WorldWideScience

Sample records for metallic mercury vapor

  1. Mercury uptake in vivo by normal and acatalasemic mice exposed to metallic mercury vapor (203Hg degrees) and injected with metallic mercury or mercuric chloride (203HgCl2)

    International Nuclear Information System (INIS)

    Ogata, M.; Kenmotsu, K.; Hirota, N.; Meguro, T.; Aikoh, H.

    1985-01-01

    Levels of mercury in the brain and liver of acatalasemic mice immediately following exposure to metallic mercury vapor or injection of metallic mercury were higher than those found in normal mice. Acatalasemic mice had decreased levels of mercury in the blood and kidneys when the levels were compared with those of normal mice, which indicated that catalase plays a role in oxidizing and taking up mercury. Thus, the brain/blood or liver/blood ratio of mercury concentration in acatalasemic mice was significantly higher than that of normal mice. These results suggest that metallic mercury in the blood easily passed through the blood-brain or blood-liver barrier. The levels of mercury distribution to the kidneys of normal and acatalasemic mice, 1 hr after injection of mercuric chloride solution, were higher than that of normal and acatalasemic mice, respectively, 1 hr after injection of metallic mercury

  2. Apparatus and method for removing mercury vapor from a gas stream

    Science.gov (United States)

    Ganesan, Kumar [Butte, MT

    2008-01-01

    A metallic filter effectively removes mercury vapor from gas streams. The filter captures the mercury which then can be released and collected as product. The metallic filter is a copper mesh sponge plated with a six micrometer thickness of gold. The filter removes up to 90% of mercury vapor from a mercury contaminated gas stream.

  3. Uptake of mercury vapor by wheat. An assimilation model

    International Nuclear Information System (INIS)

    Browne, C.L.; Fang, S.C.

    1978-01-01

    Using a whole-plant chamber and 203 Hg-labeled mercury, a quantitative study was made of the effect of environmental parameters on the uptake, by wheat (Triticum aestivum), of metallic mercury vapor, an atmospheric pollutant. Factors were examined in relation to their influence on components of the gas-assimilation model, U(Hg) = (C/sub A' -- C/sub L')/(r/sub L.Hg/ + r/sub M.Hg/) where U(Hg) is the rate of mercury uptake per unit leaf surface, C/sub A'/ is the ambient mercury vapor concentration, C/sub L'/ is the mercury concentration at immobilization sites within the plant (assumed to be zero), r/sub L.Hg/ is the total leaf resistance to mercury vapor exchange, and r/sub M.Hg/ is a residual term to account for unexplained physical and biochemical resistances to mercury vapor uptake. Essentially all mercury vapor uptake was confined to the leaves. r/sub L.Hg/ was particularly influenced by illumination (0 to 12.8 klux), but unaffected by ambient temperature (17 to 33 0 C) and mercury vapor concentration (0 to 40 μg m -3 ). The principal limitation to mercury vapor uptake was r/sub M.Hg/, which was linearly related to leaf temperature, but unaffected by mercury vapor concentration and illumination, except for apparent high values in darkness. Knowing C/sub A'/ and estimating r/sub L.Hg/ and r/sub M.Hg/ from experimental data, mercury vapor uptake by wheat in light was accurately predicted for several durations of exposure using the above model

  4. Metal components analysis of metallothionein-III in the brain sections of metallothionein-I and metallothionein-II null mice exposed to mercury vapor with HPLC/ICP-MS

    Energy Technology Data Exchange (ETDEWEB)

    Kameo, Satomi; Nakai, Kunihiko; Kurokawa, Naoyuki; Satoh, Hiroshi [Tohoku University, Graduate School of Medicine, Aoba-ku, Sendai (Japan); Kanehisa, Tomokazu; Naganuma, Akira [Tohoku University, Graduate School of Pharmaceutical Sciences, Sendai (Japan)

    2005-04-01

    Mercury vapor is effectively absorbed via inhalation and easily passes through the blood-brain barrier; therefore, mercury poisoning with primarily central nervous system symptoms occurs. Metallothionein (MT) is a cysteine-rich metal-binding protein and plays a protective role in heavy-metal poisoning and it is associated with the metabolism of trace elements. Two MT isoforms, MT-I and MT-II, are expressed coordinately in all mammalian tissues, whereas MT-III is a brain-specific member of the MT family. MT-III binds zinc and copper physiologically and is seemed to have important neurophysiological and neuromodulatory functions. The MT functions and metal components of MTs in the brain after mercury vapor exposure are of much interest; however, until now they have not been fully examined. In this study, the influences of the lack of MT-I and MT-II on mercury accumulation in the brain and the changes of zinc and copper concentrations and metal components of MTs were examined after mercury vapor exposure by using MT-I, II null mice and 129/Sv (wild-type) mice as experimental animals. MT-I, II null mice and wild-type mice were exposed to mercury vapor or an air stream for 2 h and were killed 24 h later. The brain was dissected into the cerebral cortex, the cerebellum, and the hippocampus. The concentrations of mercury in each brain section were determined by cold vapor atomic absorption spectrometry. The concentrations of mercury, copper, and zinc in each brain section were determined by inductively coupled plasma mass spectrometry (ICP-MS). The mercury accumulated in brains after mercury vapor exposure for MT-I, II null mice and wild-type mice. The mercury levels of MT-I, II null mice in each brain section were significantly higher than those of wild-type mice after mercury vapor exposure. A significant change of zinc concentrations with the following mercury vapor exposure for MT-I, II null mice was observed only in the cerebellum analyzed by two-way analysis of

  5. Does mercury vapor exposure increase urinary selenium excretion

    Energy Technology Data Exchange (ETDEWEB)

    Hongo, T; Suzuki, T; Himeno, S; Watanabe, C; Satoh, H; Shimada, Y

    1985-01-01

    It has been reported that an increase of urinary selenium excretion may occur as a result of mercury vapor exposure. However, experimental data regarding the interaction between mercury vapor and selenium have yielded ambiguous results about the retention and elimination of selenium due to mercury vapor exposure and the decrease of selenium excretion due to mercury in the form of mercuric mercury (Hg/sup 2 +/). In this study, the authors measured urinary mercury and selenium in workers with or without exposure to mercury vapor to determine whether or not urinary selenium excretion was increased as a result of mercury vapor exposure. Urine samples were collected from 141 workers, 71 men and 70 women, whose extent of exposure to mercury vapor varied according to their job sites. Workers were divided into five groups according to their urinary mercury levels. The mercury level in group I was less than 2.8 nmol/mmol creatinine which means that this group was mostly free from mercury exposure. The average age was almost identical among the groups. For both sexes, group V (with the highest urinary mercury level) had the lowest urinary selenium level, but one-way variance analysis (ANOVA) did not reveal any significant variations of urinary selenium with urinary mercury levels; however, a weak but significant negative correlation between mercury and selenium was found in men.

  6. Occupational Metallic Mercury Poisoning in Gilders

    Directory of Open Access Journals (Sweden)

    M Vahabzadeh

    2016-04-01

    Full Text Available Occupational exposure to elemental mercury vapor usually occurs through inhalation during its utilizations. This leads to a variety of adverse health effects. In some Islamic cities, this type of poisoning may occur during gilding of shrines using elemental mercury with gold. Herein, we report on three male patients aged 20–53 years, who were diagnosed with occupational metallic mercury poisoning due to gilding of a shrine. All patients presented with neuro-psychiatric disorders such as anxiety, loss of memory and concentration, and sleep disorders with high urinary mercury concentrations of 326–760 μg/L upon referring, 3–10 days after cessation of elemental mercury exposure. Following chelating therapy, the patients recovered clinically and their mercury concentrations declined to non-toxic level (<25 μg/L. Health, environmental and labor authorities, as well as the gilders should be aware of the toxicity risk of exposure to metalic mercury during gilding in closed environments and act accordingly.

  7. Mercury-impacted scrap metal: Source and nature of the mercury.

    Science.gov (United States)

    Finster, Molly E; Raymond, Michelle R; Scofield, Marcienne A; Smith, Karen P

    2015-09-15

    The reuse and recycling of industrial solid wastes such as scrap metal is supported and encouraged both internationally and domestically, especially when such wastes can be used as substitutes for raw material. However, scrap metal processing facilities, such as mini-mills, have been identified as a source of mercury (Hg) emissions in the United States. This research aims to better define some of the key issues related to the source and nature of mercury in the scrap metal waste stream. Overall, it is difficult to pinpoint the key mercury sources feeding into scrap metal recycling facilities, quantify their associated mercury concentrations, or determine which chemical forms are most significant. Potential sources of mercury in scrap metal include mercury switches from discarded vehicles, electronic-based scrap from household appliances and related industrial systems, and Hg-impacted scrap metal from the oil and gas industry. The form of mercury associated with scrap metal varies and depends on the source type. The specific amount of mercury that can be adsorbed and retained by steel appears to be a function of both metallurgical and environmental factors. In general, the longer the steel is in contact with a fluid or condensate that contains measurable concentrations of elemental mercury, the greater the potential for mercury accumulation in that steel. Most mercury compounds are thermally unstable at elevated temperatures (i.e., above 350 °C). As such, the mercury associated with impacted scrap is expected to be volatilized out of the metal when it is heated during processing (e.g., shredding or torch cutting) or melted in a furnace. This release of fugitive gas (Hg vapor) and particulates, as well as Hg-impacted bag-house dust and control filters, could potentially pose an occupational exposure risk to workers at a scrap metal processing facility. Thus, identifying and characterizing the key sources of Hg-impacted scrap, and understanding the nature and extent

  8. Influence of the temperature, volume and type of solution in the mercury vaporization of dental amalgam residue

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Raquel dalla [Department of Chemical Engineering, State University of Maringa, Maringa - PR (Brazil)], E-mail: raqueldc_eng@yahoo.com.br; Cossich, Eneida Sala; Tavares, Celia Regina Granhen [Department of Chemical Engineering, State University of Maringa, Maringa - PR (Brazil)

    2008-12-15

    One of the qualitative methods for the identification of mercury vapor is what it occurs as a way of chemical reaction between palladium chloride and metallic mercury. Palladium chloride ribbons with yellowish coloration put in contact with the vaporized mercury of dental amalgam residue, liberates palladium and forms mercury chloride in your surface, and starts to have black coloration; this form identify the presence of the mercury vapor in the system. This work studies the influence of temperature, volume and type of barrier-solution in the vaporization of mercury during the period of storage of dental amalgam residues, aiming to establish the best conditions for storage of these residues. It was found that for all tested solutions, the longest storage times without any occurrence of mercury vaporization were obtained in the lowest temperatures tested and the largest solution volumes of barrier-solution. The radiographic effluent presented bigger efficacy in the reduction of the volatilization, increasing the period when the residue was stored, however the analysis of this solution after the vaporization test showed the presence of organic mercury. These results show that water is the most efficient barrier against the vaporization of mercury, since it did not result in organic mercury formation in the effluent solution from the storage process.

  9. Influence of the temperature, volume and type of solution in the mercury vaporization of dental amalgam residue

    International Nuclear Information System (INIS)

    Costa, Raquel dalla; Cossich, Eneida Sala; Tavares, Celia Regina Granhen

    2008-01-01

    One of the qualitative methods for the identification of mercury vapor is what it occurs as a way of chemical reaction between palladium chloride and metallic mercury. Palladium chloride ribbons with yellowish coloration put in contact with the vaporized mercury of dental amalgam residue, liberates palladium and forms mercury chloride in your surface, and starts to have black coloration; this form identify the presence of the mercury vapor in the system. This work studies the influence of temperature, volume and type of barrier-solution in the vaporization of mercury during the period of storage of dental amalgam residues, aiming to establish the best conditions for storage of these residues. It was found that for all tested solutions, the longest storage times without any occurrence of mercury vaporization were obtained in the lowest temperatures tested and the largest solution volumes of barrier-solution. The radiographic effluent presented bigger efficacy in the reduction of the volatilization, increasing the period when the residue was stored, however the analysis of this solution after the vaporization test showed the presence of organic mercury. These results show that water is the most efficient barrier against the vaporization of mercury, since it did not result in organic mercury formation in the effluent solution from the storage process

  10. Observations of Metallic Species in Mercury's Exosphere

    Science.gov (United States)

    Killen, Rosemary M.; Potter, Andrew E.; Vervack, Ronald J., Jr.; Bradley, E. Todd; McClintock, William E.; Anderson, Carrie M.; Burger, Matthew H.

    2010-01-01

    From observations of the metallic species sodium (Na), potassium (K), and magnesium (Mg) in Mercury's exosphere, we derive implications for source and loss processes. All metallic species observed exhibit a distribution and/or line width characteristic of high to extreme temperature - tens of thousands of degrees K. The temperatures of refractory species, including magnesium and calcium, indicate that the source process for the atoms observed in the tail and near-planet exosphere are consistent with ion sputtering and/or impact vaporization of a molecule with subsequent dissociation into the atomic form. The extended Mg tail is consistent with a surface abundance of 5-8% Mg by number, if 30% of impact-vaporized Mg remains as MgO and half of the impact vapor condenses. Globally, ion sputtering is not a major source of Mg, but locally the sputtered source can be larger than the impact vapor source. We conclude that the Na and K in Mercury's exosphere can be derived from a regolith composition similar to that of Luna 16 soil (or Apollo 17 orange glass), in which the abundance by number is 0.0027 (0.0028) for Na and 0.0006 (0.0045) for K.

  11. Distribution of mercury in guinea pig offspring after in utero exposure to mercury vapor during late gestation

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Minoru; Yamamura, Yukio; Sataoh, Hiroshi

    1986-04-01

    Organ distribution of mercury after in utero mercury vapor exposure was investigated in neonatal guinea pigs. Mother guinea pigs in late gestation were exposed to 0.2-0.3 mg/m/sup 3/ mercury vapor 2 h per day until giving birth. Mercury concentrations in neonatal brain, lungs, heart, kidneys, plasma and erythrocytes were much lower than those of maternal organs and tissues. Neonatal liver, however, showed a mercury concentration twice as high as maternal liver. Mercury concentration ratios of erythrocytes to plasma in offspring were quite different from those of mothers, being 0.2-0.4 for offspring, and 1.3-3.0 for mothers. These results suggested that mercury vapor metabolism in fetuses was quite different from that in their mothers. This may be due to the different blood circulation, as mercury vapor transferred through the placental barrier would be rapidly oxidized into ionic mercury in fetal liver and accumulated in the organ. The different mercury vapor metabolism may prevent fetal brain, which is rapidly developing, and thus vulnerable, from being exposed to excessive mercury vapor.

  12. Method and apparatus for sampling atmospheric mercury

    Science.gov (United States)

    Trujillo, Patricio E.; Campbell, Evan E.; Eutsler, Bernard C.

    1976-01-20

    A method of simultaneously sampling particulate mercury, organic mercurial vapors, and metallic mercury vapor in the working and occupational environment and determining the amount of mercury derived from each such source in the sampled air. A known volume of air is passed through a sampling tube containing a filter for particulate mercury collection, a first adsorber for the selective adsorption of organic mercurial vapors, and a second adsorber for the adsorption of metallic mercury vapor. Carbon black molecular sieves are particularly useful as the selective adsorber for organic mercurial vapors. The amount of mercury adsorbed or collected in each section of the sampling tube is readily quantitatively determined by flameless atomic absorption spectrophotometry.

  13. Method for the removal and recovery of mercury

    Science.gov (United States)

    Easterly, Clay E.; Vass, Arpad A.; Tyndall, Richard L.

    1997-01-01

    The present invention is an enhanced method for the removal and recovery of mercury from mercury-contaminated matrices. The method involves contacting a mercury-contaminated matrix with an aqueous dispersant solution derived from specific intra-amoebic isolates to release the mercury from the mercury-contaminated matrix and emulsify the mercury; then, contacting the matrix with an amalgamating metal from a metal source to amalgamate the mercury to the amalgamating metal; removing the metallic source from the mercury-contaminated matrix; and heating the metallic source to vaporize the mercury in a closed system to capture the mercury vapors.

  14. Assessing elemental mercury vapor exposure from cultural and religious practices.

    Science.gov (United States)

    Riley, D M; Newby, C A; Leal-Almeraz, T O; Thomas, V M

    2001-08-01

    Use of elemental mercury in certain cultural and religious practices can cause high exposures to mercury vapor. Uses include sprinkling mercury on the floor of a home or car, burning it in a candle, and mixing it with perfume. Some uses can produce indoor air mercury concentrations one or two orders of magnitude above occupational exposure limits. Exposures resulting from other uses, such as infrequent use of a small bead of mercury, could be well below currently recognized risk levels. Metallic mercury is available at almost all of the 15 botanicas visited in New York, New Jersey, and Pennsylvania, but botanica personnel often deny having mercury for sale when approached by outsiders to these religious and cultural traditions. Actions by public health authorities have driven the mercury trade underground in some locations. Interviews indicate that mercury users are aware that mercury is hazardous, but are not aware of the inhalation exposure risk. We argue against a crackdown by health authorities because it could drive the practices further underground, because high-risk practices may be rare, and because uninformed government intervention could have unfortunate political and civic side effects for some Caribbean and Latin American immigrant groups. We recommend an outreach and education program involving religious and community leaders, botanica personnel, and other mercury users.

  15. Adsorption of elemental mercury vapors from synthetic exhaust combustion gas onto HGR carbon.

    Science.gov (United States)

    Musmarra, D; Karatza, D; Lancia, A; Prisciandaro, M; Mazziotti di Celso, G

    2016-07-01

    An activated carbon commercially available named HGR, produced by Calgon-Carbon Group, was used to adsorbe metallic mercury. The work is part of a wider research activity by the same group focused on the removal of metallic and divalent mercury from combustion flue gas. With respect to previously published papers, this one is aimed at studying in depth thermodynamic equilibria of metallic mercury adsorption onto a commercial activated carbon. The innovativeness lies in the wider operative conditions explored (temperature and mercury concentrations) and in the evaluation of kinetic and thermodynamic data for a commercially available adsorbing material. In detail, experimental runs were carried out on a laboratory-scale plant, in which Hg° vapors were supplied in a nitrogen gas stream at different temperature and mercury concentration. The gas phase was flowed through a fixed bed of adsorbent material. Adsorbate loading curves for different Hg° concentrations together with adsorption isotherms were achieved as a function of temperature (120, 150, 200°C) and Hg° concentrations (1.0-7.0 mg/m(3)). Experimental runs demonstrated satisfying results of the adsorption process, while Langmuir parameters were evaluated with gas-solid equilibrium data. Especially, they confirmed that adsorption capacity is a favored process in case of lower temperature and they showed that the adsorption heat was -20 kJ/mol. Furthermore, a numerical integration of differential equations that model the adsorption process was proposed. Scanning electron microscopy (SEM) investigation was an useful tool to investigate about fresh and saturated carbon areas. The comparison between them allowed identification of surface sites where mercury is adsorbed; these spots correspond to carbon areas where sulfur concentration is greater. Mercury compounds can cause severe harm to human health and to the ecosystem. There are a lot of sources that emit mercury species to the atmosphere; the main ones are

  16. The Effect of Mercury Vapor and the Role of Green Tea Extract on Brain Cells

    Directory of Open Access Journals (Sweden)

    Dhona Afriza

    2013-09-01

    Full Text Available Mercury is a wellknown toxic metal that is capable to induce free radical-induced oxidative stress. It can cause human disease including brain disorders. Objective: To identify the effect of mercury vapor inhalation on brain cells and the role of green tea extract (Camellia sinensis as antioxidant on the brain cells exposed to mercury. Methods: Fourty-eight male Mus musculus were divided into 8 groups, which were given treatment for 3 and 6 weeks. Group A did not receive any treatment and served as a negative control. Group B was a positive control exposed to Mercury. Group C was exposed to Mercury and treated with 26μg/g green tea extract. Group D was exposed to mercury and treated with 52μg/g green tea extract. All animals in the Group B, C, D were exposed to mercury through inhalation for 4 hours daily. The effect of mercury on the brain cells were examined histopathologically. Results: The numbers of necrotic cells counted in the green tea-treated mice group were significantly lower than those untreated group (p<0,05. Conclusion: Mercury vapor inhalation may cause necrosis on brain cells. Administration of green tea extract as an antioxidant reduced the amount of mercury-induced necrotic brain cells in mice.DOI: 10.14693/jdi.v20i2.151

  17. Got Mercury?

    Science.gov (United States)

    Meyers, Valerie E.; McCoy, J. Torin; Garcia, Hector D.; James, John T.

    2009-01-01

    Many of the operational and payload lighting units used in various spacecraft contain elemental mercury. If these devices were damaged on-orbit, elemental mercury could be released into the cabin. Although there are plans to replace operational units with alternate light sources, such as LEDs, that do not contain mercury, mercury-containing lamps efficiently produce high quality illumination and may never be completely replaced on orbit. Therefore, exposure to elemental mercury during spaceflight will remain possible and represents a toxicological hazard. Elemental mercury is a liquid metal that vaporizes slowly at room temperature. However, it may be completely vaporized at the elevated operating temperatures of lamps. Although liquid mercury is not readily absorbed through the skin or digestive tract, mercury vapors are efficiently absorbed through the respiratory tract. Therefore, the amount of mercury in the vapor form must be estimated. For mercury releases from lamps that are not being operated, we utilized a study conducted by the New Jersey Department of Environmental Quality to calculate the amount of mercury vapor expected to form over a 2-week period. For longer missions and for mercury releases occurring when lamps are operating, we conservatively assumed complete volatilization of the available mercury. Because current spacecraft environmental control systems are unable to remove mercury vapors, both short-term and long-term exposures to mercury vapors are possible. Acute exposure to high concentrations of mercury vapors can cause irritation of the respiratory tract and behavioral symptoms, such as irritability and hyperactivity. Chronic exposure can result in damage to the nervous system (tremors, memory loss, insomnia, etc.) and kidneys (proteinurea). Therefore, the JSC Toxicology Group recommends that stringent safety controls and verifications (vibrational testing, etc.) be applied to any hardware that contains elemental mercury that could yield

  18. Vapor phase elemental sulfur amendment for sequestering mercury in contaminated soil

    Science.gov (United States)

    Looney, Brian B.; Denham, Miles E.; Jackson, Dennis G.

    2014-07-08

    The process of treating elemental mercury within the soil is provided by introducing into the soil a heated vapor phase of elemental sulfur. As the vapor phase of elemental sulfur cools, sulfur is precipitated within the soil and then reacts with any elemental mercury thereby producing a reaction product that is less hazardous than elemental mercury.

  19. Comparison of Indoor Mercury Vapor in Common Areas of Residential Buildings with Outdoor Levels in a Community Where Mercury Is Used for Cultural Purposes

    Science.gov (United States)

    Garetano, Gary; Gochfeld, Michael; Stern, Alan H.

    2006-01-01

    Elemental mercury has been imbued with magical properties for millennia, and various cultures use elemental mercury in a variety of superstitious and cultural practices, raising health concerns for users and residents in buildings where it is used. As a first step in assessing this phenomenon, we compared mercury vapor concentration in common areas of residential buildings versus outdoor air, in two New Jersey cities where mercury is available and is used in cultural practices. We measured mercury using a portable atomic absorption spectrometer capable of quantitative measurement from 2 ng/m3 mercury vapor. We evaluated the interior hallways in 34 multifamily buildings and the vestibule in an additional 33 buildings. Outdoor mercury vapor averaged 5 ng/m3; indoor mercury was significantly higher (mean 25 ng/m3; p < 0.001); 21% of buildings had mean mercury vapor concentration in hallways that exceeded the 95th percentile of outdoor mercury vapor concentration (17 ng/m3), whereas 35% of buildings had a maximum mercury vapor concentration that exceeded the 95th percentile of outdoor mercury concentration. The highest indoor average mercury vapor concentration was 299 ng/m3, and the maximum point concentration was 2,022 ng/m3. In some instances, we were able to locate the source, but we could not specifically attribute the elevated levels of mercury vapor to cultural use or other specific mercury releases. However, these findings provide sufficient evidence of indoor mercury source(s) to warrant further investigation. PMID:16393659

  20. Potassium permanganate for mercury vapor environmental control

    Science.gov (United States)

    Kuivinen, D. E.

    1972-01-01

    Potassium permanganate (KMnO4) was evaluated for application in removing mercury vapor from exhaust air systems. The KMnO4 may be used in water solution with a liquid spray scrubber system or as a solid adsorber bed material when impregnated onto a zeolite. Air samples contaminated with as much as 112 mg/cu m of mercury were scrubbed to 0.06mg/cum with the KMnO4-impregnated zeolite (molecular sieve material). The water spray solution of permanganate was also found to be as effective as the impregnated zeolite. The KMnO4-impregnated zeolite was applied as a solid adsorber material to (1) a hardware decontamination system, (2) a model incinerator, and (3) a high vacuum chamber for ion engine testing with mercury as the propellant. A liquid scrubber system was also applied in an incinerator system. Based on the results of these experiments, it is concluded that the use of KMnO4 can be an effective method for controlling noxious mercury vapor.

  1. 49 CFR 173.164 - Mercury (metallic and articles containing mercury).

    Science.gov (United States)

    2010-10-01

    ... ounces) of mercury per package; (iv) Tubes which are completely jacketed in sealed leakproof metal cases... 49 Transportation 2 2010-10-01 2010-10-01 false Mercury (metallic and articles containing mercury... Than Class 1 and Class 7 § 173.164 Mercury (metallic and articles containing mercury). (a) For...

  2. Intoxication with metallic mercury

    International Nuclear Information System (INIS)

    Fichte, B.; Assmann, H.; Ritzau, F.

    1984-01-01

    Intoxications by metallic mercury are extremely rare. Report of a patient, who tried to commit suicide by subcutaneous injection of 500 g of metallic mercury. He died 16 months later in the course of the intoxication. A short review is given of effects and reactions of metallic mercury in the human organism. (orig.) [de

  3. Intoxication with metallic mercury

    Energy Technology Data Exchange (ETDEWEB)

    Fichte, B.; Ritzau, F.; Assmann, H.

    1984-02-01

    Intoxications by metallic mercury are extremely rare. Report is given of a patient who tried to commit suicide by subcutaneous injection of 500 g of metallic mercury. He died 16 months later in the course of the intoxication. A short review is given of effects and reactions of metallic mercury in the human organism.

  4. Intoxication with metallic mercury

    Energy Technology Data Exchange (ETDEWEB)

    Fichte, B.; Assmann, H.; Ritzau, F.

    1984-02-01

    Intoxications by metallic mercury are extremely rare. Report is given of a patient, who tried to commit suicide by subcutaneous injection of 500 g of metallic mercury. He died 16 months later in the course of the intoxication. A short review is given of effects and reactions of metallic mercury in the human organism.

  5. Vaporization of elemental mercury from pools of molten lead at low concentrations

    International Nuclear Information System (INIS)

    Greene, G.A.; Finfrock, C.C.

    2000-01-01

    Should coolant accidentally be lost to the APT (Accelerator Production of Tritium) blanket and target, and the decay heat in the target be deposited in the surrounding blanket by thermal radiation, temperatures in the blanket modules could exceed structural limits and cause a physical collapse of the blanket modules into a non-coolable geometry. Such a sequence of unmitigated events could result in some melting of the APT blanket and create the potential for the release of mercury into the target-blanket cavity air space. Experiments were conducted which simulate such hypothetical accident conditions in order to measure the rate of vaporization of elemental mercury from pools of molten lead to quantify the possible severe accident source term for the APT blanket region. Molten pools of from 0.01% to 0.10% mercury in lead were prepared under inert conditions. Experiments were conducted, which varied in duration from several hours to as long as a month, to measure the mercury vaporization from the lead pools. The melt pools and gas atmospheres were held fixed at 340 C during the tests. Parameters which were varied in the tests included the mercury concentration, gas flow rate over the melt and agitation of the melt, gas atmosphere composition and the addition of aluminum to the melt. The vaporization of mercury was found to scale roughly linearly with the concentration of mercury in the pool. Variations in the gas flow rates were not found to have any effect on the mass transfer, however agitation of the melt by a submerged stirrer did enhance the mercury vaporization rate. The rate of mercury vaporization with an argon (inert) atmosphere was found to exceed that for an air (oxidizing) atmosphere by as much as a factor of from ten to 20; the causal factor in this variation was the formation of an oxide layer over the melt pool with the air atmosphere which served to retard mass transfer across the melt-atmosphere interface. Aluminum was introduced into the melt to

  6. Improved method for removing metal vapor from gas streams

    International Nuclear Information System (INIS)

    Ahluwalia, R.K.; Im, K.H.

    1994-01-01

    This invention relates to a process for gas cleanup to remove one or more metallic contaminants present as vapor. More particularly, the invention relates to a gas cleanup process using mass transfer to control the saturation levels such that essentially no particulates are formed, and the vapor condenses on the gas passage surfaces. It addresses the need to cleanup an inert gas contaminated with cadmium which may escape from the electrochemical processing of Integral Fast Reactor (IFR) fuel in a hot cell. The IFR is a complete, self-contained, sodium-cooled, pool-type fast reactor fueled with a metallic alloy of uranium, plutonium and zirconium, and is equipped with a close-coupled fuel cycle. Tests with a model have shown that removal of cadmium from argon gas is in the order of 99.99%. The invention could also apply to the industrial cleanup of air or other gases contaminated with zinc, lead, or mercury. In addition, the invention has application in the cleanup of other gas systems contaminated with metal vapors which may be toxic or unhealthy

  7. Metallic mercury recycling. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Beck, M.A.

    1994-07-01

    Metallic mercury is known to be a hazardous material and is regulated as such. The disposal of mercury, usually by landfill, is expensive and does not remove mercury from the environment. Results from the Metallic Mercury Recycling Project have demonstrated that metallic mercury is a good candidate for reclamation and recycling. Most of the potential contamination of mercury resides in the scum floating on the surface of the mercury. Pinhole filtration was demonstrated to be an inexpensive and easy way of removing residues from mercury. The analysis method is shown to be sufficient for present release practices, and should be sufficient for future release requirements. Data from tests are presented. The consistently higher level of activity of the filter residue versus the bulk mercury is discussed. Recommendations for the recycling procedure are made.

  8. Metallic mercury recycling. Final report

    International Nuclear Information System (INIS)

    Beck, M.A.

    1994-01-01

    Metallic mercury is known to be a hazardous material and is regulated as such. The disposal of mercury, usually by landfill, is expensive and does not remove mercury from the environment. Results from the Metallic Mercury Recycling Project have demonstrated that metallic mercury is a good candidate for reclamation and recycling. Most of the potential contamination of mercury resides in the scum floating on the surface of the mercury. Pinhole filtration was demonstrated to be an inexpensive and easy way of removing residues from mercury. The analysis method is shown to be sufficient for present release practices, and should be sufficient for future release requirements. Data from tests are presented. The consistently higher level of activity of the filter residue versus the bulk mercury is discussed. Recommendations for the recycling procedure are made

  9. Mercury speciation during in situ thermal desorption in soil

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chang Min, E-mail: cmpark80@gmail.com; Katz, Lynn E.; Liljestrand, Howard M.

    2015-12-30

    Highlights: • Impact of soil conditions on distribution and phase transitions of Hg was identified. • Metallic Hg was slowly transformed to Hg{sup 0} gas until the temperature reached 358.15 K. • Phase change of HgCl{sub 2(s)} completely occurred without decomposition at 335.15 K. • HgS remained solid in dry soil sharply decreased in the narrow temperature range. • Hg gas can be easily captured with higher vapor pressures of soil compositions. - Abstract: Metallic mercury (Hg{sup 0}) and its compounds are highly mobile and toxic environmental pollutants at trace level. In situ thermal desorption (ISTD) is one of the soil remediation processes applying heat and vacuum simultaneously. Knowledge of thermodynamic mercury speciation is imperative to understand the fate and transport of mercury during thermal remediation and operate the treatment processes in a cost-effective manner. Hence, speciation model for inorganic mercury was developed over a range of environmental conditions to identify distribution of dissolved mercury species and potential transformations of mercury at near source environment. Simulation of phase transitions for metallic mercury, mercury(II) chloride and mercury sulfide with temperature increase showed that complete vaporization of metallic mercury and mercury(II) chloride were achieved below the boiling point of water. The effect of soil compositions on mercury removal was also evaluated to better understand thermal remediation process. Higher vapor pressures expected both from soil pore water and inorganic carbonate minerals in soil as well as creation of permeability were significant for complete vaporization and removal of mercury.

  10. Mercury speciation during in situ thermal desorption in soil

    International Nuclear Information System (INIS)

    Park, Chang Min; Katz, Lynn E.; Liljestrand, Howard M.

    2015-01-01

    Highlights: • Impact of soil conditions on distribution and phase transitions of Hg was identified. • Metallic Hg was slowly transformed to Hg"0 gas until the temperature reached 358.15 K. • Phase change of HgCl_2_(_s_) completely occurred without decomposition at 335.15 K. • HgS remained solid in dry soil sharply decreased in the narrow temperature range. • Hg gas can be easily captured with higher vapor pressures of soil compositions. - Abstract: Metallic mercury (Hg"0) and its compounds are highly mobile and toxic environmental pollutants at trace level. In situ thermal desorption (ISTD) is one of the soil remediation processes applying heat and vacuum simultaneously. Knowledge of thermodynamic mercury speciation is imperative to understand the fate and transport of mercury during thermal remediation and operate the treatment processes in a cost-effective manner. Hence, speciation model for inorganic mercury was developed over a range of environmental conditions to identify distribution of dissolved mercury species and potential transformations of mercury at near source environment. Simulation of phase transitions for metallic mercury, mercury(II) chloride and mercury sulfide with temperature increase showed that complete vaporization of metallic mercury and mercury(II) chloride were achieved below the boiling point of water. The effect of soil compositions on mercury removal was also evaluated to better understand thermal remediation process. Higher vapor pressures expected both from soil pore water and inorganic carbonate minerals in soil as well as creation of permeability were significant for complete vaporization and removal of mercury.

  11. Chronic mercury vapor poisoning of the lung plain radiography and high resolution CT

    Energy Technology Data Exchange (ETDEWEB)

    Park, Choong Ki; Hwang, Woo Cheol; Nho, Joon Young; Ahn, Bum Gyu; Woo, Hyo Cheol; Kim, Heung Cheol; Lee, Myoung Koo [Hallym University College of Medicine, Seoul (Korea, Republic of)

    1993-09-15

    Authors analyzed the findings of chest radiographs and high-resolution CT(HRCT) of the chronic mercury vapor poisoning in 12 patients who were diagnosed by previous working history for mercury-thermometer and high level of mercury in blood and urine. The purpose of this paper is to introduce the HRCT findings of chronic mercury vapor poisoning. Duration of mercury exposure was ranged from 10 to 41 months(mean, 21.8 months). Estimated value of serum mercury was ranged from 3.6 to 8.7 {mu} g/dl(mean, 5.3 {mu} g/dl: normal value is less than 0.5 {mu} g/dl). Estimated value of mercury in urine was ranged from 104 to 482 {mu} g/l(mean, 291.4 {mu} g/l; normal value is less than 20 {mu} g/l). Chest radiographs showed positive findings such as ground glass opacities and peribronchial cuffings in only 2 out of 12 patients, but HRCT showed positive findings such as ground glass opacities in 8 patients, peribronchial cuffings in 7 patients, centrilobular abnormalities in 5 patients, interface sign in 4 patients, interlobular septal thickening with intralobular lines in 2 patients and lobular consolidation in one patient. In conclusion, chest HRCT is superior to chest radiograph to show the pulmonary manifestation of chronic mercury vapor poisoning. In patients with chronic mercury vapor poisoning. HRCT findings of centrilobular distributed ground glass opacities and peribroncjial cuffinges are characteristic.

  12. Chronic mercury vapor poisoning of the lung plain radiography and high resolution CT

    International Nuclear Information System (INIS)

    Park, Choong Ki; Hwang, Woo Cheol; Nho, Joon Young; Ahn, Bum Gyu; Woo, Hyo Cheol; Kim, Heung Cheol; Lee, Myoung Koo

    1993-01-01

    Authors analyzed the findings of chest radiographs and high-resolution CT(HRCT) of the chronic mercury vapor poisoning in 12 patients who were diagnosed by previous working history for mercury-thermometer and high level of mercury in blood and urine. The purpose of this paper is to introduce the HRCT findings of chronic mercury vapor poisoning. Duration of mercury exposure was ranged from 10 to 41 months(mean, 21.8 months). Estimated value of serum mercury was ranged from 3.6 to 8.7 μ g/dl(mean, 5.3 μ g/dl: normal value is less than 0.5 μ g/dl). Estimated value of mercury in urine was ranged from 104 to 482 μ g/l(mean, 291.4 μ g/l; normal value is less than 20 μ g/l). Chest radiographs showed positive findings such as ground glass opacities and peribronchial cuffings in only 2 out of 12 patients, but HRCT showed positive findings such as ground glass opacities in 8 patients, peribronchial cuffings in 7 patients, centrilobular abnormalities in 5 patients, interface sign in 4 patients, interlobular septal thickening with intralobular lines in 2 patients and lobular consolidation in one patient. In conclusion, chest HRCT is superior to chest radiograph to show the pulmonary manifestation of chronic mercury vapor poisoning. In patients with chronic mercury vapor poisoning. HRCT findings of centrilobular distributed ground glass opacities and peribroncjial cuffinges are characteristic

  13. Mercury accumulation and its distribution to metallothionein in mouse brain after sub-chronic pulse exposure to mercury vapor

    Energy Technology Data Exchange (ETDEWEB)

    Yasutake, A. [Biochemistry Section, National Institute for Minamata Disease, Minamata, Kumamoto 867-0008 (Japan); Sawada, M.; Shimada, A. [Department of Veterinary Pathology, Tottori University, 4-101 Koyamacho, Minami, Tottori 680-0945 (Japan); Satoh, M. [Department of Hygienics, Gifu Pharmaceutical University, 5-6-1 Mitahora-higashi, Gifu 502-8585 (Japan); Tohyama, C. [Environmental Health Sciences Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan)

    2004-09-01

    Previously we found that exposure to mercury vapor effectively induced metallothionein (MT) biosynthesis in rat brain. Although the induction of not only MT-I/II but also MT-III was evident, the induction rate of the latter was much lower than that of the former. The brain of an MT-null mouse lacks MT-I/II, but has MT-III. Here we examined the effects of sub-chronic pulse exposure to mercury vapor on the brain MT in MT-null mice and their wild type controls. MT-null and wild type mice were preliminarily exposed to mercury vapor for 2 weeks at 0.1 mg Hg/m{sup 3} for 1 h/day for 3 days a week, and then exposed for 11 weeks at 4.1 mg Hg/m{sup 3} for 30 min/day for 3 days a week. This exposure caused no toxic signs such as abnormal behavior or loss of body weight gain in the mice of either strain throughout the experimental period. Twenty-four hours after the termination of the exposure, mice were sacrificed and brain samples were subjected to mercury analysis, MT assay, and pathological examination. The MT-null mice showed lower accumulation of mercury in the brain than the wild type mice. Mercury exposure resulted in a 70% increase of brain MT in the wild type mice, which was mostly accounted for by the increase in MT-I/II. On the other hand, the brain MT in the MT-null mice increased by 19%, suggesting less reactivity of the MT-III gene to mercury vapor. Although histochemical examination revealed silver-mercury grains in the cytoplasm of nerve cells and glial cells throughout the brains of both strains, no significant difference was observed between the two strains. (orig.)

  14. Ultrasound-assisted vapor generation of mercury.

    Science.gov (United States)

    Ribeiro, Anderson S; Vieira, Mariana A; Willie, Scott; Sturgeon, Ralph E

    2007-06-01

    Cold vapor generation arising from reduction of both Hg(2+) and CH(3)Hg(+) occurs using ultrasonic (US) fields of sufficient density to achieve both localized heating as well as radical-based attack in solutions of formic and acetic acids and tetramethylammonium hydroxide (TMAH). A batch sonoreactor utilizing an ultrasonic probe as an energy source and a flow through system based on a US bath were optimized for this purpose. Reduction of CH(3)Hg(+) to Hg(0) occurs only at relatively high US field density (>10 W cm(-3) of sample solution) and is thus not observed when a conventional US bath is used for cold vapor generation. Speciation of mercury is thus possible by altering the power density during the measurement process. Thermal reduction of Hg(2+) is efficient in formic acid and TMAH at 70 degrees C and occurs in the absence of the US field. Room temperature studies with the batch sonoreactor reveal a slow reduction process, producing temporally broad signals having an efficiency of approximately 68% of that arising from use of a conventional SnCl(2) reduction system. Molecular species of mercury are generated at high concentrations of formic and acetic acid. Factors affecting the generation of Hg(0) were optimized and the batch sonoreactor used for the determination of total mercury in SLRS-4 river water reference material.

  15. Ratio of organs to blood of mercury during its uptake by normal and acatalasemic mice

    International Nuclear Information System (INIS)

    Ogata, M.; Aikoh, H.

    1987-01-01

    The brain/blood, liver/blood, and heart/blood ratios of acatalasemic mice after intraperitoneal injection of labelled metallic mercury or after exposure to labelled metallic mercury vapor were significantly higher than those of normal mice. These ratios of normal or acatalasemic mice after injection with metallic mercury or exposure to metallic mercury vapor were significantly higher than those of normal and acatalasemic mice injected with mercuric ion. The amount of metallic mercury exhaled from acatalasemic mice injected with metallic mercury was greater than that from normal mice, indicating that the level of metallic mercury in blood of the former was higher than that of the latter. Actually, metallic mercury in the blood of acatalasemic mice injected with metallic mercury is higher than that in the blood of normal mice, suggesting that metallic mercury is easily transferred from blood to brain, liver, kidney, and heart

  16. Managing amalgam phase down: An evaluation of mercury vapor levels in a dental center in Lagos, Nigeria

    Directory of Open Access Journals (Sweden)

    Adolphous Odofin Loto

    2017-01-01

    Full Text Available Background: Occupational exposure to elemental mercury vapor in a dental setting is mainly through inhalation exposure during preparation, insertion, polishing, and removal of amalgam fillings including storage of amalgam waste before disposal. This study aims to determine the indoor air levels of elemental mercury vapor in the dental operatories and ancillary sites at the Lagos State University Teaching Hospital (LASUTH. Materials and Methods: Samples of the ambient air were taken at seven locations the Dental Center of LASUTH by a trained technician between 9:00 and 11:00 a.m. This was done at a predetermined height (41/2feet above the floor for mercury vapor concentration using Lumex 915 light data logger mercury vapor analyzer manufactured by Ohio Lumex Company Incorporation, USA®. Results: The highest level of 1434 ng/m3 of mercury vapor in the air was found in the restorative clinic while the lowest of 23 ng Hg/m3 was found in the ambient air at the entrance of the dental Center. The Oral Surgery clinic had mercury vapor level of 318 ng/m3 which was slightly higher than Environmental Protection Agency recommended value of 0.3 μg/m3. Conclusion: An unacceptably high level of mercury vapor was detected, especially in the restorative clinic. Every dental clinic should have its ambient air evaluated for mercury vapor level for the purpose of forming a baseline data for monitoring purposes during the period of phase down of amalgam use. Best practices should also be instituted to reduce the level of exposure of patients and dental care workers to mercury vapor.

  17. Mercury Flow Through the Mercury-Containing Lamp Sector of the Economy of the United States

    Science.gov (United States)

    Goonan, Thomas G.

    2006-01-01

    Introduction: This Scientific Investigations Report examines the flow of mercury through the mercury-containing lamp sector of the U.S. economy in 2001 from lamp manufacture through disposal or recycling. Mercury-containing lamps illuminate commercial and industrial buildings, outdoor areas, and residences. Mercury is an essential component in fluorescent lamps and high-intensity discharge lamps (high-pressure sodium, mercury-vapor, and metal halide). A typical fluorescent lamp is composed of a phosphor-coated glass tube with electrodes located at either end. Only a very small amount of the mercury is in vapor form. The remainder of the mercury is in the form of either liquid mercury metal or solid mercury oxide (mercury oxidizes over the life of the lamp). When voltage is applied, the electrodes energize the mercury vapor and cause it to emit ultraviolet energy. The phosphor coating absorbs the ultraviolet energy, which causes the phosphor to fluoresce and emit visible light. Mercury-containing lamps provide more lumens per watt than incandescent lamps and, as a result, require from three to four times less energy to operate. Mercury is persistent and toxic within the environment. Mercury-containing lamps are of environmental concern because they are widely distributed throughout the environment and are easily broken in handling. The magnitude of lamp sector mercury emissions, estimated to be 2.9 metric tons per year (t/yr), is small compared with the estimated mercury losses of the U.S. coal-burning and chlor-alkali industries, which are about 70 t/yr and about 90 t/yr, respectively.

  18. Ultrasound-assisted vapor generation of mercury

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Anderson S.; Vieira, Mariana A. [Universidade Federal de Santa Catarina, Departamento de Quimica, Florianopolis, SC (Brazil); Willie, Scott; Sturgeon, Ralph E. [National Research Council Canada, Institute for National Measurement Standards, Ottawa, ON (Canada)

    2007-06-15

    Cold vapor generation arising from reduction of both Hg{sup 2+} and CH{sub 3}Hg{sup +} occurs using ultrasonic (US) fields of sufficient density to achieve both localized heating as well as radical-based attack in solutions of formic and acetic acids and tetramethylammonium hydroxide (TMAH). A batch sonoreactor utilizing an ultrasonic probe as an energy source and a flow through system based on a US bath were optimized for this purpose. Reduction of CH{sub 3}Hg{sup +} to Hg{sup 0} occurs only at relatively high US field density (>10 W cm{sup -3} of sample solution) and is thus not observed when a conventional US bath is used for cold vapor generation. Speciation of mercury is thus possible by altering the power density during the measurement process. Thermal reduction of Hg{sup 2+} is efficient in formic acid and TMAH at 70 C and occurs in the absence of the US field. Room temperature studies with the batch sonoreactor reveal a slow reduction process, producing temporally broad signals having an efficiency of approximately 68% of that arising from use of a conventional SnCl{sub 2} reduction system. Molecular species of mercury are generated at high concentrations of formic and acetic acid. Factors affecting the generation of Hg{sup 0} were optimized and the batch sonoreactor used for the determination of total mercury in SLRS-4 river water reference material. (orig.)

  19. Seasonal variation of mercury vapor concentrations in industrial ...

    African Journals Online (AJOL)

    Mercury has been known as a toxic substance that could raise potential risks to human health. The main anthropogenic sources of mercury pollution in air include combustion of fossil fuel, metal smelting and processing, and vehicle transportation all of which exist in Ahvaz city in Southwestern Iran. Ambient air mercury ...

  20. Using silver nano particles for sampling of toxic mercury vapors from industrial air sample

    Directory of Open Access Journals (Sweden)

    M. Osanloo

    2014-05-01

    .Conclusion: The presented adsorbent is very useful for sampling of the trace amounts of mercury vapors from air. Moreover, it can be regenerated easily is suitable or sampling at 25 to 70 °C. Due to oxidation of silver and reduction in uptake of nanoparticles, oven temperature of 245 °C is used for the recovery of metallic silver. Low amount of adsorbent, high absorbency, high repeatability for sampling, low cost and high accuracy are of the advantages of the presented method.

  1. EPA Method 245.2: Mercury (Automated Cold Vapor Technique)

    Science.gov (United States)

    Method 245.2 describes procedures for preparation and analysis of drinking water samples for analysis of mercury using acid digestion and cold vapor atomic absorption. Samples are prepared using an acid digestion technique.

  2. Radioactive mercury distribution in biological fluids and excretion in human subjects after inhalation of mercury vapor

    International Nuclear Information System (INIS)

    Cherian, M.G.; Hursh, J.B.; Clarkson, T.W.; Allen, J.

    1978-01-01

    The distribution of mercury in red blood cells (RBCs) and plasma, and its excretion in urine and feces are described in five human subjects during the first 7 days following inhalation of radioactive mercury vapor. A major portion (98%) of radioactive mercury in whole blood is initially accumulated in the RBCs and is transferred partly to the plasma compartment until the ratio of mercury in RBCs to plasma is about 2 within 20 h. The cumulative urinary and fecal excretion of mercury for 7 days is about 11.6% of the retained dose, and is closely related to the percent decline in body burden of mercury. There is little correlation between either the urinary excretion and plasma radioactivity of mercury, or the specific activities of urine and plasma mercury, suggesting a mechanism other than a direct glomerular filtration involved in the urinary excretion of recently exposed mercury. These studies suggest that blood mercury levels can be used as an index of recent exposure, while urinary levels may be an index of renal concentration of mercury. However, there is no reliable index for mercury concentration in the brain

  3. A cluster of pediatric metallic mercury exposure cases treated with meso-2,3-dimercaptosuccinic acid (DMSA)

    Science.gov (United States)

    Forman, J; Moline, J; Cernichiari, E; Sayegh, S; Torres, J C; Landrigan, M M; Hudson, J; Adel, H N; Landrigan, P J

    2000-06-01

    Nine children and their mother were exposed to vapors of metallic mercury. The source of the exposure appears to have been a 6-oz vial of mercury taken from a neighbor's home. The neighbor reportedly operated a business preparing mercury-filled amulets for practitioners of the Afro-Caribbean religion Santeria. At diagnosis, urinary mercury levels in the children ranged from 61 to 1,213 microg/g creatinine, with a geometric mean of 214.3 microg/m creatinine. All of the children were asymptomatic. To prevent development of neurotoxicity, we treated the children with oral meso-2,3-dimercaptosuccinic acid (DMSA). During chelation, the geometric mean urine level rose initially by 268% to 573.2 microg mercury/g creatinine (p<0.0005). At the 6-week follow-up examination after treatment, the geometric mean urine mercury level had fallen to 102.1 microg/g creatinine, which was 17.8% of the geometric mean level observed during treatment (p<0.0005) and 47.6% of the original baseline level (p<0.001). Thus, oral chelation with DMSA produced a significant mercury diuresis in these children. We observed no adverse side effects of treatment. DMSA appears to be an effective and safe chelating agent for treatment of pediatric overexposure to metallic mercury.

  4. Vapor trap for liquid metal

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T

    1968-05-22

    In a pipe system which transfers liquid metal, inert gas (cover gas) is packed above the surface of the liquid metal to prevent oxidization of the liquid. If the metal vapor is contained in such cover gas, the circulating system of the cover gas is blocked due to condensation of liquid metal inside the system. The present invention relates to an improvement in vapor trap to remove the metal vapor from the cover gas. The trap consists of a cylindrical outer body, an inlet nozzle which is deeply inserted inside the outer body and has a number of holes to inject the cove gas into the body, metal mesh or steel wool which covers the exterior of the nozzle and on which the condensation of the metal gas takes place, and a heater wire hich is wound around the nozzle to prevent condensation of the metal vapor at the inner peripheral side of the mesh.

  5. 40 CFR Table 6 to Subpart IIIii of... - Examples of Techniques for Equipment Problem Identification, Leak Detection and Mercury Vapor

    Science.gov (United States)

    2010-07-01

    ... Problem Identification, Leak Detection and Mercury Vapor 6 Table 6 to Subpart IIIII of Part 63 Protection... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII..., Leak Detection and Mercury Vapor As stated in Tables 1 and 2 of Subpart IIIII, examples of techniques...

  6. Catalytic Reactor For Oxidizing Mercury Vapor

    Science.gov (United States)

    Helfritch, Dennis J.

    1998-07-28

    A catalytic reactor (10) for oxidizing elemental mercury contained in flue gas is provided. The catalyst reactor (10) comprises within a flue gas conduit a perforated corona discharge plate (30a, b) having a plurality of through openings (33) and a plurality of projecting corona discharge electrodes (31); a perforated electrode plate (40a, b, c) having a plurality of through openings (43) axially aligned with the through openings (33) of the perforated corona discharge plate (30a, b) displaced from and opposing the tips of the corona discharge electrodes (31); and a catalyst member (60a, b, c, d) overlaying that face of the perforated electrode plate (40a, b, c) opposing the tips of the corona discharge electrodes (31). A uniformly distributed corona discharge plasma (1000) is intermittently generated between the plurality of corona discharge electrode tips (31) and the catalyst member (60a, b, c, d) when a stream of flue gas is passed through the conduit. During those periods when corona discharge (1000) is not being generated, the catalyst molecules of the catalyst member (60a, b, c, d) adsorb mercury vapor contained in the passing flue gas. During those periods when corona discharge (1000) is being generated, ions and active radicals contained in the generated corona discharge plasma (1000) desorb the mercury from the catalyst molecules of the catalyst member (60a, b, c, d), oxidizing the mercury in virtually simultaneous manner. The desorption process regenerates and activates the catalyst member molecules.

  7. Metallic mercury uptake by catalase Part 1 In Vitro metallic mercury uptake by various kind of animals' erythrocytes and purified human erythrocyte catalase

    OpenAIRE

    劒持,堅志

    1980-01-01

    The uptake of metallic mercury was studied using erythrocytes with different catalase activities taken from various kind of animals. The results were: 1) The uptake of metallic mercury by erythrocytes paralleled the activity of catalase in the erythrocytes with and without hydrogen peroxide, suggesting that the erythrocyte catalase activity is related to the uptake of metallic mercury. 2) The uptake of metallic mercury occurred not only with purified human erythrocyte catalase but also with h...

  8. Color discrimination impairment in workers exposed to mercury vapor.

    Science.gov (United States)

    Urban, Pavel; Gobba, Fabriziomaria; Nerudová, Jana; Lukás, Edgar; Cábelková, Zdena; Cikrt, Miroslav

    2003-08-01

    To study color discrimination impairment in workers exposed to elemental mercury (Hg) vapor. Twenty-four male workers from a chloralkali plant exposed to Hg vapor, aged 42+/-9.8 years, duration of exposure 14.7+/-9.7 years, were examined. The 8h TWA air-borne Hg concentration in workplace was 59 microg/m(3); mean Hg urinary excretion (HgU) was 20.5+/-19.3 microg/g creatinine; mean Hg urinary excretion after the administration of a chelating agent, sodium 2,3-dimercapto-1-propane-sulfonate (DMPS), was 751.9+/-648 microg/48h. Twenty-four age- and gender-matched control subjects were compared. Visual acuity, alcohol intake, smoking habits, and history of diseases or drugs potentially influencing color vision were registered. The Lanthony 15-Hue desaturated test (L-D15-d) was used to assess color vision. The results were expressed quantitatively as Bowman's Color Confusion Index (CCI), and qualitatively according to Verriest's classification of acquired dyschromatopsias. The CCI was significantly higher in the exposed group than in the control (mean CCI 1.15 versus 1.04; P=0.04). The proportion of subjects with errorless performance on the Lanthony test was significantly lower in the Hg exposed group compared to referents (52% versus 73%; P=0.035). The exposed group showed higher frequency of type III dyschromatopsias (blue-yellow confusion axis) in comparison with the control group (12.5% versus 8.3%), however, the difference did not reach statistical significance. Multiple regression did not show any significant relationship between the CCI, and age, alcohol consumption, or measures of exposure. In agreement with previous studies by Cavalleri et al. [Toxicol. Lett. 77 (1995) 351; Environ. Res. Sec. A 77 (1998) 173], the results of this study support the hypothesis that exposure to mercury vapor can induce sub-clinical color vision impairment. This effect was observed at an exposure level below the current biological limit for occupational exposure to mercury. This

  9. Enzymatic oxidation of mercury vapor by erythrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Halbach, S; Clarkson, T W

    1978-01-01

    The formation of glutathione radicals, the evolution of nascent oxygen or the peroxidatic reaction with catalase complex I are considered as possible mechanisms for the oxidation of mercury vapor by red blood cells. To select among these, the uptake of atomic mercury by erythrocytes from different species was studied and related to their various activities of catalase (hydrogen-peroxide:hydrogen-peroxide oxidoreductase, EC 1.11.1.6) and glutathione peroxidase (glutathione:hydrogen-peroxide oxidoreductase, EC 1.11.1.9). A slow and continuouus infusion of diluted H/sub 2/O/sub 2/ was used to maintain steady concentrations of complex I. 1% red cell suspensions were found most suitable showing high rates of Hg uptake and yielding still enough cells for subsequent determinations. The results indicate that the oxidation of mercury depends upon the H/sub 2/O/sub 2/-generation rate and upon the specific acticity of red-cell catalase. The oxidation occurred in a range of the catalase-H/sub 2/O/sub 2/ reaction where the evolution of oxygen could be excluded. Compounds reacting with complex I were shown to be effective inhibitors of the mercury uptake. GSH-peroxidase did not participate in the oxidation but rather, was found to inhibit it by competing with catalase for hydrogen peroxide. These findings support the view that elemental mercury is oxidized in erythrocytes by a peroxidatic reaction with complex I only.

  10. Removal of mercury vapor from ambient air of dental clinics using an air cleaning system based on silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Chiman Saeidi

    2015-06-01

    Full Text Available Background & objective: Mercury is a toxic and bio-accumulative pollutant that has adverse effects on environmental and human health. There have been a number of attempts to regulate mercury emissions tothe atmosphere. Silver nanoparticles are a number of materials that have highly potential to absorb mercury and formation of mercury amalgam.The aim of this study is removal of mercury vapors in the dental clinic using a n a ir cleaning system based on silver nanoparticles. Methods: In this study, silver nanoparticles coated on the bed of foam and chemical and structural properties were determined using a number of methods such as UV-VIS-NIR spectroscopy and Scanning Electron Microscope (SEM connected the X-ray Emission Spectroscopy Energy (EDS. The a ir cleaning system efficiency to remove of the mercury vapor in simulated conditions in the laboratory and real conditions in the dental clinicwere measured by Cold Vapor Atomic Absorption Spectroscopy (CVAAS. Results: The images of SEM, showed that average sizeof silver nanoparticles in colloidal solution was ∼ 30nm and distribution of silver nanoparticles coated on foam was good. EDS spectrum confirmed associated the presence of silver nanoparticles coated on foam. The significantly difference observed between the concentration of mercury vapor in the off state (9.43 ± 0.342 μg.m-3 and on state (0.51 ± 0.031μg.m-3 of the a ir cleaning system. The mercury vapor removal efficiencyof the a ir cleaning system was calculated 95%. Conclusion : The air cleaning system based on foam coated by silver nanoparticles, undertaken to provide the advantages such as use facilitating, highly efficient operational capacity and cost effective, have highly sufficiency to remove mercury vapor from dental clinics.

  11. Electrochemical generation of mercury cold vapor and its in-situ trapping in gold-covered graphite tube atomizers

    International Nuclear Information System (INIS)

    Cerveny, Vaclav; Rychlovsky, Petr; Netolicka, Jarmila; Sima, Jan

    2007-01-01

    The combination of more efficient flow-through electrochemical mercury cold vapor generation with its in-situ trapping in a graphite tube atomizer is described. This coupled technique has been optimized to attain the maximum sensitivity for Hg determination and to minimize the limits of detection and determination. A laboratory constructed thin-layer flow-through cell with a platinum cathode served as the cold vapor generator. Various cathode arrangements with different active surface areas were tested. Automated sampling equipment for the graphite atomizer with an untreated fused silica capillary was used for the introduction of the mercury vapor. The inner surface of the graphite tube was covered with a gold foil placed against the sampling hole. The results attained for the electrochemical mercury cold vapor generation (an absolute limit of detection of 80 pg; peak absorbance, 3σ criterion) were compared with the traditional vapor generation using NaBH 4 as the reducing agent (an absolute limit of detection of 124 pg; peak absorbance, 3σ criterion). The repeatability at the 5 ng ml -1 level was better than 4.1% (RSD) for electrochemical mercury vapor generation and better than 5.6% for the chemical cold vapor generation. The proposed method was applied to the determination the of Hg contents in a certified reference material and in spiked river water samples

  12. UV light-emitting-diode photochemical mercury vapor generation for atomic fluorescence spectrometry.

    Science.gov (United States)

    Hou, Xiaoling; Ai, Xi; Jiang, Xiaoming; Deng, Pengchi; Zheng, Chengbin; Lv, Yi

    2012-02-07

    A new, miniaturized and low power consumption photochemical vapor generation (PVG) technique utilizing an ultraviolet light-emitting diode (UV-LED) lamp is described, and further validated via the determination of trace mercury. In the presence of formic acid, the mercury cold vapor is favourably generated from Hg(2+) solutions by UV-LED irradiation, and then rapidly transported to an atomic fluorescence spectrometer for detection. Optimum conditions for PVG and interferences from concomitant elements were investigated in detail. Under optimum conditions, a limit of detection (LOD) of 0.01 μg L(-1) was obtained, and the precision was better than 3.2% (n = 11, RSD) at 1 μg L(-1) Hg(2+). No obvious interferences from any common ions were evident. The methodology was successfully applied to the determination of mercury in National Research Council Canada DORM-3 fish muscle tissue and several water samples.

  13. Improved hopcalite procedure for the determination of mercury vapor in air by flameless atomic absorption.

    Science.gov (United States)

    Rathje, A O; Marcero, D H

    1976-05-01

    Mercury vapor is efficiently trapped from air by passage through a small glass tube filled with hopcalite. The hopcalite and adsorbed mercury are dissolved in a mixture of nitric and hydrochloric acids. Solution is rapid and complete, with no loss of mercury. Analysis is completed by flameless atomic absorption.

  14. Applicability of multisyringe chromatography coupled to cold-vapor atomic fluorescence spectrometry for mercury speciation analysis

    International Nuclear Information System (INIS)

    Guzmán-Mar, J.L.; Hinojosa-Reyes, L.; Serra, A.M.; Hernández-Ramírez, A.; Cerdà, V.

    2011-01-01

    Graphical abstract: An automatic system, based on the applicability of multisyringe chromatography (MSC) coupled to cold-vapor atomic fluorescence spectrometry (CV/AFS) detection is developed for mercury speciation. Highlights: ► The on-line coupling of MSC to CV/AFS was developed for mercury speciation analysis. ► The speciation of MeHg + , Hg 2+ and EtHg + was achieved on a RP C18 monolithic column. ► The hyphenated system provided higher sample throughput compared to HPLC–CV/AFS. ► The limits of detection for mercury species were comparable or better than those reported by HPLC–CV/AFS. ► The developed method also provided low instrumental and operational costs. - Abstract: In this paper, a novel automatic approach for the speciation of inorganic mercury (Hg 2+ ), methylmercury (MeHg + ) and ethylmercury (EtHg + ) using multisyringe chromatography (MSC) coupled to cold-vapor atomic fluorescence spectrometry (CV/AFS) was developed. For the first time, the separation of mercury species was accomplished on a RP C18 monolithic column using a multi-isocratic elution program. The elution protocol involved the use of 0.005% 2-mercapthoethanol in 240 mM ammonium acetate (pH 6)–acetonitrile (99:1, v/v), followed by 0.005% 2-mercapthoethanol in 240 mM ammonium acetate (pH 6)–acetonitrile (90:10, v/v). The eluted mercury species were then oxidized under post-column UV radiation and reduced using tin(II) chloride in an acidic medium. Subsequently, the generated mercury metal were separated from the reaction mixture and further atomized in the flame atomizer and detected by AFS. Under the optimized experimental conditions, the limits of detection (3σ) were found to be 0.03, 0.11 and 0.09 μg L −1 for MeHg + , Hg 2+ and EtHg + , respectively. The relative standard deviation (RSD, n = 6) of the peak height for 3, 6 and 3 μg L −1 of MeHg + , Hg 2+ and EtHg + (as Hg) ranged from 2.4 to 4.0%. Compared with the conventional HPLC–CV/AFS hyphenated systems

  15. [Toxic nephropathy secondary to occupational exposure to metallic mercury].

    Science.gov (United States)

    Voitzuk, Ana; Greco, Vanina; Caputo, Daniel; Alvarez, Estela

    2014-01-01

    Toxic nephrophaties secondary to occupational exposure to metals have been widely studied, including membranous nephropathy by mercury, which is rare. Occupational poisoning by mercury is frequent, neurological symptoms are the main form of clinical presentation. Secondary renal involvement in chronic exposure to metallic mercury can cause glomerular disease by deposit of immune-complexes. Membranous glomerulopathy and minimal change disease are the most frequently reported forms. Here we describe the case of a patient with occupational exposure to metallic mercury, where nephrotic syndrome due to membranous glomerulonephritis responded favorably to both chelation and immunosuppressive therapy.

  16. Cold cathode arc model in mercury discharges

    International Nuclear Information System (INIS)

    Li, Y.M.; Byszewski, W.W.; Budinger, A.B.

    1990-01-01

    Voltage/current characteristics measured during the starting of metal halide lamps indicate a low voltage discharge when condensates (mainly mercury) are localized on the electrodes. In this case, even with a cold cathode which does not emit electrons, the current is very high and voltage across the lamp drops to about 15 to 20 V. This type of discharge is similar to the cold cathode mercury vapor arc found in mercury pool rectifiers. The cathode sheath in the mercury vapor arc is characterized by very small cathode spot size, on the order of 10 -c cm 2 , very high current density of about 10 6 A/cm 2 and very low cathode fall of approximately 10 volts. The discharge is modified and generalized to describe the cathode phenomena in the cold cathode mercury vapor arc. The sensitivity of calculated discharge parameters with respect to such modifications were examined. Results show that the cathode fall voltage remains fairly constant (7-8 volts) with large fractional variations of metastable mercury atoms bombarding the cathode. This result compares very well with experimental waveforms when anode fall and plasma voltage approximations are incorporated

  17. Applicability of multisyringe chromatography coupled to cold-vapor atomic fluorescence spectrometry for mercury speciation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Guzman-Mar, J.L.; Hinojosa-Reyes, L. [Department of Chemistry Sciences, Universidad Autonoma de Nuevo Leon, Cd. Universitaria, Pedro de Alba s/n, C.P. 66451 San Nicolas de los Garza, Nuevo Leon (Mexico); Serra, A.M. [Department of Chemistry, University of the Balearic Islands, E-07122 Palma de Mallorca (Spain); Hernandez-Ramirez, A. [Department of Chemistry Sciences, Universidad Autonoma de Nuevo Leon, Cd. Universitaria, Pedro de Alba s/n, C.P. 66451 San Nicolas de los Garza, Nuevo Leon (Mexico); Cerda, V., E-mail: victor.cerda@uib.es [Department of Chemistry, University of the Balearic Islands, E-07122 Palma de Mallorca (Spain)

    2011-12-05

    Graphical abstract: An automatic system, based on the applicability of multisyringe chromatography (MSC) coupled to cold-vapor atomic fluorescence spectrometry (CV/AFS) detection is developed for mercury speciation. Highlights: Black-Right-Pointing-Pointer The on-line coupling of MSC to CV/AFS was developed for mercury speciation analysis. Black-Right-Pointing-Pointer The speciation of MeHg{sup +}, Hg{sup 2+} and EtHg{sup +} was achieved on a RP C18 monolithic column. Black-Right-Pointing-Pointer The hyphenated system provided higher sample throughput compared to HPLC-CV/AFS. Black-Right-Pointing-Pointer The limits of detection for mercury species were comparable or better than those reported by HPLC-CV/AFS. Black-Right-Pointing-Pointer The developed method also provided low instrumental and operational costs. - Abstract: In this paper, a novel automatic approach for the speciation of inorganic mercury (Hg{sup 2+}), methylmercury (MeHg{sup +}) and ethylmercury (EtHg{sup +}) using multisyringe chromatography (MSC) coupled to cold-vapor atomic fluorescence spectrometry (CV/AFS) was developed. For the first time, the separation of mercury species was accomplished on a RP C18 monolithic column using a multi-isocratic elution program. The elution protocol involved the use of 0.005% 2-mercapthoethanol in 240 mM ammonium acetate (pH 6)-acetonitrile (99:1, v/v), followed by 0.005% 2-mercapthoethanol in 240 mM ammonium acetate (pH 6)-acetonitrile (90:10, v/v). The eluted mercury species were then oxidized under post-column UV radiation and reduced using tin(II) chloride in an acidic medium. Subsequently, the generated mercury metal were separated from the reaction mixture and further atomized in the flame atomizer and detected by AFS. Under the optimized experimental conditions, the limits of detection (3{sigma}) were found to be 0.03, 0.11 and 0.09 {mu}g L{sup -1} for MeHg{sup +}, Hg{sup 2+} and EtHg{sup +}, respectively. The relative standard deviation (RSD, n = 6) of the

  18. Effect of environmental exposure to mercury on the functioning of the human body

    Directory of Open Access Journals (Sweden)

    Maciej Cyran

    2013-09-01

    Full Text Available Mercury is classified as a heavy metal and thus is commonly referred to as a death metal due to its high toxicity. In the environment it occurs in metallic form or in combination with other compounds. Amidst the sources of exposure to mercury, the most important environmental sources are dental amalgam and mercury vapor from the production of chlorine which is the most important source of occupational exposure. Mercury is easily soluble in fats, so it penetrates through biological membranes. Both - acute and chronic mercury poisoning causes characteristic clinical symptoms. There are several connections between exposure to this metal and toxic effects on the nervous system, cardiovascular system, endocrine system and kidneys. Thus mercury damages the structure of many organs and impairs their function

  19. Application of atomic vapor laser isotope separation to the enrichment of mercury

    International Nuclear Information System (INIS)

    Crane, J.K.; Erbert, G.V.; Paisner, J.A.; Chen, H.L.; Chiba, Z.; Beeler, R.G.; Combs, R.; Mostek, S.D.

    1986-09-01

    Workers at GTE/Sylvania have shown that the efficiency of fluorescent lighting may be markedly improved using mercury that has been enriched in the 196 Hg isotope. A 5% improvement in the efficiency of fluorescent lighting in the United States could provide a savings of ∼ 1 billion dollars in the corresponding reduction of electrical power consumption. We will discuss the results of recent work done at our laboratory to develop a process for enriching mercury. The discussion will center around the results of spectroscopic measurements of excited state lifetimes, photoionization cross sections and isotope shifts. In addition, we will discuss the mercury separator and supporting laser mesurements of the flow properties of mercury vapor. We will describe the laser system which will provide the photoionization and finally discuss the economic details of producing enriched mercury at a cost that would be attractive to the lighting industry

  20. Total mercury, methyl mercury, and heavy metal concentrations in Hyeongsan River and its tributaries in Pohang city, South Korea.

