , in excellent agreement with recent experimental estimates. We then explore how different material combinations (e.g., replacing Pb → Pb:Sn→ Sn; and MA → FA → Cs) may lead to different E b values and highlight the mechanisms underlying E b tuning.

  10. Al-based metal matrix composites reinforced with Al–Cu–Fe quasicrystalline particles: Strengthening by interfacial reaction

    International Nuclear Information System (INIS)

    Ali, F.; Scudino, S.; Anwar, M.S.; Shahid, R.N.; Srivastava, V.C.; Uhlenwinkel, V.; Stoica, M.; Vaughan, G.; Eckert, J.

    2014-01-01

    Highlights: • Strength of composites is enhanced as the QC-to-ω phase transformation advances. • Yield strength increases from 195 to 400 MPa with QC-to-ω interfacial reaction. • Reducing matrix ligament size explains most of the strengthening. • Improved interfacial bonding and nano ω phase explains divergence from model. - Abstract: The interfacial reaction between the Al matrix and the Al 62.5 Cu 25 Fe 12.5 quasicrystalline (QC) reinforcing particles to form the Al 7 Cu 2 Fe ω-phase has been used to further enhance the strength of the Al/QC composites. The QC-to-ω phase transformation during heating was studied by in situ X-ray diffraction using a high-energy monochromatic synchrotron beam, which permits to follow the structural evolution and to correlate it with the mechanical properties of the composites. The mechanical behavior of these transformation-strengthened composites is remarkably improved as the QC-to-ω phase transformation progresses: the yield strength increases from 195 MPa for the starting material reinforced exclusively with QC particles to 400 MPa for the material where the QC-to-ω reaction is complete. The reduction of the matrix ligament size resulting from the increased volume fraction of the reinforcing phase during the transformation can account for most of the observed improvement in strength, whereas the additional strengthening can be ascribed to the possible presence of nanosized ω-phase particles as well as to the improved interfacial bonding between matrix and particles caused by the compressive stresses arising in the matrix

  11. Al-based metal matrix composites reinforced with Al–Cu–Fe quasicrystalline particles: Strengthening by interfacial reaction

    Energy Technology Data Exchange (ETDEWEB)

    Ali, F. [IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden (Germany); Materials Processing Group, DMME, Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, Islamabad (Pakistan); Scudino, S., E-mail: s.scudino@ifw-dresden.de [IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden (Germany); Anwar, M.S.; Shahid, R.N. [Materials Processing Group, DMME, Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, Islamabad (Pakistan); Srivastava, V.C. [Metal Extraction and Forming Division, National Metallurgical Laboratory, Jamshedpur 831007 (India); Uhlenwinkel, V. [Institut für Werkstofftechnik, Universität Bremen, D-28359 Bremen (Germany); Stoica, M. [IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden (Germany); Vaughan, G. [European Synchrotron Radiation Facilities ESRF, BP 220, 38043 Grenoble (France); Eckert, J. [IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden (Germany); TU Dresden, Institut für Werkstoffwissenschaft, D-01062 Dresden (Germany)

    2014-09-01

    Highlights: • Strength of composites is enhanced as the QC-to-ω phase transformation advances. • Yield strength increases from 195 to 400 MPa with QC-to-ω interfacial reaction. • Reducing matrix ligament size explains most of the strengthening. • Improved interfacial bonding and nano ω phase explains divergence from model. - Abstract: The interfacial reaction between the Al matrix and the Al{sub 62.5}Cu{sub 25}Fe{sub 12.5} quasicrystalline (QC) reinforcing particles to form the Al{sub 7}Cu{sub 2}Fe ω-phase has been used to further enhance the strength of the Al/QC composites. The QC-to-ω phase transformation during heating was studied by in situ X-ray diffraction using a high-energy monochromatic synchrotron beam, which permits to follow the structural evolution and to correlate it with the mechanical properties of the composites. The mechanical behavior of these transformation-strengthened composites is remarkably improved as the QC-to-ω phase transformation progresses: the yield strength increases from 195 MPa for the starting material reinforced exclusively with QC particles to 400 MPa for the material where the QC-to-ω reaction is complete. The reduction of the matrix ligament size resulting from the increased volume fraction of the reinforcing phase during the transformation can account for most of the observed improvement in strength, whereas the additional strengthening can be ascribed to the possible presence of nanosized ω-phase particles as well as to the improved interfacial bonding between matrix and particles caused by the compressive stresses arising in the matrix.

  12. Development of Cu-Hf-Al ternary systems and tungsten wire/particle reinforced Cu48Hf43Al9 bulk metallic glass composites for strengthening

    International Nuclear Information System (INIS)

    Park, Joyoung; An, Jihye; Choi-Yim, Haein

    2010-01-01

    Stable bulk glass forming alloys can be developed over a wide range of compositions in Cu-Hf-Al ternary systems starting from the Cu 49 Hf 42 Al 9 bulk metallic glass. Ternary Cu-Hf-Al alloys can be cast directly from the melt into copper molds to form fully amorphous strips with thicknesses of 1 to 6 mm. The maximum critical diameter of the new Cu-Hf-Al ternary alloy was 6 mm. X-ray diffraction patterns were used to confirm the amorphous nature of the ternary Cu-Hf-Al alloys. To increase the toughness of these metallic glasses, we reinforced the Cu 48 Hf 43 Al 9 bulk metallic glass-forming liquid with a 50% volume fraction of tungsten particles and an 80% volume fraction of tungsten wires with diameters of 242.4 μm. Composites with a critical diameter of 7 mm and length 70 mm were synthesized. The structure of the composites was confirmed by using X-ray diffraction (XRD), and the scanning electron microscopy (SEM). The mechanical properties of the composites were studied in compression tests. The thermal stability and the crystallization processes of the Cu-Hf-Al alloys and composites were investigated by using differential scanning calorimetry (DSC). Values of the glass transition temperature (T g ), the crystallization temperature (T x ), and the supercooled liquid region (ΔT = T x - T g ) are given in this paper.

  13. Natural fibre reinforced non-asbestos organic non-metallic friction composites: effect of abaca fibre on mechanical and tribological behaviour

    Science.gov (United States)

    Liu, Yucheng; Ma, Yunhai; Che, Junjian; Duanmu, Lingjian; Zhuang, Jian; Tong, Jin

    2018-05-01

    To obtain a natural fibre reinforced non-asbestos organic non-metallic friction composite with good wear resistance and environmental-friendly performances, friction composites reinforced with different lengths of abaca fibre were fabricated by a compression molder equipment and evaluated by using a constant-speed friction test machine. The worn surface morphologies were observed and analyzed using a Scanning Electron Microscopy (SEM). Experimental results show that the length of abaca fibre had no significant effect on the density and hardness, but was obvious on impact strength. The impact strength increased and then decreased with the increasing of length of abaca fibres. Abaca fibres, especially short fibre (lengths of 5 mm, 10 mm), could improve the wear resistance of the friction composites. Meanwhile, the increase of test temperature could result in the increasing of wear rates of the friction composites. A large amount of secondary plateaux presented on the worn surface of specimens FC1 and FC2 which showe relatively smooth worn surfaces and yield the better wear resistance performance.

  14. Advance on Al2O3 Particulates Reinforced Aluminum Metal Matrix Composites (Al-MMCs Manufactured by the Power Metallurgy(PM Methods- Improved PM Techniques

    Directory of Open Access Journals (Sweden)

    Xu Lina

    2016-01-01

    Full Text Available Aluminum metal matrix composites (Al-MMCs with Al2O3 particulates as reinforcement fabricated by the power metallurgy (PM methods have gained much attention due to their unique characteristics of the wide range of Al2O3 particles addition, easy-operating process and effectiveness. The improved PM techniques, such as the high energy ball milling, powder extruder and high pressure torsion were applied to further strengthening the properties or/and diminishing the agglomeration of strength particles. The formation of liquid phase assisted densification of compacts to promote the sintering of composites. Complex design of Al2O3 particles with other particles was another efficient method to tailor the properties of Al-MMCs.

  15. Studies on mechanical properties of aluminium 6061 reinforced with titanium and E glass fibre metal matrix hybrid composites

    Science.gov (United States)

    Kumar, B. N. Ravi; Vidyasagar, H. N.; Shivanand, H. K.

    2018-04-01

    2Development of the mmc with fibers and filler materials as a replacement material for some engineering purpose such as automobiles, aerospace are indispensable. Therefore, the studies related to hybrid mmc's of Al6061 were noted in this paper. In this work, Al6061 reinforced with E glass fibers and micro Titanium particles. Hybrid composites was prepared by very feasible and commercially used technique Stir casting and by varying composition of Al6061, Titanium and E-glass fibre. Experiments were done by varying weight fraction of Titanium (0%, 1%, 3% and 5%) and E glass fibre (0%, 1%, 3% and 5%). Wire EDM were used to prepare the specimens required for tensile and hardness according to standards and tests conducted. The proportion of elements which are present the mmc's are identified by EDAX. Optical microscopy were conducted by SU3500 machine Scanning Electron Microscope and Microstructure shows the distribution of reinforced Ti particles and E glass fibres. The characterization of Al6061 hybrid mmc's is having significant impact on the mechanical properties.

  16. Screen-Printed Electrodes Modified with “Green” Metals for Electrochemical Stripping Analysis of Toxic Elements

    OpenAIRE

    Anastasios Economou

    2018-01-01

    This work reviews the field of screen-printed electrodes (SPEs) modified with “green” metals for electrochemical stripping analysis of toxic elements. Electrochemical stripping analysis has been established as a useful trace analysis technique offering many advantages compared to competing optical techniques. Although mercury has been the preferred electrode material for stripping analysis, the toxicity of mercury and the associated legal requirements in its use and disposal have ...

  17. Screened Coulomb interactions in metallic alloys. II. Screening beyond the single-site and atomic-sphere approximations

    DEFF Research Database (Denmark)

    Ruban, Andrei; Simak, S.I.; Korzhavyi, P.A.

    2002-01-01

    -electron potential and energy. In the case of a random alloy such interactions can be accounted for only by lifting the atomic-sphere and single-site approximations, in order to include the polarization due to local environment effects. Nevertheless, a simple parametrization of the screened Coulomb interactions...... for the ordinary single-site methods, including the generalized perturbation method, is still possible. We obtained such a parametrization for bulk and surface NiPt alloys, which allows one to obtain quantitatively accurate effective interactions in this system....

  18. Standard Practice for Laboratory Screening of Metallic Containment Materials for Use With Liquids in Solar Heating and Cooling Systems

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1980-01-01

    1.1 This practice covers several laboratory test procedures for evaluating corrosion performance of metallic containment materials under conditions similar to those that may occur in solar heating and cooling systems. All test results relate to the performance of the metallic containment material only as a part of a metal/fluid pair. Performance in these laboratory test procedures, taken by itself, does not necessarily constitute an adequate basis for acceptance or rejection of a particular metal/fluid pair in solar heating and cooling systems, either in general or in a particular design. This practice is not intended to preclude the use of other screening tests, particularly when those tests are designed to more closely simulate field service conditions. 1.2 This practice describes apparatus and procedures for several tests, any one or more of which may be used to evaluate the deterioration of the metallic containment material in a metal/fluid pair. The procedures are designed to permit simulation, heating...

  19. Preliminary screening of Ni(II metal tolerance and dye-decolorizing by Nocardiopsis sp. SD8

    Directory of Open Access Journals (Sweden)

    Ramasamy Thangaraj

    2016-04-01

    Full Text Available Objective: To reveal the screening of metal tolerance and dye-decolorizing of Nocardiopsis sp. Methods: NiSO4 and Congo red dye were used for evaluating the metal tolerance and dyedecolorizing of the randomly selected actinobacterial isolates. Results: Nocardiopsis sp. SD8 showed a better efficiency in Ni(II tolerance, though a longer lag phase was observed for this microorganism grown for 7 days in integrated mismatch negativity. Interestingly, we also found that Nocardiopsis sp. SD8 had dye-decolorizing, hemolytic, lipase and protease activity. Conclusions: The present results revealed the bioremediation of metal resistant and diverse properties of Nocardiopsis sp. SD8 and further investigations are needed to extract and identify the potent molecule.

  20. Rapid screening of aquatic toxicity of several metal-based nanoparticles using the MetPLATE™ bioassay

    International Nuclear Information System (INIS)

    Pokhrel, Lok R.; Silva, Thilini; Dubey, Brajesh; El Badawy, Amro M.; Tolaymat, Thabet M.; Scheuerman, Phillip R.

    2012-01-01

    Current understanding of potential toxicity of engineered nanomaterials to aquatic microorganisms is limited for risk assessment and management. Here we evaluate if the MetPLATE™ test can be used as an effective and rapid screening tool to test for potential aquatic toxicity of various metal-based nanoparticles (NPs). The MetPLATE bioassay is a heavy metal sensitive test based on β-galactosidase activity in Escherichia coli. Five different types of metal-based NPs were screened for toxicity: (1) citrate coated nAg (Citrate-nanosilver), (2) polyvinylpyrrolidone coated nAg (PVP-nAg), (3) uncoated nZnO, (4) uncoated nTiO 2 and (5) 1-Octadecylamine coated CdSe Quantum Dots (CdSe QDs); and compared with their corresponding ionic salt toxicity. Citrate-nAg was further fractionated into clean Citrate-nAg, unclean Citrate-nAg and permeate using a tangential flow filtration (TFF) system to eliminate residual ions and impurities from the stock Citrate-nAg suspension and also to differentiate between ionic- versus nano-specific toxicity. Our results showed that nAg, nZnO and CdSe QDs were less toxic than their corresponding ionic salts tested, while nano- or ionic form of TiO 2 was not toxic as high as 2.5 g L −1 to the MetPLATE™ bacteria. Although coating-dependent toxicity was noticeable between two types of Ag NPs evaluated, particle size and surface charge were not adequate to explain the observed toxicity; hence, the toxicity appeared to be material-specific. Overall, the toxicity followed the trend: CdCl 2 > AgNO 3 > PVP-nAg > unclean Citrate-nAg > clean Citrate-nAg > ZnSO 4 > nZnO > CdSe QDs > nTiO 2 /TiO 2 . These results indicate that an evaluation of β-galactosidase inhibition in MetPLATE™ E. coli can be an important consideration for rapid screening of metal-based NP toxicity, and should facilitate ecological risk assessment of these emerging contaminants. - Highlights: ► MetPLATE bioassay was evaluated as a rapid screening tool for nanotoxicity.

  1. Bulk-surface relationship of an electronic structure for high-throughput screening of metal oxide catalysts

    International Nuclear Information System (INIS)

    Kweun, Joshua Minwoo; Li, Chenzhe; Zheng, Yongping; Cho, Maenghyo; Kim, Yoon Young; Cho, Kyeongjae

    2016-01-01

    Graphical abstract: - Highlights: • Bulk-surface relationship was predicted by the ligand field nature of metal oxides. • Antibonding and bonding d-bands occupancy clarified the bulk-surface relationship. • Different surface relaxations were explained by the bulk electronic structures. • Transition from the bulk to the surface state was simulated by oxygen adsorption. - Abstract: Designing metal-oxides consisting of earth-abundant elements has been a crucial issue to replace precious metal catalysts. To achieve efficient screening of metal-oxide catalysts via bulk descriptors rather than surface descriptors, we investigated the relationship between the electronic structure of bulk and that of the surface for lanthanum-based perovskite oxides, LaMO_3 (M = Ti, V, Cr, Mn, Fe, Co, Ni, Cu). Through density functional theory calculations, we examined the d-band occupancy of the bulk and surface transition-metal atoms (n_B_u_l_k and n_S_u_r_f) and the adsorption energy of an oxygen atom (E_a_d_s) on (001), (110), and (111) surfaces. For the (001) surface, we observed strong correlation between the n_B_u_l_k and n_S_u_r_f with an R-squared value over 94%, and the result was interpreted in terms of ligand field splitting and antibonding/bonding level splitting. Moreover, the E_a_d_s on the surfaces was highly correlated with the n_B_u_l_k with an R-squared value of more than 94%, and different surface relaxations could be explained by the bulk electronic structure (e.g., LaMnO_3 vs. LaTiO_3). These results suggest that a bulk-derived descriptor such as n_B_u_l_k can be used to screen metal-oxide catalysts.

  2. Screening of willow species for resistance to heavy metals: comparison of performance in a hydroponics system and field trials.

    Science.gov (United States)

    Watson, C; Pulford, I D; Riddell-Black, D

    2003-01-01

    The aim of this study was to ascertain whether metal resistance in willow (Salix) clones grown in a hydroponics screening test correlated with data from the same clones grown independently in a field trial. If so, results from a short-term, glasshouse-based system could be extrapolated to the field, allowing rapid identification of willows suitable for planting in metal-contaminated substrates without necessitating longterm field trials. Principal Components Analysis was used to show groups of clones and to assess the relative importance of the parameters measured in both the hydroponics system and the field; including plant response factors such as increase in stem height, as well as metal concentrations in plant tissues. The clones tested fell into two distinct groups. Salix viminalis clones and the basket willow Black Maul (S. triandra) were less resistant to elevated concentrations of heavy metals than a group of hardier clones, including S. burjatica 'Germany,' S.x dasyclados, S. candida and S. spaethii. The more resistant clones produced more biomass in the glasshouse and field, and had higher metal concentrations in the wood. The less resistant clones had greater concentrations of Cu and Ni in the bark, and produced less biomass in the glasshouse and field. Significant relationships were found between the response of the same clones grown the in short-term glasshouse hydroponics system and in the field.

  3. Rare earth oxide reinforced Al{sub 2}O{sub 3}-TiO{sub 2} ceramics for inert coating of metallic parts for petroleum extraction

    Energy Technology Data Exchange (ETDEWEB)

    Yadava, Yoggendra Prasad; Rego, Sheila Alves Bezerra da Costa; Ferreira, Ricardo Artur Sanguinetti [Universidade Federal de Pernambuco (UFPE), Recife (Brazil)

    2012-07-01

    } reinforced Al{sub 2}O{sub 3}-20 wt% TiO{sub 2} ceramics for inert coating of metallic parts for petroleum extraction industry. (author)

  4. Soil-plant transfer models for metals to improve soil screening value guidelines valid for São Paulo, Brazil.

    Science.gov (United States)

    Dos Santos-Araujo, Sabrina N; Swartjes, Frank A; Versluijs, Kees W; Moreno, Fabio Netto; Alleoni, Luís R F

    2017-11-07

    In Brazil, there is a lack of combined soil-plant data attempting to explain the influence of specific climate, soil conditions, and crop management on heavy metal uptake and accumulation by plants. As a consequence, soil-plant relationships to be used in risk assessments or for derivation of soil screening values are not available. Our objective in this study was to develop empirical soil-plant models for Cd, Cu, Pb, Ni, and Zn, in order to derive appropriate soil screening values representative of humid tropical regions such as the state of São Paulo (SP), Brazil. Soil and plant samples from 25 vegetable species in the production areas of SP were collected. The concentrations of metals found in these soil samples were relatively low. Therefore, data from temperate regions were included in our study. The soil-plant relations derived had a good performance for SP conditions for 8 out of 10 combinations of metal and vegetable species. The bioconcentration factor (BCF) values for Cd, Cu, Ni, Pb, and Zn in lettuce and for Cd, Cu, Pb, and Zn in carrot were determined under three exposure scenarios at pH 5 and 6. The application of soil-plant models and the BCFs proposed in this study can be an important tool to derive national soil quality criteria. However, this methodological approach includes data assessed under different climatic conditions and soil types and need to be carefully considered.

  5. Screen-printed electrodes made of a bismuth nanoparticle porous carbon nanocomposite applied to the determination of heavy metal ions

    International Nuclear Information System (INIS)

    Niu, Pengfei; Gich, Martí; Roig, Anna; Fernández-Sánchez, César; Navarro- Hernández, Carla; Fanjul-Bolado, Pablo

    2016-01-01

    This work reports on the simplified fabrication and on the characterization of bismuth-based screen-printed electrodes (SPEs) for use in heavy metal detection. A nanocomposite consisting of bismuth nanoparticles and amorphous carbon was synthesized by a combined one-step sol-gel and pyrolysis process and milled down to a specific particle size distribution as required for the preparation of an ink formulation to be used in screen printing. The resulting electrochemical devices were applied to the detection of Pb(II) and Cd(II) ions in water samples. The porous structure of carbon and the high surface area of the bismuth nanoparticles allow for the detection of Pb(II) and Cd(II) at concentration levels below 4 ppb. The application of the SPEs was demonstrated by quantifying these ions in tap drinking water and wastewater collected from an influent of an urban wastewater treatment plant. (author)

  6. Phyto-metals screening of selected anti-diabetic herbs and infused concoctions

    Directory of Open Access Journals (Sweden)

    Olanrewaju O. Olujimi

    2017-10-01

    Conclusions: The study thus shows that the herbs and concoctions are safe from the heavy metals considered. However, right dosage of the anti-diabetic concoctions should always be considered to prevent possible chronic side effects from bio-accumulation of heavy metals.

  7. Screening for the next generation heavy metal hyperaccumulators for dryland decontamination

    NARCIS (Netherlands)

    Ravanbakhsh, Mohammadhossein; Ronaghi, Abdol Majid; Taghavi, Seyed Mohsen; Jousset, Alexandre

    2016-01-01

    Heavy metal removal by plants bears a great potential to decontaminate soils. A major challenge remains to find plant species that accumulate heavy metal, harbor a sufficient biomass and grow in the desired environmental conditions. Here we present candidate plants for phytoremediation in arid

  8. Screening of heavy metal containing waste types for use as raw material in Arctic clay-based bricks

    DEFF Research Database (Denmark)

    Belmonte, Louise Josefine; Ottosen, Lisbeth M.; Kirkelund, Gunvor Marie

    2016-01-01

    In the vulnerable Arctic environment, the impact of especially hazardous wastes can have severe consequences and the reduction and safe handling of these waste types are therefore an important issue. In this study, two groups of heavy metal containing particulate waste materials, municipal solid...... waste incineration (MSWI) fly and bottom ashes and mine tailings (i.e., residues from the mineral resource industry) from Greenland were screened in order to determine their suitability as secondary resources in clay-based brick production. Small clay discs, containing 20 or 40% of the different...... brick discs obtained satisfactory densities (1669-2007 kg/m3) and open porosities (27.9-39.9%). In contrast, the fly ash brick discs had low densities (1313-1578 kg/m3) and high open porosities (42.1-51. %). However, leaching tests on crushed brick discs revealed that heavy metals generally became more...

  9. Calculating the strength of a gas pipeline with a reinforced coating

    Energy Technology Data Exchange (ETDEWEB)

    Al' shanov, A P; Abdullaev, G T; Ali-Zade, A N

    1981-10-01

    Reinforcing the coatings of gas pipelines allows an increase in their operating pressure and thus their throughput; combined with strong insulation, such reinforcing materials as metal screens and fiberglass also protect the pipeline. Soviet analysts have mathematically derived the limiting internal pressure in a line with a reinforced coating as a function of the coating's thickness and mechanical properties. The method assumes that the pipe material is isotropic and elastic. The calculations help in determining (1) the dependence of the relative limiting pressure on the relative coating thickness and (2) the effect of the ratio of the Young's modulus of the reinforcing material to that of the pipe material upon the dependence of the relative limiting pressure on coating thickness. The analysis awaits experimental confirmation.

  10. Enhanced performance of nano-sized SiC reinforced Al metal matrix nanocomposites synthesized through microwave sintering and hot extrusion techniques

    Directory of Open Access Journals (Sweden)

    M. Penchal Reddy

    2017-10-01

    Full Text Available In the present study, nano-sized SiC (0, 0.3, 0.5, 1.0 and 1.5 vol% reinforced aluminum (Al metal matrix composites were fabricated by microwave sintering and hot extrusion techniques. The structural (XRD, SEM, mechanical (nanoindentation, compression, tensile and thermal properties (co-efficient of thermal expansion-CTE of the developed Al-SiC nanocomposites were studied. The SEM/EDS mapping images show a homogeneous distribution of SiC nanoparticles into the Al matrix. A significant increase in the strength (compressive and tensile of the Al-SiC nanocomposites with the addition of SiC content is observed. However, it is noticed that the ductility of Al-SiC nanocomposites decreases with increasing volume fraction of SiC. The thermal analysis indicates that CTE of Al-SiC nanocomposites decreases with the progressive addition of hard SiC nanoparticles. Overall, hot extruded Al 1.5 vol% SiC nanocomposites exhibited the best mechanical and thermal performance as compared to the other developed Al-SiC nanocomposites. Keywords: Al-SiC nanocomposites, Microwave sintering, Hot extrusion, Mechanical properties, Thermal expansion

  11. Finite strain anisotropic elasto-plastic model for the simulation of the forming and testing of metal/short fiber reinforced polymer clinch joints at room temperature

    Science.gov (United States)

    Dean, A.; Rolfes, R.; Behrens, A.; Bouguecha, A.; Hübner, S.; Bonk, C.; Grbic, N.

    2017-10-01

    There is a strong trend in the automotive industry to reduce car body-, chassis- and power-train mass in order to lower carbon emissions. More wide spread use of lightweight short fiber reinforced polymer (SFRP) is a promising approach to attain this goal. This poses the challenge of how to integrate new SFRP components by joining them to traditional sheet metal structures. Recently (1), the clinching technique has been successfully applied as a suitable joining method for dissimilar material such as SFRP and Aluminum. The material pairing PA6GF30 and EN AW 5754 is chosen for this purpose due to their common application in industry. The current contribution presents a verification and validation of a finite strain anisotropic material model for SFRP developed in (2) for the FE simulation of the hybrid clinching process. The finite fiber rotation during forming and separation, and thus the change of the preferential material direction, is represented in this model. Plastic deformations in SFRP are considered in this model via an invariant based non-associated plasticity formulation following the multiplicative decomposition approach of the deformation gradient where the stress-free intermediate configuration is introduced. The model allows for six independent characterization curves. The aforementioned material model allows for a detailed simulation of the forming process as well as a simulative prediction of the shear test strength of the produced joint at room temperature.

  12. In vitro screening of metal oxide nanoparticles for effects on neural function using cortical networks

    Data.gov (United States)

    U.S. Environmental Protection Agency — Data describe the effects of metal oxide nanoparticles on total spikes and active electrodes after exposure to various concentrations for 1, 24 and 48 hrs, or after...

  13. Strengthening of the Timber Members Using Fibre Reinforced Polymer Composites

    Directory of Open Access Journals (Sweden)

    Ioana-Sorina Enţuc

    2004-01-01

    Full Text Available The reinforcement of structural wood products has become in the last decades an efficient method of improving structural capabilities of load carrying members made of this material. Some important steps in earlier stages of research were focused on using metallic reinforcement, including steel bars, prestressed stranded cables, and bonded steel and aluminum plates. A disadvantage of the metallic reinforcement was the poor compatibility between the wood and the reinforcing materials. In comparison with metallic reinforcement, fiber reinforced polymers (FRP composites are compatible with structural wood products leading to efficient hybrid members. Some interesting strengthening alternatives using FRP applied to wood beams and to wood columns are presented in this paper.

  14. Nanostructured composite reinforced material

    Science.gov (United States)

    Seals, Roland D [Oak Ridge, TN; Ripley, Edward B [Knoxville, TN; Ludtka, Gerard M [Oak Ridge, TN

    2012-07-31

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  15. Screening heavy metals levels in hair of sanitation workers by X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Md Khudzari, Jauharah; Wagiran, Husin; Hossain, I.; Ibrahim, Noorddin

    2013-01-01

    This work presents a study of human hair as a bio-indicator for detection of heavy metals as part of environmental health surveillance programs project to develop a subject of interest in the biomedical and environmental sciences. A total of 34 hair samples were analyzed that consisting of 29 samples from sanitation workers and five samples from students. The hair samples were prepared and treated in accordance to the International Atomic Energy Agency (IAEA) recommendations. The concentrations of heavy metals were analyzed using the energy dispersive X-ray fluorescence (EDXRF) technique by X-50 Mobile X-ray Fluorescence (XRF) at Oceanography Institute, Universiti Malaysia Terengganu. The performance of EDXRF analyzer was tested by Standard Reference Material (SRM 2711) Montana Soil which was in good agreement with certified value within 14% deviations except for Hg. While seven heavy metals: Mn, Fe, Ni, Cu, Zn, Se, and Sb were detected in both groups, three additional elements, i.e. As, Hg and Pb, were detected only in sanitation workers group. For sanitation workers group, the mean concentration of six elements, Mn, Fe, Cu, Zn, Se, and Sb, shows elevated concentration as compared to the control samples concentration. Results from both groups were compared and discussed in relation to their respective heavy metals concentrations. - Highlights: ► We determine heavy metals in hair sample of sanitation workers and control group. ► 7 heavy metals, Mn, Fe, Ni, Cu, Zn, Se, and Sb, were detected in both groups. ► Additional elements of As, Hg and Pb were discovered only in sanitation workers. ► Generally, mean concentration of sanitation workers show elevation in comparison. ► We report results in relation to their respective heavy metals concentrations.

  16. Screening of active metals for reactive adsorption desulfurization adsorbent using density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lei; Zhao, Liang, E-mail: liangzhao@cup.edu.cn; Xu, Chunming; Wang, Yuxian; Gao, Jinsen

    2017-03-31

    Highlights: • Electronic characteristics determined adsorption characteristics of transition metals. • Cobalt has the similar adsorption ability of thiophene as nickel. • Adsorption capacity of Cr and Mo was extremely fierce, while Cu has the potential ability for adsorbing thiophene. • The preference adsorption site for thiophene was hollow site on all the seven surface. - Abstract: To explore characteristics of active metals for reactive adsorption desulfurization (RADS) technology, the adsorption of thiophene on M (100) (M = Cr, Mo, Co, Ni, Cu, Au, and Ag) surfaces was systematically studied by density functional theory with vdW correction (DFT + D3). We found that, in all case, the most stable molecular adsorption site was the hollow site and adsorptive capabilities of thiophene followed the order: Cr > Mo > Co ≈ Ni > Cu > Au ≈ Ag. By analyzing the nature of binding between thiophene and corresponding metals and the electronic structure of metals, the excessive activities of Cr and Mo were found to have a negative regeneration, the passive activities of Au and Ag were found to have an inactive adsorption for RADS adsorbent alone, while Ni and Co have appropriate characteristics as the active metals for RADS, followed by Cu.

  17. Screening of various types of lignin products for biosorption of heavy metals (Cu, Ni, Zn)

    Energy Technology Data Exchange (ETDEWEB)

    Gouda, H [Nile Research Inst., National Water Research Center, El Qanater (Egypt)

    2000-07-01

    This paper discussed the need to develop new technologies and approaches to meet strict environmental legislation and standards regarding the discharge of heavy metals to the environment by industry. A study was conducted to determine the feasibility of using different lignin materials for heavy metal removal using the BioElecDetox process. This process uses an unique combination of existing water and wastewater equipment and technology. The heavy metal removal efficiencies of grape stalks, pine bark, larch bark, pine sawdust, broccoli stems, and paper pulp were tested for their biosorption capacity, sedimentation, desorption and recycling for single solutions of copper, nickel and zinc (Cu, Ni and Zn respectively). Results showed that the grape stalk was the best biosorbent among the biomasses examined for Cu, Ni and Zn ions from single solution. The biomass biosorption capacity was determined using the Langmuir equation. Pine bark also gave good results and was considered to be the second best biosorbent. The biosorption for single metal solution was high for all metals. Biomass recycling had no impact on the efficiency of biosorption. It was recommended that future experiments should be conducted for industrial effluent using different biomasses at laboratory scale for the BioElecDetox process. 5 refs., 1 tab., 2 figs.

  18. Hydroponic screening of black locust families for heavy metal tolerance and accumulation.

    Science.gov (United States)

    Župunski, Milan; Borišev, Milan; Orlović, Saša; Arsenov, Danijela; Nikolić, Nataša; Pilipović, Andrej; Pajević, Slobodanka

    2016-01-01

    Present work examines phytoextraction potential of four black locust families (half-sibs 54, 56, 115, and 135) grown hydroponically. Plants were treated with 6 ppm of cadmium (Cd), 100 ppm of nickel (Ni), and 40 ppm of lead (Pb) added in Hoagland nutrient solution, accompanying with simultaneously applied all three metals. Responses to metals exposure among families were different, ranging from severe to slight reduction of root and shoot biomass production of treated plants. Calculated tolerance indices are indicating tested families as highly tolerant (Ti > 60). Family 135 had the lowest tolerance index, pointing that it was highly susceptible to applied metals. Comparing photosynthetic activities of tested families it has been noticed that they were highly sensitive to stress induced by heavy metals. Net photosynthetic rate of nickel treated plants was the most affected by applied concentration. Cadmium and nickel concentrations in stems and leaves of black locust families exceeded 100 mg Cd kg(-1) and 1000 mg Ni kg(-1), in both single and multipollution context. On the contrary, accumulation of lead in above ground biomass was highly affected by multipollution treatment. Tf and BCF significantly varied between investigated treatments and families of black locust. Concerning obtained results of heavy metals accumulation and tolerance of black locust families can be concluded that tested families might be a promising tool for phytoextraction purposes, but it takes to be further confirmed in field trials.

  19. Screening of variable importance for optimizing electrodialytic remediation of heavy metals from polluted harbour sediments

    DEFF Research Database (Denmark)

    Pedersen, Kristine B.; Lejon, Tore; Ottosen, Lisbeth M.

    2015-01-01

    Using multivariate design and modelling, the optimal conditions for electrodialytic remediation (EDR) of heavy metals were determined for polluted harbour sediments from Hammerfest harbour located in the geographic Arctic region of Norway. The comparative importance of the variables, current......) was computed and variable importance in the projection was used to assess the influence of the experimental variables. Current density and remediation time proved to have the highest influence on the remediation of the heavy metals Cr, Cu, Ni, Pb and Zn in the studied experimental domain. In addition......, it was shown that excluding the acidification time improved the PLS model, indicating the importance of applying a limited experimental domain that covers the removal phases of each heavy metal in the specific sediment. Based on PLS modelling, the optimal conditions for remediating the Hammerfest sediment were...

  20. Local coordination and medium range order in molten trivalent metal chlorides: The role of screening by the chlorine component

    International Nuclear Information System (INIS)

    Pastore, G.; Tosi, M.P.

    1995-11-01

    Earlier work has identified the metal ion size R M as a relevant parameter in determining the evolution of the liquid structure of trivalent metal chlorides across the series from LaCl 3 (R M approx. 1.4 A) to AlCl 3 (R M approx. 0.8 A). Here we highlight the structural role of the chlorines by contrasting the structure of fully equilibrated melts with that of disordered systems obtained by quenching the chlorine component. Main attention is given to how the suppression of screening of the polyvalent ions by the chlorines changes trends in the local liquid structure (first neighbour coordination and partial radial distribution functions) and in the intermediate range order (first sharp diffraction peak in the partial structure factors). The main microscopic consequences of structural quenching of the chlorine component are a reduction in short range order and an enhancement of intermediate range order in the metal ion component, as well as the suppression of a tendency to molecular-type states at the lower end of the range of R M . (author). 23 refs, 6 figs

  1. Screening of metal hydride pairs for closed thermal energy storage systems

    International Nuclear Information System (INIS)

    Aswin, N.; Dutta, Pradip; Murthy, S. Srinivasa

    2016-01-01

    Thermal energy storage systems based on metal/hydrides usually are closed systems composed of two beds of metal/alloy – one meant for energy storage and the other for hydrogen storage. It can be shown that a feasible operating cycle for such a system using a pair of metals/alloys operating between specified temperature values can be ensured if the equilibrium hydrogen intake characteristics satisfy certain criteria. In addition, application of first law of thermodynamics to an idealized operating cycle can provide the upper bounds of selected performance indices, namely volumetric energy storage density, energy storage efficiency and peak discharge temperature. This is demonstrated for a representative system composed of LaNi 4.7 Al 0.3 –LaNi 5 operating between 353 K and 303 K which gave values of about 56 kW h m −3 for volumetric storage density, about 85% for energy storage efficiency and 343 K for peak discharge temperature. A system level heat and mass transfer study considering the reaction kinetics, hydrogen flow between the beds and heat exchanger models is presented which gave second level estimates of about 40 kW h m −3 for volumetric energy storage density, 73% for energy storage efficiency and 334 K for peak temperature for the representative system. The results from such studies lead to identifying metal/alloy pairs which can be shortlisted for detailed studies.

  2. Screening of metal-resistant coal mine bacteria for biofabrication of ...

    Indian Academy of Sciences (India)

    Additionally, IR study provided information about the bacterial proteins involved in either reduction of Ag(I) into silver nanoparticle or capping of reduced silver nanocrystal or both.Thus, majority of the bacteria found in the coal mines have the resistance against the antimicrobial metal ion, and the potential to reduce the ion ...

  3. Synthesis, microstructural and mechanical properties of ex situ zircon particles (ZrSiO4 reinforced Metal Matrix Composites (MMCs: a review

    Directory of Open Access Journals (Sweden)

    Satish Kumar Thandalam

    2015-07-01

    This review article details the current development on the synthesis, microstructure and mechanical properties of zircon reinforced MMCs, with specific attention on the abrasive wear behavior of the composites. This review also summarizes the work done by various research groups on zircon reinforced MMCs in achieving higher hardness and wear resistance in these composites.

  4. Structure, thermal and mechanical properties of in situ Al-based metal matrix composite reinforced with Al2O3 and TiC submicron particles

    International Nuclear Information System (INIS)

    Yu Peng; Mei Zhi; Tjong, S.C.

    2005-01-01

    We report herein the structure and characterization of in situ Al-based metal matrix composites (MMCs) prepared from the Al-10 wt.% TiO 2 and Al-10 wt.% TiO 2 -1.5 wt.% C systems via hot isostatic pressing (HIP) at 1000 deg C and 100 MPa. The structure, morphology and thermal behavior of HIPed samples were studied by means of the X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). The results indicated that fined Al 2 O 3 particles and large intermetallic Al 3 Ti plates were in situ formed in the Al-10 wt.% TiO 2 sample during HIPing. However, the introduction of C to the Al-TiO 2 system was beneficial to eliminate large intermetallic Al 3 Ti plates. In this case, Al 2 O 3 and TiC submicron particles were in situ formed in the Al-10 wt.% TiO 2 -1.5 wt.% C sample. Three-point-bending test showed that the strength and the strain-at-break of the HIPed Al-10 wt.% TiO 2 -1.5 wt.% C sample were significantly higher than those of its Al-10 wt.% TiO 2 counterpart. The improvement was derived from the elimination of bulk Al 3 Ti intermetallic plates and from the formation of TiC submicron particles. DSC measurements and thermodynamic analyses were carried out to reveal the reaction formation mechanisms of in situ reinforcing phases. The DSC results generally correlated well with the theoretical predictions. Finally, the correlation between the structure-property relationships of in situ composites is discussed

  5. Development and characterization of ceramic composites alumina-titania based reinforced with lanthanum oxide for fabrication of inert coatings for metallic tanks of the oil industry

    International Nuclear Information System (INIS)

    Bandeira, J.M.; Yadava, Y.P.; Silva, N.D.G.; Ferreira, R.A.S.

    2016-01-01

    Crude petroleum is highly corrosive causing superficial degradation in metallic tanks used for storage and transportation of this material, which causes a serious problem in the oil industry. An alternative to solve this problem is to use some kind of coating that is inert to this kind of corrosion. Alumina and titania are interesting materials for several engineering applications because, when compared with other ceramic materials, they present superior mechanical properties, e.g. high mechanical strength, good chemical stability and high fracture toughness combined with good wear resistance and a coefficient of thermal expansion close to the iron's, which makes them fit to use in ceramic hardening process and coating. In this paper, alumina-titania ceramic composites with 5%, 10%, 15% and 20% of titania (TiO2) and reinforced with 2% of lanthanum oxide of were produced by thermo-mechanical processing and sintering techniques at 1350 deg C. In these composites, microstructure and mechanical properties were analyzed using X-ray spectroscopy, optical microscopy, scanning electron microscopy and Vickers hardness in order to evaluate their applicability. X-ray spectroscopy showed the formation of composite without the presence of other phases. Optical microscopy and scanning electron microscopy showed a homogeneous microstructure in terms of particle size and distribution. Vickers hardness test showed a gradual decrease in hardness with the addition of titania. The composite with 5% of titania and 2% of lanthanum oxide is the best choice for structural applications. The composites were submerged in crude petroleum for 30 days to study their stability in such environment. Through the analysis of X-ray spectroscopy, optical microscopy and Vickers hardness before and after the submersion in crude petroleum, it was not observed structural or microstructural degradation nether alterations in mechanical properties. This way, it was concluded that these composites have good

  6. Glass fiber-reinforced thermoplastics for use in metal-free removable partial dentures: combined effects of fiber loading and pigmentation on color differences and flexural properties.