    Science.gov (United States)

    Bailon, Mark Xavier; David, Anneschel Sheehan; Park, Yeongeon; Kim, Eunhee; Hong, Yongseok

    2018-04-11

    Heavy metal contamination in aquatic systems is a big problem in many areas around the world. In 2016, high mercury concentrations were reported in bivalves (Corbicula leana) and sediments near the confluence of the Hyeongsan River and Chilseong Creek located in Pohang, a steel industrial city in the south-east coast of the Korean peninsula. Given that both the Chilseong and Gumu creeks run through the Pohang industrial complex and ultimately flow to the Hyeongsan River, it is imperative to determine if the industrial effluents have any impact on the mercury contamination in these two streams and the Hyeongsan River. In this work, we investigated the concentration levels of different heavy metals using cold vapor atomic fluorescence spectroscopy and inductively coupled plasma-mass spectroscopy. The metal concentration in the water samples from the Hyeongsan River, Gumu Creek, and Chilseong Creek did not exceed the limits for drinking water quality set by the US EPA and World Health Organization. However, the sediment samples were found to be heavily contaminated by Hg with levels exceeding the toxic effect threshold. Gumu Creek was found to be heavily contaminated. The concentrations of the different heavy metals increased downstream, and the samples collected from the sites in the Hyeongsan River near the Gumu Creek, an open channel for wastewater discharge of companies in the Pohang Industrial Complex, showed higher contamination levels, indicating that the effluents from the industrial complex are a possible source of contamination in the river.

  1. Investigation of ultraviolet photolysis vapor generation with in-atomizer trapping graphite furnace atomic absorption spectrometry for the determination of mercury

    Energy Technology Data Exchange (ETDEWEB)

    Madden, Jeremy T. [Department of Chemistry, Biochemistry, and Physics, Marist College, 3399 North Road, Poughkeepsie, NY 12601 (United States); Fitzgerald, Neil [Department of Chemistry, Biochemistry, and Physics, Marist College, 3399 North Road, Poughkeepsie, NY 12601 (United States)], E-mail: neil.fitzgerald@marist.edu

    2009-09-15

    Generation of mercury vapor by ultraviolet irradiation of mercury solutions in low molecular weight organic acid solutions prior to measurement by Atomic Absorption Spectrometry is a cheap, simple and green method for determination of trace concentrations of mercury. In this work mercury vapor generated by ultraviolet photolysis was trapped onto a palladium coated graphite furnace significantly improving the detection limit of the method. The system was optimized and a detection limit of 0.12 {mu}g L{sup - 1} (compared to 2.1 {mu}g L{sup - 1} for a previously reported system in the absence of trapping) with a precision of 11% for a 10 {mu}g L{sup - 1} mercury standard (RSD, N = 5)

  2. Impact Vaporization as a Possible Source of Mercury's Calcium Exosphere

    Science.gov (United States)

    Killen, Rosemary M.; Hahn, Joseph M.

    2015-01-01

    Mercury's calcium exosphere varies in a periodic way with that planet's true anomaly. We show that this pattern can be explained by impact vaporization from interplanetary dust with variations being due to Mercury's radial and vertical excursions through an interplanetary dust disk having an inclination within 5 degrees of the plane of Mercury's orbit. Both a highly inclined dust disk and a two-disk model (where the two disks have a mutual inclination) fail to reproduce the observed variation in calcium exospheric abundance with Mercury true anomaly angle. However, an additional source of impacting dust beyond the nominal dust disk is required near Mercury's true anomaly (?) 25deg +/-5deg. This is close to but not coincident with Mercury's true anomaly (?=45deg) when it crosses comet 2P/Encke's present day orbital plane. Interestingly, the Taurid meteor storms at Earth, which are also due to Comet Encke, are observed to occur when Earth's true anomaly is +/-20 or so degrees before and after the position where Earth and Encke orbital planes cross. The lack of exact correspondence with the present day orbit of Encke may indicate the width of the potential stream along Mercury's orbit or a previous cometary orbit. The extreme energy of the escaping calcium, estimated to have a temperature greater than 50000 K if the source is thermal, cannot be due to the impact process itself but must be imparted by an additional mechanism such as dissociation of a calcium-bearing molecule or ionization followed by recombination.

  3. Conditioning of spent mercury by amalgamation

    International Nuclear Information System (INIS)

    Yim, S. P.; Shon, J. S.; An, B. G.; Lee, H. J.; Lee, J. W.; Ji, C. G.; Kim, S. H.; Yoon, J. H.; Yang, M. S.

    2002-01-01

    Solidification by amalgamation was performed to immobilize and stabilize the liquid spent mercury. First, the appropriate metal and alloy which can convert liquid mercury into a solid form of amalgam were selected through initial tests. The amalgam form, formulated in optimum composition, was characterized and subjected to performance tests including compressive strength, water immersion, leachability and initial vaporization rate to evaluate mechanical integrity, durability and leaching properties. Finally, bench scale amalgamation trial was conducted with about 1 kg of spent mercury to verify the feasibility of amalgamation method

  4. Organic, inorganic and total mercury determination in fish by chemical vapor generation with collection on a gold gauze and electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Duarte, Fabio Andrei; Bizzi, Cezar Augusto; Goldschmidt Antes, Fabiane; Dressler, Valderi Luiz; Flores, Erico Marlon de Moraes

    2009-01-01

    A method for organic, inorganic and total mercury determination in fish tissue has been developed using chemical vapor generation and collection of mercury vapor on a gold gauze inside a graphite tube and further atomization by electrothermal atomic absorption spectrometry. After drying and cryogenic grinding, potassium bromide and hydrochloric acid solution (1 mol L - 1 KBr in 6 mol L - 1 HCl) was added to the samples. After centrifugation, total mercury was determined in the supernatant. Organomercury compounds were selectively extracted from KBr solution using chloroform and the resultant solution was back extracted with 1% m/v L-cysteine. This solution was used for organic Hg determination. Inorganic Hg remaining in KBr solution was directly determined by chemical vapor generation electrothermal atomic absorption spectrometry. Mercury vapor generation from extracts was performed using 1 mol L - 1 HCl and 2.5% m/v NaBH 4 solutions and a batch chemical vapor generation system. Mercury vapor was collected on the gold gauze heated resistively at 80 deg. C and the atomization temperature was set at 650 deg. C. The selectivity of extraction was evaluated using liquid chromatography coupled to chemical vapor generation and determination by inductively coupled plasma mass spectrometry. The proposed method was applied for mercury analysis in shark, croaker and tuna fish tissues. Certified reference materials were used to check accuracy and the agreement was better than 95%. The characteristic mass was 60 pg and method limits of detection were 5, 1 and 1 ng g - 1 for organic, inorganic and total mercury, respectively. With the proposed method it was possible to analyze up to 2, 2 and 6 samples per hour for organic, inorganic and total Hg determination, respectively.

  5. Vaporization of mercury from molten lead droplets doped with mercury: Pb/Hg source term experiment for the APT/SILC target

    International Nuclear Information System (INIS)

    Tutu, N.K.; Greene, G.A.

    1994-09-01

    Experiments were performed to measure the fraction of mercury inventory released when droplets of molten lead, doped with a known concentration of mercury, fall through a controlled environment. The temperature of molten droplets ranged from 335 C to 346 C, and the concentration of mercury in the droplets ranged from 0.2 mass % to 1.0 mass %. The environment consisted of an air stream, at a temperature nominally equal to the melt temperature, and moving vertically upwards at a velocity of 10 cm/s. Direct observations and chemical analysis showed that no mercury was released from the molten droplets. Based upon the experimental results, it is concluded that no mercury vapor is likely to be released from the potentially molten source rod material in the APT-SILC Neutron Source Array to the confinement atmosphere during a postulated Large Break Loss Of Coolant Accident scenario leading to the melting of a fraction of the source rods

  6. Determination of mercury by cold-vapor technique in several tissues of treated American red crayfish (Procambarus clarkii)

    Energy Technology Data Exchange (ETDEWEB)

    Del Ramo, J.; Pastor, A.; Diaz-Mayans, J.; Medina, J.; Torreblanca, A.

    1988-01-01

    Adult intermolt specimens of American red crayfish (Procambarus clarkii) collected from Lake Albufera (Valencia, Spain), were exposed to mercury during 96 h. The Hg-concentrations used were 50, 100, and 250 ..mu..g Hg/l as Cl/sub 2/Hg. The content of mercury in muscle, midgut gland, antennal glands and gills was investigated. Determinations of mercury were made by cold-vapor technique and AAS. The mercury levels in all examined tissues increased significantly with increasing Hg-concentration in the water.

  7. Packaging a liquid metal ESD with micro-scale Mercury droplet.

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, Casey Anderson

    2011-08-01

    A liquid metal ESD is being developed to provide electrical switching at different acceleration levels. The metal will act as both proof mass and electric contact. Mercury is chosen to comply with operation parameters. There are many challenges surrounding the deposition and containment of micro scale mercury droplets. Novel methods of micro liquid transfer are developed to deliver controllable amounts of mercury to the appropriate channels in volumes under 1 uL. Issues of hermetic sealing and avoidance of mercury contamination are also addressed.

  8. Risk assessment of metal vapor arcing

    Science.gov (United States)

    Hill, Monika C. (Inventor); Leidecker, Henning W. (Inventor)

    2009-01-01

    A method for assessing metal vapor arcing risk for a component is provided. The method comprises acquiring a current variable value associated with an operation of the component; comparing the current variable value with a threshold value for the variable; evaluating compared variable data to determine the metal vapor arcing risk in the component; and generating a risk assessment status for the component.

  9. A new vapor generation system for mercury species based on the UV irradiation of mercaptoethanol used in the determination of total and methyl mercury in environmental and biological samples by atomic fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Yanmin; Qiu, Jianhua; Yang, Limin [College of Chemistry and Chemical Engineering, Xiamen University, Department of Chemistry and the MOE Key Laboratory of Analytical Sciences, Xiamen (China); Wang, Qiuquan [College of Chemistry and Chemical Engineering, Xiamen University, Department of Chemistry and the MOE Key Laboratory of Analytical Sciences, Xiamen (China); Xiamen University, State Key Laboratory of Marine Environmental Science, Xiamen (China)

    2007-06-15

    A new vapor generation system for mercury (Hg) species based on the irradiation of mercaptoethanol (ME) with UV was developed to provide an effective sample introduction unit for atomic fluorescence spectrometry (AFS). Preliminary investigations of the mechanism of this novel vapor generation system were based on GC-MS and FT-IR studies. Under optimum conditions, the limits of determination for inorganic divalence mercury and methyl mercury were 60 and 50 pg mL{sup -1}, respectively. Certified reference materials (BCR 463 tuna fish and BCR 580 estuarine sediment) were used to validate this new method, and the results agreed well with certified values. This new system provides an attractive alternative method of chemical vapor generation (CVG) of mercury species compared to other developed CVG systems (for example, the traditional KBH{sub 4}/NaOH-acid system). To our knowledge, this is the first systematic report on UV/ME-based Hg species vapor generation and the determination of total and methyl Hg in environmental and biological samples using UV/ME-AFS. (orig.)

  10. Advanced Gasification Mercury/Trace Metal Control with Monolith Traps

    Energy Technology Data Exchange (ETDEWEB)

    Musich, Mark; Swanson, Michael; Dunham, Grant; Stanislowski, Joshua

    2010-10-05

    Two Corning monoliths and a non-carbon-based material have been identified as potential additives for mercury capture in syngas at temperatures above 400°F and pressure of 600 psig. A new Corning monolith formulation, GR-F1-2189, described as an active sample appeared to be the best monolith tested to date. The Corning SR Liquid monolith concept continues to be a strong candidate for mercury capture. Both monolith types allowed mercury reduction to below 5-μg/m{sup 3} (~5 ppb), a current U.S. Department of Energy (DOE) goal for trace metal control. Preparation methods for formulating the SR Liquid monolith impacted the ability of the monolith to capture mercury. The Energy & Environmental Research Center (EERC)-prepared Noncarbon Sorbents 1 and 2 appeared to offer potential for sustained and significant reduction of mercury concentration in the simulated fuel gas. The Noncarbon Sorbent 1 allowed sustained mercury reduction to below 5-μg/m{sup 3} (~5 ppb). The non-carbon-based sorbent appeared to offer the potential for regeneration, that is, desorption of mercury by temperature swing (using nitrogen and steam at temperatures above where adsorption takes place). A Corning cordierite monolith treated with a Group IB metal offered limited potential as a mercury sorbent. However, a Corning carbon-based monolith containing prereduced metallic species similar to those found on the noncarbon sorbents did not exhibit significant or sustained mercury reduction. EERC sorbents prepared with Group IB and IIB selenide appeared to have some promise for mercury capture. Unfortunately, these sorbents also released Se, as was evidenced by the measurement of H2Se in the effluent gas. All sorbents tested with arsine or hydrogen selenide, including Corning monoliths and the Group IB and IIB metal-based materials, showed an ability to capture arsine or hydrogen selenide at 400°F and 600 psig. Based on current testing, the noncarbon metal-based sorbents appear to be the most

  11. ADVANCED GASIFICATION MERCURY/TRACE METAL CONTROL WITH MONOLITH TRAPS

    Energy Technology Data Exchange (ETDEWEB)

    Mark A. Musich; Michael L. Swanson; Grant E. Dunham; Joshua J. Stanislowski

    2010-07-31

    Two Corning monoliths and a non-carbon-based material have been identified as potential additives for mercury capture in syngas at temperatures above 400°F and pressure of 600 psig. A new Corning monolith formulation, GR-F1-2189, described as an active sample appeared to be the best monolith tested to date. The Corning SR Liquid monolith concept continues to be a strong candidate for mercury capture. Both monolith types allowed mercury reduction to below 5-μg/m3 (~5 ppb), a current U.S. Department of Energy (DOE) goal for trace metal control. Preparation methods for formulating the SR Liquid monolith impacted the ability of the monolith to capture mercury. The Energy & Environmental Research Center (EERC)-prepared Noncarbon Sorbents 1 and 2 appeared to offer potential for sustained and significant reduction of mercury concentration in the simulated fuel gas. The Noncarbon Sorbent 1 allowed sustained mercury reduction to below 5-μg/m3 (~5 ppb). The non-carbon-based sorbent appeared to offer the potential for regeneration, that is, desorption of mercury by temperature swing (using nitrogen and steam at temperatures above where adsorption takes place). A Corning cordierite monolith treated with a Group IB metal offered limited potential as a mercury sorbent. However, a Corning carbon-based monolith containing prereduced metallic species similar to those found on the noncarbon sorbents did not exhibit significant or sustained mercury reduction. EERC sorbents prepared with Group IB and IIB selenide appeared to have some promise for mercury capture. Unfortunately, these sorbents also released Se, as was evidenced by the measurement of H2Se in the effluent gas. All sorbents tested with arsine or hydrogen selenide, including Corning monoliths and the Group IB and IIB metal-based materials, showed an ability to capture arsine or hydrogen selenide at 400°F and 600 psig. Based on current testing, the noncarbon metal-based sorbents appear to be the most effective arsine

  12. Mercury CEM Calibration

    Energy Technology Data Exchange (ETDEWEB)

    John F. Schabron; Joseph F. Rovani; Susan S. Sorini

    2007-03-31

    The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005, requires that calibration of mercury continuous emissions monitors (CEMs) be performed with NIST-traceable standards. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor generators. The traceability protocol will be written by EPA. Traceability will be based on the actual analysis of the output of each calibration unit at several concentration levels ranging from about 2-40 ug/m{sup 3}, and this analysis will be directly traceable to analyses by NIST using isotope dilution inductively coupled plasma/mass spectrometry (ID ICP/MS) through a chain of analyses linking the calibration unit in the power plant to the NIST ID ICP/MS. Prior to this project, NIST did not provide a recommended mercury vapor pressure equation or list mercury vapor pressure in its vapor pressure database. The NIST Physical and Chemical Properties Division in Boulder, Colorado was subcontracted under this project to study the issue in detail and to recommend a mercury vapor pressure equation that the vendors of mercury vapor pressure calibration units can use to calculate the elemental mercury vapor concentration in an equilibrium chamber at a particular temperature. As part of this study, a preliminary evaluation of calibration units from five vendors was made. The work was performed by NIST in Gaithersburg, MD and Joe Rovani from WRI who traveled to NIST as a Visiting Scientist.

  13. Mechanisms and kinetics of electrodeposition of alkali metals on solid and liquid mercury electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wenzhe.

    1993-01-01

    Electroreduction of alkali metal ions at mercury is an important area in electrochemistry related to the battery industry. In this work, four major topics were considered: alkali metal/mercury interactions; electrosorption of alkali metal ions on solid mercury; electroreduction of alkali metal/crown ether complexes; and ammonium amalgam formation. The formation of alkali metal-mercury intermetallic compounds was studied on liquid and frozen thin layer mercury electrodes. The stoichiometry of the compounds produced under these conditions was determined using cyclic voltammetry. As expected, formation of a new phase was preceded by nucleation phenomena, which were particularly easy to monitor at solid Hg electrodes. The nucleation kinetics were studied using the chronoamperometric method. At very low temperatures, when the mobility of mercury atoms was restricted, the electrosorption of alkali metal ions on solid mercury electrodes was noted. Subsequent study allowed determination of the electrosorption parameters. The free energy of electrosorption is discussed in terms of interactions between alkali metals and mercury. The effect of crown ethers on the kinetics of alkali metal ion reduction was studied at both standard size and ultramicro-mercury electrodes in nonaqueous solutions using ultrafast cyclic voltammetry and ac voltammetry. The usefulness of ultrafast cyclic voltammetry with ultramicroelectrodes in measurements of the kinetics of amalgam formation was verified in a brief study of cadmium ion reduction. The mechanism of the complex reduction at mercury was analyzed based on the free energy changes before and after the activation state. In addition, the stoichiometry and formation constants of the crown ether/alkali metal complexes were determined using cyclic voltammetry. The mechanism of electroreduction of ammonium ions at mercury electrodes in non-aqueous media was analyzed.

  14. Metal Vapor Arcing Risk Assessment Tool

    Science.gov (United States)

    Hill, Monika C.; Leidecker, Henning W.

    2010-01-01

    The Tin Whisker Metal Vapor Arcing Risk Assessment Tool has been designed to evaluate the risk of metal vapor arcing and to help facilitate a decision toward a researched risk disposition. Users can evaluate a system without having to open up the hardware. This process allows for investigating components at risk rather than spending time and money analyzing every component. The tool points to a risk level and provides direction for appropriate action and documentation.

  15. Occurrence of large fractions of mercury-resistant bacteria in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    De, J.; Ramaiah, N.

    , 1991 , pp. 1 ? 29. 21. Smith, T., Pitts, K., McGarvey, J. A. and Summers, A. O., Bact e- rial oxidation of mercury metal vapor, Hg(0). Appl. Environ. M i cr o biol ., 1998, 64 , 1328 ? 1332. 22. http://in.rediff.com /money/2003/nov/04mercury...

  16. 40 CFR 421.250 - Applicability: Description of the primary precious metals and mercury subcategory.

    Science.gov (United States)

    2010-07-01

    ... primary precious metals and mercury subcategory. 421.250 Section 421.250 Protection of Environment... POINT SOURCE CATEGORY Primary Precious Metals and Mercury Subcategory § 421.250 Applicability: Description of the primary precious metals and mercury subcategory. The provisions of this subpart are...

  17. Design, fabrication and testing of porous tungsten vaporizers for mercury ion thrusters

    Science.gov (United States)

    Zavesky, R.; Kroeger, E.; Kami, S.

    1983-01-01

    The dispersions in the characteristics, performance and reliability of vaporizers for early model 30-cm thrusters were investigated. The purpose of the paper is to explore the findings and to discuss the approaches that were taken to reduce the observed dispersion and present the results of a program which validated those approaches. The information that is presented includes porous tungsten materials specifications, a discussion of assembly procedures, and a description of a test program which screens both material and fabrication processes. There are five appendices providing additional detail in the areas of vaporizer contamination, nitrogen flow testing, bubble testing, porosimeter testing, and mercury purity. Four neutralizers, seven cathodes and five main vaporizers were successfully fabricated, tested, and operated on thrusters. Performance data from those devices is presented and indicates extremely repeatable results from using the design and fabrication procedures.

  18. Determination of total mercury and methylmercury in biological samples by photochemical vapor generation

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Mariana A.; Ribeiro, Anderson S.; Curtius, Adilson J. [Universidade Federal de Santa Catarina, Departamento de Quimica, Florianopolis, SC (Brazil); Sturgeon, Ralph E. [National Research Council Canada, Institute for National Measurement Standards, Ottawa, ON (Canada)

    2007-06-15

    Cold vapor atomic absorption spectrometry (CV-AAS) based on photochemical reduction by exposure to UV radiation is described for the determination of methylmercury and total mercury in biological samples. Two approaches were investigated: (a) tissues were digested in either formic acid or tetramethylammonium hydroxide (TMAH), and total mercury was determined following reduction of both species by exposure of the solution to UV irradiation; (b) tissues were solubilized in TMAH, diluted to a final concentration of 0.125% m/v TMAH by addition of 10% v/v acetic acid and CH{sub 3}Hg{sup +} was selectively quantitated, or the initial digests were diluted to 0.125% m/v TMAH by addition of deionized water, adjusted to pH 0.3 by addition of HCl and CH{sub 3}Hg{sup +} was selectively quantitated. For each case, the optimum conditions for photochemical vapor generation (photo-CVG) were investigated. The photochemical reduction efficiency was estimated to be {proportional_to}95% by comparing the response with traditional SnCl{sub 2} chemical reduction. The method was validated by analysis of several biological Certified Reference Materials, DORM-1, DORM-2, DOLT-2 and DOLT-3, using calibration against aqueous solutions of Hg{sup 2+}; results showed good agreement with the certified values for total and methylmercury in all cases. Limits of detection of 6 ng/g for total mercury using formic acid, 8 ng/g for total mercury and 10 ng/g for methylmercury using TMAH were obtained. The proposed methodology is sensitive, simple and inexpensive, and promotes ''green'' chemistry. The potential for application to other sample types and analytes is evident. (orig.)

  19. Selective metal-vapor deposition on solvent evaporated polymer surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Koji; Tsujioka, Tsuyoshi, E-mail: tsujioka@cc.osaka-kyoiku.ac.jp

    2015-12-31

    We report a selective metal-vapor deposition phenomenon based on solvent printing and evaporation on polymer surfaces and propose a method to prepare fine metal patterns using maskless vacuum deposition. Evaporation of the solvent molecules from the surface caused large free volumes between surface polymer chains and resulted in high mobility of the chains, enhancing metal-vapor atom desorption from the surface. This phenomenon was applied to prepare metal patterns on the polymer surface using solvent printing and maskless metal vacuum deposition. Metal patterns with high resolution of micron scale were obtained for various metal species and semiconductor polymer substrates including poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] and poly(3-hexylthiophene-2,5-diyl). - Highlights: • Selective metal-vapor deposition using solvent evaporation on polymer was attained. • Metal patterns with high resolution were obtained for various metal species. • This method can be applied to achieve fine metal-electrodes for polymer electronics.

  20. Elemental mercury vapor capture by powdered activated carbon in a fluidized bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Fabrizio Scala; Riccardo Chirone; Amedeo Lancia [Istituto di Ricerche sulla Combustione - CNR, Napoli (Italy)

    2011-06-15

    A bubbling fluidized bed of inert material was used to increase the activated carbon residence time in the reaction zone and to improve its performance for mercury vapor capture. Elemental mercury capture experiments were conducted at 100{sup o}C in a purposely designed 65 mm ID lab-scale pyrex reactor, that could be operated both in the fluidized bed and in the entrained bed configurations. Commercial powdered activated carbon was pneumatically injected in the reactor and mercury concentration at the outlet was monitored continuously. Experiments were carried out at different inert particle sizes, bed masses, fluidization velocities and carbon feed rates. Experimental results showed that the presence of a bubbling fluidized bed led to an increase of the mercury capture efficiency and, in turn, of the activated carbon utilization. This was explained by the enhanced activated carbon loading and gas-solid contact time that establishes in the reaction zone, because of the large surface area available for activated carbon adhesion/deposition in the fluidized bed. Transient mercury concentration profiles at the bed outlet during the runs were used to discriminate between the controlling phenomena in the process. Experimental data have been analyzed in the light of a phenomenological framework that takes into account the presence of both free and adhered carbon in the reactor as well as mercury saturation of the adsorbent. 14 refs., 7 figs.

  1. Transmission electron microscopy of mercury metal

    KAUST Repository

    Anjum, Dalaver H.

    2016-03-28

    Summary: Transmission electron microcopy (TEM) analysis of liquid metals, especially mercury (Hg), is difficult to carry out because their specimen preparation poses a daunting task due to the unique surface properties of these metals. This paper reports a cryoTEM study on Hg using a novel specimen preparation technique. Hg metal is mixed with water using sonication and quenched in liquid ethane cryogen. This technique permits research into the morphological, phase and structural properties of Hg at nanoscale dimensions. © 2016 Royal Microscopical Society.

  2. 40 CFR 63.10885 - What are my management practices for metallic scrap and mercury switches?

    Science.gov (United States)

    2010-07-01

    ... minimize the presence of mercury in scrap from end-of-life vehicles. (3) Option for specialty metal scrap... metallic scrap and mercury switches? 63.10885 Section 63.10885 Protection of Environment ENVIRONMENTAL... Affected Sources § 63.10885 What are my management practices for metallic scrap and mercury switches? (a...

  3. Characteristics and Stability of Mercury Vapor Adsorption over Two Kinds of Modified Semicoke

    Directory of Open Access Journals (Sweden)

    Zhang Huawei

    2014-01-01

    Full Text Available In an attempt to produce effective and lower price gaseous Hg0 adsorbents, two methods of HCl and KMnO4/heat treatment were used respectively for the surface modification of liginite semicoke from inner Mongolia. The different effects of modification process on the surface physical and chemical properties were analyzed. The characteristics and stability of mercury vapor adsorption over two kinds of modified semicoke were investigated. The results indicated that modification process caused lower micropore quantity and volume capacity of semicoke; the C-Cl functional groups, C=O bond and delocalized electron π on the surface of Cl-SC, the amorphous higher valency Mnx+, and O=C–OH functional groups on the surface of Mn-H-SC were the active sites for oxidation and adsorption of gaseous Hg0. Modification process led to higher mercury removal efficiency of semicoke at 140°C and reduced the stability of adsorbed mercury of semicoke in simulated water circumstance simultaneously.

  4. Characteristics and stability of mercury vapor adsorption over two kinds of modified semicoke.

    Science.gov (United States)

    Huawei, Zhang; Xiuli, Liu; Li, Wang; Peng, Liang

    2014-01-01

    In an attempt to produce effective and lower price gaseous Hg(0) adsorbents, two methods of HCl and KMnO4/heat treatment were used respectively for the surface modification of liginite semicoke from inner Mongolia. The different effects of modification process on the surface physical and chemical properties were analyzed. The characteristics and stability of mercury vapor adsorption over two kinds of modified semicoke were investigated. The results indicated that modification process caused lower micropore quantity and volume capacity of semicoke; the C-Cl functional groups, C=O bond and delocalized electron π on the surface of Cl-SC, the amorphous higher valency Mn (x+) , and O=C-OH functional groups on the surface of Mn-H-SC were the active sites for oxidation and adsorption of gaseous Hg(0). Modification process led to higher mercury removal efficiency of semicoke at 140°C and reduced the stability of adsorbed mercury of semicoke in simulated water circumstance simultaneously.

  5. Validation of an analytical method for the determination of total mercury in urine samples using cold vapor atomic absorption spectrometry (CV-AAS)

    International Nuclear Information System (INIS)

    Guilhen, Sabine Neusatz

    2009-01-01

    Mercury (Hg) is a toxic metal applied to a variety of products and processes, representing a risk to the health of occupationally or accidentally exposed subjects. Dental amalgam is a restorative material composed of metallic mercury, which use has been widely debated in the last decades. Due to the dubiety of the studies concerning dental amalgam, many efforts concerning this issue have been conducted. The Tropical Medicine Foundation (Tocantins, Brazil) has recently initiated a study to evaluate the environmental and occupational levels of exposure to mercury in dentistry attendants at public consulting rooms in the city of Araguaina (TO). In collaboration with this study, the laboratory of analysis at IPEN's Chemistry and Environment Center is undertaking the analysis of mercury levels in exposed subjects' urine samples using cold vapor atomic absorption spectrometry. This analysis requires the definition of a methodology capable of generating reliable results. Such methodology can only be implemented after a rigorous validation procedure. As part of this work, a series of tests were conducted in order to confirm the suitability of the selected methodology and to assert that the laboratory addresses all requirements needed for a successful implementation of the methodology. The following parameters were considered in order to test the method's performance: detection and quantitation limits, selectivity, sensitivity, linearity, accuracy and precision. The assays were carried out with certified reference material, which assures the traceability of the results. Taking into account the estimated parameters, the method can be considered suitable for the afore mentioned purpose. The mercury concentration found for the reference material was of (95,12 +- 11,70)mug.L -1 with a recovery rate of 97%. The method was also applied to 39 urine samples, six of which (15%) showing urinary mercury levels above the normal limit of 10μg.L -1 . The obtained results fall into a

  6. Were mercury emission factors for Chinese non-ferrous metal smelters overestimated? Evidence from onsite measurements in six smelters

    International Nuclear Information System (INIS)

    Zhang Lei; Wang Shuxiao; Wu Qingru; Meng Yang; Yang Hai; Wang Fengyang; Hao Jiming

    2012-01-01

    Non-ferrous metal smelting takes up a large proportion of the anthropogenic mercury emission inventory in China. Zinc, lead and copper smelting are three leading sources. Onsite measurements of mercury emissions were conducted for six smelters. The mercury emission factors were 0.09–2.98 g Hg/t metal produced. Acid plants with the double-conversion double-absorption process had mercury removal efficiency of over 99%. In the flue gas after acid plants, 45–88% was oxidized mercury which can be easily scavenged in the flue gas scrubber. 70–97% of the mercury was removed from the flue gas to the waste water and 1–17% to the sulfuric acid product. Totally 0.3–13.5% of the mercury in the metal concentrate was emitted to the atmosphere. Therefore, acid plants in non-ferrous metal smelters have significant co-benefit on mercury removal, and the mercury emission factors from Chinese non-ferrous metal smelters were probably overestimated in previous studies. - Highlights: ► Acid plants in smelters provide significant co-benefits for mercury removal (over 99%). ► Most of the mercury in metal concentrates for smelting ended up in waste water. ► Previously published emission factors for Chinese metal smelters were probably overestimated. - Acid plants in smelters have high mercury removal efficiency, and thus mercury emission factors for Chinese non-ferrous metal smelters were probably overestimated.

  7. Heavy metal vaporization and abatement during thermal treatment of modified wastes

    International Nuclear Information System (INIS)

    Rio, S.; Verwilghen, C.; Ramaroson, J.; Nzihou, A.; Sharrock, P.

    2007-01-01

    This study examines the vaporization percentage and partitioning of heavy metals Cd, Pb and Zn during thermal treatment of wastes with added PVC, heavy metals or phosphate, and the efficiency of sorbents for removal of these metallic compounds in flue gas of an industrial solid waste incinerator. Firstly, vaporization experiments were carried out to determine the behavior of heavy metals during combustion under various conditions (type of waste, temperature, presence of chloride or phosphate ...). The experimental results show relatively high vaporization percentage of metallic compounds within fly ash and limestone matrix while heavy metals within sediments treated with phosphoric acid are less volatile. Vaporization of metals increases with increasing temperature and with chloride addition. The thermal behavior of the selected heavy metals and their removal by sorbents (sodium bicarbonate, activated carbon) was also studied in an industrial solid waste incinerator. These pilot scale experiments confirm that heavy metals are concentrated in fly ashes and cyclone residues, thus effectively controlling their release to the atmosphere

  8. Mercury heavy-metal-induced physiochemical changes and genotoxic alterations in water hyacinths [Eichhornia crassipes (Mart.)].

    Science.gov (United States)

    Malar, Srinivasan; Sahi, Shivendra Vikram; Favas, Paulo J C; Venkatachalam, Perumal

    2015-03-01

    Mercury heavy metal pollution has become an important environmental problem worldwide. Accumulation of mercury ions by plants may disrupt many cellular functions and block normal growth and development. To assess mercury heavy metal toxicity, we performed an experiment focusing on the responses of Eichhornia crassipes to mercury-induced oxidative stress. E. crassipes seedlings were exposed to varying concentrations of mercury to investigate the level of mercury ions accumulation, changes in growth patterns, antioxidant defense mechanisms, and DNA damage under hydroponics system. Results showed that plant growth rate was significantly inhibited (52 %) at 50 mg/L treatment. Accumulation of mercury ion level were 1.99 mg/g dry weight, 1.74 mg/g dry weight, and 1.39 mg/g dry weight in root, leaf, and petiole tissues, respectively. There was a decreasing trend for chlorophyll a, b, and carotenoids with increasing the concentration of mercury ions. Both the ascorbate peroxidase and malondialdehyde contents showed increased trend in leaves and roots up to 30 mg/L mercury treatment and slightly decreased at the higher concentrations. There was a positive correlation between heavy metal dose and superoxide dismutase, catalase, and peroxidase antioxidative enzyme activities which could be used as biomarkers to monitor pollution in E. crassipes. Due to heavy metal stress, some of the normal DNA bands were disappeared and additional bands were amplified compared to the control in the random amplified polymorphic DNA (RAPD) profile. Random amplified polymorphic DNA results indicated that genomic template stability was significantly affected by mercury heavy metal treatment. We concluded that DNA changes determined by random amplified polymorphic DNA assay evolved a useful molecular marker for detection of genotoxic effects of mercury heavy metal contamination in plant species.

  9. Determination of mercury in coal by isotope dilution cold-vapor generation inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Long, S.E.; Kelly, W.R.

    2002-04-01

    A method based on isotope dilution cold-vapor inductively coupled plasma mass spectrometry (ID-CV-ICPMS) has been developed for high-accuracy determinations of mercury in bituminous and sub-bituminous coals. A closed-system digestion process employing a Carius tube is used to completely oxidize the coal matrix and chemically equilibrate the mercury in the sample with a Hg-201 isotopic spike. The digestates are diluted with high-purity quartz-distilled water, and the mercury is released as a vapor by reduction with tin chloride. Measurements of Hg-201/Hg-202 isotope ratios are made using a quadrupole ICPMS system in time-resolved analysis mode. The new method has some significant advantages over existing methods. The instrument detection limit is less than 1 pg/mL. The average blank (n = 17) is 30 pg, which is roughly 1 order of magnitude lower than the equivalent microwave digestion procedure. The detection limit in coal is blank limited and is similar to 40 pg/g. Memory effects are very low. The relative reproducibility of the analytical measurements is similar to 0.5% for mercury concentrations in the range 10-150 ng/g. The method has been used to measure mercury concentrations in six coal reference materials, SRM 1632b (77.4 ng/g), SRM 1632c (94.3 ng/g), BCR 40 (433.2 ng/g), BCR 180 (125.0 ng/g), BCR 181 (135.8 ng/g), and SARM 20 (252.6 ng/g), as well as a coal fly ash, SRM 1633b (143.1 ng/g). The method is equally applicable to other types of fossil fuels including both crude and refined oils.

  10. Mercury Quick Facts: Health Effects of Mercury Exposure

    Science.gov (United States)

    ... 2012 What are the Health Effects of Mercury Exposure? The health effects that can be caused by breathing mercury depend ... they breathe faster and have smaller lungs. Health effects caused by long-term exposure to mercury vapors • • Anxiety • • Excessive shyness • • Anorexia • • Sleeping ...

  11. Mercury

    Science.gov (United States)

    Mercury is an element that is found in air, water and soil. It has several forms. Metallic mercury is a shiny, silver-white, odorless liquid. If ... with other elements to form powders or crystals. Mercury is in many products. Metallic mercury is used ...

  12. Trace mercury determination in drinking and natural water after preconcentration and separation by DLLME-SFO method coupled with cold vapor atomic absorption spectrometry

    OpenAIRE

    Abdollahi Atousa; Amirkavehei Mooud; Gheisari Mohammad Mehdi; Tadayon Fariba

    2014-01-01

    A novel dispersive liquid–liquid microextraction based on solidification of floating organic drop (DLLME-SFO) for simultaneous separation/preconcentration of ultra trace amounts of mercury was used. A method based on amalgamation was used for collection of gaseous mercury on gold coated sand (Gold trap). The concentration of mercury was determined by cold vapor atomic absorption spectrometry (CV-AAS). The DLLME-SFO behavior of mercury by using dithizone as complexing agent was systematically ...

  13. Method for the generation of variable density metal vapors which bypasses the liquidus phase

    Science.gov (United States)

    Kunnmann, Walter; Larese, John Z.

    2001-01-01

    The present invention provides a method for producing a metal vapor that includes the steps of combining a metal and graphite in a vessel to form a mixture; heating the mixture to a first temperature in an argon gas atmosphere to form a metal carbide; maintaining the first temperature for a period of time; heating the metal carbide to a second temperature to form a metal vapor; withdrawing the metal vapor and the argon gas from the vessel; and separating the metal vapor from the argon gas. Metal vapors made using this method can be used to produce uniform powders of the metal oxide that have narrow size distribution and high purity.

  14. Optical characteristics and parameters of gas-discharge plasma in a mixture of mercury dibromide vapor with argon

    Science.gov (United States)

    Malinina, A. A.; Malinin, A. N.

    2015-03-01

    Results are presented from studies of the optical characteristics and parameters of the plasma of a dielectric barrier discharge in a mixture of mercury dibromide vapor with argon—the working medium of an exciplex gas-discharge emitter. It is established that the partial pressures of mercury dibromide vapor and argon at which the average and pulsed emission intensities in the blue—green spectral region (λmax = 502 nm) reach their maximum values are 0.6 and 114.4 kPa, respectively. The electron energy distribution function, the transport characteristics, the specific power spent on the processes involving electrons, the electron density and temperature, and the rate constants for the processes of elastic and inelastic electron scattering from the molecules and atoms of the working mixture are determined by numerical simulation, and their dependences on the reduced electric field strength are analyzed. The rate constant of the process leading to the formation of exciplex mercury monobromide molecules for a reduced electric field of E/ N = 20 Td, at which the maximum emission intensity in the blue—green spectral region was observed in this experiment, is found to be 8.1 × 10-15 m3/s.

  15. Optical characteristics and parameters of gas-discharge plasma in a mixture of mercury dibromide vapor with argon

    Energy Technology Data Exchange (ETDEWEB)

    Malinina, A. A., E-mail: alexandr-malinin@rambler.ru; Malinin, A. N. [Uzhhorod National University (Ukraine)

    2015-03-15

    Results are presented from studies of the optical characteristics and parameters of the plasma of a dielectric barrier discharge in a mixture of mercury dibromide vapor with argon—the working medium of an exciplex gas-discharge emitter. It is established that the partial pressures of mercury dibromide vapor and argon at which the average and pulsed emission intensities in the blue—green spectral region (λ{sub max} = 502 nm) reach their maximum values are 0.6 and 114.4 kPa, respectively. The electron energy distribution function, the transport characteristics, the specific power spent on the processes involving electrons, the electron density and temperature, and the rate constants for the processes of elastic and inelastic electron scattering from the molecules and atoms of the working mixture are determined by numerical simulation, and their dependences on the reduced electric field strength are analyzed. The rate constant of the process leading to the formation of exciplex mercury monobromide molecules for a reduced electric field of E/N = 20 Td, at which the maximum emission intensity in the blue—green spectral region was observed in this experiment, is found to be 8.1 × 10{sup −15} m{sup 3}/s.

  16. Optical characteristics and parameters of gas-discharge plasma in a mixture of mercury dibromide vapor with argon

    International Nuclear Information System (INIS)

    Malinina, A. A.; Malinin, A. N.

    2015-01-01

    Results are presented from studies of the optical characteristics and parameters of the plasma of a dielectric barrier discharge in a mixture of mercury dibromide vapor with argon—the working medium of an exciplex gas-discharge emitter. It is established that the partial pressures of mercury dibromide vapor and argon at which the average and pulsed emission intensities in the blue—green spectral region (λ max = 502 nm) reach their maximum values are 0.6 and 114.4 kPa, respectively. The electron energy distribution function, the transport characteristics, the specific power spent on the processes involving electrons, the electron density and temperature, and the rate constants for the processes of elastic and inelastic electron scattering from the molecules and atoms of the working mixture are determined by numerical simulation, and their dependences on the reduced electric field strength are analyzed. The rate constant of the process leading to the formation of exciplex mercury monobromide molecules for a reduced electric field of E/N = 20 Td, at which the maximum emission intensity in the blue—green spectral region was observed in this experiment, is found to be 8.1 × 10 −15 m 3 /s

  17. On-chip fabrication of alkali-metal vapor cells utilizing an alkali-metal source tablet

    International Nuclear Information System (INIS)

    Tsujimoto, K; Hirai, Y; Sugano, K; Tsuchiya, T; Tabata, O; Ban, K; Mizutani, N

    2013-01-01

    We describe a novel on-chip microfabrication technique for the alkali-metal vapor cell of an optically pumped atomic magnetometer (OPAM), utilizing an alkali-metal source tablet (AMST). The newly proposed AMST is a millimeter-sized piece of porous alumina whose considerable surface area holds deposited alkali-metal chloride (KCl) and barium azide (BaN 6 ), source materials that effectively produce alkali-metal vapor at less than 400 °C. Our experiments indicated that the most effective pore size of the AMST is between 60 and 170 µm. The thickness of an insulating glass spacer holding the AMST was designed to confine generated alkali metal to the interior of the vapor cell during its production, and an integrated silicon heater was designed to seal the device using a glass frit, melted at an optimum temperature range of 460–490 °C that was determined by finite element method thermal simulation. The proposed design and AMST were used to successfully fabricate a K cell that was then operated as an OPAM with a measured sensitivity of 50 pT. These results demonstrate that the proposed concept for on-chip microfabrication of alkali-metal vapor cells may lead to effective replacement of conventional glassworking approaches. (paper)

  18. Determining the Optimum Exposure and Recovery Periods for Efficient Operation of a QCM Based Elemental Mercury Vapor Sensor

    Directory of Open Access Journals (Sweden)

    K. M. Mohibul Kabir

    2015-01-01

    Full Text Available In recent years, mass based transducers such as quartz crystal microbalance (QCM have gained huge interest as potential sensors for online detection of elemental mercury (Hg0 vapor from anthropogenic sources due to their high portability and robust nature enabling them to withstand harsh industrial environments. In this study, we determined the optimal Hg0 exposure and recovery times of a QCM based sensor for ensuring its efficient operation while monitoring low concentrations of Hg0 vapor (<400 ppbv. The developed sensor was based on an AT-cut quartz substrate and utilized two gold (Au films on either side of the substrate which functions as the electrodes and selective layer simultaneously. Given the temporal response mechanisms associated with mass based mercury sensors, the experiments involved the variation of Hg0 vapor exposure periods while keeping the recovery time constant following each exposure and vice versa. The results indicated that an optimum exposure and recovery periods of 30 and 90 minutes, respectively, can be utilized to acquire the highest response magnitudes and recovery rate towards a certain concentration of Hg0 vapor whilst keeping the time it takes to report an accurate reading by the sensor to a minimum level as required in real-world applications.

  19. THE EFFECT OF WATER (VAPOR-PHASE) AND CARBON ON ELEMENTAL MERCURY REMOVAL IN A FLOW REACTOR

    Science.gov (United States)

    The paper gives results of studying the effect of vapor-phase moisture on elemental mercury (Hgo) removal by activated carbon (AC) in a flow reactor. tests involved injecting AC into both a dry and a 4% moisture nitrogen (N2) /Hgo gas stream. A bituminous-coal-based AC (Calgon WP...

  20. Auto-aggressive metallic mercury injection around the knee joint: a case report

    Directory of Open Access Journals (Sweden)

    Friesenbichler Joerg

    2011-11-01

    Full Text Available Abstract Background Accidental or intentional subcutaneous and/or intramuscular injection of metallic mercury is an uncommon form of poisoning. Although it does not carry the same risk as mercury vapour inhalation, it may cause destructive early and late reactions. Case Presentation Herein we present the case of a 29-year-old male patient who developed an obsessive-compulsive disorder causing auto-aggressive behaviour with injection of elemental mercury and several other foreign bodies into the soft tissues around the left knee about 15 years before initial presentation. For clinical examination X-rays and a CT-scan of the affected area were performed. Furthermore, blood was taken to determine the mercury concentration in the blood, which showed a concentration 17-fold higher than recommended. As a consequence, the mercury depots and several foreign bodies were resected marginally. Conclusion Blood levels of mercury will decrease rapidly following surgery, especially in combination with chelating therapy. In case of subcutaneous and intramuscular injection of metallic mercury we recommend marginal or wide excision of all contaminated tissue to prevent migration of mercury and chronic inflammation. Nevertheless, prolonged clinical and biochemical monitoring should be performed for several years to screen for chronic intoxication.

  1. Interaction of ethanol and mercury body burden in the mouse

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, J.D.

    1978-01-01

    The interaction of ethanol with mercury in the body resulting in increased exhalation of the metal was studied in the mouse. A persistent elimination of the metal in the breath was demonstrated after single, sublethal (<1 mgHg/Kg body weight) exposures to mercury vapor (Hg/sup 0/) or mercury II chloride (HgCl/sub 2/). The amount of mercury exhaled per unit time was enhanced by oral or parenteral administration of ethanol solutions. These modifications were investigated in dose-response studies in which the drug was administered in doses ranging from 0.2g to 5.5g/Kg to mice pretreated with mercury. The EC/sub 50/ for blood ethanol with respect to mercury exhalation was determined to be approximately 200 mg/dl corresponding to an output rate of approximately 0.1% of the simultaneous body burden in 30 min several days after mercury. A hypothesis that mercury expired by these animals was proportional to the body burden after mercury administration was addressed in experiments whereby mice given one of several doses of mercuric chloride (0.16 to 500 ..mu..g/Kg) were monitored for pulmonary mercury elimination for a fifteen day period. The high correlation obtained between the amount of mercury exhaled in a standard time period and the body burden by group indicated that breath sampling could be applied as an indicator of the mercury body burden which may not be limited to the mouse.

  2. Corrosion processes of physical vapor deposition-coated metallic implants.

    Science.gov (United States)

    Antunes, Renato Altobelli; de Oliveira, Mara Cristina Lopes

    2009-01-01

    Protecting metallic implants from the harsh environment of physiological fluids is essential to guaranteeing successful long-term use in a patient's body. Chemical degradation may lead to the failure of an implant device in two different ways. First, metal ions may cause inflammatory reactions in the tissues surrounding the implant and, in extreme cases, these reactions may inflict acute pain on the patient and lead to loosening of the device. Therefore, increasing wear strength is beneficial to the performance of the metallic implant. Second, localized corrosion processes contribute to the nucleation of fatigue cracks, and corrosion fatigue is the main reason for the mechanical failure of metallic implants. Common biomedical alloys such as stainless steel, cobalt-chrome alloys, and titanium alloys are prone to at least one of these problems. Vapor-deposited hard coatings act directly to improve corrosion, wear, and fatigue resistances of metallic materials. The effectiveness of the corrosion protection is strongly related to the structure of the physical vapor deposition layer. The aim of this paper is to present a comprehensive review of the correlation between the structure of physical vapor deposition layers and the corrosion properties of metallic implants.

  3. EVALUATION OF TOTAL MERCURY CONTENT IN MUSCLE TISSUE OF MARINE FISH AND ANIMALS

    Directory of Open Access Journals (Sweden)

    Daniel Bajčan

    2013-02-01

    Full Text Available Nowdays, a degree of contamination by heavy metals can be observed in the environment. Heavy metals have serious effects on all living organisms because they can accumulate in lethal or sublethal concentrations in the various parts of food chain and so they can cause different health problems like cardiovascular and cancer diseases. Marine fish and animals are one of the bigges source of mercury in human food. Therefore this work is focused to the rate of mercury content in muscle tisuues of marine fish and animals. We analyzed mainly frozen or otherwise preserved marine fish and animals that were purchased in retail network in Slovakia. Mercury content in samples was analyzed by cold vapor AAS with mercury analyser AMA254. The contents of mercury in analysed samples were in the interval 0.0057 – 0,697 mg.kg-1. Our results shows, that no analyzed samples of marine fish and animals had over-limit concetration of Hg, so they are safe for human nutrition.

  4. Speciation of mercury in soils and sediments by thermal evaporation and cold vapor atomic absorption

    International Nuclear Information System (INIS)

    Bombach, G.; Bombach, K.; Klemm, W.

    1994-01-01

    Evaporation studies of mercury in several chemical compounds, soils, and sediments with a high content of organic matter indicate that a quantitative release is possible at temperatures as low as 400 C. The desorption behaviour from a gold column is not influenced. Only from samples with a thermal prehistory, such as brown coal ash, did mercury evaporate at higher temperatures. Qualitative conclusions can be derived about the content of metallic mercury as well as mercury associated with organic matter or sulfide. A comparison of the analytical results obtained by using the evaporation technique or by dissolving using a mixture of conc. HCl and HNO 3 shows good agreement; the advantages of the evaporation technique are obvious at very low mercury concentrations. (orig.)

  5. Blood Mercury Level and Its Determinants among Dental Practitioners in Hamadan, Iran

    Directory of Open Access Journals (Sweden)

    M. Vahedi

    2010-06-01

    Full Text Available Objective: Exposure to mercury can occur in occupational and environmental settings.During clinical work with dental amalgam, the dental personnel are exposed to both metallic mercury and mercury vapor. The aim of the present study was to investigate bloodmercury level (BML and its determinants among dentists practicing in Hamadan city,Iran.Materials and Methods: This cross sectional study was done on all dental practitioners of Hamadan (n=43. Dentists were asked to complete a questionnaire, and then 5 ml bloodsamples were obtained from them. After preparation, mercury concentration of each sample was measured by cold vapor atomic absorption device. Pearson correlation test and regression models served for statistical analysis.Results: The mean blood concentration of mercury was 6.3 μg/l (SD=1.31 range 4.15-8.93. BML was positively associated with age, years in practice, working hours per day,number of amalgam restorations per day, number of amalgam removal per week, sea foodconsumption, working years in present office, using amalgam powder, using diamond bur for amalgam removal, dry sterilization of amalgam contaminated instruments, and deficient air ventilation.Conclusion: BML of dentists in Hamadan was higher than standards. Working hours and number of amalgam restorations per day were significantly correlated with blood mercury.

  6. ICP OES and CV AAS in determination of mercury in an unusual fatal case of long-term exposure to elemental mercury in a teenager.

    Science.gov (United States)

    Lech, Teresa

    2014-04-01

    In this work, a case of deliberate self-poisoning is presented. A 14-year-old girl suddenly died during one of the several hospitalizations. Abdominal computer tomography showed a large number of metallic particles in the large intestine. Analysis of blood and internal organs for mercury and other toxic metals carried out by inductively coupled plasma optical emission spectrometry (ICP OES) revealed high concentrations of mercury in kidneys and liver (64,200 and 2470ng/g, respectively), less in stomach (90ng/g), and none in blood. Using cold vapor-atomic absorption spectrometry (CV AAS), high levels of mercury were confirmed in all examined materials, including blood (87ng/g), and additionally in hair. The results of analysis obtained by two techniques revealed that the exposure to mercury was considerable (some time later, it was stated that the mercury originated from thermometers that had been broken over the course of about 1 year, because of Münchausen syndrome). CV AAS is a more sensitive technique, particularly for blood samples (negative results using ICP OES), and tissue samples - with LOQ: 0.63ng/g of Hg (CV AAS) vis-à-vis 70ng/g of Hg (ICP OES). However, ICP OES may be used as a screening technique for autopsy material in acute poisoning by a heavy metal, even one as volatile as mercury. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Pilot plant experiments for the denitration and mercury separation from the HEWC solutions

    International Nuclear Information System (INIS)

    Humblet, L.; Hendrickx, J.P.; Geel, J. van.

    1984-06-01

    A process development for the elimination of mercury and nitrates from the HEWC (high-enriched waste concentrates) solutions has been achieved. This process is based on the reduction of mercury to metal with formaldehyde. The pilot plant which has enabled to test the developed process is described as well as the experiments. The residual mercury concentration is of 25 mg/1 but the mechanism of the reduction is not yet known. During the denitration the nitrous vapors production calls for an oversized absorption column. The control instruments and the analytical methods are also described. (AF)β

  8. A Study of Mercury and Heavy Metal at Some Gold Minefield in Indonesia

    International Nuclear Information System (INIS)

    Lahtiani, S; Asiah; Darmaerius; Saladini, S; Manurung, H; Rita; Rodiana, Y

    2001-01-01

    A study on Mercury and heavy metals contents in soil, sediment and river water at several gold mining areas in Indonesia was conducted. The study areas are the gold mining areas at Rejang Lebong (Province Bengkulu), Rungan Hulu and Kahayan River (Province Central Kalimantan), Pekondoh river (Province Lampung) and Halimun mountain (Province West Java). Sampling points at each site were selected from upstream and to downstream. The parameters of interest in this study include T-Hg and Heavy Metals (Pb, Cd, Cu and Cr). The main purpose of this study is for determine the preliminary data of T-Hg and heavy metals contents at gold mining areas and around the rivers for strengthen the environmental management programs in Indonesia. Analytical method for water and sediment samples used in this experiment was wet method with strong acid on the temperature of 230-250 o C for 20 minute. The extract was they analyzed as total Hg concentration using Mercury Analyzer (cold valor AAS). For water sample, extracted with Dithizone-benzene 0.01 O was performed prior to acid digestion, them dried and the left residue was treated with strong acid and analyzed with Mercury Analyzer (cold vapor AAS) too. Mostly, T-Hg contents were detected at each sampling location where gold mining activities take place; gold ore was crushed and extracted by mercury as gold amalgam. The highest concentration of T-Hg for sediment sample from four study sites 14600 ng/g at gold mining area Lampung and 13630 ng/g of T-Hg was found in sediment samples collected in Halimun Mountain, West Java. While, the highest concentration of T-Hg in water sample is was 367 ng/L at gold mining of Halimun Mountain, West Java. Average concentration of T-Hg in water sample ranged from 0.02 to 202.47 ng/L, in sediment sample ranged from 24.00 to 8544.75 ng/g. Average concentration of Pb in water sample ranged from 0.002 to 4.86 mg/L, in sediment sample ranged from 0.056 to 171.65 μg/g. Average concentration of Cd in water

  9. Evaluation of mercury contamination in Smilax myosotiflora herbal preparations.

    Science.gov (United States)

    Ang, Hooi-Hoon; Lee, Kheng-Leng

    2007-01-01

    The DCA (Drug Control Authority) of Malaysia implemented phase 3 registration of traditional medicines in January 1992 with special emphasis on the quality, efficacy, and safety of all dosage forms of these medicines. For this reason, a total of 100 herbal products containing Smilax myosotiflora were purchased in the Malaysian market and analyzed for mercury content, as mercury is a recognized reproductive toxicant. The products were analyzed using cold vapor atomic absorption spectrophotometry. It was found that 89% of the above products do not exceed 0.5 ppm of mercury. Heavy metal poisoning such as mercury has been associated with traditional medicines. Therefore, it is important that doctors and health care practitioners are aware of these risks and finding ways to minimize them, including questions pertaining to the use of these remedies during the routine taking of a patient's history.

  10. Method for removal and stabilization of mercury in mercury-containing gas streams

    Science.gov (United States)

    Broderick, Thomas E.

    2005-09-13

    The present invention is directed to a process and apparatus for removing and stabilizing mercury from mercury-containing gas streams. A gas stream containing vapor phase elemental and/or speciated mercury is contacted with reagent, such as an oxygen-containing oxidant, in a liquid environment to form a mercury-containing precipitate. The mercury-containing precipitate is kept or placed in solution and reacts with one or more additional reagents to form a solid, stable mercury-containing compound.

  11. Fate of heavy metals including mercury in a sewage sludge incineration process

    International Nuclear Information System (INIS)

    Seo, Yong-Chil; Kim, Jeong-Hun; Pudasainee, Deepak; Yoon, Young-Sik; Cho, Sung-Jin

    2010-01-01

    Thermal treatment technology for sewage sludge incineration has several advantages. However, emission of heavy metals including mercury, into the environment from such technology utilization has been a major concern. In this paper heavy metals including mercury emission and distribution behavior within the different streams of a fluidized bed sewage sludge incineration process is presented. Emission of heavy metals and mercury at the inlet and outlet of APCDs and each incoming and outgoing streams were sampled and analyzed. Mercury and its speciation in flue gas were sampled and analyzed by Ontario Hydro Method. Solid and liquid samples were analyzed by US EPA method 7470A and 7471A, respectively. Heavy metals were sampled by US EPA method and analyzed by inductively coupled plasma-mass spectrometry. At the inlet of APCDs Cr, Ni and Pb were mainly enriched in coarse particles whereas, As was enriched in fine particles. Hg emission concentration in flue gas, on average was 326.73 μg/ Sm 3 and 4.44 μg/ Sm 3 at inlet APCDs and the stack emission, overall removal efficiency of APCDs was 98.6%. More than 83.3% of Hg was speciated into oxidized form at the inlet of APCD. Oxidized Hg was removed in wet APCDs leaving behind elemental Hg as dominant species in stack emission. Hg was mainly distributed in waste water (57.5%), other effluent and sludge (27.6%), waste water from spray dry reactor (12.3%), fly ash in hopper (2.5%). Further, detailed investigations would give more reliable mass distribution data and insight to control mercury from such sources. (author)

  12. Introduction of Molecular Building Blocks to Improve the Stability of Metal-Organic Frameworks for Efficient Mercury Removal.

    Science.gov (United States)

    Jiang, Shu-Yi; He, Wen-Wen; Li, Shun-Li; Su, Zhong-Min; Lan, Ya-Qian

    2018-05-08

    With expanding human needs, many heavy metals were mined, smelted, processed, and manufactured for commercialization, which caused serious environmental pollutions. Currently, many adsorption materials are applied in the field of adsorption of heavy metals. Among them, the principle of many mercury adsorbents is based on the interaction between mercury and sulfur. Here, a S-containing metal-organic framework NENU-400 was synthesized for effective mercury extraction. Unfortunately, the skeleton of NENU-400 collapsed easily when exposed to the mercury liquid solution. To improve the stability, a synthetic strategy installing molecular building blocks (MBBs) into the channels was used. Modified by the MBBs, a more stable nanoporous framework was synthesized, which not only exhibits a high capacity of saturation mercury uptake but also shows high selectivity and efficient recyclability.

  13. Carbon Solubility in Silicon-Iron-Bearing Metals during Core Formation on Mercury

    Science.gov (United States)

    Vander Kaaden, Kathleen E.; McCubbin, Francis M.; Ross, D. Kent; Rapp, Jennifer F.; Danielson, Lisa R.; Keller, Lindsay P.; Righter, Kevin

    2016-01-01

    Recent results obtained from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft showed the surface of Mercury has high S abundances (approximately 4 wt%) and low Iron(II) Oxide abundances (less than 2 wt%). Based on these extreme values, the oxygen fugacity of Mercury's surface materials was estimated to be approximately 3 to 7 log(sub 10) units below the IW buffer (Delta IW-3 to Delta IW-7). This highly reducing nature of the planet has resulted in a large core and relatively thin mantle, extending to only approximately 420 km depth (corresponding to a core-mantle boundary pressure of approximately 4-7 GPa) within the planet. Furthermore, MESSENGER results have suggested the presence of carbon on the surface of the planet. Previous experimental results from have also suggested the possibility of a primary floatation crust on Mercury composed of graphite, produced after a global magma ocean event. With these exotic conditions of this compositional end-member planet, it begs the question, what is the core composition of Mercury? Although no definitive conclusion has been reached, previous studies have made advances towards answering this question. Riner et al. and Chen et al. looked at iron sulfide systems and implemented various crystallization and layered core scenarios to try and determine the composition and structure of Mercury's core. Malavergne et al. examined core crystallization scenarios in the presence of sulfur and silicon. Hauck et al. used the most recent geophysical constraints from the MESSENGER spacecraft to model the internal structure of Mercury, including the core, in a iron-sulfur-silicon system. More recently, Chabot et al. conducted a series of metal-silicate partitioning experiments in a iron-sulfur-silicon system. These results showed the core of Mercury has the potential to contain more than 15 wt% silicon. However, with the newest results from MESSENGER's low altitude campaign, carbon is another

  14. Voltammetry of metallic powder suspensions on mercury electrodes

    Czech Academy of Sciences Publication Activity Database

    Korshunov, A.; Heyrovský, Michael

    2006-01-01

    Roč. 18, č. 4 (2006), s. 423-426 ISSN 1040-0397 R&D Projects: GA MPO 1H-PK/42 Institutional research plan: CEZ:AV0Z40400503 Keywords : metallic particles * oxide layers * suspensions * mercury electrodes * particulate electrolysis Subject RIV: CG - Electrochemistry Impact factor: 2.444, year: 2006

  15. [Evaluation of the mercury accumulating capacity of pepper (Capsicum annuum)].

    Science.gov (United States)

    Pérez-Vargas, Híver M; Vidal-Durango, Jhon V; Marrugo-Negrete, José L

    2014-01-01

    To assess the mercury accumulating capacity in contaminated soils from the community of Mina Santa Cruz, in the south of the department of Bolívar, Colombia, of the pepper plant (Capsicum annuum), in order to establish the risk to the health of the consuming population. Samples were taken from tissues (roots, stems, and leaves) of pepper plants grown in two soils contaminated with mercury and a control soil during the first five months of growth to determine total mercury through cold vapor atomic absorption spectrometry. Total mercury was determined in the samples of pepper plant fruits consumed in Mina Santa Cruz. The mean concentrations of total mercury in the roots were higher than in stems and leaves. Accumulation in tissues was influenced by mercury levels in soil and the growth time of the plants. Mercury concentrations in fruits of pepper plant were lower than tolerable weekly intake provided by WHO. Percent of translocation of mercury to aerial parts of the plant were low in both control and contaminated soils. Despite low levels of mercury in this food, it is necessary to minimize the consumption of food contaminated with this metal.

  16. Apparatus for isotopic alteration of mercury vapor

    International Nuclear Information System (INIS)

    Grossman, M.W.; George, W.A.; Marcucci, R.V.

    1988-01-01

    This patent describes an apparatus for enriching the isotopic content of mercury. It comprises: a low pressure electric discharge lamp, the lamp comprising an envelope transparent to ultraviolet radiation and containing a fill comprising mercury and an inert gas; a filter concentrically arranged around the low pressure electric discharge lamp, the filter being transparent to ultraviolet radiation and containing mercury including 196 Hg isotope; means for controlling mercury pressure in the filter; and a reactor arranged around the filter such that radiation passes from the low pressure electric discharge lamp through the filter and into Said reactor, the reactor being transparent to ultraviolet light

  17. Apparatus for isotopic alteration of mercury vapor

    Science.gov (United States)

    Grossman, Mark W.; George, William A.; Marcucci, Rudolph V.

    1988-01-01

    An apparatus for enriching the isotopic Hg content of mercury is provided. The apparatus includes a reactor, a low pressure electric discharge lamp containing a fill including mercury and an inert gas. A filter is arranged concentrically around the lamp. In a preferred embodiment, constant mercury pressure is maintained in the filter by means of a water-cooled tube that depends from it, the tube having a drop of mercury disposed in it. The reactor is arranged around the filter, whereby radiation from said lamp passes through the filter and into said reactor. The lamp, the filter and the reactor are formed of a material which is transparent to ultraviolet light.

  18. Chemically assisted release of transition metals in graphite vaporizers for atomic spectrometry

    International Nuclear Information System (INIS)

    Katskov, Dmitri; Darangwa, Nicholas; Grotti, Marco

    2006-01-01

    The processes associated with the vaporization of microgram samples and modifiers in a graphite tube ET AAS were investigated by the example of transition metals. The vapor absorption spectra and vaporization behavior of μg-amounts Cd, Zn, Cu, Ag, Au, Ni, Co, Fe, Mn and Cr were studied using the UV spectrometer with CCD detector, coupled with a continuum radiation source. The pyrocoated, Ta or W lined tubes, with Ar or He as internal gases, and filter furnace were employed in the comparative experiments. It was found that the kinetics of atomic vapor release changed depending on the specific metal-substrate-gas combination; fast vaporization at the beginning was followed by slower 'tailing.' The absorption continuum, overlapped by black body radiation at longer wavelengths, accompanied the fast vaporization mode for all metals, except Cd and Zn. The highest intensity of the continuum was observed in the pyrocoated tube with Ar. For Cu and Ag the molecular bands overlapped the absorption continuum; the continuum and bands were suppressed in the filter furnace. It is concluded that the exothermal interaction of sample vapor with the material of the tube causes the energy evolution in the gas phase. The emitted heat is dispersed near the tube wall in the protective gas and partially transferred back to the surface of the sample, thus facilitating the vaporization. The increased vapor flow causes over-saturation and gas-phase condensation in the absorption volume at some distance from the wall, where the gas temperature is not affected by the reaction. The condensation is accompanied by the release of phase transition energy via black body radiation and atomic emission. The particles of condensate and molecular clusters cause the scattering of light and molecular absorption; slow decomposition of the products of the sample vapor-substrate reaction produces the 'tailing' of atomic absorption signal. The interaction of graphite with metal vapor or oxygen, formed in the

  19. In vivo monitoring of heavy metals in man: cadmium and mercury

    International Nuclear Information System (INIS)

    Ellis, K.J.; Vartsky, D.; Cohn, S.H.

    1982-01-01

    Direct in vivo measurements of selected heavy metals is possible by nuclear analytical techniques. In particular, cadmium and mercury are retained in the body in sufficient quantities for their detection by neutron activation analysis. Autopsy data on cadmium of adult male non-smokers living in the US indicates an average body burden of 30 mg by age 50. The distribution of cadmium in the body, however, is nonuniform, approximately 50% being located in the kidneys and liver. The increased concentration of cadmium within these organs has made possible the direct in vivo measurements of this metal by prompt-gamma neutron activation analysis (PGNAA). At present, in vivo determinations of mercury have been performed on phantoms only. These in vivo techniques provide a unique method of obtaining accurate organ burden data in humans that can be related to the toxicological effects of these metals

  20. Formation of microbeads during vapor explosions of Field's metal in water

    KAUST Repository

    Kouraytem, Nadia

    2016-06-17

    We use high-speed video imaging to investigate vapor explosions during the impact of a molten Field\\'s metal drop onto a pool of water. These explosions occur for temperatures above the Leidenfrost temperature and are observed to occur in up to three stages as the metal temperature is increased, with each explosion being more powerful that the preceding one. The Field\\'s metal drop breaks up into numerous microbeads with an exponential size distribution, in contrast to tin droplets where the vapor explosion deforms the metal to form porous solid structures. We compare the characteristic bead size to the wavelength of the fastest growing mode of the Rayleigh-Taylor instability.

  1. Formation of microbeads during vapor explosions of Field's metal in water

    KAUST Repository

    Kouraytem, Nadia; Li, Erqiang; Thoroddsen, Sigurdur T

    2016-01-01

    We use high-speed video imaging to investigate vapor explosions during the impact of a molten Field's metal drop onto a pool of water. These explosions occur for temperatures above the Leidenfrost temperature and are observed to occur in up to three stages as the metal temperature is increased, with each explosion being more powerful that the preceding one. The Field's metal drop breaks up into numerous microbeads with an exponential size distribution, in contrast to tin droplets where the vapor explosion deforms the metal to form porous solid structures. We compare the characteristic bead size to the wavelength of the fastest growing mode of the Rayleigh-Taylor instability.

  2. Estimation of some heavy metals in polluted well water and mercury accumulation in broiler organs

    OpenAIRE

    Hussein, Hussein Khamis; Abu-Zinadah, Osama Abdullah; EL-Rabey, Haddad Abdulsameih; Meerasahib, Mohammed Fareez

    2013-01-01

    The aim of this study was to investigate the relationship between the concentrations of heavy metals in well water and bioaccumulation of the most abundant metals in chicken tissues in some areas in the province of Mecca Almokaramah, Saudi Arabia. Among the heavy metals (Cd, Zn, Cr, Mn, Cu Hg, Pb and Ni) studied, mercury (Hg) revealed highest in concentration in well waters. The concentration of mercury in the ground water, beside in liver, kidney, muscle and blood samples of ten chickens fro...

  3. Mercury Spill Responses - Five States, 2012-2015.

    Science.gov (United States)

    Wozniak, Ryan J; Hirsch, Anne E; Bush, Christina R; Schmitz, Stuart; Wenzel, Jeff

    2017-03-17

    Despite measures to educate the public about the dangers of elemental mercury, spills continue to occur in homes, schools, health care facilities, and other settings, endangering the public's health and requiring costly cleanup. Mercury is most efficiently absorbed by the lungs, and exposure to high levels of mercury vapor after a release can cause cough, sore throat, shortness of breath, nausea, vomiting, diarrhea, headaches, and visual disturbances (1). Children and fetuses are most susceptible to the adverse effects of mercury vapor exposure. Because their organ systems are still developing, children have increased respiratory rates, and they are closer to the ground where mercury vapors are most highly concentrated (2). To summarize key features of recent mercury spills and lessons learned, five state health departments involved in the cleanup (Iowa, Michigan, Missouri, North Carolina, and Wisconsin) compiled data from various sources on nonthermometer mercury spills from 2012 to 2015. The most common sites of contamination were residences, schools and school buses, health care facilities, and commercial and industrial facilities. Children aged mercury exposure. To protect the public's health after a mercury spill, it is important that local, state, and federal agencies communicate and coordinate effectively to ensure a quick response, and to minimize the spread of contamination. To reduce the number of mercury spills that occur in the United States, public health officials should increase awareness about exchange programs for mercury-containing items and educate school and health care workers about sources of mercury and how to dispose of them properly.

  4. Method and apparatus for controlling the flow rate of mercury in a flow system

    Science.gov (United States)

    Grossman, Mark W.; Speer, Richard

    1991-01-01

    A method for increasing the mercury flow rate to a photochemical mercury enrichment utilizing an entrainment system comprises the steps of passing a carrier gas over a pool of mercury maintained at a first temperature T1, wherein the carrier gas entrains mercury vapor; passing said mercury vapor entrained carrier gas to a second temperature zone T2 having temperature less than T1 to condense said entrained mercury vapor, thereby producing a saturated Hg condition in the carrier gas; and passing said saturated Hg carrier gas to said photochemical enrichment reactor.

  5. Filter for isotopic alteration of mercury vapor

    Science.gov (United States)

    Grossman, Mark W.; George, William A.

    1989-01-01

    A filter for enriching the .sup.196 Hg content of mercury, including a reactor, a low pressure electric discharge lamp containing a fill of mercury and an inert gas. A filter is arranged concentrically around the lamp. The reactor is arranged around said filter, whereby radiation from said lamp passes through the filter and into said reactor. The lamp, the filter and the reactor are formed of quartz, and are transparent to ultraviolet light. The .sup.196 Hg concentration in the mercury fill is less than that which is present in naturally occurring mercury, that is less than about 0.146 atomic weight percent. Hydrogen is also included in the fill and serves as a quenching gas in the filter, the hydrogen also serving to prevent disposition of a dark coating on the interior of the filter.

  6. Impact of exposure to low levels of mercury on the health of dental workers

    Directory of Open Access Journals (Sweden)

    Leda Freitas Jesus

    2016-09-01

    Full Text Available This work evaluated the impact of exposure to mercury on the health of workers comparing dentists and dental assistants exposed to mercury by handling amalgam in a public dental clinic with a reference group which, in private offices, did not make use of the metal in their professional routine. Data collection included mercury levels in urine and air samples determined by cold vapor atomic absorption spectrometry, questionnaires and direct observation. The difference between urine and air samples in both groups was statistically significant while mercury levels in air and urine showed positive associations. Mercury concentration in urine correlated with gender, practice time, and age of workers. Half of those exposed had complaints compatible with mercury contamination. Among the exposed, the most common complaints were cognitive and neurocognitive symptoms. Correlations between symptoms and exposure time and also number of amalgam fillings placed per week were positive. Amalgam handling resulted in environmental and biological contamination by mercury.

  7. Memory effects on adsorption tubes for mercury vapor measurement in ambient air: elucidation, quantification, and strategies for mitigation of analytical bias.

    Science.gov (United States)

    Brown, Richard J C; Kumar, Yarshini; Brown, Andrew S; Kim, Ki-Hyun

    2011-09-15

    The short- and long-term memory effects associated with measurements of mercury vapor in air using gold-coated silica adsorption tubes have been described. Data are presented to quantify these effects and to determine their dependence on certain relevant measurement parameters, such as number of heating cycles used for each analysis, age of adsorption tube, mass of mercury on adsorption tube, and the length of time between analyses. The results suggest that the long-term memory effect is due to absorption of mercury within the bulk gold in the adsorption tube, which may only be fully liberated by allowing enough time for this mercury to diffuse to the gold surface. The implications of these effects for air quality networks making these measurements routinely has been discussed, and recommendations have been made to ensure any measurement bias is minimized.

  8. Half-sandwich cobalt complexes in the metal-organic chemical vapor deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Georgi, Colin [Technische Universität Chemnitz, Faculty of Natural Science, Institute of Chemistry, Inorganic Chemistry, Chemnitz 09107 (Germany); Hapke, Marko; Thiel, Indre [Leibniz-Institut für Katalyse e.V. an der Universität Rostock (LIKAT), Albert-Einstein-Straße 29a, Rostock 18059 (Germany); Hildebrandt, Alexander [Technische Universität Chemnitz, Faculty of Natural Science, Institute of Chemistry, Inorganic Chemistry, Chemnitz 09107 (Germany); Waechtler, Thomas; Schulz, Stefan E. [Fraunhofer Institute of Electronic Nano Systems (ENAS), Technologie-Campus 3, Chemnitz 09126 (Germany); Technische Universität Chemnitz, Center for Microtechnologies (ZfM), Chemnitz 09107 (Germany); Lang, Heinrich, E-mail: heinrich.lang@chemie.tu-chemnitz.de [Technische Universität Chemnitz, Faculty of Natural Science, Institute of Chemistry, Inorganic Chemistry, Chemnitz 09107 (Germany)

    2015-03-02

    A series of cobalt half-sandwich complexes of type [Co(η{sup 5}-C{sub 5}H{sub 5})(L)(L′)] (1: L, L′ = 1,5-hexadiene; 2: L = P(OEt){sub 3}, L′ = H{sub 2}C=CHSiMe{sub 3}; 3: L = L′ = P(OEt){sub 3}) has been studied regarding their physical properties such as the vapor pressure, decomposition temperature and applicability within the metal-organic chemical vapor deposition (MOCVD) process, with a focus of the influence of the phosphite ligands. It could be shown that an increasing number of P(OEt){sub 3} ligands increases the vapor pressure and thermal stability of the respective organometallic compound. Complex 3 appeared to be a promising MOCVD precursor with a high vapor pressure and hence was deposited onto Si/SiO{sub 2} (100 nm) substrates. The resulting reflective layer is closed, dense and homogeneous, with a slightly granulated surface morphology. X-ray photoelectron spectroscopy (XPS) studies demonstrated the formation of metallic cobalt, cobalt phosphate, cobalt oxide and cobalt carbide. - Highlights: • Thermal studies and vapor pressure measurements of cobalt half-sandwich complexes was carried out. • Chemical vapor deposition with cobalt half-sandwich complexes is reported. • The use of Co-phosphites results in significant phosphorous-doped metallic layers.

  9. Estimation of some heavy metals in polluted well water and mercury accumulation in broiler organs

    Directory of Open Access Journals (Sweden)

    Hussein Khamis Hussein

    2013-10-01

    Full Text Available The aim of this study was to investigate the relationship between the concentrations of heavy metals in well water and bioaccumulation of the most abundant metals in chicken tissues in some areas in the province of Mecca Almokaramah, Saudi Arabia. Among the heavy metals (Cd, Zn, Cr, Mn, Cu Hg, Pb and Ni studied, mercury (Hg revealed highest in concentration in well waters. The concentration of mercury in the ground water, beside in liver, kidney, muscle and blood samples of ten chickens from each of four poultry- production farms were estimated using atomic absorption spectrophotometer. The results showed that the kidney followed by liver had the highest bioaccumulation of mercury in all farm samples. The level of mercury in the ground water was 7.06µg/L. The relationship between mercury accumulation levels in the kidney and those in the liver tissues were proportionally correlated and altered with elevation in the antioxidant enzyme activities such as AST and ALT. These elevated enzymatic activities were induced by the level of toxicity. There was a significant elevation in the level of liver and kidney malondialdhyde (MDA, while the activities of antioxidant enzymes superoxide dismutase and catalase (SOD and CAT were significantly decreased. Biochemical observations were supplemented by histopathological examination of liver and kidney sections.

  10. Mercury in mercury(II)-spiked soils is highly susceptible to plant bioaccumulation.

    Science.gov (United States)

    Hlodák, Michal; Urík, Martin; Matúš, Peter; Kořenková, Lucia

    2016-01-01

    Heavy metal phytotoxicity assessments usually use soluble metal compounds in spiked soils to evaluate metal bioaccumulation, growth inhibition and adverse effects on physiological parameters. However, exampling mercury phytotoxicity for barley (Hordeum vulgare) this paper highlights unsuitability of this experimental approach. Mercury(II) in spiked soils is extremely bioavailable, and there experimentally determined bioaccumulation is significantly higher compared to reported mercury bioaccumulation efficiency from soils collected from mercury-polluted areas. Our results indicate this is not affected by soil sorption capacity, thus soil ageing and formation of more stable mercuric complexes with soil fractions is necessary for reasonable metal phytotoxicity assessments.

  11. Exposure to mercury and silver during removal of amalgam restorations

    International Nuclear Information System (INIS)

    Brune, D.; Hensten-Pettersen, A.; Beltesbrekke, H.

    1980-01-01

    The content of particulate matter and mercury vapor in dentist breathing air during removal of amalgam restorations was assessed. Mercury and silver were quantitatively assayed by nuclerar chemical analysis, and the mercury vapor concentration was measured with a sniffer. When the water spray was not used, the short time threshold limit values for exposure to mercury and silver were exceeded about 10 times. With water spray the mercury content was reduced to a level considerably lower that the threshold limit value, whereas the silver concentration slightly exceeded the corresponding limit. (author)

  12. Exposure to mercury and silver during removal of amalgam restorations

    International Nuclear Information System (INIS)

    Brune, D.; Hensten-Pettersen, A.; Beltesbrekke, H.

    1980-01-01

    The content of particulate matter and mercury vapor in dentist breathing air during removal of amalgam restorations was assessed. Mercury and silver were quantitatively assayed by nuclear chemical analysis, and the mercury vapor concentration was measured with a sniffer. When the water spray was not used, the short time threshold limit values for exposure to mercury and silver were exceeded about 10 times. With water spray the mercury content was reduced to a level considerably lower than the threshold limit value, whereas the silver concentration slightly exceeded the corresponding limit. (author)

  13. Flow Injection Photochemical Vapor Generation Coupled with Miniaturized Solution-Cathode Glow Discharge Atomic Emission Spectrometry for Determination and Speciation Analysis of Mercury.

    Science.gov (United States)

    Mo, Jiamei; Li, Qing; Guo, Xiaohong; Zhang, Guoxia; Wang, Zheng

    2017-10-03

    A novel, compact, and green method was developed for the determination and speciation analysis of mercury, based on flow injection photochemical vapor generation (PVG) coupled with miniaturized solution cathode glow discharge-atomic emission spectroscopy (SCGD-AES). The SCGD was generated between a miniature hollow titanium tube and a solution emerging from a glass capillary. Cold mercury vapor (Hg(0)) was generated by PVG and subsequently delivered to the SCGD for excitation, and finally the emission signals were recorded by a miniaturized spectrograph. The detection limits (DLs) of Hg(II) and methylmercury (MeHg) were both determined to be 0.2 μg L -1 . Moreover, mercury speciation analysis could also be performed by using different wavelengths and powers from the UV lamp and irradiation times. Both Hg(II) and MeHg can be converted to Hg(0) for the determination of total mercury (T-Hg) with 8 W/254 nm UV lamp and 60 s irradiation time; while only Hg(II) can be reduced to Hg(0) and determined selectively with 4 W/365 nm UV lamp and 20 s irradiation time. Then, the concentration of MeHg can be calculated by subtracting the Hg(II) from the T-Hg. Because of its similar sensitivity and DL at 8 W/254 nm, the simpler and less toxic Hg(II) was used successfully as a primary standard for the quantification of T-Hg. The novel PVG-SCGD-AES system provides not only a 365-fold improvement in the DL for Hg(II) but also a nonchromatographic method for the speciation analysis of mercury. After validating its accuracy, this method was successfully used for mercury speciation analysis of water and biological samples.

  14. Validation of an analytical method for the determination of total mercury in urine samples using cold vapor atomic absorption spectrometry (CV-AAS); Validacao de metodologia analitica para determinacao de mercurio total em amostras de urina para espectrometria de absorcao atomica com geracao de vapor frio (CV-AAS)

    Energy Technology Data Exchange (ETDEWEB)

    Guilhen, Sabine Neusatz

    2009-07-01

    Mercury (Hg) is a toxic metal applied to a variety of products and processes, representing a risk to the health of occupationally or accidentally exposed subjects. Dental amalgam is a restorative material composed of metallic mercury, which use has been widely debated in the last decades. Due to the dubiety of the studies concerning dental amalgam, many efforts concerning this issue have been conducted. The Tropical Medicine Foundation (Tocantins, Brazil) has recently initiated a study to evaluate the environmental and occupational levels of exposure to mercury in dentistry attendants at public consulting rooms in the city of Araguaina (TO). In collaboration with this study, the laboratory of analysis at IPEN's Chemistry and Environment Center is undertaking the analysis of mercury levels in exposed subjects' urine samples using cold vapor atomic absorption spectrometry. This analysis requires the definition of a methodology capable of generating reliable results. Such methodology can only be implemented after a rigorous validation procedure. As part of this work, a series of tests were conducted in order to confirm the suitability of the selected methodology and to assert that the laboratory addresses all requirements needed for a successful implementation of the methodology. The following parameters were considered in order to test the method's performance: detection and quantitation limits, selectivity, sensitivity, linearity, accuracy and precision. The assays were carried out with certified reference material, which assures the traceability of the results. Taking into account the estimated parameters, the method can be considered suitable for the afore mentioned purpose. The mercury concentration found for the reference material was of (95,12 +- 11,70)mug.L{sup -1} with a recovery rate of 97%. The method was also applied to 39 urine samples, six of which (15%) showing urinary mercury levels above the normal limit of 10{mu}g.L{sup -1}. The obtained results fall

  15. Validation of an analytical method for the determination of total mercury in urine samples using cold vapor atomic absorption spectrometry (CV-AAS); Validacao de metodologia analitica para determinacao de mercurio total em amostras de urina para espectrometria de absorcao atomica com geracao de vapor frio (CV-AAS)

    Energy Technology Data Exchange (ETDEWEB)

    Guilhen, Sabine Neusatz

    2009-07-01

    Mercury (Hg) is a toxic metal applied to a variety of products and processes, representing a risk to the health of occupationally or accidentally exposed subjects. Dental amalgam is a restorative material composed of metallic mercury, which use has been widely debated in the last decades. Due to the dubiety of the studies concerning dental amalgam, many efforts concerning this issue have been conducted. The Tropical Medicine Foundation (Tocantins, Brazil) has recently initiated a study to evaluate the environmental and occupational levels of exposure to mercury in dentistry attendants at public consulting rooms in the city of Araguaina (TO). In collaboration with this study, the laboratory of analysis at IPEN's Chemistry and Environment Center is undertaking the analysis of mercury levels in exposed subjects' urine samples using cold vapor atomic absorption spectrometry. This analysis requires the definition of a methodology capable of generating reliable results. Such methodology can only be implemented after a rigorous validation procedure. As part of this work, a series of tests were conducted in order to confirm the suitability of the selected methodology and to assert that the laboratory addresses all requirements needed for a successful implementation of the methodology. The following parameters were considered in order to test the method's performance: detection and quantitation limits, selectivity, sensitivity, linearity, accuracy and precision. The assays were carried out with certified reference material, which assures the traceability of the results. Taking into account the estimated parameters, the method can be considered suitable for the afore mentioned purpose. The mercury concentration found for the reference material was of (95,12 +- 11,70)mug.L{sup -1} with a recovery rate of 97%. The method was also applied to 39 urine samples, six of which (15%) showing urinary mercury levels above the normal limit of 10{mu}g.L{sup -1}. The

  16. Validation of an analytical method for the determination of total mercury in urine samples using cold vapor atomic absorption spectrometry (CV-AAS); Validacao de metodologia analitica para determinacao de mercurio total em amostras de urina por espectrometria de absorcao atomica com geracao de vapor frio (CV-AAS)

    Energy Technology Data Exchange (ETDEWEB)

    Guilhen, Sabine Neusatz

    2009-07-01

    Mercury (Hg) is a toxic metal applied to a variety of products and processes, representing a risk to the health of occupationally or accidentally exposed subjects. Dental amalgam is a restorative material composed of metallic mercury, which use has been widely debated in the last decades. Due to the dubiety of the studies concerning dental amalgam, many efforts concerning this issue have been conducted. The Tropical Medicine Foundation (Tocantins, Brazil) has recently initiated a study to evaluate the environmental and occupational levels of exposure to mercury in dentistry attendants at public consulting rooms in the city of Araguaina (TO). In collaboration with this study, the laboratory of analysis at IPEN's Chemistry and Environment Center is undertaking the analysis of mercury levels in exposed subjects' urine samples using cold vapor atomic absorption spectrometry. This analysis requires the definition of a methodology capable of generating reliable results. Such methodology can only be implemented after a rigorous validation procedure. As part of this work, a series of tests were conducted in order to confirm the suitability of the selected methodology and to assert that the laboratory addresses all requirements needed for a successful implementation of the methodology. The following parameters were considered in order to test the method’s performance: detection and quantitation limits, selectivity, sensitivity, linearity, accuracy and precision. The assays were carried out with certified reference material, which assures the traceability of the results. Taking into account the estimated parameters, the method can be considered suitable for the afore mentioned purpose. The mercury concentration found for the reference material was of (95,12 ± 11,70)μg.L{sup -1} with a recovery rate of 97%. The method was also applied to 39 urine samples, six of which (15%) showing urinary mercury levels above the normal limit of 10μg.L{sup −1}. The obtained

  17. Mercury

    NARCIS (Netherlands)

    de Vries, Irma

    2017-01-01

    Mercury is a naturally occurring metal that exists in several physical and chemical forms. Inorganic mercury refers to compounds formed after the combining of mercury with elements such as chlorine, sulfur, or oxygen. After combining with carbon by covalent linkage, the compounds formed are called

  18. Neuropsychological alterations in mercury intoxication persist several years after exposure.

    Science.gov (United States)

    Zachi, Elaine Cristina; Taub, Anita; Faria, Marcília de Araújo Medrado; Ventura, Dora Fix

    2008-01-01

    Elemental mercury is a liquid toxic metal widely used in industry. Occupational exposure occurs mainly via inhalation. Previously, neuropsychological assessment detected deficits in former workers of a fluorescent lamp plant who had been exposed to elemental mercury vapor and were away from exposure for several years at the time of examination. The purpose of this work was to reexamine these functions after 18 months in order to evaluate their progression. Thirteen participants completed tests of attention, inhibitory control, verbal/visual memory, psychomotor speed, verbal fluency, visuomotor ability, executive function, semantic knowledge, and depression and anxiety inventories on 2 separate occasions. At baseline, the former workers indicated slower psychomotor and information processing speed, verbal spontaneous recall memory impairment, and increased depression and anxiety symptoms compared to controls (Precovery of functions, the neuropsychological effects related to mercury exposure are found to persist for many years.

  19. Mercury and Your Health

    Science.gov (United States)

    ... the Risk of Exposure to Mercury Learn About Mercury What is Mercury What is Metallic mercury? Toxicological Profile ToxFAQs Mercury Resources CDC’s National Biomonitoring Program Factsheet on Mercury ...

  20. Vapor phase coatings of metals and organics for laser fusion target applications

    International Nuclear Information System (INIS)

    Simonsic, G.A.; Powell, B.W.

    Techniques for applying a variety of metal and organic coatings to 50- to 500 μm diameter glass micro-balloons are discussed. Coating thicknesses vary from 1- to 10 μm. Physical vapor deposition (PVD), chemical vapor deposition (CVD), and electrolytic and electroless plating are some of the techniques being evaluated for metal deposition. PVD and glow discharge polymerization are being used for the application of organic coatings. (U.S.)

  1. Health Effects of Exposures to Mercury

    Science.gov (United States)

    ... IRIS database Top of Page Elemental (Metallic) Mercury Effects Exposures to metallic mercury most often occur when metallic ... poor performance on tests of mental function Higher exposures may also cause kidney effects, respiratory failure and death. Note that metallic mercury ...

  2. On-line preconcentration and determination of mercury in biological and environmental samples by cold vapor-atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Ferrua, N.; Cerutti, S.; Salonia, J.A.; Olsina, R.A.; Martinez, L.D.

    2007-01-01

    An on-line procedure for the determination of traces of total mercury in environmental and biological samples is described. The present methodology combines cold vapor generation associated to atomic absorption spectrometry (CV-AAS) with preconcentration of the analyte on a minicolumn packed with activated carbon. The retained analyte was quantitatively eluted from the minicolumn with nitric acid. After that, volatile specie of mercury was generated by merging the acidified sample and sodium tetrahydroborate(III) in a continuous flow system. The gaseous analyte was subsequently introduced via a stream of Ar carrier into the atomizer device. Optimizations of both, preconcentration and mercury volatile specie generation variables were carried out using two level full factorial design (2 3 ) with 3 replicates of the central point. Considering a sample consumption of 25 mL, an enrichment factor of 13-fold was obtained. The detection limit (3σ) was 10 ng L -1 and the precision (relative standard deviation) was 3.1% (n = 10) at the 5 μg L -1 level. The calibration curve using the preconcentration system for mercury was linear with a correlation coefficient of 0.9995 at levels near the detection limit up to at least 1000 μg L -1 . Satisfactory results were obtained for the analysis of mercury in tap water and hair samples

  3. Behavior of mercury in high-temperature vitrification processes

    International Nuclear Information System (INIS)

    Goles, R.W.; Holton, K.K.; Sevigny, G.J.

    1992-01-01

    This paper reports that the Pacific Northwest Laboratory (PNL) has evaluated the waste processing behavior of mercury in simulated defense waste. A series of tests were performed under various operating conditions using an experimental-scale liquid-fed ceramic melter (LFCM). This solidification technology had no detectable capacity for incorporating mercury into its product, borosilicate glass. Chemically, the condensed mercury effluent was composed almost entirely of chlorides, and except in a low-temperature test, Hg 2 Cl 2 was the primary chloride formed. As a result, combined mercury accounted for most of the insoluble mass collected by the process quench scrubber. Although macroscopic quantities of elemental mercury were never observed in process secondary waste streams, finely divided and dispersed mercury that blackened all condensed Hg 2 Cl 2 residues was capable of saturating the quenched process exhaust with mercury vapor. The vapor pressure of mercury, however, in the quenched melter exhaust was easily and predictably controlled with the off-gas stream chiller

  4. Mercury's Weather-Beaten Surface: Understanding Mercury in the Context of Lunar and Asteroidal Space Weathering Studies

    Science.gov (United States)

    Domingue, Deborah L.; Chapman, Clark. R.; Killen, Rosemary M.; Zurbuchen, Thomas H.; Gilbert, Jason A.; Sarantos, Menelaos; Benna, Mehdi; Slavin, James A.; Schriver, David; Travnicek, Pavel M.; hide

    2014-01-01

    Mercury's regolith, derived from the crustal bedrock, has been altered by a set of space weathering processes. Before we can interpret crustal composition, it is necessary to understand the nature of these surface alterations. The processes that space weather the surface are the same as those that form Mercury's exosphere (micrometeoroid flux and solar wind interactions) and are moderated by the local space environment and the presence of a global magnetic field. To comprehend how space weathering acts on Mercury's regolith, an understanding is needed of how contributing processes act as an interactive system. As no direct information (e.g., from returned samples) is available about how the system of space weathering affects Mercury's regolith, we use as a basis for comparison the current understanding of these same processes on lunar and asteroidal regoliths as well as laboratory simulations. These comparisons suggest that Mercury's regolith is overturned more frequently (though the characteristic surface time for a grain is unknown even relative to the lunar case), more than an order of magnitude more melt and vapor per unit time and unit area is produced by impact processes than on the Moon (creating a higher glass content via grain coatings and agglutinates), the degree of surface irradiation is comparable to or greater than that on the Moon, and photon irradiation is up to an order of magnitude greater (creating amorphous grain rims, chemically reducing the upper layers of grains to produce nanometer scale particles of metallic iron, and depleting surface grains in volatile elements and alkali metals). The processes that chemically reduce the surface and produce nanometer-scale particles on Mercury are suggested to be more effective than similar processes on the Moon. Estimated abundances of nanometer-scale particles can account for Mercury's dark surface relative to that of the Moon without requiring macroscopic grains of opaque minerals. The presence of

  5. Liquid-liquid contact in vapor explosion. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Segev, A.

    1978-08-01

    The contact of two liquid materials, one of which is at a temperature substantially above the boiling point of the other, can lead to fast energy conversion and a subsequent shock wave. This phenomenon is called a vapor explosion. One method of producing intimate, liquid-liquid contact (which is known to be a necessary condition for vapor explosion) is a shock tube configuration. Such experiments in which water was impacted upon molten aluminum showed that very high pressures, even larger than the thermodynamic critical pressure, could occur. The mechanism by which such sharp pressure pulses are generated is not yet clear. The report describes experiments in which cold liquids (Freon-11, Freon-22, water, or butanol) were impacted upon various hot materials (mineral oil, silicone oil, water, mercury, molten Wood's metal or molten salt mixture).

  6. Oral and dental affections in mercury-exposed workers

    Energy Technology Data Exchange (ETDEWEB)

    Fahmy, M.S.

    1978-07-01

    A total of 222 mercury-exposed workers in the Chlor-Alkali plant in Kuwait were investigated for oral and dental affections. The levels of mercury-vapor ranged from 566.6 microgram/m3 to 0.3 microgram/m3 in different parts of the factory. The periods of exposure varied from 1 to 11 years. Although the level of mercury vapor in the air and the period of exposure proved to be the main factors as regards the oral signs and symptoms, the oral hygiene condition and the individual sensitivity played substantial roles. Oral affections were found not to be due to allergy to mercury.

  7. Optical characteristics and parameters of gas-discharge plasma in a mixture of mercury dibromide vapor with neon

    Science.gov (United States)

    Malinina, A. A.; Malinin, A. N.

    2013-12-01

    Results are presented from studies of the optical characteristics and parameters of plasma of a dielectric barrier discharge in a mixture of mercury dibromide vapor with neon—the working medium of a non-coaxial exciplex gas-discharge emitter. The electron energy distribution function, the transport characteristics, the specific power losses for electron processes, the electron density and temperature, and the rate constants for the processes of elastic and inelastic electron scattering by the working mixture components are determined as functions of the reduced electric field. The rate constant of the process leading to the formation of exciplex mercury monobromide molecules is found to be 1.6 × 10-14 m3/s for a reduced electric field of E/ N = 15 Td, at which the maximum emission intensity in the blue-green spectral region (λmax = 502 nm) was observed in this experiment.

  8. Pollution by Arsenic, Mercury and other Heavy Metals in Sunchulli mining district of Apolobamba (Bolivia)

    Science.gov (United States)

    Terán Mita, Tania; Faz Cano, Angel; Muñoz, Maria Angeles; Millán Gómez, Rocio; Chincheros Paniagua, Jaime

    2010-05-01

    In Bolivia, metal mining activities since historical times have been one of the most important sources of environmental pollution. This is the case of the National Area of Apolobamba Integrated Management (ANMIN of Apolobamba) in La Paz, Bolivia, where intense gold mining activities have been carried out from former times to the present, with very little gold extraction and very primitive mineral processing technology; in fact, mercury is still being used in the amalgam processes of the gold concentration, which is burned outdoors to recover the gold. Sunchullí is a representative mining district in ANMIN of Apolobamba where mining activity is mainly gold extraction and its water effluents go to the Amazonian basin; in this mining district the productivity of extracted mineral is very low but the processes can result in heavy-metal contamination of the air, water, soils and plants. Due to its high toxicity, the contamination by arsenic and mercury create the most critical environmental problems. In addition, some other heavy metals may also be present such as lead, copper, zinc and cadmium. These heavy metals could be incorporated in the trophic chain, through the flora and the fauna, in their bio-available and soluble forms. Inhabitants of this area consume foodcrops, fish from lakes and rivers and use the waters for the livestock, domestic use, and irrigation. The aim of this work was to evaluate the heavy metals pollution by gold mining activities in Sunchullí area. In Sunchullí two representative zones were distinguished and sampled. Zone near the mining operation site was considered as affected by mineral extraction processes, while far away zones represented the non affected ones by the mining operation. In each zone, 3 plots were established; in each plot, 3 soil sampling points were selected in a random manner and analysed separately. In each sampling point, two samples were taken, one at the surface, from 0-5 cm depth (topsoil), and the other between 5

  9. Electrospray droplet exposure to organic vapors: metal ion removal from proteins and protein complexes.

    Science.gov (United States)

    DeMuth, J Corinne; McLuckey, Scott A

    2015-01-20

    The exposure of aqueous nanoelectrospray droplets to various organic vapors can dramatically reduce sodium adduction on protein ions in positive ion mass spectra. Volatile alcohols, such as methanol, ethanol, and isopropanol lead to a significant reduction in sodium ion adduction but are not as effective as acetonitrile, acetone, and ethyl acetate. Organic vapor exposure in the negative ion mode, on the other hand, has essentially no effect on alkali ion adduction. Evidence is presented to suggest that the mechanism by which organic vapor exposure reduces alkali ion adduction in the positive mode involves the depletion of alkali metal ions via ion evaporation of metal ions solvated with organic molecules. The early generation of metal/organic cluster ions during the droplet desolvation process results in fewer metal ions available to condense on the protein ions formed via the charged residue mechanism. These effects are demonstrated with holomyoglobin ions to illustrate that the metal ion reduction takes place without detectable protein denaturation, which might be revealed by heme loss or an increase in charge state distribution. No evidence is observed for denaturation with exposure to any of the organic vapors evaluated in this work.

  10. Deliberate, repeated self-administration of metallic mercury injection: case report and review of the literature

    International Nuclear Information System (INIS)

    Givica-Perez, A.; Santana-Montesdeoca, J.M.; Diaz-Sanchez, M.; Martinez-Lagares, F.J.; Castaneda, W.R.

    2001-01-01

    Self-administration of metallic mercury through the intravenous route is rare. This event has been reported in psychiatric patients and in suicide attempts. We report a case of successive intravenous self-injections of mercury demonstrated by plain film radiographs and CT scans of the thorax and abdomen. (orig.)

  11. Molecular Models for DSMC Simulations of Metal Vapor Deposition

    OpenAIRE

    Venkattraman, A; Alexeenko, Alina A

    2010-01-01

    The direct simulation Monte Carlo (DSMC) method is applied here to model the electron‐beam (e‐beam) physical vapor deposition of copper thin films. A suitable molecular model for copper‐copper interactions have been determined based on comparisons with experiments for a 2D slit source. The model for atomic copper vapor is then used in axi‐symmetric DSMC simulations for analysis of a typical e‐beam metal deposition system with a cup crucible. The dimensional and non‐dimensional mass fluxes obt...

  12. Medico legal aspects of self-injection of metallic mercury in cases of suicide or self-harming.

    Science.gov (United States)

    Da Broi, Ugo; Moreschi, Carlo; Colatutto, Antonio; Marcon, Barbara; Zago, Silvia

    2017-08-01

    Metallic mercury may be self-injected for suicidal or self-harm purposes or sometimes for superstitious or other inadvisable reasons. Local tissue or systemic consequences such as mercurialism can frequently occur in cases of subcutaneous or deep injection, while death due to pulmonary embolism and cardiac, brain, hepatic or renal toxicity may occur in cases of high dosage intravenous administration. The aim of this review is to focus on the diagnostic difficulties facing coroners and forensic pathologists when the courts require confirmation that evidence of self-injection of metallic mercury is the result of suicide or self-harming. Forensic examination performed on the corpses of victims who died in or out of hospital or on surviving injured or intoxicated victims showing signs of mercurialism, demands the careful evaluation of the death scene, of all related circumstances and of the clinical and autopsy data. Close interaction between forensic pathologists and toxicologists is also needed to identify and quantify mercury levels in blood, urine and tissue. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  13. Determination of methyl mercury by aqueous phase Eehylation, followed by gas chromatographic separation with cold vapor atomic fluorescence detection

    Science.gov (United States)

    De Wild, John F.; Olsen, Mark L.; Olund, Shane D.

    2002-01-01

    A recent national sampling of streams in the United States revealed low methyl mercury concentrations in surface waters. The resulting median and mean concentrations, calculated from 104 samples, were 0.06 nanograms per liter (ng/L) and 0.15 ng/L, respectively. This level of methyl mercury in surface water in the United States has created a need for analytical techniques capable of detecting sub-nanogram per liter concentrations. In an attempt to create a U.S. Geological Survey approved method, the Wisconsin District Mercury Laboratory has adapted a distillation/ethylation/ gas-phase separation method with cold vapor atomic fluorescence spectroscopy detection for the determination of methyl mercury in filtered and unfiltered waters. This method is described in this report. Based on multiple analyses of surface water and ground-water samples, a method detection limit of 0.04 ng/L was established. Precision and accuracy were evaluated for the method using both spiked and unspiked ground-water and surface-water samples. The percent relative standard deviations ranged from 10.2 to 15.6 for all analyses at all concentrations. Average recoveries obtained for the spiked matrices ranged from 88.8 to 117 percent. The precision and accuracy ranges are within the acceptable method-performance limits. Considering the demonstrated detection limit, precision, and accuracy, the method is an effective means to quantify methyl mercury in waters at or below environmentally relevant concentrations

  14. Metal-halide lamp design: atomic and molecular data needed

    International Nuclear Information System (INIS)

    Lapatovich, Walter P

    2009-01-01

    Metal-halide lamps are a subset of high intensity discharge (HID) lamps so named because of their high radiance. These lamps are low temperature (∼0.5 eV), weakly ionized plasmas sustained in refractory but light transmissive envelopes by the passage of electric current through atomic and molecular vapors. For commercial applications, the conversion of electric power to light must occur with good efficiency and with sufficient spectral content throughout the visible (380-780 nm) to permit the light so generated to render colors comparable to natural sunlight. This is achieved by adding multiple metals to a basic mercury discharge. Because the vapor pressure of most metals is very much lower than mercury itself, metal-halide salts of the desired metals, having higher vapor pressures, are used to introduce the material into the basic discharge. The metal compounds are usually polyatomic iodides, which vaporize and subsequently dissociate as they diffuse into the bulk plasma. Metals with multiple visible transitions are necessary to achieve high photometric efficiency (efficacy) and good color. Compounds of Sc, Dy, Ho, Tm, Ce, Pr, Yb and Nd are commonly used. The electrons, atoms and radicals are in local thermodynamic equilibrium (LTE), but not with the radiation field. Strong thermal (10 6 K m -1 ) and density gradients are sustained in the discharge. Atomic radiation produced in the high-temperature core transits through colder gas regions where it interacts with cold atoms and un-dissociated molecules before exiting the lamp. Power balance and spectral output of the lamp are directly affected by the strength of atomic transitions. Attempts to simulate the radiative output of functional metal-halide lamps have been successful only in very simple cases. More data (e.g. the atomic transition probabilities of Ce i) are necessary to improve lamp performance, to select appropriate radiators and in scaling the lamp geometry to various wattages for specific applications.

  15. Method for fixating sludges and soils contaminated with mercury and other heavy metals

    Science.gov (United States)

    Broderick, Thomas E.; Roth, Rachel L.; Carlson, Allan L.

    2005-06-28

    The invention relates to a method, composition and apparatus for stabilizing mercury and other heavy metals present in a particulate material such that the metals will not leach from the particulate material. The method generally involves the application of a metal reagent, a sulfur-containing compound, and the addition of oxygen to the particulate material, either through agitation, sparging or the addition of an oxygen-containing compound.

  16. Determination of mercury by multisyringe flow injection system with cold-vapor atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Leal, L.O.; Elsholz, O.; Forteza, R.; Cerda, V.

    2006-01-01

    A new software-controlled time-based multisyringe flow injection system for mercury determination by cold-vapor atomic absorption spectrometry is proposed. Precise known volumes of sample, reducing agent (1.1% SnCl 2 in 3% HCl) and carrier (3% HCl) are dispensed into a gas-liquid separation cell with a multisyringe burette coupled with one three-way solenoid valve. An argon flow delivers the reduced mercury to the spectrometer. The optimization of the system was carried out testing reaction coils and gas-liquid separators of different design as well as changing parameters, such as sample and reagents volumes, reagent concentrations and carrier gas flow rate, among others. The analytical curves were obtained within the range 50-5000 ng L -1 . The detection limit (3σ b /S) achieved is 5 ng L -1 . The relative standard deviation (R.S.D.) was 1.4%, evaluated from 16 successive injections of 250 ng L -1 Hg standard solution. The injection and sample throughput per hour were 44 and 11, respectively. This technique was validated by means of solid and water reference materials with good agreement with the certified values and was successfully applied to fish samples

  17. Electrical Investigation of Metal-Olivine Systems and Application to the Deep Interior of Mercury

    Science.gov (United States)

    Zhang, Zhou; Pommier, Anne

    2017-12-01

    We report electrical conductivity measurements on metal-olivine systems at about 5 and 6 GPa and up to 1,675°C in order to investigate the electrical properties of core-mantle boundary (CMB) systems. Electrical experiments were conducted in the multianvil apparatus using the impedance spectroscopy technique. The samples are composed of one metal layer (Fe, FeS, FeSi2, or Fe-Ni-S-Si) and one polycrystalline olivine layer, with the metal:olivine ratio ranging from 1:0.7 to 1:9.2. For all samples, we observe that the bulk electrical conductivity increases with temperature from 10-2.5 to 101.8 S/m, which is higher than the conductivity of polycrystalline olivine but lower than the conductivity of the pure metal phase at similar conditions. In some experiments, a conductivity jump is observed at the temperature corresponding to the melting temperature of the metallic phase. Both the metal:olivine ratio and the metal phase geometry control the electrical conductivity of the two-layer samples. By combining electrical results, textural analyses of the samples, and previous studies of the structure and composition of Mercury's interior, we propose an electrical profile of the deep interior of the planet that accounts for a layered CMB-outer core structure. The electrical model agrees with existing conductivity estimates of Mercury's lower mantle and CMB using magnetic observations and thermodynamic calculations, and thus, supports the hypothesis of a layered CMB-outermost core structure in the present-day interior of Mercury. We propose that the layered CMB-outer core structure is possibly electrically insulating, which may influence the planet's structure and cooling history.

  18. Slurry sampling in serum blood for mercury determination by CV-AFS

    International Nuclear Information System (INIS)

    Aranda, Pedro R.; Gil, Raul A.; Moyano, Susana; De Vito, Irma; Martinez, Luis D.

    2009-01-01

    The heavy metal mercury (Hg) is a neurotoxin known to have a serious health impact even at relatively low concentrations. A slurry method was developed for the sensitive and precise determination of mercury in human serum blood samples by cold vapor generation coupled to atomic fluorescence spectrometry (CV-AFS). All variables related to the slurry formation were studied. The optimal hydrochloric concentration and tin(II) chloride concentration for CV generation were evaluated. Calibration within the range 0.1-10 μg L -1 Hg was performed with the standard addition method, and compared with an external calibration. Additionally, the reliability of the results obtained was evaluated by analyzing mercury in the same samples, but submitted to microwave-assisted digestion method. The limit of detection was calculated as 25 ng L -1 and the relative standard deviation was 3.9% at levels around of 0.4 μg L -1 Hg

  19. Optical characteristics and parameters of gas-discharge plasma in a mixture of mercury dibromide vapor with neon

    International Nuclear Information System (INIS)

    Malinina, A. A.; Malinin, A. N.

    2013-01-01

    Results are presented from studies of the optical characteristics and parameters of plasma of a dielectric barrier discharge in a mixture of mercury dibromide vapor with neon—the working medium of a non-coaxial exciplex gas-discharge emitter. The electron energy distribution function, the transport characteristics, the specific power losses for electron processes, the electron density and temperature, and the rate constants for the processes of elastic and inelastic electron scattering by the working mixture components are determined as functions of the reduced electric field. The rate constant of the process leading to the formation of exciplex mercury monobromide molecules is found to be 1.6 × 10 −14 m 3 /s for a reduced electric field of E/N = 15 Td, at which the maximum emission intensity in the blue-green spectral region (λ max = 502 nm) was observed in this experiment

  20. Optical characteristics and parameters of gas-discharge plasma in a mixture of mercury dibromide vapor with neon

    Energy Technology Data Exchange (ETDEWEB)

    Malinina, A. A., E-mail: alexandr_malinin@rambler.ru; Malinin, A. N. [Uzhhorod National University (Ukraine)

    2013-12-15

    Results are presented from studies of the optical characteristics and parameters of plasma of a dielectric barrier discharge in a mixture of mercury dibromide vapor with neon—the working medium of a non-coaxial exciplex gas-discharge emitter. The electron energy distribution function, the transport characteristics, the specific power losses for electron processes, the electron density and temperature, and the rate constants for the processes of elastic and inelastic electron scattering by the working mixture components are determined as functions of the reduced electric field. The rate constant of the process leading to the formation of exciplex mercury monobromide molecules is found to be 1.6 × 10{sup −14} m{sup 3}/s for a reduced electric field of E/N = 15 Td, at which the maximum emission intensity in the blue-green spectral region (λ{sub max} = 502 nm) was observed in this experiment.

  1. Recovery of mercury from acid waste residues

    Science.gov (United States)

    Greenhalgh, Wilbur O.

    1989-12-05

    Mercury can be recovered from nitric acid-containing fluids by reacting the fluid with aluminum metal to produce mercury metal, and then quenching the reactivity of the nitric acid prior to nitration of the mercury metal.

  2. Vaporization of tungsten-metal in steam at high temperatures

    International Nuclear Information System (INIS)

    Greene, G.A.; Finfrock, C.C.

    2000-01-01

    The vaporization of tungsten from the APT spallation target dominates the radiological source term for unmitigated target overheating accidents. Chemical reactions of tungsten with steam which persist to tungsten temperatures as low as 800 C result in the formation of a hydrated tungsten-oxide which has a high vapor pressure and is readily convected in a flowing atmosphere. This low-temperature vaporization reaction essentially removes the oxide film that forms on the tungsten-metal surface as soon as it forms, leaving behind a fresh metallic surface for continued oxidation and vaporization. Experiments were conducted to measure the oxidative vaporization rates of tungsten in steam as part of the effort to quantify the MT radiological source term for severe target accidents. Tests were conducted with tungsten rods (1/8 inch diameter, six inches long) heated to temperatures from approximately 700 C to 1350 C in flowing steam which was superheated to 140 C. A total of 19 experiments was conducted. Fifteen tests were conducted by RF induction heating of single tungsten rods held vertical in a quartz glass retort. Four tests were conducted in a vertically-mounted tube furnace for the low temperature range of the test series. The aerosol which was generated and transported downstream from the tungsten rods was collected by passing the discharged steam through a condenser. This procedure insured total collection of the steam along with the aerosol from the vaporization of the rods. The results of these experiments revealed a threshold temperature for tungsten vaporization in steam. For the two tests at the lowest temperatures which were tested, approximately 700 C, the tungsten rods were observed to oxidize without vaporization. The remainder of the tests was conducted over the temperature range of 800 C to 1350 C. In these tests, the rods were found to have lost weight due to vaporization of the tungsten and the missing weight was collected in the downstream condensate

  3. Trace mercury determination in drinking and natural water after preconcentration and separation by DLLME-SFO method coupled with cold vapor atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Abdollahi Atousa

    2014-07-01

    Full Text Available A novel dispersive liquid–liquid microextraction based on solidification of floating organic drop (DLLME-SFO for simultaneous separation/preconcentration of ultra trace amounts of mercury was used. A method based on amalgamation was used for collection of gaseous mercury on gold coated sand (Gold trap. The concentration of mercury was determined by cold vapor atomic absorption spectrometry (CV-AAS. The DLLME-SFO behavior of mercury by using dithizone as complexing agent was systematically investigated. The factors influencing, the complex formation and extraction of DLLME-SFO method such as type and volume of extraction and disperser solvents, pH, concentration of salt, centrifuging time and concentration of the chelating agent were optimized. The method was successfully applied to the determination of mercury in drinking and natural water and satisfactory relative recoveries (95–105% were achieved. The proposed procedure was based on very low consumption of organic solvents. The other benefits of the system were sensitive, simple, friendly to the environment, rejection of matrix constituent, low cost, the time consuming and high enrichment factor.

  4. Observation of vapor pressure enhancement of rare-earth metal-halide salts in the temperature range relevant to metal-halide lamps

    Energy Technology Data Exchange (ETDEWEB)

    Curry, J. J.; Henins, A.; Hardis, J. E. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Estupinan, E. G. [Osram Sylvania Inc., Beverly, Massachusetts 01915 (United States); Lapatovich, W. P. [Independent Consultant, 51 Pye Brook Lane, Boxford, Massachusetts 01921 (United States); Shastri, S. D. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2012-02-20

    Total vapor-phase densities of Dy in equilibrium with a DyI{sub 3}/InI condensate and Tm in equilibrium with a TmI{sub 3}/TlI condensate have been measured for temperatures between 900 K and 1400 K. The measurements show strong enhancements in rare-earth vapor densities compared to vapors in equilibrium with the pure rare-earth metal-halides. The measurements were made with x-ray induced fluorescence on the sector 1-ID beam line at the Advanced Photon Source. The temperature range and salt mixtures are relevant to the operation of metal-halide high-intensity discharge lamps.

  5. Detoxification of toxic heavy metals by marine bacteria highly resistant to mercury

    Digital Repository Service at National Institute of Oceanography (India)

    De; Ramaiah, N.; Vardanyan, L.

    Pollution in industrial areas is a serious environmental concern, and interest in bacterial resistance to heavy metals is of practical significance. Mercury (Hg), Cadmium (Cd), and lead (Pb) are known to cause damage to living organisms, including...

  6. Quantifying uncertainty in measurement of mercury in suspended particulate matter by cold vapor technique using atomic absorption spectrometry with hydride generator.

    Science.gov (United States)

    Singh, Nahar; Ahuja, Tarushee; Ojha, Vijay Narain; Soni, Daya; Tripathy, S Swarupa; Leito, Ivo

    2013-01-01

    As a result of rapid industrialization several chemical forms of organic and inorganic mercury are constantly introduced to the environment and affect humans and animals directly. All forms of mercury have toxic effects; therefore accurate measurement of mercury is of prime importance especially in suspended particulate matter (SPM) collected through high volume sampler (HVS). In the quantification of mercury in SPM samples several steps are involved from sampling to final result. The quality, reliability and confidence level of the analyzed data depends upon the measurement uncertainty of the whole process. Evaluation of measurement uncertainty of results is one of the requirements of the standard ISO/IEC 17025:2005 (European Standard EN IS/ISO/IEC 17025:2005, issue1:1-28, 2006). In the presented study the uncertainty estimation in mercury determination in suspended particulate matter (SPM) has been carried out using cold vapor Atomic Absorption Spectrometer-Hydride Generator (AAS-HG) technique followed by wet chemical digestion process. For the calculation of uncertainty, we have considered many general potential sources of uncertainty. After the analysis of data of seven diverse sites of Delhi, it has been concluded that the mercury concentration varies from 1.59 ± 0.37 to 14.5 ± 2.9 ng/m(3) with 95% confidence level (k = 2).

  7. Basic Information about Mercury

    Science.gov (United States)

    ... or metallic mercury is a shiny, silver-white metal and is liquid at room temperature. It is ... releases can happen naturally. Both volcanoes and forest fires send mercury into the atmosphere. Human activities, however, ...

  8. Metal vapor vacuum arc ion sources

    International Nuclear Information System (INIS)

    Brown, I.G.; Dickinson, M.R.; Galvin, J.E.; Godechot, X.; MacGill, R.A.

    1990-06-01

    We have developed a family of metal vapor vacuum are (MEVVA) high current metal ion sources. The sources were initially developed for the production of high current beams of metal ions for heavy ion synchrotron injection for basic nuclear physics research; more recently they have also been used for metal ion implantation. A number of different embodiments of the source have been developed for these specific applications. Presently the sources operate in a pulsed mode, with pulse width of order 1 ms and repetition rate up to 100 pps. Beam extraction voltage is up to 100 kV, and since the ions produced in the vacuum arc plasma are in general multiply ionized the ion energy is up to several hundred keV. Beam current is up to several Amperes peak and around 10 mA time averaged delivered onto target. Nearly all of the solid metals of the Periodic Table have been use to produce beam. A number of novel features have been incorporated into the sources, including multiple cathodes and the ability to switch between up to 18 separate cathode materials simply and quickly, and a broad beam source version as well as miniature versions. here we review the source designs and their performance. 45 refs., 7 figs

  9. Mercury and selenium relationship in a tropical estuarine fish

    Directory of Open Access Journals (Sweden)

    Ana Carolina Pizzochero

    2015-11-01

    Full Text Available Aquatic systems have been considered as final sinks for persistent and bioaccumulative toxicants (PBTs, such as metals and organohalogen compounds. Among the trace elements, non-essential metals deserve special attention due to their toxicity. In this context, mercury (Hg should be highlighted due to its toxic effects, which comprise neurotoxicity, nephrotoxicity, hepatotoxicity, genotoxicity, among others. Several studies have highlighted the selenium-mediated methylmercury detoxification process, via mercury selenide formation in tissues of marine vertebrates. Despite being an essential element, selenium may also be toxic in high concentrations. This study focused on Guanabara Bay (GB, a heavily polluted urban estuary in Rio de Janeiro state (Brazil, where the whitemouth croaker (Micropogonias furnieri provides a valuable fishery resource. Therefore, hepatic (Hg and Se and muscular (Hg concentrations of these elements were determined in GB whitemouth croakers. Mercury and selenium measurements were performed by cold vapor atomic absorption spectrometry (CV-AAS and electrothermal AAS (ET-AAS, respectively. Total mercury (THg concentrations in muscle (n=19 ranged from 184.9 to 858.6 (ng/g, while in liver they varied from 11.05 to 1188 (ng/g. Hepatic selenium concentrations ranged from 7820 to 40085 (ng/g. The hepatic Se:THg molar ratio ranged from 40,8 to 3102,5. The results showed a significant correlation between hepatic mercury and selenium levels, but the molar ratio suggests the absence of mercury selenide formation. Some of the Se concentrations found were above the threshold level for freshwater fish (12000 ng/g; however, it is not yet clear if these concentrations are toxic for marine fish as well. More studies are necessary for evaluating the impact of such exposure in fish from Guanabara Bay.

  10. Mercury cycling in a wastewater treatment plant treating waters with high mercury contents.

    Science.gov (United States)

    García-Noguero, Eva M.; García-Noguero, Carolina; Higueras, Pablo; Reyes-Bozo, Lorenzo; Esbrí, José M.

    2015-04-01

    The Almadén mercury mining district has been historically the most important producer of this element since Romans times to 2004, when both mining and metallurgic activities ceased as a consequence both of reserves exhaustion and persistent low prices for this metal. The reclamation of the main dump of the mine in 2007-2008 reduced drastically the atmospheric presence of the gaseous mercury pollutant in the local atmosphere. But still many areas, and in particular in the Almadén town area, can be considered as contaminated, and produce mercury releases that affect the urban residual waters. Two wastewater treatment plants (WWTP) where built in the area in year 2002, but in their design the projects did not considered the question of high mercury concentrations received as input from the town area. This communication presents data of mercury cycling in one of the WWTP, the Almadén-Chillón one, being the larger and receiving the higher Hg concentrations, due to the fact that it treats the waters coming from the West part of the town, in the immediate proximity to the mine area. Data were collected during a number of moments of activity of the plant, since April 2004 to nowadays. Analyses were carried out by means of cold vapor-atomic fluorescence spectroscopy (CV-AFS), using a PSA Millennium Merlin analytical device with gold trap. The detection limit is 0.1 ng/l. The calibration standards are prepared using the Panreac ICP Standard Mercury Solution (1,000±0,002 g/l Hg in HNO3 2-5%). Results of the surveys indicate that mercury concentrations in input and output waters in this plant has suffered an important descent since the cessation of mining and metallurgical activities, and minor reduction also after the reclamation of the main mine's dump. Since 2009, some minor seasonal variations are detected, in particular apparently related to accumulation during summer of mercury salts and particles, which are washed to the plant with the autumn's rains. Further

  11. The adaptive response of lichens to mercury exposure involves changes in the photosynthetic machinery

    International Nuclear Information System (INIS)

    Nicolardi, Valentina; Cai, Giampiero; Parrotta, Luigi; Puglia, Michele; Bianchi, Laura; Bini, Luca; Gaggi, Carlo

    2012-01-01

    Lichens are an excellent model to study the bioaccumulation of heavy metals but limited information is available on the molecular mechanisms occurring during bioaccumulation. We investigated the changes of the lichen proteome during exposure to constant concentrations of mercury. We found that most of changes involves proteins of the photosynthetic pathway, such as the chloroplastic photosystem I reaction center subunit II, the oxygen-evolving protein and the chloroplastic ATP synthase β-subunit. This suggests that photosynthesis is a target of the toxic effects of mercury. These findings are also supported by changes in the content of photosynthetic pigments (chlorophyll a and b, and β-carotene). Alterations to the photosynthetic machinery also reflect on the structure of thylakoid membranes of algal cells. Response of lichens to mercury also involves stress-related proteins (such as Hsp70) but not cytoskeletal proteins. Results suggest that lichens adapt to mercury exposure by changing the metabolic production of energy. - Highlights: ► Lichens exposed to Hg° vapors accumulate this metal irreversibly. ► Hg° interferes with physiological processes of the epiphytic lichen Evernia prunastri. ► Hg° promotes changes in the concentration of photosynthetic pigments. ► Hg° treatment causes changes in the ultrastructure of the photobiont plastids. ► Hg° induces changes in the protein machinery involved in the photosynthesis pathway. - Mercury affects the photosynthetic protein machinery of lichens.

  12. Structure of metal β-diketonates and their enthalpies of vaporization

    International Nuclear Information System (INIS)

    Domrachev, G.A.; Sevast'yanov, V.G.; Zakharov, L.N.; Krasnodubskaya, S.V.; AN SSSR, Moscow. Inst. Obshchej i Neorganicheskoj Khimii)

    1987-01-01

    Using the method of additive schemes in combinaion with the structural estimation of the degree of screening of the central atom and other elements of β-diketonate molecule while analyzing the experimental enthalpies of vaporization, the contributions of separate fragments of complexes into the enthalpy of vaporization are found. It is shown that energies of intermolecular interaction in a condensed phase of monomeric metal β-diketonates with identical substituents do not depend on the central atom type. The enthalpies of dimer dissociation in a series of rare earth dipivaloylmethanates calculated. The proposed approach is advisable fo selecting forms of metal β-diketonates, the most suitable for the purposes of deep purificaion, which are characterized by maximum chemical and physico-chemical selectivity with respect to impurities, chemical inertness to equipment material, container, etc

  13. Heavy Metals (Mercury, Lead and Cadmium Determination in 17 Species of Fish Marketed in Khorramabad City, West of Iran

    Directory of Open Access Journals (Sweden)

    Ali Mortazavi

    2016-01-01

    Full Text Available Heavy metals entrance to fish body tissues and transferring to human body systems after their consuming makes numerous undesirable effects and health problems. The aim of this study was to determine some heavy metals (lead, cadmium and mercury in fresh fishes marketed in Khorramabad City, west of Iran. In this descriptive study, five samples of 17 fish species with high consumption were purchased randomly in 2014. Measurement of mercury, lead and cadmium was performed using atomic absorption spectrometry. All measurements were performed three times for each sample. Lead mean levels in fish samples was in the range 0.736 -1.005 ppm, cadmium range was from 0.196 to 0.015 ppm and mean content of mercury was  0.431 - 0.107 ppm. At present mean concentration of lead, mercury and cadmium in supplied fishes muscle is lower than maximum recommended levels according to WHO, EC and FDA guidelines. Based on the obtained results of this study and the importance of heavy metals in foods and their impacts on human health, continuous monitoring of heavy metals levels in foods is necessary.

  14. Effect of Probiotic Bacillus Coagulans and Lactobacillus Plantarum on Alleviation of Mercury Toxicity in Rat.

    Science.gov (United States)

    Majlesi, Majid; Shekarforoush, Seyed Shahram; Ghaisari, Hamid Reza; Nazifi, Saeid; Sajedianfard, Javad; Eskandari, Mohammad Hadi

    2017-09-01

    The objective of this study was to evaluate the efficiency of probiotics (Lactobacillus plantarum and Bacillus coagulans) against mercury-induced toxicity using a rat model. Mercury (Hg) is a widespread heavy metal and was shown to be associated with various diseases. Forty-eight adult male Wistar rats were randomly divided into six groups (control, mercury-only, each probiotic-only, and mercury plus each probiotic group). Hg-treated groups received 10 ppm mercuric chloride, and probiotic groups were administrated 1 × 10 9  CFU of probiotics daily for 48 days. Levels of mercury were determined using cold vapor technique, and some biochemical factors (list like glutathione peroxidase (GPx), superoxide dismutase (SOD), creatinine, urea, bilirubin, alanine transaminase (ALT), and aspartate transaminase (AST)) were measured to evaluate changes in oxidative stress. Oral administration of either probiotic was found to provide significant protection against mercury toxicity by decreasing the mercury level in the liver and kidney and preventing alterations in the levels of GPx and SOD. Probiotic treatment generated marked reduction in the levels of creatinine, urea, bilirubin, ALT, and AST indicating the positive influence of the probiotics on the adverse effects of Hg in the body.

  15. Mercury exposure in children: a review

    International Nuclear Information System (INIS)

    Counter, S. Allen; Buchanan, Leo H.

    2004-01-01

    Exposure to toxic mercury (Hg) is a growing health hazard throughout the world today. Recent studies show that mercury exposure may occur in the environment, and increasingly in occupational and domestic settings. Children are particularly vulnerable to Hg intoxication, which may lead to impairment of the developing central nervous system, as well as pulmonary and nephrotic damage. Several sources of toxic Hg exposure in children have been reported in biomedical literature: (1) methylmercury, the most widespread source of Hg exposure, is most commonly the result of consumption of contaminated foods, primarily fish; (2) ethylmercury, which has been the subject of recent scientific inquiry in relation to the controversial pediatric vaccine preservative thimerosal; (3) elemental Hg vapor exposure through accidents and occupational and ritualistic practices; (4) inorganic Hg through the use of topical Hg-based skin creams and in infant teething powders; (5) metallic Hg in dental amalgams, which release Hg vapors, and Hg 2+ in tissues. This review examines recent epidemiological studies of methylmercury exposure in children. Reports of elemental Hg vapor exposure in children through accidents and occupational practices, and the more recent observations of the increasing use of elemental Hg for magico-religious purposes in urban communities are also discussed. Studies of inorganic Hg exposure from the widespread use of topical beauty creams and teething powders, and fetal/neonatal Hg exposure from maternal dental amalgam fillings are reviewed. Considerable attention was given in this review to pediatric methylmercury exposure and neurodevelopment because it is the most thoroughly investigated Hg species. Each source of Hg exposure is reviewed in relation to specific pediatric health effects, particularly subtle neurodevelopmental disorders

  16. Sulfur polymer cement stabilization of elemental mercury mixed waste

    International Nuclear Information System (INIS)

    Melamed, D.; Fuhrmann, M.; Kalb, P.; Patel, B.

    1998-04-01

    Elemental mercury, contaminated with radionuclides, is a problem throughout the Department of Energy (DOE) complex. This report describes the development and testing of a process to immobilize elemental mercury, contaminated with radionuclides, in a form that is non-dispersible, will meet EPA leaching criteria, and has low mercury vapor pressure. In this stabilization and solidification process (patent pending) elemental mercury is mixed with an excess of powdered sulfur polymer cement (SPC) and additives in a vessel and heated to ∼35 C, for several hours, until all of the mercury is converted into mercuric sulfide (HgS). Additional SPC is then added and the mixture raised to 135 C, resulting in a homogeneous molten liquid which is poured into a suitable mold where is cools and solidifies. The final stabilized and solidified waste forms were characterized by powder X-ray diffraction, as well as tested for leaching behavior and mercury vapor pressure. During this study the authors have processed the entire inventory of mixed mercury waste stored at Brookhaven National Laboratory (BNL)

  17. A low aspect ratio electrothermal gun for metal plasma vapor discharge and ceramic nanopowder production

    International Nuclear Information System (INIS)

    Kim, Kyoung Jin; Peterson, Dennis R.

    2008-01-01

    Traditionally, the electrothermal gun design has the bore of a large aspect ratio: however, a low aspect ratio design with a shorter bore length has been employed for efficient production of metal plasma vapors and synthesis of nanomaterials. In a comparison of the arc resistance-current relationship, a low aspect ratio design is found to exhibit distinctively different characteristics compared to a high aspect ratio design, and this trend is explained by the scaling law of plasma properties including theory of plasma electrical conductivity. A one-dimensional isothermal model has been applied to the present experiments to confirm the scaling laws, and it was found that the present modification of the electrothermal gun is able to produce fully ionized metal plasma vapor, while the plasma vapor produced in a conventional design is partially ionized. Also, by reacting metal plasma vapors with the controlled gases in the reaction chamber, nanoscale materials such as aluminum oxide, aluminum nitride, and titanium oxide were synthesized successfully

  18. Mercury CEM Calibration

    Energy Technology Data Exchange (ETDEWEB)

    John Schabron; Joseph Rovani; Mark Sanderson

    2008-02-29

    Mercury continuous emissions monitoring systems (CEMS) are being implemented in over 800 coal-fired power plant stacks. The power industry desires to conduct at least a full year of monitoring before the formal monitoring and reporting requirement begins on January 1, 2009. It is important for the industry to have available reliable, turnkey equipment from CEM vendors. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor generators. The generators are used to calibrate mercury CEMs at power plant sites. The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005 requires that calibration be performed with NIST-traceable standards (Federal Register 2007). Traceability procedures will be defined by EPA. An initial draft traceability protocol was issued by EPA in May 2007 for comment. In August 2007, EPA issued an interim traceability protocol for elemental mercury generators (EPA 2007). The protocol is based on the actual analysis of the output of each calibration unit at several concentration levels ranging initially from about 2-40 {micro}g/m{sup 3} elemental mercury, and in the future down to 0.2 {micro}g/m{sup 3}, and this analysis will be directly traceable to analyses by NIST. The document is divided into two separate sections. The first deals with the qualification of generators by the vendors for use in mercury CEM calibration. The second describes the procedure that the vendors must use to certify the generator models that meet the qualification specifications. The NIST traceable certification is performance based, traceable to analysis using isotope dilution inductively coupled plasma/mass spectrometry performed by NIST in Gaithersburg, MD. The

  19. Mercurial poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Gorton, B

    1924-01-01

    Cats which had been kept in a thermometer factory to catch rats were afflicted with mercury poisoning. So were the rats they were supposed to eat. The symptoms of mercury poisoning were the same in both species. The source of mercury for these animals is a fine film of the metal which coats floors, a result of accidental spills during the manufacturing process.

  20. Mercury and other metals in eggs and feathers of glaucous-winged gulls (Larus glaucescens) in the Aleutians

    Science.gov (United States)

    Gochfeld, Michael; Jeitner, Christian; Burke, Sean; Volz, Conrad D.; Snigaroff, Ronald; Snigaroff, Daniel; Shukla, Tara; Shukla, Sheila

    2014-01-01

    Levels of mercury and other contaminants should be lower in birds nesting on isolated oceanic islands and at high latitudes without any local or regional sources of contamination, compared to more urban and industrialized temperate regions. We examined concentrations of arsenic, cadmium, chromium, lead, manganese, mercury and selenium in the eggs, and the feathers of fledgling and adult glaucous-winged gulls (Larus glaucescens) nesting in breeding colonies on Adak, Amchitka, and Kiska Islands in the Aleutian Chain of Alaska in the Bering Sea/North Pacific. We tested the following null hypotheses: 1) There were no differences in metal levels among eggs and feathers of adult and fledgling glaucous-winged gulls, 2) There were no differences in metal levels among gulls nesting near the three underground nuclear test sites (Long Shot 1965, Milrow 1969, Cannikin 1971) on Amchitka, 3) There were no differences in metal levels among the three islands, and 4) There were no gender-related differences in metal levels. All four null hypotheses were rejected at the 0.05 level, although there were few differences among the three test sites on Amchitka. Eggs had the lowest levels of cadmium, lead, and mercury, and the feathers of adults had the lowest levels of selenium. Comparing only adults and fledglings, adults had higher levels of cadmium, chromium, lead and mercury, and fledglings had higher levels of arsenic, manganese and selenium. There were few consistent interisland differences, although levels were generally lower for eggs and feathers from gulls on Amchitka compared to the other islands. Arsenic was higher in both adult feathers and eggs from Amchitka compared to Adak, and chromium and lead were higher in adult feathers and eggs from Adak compared to Amchitka. Mercury and arsenic, and chromium and manganese levels were significantly correlated in the feathers of both adult and fledgling gulls. The feathers of males had significantly higher levels of chromium and

  1. What are the Connections between Mercury and CFLs?

    Science.gov (United States)

    Small amounts of mercury vapor can be released when CFLs break or are improperly disposed of. Despite these emissions, the use of CFLs actually helps reduce total mercury emissions in the U.S. because of their significant energy savings.

  2. Chelation Therapy for Mercury Poisoning

    Directory of Open Access Journals (Sweden)

    Rong Guan

    2009-01-01

    Full Text Available Chelation therapy has been the major treatment for heavy metal poisoning. Various chelating agents have been developed and tested for treatment of heavy metal intoxications, including mercury poisoning. It has been clearly shown that chelating agents could rescue the toxicity caused by heavy metal intoxication, but the potential preventive role of chelating agents against heavy metal poisoning has not been explored much. Recent paper by Siddiqi and colleagues has suggested a protective role of chelating agents against mercury poisoning, which provides a promising research direction for broader application of chelation therapy in prevention and treatment of mercury poisoning.

  3. Thiomersal photo-degradation with visible light mediated by graphene quantum dots: Indirect quantification using optical multipath mercury cold-vapor absorption spectrophotometry

    Science.gov (United States)

    Miranda-Andrades, Jarol R.; Khan, Sarzamin; Toloza, Carlos A. T.; Romani, Eric C.; Freire Júnior, Fernando L.; Aucelio, Ricardo Q.

    2017-12-01

    Thiomersal is employed as preservative in vaccines, cosmetic and pharmaceutical products due to its capacity to inhibit bacterial growth. Thiomersal contains 49.55% of mercury in its composition and its highly toxic ethylmercury degradation product has been linked to neurological disorders. The photo-degradation of thiomersal has been achieved by visible light using graphene quantum dots as catalysts. The generated mercury cold vapor (using adjusted experimental conditions) was detected by multipath atomic absorption spectrometry allowing the quantification of thiomersal at values as low as 20 ng L- 1 even in complex samples as aqueous effluents of pharmaceutical industry and urine. A kinetic study (pseudo-first order with k = 0.11 min- 1) and insights on the photo-degradation process are presented.

  4. Innate stimulatory capacity of high molecular weight transition metals Au (gold) and Hg (mercury).

    Science.gov (United States)

    Rachmawati, Dessy; Alsalem, Inás W A; Bontkes, Hetty J; Verstege, Marleen I; Gibbs, Sue; von Blomberg, B M E; Scheper, Rik J; van Hoogstraten, Ingrid M W

    2015-03-01

    Nickel, cobalt and palladium ions can induce an innate immune response by triggering Toll-like receptor (TLR)-4 which is present on dendritic cells (DC). Here we studied mechanisms of action for DC immunotoxicity to gold and mercury. Next to gold (Na3Au (S2O3)2⋅2H2O) and mercury (HgCl2), nickel (NiCl2) was included as a positive control. MoDC activation was assessed by release of the pro-inflammatory mediator IL-8. Also PBMC were studied, and THP-1 cells were used as a substitution for DC for evaluation of cytokines and chemokines, as well as phenotypic, alterations in response to gold and mercury. Our results showed that both Na3Au (S2O3)2⋅2H2O and HgCl2 induce substantial release of IL-8, but not IL-6, CCL2 or IL-10, from MoDc, PBMC, or THP-1 cells. Also gold and, to a lesser extent mercury, caused modest dendritic cell maturation as detected by increased membrane expression of CD40 and CD80. Both metals thus show innate immune response capacities, although to a lower extent than reported earlier for NiCl2, CoCl2 and Na2 [PdCl4]. Importantly, the gold-induced response could be ascribed to TLR3 rather than TLR4 triggering, whereas the nature of the innate mercury response remains to be clarified. In conclusion both gold and mercury can induce innate immune responses, which for gold could be ascribed to TLR3 dependent signalling. These responses are likely to contribute to adaptive immune responses to these metals, as reflected by skin and mucosal allergies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Method for high temperature mercury capture from gas streams

    Science.gov (United States)

    Granite, Evan J [Wexford, PA; Pennline, Henry W [Bethel Park, PA

    2006-04-25

    A process to facilitate mercury extraction from high temperature flue/fuel gas via the use of metal sorbents which capture mercury at ambient and high temperatures. The spent sorbents can be regenerated after exposure to mercury. The metal sorbents can be used as pure metals (or combinations of metals) or dispersed on an inert support to increase surface area per gram of metal sorbent. Iridium and ruthenium are effective for mercury removal from flue and smelter gases. Palladium and platinum are effective for mercury removal from fuel gas (syngas). An iridium-platinum alloy is suitable for metal capture in many industrial effluent gas streams including highly corrosive gas streams.

  6. Mercury exposure in young children living in New York City.

    Science.gov (United States)

    Rogers, Helen S; Jeffery, Nancy; Kieszak, Stephanie; Fritz, Pat; Spliethoff, Henry; Palmer, Christopher D; Parsons, Patrick J; Kass, Daniel E; Caldwell, Kathy; Eadon, George; Rubin, Carol

    2008-01-01

    Residential exposure to vapor from current or previous cultural use of mercury could harm children living in rental (apartment) homes. That concern prompted the following agencies to conduct a study to assess pediatric mercury exposure in New York City communities by measuring urine mercury levels: New York City Department of Health and Mental Hygiene's (NYCDOHMH) Bureau of Environmental Surveillance and Policy, New York State Department of Health/Center for Environmental Health (NYSDOHCEH), Wadsworth Center's Biomonitoring Program/Trace Elements Laboratory (WC-TEL), and Centers for Disease Control and Prevention (CDC). A previous study indicated that people could obtain mercury for ritualistic use from botanicas located in Brooklyn, Manhattan, and the Bronx. Working closely with local community partners, we concentrated our recruiting efforts through health clinics located in potentially affected neighborhoods. We developed posters to advertise the study, conducted active outreach through local partners, and, as compensation for participation in the study, we offered a food gift certificate redeemable at a local grocer. We collected 460 urine specimens and analyzed them for total mercury. Overall, geometric mean urine total mercury was 0.31 microg mercury/l urine. One sample was 24 microg mercury/l urine, which exceeded the (20 microg mercury/l urine) NYSDOH Heavy Metal Registry reporting threshold for urine mercury exposure. Geometric mean urine mercury levels were uniformly low and did not differ by neighborhood or with any clinical significance by children's ethnicity. Few parents reported the presence of mercury at home, in a charm, or other item (e.g., skin-lightening creams and soaps), and we found no association between these potential sources of exposure and a child's urinary mercury levels. All pediatric mercury levels measured in this study were well below a level considered to be of medical concern. This study found neither self-reported nor measured

  7. Mechanical properties of vapor-deposited thin metallic films: a status report

    International Nuclear Information System (INIS)

    Adler, P.H.

    1982-01-01

    The mechanical properties of vapor-deposited thin metallic films are being studied in conjunction with the target fabrication group associated with the laser-fusion energy program. The purpose of the work is to gain an understanding as to which metals are structurally best suited to contain a glass microsphere filled with deuterium-tritium (D-T) gas at large internal pressures

  8. Metal halides vapor lasers with inner reactor and small active volume.

    Science.gov (United States)

    Shiyanov, D. V.; Sukhanov, V. B.; Evtushenko, G. S.

    2018-04-01

    Investigation of the energy characteristics of copper, manganese, lead halide vapor lasers with inner reactor and small active volume 90 cm3 was made. The optimal operating pulse repetition rates, temperatures, and buffer gas pressure for gas discharge tubes with internal and external electrodes are determined. Under identical pump conditions, such systems are not inferior in their characteristics to standard metal halide vapor lasers. It is shown that the use of a zeolite halogen generator provides lifetime laser operation.

  9. Mercury migration into ground water, a literature study

    Energy Technology Data Exchange (ETDEWEB)

    Carlton, W.H.; Carden, J.L.; Kury, R.; Eichholz, G.G.

    1994-11-01

    This report presents a broad review of the technical literature dealing with mercury migration in the soil. The approach followed was to identify relevant articles by searching bibliographic data bases, obtaining the promising articles and searching these articles for any additional relevant citations. Eight catagories were used to organize the literature, with a review and summary of each paper. Catagories used were the following: chemical states of mercury under environmental conditions; diffusion of mercury vapor through soil; solubility and stability of mercury in environmental waters; transport of mercury on colloids; models for mercury migration through the environment; analytical techniques; retention of mercury by soil components; formation of organomecurials.