    Science.gov (United States)

    Tanimoto, Yasuhiro; Nagakura, Manamu; Nishiyama, Norihiro

    2018-02-21

    The purpose of this study was to investigate the combined effects of fiber loading and pigmentation on the color differences and flexural properties of glass fiber-reinforced thermoplastics (GFRTPs), for use in non-metal clasp dentures (NMCDs). The GFRTPs consisted mainly of E-glass fibers, a polypropylene matrix, and a coloring pigment: the GFRTPs with various fiber loadings (0, 10, and 20mass%) and pigmentations (0, 1, 2, and 4mass%) were fabricated by using an injection molding. The color differences of GFRTPs were measured based on the Commission Internationale de l'Eclairage (CIE) Lab color system, by comparing with a commercially available NMCD. The flexural properties of GFRTPs were evaluated by using a three-point bending test, according to International Standards Organization (ISO) specification number 20795-1. The visible colors of GFRTPs with pigment contents of 2mass% were acceptable for gingival color, and the glass fibers harmonized well with the resins. The ΔE* values of the GFRTPs with pigment contents of 2mass% obtained by using the CIE Lab system were lowest at all fiber loadings. For GFRTPs with fiber contents of 10 and 20mass% at 2mass% pigment content, these GFRTPs surpassed the ISO 20795-1 specification regarding flexural strength (> 60MPa) and modulus (> 1.5GPa). A combination of the results of color difference evaluation and mechanical examination indicates that the GFRTPs with fiber contents of 10 or 20mass%, and with pigment contents of 2mass% have acceptable esthetic appearance and sufficient rigidity for NMCDs. Copyright © 2018 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  7. Phyto-metals screening of selected anti-diabetic herbs and infused concoctions

    OpenAIRE

    Olanrewaju O. Olujimi; Olusegun N. Onifade; Adeleke T. Towolawi; Temilade F. Akinhanmi; Adeniyi A. Afolabi; Kabir A. Olanite

    2017-01-01

    Objective: To determine the levels of some selected heavy metals in both the selected anti-diabetic herbal plants and infused concoctions for diabetes treatment. Methods: Ten anti-diabetic plant samples: pawpaw leaves (Carica papaya), bitter melon leaves (Momordica charantia), holy basil leaves (Ocimum sanctum), bitter leaf (Vernonia amygdalina), ginger rhizome (Zingiber officinale), garlic (Allium sativum), African red pepper fruits (Capsicum frutescens), negro pepper grain (Xylopia aethi...

  8. Spectral, biological screening of metal chelates of chalcone based Schiff bases of N-(3-aminopropyl) imidazole.

    Science.gov (United States)

    Kalanithi, M; Rajarajan, M; Tharmaraj, P; Sheela, C D

    2012-02-15

    Tridentate chelate complexes of Co(II), Ni(II), Cu(II) and Zn(II) have been synthesized from the chalcone based ligands 2-[1-(3-(1H-imidazol-1-yl)propylimino)-3-(phenylallyl)]phenol(HL(1)), 2-[1-(3-(1H-imidazol-1-yl)propylimino)-3-p-tolylallyl]phenol(HL(2)), 2-[1-(3-(1H-imidazol-1-yl)propylimino)-3-4-nitrophenylallyl]phenol(HL(3)). Microanalytical data, UV-vis spectrophotometric method, magnetic susceptibility measurements, IR, 1H NMR, Mass, and EPR techniques were used to characterize the structure of chelates. The electronic absorption spectra and magnetic susceptibility measurements suggest a distorted square planar geometry for the copper(II) ion. The other metal complexes show distorted tetrahedral geometry. The coordination of the ligands with metal(II) ions was further confirmed by solution fluorescence spectrum. The antimicrobial activity of the ligands and metal(II) complexes against the species Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Candida albigans and Aspergillus niger has been carried out and compared. The electrochemical behavior of copper(II) complex is studied by cyclic voltammetry. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. High-Throughput Computational Screening of the Metal Organic Framework Database for CH4/H2 Separations.

    Science.gov (United States)

    Altintas, Cigdem; Erucar, Ilknur; Keskin, Seda

    2018-01-31

    Metal organic frameworks (MOFs) have been considered as one of the most exciting porous materials discovered in the last decade. Large surface areas, high pore volumes, and tailorable pore sizes make MOFs highly promising in a variety of applications, mainly in gas separations. The number of MOFs has been increasing very rapidly, and experimental identification of materials exhibiting high gas separation potential is simply impractical. High-throughput computational screening studies in which thousands of MOFs are evaluated to identify the best candidates for target gas separation is crucial in directing experimental efforts to the most useful materials. In this work, we used molecular simulations to screen the most complete and recent collection of MOFs from the Cambridge Structural Database to unlock their CH 4 /H 2 separation performances. This is the first study in the literature, which examines the potential of all existing MOFs for adsorption-based CH 4 /H 2 separation. MOFs (4350) were ranked based on several adsorbent evaluation metrics including selectivity, working capacity, adsorbent performance score, sorbent selection parameter, and regenerability. A large number of MOFs were identified to have extraordinarily large CH 4 /H 2 selectivities compared to traditional adsorbents such as zeolites and activated carbons. We examined the relations between structural properties of MOFs such as pore sizes, porosities, and surface areas and their selectivities. Correlations between the heat of adsorption, adsorbility, metal type of MOFs, and selectivities were also studied. On the basis of these relations, a simple mathematical model that can predict the CH 4 /H 2 selectivity of MOFs was suggested, which will be very useful in guiding the design and development of new MOFs with extraordinarily high CH 4 /H 2 separation performances.

  10. Sensitivity of ecological soil-screening levels for metals to exposure model parameterization and toxicity reference values.

    Science.gov (United States)

    Sample, Bradley E; Fairbrother, Anne; Kaiser, Ashley; Law, Sheryl; Adams, Bill

    2014-10-01

    Ecological soil-screening levels (Eco-SSLs) were developed by the United States Environmental Protection Agency (USEPA) for the purposes of setting conservative soil screening values that can be used to eliminate the need for further ecological assessment for specific analytes at a given site. Ecological soil-screening levels for wildlife represent a simplified dietary exposure model solved in terms of soil concentrations to produce exposure equal to a no-observed-adverse-effect toxicity reference value (TRV). Sensitivity analyses were performed for 6 avian and mammalian model species, and 16 metals/metalloids for which Eco-SSLs have been developed. The relative influence of model parameters was expressed as the absolute value of the range of variation observed in the resulting soil concentration when exposure is equal to the TRV. Rank analysis of variance was used to identify parameters with greatest influence on model output. For both birds and mammals, soil ingestion displayed the broadest overall range (variability), although TRVs consistently had the greatest influence on calculated soil concentrations; bioavailability in food was consistently the least influential parameter, although an important site-specific variable. Relative importance of parameters differed by trophic group. Soil ingestion ranked 2nd for carnivores and herbivores, but was 4th for invertivores. Different patterns were exhibited, depending on which parameter, trophic group, and analyte combination was considered. The approach for TRV selection was also examined in detail, with Cu as the representative analyte. The underlying assumption that generic body-weight-normalized TRVs can be used to derive protective levels for any species is not supported by the data. Whereas the use of site-, species-, and analyte-specific exposure parameters is recommended to reduce variation in exposure estimates (soil protection level), improvement of TRVs is more problematic. © 2014 The Authors

  11. In vitro antimicrobial and antiprotozoal activities, phytochemical screening and heavy metals toxicity of different parts of Ballota nigra.

    Science.gov (United States)

    Ullah, Najeeb; Ahmad, Ijaz; Ayaz, Sultan

    2014-01-01

    The study was done to assess the phytochemicals (flavonoids, terpenoids, saponins, tannin, alkaloids, and phenol) in different parts (root, stem, and leaves) of Ballota nigra and correlated it to inhibition of microbes (bacteria and fungi), protozoan (Leishmania), and heavy metals toxicity evaluation. In root and stem flavonoids, terpenes and phenols were present in ethanol, chloroform, and ethyl acetate soluble fraction; these were found to be the most active inhibiting fractions against all the tested strains of bacteria, fungi, and leishmania. While in leaves flavonoids, terpenes, and phenols were present in ethanol, chloroform, and n-butanol fractions which were the most active fractions against both types of microbes and protozoan (leishmania) in in vitro study. Ethanol and chloroform fractions show maximum inhibition against Escherichia coli (17 mm). The phytochemical and biological screenings were correlated with the presence of heavy metals in selected plant Ballota nigra. Cr was found above permissible value (above 1.5 mg/kg) in all parts of the plant. Ni was above WHO limit in B. nigra root and leaves (3.35 ± 1.20 mg/kg and 5.09 ± 0.47 mg/kg, respectively). Fe was above permissible value in all parts of B. nigra (above 20 mg/kg). Cd was above permissible value in all parts of the plant (above 0.3 mg/kg). Pb was above WHO limit (above 2 mg/kg) in all parts of Ballota nigra.

  12. Rapid Computer Aided Ligand Design and Screening of Precious Metal Extractants from TRUEX Raffinate with Experimental Validation

    International Nuclear Information System (INIS)

    Clark, Aurora Sue; Wall, Nathalie; Benny, Paul

    2015-01-01

    design of a software program that uses state-of-the-art computational combinatorial chemistry, and is developed and validated with experimental data acquisition; the resulting tool allows for rapid design and screening of new ligands for the extraction of precious metals from SNF. This document describes the software that has been produced, ligands that have been designed, and fundamental new understandings of the extraction process of Rh(III) as a function of solution phase conditions (pH, nature of acid, etc.).

  13. Rapid Computer Aided Ligand Design and Screening of Precious Metal Extractants from TRUEX Raffinate with Experimental Validation

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Aurora Sue [Washington State Univ., Pullman, WA (United States); Wall, Nathalie [Washington State Univ., Pullman, WA (United States); Benny, Paul [Washington State Univ., Pullman, WA (United States)

    2015-11-16

    through the design of a software program that uses state-of-the-art computational combinatorial chemistry, and is developed and validated with experimental data acquisition; the resulting tool allows for rapid design and screening of new ligands for the extraction of precious metals from SNF. This document describes the software that has been produced, ligands that have been designed, and fundamental new understandings of the extraction process of Rh(III) as a function of solution phase conditions (pH, nature of acid, etc.).

  14. Inelastic scattering of low-energy electrons in metals: the role of kinematics in screening

    International Nuclear Information System (INIS)

    Alducin, M.; Juaristi, J.I.; Nagy, I.; Echenique, P.M.

    2002-01-01

    The inelastic scattering of low-energy electrons with the mobile part of the electron density of free-electron-like materials is investigated. Based on the dielectric theory for the homogeneous electron gas, the concept of Bohm and Pines is adopted in order to separate the single-particle and collective basic channels of the total inelastic rate. An effective screened potential is introduced to describe the separated single-particle part. The role of the relative motion of electrons, a kind of dynamical correlation effect, is modelled in this potential via a physical argument. The results obtained show that the nontrivial correlated motion of electrons may have a measurable influence on the result of dynamical probing of a degenerate electron gas. (author)

  15. Fungal community structure under goat willows (Salix caprea L.) growing at metal polluted site: the potential of screening in a model phytostabilisation study

    Science.gov (United States)

    Marjana Regvar; Matevz Likar; Andrej Piltaver; Nives Kugonic; Jane E. Smith

    2010-01-01

    Goat willow (Salix caprea L.) was selected in a previous vegetation screening study as a potential candidate for the later-stage phytostabilisation efforts at a heavily metal polluted site in Slovenia. The aims of this study were to identify the fungi colonising roots of S. caprea along the gradient of vegetation succession and...

  16. South Oregon Coast Reinforcement.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1998-05-01

    The Bonneville Power Administration is proposing to build a transmission line to reinforce electrical service to the southern coast of Oregon. This FYI outlines the proposal, tells how one can learn more, and how one can share ideas and opinions. The project will reinforce Oregon`s south coast area and provide the necessary transmission for Nucor Corporation to build a new steel mill in the Coos Bay/North Bend area. The proposed plant, which would use mostly recycled scrap metal, would produce rolled steel products. The plant would require a large amount of electrical power to run the furnace used in its steel-making process. In addition to the potential steel mill, electrical loads in the south Oregon coast area are expected to continue to grow.

  17. Dissolution of metallic uranium and its alloys. Part II. Screening study results: Identification of an effective non-thermal uranium dissolution method

    International Nuclear Information System (INIS)

    Laue, C.A.; Gates-Anderson, D.; Fitch, T.E.

    2004-01-01

    Screening experiments were performed to evaluate reagent systems that deactivate pyrophoric, metallic depleted uranium waste streams at ambient temperature. The results presented led to the selection of two systems, which would be investigated further, for the design of the LLNL onsite treatment process of metallic depleted uranium wastes. The two feasible systems are: (a) 7.5 mol/l H 2 SO 4 - 1 mol/l HNO 3 and (b) 3 mol/l HCl - 1 mol/l H 3 PO 4 . The sulfuric acid system dissolves uranium metal completely, while the hydrochloric-phosphoric acid system converts the metal completely into a solid, which might be suitable for direct disposal. Both systems combine oxidation of metallic uranium with complexation of the uranium ions formed to effectively deactivate uranium.s pyrophoricity at ambient temperature. (author)

  18. Screening the efficient biological prospects of triazole allied mixed ligand metal complexes

    Science.gov (United States)

    Utthra, Ponnukalai Ponya; Kumaravel, Ganesan; Raman, Natarajan

    2017-12-01

    Triazole appended mixed ligand complexes (1-8) of the general formula [ML (bpy/phen)2]Cl2, where M = Cu(II), Co(II), Ni(II) and Zn(II), L = triazole appended Schiff base (E)sbnd N-(4-nitrobenzylidene)-1H-1,2,4-triazol-3-amine and bpy/phen = 2,2‧-bipyridine/1,10-phenanthroline, have been synthesized. The design and synthesis of this elaborate ligand has been performed with the aim of increasing stability and conjugation of 1,2,4 triazole, whose Schiff base derivatives are known as biologically active compounds thereby exploring their DNA binding affinity and other biological applications. The compounds have been comprehensively characterized by elemental analysis, spectroscopic methods (IR, UV-Vis, EPR, 1H and 13C NMR spectroscopy), ESI mass spectrometry and magnetic susceptibility measurements. The complexes were found to exhibit octahedral geometry. The complexes 1-8 were subjected to DNA binding techniques evaluated using UV-Vis absorption, CV, CD, Fluorescence spectroscopy and hydrodynamic measurements. Complex 5 showed a Kb value of 3.9 × 105 M-1. The DNA damaging efficacy for the complexes was observed to be high compared to the ligand. The antimicrobial screening of the compounds against bacterial and fungal strains indicates that the complexes possess excellent antimicrobial activity than the ligand. The overall biological activity of the complexes with phen as a co-ligand possessed superior potential than the ligand.

  19. Evolution of the internal friction in SIC particle reinforced 8090 Al-Li metal matrix composite; Evolucion de la friccion interna del material compuesto de matriz Al-Li 8090 reforzado con particulas de SiC

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez-Urrutia, I.; Gallego, I.; No, M. L.; San Juan, J. M.

    2001-07-01

    The present study has been undertaken to investigate the mechanisms of thermal stress relief at the range of temperatures below room temperature for the metal matrix composite Al-Li 8090/SiC. For this aim the experimental technique of internal friction has been used which has been showed up very effective. Several thermal cycles from 453 K to 100 K were used in order to measures the internal friction as well as the elastic modules of the material concluding that thermal stresses are relaxed by microplastic deformation around the reinforcements. It has been also related the variation in the elastic modules with the different levels of precipitation. (Author) 18 refs.

  20. Toughened microstructures for ductile phase reinforced molybdenum disilicide

    International Nuclear Information System (INIS)

    Pickard, S.M.; Ghosh, A.K.

    1995-01-01

    Various morphologies of ductile Nb refractory metal reinforcement are incorporated into a MoSi 2 matrix using powder metallurgy, including single-ply laminates, continuous metal ribbons and sections of 2-dimensional wire mesh. Hot forging techniques are used to redistribute the reinforcement and change the dimensions and the aspect ratio of the reinforcing metal ligaments. Work-of-rupture measurements are conducted on bend test specimens and precracked tensile specimens of the composite so that the toughness contribution from the various ductile metal morphologies can be assessed according to its effectiveness. Accompanying microstructural examination of crack bridging interaction with the reinforcement is conducted

  1. Effect of the percentage of reinforcement on the wear in the metal matrix composites sintered with abnormal glow discharge; Efecto del porcentaje de refuerzo frente al desgaste en compuestos de matriz metalica sinterizados con descarga luminiscente anormal

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Velasquez, S.; Pineda-Triana, Y.; Aguilar-Castro, Y.; Vera-Lopez, E.

    2016-05-01

    In this study an analysis of the behavior of dry wear coefficient of a Metal Matrix Composite (MMC) in 316 stainless steel reinforced with particles of titanium carbide (TiC) according to ASTM G 99 standards, in a pin-on-disk test. In this research it is tested the effect of the percentage of reinforcement in the MMC manufactured with 3, 6 y 9% (vol.) of TiC, in samples compacted at 800 MPa, generating different values of grain size, hardness and density, they are sintered with abnormal glow discharge, at a temperature of 1200 degree centigrade ±5 degree centigrade, with a protection atmosphere H{sub 2} - N{sub 2} and a permanence time of 30 minutes. According to the results obtained it is concluded that the best condition for the MMC manufacturing, in relation to the reinforcement percentage, is the one obtained when the mixture contains 6% of TiC compacted at 800 MPa. In these conditions, it was obtained: achieving smaller grain size, the greater hardness and the lowest coefficient of friction. In this respect, it was observed that the incorporation of the ceramic particles (TiC) in a matrix of austenitic steel (316) shows significant improvements in the resistance to the wear. (Author)

  2. Development of an ELISA assay for screening inhibitors against divalent metal ion dependent alphavirus capping enzyme.

    Science.gov (United States)

    Kaur, Ramanjit; Mudgal, Rajat; Narwal, Manju; Tomar, Shailly

    2018-06-26

    Alphavirus non-structural protein, nsP1 has a distinct molecular mechanism of capping the viral RNAs than the conventional capping mechanism of host. Thus, alphavirus capping enzyme nsP1 is a potential drug target. nsP1 catalyzes the methylation of guanosine triphosphate (GTP) by transferring the methyl group from S-adenosylmethionine (SAM) to a GTP molecule at its N7 position with the help of nsP1 methyltransferase (MTase) followed by guanylylation (GT) reaction which involves the formation of m 7 GMP-nsP1 covalent complex by nsP1 guanylyltransferase (GTase). In subsequent reactions, m 7 GMP moiety is added to the 5' end of the viral ppRNA by nsP1 GTase resulting in the formation of cap0 structure. In the present study, chikungunya virus (CHIKV) nsP1 MTase and GT reactions were confirmed by an indirect non-radioactive colorimetric assay and western blot assay using an antibody specific for the m 7 G cap, respectively. The purified recombinant CHIKV nsP1 has been used for the development of a rapid and sensitive non-radioactive enzyme linked immunosorbent assay (ELISA) to identify the inhibitors of CHIKV nsP1. The MTase reaction is followed by GT reaction and resulted in m 7 GMP-nsP1 covalent complex formation. The developed ELISA nsP1 assay measures this m 7 GMP-nsP1 complex by utilizing anti-m 7 G cap monoclonal antibody. The mutation of a conserved residue Asp63 to Ala revealed its role in nsP1 enzyme reaction. Inductively coupled plasma mass spectroscopy (ICP-MS) was used to determine the presence of magnesium ions (Mg 2+ ) in the purified nsP1 protein. The divalent metal ion selectivity and investigation show preference for Mg 2+ ion by CHIKV nsP1. Additionally, using the developed ELISA nsP1 assay, the inhibitory effects of sinefungin, aurintricarboxylic acid (ATA) and ribavirin were determined and the IC 50 values were estimated to be 2.69 µM, 5.72 µM and 1.18 mM, respectively. Copyright © 2018. Published by Elsevier B.V.

  3. Massachusetts Beryllium Screening Program for Former Workers of Wyman-Gordon, Norton Abrasives, and MIT/Nuclear Metals

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, L. D.

    2008-05-21

    The overall objective of this project was to provide medical screening to former workers of Wyman-Gordon Company, Norton Abrasives, and MIT/Nuclear Metals (NMI) in order to prevent and minimize the health impact of diseases caused by site related workplace exposures to beryllium. The program was developed in response to a request by the U.S. Department of Energy (DOE) that had been authorized by Congress in Section 3162 of the 1993 Defense Authorization Act, urging the DOE to carry out a program for the identification and ongoing evaluation of current and former DOE employees who are subjected to significant health risks during such employment." This program, funded by the DOE, was an amendment to the medical surveillance program for former DOE workers at the Nevada Test Site (NTS). This program's scope included workers who had worked for organizations that provided beryllium products or materials to the DOE as part of their nuclear weapons program. These organizations have been identified as Beryllium Vendors.

  4. REINFORCED COMPOSITE PANEL

    DEFF Research Database (Denmark)

    2003-01-01

    A composite panel having front and back faces, the panel comprising facing reinforcement, backing reinforcement and matrix material binding to the facing and backing reinforcements, the facing and backing reinforcements each independently comprising one or more reinforcing sheets, the facing rein...... by matrix material, the facing and backing reinforcements being interconnected to resist out-of-plane relative movement. The reinforced composite panel is useful as a barrier element for shielding structures, equipment and personnel from blast and/or ballistic impact damage....

  5. Methodology of shell structure reinforcement layout optimization

    Science.gov (United States)

    Szafrański, Tomasz; Małachowski, Jerzy; Damaziak, Krzysztof

    2018-01-01

    This paper presents an optimization process of a reinforced shell diffuser intended for a small wind turbine (rated power of 3 kW). The diffuser structure consists of multiple reinforcement and metal skin. This kind of structure is suitable for optimization in terms of selection of reinforcement density, stringers cross sections, sheet thickness, etc. The optimisation approach assumes the reduction of the amount of work to be done between the optimization process and the final product design. The proposed optimization methodology is based on application of a genetic algorithm to generate the optimal reinforcement layout. The obtained results are the basis for modifying the existing Small Wind Turbine (SWT) design.

  6. Habituation of reinforcer effectiveness

    OpenAIRE

    David R Lloyd; David R Lloyd; Douglas J Medina; Larry W Hawk; Whitney D Fosco; Jerry B Richards

    2014-01-01

    In this paper we propose an integrative model of habituation of reinforcer effectiveness (HRE) that links behavioral and neural based explanations of reinforcement. We argue that habituation of reinforcer effectiveness (HRE) is a fundamental property of reinforcing stimuli. Most reinforcement models implicitly suggest that the effectiveness of a reinforcer is stable across repeated presentations. In contrast, an HRE approach predicts decreased effectiveness due to repeated presentation. We ar...

  7. Flexural reinforced concrete member with FRP reinforcement

    OpenAIRE

    Putzolu, Mariana

    2017-01-01

    One of the most problematic point in construction is the durability of the concrete especially related to corrosion of the steel reinforcement. Due to this problem the construction sector, introduced the use of Fiber Reinforced Polymer, the main fibers used in construction are Glass, Carbon and Aramid. In this study, the author aim to analyse the flexural behaviour of concrete beams reinforced with FRP. This aim is achieved by the analysis of specimens reinforced with GFRP bars, with theoreti...

  8. Characterization of Corrosion on Outdoor-Exposed Aluminum Metal-Matrix Composites as a Function of Reinforcement Specie and Volume Fraction

    National Research Council Canada - National Science Library

    Adler, Ralph P; Snoha, Daniel J; Hawthorn, George; Hihara, Lloyd H

    2008-01-01

    The Hawaii Corrosion Laboratory and the U.S. Army Research Laboratory collaborated to prepare, environmentally expose for up to 2 years, and evaluate multivariant sets of metal matrix composites (MMCs...

  9. Fabrication, interfacial characterization and mechanical properties of continuous Al{sub 2}O{sub 3} ceramic fiber reinforced Ti/Al{sub 3}Ti metal-intermetallic laminated (CCFR-MIL) composite

    Energy Technology Data Exchange (ETDEWEB)

    Han, Yuqiang; Lin, Chunfa; Han, Xiaoxiao; Chang, Yunpeng; Guo, Chunhuan, E-mail: guochunhuan@hrbeu.edu.cn; Jiang, Fengchun, E-mail: fengchunjiang@hrbeu.edu.cn

    2017-03-14

    Continuous Al{sub 2}O{sub 3} ceramic fiber reinforced Ti/Al{sub 3}Ti metal-intermetallic laminated (CCFR-MIL) composite was fabricated using a vacuum hot pressing (VHP) sintering method and followed by hot isostatic pressing (HIP). The microstructure characteristics of the interfaces between Ti and Al{sub 3}Ti, as well as Al{sub 2}O{sub 3} fiber and Al{sub 3}Ti intermetallic were analyzed by scanning electron microscopy (SEM). Elemental distribution in the interfacial reaction zones were quantitatively examined by energy-dispersive spectroscopy (EDS). The phases in the composite were identified by X-ray diffractometer (XRD). The mechanical properties of the CCFR-MIL composite were measured using compression and tensile tests under quasi-static strain rate. The experimental results indicated that the residual Al was found in Al{sub 3}Ti intermetallic layer of CCFR-MIL composite. The interfacial reactions occurred during HIP and the reaction products were determined to be Al{sub 2}Ti, TiSi{sub 2}, TiO{sub 2} and Al{sub 2}SiO{sub 5} phases. Compared to Ti/Al{sub 3}Ti MIL composite without fiber reinforcement, both the strength and failure strain of CCFR-MIL composite under both compressive and tensile stress states increased due to the contribution of the continuous ceramic Al{sub 2}O{sub 3} fiber.

  10. Investigation on the effect of Friction Stir Processing Parameters on Micro-structure and Micro-hardness of Rice Husk Ash reinforced Al6061 Metal Matrix Composites

    Science.gov (United States)

    Fatchurrohman, N.; Farhana, N.; Marini, C. D.

    2018-03-01

    Friction stir processing (FSP) is an alternative way to produce the surface composites of aluminium alloy in order to modify the microstructure and improve the mechanical properties. In this experiment, Al6061 aluminium alloy has been chosen to be used as the matrix base plate for the FSP. Al606 has potential for the use in advanced application but it has low wear resistance. While, the reinforced used was rice husk ash (RHA) in order to produce surface composites which increased the micro hardness of the plate composites. The Al6061 was stirred individually and with 5 weight % of RHA at three different tool rotational speeds of 800 rpm, 1000 rpm and 1200 rpm. After running the FSP, the result in the distribution of particles and the micro hardness of the specimens were identified. The result showed that Al6061 plate with the existing 5 weight % of RHA reinforced at the highest of tool rotational speeds of 1200rpm has the best distribution of particles and the highest result in average of micro hardness with 80Hv.

  11. Metal to resin′: A comparative evaluation of conventional band and loop space maintainer with the fiber reinforced composite resin space maintainer in children

    Directory of Open Access Journals (Sweden)

    A Garg

    2014-01-01

    Full Text Available Aims: To compare the clinical efficacy of two space maintainers namely, conventional band and loop and Fiber Reinforced Composite Resin (FRCR space maintainers . Subjects and Methods: Thirty healthy children, aged 5 to 8 years were selected having at least two deciduous molars in different quadrants indicated for extraction or lost previously. FRCR space maintainer was placed in one quadrant and in the other quadrant band and loop space maintainer was cemented. All the patients were recalled at 1 st , 3 rd , and 6 th months for evaluation of both types of space maintainer. Patient acceptability, time taken, and clinical efficacy was recorded. Statistical analysis used: The observations thus obtained were subjected to statistical analysis using Chi- square test and Mann-Whitney U test. Results: Patient acceptability was greater in Group I (FRCR in comparison to Group II (band and loop space maintainer. The time taken by Group I was significantly lower as compared to that of Group II. In Group I, debonding of enamel, composite was the most common complication leading to failure followed by debonding of fiber composite. In Group II, cement loss was the most common complication leading to failure followed by slippage of band and fracture of loop. The success rates of Groups I and Group II weares 63.3% and 36.7%, respectively. Conclusion: The study concluded that FRCRFiber Reinforced Composite Resin (Ribbond space maintainers can be considered as viable alternative to the conventional band and loop space maintainers.

  12. Isothermal heat treatment influence on the interface of a powder metallurgy aluminium metal matrix composite reinforced with Ni3Al intermetallics

    International Nuclear Information System (INIS)

    Ferrer, C.; Amigo, V.; Salvador, M.D.; Busquets, D.; Torralba, J.M.

    1998-01-01

    The improvement of the mechanical properties of aluminium MMCs reinforced with Ni 3 Al particles is based on the continuity of the matrix-particle interface as well as on the strength of these particles. This work deals with the influence of different heat treatments on the evolution of new phases in that interface. Samples were prepared following a powder metallurgy route with a final stage of extrusion. Several heat treatments encompassing a broad group of temperatures and times were applied producing different phases around the primary particles. Samples were analysed via optical and scanning electron microscopy with energy dispersive X ray analysis. Microhardness tests were also conducted on the different phases generated. (Author) 15 refs

  13. Proposal of a simple screening method for a rapid preliminary evaluation of ''heavy metals'' mobility in soils of contaminated sites

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Valentina; Chiusolo, Francesca; Cremisini, Carlo [ENEA - Italian Agency for New Technologies, Energy and Environment, Rome (Italy). Section PROTCHIM

    2010-09-15

    Risks associated to ''heavy metals'' (HM) soil contamination depend not only on their total content but, mostly, on their mobility. Many extraction procedures have been developed to evaluate HM mobility in contaminated soils, but they are generally time consuming (especially the sequential extraction procedures (SEPs)) and consequently applicable on a limited number of samples. For this reason, a simple screening method, applicable even ''in field'', has been proposed in order to obtain a rapid evaluation of HM mobility in polluted soils, mainly focused on the fraction associated to Fe and Mn oxide/hydroxides. A buffer solution of trisodium citrate and hydroxylamine hydrochloride was used as extractant for a single-step leaching test. The choice of this buffered solution was strictly related to the possibility of directly determining, via titration with dithizone (DZ), the content of Zn, Cu, Pb and Cd, which are among the most representative contaminants in highly mineralised soils. Moreover, the extraction solution is similar, aside from for the pH value, which is the one used in the BCR SEP second step. The analysis of bivalents ions through DZ titration was exploited in order to further simplify and quicken the whole procedure. The proposed method generically measures, in few minutes, the concentration of total extractable ''heavy metals'' expressed as molL{sup -1} without distinguishing between elements. The proposed screening method has been developed and applied on soil samples collected from rural, urban and mining areas, representing different situation of soil contamination. Results were compared with data obtained from the BCR procedure. The screening method demonstrated to be a reliable tool for a rapid evaluation of metals mobility. Therefore, it could be very useful, even ''in field'', both to guide the sampling activity on site and to monitor the efficacy of the subsequent

  14. Spatial distribution of metals in soils in Baltimore, Maryland: Role of native parent material, proximity to major roads, housing age and screening guidelines

    International Nuclear Information System (INIS)

    Yesilonis, I.D.; Pouyat, R.V.; Neerchal, N.K.

    2008-01-01

    We investigated the spatial distribution of heavy metal above-background (anthropic) contents of Cd, Co, Cu, Cr, Fe, Mn, Ni, Pb, Ti, V, and Zn in Baltimore City surface soils and related these levels to potential contaminating sources. Composite soil samples (0-10 cm depth) were digested using a nitric and hydrochloric extraction technique. Slightly more than 10% of plots exceeded United States Environmental Protection Agency screening guidelines for Pb. In a principal component analysis, the first component corresponded to Co, Cr, and Fe, which are constituents of local mafic rocks. The second component corresponded to Cu, Pb, and Zn which were significantly higher within than beyond a 100 m buffer of the major roads within the city; furthermore, Pb and Zn were higher in older residential lots. - Spatial distribution of metals in soils of an older US city (Baltimore) was affected by parent material, proximity to major roads, and housing age

  15. A new method for fabrication of thin plates and thin-walled cylinder made of fiber reinforced metal (FRM) and its application for the rotating drum of the nuclear fuel centrifugal separator

    International Nuclear Information System (INIS)

    Okamura, Tatsuya

    1978-01-01

    The composite materials using resins as the base materials show the defect that the characteristics deteriorate rapidly at elevated temperature. Therefore the FRMs using relatively ductile metals as the base materials combined with reinforcing fibers have been considered. The result of study on the combination of base materials and fibers and the manufacturing method is rarely reported in Japan. In FRMs, direct contact of fibers mutually must be avoided, especially making nodes lowers the strength extremely. The fibers must be long monofilaments of 0.1 to 0.2 mm diameter. High precision wire winding machines are required for making uniform FRMs. For the diffusion joining of preformed materials, in which fibers are put in order on metallic foils, pressure and heat are applied. The author succeeded to develop the technique for making thin-walled cylinders of FRMs, including the method of winding brittle filaments and the method of pressurizing and heating based on the difference of thermal expansion of dies. The mechanical properties of thin plates and thin-walled cylinders made of monofilaments of B, SiC and SUS and aluminum alloy foils were obtained, and rotation test of the cylinders was carried out. It was clarified that the FRMs of B-Al and SiC-Al groups are very excellent materials, and most suitable for the rotary drums of super-high speed centrifuges. (Kako, I.)

  16. Development of an in-situ synthesized multi-component reinforced Al–4.5%Cu–TiC metal matrix composite by FAS technique – Optimization of process parameters

    Directory of Open Access Journals (Sweden)

    Biswajit Das

    2016-03-01

    Full Text Available In the present investigation, an in-situ multi-component reinforced aluminium copper alloy based metal matrix composite was fabricated by the flux assisted synthesis (FAS technique. It was found from the optical microscopy analysis that TiC particles are formed in the composite. Further the present research investigates the feasibility and dry machining characteristics of Al–4.5%Cu/5TiC metal matrix composite in CNC milling machine using uncoated solid carbide end mill cutter. The effect of the machining parameters such as feed, cutting speed, depth of cut on the response parameters such as cutting force and COM is determined by using analysis of variance (ANOVA. From the analysis it was found that cutting speed and depth of cut played a major role in affecting cutting force. Multi output optimization of the process was carried out by the application of the Taguchi method with fuzzy logic, and the confirmatory test has revealed the accuracy of the developed model. For predicting the response parameters, regression equations were developed and verified with a number of test cases and it was observed that the percentage error for both responses is less than ±3%, which indicates there is a close agreement between the predicted and the measured results.

  17. FOAM CONCRETE REINFORCEMENT BY BASALT FIBRES

    Directory of Open Access Journals (Sweden)

    Zhukov Aleksey Dmitrievich

    2012-10-01

    Full Text Available The authors demonstrate that the foam concrete performance can be improved by dispersed reinforcement, including methods that involve basalt fibres. They address the results of the foam concrete modeling technology and assess the importance of technology-related parameters. Reinforcement efficiency criteria are also provided in the article. Dispersed reinforcement improves the plasticity of the concrete mix and reduces the settlement crack formation rate. Conventional reinforcement that involves metal laths and rods demonstrates its limited application in the production of concrete used for thermal insulation and structural purposes. Dispersed reinforcement is preferable. This technology contemplates the infusion of fibres into porous mixes. Metal, polymeric, basalt and glass fibres are used as reinforcing components. It has been identified that products reinforced by polypropylene fibres demonstrate substantial abradability and deformability rates even under the influence of minor tensile stresses due to the low adhesion strength of polypropylene in the cement matrix. The objective of the research was to develop the type of polypropylene of D500 grade that would demonstrate the operating properties similar to those of Hebel and Ytong polypropylenes. Dispersed reinforcement was performed by the basalt fibre. This project contemplates an autoclave-free technology to optimize the consumption of electricity. Dispersed reinforcement is aimed at the reduction of the block settlement in the course of hardening at early stages of their operation, the improvement of their strength and other operating properties. Reduction in the humidity rate of the mix is based on the plasticizing properties of fibres, as well as the application of the dry mineralization method. Selection of optimal parameters of the process-related technology was performed with the help of G-BAT-2011 Software, developed at Moscow State University of Civil Engineering. The authors also

  18. Rapid screening of aquatic toxicity of several metal-based nanoparticles using the MetPLATE Trade-Mark-Sign bioassay

    Energy Technology Data Exchange (ETDEWEB)

    Pokhrel, Lok R.; Silva, Thilini [Department of Environmental Health, College of Public Health, East Tennessee State University, Johnson City, TN 37614 (United States); Dubey, Brajesh, E-mail: bdubey@uoguelph.ca [Environmental Engineering, School of Engineering, University of Guelph, 50 Stone Road East, Guelph, Ontario (Canada); El Badawy, Amro M. [Department of Civil and Environmental Engineering, University of Cincinnati, Cincinnati, OH (United States); Tolaymat, Thabet M. [USEPA, Office of Research and Development, National Risk Management Laboratory, 26 West Martin Luther King Drive, Cincinnati, OH 45224 (United States); Scheuerman, Phillip R. [Department of Environmental Health, College of Public Health, East Tennessee State University, Johnson City, TN 37614 (United States)

    2012-06-01

    Current understanding of potential toxicity of engineered nanomaterials to aquatic microorganisms is limited for risk assessment and management. Here we evaluate if the MetPLATE Trade-Mark-Sign test can be used as an effective and rapid screening tool to test for potential aquatic toxicity of various metal-based nanoparticles (NPs). The MetPLATE bioassay is a heavy metal sensitive test based on {beta}-galactosidase activity in Escherichia coli. Five different types of metal-based NPs were screened for toxicity: (1) citrate coated nAg (Citrate-nanosilver), (2) polyvinylpyrrolidone coated nAg (PVP-nAg), (3) uncoated nZnO, (4) uncoated nTiO{sub 2} and (5) 1-Octadecylamine coated CdSe Quantum Dots (CdSe QDs); and compared with their corresponding ionic salt toxicity. Citrate-nAg was further fractionated into clean Citrate-nAg, unclean Citrate-nAg and permeate using a tangential flow filtration (TFF) system to eliminate residual ions and impurities from the stock Citrate-nAg suspension and also to differentiate between ionic- versus nano-specific toxicity. Our results showed that nAg, nZnO and CdSe QDs were less toxic than their corresponding ionic salts tested, while nano- or ionic form of TiO{sub 2} was not toxic as high as 2.5 g L{sup -1} to the MetPLATE Trade-Mark-Sign bacteria. Although coating-dependent toxicity was noticeable between two types of Ag NPs evaluated, particle size and surface charge were not adequate to explain the observed toxicity; hence, the toxicity appeared to be material-specific. Overall, the toxicity followed the trend: CdCl{sub 2} > AgNO{sub 3} > PVP-nAg > unclean Citrate-nAg > clean Citrate-nAg > ZnSO{sub 4} > nZnO > CdSe QDs > nTiO{sub 2}/TiO{sub 2}. These results indicate that an evaluation of {beta}-galactosidase inhibition in MetPLATE Trade-Mark-Sign E. coli can be an important consideration for rapid screening of metal-based NP toxicity, and should facilitate ecological risk assessment of these emerging contaminants. - Highlights

  19. Wear resistance of poly(2-methacryloyloxyethyl phosphorylcholine)-grafted carbon fiber reinforced poly(ether ether ketone) liners against metal and ceramic femoral heads.

    Science.gov (United States)

    Yamane, Shihori; Kyomoto, Masayuki; Moro, Toru; Hashimoto, Masami; Takatori, Yoshio; Tanaka, Sakae; Ishihara, Kazuhiko

    2018-04-01

    Younger, active patients who undergo total hip arthroplasty (THA) have increasing needs for wider range of motion and improved stability of the joint. Therefore, bearing materials having not only higher wear resistance but also mechanical strength are required. Carbon fiber-reinforced poly(ether ether ketone) (CFR-PEEK) is known as a super engineering plastic that has great mechanical strength. In this study, we focused on poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC)-grafted CFR-PEEK and investigated the effects of PMPC grafting and the femoral heads materials on the wear properties of CFR-PEEK liners. Compared with untreated CFR-PEEK, the PMPC-grafted CFR-PEEK surface revealed higher wettability and lower friction properties under aqueous circumstances. In the hip simulator wear test, wear particles generated from the PMPC-grafted CFR-PEEK liners were fewer than those of the untreated CFR-PEEK liners. There were no significant differences in the size and the morphology of the wear particles between the differences of PMPC-grafting and the counter femoral heads. Zirconia-toughened alumina (ZTA) femoral heads had significantly smoother surfaces compared to cobalt-chromium-molybdenum alloy femoral heads after the hip simulator test. Thus, we conclude that the bearing combination of the PMPC-grafted CFR-PEEK liner and ZTA head is expected to be a lifelong bearing interface in THA. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1028-1037, 2018. © 2017 Wiley Periodicals, Inc.

  20. Management of Reinforcement Corrosion

    DEFF Research Database (Denmark)

    Küter, André; Geiker, Mette Rica; Møller, Per

    Reinforcement corrosion is the most important cause for deterioration of reinforced concrete structures, both with regard to costs and consequences. Thermodynamically consistent descriptions of corrosion mechanisms are expected to allow the development of innovative concepts for the management...... of reinforcement corrosion....

  1. Adapting without reinforcement.

    Science.gov (United States)

    Kheifets, Aaron; Gallistel, C Randy

    2012-11-01

    Our data rule out a broad class of behavioral models in which behavioral change is guided by differential reinforcement. To demonstrate this, we showed that the number of reinforcers missed before the subject shifted its behavior was not sufficient to drive behavioral change. What's more, many subjects shifted their behavior to a more optimal strategy even when they had not yet missed a single reinforcer. Naturally, differential reinforcement cannot be said to drive a process that shifts to accommodate to new conditions so adeptly that it doesn't miss a single reinforcer: it would have no input on which to base this shift.

  2. Screening metal-organic frameworks by analysis of transient breakthrough of gas mixtures in a fixed bed adsorber

    NARCIS (Netherlands)

    Krishna, R.; Long, J.R.

    2011-01-01

    Metal-organic frameworks (MOFs) offer considerable potential for separating a variety of mixtures that are important in applications such as CO2 capture and H2 purification. In view of the vast number of MOFs that have been synthesized, there is a need for a reliable procedure for comparing

  3. In vitro cardiotoxicity screening of silver and metal oxide nanoparticles using human induced pluripotent stem cell-derived cardiomyocytes

    Science.gov (United States)

    Exposure risk to silver and metal oxide nanoparticles (NPs) continues to increase due to their widespread use in products and applications. In vivo studies have shown Ag, TiO2 and CeO2 NPs translocate to the heart following various routes of exposure. Thus, it is critical to asse...

  4. Soil-plant transfer models for metals to improve soil screening value guidelines valid for São Paulo, Brazil.

    NARCIS (Netherlands)

    Dos Santos-Araujo, Sabrina N; Swartjes, Frank A; Versluijs, Kees W; Moreno, Fabio Netto; Alleoni, Luís R F

    2017-01-01

    In Brazil, there is a lack of combined soil-plant data attempting to explain the influence of specific climate, soil conditions, and crop management on heavy metal uptake and accumulation by plants. As a consequence, soil-plant relationships to be used in risk assessments or for derivation of soil

  5. Genomic Signatures of Reinforcement

    Directory of Open Access Journals (Sweden)

    Austin G. Garner

    2018-04-01

    Full Text Available Reinforcement is the process by which selection against hybridization increases reproductive isolation between taxa. Much research has focused on demonstrating the existence of reinforcement, yet relatively little is known about the genetic basis of reinforcement or the evolutionary conditions under which reinforcement can occur. Inspired by reinforcement’s characteristic phenotypic pattern of reproductive trait divergence in sympatry but not in allopatry, we discuss whether reinforcement also leaves a distinct genomic pattern. First, we describe three patterns of genetic variation we expect as a consequence of reinforcement. Then, we discuss a set of alternative processes and complicating factors that may make the identification of reinforcement at the genomic level difficult. Finally, we consider how genomic analyses can be leveraged to inform if and to what extent reinforcement evolved in the face of gene flow between sympatric lineages and between allopatric and sympatric populations of the same lineage. Our major goals are to understand if genome scans for particular patterns of genetic variation could identify reinforcement, isolate the genetic basis of reinforcement, or infer the conditions under which reinforcement evolved.

  6. Genomic Signatures of Reinforcement

    Science.gov (United States)

    Goulet, Benjamin E.

    2018-01-01

    Reinforcement is the process by which selection against hybridization increases reproductive isolation between taxa. Much research has focused on demonstrating the existence of reinforcement, yet relatively little is known about the genetic basis of reinforcement or the evolutionary conditions under which reinforcement can occur. Inspired by reinforcement’s characteristic phenotypic pattern of reproductive trait divergence in sympatry but not in allopatry, we discuss whether reinforcement also leaves a distinct genomic pattern. First, we describe three patterns of genetic variation we expect as a consequence of reinforcement. Then, we discuss a set of alternative processes and complicating factors that may make the identification of reinforcement at the genomic level difficult. Finally, we consider how genomic analyses can be leveraged to inform if and to what extent reinforcement evolved in the face of gene flow between sympatric lineages and between allopatric and sympatric populations of the same lineage. Our major goals are to understand if genome scans for particular patterns of genetic variation could identify reinforcement, isolate the genetic basis of reinforcement, or infer the conditions under which reinforcement evolved. PMID:29614048

  7. Habituation of reinforcer effectiveness

    Directory of Open Access Journals (Sweden)

    David R Lloyd

    2014-01-01

    Full Text Available In this paper we propose an integrative model of habituation of reinforcer effectiveness (HRE that links behavioral and neural based explanations of reinforcement. We argue that habituation of reinforcer effectiveness (HRE is a fundamental property of reinforcing stimuli. Most reinforcement models implicitly suggest that the effectiveness of a reinforcer is stable across repeated presentations. In contrast, an HRE approach predicts decreased effectiveness due to repeated presentation. We argue that repeated presentation of reinforcing stimuli decreases their effectiveness and that these decreases are described by the behavioral characteristics of habituation (McSweeney and Murphy, 2009;Rankin et al., 2009. We describe a neural model that postulates a positive association between dopamine neurotransmission and HRE. We present evidence that stimulant drugs, which artificially increase dopamine neurotransmission, disrupt (slow normally occurring HRE and also provide evidence that stimulant drugs have differential effects on operant responding maintained by reinforcers with rapid vs. slow HRE rates. We hypothesize that abnormal HRE due to genetic and/or environmental factors may underlie some behavioral disorders. For example, recent research indicates that slow-HRE is predictive of obesity. In contrast ADHD may reflect ‘accelerated-HRE’. Consideration of HRE is important for the development of effective reinforcement based treatments. Finally, we point out that most of the reinforcing stimuli that regulate daily behavior are non-consumable environmental/social reinforcers which have rapid-HRE. The almost exclusive use of consumable reinforcers with slow-HRE in pre-clinical studies with animals may have caused the importance of HRE to be overlooked. Further study of reinforcing stimuli with rapid-HRE is needed in order to understand how habituation and reinforcement interact and regulate behavior.

  8. Synthesis of carbon fibre-reinforced, silicon carbide composites by ...

    Indian Academy of Sciences (India)

    carbon fibre (Cf) reinforced, silicon carbide matrix composites which are ... eral applications, such as automotive brakes, high-efficiency engine systems, ... The PIP method is based on the use of organo metallic pre-ceramic precursors.

  9. [Reinforcement for overdentures on abutment teeth].

    Science.gov (United States)

    Osada, Tomoko

    2006-04-01

    This study investigated the effect of the position of reinforcement wires, differences in artificial teeth, and framework designs on the breaking strength of overdentures. The basal surfaces of composite resin teeth and acrylic resin teeth were removed using a carbide bur. A reinforcement wire or a wrought palatal bar was embedded near the occlusal surface or basal surface. Four types of framework structures were designed : conventional skeleton (skeleton), housing with skeleton (housing), housing plus short metal backing (metal backing), and housing plus long metal backing (double structure). After the wires, bars, and frameworks were sand-blasted with 50 microm Al(2)O(3) powder, they were primed with a metal primer and embedded in a heat-polymerized denture base resin. The breaking strengths (N) and maximum stiffness (N/mm) of two-week aged (37 degrees C) specimens were measured using a bending test (n=8). All data obtained at a crosshead speed of 2.0 mm/min were analyzed by ANOVA/Tukey's test (alpha=0.01). There were no statistical differences between the two kinds of artificial teeth (p>0.01). The wrought palatal bar had significantly higher strength than the reinforcement wire (p0.01). The breaking strength and maximum stiffness of the double structure framework were significantly greater (poverdentures were influenced by the size and position of the reinforcement wires. Double structure frameworks are recommended for overdentures to promote a long-term prognosis without denture breakage.

  10. Adhesion analysis between metal supplies and composites materials reinforce with glass fiber; Analise de adesao antre materiais metalicos e materiais compositos reforcados com fibra e vidro

    Energy Technology Data Exchange (ETDEWEB)

    Oushiro, Karol B.; Costa, Anahi P. da; Botelho, Edson C. [UNESP, Guaratingueta, SP (Brazil). Faculdade de Engenharia. Dept. de Materiais e Tecnologia], e-mail: kaoushiro@hotmail.com; Costa, Michelle L. [UNESP, Guaratingueta, SP (Brazil). Faculdade de Engenharia. Dept. de Materiais e Tecnologia; Instituto de Aeronautica e Espaco (AMR/IAE/DCTA), Sao Jose dos Campos, SP (Brazil). Div. de Materiais

    2011-07-01

    The appearance of defects, mainly thinning caused by corrosion, is unavoidable in pipeline transport of fluids. Many repair techniques have been developed, among them, has been highlighting the pipeline repair with composite that is to involve the passage of the corroded pipeline with composite material. The study of these techniques is of great interest for the branch industry, since the efficiency of repair will depend on good adhesion between the repair composite and steel pipe. In this work, the bond strength between fiber glass/epoxy composite bonded to a steel tubing used in petrochemical plants was evaluated by mechanical testing of lap shear (ASTM D1002). These samples were conditioned using 2000 thermal shock cycles, and the mechanical results of the conditioned and non-conditioned samples were compared. With this, we observed that the polymer composites can be successfully used for repair of metallic pipes with petrochemical application, because when exposed to sudden temperature changes their mechanical properties (shear) remained practically unchanged. (author)

  11. Time-dependent screening of a positive charge distribution in metals: Excitons on an ultra-short time scale

    OpenAIRE

    Schöne, Wolf-Dieter; Ekardt, Walter

    2000-01-01

    Experiments determining the lifetime of excited electrons in crystalline copper reveal states which cannot be interpreted as Bloch states [S. Ogawa {\\it et al.}, Phys. Rev. B {\\bf 55}, 10869 (1997)]. In this article we propose a model which explains these states as transient excitonic states in metals. The physical background of transient excitons is the finite time a system needs to react to an external perturbation, in other words, the time which is needed to build up a polarization cloud. ...

  12. Screening metal-organic frameworks for selective noble gas adsorption in air: effect of pore size and framework topology.

    Science.gov (United States)

    Parkes, Marie V; Staiger, Chad L; Perry, John J; Allendorf, Mark D; Greathouse, Jeffery A

    2013-06-21

    The adsorption of noble gases and nitrogen by sixteen metal-organic frameworks (MOFs) was investigated using grand canonical Monte Carlo simulation. The MOFs were chosen to represent a variety of net topologies, pore dimensions, and metal centers. Three commercially available MOFs (HKUST-1, AlMIL-53, and ZIF-8) and PCN-14 were also included for comparison. Experimental adsorption isotherms, obtained from volumetric and gravimetric methods, were used to compare krypton, argon, and nitrogen uptake with the simulation results. Simulated trends in gas adsorption and predicted selectivities among the commercially available MOFs are in good agreement with experiment. In the low pressure regime, the expected trend of increasing adsorption with increasing noble gas polarizabilty is seen. For each noble gas, low pressure adsorption correlates with several MOF properties, including free volume, topology, and metal center. Additionally, a strong correlation exists between the Henry's constant and the isosteric heat of adsorption for all gases and MOFs considered. Finally, we note that the simulated and experimental gas selectivities demonstrated by this small set of MOFs show improved performance compared to similar values reported for zeolites.

  13. Development of aquatic plant bioassays for rapid screening and interpretive risk assessments of metal mining liquid waste waters

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, H G [Saskatchewan Research Council, Saskatoon, SK (Canada); Nyholm, N [Technical Univ. of Denmark, Lyngby (Denmark). Lab. of Environmental Science and Ecology; Huang, P M [Saskatchewan Univ., Saskatoon (Canada). Saskatchewan Inst. of Pedology

    1996-12-31

    The use of non-photosynthetic organisms alone to describe environmental impact has been recognized by regulatory agencies, industry and academia as being totally inadequate both in Europe and North America. Lack of adequate testing methods for photosynthetic aquatic organisms has been recognized as a major impediment to the successful regulation and safe use of pesticides and waste water discharges and is of even more concern to the metal mining industry due to the non-biodegradable nature of its waste streams. This work shows that the chemical effluent limits set in the `Metal mining liquid effluent regulations and guidelines` provide variable protection of aquatic photosynthetic organisms and aquatic effects of the more toxic metals (e.g., copper, nickel, and zinc) may occur at levels that are one to two orders of magnitude lower than present limits. To establish adequate protection of receiving water bodies it may be necessary to establish site-specific criteria taking into consideration toxicity modifying factors of individual sites. If the establishment of such criteria is determined with a host of ecologically relevant organisms, it will be possible to design effective environmental protection at the least possible cost. (author). 17 refs., 2 tabs.

  14. Development of aquatic plant bioassays for rapid screening and interpretive risk assessments of metal mining liquid waste waters

    International Nuclear Information System (INIS)

    Peterson, H.G.; Nyholm, N.; Huang, P.M.

    1995-01-01

    The use of non-photosynthetic organisms alone to describe environmental impact has been recognized by regulatory agencies, industry and academia as being totally inadequate both in Europe and North America. Lack of adequate testing methods for photosynthetic aquatic organisms has been recognized as a major impediment to the successful regulation and safe use of pesticides and waste water discharges and is of even more concern to the metal mining industry due to the non-biodegradable nature of its waste streams. This work shows that the chemical effluent limits set in the 'Metal mining liquid effluent regulations and guidelines' provide variable protection of aquatic photosynthetic organisms and aquatic effects of the more toxic metals (e.g., copper, nickel, and zinc) may occur at levels that are one to two orders of magnitude lower than present limits. To establish adequate protection of receiving water bodies it may be necessary to establish site-specific criteria taking into consideration toxicity modifying factors of individual sites. If the establishment of such criteria is determined with a host of ecologically relevant organisms, it will be possible to design effective environmental protection at the least possible cost. (author). 17 refs., 2 tabs

  15. Habituation of reinforcer effectiveness.

    Science.gov (United States)

    Lloyd, David R; Medina, Douglas J; Hawk, Larry W; Fosco, Whitney D; Richards, Jerry B

    2014-01-09

    In this paper we propose an integrative model of habituation of reinforcer effectiveness (HRE) that links behavioral- and neural-based explanations of reinforcement. We argue that HRE is a fundamental property of reinforcing stimuli. Most reinforcement models implicitly suggest that the effectiveness of a reinforcer is stable across repeated presentations. In contrast, an HRE approach predicts decreased effectiveness due to repeated presentation. We argue that repeated presentation of reinforcing stimuli decreases their effectiveness and that these decreases are described by the behavioral characteristics of habituation (McSweeney and Murphy, 2009; Rankin etal., 2009). We describe a neural model that postulates a positive association between dopamine neurotransmission and HRE. We present evidence that stimulant drugs, which artificially increase dopamine neurotransmission, disrupt (slow) normally occurring HRE and also provide evidence that stimulant drugs have differential effects on operant responding maintained by reinforcers with rapid vs. slow HRE rates. We hypothesize that abnormal HRE due to genetic and/or environmental factors may underlie some behavioral disorders. For example, recent research indicates that slow-HRE is predictive of obesity. In contrast ADHD may reflect "accelerated-HRE." Consideration of HRE is important for the development of effective reinforcement-based treatments. Finally, we point out that most of the reinforcing stimuli that regulate daily behavior are non-consumable environmental/social reinforcers which have rapid-HRE. The almost exclusive use of consumable reinforcers with slow-HRE in pre-clinical studies with animals may have caused the importance of HRE to be overlooked. Further study of reinforcing stimuli with rapid-HRE is needed in order to understand how habituation and reinforcement interact and regulate behavior.

  16. Determination of trace heavy metals in herbs by sequential injection analysis-anodic stripping voltammetry using screen-printed carbon nanotubes electrodes

    International Nuclear Information System (INIS)

    Injang, Uthaitip; Noyrod, Peeyanun; Siangproh, Weena; Dungchai, Wijitar; Motomizu, Shoji; Chailapakul, Orawon

    2010-01-01

    A method for the simultaneous determination of Pb(II), Cd(II), and Zn(II) at low μg L -1 concentration levels by sequential injection analysis-anodic stripping voltammetry (SIA-ASV) using screen-printed carbon nanotubes electrodes (SPCNTE) was developed. A bismuth film was prepared by in situ plating of bismuth on the screen-printed carbon nanotubes electrode. Operational parameters such as ratio of carbon nanotubes to carbon ink, bismuth concentration, deposition time and flow rate during preconcentration step were optimized. Under the optimal conditions, the linear ranges were found to be 2-100 μg L -1 for Pb(II) and Cd(II), and 12-100 μg L -1 for Zn(II). The limits of detection (S bl /S = 3) were 0.2 μg L -1 for Pb(II), 0.8 μg L -1 for Cd(II) and 11 μg L -1 for Zn(II). The measurement frequency was found to be 10-15 stripping cycle h -1 . The present method offers high sensitivity and high throughput for on-line monitoring of trace heavy metals. The practical utility of our method was also demonstrated with the determination of Pb(II), Cd(II), and Zn(II) by spiking procedure in herb samples. Our methodology produced results that were correlated with ICP-AES data. Therefore, we propose a method that can be used for the automatic and sensitive evaluation of heavy metals contaminated in herb items.

  17. Investigating aluminum alloy reinforced by graphene nanoflakes

    Energy Technology Data Exchange (ETDEWEB)

    Yan, S.J., E-mail: shaojiuyan@126.com [Beijing Institute of Aeronautical Materials, Beijing 100095 (China); Dai, S.L.; Zhang, X.Y.; Yang, C.; Hong, Q.H.; Chen, J.Z. [Beijing Institute of Aeronautical Materials, Beijing 100095 (China); Lin, Z.M. [Aviation Industry Corporation of China, Beijing 100022 (China)

    2014-08-26

    As one of the most important engineering materials, aluminum alloys have been widely applied in many fields. However, the requirement of enhancing their mechanical properties without sacrificing the ductility is always a challenge in the development of aluminum alloys. Thanks to the excellent physical and mechanical properties, graphene nanoflakes (GNFs) have been applied as promising reinforcing elements in various engineering materials, including polymers and ceramics. However, the investigation of GNFs as reinforcement phase in metals or alloys, especially in aluminum alloys, is still very limited. In this study, the aluminum alloy reinforced by GNFs was successfully prepared via powder metallurgy approach. The GNFs were mixed with aluminum alloy powders through ball milling and followed by hot isostatic pressing. The green body was then hot extruded to obtain the final GNFs reinforced aluminum alloy nanocomposite. The scanning electron microscopy and transmission electron microscope analysis show that GNFs were well dispersed in the aluminum alloy matrix and no chemical reactions were observed at the interfaces between the GNFs and aluminum alloy matrix. The mechanical properties' testing results show that with increasing filling content of GNFs, both tensile and yield strengths were remarkably increased without losing the ductility performance. These results not only provided a pathway to achieve the goal of preparing high strength aluminum alloys with excellent ductilitybut they also shed light on the development of other metal alloys reinforced by GNFs.

  18. Quantitative radiographic analysis of fiber reinforced polymer composites.

    Science.gov (United States)

    Baidya, K P; Ramakrishna, S; Rahman, M; Ritchie, A

    2001-01-01

    X-ray radiographic examination of the bone fracture healing process is a widely used method in the treatment and management of patients. Medical devices made of metallic alloys reportedly produce considerable artifacts that make the interpretation of radiographs difficult. Fiber reinforced polymer composite materials have been proposed to replace metallic alloys in certain medical devices because of their radiolucency, light weight, and tailorable mechanical properties. The primary objective of this paper is to provide a comparable radiographic analysis of different fiber reinforced polymer composites that are considered suitable for biomedical applications. Composite materials investigated consist of glass, aramid (Kevlar-29), and carbon reinforcement fibers, and epoxy and polyether-ether-ketone (PEEK) matrices. The total mass attenuation coefficient of each material was measured using clinical X-rays (50 kev). The carbon fiber reinforced composites were found to be more radiolucent than the glass and kevlar fiber reinforced composites.

  19. Epoxy Chip-in-Carrier Integration and Screen-Printed Metalization for Multichannel Microfluidic Lab-on-CMOS Microsystems.

    Science.gov (United States)

    Li, Lin; Yin, Heyu; Mason, Andrew J

    2018-04-01

    The integration of biosensors, microfluidics, and CMOS instrumentation provides a compact lab-on-CMOS microsystem well suited for high throughput measurement. This paper describes a new epoxy chip-in-carrier integration process and two planar metalization techniques for lab-on-CMOS that enable on-CMOS electrochemical measurement with multichannel microfluidics. Several design approaches with different fabrication steps and materials were experimentally analyzed to identify an ideal process that can achieve desired capability with high yield and low material and tool cost. On-chip electrochemical measurements of the integrated assembly were performed to verify the functionality of the chip-in-carrier packaging and its capability for microfluidic integration. The newly developed CMOS-compatible epoxy chip-in-carrier process paves the way for full implementation of many lab-on-CMOS applications with CMOS ICs as core electronic instruments.

  20. Towards Using NMR to Screen for Spoiled Tomatoes Stored in 1,000 L, Aseptically Sealed, Metal-Lined Totes

    Directory of Open Access Journals (Sweden)

    Michael D. Pinter

    2014-03-01

    Full Text Available Nuclear magnetic resonance (NMR spectroscopy is used to track factory relevant tomato paste spoilage. It was found that spoilage in tomato paste test samples leads to longer spin lattice relaxation times T1 using a conventional low magnetic field NMR system. The increase in T1 value for contaminated samples over a five day room temperature exposure period prompted the work to be extended to the study of industry standard, 1,000 L, non-ferrous, metal-lined totes. NMR signals and T1 values were recovered from a large format container with a single-sided NMR sensor. The results of this work suggest that a handheld NMR device can be used to study tomato paste spoilage in factory process environments.

  1. Continuous Reinforced Concrete Beams

    DEFF Research Database (Denmark)

    Hoang, Cao Linh; Nielsen, Mogens Peter

    1996-01-01

    This report deals with stress and stiffness estimates of continuous reinforced concrete beams with different stiffnesses for negative and positive moments e.g. corresponding to different reinforcement areas in top and bottom. Such conditions are often met in practice.The moment distribution...

  2. a comparison of bond perform with reinforcements from son of bond ...

    African Journals Online (AJOL)

    User

    steel that are manufactured from metal scraps (re- ... metal scraps from re-cycle obsolete vehicle and machine ..... (PAC) Reinforced With Glass-Fibre-Reinforced. Polymer ... 99 – 113. [8] Abrishami H. H. and Mitchell D. (1992) “Simulation of.

  3. (nanoclay and CaSiO3)-reinforced E-glass-reinforced epoxy

    Indian Academy of Sciences (India)

    For instance, Zhang et al. [6] have prepared 30 types of epoxy matrix reinforced with ... the resin in a high-speed metal blade rotation medium. The .... Tests were run for .... Figure 2. Mean effect plots showing the influence of load, nanoclay content and speed on ..... [8] Wang K, Chen L, Wu J, Toh M L, He C and Yee A F 2005.

  4. XPS and NRA investigations during the fabrication of gold nanostructured functionalized screen-printed sensors for the detection of metallic pollutants

    Science.gov (United States)

    Jasmin, Jean-Philippe; Miserque, Frédéric; Dumas, Eddy; Vickridge, Ian; Ganem, Jean-Jacques; Cannizzo, Caroline; Chaussé, Annie

    2017-03-01

    An all covalent nanostructured lead sensor was built by the successive grafting of gold nanoparticles and carboxylic ligands at the surface of self-adhesive carbon screen-printed electrodes (SPEs). Surface analysis techniques were used in each step in order to investigate the structuration of this sensor. The self-adhesive surfaces were made from the electrochemical grafting of p-phenylenediamine at the surface of the SPEs via diazonium salts chemistry. The quantity of grafted aniline functions, estimated by Nuclear Reaction Analysis (NRA) performed with p-phenylenediamine labelled with 15N isotope, is in agreement with an almost complete coverage of the electrode surface. The subsequent diazotization of the aniline functions at the surface of the SPEs was performed; X-ray Photoelectron Spectroscopy (XPS) allowed us to consider a quantitative conversion of the aniline functions into diazonium moieties. The spontaneous grafting of gold nanoparticles on the as-obtained reactive surfaces ensures the nanostructuration of the material, and XPS studies showed that the covalent bonding of the gold nanoparticles at the surface of the SPEs induces a change both in the Au-4f (gold nanoparticles) and Cl-2p (carbon ink) core level signals. These unusual observations are explained by an interaction between the carbon ink constituting the substrate and the gold nanoparticles. Heavy and toxic metals are considered of major environmental concern because of their non-biodegradability. In a final step, the grafting of the carboxylic ligands at the surface of the SPEs and an accumulation step in the presence of lead(II) cations allowed us to evidence the interest of nanostructured materials as metallic pollutants sensors.

  5. Algorithms for Reinforcement Learning

    CERN Document Server

    Szepesvari, Csaba

    2010-01-01

    Reinforcement learning is a learning paradigm concerned with learning to control a system so as to maximize a numerical performance measure that expresses a long-term objective. What distinguishes reinforcement learning from supervised learning is that only partial feedback is given to the learner about the learner's predictions. Further, the predictions may have long term effects through influencing the future state of the controlled system. Thus, time plays a special role. The goal in reinforcement learning is to develop efficient learning algorithms, as well as to understand the algorithms'

  6. XPS and NRA investigations during the fabrication of gold nanostructured functionalized screen-printed sensors for the detection of metallic pollutants

    International Nuclear Information System (INIS)

    Jasmin, Jean-Philippe; Miserque, Frédéric; Dumas, Eddy; Vickridge, Ian; Ganem, Jean-Jacques; Cannizzo, Caroline; Chaussé, Annie

    2017-01-01

    Highlights: • Functionalized nanostructured SPEs were made by multi-step diazonium salt chemistry. • Investigation of SPEs surface by XPS and NRA shows monolayer coverage by aminobenzyl groups. • Complete conversion of aminobenzyl groups into diazonium functions was also evidenced. • Covalent grafting of AuNPs onto SPEs lead to an unusual modification of Au-4f core level spectrum. • Ligand and lead signals showed the interest of nanostructurated SPEs for trace metals detection. - Abstract: An all covalent nanostructured lead sensor was built by the successive grafting of gold nanoparticles and carboxylic ligands at the surface of self-adhesive carbon screen-printed electrodes (SPEs). Surface analysis techniques were used in each step in order to investigate the structuration of this sensor. The self-adhesive surfaces were made from the electrochemical grafting of p-phenylenediamine at the surface of the SPEs via diazonium salts chemistry. The quantity of grafted aniline functions, estimated by Nuclear Reaction Analysis (NRA) performed with p-phenylenediamine labelled with "1"5N isotope, is in agreement with an almost complete coverage of the electrode surface. The subsequent diazotization of the aniline functions at the surface of the SPEs was performed; X-ray Photoelectron Spectroscopy (XPS) allowed us to consider a quantitative conversion of the aniline functions into diazonium moieties. The spontaneous grafting of gold nanoparticles on the as-obtained reactive surfaces ensures the nanostructuration of the material, and XPS studies showed that the covalent bonding of the gold nanoparticles at the surface of the SPEs induces a change both in the Au-4f (gold nanoparticles) and Cl-2p (carbon ink) core level signals. These unusual observations are explained by an interaction between the carbon ink constituting the substrate and the gold nanoparticles. Heavy and toxic metals are considered of major environmental concern because of their non

  7. XPS and NRA investigations during the fabrication of gold nanostructured functionalized screen-printed sensors for the detection of metallic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Jasmin, Jean-Philippe [Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, UMR 8587, CNRS-Université Evry Val d’Essonne-CEA, 1 rue du père Jarlan, 91025 Evry Cedex (France); Miserque, Frédéric [Den-Service de la Corrosion et du Comportement des Matériaux dans leur Environnement (SCCME), CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Dumas, Eddy [Institut Lavoisier de Versailles, UMR 8180, CNRS-Université de Versailles Saint-Quentin-en-Yvelines, 78035 Versailles (France); Vickridge, Ian; Ganem, Jean-Jacques [INSP, UMR 7588, CNRS- Université Pierre et Marie Curie, 4 place Jussieu, boîte courrier 840 75252 Paris, Cedex 05 (France); Cannizzo, Caroline, E-mail: caroline.cannizzo@univ-evry.fr [Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, UMR 8587, CNRS-Université Evry Val d’Essonne-CEA, 1 rue du père Jarlan, 91025 Evry Cedex (France); Chaussé, Annie [Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, UMR 8587, CNRS-Université Evry Val d’Essonne-CEA, 1 rue du père Jarlan, 91025 Evry Cedex (France)

    2017-03-01

    Highlights: • Functionalized nanostructured SPEs were made by multi-step diazonium salt chemistry. • Investigation of SPEs surface by XPS and NRA shows monolayer coverage by aminobenzyl groups. • Complete conversion of aminobenzyl groups into diazonium functions was also evidenced. • Covalent grafting of AuNPs onto SPEs lead to an unusual modification of Au-4f core level spectrum. • Ligand and lead signals showed the interest of nanostructurated SPEs for trace metals detection. - Abstract: An all covalent nanostructured lead sensor was built by the successive grafting of gold nanoparticles and carboxylic ligands at the surface of self-adhesive carbon screen-printed electrodes (SPEs). Surface analysis techniques were used in each step in order to investigate the structuration of this sensor. The self-adhesive surfaces were made from the electrochemical grafting of p-phenylenediamine at the surface of the SPEs via diazonium salts chemistry. The quantity of grafted aniline functions, estimated by Nuclear Reaction Analysis (NRA) performed with p-phenylenediamine labelled with {sup 15}N isotope, is in agreement with an almost complete coverage of the electrode surface. The subsequent diazotization of the aniline functions at the surface of the SPEs was performed; X-ray Photoelectron Spectroscopy (XPS) allowed us to consider a quantitative conversion of the aniline functions into diazonium moieties. The spontaneous grafting of gold nanoparticles on the as-obtained reactive surfaces ensures the nanostructuration of the material, and XPS studies showed that the covalent bonding of the gold nanoparticles at the surface of the SPEs induces a change both in the Au-4f (gold nanoparticles) and Cl-2p (carbon ink) core level signals. These unusual observations are explained by an interaction between the carbon ink constituting the substrate and the gold nanoparticles. Heavy and toxic metals are considered of major environmental concern because of their non

  8. Depression Screening

    Science.gov (United States)

    ... Depression Screening Substance Abuse Screening Alcohol Use Screening Depression Screening (PHQ-9) - Instructions The following questions are ... this tool, there is also text-only version . Depression Screening - Manual Instructions The following questions are a ...

  9. Stretched-to-compressed-exponential crossover observed in the electrical degradation kinetics of some spinel-metallic screen-printed structures

    Science.gov (United States)

    Balitska, V.; Shpotyuk, O.; Brunner, M.; Hadzaman, I.

    2018-02-01

    Thermally-induced (170 °C) degradation-relaxation kinetics is examined in screen-printed structures composed of spinel Cu0.1Ni0.1Co1.6Mn1.2O4 ceramics with conductive Ag or Ag-Pd layered electrodes. Structural inhomogeneities due to Ag and Ag-Pd diffusants in spinel phase environment play a decisive role in non-exponential kinetics of negative relative resistance drift. If Ag migration in spinel is inhibited by Pd addition due to Ag-Pd alloy, the kinetics attains stretched exponential behavior with ∼0.58 exponent, typical for one-stage diffusion in structurally-dispersive media. Under deep Ag penetration into spinel ceramics, as for thick films with Ag-layered electrodes, the degradation kinetics drastically changes, attaining features of two-step diffusing process governed by compressed-exponential dependence with power index of ∼1.68. Crossover from stretched- to compressed-exponential kinetics in spinel-metallic structures is mapped on free energy landscape of non-barrier multi-well system under strong perturbation from equilibrium, showing transition with a character downhill scenario resulting in faster than exponential decaying.

  10. Cost-effective flow injection amperometric system with metal nanoparticle loaded carbon nanotube modified screen printed carbon electrode for sensitive determination of hydrogen peroxide.

    Science.gov (United States)

    Reanpang, Preeyaporn; Themsirimongkon, Suwaphid; Saipanya, Surin; Chailapakul, Orawon; Jakmunee, Jaroon

    2015-11-01

    Various metal nanoparticles (NPs) decorated on carbon nanotube (CNT) was modified on the home-made screen printed carbon electrode (SPCE) in order to enhances sensitivity of hydrogen peroxide (H2O2) determination. The simple casting method was used for the electrode modification. The monometallic and bimetallic NPs modified electrodes were investigated for their electrochemical properties for H2O2 reduction. The Pd-CNT/SPCE is appropriated to measure the H2O2 reduction at a potential of -0.3 V, then this modified electrode was incorporated with a home-made flow through cell and applied in a simple flow injection amperometry (FI-Amp). Some parameters influencing the resulted modified electrode and the FI-Amp system were studied. The proposed detection system was able to detect H2O2 in the range of 0.1-1.0 mM, with detection limit of 20 µM. Relative standard deviation for 100 replicated injections of 0.6 mM H2O2 was 2.3%. The reproducibility of 6 electrodes preparing in 3 different lots was 8.2%. It was demonstrated for determination of H2O2 in disinfectant, hair colorant and milk samples. Recoveries in the range of 90-109% were observed. The developed system provided high stability, good repeatability, high sample throughput and low reagent consumption. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Modeling reinforced concrete durability.

    Science.gov (United States)

    2014-06-01

    This project developed a next-generation modeling approach for projecting the extent of : reinforced concrete corrosion-related damage, customized for new and existing Florida Department of : Transportation bridges and suitable for adapting to broade...

  12. Reinforcement of Conducting Silver-based Materials

    Directory of Open Access Journals (Sweden)

    Heike JUNG

    2014-09-01

    Full Text Available Silver is a well-known material in the field of contact materials because of its high electrical and thermal conductivity. However, due to its bad mechanical and switching properties, silver alloys or reinforcements of the ductile silver matrix are required. Different reinforcements, e. g. tungsten, tungsten carbide, nickel, cadmium oxide or tin oxide, are used in different sectors of switches. To reach an optimal distribution of these reinforcements, various manufacturing techniques (e. g. powder blending, preform infiltration, wet-chemical methods, internal oxidation are being used for the production of these contact materials. Each of these manufacturing routes offers different advantages and disadvantages. The mechanical alloying process displays a successful and efficient method to produce particle-reinforced metal-matrix composite powders. This contribution presents the obtained fine disperse microstructure of tungsten-particle-reinforced silver composite powders produced by the mechanical alloying process and displays this technique as possible route to provide feedstock powders for subsequent consolidation processes. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.4889

  13. Processes for fabricating composite reinforced material

    Science.gov (United States)

    Seals, Roland D.; Ripley, Edward B.; Ludtka, Gerard M.

    2015-11-24

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  14. Early Loaded Single Implant Reinforced Mandibular Overdenture

    Directory of Open Access Journals (Sweden)

    K. Nischal

    2016-01-01

    Full Text Available Rehabilitating atrophied mandible with two-implant supported denture is a common treatment modality for implant retained removable overdenture in mandible. This paper aims to design a treatment modality where single implant reinforced overdenture is fabricated for a severely atrophied mandibular ridge with early loading protocol. Results of studies have shown that a single implant mandibular overdenture significantly increases the satisfaction and quality of life of patients with edentulism. Midline fracture of the prosthesis is the most common complication related to single implant and two-implant retained mandibular overdentures. To manage such complication, a thin metal mesh is used to reinforce the overdenture and also to make the prostheses lighter and cost effective as compared to conventional cast metal framework.

  15. Surface treatment of reinforced cement concrete mixtures of hpcm type

    OpenAIRE

    Vyrozhemsky, V.; Krayushkina, K.

    2006-01-01

    One of the most perspective ways of pavement roughness and durability improvement is the arrangement of thin cement concrete layer surface treatment reinforced with different types of fiber. The name of this material is known abroad as HPCM (High Performance Cementious Materials) durable thin layer concrete pavement in a thickness of 1 cm, dispersion-like reinforced with metal or polymer fibers. To enhance bind properties the stone material grade 3 7mm is applied on the top of concrete surfac...

  16. Behavior of reinforced concrete beams reinforced with GFRP bars

    Directory of Open Access Journals (Sweden)

    D. H. Tavares

    Full Text Available The use of fiber reinforced polymer (FRP bars is one of the alternatives presented in recent studies to prevent the drawbacks related to the steel reinforcement in specific reinforced concrete members. In this work, six reinforced concrete beams were submitted to four point bending tests. One beam was reinforced with CA-50 steel bars and five with glass fiber reinforced polymer (GFRP bars. The tests were carried out in the Department of Structural Engineering in São Carlos Engineering School, São Paulo University. The objective of the test program was to compare strength, reinforcement deformation, displacement, and some anchorage aspects between the GFRP-reinforced concrete beams and the steel-reinforced concrete beam. The results show that, even though four GFRP-reinforced concrete beams were designed with the same internal tension force as that with steel reinforcement, their capacity was lower than that of the steel-reinforced beam. The results also show that similar flexural capacity can be achieved for the steel- and for the GFRP-reinforced concrete beams by controlling the stiffness (reinforcement modulus of elasticity multiplied by the bar cross-sectional area - EA and the tension force of the GFRP bars.

  17. Steel fiber reinforced concrete

    International Nuclear Information System (INIS)

    Baloch, S.U.

    2005-01-01

    Steel-Fiber Reinforced Concrete is constructed by adding short fibers of small cross-sectional size .to the fresh concrete. These fibers reinforce the concrete in all directions, as they are randomly oriented. The improved mechanical properties of concrete include ductility, impact-resistance, compressive, tensile and flexural strength and abrasion-resistance. These uniqlte properties of the fiber- reinforcement can be exploited to great advantage in concrete structural members containing both conventional bar-reinforcement and steel fibers. The improvements in mechanical properties of cementitious materials resulting from steel-fiber reinforcement depend on the type, geometry, volume fraction and material-properties of fibers, the matrix mix proportions and the fiber-matrix interfacial bond characteristics. Effects of steel fibers on the mechanical properties of concrete have been investigated in this paper through a comprehensive testing-programme, by varying the fiber volume fraction and the aspect-ratio (Lid) of fibers. Significant improvements are observed in compressive, tensile, flexural strength and impact-resistance of concrete, accompanied by marked improvement in ductility. optimum fiber-volume fraction and aspect-ratio of steel fibers is identified. Test results are analyzed in details and relevant conclusions drawn. The research is finally concluded with future research needs. (author)

  18. Mechanical Properties of Welded Deformed Reinforcing Steel Bars

    Directory of Open Access Journals (Sweden)

    Ghafur H. Ahmed

    2015-05-01

    Full Text Available Reinforcement strength, ductility and bendability properties are important components in design of reinforced concrete members, as the strength of any member comes mainly from reinforcement. Strain compatibility and plastic behaviors are mainly depending on reinforcement ductility. In construction practice, often welding of the bars is required. Welding of reinforcement is an instant solution in many cases, whereas welding is not a routine connection process. Welding will cause deficiencies in reinforcement bars, metallurgical changes and re-crystallization of microstructure of particles. Weld metal toughness is extremely sensitive to the welding heat input that decreases both of its strength and ductility. For determining the effects of welding in reinforcement properties, 48 specimens were tested with 5 different bar diameters, divided into six groups. Investigated parameters were: properties of un-welded bars; strength, ductility and density of weld metal; strength and ductility reduction due to heat input for bundled bars and transverse bars; welding effect on bars’ bending properties; behavior of different joint types; properties of three weld groove shapes also the locations and types of failures sections. Results show that, strength and elongation of the welded bars decreased by (10-40% and (30-60% respectively. Cold bending of welded bars and groove welds shall be prevented.

  19. Reinforced concrete tomography

    International Nuclear Information System (INIS)

    Mariscotti, M.A.J.; Morixe, M.; Tarela, P.A.; Thieberger, P.