  10. Preconcentration, speciation and determination of ultra trace amounts of mercury by modified octadecyl silica membrane disk/electron beam irradiation and cold vapor atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ashkenani, Hamid [Department of Chemistry, Yazd University, Yazd (Iran, Islamic Republic of); Dadfarnia, Shayessteh [Department of Chemistry, Yazd University, Yazd (Iran, Islamic Republic of)], E-mail: sdadfarnia@yazduni.ac.ir; Shabani, Ali Mohammad Haji; Jaffari, Abbas Ali [Department of Chemistry, Yazd University, Yazd (Iran, Islamic Republic of); Behjat, Abbas [Department of physics, Yazd University, Yazd (Iran, Islamic Republic of)

    2009-01-15

    Mercury (II) and methyl mercury cations at the Sub-ppb level were adsorbed quantitatively from aqueous solution onto an octadecyl-bonded silica membrane disk modified by 2-[(2-mercaptophyenylimino)methyl] phenol (MPMP). The trapped mercury was then eluted with 3 ml ethanol and Hg{sup 2+} ion was directly measured by cold vapor atomic absorption spectrometry, utilizing tin (II) chloride. Total mercury (Hgt) was determined after conversion of MeHg{sup +} into Hg{sup 2+} ion by electron beam irradiation. A sample volume of 1500 ml resulted in a preconcentration factor of 500 and the precision for a sampling volume of 500 ml at a concentration of 2.5 {mu}g l{sup -1} (n = 7) was 3.1%. The limit of detection of the proposed method is 3.8 ng l{sup -1}. The method was successfully applied to analysis of water samples, and the accuracy was assessed via recovery experiment.

  11. Mercury content in Hot Springs

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, R

    1974-01-01

    A method of determination of mercury in hot spring waters by flameless atomic absorption spectrophotometry is described. Further, the mercury content and the chemical behavior of the elementary mercury in hot springs are described. Sulfide and iodide ions interfered with the determination of mercury by the reduction-vapor phase technique. These interferences could, however, be minimized by the addition of potassium permanganate. Waters collected from 55 hot springs were found to contain up to 26.0 ppb mercury. High concentrations of mercury have been found in waters from Shimoburo Springs, Aomori (10.0 ppb), Osorezan Springs, Aomori (1.3 approximately 18.8 ppb), Gosyogake Springs, Akita (26.0 ppb), Manza Springs, Gunma (0.30 approximately 19.5 ppb) and Kusatu Springs, Gunma (1.70 approximately 4.50 ppb). These hot springs were acid waters containing a relatively high quantity of chloride or sulfate.

  12. 40 CFR Table 3 to Subpart IIIii of... - Work Practice Standards-Required Actions for Liquid Mercury Spills and Accumulations and Hydrogen...

    Science.gov (United States)

    2010-07-01

    ... Actions for Liquid Mercury Spills and Accumulations and Hydrogen and Mercury Vapor Leaks 3 Table 3 to... Standards—Required Actions for Liquid Mercury Spills and Accumulations and Hydrogen and Mercury Vapor Leaks... cell back into service until the leaking equipment is repaired. 3. A decomposer or hydrogen system...

  13. Estimation of mercury amount in the components of spent U-type lamp.

    Science.gov (United States)

    Rhee, Seung-Whee

    2017-05-01

    Spent U-type lamps are strongly encouraged to be separately managed in Korea, because U-type lamps are categorized as a household waste and thereby could not be managed properly. Determination of mercury amount in the components of U-type lamp, such as plastics, glass tube and phosphor powder from 3 U-type lamp manufacturers (A, B and C), is carried out to estimate the mercury content in spent U-type lamps. Regardless of lamp manufacturers, the portion of mercury in phosphor powder was higher than 90%, but that in plastics and others was less than 1%. At an air flow rate of 1.0 L/min, the range of the initial mercury concentration in vapor phase for U-type lamp was between 849 and 2076 µg/m 3 from 3 companies. The estimated mercury amount in vapor phase of U-type lamp was in the range from 0.206 mg for company A to 0.593 mg for company B. And the portion of mercury in vapor phase in the total amount of mercury was estimated in the range from 3.0% for company A to 6.7% for company B. Hence, it is desirable to get rid of mercury from phosphor powder in order to perform U-type lamps recycling.

  14. Chemical vapor deposition of refractory metals and ceramics III

    International Nuclear Information System (INIS)

    Gallois, B.M.; Lee, W.Y.; Pickering, M.A.

    1995-01-01

    The papers contained in this volume were originally presented at Symposium K on Chemical Vapor Deposition of Refractory Metals and Ceramics III, held at the Fall Meeting of the Materials Research Society in Boston, Massachusetts, on November 28--30, 1994. This symposium was sponsored by Morton International Inc., Advanced Materials, and by The Department of Energy-Oak Ridge National Laboratory. The purpose of this symposium was to exchange scientific information on the chemical vapor deposition (CVD) of metallic and ceramic materials. CVD technology is receiving much interest in the scientific community, in particular, to synthesize new materials with tailored chemical composition and physical properties that offer multiple functionality. Multiphase or multilayered films, functionally graded materials (FGMs), ''smart'' material structures and nanocomposites are some examples of new classes of materials being produced via CVD. As rapid progress is being made in many interdisciplinary research areas, this symposium is intended to provide a forum for reporting new scientific results and addressing technological issues relevant to CVD materials and processes. Thirty four papers have been processed separately for inclusion on the data base

  15. Theoretical evaluation on selective adsorption characteristics of alkali metal-based sorbents for gaseous oxidized mercury.

    Science.gov (United States)

    Tang, Hongjian; Duan, Yufeng; Zhu, Chun; Cai, Tianyi; Li, Chunfeng; Cai, Liang

    2017-10-01

    Alkali metal-based sorbents are potential for oxidized mercury (Hg 2+ ) selective adsorption but show hardly effect to elemental mercury (Hg 0 ) in flue gas. Density functional theory (DFT) was employed to investigate the Hg 0 and HgCl 2 adsorption mechanism over alkali metal-based sorbents, including calcium oxide (CaO), magnesium oxide (MgO), potassium chloride (KCl) and sodium chloride (NaCl). Hg 0 was found to weakly interact with CaO (001), MgO (001), KCl (001) and NaCl (001) surfaces while HgCl 2 was effectively adsorbed on top-O and top-Cl sites. Charge transfer and bond population were calculated to discuss the covalency and ionicity of HgCl 2 bonding with the adsorption sites. The partial density of states (PDOS) analysis manifests that HgCl 2 strongly interacts with surface sites through the orbital hybridizations between Hg and top O or Cl. Frontier molecular orbital (FMO) energy and Mulliken electronegativity are introduced as the quantitative criteria to evaluate the reactivity of mercury species and alkali metal-based sorbents. HgCl 2 is identified as a Lewis acid and more reactive than Hg 0 . The Lewis basicity of the four alkali metal-based sorbents is predicted as the increasing order: NaCl < MgO < KCl < CaO, in consistence with the trend of HgCl 2 adsorption energies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Rapid food decomposition by H2O2-H2SO4 for determination of total mercury by flow injection cold vapor atomic absorption spectrometry.

    Science.gov (United States)

    Zenebon, Odair; Sakuma, Alice M; Dovidauskas, Sergio; Okada, Isaura A; de, MaioFrancaD; Lichtig, Jaim

    2002-01-01

    A mixture of 50% H2O2-H2SO4 (3 + 1, v/v) was used for decomposition of food in open vessels at 80 degrees C. The treatment allowed rapid total mercury determination by flow injection cold vapor atomic absorption spectrometry. Cabbage, potatoes, peanuts paste, hazelnuts paste, oats, tomatoes and their derivatives, oysters, shrimps, prawns, shellfish, marine algae, and many kinds of fish were analyzed by the proposed methodology with a limit of quantitation of 0.86 +/- 0.08 microg/L mercury in the final solution. Reference materials tested also gave excellent recovery.

  17. ALTERNATIVE FIELD METHODS TO TREAT MERCURY IN SOIL

    Energy Technology Data Exchange (ETDEWEB)

    Ernest F. Stine Jr; Steven T. Downey

    2002-08-14

    U.S. Department of Energy (DOE) used large quantities of mercury in the uranium separating process from the 1950s until the late 1980s in support of national defense. Some of this mercury, as well as other hazardous metals and radionuclides, found its way into, and under, several buildings, soil and subsurface soils and into some of the surface waters. Several of these areas may pose potential health or environmental risks and must be dealt with under current environmental regulations. DOE's National Energy Technology Laboratory (NETL) awarded a contract ''Alternative Field Methods to Treat Mercury in Soil'' to IT Group, Knoxville TN (IT) and its subcontractor NFS, Erwin, TN to identify remedial methods to clean up mercury-contaminated high-clay content soils using proven treatment chemistries. The sites of interest were the Y-12 National Security Complex located in Oak Ridge, Tennessee, the David Witherspoon properties located in Knoxville, Tennessee, and at other similarly contaminated sites. The primary laboratory-scale contract objectives were (1) to safely retrieve and test samples of contaminated soil in an approved laboratory and (2) to determine an acceptable treatment method to ensure that the mercury does not leach from the soil above regulatory levels. The leaching requirements were to meet the TC (0.2 mg/l) and UTS (0.025 mg/l) TCLP criteria. In-situ treatments were preferred to control potential mercury vapors emissions and liquid mercury spills associated with ex-situ treatments. All laboratory work was conducted in IT's and NFS laboratories. Mercury contaminated nonradioactive soil from under the Alpha 2 building in the Y-12 complex was used. This soils contained insufficient levels of leachable mercury and resulted in TCLP mercury concentrations that were similar to the applicable LDR limits. The soil was spiked at multiple levels with metallic (up to 6000 mg/l) and soluble mercury compounds (up to 500 mg/kg) to

  18. Uptake of inorganic mercury by human locus ceruleus and corticomotor neurons: implications for amyotrophic lateral sclerosis

    Science.gov (United States)

    2013-01-01

    Background Environmental toxins are suspected to play a role in the pathogenesis of amyotrophic lateral sclerosis (ALS). In an attempt to determine which pathways these toxins can use to enter motor neurons we compared the distribution of mercury in the CNS of a human and of mice that had been exposed to inorganic mercury. Results In the human who had been exposed to metallic mercury, mercury was seen predominantly in the locus ceruleus and corticomotor neurons, as well as in scattered glial cells. In mice that had been exposed to mercury vapor or mercuric chloride, mercury was present in lower motor neurons in the spinal cord and brain stem. Conclusions In humans, inorganic mercury can be taken up predominantly by corticomotor neurons, possibly when the locus ceruleus is upregulated by stress. This toxin uptake into corticomotor neurons is in accord with the hypothesis that ALS originates in these upper motor neurons. In mice, inorganic mercury is taken up predominantly by lower motor neurons. The routes toxins use to enter motor neurons depends on the nature of the toxin, the duration of exposure, and possibly the amount of stress (for upper motor neuron uptake) and exercise (for lower motor neuron uptake) at the time of toxin exposure. PMID:24252585

  19. Rapid Monitoring of Mercury in Air from an Organic Chemical Factory in China Using a Portable Mercury Analyzer

    Directory of Open Access Journals (Sweden)

    Akira Yasutake

    2011-01-01

    Full Text Available A chemical factory, using a production technology of acetaldehyde with mercury catalysis, was located southeast of Qingzhen City in Guizhou Province, China. Previous research showed heavy mercury pollution through an extensive downstream area. A current investigation of the mercury distribution in ambient air, soils, and plants suggests that mobile mercury species in soils created elevated mercury concentrations in ambient air and vegetation. Mercury concentrations of up to 600 ng/m3 in air over the contaminated area provided evidence of the mercury transformation to volatile Hg(0. Mercury analysis of soil and plant samples demonstrated that the mercury concentrations in soil with vaporized and plant-absorbable forms were higher in the southern area, which was closer to the factory. Our results suggest that air monitoring using a portable mercury analyzer can be a convenient and useful method for the rapid detection and mapping of mercury pollution in advanced field surveys.

  20. ALTERNATIVE FIELD METHODS TO TREAT MERCURY IN SOIL

    International Nuclear Information System (INIS)

    Stine, Ernie F.

    2002-01-01

    The Department of Energy (DOE) currently has mercury (Hg) contaminated materials and soils at the various sites. Figure 1-1 (from http://www.ct.ornl.gov/stcg.hg/) shows the estimated distribution of mercury contaminated waste at the various DOE sites. Oak Ridge and Idaho sites have the largest deposits of contaminated materials. The majorities of these contaminated materials are soils, sludges, debris, and waste waters. This project concerns treatment of mercury contaminated soils. The technology is applicable to many DOE sites, in-particular, the Y-12 National Security Complex in Oak Ridge Tennessee and Idaho National Engineering and Environmental Laboratory (INEEL). These sites have the majority of the soils and sediments contaminated with mercury. The soils may also be contaminated with other hazardous metals and radionuclides. At the Y12 plant, the baseline treatment method for mercury contaminated soil is low temperature thermal desorption (LTTD), followed by on-site landfill disposal. LTTD is relatively expensive (estimated cost of treatment which exclude disposal cost for the collect mercury is greater than $740/per cubic yard [cy] at Y-12), does not treat any of the metal or radionuclides. DOE is seeking a less costly alternative to the baseline technology. As described in the solicitation (DE-RA-01NT41030), this project initially focused on evaluating cost-effective in-situ alternatives to stabilize or remove the mercury (Hg) contamination from high-clay content soil. It was believed that ex-situ treatment of soil contaminated with significant quantities of free-liquid mercury might pose challenges during excavation and handling. Such challenges may include controlling potential mercury vapors and containing liquid mercury beads. As described below, the focus of this project was expanded to include consideration of ex-situ treatment after award of the contract to International Technology Corporation (IT). After award of the contract, IT became part of Shaw

  1. ALTERNATIVE FIELD METHODS TO TREAT MERCURY IN SOIL

    Energy Technology Data Exchange (ETDEWEB)

    Ernie F. Stine

    2002-08-14

    The Department of Energy (DOE) currently has mercury (Hg) contaminated materials and soils at the various sites. Figure 1-1 (from http://www.ct.ornl.gov/stcg.hg/) shows the estimated distribution of mercury contaminated waste at the various DOE sites. Oak Ridge and Idaho sites have the largest deposits of contaminated materials. The majorities of these contaminated materials are soils, sludges, debris, and waste waters. This project concerns treatment of mercury contaminated soils. The technology is applicable to many DOE sites, in-particular, the Y-12 National Security Complex in Oak Ridge Tennessee and Idaho National Engineering and Environmental Laboratory (INEEL). These sites have the majority of the soils and sediments contaminated with mercury. The soils may also be contaminated with other hazardous metals and radionuclides. At the Y12 plant, the baseline treatment method for mercury contaminated soil is low temperature thermal desorption (LTTD), followed by on-site landfill disposal. LTTD is relatively expensive (estimated cost of treatment which exclude disposal cost for the collect mercury is greater than $740/per cubic yard [cy] at Y-12), does not treat any of the metal or radionuclides. DOE is seeking a less costly alternative to the baseline technology. As described in the solicitation (DE-RA-01NT41030), this project initially focused on evaluating cost-effective in-situ alternatives to stabilize or remove the mercury (Hg) contamination from high-clay content soil. It was believed that ex-situ treatment of soil contaminated with significant quantities of free-liquid mercury might pose challenges during excavation and handling. Such challenges may include controlling potential mercury vapors and containing liquid mercury beads. As described below, the focus of this project was expanded to include consideration of ex-situ treatment after award of the contract to International Technology Corporation (IT). After award of the contract, IT became part of Shaw

  2. The potential for Probiotic Bacteria from milkfish intestine in reducing mercury metals in skimmed milk media

    Science.gov (United States)

    Dwyana, Zaraswati; Priosambodo, D.; Haedar, N.; Erviani, A. E.; Djabura, A. K.; Sukma, R.

    2018-03-01

    Mercury (Hg) is one of the heavy metals that is harmful to humans. The accumulation of mercury in the body is generally derived from food. Several types of bacteria from intestine of milkfish are known to reduce mercury concentration. People can take advantage of this bacterial ability by eating it through probiotic foods. This research conducted to figure out the potential for probiotic bacteria from milkfish intestine in reducing mercury. Isolation from probiotic bacteria from milkfish intestine conducted with grown the isolates in MRSA medium with addition of 1% CaCO3. Twelve isolate were obtained from milkfish intestine. Mercury resistance tested was performed by measuring cell density using a spectrophotometer at concentrations of 10, 15 and 20 ppm respectively in skim milk media. Probiotic tests (gastric acid, bile salts and antimicrobial activity) for MRSB media was also conducted. Results showed that seven isolate were resistant to mercury in all concentrations and potential as probiotics. All resistant isolate then tested for skim milk media with addition of 5, 10, 20 ppm mercury acetate respectively. Result showed that only one isolated was able to reduce the concentration of mercury (Hg) in all variations on concentration and potential as mercury reducer probiotic bacteria.

  3. Characterization of mercury bioremediation by transgenic bacteria expressing metallothionein and polyphosphate kinase

    Directory of Open Access Journals (Sweden)

    Gonzalez-Ruiz Gloriene

    2011-08-01

    Full Text Available Abstract Background The use of transgenic bacteria has been proposed as a suitable alternative for mercury remediation. Ideally, mercury would be sequestered by metal-scavenging agents inside transgenic bacteria for subsequent retrieval. So far, this approach has produced limited protection and accumulation. We report here the development of a transgenic system that effectively expresses metallothionein (mt-1 and polyphosphate kinase (ppk genes in bacteria in order to provide high mercury resistance and accumulation. Results In this study, bacterial transformation with transcriptional and translational enhanced vectors designed for the expression of metallothionein and polyphosphate kinase provided high transgene transcript levels independent of the gene being expressed. Expression of polyphosphate kinase and metallothionein in transgenic bacteria provided high resistance to mercury, up to 80 μM and 120 μM, respectively. Here we show for the first time that metallothionein can be efficiently expressed in bacteria without being fused to a carrier protein to enhance mercury bioremediation. Cold vapor atomic absorption spectrometry analyzes revealed that the mt-1 transgenic bacteria accumulated up to 100.2 ± 17.6 μM of mercury from media containing 120 μM Hg. The extent of mercury remediation was such that the contaminated media remediated by the mt-1 transgenic bacteria supported the growth of untransformed bacteria. Cell aggregation, precipitation and color changes were visually observed in mt-1 and ppk transgenic bacteria when these cells were grown in high mercury concentrations. Conclusion The transgenic bacterial system described in this study presents a viable technology for mercury bioremediation from liquid matrices because it provides high mercury resistance and accumulation while inhibiting elemental mercury volatilization. This is the first report that shows that metallothionein expression provides mercury resistance and

  4. Characteristics of mercury emission from linear type of spent fluorescent lamp.

    Science.gov (United States)

    Rhee, Seung-Whee; Choi, Hyo-Hyun; Park, Hun-Su

    2014-06-01

    In order to recycle the linear type of SFL (spent fluorescent lamp), mercury from SFL should be controlled to prevent leaking into the environment. For mercury emission from SFL, mercury concentration is estimated in the parts of SFL such as glass tube, phosphor powder, and base cap using the end-cutting unit. It is also evaluated mercury emission in the effluent gas in the end-cutting unit with changing flow rate. From the results of mercury emission from SFLs, phosphor powder has greater than 80% of mercury amount in SFL and about 15% of mercury amount contained in glass tube. The initial mercury concentration in vapor phase is almost decreased linearly with increasing airflow rate from 0.7 L/min to 1.3 L/min. It is desirable that airflow rate should be high until the concentration of mercury vapor will be stable because the stabilized concentration becomes to be low and the stabilized time goes to be short as increased airflow rate. From KET and TCLP results, finally, phosphor powder should be managed as a hazardous waste but base-cap and glass are not classified as hazardous wastes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Time-dependent dielectric breakdown measurements of porous organosilicate glass using mercury and solid metal probes

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Dongfei; Nichols, Michael T.; Shohet, J. Leon, E-mail: shohet@engr.wisc.edu [Plasma Processing and Technology Laboratory, Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); King, Sean W.; Clarke, James S. [Intel Corporation, Hillsboro, Oregon 97124 (United States); Nishi, Yoshio [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States)

    2014-09-01

    Time-dependent dielectric breakdown (TDDB) is one of the major concerns for low-k dielectric materials. During plasma processing, low-k dielectrics are subjected to vacuum ultraviolet photon radiation and charged-particle bombardment. To examine the change of TDDB properties, time-to-breakdown measurements are made to porous SiCOH before and after plasma exposure. Significant discrepancies between mercury and solid-metal probes are observed and have been shown to be attributed to mercury diffusion into the dielectric porosities.

  6. Time-dependent dielectric breakdown measurements of porous organosilicate glass using mercury and solid metal probes

    International Nuclear Information System (INIS)

    Pei, Dongfei; Nichols, Michael T.; Shohet, J. Leon; King, Sean W.; Clarke, James S.; Nishi, Yoshio

    2014-01-01

    Time-dependent dielectric breakdown (TDDB) is one of the major concerns for low-k dielectric materials. During plasma processing, low-k dielectrics are subjected to vacuum ultraviolet photon radiation and charged-particle bombardment. To examine the change of TDDB properties, time-to-breakdown measurements are made to porous SiCOH before and after plasma exposure. Significant discrepancies between mercury and solid-metal probes are observed and have been shown to be attributed to mercury diffusion into the dielectric porosities

  7. Human Exposure and Health Effects of Inorganic and Elemental Mercury

    OpenAIRE

    Park, Jung-Duck; Zheng, Wei

    2012-01-01

    Mercury is a toxic and non-essential metal in the human body. Mercury is ubiquitously distributed in the environment, present in natural products, and exists extensively in items encountered in daily life. There are three forms of mercury, i.e., elemental (or metallic) mercury, inorganic mercury compounds, and organic mercury compounds. This review examines the toxicity of elemental mercury and inorganic mercury compounds. Inorganic mercury compounds are water soluble with a bioavailability o...

  8. Non-chromatographic speciation analysis of mercury by flow injection on-line preconcentration in combination with chemical vapor generation atomic fluorescence spectrometry

    International Nuclear Information System (INIS)

    Wu Hong; Jin Yan; Han Weiying; Miao, Qiang; Bi Shuping

    2006-01-01

    A novel non-chromatographic approach for direct speciation of mercury, based on the selective retention inorganic mercury and methylmercury on the inner wall of a knotted reactor by using ammonium diethyl dithiophosphate and dithizone as complexing agents respectively, was developed for flow injection on-line sorption preconcentration coupled with chemical vapor generation non-dispersive atomic fluorescence spectrometry. With the sample pH kept at 2.0, the preconcentration of inorganic mercury on the inner walls of the knotted reactor was carried out based on the exclusive retention of Hg-DDP complex in the presence of methylmercury via on-line merging the sample solution with ammonium diethyl dithiophosphate solution, and selective preconcentration methylmercury was achieved with dithizone instead of ammonium diethyl dithiophosphate. A 15% (v/v) HCl was introduced to elute the retained mercury species and merge with KBH 4 solution for atomic fluorescence spectrometry detection. Under the optimal experimental conditions, the sample throughputs of inorganic mercury and methylmercury were 30 and 20 h -1 with the enhancement factors of 13 and 24. The detection limits were found to be 3.6 ng l -1 for Hg 2+ and 2.0 ng l -1 for CH 3 Hg + . The precisions (RSD) for the 11 replicate measurements of each 0.2 μg l -1 of Hg 2+ and CH 3 Hg + were 2.2% and 2.8%, respectively. The developed method was validated by the analysis of certified reference materials (simulated natural water, rice flour and pork) and by recovery measurements on spiked samples, and was applied to the determination of inorganic mercury and methylmercury in biological and environmental water samples

  9. Charge transfer between hydrogen(deuterium) ions and atoms in metal vapors

    International Nuclear Information System (INIS)

    Alvarez T, I.; Cisneros G, C.

    1981-01-01

    The current state of the experiments on charge transfer between hydrogen (deuterium) ions and atoms in metal vapors are given. Emphasis is given to describing different experimental techniques. The results of calculations if available, are compared with existing experimental data. (author)

  10. Influence of long-range transboundary transport on atmospheric water vapor mercury collected at the largest city of Tibet

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jie [Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101 (China); CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101 (China); Laboratory of Green Chemistry, Lappeenranta University of Technology, Sammonkatu 12, Mikkeli FI 50130 (Finland); Kang, Shichang, E-mail: shichang.kang@lzb.ac.cn [State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000 (China); CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101 (China); Tian, Lide [Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101 (China); CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101 (China); Guo, Junming [Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Qianggong; Cong, Zhiyuan [Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101 (China); CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101 (China); Sillanpää, Mika [Laboratory of Green Chemistry, Lappeenranta University of Technology, Sammonkatu 12, Mikkeli FI 50130 (Finland); and others

    2016-10-01

    Monsoon circulation is an important process that affects long-range transboundary transport of anthropogenic contaminants such as mercury (Hg). During the Indian monsoon season of 2013, a total of 92 and 26 atmospheric water vapor samples were collected at Lhasa, the largest city of the Tibet, for Hg and major ions analysis, respectively. The relatively low pH/high electronic conductivity values, together with the fact that NH{sub 4}{sup +} in atmospheric water vapor was even higher than that determined in precipitation of Lhasa, indicated the effects of anthropogenic perturbations through long-range transboundary atmospheric transport. Concentrations of Hg in atmospheric water vapor ranged from 2.5 to 73.7 ng L{sup −1}, with an average of 12.5 ng L{sup −1}. The elevated Hg and major ions concentrations, and electronic conductivity values were generally associated with weak acidic samples, and Hg mainly loaded with anthropogenic ions such as NH{sub 4}{sup +}. The results of principal component analysis and trajectory analysis suggested that anthropogenic emissions from the Indian subcontinent may have largely contributed to the determined Hg in atmospheric water vapor. Furthermore, our study reconfirmed that below-cloud scavenging contribution was significant for precipitation Hg in Lhasa, and evaluated that on average 74.1% of the Hg in precipitation could be accounted for by below-cloud scavenging. - Highlights: • The low pH/high electronic conductivity was found in atmospheric water vapor. • Anthropogenic NH{sub 4}{sup +} was higher than that determined in precipitation of Lhasa. • Elevated Hg and major ions levels were usually associated with weak acidic samples. • Hg in atmospheric water vapor was largely influenced by transboundary transport. • Below-cloud scavenging accounted for most Hg in precipitation.

  11. Influence of long-range transboundary transport on atmospheric water vapor mercury collected at the largest city of Tibet

    International Nuclear Information System (INIS)

    Huang, Jie; Kang, Shichang; Tian, Lide; Guo, Junming; Zhang, Qianggong; Cong, Zhiyuan; Sillanpää, Mika

    2016-01-01

    Monsoon circulation is an important process that affects long-range transboundary transport of anthropogenic contaminants such as mercury (Hg). During the Indian monsoon season of 2013, a total of 92 and 26 atmospheric water vapor samples were collected at Lhasa, the largest city of the Tibet, for Hg and major ions analysis, respectively. The relatively low pH/high electronic conductivity values, together with the fact that NH_4"+ in atmospheric water vapor was even higher than that determined in precipitation of Lhasa, indicated the effects of anthropogenic perturbations through long-range transboundary atmospheric transport. Concentrations of Hg in atmospheric water vapor ranged from 2.5 to 73.7 ng L"−"1, with an average of 12.5 ng L"−"1. The elevated Hg and major ions concentrations, and electronic conductivity values were generally associated with weak acidic samples, and Hg mainly loaded with anthropogenic ions such as NH_4"+. The results of principal component analysis and trajectory analysis suggested that anthropogenic emissions from the Indian subcontinent may have largely contributed to the determined Hg in atmospheric water vapor. Furthermore, our study reconfirmed that below-cloud scavenging contribution was significant for precipitation Hg in Lhasa, and evaluated that on average 74.1% of the Hg in precipitation could be accounted for by below-cloud scavenging. - Highlights: • The low pH/high electronic conductivity was found in atmospheric water vapor. • Anthropogenic NH_4"+ was higher than that determined in precipitation of Lhasa. • Elevated Hg and major ions levels were usually associated with weak acidic samples. • Hg in atmospheric water vapor was largely influenced by transboundary transport. • Below-cloud scavenging accounted for most Hg in precipitation.

  12. A rhizosphere-associated symbiont, Photobacterium spp. strain MELD1, and its targeted synergistic activity for phytoprotection against mercury.

    Directory of Open Access Journals (Sweden)

    Dony Chacko Mathew

    Full Text Available Though heavy metal such as mercury is toxic to plants and microorganisms, the synergistic activity between them may offer benefit for surviving. In this study, a mercury-reducing bacterium, Photobacterium spp. strain MELD1, with an MIC of 33 mg x kg(-1 mercury was isolated from a severely mercury and dioxin contaminated rhizosphere soil of reed (Phragmites australis. While the whole genome sequencing of MELD1 confirmed the presence of a mer operon, the mercury reductase MerA gene showed 99% sequence identity to Vibrio shilloni AK1 and implicates its route resulted from the event of horizontal gene transfer. The efficiency of MELD1 to vaporize mercury (25 mg x kg(-1, 24 h and its tolerance to toxic metals and xenobiotics such as lead, cadmium, pentachlorophenol, pentachloroethylene, 3-chlorobenzoic acid, 2,3,7,8-tetrachlorodibenzo-p-dioxin and 1,2,3,7,8,9-hexachlorodibenzo-p-dioxin is promising. Combination of a long yard bean (Vigna unguiculata ssp. Sesquipedalis and strain MELD1 proved beneficial in the phytoprotection of mercury in vivo. The effect of mercury (Hg on growth, distribution and tolerance was examined in root, shoot, leaves and pod of yard long bean with and without the inoculation of strain MELD1. The model plant inoculated with MELD1 had significant increases in biomass, root length, seed number, and increased mercury uptake limited to roots. Biolog plate assay were used to assess the sole-carbon source utilization pattern of the isolate and Indole-3-acetic acid (IAA productivity was analyzed to examine if the strain could contribute to plant growth. The results of this study suggest that, as a rhizosphere-associated symbiont, the synergistic activity between the plant and MELD1 can improve the efficiency for phytoprotection, phytostabilization and phytoremediation of mercury.

  13. A rhizosphere-associated symbiont, Photobacterium spp. strain MELD1, and its targeted synergistic activity for phytoprotection against mercury.

    Science.gov (United States)

    Mathew, Dony Chacko; Ho, Ying-Ning; Gicana, Ronnie Gicaraya; Mathew, Gincy Marina; Chien, Mei-Chieh; Huang, Chieh-Chen

    2015-01-01

    Though heavy metal such as mercury is toxic to plants and microorganisms, the synergistic activity between them may offer benefit for surviving. In this study, a mercury-reducing bacterium, Photobacterium spp. strain MELD1, with an MIC of 33 mg x kg(-1) mercury was isolated from a severely mercury and dioxin contaminated rhizosphere soil of reed (Phragmites australis). While the whole genome sequencing of MELD1 confirmed the presence of a mer operon, the mercury reductase MerA gene showed 99% sequence identity to Vibrio shilloni AK1 and implicates its route resulted from the event of horizontal gene transfer. The efficiency of MELD1 to vaporize mercury (25 mg x kg(-1), 24 h) and its tolerance to toxic metals and xenobiotics such as lead, cadmium, pentachlorophenol, pentachloroethylene, 3-chlorobenzoic acid, 2,3,7,8-tetrachlorodibenzo-p-dioxin and 1,2,3,7,8,9-hexachlorodibenzo-p-dioxin is promising. Combination of a long yard bean (Vigna unguiculata ssp. Sesquipedalis) and strain MELD1 proved beneficial in the phytoprotection of mercury in vivo. The effect of mercury (Hg) on growth, distribution and tolerance was examined in root, shoot, leaves and pod of yard long bean with and without the inoculation of strain MELD1. The model plant inoculated with MELD1 had significant increases in biomass, root length, seed number, and increased mercury uptake limited to roots. Biolog plate assay were used to assess the sole-carbon source utilization pattern of the isolate and Indole-3-acetic acid (IAA) productivity was analyzed to examine if the strain could contribute to plant growth. The results of this study suggest that, as a rhizosphere-associated symbiont, the synergistic activity between the plant and MELD1 can improve the efficiency for phytoprotection, phytostabilization and phytoremediation of mercury.

  14. A Rhizosphere-Associated Symbiont, Photobacterium spp. Strain MELD1, and Its Targeted Synergistic Activity for Phytoprotection against Mercury

    Science.gov (United States)

    Mathew, Dony Chacko; Ho, Ying-Ning; Gicana, Ronnie Gicaraya; Mathew, Gincy Marina; Chien, Mei-Chieh; Huang, Chieh-Chen

    2015-01-01

    Though heavy metal such as mercury is toxic to plants and microorganisms, the synergistic activity between them may offer benefit for surviving. In this study, a mercury-reducing bacterium, Photobacterium spp. strain MELD1, with an MIC of 33 mg . kg-1 mercury was isolated from a severely mercury and dioxin contaminated rhizosphere soil of reed (Phragmites australis). While the whole genome sequencing of MELD1 confirmed the presence of a mer operon, the mercury reductase MerA gene showed 99% sequence identity to Vibrio shilloni AK1 and implicates its route resulted from the event of horizontal gene transfer. The efficiency of MELD1 to vaporize mercury (25 mg . kg-1, 24 h) and its tolerance to toxic metals and xenobiotics such as lead, cadmium, pentachlorophenol, pentachloroethylene, 3-chlorobenzoic acid, 2,3,7,8-tetrachlorodibenzo-p-dioxin and 1,2,3,7,8,9-hexachlorodibenzo-p-dioxin is promising. Combination of a long yard bean (Vigna unguiculata ssp. Sesquipedalis) and strain MELD1 proved beneficial in the phytoprotection of mercury in vivo. The effect of mercury (Hg) on growth, distribution and tolerance was examined in root, shoot, leaves and pod of yard long bean with and without the inoculation of strain MELD1. The model plant inoculated with MELD1 had significant increases in biomass, root length, seed number, and increased mercury uptake limited to roots. Biolog plate assay were used to assess the sole-carbon source utilization pattern of the isolate and Indole-3-acetic acid (IAA) productivity was analyzed to examine if the strain could contribute to plant growth. The results of this study suggest that, as a rhizosphere-associated symbiont, the synergistic activity between the plant and MELD1 can improve the efficiency for phytoprotection, phytostabilization and phytoremediation of mercury. PMID:25816328

  15. Non-destructive measurement of Xe filling pressure in mercury-free metal halide lamp

    International Nuclear Information System (INIS)

    Motomura, Hideki; Enoki, Kyosuke; Jinno, Masafumi

    2010-01-01

    Mercury-free metal halide lamps (MHLs) for automotive purposes have been developing in the market. When mercury is not used, the electric and emission characteristics of the lamp strongly depend on the xenon filling pressure. Therefore a non-destructive gas pressure estimation technique is required to obtain stable performance of the lamps as commercial products. The authors have developed an estimation method by which the gas pressure is estimated from the current peak value at the initial stage of ignition under pulsed operation. It is shown that accuracy of the order of ±(0.1-0.3) atm is obtained using an empirical formula.

  16. Neuropsychological dysfunction related to earlier occupational exposure to mercury vapor

    Directory of Open Access Journals (Sweden)

    E.C. Zachi

    2007-03-01

    Full Text Available We assessed the neuropsychological test performances of 26 patients (mean age = 41.5 ± 6.1 years; mean years of education = 9.8 ± 1.8; 20 males diagnosed with chronic occupational mercurialism who were former workers at a fluorescent lamp factory. They had been exposed to elemental mercury for an average of 10.2 ± 3.8 years and had been away from this work for 6 ± 4.7 years. Mean urinary mercury concentrations 1 year after cessation of work were 1.8 ± 0.9 µg/g creatinine. Twenty control subjects matched for age, gender, and education (18 males were used for comparison. Neuropsychological assessment included attention, inhibitory control, verbal and visual memory, verbal fluency, manual dexterity, visual-spatial function, executive function, and semantic knowledge tests. The Beck Depression Inventory and the State and Trait Inventory were used to assess depression and anxiety symptoms, respectively. The raw score for the group exposed to mercury indicated slower information processing speed, inferior performance in psychomotor speed, verbal spontaneous recall memory, and manual dexterity of the dominant hand and non-dominant hand (P < 0.05. In addition, the patients showed increased depression and anxiety symptoms (P < 0.001. A statistically significant correlation (Pearson was demonstrable between mean urinary mercury and anxiety trait (r = 0.75, P = 0.03. The neuropsychological performances of the former workers suggest that occupational exposure to elemental mercury has long-term effects on information processing and psychomotor function, with increased depression and anxiety also possibly reflecting the psychosocial context.

  17. Release of volatile mercury from vascular plants

    Science.gov (United States)

    Siegel, S. M.; Puerner, N. J.; Speitel, T. W.

    1974-01-01

    Volatile, organic solvent soluble mercury has been found in leaves and seeds of several angiosperms. Leaves of garlic vine, avocado, and haole-koa release mercury in volatile form rapidly at room temperature. In garlic vine, the most active release is temperature dependent, but does not parallel the vapor-pressure temperature relationship for mercury. Mercury can be trapped in nitric-perchloric acid digestion fluid, or n-hexane, but is lost from the hexane unless the acid mixture is present. Seeds of haole-koa also contain extractable mercury but volatility declines in the series n-hexane (90%), methanol (50%), water (10%). This suggests that reduced volatility may accompany solvolysis in the more polar media.

  18. Possibilities of mercury removal in the dry flue gas cleaning lines of solid waste incineration units.

    Science.gov (United States)

    Svoboda, Karel; Hartman, Miloslav; Šyc, Michal; Pohořelý, Michael; Kameníková, Petra; Jeremiáš, Michal; Durda, Tomáš

    2016-01-15

    Dry methods of the flue gas cleaning (for HCl and SO2 removal) are useful particularly in smaller solid waste incineration units. The amount and forms of mercury emissions depend on waste (fuel) composition, content of mercury and chlorine and on the entire process of the flue gas cleaning. In the case of high HCl/total Hg molar ratio in the flue gas, the majority (usually 70-90%) of mercury is present in the form of HgCl2 and a smaller amount in the form of mercury vapors at higher temperatures. Removal of both main forms of mercury from the flue gas is dependent on chemical reactions and sorption processes at the temperatures below approx. 340 °C. Significant part of HgCl2 and a small part of elemental Hg vapors can be adsorbed on fly ash and solid particle in the air pollution control (APC) processes, which are removed in dust filters. Injection of non-impregnated active carbon (AC) or activated lignite coke particles is able to remove mainly the oxidized Hg(2+) compounds. Vapors of metallic Hg(o) are adsorbed relatively weakly. Much better chemisorption of Hg(o) together with higher sorbent capacity is achieved by AC-based sorbents impregnated with sulfur, alkali poly-sulfides, ferric chloride, etc. Inorganic sorbents with the same or similar chemical impregnation are also applicable for deeper Hg(o) removal (over 85%). SCR catalysts convert part of Hg(o) into oxidized compounds (HgO, HgCl2, etc.) contributing to more efficient Hg removal, but excess of NH3 has a negative effect. Both forms, elemental Hg(o) and HgCl2, can be converted into HgS particles by reacting with droplets/aerosol of poly-sulfides solutions/solids in flue gas. Mercury captured in the form of water insoluble HgS is more advantageous in the disposal of solid waste from APC processes. Four selected options of the dry flue gas cleaning with mercury removal are analyzed, assessed and compared (in terms of efficiency of Hg-emission reduction and costs) with wet methods and retrofits for more

  19. Characterization of the Metabolically Modified Heavy Metal-Resistant Cupriavidus metallidurans Strain MSR33 Generated for Mercury Bioremediation

    Science.gov (United States)

    Rojas, Luis A.; Yáñez, Carolina; González, Myriam; Lobos, Soledad; Smalla, Kornelia; Seeger, Michael

    2011-01-01

    Background Mercury-polluted environments are often contaminated with other heavy metals. Therefore, bacteria with resistance to several heavy metals may be useful for bioremediation. Cupriavidus metallidurans CH34 is a model heavy metal-resistant bacterium, but possesses a low resistance to mercury compounds. Methodology/Principal Findings To improve inorganic and organic mercury resistance of strain CH34, the IncP-1β plasmid pTP6 that provides novel merB, merG genes and additional other mer genes was introduced into the bacterium by biparental mating. The transconjugant Cupriavidus metallidurans strain MSR33 was genetically and biochemically characterized. Strain MSR33 maintained stably the plasmid pTP6 over 70 generations under non-selective conditions. The organomercurial lyase protein MerB and the mercuric reductase MerA of strain MSR33 were synthesized in presence of Hg2+. The minimum inhibitory concentrations (mM) for strain MSR33 were: Hg2+, 0.12 and CH3Hg+, 0.08. The addition of Hg2+ (0.04 mM) at exponential phase had not an effect on the growth rate of strain MSR33. In contrast, after Hg2+ addition at exponential phase the parental strain CH34 showed an immediate cessation of cell growth. During exposure to Hg2+ no effects in the morphology of MSR33 cells were observed, whereas CH34 cells exposed to Hg2+ showed a fuzzy outer membrane. Bioremediation with strain MSR33 of two mercury-contaminated aqueous solutions was evaluated. Hg2+ (0.10 and 0.15 mM) was completely volatilized by strain MSR33 from the polluted waters in presence of thioglycolate (5 mM) after 2 h. Conclusions/Significance A broad-spectrum mercury-resistant strain MSR33 was generated by incorporation of plasmid pTP6 that was directly isolated from the environment into C. metallidurans CH34. Strain MSR33 is capable to remove mercury from polluted waters. This is the first study to use an IncP-1β plasmid directly isolated from the environment, to generate a novel and stable bacterial strain

  20. Characterization of the metabolically modified heavy metal-resistant Cupriavidus metallidurans strain MSR33 generated for mercury bioremediation.

    Directory of Open Access Journals (Sweden)

    Luis A Rojas

    Full Text Available BACKGROUND: Mercury-polluted environments are often contaminated with other heavy metals. Therefore, bacteria with resistance to several heavy metals may be useful for bioremediation. Cupriavidus metallidurans CH34 is a model heavy metal-resistant bacterium, but possesses a low resistance to mercury compounds. METHODOLOGY/PRINCIPAL FINDINGS: To improve inorganic and organic mercury resistance of strain CH34, the IncP-1β plasmid pTP6 that provides novel merB, merG genes and additional other mer genes was introduced into the bacterium by biparental mating. The transconjugant Cupriavidus metallidurans strain MSR33 was genetically and biochemically characterized. Strain MSR33 maintained stably the plasmid pTP6 over 70 generations under non-selective conditions. The organomercurial lyase protein MerB and the mercuric reductase MerA of strain MSR33 were synthesized in presence of Hg(2+. The minimum inhibitory concentrations (mM for strain MSR33 were: Hg(2+, 0.12 and CH(3Hg(+, 0.08. The addition of Hg(2+ (0.04 mM at exponential phase had not an effect on the growth rate of strain MSR33. In contrast, after Hg(2+ addition at exponential phase the parental strain CH34 showed an immediate cessation of cell growth. During exposure to Hg(2+ no effects in the morphology of MSR33 cells were observed, whereas CH34 cells exposed to Hg(2+ showed a fuzzy outer membrane. Bioremediation with strain MSR33 of two mercury-contaminated aqueous solutions was evaluated. Hg(2+ (0.10 and 0.15 mM was completely volatilized by strain MSR33 from the polluted waters in presence of thioglycolate (5 mM after 2 h. CONCLUSIONS/SIGNIFICANCE: A broad-spectrum mercury-resistant strain MSR33 was generated by incorporation of plasmid pTP6 that was directly isolated from the environment into C. metallidurans CH34. Strain MSR33 is capable to remove mercury from polluted waters. This is the first study to use an IncP-1β plasmid directly isolated from the environment, to generate a novel

  1. Mercury Production and Use in Colonial Andean Silver Production: Emissions and Health Implications

    Science.gov (United States)

    Hagan, Nicole A.

    2012-01-01

    Background: Colonial cinnabar mining and refining began in Huancavelica, Peru, in 1564. With a local source of mercury, the amalgamation process was adopted to refine silver in Potosí, Bolivia, in the early 1570s. As a result, large quantities of mercury were released into the environment. Objectives: We used archival, primary, and secondary sources to develop the first estimate of mercury emissions from cinnabar refining in Huancavelica and to revise previous estimates of emissions from silver refining in Potosí during the colonial period (1564–1810). Discussion: Although other estimates of historical mercury emissions have recognized Potosí as a significant source, Huancavelica has been overlooked. In addition, previous estimates of mercury emissions from silver refining under-estimated emissions because of unrecorded (contra-band) production and volatilization of mercury during processing and recovery. Archival descriptions document behavioral and health issues during the colonial period that are consistent with known effects of mercury intoxication. Conclusions: According to our calculations, between 1564 and 1810, an estimated 17,000 metric tons of mercury vapor were emitted from cinnabar smelting in Huancavelica, and an estimated 39,000 metric tons were released as vapor during silver refining operations in Potosí. Huancavelica and Potosí combined contributed > 25% of the 196,000 metric tons of mercury vapor emissions in all of Latin America between 1500 and 1800. The historical record is laden with evidence of mercury intoxication consistent with effects recognized today. Our estimates serve as the foundation of investigations of present-day contamination in Huancavelica and Potosí resulting from historical emissions of mercury. PMID:22334094

  2. DMPS (DIMAVAL) as a challenge test to assess the mercury and arsenic body/kidney load in humans and as a treatment of mercury toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Aposhian, H.V.; Maiorino, R.M.; Aposhian, M.M. [Univ. of Arizona, Tucson, AZ (United States); Hurlbut, K.M. [Rocky Mountain Poison Control Center, Denver, CO (United States)] [and others

    1996-12-31

    Mercury is an element which, with its compounds, is hazardous and is found in hazardous wastes. In Order to develop suitable diagnostic and therapeutic agents for mercury exposure, we have sought alternative test systems. We have used the chelating agent 2,3-dimercaptopropane-1-sulfonate (DMPS, DIMAVAL{reg_sign}) for estimating the body burden of mercury in normal humans and in dental personnel in a developing country, and for detoxifying humans with mercurous chloride exposure. Use of the DMPS-mercury challenge test has shown that two-thirds of the mercury excreted in the urine of volunteers with dental amalgams appears to be derived from the mercury vapor released from their amalgams. The DMPS challenge test (300 mg, by mouth, after an 11 hr fast) was useful for monitoring dental personnel for mercury vapor exposure. The DMPS challenge test was given to 11 factory workers who make a skin lotion that contains mercurous chloride, 8 users of the skin lotion, and 9 controls. The increases in urinary Hg resulting from the DMPS challenge were 45, 87, and 38-fold, respectively. The results demonstrate that in humans exposed to mercurous chloride, the DMPS-mercury challenge test is of value for a more realistic estimation of mobilizable Hg. DMPS should be considered for use to determine mercury body burdens and to treat humans exposed to mercury and its compounds via exposure to hazardous wastes. 42 refs., 2 figs., 5 tabs.

  3. The Corrosion Protection of Metals by Ion Vapor Deposited Aluminum

    Science.gov (United States)

    Danford, M. D.

    1993-01-01

    A study of the corrosion protection of substrate metals by ion vapor deposited aluminum (IVD Al) coats has been carried out. Corrosion protection by both anodized and unanodized IVD Al coats has been investigated. Base metals included in the study were 2219-T87 Al, 7075-T6 Al, Titanium-6 Al-4 Vanadium (Ti-6Al-4V), 4130 steel, D6AC steel, and 4340 steel. Results reveal that the anodized IVD Al coats provide excellent corrosion protection, but good protection is also achieved by IVD Al coats that have not been anodized.

  4. Performance investigations of liquid-metal heat pipes for space and terrestrial applications

    International Nuclear Information System (INIS)

    Kemme, J.E.; Keddy, E.S.; Phillips, J.R.

    1978-01-01

    The high heat transfer capacity of liquid-metal heat pipes is demonstrated in performance tests with mercury, potassium, sodium, and lithium working fluids and wick structures which serve to minimize liquid pressure losses and vapor/liquid interactions. Appropriate wicks for horizontal and vertical operation are described. It is shown that heat-transfer with these wicks is limited by vapor flow effects. Examples are given of particular effects associated with a long adiabatic section between evaporator and condenser and with a heat source of uniform temperature as opposed to a source of uniform power

  5. Theoretical study of adsorption of water vapor on surface of metallic uranium

    CERN Document Server

    Xiong Bi Tao; Xue Wei Dong; Zhu Zheng He; Jiang Gang; Wang Hong Yan; Gao Tao

    2002-01-01

    According to the experimental data, there is an intermediate substance that formed in the initial stage of oxidation reaction when water vapor is absorbed onto the metallic uranium. The minimum energy of UOH sub 2 witch C sub 2 subupsilon configuration is obtained in the state of sup 5 A sub 1 by B3LYP method of the density function theory (DFT), which is consistent with that by statics of atoms and molecules reaction (AMRS) and group theory. The results from calculations indicate that the adsorption of water vapor on the metallic uranium is an exothermic reaction and that the adsorbed amount decreases with the elevated temperatures. The adsorptive heat at 1 atm is -205.4747 kJ centre dot mol sup - sup 1 , which indicates a typical chemical adsorption

  6. Mercury contamination in agricultural soils from abandoned metal mines classified by geology and mineralization.

    Science.gov (United States)

    Kim, Han Sik; Jung, Myung Chae

    2012-01-01

    This survey aimed to compare mercury concentrations in soils related to geology and mineralization types of mines. A total of 16,386 surface soils (0~15 cm in depth) were taken from agricultural lands near 343 abandoned mines (within 2 km from each mine) and analyzed for Hg by AAS with a hydride-generation device. To meaningfully compare mercury levels in soils with geology and mineralization types, three subclassification criteria were adapted: (1) five mineralization types, (2) four valuable ore mineral types, and (3) four parent rock types. The average concentration of Hg in all soils was 0.204 mg kg(-1) with a range of 0.002-24.07 mg kg(-1). Based on the mineralization types, average Hg concentrations (mg kg(-1)) in the soils decreased in the order of pegmatite (0.250) > hydrothermal vein (0.208) > hydrothermal replacement (0.166) > skarn (0.121) > sedimentary deposits (0.045). In terms of the valuable ore mineral types, the concentrations decreased in the order of Au-Ag-base metal mines ≈ base metal mines > Au-Ag mines > Sn-W-Mo-Fe-Mn mines. For parent rock types, similar concentrations were found in the soils derived from sedimentary rocks and metamorphic rocks followed by heterogeneous rocks with igneous and metamorphic processes. Furthermore, farmland soils contained relatively higher Hg levels than paddy soils. Therefore, it can be concluded that soils in Au, Ag, and base metal mines derived from a hydrothermal vein type of metamorphic rocks and pegmatite deposits contained relatively higher concentrations of mercury in the surface environment.

  7. Non-chromatographic speciation analysis of mercury by flow injection on-line preconcentration in combination with chemical vapor generation atomic fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Wu Hong [School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry and Key Laboratory of MOE for Life Science, Nanjing University, Nanjing 210093 (China); Department of Chemistry, Xuzhou Normal University, Xuzhou 221116 (China); Jin Yan [School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry and Key Laboratory of MOE for Life Science, Nanjing University, Nanjing 210093 (China); Han Weiying [School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry and Key Laboratory of MOE for Life Science, Nanjing University, Nanjing 210093 (China); Miao, Qiang [School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry and Key Laboratory of MOE for Life Science, Nanjing University, Nanjing 210093 (China); Bi Shuping [School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry and Key Laboratory of MOE for Life Science, Nanjing University, Nanjing 210093 (China)]. E-mail: bisp@nju.edu.cn

    2006-07-15

    A novel non-chromatographic approach for direct speciation of mercury, based on the selective retention inorganic mercury and methylmercury on the inner wall of a knotted reactor by using ammonium diethyl dithiophosphate and dithizone as complexing agents respectively, was developed for flow injection on-line sorption preconcentration coupled with chemical vapor generation non-dispersive atomic fluorescence spectrometry. With the sample pH kept at 2.0, the preconcentration of inorganic mercury on the inner walls of the knotted reactor was carried out based on the exclusive retention of Hg-DDP complex in the presence of methylmercury via on-line merging the sample solution with ammonium diethyl dithiophosphate solution, and selective preconcentration methylmercury was achieved with dithizone instead of ammonium diethyl dithiophosphate. A 15% (v/v) HCl was introduced to elute the retained mercury species and merge with KBH{sub 4} solution for atomic fluorescence spectrometry detection. Under the optimal experimental conditions, the sample throughputs of inorganic mercury and methylmercury were 30 and 20 h{sup -1} with the enhancement factors of 13 and 24. The detection limits were found to be 3.6 ng l{sup -1} for Hg{sup 2+} and 2.0 ng l{sup -1} for CH{sub 3}Hg{sup +}. The precisions (RSD) for the 11 replicate measurements of each 0.2 {mu}g l{sup -1} of Hg{sup 2+} and CH{sub 3}Hg{sup +} were 2.2% and 2.8%, respectively. The developed method was validated by the analysis of certified reference materials (simulated natural water, rice flour and pork) and by recovery measurements on spiked samples, and was applied to the determination of inorganic mercury and methylmercury in biological and environmental water samples.

  8. Mechanism of mercuric chloride resistance in microorganisms. I. Vaporization of a mercury compound from mercuric chloride by multiple drug resistant strains of Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Komura, I; Izaki, K

    1971-01-01

    Three strains of Escherichia coli possessing the multiple drug resistance were found to be resistant also to HgCl/sub 2/, though they were sensitive to other heavy metal ions such as nickel, cobalt, cadmium and zinc ions. Like the resistance to drugs such as chloramphenicol and tetracycline, the HgCl/sub 2/ resistance could be transferred from a resistant strain of E. coli to sensitive strains of E. coli and Aerobacter aerogenes. The resistant strains could grow in the presence of 0.02 mM HgCl/sub 2/, whereas a sensitive strain failed to grow in the presence of 0.01 mM HgCl/sub 2/. During cultivation in the presence of HgCl/sub 2/, the cells of resistant strain vaporized a form of radioactive mercury when incubated with /sup 203/HgCl/sub 2/, glucose and NaCl in phosphate buffer while the cells of sensitive strain showed no such activity. This phenomenon seemed to explain the HgCl/sub 2/ resistance of the resistant strains.

  9. Neuropsychological alterations in mercury intoxication persist several years after exposure

    Directory of Open Access Journals (Sweden)

    Elaine Cristina Zachi

    Full Text Available Abstract Elemental mercury is a liquid toxic metal widely used in industry. Occupational exposure occurs mainly via inhalation. Previously, neuropsychological assessment detected deficits in former workers of a fluorescent lamp plant who had been exposed to elemental mercury vapor and were away from exposure for several years at the time of examination. Objectives: The purpose of this work was to reexamine these functions after 18 months in order to evaluate their progression. Methods: Thirteen participants completed tests of attention, inhibitory control, verbal/visual memory, psychomotor speed, verbal fluency, visuomotor ability, executive function, semantic knowledge, and depression and anxiety inventories on 2 separate occasions. Results: At baseline, the former workers indicated slower psychomotor and information processing speed, verbal spontaneous recall memory impairment, and increased depression and anxiety symptoms compared to controls (P<0.05. Paired comparisons of neuropsychological functioning within the exposed group at baseline and 1.5 years later showed poorer immediate memory performance (P<0.05. There were no differences on other measures. Conclusions: Although the literature show signs of recovery of functions, the neuropsychological effects related to mercury exposure are found to persist for many years.

  10. Determinação de mercúrio total em amostras de água, sedimento e sólidos em suspensão de corpos aquáticos por espectrofotometria de absorção atômica com gerador de vapor a frio Determination of total mercury in water, sediments and solids in suspension in aquatic systems by cold vapor atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    José L. F. Vieira

    1996-06-01

    Full Text Available O emprego de mercúrio metálico nos processos de extração do ouro libera toneladas de mercúrio ao meio ambiente, provocando um aumento considerável nas concentrações presentes. Com a finalidade de prevenir a exposição humana a concentrações excessivas, o que poderá resultar em graves episódios de intoxicação mercurial, bem como avaliar a possibilidade de sedimentos tornarem-se fontes potenciais de contaminação para os seres vivos, é de fundamental importância a monitorização do mercúrio em diversos compartimentos ambientais. Efetuou-se a padronização de uma metodologia analítica para determinação de mercúrio total em amostras de água, sólidos em suspensão e sedimentos de corpos aquáticos para monitorização ambiental do xenobiótico. Posteriormente, foram analisadas amostras oriundas de regiões garimpeiras, com vistas a avaliar o desempenho do método em amostras reais e efetuar levantamento preliminar sobre a contaminação mercurial na área de estudo.The use of metallic mercury in the extraction and concentration of gold causes the discarding of tons of this metal in the environment, leading to a considerable increase in the natural levels of the same and the contamination of the surrounding areas. Thus it is extremely important to monitor the presence of this metal in various sectors of the environment with a view aiming to previnting human exposure to excessive concentrations which can result in serious episodes of mercury poisoning. It is also important to estimate the possibility of river sediments becoming potential sources of contamination of human beings. The determination of total mercury was undertaken by using cold vapor atomic absorption spectrometry. River waters, as well as sediments and suspended solids were used as samples for the standardization of the analytical procedure. Later on, this method was tested on samples originating in gold mining areas for the purpose of assessing its validity.

  11. Article Commentary: Chelation Therapy for Mercury Poisoning

    Directory of Open Access Journals (Sweden)

    Rong Guan

    2009-01-01

    Full Text Available Chelation therapy has been the major treatment for heavy metal poisoning. Various chelating agents have been developed and tested for treatment of heavy metal intoxications, including mercury poisoning. It has been clearly shown that chelating agents could rescue the toxicity caused by heavy metal intoxication, but the potential preventive role of chelating agents against heavy metal poisoning has not been explored much. Recent paper by Siddiqi and colleagues has suggested a protective role of chelating agents against mercury poisoning, which provides a promising research direction for broader application of chelation therapy in prevention and treatment of mercury poisoning.

  12. Mercury-induced motor and sensory neurotoxicity: systematic review of workers currently exposed to mercury vapor.

    Science.gov (United States)

    Fields, Cheryl A; Borak, Jonathan; Louis, Elan D

    2017-11-01

    The neurotoxicity of elemental mercury (Hg 0 ) is well-recognized, but it is uncertain whether and for how long neurotoxicity persists; among studies that evaluated previously exposed workers, only one examined workers during and also years after exposure ceased. The aim of this review is to document the type, frequency, and dose-relatedness of objective neurological effects in currently exposed mercury workers and thereby provide first approximations of the effects one would have expected in previously exposed workers evaluated during exposure. We systematically reviewed studies of neurotoxicity in currently exposed mercury workers identified by searching MEDLINE (1950-2015), government reports, textbook chapters, and references cited therein; dental cohorts were not included. Outcomes on physical examination (PE), neurobehavioral (NB) tests, and electrophysiological studies were extracted and evaluated for consistency and dose-relatedness. Forty-five eligible studies were identified, comprising over 3000 workers chronically exposed to a range of Hg 0 concentrations (0.002-1.7 mg/m 3 ). Effects that demonstrated consistency across studies and increased frequency across urine mercury levels (200 μg/L, while NB testing is more appropriate for those with lower U Hg levels. They also provide benchmarks to which findings in workers with historical exposure can be compared.

  13. A self-focusing mercury jet target

    CERN Document Server

    Johnson, C

    2002-01-01

    Mercury jet production targets have been studied in relation to antiproton production and, more recently, pion production for a neutrino factory. There has always been a temptation to include some self-focusing of the secondaries by passing a current through the mercury jet analogous to the already proven lithium lens. However, skin heating of the mercury causes fast vaporization leading to the development of a gliding discharge along the surface of the jet. This external discharge can, nevertheless, provide some useful focusing of the secondaries in the case of the neutrino factory. The technical complications must not be underestimated.

  14. Method of controlling the mercury vapor pressure in a photo-chemical lamp or vapor filter used for Hg196 enrichment

    International Nuclear Information System (INIS)

    Grossman, M.W.

    1993-01-01

    The present invention is directed to a method of eliminating the cold spot zones presently used on Hg 196 isotope separation lamps and filters by the use of a mercury amalgams, preferably mercury - indium amalgams. The use of an amalgam affords optimization of the mercury density in the lamp and filter of a mercury enrichment reactor, particularly multilamp enrichment reactors. Moreover, the use of an amalgam in such lamps and/or filters affords the ability to control the spectral line width of radiation emitted from lamps, a requirement for mercury enrichment

  15. Mercury chemisorption by sulfur adsorbed in porous materials

    NARCIS (Netherlands)

    Steijns, M.; Peppelenbos, A.; Mars, P.

    1976-01-01

    The sorption of mercury vapor by adsorbed sulfur in the zeolites CaA (= 5A) and NaX (=13X) and two types of active carbon has been measured at a temperature of 50°C. With increasing degree of micropore filling by sulfur the fraction of sulfur accessible to mercury atoms decreased for CaA and NaX.

  16. Thomson scattering diagnostics of steady state and pulsed welding processes without and with metal vapor

    International Nuclear Information System (INIS)

    Kühn-Kauffeldt, M; Schein, J; Marqués, J-L

    2015-01-01

    Thomson scattering is applied to measure temperature and density of electrons in the arc plasma of the direct current gas tungsten arc welding (GTAW) process and pulsed gas metal arc welding (GMAW) process. This diagnostic technique allows to determine these plasma parameters independent from the gas composition and heavy particles temperature. The experimental setup is adapted to perform measurements on stationary as well as transient processes. Spatial and temporal electron temperature and density profiles of a pure argon arc in the case of the GTAW process and argon arc with the presence of aluminum metal vapor in the case of the GMAW process were obtained. Additionally the data is used to estimate the concentration of the metal vapor in the GMAW plasma. (fast track communication)

  17. Phytoremediation of Ionic and Methyl Mercury Pollution

    Energy Technology Data Exchange (ETDEWEB)

    Meagher, Richard B.

    2004-12-01

    Phytoremediation is defined as the use of plants to extract, resist, detoxify, and/or sequester toxic environmental pollutants. The long-term goal of the proposed research is to develop and test highly productive, field-adapted plant species that have been engineered for the phytoremediation of mercury. A variety of different genes, which should enable plants to clean mercury polluted sites are being tested as tools for mercury phytoremediation, first in model laboratory plants and then in potential field species. Several of these genes have already been shown to enhance mercury phytoremediation. Mercury pollution is a serious, world-wide problem affecting the health of human and wildlife populations. Environmentally, the most serious mercury threat is the production of methylmercury (CH3Hg+) by native bacteria at mercury contaminated wetland sites. Methylmercury is inherently more toxic than metallic (Hg(0)) or ionic (Hg(II)) mercury, and because methylmercury is prolifically biomagnified up the food chain, it poses the most immediate danger to animal populations. We have successfully engineered two model plants, Arabidopsis and tobacco, to use the bacterial merB gene to convert methylmercury to less toxic ionic mercury and to use the bacterial merA gene to further detoxify ionic mercury to the least toxic form of mercury, metallic mercury. Plants expressing both MerA and MerB proteins detoxify methylmercury in two steps to the metallic form. These plants germinate, grow, and set seed at normal growth rates on levels of methylmercury or ionic mercury that are lethal to normal plants. Our newest efforts involve engineering plants with several additional bacterial and plant genes that allow for higher levels of mercury resistance and mercury hyperaccumulation. The potential for these plants to hyperaccumulate mercury was further advanced by developing constitutive, aboveground, and root-specific gene expression systems.

  18. Experimental and theoretical studies of metal vapor atoms

    International Nuclear Information System (INIS)

    Whitfield, S.B.; Wehlitz, Ralf; Martins, Michael

    2004-01-01

    Employing electron spectrometry in conjunction with tuneable synchrotron radiation, we will present a detailed examination of the photoionization dynamics of selected metal vapor atoms. In particular, this paper will focus on the relative partial cross sections of the atomic Li K-shell main and satellite (ionization with excitation) photoelectron lines in the region of the strong 1snln'l' autoionizing transitions, the atomic Sc 3d, 4s main and satellite photoelectron lines in the region of the 3p→3d giant resonance, and also the atomic Fe 3d, 4s main and satellite photoelectron lines in the same resonance region. Our experimental data for Sc and Fe will be compared to our state-of-the-art calculations based on the superposition of configuration method developed by Cowan (The Theory of Atomic Structure and Spectra. University of California Berkeley Press, Berkeley and Los Angeles, 1981). Our partial cross section measurements for Li and Sc will be complemented with measurements of the angular distribution parameter, β. In addition, our Li data will also be compared with recent R-matrix calculations (Phys. Rev. 57 (1998) 1045). In the case of Fe, we will also address the term dependent behavior of the partial cross sections on resonance. These results will highlight what can be achieved with today's technology and point the way towards future endeavors in the study of the photoionization dynamics of open-shell metal vapor atoms

  19. Cross sections and equilibrium fractions of deuterium ions and atoms in metal vapors. Progress report, June 1, 1978-May 31, 1979

    International Nuclear Information System (INIS)

    Morgan, T.J.

    1979-01-01

    The purpose of this program is to measure cross sections and equilibrium fractions of deuterium ions and atoms in metal vapors. In particular, in connection with double charge exchange D - ion sources, there is concern with D - formation in alkaline-earth vapor targets. Also, in connection with possible metal vapor contamination in the system, there is concern with cross sections for high energy D + , D 0 and D - collisions with these metal vapors. Results from this research will fill in a gap in knowledge of single and double charge transfer and multiple collision processes in alkaline-earth targets and provide a better understanding of D - formation mechanisms. A list of publications is included. 6 references

  20. Mercury absorption in aqueous hypochlorite

    International Nuclear Information System (INIS)

    Zhao, L.L.; Rochelle, G.T.

    1999-01-01

    The absorption of elemental Hg vapor into aqueous hypochlorite was measured in a stirred tank reactor at 25 and 55C. NaOCl strongly absorbs Hg even at high pH. Low pH, high Cl - and high-temperature favor mercury absorption. Aqueous free Cl 2 was the active species that reacted with mercury. However, chlorine desorption was evident at high Cl - and pH 15 M -1 s -1 at 25C and 1.4x10 17 M -1 s -1 at 55C. Gas-phase reaction was observed between Hg and Cl 2 on apparatus surfaces. Strong mercury absorption in water was also detected with Cl 2 present. Results indicate that the chlorine concentration, moisture, and surface area contribute positively to mercury removal. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  1. Mercury speciation by high-performance liquid chromatography atomic fluorescence spectrometry using an integrated microwave/UV interface. Optimization of a single step procedure for the simultaneous photo-oxidation of mercury species and photo-generation of Hg0

    International Nuclear Information System (INIS)

    Quadros, Daiane P.C. de; Campanella, Beatrice; Onor, Massimo; Bramanti, Emilia; Borges, Daniel L.G.; D'Ulivo, Alessandro

    2014-01-01

    We described the hyphenation of photo-induced chemical vapor generation with high performance liquid chromatography–atomic fluorescence spectrometry (HPLC–AFS) for the quantification of inorganic mercury, methylmercury (MeHg) and ethylmercury (EtHg). In the developed procedure, formic acid in mobile phase was used for the photodecomposition of organomercury compounds and reduction of Hg 2+ to mercury vapor under microwave/ultraviolet (MW/UV) irradiation. We optimized the proposed method studying the influence of several operating parameters, including the type of organic acid and its concentration, MW power, composition of HPLC mobile phase and catalytic action of TiO 2 nanoparticles. Under the optimized conditions, the limits of detection were 0.15, 0.15 and 0.35 μg L −1 for inorganic mercury, MeHg and EtHg, respectively. The developed method was validated by determination of the main analytical figures of merit and applied to the analysis of three certified reference materials. The online interfacing of liquid chromatography with photochemical-vapor generation–atomic fluorescence for mercury determination is simple, environmentally friendly, and represents an attractive alternative to the conventional tetrahydroborate (THB) system. - Highlights: • Inorganic and organic mercury were determined by photochemical vapor generation using a MW/UV photochemical reactor. • The optimized procedure has been applied to the speciation of Hg(II), MeHg and EtHg coupling HPLC with PVG–AFS. • The proposed method is simple, sensitive, and is established for mercury determination in biological materials

  2. Practical isolation of methyl mercury in natural waters

    International Nuclear Information System (INIS)

    Schintu, M.; Kauri, T.; Contu, A.; Kudo, A.

    1987-01-01

    A simple method to isolate both organic and inorganic mercury in natural waters is described. The mercuric compounds were quantitatively extracted with dithizone from six different kinds of water spiked at nanogram levels with radioactive mercuric chloride and methylmercuric chloride. After the separation from the inorganic mercury with sodium nitrite, methyl mercury was transferred to aqueous medium with sodium thiosulfate. The method provides a high recovery of organic as well as inorganic mercury to an aqueous medium, prior to their determination by gold-trap cold vapor atomic absorption spectrophotometry. This method is easy, rapid, and inexpensive. Furthermore, the limited number of analytical steps should reduce loss and contamination

  3. Assessment of Mercury Concentration in Turtles (Podocnemis unifilis in the Xingu River Basin, Brazil

    Directory of Open Access Journals (Sweden)

    Marina Teófilo Pignati

    2018-06-01

    Full Text Available Many studies on mercury contamination in aquatic biota deal with the effect of consuming metal-contaminated organisms on human health. In this study, we examined the factors that cause mercury contamination in Podocnemis unifilis in the Xingu River Basin of Mato Grosso and Pará States, Brazil. We quantified by atomic absorption spectroscopy with cold vapor the total mercury (THg content in the liver and muscle samples of 50 Podocnemis unifilis specimens collected from the basin. The liver and muscle samples contained 134.20 ± 119.30 ng g−1 THg and 24.86 ± 26.36 ng g−1 THg, respectively. Each chelonian or meal has, on average, 5.34× more Hg than the highest level established as acceptable. From the results it can be inferred that, given the weekly consumption of chelonians, the riverine and indigenous communities in the Xingu River Basin are at risk of chronic consumption of Hg in amounts beyond the acceptable limit. The potential high risk to the health of this population is evident; however, the risk classification needs to be further studied.

  4. Electric conductivity of alkali metal vapors in the region of critical point

    International Nuclear Information System (INIS)

    Likal'ter, A.A.