    1997-01-01

    In this paper we describe the technique of reinforced concrete tomography, its historical background, recent technological developments and main applications. Gamma radiation sensitive plates are imprinted with radiation going through the concrete sample under study, and then processed to reveal the presence of reinforcement and defects in the material density. The three dimensional reconstruction, or tomography, of the reinforcement out of a single gammagraphy is an original development alternative to conventional methods. Re-bar diameters and positions may be determined with an accuracy of ± 1 mm 0.5-1 cm, respectively. The non-destructive character of this technique makes it particularly attractive in cases of inhabited buildings and diagnoses of balconies. (author) [es

  20. Braided reinforced composite rods for the internal reinforcement of concrete

    Science.gov (United States)

    Gonilho Pereira, C.; Fangueiro, R.; Jalali, S.; Araujo, M.; Marques, P.

    2008-05-01

    This paper reports on the development of braided reinforced composite rods as a substitute for the steel reinforcement in concrete. The research work aims at understanding the mechanical behaviour of core-reinforced braided fabrics and braided reinforced composite rods, namely concerning the influence of the braiding angle, the type of core reinforcement fibre, and preloading and postloading conditions. The core-reinforced braided fabrics were made from polyester fibres for producing braided structures, and E-glass, carbon, HT polyethylene, and sisal fibres were used for the core reinforcement. The braided reinforced composite rods were obtained by impregnating the core-reinforced braided fabric with a vinyl ester resin. The preloading of the core-reinforced braided fabrics and the postloading of the braided reinforced composite rods were performed in three and two stages, respectively. The results of tensile tests carried out on different samples of core-reinforced braided fabrics are presented and discussed. The tensile and bending properties of the braided reinforced composite rods have been evaluated, and the results obtained are presented, discussed, and compared with those of conventional materials, such as steel.

  1. Soil reinforcement with geosynthetics

    Directory of Open Access Journals (Sweden)

    Bessaim Mohammed Mustapha

    2018-01-01

    Full Text Available The proportionality of existence of land with good bearing to erect any building or building is very small, to remedy this deficiency it is necessary to resort to techniques of reinforcement of the soils which can constitute a very important development. Among these methods of remediation, there is reinforcement by the geosynthetics which constitute an effective solution to these constraints. This process tends to stabilize the soil in question with increased load bearing capacity in civil engineering and geotechnical works such as embankments, slopes, embankments and hydraulic structures, with an inestimable gain in time, economy and durability while preserving the natural and environmental aspect.

  2. Reinforcement Magnitude: An Evaluation of Preference and Reinforcer Efficacy

    OpenAIRE

    Trosclair-Lasserre, Nicole M; Lerman, Dorothea C; Call, Nathan A; Addison, Laura R; Kodak, Tiffany

    2008-01-01

    Consideration of reinforcer magnitude may be important for maximizing the efficacy of treatment for problem behavior. Nonetheless, relatively little is known about children's preferences for different magnitudes of social reinforcement or the extent to which preference is related to differences in reinforcer efficacy. The purpose of the current study was to evaluate the relations among reinforcer magnitude, preference, and efficacy by drawing on the procedures and results of basic experimenta...

  3. Machining of Fibre Reinforced Plastic Composite Materials

    Science.gov (United States)

    2018-01-01

    Fibre reinforced plastic composite materials are difficult to machine because of the anisotropy and inhomogeneity characterizing their microstructure and the abrasiveness of their reinforcement components. During machining, very rapid cutting tool wear development is experienced, and surface integrity damage is often produced in the machined parts. An accurate selection of the proper tool and machining conditions is therefore required, taking into account that the phenomena responsible for material removal in cutting of fibre reinforced plastic composite materials are fundamentally different from those of conventional metals and their alloys. To date, composite materials are increasingly used in several manufacturing sectors, such as the aerospace and automotive industry, and several research efforts have been spent to improve their machining processes. In the present review, the key issues that are concerning the machining of fibre reinforced plastic composite materials are discussed with reference to the main recent research works in the field, while considering both conventional and unconventional machining processes and reporting the more recent research achievements. For the different machining processes, the main results characterizing the recent research works and the trends for process developments are presented. PMID:29562635

  4. Machining of Fibre Reinforced Plastic Composite Materials

    Directory of Open Access Journals (Sweden)

    Alessandra Caggiano

    2018-03-01

    Full Text Available Fibre reinforced plastic composite materials are difficult to machine because of the anisotropy and inhomogeneity characterizing their microstructure and the abrasiveness of their reinforcement components. During machining, very rapid cutting tool wear development is experienced, and surface integrity damage is often produced in the machined parts. An accurate selection of the proper tool and machining conditions is therefore required, taking into account that the phenomena responsible for material removal in cutting of fibre reinforced plastic composite materials are fundamentally different from those of conventional metals and their alloys. To date, composite materials are increasingly used in several manufacturing sectors, such as the aerospace and automotive industry, and several research efforts have been spent to improve their machining processes. In the present review, the key issues that are concerning the machining of fibre reinforced plastic composite materials are discussed with reference to the main recent research works in the field, while considering both conventional and unconventional machining processes and reporting the more recent research achievements. For the different machining processes, the main results characterizing the recent research works and the trends for process developments are presented.

  5. Turbomachine blade reinforcement

    Science.gov (United States)

    Garcia Crespo, Andres Jose

    2016-09-06

    Embodiments of the present disclosure include a system having a turbomachine blade segment including a blade and a mounting segment coupled to the blade, wherein the mounting segment has a plurality of reinforcement pins laterally extending at least partially through a neck of the mounting segment.

  6. Reinforcing Saccadic Amplitude Variability

    Science.gov (United States)

    Paeye, Celine; Madelain, Laurent

    2011-01-01

    Saccadic endpoint variability is often viewed as the outcome of neural noise occurring during sensorimotor processing. However, part of this variability might result from operant learning. We tested this hypothesis by reinforcing dispersions of saccadic amplitude distributions, while maintaining constant their medians. In a first experiment we…

  7. Reinforcement Magnitude: An Evaluation of Preference and Reinforcer Efficacy

    Science.gov (United States)

    Trosclair-Lasserre, Nicole M.; Lerman, Dorothea C.; Call, Nathan A.; Addison, Laura R.; Kodak, Tiffany

    2008-01-01

    Consideration of reinforcer magnitude may be important for maximizing the efficacy of treatment for problem behavior. Nonetheless, relatively little is known about children's preferences for different magnitudes of social reinforcement or the extent to which preference is related to differences in reinforcer efficacy. The purpose of the current…

  8. The Reinforcing Event (RE) Menu

    Science.gov (United States)

    Addison, Roger M.; Homme, Lloyd E.

    1973-01-01

    A motivational system, the Contingency Management System, uses contracts in which some amount of defined task behavior is demanded for some interval of reinforcing event. The Reinforcing Event Menu, a list of high probability reinforcing behaviors, is used in the system as a prompting device for the learner and as an aid for the administrator in…

  9. The technologically-reinforced natural radioactivity

    International Nuclear Information System (INIS)

    2005-01-01

    Technologically-reinforced natural radioactivity comes from mining industries, geological resources and ores de-confinement, and from separation, purification, transformation and use of by-products or products. Partly based on a survey and questionnaires sent to industrial organisations, this report proposes a large and detailed overview of this kind of radioactivity for different sectors or specific activities: the French phosphate sector, the international rare Earth and heavy ores sector, the French monazite sector, the ilmenite sector, the French and international zirconium sector, the non-ferrous metal sector, the international and French drinkable, mineral and spring water sector, the international wastewater sector, the French drilling sector, the international and French geothermal sector, the international and French gas and oil sector, the international and French coal sector, the international and French biomass sector, the international and French paper-making industry, and the management of wastes with technologically-reinforced natural radioactivity in France

  10. Autoshaping Chicks with Heat Reinforcement: The Role of Stimulus-Reinforcer and Response-Reinforcer Relations

    Science.gov (United States)

    Wasserman, Edward A.; And Others

    1975-01-01

    The present series of experiments attempted to analyze more fully the contributions of stimulus-reinforcer and response-reinforcer relations to autoshaping within a single conditioning situation. (Author)

  11. Study on reinforced concrete beams with helical transverse reinforcement

    Science.gov (United States)

    Kaarthik Krishna, N.; Sandeep, S.; Mini, K. M.

    2018-02-01

    In a Reinforced Concrete (R.C) structure, major reinforcement is used for taking up tensile stresses acting on the structure due to applied loading. The present paper reports the behavior of reinforced concrete beams with helical reinforcement (transverse reinforcement) subjected to monotonous loading by 3-point flexure test. The results were compared with identically similar reinforced concrete beams with rectangular stirrups. During the test crack evolution, load carrying capacity and deflection of the beams were monitored, analyzed and compared. Test results indicate that the use of helical reinforcement provides enhanced load carrying capacity and a lower deflection proving to be more ductile, clearly indicating the advantage in carrying horizontal loads. An analysis was also carried out using ANSYS software in order to compare the test results of both the beams.

  12. Degradation of Waterfront Reinforced Concrete Structures

    African Journals Online (AJOL)

    Key words: Degradation, reinforced concrete, Dar es Salaam port. Abstract—One of the ... especially corrosion of the reinforcement. ... Corrosion of steel reinforcement contributes .... cracks along the line of reinforcement bars and most of the ...

  13. Wrinkles in reinforced membranes

    Science.gov (United States)

    Takei, Atsushi; Brau, Fabian; Roman, Benoît; Bico, José.

    2012-02-01

    We study, through model experiments, the buckling under tension of an elastic membrane reinforced with a more rigid strip or a fiber. In these systems, the compression of the rigid layer is induced through Poisson contraction as the membrane is stretched perpendicularly to the strip. Although strips always lead to out-of-plane wrinkles, we observe a transition from out-of-plane to in plane wrinkles beyond a critical strain in the case of fibers embedded into the elastic membranes. The same transition is also found when the membrane is reinforced with a wall of the same material depending on the aspect ratio of the wall. We describe through scaling laws the evolution of the morphology of the wrinkles and the different transitions as a function of material properties and stretching strain.

  14. Base reinforcement of the provisional platform for the construction of piles screen on the Flix reservoir (Tarragona); Refuerzo de based de la plataforma provisional para la ejecucion de pantalla de pilotes en el embalse de Flix (Tarragona)

    Energy Technology Data Exchange (ETDEWEB)

    Amo Sanz, P.; Diego Pereda, I.; Santalla Prieto, J.

    2014-02-01

    Decontamination works on Flix reservoir aimed at the removal of accumulated debris in the bed of the river Ebro, as result of historical discharge of pollutants by a chemical complex located there. The Flix reservoir currently retains in his base a lot of cubic meters of sludge from the solid fraction of the discharge of the aforementioned complex that sits on the right bank ( a non-negligible volume of alluvial substrate potentially affected by pollution from the sludge must be considered). The contaminants belong to there main groups: organo chlorines, heavy metals (particularly mercury) and radionuclides. they are in high concentrations, capable of transmitting contamination to the sediments and basement of the reservoir and the water flowing through the river. In the case of water, that transmission occurs in fact, and there is a register of episodes that have exceeded the limits of tolerance of aggressive components contained in the ecosystem. (Author)

  15. Deep Reinforcement Fuzzing

    OpenAIRE

    Böttinger, Konstantin; Godefroid, Patrice; Singh, Rishabh

    2018-01-01

    Fuzzing is the process of finding security vulnerabilities in input-processing code by repeatedly testing the code with modified inputs. In this paper, we formalize fuzzing as a reinforcement learning problem using the concept of Markov decision processes. This in turn allows us to apply state-of-the-art deep Q-learning algorithms that optimize rewards, which we define from runtime properties of the program under test. By observing the rewards caused by mutating with a specific set of actions...

  16. Modeling the Structural Response of Reinforced Glass Beams using an SLA Scheme

    NARCIS (Netherlands)

    Louter, P.C.; Graaf, van de Anne; Rots, J.G.; Bos, Freek; Louter, Pieter Christiaan; Veer, Fred

    2010-01-01

    This paper investigates whether a novel computational sequentially linear analysis (SLA) technique, which is especially developed for modeling brittle material response, is applicable for modeling the structural response of metal reinforced glass beams. To do so, computational SLA results are

  17. Ab initio and density functional theoretical design and screening of model crown ether based ligand (host) for extraction of lithium metal ion (guest): effect of donor and electronic induction.

    Science.gov (United States)

    Boda, Anil; Ali, Sk Musharaf; Rao, Hanmanth; Ghosh, Sandip K

    2012-08-01

    The structures, energetic and thermodynamic parameters of model crown ethers with different donor, cavity and electron donating/ withdrawing functional group have been determined with ab initio MP2 and density functional theory in gas and solvent phase. The calculated values of binding energy/ enthalpy for lithium ion complexation are marginally higher for hard donor based aza and oxa crown compared to soft donor based thia and phospha crown. The calculated values of binding enthalpy for lithium metal ion with 12C4 at MP2 level of theory is in good agreement with the available experimental result. The binding energy is altered due to the inductive effect imparted by the electron donating/ withdrawing group in crown ether, which is well correlated with the values of electron transfer. The role of entropy for extraction of hydrated lithium metal ion by different donor and functional group based ligand has been demonstrated. The HOMO-LUMO gap is decreased and dipole moment of the ligand is increased from gas phase to organic phase because of the dielectric constant of the solvent. The gas phase binding energy is reduced in solvent phase as the solvent molecules weaken the metal-ligand binding. The theoretical values of extraction energy for LiCl salt from aqueous solution in different organic solvent is validated by the experimental trend. The study presented here should contribute to the design of model host ligand and screening of solvent for metal ion recognition and thus can contribute in planning the experiments.

  18. Bisphenyl-Polymer/Carbon-Fiber-Reinforced Composite Compared to Titanium Alloy Bone Implant

    OpenAIRE

    Petersen, Richard C.

    2011-01-01

    Aerospace/aeronautical thermoset bisphenyl-polymer/carbon-fiber-reinforced composites are considered as new advanced materials to replace metal bone implants. In addition to well-recognized nonpolar chemistry with related bisphenol-polymer estrogenic factors, carbon-fiber-reinforced composites can offer densities and electrical conductivity/resistivity properties close to bone with strengths much higher than metals on a per-weight basis. In vivo bone-marrow tests with Sprague-Dawley rats reve...

  19. Reinforced seal component

    International Nuclear Information System (INIS)

    Jeanson, G.M.; Odent, R.P.

    1980-01-01

    The invention concerns a seal component of the kind comprising a soft sheath and a flexible reinforcement housed throughout the entire length of the sheath. The invention enables O ring seals to be made capable of providing a radial seal, that is to say between two sides or flat collars of two cylindrical mechanical parts, or an axial seal, that is to say between two co-axial axisymmetrical areas. The seal so ensured is relative, but it remains adequately sufficient for many uses, for instance, to ensure the separation of two successive fixed blading compartments of axial compressors used in gas diffusion isotope concentration facilities [fr

  20. Manifold Regularized Reinforcement Learning.

    Science.gov (United States)

    Li, Hongliang; Liu, Derong; Wang, Ding

    2018-04-01

    This paper introduces a novel manifold regularized reinforcement learning scheme for continuous Markov decision processes. Smooth feature representations for value function approximation can be automatically learned using the unsupervised manifold regularization method. The learned features are data-driven, and can be adapted to the geometry of the state space. Furthermore, the scheme provides a direct basis representation extension for novel samples during policy learning and control. The performance of the proposed scheme is evaluated on two benchmark control tasks, i.e., the inverted pendulum and the energy storage problem. Simulation results illustrate the concepts of the proposed scheme and show that it can obtain excellent performance.

  1. Metallic composite materials

    International Nuclear Information System (INIS)

    Frommeyer, G.

    1987-01-01

    The structure and properties of metallic composite materials and composite materials with metallic matrix are considered. In agreement with the morphology of constituent phases the following types of composite materials are described: dispersion-strengthened composite materials; particle-reinforced composite materials; fibrous composite materials; laminar composite materials. Data on strength and electric properties of the above-mentioned materials, as well as effect of the amount, location and geometric shape of the second phase on them, are presented

  2. Nondestructive Determination of Reinforcement Volume Fractions in Particulate Composites : Ultrasonic Method

    International Nuclear Information System (INIS)

    Jeong, Hyun Jo

    1998-01-01

    A nondestructive ultrasonic technique is presented for estimating the reinforcement volume fractions of particulate composites. The proposed technique employs a theoretical model which accounts for composite microstructures, together with a measurement of ultrasonic velocity to determine the reinforcement volume fractions. The approach is used for a wide range of SiC particulate reinforced Al matrix (SiC p /AI) composites. The method is considered to be reliable in determining the reinforcement volume fractions. The technique could be adopted in a production unit for the quality assessment of the metal matrix particulate composite extrusions

  3. Modelling reinforcement corrosion in concrete

    DEFF Research Database (Denmark)

    Michel, Alexander; Geiker, Mette Rica; Stang, Henrik

    2012-01-01

    A physio-chemical model for the simulation of reinforcement corrosion in concrete struc-tures was developed. The model allows for simulation of initiation and subsequent propaga-tion of reinforcement corrosion. Corrosion is assumed to be initiated once a defined critical chloride threshold......, a numerical example is pre-sented, that illustrates the formation of corrosion cells as well as propagation of corrosion in a reinforced concrete structure....

  4. The Reinforcement Learning Competition 2014

    OpenAIRE

    Dimitrakakis, Christos; Li, Guangliang; Tziortziotis, Nikoalos

    2014-01-01

    Reinforcement learning is one of the most general problems in artificial intelligence. It has been used to model problems in automated experiment design, control, economics, game playing, scheduling and telecommunications. The aim of the reinforcement learning competition is to encourage the development of very general learning agents for arbitrary reinforcement learning problems and to provide a test-bed for the unbiased evaluation of algorithms.

  5. Aluminum matrix composites reinforced with alumina nanoparticles

    CERN Document Server

    Casati, Riccardo

    2016-01-01

    This book describes the latest efforts to develop aluminum nanocomposites with enhanced damping and mechanical properties and good workability. The nanocomposites exhibited high strength, improved damping behavior and good ductility, making them suitable for use as wires. Since the production of metal matrix nanocomposites by conventional melting processes is considered extremely problematic (because of the poor wettability of the nanoparticles), different powder metallurgy routes were investigated, including high-energy ball milling and unconventional compaction methods. Special attention was paid to the structural characterization at the micro- and nanoscale, as uniform nanoparticle dispersion in metal matrix is of prime importance. The aluminum nanocomposites displayed an ultrafine microstructure reinforced with alumina nanoparticles produced in situ or added ex situ. The physical, mechanical and functional characteristics of the materials produced were evaluated using different mechanical tests and micros...

  6. Recycling of Reinforced Plastics

    Science.gov (United States)

    Adams, R. D.; Collins, Andrew; Cooper, Duncan; Wingfield-Digby, Mark; Watts-Farmer, Archibald; Laurence, Anna; Patel, Kayur; Stevens, Mark; Watkins, Rhodri

    2014-02-01

    This work has shown is that it is possible to recycle continuous and short fibre reinforced thermosetting resins while keeping almost the whole of the original material, both fibres and matrix, within the recyclate. By splitting, crushing hot or cold, and hot forming, it is possible to create a recyclable material, which we designate a Remat, which can then be used to remanufacture other shapes, examples of plates and tubes being demonstrated. Not only can remanufacturing be done, but it has been shown that over 50 % of the original mechanical properties, such as the E modulus, tensile strength, and interlaminar shear strength, can be retained. Four different forms of composite were investigated, a random mat Glass Fibre Reinforced Plastic (GFRP) bathroom component and boat hull, woven glass and carbon fibre cloth impregnated with an epoxy resin, and unidirectional carbon fibre pre-preg. One of the main factors found to affect composite recyclability was the type of resin matrix used in the composite. Thermoset resins tested were shown to have a temperature range around the Glass Transition Temperature (Tg) where they exhibit ductile behaviour, hence aiding reforming of the material. The high-grade carbon fibre prepreg was found to be less easy to recycle than the woven of random fibre laminates. One method of remanufacturing was by heating the Remat to above its glass transition temperature, bending it to shape, and then cooling it. However, unless precautions are taken, the geometric form may revert. This does not happen with the crushed material.

  7. Thermal expansion of fibre-reinforced composites

    International Nuclear Information System (INIS)

    Schneider, B.

    1991-07-01

    The integral thermal expansion and the coefficient of thermal expansion (CTE) of carbon and Kevlar fibre-reinforced composites were measured with high accuracy from 5 K to room temperature. For this, a laser dilatometer and a sophisticated measuring procedure were used. CTE dependence on the orientation angle ω of angle-ply laminates was determined for samples with 5 different fibre alignments (UD 0deg, +/-30deg, +/-45deg, +/-60deg and UD 90deg). A high variability of the CTE with the orientation angle was shown. At angles of approximately +/-30deg even negative CTEs were found. With suitable reinforcing fibres being selected, their absolute values rose up to 30-100% of the positive CTEs of metals. Hence, composites of this type would be suitable as compensating materials in metal constructions where little thermal expansion is desired. To check the lamination theory, theoretical computations of the CTE- ω -dependence were compared with the measured values. An excellent agreement was found. Using the lamination theory, predictions about the expansion behaviour of angle-ply laminates can be made now, if the thermal and mechanical properties of the unidirectional (UD) laminate are known. Furthermore, it is possible to carry out simulation computations aimed at investigating the influence of a single parameter of the UD-laminate (e.g. shear modulus) on the expansion of the angle-ply laminate. (orig.) [de

  8. Fabrication of Metal Nanoparticle-Modified Screen Printed Carbon Electrodes for the Evaluation of Hydrogen Peroxide Content in Teeth Whitening Strips

    Science.gov (United States)

    Popa, Adriana; Abenojar, Eric C.; Vianna, Adam; Buenviaje, Czarina Y. A.; Yang, Jiahua; Pascual, Cherrie B.; Samia, Anna Cristina S.

    2015-01-01

    A laboratory experiment in which students synthesize Ag, Au, and Pt nanoparticles (NPs) and use them to modify screen printed carbon electrodes for the electroanalysis of the hydrogen peroxide content in commercially available teeth whitening strips is described. This experiment is designed for two 3-h laboratory periods and can be adapted for…

  9. Comparison of Fast Roll-to-Roll Flexographic, Inkjet, Flatbed, and Rotary Screen Printing of Metal Back Electrodes for Polymer Solar Cells

    DEFF Research Database (Denmark)

    Hösel, Markus; Søndergaard, Roar R.; Angmo, Dechan

    2013-01-01

    carbon[5] and copper has been discussed whereas copper is unlikely to yield the necessary cost reduction and resistance to oxidation. Most reports have employed flatbed or rotary screen printing whereas other methods are available and described later on. The important question to answer is which...

  10. Mechanical properties of nanodiamond-reinforced hydroxyapatite composite coatings deposited by suspension plasma spraying

    Science.gov (United States)

    Chen, Xiuyong; Zhang, Botao; Gong, Yongfeng; Zhou, Ping; Li, Hua

    2018-05-01

    Hydroxyapatite (HA) coatings suffer from poor mechanical properties, which can be enhanced via incorporation of secondary bioinert reinforcement material. Nanodiamond (ND) possesses excellent mechanical properties to play the role as reinforcement for improving the mechanical properties of brittle HA bioceramic coatings. The major persistent challenge yet is the development of proper deposition techniques for fabricating the ND reinforced HA coatings. In this study, we present a novel deposition approach by plasma spraying the mixtures of ND suspension and micron-sized HA powder feedstock. The effect of ND reinforcement on the microstructure and the mechanical properties of the coatings such as hardness, adhesive strength and friction coefficient were examined. The results showed that the ND-reinforced HA coatings display lower porosity, fewer unmelted particles and uniform microstructure, in turn leading to significantly enhanced mechanical properties. The study presented a promising approach to fabricate ND-reinforced HA composite coatings on metal-based medical implants for potential clinical application.

  11. Constitutive model for reinforced concrete

    NARCIS (Netherlands)

    Feenstra, P.H.; Borst, de R.

    1995-01-01

    A numerical model is proposed for reinforced-concrete behavior that combines the commonly accepted ideas from modeling plain concrete, reinforcement, and interaction behavior in a consistent manner. The behavior of plain concrete is govern by fracture-energy-level-based formulation both in tension

  12. Quenched Reinforcement Exposed to Fire

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl

    2006-01-01

    .0% is seldom found in “slack” (not prestressed) reinforcement, but 2.0% stresses might be relevant for reinforcement in T shaped cross sections and for prestressed structures, where large strains can be applied. All data are provided in a “HOT” condition during a fire and in a “COLD” condition after a fire...

  13. Tangible Reinforcers: Bonuses or Bribes?

    Science.gov (United States)

    O'Leary, K. Daniel; And Others

    1972-01-01

    Objections to the use of tangible reinforcers, such as prizes, candy, cigarettes, and money, are discussed. Treatment programs using tangible reinforcers are recommended as powerful modifers of behavior to be implemented only after less powerful means of modification have been tried. (Author)

  14. Spatial distribution of metals in soils in Baltimore, Maryland: role of native parent material, proximity to major roads, housing age and screening guidelines

    Science.gov (United States)

    I.D. Yesilonis; R.V. Pouyat; N.K. Neerchal

    2008-01-01

    We investigated the spatial distribution of heavy metal above-background (anthropic) contents of Cd, Co, Cu, Cr, Fe, Mn, Ni, Pb, Ti, V, and Zn in Baltimore City surface soils and related these levels to potential contaminating sources. Composite soil samples (0?10 cm depth) were digested using a nitric and hydrochloric extraction technique. Slightly more than 10% of...

  15. First-order metal-insulator transitions in the extended Hubbard model due to self-consistent screening of the effective interaction

    Science.gov (United States)

    Schüler, M.; van Loon, E. G. C. P.; Katsnelson, M. I.; Wehling, T. O.

    2018-04-01

    While the Hubbard model is the standard model to study Mott metal-insulator transitions, it is still unclear to what extent it can describe metal-insulator transitions in real solids, where nonlocal Coulomb interactions are always present. By using a variational principle, we clarify this issue for short- and long-range nonlocal Coulomb interactions for half-filled systems on bipartite lattices. We find that repulsive nonlocal interactions generally stabilize the Fermi-liquid regime. The metal-insulator phase boundary is shifted to larger interaction strengths to leading order linearly with nonlocal interactions. Importantly, nonlocal interactions can raise the order of the metal-insulator transition. We present a detailed analysis of how the dimension and geometry of the lattice as well as the temperature determine the critical nonlocal interaction leading to a first-order transition: for systems in more than two dimensions with nonzero density of states at the Fermi energy the critical nonlocal interaction is arbitrarily small; otherwise, it is finite.

  16. Toxicology screen

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003578.htm Toxicology screen To use the sharing features on this page, please enable JavaScript. A toxicology screen refers to various tests that determine the ...

  17. Numerical modeling of hybrid fiber-reinforced concrete (hyfrc)

    International Nuclear Information System (INIS)

    Hameed, R.; Turatsinze, A.

    2015-01-01

    A model for numerical simulation of mechanical response of concrete reinforced with slipping and non slipping metallic fibers in hybrid form is presented in this paper. Constitutive law used to model plain concrete behaviour is based on plasticity and damage theories, and is capable to determine localized crack opening in three dimensional (3-D) systems. Behaviour law used for slipping metallic fibers is formulated based on effective stress carried by these fibers after when concrete matrix is cracked. A continuous approach is proposed to model the effect of addition of non-slipping metallic fibers in plain concrete. This approach considers the constitutive law of concrete matrix with increased fracture energy in tension obtained experimentally in direct tension tests on Fiber Reinforced Concrete (FRC). To simulate the mechanical behaviour of hybrid fiber-reinforced concrete (HyFRC), proposed approaches to model non-slipping metallic fibers and constitutive law of plain concrete and slipping fibers are used simultaneously without any additive equation. All the parameters used by the proposed model have physical meanings and are determined through experiments or drawn from literature. The model was implemented in Finite Element (FE) Code CASTEM and tested on FRC prismatic notched specimens in flexure. Model prediction showed good agreement with experimental results. (author)

  18. Cost Effectiveness of Precast Reinforced Concrete Roof Slabs

    Science.gov (United States)

    Parskiy, N. D.; Molodtsov, M. V.; Molodtsova, V. E.

    2017-11-01

    Engineers always seek to free interior space from intermediate supporting elements. Nowadays plants, being at the forefront of technology, produce a new generation of exclusive patented prefabricated reinforced concrete elements with a high load-bearing capacity, excellent heat resistance characteristics combined with the aesthetics and beauty. It is a system of Seagull Gabbiano prestressed roof slabs for the spans of 12m - 40m. The article shows the advantages of the Seagull slabs over conventional precast reinforced concrete and metal roof trusses. It also gives the analysis of the technical and economic indices of design and construction of a building with the Seagull slabs depending on the size of spans to cover. The use of structural systems with increased spans allows for the modern buildings and structures of prefabricated reinforced concrete with enhanced functionality and aesthetics alongside with a wide range of planning solutions.

  19. Mechanical and Tribological Characteristics of TIG Hardfaced Dispersive Layer by Reinforced with Particles Extruded Aluminium

    Directory of Open Access Journals (Sweden)

    R. Dimitrova

    2017-05-01

    Full Text Available The article presents the results of the implemented technology for generation of hardfaced dispersive layers obtained by additive material containing reinforcing phase of non-metal particles. The wear resistant coatings are deposited on pure aluminium metal matrix by shielded gas metal-arc welding applying tungsten inert gas (TIG with extruded aluminium wire reinforced by particles as additive material. Wire filler is produced by extrusion of a pack containing metalized and plated by flux micro/nano SiC particles. The metalized particles implanting in the metal matrix and its dispersive hardfacing are realized by solid-state welding under conditions of hot plastic deformation. Tribological characteristics are studied of the hardfaced layers of dispersive reinforced material on pure aluminium metal matrix with and without flux. Hardness profiles of the hardfaced layers are determined by nanoindentation. The surface layers are studied by means of Scanning Electron Microscopy (SEM and Energy Dispersive X-ray (EDX analysis. Increase by 15-31 % of the wear resistance of the hardfaced layers and 30-40 % of their hardness was found, which is due to the implanted in the layer reinforcing phase of metalized micro/nano SiC particles.

  20. Ceramic fiber reinforced filter

    Science.gov (United States)

    Stinton, David P.; McLaughlin, Jerry C.; Lowden, Richard A.

    1991-01-01

    A filter for removing particulate matter from high temperature flowing fluids, and in particular gases, that is reinforced with ceramic fibers. The filter has a ceramic base fiber material in the form of a fabric, felt, paper of the like, with the refractory fibers thereof coated with a thin layer of a protective and bonding refractory applied by chemical vapor deposition techniques. This coating causes each fiber to be physically joined to adjoining fibers so as to prevent movement of the fibers during use and to increase the strength and toughness of the composite filter. Further, the coating can be selected to minimize any reactions between the constituents of the fluids and the fibers. A description is given of the formation of a composite filter using a felt preform of commercial silicon carbide fibers together with the coating of these fibers with pure silicon carbide. Filter efficiency approaching 100% has been demonstrated with these filters. The fiber base material is alternately made from aluminosilicate fibers, zirconia fibers and alumina fibers. Coating with Al.sub.2 O.sub.3 is also described. Advanced configurations for the composite filter are suggested.

  1. Colon cancer screening

    Science.gov (United States)

    Screening for colon cancer; Colonoscopy - screening; Sigmoidoscopy - screening; Virtual colonoscopy - screening; Fecal immunochemical test; Stool DNA test; sDNA test; Colorectal cancer - screening; Rectal ...

  2. Nanoscale Reinforced, Polymer Derived Ceramic Matrix Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Rajendra Bordia

    2009-07-31

    The goal of this project was to explore and develop a novel class of nanoscale reinforced ceramic coatings for high temperature (600-1000 C) corrosion protection of metallic components in a coal-fired environment. It was focused on developing coatings that are easy to process and low cost. The approach was to use high-yield preceramic polymers loaded with nano-size fillers. The complex interplay of the particles in the polymer, their role in controlling shrinkage and phase evolution during thermal treatment, resulting densification and microstructural evolution, mechanical properties and effectiveness as corrosion protection coatings were investigated. Fe-and Ni-based alloys currently used in coal-fired environments do not possess the requisite corrosion and oxidation resistance for next generation of advanced power systems. One example of this is the power plants that use ultra supercritical steam as the working fluid. The increase in thermal efficiency of the plant and decrease in pollutant emissions are only possible by changing the properties of steam from supercritical to ultra supercritical. However, the conditions, 650 C and 34.5 MPa, are too severe and result in higher rate of corrosion due to higher metal temperatures. Coating the metallic components with ceramics that are resistant to corrosion, oxidation and erosion, is an economical and immediate solution to this problem. Good high temperature corrosion protection ceramic coatings for metallic structures must have a set of properties that are difficult to achieve using established processing techniques. The required properties include ease of coating complex shapes, low processing temperatures, thermal expansion match with metallic structures and good mechanical and chemical properties. Nanoscale reinforced composite coatings in which the matrix is derived from preceramic polymers have the potential to meet these requirements. The research was focused on developing suitable material systems and

  3. Modeling reinforced concrete durability : [summary].

    Science.gov (United States)

    2014-06-01

    Many Florida bridges are built of steel-reinforced concrete. Floridas humid and marine : environments subject steel in these structures : to corrosion once water and salt penetrate the : concrete and contact the steel. Corroded steel : takes up mo...

  4. Evolutionary computation for reinforcement learning

    NARCIS (Netherlands)

    Whiteson, S.; Wiering, M.; van Otterlo, M.

    2012-01-01

    Algorithms for evolutionary computation, which simulate the process of natural selection to solve optimization problems, are an effective tool for discovering high-performing reinforcement-learning policies. Because they can automatically find good representations, handle continuous action spaces,

  5. Ultrasensitive multi-analyte electrochemical immunoassay based on GNR-modified heated screen-printed carbon electrodes and PS@PDA-metal labels for rapid detection of MMP-9 and IL-6.

    Science.gov (United States)

    Shi, Jian-Jun; He, Ting-Ting; Jiang, Fang; Abdel-Halim, E S; Zhu, Jun-Jie

    2014-05-15

    An ultrasensitive electrochemical immunoassay was developed for rapid detection of interleukin-6 (IL-6) and matrix metallopeptidase-9 (MMP-9); the method utilized PS@PDA-metal nanocomposites based on graphene nanoribbon (GNR)-modified heated screen-printed carbon electrode (HSPCE). Because of the good hydrophilicity and low toxicity, GNRs were used to immobilize antibodies (Ab) and amplify the electrochemical signal. PS@PDA-metal was used to label antibodies and generate a strong electrochemical signal in acetic buffer. A sandwich strategy was adopted to achieve simultaneous detection of MMP-9 and IL-6 based on HSPCE without cross-talk between adjacent electrodes in the range of 10(-5) to 10(3) ng mL(-1) with detection limits of 5 fg mL(-1) and 0.1 pg mL(-1) (S/N=3), respectively. The proposed method showed wide detection range, low detection limit, acceptable stability and good reproducibility. Satisfactory results were also obtained in the practical samples, thus showing this is a promising technique for simultaneous clinical detection of biocomponent proteins. © 2013 Elsevier B.V. All rights reserved.

  6. Deep Reinforcement Learning: An Overview

    OpenAIRE

    Li, Yuxi

    2017-01-01

    We give an overview of recent exciting achievements of deep reinforcement learning (RL). We discuss six core elements, six important mechanisms, and twelve applications. We start with background of machine learning, deep learning and reinforcement learning. Next we discuss core RL elements, including value function, in particular, Deep Q-Network (DQN), policy, reward, model, planning, and exploration. After that, we discuss important mechanisms for RL, including attention and memory, unsuperv...

  7. [A maxillary premolar reconstruction with a glass fiber reinforced post].

    Science.gov (United States)

    Viţalariu, Anca Mihaela; Antohe, Magda; Bahrim, Delia; Tatarciuc, Monica

    2006-01-01

    This paper presents the case of a 37 years old female patient who needed a reconstruction of an endodontic treated' second maxillary premolar. The patient presented large areas of occlusal abrasion caused by bruxism, therefore the solution consisted of a reconstruction with a non-metallic post reinforced with glass fibers. In such cases, the excessive occlusal forces developed by bruxism can produce a radicular fracture if the tooth would be reconstructed with a rigid metallic post. The glass-fiber reinforced post has some important qualities, which render it more suitable in most clinical cases: it is easy to use; has the ability to bond with restorative resins; decreases the risk of tooth fracture and provides better esthetics.

  8. Artificial neural networks environmental forecasting in comparison with multiple linear regression technique: From heavy metals to organic micropollutants screening in agricultural soils

    Science.gov (United States)

    Bonelli, Maria Grazia; Ferrini, Mauro; Manni, Andrea

    2016-12-01

    The assessment of metals and organic micropollutants contamination in agricultural soils is a difficult challenge due to the extensive area used to collect and analyze a very large number of samples. With Dioxins and dioxin-like PCBs measurement methods and subsequent the treatment of data, the European Community advises the develop low-cost and fast methods allowing routing analysis of a great number of samples, providing rapid measurement of these compounds in the environment, feeds and food. The aim of the present work has been to find a method suitable to describe the relations occurring between organic and inorganic contaminants and use the value of the latter in order to forecast the former. In practice, the use of a metal portable soil analyzer coupled with an efficient statistical procedure enables the required objective to be achieved. Compared to Multiple Linear Regression, the Artificial Neural Networks technique has shown to be an excellent forecasting method, though there is no linear correlation between the variables to be analyzed.

  9. A treatise on benzimidazole based Schiff base metal(II) complexes accentuating their biological efficacy: Spectroscopic evaluation of DNA interactions, DNA cleavage and antimicrobial screening

    Energy Technology Data Exchange (ETDEWEB)

    Kumaravel, Ganesan; Raman, Natarajan, E-mail: ramchem1964@gmail.com

    2017-01-01

    Two novel imidazole derived Schiff bases, (Z)-1-(1H-benzo[d]imidazol-2-yl)-N-benzylidenemethanamine (L{sup 1}) and 1-(1H-benzo[d]imidazol-2-yl)-N-(4-nitrobenzylidene) methanamine, and a series of their transition metal complexes of the types [M(L{sup 1}){sub 2}]Cl{sub 2} and [M(L{sup 2}){sub 2}]Cl{sub 2} where, M = Cu(II), Ni(II), Co(II) and Zn(II) have been designed and synthesized. These compounds were characterized by various spectral and physicochemical data. UV–Vis, magnetic susceptibility and molar conductivity data indicate that all the complexes adopt square planar geometry. The EPR spectral data of the Cu(II) complexes have provided supportive evidence to the conclusion derived on the basis of electronic absorption and magnetic moment values. Moreover, the interaction of complexes with DNA via intercalation has been explored by absorption, fluorescence spectroscopy, cyclic voltammetry, viscosity and circular dichroism. Agarose gel electrophoresis technique reveals that the complexes are good metallonucleases. All the compounds have relatively high antibacterial and antifungal potencies. Among the metal complexes, Cu(II) complexes exhibit higher efficacy against all the pathogens. - Highlights: • Synthesis of new and efficient benzimidazole based DNA targeting complexes • Synthesis of efficient metallointercalators • Excellent DNA exploiting ability of Cu(II) complexes • Efficient antimicrobial agents against various pathogens.

  10. Silver matrix composites reinforced with galvanically silvered particles

    OpenAIRE

    J. Śleziona; J. Wieczorek,

    2007-01-01

    Purpose: The paper presents the possibility of the application of metalic layers drifted with the use of the galvanic methods on the ceramic particles surface. The application of the layers was aimed at obtaining the rewetting of the reinforcing particles with the liquid silver in the course of the producing of silver matrix composites with the use of mechanical stirring method. To enable introducing of the iron powder and glass carbon powder to liquid silver the solution of covering the powd...

  11. The local strength of microscopic alumina reinforcements

    International Nuclear Information System (INIS)

    Žagar, Goran; Pejchal, Václav; Mueller, Martin G.; Rossoll, Andreas; Cantoni, Marco; Mortensen, Andreas

    2015-01-01

    We measure, using an adaptation of a method designed for ceramic ball bearings, the local strength of a brittle second phase that serves to reinforce a metal. The method uses focused ion beam milling and a nanoindentation device, and is free of artifacts commonly present in micromachined specimens. It is demonstrated on Nextel 610™ nanocrystalline alumina fibers embedded in an aluminum matrix composite. Results reveal a size effect that does not follow, across size scales, usual Weibull statistics: the fiber strength distribution differs between measurements at the microscale and macroscopic tensile testing. This implies that, in micromechanical analysis of multiphase materials, highly localized events such as the propagation of internal damage require input data that must be measured at the same, local, microscale as the event; the present work opens a path to this end.