    1982-01-01

    A behaviour of alkali metal conductivity in the vicinity of a critical point has been analyzed on the base of deVeloped representations on a vapor state. A phenomenological conductivity theory has been developed, which is in a good agreement with experimental data obtained

  5. Modeling film uniformity and symmetry in ionized metal physical vapor deposition with cylindrical targets

    International Nuclear Information System (INIS)

    Lu Junqing; Yang Lin; Yoon, Jae Hong; Cho, Tong Yul; Tao Guoqing

    2008-01-01

    Severe asymmetry of the metal deposits on the trench sidewalls occurs near the wafer edge during low pressure ionized metal physical vapor deposition of Cu seed layer for microprocessor interconnects. To investigate this process and mitigate the asymmetry, an analytical view factor model based on the analogy between metal sputtering and diffuse thermal radiation was constructed to investigate deposition uniformity and symmetry for cylindrical target sputtering in low pressure (below 0.1 Pa) ionized Cu physical vapor deposition. The model predictions indicate that as the distance from the cylindrical target to wafer increases, the metal film thickness becomes more uniform across the wafer and the asymmetry of the metal deposits at the wafer edge increases significantly. These trends are similar to those for planar targets. To minimize the asymmetry, the height of the cylindrical target should be kept at a minimum. For cylindrical targets, the outward-facing sidewall of the trench could receive more direct Cu fluxes than the inward-facing one when the target to wafer distance is short. The predictions also indicate that increasing the diameter of the cylindrical target could significantly reduce the asymmetry in metal deposits at the wafer edge and make the film thickness more uniform across the wafer

  6. Phytoremediation of Ionic and Methyl Mercury Pollution

    Energy Technology Data Exchange (ETDEWEB)

    Meagher, Richard B.

    2005-06-01

    Phytoremediation is defined as the use of plants to extract, resist, detoxify, and/or sequester toxic environmental pollutants. The long-term goal of the proposed research is to develop and test highly productive, field-adapted plant species that have been engineered for the phytoremediation of mercury. A variety of different genes, which should enable plants to clean mercury polluted sites are being tested as tools for mercury phytoremediation, first in model laboratory plants and then in potential field species. Several of these genes have already been shown to enhance mercury phytoremediation. Mercury pollution is a serious, world-wide problem affecting the health of human and wildlife populations. Environmentally, the most serious mercury threat is the production of methylmercury (CH3Hg+) by native bacteria at mercury contaminated wetland sites. Methylmercury is inherently more toxic than metallic (Hg(0)) or ionic (Hg(II)) mercury, and because methylmercury is prolifically biomagnified up the food chain, it poses the most immediate danger to animal populations. We have successfully engineered two model plants, Arabidopsis and tobacco, to use the bacterial merB gene to convert methylmercury to less toxic ionic mercury and to use the bacterial merA gene to further detoxify ionic mercury to the least toxic form of mercury, metallic mercury. Plants expressing both MerA and MerB proteins detoxify methylmercury in two steps to the metallic form. These plants germinate, grow, and set seed at normal growth rates on levels of methylmercury or ionic mercury that are lethal to normal plants. Our newest efforts involve engineering plants with several additional bacterial and plant genes that allow for higher levels of mercury resistance and mercury hyperaccumulation. The potential for these plants to hyperaccumulate mercury was further advanced by developing constitutive, aboveground, and root-specific gene expression systems. Our current strategy is to engineer plants to

  7. Modeling MESSENGER Observations of Calcium in Mercury's Exosphere

    Science.gov (United States)

    Burger, Matthew Howard; Killen, Rosemary M.; McClintock, William E.; Vervack, Ronald J., Jr.; Merkel, Aimee W.; Sprague, Ann L.; Sarantos, Menelaos

    2012-01-01

    The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) on the MESSENGER spacecraft has made the first high-spatial-resolution observations of exospheric calcium at Mercury. We use a Monte Carlo model of the exosphere to track the trajectories of calcium atoms ejected from the surface until they are photoionized, escape from the system, or stick to the surface. This model permits an exploration of exospheric source processes and interactions among neutral atoms, solar radiation, and the planetary surface. The MASCS data have suggested that a persistent, high-energy source of calcium that was enhanced in the dawn, equatorial region of Mercury was active during MESSENGER's three flybys of Mercury and during the first seven orbits for which MASCS obtained data. The total Ca source rate from the surface varied between 1.2x10(exp 23) and 2.6x10(exp 23) Ca atoms/s, if its temperature was 50,000 K. The origin of this high-energy, asymmetric source is unknown, although from this limited data set it does not appear to be consistent with micrometeoroid impact vaporization, ion sputtering, electron-stimulated desorption, or vaporization at dawn of material trapped on the cold nightside.

  8. Application of Discharges in Vapor of Evaporated Metals for the Film Deposition from the Ionized Stream

    International Nuclear Information System (INIS)

    Kostin, E.G.

    2006-01-01

    results of researches of the discharge device for ionization of the vapor of solid materials are presented. Evaporation of a material was made by an electron gun with a deviation of a beam on 180 degree. Diode type discharge device for ionization was placed above a surface of evaporated metal and was in a longitudinal adjustable magnetic field. Discharge was carried out in crossed electric and magnetic fields. Partial ionization of the vapor was made by primary and secondary electrons of the gun in a vapor cloud above evaporated substance. Physical properties and structure of the films. The comparative analysis of the films properties, besieged in conditions of influence of bombardment by ions of evaporated metal were studied depending on energy and the contents of ions in a stream of particles on a substrate

  9. Advanced mercury removal from gold leachate solutions prior to gold and silver extraction: a field study from an active gold mine in Peru.

    Science.gov (United States)

    Matlock, Matthew M; Howerton, Brock S; Van Aelstyn, Mike A; Nordstrom, Fredrik L; Atwood, David A

    2002-04-01

    Mercury contamination in the Gold-Cyanide Process (GCP) is a serious health and environmental problem. Following the heap leaching of gold and silver ores with NaCN solutions, portions of the mercury-cyano complexes often adhere to the activated carbon (AC) used to extract the gold. During the electrowinning and retorting steps, mercury can be (and often is) emitted to the air as a vapor. This poses a severe health hazard to plant workers and the local environment. Additional concerns relate to the safety of workers when handling the mercury-laden AC. Currently, mercury treatment from the heap leach solution is nonexistent. This is due to the fact that chelating ligands which can effectively work under the adverse pH conditions (as present in the heap leachate solutions) do not exist. In an effort to economically and effectively treat the leachate solution prior to passing over the AC, a dipotassium salt of 1,3-benzenediamidoethanethiol (BDET2-) has been developed to irreversibly bind and precipitate the mercury. The ligand has proven to be highly effective by selectively reducing mercury levels from average initial concentrations of 34.5 ppm (parts per million) to 0.014 ppm within 10 min and to 0.008 ppm within 15 min. X-ray powder diffraction (XRD), proton nuclear magnetic resonance (1H NMR), Raman, and infrared (IR) spectroscopy demonstrate the formation of a mercury-ligand compound, which remains insoluble over pH ranges of 0.0-14.0. Leachate samples from an active gold mine in Peru have been analyzed using cold vapor atomic fluorescence (CVAF) and inductively coupled plasma optical emission spectroscopy (ICP-OES) for metal concentrations before and after treatment with the BDET2- ligand.

  10. Understanding the mercury reduction issue: the impact of mercury on the environment and human health.

    Science.gov (United States)

    Kao, Richard T; Dault, Scott; Pichay, Teresa

    2004-07-01

    Mercury has been used in both medicine and dentistry for centuries. Recent media attention regarding the increased levels of mercury in dietary fish, high levels of mercury in air emissions, and conjecture that certain diseases may be caused by mercury exposure has increased public awareness of the potential adverse health effects of high doses of mercury. Dentistry has been criticized for its continued use of mercury in dental amalgam for both public health and environmental reasons. To address these concerns, dental professionals should understand the impact of the various levels and types of mercury on the environment and human health. Mercury is unique in its ability to form amalgams with other metals. Dental amalgam--consisting of silver, copper, tin, and mercury--has been used as a safe, stable, and cost-effective restorative material for more than 150 years. As a result of this use, the dental profession has been confronted by the public on two separate health issues concerning the mercury content in amalgam. The first issue is whether the mercury amalgamated with the various metals to create dental restorations poses a health issue for patients. The second is whether the scraps associated with amalgam placement and the removal of amalgam restorations poses environmental hazards which may eventually have an impact on human health. Despite the lack of scientific evidence for such hazards, there is growing pressure for the dental profession to address these health issues. In this article, the toxicology of mercury will be reviewed and the impact of amalgam on health and the environment will be examined.

  11. Method of controlling the mercury vapor pressure in a photo-chemical lamp or vapor filter used for Hg.sup.196 enrichment

    Science.gov (United States)

    Grossman, Mark W.

    1993-01-01

    The present invention is directed to a method of eliminating the cold spot zones presently used on Hg.sup.196 isotope separation lamps and filters by the use of a mercury amalgams, preferably mercury - indium amalgams. The use of an amalgam affords optimization of the mercury density in the lamp and filter of a mercury enrichment reactor, particularly multilamp enrichment reactors. Moreover, the use of an amalgam in such lamps and/or filters affords the ability to control the spectral line width of radiation emitted from lamps, a requirement for mercury enrichment.

  12. Method of controlling the mercury vapor pressure in a photo-chemical lamp or vapor filter used for Hg[sup 196] enrichment

    Science.gov (United States)

    Grossman, M.W.

    1993-02-16

    The present invention is directed to a method of eliminating the cold spot zones presently used on Hg[sup 196] isotope separation lamps and filters by the use of a mercury amalgams, preferably mercury - indium amalgams. The use of an amalgam affords optimization of the mercury density in the lamp and filter of a mercury enrichment reactor, particularly multilamp enrichment reactors. Moreover, the use of an amalgam in such lamps and/or filters affords the ability to control the spectral line width of radiation emitted from lamps, a requirement for mercury enrichment.

  13. Mercury Exposure and Heart Diseases

    Science.gov (United States)

    Genchi, Giuseppe; Sinicropi, Maria Stefania; Carocci, Alessia; Lauria, Graziantonio; Catalano, Alessia

    2017-01-01

    Environmental contamination has exposed humans to various metal agents, including mercury. It has been determined that mercury is not only harmful to the health of vulnerable populations such as pregnant women and children, but is also toxic to ordinary adults in various ways. For many years, mercury was used in a wide variety of human activities. Nowadays, the exposure to this metal from both natural and artificial sources is significantly increasing. Recent studies suggest that chronic exposure, even to low concentration levels of mercury, can cause cardiovascular, reproductive, and developmental toxicity, neurotoxicity, nephrotoxicity, immunotoxicity, and carcinogenicity. Possible biological effects of mercury, including the relationship between mercury toxicity and diseases of the cardiovascular system, such as hypertension, coronary heart disease, and myocardial infarction, are being studied. As heart rhythm and function are under autonomic nervous system control, it has been hypothesized that the neurotoxic effects of mercury might also impact cardiac autonomic function. Mercury exposure could have a long-lasting effect on cardiac parasympathetic activity and some evidence has shown that mercury exposure might affect heart rate variability, particularly early exposures in children. The mechanism by which mercury produces toxic effects on the cardiovascular system is not fully elucidated, but this mechanism is believed to involve an increase in oxidative stress. The exposure to mercury increases the production of free radicals, potentially because of the role of mercury in the Fenton reaction and a reduction in the activity of antioxidant enzymes, such as glutathione peroxidase. In this review we report an overview on the toxicity of mercury and focus our attention on the toxic effects on the cardiovascular system. PMID:28085104

  14. Mercury Exposure and Heart Diseases.

    Science.gov (United States)

    Genchi, Giuseppe; Sinicropi, Maria Stefania; Carocci, Alessia; Lauria, Graziantonio; Catalano, Alessia

    2017-01-12

    Environmental contamination has exposed humans to various metal agents, including mercury. It has been determined that mercury is not only harmful to the health of vulnerable populations such as pregnant women and children, but is also toxic to ordinary adults in various ways. For many years, mercury was used in a wide variety of human activities. Nowadays, the exposure to this metal from both natural and artificial sources is significantly increasing. Recent studies suggest that chronic exposure, even to low concentration levels of mercury, can cause cardiovascular, reproductive, and developmental toxicity, neurotoxicity, nephrotoxicity, immunotoxicity, and carcinogenicity. Possible biological effects of mercury, including the relationship between mercury toxicity and diseases of the cardiovascular system, such as hypertension, coronary heart disease, and myocardial infarction, are being studied. As heart rhythm and function are under autonomic nervous system control, it has been hypothesized that the neurotoxic effects of mercury might also impact cardiac autonomic function. Mercury exposure could have a long-lasting effect on cardiac parasympathetic activity and some evidence has shown that mercury exposure might affect heart rate variability, particularly early exposures in children. The mechanism by which mercury produces toxic effects on the cardiovascular system is not fully elucidated, but this mechanism is believed to involve an increase in oxidative stress. The exposure to mercury increases the production of free radicals, potentially because of the role of mercury in the Fenton reaction and a reduction in the activity of antioxidant enzymes, such as glutathione peroxidase. In this review we report an overview on the toxicity of mercury and focus our attention on the toxic effects on the cardiovascular system.

  15. Mercury Exposure and Heart Diseases

    Directory of Open Access Journals (Sweden)

    Giuseppe Genchi

    2017-01-01

    Full Text Available Environmental contamination has exposed humans to various metal agents, including mercury. It has been determined that mercury is not only harmful to the health of vulnerable populations such as pregnant women and children, but is also toxic to ordinary adults in various ways. For many years, mercury was used in a wide variety of human activities. Nowadays, the exposure to this metal from both natural and artificial sources is significantly increasing. Recent studies suggest that chronic exposure, even to low concentration levels of mercury, can cause cardiovascular, reproductive, and developmental toxicity, neurotoxicity, nephrotoxicity, immunotoxicity, and carcinogenicity. Possible biological effects of mercury, including the relationship between mercury toxicity and diseases of the cardiovascular system, such as hypertension, coronary heart disease, and myocardial infarction, are being studied. As heart rhythm and function are under autonomic nervous system control, it has been hypothesized that the neurotoxic effects of mercury might also impact cardiac autonomic function. Mercury exposure could have a long-lasting effect on cardiac parasympathetic activity and some evidence has shown that mercury exposure might affect heart rate variability, particularly early exposures in children. The mechanism by which mercury produces toxic effects on the cardiovascular system is not fully elucidated, but this mechanism is believed to involve an increase in oxidative stress. The exposure to mercury increases the production of free radicals, potentially because of the role of mercury in the Fenton reaction and a reduction in the activity of antioxidant enzymes, such as glutathione peroxidase. In this review we report an overview on the toxicity of mercury and focus our attention on the toxic effects on the cardiovascular system.

  16. Mercury speciation by high-performance liquid chromatography atomic fluorescence spectrometry using an integrated microwave/UV interface. Optimization of a single step procedure for the simultaneous photo-oxidation of mercury species and photo-generation of Hg{sup 0}

    Energy Technology Data Exchange (ETDEWEB)

    Quadros, Daiane P.C. de [Departamento de Química, Universidade Federal de Santa Catarina, 88040-970 Florianópolis, SC (Brazil); Campanella, Beatrice; Onor, Massimo; Bramanti, Emilia [National Research Council of Italy, C.N.R., Instituto di Chimica dei Composti Organo Metallici – ICCOM – UOS Pisa, Area della Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy); Borges, Daniel L.G. [Departamento de Química, Universidade Federal de Santa Catarina, 88040-970 Florianópolis, SC (Brazil); D' Ulivo, Alessandro, E-mail: dulivo@pi.iccom.cnr.it [National Research Council of Italy, C.N.R., Instituto di Chimica dei Composti Organo Metallici – ICCOM – UOS Pisa, Area della Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy)

    2014-11-01

    We described the hyphenation of photo-induced chemical vapor generation with high performance liquid chromatography–atomic fluorescence spectrometry (HPLC–AFS) for the quantification of inorganic mercury, methylmercury (MeHg) and ethylmercury (EtHg). In the developed procedure, formic acid in mobile phase was used for the photodecomposition of organomercury compounds and reduction of Hg{sup 2+} to mercury vapor under microwave/ultraviolet (MW/UV) irradiation. We optimized the proposed method studying the influence of several operating parameters, including the type of organic acid and its concentration, MW power, composition of HPLC mobile phase and catalytic action of TiO{sub 2} nanoparticles. Under the optimized conditions, the limits of detection were 0.15, 0.15 and 0.35 μg L{sup −1} for inorganic mercury, MeHg and EtHg, respectively. The developed method was validated by determination of the main analytical figures of merit and applied to the analysis of three certified reference materials. The online interfacing of liquid chromatography with photochemical-vapor generation–atomic fluorescence for mercury determination is simple, environmentally friendly, and represents an attractive alternative to the conventional tetrahydroborate (THB) system. - Highlights: • Inorganic and organic mercury were determined by photochemical vapor generation using a MW/UV photochemical reactor. • The optimized procedure has been applied to the speciation of Hg(II), MeHg and EtHg coupling HPLC with PVG–AFS. • The proposed method is simple, sensitive, and is established for mercury determination in biological materials.

  17. The theory of temporal compression of intense pulses in a metal vapor

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, M.J.; Crane, J.K.

    1990-11-16

    We examine compression of near-resonant pulses in metal vapor in the nonlinear regime. Our calculations examine nonlinear effects on compression of optimally-chirped pulses of various fluences. In addition, we compare model predictions with experimental results for compression of 4 nsec Nd:YAG pumped dye pulses.

  18. Analysis of mercury and other heavy metals accumulated in lichen Usnea antarctica from James Ross Island, Antarctica

    Czech Academy of Sciences Publication Activity Database

    Zvěřina, O.; Láska, K.; Červenka, R.; Kuta, J.; Coufalík, Pavel; Komárek, J.

    2014-01-01

    Roč. 186, č. 12 (2014), s. 9089-9100 ISSN 0167-6369 Institutional support: RVO:68081715 Keywords : antarctica * heavy metal * mercury * lichen Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.679, year: 2014

  19. Isolation, screening and identification of mercury resistant bacteria from mercury contaminated soil

    Directory of Open Access Journals (Sweden)

    Kowalczyk Anna

    2016-01-01

    Full Text Available New bacterial strains resistant to high concentration of mercury were obtained and character iz ed focusing on their potential application in bioremediation. The biological material was isolated from soil contaminated with mercury. The ability to removal of Hg from the liquid medium and the effect of the various pH and mercury concentrations in the environment on bacterial strains growth kinetics were tested. The selected strains were identified by analysis of the 16S ribosome subunit coding sequenc es as Pseudomonas syringae. The analysis of Hg concentration in liquid medium as effect of microbial metabolism demonstrated that P. syringae is able to remove almost entire metal from medium after 120 hours of incubation. Obtained results revealed new ability of the isolated strain P. syringae. Analyzed properties of this soil bacteria species able to reduce concentration of Hg ors immobi lize this metal are promising for industrial wastewater treatment and bioremediation of the soils polluted especially by mercury lamps scrapping, measuring instruments, dry batteries, detonators or burning fuels made from crude oil, which may also contain mercury. Selected bacteria strains provide efficient and relatively low-cost bioremediation of the areas and waters contaminated with Hg.

  20. Process for removing mercury from aqueous solutions

    Science.gov (United States)

    Googin, John M.; Napier, John M.; Makarewicz, Mark A.; Meredith, Paul F.

    1986-01-01

    A process for removing mercury from water to a level not greater than two parts per billion wherein an anion exchange material that is insoluble in water is contacted first with a sulfide containing compound and second with a compound containing a bivalent metal ion forming an insoluble metal sulfide. To this treated exchange material is contacted water containing mercury. The water containing not more than two parts per billion of mercury is separated from the exchange material.

  1. Determination of Toxic Metals in Indian Smokeless Tobacco Products

    Directory of Open Access Journals (Sweden)

    Dhanashri Dhaware

    2009-01-01

    Full Text Available This study targets the lesser-known ingredients of smokeless tobacco products, i.e., the toxic metals, in Indian brands. The metals selected in the study included lead (Pb, cadmium (Cd, arsenic (As, copper (Cu, mercury (Hg, and selenium (Se. The differential pulse anodic stripping voltammetry (DPASV technique was used for estimating the metals Pb, Cd, and Cu; square wave voltammetry for As; and the cold vapor atomic absorption technique for Hg. The resulting levels of the metals were compared to the daily consumption of the smokeless tobacco products. It was observed that almost 30% of gutkha brand samples exceeded the permissible levels of metals Pb and Cu, when compared to the provisional tolerable intake limits determined by the FAO/WHO. The reliability of data was assured by analyzing standard reference materials.

  2. Making Mercury's Core with Light Elements

    Science.gov (United States)

    Vander Kaaden, Kathleen E.; McCubbin, Francis M.; Ross, D. Kent

    2016-01-01

    Recent results obtained from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft showed the surface of Mercury has low FeO abundances (less than 2 wt%) and high S abundances (approximately 4 wt%), suggesting the oxygen fugacity of Mercury's surface materials is somewhere between 3 to 7 log10 units below the IW buffer. The highly reducing nature of Mercury has resulted in a relatively thin mantle and a large core that has the potential to exhibit an exotic composition in comparison to the other terrestrial planets. This exotic composition may extend to include light elements (e.g., Si, C, S). Furthermore, has argued for a possible primary floatation crust on Mercury composed of graphite, which may require a core that is C-saturated. In order to investigate mercurian core compositions, we conducted piston cylinder experiments at 1 GPa, from 1300 C to 1700 C, using a range of starting compositions consisting of various Si-Fe metal mixtures (Si5Fe95, Si10Fe90, Si22Fe78, and Si35Fe65). All metals were loaded into graphite capsules used to ensure C-saturation during the duration of each experimental run. Our experiments show that Fe-Si metallic alloys exclude carbon relative to more Fe-rich metal. This exclusion of carbon commences within the range of 5 to 10 wt% Si. These results indicate that if Mercury has a Si-rich core (having more than approximately 5 wt% silicon), it would have saturated in carbon at low C abundances allowing for the possible formation of a graphite floatation crust as suggested by. These results have important implications for the thermal and magmatic evolution of Mercury.

  3. Behaviour of mercury compounds in soil

    Energy Technology Data Exchange (ETDEWEB)

    Booer, J R

    1944-01-01

    The uses of inorganic compounds of mercury for the control of plant pests is reviewed, and a summary of the relevant chemical and physical properties of the compounds concerned is given. On chemical evidence a working hypothesis is propounded showing that all compounds may be expected to decompose into metallic mercury. A pot technique is described by means of which a correlation can be obtained between the effective mercury content of a given soil sample and the rate of growth of wheat seedlings. The mathematical treatment of the results is described, and the validity of the pot technique is verified by statistical analysis of results. Using the pot technqiue it is shown that volatilization losses are insignificant but that mercury is slowly rendered ineffective by the formation of mercuric sulphide. The effect of sulphur-reducing bacteria is considered and the influence of Vibrio desulphuricans on mercury is studied in detail. Experimental evidence obtained by the pot technique is produced to show that mercurous chloride slowly decomposes in the soil giving mercury and mercuric chloride, mercuric chloride rapidly decomposes into mercury and mercurous chloride, and other inorganic compounds decompose directly into mercury. The working hypothesis is substantiated in all major aspects. The uses and properties of the organo-mercury compounds are then discussed. Type compounds selected are ethyl mercury phosphate, phenyl mercury acetate and methoxyethyl mercury acetate. Using the pot technique it is shown that the formation of organo-mercury clays takes place and that these clays decompose giving metallic mercury. A mechanism is suggested.

  4. 21 CFR 862.3600 - Mercury test system.

    Science.gov (United States)

    2010-04-01

    ....3600 Mercury test system. (a) Identification. A mercury test system is a device intended to measure mercury, a heavy metal, in human specimens. Measurements obtained by this device are used in the diagnosis... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Mercury test system. 862.3600 Section 862.3600...

  5. Catalytic activation of molecular hydrogen in alkyne hydrogenation reactions by lanthanide metal vapor reaction products

    International Nuclear Information System (INIS)

    Evans, W.J.; Bloom, I.; Engerer, S.C.

    1983-01-01

    A rotary metal vapor was used in the synthesis of Lu, Er, Nd, Sm, Yb, and La alkyne, diene, and phosphine complexes. A typical catalytic hydrogenation experiment is described. The lanthanide metal vapor product is dissolved in tetrahydrofuran or toluene and placed in a pressure reaction vessel 3-hexyne (or another substrate) is added, the chamber attached to a high vacuum line, cooled to -196 0 C, evacuated, warmed to ambient temperature and hydrogen is added. The solution is stirred magnetically while the pressure in monitored. The reaction products were analyzed by gas chromatography. Rates and products of various systems are listed. This preliminary survey indicates that catalytic reaction chemistry is available to these metals in a wide range of coordination environments. Attempts to characterize these compounds are hampered by their paramagnetic nature and their tendency to polymerize

  6. Homogeneous and Heterogeneous Reaction and Transformation of Hg and Trace Metals in Combustion Systems

    Energy Technology Data Exchange (ETDEWEB)

    J. Helble; Clara Smith; David Miller

    2009-08-31

    The overall goal of this project was to produce a working dynamic model to predict the transformation and partitioning of trace metals resulting from combustion of a broad range of fuels. The information provided from this model will be instrumental in efforts to identify fuels and conditions that can be varied to reduce metal emissions. Through the course of this project, it was determined that mercury (Hg) and arsenic (As) would be the focus of the experimental investigation. Experiments were therefore conducted to examine homogeneous and heterogeneous mercury oxidation pathways, and to assess potential interactions between arsenic and calcium. As described in this report, results indicated that the role of SO{sub 2} on Hg oxidation was complex and depended upon overall gas phase chemistry, that iron oxide (hematite) particles contributed directly to heterogeneous Hg oxidation, and that As-Ca interactions occurred through both gas-solid and within-char reaction pathways. Modeling based on this study indicated that, depending upon coal type and fly ash particle size, vaporization-condensation, vaporization-surface reaction, and As-CaO in-char reaction all play a role in arsenic transformations under combustion conditions.

  7. Physics of mercury-free high-pressure discharge lamps

    International Nuclear Information System (INIS)

    Born, M

    2002-01-01

    This paper gives a summary of recent results about the replacement of mercury in high-pressure discharge lamps by metallic zinc. Actually, this topic is of high relevance for the lighting industry due to the need of more environmentally friendly products. The work presented here is supported by the German government under contract no 13N8072 and 13N8264. Due to upcoming European legislations which are expected for the year 2003, the replacement of mercury in lighting products is a high priority task. For example, mercury-free headlight discharge lamps are requested by the automotive industry. Pure zinc/argon discharges as well as lamps including zinc or mercury and metal halide additives are investigated. Experimental data are compared with model calculations of the energy balance involving the transport of heat and radiation. Since the excitation energies of relevant zinc transitions are lower than for mercury, axis temperatures of pure zinc lamps are about 300 K below the value of mercury arcs. In addition, the thermal conductivity of zinc including the contribution of radiation diffusion is larger than compared to mercury. From lamp voltage measurements it is found that the cross section for elastical electron scattering by zinc atoms is about the same than for mercury. When adding metal halides to a pure zinc discharge with argon as a starting gas, i.e. NaI, TlI, DyI 3 , axis temperatures decrease to about 5100 K due to strong radiation cooling. In order to obtain sufficiently large lamp voltages, wall temperatures of more than 1300 K are adjusted by means of polycrystalline aluminaoxide (Al 2 O 3 ) as a wall material. Electric field strengths of 6.0 and 8.6 V mm -1 are measured for metal halide lamps containing zinc or mercury, respectively. The light technical data of the discharges are very close, since mercury and zinc do not contribute significantly to the radiation in the visible range. Efficacies of up to 93 and 100 lm W -1 are found in metal halide

  8. Effect of melt surface depression on the vaporization rate of a metal heated by an electron beam

    International Nuclear Information System (INIS)

    Guilbaud, D.

    1995-01-01

    In order to produce high density vapor, a metal confined in a water cooled crucible is heated by an electron beam (eb). The energy transfer to the metal causes partial melting, forming a pool where the flow is driven by temperature induced buoyancy and capillary forces. Furthermore, when the vaporization rate is high, the free surface is depressed by the thrust of the vapor. The main objective of this paper is to analyse the combined effects of liquid flow and vapor condensation back on the liquid surface. This is done with TRIO-EF, a general purpose fluid mechanics finite element code. A suitable iterative scheme is used to calculate the free surface flow and the temperature field. The numerical simulation gives an insight about the influence of the free surface in heat transfer. The depression of the free surface induces strong effects on both liquid and vapor. As liquid is concerned, buoyancy convection in the pool is enhanced, the energy flux from electron beam is spread and constriction of heat flux under the eb spot is weakened. It results that heat transfer towards the crucible is reinforced. As vapor is concerned, its fraction that condenses back on the liquid surface is increased. These phenomena lead to a saturation of the net vaporization rate as the eb spot radius is reduced, at constant eb power. (author). 8 refs., 13 figs., 2 tabs

  9. REMOVAL OF MERCURY FROM CONTAMINATED SOILS AT THE PAVLODAR CHEMICAL PLANT.

    Energy Technology Data Exchange (ETDEWEB)

    KHRAPUNOV, V. YE.; ISAKOVA, R.A.; LEVINTOV, B.L.; KALB, P.D.; KAMBEROV, I.M.; TREBUKHOV, A.

    2004-09-25

    Soils beneath and adjacent to the Pavlodar Chemical Plant in Kazakhstan have been contaminated with elemental mercury as a result of chlor alkali processing using mercury cathode cell technology. The work described in this paper was conducted in preparation for a demonstration of a technology to remove the mercury from the contaminated soils using a vacuum assisted thermal distillation process. The process can operate at temperatures from 250-500 C and pressures of 0.13kPa-1.33kPa. Following vaporization, the mercury vapor is cooled, condensed and concentrated back to liquid elemental mercury. It will then be treated using the Sulfur Polymer Stabilization/Solidification process developed at Brookhaven National Laboratory as described in a companion paper at this conference. The overall project objectives include chemical and physical characterization of the contaminated soils, study of the influence of the soil's physical-chemical and hydro dynamical characteristics on process parameters, and laboratory testing to optimize the mercury sublimation rate when heating in vacuum. Based on these laboratory and pilot-scale data, a full-scale production process will be designed for testing. This paper describes the soil characterization. This work is being sponsored by the International Science and Technology Center.

  10. Inorganic mercury exposure in drinking water alters essential metal homeostasis in pregnant rats without altering rat pup behavior.

    Science.gov (United States)

    Oliveira, Cláudia S; Oliveira, Vitor A; Costa, Lidiane M; Pedroso, Taíse F; Fonseca, Mariana M; Bernardi, Jamile S; Fiuza, Tiago L; Pereira, Maria E

    2016-10-01

    The aim of this work was to investigate the effects of HgCl 2 exposure in the doses of 0, 10 and 50μg Hg 2+ /mL in drinking water during pregnancy on tissue essential metal homeostasis, as well as the effects of HgCl 2 exposure in utero and breast milk on behavioral tasks. Pregnant rats exposed to both inorganic mercury doses presented high renal Hg content and an increase in renal Cu and hepatic Zn levels. Mercury exposure increased fecal Hg and essential metal contents. Pups exposed to inorganic Hg presented no alterations in essential metal homeostasis or in behavioral task markers of motor function. In conclusion, this work showed that the physiologic pregnancy and lactation states protected the offspring from adverse effects of low doses of Hg 2+ . This protection is likely to be related to the endogenous scavenger molecule, metallothionein, which may form an inert complex with Hg 2+ . Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Ion-imprinted polymethacrylic microbeads as new sorbent for preconcentration and speciation of mercury.

    Science.gov (United States)

    Dakova, Ivanka; Karadjova, Irina; Georgieva, Ventsislava; Georgiev, George

    2009-04-30

    Metal ion-imprinted polymer particles have been prepared by copolymerization of methacrylic acid as monomer, trimethylolpropane trimethacrylate as cross-linking agent and 2,2'-azobisisobutyronitrile as initiator, in the presence of Hg(II)-1-(2-thiazolylazo)-2-naphthol complex. The separation and preconcentration characteristics of the Hg-ion-imprinted microbeads for inorganic mercury have been investigated by batch procedure. The optimal pH value for the quantitative sorption is 7. The adsorbed inorganic mercury is easily eluted by 2 mL 4M HNO(3). The adsorption capacity of the newly synthesized Hg ion-imprinted microbeads is 32.0 micromol g(-1) for dry copolymer. The selectivity of the copolymer toward inorganic mercury (Hg(II)) ion is confirmed through the comparison of the competitive adsorptions of Cd(II), Co(II), Cu(II), Ni(II), Pb(II), Zn(II)) and high values of the selectivity and distribution coefficients have been calculated. Experiments performed for selective determination of inorganic mercury in mineral and sea waters showed that the interfering matrix does not influence the extraction efficiency of Hg ion-imprinted microbeads. The detection limit for inorganic mercury is 0.006 microg L(-1) (3 sigma), determined by cold vapor atomic adsorption spectrometry. The relative standard deviation varied in the range 5-9 % at 0.02-1 microg L(-1) Hg levels. The new Hg-ion-imprinted microbeads have been tested and applied for the speciation of Hg in river and mineral waters: inorganic mercury has been determined selectively in nondigested sample, while total mercury e.g. sum of inorganic and methylmercury, has been determined in digested sample.

  12. Recovery of Platinum Group Metals from Spent Catalysts Using Iron Chloride Vapor Treatment

    Science.gov (United States)

    Taninouchi, Yu-ki; Okabe, Toru H.

    2018-05-01

    The recovery of platinum group metals (PGMs) from spent automobile catalysts is a difficult process because of their relatively low contents in the scrap. In this study, to improve the efficiency of the existing recycling techniques, a novel physical concentration method involving treatment with FeCl2 vapor has been examined. The reactions occurring between typical catalyst components and FeCl2 vapor are discussed from the thermodynamic point of view, and the validity of the proposed technique was experimentally verified. The obtained results indicate that the vapor treatment at around 1200 K (927 °C) can effectively alloy PGMs (Pt, Pd, and Rh) with Fe, resulting in the formation of a ferromagnetic alloy. It was also confirmed that cordierite and alumina (the major catalyst components) remained unreacted after the vapor treatment, while ceria species were converted into oxychlorides. The samples simulating the automobile catalyst were also subjected to magnetic separation after the treatment with FeCl2 vapor; as a result, PGMs were successfully extracted and concentrated in the form of a magnetic powder. Thus, the FeCl2 vapor treatment followed by magnetic separation can be utilized for recovering PGMs directly from spent catalysts as an effective pretreatment for the currently used recycling methods.

  13. Mercury Test on macroalgae from Burung and Tikus Island, Jakarta

    Science.gov (United States)

    Novianty, H.; Herandarudewi, S. M. C.; Suratno

    2018-04-01

    Environmental pollution, caused by the introduction of hazardous substances such as heavy metals into coastal waters, affects not only the condition of the waters but also the source of food that will be contaminated by hazardous metals, one of them is mercury (Hg). Mercury is toxic metal which could cause damage to the human body in certain threshold amounts. The aim of this study was to determin the content of mercury in several species of algae from Burung and Tikus Island, Jakarta. This study was using a descriptive method. The samples were collected from Burung and Tikus Island by simple rundown sampling. Mercury level was measured by NIC3000 mercury analyzer tool. The results showed that none of the mercury levels have passed 0.5 mg/kg (the safety standart level of mercury by SNI (Indonesian National Standard)7387 in 2019) mangrove. From tikus Island had lower total mercury than the ones from Burung Island. Burung Island is located near Pari Island which is a residential area, where pollution is more likely to occur.

  14. Mercuralismo metálico crônico ocupacional Chronic occupational metallic mercurialism

    Directory of Open Access Journals (Sweden)

    Marcília de Araújo Medrado Faria

    2003-02-01

    Full Text Available Revisão que analisa os conhecimento atuais das manifestações do mercuralismo crônico ocupacional. Avaliaram-se os principais estudos e revisões científicas concernentes às formas clínicas e fisiopatogenia desta intoxicação. Foram pesquisadas, entre outras fontes, as bases de dados Medline e Lilacs. O eretismo ou a síndrome neuropsíquica caracterizada por sintomas de irritabilidade, ansiedade, mudanças de comportamento, apatia, perda da auto-estima e de memória, depressão, insônia, delírio, cefaléia, dores musculares e tremores é observada após a exposição ao mercúrio metálico. Manifestações de hipertensão arterial, renais, imunológicas e alérgicas são freqüentes. A falta de medidas preventivas aumenta o risco da doença em indústrias, no garimpo e consultórios odontológicos. A legislação brasileira assinala 16 manifestações clínicas determinadas pela intoxicação, todavia ocorre subdiagnóstico. O diagnóstico clínico é importante e as novas tecnologias médicas podem detectar alterações do sistema nervoso central, renal e imunológico, proporcionando avanços no conhecimento neuro-imuno-toxicológico e nas medidas de prevenção do mercuralismo.This is a review on current knowledge of chronic occupational mercurialism syndrome. Major scientific studies and reviews on clinical manifestation and physiopathology of mercury poisoning were evaluated. The search was complemented using Medline and Lilacs data. Erethism or neuropsychological syndrome, characterized by irritability, personality change, loss of self-confidence, depression, delirium, insomnia, apathy, loss of memory, headaches, general pain, and tremors, is seen after exposure to metallic mercury. Hypertension, renal disturbances, allergies and immunological conditions are also common. Mercury is found in many different work processes: industries, gold mining, and dentistry. As prevention measures are not often adopted there is an increasing

  15. Determination of thiomersal by flow injection coupled with microwave-assisted photochemical online oxidative decomposition of organic mercury and cold vapor atomic fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Campanella, Beatrice; Onor, Massimo; Mascherpa, Marco Carlo; D’Ulivo, Alessandro; Ferrari, Carlo; Bramanti, Emilia

    2013-01-01

    Graphical abstract: -- Highlights: •Thiomersal was determined on line using FI-MW/UV-CVGAFS. •MW/UV allows a “green” on line oxidation of organic mercury to Hg II . •Each measure requires less than 5 min with a LOD of 3 ng mL −1 (as mercury). •Hg concentration in commercial ophthalmic solutions ranges between 7.5 and 59.0 μg mL −1 . -- Abstract: We developed a flow injection (FI) method for the determination of thiomersal (sodium ethylmercurithiosalicylate, C 9 H 9 HgNaO 2 S) based on the UV/microwave (MW) photochemical, online oxidation of organic mercury, followed by cold vapor generation atomic fluorescence spectrometry (CVG-AFS) detection. Thiomersal was quantitatively converted in the MW/UV process to Hg(II), with a yield of 97 ± 3%. This reaction was followed by the reduction of Hg(II) to Hg(0) performed in a knotted reaction coil with NaBH 4 solution, and AFS detection in an Ar/H 2 miniaturized flame. The method was linear in the 0.01–2 μg mL −1 range, with a LOD of 0.003 μg mL −1 . This method has been applied to the determination of thiomersal in ophthalmic solutions, with recoveries ranging between 97% and 101%. We found a mercury concentration in commercial ophthalmic solutions ranging between 7.5 and 59.0 μg mL −1

  16. Stability of mercury concentration measurements in archived soil and peat samples

    Science.gov (United States)

    Navrátil, Tomáš; Burns, Douglas; Nováková, Tereza; Kaňa, Jiří; Rohovec, Jan; Roll, Michal; Ettler, Vojtěch

    2018-01-01

    Archived soil samples can provide important information on the history of environmental contamination and by comparison with recently collected samples, temporal trends can be inferred. Little previous work has addressed whether mercury (Hg) concentrations in soil samples are stable with long-term storage under standard laboratory conditions. In this study, we have re-analyzed using cold vapor atomic adsorption spectroscopy a set of archived soil samples that ranged from relatively pristine mountainous sites to a polluted site near a non-ferrous metal smelter with a wide range of Hg concentrations (6 - 6485 µg kg-1). Samples included organic and mineral soils and peats with a carbon content that ranged from 0.2 to 47.7%. Soil samples were stored in polyethylene bags or bottles and held in laboratory rooms where temperature was not kept to a constant value. Mercury concentrations in four subsets of samples were originally measured in 2000, 2005, 2006 and 2007, and re-analyzed in 2017, i.e. after 17, 12, 11 and 10 years of storage. Statistical analyses of either separated or lumped data yielded no significant differences between the original and current Hg concentrations. Based on these analyses, we show that archived soil and peat samples can be used to evaluate historical soil mercury contamination.

  17. Elemental mercury poisoning caused by subcutaneous and intravenous injection: An unusual self-injury

    Directory of Open Access Journals (Sweden)

    Wale Jaywant

    2010-01-01

    Full Text Available Elemental mercury poisoning most commonly occurs through vapor inhalation as mercury is well absorbed through the lungs. Administering subcutaneous and intravenous elemental mercury is very uncommon but with only a few isolated case reports in the literature. We present an unusual case of elemental mercury poisoning in a 20-year-old young male who presented with chest pain, fever, and hemoptysis. He had injected himself subcutaneously with elemental mercury obtained from a sphygmomanometer. The typical radiographic findings in the chest, forearm, and abdomen are discussed, with a review of the literature.

  18. Elemental mercury poisoning caused by subcutaneous and intravenous injection: An unusual self-injury

    International Nuclear Information System (INIS)

    Wale, Jaywant; Yadav, Pankaj K; Garg, Shairy

    2010-01-01

    Elemental mercury poisoning most commonly occurs through vapor inhalation as mercury is well absorbed through the lungs. Administering subcutaneous and intravenous elemental mercury is very uncommon but with only a few isolated case reports in the literature. We present an unusual case of elemental mercury poisoning in a 20-year-old young male who presented with chest pain, fever, and hemoptysis. He had injected himself subcutaneously with elemental mercury obtained from a sphygmomanometer. The typical radiographic findings in the chest, forearm, and abdomen are discussed, with a review of the literature

  19. Enhanced Control of Mercury and other HAPs by Innovative Modifications to Wet FGD Processes

    International Nuclear Information System (INIS)

    Hargrove, O.W.; Carey, T.R.; Richardson, C.F.; Skarupa, R.C.; Meserole, F.B.; Rhudy, R.G.; Brown, Thomas D.

    1997-01-01

    The overall objective of this project was to learn more about controlling emissions of hazardous air pollutants (HAPs) from coal-fired power plants that are equipped with wet flue gas desulfurization (FGD) systems. The project was included by FETC as a Phase I project in its Mega-PRDA program. Phase I of this project focused on three research areas. These areas in order of priority were: (1) Catalytic oxidation of vapor-phase elemental mercury; (2) Enhanced particulate-phase HAPs removal by electrostatic charging of liquid droplets; and (3) Enhanced mercury removal by addition of additives to FGD process liquor. Mercury can exist in two forms in utility flue gas--as elemental mercury and as oxidized mercury (predominant form believed to be HgCl 2 ). Previous test results have shown that wet scrubbers effectively remove the oxidized mercury from the gas but are ineffective in removing elemental mercury. Recent improvements in mercury speciation techniques confirm this finding. Catalytic oxidation of vapor-phase elemental mercury is of interest in cases where a wet scrubber exists or is planned for SO 2 control. If a loW--cost process could be developed to oxidize all of the elemental mercury in the flue gas, then the maximum achievable mercury removal across the existing or planned wet scrubber would increase. Other approaches for improving control of HAPs included a method for improving particulate removal across the FGD process and the use of additives to increase mercury solubility. This paper discusses results related only to catalytic oxidation of elemental mercury

  20. Heavy metal ion adsorption onto polypyrrole-impregnated porous carbon.

    Science.gov (United States)

    Choi, Moonjung; Jang, Jyongsik

    2008-09-01

    Polypyrrole-impregnated porous carbon was readily synthesized using vapor infiltration polymerization of pyrrole monomers. The results show that the functionalized polymer layer was successfully coated onto the pore surface of carbon without collapse of mesoporous structure. The modified porous carbon exhibited an improved complexation affinity for heavy metal ions such as mercury, lead, and silver ions due to the amine group of polypyrrole. The introduced polypyrrole layer could provide the surface modification to be applied for heavy metal ion adsorbents. Especially, polymer-impregnated porous carbon has an enhanced heavy metal ion uptake, which is 20 times higher than that of adsorbents with amine functional groups. Furthermore, the relationship between the coated polymer amount and surface area was also investigated in regard to adsorption capacity.

  1. Mercury hair levels and factors that influence exposure for residents of Huancavelica, Peru

    Science.gov (United States)

    Between 1564 and 1810, nearly 17,000 metric tons of mercury (Hg) vapor were released to the environment during cinnabar refining in the small town of Huancavelica, Peru. The present study characterizes individual exposure to mercury using total and speciated Hg from residential s...

  2. Scoping studies of vapor behavior during a severe accident in a metal-fueled reactor

    International Nuclear Information System (INIS)

    Spencer, B.W.; Marchaterre, J.F.

    1985-01-01

    Scoping calculations have been performed examining the consequences of fuel melting and pin failures for a reactivity-insertion type accident in a sodium-cooled, pool-type reactor fueled with a metal alloy fuel. The principal gas and vapor species released are shown to be Xe, Cs,and bond sodium contained within the fuel porosity. Fuel vapor pressure is insignificant, and there is no energetic fuel-coolant interaction for the conditions considered. Condensation of sodium vapor as it expands into the upper sodium pool in a jet mixing regime may occur as rapidly as the vapor emerges from the disrupted core (although reactor-material experiments are needed to confirm these high condensation rates). If the predictions of rapid direct-contact condensation can be verified experimentally for the sodium system, the implication is that the ability of vapor expansion to perform appreciable work on the system is largely eliminated. Furthermore, the ability of an expanding vapor bubble to transport fuel and fission product species to the cover gas region where they may be released to the containment is also largely eliminated. The radionuclide species except for fission gas are largely retained within the core and sodium pool

  3. Mercury, monomethyl mercury, and dissolved organic carbon concentrations in surface water entering and exiting constructed wetlands treated with metal-based coagulants, Twitchell Island, California

    Science.gov (United States)

    Stumpner, Elizabeth B.; Kraus, Tamara E.C.; Fleck, Jacob A.; Hansen, Angela M.; Bachand, Sandra M.; Horwath, William R.; DeWild, John F.; Krabbenhoft, David P.; Bachand, Philip A.M.

    2015-09-02

    Coagulation with metal-based salts is a practice commonly employed by drinking-water utilities to decrease particle and dissolved organic carbon concentrations in water. In addition to decreasing dissolved organic carbon concentrations, the effectiveness of iron- and aluminum-based coagulants for decreasing dissolved concentrations both of inorganic and monomethyl mercury in water was demonstrated in laboratory studies that used agricultural drainage water from the Sacramento–San Joaquin Delta of California. To test the effectiveness of this approach at the field scale, nine 15-by-40‑meter wetland cells were constructed on Twitchell Island that received untreated water from island drainage canals (control) or drainage water treated with polyaluminum chloride or ferric sulfate coagulants. Surface-water samples were collected approximately monthly during November 2012–September 2013 from the inlets and outlets of the wetland cells and then analyzed by the U.S. Geological Survey for total concentrations of mercury and monomethyl mercury in filtered (less than 0.3 micrometers) and suspended-particulate fractions and for concentrations of dissolved organic carbon.

  4. Physical aspects of mercury-free high pressure discharge lamps

    International Nuclear Information System (INIS)

    Born, M.

    2002-01-01

    This paper gives a summary of recent results about the replacement of mercury in high pressure discharge lamps by metallic zinc. Actually, this topic is of high relevance for the lighting industry due to the need of more environmentally friendly products. The work presented here is supported by the German government under contract no. 13N8072. Pure zinc/argon discharges as well as lamps including zinc or mercury and metal halide additives are investigated. Experimental data are compared with model calculations of the energy balance involving the transport of heat and radiation. Since the excitation energies of relevant zinc transistions are lower than for mercury, axis temperatures of pure zinc lamps are about 300 K below the value of mercury arcs. In addition, the thermal conductivity of zinc including the contribution of radiation diffusion is larger than compared to mercury. From lamp voltage measurements it is found that the cross section for elastical electron scattering by zinc atoms is about the same as for mercury. When adding metal halides to a pure zinc discharge with argon as a starting gas, i.e. NaI, TlI, DyI3, axis temperatures decrease to about 5100 K due to strong radiation cooling. In order to obtain sufficiently large lamp voltages, wall temperatures of more than 1300 K are adjusted by means of polycrystalline aluminaoxide (Al2O3) as a wall material. Electrical field strenghts of 6.0 V/mm and 8.6 V/mm are measured for metal halide lamps containing zinc or mercury, respectively. The light technical data of the discharges are very close, since mercury and zinc do not contribute significantly to the radiation in the visible range. Efficacies of up to 93 lm/W and 100 lm/W are found in metal halide lamps with zinc and mercury, respectively. Consequently, zinc turns out to be an attractive replacer for mercury in this type of lamp not only from an environmental point of view

  5. Isotopic Fractionation of Mercury in Great Lakes Precipitation

    Science.gov (United States)

    Gratz, L. E.; Keeler, G. J.; Blum, J. D.; Sherman, L. S.

    2009-12-01

    Mercury (Hg) is a hazardous bioaccumulative neurotoxin, and atmospheric deposition is a primary way in which mercury enters terrestrial and aquatic ecosystems. However, the chemical processes and transport regimes that mercury undergoes from emission to deposition are not well understood. Thus the use of mercury isotopes to characterize the biogeochemical cycling of mercury is a rapidly growing area of study. Precipitation samples were collected in Chicago, IL, Holland, MI, and Dexter, MI from April 2007 - October 2007 to begin examining the isotopic fractionation of atmospheric mercury in the Great Lakes region. Results show that mass-dependent fractionation relative to NIST-3133 (MDF - δ202Hg) ranged from -0.8‰ to 0.2‰ (±0.2‰) in precipitation samples, while mass-independent fractionation (MIF - Δ199Hg) varied from 0.1‰ to 0.6‰ (±0.1‰). Although clear urban-rural differences were not observed, this may be due to the weekly collection of precipitation samples rather than collection of individual events, making it difficult to truly characterize the meteorology and source influences associated with each sample and suggesting that event-based collection is necessary during future sampling campaigns. Additionally, total vapor phase mercury samples were collected in Dexter, MI in 2009 to examine isotopic fractionation of mercury in ambient air. In ambient samples δ202Hg ranged from 0.3‰ to 0.5‰ (±0.1‰), however Δ199Hg was not significant. Because mercury in precipitation is predominantly Hg2+, while ambient vapor phase mercury is primarily Hg0, these results may suggest the occurrence of MIF during the oxidation of Hg0 to Hg2+ prior to deposition. Furthermore, although it has not been previously reported or predicted, MIF of 200Hg was also detected. Δ200Hg ranged from 0.0‰ to 0.2‰ in precipitation and from -0.1‰ to 0.0‰ in ambient samples. This work resulted in methodological developments in the collection and processing of

  6. Analysis of mercury in simulated nuclear waste

    International Nuclear Information System (INIS)

    Policke, T.A.; Johnson, L.C.; Best, D.R.

    1991-01-01

    Mercury, Hg, is a non-radioactive component in the High Level Waste at the Savannah River Site (SRS). Thus, it is a component of the Defense Waste Processing Facility's (DWPF) process streams. It is present because mercuric nitrate (Hg(NO 3 ) 2 ) is used to dissolve spent fuel rods. Since mercury halides are extremely corrosive, especially at elevated temperatures such as those seen in a melter (1150 degrees C), its concentration throughout the process needs to be monitored so that it is at an acceptable level prior to reaching the melter off-gas system. The Hg can be found in condensates and sludge feeds and throughout the process and process lines, i.e., at any sampling point. The different samples types that require Hg determinations in the process streams are: (1) sludges, which may be basic or acidic and may or may not include aromatic organics, (2) slurries, which are sludges with frit and will always contain organics (formate and aromatics), and (3) condensates, from feed prep and melter off-gas locations. The condensates are aqueous and the mercury may exist as a complex mixture of halides, oxides, and metal, with levels between 10 and 100 ppm. The mercury in the sludges and slurries can be Hg 0 , Hg +1 , or Hg +2 , with levels between 200 and 3000 ppm, depending upon the location, both time and position, of sampling. For DWPF, both total and soluble Hg concentrations need to be determined. The text below describes how these determinations are being made by the Defense Waste Processing Technology (DWPT) Analytical Laboratory at the Savannah River Site. Both flame atomic absorption (FAA) and cold vapor atomic (CVAA) measurements are discussed. Also, the problems encountered in the steps toward measuring HG in these samples types of condensates and sludges are discussed along with their solutions

  7. Temporal trends (1989–2011) in levels of mercury and other heavy metals in feathers of fledgling great egrets nesting in Barnegat Bay, NJ

    International Nuclear Information System (INIS)

    Burger, Joanna

    2013-01-01

    There is an abundance of data for levels of metals from a range of species, but relatively few long-term time series from the same location. In this paper I examine the levels of arsenic, cadmium, chromium, lead, manganese, mercury and selenium in feathers from fledgling great egrets (Ardea alba) collected at nesting colonies in Barnegat Bay, New Jersey from 1989 to 2011. The primary objectives were to test the null hypotheses that (1) There were no temporal differences in metal levels in feathers of fledgling great egrets, and (2) Great egrets nesting in different areas of Barnegat Bay (New Jersey) did not differ in metal levels. There were significant yearly variations in levels of all heavy metals in feathers of fledgling great egret, but levels decreased significantly from 1989 to 2011 only for lead (1470 ppb to 54.3 ppb), cadmium (277 ppb to 30.5 ppb), and manganese (only since 1996; 2669 ppb to 329 ppb)). Although mercury levels decreased from 2003–2008 (6430 ppb to 1042 ppb), there was no pattern before 2003, and levels increased after 2008 to 2610 ppb in 2011. Lead, cadmium, chromium, manganese and mercury were higher in feathers from great egrets nesting in the northern part of the bay, and selenium was highest in feathers from mid-bay. The lack of a temporal decline in mercury levels in feathers of great egrets is cause for concern, since the high levels in feathers from some years (means as high as 6430 ppb) are in the range associated with adverse effects (5000 ppb for feathers). -- Highlights: ► Metals were monitored in feathers of great egrets from Barnegat Bay, New Jersey. ► Levels of cadmium and lead decreased significantly from 1989–2011. ► Mercury levels in feathers from great egrets did not decline from 1989–2011. ► Metal levels were generally higher in great egrets and black-crowned night heron feathers than in snowy egrets

  8. Mercury dispersion in soils of an abandoned lead-zinc-silver mine, San Quintín (Spain)

    Science.gov (United States)

    Esbrí, José Maria; Martín-Crespo, T.; Gómez-Ortiz, D.; Monescillo, C. I.; Lorenzo, S.; Higueras, P.

    2010-05-01

    The mine considered on this work, namely San Quintín, is a filonian field with hydrothermal ores exploited during almost fifty years (1887-1934), producing 550.000Tm of galena, 550Tm of silver and 5.000 of sphalerite. Some rewashing works of tailings muds was achieved in recent times (1973-1985), including flotation tests of cinnabar ore from Almadén mines. The main problems remaining on the site are an active acid mine drainage (with pH ~ 2) and heavy metal dispersion on soils including gaseous mercury emissions. We present here results of a survey including soils sampling with mercury analysis and other pedological parameters, as well as determinations of mercury inmission in the atmosphere, using a common sampling grid. Analysis of soils samples has been carried out using an atomic absorption spectrometer AMA254, while air determinations were made by the same technique, using a Lumex RA-915+. The maps have been obtained by means of SURFER 8 software, as well as by ArcGIS software, and puts forward dispersion of mercury from cinnabar ore dump (108 ?g×g-1) to nearby soils (0.3 ?g×g-1 at 700 m of distance). The dispersion of mercury vapor exceed WHO level for chronic exposure (200 ng×m-3) in a small area (250 meters from cinnabar dump).

  9. Using laser absorption spectroscopy to monitor composition and physical properties of metal vapors

    International Nuclear Information System (INIS)

    Berzins, L.V.

    1993-01-01

    The Atomic Vapor Laser Isotope Separation (AVLIS) program has been using laser absorption spectroscopy to monitor vapor densities for over 15 years. Laser absorption spectroscopy has proven itself to be an accurate and reliable method to monitor both density and composition. During this time the diagnostic has moved from a research tool toward a robust component of a process control system. The hardware used for this diagnostic is discussed elsewhere at this symposium. This paper describes how the laser absorption spectroscopy diagnostic is used as a component of a process control system as well as supplying detailed measurements on vapor densities, composition, flow velocity, internal and kinetic temperatures, and constituent distributions. Examples will be drawn from the uranium AVLIS program. In addition potential applications such as composition control in the production of metal matrix composites or aircraft alloys will be discussed

  10. High temperature vapor pressures of stainless steel type 1.4970 and of some other pure metals from laser evaporation

    International Nuclear Information System (INIS)

    Bober, M.; Singer, J.

    1984-10-01

    For the safety analysis of nuclear reactors vapor pressure data of stainless steel are required up to temperatures exceeding 4000 K. In analogy to the classic boiling point method a new technique was developed to measure the high-temperature vapor pressures of stainless steel and other metals from laser vaporization. A fast pyrometer, an ion current probe and an image converter camera are used to detect incipient boiling from the time-temperature curve. The saturated-vapor pressure curves of stainless steel (Type 1.4970), being a cladding material of the SNR 300 breeder reactor, and of molybdenum are experimentally determined in the temperature ranges of 2800-3900 K and 4500-5200 K, respectively. The normal boiling points of iron, nickel, titanium, vanadium and zirconium are verified. Besides, spectral emissivity values of the liquid metals are measured at the pyrometer wavelengths of 752 nm and/or 940 nm. (orig.) [de

  11. Mercury nano-trap for effective and efficient removal of mercury(II) from aqueous solution

    Science.gov (United States)

    Li, Baiyan; Zhang, Yiming; Ma, Dingxuan; Shi, Zhan; Ma, Shengqian

    2014-11-01

    Highly effective and highly efficient decontamination of mercury from aqueous media remains a serious task for public health and ecosystem protection. Here we report that this task can be addressed by creating a mercury ‘nano-trap’ as illustrated by functionalizing a high surface area and robust porous organic polymer with a high density of strong mercury chelating groups. The resultant porous organic polymer-based mercury ‘nano-trap’ exhibits a record-high saturation mercury uptake capacity of over 1,000 mg g-1, and can effectively reduce the mercury(II) concentration from 10 p.p.m. to the extremely low level of smaller than 0.4 p.p.b. well below the acceptable limits in drinking water standards (2 p.p.b.), and can also efficiently remove >99.9% mercury(II) within a few minutes. Our work therefore presents a new benchmark for mercury adsorbent materials and provides a new perspective for removing mercury(II) and also other heavy metal ions from contaminated water for environmental remediation.

  12. Determination of thiomersal by flow injection coupled with microwave-assisted photochemical online oxidative decomposition of organic mercury and cold vapor atomic fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Campanella, Beatrice; Onor, Massimo; Mascherpa, Marco Carlo; D’Ulivo, Alessandro [National Research Council of Italy, C.N.R., Istituto di Chimica dei Composti Organo Metallici-ICCOM-UOS Pisa, Area di Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy); Ferrari, Carlo [National Research Council of Italy, C.N.R., Istituto Nazionale di Ottica, INO–UOS Pisa, Area di Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy); Bramanti, Emilia, E-mail: bramanti@pi.iccom.cnr.it [National Research Council of Italy, C.N.R., Istituto di Chimica dei Composti Organo Metallici-ICCOM-UOS Pisa, Area di Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy)

    2013-12-04

    Graphical abstract: -- Highlights: •Thiomersal was determined on line using FI-MW/UV-CVGAFS. •MW/UV allows a “green” on line oxidation of organic mercury to Hg{sup II}. •Each measure requires less than 5 min with a LOD of 3 ng mL{sup −1} (as mercury). •Hg concentration in commercial ophthalmic solutions ranges between 7.5 and 59.0 μg mL{sup −1}. -- Abstract: We developed a flow injection (FI) method for the determination of thiomersal (sodium ethylmercurithiosalicylate, C{sub 9}H{sub 9}HgNaO{sub 2}S) based on the UV/microwave (MW) photochemical, online oxidation of organic mercury, followed by cold vapor generation atomic fluorescence spectrometry (CVG-AFS) detection. Thiomersal was quantitatively converted in the MW/UV process to Hg(II), with a yield of 97 ± 3%. This reaction was followed by the reduction of Hg(II) to Hg(0) performed in a knotted reaction coil with NaBH{sub 4} solution, and AFS detection in an Ar/H{sub 2} miniaturized flame. The method was linear in the 0.01–2 μg mL{sup −1} range, with a LOD of 0.003 μg mL{sup −1}. This method has been applied to the determination of thiomersal in ophthalmic solutions, with recoveries ranging between 97% and 101%. We found a mercury concentration in commercial ophthalmic solutions ranging between 7.5 and 59.0 μg mL{sup −1}.

  13. Apparatus for control of mercury

    Science.gov (United States)

    Downs, William; Bailey, Ralph T.

    2001-01-01

    A method and apparatus for reducing mercury in industrial gases such as the flue gas produced by the combustion of fossil fuels such as coal adds hydrogen sulfide to the flue gas in or just before a scrubber of the industrial process which contains the wet scrubber. The method and apparatus of the present invention is applicable to installations employing either wet or dry scrubber flue gas desulfurization systems. The present invention uses kraft green liquor as a source for hydrogen sulfide and/or the injection of mineral acids into the green liquor to release vaporous hydrogen sulfide in order to form mercury sulfide solids.

  14. Heteroepitaxial growth of 3-5 semiconductor compounds by metal-organic chemical vapor deposition for device applications

    Science.gov (United States)

    Collis, Ward J.; Abul-Fadl, Ali

    1988-01-01

    The purpose of this research is to design, install and operate a metal-organic chemical vapor deposition system which is to be used for the epitaxial growth of 3-5 semiconductor binary compounds, and ternary and quaternary alloys. The long-term goal is to utilize this vapor phase deposition in conjunction with existing current controlled liquid phase epitaxy facilities to perform hybrid growth sequences for fabricating integrated optoelectronic devices.

  15. Human health risk assessment of mercury vapor around artisanal small-scale gold mining area, Palu city, Central Sulawesi, Indonesia.

    Science.gov (United States)

    Nakazawa, Koyomi; Nagafuchi, Osamu; Kawakami, Tomonori; Inoue, Takanobu; Yokota, Kuriko; Serikawa, Yuka; Cyio, Basir; Elvince, Rosana

    2016-02-01

    Emissions of elemental mercury, Hg(0), from artisanal small-scale gold mining activities accounted for 37% of total global Hg(0) emissions in 2010. People who live near gold-mining areas may be exposed to high concentrations of Hg(0). Here, we assessed the human health risk due to Hg(0) exposure among residents of Palu city (Central Sulawesi Province, Indonesia). The area around the city has more than 60t of gold reserves, and the nearby Poboya area is the most active gold-mining site in Indonesia. Owing to its geography, the city experiences alternating land and sea breezes. Sampling was done over a period of 3 years (from 2010 Aug. to 2012 Dec.) intermittently with a passive sampler for Hg(0), a portable handheld mercury analyzer, and a mercury analyzer in four areas of the city and in the Poboya gold-processing area, as well as wind speeds and directions in one area of the city. The 24-h average concentration, wind speed, and wind direction data show that the ambient air in both the gold-processing area and the city was always covered by high concentration of mercury vapor. The Hg(0) concentration in the city was higher at night than in the daytime, owing to the effect of land breezes. These results indicate that the inhabitants of the city were always exposed to high concentrations of Hg(0). The average daytime point-sample Hg(0) concentrations in the city, as measured with a handheld mercury analyzer over 3 days in July 2011, ranged from 2096 to 3299ngm(-3). In comparison, the average daytime Hg(0) concentration in the Poboya gold-processing area was 12,782ngm(-3). All of these concentrations are substantially higher than the World Health Organization air-quality guideline for annual average Hg exposure (1000ngm(-3)). We used the point-sample concentrations to calculate hazard quotient ratios by means of a probabilistic risk assessment method. The results indicated that 93% of the sample population overall was at risk (hazard quotient ratio ≥1 and cut off at

  16. Liquid--liquid contact in vapor explosion

    International Nuclear Information System (INIS)

    Segev, A.

    1978-08-01

    The contact of two liquid materials, one of which is at a temperature substantially above the boiling point of the other, can lead to fast energy conversion and a subsequent shock wave. This well-known phenomenon is called a ''vapor explosion.'' One method of producing intimate, liquid--liquid contact (which is known to be a necessary condition for vapor explosion) is a shock tube configuration. Such experiments in which water was impacted upon molten aluminum showed that very high pressures, even larger than the thermodynamic critical pressure, could occur. The mechanism by which such sharp pressure pulses are generated is not yet clear. In this experiment cold liquids (Freon-11, Freon-22, water, or butanol) were impacted upon various hot materials (mineral oil, silicone oil, water, mercury, molten Wood's metal or molten salt mixture). The main conclusion from the experimental study is that hydrodynamic effects may be very significant in any shock tube analyses, especially when multiple interactions are observed. A theoretical study was performed to check the possibility of vapor film squeezing (between a drop in film boiling and a surface) as a controlling mechanism for making liquid--liquid contact. Using experimental data, the film thickness was calculated and it was found to be too thick for any conceivable film rupture mechanism. It was suggested that the coalescence is a two-stage process, in which the controlling stage depends mainly on temperature and surface properties and can be described as the ability of cold liquid to spread on a hot surface

  17. Vapor-Phase Deposition and Modification of Metal-Organic Frameworks: State-of-the-Art and Future Directions.

    Science.gov (United States)

    Stassen, Ivo; De Vos, Dirk; Ameloot, Rob

    2016-10-04

    Materials processing, and thin-film deposition in particular, is decisive in the implementation of functional materials in industry and real-world applications. Vapor processing of materials plays a central role in manufacturing, especially in electronics. Metal-organic frameworks (MOFs) are a class of nanoporous crystalline materials on the brink of breakthrough in many application areas. Vapor deposition of MOF thin films will facilitate their implementation in micro- and nanofabrication research and industries. In addition, vapor-solid modification can be used for postsynthetic tailoring of MOF properties. In this context, we review the recent progress in vapor processing of MOFs, summarize the underpinning chemistry and principles, and highlight promising directions for future research. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Global Burden of Disease of Mercury Used in Artisanal Small-Scale Gold Mining.

    Science.gov (United States)

    Steckling, Nadine; Tobollik, Myriam; Plass, Dietrich; Hornberg, Claudia; Ericson, Bret; Fuller, Richard; Bose-O'Reilly, Stephan

    Artisanal small-scale gold mining (ASGM) is the world's largest anthropogenic source of mercury emission. Gold miners are highly exposed to metallic mercury and suffer occupational mercury intoxication. The global disease burden as a result of this exposure is largely unknown because the informal character of ASGM restricts the availability of reliable data. To estimate the prevalence of occupational mercury intoxication and the disability-adjusted life years (DALYs) attributable to chronic metallic mercury vapor intoxication (CMMVI) among ASGM gold miners globally and in selected countries. Estimates of the number of artisanal small-scale gold (ASG) miners were extracted from reviews supplemented by a literature search. Prevalence of moderate CMMVI among miners was determined by compiling a dataset of available studies that assessed frequency of intoxication in gold miners using a standardized diagnostic tool and biomonitoring data on mercury in urine. Severe cases of CMMVI were not included because it was assumed that these persons can no longer be employed as miners. Cases in workers' families and communities were not considered. Years lived with disability as a result of CMMVI among ASG miners were quantified by multiplying the number of prevalent cases of CMMVI by the appropriate disability weight. No deaths are expected to result from CMMVI and therefore years of life lost were not calculated. Disease burden was calculated by multiplying the prevalence rate with the number of miners for each country and the disability weight. Sensitivity analyses were performed using different assumptions on the number of miners and the intoxication prevalence rate. Globally, 14-19 million workers are employed as ASG miners. Based on human biomonitoring data, between 25% and 33% of these miners-3.3-6.5 million miners globally-suffer from moderate CMMVI. The resulting global burden of disease is estimated to range from 1.22 (uncertainty interval [UI] 0.87-1.61) to 2.39 (UI 1

  19. Estimation of Seasonal Risk Caused by the Intake of Lead, Mercury and Cadmium through Freshwater Fish Consumption from Urban Water Reservoirs in Arid Areas of Northern Mexico

    Directory of Open Access Journals (Sweden)

    Myrna Nevárez

    2015-02-01

    Full Text Available Bioavailability and hence bioaccumulation of heavy metals in fish species depends on seasonal conditions causing different risks levels to human health during the lifetime. Mercury, cadmium and lead contents in fish from Chihuahua (Mexico water reservoirs have been investigated to assess contamination levels and safety for consumers. Muscle samples of fish were collected across the seasons. Lead and cadmium were analyzed by inductively coupled plasma-optical emission spectrometry, and mercury by cold-vapor atomic absorption spectrometry. The highest concentrations of cadmium (0.235 mg/kg, mercury (0.744 mg/kg and lead (4.298 mg/kg exceeded the maximum levels set by European regulations and Codex Alimentarius. Lead concentrations found in fish from three water reservoirs also surpassed the limit of 1 mg/kg established by Mexican regulations. The provisional tolerable weekly intake (PTWI suggested by the World Health Organization for methyl mercury (1.6 µg/kg bw per week was exceeded in the spring season (1.94 µg/kg bw per week. This might put consumers at risk of mercury poisoning.

  20. Cutaneous mercury granuloma

    OpenAIRE

    Kalpana A Bothale; Sadhana D Mahore; Sushil Pande; Trupti Dongre

    2013-01-01

    Cutaneous mercury granuloma is rarely encountered. Clinically it may pose difficulty in diagnosis. Here, we report a 23-year-old male presented with erythematous, nodular lesions over the forearm and anterior aspect of chest wall. Metallic mercury in tissue sections appear as dark black, opaque, spherical globules of varying size and number. They are surrounded by granulomatous foreign-body reaction. It is composed of foreign body giant cells and mixed inflammatory infiltrate composed of hist...

  1. Suitable alkaline for graphene peeling grown on metallic catalysts using chemical vapor deposition

    Science.gov (United States)

    Karamat, S.; Sonuşen, S.; Çelik, Ü.; Uysallı, Y.; Oral, A.

    2016-04-01

    In chemical vapor deposition, the higher growth temperature roughens the surface of the metal catalyst and a delicate method is necessary for the transfer of graphene from metal catalyst to the desired substrates. In this work, we grow graphene on Pt and Cu foil via ambient pressure chemical vapor deposition (AP-CVD) method and further alkaline water electrolysis was used to peel off graphene from the metallic catalyst. We used different electrolytes i.e., sodium hydroxide (NaOH), potassium hydroxide (KOH), lithium hydroxide (LiOH) and barium hydroxide Ba(OH)2 for electrolysis, hydrogen bubbles evolved at the Pt cathode (graphene/Pt/PMMA stack) and as a result graphene layer peeled off from the substrate without damage. The peeling time for KOH and LiOH was ∼6 min and for NaOH and Ba(OH)2 it was ∼15 min. KOH and LiOH peeled off graphene very efficiently as compared to NaOH and Ba(OH)2 from the Pt electrode. In case of copper, the peeling time is ∼3-5 min. Different characterizations like optical microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy were done to analyze the as grown and transferred graphene samples.

  2. Henry's Law vaporization studies and thermodynamics of einsteinium-253 metal dissolved in ytterbium

    International Nuclear Information System (INIS)

    Kleinschmidt, P.D.; Ward, J.W.; Matlack, G.M.; Haire, R.G.