  12. Methods for producing reinforced carbon nanotubes

    Science.gov (United States)

    Ren, Zhifen [Newton, MA; Wen, Jian Guo [Newton, MA; Lao, Jing Y [Chestnut Hill, MA; Li, Wenzhi [Brookline, MA

    2008-10-28

    Methods for producing reinforced carbon nanotubes having a plurality of microparticulate carbide or oxide materials formed substantially on the surface of such reinforced carbon nanotubes composite materials are disclosed. In particular, the present invention provides reinforced carbon nanotubes (CNTs) having a plurality of boron carbide nanolumps formed substantially on a surface of the reinforced CNTs that provide a reinforcing effect on CNTs, enabling their use as effective reinforcing fillers for matrix materials to give high-strength composites. The present invention also provides methods for producing such carbide reinforced CNTs.

  13. Radioactive contamination of recycled metals

    International Nuclear Information System (INIS)

    Lubenau, J.O.; Cool, D.A.; Yusko, J.G.

    1996-01-01

    Radioactive sources commingled with metal scrap have become a major problem for the metals recycling industry worldwide. Worldwide there have been 38 confirmed reports of radioactive sources accidentally smelted with recycled metal. In some instances, contaminated metal products were subsequently distributed. The metal mills, their products and byproducts from the metal making process such as slags, crosses and dusts from furnaces can become contaminated. In the U.S., imported ferrous metal products such as reinforcement bars, pipe flanges, table legs and fencing components have been found contaminated with taco. U.S. steel mills have unintentionally smelted radioactive sources on 16 occasions. The resulting cost for decontamination waste disposal and temporary closure of the steel mill is typically USD 10,000,000 and has been as much as USD 23,000,000. Other metal recycling industries that have been affected by this problem include aluminum, copper, zinc, gold, lead and vanadium. (author)

  14. Screening the best catalyst with group 9, 10 and 11 metals monolayer loading on NbC(001) from first-principles study

    Science.gov (United States)

    Kan, Dongxiao; Zhang, Xilin; Zhang, Yanxing; Yang, Zongxian

    2018-02-01

    The supported catalysts have received great attentions due to their high catalytic activity, low cost and good stability. Here we report the stability, wetting ability, corrosion resistance and catalytic activity of the supported catalysts with group 9, 10 and 11 metals (M = Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au) monolayers (ML) deposited on NbC(001), denoted as MML/NbC(001). The PdML/NbC(001) and PtML/NbC(001) are testified as the most stable and active ones with the former even better on the whole. The catalytic activities toward oxygen reduction reactions (ORR) are clarified by the dissociation and the change in Gibbs free energies for the elementary reaction steps of O2 on PdML/NbC(001).

  15. Screening the possibility for removing cadmium and other heavy metals from wastewater sludge and bio-ashes by an electrodialytic method

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Pedersen, Anne Juul; Hansen, Henrik K.

    2007-01-01

    in wastewater sludge and bio-ashes (straw and wood) using an electrodialytic method. The waste products were treated as stirred suspensions. During the remediation the suspension was acidified from water splitting at the anion exchange membrane and the acidification mobilized Cd that was removed...... with Cd, and the wood ash had a high initial pH (13.3). The mass of wastewater sludge and bio-ashes decreased during treatment but the concentration of other heavy metals (Pb, Ni, Cu and Zn) was not increased to exceed limiting values in remediated matrix.......Both wastewater sludge and fly ash from combustion of biomass (bio-ash) have traditionally been applied to agricultural land in Denmark. However, Cd concentrations often exceed limiting values. The present study is a preliminary investigation of the possibility for reducing the Cd concentration...

  16. Development and characterization of ceramic composites based on alumina-titania reinforced with rare earth oxide (holmium oxide) for the production of inert coatings in metal tanks of petroleum industry; Desenvolvimento e caracterizacao de compositos ceramicos baseados em alumina-titania reforcados com oxido de terra rara (oxido de holmio) para fabricacao de revestimentos inertes em tanques metalicos da industria petrolifera

    Energy Technology Data Exchange (ETDEWEB)

    Silva, N.D.G.; Pontual, J.O.; Ferreira, R.A.S.; Yadava, Y.P., E-mail: nokaa_demery@hotmail.com, E-mail: yadava@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Engenharia Mecanica

    2014-07-01

    Due to the importance of petroleum and its derivatives for modern society, it is necessary to develop technologies that improve processes and transports of petroleum. The crude oil creates hostile environments and in the process of transport and storage of petroleum are used metallic materials, which corrode becoming a critical problem in this industry. One way of solving this problem is the use of ceramics based on alumina as inert coating on hostile environments. In this work was studied a structure, microstructure and mechanical properties of ceramic composite based on Al2O3 - TiO2 reinforced Ho2O3. The composites were produced by a thermomechanical process, sintered at 1350°C, were analyzed by x-ray diffraction, optical microscopy, scanning electron microscopy, and microhardness. Analyses were performed before and after immersion in earth and offshore crude petroleum to study stability of the developed composites and concluded that the ceramic composites immersed in petroleum show stable in hostile environments. (author)

  17. Effect of Lubrication on Sliding Wear of Red Mud Particulate Reinforced Aluminium Alloy 6061

    OpenAIRE

    N. Panwar; R.P. Poonia; G. Singh; R. Dabral; A. Chauhan

    2017-01-01

    In present study, Red mud, an industrial waste, has been utilized as a reinforcement material to fabricate Aluminium 6061 matrix based metal matrix composite. Taguchi L18 orthogonal array has been employed for fabrication of composite castings and for conducting the tribological experimentation. ANOVA analysis has been applied to examine the effect of individual parameters such as sliding condition: dry and wet, reinforcement weight fraction, load, speed, and sliding distance on specific wear...

  18. Transportation and disposal of low-and medium level waste using fiber reinforced concrete overpacks

    International Nuclear Information System (INIS)

    Pech, R.; Verdier, A.

    1993-01-01

    A multiple-year research effort by Cogema culminated in the development of a new process to immobilize nuclear waste in concrete overpacks reinforced with metal fibers. The fiber concrete overpacks satisfy all French safety requirements relating to waste immobilization and disposal, and have been certified by Andra, the national radioactive waste management agency. This presentation will cover the use of the fiber-reinforced concrete overpack for disposal and transportation, and will discuss their fabrication. (J.P.N.)

  19. State-of-the-art of fiber-reinforced polymers in additive manufacturing technologies

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Pedersen, David Bue; Tosello, Guido

    2017-01-01

    Additive manufacturing technologies have received a lot of attention in recent years for their use in multiple materials such as metals, ceramics, and polymers. The aim of this review article is to analyze the technology of fiber-reinforced polymers and its implementation with additive...... manufacturing. This article reviews recent developments, ideas, and state-of-the-art technologies in this field. Moreover, it gives an overview of the materials currently available for fiber-reinforced material technology....

  20. Corrosion of reinforcement bars in steel ibre reinforced concrete structures

    DEFF Research Database (Denmark)

    Solgaard, Anders Ole Stubbe

    and the influence of steel fibres on initiation and propagation of cracks in concrete. Moreover, the impact of fibres on corrosion-induced cover cracking was covered. The impact of steel fibres on propagation of reinforcement corrosion was investigated through studies of their impact on the electrical resistivity...... of concrete, which is known to affect the corrosion process of embedded reinforcement. The work concerning the impact of steel fibres on initiation and propagation of cracks was linked to corrosion initiation and propagation of embedded reinforcement bars via additional studies. Cracks in the concrete cover...... are known to alter the ingress rate of depassivating substances and thereby influence the corrosion process. The Ph.D. study covered numerical as well as experimental studies. Electrochemically passive steel fibres are electrically isolating thus not changing the electrical resistivity of concrete, whereas...

  1. Performances of carbon-based screen-printed electrodes modified by diazonium salts with various carboxylic functions for trace metal sensors

    International Nuclear Information System (INIS)

    Bouden, Sarra; Bellakhal, Nizar; Chausse, Annie; Vautrin-Ul, Christine

    2014-01-01

    The electrochemically induced functionalization of carbon-based screen-printed-electrodes (SPEs) by phenyl groups, having one or two carboxylic functions, was achieved by reduction of in situ generated diazonium salts in aqueous media. The corresponding diazonium cations of 4-aminobenzoic acid, 4-aminophthalic acid, 3-(4-aminophenyl) propionic acid, 3-(4-aminophenyl)-2-propenoic acid and 5-aminoisophthalic acid were generated in situ with sodium nitrite in aqueous H_2SO_4. The electrochemical detection of Pb(II) with the grafted SPEs was investigated using Pb(II) 5 * 10"-"8 M solutions. The performances of the grafted SPEs were found to be dependent on the number of carboxylic groups, on their position on the phenyl ring, on the olefinic or the aliphatic character of the chain bearing the carboxylic group. The performances of mono-4-carboxyphenyl and 3,5-dicarboxyphenyl grafted SPEs for Cd(II) and Cu(II) trace detection were tested and compared. (authors)

  2. Materials space of solid-state electrolytes: unraveling chemical composition-structure-ionic conductivity relationships in garnet-type metal oxides using cheminformatics virtual screening approaches.

    Science.gov (United States)

    Kireeva, Natalia; Pervov, Vladislav S

    2017-08-09

    The organic electrolytes of most current commercial rechargeable Li-ion batteries (LiBs) are flammable, toxic, and have limited electrochemical energy windows. All-solid-state battery technology promises improved safety, cycling performance, electrochemical stability, and possibility of device miniaturization and enables a number of breakthrough technologies towards the development of new high power and energy density microbatteries for electronics with low processing cost, solid oxide fuel cells, electrochromic devices, etc. Currently, rational materials design is attracting significant attention, which has resulted in a strong demand for methodologies that can accelerate the design of materials with tailored properties; cheminformatics can be considered as an efficient tool in this respect. This study was focused on several aspects: (i) identification of the parameters responsible for high Li-ion conductivity in garnet structured oxides; (ii) development of quantitative models to elucidate composition-structure-Li ionic conductivity relationships, taking into account the experimental details of sample preparation; (iii) circumscription of the materials space of solid garnet-type electrolytes, which is attractive for virtual screening. Several candidate compounds have been recommended for synthesis as potential solid state electrolyte materials.

  3. Processing and characterisation of novel metal-reinforced Al{sub 2}O{sub 3}-composites; Herstellung und Charakterisierung neuartiger metallverstaerkter Al{sub 2}O{sub 3}-Verbundwerkstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, R. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Werkstofforschung

    1999-07-01

    Using a new processing route, Al{sub 2}O{sub 3}-based ceramic composites have been prepared, that consist of 3-d networks of the ceramic and different metallic phases. The damage tolerance of these composites could be significantly improved over monolithic Al{sub 2}O{sub 3}: fracture strength and fracture toughness were increased by a factor of 4 up to 1393 MPa and 11.8 MPa {radical}(m), respectively. Similarly, resistance against abrasive wear was successfully improved by a factor of two over monolithic Al{sub 2}O{sub 3}. In combination with the good electrical and thermal conductivity, these superior mechanical properties are of great interest for automotive and biomedical industries. (orig.) [German] Mit einem neu entwickelten Verfahren werden keramische Al{sub 2}O{sub 3}-Verbundwerkstoffe hergestellt, die sich durch eine dreidimensionale Vernetzung der (inter)metallischen und der keramischen Phase auszeichnen. Die Schadenstoleranz derartiger Verbundwerkstoffe konnte im Vergleich zu monolithischer Al{sub 2}O{sub 3}-Keramik deutlich gesteigert werden: Die Bruchfestigkeit und die Bruchzaehigkeit wurden jeweils um einen Faktor 4 auf 1393 MPa bzw. 11,8 MPa {radical}(m) erhoeht, die Abriebfestigkeit um einen Faktor 2 verbessert. In Kombination mit der elektrischen und thermischen Leitfaehigkeit sind diese aussergewoehnlichen mechanischen Eigenschaften in Automobilbau und in der Medizintechnik von grossem Interesse. (orig.)

  4. Carbon Fiber Reinforced Polymer Grids for Shear and End Zone Reinforcement in Bridge Beams

    Science.gov (United States)

    2018-01-01

    Corrosion of reinforcing steel reduces life spans of bridges throughout the United States; therefore, using non-corroding carbon fiber reinforced polymer (CFRP) reinforcement is seen as a way to increase service life. The use of CFRP as the flexural ...

  5. Health monitoring of precast bridge deck panels reinforced with glass fiber reinforced polymer (GFRP) bars.

    Science.gov (United States)

    2012-03-01

    The present research project investigates monitoring concrete precast panels for bridge decks that are reinforced with Glass Fiber Reinforced Polymer (GFRP) bars. Due to the lack of long term research on concrete members reinforced with GFRP bars, lo...

  6. Screening the possibility for removing cadmium and other heavy metals from wastewater sludge and bio-ashes by an electrodialytic method

    International Nuclear Information System (INIS)

    Ottosen, Lisbeth M.; Pedersen, Anne J.; Hansen, Henrik K.; Ribeiro, Alexandra B.

    2007-01-01

    Both wastewater sludge and fly ash from combustion of biomass (bio-ash) have traditionally been applied to agricultural land in Denmark. However, Cd concentrations often exceed limiting values. The present study is a preliminary investigation of the possibility for reducing the Cd concentration in wastewater sludge and bio-ashes (straw and wood) using an electrodialytic method. The waste products were treated as stirred suspensions. During the remediation the suspension was acidified from water splitting at the anion exchange membrane and the acidification mobilized Cd that was removed to the electrode compartments. Even though the matrices were very different the remediation was successful in all cases. After treatment the Cd concentration in the ashes allowed for spreading at agricultural land and the limiting concentration of 0.8 mg Cd/kg for the wastewater sludge was almost reached (0.84 and 0.88 mg Cd/kg). The main differences of the waste products influencing the remediation process were: the sludges had a high content of organic particles that were mobilized by electrophoresis and fouled the anion exchange membrane; the straw-ash contained a lot of chloride, which formed anionic complexes with Cd, and the wood ash had a high initial pH (13.3). The mass of wastewater sludge and bio-ashes decreased during treatment but the concentration of other heavy metals (Pb, Ni, Cu and Zn) was not increased to exceed limiting values in remediated matrix

  7. The Electronic Structures and Optical Properties of Alkaline-Earth Metals Doped Anatase TiO2: A Comparative Study of Screened Hybrid Functional and Generalized Gradient Approximation.

    Science.gov (United States)

    Ma, Jin-Gang; Zhang, Cai-Rong; Gong, Ji-Jun; Wu, You-Zhi; Kou, Sheng-Zhong; Yang, Hua; Chen, Yu-Hong; Liu, Zi-Jiang; Chen, Hong-Shan

    2015-08-24

    Alkaline-earth metallic dopant can improve the performance of anatase TiO2 in photocatalysis and solar cells. Aiming to understand doping mechanisms, the dopant formation energies, electronic structures, and optical properties for Be, Mg, Ca, Sr, and Ba doped anatase TiO2 are investigated by using density functional theory calculations with the HSE06 and PBE functionals. By combining our results with those of previous studies, the HSE06 functional provides a better description of electronic structures. The calculated formation energies indicate that the substitution of a lattice Ti with an AEM atom is energetically favorable under O-rich growth conditions. The electronic structures suggest that, AEM dopants shift the valence bands (VBs) to higher energy, and the dopant-state energies for the cases of Ca, Sr, and Ba are quite higher than Fermi levels, while the Be and Mg dopants result into the spin polarized gap states near the top of VBs. The components of VBs and dopant-states support that the AEM dopants are active in inter-band transitions with lower energy excitations. As to optical properties, Ca/Sr/Ba are more effective than Be/Mg to enhance absorbance in visible region, but the Be/Mg are superior to Ca/Sr/Ba for the absorbance improvement in near-IR region.

  8. The Electronic Structures and Optical Properties of Alkaline-Earth Metals Doped Anatase TiO2: A Comparative Study of Screened Hybrid Functional and Generalized Gradient Approximation

    Directory of Open Access Journals (Sweden)

    Jin-Gang Ma

    2015-08-01

    Full Text Available Alkaline-earth metallic dopant can improve the performance of anatase TiO2 in photocatalysis and solar cells. Aiming to understand doping mechanisms, the dopant formation energies, electronic structures, and optical properties for Be, Mg, Ca, Sr, and Ba doped anatase TiO2 are investigated by using density functional theory calculations with the HSE06 and PBE functionals. By combining our results with those of previous studies, the HSE06 functional provides a better description of electronic structures. The calculated formation energies indicate that the substitution of a lattice Ti with an AEM atom is energetically favorable under O-rich growth conditions. The electronic structures suggest that, AEM dopants shift the valence bands (VBs to higher energy, and the dopant-state energies for the cases of Ca, Sr, and Ba are quite higher than Fermi levels, while the Be and Mg dopants result into the spin polarized gap states near the top of VBs. The components of VBs and dopant-states support that the AEM dopants are active in inter-band transitions with lower energy excitations. As to optical properties, Ca/Sr/Ba are more effective than Be/Mg to enhance absorbance in visible region, but the Be/Mg are superior to Ca/Sr/Ba for the absorbance improvement in near-IR region.

  9. Screening the Effect of Water Vapour on Gas Adsorption Performance: Application to CO2 Capture from Flue Gas in Metal-Organic Frameworks.

    Science.gov (United States)

    Chanut, Nicolas; Bourrelly, Sandrine; Kuchta, Bogdan; Serre, Christian; Chang, Jong-San; Wright, Paul A; Llewellyn, Philip L

    2017-04-10

    A simple laboratory-scale protocol that enables the evaluation of the effect of adsorbed water on CO 2 uptake is proposed. 45 metal-organic frameworks (MOFs) were compared against reference zeolites and active carbons. It is possible to classify materials with different trends in CO 2 uptake with varying amounts of pre-adsorbed water, including cases in which an increase in CO 2 uptake is observed for samples with a given amount of pre-adsorbed water. Comparing loss in CO 2 uptake between "wet" and "dry" samples with the Henry constant calculated from the water adsorption isotherm results in a semi-logarithmic trend for the majority of samples allowing predictions to be made. Outliers from this trend may be of particular interest and an explanation for the behaviour for each of the outliers is proposed. This thus leads to propositions for designing or choosing MOFs for CO 2 capture in applications where humidity is present. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Role of Firing Temperature, Sheet Resistance, and Contact Area in Contact Formation on Screen-Printed Metal Contact of Silicon Solar Cell

    Science.gov (United States)

    Ahmad, Samir Mahmmod; Leong, Cheow Siu; Sopian, K.; Zaidi, Saleem H.

    2018-03-01

    Formation of an Ohmic contact requires a suitable firing temperature, appropriate doping profile, and contact dimensions within resolution limits of the screen-printing process. In this study, the role of the peak firing temperature in standard rapid thermal annealing (RTA) six-zone conveyor belt furnace (CBF) and two inexpensive alternate RTA systems [a custom-designed, three-zone, 5″-diameter quartz tube furnace (QTF) and a tabletop, 3″-diameter rapid thermal processing (RTP)] has been investigated. In addition, the role of sheet resistance and contact area in achieving low-resistance ohmic contacts has been examined. Electrical measurements of ohmic contacts between silver paste/ n +-emitter layer with varying sheet resistances and aluminum paste/ p-doped wafer were carried out in transmission line method configuration. Experimental measurements of the contact resistivity ( ρ c) exhibited the lowest values for CBF at 0.14 mΩ cm2 for Ag and 100 mΩ cm2 for Al at a peak firing temperature of 870°C. For the QTF configuration, lowest measured contact resistivities were 3.1 mΩ cm2 for Ag and 74.1 mΩ cm2 for Al at a peak firing temperature of 925°C. Finally, for the RTP configuration, lowest measured contact resistivities were 1.2 mΩ cm2 for Ag and 68.5 mΩ cm2 for Al at a peak firing temperature of 780°C. The measured contact resistivity exhibits strong linear dependence on sheet resistance. The contact resistivity for Ag decreases with contact area, while for Al the opposite behavior is observed.

  11. The power reinforcement framework revisited

    DEFF Research Database (Denmark)

    Nielsen, Jeppe; Andersen, Kim Normann; Danziger, James N.

    2016-01-01

    Whereas digital technologies are often depicted as being capable of disrupting long-standing power structures and facilitating new governance mechanisms, the power reinforcement framework suggests that information and communications technologies tend to strengthen existing power arrangements within...... public organizations. This article revisits the 30-yearold power reinforcement framework by means of an empirical analysis on the use of mobile technology in a large-scale programme in Danish public sector home care. It explores whether and to what extent administrative management has controlled decision......-making and gained most benefits from mobile technology use, relative to the effects of the technology on the street-level workers who deliver services. Current mobile technology-in-use might be less likely to be power reinforcing because it is far more decentralized and individualized than the mainly expert...

  12. Lung Nodule Detection via Deep Reinforcement Learning

    Directory of Open Access Journals (Sweden)

    Issa Ali

    2018-04-01

    Full Text Available Lung cancer is the most common cause of cancer-related death globally. As a preventive measure, the United States Preventive Services Task Force (USPSTF recommends annual screening of high risk individuals with low-dose computed tomography (CT. The resulting volume of CT scans from millions of people will pose a significant challenge for radiologists to interpret. To fill this gap, computer-aided detection (CAD algorithms may prove to be the most promising solution. A crucial first step in the analysis of lung cancer screening results using CAD is the detection of pulmonary nodules, which may represent early-stage lung cancer. The objective of this work is to develop and validate a reinforcement learning model based on deep artificial neural networks for early detection of lung nodules in thoracic CT images. Inspired by the AlphaGo system, our deep learning algorithm takes a raw CT image as input and views it as a collection of states, and output a classification of whether a nodule is present or not. The dataset used to train our model is the LIDC/IDRI database hosted by the lung nodule analysis (LUNA challenge. In total, there are 888 CT scans with annotations based on agreement from at least three out of four radiologists. As a result, there are 590 individuals having one or more nodules, and 298 having none. Our training results yielded an overall accuracy of 99.1% [sensitivity 99.2%, specificity 99.1%, positive predictive value (PPV 99.1%, negative predictive value (NPV 99.2%]. In our test, the results yielded an overall accuracy of 64.4% (sensitivity 58.9%, specificity 55.3%, PPV 54.2%, and NPV 60.0%. These early results show promise in solving the major issue of false positives in CT screening of lung nodules, and may help to save unnecessary follow-up tests and expenditures.

  13. Screen dealing

    International Nuclear Information System (INIS)

    Barlow, J.W.

    1991-01-01

    The screen dealing system provides a facility whereby buyers and sellers of spot thermal coal can make bids and offers via the medium of the Reuters screen. A sale results when a market participant notifies his acceptance of a price to a central dealing desk. Use of the system is available to all genuine participants in the coal trade. This paper reports that it provides a focus for information and for the visible making of coal prices. For years screen trading has been used successfully to trade other commodities. At last coal is being traded electronically. It makes sense. It works. Users like it

  14. The influence of stiffeners on axial crushing of glass-fabric-reinforced epoxy composite shells

    Directory of Open Access Journals (Sweden)

    A. Vasanthanathan

    2017-01-01

    Full Text Available A generic static and impact experimental procedure has been developed in this work aimed at improving the stability of glass fabric reinforced epoxy shell structures by bonding with axial stiffeners. Crashworthy structures fabricated from composite laminate with stiffeners would offer energy absorption superior to metallic structures under compressive loading situations. An experimental material characterisation of the glass fabric reinforced epoxy composite under uni-axial tension has been carried out in this study. This work provides a numerical simulation procedure to describe the static and dynamic response of unstiffened glass fabric reinforced epoxy composite shell (without stiffeners and stiffened glass fabric reinforced epoxy composite shell (with axial stiffeners under static and impact loading using the Finite Element Method. The finite element calculation for the present study was made with ANSYS®-LS-DYNA® software. Based upon the experimental and numerical investigations, it has been asserted that glass fabric reinforced epoxy shells stiffened with GFRP stiffeners are better than unstiffened glass fabric reinforced epoxy shell and glass fabric reinforced epoxy shell stiffened with aluminium stiffeners. The failure surfaces of the glass fabric reinforced epoxy composite shell structures tested under impact were examined by SEM.

  15. Laser deposition of carbide-reinforced coatings

    International Nuclear Information System (INIS)

    Cerri, W.; Martinella, R.; Mor, G.P.; Bianchi, P.; D'Angelo, D.

    1991-01-01

    CO 2 laser cladding with blown powder presents many advantages: fusion bonding with the substrate with low dilution, metallurgical continuity in the metallic matrix, high solidification rates, ease of automation, and reduced environmental contamination. In the present paper, laser cladding experimental results using families of carbides (tungsten and titanium) mixed with metallic alloys are reported. As substrates, low alloy construction steel (AISI 4140) (austenitic stainless steel) samples have been utilized, depending on the particular carbide reinforcement application. The coating layers obtained have been characterized by metallurgical examination. They show low dilution, absence of cracks, and high abrasion resistance. The WC samples, obtained with different carbide sizes and percentages, have been characterized with dry and rubber wheel abrasion tests and the specimen behaviour has been compared with the behaviour of materials used for similar applications. The abrasion resistance proved to be better than that of other widely used hardfacing materials and the powder morphology have a non-negligible influence on the tribological properties. (orig.)

  16. Airport Screening

    Science.gov (United States)

    Health Physics Society Specialists in Radiation Safety Airport Screening Fact Sheet Adopted: May 2011 Photo courtesy of Dan ... a safe level. An American National Standards Institute/Health Physics Society industry standard states that the maxi- mum ...

  17. Hypertension screening

    Science.gov (United States)

    Foulke, J. M.

    1975-01-01

    An attempt was made to measure the response to an announcement of hypertension screening at the Goddard Space Center, to compare the results to those of previous statistics. Education and patient awareness of the problem were stressed.

  18. Carrier Screening

    Science.gov (United States)

    ... How accurate is carrier screening? No test is perfect. In a small number of cases, test results ... in which an egg is removed from a woman’s ovary, fertilized in a laboratory with the man’s ...

  19. Bulk metallic glass matrix composites

    International Nuclear Information System (INIS)

    Choi-Yim, H.; Johnson, W.L.

    1997-01-01

    Composites with a bulk metallic glass matrix were synthesized and characterized. This was made possible by the recent development of bulk metallic glasses that exhibit high resistance to crystallization in the undercooled liquid state. In this letter, experimental methods for processing metallic glass composites are introduced. Three different bulk metallic glass forming alloys were used as the matrix materials. Both ceramics and metals were introduced as reinforcement into the metallic glass. The metallic glass matrix remained amorphous after adding up to a 30 vol% fraction of particles or short wires. X-ray diffraction patterns of the composites show only peaks from the second phase particles superimposed on the broad diffuse maxima from the amorphous phase. Optical micrographs reveal uniformly distributed particles in the matrix. The glass transition of the amorphous matrix and the crystallization behavior of the composites were studied by calorimetric methods. copyright 1997 American Institute of Physics

  20. Fibre reinforced composites '84; Proceedings of the International Conference, University of Liverpool, England, April 3-5, 1984

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    Among the topics discussed are phenolic resin matrix composites for high temperature and fire-exposure applications, novel resins for fiber-reinforced composite productivity improvement, the use of engineering textiles for mechanical property improvement in composites, the significance of aramid fiber reinforcement in composites, the energy absorption properties of Sheet Metal Compounds (SMCs) under crash conditions, and SMC impact behavior variations with temperature. Also covered are CFRP applications in high performance structures, composite helicopter main rotor blade technology, composite vehicular leaf springs, carbon fiber-reinforced thermoplastics, filament winding development status, the injection processing of fiber-reinforced thermoplastics, civil aircraft composite structure certification, composite radomes, design procedures for short fiber-reinforced thermoplastics, the strength limitations of mechanically fastened lap joints, environmental fatigue and creep in glass-reinforced materials, the effects of moisture on high performance laminates, the environmental behavior of SMC, and corrugated composites.

  1. Screening for deformed teeth; Screening for saere taender

    Energy Technology Data Exchange (ETDEWEB)

    Vermeulen, A.; Dall, P.C.; Hansen, F.G.

    1996-04-01

    Water pollution by pesticides and heavy metals causes sublethal effects in larvae of the Chironomidae midges. These effects are particularly noticeable in the deformities of the oral parts and antennae. Possibilities of using these deformities for the purpose of water/sediment biomonitoring are very promising. Here the first results of screening in a Danish stream are presented. (EG) 9 refs.

  2. Nanocellulose reinforcement of Transparent Composites

    Science.gov (United States)

    Joshua Steele; Hong Dong; James F. Snyder; Josh A. Orlicki; Richard S. Reiner; Alan W. Rudie

    2012-01-01

    In this work, we evaluate the impact of nanocellulose reinforcement on transparent composite properties. Due to the small diameter, high modulus, and high strength of cellulose nanocrystals, transparent composites that utilize these materials should show improvement in bulk mechanical performances without a corresponding reduction in optical properties. In this study...

  3. Silica reinforced triblock copolymer gels

    DEFF Research Database (Denmark)

    Theunissen, E.; Overbergh, N.; Reynaers, H.

    2004-01-01

    The effect of silica and polymer coated silica particles as reinforcing agents on the structural and mechanical properties of polystyrene-poly(ethylene/butylene)-polystyrene (PS-PEB-PS) triblock gel has been investigated. Different types of chemically modified silica have been compared in order...

  4. Reinforcement learning in supply chains.

    Science.gov (United States)

    Valluri, Annapurna; North, Michael J; Macal, Charles M

    2009-10-01

    Effective management of supply chains creates value and can strategically position companies. In practice, human beings have been found to be both surprisingly successful and disappointingly inept at managing supply chains. The related fields of cognitive psychology and artificial intelligence have postulated a variety of potential mechanisms to explain this behavior. One of the leading candidates is reinforcement learning. This paper applies agent-based modeling to investigate the comparative behavioral consequences of three simple reinforcement learning algorithms in a multi-stage supply chain. For the first time, our findings show that the specific algorithm that is employed can have dramatic effects on the results obtained. Reinforcement learning is found to be valuable in multi-stage supply chains with several learning agents, as independent agents can learn to coordinate their behavior. However, learning in multi-stage supply chains using these postulated approaches from cognitive psychology and artificial intelligence take extremely long time periods to achieve stability which raises questions about their ability to explain behavior in real supply chains. The fact that it takes thousands of periods for agents to learn in this simple multi-agent setting provides new evidence that real world decision makers are unlikely to be using strict reinforcement learning in practice.

  5. Stability of reinforced cemented backfills

    International Nuclear Information System (INIS)

    Mitchell, R.J.; Stone, D.M.

    1987-01-01

    Mining with backfill has been the subject of several international meetings in recent years and a considerable research effort is being applied to improve both mining economics and ore recovery by using backfill for ground support. Classified mill tailings sands are the most commonly used backfill material but these fine sands must be stabilized before full ore pillar recovery can be achieved. Normal portland cement is generally used for stabilization but the high cost of cement prohibits high cement usage. This paper considers the use of reinforcements in cemented fill to reduce the cement usage. It is concluded that strong cemented layers at typical spacings of about 3 meters in a low cement content bulk fill can reinforce the fill and reduce the overall cement usage. Fibre reinforcements introduced into strong layers or into bulk fills are also known to be effective in reducing cement usage. Some development work is needed to produce the ideal type of anchored fibre in order to realize economic gains from fibre-reinforced fills

  6. Adaptive representations for reinforcement learning

    NARCIS (Netherlands)

    Whiteson, S.

    2010-01-01

    This book presents new algorithms for reinforcement learning, a form of machine learning in which an autonomous agent seeks a control policy for a sequential decision task. Since current methods typically rely on manually designed solution representations, agents that automatically adapt their own

  7. Metal Matrix Composite Solar Cell Metallization

    Directory of Open Access Journals (Sweden)

    Wilt David M.

    2017-01-01

    Full Text Available Advanced solar cells are moving to ever thinner formats in order to save mass and in some cases improve performance. As cells are thinned, the possibility that they may fracture or cleave due to mechanical stresses is increased. Fractures of the cell can degrade the overall device performance if the fracture propagates through the contact metallization, which frequently occurs. To address this problem, a novel semiconductor metallization system based on multi-walled carbon nanotube (CNT reinforcement, termed metal matrix composite (MMC metallization is under investigation. Electro-mechanical characterization of MMC films demonstrate their ability to provide electrical conductivity over >40 micron wide cracks in the underlying semiconductor, with the carbon nanotubes bridging the gap. In addition, these materials show a “self-healing” behaviour, electrically reconnecting at ~30 microns when strained past failure. Triple junction (TJ space cells with MMC metallization demonstrated no loss in Jsc after intentional fracture, whereas TJ cells with conventional metallization suffer up to 50% Jsc loss.

  8. Depression, Activity, and Evaluation of Reinforcement

    Science.gov (United States)

    Hammen, Constance L.; Glass, David R., Jr.

    1975-01-01

    This research attempted to find the causal relation between mood and level of reinforcement. An effort was made to learn what mood change might occur if depressed subjects increased their levels of participation in reinforcing activities. (Author/RK)

  9. Learning alternative movement coordination patterns using reinforcement feedback.

    Science.gov (United States)

    Lin, Tzu-Hsiang; Denomme, Amber; Ranganathan, Rajiv

    2018-05-01

    One of the characteristic features of the human motor system is redundancy-i.e., the ability to achieve a given task outcome using multiple coordination patterns. However, once participants settle on using a specific coordination pattern, the process of learning to use a new alternative coordination pattern to perform the same task is still poorly understood. Here, using two experiments, we examined this process of how participants shift from one coordination pattern to another using different reinforcement schedules. Participants performed a virtual reaching task, where they moved a cursor to different targets positioned on the screen. Our goal was to make participants use a coordination pattern with greater trunk motion, and to this end, we provided reinforcement by making the cursor disappear if the trunk motion during the reach did not cross a specified threshold value. In Experiment 1, we compared two reinforcement schedules in two groups of participants-an abrupt group, where the threshold was introduced immediately at the beginning of practice; and a gradual group, where the threshold was introduced gradually with practice. Results showed that both abrupt and gradual groups were effective in shifting their coordination patterns to involve greater trunk motion, but the abrupt group showed greater retention when the reinforcement was removed. In Experiment 2, we examined the basis of this advantage in the abrupt group using two additional control groups. Results showed that the advantage of the abrupt group was because of a greater number of practice trials with the desired coordination pattern. Overall, these results show that reinforcement can be successfully used to shift coordination patterns, which has potential in the rehabilitation of movement disorders.

  10. Development and characterization of ceramic composites alumina-titania based reinforced with lanthanum oxide for fabrication of inert coatings for metallic tanks of the oil industry; Desenvolvimento e caracterizacao de compositos ceramicos baseados em alumina-titania reforcados com oxido de lantanio para fabricacao de revestimentos inertes em tanques metalicos da industria petrolifera

    Energy Technology Data Exchange (ETDEWEB)

    Bandeira, J.M.; Yadava, Y.P.; Silva, N.D.G.; Ferreira, R.A.S., E-mail: julianamb91@gmail.com, E-mail: yadava@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Centro de Tecnologia e Geociencias. Departamento de Engenharia Mecanica

    2016-07-01

    Crude petroleum is highly corrosive causing superficial degradation in metallic tanks used for storage and transportation of this material, which causes a serious problem in the oil industry. An alternative to solve this problem is to use some kind of coating that is inert to this kind of corrosion. Alumina and titania are interesting materials for several engineering applications because, when compared with other ceramic materials, they present superior mechanical properties, e.g. high mechanical strength, good chemical stability and high fracture toughness combined with good wear resistance and a coefficient of thermal expansion close to the iron's, which makes them fit to use in ceramic hardening process and coating. In this paper, alumina-titania ceramic composites with 5%, 10%, 15% and 20% of titania (TiO2) and reinforced with 2% of lanthanum oxide of were produced by thermo-mechanical processing and sintering techniques at 1350 deg C. In these composites, microstructure and mechanical properties were analyzed using X-ray spectroscopy, optical microscopy, scanning electron microscopy and Vickers hardness in order to evaluate their applicability. X-ray spectroscopy showed the formation of composite without the presence of other phases. Optical microscopy and scanning electron microscopy showed a homogeneous microstructure in terms of particle size and distribution. Vickers hardness test showed a gradual decrease in hardness with the addition of titania. The composite with 5% of titania and 2% of lanthanum oxide is the best choice for structural applications. The composites were submerged in crude petroleum for 30 days to study their stability in such environment. Through the analysis of X-ray spectroscopy, optical microscopy and Vickers hardness before and after the submersion in crude petroleum, it was not observed structural or microstructural degradation nether alterations in mechanical properties. This way, it was concluded that these composites have

  11. Rational and Mechanistic Perspectives on Reinforcement Learning

    Science.gov (United States)

    Chater, Nick

    2009-01-01

    This special issue describes important recent developments in applying reinforcement learning models to capture neural and cognitive function. But reinforcement learning, as a theoretical framework, can apply at two very different levels of description: "mechanistic" and "rational." Reinforcement learning is often viewed in mechanistic terms--as…

  12. Conditioned Reinforcement Value and Resistance to Change

    Science.gov (United States)

    Shahan, Timothy A.; Podlesnik, Christopher A.

    2008-01-01

    Three experiments examined the effects of conditioned reinforcement value and primary reinforcement rate on resistance to change using a multiple schedule of observing-response procedures with pigeons. In the absence of observing responses in both components, unsignaled periods of variable-interval (VI) schedule food reinforcement alternated with…

  13. Corrosion and tribological properties of basalt fiber reinforced composite materials

    Science.gov (United States)

    Ha, Jin Cheol; Kim, Yun-Hae; Lee, Myeong-Hoon; Moon, Kyung-Man; Park, Se-Ho

    2015-03-01

    This experiment has examined the corrosion and tribological properties of basalt fiber reinforced composite materials. There were slight changes of weight after the occurring of corrosion based on time and H2SO4 concentration, but in general, the weight increased. It is assumed that this happens due to the basalt fiber precipitate. Prior to the corrosion, friction-wear behavior showed irregular patterns compared to metallic materials, and when it was compared with the behavior after the corrosion, the coefficient of friction was 2 to 3 times greater. The coefficient of friction of all test specimen ranged from 0.1 to 0.2. Such a result has proven that the basalt fiber, similar to the resin rubber, shows regular patterns regardless of time and H2SO4 concentration because of the space made between resins and reinforced materials.

  14. Luminescent screens

    International Nuclear Information System (INIS)

    Lu, C.-I.

    1982-01-01

    Luminescent screens which are useful for such purposes as intensifying screens for radiographs are comprised of a support bearing a layer of finely divided particles of a phosphor dispersed in a cross-linked polymeric matrix formed by heat-curing of a coating composition comprising an unsaturated cross-linkable polymer, a polymerizable acrylic monomer, a thermoplastic polyurethane elastomer, and a heat-activatable polymerization initiator. The phosphor layer includes voids formed by evaporation of an evaporable component which is present in the coating composition from which such layer is formed. (author)

  15. Effects of partial reinforcement and time between reinforced trials on terminal response rate in pigeon autoshaping.

    Science.gov (United States)

    Gottlieb, Daniel A

    2006-03-01

    Partial reinforcement often leads to asymptotically higher rates of responding and number of trials with a response than does continuous reinforcement in pigeon autoshaping. However, comparisons typically involve a partial reinforcement schedule that differs from the continuous reinforcement schedule in both time between reinforced trials and probability of reinforcement. Two experiments examined the relative contributions of these two manipulations to asymptotic response rate. Results suggest that the greater responding previously seen with partial reinforcement is primarily due to differential probability of reinforcement and not differential time between reinforced trials. Further, once established, differences in responding are resistant to a change in stimulus and contingency. Secondary response theories of autoshaped responding (theories that posit additional response-augmenting or response-attenuating mechanisms specific to partial or continuous reinforcement) cannot fully accommodate the current body of data. It is suggested that researchers who study pigeon autoshaping train animals on a common task prior to training them under different conditions.

  16. Alcohol Use Screening

    Science.gov (United States)

    ... Depression Screening Substance Abuse Screening Alcohol Use Screening Alcohol Use Screening (AUDIT-C) - Instructions The following questions ... this tool, there is also text-only version . Alcohol Use Screening (AUDIT-C) - Manual Instructions The following ...

  17. Metal Matrix Composite Material by Direct Metal Deposition

    Science.gov (United States)

    Novichenko, D.; Marants, A.; Thivillon, L.; Bertrand, P. H.; Smurov, I.

    Direct Metal Deposition (DMD) is a laser cladding process for producing a protective coating on the surface of a metallic part or manufacturing layer-by-layer parts in a single-step process. The objective of this work is to demonstrate the possibility to create carbide-reinforced metal matrix composite objects. Powders of steel 16NCD13 with different volume contents of titanium carbide are tested. On the base of statistical analysis, a laser cladding processing map is constructed. Relationships between the different content of titanium carbide in a powder mixture and the material microstructure are found. Mechanism of formation of various precipitated titanium carbides is investigated.