    1984-01-01

    The cohesive energy of metallic einsteinium determines whether einsteinium is a trivalent or divalent metal. The enthalpy of sublimation, a measure of the cohesive energy, is calculated from the partial pressures of einsteinium over an alloy. The partial pressure of 253 Es has been measured over the range 470--870 K, using combined target and mass spectrometric Knudsen effusion techniques. An alloy was prepared with einsteinium dissolved in a ytterbium solvent to produce a very dilute solution. Partial pressure measurements on the alloy were amenable to the experimental technique and a data analysis using a Henry's law treatment of the data. Vapor pressure data are combined with an estimated crystal entropy S 0 298 and ΔC 0 /sub p/ for ytterbium, to produce enthalpy, entropy, and free energy functions from 298 to 1300 K. The vapor pressure of einsteinium in a dilute einsteinium--ytterbium alloy is described by the equation log P(atm) = -(6815 +- 216)/T+2.576 +- 0.337, from which we calculate for the enthalpy of sublimation of pure einsteinium ΔH 0 298 (second law) = 31.76 kcal/mol. The value of the enthalpy of sublimation is consistent with the conclusion that Es is a divalent metal

  3. Thermodynamic properties of uranium--mercury system

    International Nuclear Information System (INIS)

    Lee, T.S.

    1979-01-01

    The EMF values in the fused salt cells of the type U(α)/KCl--LiCl--BaCl 2 eutectic, UCl 3 /U--Hg alloy, for the different two-phase alloys in the uranium--mercury system have been measured and the thermodynamic properties of this system have been calculated. These calculated values are in good agreement with values based on mercury vapor pressure measurements made by previous investigators. The inconsistency of the thermodynamic properties with the phase diagram determined by Frost are also confirmed. A tentative phase diagram based on the thermodynamic properties measured in this work was constructed

  4. Global Mercury Observatory System (GMOS): measurements of atmospheric mercury in Celestun, Yucatan, Mexico during 2012.

    Science.gov (United States)

    Velasco, Antonio; Arcega-Cabrera, Flor; Oceguera-Vargas, Ismael; Ramírez, Martha; Ortinez, Abraham; Umlauf, Gunther; Sena, Fabrizio

    2016-09-01

    Within the Global Mercury Observation System (GMOS) project, long-term continuous measurements of total gaseous mercury (TGM) were carried out by a monitoring station located at Celestun, Yucatan, Mexico, a coastal site along the Gulf of Mexico. The measurements covered the period from January 28th to October 17th, 2012. TGM data, at the Celestun site, were obtained using a high-resolution mercury vapor analyzer. TGM data show values from 0.50 to 2.82 ng/m(3) with an annual average concentration of 1.047 ± 0.271 ng/m(3). Multivariate analyses of TGM and meteorological variables suggest that TGM is correlated with the vertical air mass distribution in the atmosphere, which is influenced by diurnal variations in temperature and relative humidity. Diurnal variation is characterized by higher nighttime mercury concentrations, which might be influenced by convection currents between sea and land. The back trajectory analysis confirmed that local sources do not significantly influence TGM variations. This study shows that TGM monitoring at the Celestun site fulfills GMOS goals for a background site.

  5. Biochemical basis of mercury remediation and bioaccumulation by Enterobacter sp. EMB21.

    Science.gov (United States)

    Sinha, Arvind; Kumar, Sumit; Khare, Sunil Kumar

    2013-01-01

    The aims of this study were to isolate metal bioaccumulating bacterial strains and to study their applications in removal of environmental problematic heavy metals like mercury. Five bacterial strains belonging to genera Enterobacter, Bacillus, and Pseudomonas were isolated from oil-spilled soil. Among these, one of the strains Enterobacter sp. EMB21 showed mercury bioaccumulation inside the cells simultaneous to its bioremediation. The bioaccumulation of remediated mercury was confirmed by transmission electron microscopy and energy dispersive X-ray. The mercury-resistant loci in the Enterobacter sp. EMB21 cells were plasmid-mediated as confirmed by transformation of mercury-sensitive Escherichia coli DH5α by Enterobacter sp. EMB21 plasmid. Effect of different culture parameters viz-a-viz inoculum size, pH, carbon, and nitrogen source revealed that alkaline pH and presence of dextrose and yeast extract favored better remediation. The results indicated the usefulness of Enterobacter sp. EMB21 for the effective remediation of mercury in bioaccumulated form. The Enterobacter sp. EMB21 seems promising for heavy metal remediation wherein the remediated metal can be trapped inside the cells. The process can further be developed for the synthesis of valuable high-end functional alloy, nanoparticles, or metal conjugates from the metal being remediated.

  6. Metal vapor micro-jet controls material redistribution in laser powder bed fusion additive manufacturing

    OpenAIRE

    Ly, Sonny; Rubenchik, Alexander M.; Khairallah, Saad A.; Guss, Gabe; Matthews, Manyalibo J.

    2017-01-01

    The results of detailed experiments and finite element modeling of metal micro-droplet motion associated with metal additive manufacturing (AM) processes are presented. Ultra high speed imaging of melt pool dynamics reveals that the dominant mechanism leading to micro-droplet ejection in a laser powder bed fusion AM is not from laser induced recoil pressure as is widely believed and found in laser welding processes, but rather from vapor driven entrainment of micro-particles by an ambient gas...

  7. Mercury uptake and accumulation by four species of aquatic plants

    International Nuclear Information System (INIS)

    Skinner, Kathleen; Wright, Nicole; Porter-Goff, Emily

    2007-01-01

    The effectiveness of four aquatic plants including water hyacinth (Eichornia crassipes), water lettuce (Pistia stratiotes), zebra rush (Scirpus tabernaemontani) and taro (Colocasia esculenta) were evaluated for their capabilities in removing mercury from water. The plants were exposed to concentrations of 0 mg/L, 0.5 mg/L or 2 mg/L of mercury for 30 days. Assays were conducted using both Microtox[reg] (water) and cold vapor Atomic Absorption Spectroscopy (AAS) (roots and water). The Microtox[reg] results indicated that the mercury induced acute toxicity had been removed from the water. AAS confirmed an increase of mercury within the plant root tissue and a corresponding decrease of mercury in the water. All species of plants appeared to reduce mercury concentrations in the water via root uptake and accumulation. Water lettuce and water hyacinth appeared to be the most effective, followed by taro and zebra rush, respectively. - Four species of aquatic plants reduced mercury in water

  8. Mercury uptake and accumulation by four species of aquatic plants

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Kathleen [Department of Biology, Russell Sage College, 45 Ferry Street, Troy, NY 12180 (United States)]. E-mail: skinnk@sage.edu; Wright, Nicole [NEIWPCC-NYSDEC, 625 Broadway, 4th Floor, Albany, NY 12233-3502 (United States)]. E-mail: ndwright@gw.dec.state.ny.us; Porter-Goff, Emily [Department of Biology, Russell Sage College, 45 Ferry Street, Troy, NY 12180 (United States)

    2007-01-15

    The effectiveness of four aquatic plants including water hyacinth (Eichornia crassipes), water lettuce (Pistia stratiotes), zebra rush (Scirpus tabernaemontani) and taro (Colocasia esculenta) were evaluated for their capabilities in removing mercury from water. The plants were exposed to concentrations of 0 mg/L, 0.5 mg/L or 2 mg/L of mercury for 30 days. Assays were conducted using both Microtox[reg] (water) and cold vapor Atomic Absorption Spectroscopy (AAS) (roots and water). The Microtox[reg] results indicated that the mercury induced acute toxicity had been removed from the water. AAS confirmed an increase of mercury within the plant root tissue and a corresponding decrease of mercury in the water. All species of plants appeared to reduce mercury concentrations in the water via root uptake and accumulation. Water lettuce and water hyacinth appeared to be the most effective, followed by taro and zebra rush, respectively. - Four species of aquatic plants reduced mercury in water.

  9. Coal fired flue gas mercury emission controls

    CERN Document Server

    Wu, Jiang; Pan, Weiguo; Pan, Weiping

    2015-01-01

    Mercury (Hg) is one of the most toxic heavy metals, harmful to both the environment and human health. Hg is released into the atmosphere from natural and anthropogenic sources and its emission control has caused much concern. This book introduces readers to Hg pollution from natural and anthropogenic sources and systematically describes coal-fired flue gas mercury emission control in industry, especially from coal-fired power stations. Mercury emission control theory and experimental research are demonstrated, including how elemental mercury is oxidized into oxidized mercury and the effect of

  10. [Spatial distribution and ecological significance of heavy metals in soils from Chatian mercury mining deposit, western Hunan province].

    Science.gov (United States)

    Sun, Hong-Fei; Li, Yong-Hu; Ji, Yan-Fang; Yang, Lin-Sheng; Wang, Wu-Yi

    2009-04-15

    Ores, waste tailings and slag, together with three typical soil profiles (natural soil profiles far from mine entrance and near mine entrance, soil profile under slag) in Chatian mercury mining deposit (CMD), western Hunan province were sampled and their concentrations of mercury (Hg), arsenic (As), lead (Pb), cadmium (Cd), zinc (Zn) were determined by HG-ICP-AES and ICP-MS. Enrichment factor and correlation analysis were taken to investigate the origins, distribution and migration of Hg, as well as other heavy metals in the CMD. The results show that Hg is enriched in the bottom of the soil profile far from mine entrance but accumulated in the surface of soil profiles near mine entrance and under slag. The soil profiles near mine entrance and under slag are both contaminated by Hg, while the latter is contaminated more heavily. In the soil profile under slag, Hg concentration in the surface soil, Hg average concentration in the total profile, and the leaching depth of soil Hg are 640 microg x g(-1), (76.74 +/- 171.71) microg x g(-1), and more than 100 cm, respectively; while 6.5 microg x g(-1), (2.74 +/- 1.90) microg x g(-1), and 40 cm, respectively, are found in the soil profile near mine entrance. Soil in the mercury mine area is also polluted by Cd, As, Pb, Zn besides metallogenic element Hg, among which Cd pollution is relatively heavier than others. The mobility of the studied heavy metals in soil follows the order as Hg > Cd > As > Zn approximately equal to Pb. The leaching depth of the heavy metals is influenced by total concentration in the surface soil and soil physico-chemical parameters. The origins, distribution and migration of heavy metals in soil profile in the mining area are related to primary geological environment, and strongly influenced by human mining activities.

  11. Mercury(II) and methyl mercury speciation on Streptococcus pyogenes loaded Dowex Optipore SD-2

    International Nuclear Information System (INIS)

    Tuzen, Mustafa; Uluozlu, Ozgur Dogan; Karaman, Isa; Soylak, Mustafa

    2009-01-01

    A solid phase extraction procedure based on speciation of mercury(II) and methyl mercury on Streptococcus pyogenes immobilized on Dowex Optipore SD-2 has been established. Selective and sequential elution with 0.1 mol L -1 HCl for methyl mercury and 2 mol L -1 HCl for mercury(II) were performed at pH 8. The determination of mercury levels was performed by cold vapour atomic absorption spectrometry (CVAAS). Optimal analytical conditions including pH, amounts of biosorbent, sample volumes, etc., were investigated. The influences of the some alkaline and earth alkaline ions and some transition metals on the recoveries were also investigated. The capacity of biosorbent for mercury(II) and methyl mercury was 4.8 and 3.4 mg g -1 . The detection limit (3 sigma) of the reagent blank for mercury(II) and methyl mercury was 2.1 and 1.5 ng L -1 . Preconcentration factor was calculated as 25. The relative standard deviations of the procedure were below 7%. The validation of the presented procedure is performed by the analysis of standard reference material (NRCC-DORM 2 Dogfish Muscle). The procedure was successfully applied to the speciation of mercury(II) and methyl mercury in natural water and environmental samples.

  12. Mercury(II) and methyl mercury speciation on Streptococcus pyogenes loaded Dowex Optipore SD-2

    Energy Technology Data Exchange (ETDEWEB)

    Tuzen, Mustafa, E-mail: m.tuzen@gmail.com [Gaziosmanpasa University, Faculty of Science and Arts, Chemistry Department, 60250 Tokat (Turkey); Uluozlu, Ozgur Dogan [Gaziosmanpasa University, Faculty of Science and Arts, Chemistry Department, 60250 Tokat (Turkey); Karaman, Isa [Gaziosmanpasa University, Faculty of Science and Arts, Biology Department, 60250 Tokat (Turkey); Soylak, Mustafa [Erciyes University, Faculty of Science and Arts, Chemistry Department, 38039 Kayseri (Turkey)

    2009-09-30

    A solid phase extraction procedure based on speciation of mercury(II) and methyl mercury on Streptococcus pyogenes immobilized on Dowex Optipore SD-2 has been established. Selective and sequential elution with 0.1 mol L{sup -1} HCl for methyl mercury and 2 mol L{sup -1} HCl for mercury(II) were performed at pH 8. The determination of mercury levels was performed by cold vapour atomic absorption spectrometry (CVAAS). Optimal analytical conditions including pH, amounts of biosorbent, sample volumes, etc., were investigated. The influences of the some alkaline and earth alkaline ions and some transition metals on the recoveries were also investigated. The capacity of biosorbent for mercury(II) and methyl mercury was 4.8 and 3.4 mg g{sup -1}. The detection limit (3 sigma) of the reagent blank for mercury(II) and methyl mercury was 2.1 and 1.5 ng L{sup -1}. Preconcentration factor was calculated as 25. The relative standard deviations of the procedure were below 7%. The validation of the presented procedure is performed by the analysis of standard reference material (NRCC-DORM 2 Dogfish Muscle). The procedure was successfully applied to the speciation of mercury(II) and methyl mercury in natural water and environmental samples.

  13. Presence of mercury in natural gas

    International Nuclear Information System (INIS)

    Gijselman, P.B.

    1991-01-01

    This paper describes the occupational health programme used to ensure that NAM and contractor personnel of the Nederlandse Aardolie Mij (NAM) exposed to mercury, common in Dutch gas, are adequately protected through the correct use of Personal Protective Equipment (PPE), proper instruction and suitable work procedures. To avoid health damage due to mercury exposure during maintenance and shutdown activities the occupational health department of NAM set up a programme covering 3 activities: monitoring of atmospheric air; sampling of inspired air during work, and measurement of mercury excretion in urine of workers instruction of company and contractor personnel consultancy during preparation of work instructions. The monitoring program showed that, through correct use of PPE, staff do not exhibit mercury concentration levels exceeding the human toxicity limit (100 ug/g creatinine) even after exposure to mercury vapor concentrations above the TLV of 0.5 mg/m 3 . The correct use of PPE is a result of the instruction programme which also promotes increased awareness for personnel of the harmful effects of mercury. Finally, the provision of consultancy during the preparation of work instructions has contributed to various measures; for instance, staff wearing plastic (Viton) protective suits may not work longer than 2 hours continuously to avoid heat exhaustion

  14. A study on vapor explosions

    International Nuclear Information System (INIS)

    Takagi, N.; Shoji, M.

    1979-01-01

    An experimental study was carried out for vapor explosions of molten tin falling in water. For various initial metal temperatures and subcooling of water, transient pressure of the explosions, relative frequency of the explosions and the position where the explosions occur were measured in detail. The influence of ambient pressure was also investigated. From the results, it was concluded that the vapor explosion is closely related to the collapse of a vapor film around the molten metal. (author)

  15. Phytoremediation of Ionic and Methyl Mercury Pollution

    Energy Technology Data Exchange (ETDEWEB)

    Meagher, Richard B.

    2005-06-01

    Phytoremediation is defined as the use of plants to extract, resist, detoxify, and/or sequester toxic environmental pollutants. The long-term goal of the proposed research is to develop and test highly productive, field-adapted plant species that have been engineered for the phytoremediation of mercury. A variety of different genes, which should enable plants to clean mercury polluted sites are being tested as tools for mercury phytoremediation, first in model laboratory plants and then in potential field species. Several of these genes have already been shown to enhance mercury phytoremediation. Mercury pollution is a serious, world-wide problem affecting the health of human and wildlife populations. Environmentally, the most serious mercury threat is the production of methylmercury (CH3Hg+) by native bacteria at mercury contaminated wetland sites. Methylmercury is inherently more toxic than metallic (Hg(0)) or ionic (Hg(II)) mercury, and because methylmercury is prolifically biomagnified up the food chain, it poses the most immediate danger to animal populations. We have successfully engineered two model plants, Arabidopsis and tobacco, to use the bacterial merB gene to convert methylmercury to less toxic ionic mercury and to use the bacterial merA gene to further detoxify ionic mercury to the least toxic form of mercury, metallic mercury. Plants expressing both MerA and MerB proteins detoxify methylmercury in two steps to the metallic form. These plants germinate, grow, and set seed at normal growth rates on levels of methylmercury or ionic mercury that are lethal to normal plants. Our newest efforts involve engineering plants with several additional bacterial and plant genes that allow for higher levels of mercury resistance and mercury hyperaccumulation. The potential for these plants to hyperaccumulate mercury was further advanced by developing constitutive, aboveground, and root-specific gene expression systems. Our current strategy is to engineer plants to

  16. Characterization of the binding capacity of mercurial species in Lactobacillus strains.

    Science.gov (United States)

    Alcántara, Cristina; Jadán-Piedra, Carlos; Vélez, Dinoraz; Devesa, Vicenta; Zúñiga, Manuel; Monedero, Vicente

    2017-12-01

    Metal sequestration by bacteria has been proposed as a strategy to counteract metal contamination in foodstuffs. Lactobacilli can interact with metals, although studies with important foodborne metals such as inorganic [Hg(II)] or organic (CH 3 Hg) mercury are lacking. Lactobacilli were evaluated for their potential to bind these contaminants and the nature of the interaction was assessed by the use of metal competitors, chemical and enzymatical treatments, and mutants affected in the cell wall structure. Lactobacillus strains efficiently bound Hg(II) and CH 3 Hg. Mercury binding by Lactobacillus casei BL23 was independent of cell viability. In BL23, both forms of mercury were cell wall bound. Their interaction was not inhibited by cations and it was resistant to chelating agents and protein digestion. Lactobacillus casei mutants affected in genes involved in the modulation of the negative charge of the cell wall anionic polymer lipoteichoic acid showed increased mercury biosorption. In these mutants, mercury toxicity was enhanced compared to wild-type bacteria. These data suggest that lipoteichoic acid itself or the physicochemical characteristics that it confers to the cell wall play a major role in mercury complexation. This is the first example of the biosorption of Hg(II) and CH 3 Hg in lactobacilli and it represents a first step towards their possible use as agents for diminishing mercury bioaccessibility from food at the gastrointestinal tract. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  17. High index of refraction films for dielectric mirrors prepared by metal-organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Brusasco, R.M.

    1989-01-01

    A wide variety of metal oxides with high index of refraction can be prepared by Metal-Organic Chemical Vapor Deposition. We present some recent optical and laser damage results on oxide films prepared by MOCVD which could be used in a multilayer structure for highly reflecting (HR) dielectric mirror applications. The method of preparation affects both optical properties and laser damage threshold. 10 refs., 8 figs., 4 tabs

  18. Heterogeneous oxidation of mercury in simulated post combustion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Glenn A. Norton; Hongqun Yang; Robert C. Brown; Dennis L. Laudal; Grant E. Dunham; John Erjavec [Iowa State University, Ames, IA (United States). Center for Sustainable Environmental Technologies

    2003-01-01

    Heterogeneous mercury oxidation was studied by exposing whole fly ash samples and magnetic, nonmagnetic, and size-classified fly ash fractions to elemental mercury vapor in simulated flue gas streams. Fly ash from sub-bituminous Wyodak-Anderson PRB coal and bituminous Blacksville coal were used. Scanning electron microscopy, X-ray diffraction, thermogravimetric analyses, and BET N{sub 2} isothermal sorption analyses were performed to characterize the fly ash samples. Mercury speciation downstream from the ash was determined using the Ontario Hydro method. Results showed that the presence of fly ash was critical for mercury oxidation, and the surface area of the ash appears to be an important parameter. However, for a given fly ash, there were generally no major differences in catalytic oxidation potential between different fly ash fractions. This includes fractions enriched in unburned carbon and iron oxides. The presence of NO{sub 2}, HCl, and SO{sub 2} resulted in greater levels of mercury oxidation, while NO inhibited mercury oxidation. The gas matrix affected mercury oxidation more than the fly ash composition. 21 refs., 10 figs., 2 tabs.

  19. Label-free colorimetric detection of mercury via Hg2+ ions-accelerated structural transformation of nanoscale metal-oxo clusters

    Science.gov (United States)

    Chen, Kun; She, Shan; Zhang, Jiangwei; Bayaguud, Aruuhan; Wei, Yongge

    2015-11-01

    Mercury and its compounds are known to be extremely toxic but widely distributed in environment. Although many works have been reported to efficiently detect mercury, development of simple and convenient sensors is still longed for quick analyzing mercury in water. In this work, a nanoscale metal-oxo cluster, (n-Bu4N)2[Mo5NaO13(OCH3)4(NO)], (MLPOM), organically-derivatized from monolacunary Lindqvist-type polyoxomolybdate, is found to specifically react with Hg2+ in methanol/water via structural transformation. The MLPOM methanol solution displays a color change from purple to brown within seconds after being mixed with an aqueous solution containing Hg2+. By comparing the structure of polyoxomolybdate before and after reaction, the color change is revealed to be the essentially structural transformation of MLPOM accelerated by Hg2+. Based on this discovery, MLPOM could be utilized as a colorimetric sensor to sense the existence of Hg2+, and a simple and label-free method is developed to selectively detect aqueous Hg2+. Furthermore, the colorimetric sensor has been applied to indicating mercury contamination in industrial sewage.

  20. Mercury uptake and accumulation by four species of aquatic plants.

    Science.gov (United States)

    Skinner, Kathleen; Wright, Nicole; Porter-Goff, Emily

    2007-01-01

    The effectiveness of four aquatic plants including water hyacinth (Eichornia crassipes), water lettuce (Pistia stratiotes), zebra rush (Scirpus tabernaemontani) and taro (Colocasia esculenta) were evaluated for their capabilities in removing mercury from water. The plants were exposed to concentrations of 0 mg/L, 0.5 mg/L or 2 mg/L of mercury for 30 days. Assays were conducted using both Microtox (water) and cold vapor Atomic Absorption Spectroscopy (AAS) (roots and water). The Microtox results indicated that the mercury induced acute toxicity had been removed from the water. AAS confirmed an increase of mercury within the plant root tissue and a corresponding decrease of mercury in the water. All species of plants appeared to reduce mercury concentrations in the water via root uptake and accumulation. Water lettuce and water hyacinth appeared to be the most effective, followed by taro and zebra rush, respectively.

  1. Characterization of a marine-isolated mercury-resistant Pseudomonas putida strain SP1 and its potential application in marine mercury reduction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weiwei; Chen, Lingxin; Liu, Dongyan [Chinese Academy of Sciences, Yantai, SD (China). Yantai Inst. of Coastal Zone Research (YICCAS); Chinese Academy of Sciences, Yantai, SD (China). Shandong Provincial Key Lab. of Coastal Zone Environmental Processes

    2012-02-15

    The Pseudomonas putida strain SP1 was isolated from marine environment and was found to be resistant to 280 {mu}M HgCl{sub 2}. SP1 was also highly resistant to other metals, including CdCl{sub 2}, CoCl{sub 2}, CrCl{sub 3}, CuCl{sub 2}, PbCl{sub 2}, and ZnSO{sub 4}, and the antibiotics ampicillin (Ap), kanamycin (Kn), chloramphenicol (Cm), and tetracycline (Tc). mer operon, possessed by most mercury-resistant bacteria, and other diverse types of resistant determinants were all located on the bacterial chromosome. Cold vapor atomic absorption spectrometry and a volatilization test indicated that the isolated P. putida SP1 was able to volatilize almost 100% of the total mercury it was exposed to and could potentially be used for bioremediation in marine environments. The optimal pH for the growth of P. putida SP1 in the presence of HgCl{sub 2} and the removal of HgCl{sub 2} by P. putida SP1 was between 8.0 and 9.0, whereas the optimal pH for the expression of merA, the mercuric reductase enzyme in mer operon that reduces reactive Hg{sup 2+} to volatile and relatively inert monoatomic Hg{sup 0} vapor, was around 5.0. LD50 of P. putida SP1 to flounder and turbot was 1.5 x 10{sup 9} CFU. Biofilm developed by P. putida SP1 was 1- to 3-fold lower than biofilm developed by an aquatic pathogen Pseudomonas fluorescens TSS. The results of this study indicate that P. putida SP1 is a low virulence strain that can potentially be applied in the bioremediation of HgCl{sub 2} contamination over a broad range of pH. (orig.)

  2. Mercury (II) reduction and co-precipitation of metallic mercury on hydrous ferric oxide in contaminated groundwater.

    Science.gov (United States)

    Richard, Jan-Helge; Bischoff, Cornelia; Ahrens, Christian G M; Biester, Harald

    2016-01-01

    Mercury (Hg) speciation and sorption analyses in contaminated aquifers are useful for understanding transformation, retention, and mobility of Hg in groundwater. In most aquifers hydrous ferric oxides (HFOs) are among the most important sorbents for trace metals; however, their role in sorption or mobilization of Hg in aquifers has been rarely analyzed. In this study, we investigated Hg chemistry and Hg sorption to HFO under changing redox conditions in a highly HgCl2-contaminated aquifer (up to 870μgL(-1) Hg). Results from aqueous and solid phase Hg measurements were compared to modeled (PHREEQC) data. Speciation analyses of dissolved mercury indicated that Hg(II) forms were reduced to Hg(0) under anoxic conditions, and adsorbed to or co-precipitated with HFO. Solid phase Hg thermo-desorption measurements revealed that between 55 and 93% of Hg bound to HFO was elemental Hg (Hg(0)). Hg concentrations in precipitates reached more than 4 weight %, up to 7000 times higher than predicted by geochemical models that do not consider unspecific sorption to and co-precipitation of elemental Hg with HFO. The observed process of Hg(II) reduction and Hg(0) formation, and its retention and co-precipitation by HFO is thought to be crucial in HgCl2-contaminated aquifers with variable redox-conditions regarding the related decrease in Hg solubility (factor of ~10(6)), and retention of Hg in the aquifer. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Mercury kinetics in marine zooplankton

    International Nuclear Information System (INIS)

    Fowler, S.W.; Heyraud, M.; LaRosa, J.

    1976-01-01

    Mercury, like many other heavy metals, is potentially available to marine animals by uptake directly from water and/or through the organisms food. Furthermore, bioavailability, assimilation and subsequent retention in biota may be affected by the chemical species of the element in sea water. While mercury is known to exist in the inorganic form in sea water, recent work has indicated that, in certain coastal areas, a good portion of the total mercury appears to be organically bound; however, the exact chemical nature of the organic fraction has yet to be determined. Methyl mercury may be one constituent of the natural organically bound fraction since microbial mechanisms for in situ methylation of mercury have been demonstrated in the aquatic environment. Despite the fact that naturally produced methyl mercury probably comprises only a small fraction of an aquatic ecosystem, the well-documented toxic effects of this organo-mercurial, caused by man-made introductions into marine food chains, make it an important compound to study

  4. Removal of mercury by foam fractionation using surfactin, a biosurfactant.

    Science.gov (United States)

    Chen, Hau-Ren; Chen, Chien-Cheng; Reddy, A Satyanarayana; Chen, Chien-Yen; Li, Wun Rong; Tseng, Min-Jen; Liu, Hung-Tsan; Pan, Wei; Maity, Jyoti Prakash; Atla, Shashi B

    2011-01-01

    The separation of mercury ions from artificially contaminated water by the foam fractionation process using a biosurfactant (surfactin) and chemical surfactants (SDS and Tween-80) was investigated in this study. Parameters such as surfactant and mercury concentration, pH, foam volume, and digestion time were varied and their effects on the efficiency of mercury removal were investigated. The recovery efficiency of mercury ions was highly sensitive to the concentration of the surfactant. The highest mercury ion recovery by surfactin was obtained using a surfactin concentration of 10 × CMC, while recovery using SDS required 10 × CMC. However, the enrichment of mercury ions in the foam was superior with surfactin, the mercury enrichment value corresponding to the highest metal recovery (10.4%) by surfactin being 1.53. Dilute solutions (2-mg L(-1) Hg(2+)) resulted in better separation (36.4%), while concentrated solutions (100 mg L(-1)) enabled only a 2.3% recovery using surfactin. An increase in the digestion time of the metal solution with surfactin yielded better separation as compared with a freshly-prepared solution, and an increase in the airflow rate increased bubble production, resulting in higher metal recovery but low enrichment. Basic solutions yielded higher mercury separation as compared with acidic solutions due to the precipitation of surfactin under acidic conditions.

  5. Removal of Mercury by Foam Fractionation Using Surfactin, a Biosurfactant

    Directory of Open Access Journals (Sweden)

    Shashi B. Atla

    2011-11-01

    Full Text Available The separation of mercury ions from artificially contaminated water by the foam fractionation process using a biosurfactant (surfactin and chemical surfactants (SDS and Tween-80 was investigated in this study. Parameters such as surfactant and mercury concentration, pH, foam volume, and digestion time were varied and their effects on the efficiency of mercury removal were investigated. The recovery efficiency of mercury ions was highly sensitive to the concentration of the surfactant. The highest mercury ion recovery by surfactin was obtained using a surfactin concentration of 10 × CMC, while recovery using SDS required < 10 × CMC and Tween-80 >10 × CMC. However, the enrichment of mercury ions in the foam was superior with surfactin, the mercury enrichment value corresponding to the highest metal recovery (10.4% by surfactin being 1.53. Dilute solutions (2-mg L−1 Hg2+ resulted in better separation (36.4%, while concentrated solutions (100 mg L−1 enabled only a 2.3% recovery using surfactin. An increase in the digestion time of the metal solution with surfactin yielded better separation as compared with a freshly-prepared solution, and an increase in the airflow rate increased bubble production, resulting in higher metal recovery but low enrichment. Basic solutions yielded higher mercury separation as compared with acidic solutions due to the precipitation of surfactin under acidic conditions.

  6. Mercury emission monitoring on municipal waste combustion

    International Nuclear Information System (INIS)

    Braun, H.; Gerig, A.

    1991-01-01

    In waste incineration, mercury is the only heavy metal to be released as a gas, mostly as mercury(II) chloride, because of its high volatility. Continuous emission monitoring is possible only when mercury occurs in its elemental form. This paper reports on various possibilities of converting Hg(II) into Hg(0) that has been studied and tested on a laboratory scale and in the TAMARA refuse incineration pilot facility. Continuous mercury emission measurement appears to be possible, provided mercury is converted in the flue gas condensate precipitated. The measuring results obtained on two municipal solid waste and on one sewage treatment sludge incineration plants show that the mercury monitor is a highly sensitive and selective continuously working instrument for mercury emission monitoring

  7. Human Exposure and Health Effects of Inorganic and Elemental Mercury

    Science.gov (United States)

    Zheng, Wei

    2012-01-01

    Mercury is a toxic and non-essential metal in the human body. Mercury is ubiquitously distributed in the environment, present in natural products, and exists extensively in items encountered in daily life. There are three forms of mercury, i.e., elemental (or metallic) mercury, inorganic mercury compounds, and organic mercury compounds. This review examines the toxicity of elemental mercury and inorganic mercury compounds. Inorganic mercury compounds are water soluble with a bioavailability of 7% to 15% after ingestion; they are also irritants and cause gastrointestinal symptoms. Upon entering the body, inorganic mercury compounds are accumulated mainly in the kidneys and produce kidney damage. In contrast, human exposure to elemental mercury is mainly by inhalation, followed by rapid absorption and distribution in all major organs. Elemental mercury from ingestion is poorly absorbed with a bioavailability of less than 0.01%. The primary target organs of elemental mercury are the brain and kidney. Elemental mercury is lipid soluble and can cross the blood-brain barrier, while inorganic mercury compounds are not lipid soluble, rendering them unable to cross the blood-brain barrier. Elemental mercury may also enter the brain from the nasal cavity through the olfactory pathway. The blood mercury is a useful biomarker after short-term and high-level exposure, whereas the urine mercury is the ideal biomarker for long-term exposure to both elemental and inorganic mercury, and also as a good indicator of body burden. This review discusses the common sources of mercury exposure, skin lightening products containing mercury and mercury release from dental amalgam filling, two issues that happen in daily life, bear significant public health importance, and yet undergo extensive debate on their safety. PMID:23230464

  8. Mercury embrittlement of Cu-Al alloys under cyclic loading

    Science.gov (United States)

    Regan, T. M.; Stoloff, N. S.

    1977-01-01

    The effect of mercury on the room temperature, high cycle fatigue properties of three alloys: Cu-5.5 pct Al, Cu-7.3 pct Al, and Cu-6.3 pct Al-2.5 pct Fe has been determined. Severe embrittlement under cyclic loading in mercury is associated with rapid crack propagation in the presence of the liquid metal. A pronounced grain size effect is noted under mercury, while fatigue properties in air are insensitive to grain size. The fatigue results are discussed in relation to theories of adsorption-induced liquid metal embrittlement.

  9. Fractionation of families of major, minor, and trace metals across the melt-vapor interface in volcanic exhalations

    Science.gov (United States)

    Hinkley, T.K.; Le Cloarec, M.-F.; Lambert, G.

    1994-01-01

    Chemical families of metals fractionate systematically as they pass from a silicate melt across the interface with the vapor phase and on into a cooled volcanic plume. We measured three groups of metals in a small suite of samples collected on filters from the plumes of Kilauea (Hawaii, USA), Etna (Sicily), and Merapi (Java) volcanoes. These were the major, minor, and trace metals of the alkali and alkaline earth families (K, Rb, Cs, Ca, Sr, Ba), a group of ordinarily rare metals (Cd, Cu, In, Pb, Tl) that are related by their chalcophile affinities, and the radon daughter nuclides 210Po, 210Bi, and 210Pb. The measurements show the range and some details of systematic melt-vapor fractionation within and between these groups of metals. In the plumes of all three volcanoes, the alkali metals are much more abundant than the alkaline earth metals. In the Kilauea plume, the alkali metals are at least six times more abundant than the alkaline earth metals, relative to abundances in the melt; at Etna, the factor is at least 300. Fractionations within each family are, commonly, also distinctive; in the Kilauea plume, in addition to the whole alkaline earth family being depleted, the heaviest metals of the family (Sr, Ba) are progressively more depleted than the light metal Ca. In plumes of fumaroles at Merapi, K/Cs ratios were approximately three orders of magnitude smaller than found in other earth materials. This may represent the largest observed enrichment of the "light ion lithophile" (LIL) metals. Changes in metal ratios were seen through the time of eruption in the plumes of Kilauea and Etna. This may reflect degree of degassing of volatiles, with which metals complex, from the magma bodies. At Kilauea, the changes in fractionation were seen over about three years; fractionation within the alkaline earth family increased, and that between the two families decreased, over that time. All of the ordinarily rare chalcophile metals measured are extremely abundant in

  10. Mercury Sorption onto Malt Spent Rootlets

    Science.gov (United States)

    Manariotis, I. D.; Anagnostopoulos, V.; Karapanagioti, H. K.; Chrysikopoulos, C.

    2011-12-01

    Mercury is a metal of particular concern due to its toxicity even at relatively low concentrations. The maximum permissible level for mercury in drinking water set by the European Union is 0.001 mg/L. Mercury is released into the environment via four principal pathways: (1) natural processes; i.e. a volcanic eruption, (2) incidental to some other activity; i.e. coal burning power plants, (3) accidentally during the manufacture, breakage or disposal of products that have mercury put into them deliberately, and (4) direct use in industrial settings. The present study focuses on the removal of mercury (II) from aqueous solutions via sorption onto Malt Spent Rootlets (MSR). Batch experiments were conducted employing MSR with size ranging from 0.18 to 1 mm. The effects of pH, mercury concentration, contact time, and solid to liquid ratio on mercury sorption onto MSR were investigated. The highest mercury removal from the aqueous phase, of 41%, was observed at pH of 5.

  11. Metal-Silicate-Sulfide Partitioning of U, Th, and K: Implications for the Budget of Volatile Elements in Mercury

    Science.gov (United States)

    Habermann, M.; Boujibar, A.; Righter, K.; Danielson, L.; Rapp, J.; Righter, M.; Pando, K.; Ross, D. K.; Andreasen, R.

    2016-01-01

    During formation of the solar system, the Sun produced strong solar winds, which stripped away a portion of the volatile elements from the forming planets. Hence, it was expected that planets closest to the sun, such as Mercury, are more depleted in volatile elements in comparison to other terrestrial planets. However, the MESSENGER mission detected higher than expected K/U and K/Th ratios on Mercury's surface, indicating a volatile content between that of Mars and Earth. Our experiments aim to resolve this discrepancy by experimentally determining the partition coefficients (D(sup met/sil)) of K, U, and Th between metal and silicate at varying pressure (1 to 5 GPa), temperature (1500 to 1900 C), oxygen fugacity (IW-2.5 to IW-6.5) and sulfur-content in the metal (0 to 33 wt%). Our data show that U, Th, and K become more siderophile with decreasing fO2 and increasing sulfur-content, with a stronger effect for U and Th in comparison to K. Using these results, the concentrations of U, Th, and K in the bulk planet were calculated for different scenarios, where the planet equilibrated at a fO2 between IW-4 and IW-7, assuming the existence of a FeS layer, between the core and mantle, with variable thickness. These models show that significant amounts of U and Th are partitioned into Mercury's core. The elevated superficial K/U and K/Th values are therefore only a consequence of the sequestration of U and Th into the core, not evidence of the overall volatile content of Mercury.

  12. Origin and composition of Mercury

    International Nuclear Information System (INIS)

    Lewis, J.S.

    1988-01-01

    The predictions of the expected range of composition of Mercury at the time of its formation made on the basis of a suite of condensation-accretion models of Mercury spanning a range of condensation temperature and accretion sampling functions appropriate to Mercury are examined. It is concluded that these compositonal models can, if modified to take into account the nonselective loss of most of the silicate component of the planet during accretion, provide compositional predictions for the Weidenschilling (1978, 1980) mechanism for the accretion of a metal-rich Mercury. The silicate portion would, in this case, contain 3.6 to 4.5 percent alumina, roughly 1 percent of alkali oxides, and between 0.5 and 6 percent FeO

  13. Mercury Toxicity and Treatment: A Review of the Literature

    Science.gov (United States)

    Bernhoft, Robin A.

    2012-01-01

    Mercury is a toxic heavy metal which is widely dispersed in nature. Most human exposure results from fish consumption or dental amalgam. Mercury occurs in several chemical forms, with complex pharmacokinetics. Mercury is capable of inducing a wide range of clinical presentations. Diagnosis of mercury toxicity can be challenging but can be obtained with reasonable reliability. Effective therapies for clinical toxicity have been described. PMID:22235210

  14. Mercury Toxicity and Treatment: A Review of the Literature

    Directory of Open Access Journals (Sweden)

    Robin A. Bernhoft

    2012-01-01

    Full Text Available Mercury is a toxic heavy metal which is widely dispersed in nature. Most human exposure results from fish consumption or dental amalgam. Mercury occurs in several chemical forms, with complex pharmacokinetics. Mercury is capable of inducing a wide range of clinical presentations. Diagnosis of mercury toxicity can be challenging but can be obtained with reasonable reliability. Effective therapies for clinical toxicity have been described.

  15. Bench-scale studies with mercury contaminated SRS soil

    International Nuclear Information System (INIS)

    Cicero, C.A.

    1995-01-01

    Bench-scale studies with mercury contaminated soil were performed at the SRTC to determine the optimum waste loading obtainable in the glass product without sacrificing durability, leach resistance, and processability. Vitrifying this waste stream also required offgas treatment for the capture of the vaporized mercury. Four soil glasses with slight variations in composition were produced, which were capable of passing the Product Consistency Test (PCT) and the Toxicity Characteristic Leaching Procedure (TCLP). The optimum glass feed composition contained 60 weight percent soil and produced a soda-lime-silica glass when melted at 1,350 C. The glass additives used to produce this glass were 24 weight percent Na 2 CO 3 and 16 weight percent CaCO 3 . Volatilized mercury released during the vitrification process was released to the proposed mercury collection system. The proposed mercury collection system consisted of quartz and silica tubing with a Na 2 S wash bottle followed by a NaOH wash bottle. Once in the system, the volatile mercury would pass through the wash bottle containing Na 2 S, where it would be converted to Hg 2 S, which is a stable form of mercury. However, attempts to capture the volatilized mercury in a Na 2 S solution wash bottle were not as successful as anticipated. Maximum mercury captured was only about 3.24% of the mercury contained in the feed. Mercury capture efforts then shifted to condensing and capturing the volatilized mercury. These attempts were much more successful at capturing the volatile mercury, with a capture efficiency of 34.24% when dry ice was used to pack the condenser. This captured mercury was treated on a mercury specific resin after digestion of the volatilized mercury

  16. Mercury-cycling in surface waters and in the atmosphere - species analysis for the investigation of transformation and transport properties of mercury

    International Nuclear Information System (INIS)

    Ebinghaus, R.; Hintelmann, H.; Wilken, R.D.

    1994-01-01

    The river Elbe has been one of the most contaminated rivers with regard to mercury for many years. In 1991 a length-profile has been measured for mercury and methylmercury (CH 3 Hg + ) from Obristvi, Czech Republic, to the German bight. Total mercury has been measured by cold vapor atomic absorption spectrometry (CVAAS). The organo mercury compounds have been separated by high performance liquid chromatography (HPLC) connected on-line to an atomic fluorescence spectrometer (AFS) by a continuous flow-system. Total mercury up to 120 mg Hg + /kg and CH 3 Hg + concentrations up to 130 μg CH 3 Hg + /kg could be detected in special sites. The formation of CH 3 Hg + in sediments can be caused besides the methylation of mercury, by sulphate reducing or methanogenic bacteria and transmethylation reactions with organometals. Atmospheric mercury concentrations have been measured at three different European sites. Samples have been collected on gold-coated glass balls or on quartz wool, respectively. After thermal desorption mercury has been determined using the two step amalgamation technique with AFS detection. Compared to natural background concentrations of total gaseous mercury (TGM), slightly increased levels could be detected at a rural site in Germany. This increase can probably be explained by long-range transport processes. Within the vicinity of a inactivated mercury production plant high concentrations of up to 13.5 ng/m 3 particle associated mercury (Hg part ) have been detected. Consequently, dry deposition of mercury in the particulate form can intensify the total deposition flux close to Hg-emitting sources. (orig.)

  17. Mercury in Pelecanus occidentalis of the Cispata bay, Colombia

    Directory of Open Access Journals (Sweden)

    Saudith Burgos N.

    2014-06-01

    Full Text Available Objective. Assessment the total concentration of mercury in the liver and feathers of Pelecanus occidentalis of the Cispata bay, Colombia. Materials and methods. Mercury concentrations in liver and feather of Pelecanus occidentalis residents in the Cispata bay – Colombia were evaluated by digestion with an acidic mixture of H2SO4–HNO3 and KMnO4 to eliminate organic matter. The concentration of mercury was determined by the Atomic Absorption - Cold Vapor method (CVAAS. Results. Total mercury levels found in this study were higher in feathers (0.31-9.17 mgHg/kg than in the liver (0.63–6.29 mgHg/kg, being higher than those reported in other seabirds studies. Conclusions. The high levels of total mercury in feathers and liver can be explained by the feeding habits of the organisms under study, showing the utility of feathers as a potential non-invasive tool for the monitoring of the ecosystem and thereby preventing the sacrifice of specimens.

  18. Thiol-Functionalized Mesoporous Silica for Effective Trap of Mercury in Rats

    Directory of Open Access Journals (Sweden)

    Wei Zhao

    2016-01-01

    Full Text Available The chance of exposure to heavy metal for human being rises severely today due to the increasing water contamination and air pollution. Here, we prepared a series of thiol-functionalized mesoporous silica as oral formulation for the prevention and treatment of heavy metal poisoning. The successful incorporation of thiol was verified by the FTIR spectra. SBA15-SH-10 was used for the study as it is of uniform mesopores and fine water dispersibility. In simulated gastrointestinal fluid, the thiol-functionalized mesoporous silica can selectively capture heavy metal, showing a very high affinity for inorganic mercury (II. The blood and urine mercury levels of rats fed with a diet containing Hg (II and material were significantly lower than those of rats fed with the metal-rich diet only. On the contrary, the mercury content in fecal excretion of the treatment group increased more than twice as much as that of the control group. This result indicated that SBA15-SH-10 could effectively remove mercury (II in vivo and the mercury loaded on SBA15-SH-10 would be excreted out. Hence, SBA15-SH-10 has potential application in preventing and treating heavy metal poisoning via digestive system.

  19. Mercury toxicokinetics of the healthy human term placenta involve amino acid transporters and ABC transporters

    International Nuclear Information System (INIS)

    Straka, Elisabeth; Ellinger, Isabella; Balthasar, Christina; Scheinast, Matthias; Schatz, Jasmin; Szattler, Tamara; Bleichert, Sonja; Saleh, Leila; Knöfler, Martin; Zeisler, Harald; Hengstschläger, Markus; Rosner, Margit; Salzer, Hans; Gundacker, Claudia

    2016-01-01

    Highlights: • It is known that MeHg is able to pass the placenta and to affect fetal brain development. • Uptake and efflux transporters were examined in human primary trophoblast cells and BeWo cells. • Involvement in mercury transfer was assessed by measurement of cellular mercury content upon siRNA mediated gene knockdown. • Localization of transporters was determined by immunofluorescence microscopy. • LAT1 and rBAT at the apical membrane of the syncytiotrophoblast (STB) are involved in MeHg uptake. • MRP1 located at basal membrane of STB mediates mercury efflux. - Abstract: Background: The capacity of the human placenta to handle exogenous stressors is poorly understood. The heavy metal mercury is well-known to pass the placenta and to affect brain development. An active transport across the placenta has been assumed. The underlying mechanisms however are virtually unknown. Objectives: Uptake and efflux transporters (17 candidate proteins) assumed to play a key role in placental mercury transfer were examined for expression, localization and function in human primary trophoblast cells and the trophoblast-derived choriocarcinoma cell line BeWo. Methods: To prove involvement of the transporters, we used small interfering RNA (siRNA) and exposed cells to methylmercury (MeHg). Total mercury contents of cells were analyzed by Cold vapor-atomic fluorescence spectrometry (CV-AFS). Localization of the proteins in human term placenta sections was determined via immunofluorescence microscopy. Results: We found the amino acid transporter subunits L-type amino acid transporter (LAT)1 and rBAT (related to b 0,+ type amino acid transporter) as well as the efflux transporter multidrug resistance associated protein (MRP)1 to be involved in mercury kinetics of trophoblast cells (t-test P < 0.05). Conclusion: The amino acid transporters located at the apical side of the syncytiotrophoblast (STB) manage uptake of MeHg. Mercury conjugated to glutathione (GSH) is

  20. Saturated vapor pressure over molten mixtures of GaCl3 and alkali metal chlorides

    International Nuclear Information System (INIS)

    Salyulev, A.B.; Smolenskij, V.V.; Moskalenko, N.I.

    2004-01-01

    Volatilities of GaCl 3 and alkali metal chlorides over diluted (up to 3 mol %) solutions of GaCl 3 in LiCl, NaCl, KCl, RbCl, and CsCl were measured at 1100 K by dynamic and indirect static methods. Chemical composition of saturated vapor over the mixed melts was determined. Partial pressures of the components were calculated. Their values depend essentially on specific alkali metal cation and on concentration of GaCl 3 ; their variation permits altering parameters of GaCl 3 distillation from the salt melt in a wide range [ru

  1. Gallium-Based Room-Temperature Liquid Metals: Actuation and Manipulation of Droplets and Flows

    Directory of Open Access Journals (Sweden)

    Leily Majidi

    2017-08-01

    Full Text Available Gallium-based room-temperature liquid metals possess extremely valuable properties, such as low toxicity, low vapor pressure, and high thermal and electrical conductivity enabling them to become suitable substitutes for mercury and beyond in wide range of applications. When exposed to air, a native oxide layer forms on the surface of gallium-based liquid metals which mechanically stabilizes the liquid. By removing or reconstructing the oxide skin, shape and state of liquid metal droplets and flows can be manipulated/actuated desirably. This can occur manually or in the presence/absence of a magnetic/electric field. These methods lead to numerous useful applications such as soft electronics, reconfigurable devices, and soft robots. In this mini-review, we summarize the most recent progresses achieved on liquid metal droplet generation and actuation of gallium-based liquid metals with/without an external force.

  2. Recovery of Mercury From Contaminated Liquid Wastes

    International Nuclear Information System (INIS)

    1998-01-01

    The Base Contract program emphasized the manufacture and testing of superior sorbents for mercury removal, testing of the sorption process at a DOE site, and determination of the regeneration conditions in the laboratory. During this project, ADA Technologies, Inc. demonstrated the following key elements of a successful regenerable mercury sorption process: (1) sorbents that have a high capacity for dissolved, ionic mercury; (2) removal of ionic mercury at greater than 99% efficiency; and (3) thermal regeneration of the spent sorbent. ADA's process is based on the highly efficient and selective sorption of mercury by noble metals. Contaminated liquid flows through two packed columns that contain microporous sorbent particles on which a noble metal has been finely dispersed. A third column is held in reserve. When the sorbent is loaded with mercury to the point of breakthrough at the outlet of the second column, the first column is taken off-line and the flow of contaminated liquid is switched to the second and third columns. The spent column is regenerated by heating. A small flow of purge gas carries the desorbed mercury to a capture unit where the liquid mercury is recovered. Laboratory-scale tests with mercuric chloride solutions demonstrated the sorbents' ability to remove mercury from contaminated wastewater. Isotherms on surrogate wastes from DOE's Y-12 Plant in Oak Ridge, Tennessee showed greater than 99.9% mercury removal. Laboratory- and pilot-scale tests on actual Y-12 Plant wastes were also successful. Mercury concentrations were reduced to less than 1 ppt from a starting concentration of 1,000 ppt. The treatment objective was 50 ppt. The sorption unit showed 10 ppt discharge after six months. Laboratory-scale tests demonstrated the feasibility of sorbent regeneration. Results show that sorption behavior is not affected after four cycles

  3. Mercury emissions from polish pulverized coalfired boiler

    Directory of Open Access Journals (Sweden)

    Wichliński Michał

    2017-01-01

    Full Text Available The current paper presents the research results carried out at one of Polish power plants at a pulverized hard coal-fired 225 MW unit. The research was carried out at full load of the boiler (100% MCR and focused on analysis of mercury content in the input fuel and limestone sorbent for wet flue gas desulfurization (FGD system, as well as investigation of mercury content in the combustion products, i.e. fly ash, slag, FGD product (gypsum and FGD effluents (waste. Within the framework of the present study the concentration of mercury vapor in the exhaust gas was also investigated. The analysis was performed using Lumex RA-915+ spectrometer with an attachment (RP-91C. The measurements were carried out at three locations, i.e. before the electrostatic precipitator (ESP, downstream the ESP, and downstream the wet FGD plant. Design of the measurement system allowed to determine both forms of mercury in the flue gas (Hg0 and Hg2+ at all measurement locations.Based on the measurement results the balance of mercury for a pulverized coal (PC boiler was calculated and the amount of mercury was assessed both in the input solids (fuel and sorbent, as well as the gaseous and solids products (flue gas, slag, ash, gypsum and FGD waste.

  4. Collision cross sections and equilibrium fractions of ions and atoms in metal vapor targets. Project progress report, June 1, 1979-May 31, 1980

    International Nuclear Information System (INIS)

    Morgan, T.J.

    1980-01-01

    The objective of this program is to measure atomic collision cross sections and equilibrium fractions of ions and atoms in metal vapor targets. The goal is to obtain experimental information on atomic collision processes relevant to the Magnetic Fusion Energy Program. In particular, in connection with the development of double charge exchange D - ion sources, we are measuring D - formation cross sections in alkaline-earth metal vapor targets. During the period covered in this report we have measured electron transfer cross sections for 3-40 keV D + ions and D 0 atoms in collision with calcium vapor

  5. Trace mercury determination in drinking and natural water samples by room temperature ionic liquid based-preconcentration and flow injection-cold vapor atomic absorption spectrometry.

    Science.gov (United States)

    Martinis, Estefanía M; Bertón, Paula; Olsina, Roberto A; Altamirano, Jorgelina C; Wuilloud, Rodolfo G

    2009-08-15

    A liquid-liquid extraction procedure (L-L) based on room temperature ionic liquid (RTIL) was developed for the preconcentration and determination of mercury in different water samples. The analyte was quantitatively extracted with 1-butyl-3-methylimidazolium hexafluorophosphate ([C(4)mim][PF(6)]) under the form of Hg-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (Hg-5-Br-PADAP) complex. A volume of 500 microl of 9.0 mol L(-1) hydrochloric acid was used to back-extract the analyte from the RTIL phase into an aqueous media prior to its analysis by flow injection-cold vapor atomic absorption spectrometry (FI-CV-AAS). A preconcentration factor of 36 was achieved upon preconcentration of 20 mL of sample. The limit of detection (LOD) obtained under the optimal conditions was 2.3ngL(-1) and the relative standard deviation (RSD) for 10 replicates at 1 microg L(-1) Hg(2+) was 2.8%, calculated with peaks height. The method was successfully applied to the determination of mercury in river, sea, mineral and tap water samples and a certified reference material (CRM).

  6. Trace mercury determination in drinking and natural water samples by room temperature ionic liquid based-preconcentration and flow injection-cold vapor atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Martinis, Estefania M.; Berton, Paula; Olsina, Roberto A.; Altamirano, Jorgelina C.; Wuilloud, Rodolfo G.

    2009-01-01

    A liquid-liquid extraction procedure (L-L) based on room temperature ionic liquid (RTIL) was developed for the preconcentration and determination of mercury in different water samples. The analyte was quantitatively extracted with 1-butyl-3-methylimidazolium hexafluorophosphate ([C 4 mim][PF 6 ]) under the form of Hg-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (Hg-5-Br-PADAP) complex. A volume of 500 μl of 9.0 mol L -1 hydrochloric acid was used to back-extract the analyte from the RTIL phase into an aqueous media prior to its analysis by flow injection-cold vapor atomic absorption spectrometry (FI-CV-AAS). A preconcentration factor of 36 was achieved upon preconcentration of 20 mL of sample. The limit of detection (LOD) obtained under the optimal conditions was 2.3 ng L -1 and the relative standard deviation (RSD) for 10 replicates at 1 μg L -1 Hg 2+ was 2.8%, calculated with peaks height. The method was successfully applied to the determination of mercury in river, sea, mineral and tap water samples and a certified reference material (CRM).

  7. Metal chelators and neurotoxicity: lead, mercury, and arsenic.

    Science.gov (United States)

    Bjørklund, Geir; Mutter, Joachim; Aaseth, Jan

    2017-12-01

    This article reviews the clinical use of the metal chelators sodium 2,3-dimercapto-1-propanesulfonate (DMPS), meso-2,3-dimercaptosuccinic acid (DMSA), and calcium disodium edetate (CaEDTA, calcium EDTA) in overexposure and poisonings with salts of lead (Pb), mercury (Hg), and arsenic (As). DMSA has considerably lower toxicity than the classic heavy metal antagonist BAL (2,3-dimercaptopropanol) and is also less toxic than DMPS. Because of its adverse effects, CaEDTA should be replaced by DMSA as the antidote of choice in treating moderate Pb poisoning. Combination therapy with BAL and CaEDTA was previously recommended in cases of severe acute Pb poisoning with encephalopathy. We suggest that BAL in such cases acted as a shuttling Pb transporter from the intra- to the extracellular space. The present paper discusses if a combination of the extracellularly distributed DMSA with the ionophore, Monensin may provide a less toxic combination for Pb mobilization by increasing both the efflux of intracellularly deposited Pb and the urinary Pb excretion. Anyhow, oral therapy with DMSA should be continued with several intermittent courses. DMPS and DMSA are also promising antidotes in Hg poisoning, whereas DMPS seems to be a more efficient agent against As poisoning. However, new insight indicates that a combination of low-dosed BAL plus DMPS could be a preferred antidotal therapy to obtain mobilization of the intracerebral deposits into the circulation for subsequent rapid urinary excretion.

  8. Mercury pollution in the ground of Saint-Petersburg

    Energy Technology Data Exchange (ETDEWEB)

    Malov, A.M. [FSSI Inst. of Toxicology FMBA of Russia, Saint-Petersburg (Russian Federation)

    2008-07-01

    The problem of mercury poisoning in St-Petersburg's industrial centre was investigated. First, mercury content was directly measured in ground samples taken at various depths. Mushrooms, which are abundant in every district of the city, were then collected from lawns, yards and parks. Mushrooms provide an accurate indication of mercury distribution in the upper layer of the ground because they get their nutrients from the environment. As such, the chemical composition of mushrooms depends on the composition of the substrate on which they grow, notably the composition of the ground soil and its mercury content. The purpose of the study was to determine the mercury content of the mushrooms growing in the centre of St-Petersburg and its suburbs. The mercury content of the samples was measured by using the cold vapor atomic absorption spectrometry method. The mercury content of the mushrooms collected ranged from 1.29 mg/kg to 0.010 mg/kg. There was some correlation of the 2 data sets for territorial mercury impurity. The mercury content in the blood of 2 comparable groups of women living in the central part of St-Petersburg and its suburbs was also compared. Although there was no one single patterns of mercury distribution in the ground of the city, the depth of 1.0 to 2.0 m was found to be the most polluted. It was concluded that both measuring methods could be used to determine mercury contamination, but each reflects the situation from a different perspective. 20 refs., 3 tabs.

  9. Determination of inorganic mercury and total mercury in biological and environmental samples by flow injection-cold vapor-atomic absorption spectrometry using sodium borohydride as the sole reducing agent

    International Nuclear Information System (INIS)

    Rio Segade, Susana; Tyson, Julian F.

    2003-01-01

    A simple, fast, precise and accurate method to determine inorganic mercury and total mercury in biological and environmental samples was developed. The optimized flow-injection mercury system permitted the separate determination of inorganic mercury and total mercury using sodium borohydride as reducing agent. Inorganic mercury was selectively determined after reduction with 10 -4 % w/v sodium borohydride, while total mercury was determined after reduction with 0.75% w/v sodium borohydride. The calibration graphs were linear up to 30 ng ml -1 . The detection limits of the method based on three times the standard deviation of the blank were 24 and 3.9 ng l -1 for total mercury and inorganic mercury determination, respectively. The relative standard deviation was less than 1.5% for a 10 ng ml -1 mercury standard. As a means of checking method performance, deionized water and pond water samples were spiked with methylmercury and inorganic mercury; quantitative recovery for total mercury and inorganic mercury was obtained. The accuracy of the method was verified by analyzing alkaline and acid extracts of five biological and sediment reference materials. Microwave-assisted extraction procedures resulted in higher concentrations of recovered mercury species, lower matrix interference with mercury determination and less time involved in sample treatment than conventional extraction procedures. The standard addition method was only needed for calibration when biological samples were analyzed. The detection limits were in the range of 1.2-19 and 6.6-18 ng g -1 in biological and sediment samples for inorganic mercury and total mercury determination, respectively

  10. Mercury and other metals in muscle and ovaries of goldeye (Hiodon alosoides).

    Science.gov (United States)

    Donald, David B; Sardella, Gino D

    2010-02-01

    Concentrations of 24 trace metals were assessed in gravid ovaries and in muscle of female juvenile and adult female goldeye (Hiodon alosoides), a fish with both low annual growth (16 g/year as adults) and a long life span (maximum longevity of 30 years). It was hypothesized that adult fish with these life-history characteristics would maintain stable concentrations of metals in their tissues with higher levels of essential elements compared with those that are potentially toxic. As hypothesized, the concentration of most metals in muscle of adult female goldeye was similar at all ages, suggesting that uptake and excretion of metals was equal. Mercury was a notable exception. Total Hg concentrations in muscle of adults increased throughout life from a mean of 206 ng/g wet weight at age 8 to 809 ng/g at age 28, or by 26.2 ng/g/year. Concentrations of Hg were low in ovaries (mean 21.1 ng/g wet wt) compared to the mean for muscle, only 7% of the concentration in muscle. This was the lowest percent of muscle concentration of all 24 metals. Concentrations of Al, Ba, La, V, and Mn were significantly greater in muscle of juveniles and in ovaries than in muscle of adults. Concentrations of 13 metals were higher in ovaries relative to muscle, seven were similar, and four were depleted. Silver was enriched by over 50-fold in ovaries. Overall, the present study suggests that low concentrations of some metals in muscle of adult female goldeye, relative to concentrations in female juveniles and ovaries, may be maintained in part by transfer of metals to the external environment in eggs at spawning. Copyright 2009 SETAC.

  11. Sensing and capture of toxic and hazardous gases and vapors by metal-organic frameworks.

    Science.gov (United States)

    Wang, Hao; Lustig, William P; Li, Jing

    2018-03-13

    Toxic and hazardous chemical species are ubiquitous, predominantly emitted by anthropogenic activities, and pose serious risks to human health and the environment. Thus, the sensing and subsequent capture of these chemicals, especially in the gas or vapor phase, are of extreme importance. To this end, metal-organic frameworks have attracted significant interest, as their high porosity and wide tunability make them ideal for both applications. These tailorable framework materials are particularly promising for the specific sensing and capture of targeted chemicals, as they can be designed to fit a diverse range of required conditions. This review will discuss the advantages of metal-organic frameworks in the sensing and capture of harmful gases and vapors, as well as principles and strategies guiding the design of these materials. Recent progress in the luminescent detection of aromatic and aliphatic volatile organic compounds, toxic gases, and chemical warfare agents will be summarized, and the adsorptive removal of fluorocarbons/chlorofluorocarbons, volatile radioactive species, toxic industrial gases and chemical warfare agents will be discussed.

  12. 40 CFR 421.200 - Applicability: Description of the secondary mercury subcategory.

    Science.gov (United States)

    2010-07-01

    ... secondary mercury subcategory. 421.200 Section 421.200 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Secondary Mercury Subcategory § 421.200 Applicability: Description of the secondary mercury...

  13. Detection of Mercury in Human Organs and Hair in a Case of a Homicidal Poisoning of a Woman Autopsied 6 Years After Death.

    Science.gov (United States)

    Lech, Teresa

    2015-09-01

    In the described case of the death of a 53-year-old woman, no toxicological examination was performed directly after death (only an anatomopathological autopsy), although symptoms of serious gastrointestinal disturbances had been present (the woman had been hospitalized twice in the course of several months). It was assumed that the cause of death was myocardial infarction. Five years later, some new circumstances came to light which suggested that somebody could have administered some poison (metals, cyanides) to the woman. Toxicological analysis of postmortem samples from the corpse, exhumed 6 years after death by order of the public prosecutor's office, revealed high tissue mercury contents in biological material (cold vapor atomic absorption spectrometry): small intestine, 1516 ng/g; large intestine, 487 ng/g; liver, 1201 ng/g; heart muscle, 1023 ng/g; and scalp hair, 227 ng/g. In samples of soil from places near the coffin, negligible traces of mercury were found (0.5-1.5 ng/g); contamination by mercury from the environment was ruled out. The presented case is a rare example of recognition of mercury poisoning on the basis of the results of analysis of biological material from an exhumed cadaver.

  14. Action of mercury as a soil fungicide

    Energy Technology Data Exchange (ETDEWEB)

    Booer, J R

    1951-01-01

    Metallic mercury and mercury compounds in the soil retard the growth of plants. The development of mosses and lichens is inhibited, and experimental evidence shows that the growth of toadstools on turf and the activity of ascomycetes is retarded by mercury. In vitro, mercury has no fungicidal action but the rate of growth of hyphae is reduced by mercury vapour. The lack of fungicial properties of mercury and its good performance in controlling certain soil-borne diseases are reconciled by assuming that a differential retardation disturbs the relationships necessary for infection. This assumption is supported by diagrams which treat the rates of growth of the parasite and the host as population characteristics normally distributed. 21 references, 10 figures, 5 tables.

  15. Alkaline sorbent injection for mercury control

    Science.gov (United States)

    Madden, Deborah A.; Holmes, Michael J.

    2002-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  16. Evaluation of heavy metals level (arsenic, nickel, mercury and lead effecting on health in drinking water resource of Kohgiluyeh county using geographic information system (GIS

    Directory of Open Access Journals (Sweden)

    Abdolazim Alinejad

    2016-08-01

    Full Text Available This study was conducted to determine the amount of heavy metals (Arsenic, Nickel, Mercury, and Lead in drinking water resource of Kohgiluyeh County using Geographic Information System (GIS. This cross-sectional study was conducted on drinking water resource of Kohgiluyeh County (33 water supplies and 4 heavy metals in 2013. 264 samples were analyzed in this study. The experiments were performed at the laboratory of Water and Wastewater Company based on Standard Method. The Atomic Adsorption was used to evaluate the amount of heavy metals. The results were mapping by Geographic Information System software (GIS 9.3 after processing of parameters. Finally, the data were analyzed by SPSS 16 and Excel 2007. The maximum amount of each heavy metal and its resource were shown as follow: Nickel or Ni (Source of w12, 124ppb, Arsenic or As (w33, 42 ppb, Mercury or Hg (w22 and w30, 96ppb, Lead or Pb (w21, 1553ppb. Also, the GIS maps showed that Lead in the central region was very high, Mercury and Arsenic in the northern region were high and Nickel in the eastern and western regions was high. The Kriging method and Gauss model were introduced as best method for interpolation of these metals. Since the concentration of these heavy metals was higher than standard levels in most drinking water supplies in Kohgiluyeh County and these high levels of heavy metals can cause the adverse effects on human health; therefore, the environmental and geological studies are necessary to identify the pollution resource and elimination and removal of heavy metals

  17. Autometallographic tracing of mercury in frog liver

    International Nuclear Information System (INIS)

    Loumbourdis, N.S.; Danscher, G.

    2004-01-01

    The distribution of mercury in the liver of the frog Rana ridibunda with the autometallographic method was investigated. The mercury specific autometallographic (HgS/Se AMG ) technique is a sensitive histochemical approach for tracing mercury in tissues from mercury-exposed organisms. Mercury accumulates in vivo as mercury sulphur/mercury selenium nanocrystals that can be silver-enhanced. Thus, only a fraction of the Hg can be visualized. Six animals were exposed for one day and another group of six animals for 6 days in 1 ppm mercury (as HgCI 2 ) dissolved in fresh water. A third group of six animals, served as controls, were sacrificed the day of arrival at the laboratory. First, mercury appears in the blood plasma and erythrocytes. Next, mercury moves to hepatocytes and in the apical part of the cells, that facing bile canaliculi. In a next step, mercury appears in the endothelial and Kupffer cells. It seems likely that, the mercury of hepatocytes moves through bile canaliculi to the gut, most probably bound to glutathione and/or other similar ligands. Most probably, the endothelial and Kupffer cells comprise the first line of defense against metal toxicity. - Frogs can be good bioindicators of mercury

  18. Distribution and excretion of inhaled mercury vapour

    Energy Technology Data Exchange (ETDEWEB)

    Gage, J C

    1961-01-01

    Rats have been exposed for varying periods to an atmosphere containing 1 mg/cu.m. mercury vapor. The toxic effects produced showed resemblances to signs of mercurialism in man. An attempt has been made to study the kinetics of absorption and excretion of mercury from measurements of the amounts excreted and stored in the tissues. The efficiency of absorption of mercury by the rat lung is about 50%. A small proportion is excreted into the gut. After about 10 days of continuous exposure a steady state is reached in which excretion balances absorption. During short exposures the turnover of mercury in all tissues except brain is fairly rapid and most of the mercury is cleared from the body within a week after exposure. The urinary excretion of mercury, during the initial stage of storage in the tissues and the final stage of clearance, shows divergencies from the simple exponential pattern; there appears to be a delay mechanism in the kidney which, in intermittent exposures, may result in the occurrence of peak excretion during periods of non-exposure. After more prolonged exposures the mercury in the kidney appears to be converted to a form which is only very slowly excreted. The significance of the urinary excretion of mercury by man after industrial exposure to mercury vapour is discussed. The rat experiments suggest that single measurements will give only limited information concerning industrial conditions, but that an approximate assessment of the total absorbed during a working week would be obtained if it were possible to make a seven-day collection of urine. Repeated measurements after exposure would yield information on the duration of exposure and would have some diagnostic value.

  19. Studies on the preparation of thallium-201 by irradiating mercury with protons using extraction chromatography technique to separate thallium from mercury

    International Nuclear Information System (INIS)

    Fernandes, L.

    1990-01-01

    Radionuclide sup(201)Tl is used in Nuclear Medicine to identify myocardial ischemia or myocardial infarct. It is a cyclotron-produced radioisotope, obtained indirectly from the decay of sup(202)Pb or directly by irradiating mercury with deuterons or protons. The usual technique to prepare sup(201)Tl makes use of the nuclear reaction: sup(203)(p,3n) → sup(201)Tl, which requires proton energy of around 28 MeV. Due to the limited proton energy of IPEN'S CV-28 cyclotron, studies on the irradiating conditions of natural mercury oxide pellets and drops of natural mercury metal were made in the range of 19 - 24 MeV. At the end of the bombardment of a 6 MeV thickness target of natural mercury metal with 19 MeV protons around 10 MBq sup(201)Tl/μ A h was obtained. (author)

  20. Vapor-transport of tungsten and its geologic application

    Energy Technology Data Exchange (ETDEWEB)

    Shibue, Y [Hyogo Univ. of Teacher Education, Hyogo (Japan)

    1988-11-10

    The volatility of tungsten in a hydrous system at elevated temperatures and pressures was examined, and a tentative model for the enrichment of tungsten in hydrothermal solutions for the deposits related to granitic activities was proposed. To produce vapor-saturated solution, 17 or 15ml of 20wt% NaCl solution was introduced into an autoclave. Ca(OH){sub 2} for tungsten and H{sub 2}WO{sub 4} for base metals were used as vapor-captures, and run products were identified by X-ray powder diffractometry. The results suggested that the ratio of tungsten to base metals was higher in a vapor phase than in a liquid phase, and more enrichment of tungsten in the vapor phase occurred at higher temperature and pressure under the coexistence of the vapor and liquid phase. The tentative model emphasizing the vapor-transport of tungsten could explain the presence of tungsten deposits without large mineralization of base metals. Geological schematic model for the generation of the hydrothermal solution enriched in tungsten compared with base metals was illustrated based on above mentioned results. 21 refs., 3 figs.