  18. Development of novel Mg–Ni60Nb40 amorphous particle reinforced composites with enhanced hardness and compressive response

    International Nuclear Information System (INIS)

    Jayalakshmi, S.; Sahu, Shreyasi; Sankaranarayanan, S.; Gupta, Sujasha; Gupta, M.

    2014-01-01

    Development of amorphous alloy/glassy particle reinforced light metal composites is an emerging research field. In this investigation, we have synthesized and characterized Ni 60 Nb 40 amorphous alloy particle reinforced Mg-composites with varying volume fractions. Microwave-assisted two-directional rapid sintering technique followed by hot extrusion was used to produce these pure Mg-based composites. The structural and mechanical properties of the developed composites were investigated, and are discussed using structure–property relationship. Structural analysis indicated the retention of amorphous structure of the reinforcement in all the composites. It was found that the distribution of the reinforcement was strongly dependent on the volume fraction (V f ). The addition of Ni 60 Nb 40 amorphous alloy particles modified the preferred crystal orientation of Mg, as was observed from X-ray diffraction (XRD) analysis. The composites showed significant improvement in hardness (increment up to 120%) and compressive strength (∼85% increase at 5% V f ). Comparison of mechanical properties of the developed composites with those of conventional Mg-composites having ceramic/metallic reinforcements, highlight the effectiveness of using amorphous particles as promising reinforcement materials. - Highlights: • Novel Mg-composites reinforced with Ni 60 Nb 40 amorphous particles were developed . • Microwave sintering and hot extrusion were used to synthesize the composites. • Reinforcements retained the amorphous structure, and changed Mg-crystal orientation. • Composites showed significant enhancement in hardness and compressive properties. • Performance of developed composites are superior/competitive to conventional MMCs

  19. Woodflour as Reinforcement of Polypropylene

    Directory of Open Access Journals (Sweden)

    José Cláudio Caraschi

    2002-10-01

    Full Text Available The effect of the filler content and size, as well as accelerated aging on the mechanical properties of polypropylene composites reinforced with woodflour (WF/PP were evaluated. The composites were prepared by the extrusion of polypropylene with woodflour (Pinus elliotti based on following ratios: 15, 25 and 40 wt% with two different granulometries. The specimens were injection molded according to ASTM standards. The composite properties did not show significant differences as a function of the filler granulometry. We also observed that by increasing the filler content, both the mechanical properties and the melt flow index (MFI decreased, and the elasticity modulus, hardness and density increased. Concerning the accelerated aging, the composite presented a reduction in tensile properties. The results showed that the composite properties are extremely favorable when compared to other commercial systems reinforced by inorganic fillers.

  20. Hearing Screening

    Science.gov (United States)

    Johnson-Curiskis, Nanette

    2012-01-01

    Hearing levels are threatened by modern life--headsets for music, rock concerts, traffic noises, etc. It is crucial we know our hearing levels so that we can draw attention to potential problems. This exercise requires that students receive a hearing screening for their benefit as well as for making the connection of hearing to listening.

  1. Vision Screening

    Science.gov (United States)

    ... an efficient and cost-effective method to identify children with visual impairment or eye conditions that are likely to lead ... main goal of vision screening is to identify children who have or are at ... visual impairment unless treated in early childhood. Other problems that ...

  2. Carbon fiber reinforced asphalt concrete

    International Nuclear Information System (INIS)

    Jahromi, Saeed G.

    2008-01-01

    Fibers are often used in the manufacture of other materials. For many years, they have been utilized extensively in numerous applications in civil engineering. Fiber-reinforcement refers to incorporating materials with desired properties within some other materials lacking those properties. Use of fibers is not a new phenomenon, as the technique of fiber-reinforced bitumen began early as 1950. In all industrialized countries today, nearly all concretes used in construction are reinforced. A multitude of fibers and fiber materials are being introduced in the market regularly. The present paper presents characteristics and properties of carbon fiber-reinforced asphalt mixtures, which improve the performance of pavements. To evaluate the effect of fiber contents on bituminous mixtures, laboratory investigations were carried out on the samples with and without fibers. During the course of this study, various tests were undertaken, applying Marshall Test indirect tensile test, creep test and resistance to fatigue cracking by using repeated load indirect tensile test. Carbon fiber exhibited consistency in results and as such it was observed that the addition of fiber does affect the properties of bituminous mixtures, i.e. an increase in its stability and decrease in the flow value as well as an increase in voids in the mix. Results indicate that fibers have the potential to resist structural distress in pavement, in the wake of growing traffic loads and thus improve fatigue by increasing resistance to cracks or permanent deformation. On the whole, the results show that the addition of carbon fiber will improve some of the mechanical properties like fatigue and deformation in the flexible pavement. (author)

  3. FRP reinforcement of timber structures

    OpenAIRE

    Schober, Kay-Uwe; Harte, Annette M.; Kliger, Robert; Jockwer, Robert; Xu, Qingfeng; Chen, Jian-Fei

    2015-01-01

    Timber engineering has advanced over recent decades to offer an alternative to traditional materials and methods. The bonding of fibre reinforced plastics (FRP) with adhesives to timber structures for repair and strengthening has many advantages. However, the lack of established design rules has strongly restrained the use of FRP strengthening in many situations, where these could be a preferable option to most traditional techniques. A significant body of research has been carried out in rec...

  4. Investigations on Mechanical Behaviour of Micro Graphite Particulates Reinforced Al-7Si Alloy Composites

    Science.gov (United States)

    Nagaraj, N.; Mahendra, K. V.; Nagaral, Madeva

    2018-02-01

    Micro particulates reinforced metal matrix composites are finding wide range of applications in automotive and sports equipment manufacturing industries. In the present study, an attempt has been made to develop Al-7Si-micro graphite particulates reinforced composites by using liquid melt method. 3 and 6 wt. % of micro graphite particulates were added to the Al-7Si base matrix. Microstructural characterization was done by using scanning electron microscope and energy dispersive spectroscope. Mechanical behaviour of Al-7Si-3 and 6 wt. % composites were evaluated as per ASTM standards. Scanning electron micrographs revealed the uniform distribution of micro graphite particulates in the Al-7Si alloy matrix. EDS analysis confirmed the presence of B and C elements in graphite reinforced composites. Further, it was noted that ultimate tensile and yield strength of Al-7Si alloy increased with the addition of 3 and 6wt. % of graphite particulates. Hardness of graphite reinforced composites was lesser than the base matrix.

  5. Preparation of Ti-aluminide reinforced in situ aluminium matrix composites by reactive hot pressing

    International Nuclear Information System (INIS)

    Roy, D.; Ghosh, S.; Basumallick, A.; Basu, B.

    2007-01-01

    Aluminium based metal matrix composites reinforced with in situ Ti-aluminide and alumina particles were prepared by reactive hot pressing a powder mix of aluminium and nanosized TiO 2 powders. The reinforcements were formed in situ by exothermal reaction between the TiO 2 nano crystalline powder and aluminium. The thermal characteristics of the in situ reaction were studied with the aid of Differential scanning calorimetry (DSC). X-ray diffraction (XRD), Energy dispersive spectroscopy (EDS) and Scanning electron microscopy (SEM) techniques were employed to study the microstructural architecture of the composites as a function of hot pressing temperature and volume percent reinforcement. Microhardness measurements on the as prepared in situ aluminium matrix composites exhibit significant increase in hardness with increase in hot pressing temperature and volume fraction of reinforcement

  6. Investigation of Methods for Selectively Reinforcing Aluminum and Aluminum-Lithium Materials

    Science.gov (United States)

    Bird, R. Keith; Alexa, Joel A.; Messick, Peter L.; Domack, Marcia S.; Wagner, John A.

    2013-01-01

    Several studies have indicated that selective reinforcement offers the potential to significantly improve the performance of metallic structures for aerospace applications. Applying high-strength, high-stiffness fibers to the high-stress regions of aluminum-based structures can increase the structural load-carrying capability and inhibit fatigue crack initiation and growth. This paper discusses an investigation into potential methods for applying reinforcing fibers onto the surface of aluminum and aluminum-lithium plate. Commercially-available alumina-fiber reinforced aluminum alloy tapes were used as the reinforcing material. Vacuum hot pressing was used to bond the reinforcing tape to aluminum alloy 2219 and aluminum-lithium alloy 2195 base plates. Static and cyclic three-point bend testing and metallurgical analysis were used to evaluate the enhancement of mechanical performance and the integrity of the bond between the tape and the base plate. The tests demonstrated an increase in specific bending stiffness. In addition, no issues with debonding of the reinforcing tape from the base plate during bend testing were observed. The increase in specific stiffness indicates that selectively-reinforced structures could be designed with the same performance capabilities as a conventional unreinforced structure but with lower mass.

  7. Continuous carbon nanotube reinforced composites.

    Science.gov (United States)

    Ci, L; Suhr, J; Pushparaj, V; Zhang, X; Ajayan, P M

    2008-09-01

    Carbon nanotubes are considered short fibers, and polymer composites with nanotube fillers are always analogues of random, short fiber composites. The real structural carbon fiber composites, on the other hand, always contain carbon fiber reinforcements where fibers run continuously through the composite matrix. With the recent optimization in aligned nanotube growth, samples of nanotubes in macroscopic lengths have become available, and this allows the creation of composites that are similar to the continuous fiber composites with individual nanotubes running continuously through the composite body. This allows the proper utilization of the extreme high modulus and strength predicted for nanotubes in structural composites. Here, we fabricate such continuous nanotube polymer composites with continuous nanotube reinforcements and report that under compressive loadings, the nanotube composites can generate more than an order of magnitude improvement in the longitudinal modulus (up to 3,300%) as well as damping capability (up to 2,100%). It is also observed that composites with a random distribution of nanotubes of same length and similar filler fraction provide three times less effective reinforcement in composites.

  8. Mechanics of fiber reinforced materials

    Science.gov (United States)

    Sun, Huiyu

    This dissertation is dedicated to mechanics of fiber reinforced materials and the woven reinforcement and composed of four parts of research: analytical characterization of the interfaces in laminated composites; micromechanics of braided composites; shear deformation, and Poisson's ratios of woven fabric reinforcements. A new approach to evaluate the mechanical characteristics of interfaces between composite laminae based on a modified laminate theory is proposed. By including an interface as a special lamina termed the "bonding-layer" in the analysis, the mechanical properties of the interfaces are obtained. A numerical illustration is given. For micro-mechanical properties of three-dimensionally braided composite materials, a new method via homogenization theory and incompatible multivariable FEM is developed. Results from the hybrid stress element approach compare more favorably with the experimental data than other existing numerical methods widely used. To evaluate the shearing properties for woven fabrics, a new mechanical model is proposed during the initial slip region. Analytical results show that this model provides better agreement with the experiments for both the initial shear modulus and the slipping angle than the existing models. Finally, another mechanical model for a woven fabric made of extensible yarns is employed to calculate the fabric Poisson's ratios. Theoretical results are compared with the available experimental data. A thorough examination on the influences of various mechanical properties of yarns and structural parameters of fabrics on the Poisson's ratios of a woven fabric is given at the end.

  9. Reinforcement learning in computer vision

    Science.gov (United States)

    Bernstein, A. V.; Burnaev, E. V.

    2018-04-01

    Nowadays, machine learning has become one of the basic technologies used in solving various computer vision tasks such as feature detection, image segmentation, object recognition and tracking. In many applications, various complex systems such as robots are equipped with visual sensors from which they learn state of surrounding environment by solving corresponding computer vision tasks. Solutions of these tasks are used for making decisions about possible future actions. It is not surprising that when solving computer vision tasks we should take into account special aspects of their subsequent application in model-based predictive control. Reinforcement learning is one of modern machine learning technologies in which learning is carried out through interaction with the environment. In recent years, Reinforcement learning has been used both for solving such applied tasks as processing and analysis of visual information, and for solving specific computer vision problems such as filtering, extracting image features, localizing objects in scenes, and many others. The paper describes shortly the Reinforcement learning technology and its use for solving computer vision problems.

  10. Steel Fibers Reinforced Concrete Pipes - Experimental Tests and Numerical Simulation

    Science.gov (United States)

    Doru, Zdrenghea

    2017-10-01

    The paper presents in the first part a state of the art review of reinforced concrete pipes used in micro tunnelling realised through pipes jacking method and design methods for steel fibres reinforced concrete. In part two experimental tests are presented on inner pipes with diameters of 1410mm and 2200mm, and specimens (100x100x500mm) of reinforced concrete with metal fibres (35 kg / m3). In part two experimental tests are presented on pipes with inner diameters of 1410mm and 2200mm, and specimens (100x100x500mm) of reinforced concrete with steel fibres (35 kg / m3). The results obtained are analysed and are calculated residual flexural tensile strengths which characterise the post-cracking behaviour of steel fibres reinforced concrete. In the third part are presented numerical simulations of the tests of pipes and specimens. The model adopted for the pipes test was a three-dimensional model and loads considered were those obtained in experimental tests at reaching breaking forces. Tensile stresses determined were compared with mean flexural tensile strength. To validate tensile parameters of steel fibres reinforced concrete, experimental tests of the specimens were modelled with MIDAS program to reproduce the flexural breaking behaviour. To simulate post - cracking behaviour was used the method σ — ε based on the relationship stress - strain, according to RILEM TC 162-TDF. For the specimens tested were plotted F — δ diagrams, which have been superimposed for comparison with the similar diagrams of experimental tests. The comparison of experimental results with those obtained from numerical simulation leads to the following conclusions: - the maximum forces obtained by numerical calculation have higher values than the experimental values for the same tensile stresses; - forces corresponding of residual strengths have very similar values between the experimental and numerical calculations; - generally the numerical model estimates a breaking force greater

  11. Effect of increasingly metallized hybrid reinforcement on the wear ...

    Indian Academy of Sciences (India)

    Matsuzawa MXT 50 automatic digital microhardness tester. The microhardness ... pins were prepared by grinding against 600-grit silicon car- bide paper and ..... [2] Logan S 2007 Magnesium technology In: The minerals, met- als and materials ...

  12. Separation of matrix alloy and reinforcement from aluminum metal ...

    Indian Academy of Sciences (India)

    TECS

    on the fuel consumption and emission, which have forced the automotive manufacturers ... scrap and reuse them individually is an alternate approach. The energy ... followed by experimental validation. Further, the ... mixtures at atomic level.

  13. [Acrylic resin reinforcement with metallic and nonmetallic inserts].

    Science.gov (United States)

    Preoteasa, Elena; Murariu, Cătălina Măgureanu; Ionescu, Ecaterina; Preoteasa, Cristina Teodora

    2007-01-01

    In the current use of acrylic resin for removable dentures and orthodontic treatments we are frequently facing the fact of base fracture. The repairing of this, determine most of the time, discomfort of the patient, by excluding the prosthetic device, affecting the treatment, loosing patient's time, doctor's time, implying the dental laboratory and extra expenses. The causes of fractures are many, from clinical cases with some specific anatomic and functional particularities, or parafunctional, to the incorrect designing, manufacturing or wearing of the prosthetic part, being connected with the materials characteristics. The consequences and costs of these fractures are leading to unsatisfying results in some of the clinical cases, in presence of parafunctions like bruxism or clenching and specifically for the new types of prosthetic rehabilitation, on natural teeth or implants.

  14. PECULIARITIES OF THE FEED TEMPERATURE CHANGING ALONG THE MILL 320 UNE OF RUP "BMZ" AT ROLLING OF REINFORCING PROFILES BY MEANS OF ROLLING-AND-SEPARATION

    Directory of Open Access Journals (Sweden)

    S. M. Zhuchkov

    2006-01-01

    Full Text Available The peculiarities of the temperature changing of the roll along the length of mill at using of new technological schema of production of reinforce rolled metal of small cuts in conditions of RUP are considered.

  15. PEEK with Reinforced Materials and Modifications for Dental Implant Applications

    Directory of Open Access Journals (Sweden)

    Fitria Rahmitasari

    2017-12-01

    Full Text Available Polyetheretherketone (PEEK is a semi-crystalline linear polycyclic thermoplastic that has been proposed as a substitute for metals in biomaterials. PEEK can also be applied to dental implant materials as a superstructure, implant abutment, or implant body. This article summarizes the current research on PEEK applications in dental implants, especially for the improvement of PEEK surface and body modifications. Although various benchmark reports on the reinforcement and surface modifications of PEEK are available, few clinical trials using PEEK for dental implant bodies have been published. Controlled clinical trials, especially for the use of PEEK in implant abutment and implant bodies, are necessary.

  16. Computational Screening of Mixed Metal Halide Ammines

    DEFF Research Database (Denmark)

    Jensen, Peter Bjerre; Lysgaard, Steen; Quaade, Ulrich

    selected by a Genetic Algorithm (GA), relying on biological principles of natural selection. The GA is evolving from an initial (random) population and selecting those with highest fitness, e.g. stability, release temperature and storage capacity. The search space includes all alkaline, alkaline earth, 3d...

  17. Machining of glass fiber reinforced polyamide

    Directory of Open Access Journals (Sweden)

    2007-12-01

    Full Text Available The machinability of a 30 wt% glass fiber reinforced polyamide (PA was investigated by means of drilling tests. A disk was cut from an extruded rod and drilled on the flat surface: thrust was acquired during drilling at different drilling speed, feed rate and drill diameter. Differential scanning calorimetry (DSC and indentation were used to characterize PA so as to evaluate the intrinsic lack of homogeneity of the extruded material. In conclusion, it was observed that the chip formation mechanism affects the thrust dependence on the machining parameters. A traditional modeling approach is able to predict thrust only in presence of a continuous chip. In some conditions, thrust increases as drilling speed increases and feed rate decreases; this evidence suggests not to consider the general scientific approach which deals the machining of plastics in analogy with metals. Moreover, the thrust can be significantly affected by the workpiece fabrication effect, as well as by the machining parameters; therefore, the fabrication effect is not negligible in the definition of an optimum for the machining process.

  18. Lunar Dust Mitigation Screens

    Science.gov (United States)

    Knutson, Shawn; Holloway, Nancy

    being developed in a collaborative effort between Langley Research Center and Kennedy Space Center. The screens typically consist of spiral shaped conductive traces patterned on high dielectric substrates (i.e. glass, quartz, polyimide film, etc.). Two broad categories of substrate materials are being investigated for the screens. One category consists of transparent substrates (i.e. glass, quartz, sapphire, etc.), and the other non-transparent sub-strates (Kapton, polyimide films, metals, etc.). The transparent screens utilize patterns made from indium tin oxide (ITO), a transparent conductive material, on clear substrates while the non-transparent screens use copper patterns on a transluscent or opaque substrates. Further, the screen is coated with a high dielectric polyimide cover layer to protect the screen pattern. One promising cover layer material that is currently being investigated is Langley Research Center-Soluble Imide (LaRC-SI), a NASA LaRC developed polyimide. Lastly, a top-coat of hard, inorganic material is evaporated onto the cover layer for protection from scratches due to abrasive nature of the dust. Of note, several top-coat materials are under investigation and include: aluminum oxide, silicon dioxide, titanium oxide, yttrium oxide, zirconium oxide, and zinc sulfide. The electrostatic dust mitigation screens function when a high voltage (700V or greater) is applied to the screen electrodes, thus creating an electromagnetic wave across the surface of the screen that repels the dust. Lunar dust typically contains a high positive charge; therefore, the screens are charged with a higher positive charge that effectively repels dust from the surface (i.e. like charges repel, unlike charges attract). It is anticipated that full development and maturation of this technology will enable humans to sustain a long term presence on the moon, and other planets where dust may have negative implications.

  19. Vision Screening

    Science.gov (United States)

    1993-01-01

    The Visi Screen OSS-C, marketed by Vision Research Corporation, incorporates image processing technology originally developed by Marshall Space Flight Center. Its advantage in eye screening is speed. Because it requires no response from a subject, it can be used to detect eye problems in very young children. An electronic flash from a 35 millimeter camera sends light into a child's eyes, which is reflected back to the camera lens. The photorefractor then analyzes the retinal reflexes generated and produces an image of the child's eyes, which enables a trained observer to identify any defects. The device is used by pediatricians, day care centers and civic organizations that concentrate on children with special needs.

  20. Origins of food reinforcement in infants12345

    Science.gov (United States)

    Kong, Kai Ling; Feda, Denise M; Eiden, Rina D; Epstein, Leonard H

    2015-01-01

    Background: Rapid weight gain in infancy is associated with a higher risk of obesity in children and adults. A high relative reinforcing value of food is cross-sectionally related to obesity; lean children find nonfood alternatives more reinforcing than do overweight/obese children. However, to our knowledge, there is no research on how and when food reinforcement develops. Objective: This study was designed to assess whether the reinforcing value of food and nonfood alternatives could be tested in 9- to 18-mo-old infants and whether the reinforcing value of food and nonfood alternatives is differentially related to infant weight status. Design: Reinforcing values were assessed by using absolute progressive ratio schedules of reinforcement, with presentation of food and nonfood alternatives counterbalanced in 2 separate studies. Two nonfood reinforcers [Baby Einstein–Baby MacDonald shows (study 1, n = 27) or bubbles (study 2, n = 30)] were tested against the baby’s favorite food. Food reinforcing ratio (FRR) was quantified by measuring the reinforcing value of food (Food Pmax) in proportion to the total reinforcing value of food and a nonfood alternative (DVD Pmax or BUB Pmax). Results: Greater weight-for-length z score was associated with a greater FRR of a favorite food in study 1 (FRR-DVD) (r = 0.60, P positively associated with FRR-DVD (r = 0.57, P = 0.009) and FRR-BUB (r = 0.37, P = 0.047). Conclusions: Our newly developed paradigm, which tested 2 different nonfood alternatives, demonstrated that lean infants find nonfood alternatives more reinforcing than do overweight/obese infants. This observation suggests that strengthening the alternative reinforcers may have a protective effect against childhood obesity. This research was registered at clinicaltrials.gov as NCT02229552. PMID:25733636

  1. Repair of reinforced concrete beams using carbon fiber reinforced polymer

    Directory of Open Access Journals (Sweden)

    Karzad Abdul Saboor

    2017-01-01

    Full Text Available This research paper is part of an ongoing research on the behaviour of Reinforced Concrete (RC beams retrofitted with Externally Bonded Carbon Fiber Reinforced Polymer (EB-CFRP. A total of 5 large-scale rectangular beams, previously damaged due to shear loading, were repaired and strengthened with EB-CFRP and tested in this study. The major cracks of the damaged beams were injected with epoxy and the beams were wrapped with 2 layers of EB-CFRP discrete strips with 100mm width and 150mm center to center spacing. The beams were instrumented and tested to failure under three points loading in simply supported configuration. The measured test parameters were the beams deflection, maximum load, and the strain in the FRP strips. The failure mode was also observed. The results showed that applying EB-FRP strips increased the shear strength significantly relative to the original shear capacity of the beam. The results demonstrate that the application of EB-FRP strips used in this study is an effective repair method that can be used to repair and strengthen damaged beams.

  2. Bulk metallic glass matrix composite for good biocompatibility

    International Nuclear Information System (INIS)

    Hadjoub, F; Metiri, W; Doghmane, A; Hadjoub, Z

    2012-01-01

    Reinforcement volume fraction effects on acoustical parameters of Zr 41.2 Ti 13.8 Cu 12.5 Ni 10 Be 22.5 matrix composites reinforced by Mg, Ag and Cd metals have been studied via a simulation program based on acoustic microscopy technique. Moreover, acoustical parameters of human bone were compared to those of BMGs in both monolithic and reinforced case. It was found that elastic behavior of BMGs matrix composites in high reinforcement volume fraction is similar of that of human bone. This behavior leads to high biocompatibility and good transfer of stress between composite material and human system.

  3. The mechanical properties of magnesium matrix composites reinforced with 10 wt.% W14Al86 alloy particles

    International Nuclear Information System (INIS)

    Tang, H.G.; Ma, X.F.; Zhao, W.; Cai, S.G.; Zhao, B.; Qiao, Z.H.

    2007-01-01

    The Mg-based metal matrix composite reinforced by 10 wt.% W 14 Al 86 alloy particles has been prepared by mechanical alloying and press-forming process. X-ray diffraction studies confirm the formation of the composite. Microstructure characterization of the samples reveals the uniform distribution of fine W 14 Al 86 alloy. Mechanical properties characterization revealed that the reinforcement of W 14 Al 86 alloy lead to a significant increase in hardness and tensile strength of Mg and AZ91

  4. Earthquake behavior of steel cushion-implemented reinforced concrete frames

    Science.gov (United States)

    Özkaynak, Hasan

    2018-04-01

    The earthquake performance of vulnerable structures can be increased by the implementation of supplementary energy-dissipative metallic elements. The main aim of this paper is to describe the earthquake behavior of steel cushion-implemented reinforced concrete frames (SCI-RCFR) in terms of displacement demands and energy components. Several quasi-static experiments were performed on steel cushions (SC) installed in reinforced concrete (RC) frames. The test results served as the basis of the analytical models of SCs and a bare reinforced concrete frame (B-RCFR). These models were integrated in order to obtain the resulting analytical model of the SCI-RCFR. Nonlinear-time history analyses (NTHA) were performed on the SCI-RCFR under the effects of the selected earthquake data set. According to the NTHA, SC application is an effective technique for increasing the seismic performance of RC structures. The main portion of the earthquake input energy was dissipated through SCs. SCs succeeded in decreasing the plastic energy demand on structural elements by almost 50% at distinct drift levels.

  5. Mechanical properties of carbon fibre reinforced thermoplastics for cryogenic applications

    International Nuclear Information System (INIS)

    Ahlborn, K.

    1989-01-01

    The high specific strength, the high specific stiffness and the excellent fatigue behaviour favours carbon fibre reinforced plastics (CFRP) as a supplement to metals for low temperature applications. The weakest link in the composite is the polymeric matrix, which is preloaded by thermal tensile strains and becomes brittle at low temperatures. Tough thermoplastic polymers show a higher cryogenic fracture strain than commonly used epoxy-matrix systems. Two carbon fibre reinforced tough thermoplastics (PEEK, PC) were tested at 293 K, 77 K and 5 K by tensile, bending and fatigue loading. It has been found, that the toughness of the matrices generally improves the static strength at low temperatures. In bidirectionally reinforced thermoplastics, transversal cracks appear in the matrix or in the boundary layer at composite strains below 0,2%, originated by the thermal preloading. The formation and development of the cracks depend on the fibre-matrix-bond and on the thickness of the composite layers. Fibre-misalignment results in a poor tension-tension fatigue endurance limit of less than 50% of the static strength. Further developments in the manufacturing process are necessary to improve the homogeneity of the composite structure in order to increase the long term fatigue behaviour. (orig.) [de

  6. Metal-metal-hofteproteser

    DEFF Research Database (Denmark)

    Ulrich, Michael; Overgaard, Søren; Penny, Jeannette

    2014-01-01

    In Denmark 4,456 metal-on-metal (MoM) hip prostheses have been implanted. Evidence demonstrates that some patients develope adverse biological reactions causing failures of MoM hip arthroplasty. Some reactions might be systemic. Failure rates are associated with the type and the design of the Mo...

  7. Development study of concrete reinforcement made of aramid fiber-reinforced plastic rods with high radiation resistance. 1. Epoxy resin compounds with a handling at room temperature impregnation

    International Nuclear Information System (INIS)

    Udagawa, Akira; Seguchi, Tadao; Moriya, Toshio; Matsubara, Sumiyuki; Hongou, Yoshihiko

    1999-03-01

    Aramid fiber-reinforced plastic (ArFRP) rods were developed in order to avoid from conduction current and/or magnetization of the metallic reinforcement using concrete constructions. For the polymer matrix, new epoxy resin compounds consist of tetraglycidyl diaminodiphenylmethane (30%), diglycidyl ether of bisphenol-A (60%), styrene oxide (10%) and aromatic diamine as a hardner were found to be the best formulation, and which were easily impregnated to the aramid fiber braiding yarn at room temperature. The ArFRP rods has a high radiation resistance, and the tensile strength was maintained to 98% (1.45 GPa) after irradiation dose of 100 MGy (absorbed energy MJ/kg), which is available for the reinforcement of concrete construction for the house of fusion reactor with super conducting magnets. (author)

  8. Limit analysis of solid reinforced concrete structures

    DEFF Research Database (Denmark)

    Larsen, Kasper Paaske

    2009-01-01

    Recent studies have shown that Semidefinite Programming (SDP) can be used effectively for limit analysis of isotropic cohesive-frictional continuums using the classical Mohr-Coulomb yield criterion. In this paper we expand on this previous research by adding reinforcement to the model and a solid...... reinforcement and it is therefore possible to analyze structures with complex reinforcement layouts. Tests are conducted to validate the method against well-known analytical solutions....

  9. Strength Characteristics of Reinforced Sandy Soil

    OpenAIRE

    S. N. Bannikov; Mahamed Al Fayez

    2005-01-01

    Laboratory tests on determination of reinforced sandy soil strength characteristics (angle of internal friction, specific cohesive force) have been carried out with the help of a specially designed instrument and proposed methodology. Analysis of the obtained results has revealed that cohesive forces are brought about in reinforced sandy soil and an angle of internal soil friction becomes larger in comparison with non-reinforced soil.

  10. Behavior of reinforced concrete at elevated temperatures

    International Nuclear Information System (INIS)

    Freskakis, G.N.

    1984-09-01

    A study is presented concerning the behavior of reinforced concrete sections at elevated temperatures. Material properties of concrete and reinforcing steel are discussed. Behavior studies are made by means of moment-curvature-axial force relationships. Particular attention is given to the load carrying capacity, thermal forces and moments, and deformation capacity. The effects on these properties of variations in the strength properties, the temperature level and distribution, the amount of reinforcing steel, and limiting values of strains are considered

  11. Reinforcement Learning in Repeated Portfolio Decisions

    OpenAIRE

    Diao, Linan; Rieskamp, Jörg

    2011-01-01

    How do people make investment decisions when they receive outcome feedback? We examined how well the standard mean-variance model and two reinforcement models predict people's portfolio decisions. The basic reinforcement model predicts a learning process that relies solely on the portfolio's overall return, whereas the proposed extended reinforcement model also takes the risk and covariance of the investments into account. The experimental results illustrate that people reacted sensitively to...

  12. Probing the Behavioral and Neurophysiological Effects of Acute Smoking Abstinence on Drug and Nondrug Reinforcement During a Cognitive Task.

    Science.gov (United States)

    Schlienz, Nicolas J; Hawk, Larry W

    2017-06-01

    Smoking abstinence is theorized to increase smoking reinforcement and decrease nondrug reinforcement. A separate literature demonstrates the detrimental effects of abstinence on cognition. The present study integrates these two areas by examining the separate and combined effects of reinforcement and smoking abstinence on behavior and a neurophysiological index of response monitoring (ie, error-related negativity [ERN]) during a cognitive task. After a screening visit, adult smokers attended two laboratory visits, once while smoking and once while abstinent. Participants completed a flanker task under cigarette-, money-, and no-reinforcement conditions. The initial 15 participants had an easier reaction time (RT) requirement; to ensure sufficient error rates for ERN computation, a harder RT deadline was employed for the remaining 21 participants. Smoking abstinence reduced speeded accuracy and ERN amplitude only among participants tested with the harder RT deadline. Cigarette and money reinforcement each increased speeded accuracy and ERN amplitude compared to no reinforcement. The effect of cigarette reinforcement tended to be greater during abstinence for speeded accuracy but not the ERN. The effect of money reinforcement was unaffected by abstinence. The impact of smoking abstinence on reinforcement may depend on task demands. However, the effects of cigarette and money reinforcement generalize well from operant paradigms to cognitive tasks, fostering integration between the two literatures. Results provided modest evidence of abstinence-induced increases in smoking reinforcement; the absence of abstinence-induced reductions in nondrug reinforcement is consistent with recent work in suggesting that such effects are limited to a subset of sensory reinforcers. This study draws attention to the need for greater integration of reinforcement and cognition to better understand the mechanisms that contribute to smoking relapse. Results emphasize thoughtful

  13. Adlayer Core-Level Shifts of Random Metal Overlayers on Transition-Metal Substrates

    DEFF Research Database (Denmark)

    Ganduglia-Pirovano, M. V.; Kudrnovský, J.; Scheffler, M.

    1997-01-01

    and the screening effects induced by the core hole, and study the influence of the alloy composition for a number of noble metal-transition metal systems. Our analysis clearly indicates the importance of final-state screening effects for the interpretation of measured core-level shifts. Calculated deviations from...

  14. High-Pressure Thermodynamic Properties of f-electron Metals, Transition Metal Oxides, and Half-Metallic Magnets

    International Nuclear Information System (INIS)

    Richard T. Scalettar; Warren E. Pickett

    2005-01-01

    This project involves research into the thermodynamic properties of f-electron metals, transition metal oxides, and half-metallic magnets at high pressure. These materials are ones in which the changing importance of electron-electron interactions as the distance between atoms is varied can tune the system through phase transitions from localized to delocalized electrons, from screened to unscreened magnetic moments, and from normal metal to one in which only a single spin specie can conduct. Three main thrusts are being pursued: (1) Mott transitions in transition metal oxides, (2) magnetism in half-metallic compounds, and (3) large volume-collapse transitions in f-band metals

  15. High-Pressure Thermodynamic Properties of f-electron Metals, Transition Metal Oxides, and Half-Metallic Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Scalettar, Richard T.; Pickett, Warren E.

    2004-07-01

    This project involves research into the thermodynamic properties of f-electron metals, transition metal oxides, and half-metallic magnets at high pressure. These materials are ones in which the changing importance of electron-electron interactions as the distance between atoms is varied can tune the system through phase transitions from localized to delocalized electrons, from screened to unscreened magnetic moments, and from normal metal to one in which only a single spin specie can conduct. Three main thrusts are being pursued: (1) Mott transitions in transition metal oxides, (2) magnetism in half-metallic compounds, and (3) large volume-collapse transitions in f-band metals.

  16. High-Pressure Thermodynamic Properties of f-electron Metals, Transition Metal Oxides, and Half-Metallic Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Richard T. Scalettar; Warren E. Pickett

    2005-08-02

    This project involves research into the thermodynamic properties of f-electron metals, transition metal oxides, and half-metallic magnets at high pressure. These materials are ones in which the changing importance of electron-electron interactions as the distance between atoms is varied can tune the system through phase transitions from localized to delocalized electrons, from screened to unscreened magnetic moments, and from normal metal to one in which only a single spin specie can conduct. Three main thrusts are being pursued: (i) Mott transitions in transition metal oxides, (ii) magnetism in half-metallic compounds, and (iii) large volume-collapse transitions in f-band metals.

  17. Investigation of nanoscale reinforcement into textile polymers

    Science.gov (United States)

    Khan, Mujibur Rahman

    A dual inclusion strategy for textile polymers has been investigated to increase elastic energy storage capacity of fibers used in high velocity impact applications. Commercial fibers such as Spectra and Dyneema are made from ultra high molecular weight polyethylene (UHMWPE). Dynamic elastic energy of these fibers is still low therefore limiting their wholesale application without a secondary metallic or ceramic component. The idea in this investigation is to develop methodologies so that the elastic energy of polyethylene based fibers can be increased by several folds. This would allow manufacturing of an all-fabric system for high impact applications. The dual inclusion consists of a polymer phase and a nanoscale inorganic phase to polyethylene. The polymer phase was nylon-6 and the inorganic phase was carbon nanotubes (CNTs). Nylon-6 was blended as a minor phase into UHMWPE and was chosen because of its large fracture strain -- almost one order higher than that of UHMWPE. On the other hand, CNTs with their very high strength, modulus, and aspect ratio, contributed to sharing of load and sliding of polymer interfaces as they aligned during extrusion and strain hardening processes. A solution spinning process was developed to produce UHMWPE filaments reinforced with CNTs and nylon-6. The procedure involved dispersing of CNTs into paraffin oil through sonication followed by dissolving polymers into paraffin-CNT solution using a homogenizer. The admixture was fed into a single screw extruder for melt mixing and extrusion through an orifice. The extrudate was rinsed via a hexane bath, stabilized through a heater, and then drawn into a filament winder with controlled stretching. In the next step, the as produced filaments were strain-hardened through repeated loading unloading cycles under tension. Neat and reinforced filaments were characterized through DSC (Differential Scanning Calorimetry), XRD (X-ray Diffraction), Raman Spectroscopy, SEM (Scanning Electron

  18. Water screen

    Energy Technology Data Exchange (ETDEWEB)

    Kutepov, A.I.; Fedotov, I.N.; Prokopov, O.I.

    1981-01-01

    The invention refers to ventilation and can be used for repair-fitting operations in a blasting-dangerous gas condition, for example, during elimination of gas-oil gushers, repair of gas-oil pipelines, equipment etc. In order to improve safety of labor, the nozzle adapters of the water collector are oriented towards each other. The collector is installed on a support with the possibility of rotating and vertical movement. The proposed screen excludes the possibility of blasting-dangerous concentrations of gases and guarantees extinguishing of the impact spark during operation of the tool.

  19. RBC Antibody Screen

    Science.gov (United States)

    ... C Cystic Fibrosis (CF) Gene Mutations Testing Cytomegalovirus (CMV) Tests D-dimer Dengue Fever Testing Des-gamma- ... Index of Screening Recommendations Not Listed? Not Listed? Newborn Screening Screening Tests for Infants Screening Tests for ...

  20. Mental Health Screening Center

    Science.gov (United States)

    ... Releases & Announcements Public Service Announcements Partnering with DBSA Mental Health Screening Center These online screening tools are not ... you have any concerns, see your doctor or mental health professional. Depression Screening for Adult Depression Screening for ...

  1. Breast cancer screening

    Science.gov (United States)

    Mammogram - breast cancer screening; Breast exam - breast cancer screening; MRI - breast cancer screening ... is performed to screen women to detect early breast cancer when it is more likely to be cured. ...

  2. Design of reinforced concrete plates and shells

    International Nuclear Information System (INIS)

    Schulz, M.

    1984-01-01

    Nowadays, the internal forces of reinforced concrete laminar structures can be easily evaluated by the finite element procedures. The longitudinal design in each direction is not adequate, since the whole set of internal forces in each point must be concomitantly considered. The classic formulation for the design and new design charts which bring reduction of the amount of necessary reinforcement are presented. A rational reinforced concrete mathematical theory which makes possible the limit state design of plates and shells is discussed. This model can also be applied to define the constitutive relationships of laminar finite elements of reinforced concrete. (Author) [pt

  3. Reinforcement of RC structure by carbon fibers

    Directory of Open Access Journals (Sweden)

    Kissi B.

    2016-01-01

    Full Text Available In recent years, rehabilitation has been the subject of extensive research due to the increased spending on building maintenance work and restoration of built works. In all cases, it is essential to carry out methods of reinforcement or maintenance of structural elements, following an inspection analysis and methodology of a correct diagnosis. This research focuses on the calculation of the necessary reinforcement sections of carbon fiber for structural elements with reinforced concrete in order to improve their load bearing capacity and rigidity. The different results obtained reveal a considerable gain in resistance and deformation capacity of reinforced sections without significant increase in the weight of the rehabilitated elements.

  4. Reinforcement learning or active inference?

    Science.gov (United States)

    Friston, Karl J; Daunizeau, Jean; Kiebel, Stefan J

    2009-07-29

    This paper questions the need for reinforcement learning or control theory when optimising behaviour. We show that it is fairly simple to teach an agent complicated and adaptive behaviours using a free-energy formulation of perception. In this formulation, agents adjust their internal states and sampling of the environment to minimize their free-energy. Such agents learn causal structure in the environment and sample it in an adaptive and self-supervised fashion. This results in behavioural policies that reproduce those optimised by reinforcement learning and dynamic programming. Critically, we do not need to invoke the notion of reward, value or utility. We illustrate these points by solving a benchmark problem in dynamic programming; namely the mountain-car problem, using active perception or inference under the free-energy principle. The ensuing proof-of-concept may be important because the free-energy formulation furnishes a unified account of both action and perception and may speak to a reappraisal of the role of dopamine in the brain.

  5. Reinforcement learning or active inference?

    Directory of Open Access Journals (Sweden)

    Karl J Friston

    2009-07-01

    Full Text Available This paper questions the need for reinforcement learning or control theory when optimising behaviour. We show that it is fairly simple to teach an agent complicated and adaptive behaviours using a free-energy formulation of perception. In this formulation, agents adjust their internal states and sampling of the environment to minimize their free-energy. Such agents learn causal structure in the environment and sample it in an adaptive and self-supervised fashion. This results in behavioural policies that reproduce those optimised by reinforcement learning and dynamic programming. Critically, we do not need to invoke the notion of reward, value or utility. We illustrate these points by solving a benchmark problem in dynamic programming; namely the mountain-car problem, using active perception or inference under the free-energy principle. The ensuing proof-of-concept may be important because the free-energy formulation furnishes a unified account of both action and perception and may speak to a reappraisal of the role of dopamine in the brain.