  1. A Simplified Digestion Protocol for the Analysis of Hg in Fish by Cold Vapor Atomic Absorption Spectroscopy

    Science.gov (United States)

    Kristian, Kathleen E.; Friedbauer, Scott; Kabashi, Donika; Ferencz, Kristen M.; Barajas, Jennifer C.; O'Brien, Kelly

    2015-01-01

    Analysis of mercury in fish is an interesting problem with the potential to motivate students in chemistry laboratory courses. The recommended method for mercury analysis in fish is cold vapor atomic absorption spectroscopy (CVAAS), which requires homogeneous analyte solutions, typically prepared by acid digestion. Previously published digestion…

  2. Mercury purification in the megawatt liquid metal spallation target of EURISOL-DS

    CERN Document Server

    Neuhausen, Joerg; Eller, Martin; Schumann, Dorothea; Eichler, Bernd; Horn, Susanne

    High power spallation targets are going to be used extensively in future research and technical facilities such as spallation neutron sources, neutrino factories, radioactive beam facilities or accelerator driven systems for the transmutation of long-lived nuclear waste. Within EURISOL-DS, a 4 MW liquid metal spallation target is designed to provide neutrons for a fission target, where neutron rich radionuclides will be produced. For the spallation target, mercury is planned to be used as target material. A large amount of radionuclides ranging from atomic number Z=1 to 81 will be produced in the liquid metal during long term irradiation. It is planned to remove those radionuclides by chemical or physicochemical methods to reduce its radioactivity. For the development of a purification procedure, knowledge about the chemical state of the different elements present in the mixture is required. We present a general concept of applicable separation techniques in a target system and show some results of experiment...

  3. Direct Growth of Graphene on Silicon by Metal-Free Chemical Vapor Deposition

    Science.gov (United States)

    Tai, Lixuan; Zhu, Daming; Liu, Xing; Yang, Tieying; Wang, Lei; Wang, Rui; Jiang, Sheng; Chen, Zhenhua; Xu, Zhongmin; Li, Xiaolong

    2018-06-01

    The metal-free synthesis of graphene on single-crystal silicon substrates, the most common commercial semiconductor, is of paramount significance for many technological applications. In this work, we report the growth of graphene directly on an upside-down placed, single-crystal silicon substrate using metal-free, ambient-pressure chemical vapor deposition. By controlling the growth temperature, in-plane propagation, edge-propagation, and core-propagation, the process of graphene growth on silicon can be identified. This process produces atomically flat monolayer or bilayer graphene domains, concave bilayer graphene domains, and bulging few-layer graphene domains. This work would be a significant step toward the synthesis of large-area and layer-controlled, high-quality graphene on single-crystal silicon substrates. [Figure not available: see fulltext.

  4. Preparation and evaluation of coal-derived activated carbons for removal of mercury vapor from simulated coal combustion flue fases

    Science.gov (United States)

    Hsi, H.-C.; Chen, S.; Rostam-Abadi, M.; Rood, M.J.; Richardson, C.F.; Carey, T.R.; Chang, R.

    1998-01-01

    Coal-derived activated carbons (CDACs) were tested for their suitability in removing trace amounts of vapor-phase mercury from simulated flue gases generated by coal combustion. CDACs were prepared in bench-scale and pilot-scale fluidized-bed reactors with a three-step process, including coal preoxidation, carbonization, and then steam activation. CDACs from high-organicsulfur Illinois coals had a greater equilibrium Hg0 adsorption capacity than activated carbons prepared from a low-organic-sulfur Illinois coal. When a low-organic-sulfur CDAC was impregnated with elemental sulfur at 600 ??C, its equilibrium Hg0 adsorption capacity was comparable to the adsorption capacity of the activated carbon prepared from the high-organicsulfur coal. X-ray diffraction and sulfur K-edge X-ray absorption near-edge structure examinations showed that the sulfur in the CDACs was mainly in organic forms. These results suggested that a portion of the inherent organic sulfur in the starting coal, which remained in the CDACs, played an important role in adsorption of Hg0. Besides organic sulfur, the BET surface area and micropore area of the CDACs also influenced Hg0 adsorption capacity. The HgCl2 adsorption capacity was not as dependent on the surface area and concentration of sulfur in the CDACs as was adsorption of Hg0. The properties and mercury adsorption capacities of the CDACs were compared with those obtained for commercial Darco FGD carbon.

  5. Modeling Mercury in Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Jeremy C [ORNL; Parks, Jerry M [ORNL

    2016-01-01

    Mercury (Hg) is a naturally occurring element that is released into the biosphere both by natural processes and anthropogenic activities. Although its reduced, elemental form Hg(0) is relatively non-toxic, other forms such as Hg2+ and, in particular, its methylated form, methylmercury, are toxic, with deleterious effects on both ecosystems and humans. Microorganisms play important roles in the transformation of mercury in the environment. Inorganic Hg2+ can be methylated by certain bacteria and archaea to form methylmercury. Conversely, bacteria also demethylate methylmercury and reduce Hg2+ to relatively inert Hg(0). Transformations and toxicity occur as a result of mercury interacting with various proteins. Clearly, then, understanding the toxic effects of mercury and its cycling in the environment requires characterization of these interactions. Computational approaches are ideally suited to studies of mercury in proteins because they can provide a detailed picture and circumvent issues associated with toxicity. Here we describe computational methods for investigating and characterizing how mercury binds to proteins, how inter- and intra-protein transfer of mercury is orchestrated in biological systems, and how chemical reactions in proteins transform the metal. We describe quantum chemical analyses of aqueous Hg(II), which reveal critical factors that determine ligand binding propensities. We then provide a perspective on how we used chemical reasoning to discover how microorganisms methylate mercury. We also highlight our combined computational and experimental studies of the proteins and enzymes of the mer operon, a suite of genes that confers mercury resistance in many bacteria. Lastly, we place work on mercury in proteins in the context of what is needed for a comprehensive multi-scale model of environmental mercury cycling.

  6. Human accumulation of mercury in Greenland

    DEFF Research Database (Denmark)

    Johansen, Poul; Mulvad, Gert; Pedersen, Henning Sloth

    2007-01-01

    In the Arctic, the traditional diet exposes its people to a high intake of mercury especially from marine mammals. To determine whether the mercury is accumulated in humans, we analyzed autopsy samples of liver, kidney and spleen from adult ethnic Greenlanders who died between 1990 and 1994 from...... a wide range of causes, natural and violent. Liver, kidney and spleen samples from between 33 and 71 case subjects were analyzed for total mercury and methylmercury, and liver samples also for selenium. Metal levels in men and women did not differ and were not related to age except in one case, i.......e. for total mercury in liver, where a significant declining concentration with age was observed. The highest total mercury levels were found in kidney followed by liver and spleen. Methylmercury followed the same pattern, but levels were much lower, constituting only 19% of the total mercury concentration...

  7. Human accumulation of mercury in Greenland

    DEFF Research Database (Denmark)

    Johansen, P.; Mulvad, G.; Pedersen, H. S.

    2007-01-01

    a wide range of causes, natural and violent. Liver, kidney and spleen samples from between 33 and 71 case subjects were analyzed for total mercury and methylmercury, and liver samples also for selenium. Metal levels in men and women did not differ and were not related to age except in one case, i......In the Arctic, the traditional diet exposes its people to a high intake of mercury especially from marine mammals. To determine whether the mercury is accumulated in humans, we analyzed autopsy samples of liver, kidney and spleen from adult ethnic Greenlanders who died between 1990 and 1994 from.......e. for total mercury in liver, where a significant declining concentration with age was observed. The highest total mercury levels were found in kidney followed by liver and spleen. Methylmercury followed the same pattern, but levels were much lower, constituting only 19% of the total mercury concentration...

  8. Induction by mercury compounds of brain metallothionein in rats: Hg{sup 0} exposure induces long-lived brain metallothionein

    Energy Technology Data Exchange (ETDEWEB)

    Yasutake, Akira; Nakano, Atsuhiro [Biochemistry Section, National Institute for Minamata Disease, Kumamoto (Japan); Hirayama, Kimiko [Kumamoto University, College of Medical Science (Japan)

    1998-03-01

    Metallothionein (MT) is one of the stress proteins which can easily be induced by various kind of heavy metals. However, MT in the brain is difficult to induce because of blood-brain barrier impermeability to most heavy metals. In this paper, we have attempted to induce brain MT in rats by exposure to methylmercury (MeHg) or metallic mercury vapor, both of which are known to penetrate the blood-brain barrier and cause neurological damage. Rats treated with MeHg (40 {mu}mol/kg per day x 5 days, p.o.) showed brain Hg levels as high as 18 {mu}g/g with slight neurological signs 10 days after final administration, but brain MT levels remained unchanged. However, rats exposed to Hg vapor for 7 days showed 7-8 {mu}g Hg/g brain tissue 24 h after cessation of exposure. At that time brain MT levels were about twice the control levels. Although brain Hg levels fell gradually with a half-life of 26 days, MT levels induced by Hg exposure remained unchanged for >2 weeks. Gel fractionation revealed that most Hg was in the brain cytosol fraction and thus bound to MT. Hybridization analysis showed that, despite a significant increase in MT-I and -II mRNA in brain, MT-III mRNA was less affected. Although significant Hg accumulation and MT induction were observed also in kidney and liver of Hg vapor-exposed rats, these decreased more quickly than in brain. The long-lived MT in brain might at least partly be accounted for by longer half-life of Hg accumulated there. The present results showed that exposure to Hg vapor might be a suitable procedure to provide an in vivo model with enhanced brain MT. (orig.) With 4 figs., 1 tab., 27 refs.

  9. Runaway electron beam control for longitudinally pumped metal vapor lasers

    Science.gov (United States)

    Kolbychev, G. V.; Kolbycheva, P. D.

    1995-08-01

    Physics and techniques for producing of the pulsed runaway electron beams are considered. The main obstacle for increasing electron energies in the beams is revealed to be a self- breakdown of the e-gun's gas-filled diode. Two methods to suppress the self-breakdown and enhance the volumetric discharge producing the e-beam are offered and examined. Each of them provides 1.5 fold increase of the ceiling potential on the gun. The methods also give the ways to control several guns simultaneously. Resulting in the possibility of realizing the powerful longitudinal pumping of metal-vapor lasers on self-terminated transitions of atoms or ions.

  10. Sorbents for mercury removal from flue gas

    Energy Technology Data Exchange (ETDEWEB)

    Granite, Evan J.; Hargis, Richard A.; Pennline, Henry W.

    1998-01-01

    A review of the various promoters and sorbents examined for the removal of mercury from flue gas is presented. Commercial sorbent processes are described along with the chemistry of the various sorbent-mercury interactions. Novel sorbents for removing mercury from flue gas are suggested. Since activated carbons are expensive, alternate sorbents and/or improved activated carbons are needed. Because of their lower cost, sorbent development work can focus on base metal oxides and halides. Additionally, the long-term sequestration of the mercury on the sorbent needs to be addressed. Contacting methods between the flue gas and the sorbent also merit investigation.

  11. Application of atomic vapor laser isotope separation to the enrichment of mercury

    International Nuclear Information System (INIS)

    Crane, J.; Erbert, G.; Paisner, J.; Chen, H.; Chiba, Z.; Beeler, R.; Combs, R.; Mostek, S.

    1986-09-01

    Workers at GTE/Sylvania have shown that the efficiency of fluorescent lighting may be markedly improved using mercury that has been enriched in the 196 Hg isotope. A 5% improvement in the efficiency of fluorescent lighting in the United States could provide a savings of $450 million dollars in the corresponding reduction of electrical power consumption. We discuss the results of recent work done at our laboratory to develop a process for enriching mercury. The discussion centers around the results of spectroscopic measurements of excited-state lifetimes, photoionization cross sections, and isotope shifts

  12. Chelation Therapy for Mercury Poisoning

    OpenAIRE

    Rong Guan; Han Dai

    2009-01-01

    Chelation therapy has been the major treatment for heavy metal poisoning. Various chelating agents have been developed and tested for treatment of heavy metal intoxications, including mercury poisoning. It has been clearly shown that chelating agents could rescue the toxicity caused by heavy metal intoxication, but the potential preventive role of chelating agents against heavy metal poisoning has not been explored much. Recent paper by Siddiqi and colleagues has suggested a protective role o...

  13. Assessment of Hair Aluminum, Lead, and Mercury in a Sample of Autistic Egyptian Children: Environmental Risk Factors of Heavy Metals in Autism.

    Science.gov (United States)

    Mohamed, Farida El Baz; Zaky, Eman Ahmed; El-Sayed, Adel Bassuoni; Elhossieny, Reham Mohammed; Zahra, Sally Soliman; Salah Eldin, Waleed; Youssef, Walaa Yousef; Khaled, Rania Abdelmgeed; Youssef, Azza Mohamed

    2015-01-01

    The etiological factors involved in the etiology of autism remain elusive and controversial, but both genetic and environmental factors have been implicated. The aim of this study was to assess the levels and possible environmental risk factors and sources of exposure to mercury, lead, and aluminum in children with autism spectrum disorder (ASD) as compared to their matched controls. One hundred ASD children were studied in comparison to 100 controls. All participants were subjected to clinical evaluation and measurement of mercury, lead, and aluminum through hair analysis which reflects past exposure. The mean Levels of mercury, lead, and aluminum in hair of the autistic patients were significantly higher than controls. Mercury, lead, and aluminum levels were positively correlated with maternal fish consumptions, living nearby gasoline stations, and the usage of aluminum pans, respectively. Levels of mercury, lead, and aluminum in the hair of autistic children are higher than controls. Environmental exposure to these toxic heavy metals, at key times in development, may play a causal role in autism.

  14. High mobility single-crystalline-like GaAs thin films on inexpensive flexible metal substrates by metal-organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Dutta, P.; Rathi, M.; Gao, Y.; Yao, Y.; Selvamanickam, V.; Zheng, N.; Ahrenkiel, P.; Martinez, J.

    2014-01-01

    We demonstrate heteroepitaxial growth of single-crystalline-like n and p-type doped GaAs thin films on inexpensive, flexible, and light-weight metal foils by metal-organic chemical vapor deposition. Single-crystalline-like Ge thin film on biaxially textured templates made by ion beam assisted deposition on metal foil served as the epitaxy enabling substrate for GaAs growth. The GaAs films exhibited strong (004) preferred orientation, sharp in-plane texture, low grain misorientation, strong photoluminescence, and a defect density of ∼10 7  cm −2 . Furthermore, the GaAs films exhibited hole and electron mobilities as high as 66 and 300 cm 2 /V-s, respectively. High mobility single-crystalline-like GaAs thin films on inexpensive metal substrates can pave the path for roll-to-roll manufacturing of flexible III-V solar cells for the mainstream photovoltaics market.

  15. High mobility single-crystalline-like GaAs thin films on inexpensive flexible metal substrates by metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, P., E-mail: pdutta2@central.uh.edu; Rathi, M.; Gao, Y.; Yao, Y.; Selvamanickam, V. [Department of Mechanical Engineering, University of Houston, Houston, Texas 77204 (United States); Zheng, N.; Ahrenkiel, P. [Department of Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701 (United States); Martinez, J. [Materials Evaluation Laboratory, NASA Johnson Space Center, Houston, Texas 77085 (United States)

    2014-09-01

    We demonstrate heteroepitaxial growth of single-crystalline-like n and p-type doped GaAs thin films on inexpensive, flexible, and light-weight metal foils by metal-organic chemical vapor deposition. Single-crystalline-like Ge thin film on biaxially textured templates made by ion beam assisted deposition on metal foil served as the epitaxy enabling substrate for GaAs growth. The GaAs films exhibited strong (004) preferred orientation, sharp in-plane texture, low grain misorientation, strong photoluminescence, and a defect density of ∼10{sup 7 }cm{sup −2}. Furthermore, the GaAs films exhibited hole and electron mobilities as high as 66 and 300 cm{sup 2}/V-s, respectively. High mobility single-crystalline-like GaAs thin films on inexpensive metal substrates can pave the path for roll-to-roll manufacturing of flexible III-V solar cells for the mainstream photovoltaics market.

  16. Method for producing metallic nanoparticles

    Science.gov (United States)

    Phillips, Jonathan; Perry, William L.; Kroenke, William J.

    2004-02-10

    Method for producing metallic nanoparticles. The method includes generating an aerosol of solid metallic microparticles, generating non-oxidizing plasma with a plasma hot zone at a temperature sufficiently high to vaporize the microparticles into metal vapor, and directing the aerosol into the hot zone of the plasma. The microparticles vaporize in the hot zone to metal vapor. The metal vapor is directed away from the hot zone and to the plasma afterglow where it cools and condenses to form solid metallic nanoparticles.

  17. Investigation of mercury-free potentiometric stripping analysis and the influence of mercury in the analysis of trace-elements lead and zinc

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Andersen, Laust

    1997-01-01

    in an electrolyte containing 0.1 M HCl and 2 mg/g Zn2+ and electrolysis at -1400 mV(SCE). It is suggested that the concentration range of linear response occur where the electrode is not fully covered by metal clusters during the electrolysis step. The influence of mercury is investigated and a model is proposed...... which explains the co-deposition of mercury and test metals in the electrolysis step in terms of a charge-distribution parameter. The model explains that the decrease of stripping peak area, as a function of concentration, is entirely due to mercury ions being simultaneously reduced together......Application of Potentiometric Stripping Analysis (PSA), without any mercury, to determination of trace-elements lead and zinc, results in linear responses between stripping-peak areas and concentrations within the range 0-2000 ng/g. The best response, as determined by the size of stripping areas...

  18. Geo-Spatial Characterization of Soil Mercury and Arsenic at a High-Altitude Bolivian Gold Mine.

    Science.gov (United States)

    Johnson, Glen D; Pavilonis, Brian; Caravanos, Jack; Grassman, Jean

    2018-02-01

    Soil mercury concentrations at a typical small-scale mine site in the Bolivian Andes were elevated (28-737 mg/kg or ppm) in localized areas where mercury amalgams were either formed or vaporized to release gold, but was not detectable beyond approximately 10 m from its sources. Arsenic was measurable, exceeding known background levels throughout the mine site (77-137,022 ppm), and was also measurable through the local village of Ingenio (36-1803 ppm). Although arsenic levels were high at all surveyed locations, its spatial pattern followed mercury, being highest where mercury was high.

  19. Vapor mercury uptake with sulphur impregnated active carbons derived using sulphur dioxide

    International Nuclear Information System (INIS)

    Tong, S.; Methta, H.; Ahmed, I.; Morris, E.; Fuentes de Maria, L.; Jia, C.Q.

    2008-01-01

    Active carbon adsorption is the primary technology used for removal of vapour mercury from flue gases in coal-fired power plants, municipal solid waste combustors, and other sources. It can be carried out using two different processes, notably injection of powder active carbon into flue gas streams upstream of the particulate collection devices, and filtration with a granular active carbon fixed bed downstream of the flue gas desulphurization units and/or particulate collectors. This paper presented an investigation of vapour mercury uptake performance of laboratory-made sulphur impregnated active carbons (SIACs) using a fixed bed reactor in a temperature range of 25 to 200 degrees Celsius. The materials and methods as well as the properties of activated carbons studied were presented. The experimental set-up was also described. The paper discussed the effects of initial concentration, the flow rate, the loading amount of SIACs, temperature, and the sulphur impregnation on the mercury uptake performance. The study showed that SIACs produced with sulphur dioxide exhibited a more complicated behaviour when temperature was varied, implying a mixed adsorption mechanism. 10 refs., 3 tabs., 8 figs

  20. Mercury Levels in Locally Manufactured Mexican Skin-Lightening Creams

    Directory of Open Access Journals (Sweden)

    Luz O. Leal

    2011-06-01

    Full Text Available Mercury is considered one of the most toxic elements for plants and animals. Nevertheless, in the Middle East, Asia and Latin America, whitening creams containing mercury are being manufactured and purchased, despite their obvious health risks. Due to the mass distribution of these products, this can be considered a global public health issue. In Mexico, these products are widely available in pharmacies, beauty aid and health stores. They are used for their skin lightening effects. The aim of this work was to analyze the mercury content in some cosmetic whitening creams using the cold vapor technique coupled with atomic absorption spectrometry (CV-AAS. A total of 16 skin-lightening creams from the local market were investigated. No warning information was noted on the packaging. In 10 of the samples, no mercury was detected. The mercury content in six of the samples varied between 878 and 36,000 ppm, despite the fact that the U.S. Food and Drug Administration (FDA has determined that the limit for mercury in creams should be less than 1 ppm. Skin creams containing mercury are still available and commonly used in Mexico and many developing countries, and their contents are poorly controlled.

  1. Coal fired flue gas mercury emission controls

    International Nuclear Information System (INIS)

    Wu, Jiang; Pan, Weiguo; Cao, Yan; Pan, Weiping

    2015-01-01

    Mercury (Hg) is one of the most toxic heavy metals, harmful to both the environment and human health. Hg is released into the atmosphere from natural and anthropogenic sources and its emission control has caused much concern. This book introduces readers to Hg pollution from natural and anthropogenic sources and systematically describes coal-fired flue gas mercury emission control in industry, especially from coal-fired power stations. Mercury emission control theory and experimental research are demonstrated, including how elemental mercury is oxidized into oxidized mercury and the effect of flue gas contents on the mercury speciation transformation process. Mercury emission control methods, such as existing APCDs (air pollution control devices) at power stations, sorbent injection, additives in coal combustion and photo-catalytic methods are introduced in detail. Lab-scale, pilot-scale and full-scale experimental studies of sorbent injection conducted by the authors are presented systematically, helping researchers and engineers to understand how this approach reduces the mercury emissions in flue gas and to apply the methods in mercury emission control at coal-fired power stations.

  2. Coal fired flue gas mercury emission controls

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jiang; Pan, Weiguo [Shanghai Univ. of Electric Power (China); Cao, Yan; Pan, Weiping [Western Kentucky Univ., Bowling Green, KY (United States)

    2015-05-01

    Mercury (Hg) is one of the most toxic heavy metals, harmful to both the environment and human health. Hg is released into the atmosphere from natural and anthropogenic sources and its emission control has caused much concern. This book introduces readers to Hg pollution from natural and anthropogenic sources and systematically describes coal-fired flue gas mercury emission control in industry, especially from coal-fired power stations. Mercury emission control theory and experimental research are demonstrated, including how elemental mercury is oxidized into oxidized mercury and the effect of flue gas contents on the mercury speciation transformation process. Mercury emission control methods, such as existing APCDs (air pollution control devices) at power stations, sorbent injection, additives in coal combustion and photo-catalytic methods are introduced in detail. Lab-scale, pilot-scale and full-scale experimental studies of sorbent injection conducted by the authors are presented systematically, helping researchers and engineers to understand how this approach reduces the mercury emissions in flue gas and to apply the methods in mercury emission control at coal-fired power stations.

  3. Determination of Hg(II) as a pollutant in Karachi coastal waters by cold vapor atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Naqvi, I.I.; Shazli, J.; Ali, S.R.; Mohiuddin, S.; Zehra, I.

    2002-01-01

    Now a days, environmental monitoring has great importance and mercury is well known for its toxicity. Mercury (which is at trace level) is analyzed by cold vapor atomic absorption spectroscopy with amendments that are appropriate to the present laboratory need. The results are consistent with previous analysis, through other methods, two areas namely Ibrahim Hyderi and Fisheries were found to have mercury levels around 0.193 mu/L and 0.110 mu g/L, respectively. Whereas other areas have mercury levels similar to other places reported earlier. (author)

  4. Toward high value sensing: monolayer-protected metal nanoparticles in multivariable gas and vapor sensors.

    Science.gov (United States)

    Potyrailo, Radislav A

    2017-08-29

    For detection of gases and vapors in complex backgrounds, "classic" analytical instruments are an unavoidable alternative to existing sensors. Recently a new generation of sensors, known as multivariable sensors, emerged with a fundamentally different perspective for sensing to eliminate limitations of existing sensors. In multivariable sensors, a sensing material is designed to have diverse responses to different gases and vapors and is coupled to a multivariable transducer that provides independent outputs to recognize these diverse responses. Data analytics tools provide rejection of interferences and multi-analyte quantitation. This review critically analyses advances of multivariable sensors based on ligand-functionalized metal nanoparticles also known as monolayer-protected nanoparticles (MPNs). These MPN sensing materials distinctively stand out from other sensing materials for multivariable sensors due to their diversity of gas- and vapor-response mechanisms as provided by organic and biological ligands, applicability of these sensing materials for broad classes of gas-phase compounds such as condensable vapors and non-condensable gases, and for several principles of signal transduction in multivariable sensors that result in non-resonant and resonant electrical sensors as well as material- and structure-based photonic sensors. Such features should allow MPN multivariable sensors to be an attractive high value addition to existing analytical instrumentation.

  5. Complex processing of antimony-mercury gold concentrates of Dzhizhikrut Deposit

    International Nuclear Information System (INIS)

    Abdusalyamova, M.N.; Gadoev, S.A.; Dreisinger, D.; Solozhenkin, P.M.

    2013-01-01

    Present article is devoted to complex processing of antimony-mercury gold concentrates of Dzhizhikrut Deposit. The purpose of research was obtaining the metallic mercury and antimony with further gold and thallium extraction.

  6. Spatial variation of mercury bioaccumulation in bats of Canada linked to atmospheric mercury deposition.

    Science.gov (United States)

    Chételat, John; Hickey, M Brian C; Poulain, Alexandre J; Dastoor, Ashu; Ryjkov, Andrei; McAlpine, Donald; Vanderwolf, Karen; Jung, Thomas S; Hale, Lesley; Cooke, Emma L L; Hobson, Dave; Jonasson, Kristin; Kaupas, Laura; McCarthy, Sara; McClelland, Christine; Morningstar, Derek; Norquay, Kaleigh J O; Novy, Richard; Player, Delanie; Redford, Tony; Simard, Anouk; Stamler, Samantha; Webber, Quinn M R; Yumvihoze, Emmanuel; Zanuttig, Michelle

    2018-06-01

    Wildlife are exposed to neurotoxic mercury at locations distant from anthropogenic emission sources because of long-range atmospheric transport of this metal. In this study, mercury bioaccumulation in insectivorous bat species (Mammalia: Chiroptera) was investigated on a broad geographic scale in Canada. Fur was analyzed (n=1178) for total mercury from 43 locations spanning 20° latitude and 77° longitude. Total mercury and methylmercury concentrations in fur were positively correlated with concentrations in internal tissues (brain, liver, kidney) for a small subset (n=21) of little brown bats (Myotis lucifugus) and big brown bats (Eptesicus fuscus), validating the use of fur to indicate internal mercury exposure. Brain methylmercury concentrations were approximately 10% of total mercury concentrations in fur. Three bat species were mainly collected (little brown bats, big brown bats, and northern long-eared bats [M. septentrionalis]), with little brown bats having lower total mercury concentrations in their fur than the other two species at sites where both species were sampled. On average, juvenile bats had lower total mercury concentrations than adults but no differences were found between males and females of a species. Combining our dataset with previously published data for eastern Canada, median total mercury concentrations in fur of little brown bats ranged from 0.88-12.78μg/g among 11 provinces and territories. Highest concentrations were found in eastern Canada where bats are most endangered from introduced disease. Model estimates of atmospheric mercury deposition indicated that eastern Canada was exposed to greater mercury deposition than central and western sites. Further, mean total mercury concentrations in fur of adult little brown bats were positively correlated with site-specific estimates of atmospheric mercury deposition. This study provides the largest geographic coverage of mercury measurements in bats to date and indicates that atmospheric

  7. Experimental study on vapor explosion induced by pressure pulse in coarse mixing of hot molten metal and water

    International Nuclear Information System (INIS)

    Inoue, A.; Tobita, Y.; Aritomi, M.; Takahashi, M.; Matsuzaki, M.

    2004-01-01

    An experimental study was done to investigate characteristics of metal-water interaction, when a mount of hot liquid metal is injected into the water. The test section is a vertical shock tube of 60mm in inner diameter and 1200mm in length. A special injector which is designed to inject hot metal of controlled volume and flow rate is attached at the top of the tube. When the hot metal is injected in the water and comes down at a position of the test vessel, a trigger pressure pulse is generated at the bottom of the test tube. Local transient pressures along the tube are measured by piezo pressure transducers. The following items were investigated in the experiment; 1) The criteria to cause a vapor explosion, 2) Transient behaviors and propagation characteristics of pressure wave in the mixing region. 3) Effects of triggering pulse, injection temperature and mass of hot molten metal on the peak pressure. The probability of the vapor explosion jumped when the interface temperature at the molten metal-water direct contact is higher than the homogeneous nucleation temperature of water and the triggering pulse becomes larger than 0.9MPa. Two types of the pressure propagation modes are observed, one is the detonative mode with a sharp rise and other is usual pressure mode with a mild rise. (author)

  8. Mercury Oxidation via Catalytic Barrier Filters Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Wayne Seames; Michael Mann; Darrin Muggli; Jason Hrdlicka; Carol Horabik

    2007-09-30

    In 2004, the Department of Energy National Energy Technology Laboratory awarded the University of North Dakota a Phase II University Coal Research grant to explore the feasibility of using barrier filters coated with a catalyst to oxidize elemental mercury in coal combustion flue gas streams. Oxidized mercury is substantially easier to remove than elemental mercury. If successful, this technique has the potential to substantially reduce mercury control costs for those installations that already utilize baghouse barrier filters for particulate removal. Completed in 2004, Phase I of this project successfully met its objectives of screening and assessing the possible feasibility of using catalyst coated barrier filters for the oxidation of vapor phase elemental mercury in coal combustion generated flue gas streams. Completed in September 2007, Phase II of this project successfully met its three objectives. First, an effective coating method for a catalytic barrier filter was found. Second, the effects of a simulated flue gas on the catalysts in a bench-scale reactor were determined. Finally, the performance of the best catalyst was assessed using real flue gas generated by a 19 kW research combustor firing each of three separate coal types.

  9. Mercury and Lead Levels in Common Soaps from Local Markets in Mashhad, Iran

    Directory of Open Access Journals (Sweden)

    Anahita Alizadeh

    2017-06-01

    Full Text Available Background: The potential toxicity of human exposure was investigated to heavy metals from diverse sources but few or none was on Iranian soaps. Hence, we aimed to determine the presence of lead and mercury in selected soaps commonly used in Mashhad, northeastern Iran. Methods: Different common brands of cosmetic, hygiene and contraband soaps were purchased from retail market of Mashhad in 2016. Levels of these metals were determined using atomic absorption spectroscopy technique. Results: All samples had the mercury and lead levels but did not exceed the maximum acceptable level (1 µg/g for mercury and 20 µg/g for lead recommended by FDA. The mean levels of mercury were 0.02, 0.08 and 0.23 µg/g, respectively in cosmetic, hygiene and contraband soaps. These levels for lead were 0.10, 0.19 and 0.13 µg/g. The highest mercury and lead levels were detected in Halazoon contraband and P hygiene brands, respectively. Conclusion: The content of mercury and lead in common soaps is currently not a concern in this city. However, as human body may be exposed to several toxic metals from different care products simultaneously, cumulative toxic effects of these metals must be considered important.

  10. The price of gold: mercury exposure in the Amazonian rain forest.

    Science.gov (United States)

    Branches, F J; Erickson, T B; Aks, S E; Hryhorczuk, D O

    1993-01-01

    Concern has surfaced over the recent discovery of human mercury exposure throughout the tropical rain forest of South America's Amazon River Basin. The probable source of mercury has been traced to gold mines located within the interior. The mining process involves the extraction of gold from ore by burning off a mercury additive, resulting in vaporization of elemental mercury into the surrounding environment. The purpose of this case series is to document mercury levels in miners and local villagers presenting with a history of exposure, or signs and symptoms consistent with mercury toxicity. Over a five year period (1986-91), the whole blood and urine mercury levels of 55 Brazilian patients demonstrating signs and symptoms consistent with mercury exposure were collected. Thirty-three (60%) of the subjects had direct occupational exposure to mercury via gold mining and refining. Whole blood mercury levels ranged from 0.4-13.0 micrograms/dL (mean 3.05 micrograms/dL). Spot urine levels ranged 0-151 micrograms/L (mean = 32.7 micrograms/L). Occupational mercury exposure is occurring in the Amazon River Basin. Interventions aimed at altering the gold mining process while protecting the workers and surrounding villagers from the source of exposure are essential. The impact of the gold mining industry on general environmental contamination has not been investigated.

  11. The effect of mercury on trees and their mycorrhizal fungi

    Energy Technology Data Exchange (ETDEWEB)

    Jean-Philippe, Sharon R., E-mail: jeanphil@utk.edu [University of Tennessee, Department of Forestry, Wildlife and Fisheries, 274 Ellington Plant Science Building, 2431 Joe Johnson Dr., Knoxville, TN 37996-4563 (United States); Franklin, Jennifer A., E-mail: jafranklin@utk.edu [University of Tennessee, Department of Forestry, Wildlife and Fisheries, 274 Ellington Plant Science Building, 2431 Joe Johnson Dr., Knoxville, TN 37996-4563 (United States); Buckley, David S., E-mail: dbuckley@utk.edu [University of Tennessee, Department of Forestry, Wildlife and Fisheries, 274 Ellington Plant Science Building, 2431 Joe Johnson Dr., Knoxville, TN 37996-4563 (United States); Hughes, Karen, E-mail: khughes@utk.edu [University of Tennessee, Ecology and Evolutionary Biology, 350 Hesler Biology Building and Greenhouse, 1406 Circle Drive, Knoxville, TN 37996-1610 (United States)

    2011-10-15

    The Oak Ridge Reservation, established in 1942, was the designated site for the construction of the atomic bomb. During a 20-year period from 1944 to 1963 radioactive and toxic chemical pollutants, especially mercury compounds were released into the surrounding waterways. Tree diversity and mycorrhizal presence and abundance were analyzed in the mercury-contaminated floodplains of East Fork Poplar Creek Oak Ridge (EFPC) (Tennessee). A subsequent greenhouse study was conducted to assess the phytotoxic effects of different mercuric solutions on Platanus occidentalis (American Sycamore), inoculated with soils from EFPC. Total soil mercury in the field had no effect on tree diversity. Organic species of mercury proved to be more toxic than inorganic species of mercury and soil inoculants from EFPC had no protective effects against Hg toxicity in our greenhouse study. Comparison of the effects of mercury contamination in our field and greenhouse studies was difficult due to uncontrolled factors. - Highlights: > Heavy metals effects on ecosystems may be difficult to pinpoint in the field. > Toxic effects of mercury depend on its chemical form and concentration. > Mycorrhizae have been shown to be increase heavy metal tolerance in host plant. - Though evidence suggests that mercury-contaminated soils may reduce tree and fungal populations, there are tolerant species that may remain and survive following contamination.

  12. Biosensors for detection of mercury in contaminated soils

    International Nuclear Information System (INIS)

    Bontidean, Ibolya; Mortari, Alessia; Leth, Suzanne; Brown, Nigel L.; Karlson, Ulrich; Larsen, Martin M.; Vangronsveld, Jaco; Corbisier, Philippe; Csoeregi, Elisabeth

    2004-01-01

    Biosensors based on whole bacterial cells and on bacterial heavy metal binding protein were used to determine the mercury concentration in soil. The soil samples were collected in a vegetable garden accidentally contaminated with elemental mercury 25 years earlier. Bioavailable mercury was measured using different sensors: a protein-based biosensor, a whole bacterial cell based biosensor, and a plant sensor, i.e. morphological and biochemical responses in primary leaves and roots of bean seedlings grown in the mercury-contaminated soil. For comparison the total mercury concentration of the soil samples was determined by AAS. Whole bacterial cell and protein-based biosensors gave accurate responses proportional to the total amount of mercury in the soil samples. On the contrary, plant sensors were found to be less useful indicators of soil mercury contamination, as determined by plant biomass, mercury content of primary leaves and enzyme activities

  13. Trace-level mercury ion (Hg2+) analysis in aqueous sample based on solid-phase extraction followed by microfluidic immunoassay.

    Science.gov (United States)

    Date, Yasumoto; Aota, Arata; Terakado, Shingo; Sasaki, Kazuhiro; Matsumoto, Norio; Watanabe, Yoshitomo; Matsue, Tomokazu; Ohmura, Naoya

    2013-01-02

    Mercury is considered the most important heavy-metal pollutant, because of the likelihood of bioaccumulation and toxicity. Monitoring widespread ionic mercury (Hg(2+)) contamination requires high-throughput and cost-effective methods to screen large numbers of environmental samples. In this study, we developed a simple and sensitive analysis for Hg(2+) in environmental aqueous samples by combining a microfluidic immunoassay and solid-phase extraction (SPE). Using a microfluidic platform, an ultrasensitive Hg(2+) immunoassay, which yields results within only 10 min and with a lower detection limit (LOD) of 0.13 μg/L, was developed. To allow application of the developed immunoassay to actual environmental aqueous samples, we developed an ion-exchange resin (IER)-based SPE for selective Hg(2+) extraction from an ion mixture. When using optimized SPE conditions, followed by the microfluidic immunoassay, the LOD of the assay was 0.83 μg/L, which satisfied the guideline values for drinking water suggested by the United States Environmental Protection Agency (USEPA) (2 μg/L; total mercury), and the World Health Organisation (WHO) (6 μg/L; inorganic mercury). Actual water samples, including tap water, mineral water, and river water, which had been spiked with trace levels of Hg(2+), were well-analyzed by SPE, followed by microfluidic Hg(2+) immunoassay, and the results agreed with those obtained from reduction vaporizing-atomic adsorption spectroscopy.

  14. Highly efficient electrocatalytic vapor generation of methylmercury based on the gold particles deposited glassy carbon electrode: A typical application for sensitive mercury speciation analysis in fish samples.

    Science.gov (United States)

    Shi, Meng-Ting; Yang, Xin-An; Qin, Li-Ming; Zhang, Wang-Bing

    2018-09-26

    A gold particle deposited glassy carbon electrode (Au/GCE) was first used in electrochemical vapor generation (ECVG) technology and demonstrated to have excellent catalytic property for the electrochemical conversion process of aqueous mercury, especially for methylmercury (CH 3 Hg + ), to gaseous mercury. Systematical research has shown that the highly consistent or distinct difference between the atomic fluorescence spectroscopy signals of CH 3 Hg + and Hg 2+ can be achieved by controlling the electrolytic parameters of ECVG. Hereby, a new green and accurate method for mercury speciation analysis based on the distinguishing electrochemical reaction behavior of Hg 2+ and CH 3 Hg +  on the modified electrode was firstly established. Furthermore, electrochemical impedance spectra and the square wave voltammetry displayed that the ECVG reaction of CH 3 Hg +  may belong to the electrocatalytic mechanism. Under the selected conditions, the limits of detection of Hg 2+ and CH 3 Hg +  are 5.3 ng L -1 and 4.4 ng L -1 for liquid samples and 0.53 pg mg -1 and 0.44 pg mg -1 for solid samples, respectively. The precision of the 5 measurements is less than 6% within the concentration of Hg 2+ and CH 3 Hg +  ranging from 0.2 to 15.0 μg L -1 . The accuracy and practicability of the proposed method was verified by analyzing the mercury content in the certified reference material and several fish as well as water samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Mercury bioaccumulation on tadpoles of a gold mining zone in Dagua River, Buenaventura, Valle del Cauca, Colombia

    International Nuclear Information System (INIS)

    Hernandez Cordoba, Oscar Dario; Castro Herrera, Fernando; Paez Melo, Martha

    2013-01-01

    Amphibians, particularly larval stages, are strongly sensitive to pollutants, so they have become useful indicators to assess how different human activities affect ecosystems. In this way, tadpoles were used as bioindicators in the Medio Dagua zone, in Zaragoza town, where mining has released pollutants into the Dagua River (mostly heavy metals). Using spectrophotometry by cold vapor atomic absorption, we measured total mercury concentrations in tadpoles of five species, with a sediment sample for each animal sample as an environment reference. the study was realized in two areas with different intervention levels, we report mercury concentration ranges from 0.07 to 0.24 ?g/g for high impact zone and from 0.07 to 0.17?g/g for unknown impact zone, these levels do not exceed set limits used by local environmental authorities, however, is evident that bioaccumulation processes are developing in the area because organisms concentrations were always higher than those of the environment, in fact, significantly different (mw utest, p = 0.001) therefore we propose the implementation of biomonitoring and bioremediation programs in the area, taking in consideration that tadpoles species used here, were mainly first order consumers, and when their mercury concentrations are incorporated into the food chain, these contaminant loads will produce biomagnification processes.

  16. An evaluation of absorption spectroscopy to monitor YBa2Cu3O7-x precursors for metal organics chemical vapor deposition processing

    International Nuclear Information System (INIS)

    Matthew Edward Thomas

    1999-01-01

    Absorption spectroscopy was evaluated as a technique to monitor the metal organics chemical vapor deposition (MOCVD) process for forming YBa 2 Cu 3 O 7-x superconducting coated conductors. Specifically, this study analyzed the feasibility of using absorption spectroscopy to monitor the MOCVD supply vapor concentrations of the organic ligand 2,2,6,6-tetramethyl-3,5-heptanedionate (TMHD) metal chelates of barium, copper, and yttrium. Ba(TMHD) 2 , Cu(TMHD) 2 , and Y(TMHD) 3 compounds have successfully been vaporized in the MOCVD processing technique to form high temperature superconducting ''coated conductors,'' a promising technology for wire fabrication. The absorption study of the barium, copper, and yttrium (TMHD) precursors was conducted in the ultraviolet wavelength region from 200nm to 400nm. To simulate the MOCVD precursor flows the Ba(TMHD) 2 , Cu(TMHD) 2 , and Y(TMHD) 3 complexes were vaporized at vacuum pressures of (0.03--10)Torr. Spectral absorption scans of each precursor were conducted to examine potential measurement wavelengths for determining vapor concentrations of each precursor via Beer's law. The experimental results show that under vacuum conditions the barium, copper, and yttrium (TMHD) precursors begin to vaporize between 90 C and 135 C, which are considerably lower vaporization temperatures than atmospheric thermal gravimetric analyses indicate. Additionally, complete vaporization of the copper and yttrium (TMHD) precursors occurred during rapid heating at temperatures between 145 C and 195 C and after heating at constant temperatures between 90 C and 125 C for approximately one hour, whereas the Ba(TMHD) 2 precursor did not completely vaporize. At constant temperatures, near constant vaporization levels for each precursor were observed for extended periods of time. Detailed spectroscopic scans at stable vaporization conditions were conducted

  17. Mercúrio total em cabelos: uma contribuição para se avaliar o nível de exposição em Poconé, Mato Grosso, Brasil Total mercury in hair: a contribution to the evaluation of mercury exposure levels in Poconé, Mato Grosso, Brazil

    Directory of Open Access Journals (Sweden)

    Flávia Nogueira

    1997-10-01

    Full Text Available Ocorrem na Bacia do Rio Bento Gomes (MT, às margens do Pantanal Mato-grossense, cerca de sessenta garimpos de ouro, onde o mercúrio é utilizado de forma intensiva nos processos de produção, através da formação de amálgamas que facilitam a aglutinação de partículas finas. A queima do amálgama nem sempre é feita em sistemas fechados de recuperação, havendo, portanto, perda de vapor para a atmosfera. Este estudo traz resultados de análises de mercúrio total nos cabelos de quatro grupos de voluntários que vivem em Poconé (MT, e faz uma caracterização geral do ambiente no que se refere à presença do metal na água e no sedimento do Rio Bento Gomes. Um equipamento de detecção por fluorescência foi usado para a determinação das concentrações, e os resultados indicam que os valores são mais baixos do que os de outras populações de áreas de garimpo no Brasil. Indicam também que a via ocupacional parece ser a mais eficiente rota potencial de contaminação da população por mercúrio.There are some 60 gold-mining sites in the Bento Gomes River basin (Mato Grosso, at the border of the Mato Grosso Pantanal (Swamp, where mercury is used to agglutinate fine gold particles through amalgamation. During burning of the amalgam to release the gold, mercury vapor is lost to the atmosphere, since closed systems for mercury recovery are not always used. This study shows the results of total mercury analysis in hair from four volunteer groups living in Poconé, Mato Grosso, and presents a general environmental description pertaining to the presence of mercury in water and sediments from the Bento Gomes River. Atomic fluorescence was used for measuring mercury concentrations. The results were lower than for other populations from gold-mining areas in Brazil.

  18. Oxidation Catalysts for Elemental Mercury in Flue Gases—A Review

    Directory of Open Access Journals (Sweden)

    Liliana Lazar

    2012-02-01

    Full Text Available The removal of mercury from flue gases in scrubbers is greatly facilitated if the mercury is present as water-soluble oxidized species. Therefore, increased mercury oxidation upstream of scrubber devices will improve overall mercury removal. For this purpose heterogeneous catalysts have recently attracted a great deal of interest. Selective catalytic reduction (SCR, noble metal and transition metal oxide based catalysts have been investigated at both the laboratory and plant scale with this objective. A review article published in 2006 covers the progress in the elemental mercury (Hgel catalytic oxidation area. This paper brings the review in this area up to date. To this end, 110 papers including several reports and patents are reviewed. For each type of catalyst the possible mechanisms as well as the effect of flue gas components on activity and stability are examined. Advantages and main problems are analyzed. The possible future directions of catalyst development in this environmental research area are outlined.

  19. Distribution and excretion of methyl and phenyl mercury salts

    Energy Technology Data Exchange (ETDEWEB)

    Gage, J C

    1964-01-01

    The distribution, metabolism, and excretion of phenyl mercury acetate (P.M.A.) and of methyl mercury dicyanidiamide (M.M.D.) has been studied in the rat during the repeated subcutaneous administration of small doses over a period of six weeks, and for several weeks after a single dose. The results indicate that P.M.A. is absorbed unchanged into the circulation from which it is mainly removed by the liver and kidneys where it is metabolized and excreted in the feces and urine mostly as inorganic mercury. During repeated dosage the rats reached a steady state by the end of the second week when excretion approximately balanced intake. No measurable amount of mercury was found in the central nervous system. After repeated dosage with M.M.D. there is no clear indication of a steady state being reached after six weeks. There is an accumulation of organic mercury in all tissues, particularly in the red cells, and a progressive increase in the brain concentration. M.M.D. is more slowly released from the tissues than P.M.A. and the breakdown to inorganic mercury is low. The control of human exposure to alkyl and aryl mercury salts is considered in the light of these experimental observations. The recommendation that the concentration of alkyl mercury salts in the atmosphere should not exceed 0-01 mg/m/sup 3/ seems justifiable, but there appears to be no reason to establish the figure for aryl mercury salts below the 0-1 mg/m/sup 3/ recommended for inorganic mercury vapor. 13 references, 4 tables.

  20. Recent Advances in Atmospheric Chemistry of Mercury

    Directory of Open Access Journals (Sweden)

    Lin Si

    2018-02-01

    Full Text Available Mercury is one of the most toxic metals and has global importance due to the biomagnification and bioaccumulation of organomercury via the aquatic food web. The physical and chemical transformations of various mercury species in the atmosphere strongly influence their composition, phase, transport characteristics and deposition rate back to the ground. Modeling efforts to assess global cycling of mercury require an accurate understanding of atmospheric mercury chemistry. Yet, there are several key uncertainties precluding accurate modeling of physical and chemical transformations. We focus this article on recent studies (since 2015 on improving our understanding of the atmospheric chemistry of mercury. We discuss recent advances in determining the dominant atmospheric oxidant of elemental mercury (Hg0 and understanding the oxidation reactions of Hg0 by halogen atoms and by nitrate radical (NO3—in the aqueous reduction of oxidized mercury compounds (HgII as well as in the heterogeneous reactions of Hg on atmospheric-relevant surfaces. The need for future research to improve understanding of the fate and transformation of mercury in the atmosphere is also discussed.

  1. Experimental dosing of wetlands with coagulants removes mercury from surface water and decreases mercury bioaccumulation in fish.

    Science.gov (United States)

    Ackerman, Joshua T; Kraus, Tamara E C; Fleck, Jacob A; Krabbenhoft, David P; Horwath, William R; Bachand, Sandra M; Herzog, Mark P; Hartman, C Alex; Bachand, Philip A M

    2015-05-19

    Mercury pollution is widespread globally, and strategies for managing mercury contamination in aquatic environments are necessary. We tested whether coagulation with metal-based salts could remove mercury from wetland surface waters and decrease mercury bioaccumulation in fish. In a complete randomized block design, we constructed nine experimental wetlands in California's Sacramento-San Joaquin Delta, stocked them with mosquitofish (Gambusia affinis), and then continuously applied agricultural drainage water that was either untreated (control), or treated with polyaluminum chloride or ferric sulfate coagulants. Total mercury and methylmercury concentrations in surface waters were decreased by 62% and 63% in polyaluminum chloride treated wetlands and 50% and 76% in ferric sulfate treated wetlands compared to control wetlands. Specifically, following coagulation, mercury was transferred from the filtered fraction of water into the particulate fraction of water which then settled within the wetland. Mosquitofish mercury concentrations were decreased by 35% in ferric sulfate treated wetlands compared to control wetlands. There was no reduction in mosquitofish mercury concentrations within the polyaluminum chloride treated wetlands, which may have been caused by production of bioavailable methylmercury within those wetlands. Coagulation may be an effective management strategy for reducing mercury contamination within wetlands, but further studies should explore potential effects on wetland ecosystems.

  2. Experimental dosing of wetlands with coagulants removes mercury from surface water and decreases mercury bioaccumulation in fish

    Science.gov (United States)

    Ackerman, Joshua T.; Kraus, Tamara E.C.; Fleck, Jacob A.; Krabbenhoft, David P.; Horwarth, William R.; Bachand, Sandra M.; Herzog, Mark; Hartman, Christopher; Bachand, Philip A.M.

    2015-01-01

    Mercury pollution is widespread globally, and strategies for managing mercury contamination in aquatic environments are necessary. We tested whether coagulation with metal-based salts could remove mercury from wetland surface waters and decrease mercury bioaccumulation in fish. In a complete randomized block design, we constructed nine experimental wetlands in California’s Sacramento–San Joaquin Delta, stocked them with mosquitofish (Gambusia affinis), and then continuously applied agricultural drainage water that was either untreated (control), or treated with polyaluminum chloride or ferric sulfate coagulants. Total mercury and methylmercury concentrations in surface waters were decreased by 62% and 63% in polyaluminum chloride treated wetlands and 50% and 76% in ferric sulfate treated wetlands compared to control wetlands. Specifically, following coagulation, mercury was transferred from the filtered fraction of water into the particulate fraction of water which then settled within the wetland. Mosquitofish mercury concentrations were decreased by 35% in ferric sulfate treated wetlands compared to control wetlands. There was no reduction in mosquitofish mercury concentrations within the polyaluminum chloride treated wetlands, which may have been caused by production of bioavailable methylmercury within those wetlands. Coagulation may be an effective management strategy for reducing mercury contamination within wetlands, but further studies should explore potential effects on wetland ecosystems.

  3. Partitioning of U, Th and K Between Metal, Sulfide and Silicate, Insights into the Volatile-Content of Mercury

    Science.gov (United States)

    Habermann, M.; Boujibar, A.; Righter, K.; Danielson, L.; Rapp, J.; Righter, M.; Pando, K.; Ross, D. K.; Andreasen, R.; Chidester, B.

    2016-01-01

    During the early stages of the Solar System formation, especially during the T-Tauri phase, the Sun emitted strong solar winds, which are thought to have expelled a portion of the volatile elements from the inner solar system. It is therefore usually believed that the volatile depletion of a planet is correlated with its proximity to the Sun. This trend was supported by the K/Th and K/U ratios of Venus, the Earth, and Mars. Prior to the MESSENGER mission, it was expected that Mercury is the most volatile-depleted planet. However, the Gamma Ray Spectrometer of MESSENGER spacecraft revealed elevated K/U and K/Th ratios for the surface of Mercury, much higher than previous expectations. It is possible that the K/Th and K/U ratios on the surface are not a reliable gauge of the bulk volatile content of Mercury. Mercury is enriched in sulfur and is the most reduced of the terrestrial planets, with oxygen fugacity (fO2) between IW-6.3 and IW-2.6 log units. At these particular compositions, U, Th and K behave differently and can become more siderophile or chalcophile. If significant amounts of U and Th are sequestered in the core, the apparent K/U and K/Th ratios measured on the surface may not represent the volatile budget of the whole planet. An accurate determination of the partitioning of these elements between silicate, metal, and sulfide phases under Mercurian conditions is therefore essential to better constrain Mercury's volatile content and assess planetary formation models.

  4. D- production by multiple charge-transfer collisions in metal-vapor targets. [1 to 50 keV D/sup +/

    Energy Technology Data Exchange (ETDEWEB)

    Schlachter, A.S.

    1977-09-01

    A beam of D/sup -/ions can be produced by multiple charge-transfer collisions of a D/sup +/ beam in a thick metal-vapor target. Cross sections and equilibrium charge-state fractions are presented and discussed.

  5. Technology demonstration for reducing mercury emissions from small-scale gold refining facilities.

    Energy Technology Data Exchange (ETDEWEB)

    Habegger, L. J.; Fernandez, L. E.; Engle, M.; Bailey, J. L.; Peterson, D. P.; MacDonell, M. M.; U.S. Environmental Protection Agency

    2008-06-30

    Gold that is brought from artisanal and small-scale gold mining areas to gold shops for processing and sale typically contains 5-40% mercury. The uncontrolled removal of the residual mercury in gold shops by using high-temperature evaporation can be a significant source of mercury emissions in urban areas where the shops are located. Emissions from gold shop hoods during a burn can exceed 1,000 mg/m{sup 3}. Because the saturation concentration of mercury vapor at operating temperatures at the hood exhaust is less than 100 mg/m{sup 3}, the dominant component of the exhaust is in the form of aerosol or liquid particles. The U.S. Environmental Protection Agency (EPA), with technical support from Argonne National Laboratory (Argonne), has completed a project to design and test a technology to remove the dominant aerosol component in the emissions from gold shops. The objective was to demonstrate a technology that could be manufactured at low cost and by using locally available materials and manufacturing capabilities. Six prototypes designed by Argonne were locally manufactured, installed, and tested in gold shops in Itaituba and Creporizao, Brazil. The initial prototype design incorporated a pebble bed as the media for collecting the mercury aerosols, and a mercury collection efficiency of over 90% was demonstrated. Though achieving high efficiencies, the initial prototype was determined to have practical disadvantages such as excessive weight, a somewhat complex construction, and high costs (>US$1,000). To further simplify the construction, operation, and associated costs, a second prototype design was developed in which the pebble bed was replaced with slotted steel baffle plates. The system was designed to have flexibility for installation in various hood configurations. The second prototype with the baffle plate design was installed and tested in several different hood/exhaust systems to determine the optimal installation configuration. The significance of

  6. Micrometeorological methods for measurements of mercury emissions over contaminated soils

    International Nuclear Information System (INIS)

    Kim, K.H.; Lindberg, S.E.; Hanson, P.J.; Owens, J.; Myers, T.P.

    1993-01-01

    As part of a larger study involving development and application of field and laboratory methods (micrometeorological, dynamic enclosure chamber, and controlled laboratory chamber methods) to measure the air/surface exchange of Hg vapor, we performed a series of preliminary measurements over contaminated soils. From March--April 1993, we used the modified Bowen ratio (MBR) method to measure emission rates of mercury over a floodplain contaminated with mercury near Oak Ridge, TN. The mercury emission rates measured from contaminated EFPC soils using the MBR method during early spring show that (1) in all cases, the contaminated soils acted as a source of mercury to the atmosphere with source strengths ranging from 17 to 160 ng m -2 h -1 ; and (2) the strengths of mercury emissions can be greatly influenced by the combined effects of surface soil temperature, residence time of air masses over the source area, and turbulence conditions. The mercury fluxes measured in a controlled flow chamber indicate that contaminated soils can exhibit up to an order of magnitude higher emission rates of Hg under conditions of elevated soil temperature, soil structure disturbance, and high turbulence. Mercury emissions from contaminated soils exceeded emissions from background soils by one to two orders of magnitude

  7. Selective extraction of trace mercury and cadmium from drinking water sources.

    Science.gov (United States)

    Zhao, Xuan; Zhao, Gang; Wang, Jianlong; Yun, Guichun

    2005-01-01

    In this paper, a new alternative method, i.e., selective extraction by weakly basic anion exchange resin, has been developed for the removal of trace cadmium and mercury ions from drinking water sources. The mechanism of heavy metal removal is based on selective extraction as the results of LEWIS-base-acid interactions. Transfer of trace mercury species from liquid to resin phase coincides well with the performance of film diffusion. The results demonstrated that the presence of chlorine has a negligible influence on the removal of mercury. However, humic acids can strongly bind mercury by the formation of complex compounds and therefore become the obstacle in the diffusion progress. At neutral or base pH, the resin material exhibits the favorable uptake of heavy metals. In filter experiments, the studied resin material offers favorable properties in the selective extraction of trace mercury and cadmium.

  8. Toxic Effects of Mercury on the Cardiovascular and Central Nervous Systems

    Directory of Open Access Journals (Sweden)

    Bruna Fernandes Azevedo

    2012-01-01

    Full Text Available Environmental contamination has exposed humans to various metal agents, including mercury. This exposure is more common than expected, and the health consequences of such exposure remain unclear. For many years, mercury was used in a wide variety of human activities, and now, exposure to this metal from both natural and artificial sources is significantly increasing. Many studies show that high exposure to mercury induces changes in the central nervous system, potentially resulting in irritability, fatigue, behavioral changes, tremors, headaches, hearing and cognitive loss, dysarthria, incoordination, hallucinations, and death. In the cardiovascular system, mercury induces hypertension in humans and animals that has wide-ranging consequences, including alterations in endothelial function. The results described in this paper indicate that mercury exposure, even at low doses, affects endothelial and cardiovascular function. As a result, the reference values defining the limits for the absence of danger should be reduced.

  9. Toxic Effects of Mercury on the Cardiovascular and Central Nervous Systems

    Science.gov (United States)

    Fernandes Azevedo, Bruna; Barros Furieri, Lorena; Peçanha, Franck Maciel; Wiggers, Giulia Alessandra; Frizera Vassallo, Paula; Ronacher Simões, Maylla; Fiorim, Jonaina; Rossi de Batista, Priscila; Fioresi, Mirian; Rossoni, Luciana; Stefanon, Ivanita; Alonso, María Jesus; Salaices, Mercedes; Valentim Vassallo, Dalton

    2012-01-01

    Environmental contamination has exposed humans to various metal agents, including mercury. This exposure is more common than expected, and the health consequences of such exposure remain unclear. For many years, mercury was used in a wide variety of human activities, and now, exposure to this metal from both natural and artificial sources is significantly increasing. Many studies show that high exposure to mercury induces changes in the central nervous system, potentially resulting in irritability, fatigue, behavioral changes, tremors, headaches, hearing and cognitive loss, dysarthria, incoordination, hallucinations, and death. In the cardiovascular system, mercury induces hypertension in humans and animals that has wide-ranging consequences, including alterations in endothelial function. The results described in this paper indicate that mercury exposure, even at low doses, affects endothelial and cardiovascular function. As a result, the reference values defining the limits for the absence of danger should be reduced. PMID:22811600

  10. Mercury speciation analysis in marine samples by HPLC-ICPMS

    DEFF Research Database (Denmark)

    Rasmussen, Rie Romme; Svendsen, Maja Erecius; Herbst, M. Birgitte Koch

    Mercury (Hg) is a naturally occurring element, which is found in the earth’s crust and can be released into the environment through both natural and anthropogenic processes. Mercury exists as elemental mercury (metallic), inorganic mercury and organic mercury (primarily methylmercury......). Methylmercury is highly toxic, particularly to the nervous system, and the developing brain is thought to be the most sensitive target organ for methylmercury toxicity. Methylmercury bioaccumulates and biomagnifies along the food chain and it is the most common mercury species in fish and seafood. Human...... hydrochloric acid by sonication. Hereby the protein-bound mercury species are released. The extracts were then centrifuged (10 min at 3170 x g) and the supernatant decanted (extraction step was repeated twice). The combined extracts were added 10 M sodium hydroxide to increase pH, following further dilution...

  11. Mercury in mussels of Bellingham Bay, Washington, (USA)

    Energy Technology Data Exchange (ETDEWEB)

    Roesijadi, G.; Drum, A.S.; Bridge, J.R.

    1978-11-01

    Laboratory experiments demonstrated the existence of metallothionein-like, low molecular weight, mercury-binding proteins in the marine mussel Mytilus edulis. Relatively large quantities of mercury were associated with such proteins in gills and digestive gland, the organs of interest in the present study. /sup 14/C-incorporation indicated induction of the protein in gills, but not in digestive gland. Mercury in digestive gland may have bound to existing metal-binding proteins. Short-term incorporation of mercury occurred primarily in gills. The induction of mercury-binding proteins in gills may have facilitated detoxification of mercury at the site of uptake. Mercury in mussels of Bellingham Bay were shown to have decreased from 1970 to 1978, the collection date for the present study. Mercury levels were low but approximately three times higher than those from uncontaminated areas. Mercury associated with the mercury-binding protein of gills and digestive glands of Bellingham Bay mussels were low and reflected the concentrations measured in the whole tissues. However, the highest concentration of mercury was associated with the low molecular pool components, the identity of which is not presently known.

  12. Progress of liquid metal technology and application in energy industries

    International Nuclear Information System (INIS)

    Miyazaki, Keiji; Kamei, Mitsuru; Nei, Hiromichi.

    1990-01-01

    Liquid metals are excellent energy transport media, and recently remarkable development has been observed in the technology of handling sodium and the machinery and equipment. In nuclear fusion, the development of the use of lithium as the coolant is advanced. For space technology, attention has been paid from the early stage to various liquid metals. For general industries, liquid metals have been used for high temperature heat pipes and the utilization of solar heat, and mercury vapor turbines were manufactured for trial. Besides, attention is paid anew to liquid metal MHD electric power generation. The development of the NaS batteries for electric cars and electric power storage and the interchange of liquid metal technology with the fields of iron and steel, metallurgy and so on advance. It is expected that liquid metal technology bears future advanced energy engineering while deepening the interchange with other advanced fields also in order to reactivate atomic energy technology. Liquid metals have the features of high electric and thermal conductivities, chemical activity and opaque property as metals, and fluidity and relatively high boiling point and melting point as liquids. FBRs, fusion reactors and the power sources for space use are described. (K.I.)

  13. MERCURY CONTAMINATED MATERIAL DECONTAMINATION METHODS: INVESTIGATION AND ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian, Ph.D.

    2001-01-01

    Over the years mercury has been recognized as having serious impacts on human health and the environment. This recognition has led to numerous studies that deal with the properties of various mercury forms, the development of methods to quantify and speciate the forms, fate and transport, toxicology studies, and the development of site remediation and decontamination technologies. This report reviews several critical areas that will be used in developing technologies for cleaning mercury from mercury-contaminated surfaces of metals and porous materials found in many DOE facilities. The technologies used for decontamination of water and mixed wastes (solid) are specifically discussed. Many technologies that have recently appeared in the literature are included in the report. Current surface decontamination processes have been reviewed, and the limitations of these technologies for mercury decontamination are discussed. Based on the currently available technologies and the processes published recently in the literature, several processes, including strippable coatings, chemical cleaning with iodine/iodide lixiviant, chemisorbing surface wipes with forager sponge and grafted cotton, and surface/pore fixation through amalgamation or stabilization, have been identified as potential techniques for decontamination of mercury-contaminated metal and porous surfaces. Their potential merits and applicability are discussed. Finally, two processes, strippable coatings and chemical cleaning with iodine/iodide lixiviant, were experimentally investigated in Phase II of this project.

  14. Current State of Knowledge of the Concentration of Mercury and Other Heavy Metals in Fresh Water Fish in Colombia

    Directory of Open Access Journals (Sweden)

    Néstor Javier Mancera-Rodríguez

    2006-01-01

    Full Text Available One of the most important environmental problems in the country refers to the indiscriminate use of chemical precursors in illicit activities, the use of heavy metals as mercury in mining activities, the spill of served waters and another type of compound related with the industrial activities of raw and the inadequate agricultural practices. This has led to chemical contamination especially by heavy metals, considered one of the most dangerous for the aquatic ecosystems and the present species in them. Fish have the capacity to store these compounds in their organism in a concentration higher important indicators of the contamination level, but also this implies that their consumption can become a serious health problem for the populations that feeds from them. The concentration of heavy metals in fish of fresh water is better known in the basin of the Magdalena river, especially in the region of the Mojana and in the marshes of the south of the Department of Bolivar where the levels of contamination by mercury and other metals has been studied due to the development of multiple industrial activities, including gold mining and petrochemical industries. However, little is known in the country about the problem generated by the disposal heavy metals in rivers and lakes and their impact on the fish resource, deterioration of ecosystems and human health. Based in the current norms bio-assays have been used to check the effects of the aquatic contamination on fresh waters fish and the evaluation of at least three parameters (heavy metals, temperature, effluents in eight species of fresh waters fish: Carassius auratus, Oreochromis spp., Piractus brachypomus, Prochilodus magdalenae, Astyanax fasciatus, Colossoma bidens, Gambusia affinis and Grundulus bogotensis.

  15. Current state of knowledge of the concentration of mercury and other heavy metals in fresh water fish in Colombia

    International Nuclear Information System (INIS)

    Mancera Rodriguez, Nestor Javier; Alvarez Leon, Ricardo

    2006-01-01

    One of the most important environmental problems in the country refers to the indiscriminate use of chemical precursors in illicit activities, the use of heavy metals as mercury in mining activities, the spill of served waters and another type of compound related with the industrial activities of raw and the inadequate agricultural practices. This has led to chemical contamination especially by heavy metals, considered one of the most dangerous for the aquatic ecosystems and the present species in them. Fish have the capacity to store these compounds in their organism in a concentration higher than that in the surrounding environment (water), therefore, their concentration are important indicators of the contamination level, but also this implies that their consumption can become a serious health problem for the populations that feeds from them. The concentration of heavy metals in fish of fresh water is better known in the basin of the Magdalena river, especially in the region of the Mojana and in the marshes of the south of the department of Bolivar where the levels of contamination by mercury and other metals has been studied due to the development of multiple industrial activities, including gold mining and petrochemical industries. However, little is known in the country about the problem generated by the disposal heavy metals in rivers and lakes and their impact on the fish resource, deterioration of ecosystems and human health. Based in the current norms bio-assays have been used to check the effects of the aquatic contamination on fresh waters fish and the evaluation of at least three parameters (heavy metals, temperature, effluents) in eight species of fresh waters fish: carassius auratus, oreochromis spp., piractus brachypomus, prochilodus magdalenae, astyanax fasciatus, colossoma bidens, gambusia affinis and grundulus bogotensis

  16. TVA - Thermionic Vacuum Arc - A new type of discharge generating pure metal vapor plasma

    International Nuclear Information System (INIS)

    Musa, G.; Popescu, A.; Mustata, I.; Borcoman, I.; Cretu, M.; Leu, G.F.; Salambas, A.; Ehrich, H.; Schumann, I.

    1996-01-01

    In this paper it is presented a new type of discharge in vacuum conditions generating pure metal vapor plasma with energetic metal ions content. The peculiarities of this heated cathode discharge are described and the dependence of the measured ion energy of the working parameters are established. The ion energy value can be easily and smoothly changed. A nearly linear dependence between energy of ions and arc voltage drop has been observed. The ion energy can be increased by the increase of the interelectrode distance, decrease of cathode temperature, change of the relative position of the electrodes and by the decrease of the arc discharge current. A special configuration with cylindrical geometry has been used to develop a small size and compact metal vapour plasma gun. Due to the mentioned peculiarities, this discharge offers new openings for important applications. (author)

  17. Atmospheric wet deposition of mercury in North America

    Energy Technology Data Exchange (ETDEWEB)

    Sweet, C.W.; Prestbo, E.; Brunette, B.

    1999-07-01

    Currently, 39 states in the US and 5 Canadian provinces have issued advisories about the dangers of eating mercury-contaminated fish taken from waters within their boundaries. The problem is most severe in the Great Lakes region, the Northeast US states, the Canadian maritime provinces, and in south Florida where many lakes and streams contain fish with concentrations of 1 ppm or higher. For many rural and remote locations, atmospheric deposition is the primary source of mercury. In 1995, the National Atmospheric Deposition Program (NADP) initiated a program to monitor total mercury and methylmercury (MMHg) in wet deposition (rain and snow) in North America. In this program, the Mercury Deposition Network (MDN), individual monitoring sites are funded and operated by a variety of local, state, and federal agencies. However, sampling and analysis are coordinated through a central laboratory so that all of the samples are collected and analyzed using the same protocols. Weekly wet-only precipitation samples are collected using an all-glass sampling train and special handling techniques. Analysis is by cold vapor atomic fluorescence spectrometry using USEPA Method 1631 for total mercury. Nearly 40 MDN sites are in operation in 1999. Most of the sites are in the eastern US and Canada. During 1996 and 1997, the volume-weighted mean concentration of total mercury in precipitation collected at 22 sites ranged from 6.0 to 18.9 ng/L. Annual deposition varied between 2.1 and 25.3 {micro} g/m{sup 2}. The average weekly wet deposition of total mercury is more than three times higher in the summer (June-August) than in the winter (December-February). This increase is due to both higher amounts of precipitation and higher concentrations of mercury in precipitation during the summer. The highest values for mercury concentration in precipitation and wet deposition of mercury were measured in the southeastern US.

  18. Suitable alkaline for graphene peeling grown on metallic catalysts using chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Karamat, S., E-mail: shumailakaramat@gmail.com [Department of Physics, Middle East Technical University, Ankara 06800 (Turkey); COMSATS Institute of Information Technology, Islamabad 54000 (Pakistan); Sonuşen, S. [Sabancı Üniversitesi (SUNUM), İstanbul 34956 (Turkey); Çelik, Ü. [Nanomagnetics Instruments, Ankara (Turkey); Uysallı, Y. [Department of Physics, Middle East Technical University, Ankara 06800 (Turkey); Oral, A., E-mail: orahmet@metu.edu.tr [Department of Physics, Middle East Technical University, Ankara 06800 (Turkey)

    2016-04-15

    Graphical abstract: - Highlights: • Graphene layers were grown on Pt and Cu foil via ambient pressure chemical vapor deposition method and for the delicate removal of graphene from metal catalysts, electrolysis method was used by using different alkaline (sodium hydroxide, potassium hydroxide, lithium hydroxide and barium hydroxide). • The delamination speed of PMMA/graphene stack was higher during the KOH and LiOH electrolysis as compare to NaOH and Ba(OH){sub 2}. Ba(OH){sub 2} is not advisable because of the residues left on the graphene surface which would further trapped in between graphene and SiO{sub 2}/Si surface after transfer. The average peeling time in case of Pt electrode is ∼6 min for KOH and LiOH and ∼15 min for NaOH and Ba(OH){sub 2}. • Electrolysis method also works for the Cu catalyst. The peeling of graphene was faster in the case of Cu foil due to small size of bubbles which moves faster between the stack and the electrode surface. The average peeling time was ∼3–5 min. • XPS analysis clearly showed that the Pt substrates can be re-used again. Graphene layer was transferred to SiO{sub 2}/Si substrates and to the flexible substrate by using the same peeling method. - Abstract: In chemical vapor deposition, the higher growth temperature roughens the surface of the metal catalyst and a delicate method is necessary for the transfer of graphene from metal catalyst to the desired substrates. In this work, we grow graphene on Pt and Cu foil via ambient pressure chemical vapor deposition (AP-CVD) method and further alkaline water electrolysis was used to peel off graphene from the metallic catalyst. We used different electrolytes i.e., sodium hydroxide (NaOH), potassium hydroxide (KOH), lithium hydroxide (LiOH) and barium hydroxide Ba(OH){sub 2} for electrolysis, hydrogen bubbles evolved at the Pt cathode (graphene/Pt/PMMA stack) and as a result graphene layer peeled off from the substrate without damage. The peeling time for KOH and Li

  19. Suitable alkaline for graphene peeling grown on metallic catalysts using chemical vapor deposition

    International Nuclear Information System (INIS)

    Karamat, S.; Sonuşen, S.; Çelik, Ü.; Uysallı, Y.; Oral, A.