  6. Monitoring device for reinforced concrete

    International Nuclear Information System (INIS)

    Matsuzaki, Tetsuo; Saito, Koichi; Furukawa, Hideyasu.

    1994-01-01

    A reactor container made of reinforced concretes is monitored for the temperature at each of portions upon placing concretes under construction of a plant, upon pressure-proof test and during plant operation. That is, optical fibers are uniformly laid spirally throughout the inside of the concretes. Pulses are injected from one end of the optical fibers, and the temperature at a reflection point can be measured by measuring specific rays (Raman scattering rays) among lights reflected after a predetermined period of time. According to the present invention, measurement for an optional position within a range where one fiber cable is laid can be conducted. Accordingly, it is possible to conduct temperature control upon concrete placing and apply temperature compensation for the measurement for stresses of the concretes and the reinforcing steels upon container pressure-proof. Further, during plant operation, if the temperature of the concretes rises due to thermal conduction of the temperature in the container, integrity of the concretes can be ensured by a countermeasures such as air conditioning. (I.S.)

  7. Metallated metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Bury, Wojciech; Farha, Omar K.; Hupp, Joseph T.; Mondloch, Joseph E.

    2017-08-22

    Porous metal-organic frameworks (MOFs) and metallated porous MOFs are provided. Also provided are methods of metallating porous MOFs using atomic layer deposition and methods of using the metallated MOFs as catalysts and in remediation applications.

  8. Enhancing corrosion resistance of reinforced concrete structures with hybrid fiber reinforced concrete

    International Nuclear Information System (INIS)

    Blunt, J.; Jen, G.; Ostertag, C.P.

    2015-01-01

    Highlights: • Reinforced concrete beams were subjected to cyclic flexural loading. • Hybrid fiber reinforced composites were effective in reducing corrosion rates. • Crack resistance due to fibers increased corrosion resistance of steel rebar. • Galvanic corrosion measurements underestimated corrosion rates. • Polarization resistance measurements predicted mass loss more accurately. - Abstract: Service loads well below the yield strength of steel reinforcing bars lead to cracking of reinforced concrete. This paper investigates whether the crack resistance of Hybrid Fiber Reinforced Concrete (HyFRC) reduces the corrosion rate of steel reinforcing bars in concrete after cyclic flexural loading. The reinforcing bars were extracted to examine their surface for corrosion and compare microcell and macrocell corrosion mass loss estimates against direct gravimetric measurements. A delay in corrosion initiation and lower active corrosion rates were observed in the HyFRC beam specimens when compared to reinforced specimens containing plain concrete matrices cycled at the same flexural load

  9. Influence of Loading Direction and Weld Reinforcement on Fatigue Performance of TIG Weld Seam

    Directory of Open Access Journals (Sweden)

    HUI Li

    2018-02-01

    Full Text Available The influence of loading direction and weld reinforcement on fatigue performance of TC2 titanium alloy TIG weld seam was investigated via fatigue experiments and SEM fracture observation. The results show that the fatigue life of retaining weld reinforcement specimens is lower than that of removing one in the same weld direction. The fatigue life of oblique weld specimens is higher than that of straight one with the same weld reinforcement treatment. The initiation of removing weld reinforcement specimens' fatigue crack sources is in the hole defect, but the weld reinforcement specimen initiate at the weld toes. During the early stage of fatigue crack propagation, the cracks all grow inside the weld seam metal with obvious fatigue striation. And the fatigue cracks of oblique weld specimens pass through the weld seam into the base with a typical toughness fatigue striation during the last stage of fatigue crack propagation. The dimple of straight weld specimens is little and shallow in the final fracture zone. The oblique weld specimens broke in the base metal area, and the dimple is dense.

  10. Concept study for a combined reinforced concrete containment

    International Nuclear Information System (INIS)

    Liersch, G.; Peter, U.; Danisch, R.; Freiman, M.; Hummer, M.; Roettinger, H.; Hansen, H.

    1994-01-01

    A variety of different steel and concrete containment types had been designed and constructed in the past. Most of the concrete containments had been prestressed offering the advantage of small displacements and certain leak tightness of the concrete itself. However, considerable stresses in concrete as well as in the tendons have to be maintained during the whole lifetime of the plant in order to guarantee the required prestressing. The long-time behaviour and the ductility in case of beyond design load cases must be verified. In contrary to a prestressed containment a reinforced containment will only significantly be loaded during test conditions or when needed in case of accidents. It offers additional margins which can be used especially for dynamic loads like impacts or for beyond design considerations. The aim of this paper is to show the feasibility of a so-called combined containment which means capable to resist both - severe internal accidents and external hazards mainly the aircraft crash impact as considered in the design of nuclear power plants in Germany. The concept is a lined reinforced containment without prestressing. The mechanical resistance function is provided by the reinforced concrete and the leak tightness function will be taken by a so called composite liner made of non-metallic materials. Some results of tests performed at SIEMENS laboratories and at the University of Karlsruhe which show the capability of a composite liner to bridge over cracks at the concrete surface will be presented in the paper. The study shows that the combined reinforced concrete containment with a composite liner offers a robust concept with high flexibility with respect to load requirements, beyond design considerations and geometrical shaping (arrangement of openings, integration with adjacent structures). The concept may be further optimized by partial prestressing at areas of high concentration of stresses such as at transition zones or at disturbances around

  11. Friction Stir Processing of Copper-Coated SiC Particulate-Reinforced Aluminum Matrix Composite

    Directory of Open Access Journals (Sweden)

    Chih-Wei Huang

    2018-04-01

    Full Text Available In the present work, we proposed a novel friction stir processing (FSP to produce a locally reinforced aluminum matrix composite (AMC by stirring copper-coated SiC particulate reinforcement into Al6061 alloy matrix. Electroless-plating process was applied to deposit the copper surface coating on the SiC particulate reinforcement for the purpose of improving the interfacial adhesion between SiC particles and Al matrix. The core-shell SiC structure provides a layer for the atomic diffusion between aluminum and copper to enhance the cohesion between reinforcing particles and matrix on one hand, the dispersion of fine copper in the Al matrix during FSP provides further dispersive strengthening and solid solution strengthening, on the other hand. Hardness distribution and tensile results across the stir zone validated the novel concept in improving the mechanical properties of AMC that was realized via FSP. Optical microscope (OM and Transmission Electron Microscopy (TEM investigations were conducted to investigate the microstructure. Energy dispersive spectrometer (EDS, electron probe micro-analyzer (EPMA, and X-ray diffraction (XRD were explored to analyze the atomic inter-diffusion and the formation of intermetallic at interface. The possible strengthening mechanisms of the AMC containing Cu-coated SiC particulate reinforcement were interpreted. The concept of strengthening developed in this work may open a new way of fabricating of particulate reinforced metal matrix composites.

  12. Investigations of timing during the schedule and reinforcement intervals with wheel-running reinforcement.

    Science.gov (United States)

    Belke, Terry W; Christie-Fougere, Melissa M

    2006-11-01

    Across two experiments, a peak procedure was used to assess the timing of the onset and offset of an opportunity to run as a reinforcer. The first experiment investigated the effect of reinforcer duration on temporal discrimination of the onset of the reinforcement interval. Three male Wistar rats were exposed to fixed-interval (FI) 30-s schedules of wheel-running reinforcement and the duration of the opportunity to run was varied across values of 15, 30, and 60s. Each session consisted of 50 reinforcers and 10 probe trials. Results showed that as reinforcer duration increased, the percentage of postreinforcement pauses longer than the 30-s schedule interval increased. On probe trials, peak response rates occurred near the time of reinforcer delivery and peak times varied with reinforcer duration. In a second experiment, seven female Long-Evans rats were exposed to FI 30-s schedules leading to 30-s opportunities to run. Timing of the onset and offset of the reinforcement period was assessed by probe trials during the schedule interval and during the reinforcement interval in separate conditions. The results provided evidence of timing of the onset, but not the offset of the wheel-running reinforcement period. Further research is required to assess if timing occurs during a wheel-running reinforcement period.

  13. Experimental analysis of reinforced concrete beams strengthened in bending with carbon fiber reinforced polymer

    Directory of Open Access Journals (Sweden)

    M. M. VIEIRA

    Full Text Available The use of carbon fiber reinforced polymer (CFRP has been widely used for the reinforcement of concrete structures due to its practicality and versatility in application, low weight, high tensile strength and corrosion resistance. Some construction companies use CFRP in flexural strengthening of reinforced concrete beams, but without anchor systems. Therefore, the aim of this study is analyze, through an experimental program, the structural behavior of reinforced concrete beams flexural strengthened by CFRP without anchor fibers, varying steel reinforcement and the amount of carbon fibers reinforcement layers. Thus, two groups of reinforced concrete beams were produced with the same geometric feature but with different steel reinforcement. Each group had five beams: one that is not reinforced with CFRP (reference and other reinforced with two, three, four and five layers of carbon fibers. Beams were designed using a computational routine developed in MAPLE software and subsequently tested in 4-point points flexural test up to collapse. Experimental tests have confirmed the effectiveness of the reinforcement, ratifying that beams collapse at higher loads and lower deformation as the amount of fibers in the reinforcing layers increased. However, the increase in the number of layers did not provide a significant increase in the performance of strengthened beams, indicating that it was not possible to take full advantage of strengthening applied due to the occurrence of premature failure mode in the strengthened beams for pullout of the cover that could have been avoided through the use of a suitable anchoring system for CFRP.

  14. Flexural Behaviour of Reinforced Fibrous Concrete Beams: Experiments and Analytical Modelling

    International Nuclear Information System (INIS)

    Hameed, R.; Sellier, A.; Turatsinze, A.; Duprat, F.

    2013-01-01

    Flexural behaviour of reinforced fibrous concrete beams was investigated in this research study. Two types of metallic fibers were studied: amorphous metallic fibers (FibraFlex fibers), and carbon steel hooked-end fibers (Dramix fibers). Four types of reinforced concretes were made: one control (without fibers) and three fibrous. Among three reinforced fibrous concretes, two contained fibers in mono form and one contained fibers in hybrid form. The total quantity of fibers in mono and hybrid forms was 20 kg/m3 and 40 kg/m3, respectively. Three point bending tests were performed according to European standards NF EN 14651 on beams of 150 x 150 mm cross section and length of 550 mm. The results showed that due to positive synergetic interaction between the two metallic fibers used, reinforced fibrous concret (RFC) beams containing fibers in hybrid form exhibited better response at all loading stages. Analytical model to predict ultimate moment capacity of the RFC beam of rectangular section was developed and is presented in this paper. Analytical results for ultimate moment were found to be in good agreement with experimental results. (author)

  15. Failure Criteria for Reinforced Materials

    DEFF Research Database (Denmark)

    Rathkjen, Arne

    Failure of materials is often characterized as ductile yielding, brittle fracture, creep rupture, etc., and different criteria given in terms of different parameters have been used to describe different types of failure. Only criteria expressing failure in terms of stress are considered in what...... place until the matrix, the continuous component of the composite, fails. When an isotropic matrix is reinforced as described above, the result is an anisotropic composite material. Even if the material is anisotropic, it usually exhibits a rather high degree of symmetry and such symmetries place...... certain restrictions on the form of the failure criteria for anisotropic materials. In section 2, some failure criteria for homogenous materials are reviewed. Both isotropic and anisotropic materials are described, and in particular the constraints imposed on the criteria from the symmetries orthotropy...

  16. Corrosion of reinforcement induced by environment containing ...

    Indian Academy of Sciences (India)

    Unknown

    carbonation and chlorides causing corrosion of steel reinforcement. ... interesting and important when the evaluation of the service life of the ... preferably in the areas of industrial and transport activities. ... For controlling the embedded corrosion sensors, elec- .... danger of corrosion of reinforcement seems to be more.

  17. Reinforcement, Behavior Constraint, and the Overjustification Effect.

    Science.gov (United States)

    Williams, Bruce W.

    1980-01-01

    Four levels of the behavior constraint-reinforcement variable were manipulated: attractive reward, unattractive reward, request to perform, and a no-reward control. Only the unattractive reward and request groups showed the performance decrements that suggest the overjustification effect. It is concluded that reinforcement does not cause the…

  18. Continuous jute fibre reinforced laminated paper composite

    Indian Academy of Sciences (India)

    Jute fibre; laminated paper composite; plastic bag pollution. Abstract. Plastic bags create a serious environmental problem. The proposed jute fibre reinforced laminated paper composite and reinforcement-fibre free paper laminate may help to combat the war against this pollutant to certain extent. The paper laminate ...

  19. Durability of fibre reinforced concrete structures

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place; Hansen, Kurt Kielsgaard

    1996-01-01

    The planned research will indicate, whether fibre reinforced concrete has better or worse durability than normal concrete. Durability specimens will be measured on cracked as well as uncracked specimens. Also the pore structure in the concrete will be characterized.Keywords: Fibre reinforced...... concrete, durability, pore structure, mechanical load...

  20. Rotational Capacity of Reinforced Concrete Beams

    DEFF Research Database (Denmark)

    Ulfkjær, J. P.; Henriksen, M. S.; Brincker, Rune

    1995-01-01

    programme where 120 reinforced concrete beams, 54 plain concrete beams and 324 concrete cylinders are tested. For the reinforced concrete beams four different parar meters are varied. The slenderness is 6, 12 and 18, the beam depth is 100 mm, 200 mm and 400 mm giving nine different geometries, five...

  1. Structural Behavior of Concrete Beams Reinforced with Basalt Fiber Reinforced Polymer (BFRP) Bars

    Science.gov (United States)

    Ovitigala, Thilan

    The main challenge for civil engineers is to provide sustainable, environmentally friendly and financially feasible structures to the society. Finding new materials such as fiber reinforced polymer (FRP) material that can fulfill the above requirements is a must. FRP material was expensive and it was limited to niche markets such as space shuttles and air industry in the 1960s. Over the time, it became cheaper and spread to other industries such as sporting goods in the 1980-1990, and then towards the infrastructure industry. Design and construction guidelines are available for carbon fiber reinforced polymer (CFRP), aramid fiber reinforced polymer (AFRP) and glass fiber reinforced polymer (GFRP) and they are currently used in structural applications. Since FRP is linear elastic brittle material, design guidelines for the steel reinforcement are not valid for FRP materials. Corrosion of steel reinforcement affects the durability of the concrete structures. FRP reinforcement is identified as an alternative to steel reinforcement in corrosive environments. Although basalt fiber reinforced polymer (BFRP) has many advantages over other FRP materials, but limited studies have been done. These studies didn't include larger BFRP bar diameters that are mostly used in practice. Therefore, larger beam sizes with larger BFRP reinforcement bar diameters are needed to investigate the flexural and shear behavior of BFRP reinforced concrete beams. Also, shear behavior of BFRP reinforced concrete beams was not yet studied. Experimental testing of mechanical properties and bond strength of BFRP bars and flexural and shear behavior of BFRP reinforced concrete beams are needed to include BFRP reinforcement bars in the design codes. This study mainly focuses on the use of BFRP bars as internal reinforcement. The test results of the mechanical properties of BFRP reinforcement bars, the bond strength of BFRP reinforcement bars, and the flexural and shear behavior of concrete beams

  2. PARTIAL REINFORCEMENT (ACQUISITION) EFFECTS WITHIN SUBJECTS.

    Science.gov (United States)

    AMSEL, A; MACKINNON, J R; RASHOTTE, M E; SURRIDGE, C T

    1964-03-01

    Acquisition performance of 22 rats in a straight alley runway was examined. The animals were subjected to partial reinforcement when the alley was black (B+/-) and continuous reinforcement when it was white (W+). The results indicated (a) higher terminal performance, for partial as against continuous reinforcement conditions, for starting-time and running-time measures, and (b) lower terminal performance under partial conditions for a goal-entry-time measure. These results confirm within subjects an effect previously demonstrated, in the runway, only in between-groups tests, where one group is run under partial reinforcement and a separate group is run under continuous reinforcement in the presence of the same external stimuli. Differences between the runway situation, employing a discrete-trial procedure and performance measures at three points in the response chain, and the Skinner box situation, used in its free-operant mode with a single performance measure, are discussed in relation to the present findings.

  3. Reinforcement Learning State-of-the-Art

    CERN Document Server

    Wiering, Marco

    2012-01-01

    Reinforcement learning encompasses both a science of adaptive behavior of rational beings in uncertain environments and a computational methodology for finding optimal behaviors for challenging problems in control, optimization and adaptive behavior of intelligent agents. As a field, reinforcement learning has progressed tremendously in the past decade. The main goal of this book is to present an up-to-date series of survey articles on the main contemporary sub-fields of reinforcement learning. This includes surveys on partially observable environments, hierarchical task decompositions, relational knowledge representation and predictive state representations. Furthermore, topics such as transfer, evolutionary methods and continuous spaces in reinforcement learning are surveyed. In addition, several chapters review reinforcement learning methods in robotics, in games, and in computational neuroscience. In total seventeen different subfields are presented by mostly young experts in those areas, and together the...

  4. STRUCTURAL PERFORMANCE OF DEGRADED REINFORCED CONCRETE MEMBERS

    International Nuclear Information System (INIS)

    Braverman, J.I.; Miller, C.A.; Ellingwood, B.R.; Naus, D.J.; Hofmayer, C.H.; Bezler, P.; Chang, T.Y.

    2001-01-01

    This paper describes the results of a study to evaluate, in probabilistic terms, the effects of age-related degradation on the structural performance of reinforced concrete members at nuclear power plants. The paper focuses on degradation of reinforced concrete flexural members and shear walls due to the loss of steel reinforcing area and loss of concrete area (cracking/spalling). Loss of steel area is typically caused by corrosion while cracking and spalling can be caused by corrosion of reinforcing steel, freeze-thaw, or aggressive chemical attack. Structural performance in the presence of uncertainties is depicted by a fragility (or conditional probability of failure). The effects of degradation on the fragility of reinforced concrete members are calculated to assess the potential significance of various levels of degradation. The fragility modeling procedures applied to degraded concrete members can be used to assess the effects of degradation on plant risk and can lead to the development of probability-based degradation acceptance limits

  5. Oxidation of nano-reinforced polyolefins

    International Nuclear Information System (INIS)

    Gutierrez Castro, G.G.

    2010-11-01

    Nano-composite materials attract search due to their improvements on barrier properties by incorporating low level of nano-filler of 5%w. Nowadays, organically modified montmorillonite (MMT-O) is the most used filler due to its high aspect ratio which permits stronger clay/polymer interactions. If nano-reinforced materials are highly performing, the ways in which clay presence affects polyolefin durability have not being subject of a rigorous study, thus they are not yet clear. Our goal was to examine unstabilized clay polypropylene and unstabilized clay polyethylene nano composites to get a better comprehension of the clay effects on their thermo-oxidation process under low temperatures. The effects induced by a dual physic-chemical nature of the clay were explored. The problem was tackled from both experimental and theoretical point of views for degradation process not controlled and controlled by oxygen diffusion (homogenous and heterogeneous respectively). It seems that MMT-O speeds up oxidation. This phenomenon was modeled by adding a catalytic reaction between metallic particles initially present in the MMT-O and hydroperoxide groups (main responsible of oxidation). Regarding the oxygen permeability two situations were confronted: for the clay polypropylene system a decrease of 45% of oxygen permeability was measured. On the other hand, no variation was found for the polyethylene case. This effect was attributed to the fact that polyethylene nano-composite reached a blend morphology less developed than those of the polypropylene nano-composite. Kinetics and oxidation products profiles across the sample thickness were simulated for both systems by coupling oxidation reactions with oxygen diffusion equations. For the polyethylene case, the effects induced by oxidation on molar mass and crystalline morphology were also simulated. Finally, based on a structure-property relationship, simulations of mechanic modulus profiles were performed for the heterogeneous

  6. Axial Compression Tests on Corroded Reinforced Concrete Columns Consolidated with Fibre Reinforced Polymers

    Directory of Open Access Journals (Sweden)

    Bin Ding

    2017-06-01

    Full Text Available Reinforced concrete structure featured by strong bearing capacity, high rigidity, good integrity, good fire resistance, and extensive applicability occupies a mainstream position in contemporary architecture. However, with the development of social economy, people need higher requirements on architectural structure; durability, especially, has been extensively researched. Because of the higher requirement on building material, ordinary reinforced concrete structure has not been able to satisfy the demand. As a result, some new materials and structures have emerged, for example, fibre reinforced polymers. Compared to steel reinforcement, fibre reinforced polymers have many advantages, such as high tensile strength, good durability, good shock absorption, low weight, and simple construction. The application of fibre reinforced polymers in architectural structure can effectively improve the durability of the concrete structure and lower the maintenance, reinforcement, and construction costs in severe environments. Based on the concepts of steel tube concrete, fibre reinforced composite material confined concrete, and fibre reinforced composite material tubed concrete, this study proposes a novel composite structure, i.e., fibre reinforced composite material and steel tube concrete composite structure. The structure was developed by pasting fibre around steel tube concrete and restraining core concrete using fibre reinforced composite material and steel tubes. The bearing capacity and ultimate deformation capacity of the structure was tested using column axial compression test.

  7. Long-term performance of GFRP reinforcement : technical report.

    Science.gov (United States)

    2009-12-01

    Significant research has been performed on glass fiber-reinforced polymer (GFRP) concrete reinforcement. : This research has shown that GFRP reinforcement exhibits high strengths, is lightweight, can decrease time of : construction, and is corrosion ...

  8. Machining of Metal Matrix Composites

    CERN Document Server

    2012-01-01

    Machining of Metal Matrix Composites provides the fundamentals and recent advances in the study of machining of metal matrix composites (MMCs). Each chapter is written by an international expert in this important field of research. Machining of Metal Matrix Composites gives the reader information on machining of MMCs with a special emphasis on aluminium matrix composites. Chapter 1 provides the mechanics and modelling of chip formation for traditional machining processes. Chapter 2 is dedicated to surface integrity when machining MMCs. Chapter 3 describes the machinability aspects of MMCs. Chapter 4 contains information on traditional machining processes and Chapter 5 is dedicated to the grinding of MMCs. Chapter 6 describes the dry cutting of MMCs with SiC particulate reinforcement. Finally, Chapter 7 is dedicated to computational methods and optimization in the machining of MMCs. Machining of Metal Matrix Composites can serve as a useful reference for academics, manufacturing and materials researchers, manu...

  9. Optimal reinforcing of reticular structures Optimal reinforcing of reticular structures

    Directory of Open Access Journals (Sweden)

    Juan Santiago Mejía

    2006-12-01

    Full Text Available This article presents an application of Genetic Algorithms (GA and Finite Element Analysis (FEA to solve a structural optimisation problem on reticular plastic structures. Structural optimisation is used to modify the original shape by placing reinforcements at optimum locations. As a result, a reduction in the maximum stress by 14,70% for a structure with a final volume increase of 8,36% was achieved. This procedure solves the structural optimisation problem by adjusting the original mold and thereby avoiding the re-construction of a new one.Este artículo presenta una aplicación de Algoritmos Genéticos (GA y Análisis por Elementos Finitos (FEA a la solución de un problema de optimización estructural en estructuras reticulares plásticas. Optimización estructurales usada para modificar la forma original colocando refuerzos en posiciones óptimas. Como resultado se obtuvo una reducción en el esfuerzo máximo de 14,70% para una estructura cuyo volumen original aumento en 8,36%. Este procedimiento soluciona el problema de optimización estructural ajustando el molde original y evitando la manufactura de un nuevo molde.

  10. Heavy metals

    OpenAIRE

    Adriano, Domy; VANGRONSVELD, Jaco; Bolan, N.S.; Wenzel, W.W.

    2005-01-01

    - Sources of Metals in the Environment - Environmental Contamination - Retention and Dynamics of Metals in Soils - Adsorption - Complexation - Precipitation - Bioavailability–Natural Attenuation Interactions - Biological Response to Metals - Soil Remediation

  11. Natural Corrosion Inhibitors for Steel Reinforcement in Concrete — a Review

    Science.gov (United States)

    Raja, Pandian Bothi; Ghoreishiamiri, Seyedmojtaba; Ismail, Mohammad

    2015-04-01

    Reinforced concrete is one of the widely used construction materials for bridges, buildings, platforms and tunnels. Though reinforced concrete is capable of withstanding a large range of severe environments including marine, industrial and alpine conditions, there are still a large number of failures in concrete structures for many reasons. Either carbonation or chloride attack is the main culprit which is due to depassivation of reinforced steel and subsequently leads to rapid steel corrosion. Among many corrosion prevention measures, application of corrosion inhibitors play a vital role in metal protection. Numerous range of corrosion inhibitors were reported for concrete protection that were also used commercially in industries. This review summarizes the application of natural products as corrosion inhibitors for concrete protection and also scrutinizes various factors influencing its applicability.

  12. Fabrication of novel fiber reinforced aluminum composites by friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Arab, Seyyed Mohammad; Karimi, Saeed; Jahromi, Seyyed Ahmad Jenabali, E-mail: jahromi@shirazu.ac.ir; Javadpour, Sirus; Zebarjad, Seyyed Mojtaba

    2015-04-24

    In this study, chopped and attrition milled high strength carbon, E-glass, and S-glass fibers have been used as the reinforcing agents in an aluminum alloy (Al1100) considered as the matrix. The Surface Metal Matrix Composites (SMMCs) then are produced by Friction Stir Processing (FSP). Tensile and micro-hardness examinations represent a magnificent improvement in the hardness, strength, ductility and toughness for all of the processed samples. Scanning Electron Micrographs reveal a proper distribution of the reinforcements in the matrix and a change in the fracture behavior of the FSPed specimens. The synergetic effects of reinforcing by fibers and Severe Plastic Deformation (SPD) lead to an extra ordinary improvement in the mechanical properties.

  13. A Brief Research Review for Improvement Methods the Wettability between Ceramic Reinforcement Particulate and Aluminium Matrix Composites

    Science.gov (United States)

    Razzaq, Alaa Mohammed; Majid, Dayang Laila Abang Abdul; Ishak, M. R.; B, Uday M.

    2017-05-01

    The development of new methods for addition fine ceramic powders to Al aluminium alloy melts, which would lead to more uniform distribution and effective incorporation of the reinforcement particles into the aluminium matrix alloy. Recently the materials engineering research has moved to composite materials from monolithic, adapting to the global need for lightweight, low cost, quality, and high performance advanced materials. Among the different methods, stir casting is one of the simplest ways of making aluminium matrix composites. However, it suffers from poor distribution and combination of the reinforcement ceramic particles in the metal matrix. These problems become significantly effect to reduce reinforcement size, more agglomeration and tendency with less wettability for the ceramic particles in the melt process. Many researchers have carried out different studies on the wettability between the metal matrix and dispersion phase, which includes added wettability agents, fluxes, preheating the reinforcement particles, coating the reinforcement particles, and use composting techniques. The enhancement of wettability of ceramic particles by the molten matrix alloy and the reinforcement particles distribution improvement in the solidified matrix is the main objective for many studies that will be discussed in this paper.

  14. Reinforcement of 2124 Al alloy with low micron SiC and nano Al2O3 via solid-state forming

    CSIR Research Space (South Africa)

    Gxowa, Z

    2015-07-01

    Full Text Available A powder metallurgical process was used to fabricate Metal Matrix Composites (MMCs). A 2124 aluminium alloy was reinforced with 5 and 10 vol. % of Al2O3 (40-70nm) to form Metal Matrix Nano Composites (MMNCs) as well as 10 and 15 vol. % of SiC (1...

  15. Geo synthetic-reinforced Pavement systems

    International Nuclear Information System (INIS)

    Zornberg, J. G.

    2014-01-01

    Geo synthetics have been used as reinforcement inclusions to improve pavement performance. while there are clear field evidence of the benefit of using geo synthetic reinforcements, the specific conditions or mechanisms that govern the reinforcement of pavements are, at best, unclear and have remained largely unmeasured. Significant research has been recently conducted with the objectives of: (i) determining the relevant properties of geo synthetics that contribute to the enhanced performance of pavement systems, (ii) developing appropriate analytical, laboratory and field methods capable of quantifying the pavement performance, and (iii) enabling the prediction of pavement performance as a function of the properties of the various types of geo synthetics. (Author)

  16. Fatigue Performance of Fiber Reinforced Concrete

    DEFF Research Database (Denmark)

    Jun, Zhang; Stang, Henrik

    1996-01-01

    The objective of the present study is to obtain basic data of fibre reinforced concrete under fatigue load and to set up a theoretical model based on micromechanics. In this study, the bridging stress in fiber reinforced concrete under cyclic tensile load was investigted in details. The damage...... mechanism of the interface between fiber and matrix was proposed and a rational model given. Finally, the response of a steel fiber reinforced concrete beam under fatigue loading was predicted based on this model and compared with experimental results....

  17. Seismic Stability of Reinforced Soil Slopes

    DEFF Research Database (Denmark)

    Tzavara, I.; Zania, Varvara; Tsompanakis, Y.

    2012-01-01

    Over recent decades increased research interest has been observed on the dynamic response and stability issues of earth walls and reinforced soil structures. The current study aims to provide an insight into the dynamic response of reinforced soil structures and the potential of the geosynthetics...... to prevent the development of slope instability taking advantage of their reinforcing effect. For this purpose, a onedimensional (SDOF) model, based on Newmark’s sliding block model as well as a two-dimensional (plane-strain) dynamic finite-element analyses are conducted in order to investigate the impact...

  18. Elastomer Reinforced with Carbon Nanotubes

    Science.gov (United States)

    Hudson, Jared L.; Krishnamoorti, Ramanan

    2009-01-01

    Elastomers are reinforced with functionalized, single-walled carbon nanotubes (SWNTs) giving them high-breaking strain levels and low densities. Cross-linked elastomers are prepared using amine-terminated, poly(dimethylsiloxane) (PDMS), with an average molecular weight of 5,000 daltons, and a functionalized SWNT. Cross-link densities, estimated on the basis of swelling data in toluene (a dispersing solvent) indicated that the polymer underwent cross-linking at the ends of the chains. This thermally initiated cross-linking was found to occur only in the presence of the aryl alcohol functionalized SWNTs. The cross-link could have been via a hydrogen-bonding mechanism between the amine and the free hydroxyl group, or via attack of the amine on the ester linage to form an amide. Tensile properties examined at room temperature indicate a three-fold increase in the tensile modulus of the elastomer, with rupture and failure of the elastomer occurring at a strain of 6.5.

  19. Polymer reinforcement of cement systems

    International Nuclear Information System (INIS)

    Swamy, R.N.

    1979-01-01

    In the last couple of decades several cement- and concrete-based composites have come into prominence. Of these, cement-polymer composites, like cement-fibre composites, have been recognised as very promising, and considerable research and development on their properties, fabrication methods and application are in progress. Of the three types of concrete materials which incorporate polymers to form composites, polymer impregnated concrete forms a major development in which hardened concrete is impregnated with a liquid monomer which is subsequently polymerized to form a rigid polymer network in the pores of the parent material. In this first part of the extensive review of the polymer reinforcement of cement systems, the process technology of the various monomer impregnation techniques and the properties of the impregnated composite are assessed critically. It is shown that the high durability and superior performance of polymer impregnated concrete can provide an economic and competitive alternative in in situ strengthening, and in other areas where conventional concrete can only at best provide adequate performance. The review includes a section on radiation-induced polymerization. (author)

  20. Skin Cancer Screening

    Science.gov (United States)

    ... Genetics of Skin Cancer Skin Cancer Screening Research Skin Cancer Screening (PDQ®)–Patient Version What is screening? ... These are called diagnostic tests . General Information About Skin Cancer Key Points Skin cancer is a disease ...

  1. Screening for Cancer

    Science.gov (United States)

    Cancer screening is checking for cancer in people who don't have symptoms. Screening tests can help doctors find and treat several types of cancer early, but cancer screening can have harms as well as benefits.

  2. Colorectal Cancer Screening

    Science.gov (United States)

    ... Genetics of Colorectal Cancer Colorectal Cancer Screening Research Colorectal Cancer Screening (PDQ®)–Patient Version What is screening? Go ... These are called diagnostic tests . General Information About Colorectal Cancer Key Points Colorectal cancer is a disease in ...

  3. Screen time and children

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/patientinstructions/000355.htm Screen time and children To use the sharing features on ... videos is considered unhealthy screen time. Current Screen Time Guidelines Children under age 2 should have no ...

  4. Stomach (Gastric) Cancer Screening

    Science.gov (United States)

    ... Stomach Cancer Prevention Stomach Cancer Screening Research Stomach (Gastric) Cancer Screening (PDQ®)–Patient Version What is screening? Go ... are called diagnostic tests . General Information About Stomach (Gastric) Cancer Key Points Stomach cancer is a disease in ...

  5. Facilitating tolerance of delayed reinforcement during functional communication training.

    Science.gov (United States)

    Fisher, W W; Thompson, R H; Hagopian, L P; Bowman, L G; Krug, A

    2000-01-01

    Few clinical investigations have addressed the problem of delayed reinforcement. In this investigation, three individuals whose destructive behavior was maintained by positive reinforcement were treated using functional communication training (FCT) with extinction (EXT). Next, procedures used in the basic literature on delayed reinforcement and self-control (reinforcer delay fading, punishment of impulsive responding, and provision of an alternative activity during reinforcer delay) were used to teach participants to tolerate delayed reinforcement. With the first case, reinforcer delay fading alone was effective at maintaining low rates of destructive behavior while introducing delayed reinforcement. In the second case, the addition of a punishment component reduced destructive behavior to near-zero levels and facilitated reinforcer delay fading. With the third case, reinforcer delay fading was associated with increases in masturbation and head rolling, but prompting and praising the individual for completing work during the delay interval reduced all problem behaviors and facilitated reinforcer delay fading.

  6. Numerical simulation of a high velocity impact on fiber reinforced materials

    International Nuclear Information System (INIS)

    Thoma, Klaus; Vinckier, David

    1994-01-01

    Whereas the calculation of a high velocity impact on isotropical materials can be done on a routine basis, the simulation of the impact and penetration process into nonisotropical materials such as reinforced concrete or fiber reinforced materials still is a research task.We present the calculation of an impact of a metallic fragment on a modern protective wall structure. Such lightweight protective walls typically consist of two layers, a first outer layer made out of a material with high hardness and a backing layer. The materials for the backing layer are preferably fiber reinforced materials. Such types of walls offer a protection against fragments in a wide velocity range.For our calculations we used a non-linear finite element Lagrange code with explicit time integration. To be able to simulate the high velocity penetration process with a continuous erosion of the impacting metallic fragment, we used our newly developed contact algorithm with eroding surfaces. This contact algorithm is vectorized to a high degree and especially robust as it was developed to work for a wide range of contact-impact problems. To model the behavior of the fiber reinforced material under the highly dynamic loads, we present a material model which initially was developed to calculate the crash behavior (automotive applications) of modern high strength fiber-matrix systems. The model can describe the failure and the postfailure behavior up to complete material crushing.A detailed simulation shows the impact of a metallic fragment with a velocity of 750ms -1 on a protective wall with two layers, the deformation and erosion of fragment and wall material and the failure of the fiber reinforced material. ((orig.))

  7. Influence of reinforcement's corrosion into hyperstatic reinforced concrete beams: a probabilistic failure scenarios analysis

    Directory of Open Access Journals (Sweden)

    G. P. PELLIZZER

    Full Text Available AbstractThis work aims to study the mechanical effects of reinforcement's corrosion in hyperstatic reinforced concrete beams. The focus is the probabilistic determination of individual failure scenarios change as well as global failure change along time. The limit state functions assumed describe analytically bending and shear resistance of reinforced concrete rectangular cross sections as a function of steel and concrete resistance and section dimensions. It was incorporated empirical laws that penalize the steel yield stress and the reinforcement's area along time in addition to Fick's law, which models the chloride penetration into concrete pores. The reliability theory was applied based on Monte Carlo simulation method, which assesses each individual probability of failure. The probability of global structural failure was determined based in the concept of failure tree. The results of a hyperstatic reinforced concrete beam showed that reinforcements corrosion make change into the failure scenarios modes. Therefore, unimportant failure modes in design phase become important after corrosion start.

  8. Effect of Lubrication on Sliding Wear of Red Mud Particulate Reinforced Aluminium Alloy 6061

    Directory of Open Access Journals (Sweden)

    N. Panwar

    2017-09-01

    Full Text Available In present study, Red mud, an industrial waste, has been utilized as a reinforcement material to fabricate Aluminium 6061 matrix based metal matrix composite. Taguchi L18 orthogonal array has been employed for fabrication of composite castings and for conducting the tribological experimentation. ANOVA analysis has been applied to examine the effect of individual parameters such as sliding condition: dry and wet, reinforcement weight fraction, load, speed, and sliding distance on specific wear rate obtained experimentally. It has been found that tensile strength and impact energy increases while elongation decreases, with increasing weight fraction and decrease in particle size of red mud. The percentage contribution of the effect of factors on SWR is Sliding condition (73.17, speed (7.84, percentage reinforcement (7.35, load (5.75, sliding distance (2.24, and particle size (1.25. It has also been observed that specific wear rate is very low in wet condition. However, it decreases with increase in weight fraction of reinforcement, decrease in load and sliding speed. Al6061/red mud metal matrix composites have shown reasonable strength and wear resistance. The use of red mud in Aluminium composite provides the solution for disposal of red mud and can possibly become an economic replacement of Aluminium and its alloys.

  9. Mechanical Behavior of Stainless Steel Fiber-Reinforced Composites Exposed to Accelerated Corrosion

    Science.gov (United States)

    O’Brien, Caitlin; McBride, Amanda; E. Zaghi, Arash; Burke, Kelly A.; Hill, Alex

    2017-01-01

    Recent advancements in metal fibers have introduced a promising new type of stainless steel fiber with high stiffness, high failure strain, and a thickness corrosion. The main goal of this study is to compare the impact of corrosion on the mechanical properties of steel fiber-reinforced composites with those of conventional types of stainless steel. By providing experimental evidences, this study may promote the application of steel fiber-reinforced composite as a viable alternative to conventional metals. Samples of steel fiber-reinforced polymer and four different types of stainless steel were subjected to 144 and 288 h of corrosion in ferric chloride solution to simulate accelerated corrosion conditions. The weight losses due to corrosion were recorded. The corroded and control samples were tested under monotonic tensile loading to measure the ultimate stresses and strains. The effect of corrosion on the mechanical properties of the different materials was evaluated. The digital image correlation (DIC) technique was used to investigate the failure mechanism of the corrosion-damaged specimens. Overall, steel fiber-reinforced composites had the greatest corrosion resistance. PMID:28773132

  10. Modeling of geosynthetic reinforced capping systems

    International Nuclear Information System (INIS)

    Viswanadham, B.V.S.; Koenig, D.; Jessberger, H.L.

    1997-01-01

    The investigation deals with the influence of a geosynthetic reinforcement on the deformation behavior and sealing efficiency of the reinforced mineral sealing layer at the onset of non-uniform settlements. The research program is mainly concentrated in studying the influence of reinforcement inclusion in restraining cracks and crack propagation due to soil-geosynthetic bond efficiency. Centrifuge model tests are conducted in the 500 gt capacity balanced beam Bochum geotechnical Centrifuge (Z1) simulating a differential deformation of a mineral sealing layer of a landfill with the help of trap-door arrangement. By comparing the performance of the deformed mineral sealing layer with and without geogrid, the reinforcement ability of the geogrid in controlling the crack propagation and permeability of the mineral swing layer is evaluated

  11. Chemical modification of flax reinforced polypropylene composites

    CSIR Research Space (South Africa)

    Jacob John, Maya

    2009-04-01

    Full Text Available This paper presents an experimental study on the static and dynamic mechanical properties of nonwoven based flax fibre reinforced polypropylene composites. The effect of zein modification on flax fibres is also reported. Flax nonwovens were treated...

  12. fatigue strength of reinforced concrete flexural members

    African Journals Online (AJOL)

    Dr Obe

    1980-03-01

    Mar 1, 1980 ... cyclic loads behave differently compared with static bending and can collapse due to the fatigue of concrete, reinforcement or both when maximum fatigue stresses of ... under low and medium load levels, than under high load ...

  13. Thin fiber and textile reinforced cementitious systems

    National Research Council Canada - National Science Library

    Aldea, Corina-Maria

    2007-01-01

    This Special Publication (SP) contains ten papers which provide insight on the topics of state of the art of thin fiber and textile-reinforced cementitious systems both in academia and the industry...