    2016-01-01

    Graphical abstract: - Highlights: • Graphene layers were grown on Pt and Cu foil via ambient pressure chemical vapor deposition method and for the delicate removal of graphene from metal catalysts, electrolysis method was used by using different alkaline (sodium hydroxide, potassium hydroxide, lithium hydroxide and barium hydroxide). • The delamination speed of PMMA/graphene stack was higher during the KOH and LiOH electrolysis as compare to NaOH and Ba(OH)_2. Ba(OH)_2 is not advisable because of the residues left on the graphene surface which would further trapped in between graphene and SiO_2/Si surface after transfer. The average peeling time in case of Pt electrode is ∼6 min for KOH and LiOH and ∼15 min for NaOH and Ba(OH)_2. • Electrolysis method also works for the Cu catalyst. The peeling of graphene was faster in the case of Cu foil due to small size of bubbles which moves faster between the stack and the electrode surface. The average peeling time was ∼3–5 min. • XPS analysis clearly showed that the Pt substrates can be re-used again. Graphene layer was transferred to SiO_2/Si substrates and to the flexible substrate by using the same peeling method. - Abstract: In chemical vapor deposition, the higher growth temperature roughens the surface of the metal catalyst and a delicate method is necessary for the transfer of graphene from metal catalyst to the desired substrates. In this work, we grow graphene on Pt and Cu foil via ambient pressure chemical vapor deposition (AP-CVD) method and further alkaline water electrolysis was used to peel off graphene from the metallic catalyst. We used different electrolytes i.e., sodium hydroxide (NaOH), potassium hydroxide (KOH), lithium hydroxide (LiOH) and barium hydroxide Ba(OH)_2 for electrolysis, hydrogen bubbles evolved at the Pt cathode (graphene/Pt/PMMA stack) and as a result graphene layer peeled off from the substrate without damage. The peeling time for KOH and LiOH was ∼6 min and for NaOH and

  20. Metal resistance sequences and transgenic plants

    Science.gov (United States)

    Meagher, Richard Brian; Summers, Anne O.; Rugh, Clayton L.

    1999-10-12

    The present invention provides nucleic acid sequences encoding a metal ion resistance protein, which are expressible in plant cells. The metal resistance protein provides for the enzymatic reduction of metal ions including but not limited to divalent Cu, divalent mercury, trivalent gold, divalent cadmium, lead ions and monovalent silver ions. Transgenic plants which express these coding sequences exhibit increased resistance to metal ions in the environment as compared with plants which have not been so genetically modified. Transgenic plants with improved resistance to organometals including alkylmercury compounds, among others, are provided by the further inclusion of plant-expressible organometal lyase coding sequences, as specifically exemplified by the plant-expressible merB coding sequence. Furthermore, these transgenic plants which have been genetically modified to express the metal resistance coding sequences of the present invention can participate in the bioremediation of metal contamination via the enzymatic reduction of metal ions. Transgenic plants resistant to organometals can further mediate remediation of organic metal compounds, for example, alkylmetal compounds including but not limited to methyl mercury, methyl lead compounds, methyl cadmium and methyl arsenic compounds, in the environment by causing the freeing of mercuric or other metal ions and the reduction of the ionic mercury or other metal ions to the less toxic elemental mercury or other metals.

  1. Quality control of analyses of mercury in hair

    International Nuclear Information System (INIS)

    Lind, B.; Friberg, L.; Bigras, L.; Kirkbride, J.; Kennedy, P.; Kjellstroem, T.

    1988-01-01

    A quality control programme for mercury determinations in hair was developed within a study of 'Mental effects of prenatal methylmercury exposure in New Zealand children'. Hair was obtained from seven females with a mercury concentration of about 0.5-4 μg Hg/g. The hair was cut into 1-5 cm pieces and pulverized by liquid nitrogen grinding using a ring mill. In order to obtain a series of QC samples with varying Hg concentrations, different amounts of powder from all the samples and a reference sample of pulverized hair (11.2 μg Hg/g) were mixed. The mercury concentrations in the original samples and the mixtures were determined by radiochemical neutron activation analysis (RNAA). In total four laboratories participated in the interlaboratory comparison. All laboratories used the cold vapor AAS technique and Hg monitor model 1235, LDC for determinations after wet digestion of the samples. (orig./RB)

  2. (abstract) Experimental and Modeling Studies of the Exchange Current at the Alkali Beta'-Alumina/Porous Electrode/Alkali Metal Vapor Three Phase Boundary

    Science.gov (United States)

    Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Underwood, M. L.; O'Connor, D.; Kikkert, S.

    1993-01-01

    The microscopic mechanism of the alkali ion-electron recombination reaction at the three phase boundary zone formed by a porous metal electrode in the alkali vapor on the surface of an alkali beta'-alumina solid electrolyte (BASE) ceramic has been studied by comparison of the expected rates for the three simplest reaction mechanisms with known temperature dependent rate data; and the physical parameters of typical porous metal electrode/BASE/alkali metal vapor reaction zones. The three simplest reactions are tunneling of electrons from the alkali coated electrode to a surface bound alkali metal ion; emission of an electron from the electrode with subsequent capture by a surface bound alkali metal ion; and thermal emission of an alkali cation from the BASE and its capture on the porous metal electrode surface where it may recombine with an electron. Only the first reaction adequately accounts for both the high observed rate and its temperature dependence. New results include crude modeling of simple, one step, three phase, solid/solid/gas electrochemical reaction.

  3. Aerosol trace metals, particle morphology and total gaseous mercury in the atmosphere of Oxford, UK

    Science.gov (United States)

    Witt, M. L. I.; Meheran, N.; Mather, T. A.; de Hoog, J. C. M.; Pyle, D. M.

    2010-04-01

    An investigation of atmospheric trace metals was conducted in Oxford, UK, a small city ˜60 miles northwest of London, in 2007 and 2008. Concentrations of Sr, Mo, Cd, Pb, V, Cr, Mn, Fe, Co, Ni, Cu and Zn in aerosol were measured in bulk and size segregated samples. In addition, total gaseous mercury (TGM) concentrations were monitored semi-continuously by cold vapour-atomic fluorescence spectroscopy. Metal concentrations in Oxford were intermediate between previously reported levels of UK rural and urban areas for most metals studied and levels of Cd, Ni and Pb were within European guidelines. Metal concentrations appeared to be influenced by higher traffic volume on a timescale of hours. The influence of traffic on the aerosols was also suggested by the observation of carbonaceous particles via scanning electron microscopy (SEM). Air mass back trajectories suggest air masses arriving in Oxford from London and mainland Europe contained the highest metal concentrations. Aerosol samples collected over Bonfire Weekend, a period of intense firework use and lighting of bonfires in the UK, showed metal concentrations 6-46 times higher than at other times. Strontium, a tracer of firework release, was present at higher concentrations and showed a change in its size distribution from the coarse to fine mode over Bonfire Weekend. The presence of an abundance of spherical Sr particles was also confirmed in SEM images. The average TGM concentration in Oxford was 3.17 ng m -3 (st. dev. 1.59) with values recorded between 1.32 and 23.2 ng m -3. This is a higher average value than reported from nearby rural locations, although during periods when air was arriving from the west, similar concentrations to these rural areas were seen in Oxford. Comparison to meteorological data suggests that TGM in Oxford's air is highest when wind is arriving from the east/southeast. This may be due to emissions from London/mainland Europe with a possible contribution from emissions from a local

  4. Experimental Investigation of Magnetohydrodynamics Effects in Molten Metals and Study of Homogeneity of Radioactive Mercury Amalgams

    CERN Document Server

    Astone, A

    2002-01-01

    The high neutrino output demanded for a neutri no factory requests a high power proton beam interacting with a static target. The additional circumstances of limited space and long term stability ask for development of novel concepts for such types of targets. In our working group, part of the Neutri no Factory Working Group (NFWG) of CERN, we are investigating on the proton interaction with the mercury target. This is called the study of proton induced shocks in molten metal. In the US scheme for a neutrino factory the interaction between proton beam and the mercury jet target takes place inside a 20 Tesla solenoidal magnetic field, which serv es as a focusing device for the produced particles. This field of study is refe rred to as Magneto Hydrodynamics (MHD). The high power proton beam deposits a large amount of energy in the small volume of the target, which results in disruption. The aim is to establi...

  5. Mercury content in Chilean fish and estimated intake levels.

    Science.gov (United States)

    Cortes, Sandra; Fortt, Antonia

    2007-09-01

    The intake of fish products is a major public health concern due to possible methyl mercury exposure, which is especially toxic to the human nervous system. This pilot study (n = 46) was designed to determine mercury concentrations in fish products for national consumption (Chilean jack mackerel, hake, Chilean mussel, tuna) and for export (salmon, Patagonian toothfish, swordfish, southern hake), and to estimate the exposure of the general population. The fish products were collected from markets in Talcahuano, Puerto Montt and Santiago. Samples were analyzed at the National Environmental Center by cold vapor atomic absorption spectrophotometry. Mercury levels in swordfish and one canned tuna sample exceeded levels prescribed by national and international standards. The remaining two export products (Patagonian toothfish, also known as Chilean sea bass, and salmon) complied with international limits, which are more demanding than Chilean regulations. Theoretical estimates of mercury intake varied from 0.08 to 3.8 microg kg(-1) bw day(-1) for high fish consumers, exceeding the provisional tolerable intake for tuna, Chilean seabass, Chilean jack mackerel and swordfish. This group appears to be at the greatest risk from mercury contamination among the Chilean population.

  6. Biosorption of mercury by capsulated and slime layerforming Gram ...

    African Journals Online (AJOL)

    The biosorption of mercury by two locally isolated Gram-ve bacilli: Klebsiella pneumoniae ssp. pneumonia (capsulated) and slime layer forming Pseudomonas aeruginosa, was characterized. Mercury adsorption was found to be influenced by the pH value of the biosorption solution, initial metal concentration, amount of the ...

  7. Pathways for Energization of Ca in Mercury's Exosphere

    Science.gov (United States)

    Killen, Rosemary M.

    2015-01-01

    We investigate the possible pathways to produce the extreme energy observed in the calcium exosphere of Mercury. Any mechanism must explain the facts that Ca in Mercury's exosphere is extremely hot, that it is seen almost exclusively on the dawnside of the planet, and that its content varies seasonally, not sporadically. Simple diatomic molecules or their clusters are considered, focusing on calcium oxides while acknowledging that Ca sulfides may also be the precursor molecules. We first discuss impact vaporization to justify the assumption that CaO and Ca-oxide clusters are expected from impacts on Mercury. Then we discuss processes by which the atomic Ca is energized to a 70,000 K gas. The processes considered are (1) electron-impact dissociation of CaO molecules, (2) spontaneous dissociation of Ca-bearing molecules following impact vaporization, (3) shock-induced dissociative ionization, (4) photodissociation and (5) sputtering. We conclude that electron-impact dissociation cannot produce the required abundance of Ca, and sputtering cannot reproduce the observed spatial and temporal variation that is measured. Spontaneous dissociation is unlikely to result in the high energy that is seen. Of the two remaining processes, shock induced dissociative ionization produces the required energy and comes close to producing the required abundance, but rates are highly dependent on the incoming velocity distribution of the impactors. Photodissociation probably can produce the required abundance of Ca, but simulations show that photodissociation cannot reproduce the observed spatial distribution.

  8. METHOD OF PURIFYING URANIUM METAL

    Science.gov (United States)

    Blanco, R.E.; Morrison, B.H.

    1958-12-23

    The removal of lmpurities from uranlum metal can be done by a process conslstlng of contacting the metal with liquid mercury at 300 icient laborato C, separating the impunitycontalnlng slag formed, cooling the slag-free liquld substantlally below the point at which uranlum mercurlde sollds form, removlng the mercury from the solids, and recovering metallic uranium by heating the solids.

  9. Natural and anthropogenic mercury sources and their impact on the air-surface exchange of mercury on regional and global scales

    Energy Technology Data Exchange (ETDEWEB)

    Ebinghaus, R.; Tripathi, R.M.; Wallschlaeger, D.; Lindberg, S.E.

    1998-12-31

    Mercury is outstanding among the global environmental pollutants of continuing concern. Especially in the last decade of the 20th century, environmental scientists, legislators, politicians and the public have become aware of mercury pollution in the global environment. It has often been suggested that anthropogenic emissions are leading to a general increase in mercury on local, regional, and global scales (Lindqvist et al. 1991; Expert Panel 1994). Mercury is emitted into the atmosphere from a number of natural as well as anthropogenic sources. In contrast with most of the other heavy metals, mercury and many of its compounds behave exceptionally in the environment due to their volatility and capability for methylation. Long-range atmospheric transport of mercury, its transformation to more toxic methylmercury compounds, and their bioaccumulation in the aquatic foodchain have motivated intensive research on mercury as a pollutant of global concern. Mercury takes part in a number of complex environmental cycles, and special interest is focused on the aquatic-biological and the atmospheric cycles. (orig./SR)

  10. Natural and anthropogenic mercury sources and their impact on the air-surface exchange of mercury on regional and global scales

    Energy Technology Data Exchange (ETDEWEB)

    Ebinghaus, R; Tripathi, R M; Wallschlaeger, D; Lindberg, S E

    1999-12-31

    Mercury is outstanding among the global environmental pollutants of continuing concern. Especially in the last decade of the 20th century, environmental scientists, legislators, politicians and the public have become aware of mercury pollution in the global environment. It has often been suggested that anthropogenic emissions are leading to a general increase in mercury on local, regional, and global scales (Lindqvist et al. 1991; Expert Panel 1994). Mercury is emitted into the atmosphere from a number of natural as well as anthropogenic sources. In contrast with most of the other heavy metals, mercury and many of its compounds behave exceptionally in the environment due to their volatility and capability for methylation. Long-range atmospheric transport of mercury, its transformation to more toxic methylmercury compounds, and their bioaccumulation in the aquatic foodchain have motivated intensive research on mercury as a pollutant of global concern. Mercury takes part in a number of complex environmental cycles, and special interest is focused on the aquatic-biological and the atmospheric cycles. (orig./SR)

  11. Physical properties of the planet Mercury

    Science.gov (United States)

    Clark, Pamela E.

    1988-01-01

    The global physical properties of Mercury are summarized with attention given to its figure and orbital parameters. The combination of properties suggests that Mercury has an extensive iron-rich core, possibly with a still-functioning dynamo, which is 42 percent of the interior by volume. Mercury's three major axes are comparable in size, indicating that the planet is a triaxial ellipsoid rather than an oblate spheroid. In terms of the domination of its surface by an intermediate plains terrane, it is more Venus- or Mars-like; however, due to the presence of a large metallic magnetic core, its interior may be more earth-like.

  12. Accumulation of mercury in selected plant species grown in soils contaminated with different mercury compounds

    International Nuclear Information System (INIS)

    Su, Yi; Han, Fengxiang; Shiyab, Safwan; Chen, Jian; Monts, David L.

    2007-01-01

    The objective of our research is to screen and search for suitable plant species for phyto-remediation of mercury-contaminated soil. Currently our effort is specifically focused on mercury removal from the U.S. Department of Energy (DOE) sites, where mercury contamination is a major concern. In order to cost effectively implement mercury remediation efforts, it is necessary now to obtain an improved understanding of biological means of removing mercury and mercury compounds.. Phyto-remediation is a technology that uses various plants to degrade, extract, contain, or immobilize contaminants from soil and water. In particular, phyto-extraction is the uptake of contaminants by plant roots and translocation within the plants to shoots or leaves. Contaminants are generally removed by harvesting the plants. We have investigated phyto-extraction of mercury from contaminated soil by using some of the known metal-accumulating plants since no natural plant species with mercury hyper-accumulating properties has yet been identified. Different natural plant species have been studied for mercury uptake, accumulation, toxicity and overall mercury removal efficiency. Various mercury compounds, such as HgS, HgCl 2 , and Hg(NO 3 ) 2 , were used as contaminant sources. Different types of soil were examined and chosen for phyto-remediation experiments. We have applied microscopy and diffuse reflectance spectrometry as well as conventional analytical chemistry to monitor the phyto-remediation processes of mercury uptake, translocation and accumulation, and the physiological impact of mercury contaminants on selected plant species. Our results indicate that certain plant species, such as beard grass (Polypogon monospeliensis), accumulated a very limited amount of mercury in the shoots ( 2 powder, respectively; no visual stress symptoms were observed. We also studied mercury phyto-remediation using aged soils that contained HgS, HgCl 2 , or Hg(NO 3 ) 2 . We have found that up to hundreds

  13. 40 CFR Table 3 to Subpart Ddddd of... - Operating Limits for Boilers and Process Heaters With Mercury Emission Limits and Boilers and...

    Science.gov (United States)

    2010-07-01

    ... operating limits: If you demonstrate compliance with applicable mercury and/or total selected metals... applicable emission limits for mercury and/or total selected metals. 2. Fabric filter control a. Install and... applicable emission limits for mercury and/or total selected metals. 4. Dry scrubber or carbon injection...

  14. Pressure drop and heat transfer of a mercury single-phase flow and an air-mercury two-phase flow in a helical tube under a strong magnetic field

    International Nuclear Information System (INIS)

    Takahashi, Minoru; Momozaki, Yoichi

    2000-01-01

    For the reduction of a large magneto-hydrodynamic (MHD) pressure drop of a liquid metal single-phase flow, a liquid metal two-phase flow cooling system has been proposed. As a fundamental study, MHD pressure drops and heat transfer characteristics of a mercury single-phase flow and an air-mercury two-phase flow were experimentally investigated. A strong transverse magnetic field relevant to the fusion reactor conditions was applied to the mercury single-phase flow and the air-mercury two-phase flow in a helically coiled tube that was inserted in the vertical bore of a solenoidal superconducting magnet. It was found that MHD pressure drops of a mercury single-phase flow in the helically coiled tube were nearly equal to those in a straight tube. The Nusselt number at an outside wall was higher than that at an inside wall both in the mercury single-phase flow in the absence and presence of a magnetic field. The Nusselt number of the mercury single-phase flow decreased, increased and again decreased with an increase in the magnetic flux density. MHD pressure drops did not decrease appreciably by injecting air into a mercury flow and changing the mercury flow into the air-mercury two-phase flow. Remarkable heat transfer enhancement did not appear by the air injection. The injection of air into the mercury flow enhanced heat transfer in the ranges of high mercury flow rate and low magnetic flux density, possibly due to the agitation effect of air bubbles. The air injection deteriorated heat transfer in the range of low mercury flow rates possibly because of the occupation of air near heating wall

  15. Vapor phase carbonylation of dimethyl ether and methyl acetate with supported transition metal catalysts

    International Nuclear Information System (INIS)

    Shikada, T.; Fujimoto, K.; Tominaga, H.O.

    1986-01-01

    The synthesis of acetic acid (AcOH) from methanol (MeOH) and carbon monoxide has been performed industrially in the liquid phase using a rhodium complex catalyst and an iodide promoter. The selectivity to AcOH is more than 99% under mild conditions (175 0 C, 28 atm). The homogeneous rhodium catalyst has been also effective for the synthesis of acetic anhydride (Ac 2 O) by carbonylation of dimethyl ether (DME) or methyl acetate (AcOMe). However, rhodium is one of the most expensive metals and its proved reserves are quite limited. It is highly desired, therefore, to develop a new catalyst as a substitute for rhodium. The authors have already reported that nickel supported on active carbon exhibits an excellent activity for the vapor phase carbonylation of MeOh in the presence of iodide promoter and under moderately pressurized conditions. In addition, corrosive attack on reactors by iodide compounds is expected to be negligible in the vapor phase system. In the present work, vapor phase carbonylation of DME and AcOMe on nickel-active carbon (Ni/A.C.) and molybdenum-active carbon (Mo/A.C.) catalysts was studied

  16. An Earth-sized exoplanet with a Mercury-like composition

    Science.gov (United States)

    Santerne, A.; Brugger, B.; Armstrong, D. J.; Adibekyan, V.; Lillo-Box, J.; Gosselin, H.; Aguichine, A.; Almenara, J.-M.; Barrado, D.; Barros, S. C. C.; Bayliss, D.; Boisse, I.; Bonomo, A. S.; Bouchy, F.; Brown, D. J. A.; Deleuil, M.; Delgado Mena, E.; Demangeon, O.; Díaz, R. F.; Doyle, A.; Dumusque, X.; Faedi, F.; Faria, J. P.; Figueira, P.; Foxell, E.; Giles, H.; Hébrard, G.; Hojjatpanah, S.; Hobson, M.; Jackman, J.; King, G.; Kirk, J.; Lam, K. W. F.; Ligi, R.; Lovis, C.; Louden, T.; McCormac, J.; Mousis, O.; Neal, J. J.; Osborn, H. P.; Pepe, F.; Pollacco, D.; Santos, N. C.; Sousa, S. G.; Udry, S.; Vigan, A.

    2018-05-01

    Earth, Venus, Mars and some extrasolar terrestrial planets1 have a mass and radius that is consistent with a mass fraction of about 30% metallic core and 70% silicate mantle2. At the inner frontier of the Solar System, Mercury has a completely different composition, with a mass fraction of about 70% metallic core and 30% silicate mantle3. Several formation or evolution scenarios are proposed to explain this metal-rich composition, such as a giant impact4, mantle evaporation5 or the depletion of silicate at the inner edge of the protoplanetary disk6. These scenarios are still strongly debated. Here, we report the discovery of a multiple transiting planetary system (K2-229) in which the inner planet has a radius of 1.165 ± 0.066 Earth radii and a mass of 2.59 ± 0.43 Earth masses. This Earth-sized planet thus has a core-mass fraction that is compatible with that of Mercury, although it was expected to be similar to that of Earth based on host-star chemistry7. This larger Mercury analogue either formed with a very peculiar composition or has evolved, for example, by losing part of its mantle. Further characterization of Mercury-like exoplanets such as K2-229 b will help to put the detailed in situ observations of Mercury (with MESSENGER and BepiColombo8) into the global context of the formation and evolution of solar and extrasolar terrestrial planets.

  17. An Earth-sized exoplanet with a Mercury-like composition

    Science.gov (United States)

    Santerne, A.; Brugger, B.; Armstrong, D. J.; Adibekyan, V.; Lillo-Box, J.; Gosselin, H.; Aguichine, A.; Almenara, J.-M.; Barrado, D.; Barros, S. C. C.; Bayliss, D.; Boisse, I.; Bonomo, A. S.; Bouchy, F.; Brown, D. J. A.; Deleuil, M.; Delgado Mena, E.; Demangeon, O.; Díaz, R. F.; Doyle, A.; Dumusque, X.; Faedi, F.; Faria, J. P.; Figueira, P.; Foxell, E.; Giles, H.; Hébrard, G.; Hojjatpanah, S.; Hobson, M.; Jackman, J.; King, G.; Kirk, J.; Lam, K. W. F.; Ligi, R.; Lovis, C.; Louden, T.; McCormac, J.; Mousis, O.; Neal, J. J.; Osborn, H. P.; Pepe, F.; Pollacco, D.; Santos, N. C.; Sousa, S. G.; Udry, S.; Vigan, A.

    2018-03-01

    Earth, Venus, Mars and some extrasolar terrestrial planets1 have a mass and radius that is consistent with a mass fraction of about 30% metallic core and 70% silicate mantle2. At the inner frontier of the Solar System, Mercury has a completely different composition, with a mass fraction of about 70% metallic core and 30% silicate mantle3. Several formation or evolution scenarios are proposed to explain this metal-rich composition, such as a giant impact4, mantle evaporation5 or the depletion of silicate at the inner edge of the protoplanetary disk6. These scenarios are still strongly debated. Here, we report the discovery of a multiple transiting planetary system (K2-229) in which the inner planet has a radius of 1.165 ± 0.066 Earth radii and a mass of 2.59 ± 0.43 Earth masses. This Earth-sized planet thus has a core-mass fraction that is compatible with that of Mercury, although it was expected to be similar to that of Earth based on host-star chemistry7. This larger Mercury analogue either formed with a very peculiar composition or has evolved, for example, by losing part of its mantle. Further characterization of Mercury-like exoplanets such as K2-229 b will help to put the detailed in situ observations of Mercury (with MESSENGER and BepiColombo8) into the global context of the formation and evolution of solar and extrasolar terrestrial planets.

  18. Structured nanocarbon on various metal foils by microwave plasma enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Rius, G; Yoshimura, M

    2013-01-01

    We present a versatile process for the engineering of nanostructures made of crystalline carbon on metal foils. The single step process by microwave plasma-enhance chemical vapor deposition is demonstrated for various substrate materials, such as Ni or Cu. Either carbon nanotubes (CNT) or carbon nanowalls (CNW) are obtained under same growth conditions and without the need of additional catalyst. The use of spacer and insulator implies a certain control over the kind of allotropes that are obtained. High density and large surface area are morphological characteristics of the thus obtained C products. The possibility of application on many metals, and in the alloy composition, on as-delivered commercially available foils indicates that this strategy can be adapted to a bunch of specific applications, while the production of C nanostructures is of remarkable simplicity.

  19. EFFECT OF NON-ESSENTIAL ELEMENTS (MERCURY. ARSENIC ON SALMONIDS (SALMONIDAE (REVIEW

    Directory of Open Access Journals (Sweden)

    І. Hrytsyniak

    2015-09-01

    Full Text Available Purpose. The problem of water ecosystem pollution with heavy metals achieved great actuality during recent years, both because of their significant distribution in environment, and wide spectrum of their toxic effects on fish organism. Much attention in modern scientific literature is given to the problem of the effects of heavy metals, including mercury and arsenic, on fish organism. However, investigations in this field are conducted mainly on cyprinids, while physiological and biochemical mechanisms of the effects of heavy metals on salmonids are less studied. According to this, the studies of the sources of heavy metals in water ecosystems, peculiarities of their action in salmonid organism on subcellular, cellular, tissue and organ levels, species and age-related peculiarities of the effects of heavy metals are of great scientific and practical importance. The purpose of this work is to review the mentioned problems. Findings. The work characterizes the effects of mercury and arsenic on salmonids on subcellular, cellular, tissue and organ levels. The article contains characteristic of conditions, under which toxic or lethal action of the mentioned xenobiotics on different species of salmonids was observed. Originality. The paper summarizes literature data concerning the effect of mercury and arsenic on salmonids. Attention is accented on the sources of the mentioned pollutants in surface waters, physiological and biochemical mechanisms of their effects on salmonids, and on factors, which determine the level of their toxicity. Lethal concentrations of mercury and arsenic to salmonids, depending on experiment duration, species and age-related peculiarities are presented. Practical value. Data presented in the review can be used for the explanation of physiological and biochemical mechanisms of the adaptation of salmonids to surface water pollution with heavy metals, diagnostics of fish pathologies caused by toxic effects of mercury and

  20. Gender differences in the disposition and toxicity of metals

    International Nuclear Information System (INIS)

    Vahter, Marie; Akesson, Agneta; Liden, Carola; Ceccatelli, Sandra; Berglund, Marika

    2007-01-01

    There is increasing evidence that health effects of toxic metals differ in prevalence or are manifested differently in men and women. However, the database is small. The present work aims at evaluating gender differences in the health effects of cadmium, nickel, lead, mercury and arsenic. There is a markedly higher prevalence of nickel-induced allergy and hand eczema in women compared to men, mainly due to differences in exposure. Cadmium retention is generally higher in women than in men, and the severe cadmium-induced Itai-itai disease was mainly a woman's disease. Gender differences in susceptibility at lower exposure are uncertain, but recent data indicate that cadmium has estrogenic effects and affect female offspring. Men generally have higher blood lead levels than women. Lead accumulates in bone and increased endogenous lead exposure has been demonstrated during periods of increased bone turnover, particularly in women in pregnancy and menopause. Lead and mercury, in the form of mercury vapor and methylmercury, are easily transferred from the pregnant women to the fetus. Recent data indicate that boys are more susceptible to neurotoxic effects of lead and methylmercury following exposure early in life, while experimental data suggest that females are more susceptible to immunotoxic effects of lead. Certain gender differences in the biotransformation of arsenic by methylation have been reported, and men seem to be more affected by arsenic-related skin effect than women. Experimental studies indicate major gender differences in arsenic-induced cancer. Obviously, research on gender-related differences in health effects caused by metals needs considerable more focus in the future

  1. Impact of oxy-fuel combustion gases on mercury retention in activated carbons from a macroalgae waste: effect of water.

    Science.gov (United States)

    Lopez-Anton, M A; Ferrera-Lorenzo, N; Fuente, E; Díaz-Somoano, M; Suarez-Ruíz, I; Martínez-Tarazona, M R; Ruiz, B

    2015-04-01

    The aim of this study is to understand the different sorption behaviors of mercury species on activated carbons in the oxy-fuel combustion of coal and the effect of high quantities of water vapor on the retention process. The work evaluates the interactions between the mercury species and a series of activated carbons prepared from a macroalgae waste (algae meal) from the agar-agar industry in oxy-combustion atmospheres, focussing on the role that the high concentration of water in the flue gases plays in mercury retention. Two novel aspects are considered in this work (i) the impact of oxy-combustion gases on the retention of mercury by activated carbons and (ii) the performance of activated carbons prepared from biomass algae wastes for this application. The results obtained at laboratory scale indicate that the effect of the chemical and textural characteristics of the activated carbons on mercury capture is not as important as that of reactive gases, such as the SOx and water vapor present in the flue gas. Mercury retention was found to be much lower in the oxy-combustion atmosphere than in the O2+N2 (12.6% O2) atmosphere. However, the oxidation of elemental mercury (Hg0) to form oxidized mercury (Hg2+) amounted to 60%, resulting in an enhancement of mercury retention in the flue gas desulfurization units and a reduction in the amalgamation of Hg0 in the CO2 compression unit. This result is of considerable importance for the development of technologies based on activated carbon sorbents for mercury control in oxy-combustion processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Evidence of mercury exposure in a particular low-income community in South Africa

    CSIR Research Space (South Africa)

    Oosthuizen, MA

    2010-09-01

    Full Text Available countries in terms of mercury emissions to the environment. The human nervous system is very sensitive to mercury. When metallic mercury vapour in the air is inhaled, it may cross the blood-brain barrier and cause permanent brain damage (Figure 1). Bacteria...

  3. Mercury Levels in Women and Children from Interior Villages in Suriname, South America.

    Science.gov (United States)

    Ouboter, Paul E; Landburg, Gwendolyn; Satnarain, Gaitrie U; Starke, Sheryl Y; Nanden, Indra; Simon-Friedt, Bridget; Hawkins, William B; Taylor, Robert; Lichtveld, Maureen Y; Harville, Emily; Wickliffe, Jeffrey K

    2018-05-17

    Natural sources of mercury, historical gold mining, and contemporary artisanal and small-scale gold mining (ASGM) activities have led to mercury contamination in Suriname. Our primary objective was to evaluate mercury levels in hair of women and children from interior villages in Suriname where mercury levels in fish are elevated. We also estimated blood levels of mercury using an established mathematical conversion to facilitate comparison with other biomonitoring programs in the United States. Estimated levels of mercury in the blood of participants from Suriname were significantly higher than those in women from a heavy marine fish-consuming population in southeast Louisiana and estimates of the US national average. This includes women from Surinamese villages well upstream of ASGM activities. Since residents in these areas rely heavily on local fish, this is likely the source of their exposure to mercury. The levels in hair are similar to those seen in women from longitudinal studies finding neurological impairments in children exposed pre- and postnatally. Additional biomonitoring and neurodevelopmental assessments are warranted in these areas, as well as other areas of the Suriname. Mercury levels in hair (Suriname) and blood (southeast LA USA) were determined using cold vapor atomic absorption spectroscopy (CVAAS).

  4. Optimization of procedures for mercury-203 instrumental neutron activation analysis in human urine

    Energy Technology Data Exchange (ETDEWEB)

    Blotcky, A J; Claassen, J P [Nebraska Univ., Omaha, NE (United States). Medical Center; Fung, Y K [Nebraska Univ., Lincoln, NE (United States). Dept. of Chemistry; Meade, A G; Rack, E P [Nebraska Univ., Lincoln, NE (United States)

    1995-08-01

    Mercury, a known neurotoxin, has been implicated in etiology and pathogenesis of such disease states as Alzheimer`s and Parkinson`s diseases. There is concern that the exposure to mercury vapor released from dental amalgam restorations is a potential health hazard. Measurement of mercury concentrations in blood or urine may be useful in diagnosis of mercury poisoning and in assessing the extent exposure. This study describes the optimization of pre-neutron activation analysis procedures such as sampling, selection of irradiation and counting vials and acid digestion in order to minimize mercury loss via volatilization and/or permeation through containers. Therefore, the determination of mercury can be complicated by these potential losses. In the optimized procedure 20mL of urine was spiked with three different concentrations of mercury, digested with concentrated nitric acid, and placed in polypropylene vials for irradiation and counting. Analysis was performed by subtracting the Se-75 photopeak contribution to the 279 keV Hg-203 photopeak and applying the method of standard additions. Urinary mercury concentrations in normal human subjects were determined to be of the order of 10ng/mL. (author). 22 refs., 1 fig., 5 tabs.

  5. Optimization of procedures for mercury-203 instrumental neutron activation analysis in human urine

    International Nuclear Information System (INIS)

    Blotcky, A.J.; Claassen, J.P.

    1995-01-01

    Mercury, a known neurotoxin, has been implicated in etiology and pathogenesis of such disease states as Alzheimer's and Parkinson's diseases. There is concern that the exposure to mercury vapor released from dental amalgam restorations is a potential health hazard. Measurement of mercury concentrations in blood or urine may be useful in diagnosis of mercury poisoning and in assessing the extent exposure. This study describes the optimization of pre-neutron activation analysis procedures such as sampling, selection of irradiation and counting vials and acid digestion in order to minimize mercury loss via volatilization and/or permeation through containers. Therefore, the determination of mercury can be complicated by these potential losses. In the optimized procedure 20mL of urine was spiked with three different concentrations of mercury, digested with concentrated nitric acid, and placed in polypropylene vials for irradiation and counting. Analysis was performed by subtracting the Se-75 photopeak contribution to the 279 keV Hg-203 photopeak and applying the method of standard additions. Urinary mercury concentrations in normal human subjects were determined to be of the order of 10ng/mL. (author). 22 refs., 1 fig., 5 tabs

  6. Radiochemical aspects of liquid mercury spallation targets

    CERN Document Server

    Neuhausen, Joerg; Eichler, Bernd; Eller, Martin; Horn, Susanne; Schumann, Dorothea; Stora, Thierry

    2012-01-01

    Liquid metal spallation targets using mercury as target material are used in state-of-the-art high power pulsed neutron sources that have been constructed in the USA and Japan within the last decade. Similar target concepts were also proposed for next generation ISOL, beta-beam and neutrino facilities. A large amount of radioactivity will be induced in the liquid metal during operation caused by the interaction of the target material with the intense proton beam. This radioactivity - carried by a wide range of radioisotopes of all the elements of the periodic table from hydrogen up to thallium - must be considered for the assessment of safe operation and maintenance procedures as well as for a final disposal of the used target material and components. This report presents an overview on chemical investigations performed in our laboratory that deal with the behavior of radionuclides in proton irradiated mercury samples. The solubility of elements in mercury was calculated using thermodynamical data obtained by...

  7. The cycling of mercury in shrimp and mussels

    International Nuclear Information System (INIS)

    Fowler, S.W.; Heyraud, M.; LaRosa, J.

    1976-01-01

    With the current interest in mercury as a conventional pollutant in the aquatic environment, researchers are commonly employing 203 Hg in laboratory and field studies to measure the flux of this metal through marine biota. The majority of these studies have focused on estimating mercury turnover times by measuring the loss of 203 Hg from previously labelled animals. This approach operates under the assumption that the radiotracer has adequately equilibrated with pools of the corresponding stable metal in the organism so that radioisotope flux will reflect the kinetics of stable metal excretion. Oftentimes, this criterium is not met with the result that the array of different tracer labelling techniques leads to different conclusions about the kinetics of the corresponding stable element

  8. The mercury-richest europium amalgam Eu{sub 10}Hg{sub 55}

    Energy Technology Data Exchange (ETDEWEB)

    Tambornino, Frank; Hoch, Constantin [Department of Chemistry, Ludwig-Maximilians-Universitaet Muenchen (Germany)

    2015-03-15

    The mercury-richest europium amalgam Eu{sub 10}Hg{sub 55} was synthesized by isothermal electrocrystallization from a solution of EuI{sub 3}.8DMF in DMF on a reactive mercury cathode. The crystal structure shows remarkable complexity and polar metal-metal bonding. Closely related to the structures of mercury-rich amalgams A{sub 11-x}Hg{sub 55+x} (A = Na, Ca, Sr), it shows underoccupied Hg positions along [00z]. Eu{sub 10}Hg{sub 55} can be described as hettotype structure of the Gd{sub 14}Ag{sub 51} structure type. (Copyright copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Survey of mercury, cadmium and lead content of household batteries

    Energy Technology Data Exchange (ETDEWEB)

    Recknagel, Sebastian, E-mail: sebastian.recknagel@bam.de [BAM Federal Institute for Materials Research and Testing, Department of Analytical Chemistry, Reference Materials, Richard-Willstätter-Straße 11, D-12489 Berlin (Germany); Radant, Hendrik [BAM Federal Institute for Materials Research and Testing, Department of Analytical Chemistry, Reference Materials, Richard-Willstätter-Straße 11, D-12489 Berlin (Germany); Kohlmeyer, Regina [German Federal Environment Agency (UBA), Section III 1.6 Extended Producer Responsibility, Wörlitzer Platz 1, D-06844 Dessau-Roßlau (Germany)

    2014-01-15

    Highlights: • A well selected sample of 146 batteries was analysed for its heavy metals content. • A comparison was made between heavy metals contents in batteries in 2006 and 2011. • No significant change after implementation of the new EU Batteries Directive. • Severe differences in heavy metal contents were found in different battery-types. - Abstract: The objective of this work was to provide updated information on the development of the potential impact of heavy metal containing batteries on municipal waste and battery recycling processes following transposition of the new EU Batteries Directive 2006/66/EC. A representative sample of 146 different types of commercially available dry and button cells as well as lithium-ion accumulators for mobile phones were analysed for their mercury (Hg)-, cadmium (Cd)- and lead (Pb)-contents. The methods used for preparing the cells and analysing the heavy metals Hg, Cd, and Pb were either developed during a former study or newly developed. Several batteries contained higher mass fractions of mercury or cadmium than the EU limits. Only half of the batteries with mercury and/or lead fractions above the marking thresholds were labelled. Alkaline–manganese mono-cells and Li-ion accumulators, on average, contained the lowest heavy metal concentrations, while zinc–carbon batteries, on average, contained the highest levels.

  10. Survey of mercury, cadmium and lead content of household batteries

    International Nuclear Information System (INIS)

    Recknagel, Sebastian; Radant, Hendrik; Kohlmeyer, Regina

    2014-01-01

    Highlights: • A well selected sample of 146 batteries was analysed for its heavy metals content. • A comparison was made between heavy metals contents in batteries in 2006 and 2011. • No significant change after implementation of the new EU Batteries Directive. • Severe differences in heavy metal contents were found in different battery-types. - Abstract: The objective of this work was to provide updated information on the development of the potential impact of heavy metal containing batteries on municipal waste and battery recycling processes following transposition of the new EU Batteries Directive 2006/66/EC. A representative sample of 146 different types of commercially available dry and button cells as well as lithium-ion accumulators for mobile phones were analysed for their mercury (Hg)-, cadmium (Cd)- and lead (Pb)-contents. The methods used for preparing the cells and analysing the heavy metals Hg, Cd, and Pb were either developed during a former study or newly developed. Several batteries contained higher mass fractions of mercury or cadmium than the EU limits. Only half of the batteries with mercury and/or lead fractions above the marking thresholds were labelled. Alkaline–manganese mono-cells and Li-ion accumulators, on average, contained the lowest heavy metal concentrations, while zinc–carbon batteries, on average, contained the highest levels

  11. Problems of hydrogen - water vapor - inert gas mixture use in heavy liquid metal coolant technology

    International Nuclear Information System (INIS)

    Ul'yanov, V.V.; Martynov, P.N.; Gulevskij, V.A.; Teplyakov, Yu.A.; Fomin, A.S.

    2014-01-01

    The reasons of slag deposit formation in circulation circuits with heavy liquid metal coolants, which can cause reactor core blockage, are considered. To prevent formation of deposits hydrogen purification of coolant and surfaces of circulation circuit is used. It consists in introduction of gaseous mixtures hydrogen - water vapor - rare gas (argon or helium) directly into coolant flow. The principle scheme of hydrogen purification and the processes occurring during it are under consideration. Measures which make it completely impossible to overlap of the flow cross section of reactor core, steam generators, pumps and other equipment by lead oxides in reactor facilities with heavy liquid metal coolants are listed [ru

  12. Systematic review and meta-analysis links autism and toxic metals and highlights the impact of country development status: Higher blood and erythrocyte levels for mercury and lead, and higher hair antimony, cadmium, lead, and mercury.

    Science.gov (United States)

    Saghazadeh, Amene; Rezaei, Nima

    2017-10-03

    Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder that affects cognitive and higher cognitive functions. Increasing prevalence of ASD and high rates of related comorbidities has caused serious health loss and placed an onerous burden on the supporting families, caregivers, and health care services. Heavy metals are among environmental factors that may contribute to ASD. However, due to inconsistencies across studies, it is still hard to explain the association between ASD and toxic metals. Therefore the objective of this study was to investigate the difference in heavy metal measures between patients with ASD and control subjects. We included observational studies that measured levels of toxic metals (antimony, arsenic, cadmium, lead, manganese, mercury, nickel, silver, and thallium) in different specimens (whole blood, plasma, serum, red cells, hair and urine) for patients with ASD and for controls. The main electronic medical database (PubMed and Scopus) were searched from inception through October 2016. 52 studies were eligible to be included in the present systematic review, of which 48 studies were included in the meta-analyses. The hair concentrations of antimony (standardized mean difference (SMD)=0.24; 95% confidence interval (CI): 0.03 to 0.45) and lead (SMD=0.60; 95% confidence interval (CI): 0.17 to 1.03) in ASD patients were significantly higher than those of control subjects. ASD patients had higher erythrocyte levels of lead (SMD=1.55, CI: 0.2 to 2.89) and mercury (SMD=1.56, CI: 0.42 to 2.70). There were significantly higher blood lead levels in ASD patients (SMD=0.43, CI: 0.02 to 0.85). Sensitivity analyses showed that ASD patients in developed but not in developing countries have lower hair concentrations of cadmium (SMD=-0.29, CI: -0.46 to -0.12). Also, such analyses indicated that ASD patients in developing but not in developed lands have higher hair concentrations of lead (SMD=1.58, CI: 0.80 to 2.36) and mercury (SMD=0

  13. Elemental Impurities in Nigerian Pediatric Syrups: Mercury in Violation of Standard Guidelines.

    Science.gov (United States)

    Orisakwe, Orish Ebere; Roberts, Irosanga Itamuno; Bagbi, Baribefe Monday

    2016-01-01

    Studies on the human exposure to elemental impurities like antimony, tin, and mercury pharmaceutical products in the African environment are scarce and limited. In this study, we determined the concentrations of these elemental impurities in 28 different brands of commonly used pediatric syrups, purchased randomly from patent medicine retail outlets in Port Harcourt, Rivers State, Nigeria. The aim of this study was to compare the antimony, tin, and mercury levels in these pediatric syrups with the recommended limits of United States Pharmacopeia. Twenty-eight different pediatric syrups were randomly sampled and purchased using the market basket protocol from pharmacy shops in Port Harcourt, Rivers State, Nigeria in December 2010. Syrups were ashed before digestion using concentrated aqua regia, HCl: HNO3 (3:1), and antimony, tin, and mercury were analyzed using Unicam Atomic Absorption Spectrophotometer (AAS) Model 929. The ranges of heavy metal content in these pediatric syrups were 0.54-1.27, 0.86-2.56, and 0.97-5.13 μg/g for antimony, tin, and mercury, respectively. About 75% of the syrups exceeded the United States Pharmacopeia mercury limit of 1.5 μg/g. The estimated or calculated amounts of antimony, tin, and mercury in the 3 most likely administered syrups were 17.15, 64.20, and 34.60 μg of antimony, tin, and mercury, respectively. The daily intake or estimated amount from the ingestion of syrups excluding background exposure (μg metal·kg body weight·d) for a 15-kg child were 1.17, 2.31, and 4.28 for antimony, tin, and mercury, respectively. Mercury content in pediatric syrups may constitute a significant source of heavy metal exposure to children and may be of public health importance in Nigeria.

  14. Effects of Mercury Chloride on the Cerebral Cortex of Adult Wistar Rats

    African Journals Online (AJOL)

    Mercury is among the heavy metals that have been reported to cause devastating health problem worldwide. The primary site of action of mercury chloride is the central nervous system. This study investigated the effect of mercury chloride on the cerebral cortex of adult wistar rats. Twenty-four (24) adult wistar rats were used ...

  15. MERCURY CONTAMINATED MATERIAL DECONTAMINATION METHODS: INVESTIGATION AND ASSESSMENT; TOPICAL

    International Nuclear Information System (INIS)

    M.A. Ebadian, Ph.D.

    2001-01-01

    Over the years mercury has been recognized as having serious impacts on human health and the environment. This recognition has led to numerous studies that deal with the properties of various mercury forms, the development of methods to quantify and speciate the forms, fate and transport, toxicology studies, and the development of site remediation and decontamination technologies. This report reviews several critical areas that will be used in developing technologies for cleaning mercury from mercury-contaminated surfaces of metals and porous materials found in many DOE facilities. The technologies used for decontamination of water and mixed wastes (solid) are specifically discussed. Many technologies that have recently appeared in the literature are included in the report. Current surface decontamination processes have been reviewed, and the limitations of these technologies for mercury decontamination are discussed. Based on the currently available technologies and the processes published recently in the literature, several processes, including strippable coatings, chemical cleaning with iodine/iodide lixiviant, chemisorbing surface wipes with forager sponge and grafted cotton, and surface/pore fixation through amalgamation or stabilization, have been identified as potential techniques for decontamination of mercury-contaminated metal and porous surfaces. Their potential merits and applicability are discussed. Finally, two processes, strippable coatings and chemical cleaning with iodine/iodide lixiviant, were experimentally investigated in Phase II of this project

  16. Sulfide treatment to inhibit mercury adsorption onto activated carbon in carbon-in-pulp gold recovery circuits

    Energy Technology Data Exchange (ETDEWEB)

    Touro, F.J.; Lipps, D.A.

    1988-03-29

    A process for treating a mercury-contaminated, precious metal-containing ore slurry is described comprising: (a) reacting sulfide anions in an aqueous ore slurry of a mercury and precious metal-containing carbonaceous ore, and (b) conducting a simultaneous cyanide leach and carbon-in-pulp adsorption of the precious metal from the carbonaceous ore in the sulfide-containing ore slurry.

  17. Below a Historic Mercury Mine: Non-linear Patterns of Mercury Bioaccumulation in Aquatic Organisms

    Science.gov (United States)

    Haas, J.; Ichikawa, G.; Ode, P.; Salsbery, D.; Abel, J.

    2001-12-01

    Unlike most heavy metals, mercury is capable of bioaccumulating in aquatic food-chains, primarily because it is methylated by bacteria in sediment to the more toxic methylmercury form. Mercury concentrations in a number of riparian systems in California are highly elevated as a result of historic mining activities. These activities included both the mining of cinnabar in the coastal ranges to recover elemental mercury and the use of elemental mercury in the gold fields of the Sierra Nevada Mountains. The most productive mercury mining area was the New Almaden District, now a county park, located in the Guadalupe River drainage of Santa Clara County, where cinnabar was mined and retorted for over 100 years. As a consequence, riparian systems in several subwatersheds of the Guadalupe River drainage are contaminated with total mercury concentrations that exceed state hazardous waste criteria. Mercury concentrations in fish tissue frequently exceed human health guidelines. However, the potential ecological effects of these elevated mercury concentrations have not been thoroughly evaluated. One difficulty is in extrapolating sediment concentrations to fish tissue concentrations without accounting for physical and biological processes that determine bioaccumulation patterns. Many processes, such as methylation and demethylation of mercury by bacteria, assimilation efficiency in invertebrates, and metabolic rates in fish, are nonlinear, a factor that often confounds attempts to evaluate the effects of mercury contamination on aquatic food webs. Sediment, benthic macroinvertebrate, and fish tissue samples were collected in 1998 from the Guadalupe River drainage in Santa Clara County at 13 sites upstream and downstream from the historic mining district. Sediment and macroinvertebrate samples were analyzed for total mercury and methylmercury. Fish samples were analyzed for total mercury as whole bodies, composited by species and size. While linear correlations of sediment

  18. Mercury

    International Nuclear Information System (INIS)

    Vilas, F.; Chapman, C.R.; Matthews, M.S.

    1988-01-01

    Papers are presented on future observations of and missions to Mercury, the photometry and polarimetry of Mercury, the surface composition of Mercury from reflectance spectrophotometry, the Goldstone radar observations of Mercury, the radar observations of Mercury, the stratigraphy and geologic history of Mercury, the geomorphology of impact craters on Mercury, and the cratering record on Mercury and the origin of impacting objects. Consideration is also given to the tectonics of Mercury, the tectonic history of Mercury, Mercury's thermal history and the generation of its magnetic field, the rotational dynamics of Mercury and the state of its core, Mercury's magnetic field and interior, the magnetosphere of Mercury, and the Mercury atmosphere. Other papers are on the present bounds on the bulk composition of Mercury and the implications for planetary formation processes, the building stones of the planets, the origin and composition of Mercury, the formation of Mercury from planetesimals, and theoretical considerations on the strange density of Mercury

  19. Subtask 4.8 - Fate and Control of Mercury and Trace Elements

    Energy Technology Data Exchange (ETDEWEB)

    Pavlish, John; Lentz, Nicholas; Martin, Christopher; Ralston, Nicholas; Zhuang, Ye; Hamre, Lucinda

    2011-12-31

    The Center for Air Toxic Metals® (CATM®) Program at the Energy & Environmental Research Center (EERC) continues to focus on vital basic and applied research related to the fate, behavior, measurement, and control of trace metals, especially mercury, and the impact that these trace metals have on human health and the environment. For years, the CATM Program has maintained an international perspective, performing research and providing results that apply to both domestic and international audiences, with reports distributed in the United States and abroad. In addition to trace metals, CATM’s research focuses on other related emissions and issues that impact trace metal releases to the environment, such as SOx, NOx, CO2, ash, and wastewater streams. Of paramount interest and focus has been performing research that continues to enable the power and industrial sectors to operate in an environmentally responsible manner to meet regulatory standards. The research funded by the U.S. Department of Energy’s (DOE’s) National Energy Technology Laboratory (NETL) through CATM has allowed significant strides to be made to gain a better understanding of trace metals and other emissions, improve sampling and measurement techniques, fill data gaps, address emerging technical issues, and develop/test control technologies that allow industry to cost-effectively meet regulatory standards. The DOE NETL–CATM research specifically focused on the fate and control of mercury and trace elements in power systems that use CO2 control technologies, such as oxycombustion and gasification systems, which are expected to be among those technologies that will be used to address climate change issues. In addition, research addressed data gaps for systems that use conventional and multipollutant control technologies, such as electrostatic precipitators, selective catalytic reduction units, flue gas desulfurization systems, and flue gas

  20. Assessment of Mercury Bioaccumulation in Zebra Cichlid (Cichlasoma Nigrofasciatum Exposed to Sublethal Concentrations of Permethrin

    Directory of Open Access Journals (Sweden)

    Mahdi Banaee

    2014-12-01

    Full Text Available Background: Aquatic ecosystems are frequently subjected to contamination by toxic heavy metals and pesticides, yet very little is known about the influence of pesticides on bioaccumulation of heavy metals in aquatic organisms. Mercury is a toxic metal with no known biological benefit to organisms. Bioavailability of mercury in aquatic environments depends on biological and non-biological parameters including other pollutants. Therefore, the objectives of this research were to determine the effects of permethrin on bioaccumulation of mercury in zebra cichlid. Methods: Acute toxicity (LC50 of permethrin and mercury chloride was evaluated by estimating mortality in Probit Model in SPSS (version 19.0 IBM. In sub-lethal toxicity, zebra cichlid (Cichlasoma nigrofasciatum was exposed to various concentrations of permethrin (0.0, 0.40, 0.80, 1.20 and 1.60 µg.L-1 combined with 20 µg.L-1 mercury chloride for 15 days. At the end of the experiment, mercury concentrations were measured using ICP-OES-Perkin elmer (optima 7300-DV. Results: 96 h LC50 values of permethrin and mercury for C. nigrofasciatum were calculated to be 17.55 µg.L-1 and 140.38 µg.L-1, respectively. Our results clearly showed that the bioaccumulation of mercury in the specimens increased with increasing concentrations of permethrin to 1.20 and 1.60 µg.L-1. Conclusion: Increasing the concentration of permethrin had synergistic effects on the bioaccumulation of mercury in fish.

  1. Touchstones and mercury at Hedeby

    Czech Academy of Sciences Publication Activity Database

    Ježek, Martin; Holub, M.

    2014-01-01

    Roč. 89, č. 1 (2014), s. 193-204 ISSN 0079-4848 Institutional support: RVO:67985912 Keywords : Hedeby * Viking Age * grave goods * touchstone * precious metal * mercury * chemical microanalysis * archaeometallurgy Subject RIV: AC - Archeology, Anthropology, Ethnology Impact factor: 0.278, year: 2014

  2. Determination of mercury in ash and soil samples by oxygen flask combustion method-Cold vapor atomic fluorescence spectrometry (CVAFS)

    International Nuclear Information System (INIS)

    Geng Wenhua; Nakajima, Tsunenori; Takanashi, Hirokazu; Ohki, Akira

    2008-01-01

    A simple method was developed for the determination of mercury (Hg) in coal fly ash (CFA), waste incineration ash (WIA), and soil by use of oxygen flask combustion (OFC) followed by cold vapor atomic fluorescence spectrometry (CVAFS). A KMnO 4 solution was used as an absorbent in the OFC method, and the sample containing a combustion agent and an ash or soil sample was combusted by the OFC method. By use of Hg-free graphite as the combustion agent, the determination of Hg in ash and soil was successfully carried out; the Hg-free graphite was prepared by use of a mild pyrolysis procedure at 500 deg. C. For six certified reference materials (three CFA samples and three soil samples), the values of Hg obtained by this method were in good agreement with the certified or reference values. In addition, real samples including nine CFAs collected from some coal-fired power plants, five WIAs collected from waste incineration plants, and two soils were analyzed by the present method, and the data were compared to those from microwave-acid digestion (MW-AD) method

  3. Micro pit formation by mercury-sphere collision

    International Nuclear Information System (INIS)

    Ishikura, Syuichi; Kogawa, Hiroyuki; Futakawa, Masatoshi; Kaminaga, Masanori; Hino, Ryutaro

    2004-01-01

    The development of a MW-class spallation neutron source facility is being carried out under the Japan Proton Accelerator Research Complex (J-PARC) Project promoted by JAERI and KEK. A mercury target working as the spallation neutron source will be subjected to pressure waves generated by rapid thermal expansion of mercury due to a pulsed proton beam injection. The pressure wave will impose dynamic stress on the vessel and deform the vessel, which would cause cavitation in mercury. To evaluate the effect of mercury micro jets, driven by cavitation bubble collapse, on the micro-pit formation, analyses on mercury sphere collision were carried out: single bubble dynamics and collision behavior on interface between liquid and solid, which take the nonlinearity due to shock wave in mercury and the strain rate dependency of yield stress in solid metal into account. Analytical results give a good explanation to understand relationship between the micro-pit formation and material properties: the pit size could decrease with increasing the yield strength of materials. (author)

  4. Magnetron target designs to improve wafer edge trench filling in ionized metal physical vapor deposition

    International Nuclear Information System (INIS)

    Lu Junqing; Yoon, Jae-Hong; Shin, Keesam; Park, Bong-Gyu; Yang Lin

    2006-01-01

    Severe asymmetry of the metal deposits on the trench sidewalls occurs near the wafer edge during low pressure ionized metal physical vapor deposition of Cu seed layer for microprocessor interconnects. To investigate this process and mitigate the asymmetry, an analytical view factor model based on the analogy between metal sputtering and diffuse thermal radiation was constructed. The model was validated based on the agreement between the model predictions and the reported experimental values for the asymmetric metal deposition at trench sidewalls near the wafer edge for a 200 mm wafer. This model could predict the thickness of the metal deposits across the wafer, the symmetry of the deposits on the trench sidewalls at any wafer location, and the angular distributions of the metal fluxes arriving at any wafer location. The model predictions for the 300 mm wafer indicate that as the target-to-wafer distance is shortened, the deposit thickness increases and the asymmetry decreases, however the overall uniformity decreases. Up to reasonable limits, increasing the target size and the sputtering intensity for the outer target portion significantly improves the uniformity across the wafer and the symmetry on the trench sidewalls near the wafer edge

  5. Measurement of Total Site Mercury Emissions from a Chlor-Alkali Plant Using Ultraviolet Differential Optical Absorption Spectroscopy and Cell Room Roof-Vent Monitoring

    Science.gov (United States)

    Mercury-cell chlor-alkali plants can emit significant quantities of fugitive elemental mercury vapor to the air as part of production operations and maintenance activities. In the fall of 2006, the U.S. Environmental Protection Agency (EPA) conducted a measurement project at a ch...

  6. Mercury Continuous Emmission Monitor Calibration

    Energy Technology Data Exchange (ETDEWEB)

    John Schabron; Eric Kalberer; Ryan Boysen; William Schuster; Joseph Rovani

    2009-03-12

    Mercury continuous emissions monitoring systems (CEMs) are being implemented in over 800 coal-fired power plant stacks throughput the U.S. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor calibrators/generators. These devices are used to calibrate mercury CEMs at power plant sites. The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005 and vacated by a Federal appeals court in early 2008 required that calibration be performed with NIST-traceable standards. Despite the vacature, mercury emissions regulations in the future will require NIST traceable calibration standards, and EPA does not want to interrupt the effort towards developing NIST traceability protocols. The traceability procedures will be defined by EPA. An initial draft traceability protocol was issued by EPA in May 2007 for comment. In August 2007, EPA issued a conceptual interim traceability protocol for elemental mercury calibrators. The protocol is based on the actual analysis of the output of each calibration unit at several concentration levels ranging initially from about 2-40 {micro}g/m{sup 3} elemental mercury, and in the future down to 0.2 {micro}g/m{sup 3}, and this analysis will be directly traceable to analyses by NIST. The EPA traceability protocol document is divided into two separate sections. The first deals with the qualification of calibrator models by the vendors for use in mercury CEM calibration. The second describes the procedure that the vendors must use to certify the calibrators that meet the qualification specifications. The NIST traceable certification is performance based, traceable to analysis using isotope dilution inductively coupled plasma

  7. Ameliorative effect of ascorbic acid on mercury chloride‑induced ...

    African Journals Online (AJOL)

    Introduction: Mercury is a highly toxic metal that exerts its adverse effects on the health of humans and animals through air, soil, water and food. Aim: The present study was aimed at the evaluation of the effects of ascorbic acid on mercury chloride-induced changes on the histomorphology of the spleen of adult Wistar Rats.

  8. Five Hundred Years of Mercury Exposure and Adaptation

    Science.gov (United States)

    Lombardi, Guido; Lanzirotti, Antonio; Qualls, Clifford; Socola, Francisco; Ali, Abdul-Mehdi; Appenzeller, Otto

    2012-01-01

    Mercury is added to the biosphere by anthropogenic activities raising the question of whether changes in the human chromatin, induced by mercury, in a parental generation could allow adaptation of their descendants to mercury. We review the history of Andean mining since pre-Hispanic times in Huancavelica, Peru. Despite the persistent degradation of the biosphere today, no overt signs of mercury toxicity could be discerned in present day inhabitants. However, mercury is especially toxic to the autonomic nervous system (ANS). We, therefore, tested ANS function and biologic rhythms, under the control of the ANS, in 5 Huancavelicans and examined the metal content in their hair. Mercury levels varied from none to 1.014 ppm, significantly less than accepted standards. This was confirmed by microfocused synchrotron X-ray fluorescence analysis. Biologic rhythms were abnormal and hair growth rate per year, also under ANS control, was reduced (P Peru. This would generally benefit survival in the Anthropocene, the man-made world, we now live in. PMID:22910643

  9. Bench-scale Kinetics Study of Mercury Reactions in FGD Liquors

    Energy Technology Data Exchange (ETDEWEB)

    Gary Blythe; John Currie; David DeBerry

    2008-03-31

    This document is the final report for Cooperative Agreement DE-FC26-04NT42314, 'Kinetics Study of Mercury Reactions in FGD Liquors'. The project was co-funded by the U.S. DOE National Energy Technology Laboratory and EPRI. The objective of the project has been to determine the mechanisms and kinetics of the aqueous reactions of mercury absorbed by wet flue gas desulfurization (FGD) systems, and develop a kinetics model to predict mercury reactions in wet FGD systems. The model may be used to determine optimum wet FGD design and operating conditions to maximize mercury capture in wet FGD systems. Initially, a series of bench-top, liquid-phase reactor tests were conducted and mercury species concentrations were measured by UV/visible light spectroscopy to determine reactant and byproduct concentrations over time. Other measurement methods, such as atomic absorption, were used to measure concentrations of vapor-phase elemental mercury, that cannot be measured by UV/visible light spectroscopy. Next, a series of bench-scale wet FGD simulation tests were conducted. Because of the significant effects of sulfite concentration on mercury re-emission rates, new methods were developed for operating and controlling the bench-scale FGD experiments. Approximately 140 bench-scale wet FGD tests were conducted and several unusual and pertinent effects of process chemistry on mercury re-emissions were identified and characterized. These data have been used to develop an empirically adjusted, theoretically based kinetics model to predict mercury species reactions in wet FGD systems. The model has been verified in tests conducted with the bench-scale wet FGD system, where both gas-phase and liquid-phase mercury concentrations were measured to determine if the model accurately predicts the tendency for mercury re-emissions. This report presents and discusses results from the initial laboratory kinetics measurements, the bench-scale wet FGD tests, and the kinetics modeling

  10. Ultrasensitive Quantum Dot Fluorescence quenching Assay for Selective Detection of Mercury Ions in Drinking Water

    Science.gov (United States)

    Ke, Jun; Li, Xinyong; Zhao, Qidong; Hou, Yang; Chen, Junhong

    2014-07-01

    Mercury is one of the most acutely toxic substances at trace level to human health and living thing. Developing a rapid, cheap and water soluble metal sensor for detecting mercury ions at ppb level remains a challenge. Herein, a metal sensor consisting of MPA coated Mn doped ZnSe/ZnS colloidal nanoparticles was utilized to ultrasensitively and selectively detect Hg2+ ions with a low detection limit (0.1 nM) over a dynamic range from 0 to 20 nM. According to strong interaction between thiol(s) and mercury ions, mercaptopropionic acid (MPA) was used as a highly unique acceptor for mercury ions in the as-obtained ultrasensitive sensor. In the presence of mercury ions, colloidal nanoparticles rapidly agglomerated due to changes of surface chemical properties, which results in severe quenching of fluorescent intensity. Meanwhile, we find that the original ligands are separated from the surface of colloidal nanoparticles involving strongly chelation between mercury ion and thiol(s) proved by controlled IR analysis. The result shows that the QD-based metal ions sensor possesses satisfactory precision, high sensitivity and selectivity, and could be applied for the quantification analysis of real samples.

  11. The Mercury Problem in Artisanal and Small-Scale Gold Mining.

    Science.gov (United States)

    Esdaile, Louisa J; Chalker, Justin M

    2018-05-11

    Mercury-dependent artisanal and small-scale gold mining (ASGM) is the largest source of mercury pollution on Earth. In this practice, elemental mercury is used to extract gold from ore as an amalgam. The amalgam is typically isolated by hand and then heated-often with a torch or over a stove-to distill the mercury and isolate the gold. Mercury release from tailings and vaporized mercury exceed 1000 tonnes each year from ASGM. The health effects on the miners are dire, with inhaled mercury leading to neurological damage and other health issues. The communities near these mines are also affected due to mercury contamination of water and soil and subsequent accumulation in food staples, such as fish-a major source of dietary protein in many ASGM regions. The risks to children are also substantial, with mercury emissions from ASGM resulting in both physical and mental disabilities and compromised development. Between 10 and 19 million people use mercury to mine for gold in more than 70 countries, making mercury pollution from ASGM a global issue. With the Minamata Convention on Mercury entering force this year, there is political motivation to help overcome the problem of mercury in ASGM. In this effort, chemists can play a central role. Here, the problem of mercury in ASGM is reviewed with a discussion on how the chemistry community can contribute solutions. Introducing portable and low-cost mercury sensors, inexpensive and scalable remediation technologies, novel methods to prevent mercury uptake in fish and food crops, and efficient and easy-to-use mercury-free mining techniques are all ways in which the chemistry community can help. To meet these challenges, it is critical that new technologies or techniques are low-cost and adaptable to the remote and under-resourced areas in which ASGM is most common. The problem of mercury pollution in ASGM is inherently a chemistry problem. We therefore encourage the chemistry community to consider and address this issue that

  12. MERCURY IN SOIL AND ATMOSPHERE AS A PATHFINDER ELEMENT FOR ISTRIAN BAUXITE DEPOSITS — A TENTATIVE EXPLORATION MODEL

    Directory of Open Access Journals (Sweden)

    Ladislav A. Palinkaš

    1989-12-01

    Full Text Available ID order to find out a secondary dispersion halo of mercury and some other trace elements around the bauxite ore bodies, the authors sampled terra rossa along traverses over them. At the same time, mercury in air is measured and expressed by relative values (mA using Zeeman mercury vapor analyser. Mercury in soil was determined by flameless atomic absorption method and Cd, Pb, Zn, Cu, Co and Mn by standard AA techniques. The results are equivocal since the natural vertical soil profiles are severely disturbed on traverses due to different land use, what should be taken into consideration during continuation of the survey.

  13. Effect of mercury chloride to number of melano-macrophage centers on the kidney of carp fish (Cyprinus carpio)

    Science.gov (United States)

    Mubarokah, L.; Tjahjaningsih, W.; Sulmartiwi, L.

    2018-04-01

    Mercury chloride can cause immunotoxic effects on fish. The accumulation or aggregate of melano-macrophages centers (MMCs) in the kidney is a feature of cellular immune response, so it can be used as a bioindicator of heavy metal toxicity in waters. This research aims to determine an effect of heavy metal exposure concentration of mercury chloride (HgCl2) on a number of MMCs from common carp kidney. This research using four treatments of mercury chloride: 0 ppm, 0.01 ppm, 0.05 ppm and 0.1 ppm. The main parameters were the number of MMCs in kidney common carp. Supporting parameter was behavior change, water quality and concentration of mercury in the water and kidney. The results of the research showed that the concentration the heavy metal exposure concentration of mercury chloride (HgCl2) affected the number of MMCs from common carp (Cyprinus carpio) kidney. The number of MMCs in the kidney of common carp exposed to mercury chloride 0.01 ppm, 0.05 ppm and 0.1 ppm increased compared to carp was not exposed to mercury chloride (0 ppm).

  14. BEHAVIOR OF MERCURY DURING DWPF CHEMICAL PROCESS CELL PROCESSING

    Energy Technology Data Exchange (ETDEWEB)

    Zamecnik, J.; Koopman, D.

    2012-04-09

    The Defense Waste Processing Facility has experienced significant issues with the stripping and recovery of mercury in the Chemical Processing Cell (CPC). The stripping rate has been inconsistent, often resulting in extended processing times to remove mercury to the required endpoint concentration. The recovery of mercury in the Mercury Water Wash Tank has never been high, and has decreased significantly since the Mercury Water Wash Tank was replaced after the seventh batch of Sludge Batch 5. Since this time, essentially no recovery of mercury has been seen. Pertinent literature was reviewed, previous lab-scale data on mercury stripping and recovery was examined, and new lab-scale CPC Sludge Receipt and Adjustment Tank (SRAT) runs were conducted. For previous lab-scale data, many of the runs with sufficient mercury recovery data were examined to determine what factors affect the stripping and recovery of mercury and to improve closure of the mercury material balance. Ten new lab-scale SRAT runs (HG runs) were performed to examine the effects of acid stoichiometry, sludge solids concentration, antifoam concentration, form of mercury added to simulant, presence of a SRAT heel, operation of the SRAT condenser at higher than prototypic temperature, varying noble metals from none to very high concentrations, and higher agitation rate. Data from simulant runs from SB6, SB7a, glycolic/formic, and the HG tests showed that a significant amount of Hg metal was found on the vessel bottom at the end of tests. Material balance closure improved from 12-71% to 48-93% when this segregated Hg was considered. The amount of Hg segregated as elemental Hg on the vessel bottom was 4-77% of the amount added. The highest recovery of mercury in the offgas system generally correlated with the highest retention of Hg in the slurry. Low retention in the slurry (high segregation on the vessel bottom) resulted in low recovery in the offgas system. High agitation rates appear to result in lower

  15. Mercury Levels in Women and Children from Interior Villages in Suriname, South America

    Directory of Open Access Journals (Sweden)

    Paul E. Ouboter

    2018-05-01

    Full Text Available Natural sources of mercury, historical gold mining, and contemporary artisanal and small-scale gold mining (ASGM activities have led to mercury contamination in Suriname. Our primary objective was to evaluate mercury levels in hair of women and children from interior villages in Suriname where mercury levels in fish are elevated. We also estimated blood levels of mercury using an established mathematical conversion to facilitate comparison with other biomonitoring programs in the United States. Estimated levels of mercury in the blood of participants from Suriname were significantly higher than those in women from a heavy marine fish-consuming population in southeast Louisiana and estimates of the US national average. This includes women from Surin