  14. PROPERTIES OF CHITIN REINFORCES COMPOSITES: A REVIEW

    African Journals Online (AJOL)

    user

    mechanical and thermal properties of chitin reinforced composites. ..... with crabyon fiber and normal viscose filaments. Also. Zhang et al.,[65] successfully blended chitin/cellulose using two different coagulating systems (immersed in 5.

  15. Corrosion resistant alloys for reinforced concrete [2009

    Science.gov (United States)

    2009-04-01

    Deterioration of concrete bridges because of reinforcing steel corrosion has been recognized for four-plus decades as a major technical and economic challenge for the United States. As an option for addressing this problem, renewed interest has focus...

  16. Belief reward shaping in reinforcement learning

    CSIR Research Space (South Africa)

    Marom, O

    2018-02-01

    Full Text Available A key challenge in many reinforcement learning problems is delayed rewards, which can significantly slow down learning. Although reward shaping has previously been introduced to accelerate learning by bootstrapping an agent with additional...

  17. Reinforced Conductive Polyaniline-Paper Composites

    Directory of Open Access Journals (Sweden)

    Jinhua Yan

    2015-05-01

    Full Text Available A method for direct aniline interfacial polymerization on polyamideamine-epichlorohydrin (PAE-reinforced paper substrate is introduced in this paper. Cellulose-based papers with and without reinforcement were considered. The polyaniline (PANI-paper composites had surface resistivity lower than 100 Ω/sq after more than 3 polymerizations. Their mechanical strength and thermal stability were analyzed by tensile tests and thermogravimetric analysis (TGA. Fourier transform infrared (FTIR results revealed that there was strong interaction between NH groups in aniline monomers and OH groups in fibers, which did not disappear until after 3 polymerizations. Scanning electron microscopy (SEM and field emission (FE SEM images showed morphological differences between composites using reinforced and untreated base papers. Conductive composites made with PAE-reinforced base paper had both good thermal stability and good mechanical strength, with high conductivity and a smaller PANI amount.

  18. Corrosion resistant alloys for reinforced concrete [2007

    Science.gov (United States)

    2007-07-01

    Deterioration of concrete bridges because of reinforcing steel corrosion has been recognized for 4-plus decades as a major technical and economic challenge for the United States. As an option for addressing this problem, renewed interest has focused ...

  19. Fiber reinforced polymer bridge decks : [technical summary].

    Science.gov (United States)

    2011-01-01

    A number of researchers have addressed the use of Fiber Reinforced Polymer (FRP) deck as a replacement solution for deteriorated bridge decks made of traditional materials. The use of new, advanced materials such as FRP is advantageous when the bridg...

  20. The effect of reinforcement volume ratio on porosity and thermal conductivity in Al-Mgo composites

    Directory of Open Access Journals (Sweden)

    Recep Calin

    2012-12-01

    Full Text Available In this study, the effects of reinforcement volume ratios (RVR on composite structure and thermal conductivity were examined in Al-MgO reinforced metal matrix composites (MMCs of 5%, 10% and 15% RVR produced by melt stirring. In the production of composites, EN AW 1050A aluminum alloy was used as the matrix material and MgO powders with particle size of -105 µm were used as the reinforcement material. For every composite specimen was produced at 500 rev/min stirring speed, at 750 °C liquid matrix temperature and 4 minutes stirring time. Composite samples were cooled under normal atmosphere. Then, microstructures of the samples were determined and evaluated by using Scanning Electron Microscope (SEM and Energy Dispersive X-ray Spectroscopy (EDS analysis. In general, it was observed that the reinforcement exhibited a homogeneous distribution. Furthermore, it was determined that the increase in the RVR increased porosity. From the Scanning Electron Microscope images, a thermal Ansys model was generated to determine effective thermal conductivity. Effective thermal conductivity of Al-MgO composites increased with the decrease in reinforcement volume ratio.

  1. Finite element modeling of reinforced concrete beams with a hybrid combination of steel and aramid reinforcement

    International Nuclear Information System (INIS)

    Hawileh, R.A.

    2015-01-01

    Highlights: • Modeling of concrete beams reinforced steel and FRP bars. • Developed finite element models achieved good results. • The models are validated via comparison with experimental results. • Parametric studies are performed. - Abstract: Corrosion of steel bars has an adverse effect on the life-span of reinforced concrete (RC) members and is usually associated with crack development in RC beams. Fiber reinforced polymer (FRP) bars have been recently used to reinforce concrete members in flexure due to their high tensile strength and superior corrosion resistance properties. However, FRP materials are brittle in nature, thus RC beams reinforced with such materials would exhibit a less ductile behavior when compared to similar members reinforced with conventional steel reinforcement. Recently, researchers investigated the performance of concrete beams reinforced with a hybrid combination of steel and Aramid Fiber Reinforced Polymer (AFRP) reinforcement to maintain a reasonable level of ductility in such members. The function of the AFRP bars is to increase the load-carrying capacity, while the function of the steel bars is to ensure ductility of the flexural member upon yielding in tension. This paper presents a three-dimensional (3D) finite element (FE) model that predicted the load versus mid-span deflection response of tested RC beams conducted by other researchers with a hybrid combination of steel and AFRP bars. The developed FE models account for the constituent material nonlinearities and bond–slip behavior between the reinforcing bars and adjacent concrete surfaces. It was concluded that the developed models can accurately capture the behavior and predicts the load-carrying capacity of such RC members. In addition, a parametric study is conducted using the validated models to investigate the effect of AFRP bar size, FRP material type, bond–slip action, and concrete compressive strength on the performance of concrete beams when reinforced

  2. Combining noncontingent reinforcement and differential reinforcement schedules as treatment for aberrant behavior.

    OpenAIRE

    Marcus, B A; Vollmer, T R

    1996-01-01

    Research has shown that noncontingent reinforcement (NCR) can be an effective behavior-reduction procedure when based on a functional analysis. The effects of NCR may be a result of elimination of the contingency between aberrant behavior and reinforcing consequences (extinction) or frequent and free access to reinforcers that may reduce the participant's motivation to engage in aberrant behaviors or mands. If motivation is momentarily reduced, behavior such as mands may not be sensitive to p...

  3. Reinforcement Schedules in a Verbal Reinforcement Combination and Renection-Impulsivity

    OpenAIRE

    TAMASE, Koji; UEDA, Masako

    1986-01-01

    It was predicted that higher proportion of the negative reinforcement "Wrong" than that of the positive reinforcement "Right" in a reinforcement combination will produce higher proportion of the correct response and this trend will be greater in reflective children than in impulsive children. From 140 kindergarten children 30 reflective and 30 impulsive children were selected and they were given a two-hole marble-dropping task. The best performance in the ratio of correct responses was obtain...

  4. Modelling root reinforcement in shallow forest soils

    Science.gov (United States)

    Skaugset, Arne E.

    1997-01-01

    A hypothesis used to explain the relationship between timber harvesting and landslides is that tree roots add mechanical support to soil, thus increasing soil strength. Upon harvest, the tree roots decay which reduces soil strength and increases the risk of management -induced landslides. The technical literature does not adequately support this hypothesis. Soil strength values attributed to root reinforcement that are in the technical literature are such that forested sites can't fail and all high risk, harvested sites must fail. Both unstable forested sites and stable harvested sites exist, in abundance, in the real world thus, the literature does not adequately describe the real world. An analytical model was developed to calculate soil strength increase due to root reinforcement. Conceptually, the model is composed of a reinforcing element with high tensile strength, i.e. a conifer root, embedded in a material with little tensile strength, i.e. a soil. As the soil fails and deforms, the reinforcing element also deforms and stretches. The lateral deformation of the reinforcing element is treated analytically as a laterally loaded pile in a flexible foundation and the axial deformation is treated as an axially loaded pile. The governing differential equations are solved using finite-difference approximation techniques. The root reinforcement model was tested by comparing the final shape of steel and aluminum rods, parachute cord, wooden dowels, and pine roots in direct shear with predicted shapes from the output of the root reinforcement model. The comparisons were generally satisfactory, were best for parachute cord and wooden dowels, and were poorest for steel and aluminum rods. A parameter study was performed on the root reinforcement model which showed reinforced soil strength increased with increasing root diameter and soil depth. Output from the root reinforcement model showed a strain incompatibility between large and small diameter roots. The peak

  5. The Recent Research on Bamboo Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Dewi Sri Murni

    2017-01-01

    Full Text Available The paper presents the last research on bamboo reinforced concrete in Brawijaya University Indonesia. Three kinds of structures studied in recent year, the mounting of pegs on reinforcement, the use of lightweight brick to reduce the weight of the beams, and the use the light weight aggregate for bamboo concrete composite frame. All that experiments overcome some problems exist in using bamboo as environmental acceptance structures.

  6. Reinforced concrete wall under hydrogen detonation

    International Nuclear Information System (INIS)

    Saarenheimo, A.

    2000-11-01

    The structural integrity of a reinforced concrete wall in the BWR reactor building under hydrogen detonation conditions has been analysed. Of particular interest is whether the containment integrity can be jeopardised by an external hydrogen detonation. The load carrying capacity of a reinforced concrete wall was studied. The detonation pressure loads were estimated with computerised hand calculations assuming a direct initiation of detonation and applying the strong explosion theory. The results can be considered as rough and conservative estimates for the first shock pressure impact induced by a reflecting detonation wave. Structural integrity may be endangered due to slow pressurisation or dynamic impulse loads associated with local detonations. The static pressure following the passage of a shock front may be relatively high, thus this static or slowly decreasing pressure after a detonation may damage the structure severely. The mitigating effects of the opening of a door on pressure history and structural response were also studied. The non-linear behaviour of the wall was studied under detonations corresponding a detonable hydrogen mass of 0.5 kg and 1.428 kg. Non-linear finite element analyses of the reinforced concrete structure were carried out by the ABAQUS/Explicit program. The reinforcement and its non-linear material behaviour and the tensile cracking of concrete were modelled. Reinforcement was defined as layers of uniformly spaced reinforcing bars in shell elements. In these studies the surrounding structures of the non-linearly modelled reinforced concrete wall were modelled using idealised boundary conditions. Especially concrete cracking and yielding of the reinforcement was monitored during the numerical simulation. (au)

  7. Shaking Table Tests of Reinforced Concrete Frames

    DEFF Research Database (Denmark)

    Skjærbæk, P. S.; Kirkegaard, Poul Henning; Nielsen, Søren R.K.

    -varying systems and to verify various methods for damage assessment of reinforced concrete structures from soft motion measurements. In this study the maximum softening concept will be evaluated. In the paper the assessment obtained by this method is compared to visual damage assessment. The structures considered...... vector ARMA model is suitable for modal identification of degrading reinforced concrete structures and the maximum softening damage index calculated from the obtained identification provides a valuable tool for assessment of the damage state of the structure....

  8. Design Methods for Fibre Reinforced Concrete

    DEFF Research Database (Denmark)

    Stang, Henrik

    1996-01-01

    The present paper describes the outline of a research project on Fibre Reinforced Concrete (FRC) currently being carried out in Denmark under the supervision of Danish Council of Technology, Danish Technical Research Council and Danish Natural Science Research Counsil.......The present paper describes the outline of a research project on Fibre Reinforced Concrete (FRC) currently being carried out in Denmark under the supervision of Danish Council of Technology, Danish Technical Research Council and Danish Natural Science Research Counsil....

  9. Assessment of exposure pathways connected with construction and operation of concrete bridge reinforced with very low level radioactive steel

    International Nuclear Information System (INIS)

    Panik, M.; Necas, V.

    2012-01-01

    Large amount of low level radioactive material arises during decommissioning of nuclear power plants. Material mostly comprises metal scrap and concrete ruble. Paper deals with recycling and reuse of metal scrap and its utilization as part of reinforcement of concrete bridges under the conditional release concept. Radiation exposure originating in very low level reinforcement steel consists of several exposure pathways. Short-term radiation impact is represented mostly by external exposure pathway and it is relevant to the construction workers and users of the bridge. Long-term radiation impacts on inhabitants living near finished bridge and it is divided into inhalation and ingestion of radionuclides-internal exposure pathways. Radiation impact caused by utilization of very low level radioactive waste was calculated using simulation software VISIPLAN 3D ALARA and GOLDSIM. Results of calculations provide fair summary of possibilities of utilization of conditionally released steel as reinforcement of concrete bridges. (Authors)

  10. Composite material reinforced with atomized quasicrystalline particles and method of making same

    Science.gov (United States)

    Biner, S.B.; Sordelet, D.J.; Lograsso, B.K.; Anderson, I.E.

    1998-12-22

    A composite material comprises an aluminum or aluminum alloy matrix having generally spherical, atomized quasicrystalline aluminum-transition metal alloy reinforcement particles disposed in the matrix to improve mechanical properties. A composite article can be made by consolidating generally spherical, atomized quasicrystalline aluminum-transition metal alloy particles and aluminum or aluminum alloy particles to form a body that is cold and/or hot reduced to form composite products, such as composite plate or sheet, with interfacial bonding between the quasicrystalline particles and the aluminum or aluminum alloy matrix without damage (e.g. cracking or shape change) of the reinforcement particles. The cold and/or hot worked composite exhibits substantially improved yield strength, tensile strength, Young`s modulus (stiffness). 3 figs.

  11. Wear Response of Aluminium 6061 Composite Reinforced with Red Mud at Elevated Temperature

    Directory of Open Access Journals (Sweden)

    R. Dabral

    2017-09-01

    Full Text Available The present work is focused on the investigations on dry sliding wear behaviour of aluminium metal matrix composite at room and elevated temperature. Aluminium metal matrix composites reinforced with red mud are prepared by stir casting method. The experiments are planned using Taguchi technique. An orthogonal array, analysis of variance and signal to noise ratio are used to check the influence of wear parameters like temperature, percentage of reinforcement, mesh size, load, sliding distance and sliding speed on dry sliding wear of composites. The optimal testing parameters are found and their values are calculated which are then compared with predicted values. A reasonable agreement is found between predicted and actual values. The model prepared in the present work can be effectively used to predict the specific wear rate of the composites.

  12. Joining of aluminum sheet and glass fiber reinforced polymer using extruded pins

    Science.gov (United States)

    Conte, Romina; Buhl, Johannes; Ambrogio, Giuseppina; Bambach, Markus

    2018-05-01

    The present contribution proposes a new approach for joining sheet metal and fiber reinforced composites. The joining process draws upon a Friction Stir Forming (FSF) process, which is performed on the metal sheet to produce slender pins. These pins are used to pierce through the composite. Joining is complete by forming a locking head out of the part if the pin sticks out of the composite. Pins of different diameters and lengths were produced from EN AW-1050 material, which were joined to glass fiber reinforced polyamide-6. The strength of the joint has been experimentally tested in order to understand the effect of the process temperature on the pins strength and therefore on the joining. The results demonstrate the feasibility of this new technique, which uses no excess material.

  13. IMPROVEMENT OF FATIGUE STRENGTH OF TIN BABBITT BY REINFORCING WITH NANO ILMENITE

    Directory of Open Access Journals (Sweden)

    M. V. S. BABU

    2017-08-01

    Full Text Available Tin Babbitt is an idle journal bearing material, its fatigue strength limits and its usage. To enhance its fatigue strength, in this paper a Tin Babbitt metal matrix is reinforced with nano Ilmenite. The metal matrix nanocomposite was fabricated by using ultrasonic assisted stir casting technique. ASTM standards in statistical planning for fatigue testing were employed in planning the fatigue tests. Fatigue tests were conducted at three stress levels, i.e., 0.9 UTS, 0.7 UTS and 0.5 UTS. Tests were conducted on a rotating-beam type fatigue testing machine. It was observed that the nano Ilmenite reinforcement enhanced the fatigue strength of Tin Babbitt.

  14. Two-dimensional magnesium oxide nanosheets reinforced epoxy nanocomposites for enhanced fracture toughness

    Science.gov (United States)

    Balguri, Praveen Kumar; Harris Samuel, D. G.; Guruvishnu, T.; Aditya, D. B.; Mahadevan, S. M.; Thumu, Udayabhaskararao

    2018-01-01

    Metal oxide nanoparticles have been used as excellent reinforcements to enhance mechanical properties of polymers, natural composites, and ceramics. To date, a major portion of metal oxides used as nanofillers is three dimensional spherical nanoparticles. In the last decade, two-dimensional (2D) materials such as graphene have been widely investigated to improve the mechanical and electrical properties of polymer materials. In this paper, 2D Magnesium oxide (MgO) nanosheets reinforced epoxy composites (0.1, 0.2 and 0.4 wt%) are fabricated and studied for their ability to resist the propagation of preexisting flaw by conducting fracture toughness test for K IC, critical stress intensity factor. This property is an important mechanical property for designing applications in various engineering technologies. Our results show that the MgO with 0.2 wt% is the optimized level to improve the fracture toughness of the epoxy polymer by 47%.

  15. Bisphenyl-Polymer/Carbon-Fiber-Reinforced Composite Compared to Titanium Alloy Bone Implant.

    Science.gov (United States)

    Petersen, Richard C

    2011-05-03

    Aerospace/aeronautical thermoset bisphenyl-polymer/carbon-fiber-reinforced composites are considered as new advanced materials to replace metal bone implants. In addition to well-recognized nonpolar chemistry with related bisphenol-polymer estrogenic factors, carbon-fiber-reinforced composites can offer densities and electrical conductivity/resistivity properties close to bone with strengths much higher than metals on a per-weight basis. In vivo bone-marrow tests with Sprague-Dawley rats revealed far-reaching significant osseoconductivity increases from bisphenyl-polymer/carbon-fiber composites when compared to state-of-the-art titanium-6-4 alloy controls. Midtibial percent bone area measured from the implant surface increased when comparing the titanium alloy to the polymer composite from 10.5% to 41.6% at 0.8 mm, P engineering potential.

  16. Zero-reinforcement vessel closures

    International Nuclear Information System (INIS)

    McClellan, G.; Mou, Y.

    1997-01-01

    Access to the secondary side of a nuclear steam generator is required in order to properly inspect and maintain critical components throughout the life. For the most part, it is only on newer units that sufficient openings have been provided. Older units must be field modified to provide access to the tube bundle and internal lateral support components for inspection and penetration by cleaning equipment. In order to avoid post weld heat treatment after welding on some materials it would be desirable to machine the opening directly into the pressure boundary without providing weld build-up to compensate for the material removed. In such a case, the pressure boundary may be locally thinned below the minimum thickness required by the ASME code. As a result it is not possible to meet reinforcement limits or elastic primary stress limited of the code. However, the ASME code permits justification of the design by utilizing elastic-plastic methods. Elastic-plastic analysis can be utilized to demonstrate shake-down to elastic action and to demonstrate that small deformations in the region of the gasket seating surfaces, or any loss of bolt preload, have not compromised leak tightness. Employing the technique developed by the authors for application in ANSYS, it is feasible to carry-out such a design analysis including the effects of time varying thermal stress. This paper presents the highlights of such an analysis. It is important to note that the method also permits the analysis of openings in locations formerly considered too restrictive, such as near support and major structural discontinuities. (author)

  17. Learning to trade via direct reinforcement.

    Science.gov (United States)

    Moody, J; Saffell, M

    2001-01-01

    We present methods for optimizing portfolios, asset allocations, and trading systems based on direct reinforcement (DR). In this approach, investment decision-making is viewed as a stochastic control problem, and strategies are discovered directly. We present an adaptive algorithm called recurrent reinforcement learning (RRL) for discovering investment policies. The need to build forecasting models is eliminated, and better trading performance is obtained. The direct reinforcement approach differs from dynamic programming and reinforcement algorithms such as TD-learning and Q-learning, which attempt to estimate a value function for the control problem. We find that the RRL direct reinforcement framework enables a simpler problem representation, avoids Bellman's curse of dimensionality and offers compelling advantages in efficiency. We demonstrate how direct reinforcement can be used to optimize risk-adjusted investment returns (including the differential Sharpe ratio), while accounting for the effects of transaction costs. In extensive simulation work using real financial data, we find that our approach based on RRL produces better trading strategies than systems utilizing Q-learning (a value function method). Real-world applications include an intra-daily currency trader and a monthly asset allocation system for the S&P 500 Stock Index and T-Bills.

  18. Prenatal screening and genetics

    DEFF Research Database (Denmark)

    Alderson, P; Aro, A R; Dragonas, T

    2001-01-01

    Although the term 'genetic screening' has been used for decades, this paper discusses how, in its most precise meaning, genetic screening has not yet been widely introduced. 'Prenatal screening' is often confused with 'genetic screening'. As we show, these terms have different meanings, and we...... examine definitions of the relevant concepts in order to illustrate this point. The concepts are i) prenatal, ii) genetic screening, iii) screening, scanning and testing, iv) maternal and foetal tests, v) test techniques and vi) genetic conditions. So far, prenatal screening has little connection...... with precisely defined genetics. There are benefits but also disadvantages in overstating current links between them in the term genetic screening. Policy making and professional and public understandings about screening could be clarified if the distinct meanings of prenatal screening and genetic screening were...

  19. Design of Screens for Sand Control of Wells

    Directory of Open Access Journals (Sweden)

    Ján Pinka

    2006-04-01

    Full Text Available Drilling, completion, production, and reservoir engineers, supervisors, foremen, superintendents, service company personnel, technologists and anyone involved with recommending, selecting, designing or on-site performance of well completions or workovers where sand production is, or may become, a serious problem will benefit from this course. Less sand influx can be expected in a horizontal well than in a vertical well. If horizontal holes in weak formation sands can be successfully gravel packed, the result could be significantly higher well productivity than with a liner, screen or pre-packed screen alone. The article covers innovative screens for sand control used in oil and gas industry from the world leaders in total completion. The type of screen (wire wrapped, reinforced, pre-packed, ect. should also be chosen with due consideration to running-in condition (curve radius, compression when the screens are pushed along the drain hole, etc..

  20. Carbon fiber reinforced materials - glass fiber reinforced materials

    Energy Technology Data Exchange (ETDEWEB)

    Krautwald, R

    1980-10-01

    Wind power plants are promising alternative energy systems. The rotor blades are subject to high demands: Long life, light weight, and high stiffness. A GFRP/CFRP combination was chosen for a 316 kW plant, the composite construction is by far superior to the metal construction. Design, fabrication, and testing are described. The plant has a power of 316 kW for a wind velocity of 8.5 m/sec, a rotational speed of 37 min/sup -1/, a rotor diameter of 52 m with a blade length of 25.2 m and a blade mass of 1 t. An experimental component 10.2 m long was constructed and tested with satisfactory results.

  1. Synthesis of Aluminum Triacrylate as Reactive Filler in EPDM Reinforcement

    Directory of Open Access Journals (Sweden)

    Akram Shokrzadeh

    2013-01-01

    Full Text Available The organo-metal salt of aluminum triacrylate (ALTA with a general formula of (CH2=CHCOO3Al was  synthesized  as  a  reactive  fller  for  elastomers through a two-step synthetic procedure. Fourier transform-infrared spectroscopy (FTIR, DSC and DTA were employed for ALTA analysis and to study its cure characteristics. In this research, two composites based on ethylene propylene diene monomer rubber (EPDM with two types of reactive fllers of  modifed organoclay and ALTA were prepared by a laboratory two-roll mill. The types and different ratios of organoclay and ALTA on curing characteristics, mechanical properties such as tensile properties, hardness, and abrasion resistance were studied. The increase in fller content of both composites  led  to  the  incremental  increase  in  tensile strength, modulus, hardness, elongation-at-break and also the incremental increase in abrasion resistance of both composites. The improvement in reinforcing properties of ALTA in comparison with nanoclay is attributed to homopolymerization and graft copolymerization of ALTA at the same time during curing of the EPDM composites by peroxide. Making such additives may be taken as an effective action to achieve more durable and cheaper way to reinforce elastomers.

  2. Enhanced tensile properties of magnesium composites reinforced with graphene nanoplatelets

    International Nuclear Information System (INIS)

    Rashad, Muhammad; Pan, Fusheng; Hu, Huanhuan; Asif, Muhammad; Hussain, Shahid; She, Jia

    2015-01-01

    The aim of this study is to fabricate magnesium reinforced metal matrix composites using graphene nanoplatelets (GNPs) via powder metallurgy processing in order to enhance room temperature mechanical properties. The microstructural evaluation and mechanical behaviors of composite powders and extruded bulk materials were examined by X-ray diffraction (XRD), differential scanning calorimetry (DSC), Raman spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) equipped with energy-dispersive spectrometer and mechanical tests. The uniform dispersion and large specific surface area per volume of GNPs embedded in magnesium matrix led to increament in microhardness, tensile strength and fracture strains of the composites. For example, when employing the pure magnesium reinforced with 0.30 wt% GNPs, the increase of Young's modulus, yield strength, and failure strain of extruded nanocomposite was +131%, +49.5% and +74.2% respectively, compared to those of extruded materials with no GNPs additive. Additionally, mechanical properties of synthesized composites were compared with previously reported Mg–CNTs composites. It was found that GNPs outperform CNTs due their high specific surface area

  3. Enhanced tensile properties of magnesium composites reinforced with graphene nanoplatelets

    Energy Technology Data Exchange (ETDEWEB)

    Rashad, Muhammad, E-mail: rashadphy87@gmail.com [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Pan, Fusheng, E-mail: fspan@cqu.edu.cn [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Chongqing Academy of Science and Technology, Chongqing 401123 (China); Hu, Huanhuan [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Asif, Muhammad [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Hussain, Shahid [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); She, Jia [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China)

    2015-04-10

    The aim of this study is to fabricate magnesium reinforced metal matrix composites using graphene nanoplatelets (GNPs) via powder metallurgy processing in order to enhance room temperature mechanical properties. The microstructural evaluation and mechanical behaviors of composite powders and extruded bulk materials were examined by X-ray diffraction (XRD), differential scanning calorimetry (DSC), Raman spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) equipped with energy-dispersive spectrometer and mechanical tests. The uniform dispersion and large specific surface area per volume of GNPs embedded in magnesium matrix led to increament in microhardness, tensile strength and fracture strains of the composites. For example, when employing the pure magnesium reinforced with 0.30 wt% GNPs, the increase of Young's modulus, yield strength, and failure strain of extruded nanocomposite was +131%, +49.5% and +74.2% respectively, compared to those of extruded materials with no GNPs additive. Additionally, mechanical properties of synthesized composites were compared with previously reported Mg–CNTs composites. It was found that GNPs outperform CNTs due their high specific surface area.

  4. [Osseontegration of trial implants of carbon fiber reinforced plastics].

    Science.gov (United States)

    Schreiner, U; Schwarz, M; Scheller, G; Schroeder-Boersch, H; Jani, L

    2000-01-01

    To what extent are carbon fibre-reinforced plastics (CFRP) suitable as an osseous integration surface for implants? CFRP test implants having a plexus-structured, rhombus-structured, and plexus-structured, hydroxyapatite surface were implanted in the femura of mini-plgs. Exposure time lasted 12 weeks. The implants were subjected to a macroradiological, a histological-histomorphometrical, and a fluorescence-microscopical evaluation. One half of the uncoated, plexus-structured implants were not osteointegrated, the other half displayed an osteointegration rate of 11.8% in the spongy area and 29.8% in the cortex layer. The HA-coated test implants showed an osteointegration of 29.5% in the spongiosa and 56.8% in the cortex layer. The rhombus-structured test implants had an osteointegration of 29.2% (spongiosa) and 46.2% (cortex layer). Compared to the osteointegration of metallic, especially titanium surfaces the CFRP surfaces tested by us fared worse, especially the uncoated, plexus-structured surfaces. For this reason we view very critically the use of carbon-fibre reinforced plastics together with the surfaces tested by us as osteointegrating surfaces.

  5. Breast, prostate, and thyroid cancer screening tests and overdiagnosis.

    Science.gov (United States)

    Jung, Minsoo

    The purpose of this study was to examine overdiagnosis and overtreatment related to cancer screening and to review relevant reports and studies. A comprehensive search of peer-reviewed and gray literature was conducted for relevant studies published between January 2000 and December 2015 reporting breast, prostate, and thyroid cancer screening tests and overdiagnosis. This study revealed no dichotomy on where screening would lower risk or cause overdiagnosis and overtreatment. Many screening tests did both, that is, at population level, there were both benefit (decreased disease-specific mortality) and harm (overdiagnosis and overtreatment). Therefore, we need to consider a balanced argument with citations for the potential benefits of screening along with the harms associated with screening. Although the benefits and harms can only be tested through randomized trials, important data from cohort studies, diagnostic accuracy studies, and modeling work can help define the extent of benefits and harms in the population. The health care cycle that prompt patients to undergo periodic screening tests is self-reinforcing. In most developed countries, screening test recommendations encourage periodic testing. Therefore, patients are continuing their screening. It is necessary for patients to become wise consumers of screening tests and make decisions with their physicians regarding further testing and treatments. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. 75 FR 47260 - Certain Steel Concrete Reinforcing Bars from Turkey: Notice of Amended Final Results Pursuant to...

    Science.gov (United States)

    2010-08-05

    ... concrete reinforcing bars (rebar) from Turkey. See Nucor Corporation, Gerdau Ameristeel, Inc., and... calculated for Ekinciler to the Department. See Nucor Corporation, Gerdau Ameristeel Corporation, and Commercial Metals Company v. United States, Court No. 07-00457 (Apr. 14, 2009) (Nucor). On May 14, 2009, the...

  7. Wear behaviour of A356 aluminium alloy reinforced with micron and nano size SiC particles

    CSIR Research Space (South Africa)

    Camagu, ST

    2013-07-01

    Full Text Available A method for producing metal matrix composites MMC was successfully implemented for mixing nano and low micron (“Hybrid”) sized SiC reinforcing particles in an aluminium alloy matrix. Due to the improved specific modulus and strength, MMC...

  8. Laser surface forming of AlCoCrCuFeNi particle reinforced AZ91D matrix composites

    Science.gov (United States)

    Meng, Guanghui; Yue, T. M.; Lin, Xin; Yang, Haiou; Xie, Hui; Ding, Xu

    2015-07-01

    Traditionally, the laser melt injection (LMI) technique can only be used for forming ceramic particles reinforced metal matrix composites (MMCs) for enhancing surface properties of lightweight engineering materials. In this research, the LMI method was employed to form metal particles reinforced MMCs on AZ91D instead. This was viable because of the unique properties of the AlCoCrCuFeNi high-entropy alloy (HEA) metal particles used. The large difference in melting point between the HEA and the substrate material (AZ91D), and the limited reaction and the lack of fusion between the HEA and Mg have made it possible that a metal particles reinforced AZ91D composite material was produced. The reason of limited reaction was considered mainly due to the relatively high mixing enthalpy between the HEA constituent elements and Mg. Although there was some melting occurred at the particles surface with some solute segregation found in the vicinity close to the surface, intermetallic compounds were not observed. With regard to the wear resistance of the MMCs, it was found that when the volume fraction of the reinforcement phase, i.e. the HEA particles, reached about 0.4, the wear volume loss of the coating was only one-seventh of that of the substrate material.

  9. 75 FR 7562 - Certain Steel Concrete Reinforcing Bars From Turkey: Notice of Court Decision Not in Harmony With...

    Science.gov (United States)

    2010-02-22

    ... Reinforcing Bars From Turkey: Notice of Court Decision Not in Harmony With Final Results of Administrative...: On January 19, 2010, the United States Court of International Trade (CIT) sustained the Department of... Corporation, Gerdau Ameristeel Corporation, and Commercial Metals Company v. United States and Icdas Celik...

  10. Introduction to Concrete Reinforcing. Instructor Edition. Introduction to Construction Series.

    Science.gov (United States)

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This module on concrete reinforcing is one of a series of modules designed to teach basic skills necessary for entry-level employment in this field. This module contains three instructional units that cover the following topics: (1) concrete reinforcing materials; (2) concrete reinforcing tools; and (3) concrete reinforcing basic skills. Each…

  11. Reactive Spark Plasma Sintering (SPS) of Nitride Reinforced Titanium Alloy Composites (Postprint)

    Science.gov (United States)

    2014-08-15

    other industrial applications [21–25]. Titanium is widely used in the medical field to replace heart valves , joints, and bones for dental prosthetics due...their wear and fatigue resistance, hard coatings for dental implants and dental surgery tools, tribological orthopedic devices, gears, valves , pumps...their inherent brittleness and inferior fracture toughness [6,10–13]. In contrast, metal matrix composites (MMCs) reinforced with hard precipitates

  12. Demonstration and Validation of a Composite Grid Reinforcement System for Bridge Decks

    Science.gov (United States)

    2016-09-01

    presence of chlorides from road salts that can pene- trate into the concrete deck and cause corrosion of standard steel reinforcement. Installation of the... Corrosion of Metal and Alloys – Corrosivity of Atmospheres – Classification, Determination and Estimation.” Geneva, Switzerland: International Standards...one year), an atmospheric corrosion test rack, (equipped with sensors to monitor corrosion and chlorides were in- serted in the bridge deck), and

  13. Durability Characteristics Analysis of Plastic Worm Wheel with Glass Fiber Reinforced Polyamide

    OpenAIRE

    Kim, Gun-Hee; Lee, Jeong-Won; Seo, Tae-Il

    2013-01-01

    Plastic worm wheel is widely used in the vehicle manufacturing field because it is favorable for weight lightening, vibration and noise reduction, as well as corrosion resistance. However, it is very difficult for general plastics to secure the mechanical properties that are required for vehicle gears. If the plastic resin is reinforced by glass fiber in the fabrication process of plastic worm wheel, it is possible to achieve the mechanical properties of metallic material levels. In this stud...

  14. Fiber breakage phenomena in long fiber reinforced plastic preparation

    International Nuclear Information System (INIS)

    Huang, Chao-Tsai; Tseng, Huan-Chang; Chang, Rong-Yeu; Vlcek, Jiri

    2015-01-01

    Due to the high demand of smart green, the lightweight technologies have become the driving force for the development of automotives and other industries in recent years. Among those technologies, using short and long fiber-reinforced plastics (FRP) to replace some metal components can reduce the weight of an automotive significantly. However, the microstructures of fibers inside plastic matrix are too complicated to manage and control during the injection molding through the screw, the runner, the gate, and then into the cavity. This study focuses on the fiber breakage phenomena during the screw plastification. Results show that fiber breakage is strongly dependent on screw design and operation. When the screw geometry changes, the fiber breakage could be larger even with lower compression ratio. (paper)

  15. Constitutional equations of thermal stresses of particle-reinforced composite

    International Nuclear Information System (INIS)

    Asakawa, Atsushi; Noda, Naotake; Tohgo, Keiichiro; Tsuji, Tomoaki.

    1994-01-01

    Functionally gradient materials (FGM) have been developed as ultrahigh-heat-resistant materials in aircraft, space engineering and nuclear fields. In the heat-resistant FGM which contain particles (ceramics) in the matrix (metal), the matrix will be subjected to plastic deformation, particles will be debonded, and finally cracks will be generated. The constitutive equations of FGM which take into account the damage process and change in temperature are necessary in order to solve these phenomena. In this paper, the constitutive equations of particle-reinforced composites with consideration of the damage process and change in temperature are estimated by the equivalent inclusion method in terms of elastoplasticity. The stress-strain relations and the coefficients of linear thermal expansion of the composites (Al-PSZ and Ti-PSZ) are calculated in ultrahigh temperature. (author)

  16. Development of fibre reinforced concrete overpacks in France

    International Nuclear Information System (INIS)

    Boudry, J.C.; Pech, R.

    1991-01-01

    Radioactive waste conditioning is a major step in the processes implemented in nuclear installations. The objective is to contain the radioactive materials in nuclear waste as satisfactory as possible for man and the environment contained ensuring containment integrity having to be guaranteed over very long periods of time. Medium-level (ML) and even very low-level (LL) waste is no exception to this rule. Cogema thus conducted research for many years and developed a novel process to condition nuclear waste in containers reinforced with metal fibres, called fibre concrete containers. This process, welcomed by the French Safety Authorities and ANDRA, the French Radioactive Waste Management Agency, currently appears to be the best way to condition low and medium-level solid waste. (author)

  17. Acoustic emission from fiber reinforced plastic damaged hoop wrapped cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Akhtar, A.; Kung, D.; Westbrook, D.R.

    2000-03-01

    Metal lined continuous fiber reinforced plastic (FRP) hoop wrapped cylinders with axial cuts to the FRP were modeled mathematically and tested experimentally. Steel lined and aluminum alloy lined glass FRP vessels were subjected to acoustic emission tests (AE) and hydraulic burst tests. The burst pressure decreased monotonically with the length of the axial cut. Acoustic emission increased initially with a decrease in burst pressure, and attained a maximum at an intermediate level of damage to the FRP. However, acoustic emission decreased when the level of damage was higher and the burst pressure was lower. Implications of the findings are discussed in the context of the search for an acoustic emission test method to inspect periodically the vessels used for the storage of compressed gaseous fuels on natural gas vehicles (NGV) and hydrogen vehicles.

  18. Structural and thermophysical properties characterization of continuously reinforced cast Al matrix composite

    Directory of Open Access Journals (Sweden)

    Brian Gordon

    2010-11-01

    Full Text Available In this work the process of manufacturing a continuously reinforced cast Al matrix composite and its properties are presented. The described technology permits obtaining a structural material of competitive properties compared to either heat treatable aluminum alloys or polymer composites for several types of applications. The examined thermophysical properties and structural characterization, including material anisotropy, coupled with the results of previous measurements of the mechanical properties of both Al2O3 reinforcing filaments and metallic prepregs have proven the high quality of this material and the possibility of its operation under special loading modes and environmental conditions. Microscopic examinations (LM, SEM were carried out to reveal the range of morphological homogeneity of the microstructure, the anisotropy of the filament band distribution, and simultaneously the adhesive behavior of the metal/fiber interface. The 3D morphology of the chosen microstructure components was revealed by computed tomography. The obtained results indicate that special properties of the examined prepreg materials have been strongly influenced, on the one hand, by the geometry of its internal microstructure, i.e. spatial distribution and volume fraction of the Al2O3 reinforcing filaments and, on the other hand, by a very good compatibility obtained between the individual metal prepreg components.

  19. Niobium Carbide-Reinforced Al Matrix Composites Produced by High-Energy Ball Milling

    Science.gov (United States)

    Travessa, Dilermando Nagle; Silva, Marina Judice; Cardoso, Kátia Regina

    2017-06-01

    Aluminum and its alloys are key materials for the transportation industry as they contribute to the development of lightweight structures. The dispersion of hard ceramic particles in the Al soft matrix can lead to a substantial strengthening effect, resulting in composite materials exhibiting interesting mechanical properties and inspiring their technological use in sectors like the automotive and aerospace industries. Powder metallurgy techniques are attractive to design metal matrix composites, achieving a homogeneous distribution of the reinforcement into the metal matrix. In this work, pure aluminum has been reinforced with particles of niobium carbide (NbC), an extremely hard and stable refractory ceramic. Its use as a reinforcing phase in metal matrix composites has not been deeply explored. Composite powders produced after different milling times, with 10 and 20 vol pct of NbC were produced by high-energy ball milling and characterized by scanning electron microscopy and by X-ray diffraction to establish a relationship between the milling time and size, morphology, and distribution of the particles in the composite powder. Subsequently, an Al/10 pct NbC composite powder was hot extruded into cylindrical bars. The strength of the obtained composite bars is comparable to the commercial high-strength, aeronautical-grade aluminum alloys.

  20. Pengaruh One Direction Pre-Tension pada Reinforcement Fibre terhadap Kekuatan Tarik dan Impact Fibre-Powder Reinforcement Hybrid Composite

    Directory of Open Access Journals (Sweden)

    Gilang Gumilar

    2017-12-01

    Full Text Available Nowadays, industrial manufacturing needs environmentally and friendly material and has special properties which are difficult to obtain from the metal material. Composite is one of the alternative materials that can be used to meet those needs. A structural composite material consisting of a combination of two or more elements bonded material at the macroscopic level. This study was conducted to determine the effect of pre-tension one direction on a hybrid composite reinforcement against tensile strength and impact strength. Composite materials prepared by C-Glass fiber types woven rovings, coconut shell powder and vinyl ester resin. manufacturing composite using hand lay-up methods. The variation of the tension given 0N, 50N, 100N, 150N, and 200N. A tensile test based on the reference standard ASTM D 3039 while testing the impact based on ASTM D 6110-04. The results were obtained giving tension to the hybrid composite reinforcement increases tensile strength and impact strength of the material. The lowest tensile strength of the composite obtained in 0N treatment (without treatment ranged 71,58N / mm², and the greatest tensile strength is obtained in the pre-tension 200N, ranging from 106.05 N / mm2. As for the lowest impact on specimens obtained without treatment ranges 1,34J / mm2 and provision of pre-tension 200N biggest impact strength values obtained, ranging 15,09J / mm2.